Mining & Minerals Division BC Geological Survey	Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: geological, geochemical, geop	hysical TOTAL COST : \$134,255.36
AUTHOR(S): Daniel K. Lui	SIGNATURE(S): Daniel Lui Digitally signed by Dariel Lui Digitally signed by Dariel Lui Digitally signed by Dariel Lui Directore Dariel
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-13-228 (130069 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	01-201102), MX-13-243 (1641125-2012 <mark>≩</mark> 1 YEAR OF WORK: <u>2014</u> 5513672 (2014/JUL/21), 5523630 (2014/SEP/25)
PROPERTY NAME: Redton	
CLAIM NAME(S) (on which the work was done): $HS128$, $cs085$, $cs086$	5, cs087, hal1, cs128, cs127, ext03
соммодітіеs sought: <u>Copper, Gold, Molybdenum</u>	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: MINFILNO 09	3N 167 ;MINFILNO 093N 173 ;MINFILNO 093N 068
MINING DIVISION: Omineca	NTS/BCGS: 093N/02, 03, 06, 07, 11, 15
LATITUDE: 55 ° 16 ' LONGITUDE: 125	o
OWNER(S): 1) Redton Resources Inc.	2) <u>Rimfire Minerals Corporation.</u>
MAILING ADDRESS: c/o Rand Edgar Investment Corp.	Suite 575 - 510 Burrard St.
Suite 2200 - 885 W. Georgia St., Vancouver, BC, V6C 3E8	Vancouver, BC, V6C 3A8
OPERATOR(S) [who paid for the work]: 1) Kiska Metals Corporation	_ 2)
MAILING ADDRESS: Suite 575 - 510 Burrard St.	
Vancouver, BC, V6C 3A8	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure quesnelia, porphyry, takla group, chuchi lake, twin creek, hogen	, alteration, mineralization, size and attitude): n intrusive suite,
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT R	EPORT NUMBERS : 20177, 20272, 20338, 20512, 20825, 20838,

20960, 21551, 21567, 21734, 21948, 22079, 22145, 22192, 22414, 22588, 22757, 2864, 29011, 29891, 31012, 31933, 32504, 😭

Ministry of Energy, Mines & Petroleum Resources

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping 1 km x 1 km	1	HS128	\$3,946.62
Photo interpretation			
GEOPHYSICAL (line-kilometres) Ground			
Magnetic 11.2 km		cs085, cs086, cs087, hal1	\$17,467.50
Electromagnetic			
Induced Polarization 11.2	٢m	cs085, cs086, cs087, hal1	\$73,387.75
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soli			
Sint			
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic 30 samples lit	thogeocheistry, hyperspeo	cs128, cs127, ext03	\$11,243.25
Metallurgic	<u>_</u>		
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres) 11.2 km		cs085, cs086, cs087, hal1	\$28,210.23
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	\$134,255.36

BC Geological Survey Assessment Report 34932

Kiska Metals Corporation

2014 GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL REPORT ON HALOBIA, HEATH NORTH AND FALCON PROSPECTS OF THE REDTON PROJECT

Located in the Omineca Mountains, Omineca Mining Division NTS 93N/2,3,6,7,11,14,15 55° 16' N Latitude; 125° 05' W Longitude

-prepared for-

KISKA METALS CORPORATION

Suite 575, 510 Burrard Street Vancouver, BC, Canada V6C 3A8

-prepared by-

Daniel K. Lui, M.Sc.

KISKA METALS CORPORATION

Suite 575, 510 Burrard Street Vancouver, BC, Canada V6C 3A8

October 17, 2014

TABLE OF CONTENTS

ТАВ	LE O	F CONTENTS	i
LIST	OF	TABLES	ii
LIST	OF	FIGURES	ii
SUN	/MA	RY	iv
1.0	IN	ITRODUCTION	1
2.0	RE	ELIANCE ON OTHER EXPERTS	1
3.0	PF	ROPERTY DESCRIPTION AND LOCATION	1
4.0	A	CCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY	1
5.0	HI	ISTORY	3
	5.1	Burn Prospect	4
	5.2	Halobia Creek Prospect (Hal)	5
	5.3	Nation Prospect	5
	5.4	Heath Prospect	9
	5.5	Contact Zone Prospect	9
	5.6	Falcon Prospect	10
	5.7	Falcon Zone Geology, Geochemistry and Geophysics	10
		5.7.1 Falcon Zone Drill Results	13
		5.7.2 Falcon Zone Mineralization and Alteration	15
6.0	RE	EGIONAL GEOLOGY AND MINERALIZATION	15
	6.1	Regional Overview	15
	6.2	Stratigraphy	16
		6.2.1 Cache Creek Terrane	16
		6.2.2 Takla Group	16
		6.2.3 Twin Creek and Chuchi successions	16
	6.3	Intrusions	17
		6.3.1 Hogem intrusive suite	17
		6.3.2 Valleau Creek intrusive suite	17
		6.3.3 Germansen batholith	17
	6.4	Structural Setting	17
	6.5	Metamorphism	
	6.6	Mineral Deposit Styles	
7.0	20	014 WORK PROGRAM	
	7.1	Falcon prospect orientation study	20
		7.1.1 Methodology	20
		7.1.2 Results	20
	7.2	Heath North prospect	25
		7.2.1 Method	25
		7.2.2 Results	25
	7.3	Halobia prospect	25
		7.3.1 Method	26

	7.3.1 Results	26
8.0 DISCUS	SION	27
9.0 CONCL	USIONS	27
10.0 RECOM	1MENDED WORK	
10.1 Falo	con	
10.2 Hea	ath North	28
10.3 Hal	obia	
Appendix A.	Bibliography	
Appendix B.	Rock Descriptions	
Appendix C.	Certificates of Analysis	
Appendix D.	Geochemical and Hyperspectral Orientation Study of the Redton Cu-Mo Project	
Appendix E.	Induced Polarization Survey	
Appendix F.	Claim Data	
Appendix G.	Statement of Expenditures	
Appendix H.	Geologist's Certificate	
Appendix I.	Digital Data	

LIST OF TABLES

Table 1: Summary of exploration work relevant to Redton project	3
Table 2. Results of significant drill intercepts from the Falcon Zone	14

LIST OF FIGURES

Figure 1: Redton property location map	2
Figure 2: Redton property claim map	6
Figure 3: Map of the Redton property showing historical surface work (silts, soils, rocks and drilling)	7
Figure 4: Map of the Redton property showing historical surface and airborne geophysical surveys	8
Figure 5: Geological map of the Falcon Area and the location of the Falcon Zone targeted by drilling in 2007-2008.	11
Figure 6: Airborne magnetic image overlain by the results of IP chargeability data in the Falcon Area	12
Figure 7: Soil geochemical anomalies from the Falcon area overlain by 20 ms IP chargeability anomaly and inferred shallow intrusions interpreted from magnetics data	12
Figure 8: Plan map of drilling at the Falcon Zone showing results for molybdenum.	13
Figure 9: Plan map of drilling at the Falcon Zone showing results for copper	14
Figure 10: Regional geology of the Redton area adapted from Massey et al (2005) and (Williams et al., 1996), and modified with regional magnetic data, rock geochemistry and 2011 mapping	19
Figure 11: Falcon prospect orientation sample location. Sample depths indicated by shaded squares	21
Figure 12: Box-whisker plot showing the distribution of Cu in sample populations containing different phases of white mica	22
Figure 13: Box-whisker plot showing the distribution of Cu in sample populations containing different phases of chlorite.	22
Figure 14: Falcon prospect orientation results shown relative induced polarization chargeability anomaly and copper in soils anomaly	23

Figure 15: Heath north mapping and sampling.	24
Figure 16: Location of induced polarization survey at Halobia prospect shown relative to soil	
geochemical anomalies.	26

SUMMARY

The Redton project covers 23,665 hectares and is located in the Quesnel Trough in northern British Columbia. The project adjoins Serengeti Resources Inc.'s Kwanika property and is within 1,500 metres of the porphyry copper-gold discovery made by Serengeti. Kiska Metals Corporation (Kiska) has earned an 85% interest in the project by spending in excess of \$4.75 million, subject to a final payment upon production. Redton Resources Inc. holds the other 15% interest and a 3% NSR of which 1.5% can be purchased. Work in this report was aimed at further evaluating the Halobia, Heath North, and Falcon prospects.

The Halobia prospect, in the central portion of the Redton property, is defined by a composite coppermolybdenum-gold in soil geochemical anomaly approximately 3 km by 2 km in width. A ground magnetics and induced polarization (IP) survey was conducted over this anomaly to test for porphyry mineralization potential.

Previous prospecting work at the Heath North prospect, located in the southwest portion of the Redton property, identified anomalous copper, gold, and silver values including sample L647552 which returned 6580 ppm copper, 0.288 ppm gold, and 8 ppm silver. Surface geological work was done at the Heath North prospect to provide geological context to the anomalous precious and base metal values in the rock samples.

