BC Geological Survey
Assessment Report
34924

Technical Report on the Klootchlimmis Creek

Property Tenures 998130, 998135, 998136, 998138, 998142

Statement of Work Event Number: 5520584

Location: Nanaimo Mining Division, British Columbia BCGS Map 082L042 / NTS Map 092L05E

> Project Period: June 18th-22nd 2014

Exploration Technical Personnel:

Bin Li / Geologist Master's Degree in Geology, Registered Geologist in China, 4370 Keith Rd. West Vancouver BC

> Edward Eden/ Exploration Technician, 4370 Keith Rd. West Vancouver BC FMC:279939

Chris Zimmer /Mining Exploration Contractor Box 332 Tofino, British Columbia, V0R 2Z0 FMC#-218232

> Fred Eden / Prospector West Vancouver, BC FMC# 258348

Owner and Operator: Liaoning Eden Venture Investments Ltd 4370 Keith Rd. West Vancouver BC

> Co-Authors: Fred Eden General Manager / Prospector

Bin Li Registered Geologist in China

> Edward Eden/ Exploration Technician

> > Submitted:

Sept. 5th 2014

Table of Contents

Introduction	1
Property Description and Location	1
Access	1
Property History	1
Minfile Geology History and Mineralization	
Geology	
Physical Work	
2014 Work Program	9
Field Investigation	
Equiptment List	9
2014 Daily Report	
2014 Sample List, Coordinates and Notes	
2014 Sediment Sample List, Coordinates and Notes	
2014 Sample Location Map	
Conclusion	
References	
Appendix A:	
Cost Statement	
COPPER 5520584	
Appendix B:	
Certificates of Analysis	
ALS Chemex Analytical Descriptions	
Appendix C:	
Minfile Detail Report	
Appendix D -Amendments	44
Amendment 1 - Statement of Qualifications	45
Amendment 2 - Title Page and Sumary Form	46

Photographs of Work

Kewquodie creek and Camp

Kewquodie creek and Deactivated road off of B-Main

(3)

(4)

Klootchlimmis Creek Property Summary

The Klootchlimmis Creek Property is located in the north central Vancouver Island of British Columbia, approx. 10 kilometers west of Port Alice, British Columbia at NAD 83, Latitude: 50.458524, Longitude: -127.697637 and UTM Zone U09 coordinates 592444E, 5590424N on 1:50,000 scale map sheets NTS 092L05 within the Nanaimo Mining Division. The property is located in the river basin of the Klootchlimmis Creek and the Kewquodie Creek, consists of timbered slopes that range in elevation from 0 to 800 meters.

The Klootchlimmis Creek Property consists of 5 claims, 998130, 998135, 998136, 998138, 998142. The claims were staked by Liaoning Eden Venture Investments Ltd on June 17, 2012. Access to the property is through Highway 19 North to Highway 30 West (Port Alice Road) to Marine Drive (Port Alice) and south around Neroutsos Inlet to Mahatta River.

The Klootchlimmis Creek Property has 4 recorded Minfile occurrences, Kew, Les, Cleagh, and Klootch. The past work consisted of prospecting, geological mapping, geochemical sampling, and geophysical surveys dating from 1969 to 2006.

The present work pertaining to this report is an update of the 2012 and 2013 Klootchlimmis Creek Property exploration program. The present work took place on June 18th -22nd 2014 in which 14 rock samples and 7 sediment samples were taken by Registered geologist Li Bin with Edward Eden Exploration Technician and Chris Zimmer Operator/Mineral Exploration Contractor. The Total cost apportioned to prospecting on the COPPER claims which cover an area of 2407.1425 Hectares in SOW #5520584 as \$10537.44

The property lies within the Insular Belt of the Cordillera. Most of the property is covered by Lower Jurassic Bonanza Group, consist of basaltic to rhyolite, and mainly sub aerial lava flows and pyroclastic rocks. Northeast part covered by lower cretaceous kyuquot group sedimentary rocks, consists of siltstone, shale, greywacke, calcareous grit and conglomerate. Government geological maps show a big north-south elongated intrusion on the East edge of the claims, consists of medium to coarse-grained hornblende-biotite and granodiorite. A small stock to the northeast of the Les Showing consists of homblende-albite diorite. Country rocks are massive, locally amygdaloidal andesitic flows and volcanic breccia. The breccia unit forms the host for the Les Showing and is a massive, apparently formational unit.

The prospecting work involved inspection of several sedimental geochemical anomaly from the 2013 work results. 14 rock samples and 7 sediment samples were collected in June 2014 focusing on the area along Kewquodie Creek. The most prominent assay is a stream sediment sample which Returned 2.7 ppm gold, and 1.38ppm silver from 2013 work. The stream sedimental anomly was not found. Due to the amount of slash and forestry growth on the claims, trenching is required in the near future to reveal unexposed bedrock for further geological mapping and geochemical sampling.

Introduction PROPERTY DESCRIPTION AND LOCATION

Tenure Number	Claim Name	Owner	Tenure Type	Tenure Sub Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
998130	COPPER1	258348 (100%)	Mineral	Claim	092L	2012/jun/17	2015/jan/08	GOOD	514.2944
998135	COPPER2	258348 (100%)	Mineral	Claim	092L	2012/jun/17	2015/jan/08	GOOD	514.3385
998136	COPPER3	258348 (100%)	Mineral	Claim	092L	2012/jun/17	2015/jan/08	GOOD	514.3383
998138	COPPER4	258348 (100%)	Mineral	Claim	092L	2012/jun/17	2015/jan/08	GOOD	514.3368
998142	COPPER7	258348 (100%)	Mineral	Claim	092L	2012/jun/17	2015/jan/08	GOOD	349.8349

Table 1: claim information

The Klootchlimmis Creek Property is located in the north central Vancouver Island of British Columbia, approx. 10 kilometers west of Port Alice, British Columbia at NAD 83, Latitude: 50.458524, Longitude: -127.697637 and UTM Zone U09 coordinates 592444E, 5590424N on 1:50,000 scale map sheets NTS 092L05E within the Nanaimo Mining Division. The property is located in the river basin of the Klootchlimmis Creek and the Kewquodie Creek, consists of timbered slopes that range in elevation from 0 to 800 meters.

Topography is moderate to gentle over most of the claim area. Some of the main stream valleys are steeply incised (e.g. Kewquodie Creek). The vegetation is characterized as west coast temperate rain forest.

ACCESS

The Klootchlimmis Creek property was accessed from Nanaimo and Vancouver British Columbia by way of Highway 19 North to Highway 30 West (Port Alice Road) to Marine Drive (Port Alice) South around Neroutsos Inlet to Mahatta River.

PROPERTY HISTORY

The Klootchlimmis Creek Property consists of 8 claims, COPPER1-COPPER8. However this report refers to COPPER1-COPPER4 AND COPPER7. The claims were staked by Liaoning Eden Venture Investments Ltd on June 17, 2012. Aris reports related to the properties: 2391, 22166, 26621, 28388, 27601, 26620.

The Klootchlimmis Creek Property has 4 recorded Minfile occurrences, KEW, LES, CLEAGH, and KLOOTCH. The past work consisted of prospecting, geological mapping, geochemical sampling, and geophysical surveys dating from 1969 to 2006.

Minfile Geology History and Mineralization

KEW 092L 325

The Kew occurrence is located east of Kewquodie Creek, approximately 2.7 kilometers south of its mouth.

The area lies within the Insular Belt of the Cordillera and is underlain mainly by volcanics, crystalline rocks and minor sediments. Andesitic to rhyodacitic lava, tuff and breccia of the Lower Jurassic Bonanza Group overlie an assemblage consisting of Paleozoic Sicker Group sediments and Upper Triassic Vancouver Group basalts and minor carbonate and clastic sediments.

The Bonanza volcanics are coeval with, or genetically related to, granodiorite stocks of the Jurassic Island Plutonic Suite which intrude all older rocks.

D.G. Leighton (1974) reports disseminated chalcopyrite and bornite mineralization in basic dikes intruding Bonanza Group tuff breccia, 1 kilometre north of a granitic intrusion.

From 1969 to 1970, Skaist Mines completed programs of geological mapping, geochemical sampling and geophysical surveys. From 2001 to 2006, the area was explored by S. Laurence and E. McCrossan as part of the Q claims. Programs of prospecting, geological mapping and geochemical sampling were completed at this time.

CLEAGH 092L 324

The Cleagh occurrence is located on an un-named southerly flowing tributary of Mahatta Creek, approximately 2 kilometres west of Kewquodie Creek.

The area lies within the Insular Belt of the Cordillera and is underlain mainly by volcanics, crystalline rocks and minor sediments. Andesitic to rhyodacitic lava, tuff and breccia of the Lower Jurassic Bonanza Group overlie an assemblage consisting of Paleozoic Sicker Group sediments and Upper Triassic Vancouver Group basalts and minor carbonate and clastic sediments.

The Bonanza volcanics are coeval with, or genetically related to, granodiorite stocks of the Jurassic Island Plutonic Suite which intrude all older rocks.

Mineralization consists of chalcopyrite-molybdenum-sphalerite in quartz veins at the contact between basic lavas and felsic breccia, both of the Bonanza Group. A small (1 kilometre diameter) granitoid stock lies 1.7 kilometres to the northeast.

From 1969 to 1970, Skaist Mines completed programs of geological mapping, geochemical sampling and geophysical surveys. In 1991, Stow Resources completed programs of prospecting, geological mapping and geochemical sampling on the Mahatta claims. From 2001 to 2006, the area was explored by S. Laurence and E. McCrossan as part of the Queen claims. Programs of prospecting, geological mapping and geochemical sampling were completed at this time.

KLOOTCH 092L 335

The area lies within the Insular Belt of the Cordillera and is underlain mainly by volcanics, crystalline rocks and minor sedi- ments. Andesitic to rhyodacitic lava, tuff and breccia of the Lower Jurassic

Bonanza Group overlie an assemblage consisting of Paleozoic Sicker Group sediments and Upper Triassic Vancouver Group basalts and minor carbonate and clastic sediments.

LES 092L 230

The Les occurrence is located north of Mahatta Creek, approximately 3.5 kilometres east of the community of Mahatta Creek.

The area is underlain by andesitic to rhyodacitic lava, tuff and breccia of the Lower Jurassic Bonanza Group. The Bonanza Group volcanics have been intruded by granodioritic stocks of the Jurassic Island Plutonic Suite.

The Les occurrence consists of disseminated to discontinues stringers of chalcopyrite, magnetite, hematite and pyrite in volcanic breccia, interbedded with fine-grained and vesicular andesite adjacent to a small hornblende-albite-diorite stock. The volcanic rocks exhibit tourmaline-argillic-carbonate and silicic alteration resulting from the intrusions.

The mineralization occurs over an area of 150 by 30 metres. Chip samples returned values of 0.15 to 0.60 per cent copper (National Mineral Inventory Card 092L5 Cu8).

From 1969 to 1970, Skaist Mines completed programs of geological mapping, geochemical sampling and geophysical surveys. In 1991, Stow Resources completed programs of prospecting, geological mapping and geochemical sampling on the Mahatta claims. From 2001 to 2006, the area was explored by S. Laurence and E. McCrossan as part of the Queen claims. Programs of prospecting, geological mapping and geochemical sampling were completed at this time.