The Falcon prospect, in the southern portion of the Redton property, is a proven porphyry coppermolybdenum±gold prospect. Significant intercepts from diamond drilling include 418 m of 0.033 % Mo, 0.06 % Cu from 23 m (FN-08-04), 328.4 m of 0.042 % Mo, 0.05 % Cu from 102 m (FN08-06), and higher grades zones including 78.0 m of 0.081% Mo and 0.03 % Cu from 152.0 metres (FN-07-02). In 2013, Kiska conducted a detailed geological review of the Falcon prospect in order to establish the mineral potential of this area and to make recommendations for future exploration. Results of the core re-examination indicated that high-grade molybdenum mineralization is preferentially developed within, and occurs adjacent to, a series of Quartz Biotite Monzonite Porphyry (QBMP) dykes hosted within a Hornblende Granodiorite. Cross-cutting relationships indicate that the porphyry dykes and the molybdenum mineralization post-date an earlier phase of low-grade copper mineralization associated with quartzmagnetite-pyrite-chalcopyrite veins with epidote-chlorite-albite alteration selvages. In this report, the copper potential of the Falcon zone is investigated using a lithogeochemical and mineralogical orientation study from resampled drill core and surface rocks around the Falcon prospect.

A total of 11.2 kilometres of IP geophysics and ground magnetic survey were performed over the Halobia prospect. Results of the geophysical survey did not return any significant geophysical anomalies in association with the anomalous soil geochemistry. Due to a lack of significant anomalies, no further work is recommended for the Halobia prospect.

Precious and base-metal mineralization at Heath North was found to be hosted within mafic-ultramafic intrusions intruding into a diorite host. The mafic-ultramafic intrusions contain disseminated pyrite and chalcopyrite with significant magnetite mineralization. As such, the ultramafic hosts should be much more magnetic compared to the diorite host. Current magnetics data over the Redton property is coarse to delineate the discrete mafic-ultramafic intrusions, as such a ground magnetic survey is recommended to potentially distinguish the mafic-ultramafic intrusions. An IP or ground electromagnetic survey is recommended to help identify potential zones of sulphide mineralization.

The lithogeochemical and mineralogical orientation study at the Falcon Zone further confirmed that molybdenum mineralization is associated with quartz monzonite dykes that intrude a hornblende granodiorite hosting an earlier phase of low-grade copper mineralization. However, based on alteration mineral chemistry it is interpreted that this copper mineralization is centred on the quartz monzonite

dykes. Given this result it is uncertain whether a higher-grade copper component exists outboard of the quartz monzonite intrusive centre. It is recommended that further work at Falcon include extending current IP lines that end in chargeability anomalies, and systematic drilling along the previously defined anomalous copper-in-soil geochemistry and chargeability anomalies.

1.0 INTRODUCTION

This report presents work completed in 2014 on Kiska Metals Corporation's ("Kiska") Redton Property. Work was aimed at further evaluating the Halobia, Heath North, and Falcon prospects. A geophysical survey was conducted over the Halobia prospect to determine the potential for a porphyry system. Surface reconnaissance mapping and geochemical rock sampling was done at the Heath North prospect to put geological context to previously identified copper-gold-silver mineralization. An orientation survey using geochemistry and hyperspectral data was conducted at the Falcon prospect to determine copper and molybdenum mineralization vectors.

2.0 RELIANCE ON OTHER EXPERTS

The authors have not relied on a report, opinion or statement of an expert for information concerning legal, political, environmental or other issues. Interpretation of results from the lithogeochemical and mineralogical orientation study at the Falcon prospect was conducted by CSA Global Canada Geosciences Ltd.

3.0 PROPERTY DESCRIPTION AND LOCATION

The Redton property lies 45 km southwest of Manson Creek and 125 km north-northwest of Fort St James, within the Omineca Mountains of north-central BC (Figure 1). The property lies within the Omineca Mining District and is centred on 55° 25′ 00″ N, 125° 10′ 00″ W.

The Redton claim block consists of 55 contiguous claims covering an area of 23,665 hectares (Figure 2; Appendix B). Most of the claims (51 of 55 claims) are currently listed under Redton Resources Inc. ("Redton"), whereas the other recorded claim owner is Rimfire Minerals Co. ("Rimfire") (4 claims). During 2012 the Redton claim block was reduced from 159 claims covering an area of 70,288 hectares to the size and number of claims stated above. Through its predecessor Geoinformatics Exploration Canada Ltd. ("Geoinformatics"), Rimfire earned an 85% interest in the project from Redton by spending \$4.75M on exploration over five years subject to a final payment upon production. Claims added to the project subsequent to 2006 are 100% owned by Rimfire. Appendix B contains a summary of the project claim status.

In 2009, Geoinformatics and Rimfire merged to form Kiska, with the predecessor companies continued as wholly-owned subsidiaries of Kiska. Subsequently in 2011 the Redton Property interests were transferred from Geoinformatics to Rimfire.

4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY

Access to the property is best from Fort St James, either north on unsealed public roads to the Manson Creek-Takla Landing gravel road which enters the northern portion of the property, or west along the sealed Tachie road, then onto the Leo Creek/Driftwood forestry road to access the southern portion of the property. Numerous forestry roads and tracks provide limited access to some parts of the property but most areas require helicopter transport for access.

Figure 1: Redton property location map.

The climate is typical of a continental setting at this latitude. Winters are cold with total snowfall of approximately two metres; summers are cool and moist. The property is most easily worked from July to September.

The Redton property lies within the Swannell Ranges of the Omineca Mountains, and is bordered to the west and south by the Nation Lakes. The larger valley bottoms, including those containing the Nation Lakes, lie at ~900–1000 m and are host to thick forests of spruce, pine and balsam fir. Forests thin towards higher elevations and are eventually replaced by alpine vegetation. The highest elevations in the area reach ~1800 m.

A well-established road network links the project area with Fort St James and several smaller communities in the area.

5.0 HISTORY

Mineral exploration in the Omineca district started with placer gold prospecting in 1869, with copper exploration commencing ~100 years later (Buskas and Bailey, 1992). Since that time at least 150 assessment reports have been submitted for work completed within and around the claim group.

Redton Resources Inc. staked the claims comprising the Redton Property on the 12th January 2005, at the initiation of online staking in British Columbia. In June 2005, Geoinformatics entered into a joint venture with Redton and commenced work on the project. Historical work on the property and area are summarized in Table 1. Historical geophysical surveys are shown in Figure 4. Notable prospects are described further below.

Year	Prospect	Operator (Year) & Prospect (this report)	Geochemistry	Geophysics	Drilling	Assessment Report (Reference)
1965-9, 1985, 1972, 1990-1	Bob, North Slope, Slide, Tom, Jean, Lee, Jim Nell, Tak 1-4, (Tak)	North Star (1965- 1969),Imperial Metals (1985), Kaza Copper (1972), Eastfield Resources (1990), Rio Algom (1990), Placer Dome (1991)	Trenching, rocks, soils,	Mag &VLF- EM (300km),	787m in 11holes, 1222m in 13 holes (1960s), 453m in 3 holes (1991).	816 (G.A. Dirom, 1966), 15652 (Taylor and Gorc, 1986), 20512 (G.L. Garrett, 1990), 20838 (G.L. Cope 1991), 22145 (S.M. Price and D. Bailey, 1992)
1967	B (Nation)	Cominco Ltd (1967)	soils, silts			1064 (MacGregor, 1967)
1969	Heath, Heath Copper (Heath, Heath-North)	Mr. Campbell (1969)	soils, silts, water, rocks	1 km Mag	58 m X-Ray drill	1965 (Dummett and Allan, 1969); 17988 (Campbell, 1988); 2001- 44 (Campbell, 2001); 29436 (Campbell, 2007)
1969-70	Bal (Falcon)	Tchentlo Lake Mines Ltd (1969- 1970)	soils, rocks			2729 (Sinclair, 1970)
1969-70	HI (Contact Zone)	NBC Syndicate (1969-1970)	soils	ground EM, Mag		1947 (Bacon, 1969); 2321 (Bacon, 1970a); 2617 (Bacon, 1970b)
1970-1	Heath, NS (Heath, Heath- North)	Senate Mining Co Ltd (1970 - 1971)	soils	34 km ground Mag		2799 (Inglis, 1970); 3200 (Livgard, 1971a); 3201 (Livgard, 1971b)

Table 1: Summary of exploration work relevant to Redton project

		Operator (Year) & Prospect (this	Geochemistry	Geophysics	Drilling	Assessment Report (Reference)
Year	Prospect	report)				. ,
1971	NOBLE (Halobia Creek)	Union Minière Explorations & Mining Co Ltd (1971)	soils			3611 (Adamson, 1971)
1972	Hal, Halobia (Halobia Creek)	Noranda Exploration Co Ltd (1972)	soils			3774 (Dirom, 1972)
1971-3	Rottacker Creek (Nation)	Nation Lake Mines Ltd (1971-1973)	soils (no data)			3407 (Gatenby, 1971)
1978-82	JP (Contact Zone)	Placer Development Ltd (1979-1982)	soils, rocks	8.3 km ground VLF		9403 (Buckley and Peters, 1981)
1979-82	OVB (Eagle- North)	Placer Development Ltd (1979-1982)	silts (heavy minerals)	13.7 km ground VLF- EM & Mag		10077 (Peters et al, 1982); 10904 (Peters and Buckley, 1982)
1980	HALO 1 (Halobia Creek)	Dome Exploration (Canada) Ltd (1980)	soils, silts, rocks	52.5 km ground Mag		8988 (Fraser, 1980)
1990-1	Falcon, Fal (Falcon)	Prospecting partnership (1990- 1991)	soils, rocks			20272 (Halleran, 1990); 20825 (Forster, 1991)
1990-1	Heath (Heath, Heath-North)	Teck Explorations Ltd (1990-1991)	soils	79.4 km ground IP; 86 km ground EM & Mag	969 m diamond drill; 122 m winky drill	20552 (Toohey and Donkersloot, 1990); 21948 (Toohey et al, 1991)
1991-2	Hal (Halobia Creek)	Swannel Minerals Co(1991-1992)	soils, rocks			21734 (Pardoe and Garratt, 1991); 22588 (Leriche and Faulkner, 1992)
2000	BOR, TBOR (Contact Zone)	Mr. Lorne Warren (2000)	soils, rocks			26451 (Warren, 2000)
2006-7	Auddie	E.A. DeBock & Rimfire Minerals (2006-2007)	rock chip, soils,	Mag & EM (68.5km), IP (6km),		28889 (DeBock, 2007), 29730 (Lui, 2008)
2006-10	Redton (Falcon, Contact Zone, Eagle)	Geoinformatics Exploration Canada Ltd, Kiska Metals Corporation (2006- 2010)	soils, silts, rocks	8.8km ground IP, ~150 km airborne EM & Mag	818 m + 2966 m diamond drill	29011 (Worth and Bidwell, 2007); 29891 (Worth and Bidwell, 2008); 31012 (Bidwell et al., 2009); 31933 (Bidwell, 2010)
2010	Redton (Swan	Kiska Metals		646 km AeroTEM		(Bidwell 2011)
2011-2	Redton	Kiska Metals Corporation (2011, 2012)	soils, rocks, silts			32504 (Franz and Voordouw, 2011), 34050 (English, 2012)
2013	Redton (Falcon)	Kiska Metals Corporation (2012)	geological			34720 (Roberts, 2014)

5.1 Burn Prospect

The Burn prospect was worked by the Luc Syndicate and Dome Exploration in the 1970s including magnetometer and IP surveys, trenching, and 857.7 m of drilling. No economic mineralization was located. (MINFILE Detail Report 093N 107, Hylands, 1980)

5.2 Halobia Creek Prospect (Hal)

The Halobia Creek prospect was first staked in 1971 by Union Minière Explorations & Mining Co (UMEX) and Noranda Exploration Co, in response to high Mo-in-silt values obtained from UMEGREN's joint venture Omineca exploration project (Pardoe and Garratt, 1991). Subsequent work on UMEX's NOBLE claims identified a 1500 x 450 m Cu-Mo-Zn soil anomaly (Adamson, 1971), and was followed-up with unpublished IP, magnetometer (10.9 and 20 line-km respectively) and diamond drilling (9 holes, 350 m) programs (Fraser, 1980; Pardoe and Garratt, 1991). Soil sampling on Noranda's HAL claims also identified anomalous Cu, Mo and Zn values (Dirom, 1972), yet all of the claims were allowed to lapse by 1978.

The area comprising the NOBLE claims was re-staked by Mr. JC Stephen in 1980 and subsequently optioned to Dome Exploration Co, who conducted surface geochemistry and magnetometer surveys (Fraser, 1980). The claims were again allowed to lapse by 1983.

The Halobia Creek prospect was re-staked in 1990 by Takla Joint Ventures who optioned the property to Swannell Minerals Co (Pardoe and Garratt, 1991). A reconnaissance-style evaluation program of prospecting and surface geochemistry programs was initiated in 1991–92 (Pardoe and Garratt, 1991). The claims lapsed in 1994 and were open until 2005 when they were included into the Redton property. Soil surveys were undertaken by Kiska in the Hal area in 2011.

5.3 Nation Prospect

The Nation prospect is the most under-defined of the prospects summarized in this section, comprising just a single showing within a relatively vast, unexplored, area. This showing was first worked by Cominco Ltd as part of their B 1–20 claims (MacGregor, 1967), then by Nation Lake Mines Ltd as part of their Rottacker claims (Gatenby, 1971). In between these programs the claims were allowed to lapse. The prospect itself consists of a trenched Cu occurrence in a ~25 cm wide shear zone located at a fault intersection, with anomalous Cu-in-soil values crossing the showing along a NNW trend (Gatenby, 1971).

A much larger-scale program on the Nation prospect was conducted by Grand America Minerals Ltd, who staked their 455 unit Nation property in May 1990 (Carter, 1991). The project area was immediately overflown with 719 km of airborne magnetic and VLF-EM surveys. The strongest VLF-EM response comprised a NW-trending zone associated with the eastern margin of a magnetic high (Carter, 1991), presumably the eastern contact of the Sedlo Range Monzodiorite. The Nation property lapsed in 1993 and remained open until incorporated into the Redton property.

In 2011, Kiska carried out extensive soil sampling on three grids in the Nation prospect area. Two goldin-soil anomalies were located on the NW grid and two polymetallic Cu-Au anomalies on the SE grid. In 2012 soil geochemistry surveys and prospecting was completed was completed in the northern and southern portions of the property in order to fill-in gaps within the previous soil sampling campaigns.

Figure 2: Redton property claim map.

Figure 3: Map of the Redton property showing historical surface work (silts, soils, rocks and drilling).

Figure 4: Map of the Redton property showing historical surface and airborne geophysical surveys.

5.4 Heath Prospect

The Heath prospect lies just off the Redton claim block but appears to be contiguous with the "Heath-North" prospect, making it worthwhile to examine its exploration history and mineralization style. Work on the Heath prospect began in 1968 with the excavation of hand trenches by Colin Campbell, followed by Amax Exploration's soil geochemical surveys in 1969 (Toohey and Donkersloot, 1990). The hand trenches exposed polymetallic (Au-Ag-Cu-Pb-Zn) chalcopyrite-magnetite fissure veins that form the heart of the showing (Heath #1 showing BC MINFILE). No data, however, derived from these two initial programs was recorded for assessment.

In 1969, Mr. Campbell optioned the Heath claims to Senate Mining & Exploration Ltd who conducted geological mapping, soil sampling and ground-based magnetometer surveys (Dummett and Allan, 1969; Inglis, 1970; Livgard, 1971a, b). Results delineated a broad Cu-in-soil anomaly and identified several follow-up targets, but nonetheless the claims were returned to Mr. Campbell in 1972.

Later in 1972, the Heath claims were optioned to Nation Lake Mines Ltd, who worked them together with their CAT claims (Hallof and Mullan, 1973). Work included ~20 line-km of IP, which outlined several anomalous zones associated with Cu showings, and a magnetometer survey (Hallof and Mullan, 1973). The option was nevertheless dropped and ownership returned to Mr. Campbell.

Ownership of the Heath claims was transferred to Indata Resources Ltd in 1989, and was later that year optioned to Teck Co. Additional staking by Teck more than doubled the number of claim units. Subsequently, an extensive program of geochemical, magnetic and VLF-EM surveys identified strong, poly-metallic, geochemical responses and NW- to NNW-trending EM conductors (Toohey and Donkersloot, 1990). An IP survey identified several anomalous zones that were unsuccessfully tested with a 10 hole, 969 m, diamond drilling program (Toohey et al., 1991). The claims were again returned to Mr. Campbell.

Since 1991, the only work done on the Heath property has been by its owner Mr. Campbell, including an X-Ray drill program in 2001 (Campbell, 2001) as well as a soil sampling and one line-km magnetometer survey in 2007 (Campbell, 2007).

The Heath North area has been soil sampled and prospected by Geoinformatics-Kiska intermittently since 2006.

5.5 Contact Zone Prospect

Exploration of the Contact Zone prospect was first recorded in 1969, when the NBC Syndicate conducted several soil sampling, geological mapping and ground-based EM + magnetic surveys on their HI claims (Bacon, 1969, 1970a, b). Soil sampling at the Contact zone revealed a broad area of elevated Cu-in-soil values and a few coincident but weak EM conductors. These claims were presumably allowed to lapse.

Placer Development Co.'s JP claims also covered part of the Contact Zone prospect, and were staked in 1980. Subsequent geochemical and geophysical surveys identified several coincident Cu-in-soil and VLF anomalies (Buckley and Peters, 1981). These claims were presumably allowed to lapse.

The BOR and TBOR claims were staked in 1999 to cover new showings exposed by road building in the Contact Zone area (Warren, 2000). These showings include the Bor gravel pit, which consists of open fractures filled with pyrite, magnetite and chalcopyrite (Warren, 2000). The claims lapsed in 2003 and were then included into the Redton property in 2005. Subsequent work on the Contact Zone by

Geoinformatics included geochemical sampling (Worth and Bidwell, 2008) and airborne EM and magnetics (Bidwell, 2010).

In 2011 an IP and magnetic survey was undertaken in Contact Zone area along with additional soil sampling and prospecting (Franz and Voordouw, 2011).

5.6 Falcon Prospect

The first records of exploration on the Falcon prospect were published by Tchentlo Lake Mines Ltd., for soil sampling done on their Bal claims (Sinclair, 1970). This program identified two ~300 x 700 m zones with anomalous Cu + Mo, in addition to numerous smaller anomalies with intermediate values. Additional unpublished work included diamond drilling, presumably in 1971, trenching and geophysical surveys (Halleran, 1990). Drilling and trenching tested pyrite-rich granitoids with minor molybdenite and chalcopyrite.

A nearly two decade hiatus followed before two small work programs were undertaken by Independence Mining Co, who optioned the restaked Bal claims, then renamed as "Falcon", from prospectors Halleran and Schmidt. The work programs included re-examination of the 1971 drill core (Halleran, 1990) and soil sampling, the latter defining several Cu-Mo anomalies (Forster, 1990).