Figure 1: General Location Map

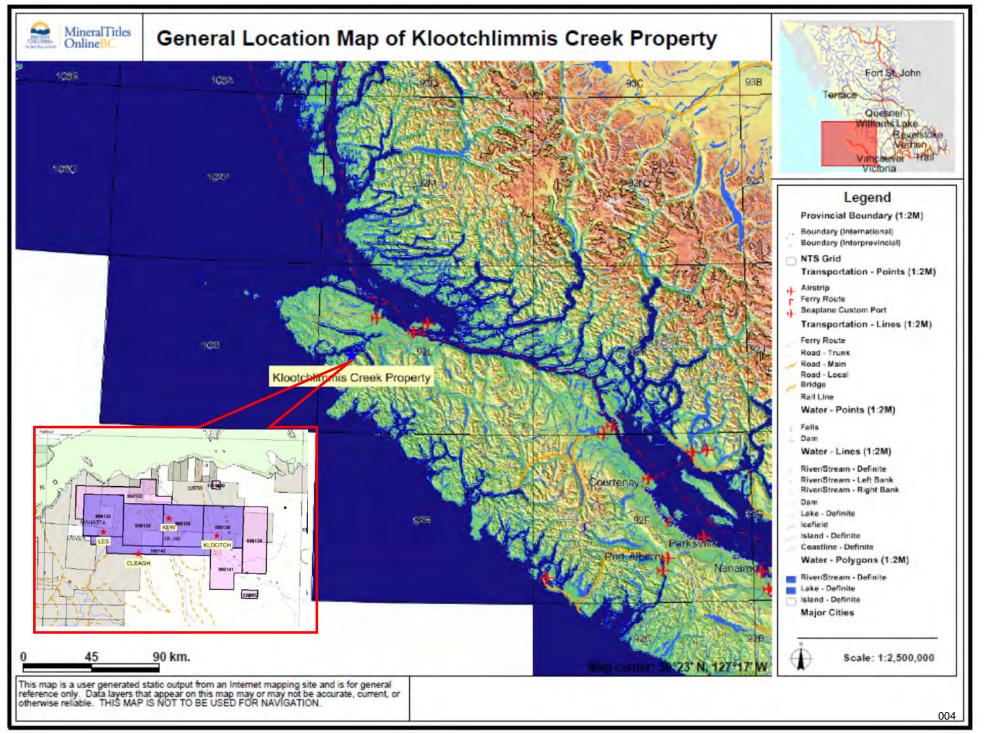
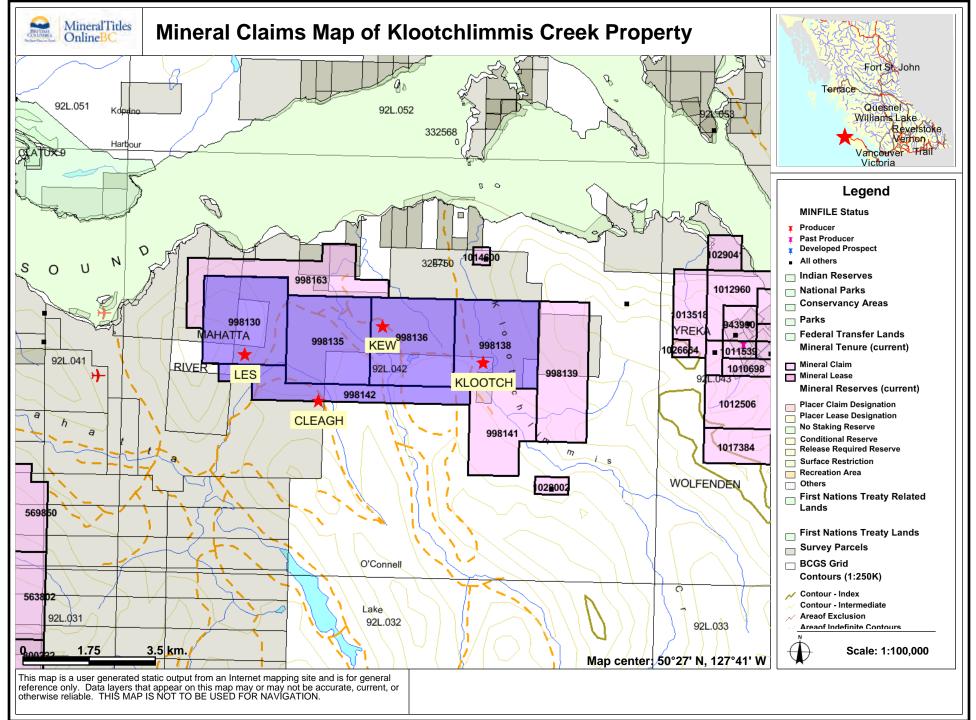
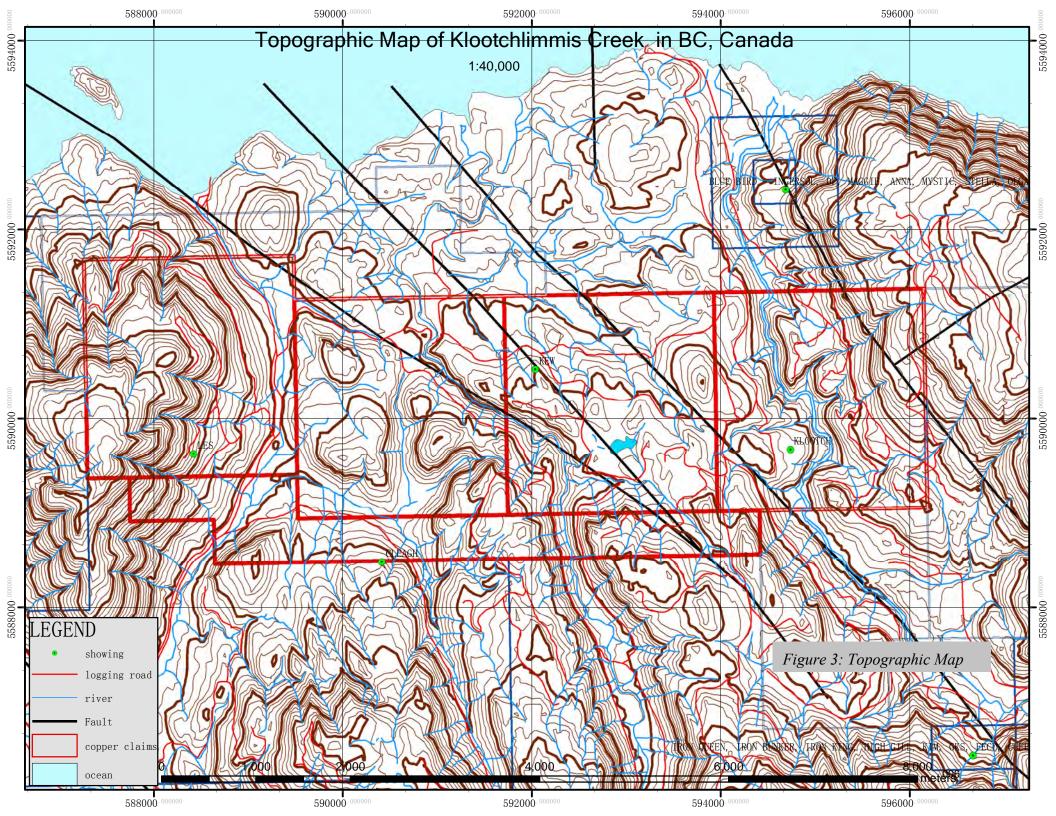
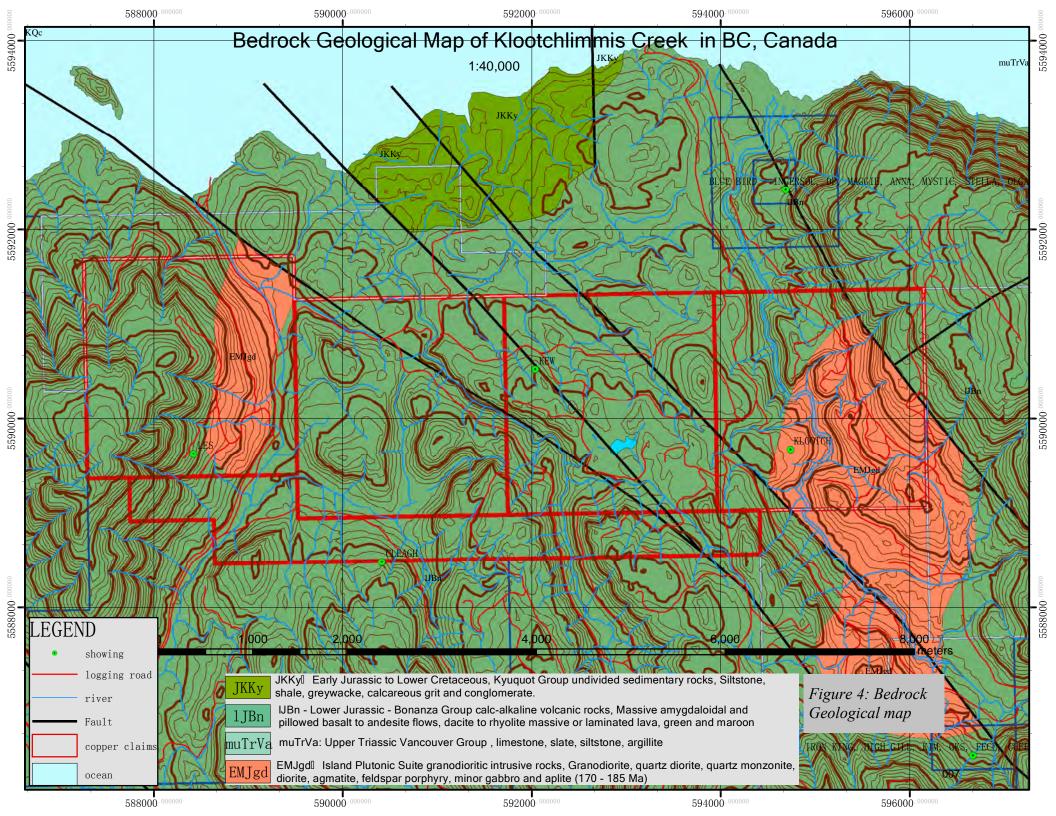





Figure 2: Klootchlimmis Claim Group

GEOLOGY

The property lies within the Insular Belt of the Cordillera. Most of the property is covered by Lower Jurassic Bonanza Group, consist of basaltic to rhyolite, and mainly sub aerial lava flows and pyroclastic rocks. Northeast part covered by lower cretaceous kyuquot group sedimentary rocks, consists of siltstone, shale, greywacke, calcareous grit and conglomerate. Government geological maps show a big north-south elongated intrusion on the East edge of the claims, consists of medium to coarse-grained hornblende-biotite and granodiorite. A small stock to the northeast of the Les Showing consists of homblende-albite diorite. Country rocks are massive, locally amygdaloidal andesitic flows and volcanic breccia. The breccia unit forms the host for the Les Showing and is a massive, apparently formational unit.

Geochemistry

Geochemical sampling methods

7 stream sediment samples were taken at the drainage outlets of water ways where a main geochemical anomaly from 2013 work were discovered. The sample media was stream silt, to generally ensure collection of sufficient silt, medium sized Hubco bags were used to collect approximately 0.5 kg of sample material. These bags were superior to kraft bags in size, strength and the sieving characteristics of the material that allowed much of the water to be strained out quickly without decanting.

Sample site locations were recorded by GPS stations keyed to field notes describing the location and the stream characteristics. In the field the filled bags were drained by packing to filter water through the bag material and the samples were carefully packed into polyethylene rock sample bags lining backpacks to prevent spillage or cross contamination and keep hiking gear dry.

Sample sites were marked with fluorescent orange flagging, Bags were externally labelled with samples No. 14 grab samples were collected from altered or mineralized rocks. Sample site locations were recorded by GPS stations keyed to field notes describing the location and the geological characteristics. All the sediment and rock samples were delivered by the writer to the ALS analytical facilities in North Vancouver.

Geochemical samples Prepare and analysis

The Prepare package specified for sediment coded PREP-41 that dry at $<60^{\circ}C/140F$, sieve sample to -180 micron (80 mesh). The analytical package included Au-TL43 by Aqua Regia extraction with ICP-MS finish plus ME-MS41 analysis of target and pathfinder elements. Aqua Regia extraction for a nominal 25 gram sample size was selected primarily to reduce potential nugget effects in gold analysis.