Another ~15 year gap in exploration ended when, in 2005, Redton staked and immediately optioned their Redton property to Geoinformatics. In 2006, Geoinformatics carried out an extensive field program across most of the property (Worth and Bidwell, 2007), including soil sampling in Redton-South, and then followed this up with, among other projects, a ~8.8 line-km IP and 2-hole, 818 m, diamond drill program on the Falcon Prospect in 2007 (Worth and Bidwell, 2008). The two 2007 drill holes intersected a broad zone of vein-hosted Mo-Cu mineralization associated with monzonite porphyry. Eight additional diamond drill holes, totalling 2966 m, were sunk in 2008, with five of these holes intersecting at least ~300 m with >0.03% Mo (Bidwell et al., 2009). A subsequent AeroTEM survey identified 65 EM anomalies (Bidwell, 2010). In 2011 an IP survey was undertaken on the till-covered area of the Eagle North grid, just to the east of the Falcon prospect (Franz and Voordouw, 2011).

In 2013, Kiska conducted a detailed geological review of the Falcon prospect in order to establish the mineral potential of this area and to make recommendations for future exploration. Results of the core re-examination are summarized below.

5.7 Falcon Zone Geology, Geochemistry and Geophysics

The Falcon zone is located in low-lying hummocky terrain to the north of Tchentlo Lake. The geology of this area is dominated by Takla Group volcanic rocks that host a central core of northwest-southeast striking, coarse equigranular intrusive rocks (including diorite, monzodiorite, monzonite, granodiorite) with local hornblende-rich mafic enclaves (hornblendite), syenite dykes, and felsic crowded porphyry dykes and stocks recognized only in drilling (Figure 6). The eastern portion of this area is covered by glacial overburden, while the remainder is generally free of glacial cover. The Falcon Zone, a zone of porphyry Cu-Mo mineralization, occurs in the southern portion of this area and is hosted by a granodioritic phase of the coarse-grained intrusive complex. This zone, targeted by the 2007-2008 drilling, is defined by a 900 by 800 metre >40 ms chargeability anomaly that is coincident with a subtle northwest-elongate magnetic high (Figure 7), and anomalous Cu-Mo-Au soil geochemistry (Figure 8).

The airborne magnetic data shows that a portion of the coarse grained intrusive complex in the core of the Falcon area is associated with a linear, northwest-elongate magnetic high anomaly that extends for

several kilometres to the northwest, while much of the intrusive and volcanic rocks have a relatively low magnetic response. The IP surveys have outlined an area >20 ms measuring 2 km north-south and 1.5 km east-west, and the anomaly remains essentially open to the west and east. High chargeability also occurs within a portion of the linear AMAG to the north, in a similar way to the coincident magnetic-IP response evident at the Falcon Zone. Drilling in the Falcon Zone has shown that elevated magnetic response is a function of magnetite associated with propylitic alteration and quartz-chalcopyrite-molybdenite veins that are developed on the margins of north-west trending porphyry dyke swarm. The causative intrusive is felsic quartz biotite monzonite porphyry with low magnetic susceptibility and hence areas of low magnetic response may partly define its lateral extents. The apparent symmetry defined as AMAG highs/strong chargeability highs flanking a central area of AMAG low/moderate chargeability could reflect outer propylitic alteration rimming a porphyry core-zone defined by the area of subdued magnetic and IP response.

The soil geochemistry data indicates that much of the core area, as defined by the extents of the 20 ms chargeability anomaly, has anomalous Cu values that are open southeast and in particular to the northwest along the 10 ms chargeability contour (Figure 7). Anomalous Mo geochemistry is largely confined to the Falcon Zone, but remains open to the southeast albeit at lower levels and with a more discontinuous distribution in areas mapped with transported cover.

Figure 5: Geological map of the Falcon Area and the location of the Falcon Zone targeted by drilling in 2007-2008.

Figure 6: Airborne magnetic image overlain by the results of IP chargeability data in the Falcon Area.

Figure 7: Soil geochemical anomalies from the Falcon area overlain by 20 ms IP chargeability anomaly and inferred shallow intrusions interpreted from magnetics data.

5.7.1 Falcon Zone Drill Results

The 2007-2008 drilling (Figure 8) program returned significant molybdenum mineralization and strongly anomalous copper mineralization in all 10 holes (Table 2). Significant intercepts include 418 m of 0.033 % Mo, 0.06 % Cu from 23 m (FN-08-04), 328.4 m of 0.042 % Mo, 0.05 % Cu from 102 m (FN08-06), and higher grades zones including 78.0 m of 0.081% Mo and 0.03 % Cu from 152.0 metres (FN-07-02). Porphyry mineralization is associated with a northwest striking and steeply northeast-dipping swarm of quartz biotite monzonite porphyritic dykes, with well-developed crowded porphyritic textures (Quartz Monzonite Porphyry – QBMP), hosted by a medium to coarse-grained, equigranular hornblende granodiorite. Both units are considered to be phases of the Hogem Batholith. The QBMP dykes range from approximately one metre wide, up to 100 metres wide. This largest dyke is open to the southeast, and appears to plunge moderately to the northwest, and may develop into a larger stock at depth. Both the QBMP and the granodiorite units display strong alteration, Mo \pm Cu mineralization and are cut by minor and narrow post-mineral aplite dykes.

Figure 8: Plan map of drilling at the Falcon Zone showing results for molybdenum.

Figure 9: Plan map of drilling at the Falcon Zone showing results for copper.

Hole ID	From (metres)	To (metres)	Width (metres)	Mo (%)	Cu (%)
FN_07_01	86.0	431.9**	345.9	0.035	0.07
including*	240.0	260.0	20.0	0.062	0.07
including*	348.0	404.0	56.0	0.062	0.07
including*	416.0	428.0	12.0	0.068	0.08
FN_07_02	88.0	232.0	144.0	0.056	0.05
including*	152.0	230.0	78.0	0.081	0.03
and	249.0	386.2**	137.2	0.040	0.07
FN_08_01	3.7	409.8**	406.1	0.036	0.05
Including*	119.0	289.0	170.0	0.050	0.04
Including*	391.0	409.8**	18.8	0.062	0.06
FN_08_02	24.0	33.0	9.0	0.012	0.03
and	108.0	365.8**	257.8	0.025	0.06
Including*	221.0	267.0	46.0	0.031	0.04
Including*	311.0	365.8	54.8	0.044	0.04
FN_08_03	37.0	43.0	6.0	0.012	0.04
and	130.0	232.0	102.0	0.012	0.07
Including*	138.0	154.0	16.0	0.020	0.06
FN_08_04	23.0	441.0	418.0	0.033	0.06

Table 2. Results of significant drill intercepts from the Falcon Zone

Hole ID	From (metres)	To (metres)	Width (metres)	Mo (%)	Cu (%)
Including*	166.0	186.0	20.0	0.053	0.07
Including*	208.0	255.0	47.0	0.046	0.03
Including*	293.0	321.0	28.0	0.041	0.06
Including*	372.0	435.0	63.0	0.066	0.06
FN_08_05	21.0	399.3	378.3	0.037	0.07
Including*	147.0	174.0	27.0	0.049	0.07
Including*	198.0	228.0	30.0	0.043	0.07
Including*	255.0	339.3**	144.3.	0.053	0.07
FN_08_06	102.0	430.4**	328.4	0.042	0.05
Including*	144.0	273.0	120.9	0.045	0.04
Including*	295.0	430.4	135.4	0.049	0.06
FN_08_07	102.0	153.0	51.0	0.012	0.05
and	213.0	246.9**	33.9	0.018	0.06
FN_08_08	26.0	428.2	402.2	0.038	0.05
Including*	146.0	284.0	138.0	0.048	0.03
Including*	310.0	428.2**	118.2	0.057	0.06

Major intervals calculated using a 0.01% molybdenum cut-off with minimum width of 4 metres and maximum internal dilution of 8 metres.(*) Higher-grade intervals calculated using a 0.04% molybdenum cut-off, with minimum width of 4 metres and maximum internal dilution of 8 metres. (**) Bottom of the hole.

5.7.2 Falcon Zone Mineralization and Alteration

At the Falcon Zone, molybdenum mineralization occurs as molybdenite in a variety of quartz vein types including narrow molybdenite-only veinlets, as disseminations. All styles of mineralization occur within the QBMP and the granodiorite. High molybdenum grades (>0.05% Mo) over significant widths tend to occur within or adjacent to the widest dyke, and favour the footwall over than hanging wall of the dyke. Copper mineralization occurs as chalcopyrite in quartz veins and disseminations, and is largely restricted to the granodiorite. The pervasive distribution of chalcopyrite mineralization and elevated copper values (500 to 1000 ppm) in the granodiorite is notable and above regional background levels. The reader is referred to Roberts (2014) for a more detailed review of the copper-molybdenum mineralization paragenetic relationships at the Falcon prospect.

6.0 REGIONAL GEOLOGY AND MINERALIZATION

6.1 Regional Overview

Detailed descriptions of the regional geology are contained in various reports, with most of the section below derived from the British Columbian Geological Survey bulletin (Nelson and Bellefontaine, 1996). The regional geology is shown on Figure 10.

The Redton Property is located within the Quesnel Trough or Quesnellia, a Mesozoic island arc terrane juxtaposed against the ancestral North American continental margin (Nelson and Bellefontaine, 1996). The Quesnel Trough largely comprises Upper Triassic and Lower Jurassic island arc volcanic and sedimentary units of the Takla Group (Triassic) and the Chuchi Lake and Twin Creek successions

(Jurassic). The Hogem intrusive suite also features prominently, comprising Late Triassic and Early Jurassic composite plutons that are presumably the intrusive equivalents of the island arc volcanic units (Nelson and Bellefontaine, 1996).