Rock samples Prepared in package coded PREP-31 were Crushed to 70% less than 2mm, riffled split off 250g, pulverize spitted to better than 85% passing 75 microns. The analytical package included Au by fire assay and ICP-AES coded Au-ICP21 plus ME-MS41 analysis of target and pathfinder elements.

Geochemical samples analysis results

Results in spreadsheet format were downloaded by the writer from the ALS Webtrieve site. Analytical certificates were received by e-mail transfer and are shown in Appendix B.

Analytical Data Statistics cannot be done for just 4 sediment samples, in order to evaluate the Geochemical samples analysis results, refer to published statistics for samples from BCGS Regional Geochemical Survey results published in Geoscience BC Report 2013-11(REGIONAL STREAM SEDIMENT AND WATER GEOCHEMICAL DATA, NORTHERN VANCOUVER ISLAND, BRITISH COLUMBIA).

Arbitrary thresholds for gold at the 95% percentile was calculated at 21.5 ppb, at the 90% percentile was calculated at 9.3 ppb, and at the 85% percentile was calculated at 6.8 ppb in northern Vancouver Island regional geochemical data. All the sediment samples from the Copper Property are below 5 ppb in gold and 60 ppm in copper, no geochemical anomaly was found.

All the rock and sediment samples result include gold and silver value are shown in table 2 and figure 7,8,9,10.

Technical Work

2014 WORK PROGRAM

The purpose of the 2014 Klootchlimmis Creek Property exploration program was to further define and survey the mineralization occurances within the property via sampling assessments, previous work and minfile data, And explore new areas of the claim group.

FIELD INVESTIGATION

Bin li of West Vancouver Registered geologist in china with a masters degree in geology, along with Edward Eden Exploration Technician of West Vancouver and Chris Zimmer Mineral Exploration Contractor from Tofino, Fred Eden prospector from west vancouver, and xiao feng exploration assistant conducted this years field investigation on our Klootchlimmis Creek Property from June 18th-June 22nd 2014. A total of 14 rock and 7 sediment samples were taken and later analyzed by ALS Minerals in North Vancouver, British Columbia. Additional technical mapping was prepared by Bin li and report by Fred Eden and Edward Eden. Logging activity Limited exploration of areas, however forestry company were in the process of building new roads with extensive Blasting of Bedrock, exposing new never before seen outcrops that require more exploration.

Two vehicles were used to travel to the general area and then hiking on foot with equipment carried as required. Roads and trails were mapped by GPS with notes on conditions and hazards. Any other development work is noted and mapped with rock samples taken as appropriate. Notes were taken on terrain, watercourses, overburden etc. with future prospecting, geological mapping, geochemical and geophysical work in mind. Orange flagging and marking of sample sites occurred and multiple photos were taken of samples and areas of interest. GPS coordinates were taken, and all samples were recorded logged and mapped. Mapping of sample locations was done by way of ArcGIS, Google, IMP and exploration assistant, and all data was compiled and sorted by use of Excel. This data formed the template for this report. Sample types include in situ hard rock, float boulders, points of interest (sample), and additional points of interest.

Assay results from laboratory tests are provided, and geologist descriptions of Hard rock and Float boulders are pending. Sample types include in situ hard rock, float boulders, points of interest (sample), and additional points of interest.

EQUIPTMENT LIST

2 vehicles (4x4 trucks), husky chainsaws, 1000w generator, Garmin GPS map 62, laptop, wall tent, camping equipment, VHF radio, InReach Satelite communicator, flare gun, bear spray, bear banger, air horn, flagging tape, sample bags, tags, various picks, shovels, hammers, axes, assorted markers, compass and other items.

2014 DAILY REPORT

June 18th 2014

The team left our office at 7:30 to board ferry, reached Cambell river for lunch at 12:30. Arrived in Port Mcneill at 4:30 to check into the haida way inn

June 19th 2014

Team left Hotel at 7:00 am, And arrived on claim at 9:30 am to set up camp. Fred and assistant left at Approximatly 4:00pm, After camp was set up.

June 20th 2014

Left Camp at 8:30 to hike along the kewquodie creek, as seen in picutre, 1 and 3. 8 Samples were takenmples, Back at camp at 7:00 pm

June 21st 2014

Left camp at 9:00 and was not able to go to desired location due to blasting and safety issues, went and continued to hike along kewquodie creek 6 samples were taken . back at camp at 7:30 pm

June 22nd 2014

No activity at blasting site. hiked on foot up a deactivated road off of B-main, as seen in picture 4. 7 samples were taken, back at 2:00pm to tear down camp and head to quatsino chalet.

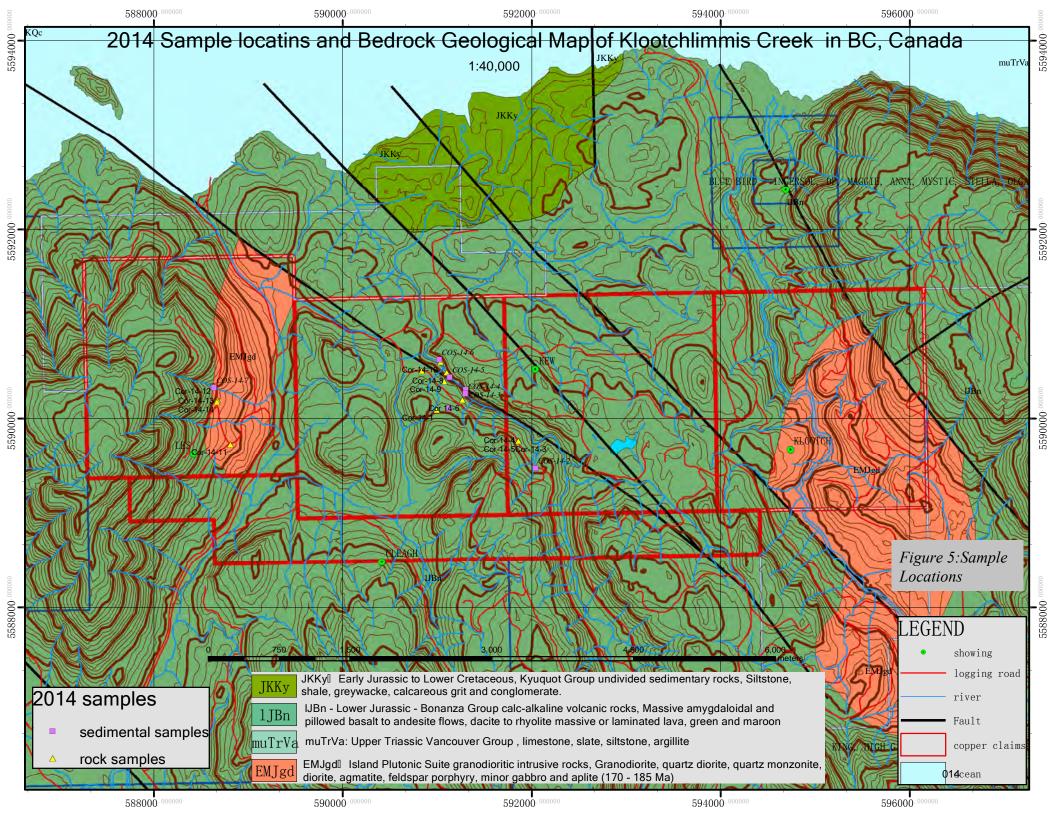
2014 ROCK SAMPLE LIST, COORDINATES AND NOTES

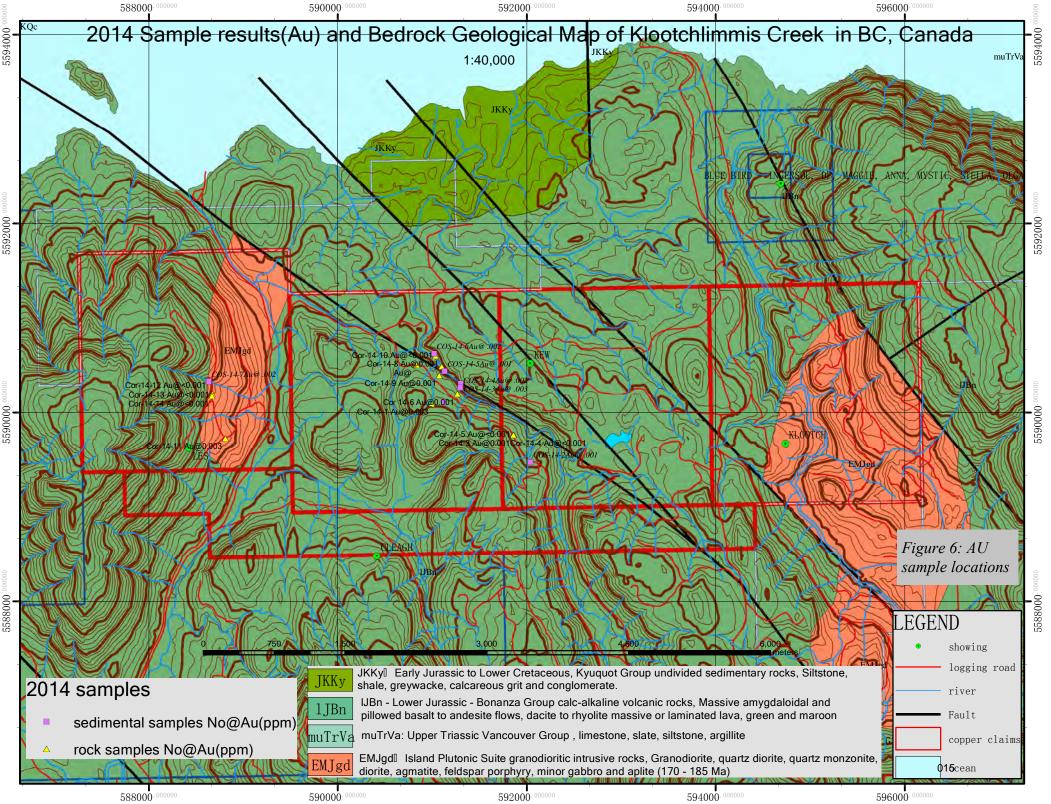
Table 2: Sample List, Coordinates and Notes

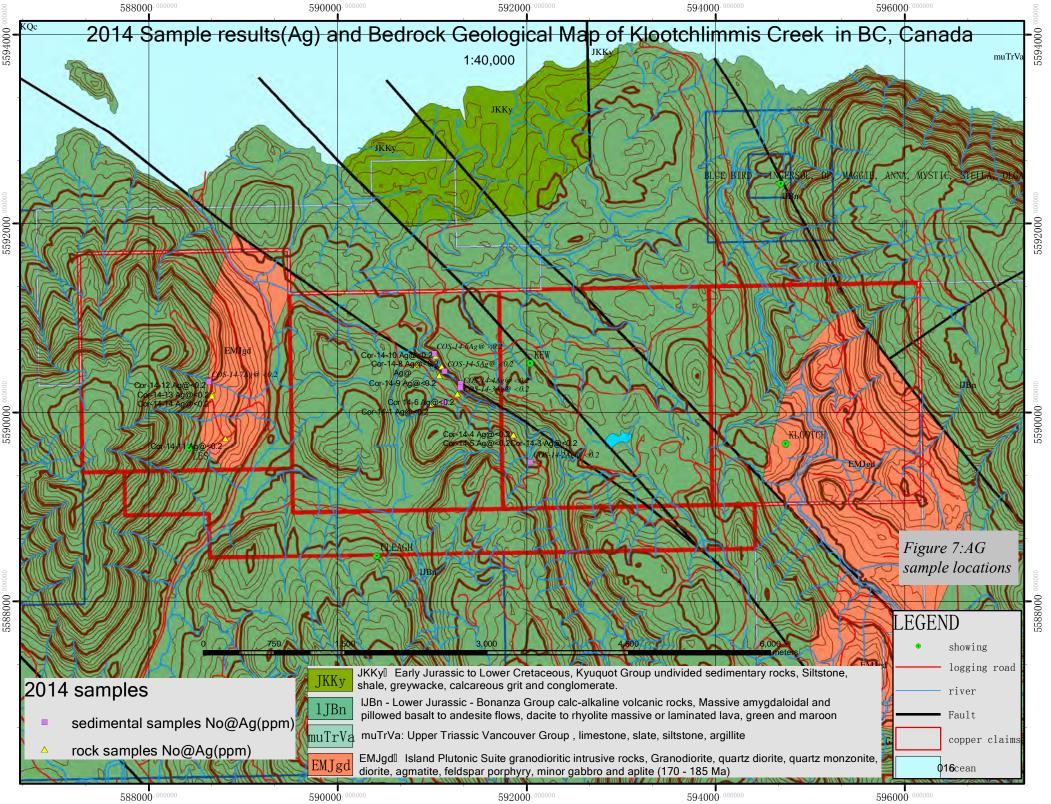
sample.no 🔻	easting 💌	northing 🔽	elevition •	note 💌	Au-ICP2 🔻	A{	Al 💌	As 💌	B 💌	Ba 💌	Be 💌	Bi 💌	Ca 💌	Cd 💌	Co 💌	Cr 💌
Cor-14-1	590993	5590095	169 m	Rhyolitic tuff, pyrite string	0.003	<0.2	1.32	10	<10	60	0.7	<2	0.11	<0.5	3	3
Cor-14-2				Fault breccia, small amounts of potassium feldspar												
Cor-14-3	591857	5589761	177 m	float, siliceous rocks, pale, did not see obvious crystallization, lots of disseminated pyrite	0.001	<0.2	0.58	2	<10	10	<0.5	<2	0.36	<0.5	1	6
Cor-14-4	591857	5589761	178 m	float, limonite, gray parts are mainly quartz feldspar, crumb and stockwork pyrite	<0.001	<0.2	0.52	2	10	30	0.6	2	0.09	<0.5	16	4
Cor-14-5	591857	5589761	179 m	float, alteration diorite, hornblende is about 70%, partial potassium feldspathization, a little of pyrite stockwork	<0.001	<0.2	1.54	23	<10	20	<0.5	<2	1.22	<0.5	14	31
Cor 14-6	591264	5590196	126 m	float, siliceous rocks, pale, did not see obvious crystallization, lots of disseminated pyrite	0.001	<0.2	0.29	24	<10	20	<0.5	2	0.02	<0.5	2	4
Cor-14-7				float, quartz vein, limonite, quartz geode, little pyrite	0.001	0.6	0.53	12	<10	40	<0.5	<2	0.05	<0.5	<1	5
Cor-14-8	591098	5590487	102 m	Along the river to see a large number of quartz vein and silicified rock float, several 1~2 cm wide quartz vein near the location of CPS-2013- 13, the surrounding rock is intermediate-acid volcanic breccia, weathering surface chestnut brown, slightly epidotization		<0.2	0.39	8	<10	20	0.7	<2	0.41	<0.5	9	8
	590834	5590504		Chestnut, celadon andesite, local extrusion piece, quartz and calcite string, local limonite, silicide, see sample point CPR-13-7												
Cor-14-9	591074	5590391		Gray, light brown, acid tuff, high silica content, fine grained disseminated pyrite , limonitization	0.001	<0.2	0.57	9	<10	120	0.5	<2	0.02	<0.5	1	7
Cor-14-10	591037	5590603	88 m	Brown, volcanic clastic rock, silicide, quartz content more than 70%, limonite, a small amount of disseminated pyrite	<0.001	<0.2	0.45	6	<10	50	0.5	<2	0.03	<0.5	1	3
Cor-14-11	588809	5589729	239 m	float, quartz vein,limonite, drain hole, surround rock is granodiorite, fine grained, potassium, and joint development	0.003	<0.2	0.33	3	<10	<10	<0.5	~2	0.03	<0.5	1	7
Cor-14-12	588635	5590340	315 m	float, silicified breccia from the limonite mineralization belt 30 m above the drainage, breccia composition are mainly quartz and volcanic rocks, limonite, the surrounding rock for the grey andesite	<0.001	<0.2	0.31	4	<10	10	<0.5	<2	5.96	<0.5	7	5
Cor-14-13	588672	5590197	292 m	silicified breccia belt, along the logging revealed about 50 m wide	<0.001	<0.2	0.27	4	<10	<10	<0.5	<2	0.04	<0.5	1	4
Cor-14-14	588669	5590179	288 m	silicified breccia belt, along the logging revealed about 51 m wide	<0.001	<0.2	0.3	3	<10	10	<0.5	<2	0.06	<0.5	2	2

2014 ROCK SAMPLE LIST, COORDINATES AND NOTES

Table 2: Sample List, Coordinates and Notes (continued)


sample.ne	Cu 💌	Fe 💌	Ga 💌	Hg 💌	К 💌	La 💌	Mg 💌	Mn 💌	Mo 💌	Na 💌	Ni 💌	P 💌	Pb 💌	S 💌	Sb 💌	Sc 💌	Sr 💌	Th 💌	Ti 💌	TI 💌	U 💌	V 💌	w 💌	Zn 💌
Cor-14-1	4	4.07	10	<1	0.13	20	0.43	482	6	0.06	<1	610	18	1.3	<2	4	3	<20	<0.01	<10	<10	9	<10	94
Cor-14-2																								
Cor-14-3	1	1	10	<1	0.01	10	0.64	118	1	0.13	3	650	4	0.31	<2	3	4	<20	0.02	<10	<10	19	<10	18
Cor-14-4	2	4.69	<10	<1	0.15	10	0.12	113	3	0.07	4	1210	3	2.11	<2	1	5	<20	<0.01	<10	<10	7	<10	9
Cor-14-5	4	7.75	10	<1	0.06	<10	1.53	417	4	0.14	16	1760	3	0.4	2	6	26	<20	0.31	<10	<10	349	<10	29
Cor 14-6	2	1.5	<10	<1	0.08	10	0.02	158	1	0.09	2	200	4	0.12	<2	1	2	<20	<0.01	<10	<10	6	<10	28
Cor-14-7	2	1.42	<10	<1	0.15	20	0.11	65	1	0.08	2	190	3	0.06	<2	1	3	<20	<0.01	<10	<10	4	<10	7
Cor-14-8	6	4.84	<10	<1	0.08	10	0.68	818	3	0.06	9	590	3	0.09	<2	5	14	<20	<0.01	<10	<10	24	<10	73
Cor-14-9	12	2.1	10	<1	0.17	10	0.12	337	1	0.04	2	20	4	0.09	<2	1	2	<20	<0.01	<10	<10	2	<10	37
Cor-14-10	2	1.62	<10	<1	0.26	10	0.02	326	1	0.07	<1	150	3	0.02	2	1	2	<20	0.01	<10	<10	2	<10	51
Cor-14-11	1	1.42	<10	<1	0.04	<10	0.02	66	4	0.02	4	70	<2	0.01	<2	4	16	<20	<0.01	<10	<10	27	<10	8
Cor-14-12	1	2.22	<10	<1	0.01	<10	1.86	524	4	0.01	9	200	4	0.01	2	5	83	<20	<0.01	<10	<10	41	<10	33
Cor-14-13	<1	0.85	<10	<1	0.02	<10	0.02	70	<1	0.11	4	60	<2	0.01	<2	6	9	<20	<0.01	<10	<10	9	<10	10
Cor-14-14	<1	0.9	<10	<1	0.01	<10	0.02	362	<1	0.1	10	100	<2	0.01	<2	6	10	<20	<0.01	<10	<10	21	<10	10


2014 SEDIMENT SAMPLE LIST, COORDINATES AND NOTES


Table 2: Sample List, Coordinates and Notes (continued)

sample.No 💌	easting 💌	northing 💌	elevation 💌	Au 💌	Ag 💌	Al 💌	As 💌	B 💌	Ba 💌	Be 💌	Bi 💌	Ca 💌	Cd 💌	Co 🔻	Cr 💌	Cu 💌	Fe 💌	Ga 🔻
COS-14-1	591122	5590110	154 m	0.003	<0.2	2.46	4	<10	80	0.8	<2	0.47	<0.5	18	22	29	4.15	10
COS-14-2	592038	5589474	177 m	0.001	<0.2	2.29	15	<10	20	1	<2	0.53	<0.5	42	13	26	5.63	10
COS-14-3	591298	5590303	109 m	0.003	<0.2	2.37	3	<10	30	0.5	<2	0.86	<0.5	21	31	43	5.21	10
COS-14-4	591296	5590264	107 m	0.002	<0.2	2.59	4	<10	30	0.6	<2	0.83	<0.5	19	28	39	5.05	10
COS-14-5	591131	5590439	81 m	0.001	<0.2	2.36	2	<10	40	0.6	<2	0.8	<0.5	21	28	36	4.91	10
COS-14-6	591017	5590622	77 m	0.002	<0.2	2.26	4	10	30	0.5	<2	0.78	<0.5	21	30	40	5.08	10
COS-14-7	588634	5590328	315 m	0.002	<0.2	1.85	32	40	60	1	<2	2.56	0.5	23	40	11	8.48	10

sample.No.	Hg 💌	K 💌	La 💌	Mg 💌	Mn▼	Mo	Na 🔻	Ni 💌	P 💌	Pb 💌	S 💌	Sb 💌	Sc 💌	Sr 💌	Th 💌	Ti 💌	TI 💌	U 🔻	V	W 💌	Zn 💌
COS-14-1	<1	0.04	10	0.67	4070	1	0.12	18	690	5	0.05	<2	5	25	<20	0.19	<10	<10	84	<10	180
COS-14-2	1	0.03	10	0.69	1640	2	0.03	12	1800	5	0.07	2	6	14	<20	0.18	<10	<10	135	<10	47
COS-14-3	1	0.03	10	1.51	979	1	0.02	32	680	4	0.03	<2	9	34	<20	0.31	<10	<10	141	<10	91
COS-14-4	<1	0.03	10	1.34	934	1	0.02	28	640	2	0.04	<2	8	31	<20	0.28	<10	<10	126	<10	127
COS-14-5	<1	0.03	10	1.32	1355	1	0.02	28	660	4	0.04	<2	8	33	<20	0.28	<10	<10	132	<10	102
COS-14-6	<1	0.03	10	1.54	977	<1	0.03	32	660	4	0.05	<2	9	33	<20	0.28	<10	<10	128	<10	98
COS-14-7	<1	0.09	10	2.87	1195	<1	0.01	49	1280	11	0.07	<2	17	77	<20	0.06	<10	<10	157	<10	60

Conclusion

The prospecting work involved inspection of several sedimental geochemical anomaly from the 2013 work results. 14 rock samples and 7 sediment samples were collected in June 2014 focusing on the area along Kewquodie Creek. The most prominent assay is a stream sediment sample which Returned 2.7 ppm gold, and 1.38ppm silver from 2013 work. But the stream sedimental anomly was not found. Due to the amount of slash and forestry growth on the claims, trenching is required in the near future to reveal unexposed bedrock for further geological mapping and geochemical sampling. Trenching is required in the near future to reveal unexposed bedrock for further geological mapping and geochemical sampling.