The Quesnel Trough hosts several significant porphyry copper-gold deposits, with the Redton property located NE of Mt Milligan (707 Mt @ 0.18% Cu; 0.33 g/t Au) (Terrane, 2009) and south of the Kemess South (109Mt @ 0.234%Cu; 0.712g/t Au) and Kemess North (400Mt @ 0.224% Cu; 0.409g/t Au) (Database, 2005).

6.2 Stratigraphy

Descriptions for rock units pertaining to the project area are presented below and are based largely on the descriptions in (Nelson and Bellefontaine, 1996).

6.2.1 Cache Creek Terrane

The Pennsylvanian to Triassic lithologies of the Cache Creek Terrane occur mostly to the west of the Pinchi fault and west of the project area as well. The rocks of this Terrane consist mostly of basic volcanic and carbonates with minor abundances of harzburgite, chert, argillite and coarse clastics (Monger, 1975).

6.2.2 Takla Group

The Takla Group is late Triassic in age and consists of a number of distinct (informal) units including the Slate Creek, Plughat Mountain, Witch Lake and Willy George successions. Although there are variations to the sequence, broadly the Takla Group represents an upward transition from basinal sediments through epiclastic to pyroclastic components, and finally to thick, localized, volcanic piles that suggest the Takla Arc comprised a series of discrete basaltic centres (Nelson and Bellefontaine, 1996).

Within the Redton project area, the Takla Group is predominantly represented by the Plughat Mountain succession, which is mostly formed by augite-plagioclase porphyritic basalt flows and fragmentals, pillow basalt, amygdaloidal olivine basalt, heterolithic tuff, volcanic sandstone and limestone. There are also lesser amounts of porphyritic volcaniclastics and flows of the Witch Lake succession, and tuffaceous and sedimentary units of the Willy George succession on the property. The south-eastern portion of the property also contains significant areas of Inzana Lake succession, comprising tuffaceous and sedimentary rocks including lapilli tuffs, sandstone, argillite and sedimentary breccia.

6.2.3 Twin Creek and Chuchi successions

Nelson and Bellefontaine (1996) describe the area in the northwest portion of the project area as the type locality for a sequence informally termed the Twin Creek succession. This Early Jurassic succession unconformably overlies the Plughat Mountain succession of the Takla Group and consists of plagioclase-phyric heterolithic lapilli tuff, agglomerate, crystal tuff and heterolithic volcanic conglomerate (Nelson and Bellefontaine, 1996). Various porphyritic flows also occur, including augite-hornblende, plagioclase-augite and plagioclase-quartz porphyries. The succession is interpreted as a progressive felsic differentiation of volcanic magmas through time (Nelson and Bellefontaine, 1996).

A few outcrops of the Chuchi succession occur on the eastern margin of the Redton claim block. This lower Jurassic, ~1650 m thick, succession consists mostly of plagioclase-porphyritic (to locally megacrystic) latite, andesite, basalt and dacite flows, as well as heterolithic agglomerate, lahars and intravolcanic sedimentary rocks. It is more compositionally and texturally heterogeneous relative to the underlying Witch Lake succession (Takla Group), and locally may contain very large plagioclase crystals (Nelson and Bellefontaine, 1996).

6.3 Intrusions

At least half of the project area is composed of intrusive rocks, with the Hogem intrusive suite predominating.

6.3.1 Hogem intrusive suite

The Hogem intrusive suite comprises several different plutons of varying age and composition. Within the project area, Jurassic monzonites predominate and form an elongate north-northwest trending batholith, with a number of early Cretaceous granites intruding into the older monzonite. Late Triassic to early Jurassic diorites also occur within the project area, generally on the margins of the monzonite batholith.

The alkalic porphyry copper gold deposits in the Quesnel Trough are hosted by early Jurassic components of the Hogem intrusive suite. Monzonitic "crowded porphyries" (Nelson and Bellefontaine, 1996) are commonly associated with porphyry copper deposits, including Mt Milligan and Chuchi Lake.

6.3.2 Valleau Creek intrusive suite

The Valleau Creek intrusive suite comprises late Triassic to early Jurassic diorite, gabbro, pyroxenite and hornblendite. Within the project area, gabbros of this suite have been mapped along the south-eastern margin of the Hogem batholith. They have a prominent signature in the regional aeromagnetic map.

6.3.3 Germansen batholith

The Germansen batholith is a large granite body situated along the eastern margin of the property. The batholith is early Cretaceous in age and is compositionally a coarse-grained, generally equigranular or orthoclase megacrystic hornblende—biotite granite. The Germansen batholith is not prospective for alkalic porphyry copper-gold mineralization, however a number of molybdenite showings along its margins indicate it may be prospective for that mineral.

6.4 Structural Setting

The Quesnellia terrane is a structurally-emplaced island arc terrane which was later accreted on to the western margin of ancestral North America in the later part of the early Jurassic (Nelson and Bellefontaine, 1996). Regional-scale dextral transcurrent faults bound and disrupt the Quesnellia terrane, with the Pinchi fault forming the western boundary to the project area and the Discovery Creek and Manson fault systems to the east. Dextral movement of tens to hundreds of km occurred mostly in the Cretaceous to Early Tertiary (Nelson and Bellefontaine, 1996). Geoinformatics also interpreted deep-level, belt-parallel structures from the geophysics (Bidwell and Worth, 2006).

Nelson and Bellefontaine (1996) suggest the tabular form of several intrusions indicate arc-parallel structures that were active during emplacement of the Hogem batholith. One such fault, the Valleau Creek fault, is proposed to have accommodated ~1000 m of west-side down dip-slip (Nelson and Bellefontaine, 1996). Other proposed early faults include an east–west trending fault that may have guided emplacement of the southern Hogem batholith, as well as

ENE- and N–S-striking structures (Nelson and Bellefontaine, 1996). Geoinformatics recognized relatively evenly spaced (20-30 km spaced) deep-level north-east trending cross-arc structures that appear to post-date the belt-parallel structures but may have also been active during the island arc formation of the Quesnel terrane (Bidwell and Worth, 2006).

Geoinformatics also notes that numerous smaller faults of NW, NE and WNW orientation occur within the project area, along with less frequent north-trending faults (Bidwell and Worth, 2006). Most

prospect-scale faults appear to postdate intrusive emplacement, though some, such as the Twin Creek fault, clearly exhibit control on mineralization emplacement (Bidwell and Worth, 2006).

Folding within the project area appears to be gentle, with dips on bedding measurements generally less than 30° except when close to intrusive margins or faults (Nelson and Bellefontaine, 1996). Buskas and Bailey (1992) describe an open, south-westerly plunging syncline in the northern part of the Redton claim block. They suggest the syncline has regional extent and plunges at 25°–30°.

6.5 Metamorphism

Stratified rocks (*e.g.* Takla Group, Twin Creek and Chuchi successions) within the project area have generally undergone metamorphism to prehnite-pumpellyite grade and locally, adjacent to the Germansen batholith, greenschist facies (Nelson and Bellefontaine, 1996)

6.6 Mineral Deposit Styles

The Redton project area is prospective for a number of deposit styles including alkalic porphyry Cu-Au, gold and base metal skarn mineralisation, and structurally hosted epithermal gold mineralization.

The principle style being targeted is alkalic porphyry copper-gold mineralization. This style of mineralization represents a very attractive target with potentially large tonnages and moderate gold and copper grades, such as occurs at Galore Creek (517.7Mt @ 0.59% Cu, 0.36g/t Au, 4.54g/t Ag). Other deposits of this type that occur within 70 km of the project area include Mt Milligan (707 Mt @ 0.18% Cu, 0.33 g/t Au) (Terrane, 2009), Chuchi Lake (50Mt @ 0.21% Cu, 0.21g/t Au) and Lorraine (31.9Mt @ 0.66% Cu, 0.17g/t Au, 4.7g/t Ag) (Database, 2005).

Skarn mineralization is often associated with porphyry deposits where limestone exists adjacent to the intrusions. Limestone occurs on the property as part of the Plughat Mountain succession and Cache Creek Terrane. Although not reported within the property, skarn mineralization was reported on the Lustdust prospect west of the claims (MINFILE Detail Report 093N 009).

7.0 2014 WORK PROGRAM

The 2014 program consisted of an orientation survey at the Falcon prospect, surface geological work at the Heath North prospect, and a ground magnetics and induced polarization survey (IP) at the Halobia prospect. The orientation survey at Falcon consisted of re-sampling of drill core and surface rock sampling from outcrops around the Falcon drill area. Geological work at the Heath North prospect consisted of reconnaissance geological mapping and surface rock sampling from outcrops. The geophysical survey required line cutting and gridding to provide access through brush. The Halobia survey area was accessed by helicopter.

Fieldwork for the 2014 program was based out of Tasayta Lake Lodge. Access to the Falcon and Heath North areas of the project was by foot from gravel roads accessible by pickup truck.

Figure 10: Regional geology of the Redton area adapted from Massey et al (2005) and (Williams et al., 1996), and modified with regional magnetic data, rock geochemistry and 2011 mapping.

In addition to fieldwork, work on the Redton property also included community engagement activities, such as communicating with local First Nations and other communities, land owners, trapline holders, and guide outfitters. This work endeavoured to open communication channels with affected communities of interest.