References

Les Minfile 092L030

EMPR PF (Sketch Map, Mahatta River Area, 1:4023, 1973, Stokes Expl. Mgmt.; Report by Leighton, D.G.,

(1974): Explorations in the Mahatta River Area, Stokes Expl. Mgnt, Brinco Expl. Ltd.; Base Map, Mahatta River Area 1:4023)

EMR MP CORPFILE (Skaist Mines Ltd.), GSC ANN RPT 1986, GSC BULL 242, GSC EC GEOL Series 3, Vol. 1

GSC MAP 4-1974; 255A; 1552A, GSC OF 9; 170; 463, GSC P 69-1A; 70-1A; 72-44; 74-8, GSC SUM RPT 1918B Carson, D.J.T., (1968): Metallogenic Study of Vancouver Island with Emphasis on the Relationship of Plutonic Rocks to Mineral Deposits, Ph.D. Thesis, Carleton University

Sangster, D.F., (1964): The Contact Metasomatic Magnetite Deposits of Southwestern British Columbia, Ph.D. Thesis, University of British Columbia

2013 Physical Report Liaoning Eden Venture Investments ltd

Appendix A: Cost Statement COPPER 5520584

Exploration Work type		Comment	Qt.						To	otal	s
Personnel (Name)/Position		Field Days	Hours		Rate	2	Subtota	ls*			
Fred Eden/Prospector/GM				20	\$	25.00	\$	500.00			
Bin li/ Geologist				50	\$	40.00	\$	2,000.00			
Edward Eden / Exploration Techn	nincian			50	\$	25.00	\$	1,250.00			
Chris zimmer/Operator				50	\$	25.00	\$	1,250.00			
Xiao Feng/assistant				20	\$	12.50	\$	250.00			
							\$	5,250.00	\$	•	5,250.00
Office Studies	Personnel		Hours								
Literature Search	Edward Eden/ Fred Eden/ Bin	Li		5							
Database compilation	Edward Eden/ Fred Eden/ Bin	Li		5							
General Research	Edward Eden/ Fred Eden/ Bin	Li		5							
Report Preparation	Edward Eden/ Fred Eden/ Bin			5							
Other	Edward Eden/ Fred Eden/ Bin	Li		5							
				25	\$	37.50	\$	937.50	Ś		937.50
Sample Analysis			No.		Rate						
ALS Rock Sample Analysis				13	Ś	40.93	\$	532.09			
ALS Sediment Sample Analysis				7		40.93	\$	286.51			
							Ś	818.60	Ś		818.60
Transportation			км		Rat	e					
AirFare											
Truck Rental											
Helicopter (hours)											
Other			15	592	\$	0.50	\$	796.00			
							\$	796.00	\$	•	796.00
Accomodation & Food			No.		Rate	e/day					
Hotel #1						125.00	\$	1,875.00			
Hotel #2							\$	-			
Meals							\$	-			
							\$	1,875.00	\$;	1,875.00
Equipment			Hours		Rate	/hour					
Truck				33		18.75	\$	618.75			
GPS Navigation x 2				80	-	1.00		80.00			
GPS Camera/ Satellite Comm.				80		1.00		80.00			
Chain Saw				40		2.00	-	80.00			
Wall Tent				40		5.00	-	200.00			
Generator				40		2.00	-	80.00			
					-		\$	1,138.75	Ś	;	1,138.75
TOTAL Expenditures											0,815.85
									030		

Mineral Titles Online

Mineral C Change	laim Exploration and Develop	oment Work	Expiry Date	Confirmation
Recorder:	LIAONING/EDEN VENTURE INVESTMENTS LTD. (258348)	Submitter:	LIAONING/EDEN VENT INVESTMENTS LTD. (2	URE 58348)
Recorded:	2014/SEP/04	Effective:	2014/SEP/04	
D/E Date:	2014/SEP/04			

Confirmation

If you have not yet submitted your report for this work program, your physical work report is due in 30 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission. **Please** attach a copy of this confirmation page to your report. Contact Mineral Titles Branch for more information.

Event Number: 5520584

Work Type:Physical WorkPhysical Items:Labour, Machinery and equipment, Preparatory Surveys, Transportation / travel expenses

Work Start Date:	2014/JUN/18
Work Stop Date:	2014/JUN/22
Total Value of Work:	\$ 10815.85
Mine Permit No:	

New # of Sub-Good Area Applied Good Days Claim Issue Work mission То in **Tenure Number** To For-Name/Property Date Value Fee Date Ha Date ward \$ 2251.36 \$ 0.00 2012/jun/17 2015/jan/08 2015/sep/05 240 514.29 COPPER1 998130 240 514.34 \$ 2251.55 \$ 0.00 2012/jun/17 2015/jan/08 2015/sep/05 998135 COPPER2 \$ 1531.43 \$ 0.00 2015/sep/05 240 349.83 2015/jan/08 2012/jun/17 998142 COPPER7 2015/sep/05 240 514.34 \$ 2251.55 \$ 0.00 2012/jun/17 2015/jan/08 998136 COPPER3 240 514.34 \$ 2251.55 \$ 0.00 2012/jun/17 2015/jan/08 2015/sep/05 998138 COPPER4

Summary of the work value:

Financial Summary:

Total applied work value:\$ 10537.44

PAC name: Debited PAC amount: Credited PAC amount:	\$ 0.0 \$ 0	
Total Submission Fees:	\$ 0.0	
Total Paid:	\$ 0.0	
Total Paid:	\$ 0.0	

Please print this page for your records.

The event was successfully saved.

Click here to return to the Main Menu.

Appendix B: Certificates of Analysis ALS Chemex Analytical Descriptions

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29-JUN-2014 Account: LIANED

Project: COPPER

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-TL43 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	.ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
COS-14-1 COS-14-2 COS-14-3 COS-14-4 COS-14-5		0.72 0.70 0.78 0.96 1.06	0.003 0.001 0.003 0.002 0.001	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2.46 2.29 2.37 2.59 2.36	4 15 3 4 2	<10 <10 <10 <10 <10	80 20 30 30 40	0.8 1.0 0.5 0.6 0.6	2 3 2 4	0.47 0.53 0.86 0.83 0.80	<0.5 <0.5 <0.5 <0.5 <0.5	18 42 21 19 21	22 13 31 28 28	29 26 43 39 36	4.15 5.63 5.21 5.05 4.91
COS-14-6 COS-14-7		0.68	0.002	<0.2 <0.2	2.26	4 32	10 40	30 60	0.5	<2 <2	0.78	<0.5 0.5	21 23	30 40	40	5.08

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29-JUN-2014 Account: LIANED

Project: COPPER

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
COS-14-1 COS-14-2 COS-14-3 COS-14-4 COS-14-5		10 10 10 10 10	<1 1 1 <1 <1	0.04 0.03 0.03 0.03 0.03	10 10 10 10 10	0.67 0.69 1.51 1.34 1.32	4070 1640 979 934 1355	1 2 1 1 1	0.12 0.03 0.02 0.02 0.02	18 12 32 28 28	690 1800 680 640 660	5 5 4 2 4	0.05 0.07 0.03 0.04 0.04	<2 2 <2 <2 <2 <2 <2	5 6 9 8 8	25 14 34 31 33
COS-14-6 COS-14-7	-	10 10	<1 <1	0.03 0.09	10 10	1.54 2.87	977 1195	<1 <1	0.03 0.01	32 49	660 1280	4 11	0.05 0.07	<2 <2	9 17	33 77

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29-JUN-2014 Account: LIANED

Project: COPPER

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2			
COS-14-1 COS-14-2 COS-14-3 COS-14-4 COS-14-5		<20 <20 <20 <20 <20	0.19 0.18 0.31 0.28 0.28	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	84 135 141 126 132	<10 <10 <10 <10 <10	180 47 91 127 102			
COS-14-6 COS-14-7		<20 <20	0.28 0.06	<10 <10	<10 <10	128 157	<10 <10	98 60			

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29-JUN-2014 Account: LIANED

Project: COPPER

		CERTIFICATE COMM	IENTS	
Applies to Method:	Processed at ALS Vancouver loca Au-TL43 WEI-21	LABORAT ated at 2103 Dollarton Hwy, North LOG-22	ORY ADDRESSES Vancouver, BC, Canada. ME-ICP41	SCR-41
	£			

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 29-JUN-2014 This copy reported on 30-JUN-2014 Account: LIANED

CERTIFICATE VA14097254

Project: COPPER

This report is for 7 Sediment samples submitted to our lab in Vancouver, BC, Canada on 24-JUN-2014.

The following have access to data associated with this certificate:

TED	FRED EDEN	BIN LI

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22 SCR-41	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-TL43	Trace Level Au - 25g AR	ICP-MS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: LIAONING EDEN VENTURES ATTN: TED 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 28-JUN-2014 Account: LIANED

Project: COPPER

	CERTIFICATE CO	MMENTS	
	LABO	RATORY ADDRESSES	
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, N Au-ICP21 CRU-31	lorth Vancouver, BC, Canada. CRU-QC	LOG-22
Applies to method.	ME-ICP41 PUL-31 WEI-21	PUL-QC	SPL-21

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 28-JUN-2014 Account: LIANED

Project: COPPER

				the second s			And the other designs of the o				
	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41			
	Analyte	Th	Ti	TI	U	v	w	Zn			
Comple Description	Units	ppm	%	ppm	ppm	ppm	ppm	ppm			
Sample Description	LOR	20	0.01	10	10	1	10	2			
COR-14-1		<20	<0.01	<10	<10	9	<10	94			
COR-14-3		<20	0.02	<10	<10	19	<10	18			
COR-14-4		<20	< 0.01	<10	<10	7	<10	9			
COR-14-5		<20	0.31	<10	<10	349	<10	29			
COR-14-6		<20	<0.01	<10	<10	6	<10	28			
COR-14-7		<20	<0.01	<10	<10	4	<10	7			
COR-14-8		<20	< 0.01	<10	<10	24	<10	73			
COR-14-9		<20	< 0.01	<10	<10	2	<10	37			
COR-14-10		<20	0.01	<10	<10	2	<10	51			
COR-14-11		<20	<0.01	<10	<10	27	<10	8			
COR-14-12		<20	<0.01	<10	<10	41	<10	33			
COR-14-13		<20	< 0.01	<10	<10	9	<10	10			
COR-14-14		<20	< 0.01	<10	<10	21	<10	10			

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

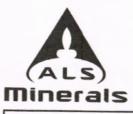
Page: 2 - B Total # Pages: 2 (A - C) **Plus Appendix Pages** Finalized Date: 28-JUN-2014 Account: LIANED

Minerals

Project: COPPER Г CEDTIFICATE OF ANALVEIS

inneid	12								CI	ERTIFIC	ATE O	F ANAL	YSIS	VA140	97253	
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
COR-14-1		10	<1	0.13	20	0.43	482	6	0.06	<1	610	18	1.30	<2	4	3
COR-14-3		10	<1	0.01	10	0.64	118	1	0.13	3	650	4	0.31	<2	3	4
COR-14-4		<10	<1	0.15	10	0.12	113	3	0.07	<1	1210	3	2.11	<2	1	5
COR-14-5		10	<1	0.06	<10	1.53	417	<1	0.14	16	1760	3	0.40	2	6	26
COR-14-6		<10	<1	0.08	10	0.02	158	1	0.09	2	200	4	0.12	<2	1	2
COR-14-7		<10	<1	0.15	20	0.11	65	1	0.08	2	190	3	0.06	<2	1	3
COR-14-8		<10	<1	0.08	10	0.68	818	3	0.06	9	590	3	0.09	<2	5	14
COR-14-9		10	<1	0.17	10	0.12	337	1	0.04	2	20	4	0.09	<2	1	2
COR-14-10		<10	<1	0.26	10	0.02	326	1	0.07	<1	150	3	0.02	2	1	2
COR-14-11		<10	<1	0.04	<10	0.02	66	<1	0.02	4	70	<2	0.01	<2	4	16
COR-14-12		<10	<1	0.01	<10	1.86	524	<1	0.01	9	200	4	0.01	2	5	83
COR-14-13		<10	<1	0.02	<10	0.02	70	<1	0.11	4	60	<2	0.01	<2	6	9
COR-14-14		<10	<1	0.01	<10	0.02	362	<1	0.10	10	100	<2	0.01	<2	6	10

ALS Canada Ltd.


2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 28-JUN-2014 Account: LIANED

Project: COPPER

mileia	13								CI	ERTIFIC	ATE O	F ANAL	YSIS	VA140	97253	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
COR-14-1		0.66	0.003	<0.2	1.32	10	<10	60	0.7	<2	0.11	<0.5	3	3	4	4.07
COR-14-3		0.90	0.001	<0.2	0.58	2	<10	10	<0.5	<2	0.36	<0.5	1	6	1	1.00
COR-14-4		1.58	< 0.001	< 0.2	0.52	2	10	30	0.6	2	0.09	< 0.5	16	4	2	4.69
COR-14-5		0.50	< 0.001	<0.2	1.54	23	<10	20	<0.5	<2	1.22	< 0.5	14	31	4	7.75
COR-14-6		0.92	0.001	<0.2	0.29	24	<10	20	<0.5	2	0.02	<0.5	2	4	2	1.50
COR-14-7		1.00	0.001	0.6	0.53	12	<10	40	<0.5	<2	0.05	<0.5	<1	5	2	1.42
COR-14-8		1.06	0.001	<0.2	0.39	8	<10	20	0.7	<2	0.41	<0.5	9	8	6	4.84
COR-14-9		1.08	0.001	<0.2	0.57	9	<10	120	0.5	<2	0.02	<0.5	1	7	12	2.10
COR-14-10		0.94	< 0.001	<0.2	0.45	6	<10	50	0.5	<2	0.03	<0.5	1	3	2	1.62
COR-14-11		1.10	0.003	<0.2	0.33	3	<10	<10	<0.5	<2	0.03	<0.5	1	7	1	1.42
COR-14-12		0.82	< 0.001	<0.2	0.31	4	<10	10	<0.5	<2	5.96	<0.5	7	5	1	2.22
COR-14-13		0.76	< 0.001	<0.2	0.27	4	<10	<10	<0.5	<2	0.04	<0.5	1	4	<1	0.85
COR-14-14		0.68	< 0.001	<0.2	0.30	3	<10	10	<0.5	<2	0.06	<0.5	2	2	<1	0.90
													1 2	4 2		

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: LIAONING EDEN VENTURES 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 28-JUN-2014 This copy reported on 30-JUN-2014 Account: LIANED

CERTIFICATE VA14097253

Project: COPPER This report is for 13 Rock samples submitted to our lab in Vancouver, BC, Canada on 24-JUN-2014. The following have access to data associated with this certificate: TED FRED EDEN BIN LI

ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

CAMPLE DOCDADATION

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

To: LIAONING EDEN VENTURES ATTN: TED 4370 KEITH RD WEST VANCOUVER BC V7W 2M2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

**** See Appendix Page for comments regarding this certificate *****

Geochemical Procedure

ME-ICP41

Trace Level Methods Using Conventional ICP-AES Analysis

Sample Decomposition:

HNO3 – HCI Aqua Regia Digestion (GEO-AR01)

Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (0.50 g) is digested with aqua regia for 45 minutes in a graphite heating block. After cooling, the resulting solution is diluted to 12.5 mL with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter-element spectral interferences.

NOTE: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Silver	Ag	ppm	0.2	100	Ag-OG46
Aluminum	AI	%	0.01	25	
Arsenic	As	ppm	2	10000	
Boron	В	ppm	10	10000	
Barium	Ва	ppm	10	10000	
Beryllium	Be	ppm	0.5	1000	
Bismuth	Bi	ppm	2	10000	
Calcium	Са	%	0.01	25	
Cadmium	Cd	ppm	0.5	1000	
Cobalt	Со	ppm	1	10000	
Chromium	Cr	ppm	1	10000	

Revision 06.03 Oct 06, 2011

RIGHT SOLUTIONS RIGHT PARTNER

Food & Environmental Tribology Pharmaceutical Industrial

Geochemical Procedure

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Copper	Cu	ppm	1	10000	Cu-OG46
Iron	Fe	%	0.01	50	
Gallium	Ga	ppm	10	10000	
Mercury	Hg	ppm	1	10000	
Potassium	K	%	0.01	10	
Lanthanum	La	ppm	10	10000	
Magnesium	Mg	%	0.01	25	
Manganese	Mn	ppm	5	50000	
Molybdenum	Мо	ppm	1	10000	
Sodium	Na	%	0.01	10	
Nickel	Ni	ppm	1	10000	
Phosphorus	Р	ppm	10	10000	
Lead	Pb	ppm	2	10000	Pb-OG46
Sulfur	S	%	0.01	10	
Antimony	Sb	ppm	2	10000	
Scandium	Sc	ppm	1	10000	
Strontium	Sr	ppm	1	10000	
Thorium	Th	ppm	20	10000	
Titanium	Ti	%	0.01	10	
Thallium	TI	ppm	10	10000	
Uranium	U	ppm	10	10000	
Vanadium	V	ppm	1	10000	
Tungsten	W	ppm	10	10000	
Zinc	Zn	ppm	2	10000	Zn-OG46

RIGHT SOLUTIONS RIGHT PARTNER

034

Geochemical Procedure

Elements listed below are available upon request

Element	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Cerium	Ce	ppm	10	10000	
Hafnium	Hf	ppm	10	10000	
Indium	In	ppm	10	10000	
Lithium	Li	ppm	10	10000	
Niobium	Nb	ppm	10	10000	
Rubidium	Rb	ppm	10	10000	
Selenium	Se	ppm	10	10000	
Silicon	Si	ppm	10	10000	
Tin	Sn	ppm	10	10000	
Tantalum	Та	ppm	10	10000	
Tellurium	Те	ppm	10	10000	
Yttrium	Y	ppm	10	10000	
Zirconium	Zr	ppm	5	10000	

Revision 06.03 Oct 06, 2011

RIGHT SOLUTIONS RIGHT PARTNER

Fire Assay Procedure

Au-ICP21 and Au-ICP22 Fire Assay Fusion ICP-AES Finish

Sample Decomposition:

Fire Assay Fusion (FA-FUSPG1 & FA-FUSPG2)

Analytical Method:

Inductively Coupled Plasma – Atomic Emission Spectrometry (ICP-AES)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven. 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by inductively coupled plasma atomic emission spectrometry against matrix-matched standards.

Method Code	Element	Symbol	Units	Sample Weight (g)	Lower Limit	Upper Limit	Default Overlimit Method
Au-ICP21	Gold	Au	ppm	30	0.001	10	Au-AA25
Au-ICP22	Gold	Au	ppm	50	0.001	10	Au-AA26

RIGHT SOLUTIONS RIGHT PARTNER

Appendix C: MINFILE Detail Report

	BRITISH COLUMBIA	BO	NFILE Detail Report C Geological Survey gy, Mines & Petroler				
		Location	Identification				
MINFILE Number:	092L 230		National Mineral Inventor	ry Number: 092L5 Cu8			
Name(s):	LES						
				- Nanaimo			
Status:	Showing		Mining Division				
Regions	British Columbia, Va	mcourser Island	Forest District	a.	Distric		
BCGS Map:	0921.042		Porest District		Distin		
NTS Map:	092L05W		UTM Zone:	09 (NAD 83)			
Latitude:	50 27 07 N		Northing:	5589623			
Longitude:	127 45 16 W		Easting:	588424			
Elevation:	366 metres		Laberry.				
Location Accuracy:	Within 500M						
Comments:	Location from Asses	sment Report 2391, is 2.5 kilon	netres south of Quatsino Sou	nd, 3.5 kilometres east of the village of			
	Mahatta River.						
		Mineral	Occurrence				
Commodities:	Copper						
Minerals	Significant:	Chalcopyrite, Pyrite, Hema	tite, Magnetite				
	Alteration:	Quartz, Clay, Tourmaline					
	Alteration Type:	Argillic, Silicific'n, Carbon	ate				
	Mineralization Age:	Unknown					
Deposit	Character:	Distaminated					
Deposit	Classification:	Hydrothermal, Epigenetic, I	Porphyry				
	Shape:	Tabular					
	Dimension:	150x30x0 metres					
	Comments:	Mineralization occurs over	an area 150 by 30 metres.				
		H	ost Rock				
Dominant Host Ros	de: Volcanic						
Stratigraphic Age Lower Jurassic	Group Bonanza	Formation Undefined		Igneous/Metamorphic/Other			
Jurassic				Island Photonic Suite			
Isotopic Age		Dating Method	Material Dat	ted			
200 Ma		Foull	200 Ma				
154 +/- 6 Ma		Potassium/Argon	Biotite				
	Icanic Braccia Fina Grain	ed Andesite, Vesicular Andesite	Homblende Albite Dissite				
		ad; biotite from Island Copper s					
			gical Setting	• • • •			
		GEOID					
Tectonic Belt:	Insular	Physicar	sphic Area: Vanc	couver Island Ranges			

MINFILE Inventory Detail Report BC Geological Survey Ministry of Energy, Mines & Petroleum Resources

MINFILE Number: 092L 230		092L 230	Name: LE	S	Status: Showing		
Ore Zone/ Year/Report On SAMPLE		Tonnage/ Category	Commodity	Grade	Reference/ Comments		
			Copper	0.6000 %	Samples ranged from 0.15 to 0.60 per cent copper.		
1970	N	Assay/analysis Chip			National Mineral Inventory Number 092L5 Cu8.		

Sunday, June 2, 2013

MINFILE Number: 092L 230

Page 1 of 1

	BRITISH COLUMBIA	Ministr	BC Geolog ry of Energy, Mine	ical Survey 5 & Petroleum I	Resources
			Location/Identifi	cation	
INFILE Number:	092L 325				
Name(s):	KEW				
	Q				
Sec. 2.	-				Nanaimo
innus:	Showing Open Pit			Mining Division: Electoral District:	North Island
fining Method Regions:	British Columbia,	Jancouver Island		Forest District:	North Island - Central Coast Forest Distric
CGS Map:	0921.042	and the second		Porest District:	
TS Map:	092L05E			UTM Zone:	09 (NAD 83)
atitude:	50 27 34 N			Northing:	5590519
Longitude:	127 42 12 W			Easting:	592038
Elevation:	180 metres			Lanang.	
Location Accuracy:	Within 500M				
Comments:	Location of miner Sound (Leighton, I		etres southeast of the mo	uth of Kewquodie Cre	sek on the south side of Quatsino
			Mineral Occurre	nce	
				a	
Commodition	Conner				
Commodities:	Copper				
	Copper Significant: Mineralization Age:	Chalcopyrite, I Unknown	Bornits		
Commodities : Mineral: Deposit	Significant:		Bonuita		
Mineral:	Significant: Mineralization Age: Character:	Unknown Discentinated			
Mineralı: Depozit	Significant: Mineralization Age: Character: Classification:	Unknown Discentinated	Bonzits Host Rock		
Mineralı: Depezit Dominant Host Ros	Significant: Mineralization Age: Character: Classification: de: Volcanic	Unknown Discentinated	Host Rock		
Mineral: Deposit Dominant Host Ree Stratigraphic Age	Significant: Mineralization Age: Character: Classification:	Unknown Discentinated	Host Rock	iga	eeus/Metamorphic/Other
Mineral: Deposit Dominant Host Ros Stratigraphic Age Lower Junassic	Significant: Mineralization Age: Character: Classification: de: Volcanic	Unknown Discentinated	Host Rock	-	
Minerals Deposit Dominant Host Ros Stratigraphic Age Lower Jurassic Jurassic	Significant: Mineralization Age: Character: Classification:	Unknown Dissensinated Unknown	Host Rock Formation Undefined Formation	Isla	reous/Metamorphic/Other
Minerals Deposit Dominant Host Ros Stratigraphic Age Lower Jurassic Jurassic Isotopic Age	Significant: Mineralization Age: Character: Classification:	Unknown Disseminated Unknown	Host Rock Formation Undefined Formation	Isla Material Dated	
Mineral: Deposit Dominant Host Ros Stratigraphic Age Lower Jurassic Jurassic Jurassic Isotopic Age 200 Ma	Significant: Mineralization Age: Character: Classification:	Unknown Disseminated Unknown Dating Method Fossil	Host Rock Formation Undefined Formation	Isla Material Dated 200 Ma	
Minerals Deposit Dominant Host Ros Stratigraphic Age Lower Jurassic Jurassic Jurassic Jurassic	Significant: Mineralization Age: Character: Classification:	Unknown Disseminated Unknown	Host Rock Formation Undefined Formation	Isla Material Dated	
Minerals Deposit Dominant Host Ros Stratigraphic Age Louver Jurassic Jurassic Jurassic Isotopic Age 200 Ma 154 +/- 6 Ma	Significant: Mineralization Age: Character: Classification:	Unknown Disseminated Unknown Dating Method Fossil Potascium/Argen	Host Rock Formation Undefined Formation	Isla Material Dated 200 Ma	
Minerals Deposit Dominant Host Ros Stratigraphic Age Lower Jurassic Jurassic Jurassic 200 Ma 154 +/- 6 Ma Lithelogy: Ba	Significant: Mineralization Age: Character: Classification: de Volcanic Group Bonanza 	Unknown Distensinated Unknown Dating Method Fossil Potassium/Arger sccia, Granitic Rock	Host Rock Formation Undefined Formation		und Phutonic Suits
Minerals Deposit Dominant Host Ros Stratigraphic Age Lower Jurassic Jurassic Jurassic 200 Ma 154 +/- 6 Ma Lithelogy: Ba	Significant: Mineralization Age: Character: Classification: de Volcanic Group Bonanza 	Unknown Distensinated Unknown Dating Method Fossil Potassium/Arger sccia, Granitic Rock	Host Rock Formation Undefined Formation		und Phutonic Suits
Minerals Deposit Dominant Host Ros Stratigraphic Age Louver Jurassic Jurassic Jurassic Lotopic Age 200 Ma 154 +/- 6 Ma Lithelogy: Ba	Significant: Mineralization Age: Character: Classification: de Volcanic Group Bonanza 	Unknown Distensinated Unknown Dating Method Fossil Potassium/Arger sccia, Granitic Rock	Host Rock Formation Undefined Formation		und Phutonic Suits