7.1 Falcon prospect orientation study

The orientation survey at the Falcon prospect was conducted to determine copper and molybdenum mineralization vectors. Geochemical and hyperspectral data were used for the orientation study. Sample collection for the orientation survey was conducted by Kiska geologists. CSA Global was retained to interpret results of the geochemical and hyperspectral data, this report by Arne (2014) is presented in Appendix D.

7.1.1 Methodology

Rock samples were systematically sampled from historical drill core and outcrops peripheral to the drill area at the Falcon prospect (Figure 11). Rock samples from historical drilling were collected in east-west transects through the Falcon zone at depths near surface (less than 100 m below surface) and at the deeper extent of drilling (200-300 m below surface). Drill core samples collected consist of sawn, half core 10 cm to 20 cm in length. Photographs were taken of core removed, and a tag labelling the segment removed was left in the core boxes.

In total, twenty-two samples were collected from ten drill holes, and eight samples were collected from outcrops up to 800 m from the centre of drilling at the Falcon zone (Figure 11). Descriptions of drill core and surface rock samples collected are presented in Appendix B. Certified reference materials as described in Arne (2014) were submitted with the samples.

Rock samples were crushed and pulverized at ALS Minerals in Vancouver (PREP-22). Twenty-eight of the samples were submitted for complete characterization by CCP-PKG01. This package uses a mix of ICP-AES (ME-ICP06) and ICP-MS (ME-MS81) instrumental finishes for major and trace elements, respectively, following a lithium borate fusion. The base metals were analyzed following a 4-acid digestion (ME-4ACD81) and the volatile trace elements As, Bi, Hg, Sb, Se, Te and Tl were analyzed by ICP-MS following an aqua regia digestion (ME-MS42). Total C and S were analyzed by Leco furnace (ME-IR08). The 9 outcrop samples were also analyzed for Au using a fire assay with an ICP-AES finish (Au-ICP-21). Six of these outcrop samples were also analyzed by ICP-AES following a 4-acid digestion similar to that undertaken within the complete characterization package (ME-ICP61). A 50 g split of coarse crusher material was sent to the ALS facility in Nevada for analysis by TerraSpec 4. Certificates of analysis are presented in Appendix C, quality control and assurance of results are described by Arne (2014) in Appendix D.

7.1.2 Results

The reader is referred Arne (2014) in Appendix D for a thorough analysis of the geochemical and hyperspectral results from this work. Results of this study are summarized below.

Whole-rock geochemical data from the sampled drill core indicate that the composition of the intrusive rocks at the Falcon zone include quartz monzodiorites and monzogranites. However, for the sake of continuity in nomenclature these units will continue to be referred to as the Falcon granodiorite and quartz monzonite, respectively. Statistical correlations shows a distinct association of Cu, Zn, As, and Ag with the granodiorite, and Mo, Sb, and Hg with the quartz monzonite. Average Cu values are highest in the granodiorites and the highest average Mo occurs in the monzonite samples. However, the highest Mo values occur in the granodiorite, even though the Mo mineralization is spatially associated with the

Figure 11: Falcon prospect orientation sample location. Sample depths indicated by shaded squares.

Figure 12: Box-whisker plot showing the distribution of Cu in sample populations containing different phases of white mica.

Figure 13: Box-whisker plot showing the distribution of Cu in sample populations containing different phases of chlorite.

Figure 14: Falcon prospect orientation results shown relative induced polarization chargeability anomaly and copper in soils anomaly.

Figure 15: Heath north mapping and sampling.

monzonite, indicating that this mineralizing event has affected both rock types. This observation by Arne (2014) supports prior interpretations by Roberts (2014) that the Cu and Mo mineralization represents two distinct phases of mineralization, whereby the Mo mineralization is the latter of the two.

Hyperspectral results have shown a correlation between higher copper values and paragonitic muscovite and magnesium-rich chlorite as shown in Figure 12 and Figure 13. The distribution of these mineral phases is shown relative to the quartz monzonite in Figure 14. The paragonitic muscovite and magnesium-rich chlorite are spatially associated with the margins of the quartz monzonite and were not detected in any other samples east or west of the quartz monzonite or in outcrop samples to the northwest.

Visually and geochemically there is little evidence for potassic alteration in most of the rocks sampled in this study. Sample M409076, collected 800 m northwest from the centre of drilling at the Falcon Zone, shows indications of potassic alteration in trace element data. However, this sample is not associated with anomalous precious or base- metal values, and is not located near samples containing paragonitic muscovite or magnesium-rich chlorite. As such it is unlikely these results indicate potassic alteration associated with porphyry copper-molybdenum mineralization.

7.2 Heath North prospect

One day of prospecting and reconnaissance mapping was conducted at the Heath North prospect, the location of rock samples and reconnaissance mapping is shown in Figure 15. The mapping area is accessible by foot from a nearby road east of Rottacker Creek.

7.2.1 Method

Rock samples were analysed for gold fire assay with an ICP-AES finish (Au-ICP-21). Trace elements were analysed for by 4-acid digestion (ME-4ACD81).

7.2.2 Results

Samples M409080 and M409079 returned 0.34 % Cu, 1.6 ppm Ag, and 0.19 % Cu and 1 ppm Ag, respectively. These samples did not contain significant concentrations of gold or nickel. These samples were collected from an area peripheral to previously defined copper mineralization (Franz, 2012). Outcrops in this area are sparse, mostly exposed in rubbly, subcrops and small scree exposures on hillsides.

The copper and silver mineralization is associated with what appears to be strongly altered mafic to ultramafic intrusive rock with strong chlorite, epidote, and magnetite mineralization. Magnetite mineralization in copper mineralized rocks is intense containing up to 30 % very coarse-grained granular veins and disseminations. Copper bearing mafic-ultramafic intrusive rocks occur adjacent to weakly to moderately chlorite-epidote-magnetite altered granodiorite with no significant sulphide mineralization. The sparse outcrop exposure, and discontinuous nature of the mafic-ultramafic intrusive adjacent to weakly altered diorites suggests that the mafic-ultramafic intrusive occur as discrete intrusions or dykes within the diorite host.

7.3 Halobia prospect

Scott Geophysics Ltd. was retained to conduct a ground magnetics and induced polarization survey at the Halobia prospect. A total of 11.2 kilometres of IP and mag survey were performed over the copper-

molybdenum-gold soil anomaly at Halobia. The survey was designed to test the porphyry potential of the composite soil geochemical anomaly. Results of the IP survey are presented in Appendix E.

7.3.1 Method

A pole-dipole array was used whereby readings were taken at an "a" spacing of 200 metres at "n" separations of 1 to 6, reading at 100 metre intervals (200/1-6). The on line current electrode was located to the south of the potential electrodes. Total field magnetometer readings were taken at 12.5 metre intervals. GPS readings were taken at each station and at the remote ("infinite") electrode locations, subject to satellite reception. Elevation measurements are barometric altimeter readings, calibrated to GPS altitude at the beginning of each line.

7.3.1 Results

The induced polarization survey over the composite copper-molybdenum-gold soil anomaly did not return any significant chargeability or conductivity anomalies. The ground magnetics survey did not return any features which correlated to the composite copper-molybdenum-gold soil anomaly.

Figure 16: Location of induced polarization survey at Halobia prospect shown relative to soil geochemical anomalies.

8.0 DISCUSSION

At the Falcon Zone, trace metal associations in geochemical data confirm that the quartz monzonite dykes and associated Mo mineralization post-dates earlier low grade copper mineralization. Previous work had suggested that a higher-temperature core may exist for the copper mineralization hosted within the granodiorite in the Falcon zone. However, the hyperspectral data has shown that elevated copper associated with hydrothermal alteration containing paragonitic muscovite and magnesium-rich chlorite occur discretely around the Falcon quartz monzonite intrusions. As such, copper may have been enriched in the granodiorite at the Falcon zone by hydrothermal fluids associated with the quartz monzonite intrusion. As such there is no clear indication if a higher-grade component of the early phase copper mineralization exists.

Although the Falcon zone target has been thoroughly tested by drilling, the Falcon zone remains in a 1.2 km by 1.5 km wide copper-in-soils anomaly that is associated with a greater than 20 ms chargeability anomaly (Figure 7). The majority of this copper-chargeability anomaly has not been tested by drilling.

Mapping and prospecting at the Heath North prospect has shown that anomalous copper and weak silver mineralization is associated with discrete mafic to ultramafic intrusions within a weakly to moderately altered granodiorite host. The mafic-ultramafic rocks do not contain anomalous gold or nickel values which may be associated with magmatic cumulate deposits. The copper mineralization is associated with a very large copper in soil anomaly, greater than 2 km in width extending off of the Redton property. However, the discrete nature of the mafic-ultramafic intrusions, and dispersion in the soil data does not allow for effective drill targeting of mineralization. Airborne magnetics data collected over the property is too coarse to allow for identification of the discrete mafic-ultramafic intrusions. A ground survey coupled with induced polarization may be an appropriate target definition methodology.

The induced polarization and magnetics survey over the Halobia prospect did not return any geophysical anomalies in association with the composite copper-molybdenum-gold soil anomaly. Results of this survey suggest that the anomalous soil geochemistry over the Halobia prospect is not associated with a porphyry system.

9.0 CONCLUSIONS

Copper and molybdenum mineralization at the Falcon zone were shown to have occurred in two phases whereby molybdenum occurred in the latter phase. Copper enrichment around the Falcon zone appears to be associated with enrichment around a quartz monzonite associated with the later molybdenum mineralization event. It is uncertain whether a higher-grade copper component exists within the earlier copper mineralization event.

Copper mineralization at the Heath North prospect is associated with discrete mafic-ultramafic intrusions within weakly to moderately altered diorite. The extent and volume of copper mineralization associated with these intrusions is unknown as outcrop exposure in the area is sparse. Although the copper mineralization is associated with a very large soil geochemical anomaly, dispersion of copper from the discrete intrusions does not lend to effective targeting.

Results of the geophysical survey over the Halobia prospect suggests that anomalous soil geochemistry at the prospect is not associated with a porphyry system.

10.0 RECOMMENDED WORK

10.1 Falcon

- 1. Extend existing IP lines to expand the currently open-ended 20 millisecond chargeability anomaly.
- 2. Step-out drilling at the Falcon Zone, systematically testing the along strike and down-dip extent of the dyke swarm, targeting possible potassic alteration and higher Cu grades
- 3. Drill test the remaining Cu-in-soil greater than 100 ppm Cu anomalies that are coincident with the 20 millisecond IP chargeability contour.

10.2 Heath North

- 1. Detailed ground magnetics over copper-in-soil geochemical anomaly to better define discrete mafic-ultramafic intrusions.
- 2. Induced polarization or ground electromagnetics to detect disseminated or cumulate sulphides within the mafic-ultramafic intrusions.

10.3 Halobia

No further work is recommended for the Halobia prospect.
Appendix A. Bibliography

Adamson, R.S., 1971. Geochemical report on Noble Mineral Claims, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 3611, p. 14.

Arne, D., 2014. Geochemical and Hyperspectral Orientation Study of the Redton Cu-Mo Project,

. CSA Global Canada Geosciences Ltd.

Bacon, W.R., 1969. Geochemical, geophysical and geological report, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 1947, p. 17.

Bacon, W.R., 1970a. Geological, geochemical, geophysical report on the HI claim groups I, II and III, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 2617, p. 18.

Bacon, W.R., 1970b. Geophysical report on the HI claim groups I, II and II, Tchentlo Lake, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 2321, p. 18.

Bidwell, G., 2010. Airborne geophysics (Electromagnetic & magnetic survey), B.C. Ministry of Energy, Mines and Petroleum Resources 31933, p. 66.

Bidwell, G., Trott, M., McQuinn, R., 2009. Field evaluation report on porphyry copper-gold and molybdenum deposit targets: soil and silt geochemistry, diamond drilling, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 31012, p. 281.

Bidwell, G., Worth, A.W., 2006. Geological data compilation and geophysical report on the Takla Redton project (2005 program), B.C. Ministry of Energy, Mines and Resources Assessment Report 28264, p. 225.

Buckley, P., Peters, A.J., 1981. Geochemical and geophysical report: JP#1 mineral claim, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 9403, p. 20.

Buskas, A.J., Bailey, D.G., 1992. Summary report of 1990 and 1991 exploration programs on the Takla-Rainbow property, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 22372, p. 364.

Campbell, C., 2001. British Columbia prospectors assistance program, B.C. Ministry of Energy, Mines and Petroleum Resources Report PAP 01-44 p. 21.

Campbell, C., 2007. Assessment report of soil sampling, line cutting and ground magnetic orientation survey, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 29436, p. 22.

Carter, N.C., 1991. Report on an airborne geophysical survey of the NATION 8 - 18, 28 and 19 - 27, 29, 30 mineral claims, Nation Lakes area, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 21551, p. 40.

Database, M., 2005. B.C. Ministry of Energy, Mines and Petroleum Resources <u>http://www.em.gov.bc.ca/Mining/Geolsurv/Minfile/search/default.htm</u>.

Dirom, G.E., 1972. Geochemical survey, Halobia Property, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 3774, p. 14.

Dummett, H.T., Allan, J.F., 1969. Geological and geochemical report on the Heath Copper Prospect, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 1965, p. 28.

Forster, C.N., 1990. Assessment report on the Falcon Property, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 20825, p. 59.

Franz, K., 2012. 2011 GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT ON THE REDTON PROJECT

Fraser, B.M., 1980. Geological, geochemical report on the HALO 1 Mineral Claim, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 8988, p. 38.

Gatenby, L.B., 1971. Report on Rottacker Creek property, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #3407, p. 12.

Halleran, A.A.D., 1990. Geology and geochemical report on the Falcon property, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 20272, p. 28.

Hallof, P.G., Mullan, A.W., 1973. Report on the induced polarization and resistivity survey on the Heath and Cat claims, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 4672, p. 37.

Inglis, W.L., 1970. Geochemical Survey: Heath Copper NS claims, B.C. Ministry of Energy, Mines and Petroleum Resources 2799, p. 7.

Livgard, E., 1971a. Geologic report on Heath Copper Property, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 3200, p. 28.

Livgard, E., 1971b. Report on magnetic survey of Heath Copper Property. B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 3201, p. 37.

MacGregor, D.D., 1967. Geochemical - geological report on the B Nos. 1 - 20 mineral claims, B.C Ministry of Energy, Mines and Petroleum Resources Assessment Report 1064, p. 13.

Monger, J.W.H., 1975. Upper Paleozoic rocks of the Atlin terrane, Geological Survey of Canada Paper 74-47.

Nelson, J.L., Bellefontaine, K.A., 1996. Geology and Mineral Deposits of North-Central Quesnellia; Tezzeron Lake to Discovery Creek, Central British Columbia. British Columbia Ministry of Energy, Mines and Petroleum Resources Bulletin 99.

Pardoe, A.J., Garratt, G.L., 1991. Geological mapping, prospecting and stream sampling on the HAL Group, Halobia Creek, B.C, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 21734, p. 25.

Roberts, M., 2014. 2014 Geological Report on the Redton Project, British Columbia Ministry of Energy, Mines and Petroleum Resources Assessment Report #34720

Sinclair, A.J., 1970. Report on a soil geochemical survey, BAL Group, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 2729, p. 53.

Terrane, 2009. Terrane Metals Corp. News Release dated October 13, 2009.

Toohey, J.R., Donkersloot, P., 1990. Geological, geophysical and geochemical assessment report: Heath #1, 2, 3, 13, 21, 22 and 23 claims, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 20552, p. 199.

Toohey, J.R., Donkersloot, P., Cartwright, P., Cormier, M., 1991. Induced polarization and diamond drilling on the Heath claims, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 21948, p. 114.

Warren, L.B., 2000. Bor project 2000: prospecting & geochem report, B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 26451, p. 45.

Worth, T., Bidwell, G., 2007. Field evaluation report on porphyry copper deposit targets, B.C. Ministry of Energy, Mines and Petroleum Resources 29011, p. 584.

Worth, T., Bidwell, G., 2008. Field evaluation report on porphyry copper-gold and molybdenum deposit targets: geological mapping, soil geochemistry, geophysics (IP), diamond drilling, B.C. Ministry of Energy, Mines and Petroleum Resources 29891, p. 399.