BRITISH COLUMBIA
 COLUMBIA

MINFILE Detail Report BC Geological Survey Ministry of Energy, Mines & Petroleum Resources

		Location/Iden	hfication		
INFILE Number:	092L 335				
Name(s):	KLOOTCH				
Status:	Showing		Mining Division:	Nanaimo	
SCHOOLS.			Electoral District	North Island	
Regions:	British Columbia, Vi	ancouver Island	Forest District:	North Island - Central Coast Forest Distric	
BCGS Map:	092L042		UTM Zone: Northing:	09 (NAD 83)	
NTS Map:	092L05E				
Latitude:	50 27 05 N			5589671	
Longitude:	127 39 56 W		Easting:	594736	
Elevation:	150 metres		Library.	351130	
Location Accuracy:	Within 500M				
Comments:		ization is 300 metres west of Klootchlim	mis Creek, 3.5 kilometre	s from its mouth on Quatsino Sound	
	(from Property File,	092L 230).		a second a second s	
		Mineral Occu	rrence		
Commodities:	Copper, Magnetite				
		Chalcopyrite, Pyrite, Magnetite			
Minerals	Significant:	Unknown			
	Mineralization Age:	Unknown			
Deposit	Character:	Disseminated			
	Classification:	Hydrothermal, Porphyry, Industrial	ial Min.		
		Host Ro	ck		
Dominant Host Ro	ck: Volcanic				
Stratigraphic Age	Group	Formation	Ige	eous Metamorphic Other	
Lower Jurassic	Bonanza	Undefined Formatio			
Jurassic			Isla	and Photonic Suite	
Isotopic Age	Dating Method		Material Dated		
200 Ma	Fosail		Mollusks		
154 +/- 6 Ma		Potassium/Argon	Biotite		
	The Waldson Diants Di	A Property of the second se	LAD LEV		
-		Clastic Sediment/Sedimentary	Sec. Sec.		
Comments: M	ollusks from Quatsino Sou	nd. Biotite from Island Copper Stock (G	eological Survey of Can	ada Paper 74-8).	
		Geological S	Setting		
Tectonic Belt:	Insular	Physiographic A	rea: Vancouvo	ar Island Ranges	
Terrane:	Wrangell, Phuton	nic Rocks			
		Invento	y .		
No inventory data					
		Capsule Ge	1		
		Consule (re	alaa		

Upper Triassic Vancouver Group basalts and minor carbonate and clastic sediments.

Sunday, June 2, 2013

MINFILE Number: 092L 335

Page 1 of 2

	BRITISH COLUMBIA		Detail Report rical Survey 15 & Petroleum B	lesources	
		Location/Identifi	cation		
INFILE Number:	092L 324				
Vame(s):	CLEAGH				
tatus:	Showing		Mining Division:	Nanaimo	
			Electoral District:	North Island	
legions:	British Columbia, Va	ancouver Island	Forest District:	North Island - Central Coast Forest Distric	
CGS Map:	092L042				
TS Map:	092L05E		UTM Zone:	09 (NAD 83)	
atitude	50 26 29 N		Northing:	5588483	
ongitude:	127 43 36 W		Easting:	590416	
levation:	200 metres				
location Accuracy:					
Comments:	D.G., 1974).	ization is 4 kilometres south of Quatsino So	und, 2 kilometres west	of Kewquodie Creek (Leighton,	
		Mineral Occurr	ence		
Commodities:	Copper, Molybdenum, Z	inc			
Minerals	Significant: Chalcopyrite, Molybdanite, Sphalarite				
	Associated:	Quartz			
	Mineralization Age:	Unknown			
	- Anno -				
Deposit	Character:	Vein, Stockwork			
	Classification:	Hydrothermal, Epigenetic			
	Classification:				
		Hydrothermal, Epigenetic Host Rock			
Dominant Host Re Stratigraphic Age	ech: Volcanic	Host Rock Formation	5	eou:/Metamorphic/Other	
Dominant Host Re	sch: Volcanic Group	Host Rock	Ign	eouz/Metamorphic/Other nd Plutonic Suits	
Dominant Host Re Stratigraphic Age Lower Jurassic Jurassic	sch: Volcanic Group	Host Rock Formation Undefined Formation 	Igu Isla	-	
Dominant Host Re Stratigraphic Age Lower Jurassic Jurassic Isotopic Age	sch: Volcanic Group	Host Rock Formation Undefined Formation —— Dating Method	Iga — Isla Material Dated	-	
Dominant Host Re Stratigraphic Age Lower Jurassic Jurassic Isotopic Age 200 Ma	sch: Volcanic Group	Host Rock Formation Undefined Formation Dating Method Focul	Ign Isla Material Dated 200 Ma	-	
Dominant Host Re Stratigraphic Age Lower Jurassic Jurassic Isotopic Age	sch: Volcanic Group	Host Rock Formation Undefined Formation —— Dating Method	Iga — Isla Material Dated	-	
Dominant Host Ro Stratigraphic Age Lower Jurassic Jurassic Isotopic Age 200 Ma 134 +/- 6 Ma	sch: Volcanic Group	Host Rock Formation Undefined Formation Dating Method Fossil Potassium/Argon	Ign Isla Material Dated 200 Ma	-	
Dominant Host Ro Stratigraphic Age Lower Jurassic Jurassic Lotopic Age 200 Ma 154 +/- 6 Ma Lithelogy: B	eck: Volcanic Group Bouanza 	Host Rock Formation Undefined Formation Dating Method Fossil Potassium/Argon	Iga Itla Material Dated 200 Ma Biotite	nd Photonic Suits	
Dominant Host Ro Stratigraphic Age Lower Jurassic Jurassic Lotopic Age 200 Ma 154 +/- 6 Ma Lithelogy: B	eck: Volcanic Group Bouanza 	Host Rock Formation Undefined Formation —— Dating Method Fotal Potassium/Argon Granitic Rock	Ign Isla Material Dated 200 Ma Biotite logical Survey of Cana	nd Photonic Suits	
Dominant Host Ro Stratigraphic Age Lower Jurassic Jurassic Isotopic Age 200 Ma 154 +/- 6 Ma Lithology: B	eck: Volcanic Group Bouanza 	Host Rock Formation Undefined Formation Dating Method Fossil Potassium/Argon Stanitic Rock and Biotite from Island Copper Stock (Geol Geological Set	Ign Isla Material Dated 200 Ma Biotite logical Survey of Cana titing	nd Photonic Suits	
Dominant Host Re Stratigraphic Age Lower Jurassic Jurassic Isotopic Age 200 Ma 154 +/- 6 Ma Lithology: B Comments: M	ech: Volcanic 6 Group Bonanza asic Lava, Felsic Breccia, G Solhusks from Quatsino Sou	Host Rock Formation Undefined Formation Dating Method Fossil Potassium/Argon Stanitic Rock and. Biotite from Island Copper Stock (Geol Geological Sea Physiographic Area	Ign Isla Material Dated 200 Ma Biotite logical Survey of Cana titing	nd Plutonic Suits da Paper 74-8).	

Statement of Qualifications Edward Eden

I am a part time employee of LE Mining and a mature Geomatics student who has given up a life in Eastern Ontario to actively pursue a career in the field of mineral exploration in BC. These ambitions stem from a belief that BC mining and natural resources hold a very promising long-term future in a growing industry. Being an outdoor enthusiast has made this transition very easy.

Prior to deciding to enter the exciting field of geology and exploration I spent 5 years working at grading, layout and GPS surveying for a major road development company.

Under the supervision and teachings of Mr. Li Bin I have been fortunate to have some substantial in field experience on both a practical and theoretical level. I have also tried to submerge myself in readings and literature with a focus on physical geology.

Ehr han

Appendix D - Amendments

- as per MEM letter dated June 25, 2015 File No. 13825-03-3731 SOW Event: 5520584

- Assessment Report: 34924

Statement of Qualifications

Fred Eden, co-author

Fred has ten years of experiences in prospecting in Alberta and BC, in the fields of paleontological and mineral exploration. For the past four years, he has been managing Liaoning/Eden Venture Investments Ltd., a private mineral exploration company focusing on early stage projects in BC. He oversees the company's staking and acquisition of mineral claims, work programs and financing. He also participated in field work in 2013.

Bin Li, co-author

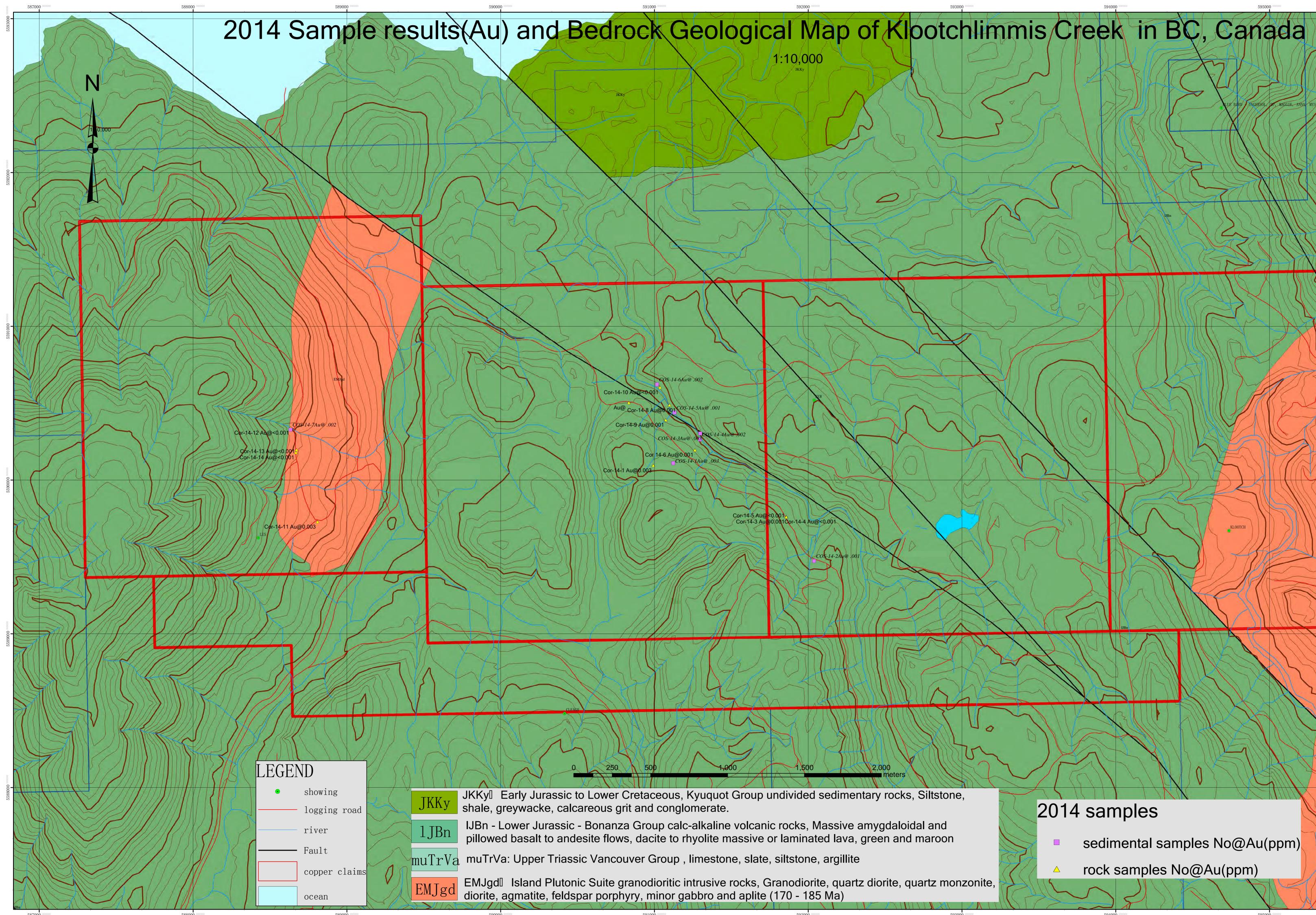
Bin holds a Bachelor of Science degree in Geology and a Master of Science degree in Geology, both from Northeast University in China, with a specialization in geophysics. He is a registered geologist in China and has worked for one of the largest exploration companies in China for four years. He worked as a staff geologist in many of the government sponsored exploration programs in China, being the project manager in one of them. Over the past three years, he has worked with Liaoning/Eden's team and consultants on all of the company's BC projects and helped develop and implement exploration strategy and work programs. During the course of exploration programs over the past years, he has gained a great amount of practical knowledge and experience in BC's geological settings, exploration approach and technics, as well as laws and regulations governing the mineral exploration industry.

· · · · · · · · · · · · · · · · · · ·						
BRITISH COLUMBIA The Best Place on Earth			T Strong T			
Ministry of Energy and Mines BC Geological Survey			Assessment Report Title Page and Summary			
TYPE OF REPORT [type of survey(s)]: Techincal			TOTAL COST: \$10,815.85			
AUTHOR(S): Edward Eden, Bin Li, Fred Eden		SIGNATURE(S):	h/l/			
		-++2	& your la			
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):			YEAR OF WORK: 2014			
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5520	584/September 4, 20	14			
PROPERTY NAME: Klootchlimmis Creek Property	1999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					
CLAIM NAME(S) (on which the work was done): Copper 1, 2, 3, 4, 7						
		• *	1			
COMMODITIES SOUGHT: copper, gold						
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092L 230, 325	5, 335	, 324				
MINING DIVISION: Nanaimo		NTS/BCGS: 092L05E/0)92L042			
LATITUDE: 50 ° 27 '07 " LONGITUDE: 127		45 '40 "				
MacMalandalanaanaanaa maraabalayib waxaan waxaanaayahaanaada		40 (at centre of work)			
OWNER(s): 1) Liaoning/Eden Venture Investments Ltd.	2)		1			
			· · ·			
MAILING ADDRESS: 4370 Keith Rd. West Vancouver BC						
981 Chamberlin Rd., Gibsons, BC (as of 3/1/2015)						
OPERATOR(S) [who paid for the work]:						
1) Same as above	_ 2)					
MAILING ADDRESS:	1					
-						
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure lower Jurassic Bonanza Group basaltic to rhyolite, lower cretad						
north-south intrusion on the East, biotite and granodiorite; A sn		and the second day and the second				
northwest trending fault	11 7					
Weak epidote follow fracture, argillic-carbonate and silicic alteration, disseminated pyrite and rare chalcopyrite						
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT F		nan san an a				
1969 Geological & Geochemical Report on the Les Claim Grou						

. .

2.

046

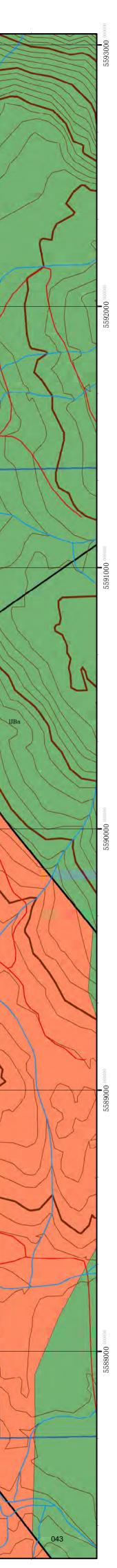


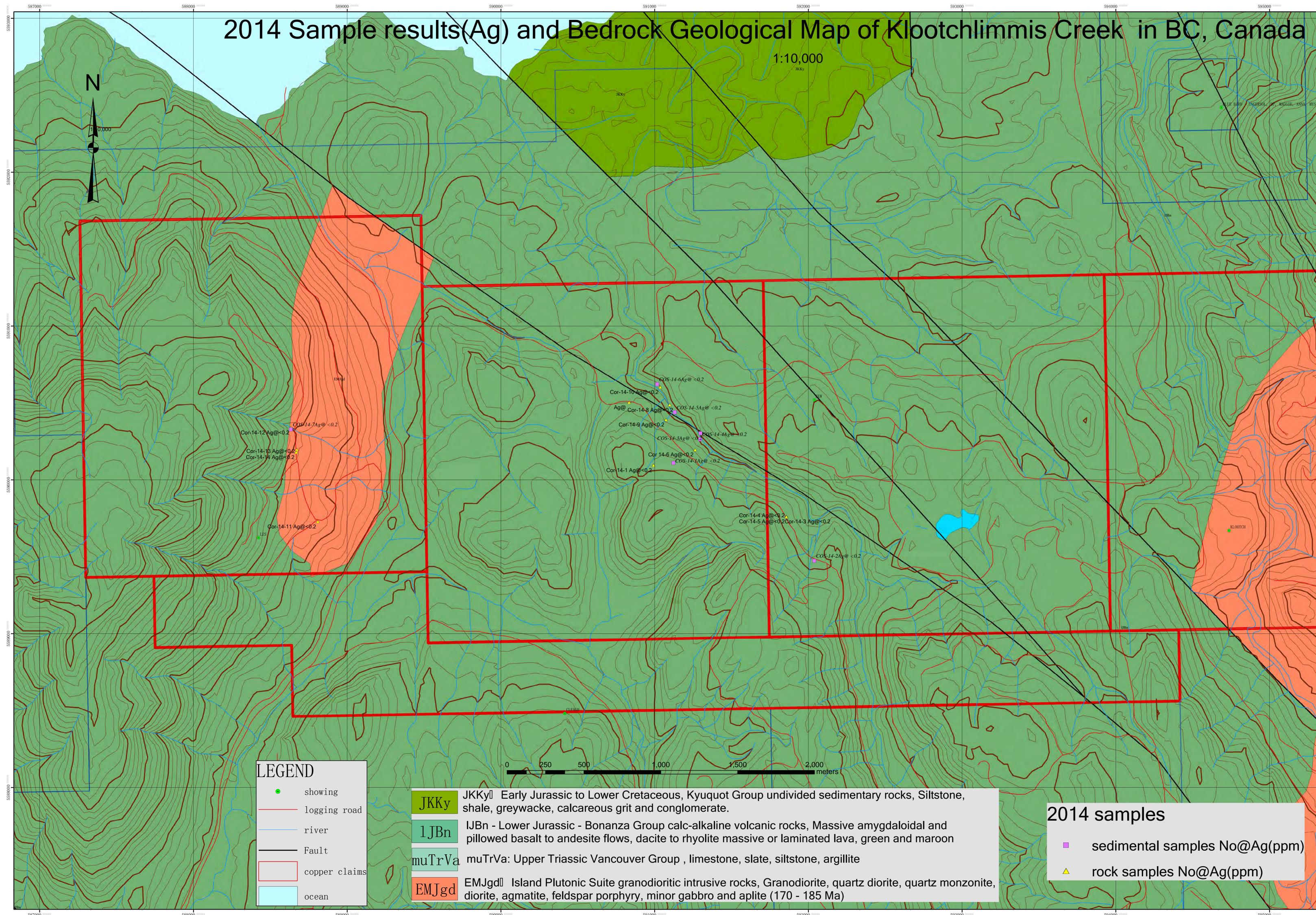
di.

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)	Luc, gritani	÷	
Ground, mapping 1:10000, 5k	km2	998-130,135, 136, 138, 142	\$ 4,998.62
Photo interpretation			
GEOPHYSICAL (line-kilometres)		No Marine La Contra Con	
Ground	in the second		
Magnetic	· · · · · · · · · · · · · · · · · · ·		
Electromagnetic		-	
		-	
Radiometric		-	
Seismic	,		
Other			•
Airborne			· · · · · · · · · · · · · · · · · · ·
GEOCHEMICAL (number of samples analysed for)			
Soil		-	-
Silt 7/Au,Ag,Al,As,B,Ba,Be,B			\$ 1,666.21
Rock 14/Au,Ag,Al,As,B,Ba,B	e,Bi,Ca,Cd,Co,Cr,Cu,Fe,Q	Copper 1, 2, 3, 4, 7	\$ 3,332.42
Other		_	·
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
Sampling/assaying ALS ME-IC	CP41, Au-ICP21 for rocks;	998-130, 135, 136, 138, 142	\$818.60
Petrographic (cont'd) Au-ICP			
Mineralographic	,		
Metallurgic		-	
	10000,5Km2		
PREPARATORY / PHYSICAL			
Line/grid (kilometres)		$\sum_{i=1}^{n-1} a_i \sum_{i=1}^{n-1} a_i$	
Topographic/Photogrammetric (scale, area)			· · ·
Legal surveys (scale, area)			
Road, local access (kilometres)/t			· · · · · · · · · · · · · · · · · · ·
Trench (metres)			
Underground dev. (metres)			
· · · · · · · · · · · · · · · · · · ·	-	-	
Other			¢40.045.05
		TOTAL COST:	\$10.815.85

.047

•

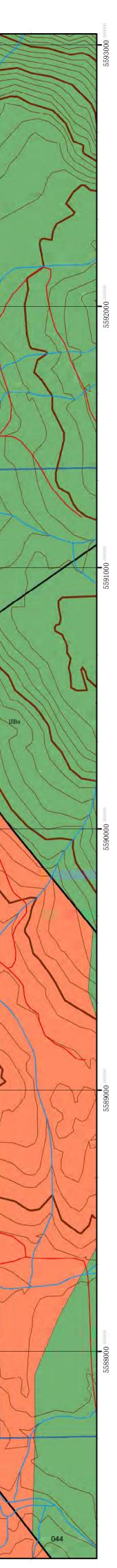



2014 samples

 \wedge

sedimental samples No@Au(ppm)

rock samples No@Au(ppm)



2014 samples

sedimental samples No@Ag(ppm)

rock samples No@Ag(ppm)