Appendix B. Rock Descriptions

No. No. No. New Pack low proving starting star	DDH	ROCK	DEPTH	DEPTH_FROM	DEPTH_TO	DEPTH_ZONE	ALTERATION	SAMPLE_NO	DATE	PHOTO_NUMBER
PNO7-00ICAICAICAICAICAMolibodic winsMu090521.0.1.4.10MODIMALINGPNO7-01GO37.037.4.037.5.0DEPAn sample Mu09052Mu09051.011.9.1.4.0MODIMALINGPNO7-01S1.5.0S1.5.0DEPAn sample Mu09052Mu09053.011.9.1.4.0MODIMALINGMI010051.00PNO7-01S1.5.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Weak chlorite + mag cut by qtz py veins in turn cut by</td> <td></td> <td></td> <td></td>							Weak chlorite + mag cut by qtz py veins in turn cut by			
NormNormNormNormPervaive chlorite grandmass. Magnetite + epidde ingNorm <td>FN07-01</td> <td>GD</td> <td>125</td> <td>126.4</td> <td>126.9</td> <td>SHALLOW</td> <td>molibdonite veins</td> <td>M409052</td> <td>11-Jul-14</td> <td>800</td>	FN07-01	GD	125	126.4	126.9	SHALLOW	molibdonite veins	M409052	11-Jul-14	800
NaV0-10GD25.027.427.8DEEPpywinsM40905111.ub.14799NaV0-1035.035.15DEEPA in sample M409052M409053M40905511.ub.14M30Nav0-1037.5.137.5.6DEEPand quart mony vinis.M409055M409055M109054M20054Nav0-1037.5.137.5.6DEEPand quart mony vinis.M409054M409054M109054M303Nav0-1015.935.7.137.5.6DEEPand quart mony vinis.M409054M109054M20054M20054Nav0-1015.915.9.4S9.4MLUWveinsmateria signature vinis.M40905711.ub.14M302Nav0-1010.20.0.5S14LLUWveinsmateria veins.M40905711.ub.14M302Nav0-1010.210.5.4S14LLUWveins.materia veins.M40905711.ub.14M31Nav0-1010.220.5.5S14LLUWveins.materia veins.M40905711.ub.14M31Nav0-1011.ub.14M31M31M31M31M31M31M31M31Nav0-1011.ub.14M31M31M31M31M31M31M31M31Nav0-1011.ub.14M31M31M31M31M31M31M31M31Nav0-1011.ub.14M31M31M31M31M31M31M31M31Nav0-1011.ub.14M31M31M31							Pervasive chlorite groundmass. Magnetite + epidote in qtz-			
FNO7-00 GPU Sinample MA09052 M400952 M40081 11-14-14 M101411 M101411 FN08-65 GPU FN08-75 FN0	FN07-01	GD	250	247.4	247.8	DEEP	py veins	M409051	11-Jul-14	799
New 55SS <td>FN07-01</td> <td>GD</td> <td>350</td> <td>351</td> <td>351.5</td> <td>DEEP</td> <td>As in sample M409052</td> <td>M409053</td> <td>11-Jul-14</td> <td>801</td>	FN07-01	GD	350	351	351.5	DEEP	As in sample M409052	M409053	11-Jul-14	801
FN08-05 GO 375.1 375.0 DEF adquartz moly veins M409055 11.01-14 803 FN08-05 GO 150.0 150.4 150.9 SHALOW veins Mole veins cultority may veins M409054 1.1.ul-14 802 FN08-05 GO 150.0 150.0 SHALOW veins Mole veins M409055 1.1.ul-14 802 FN08-05 GO 150.0 100.0 100.0 Mole veins Mole veins M409057 1.1.ul-14 802 FN08-06 GO 230.0 SD DEF Mole vains M049058 11.ul-14 812 FN08-07 230.0 230.0 DEF Mole vains Mole vains M049058 11.ul-14 812 FN08-03 GD 120.1 230.0 DEF Mole vains Mole vains M049051 11.ul-14 812 FN08-03 GD 120.1 230.1 DEF Mole vains Mole vains Mole vains Mole vains Mole vains </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Strong CHL + mag alteration in granodiorite cut by py veins</td> <td></td> <td></td> <td></td>							Strong CHL + mag alteration in granodiorite cut by py veins			
FN08-05 CD 150 150.4 15	FN08-05	GD	375	375.1	375.6	DEEP	and quartz moly veins	M409055	11-Jul-14	803
FN08-05 60 150 150.4 15							Albite veins cut chlorite + mag veins; all that cut by moly			
FN08-04 CD Index moderate chlorite; weak mag granodiorite with py cpy M409056 11-Jul-14 806 FN08-04 GD 350 350.9 DEF weak ch1 + albite alteration cut by py veins M409057 11-Jul-14 806 FN08-04 GD 350 350.9 DEF weak ch1 + albite alteration cut by py veins M409057 11-Jul-14 811 FN08-04 M2 270 270.5 DEF weak ch1 - albite r pdf cut by py veins M409058 11-Jul-14 811 FN08-03 GD 125 125.5 SHALLOW cutting that monozonite dykelet? M409050 11-Jul-14 813 FN07-02 GD 350 350.4 DEF Weak ch1 cut by qt ry py veins M409051 11-Jul-14 813 FN07-02 GD 75 77 7.4 SHALLOW Weak ch1 cut by qt ry py veins M409052 11-Jul-14 813 FN08-06 M2 220 120 120.4 SHALLOW Weak ch1 cut by qt ry ry py veins M409052 11-Jul-14	FN08-05	GD	150	150.4	150.9	SHALLOW	veins	M409054	11-Jul-14	802
FN08-04 GD 100 100.2 100.6 SHALLOW veins M409056 11-Jul-14 806 FN08-04 GD 350 350.5 350.9 DEEP weak chl + albite alteration cut by py veins M409057 11-Jul-14 808 FN08-04 MZ 270 270 270.5 DEEP Not much silica selvages on qtz veins (pinkish = hematite??) M409058 11-Jul-14 811 FN08-03 GD 250 253.4 233.8 DEEP Weak chl - ab ± n + ggt cut by py veins M409058 11-Jul-14 812 FN08-03 GD 125 125.5 SHALLOW Cut by qtz py + py veins M409061 11-Jul-14 813 FN07-02 GD 350 350.4 DEEP Weak chl cut by qtz py + py veins M409062 11-Jul-14 813 FN07-02 GD 75 77 77.4 SHALLOW Weak chl cut by qtz - py + py veins M409062 11-Jul-14 819 FN08-06 MZ 120 120.4 SHALLOW Kin M							modertae chlorite; weak mag granodiorite with py cpy			
FN08-04GD350350.5350.9DEEPweak chl + ablite alteration cut by py veinsM40905711-Jul-14808FN08-04MZ270270.5DEEPNot much silica selvages on qtz veins (pinkish = hematite??)M40905811-Jul-14811FN08-03GD250233.4233.8DEEPweak chl = ab tr gdt cut by py veinsM40905911-Jul-14812FN08-03GD125125125.5SHALOWcutting that mononite dykelet?M40906011-Jul-14813FN07-02GD350350.4DEEPWeak chl cut by qtz py + py veinsM40906211-Jul-14814FN07-02GD75777.4SHALOWWeak chl cut by qtz py + py veinsM40906211-Jul-14815FN08-06MZ265255255.4DEEPWeak sch cut by qtz row veinsM40906111-Jul-14819FN08-06MZ26525595.4DEEPWeak sch cut by qtz veins with albite alteration alsoM40906311-Jul-14819FN08-06MZ330330.4DEEPcut by py veinsM40906511-Jul-14819FN08-06GD330330.4DEEPcut by py veinsM40906511-Jul-14821FN08-05GD35055.4SHALOWStrong chl = mt cut by py veinsM40906511-Jul-14821FN08-05GD35055.4SHALOWStrong chl = mt cut by py veins cut by pyM40906511-Jul-14 <td>FN08-04</td> <td>GD</td> <td>100</td> <td>100.2</td> <td>100.6</td> <td>SHALLOW</td> <td>veins</td> <td>M409056</td> <td>11-Jul-14</td> <td>806</td>	FN08-04	GD	100	100.2	100.6	SHALLOW	veins	M409056	11-Jul-14	806
FN08-04 MZ 270 270.5 DEEP Not much silica selvages on qtz veins (pinkish = hematite??) M409058 11-Jul-14 811 FN08-03 GD 250 23.4 23.8 DEEP weak ch1 = alb ± m + gdt cut by py veins M409059 11-Jul-14 812 FN08-03 GD 125 125 125.5 SHALLOW Seriously intense ch1 + mag granodiorite with qtz calcite H	FN08-04	GD	350	350.5	350.9	DEEP	weak chl + albite alteration cut by py veins	M409057	11-Jul-14	808
FN08-04MZ270270270.5DEEPNot much slica selvages ongtz veins (pinkish = hematite?)M40905811-Jul-14811FN08-03GO253.4233.4233.8DEEPweak chu = he mag at cut by py veinsM40905011-Jul-14812FN08-03GD125.125.125.5SHALLOWcutting that monzonite dykelet?M40906011-Jul-14813FN07-02GO350350.4DEEPWeak chu cut by qt zy py veinsM40906211-Jul-14815,816FN08-06MZ265.265.4DEEPWeak ser ut by qt zy ry y veinsM40906111-Jul-14815,816FN08-06MZ120.4120.4SHALLOWWeak ser ut by qt zy ry y veinsM40906211-Jul-14815,816FN08-06MZ120.4120.4SHALLOWWeak ser ut by qt zy ru y veinsM40906311-Jul-14815,816FN08-06MZ13.013.0120.4SHALLOWKein M40962, grandiorletM40905311-Jul-14815,916FN08-06MZ33.033.030.4DEEPcut by qt veins with albite alteration albEEFN08-07S5.8S5.8S5.8DEEPeack chu tu qt qt veins with albite alteration albEEFN08-02GD35.5S5.4S5.8DEEPeack chu tu qt qt veins with albite alteration cut by qtM40905311-Jul-1482FN08-02GDS5.8S5.8DEEPKein Cut qt qt veins with albite alteration cut										
FN08-03 GD 250 233.4 233.8 DEEP weak ch1 alb ± m + gdt cut by py veins M409059 11-Jul-14 812 FN08-03 GD 125 125.1 125.5 SHALLOW cutting that mononite dykelet? M409060 11-Jul-14 813 FN07-02 GD 350 350.4 DEEP Weak ch1 cut by qtz py + py veins M409061 11-Jul-14 814 FN07-02 GD 75 77 77.4 SHALLOW Weak ch1 cut by qtz py + py veins M409062 11-Jul-14 813 FN07-02 GD 75 77 77.4 SHALLOW Weak ch1 cut by qtz - py + py veins M409062 11-Jul-14 819 FN08-06 MZ 12.0 12.0 12.0.4 SHALLOW Sha M409062, granoficitel M409063 11-Jul-14 819 FN08-06 MZ 13.0 30.0 30.4 DEEP cut by py veins M409063 11-Jul-14 812 FN08-02 GD 90 95.4 SHALLOW Strogt cut by p	FN08-04	MZ	270	270	270.5	DEEP	Not much silica selvages on qtz veins (pinkish = hematite??)	M409058	11-Jul-14	811
FN08-03 FN08-04 FN08-03 FN08-04 FN08-03 FN08-03 <t< td=""><td>FN08-03</td><td>GD</td><td>250</td><td>233.4</td><td>233.8</td><td>DEEP</td><td>weak chl - alb ± m + gdt cut by py veins</td><td>M409059</td><td>11-Jul-14</td><td>812</td></t<>	FN08-03	GD	250	233.4	233.8	DEEP	weak chl - alb ± m + gdt cut by py veins	M409059	11-Jul-14	812
FN08-03GD125125.0SHALLOWcutting that monzonite dykele?M40906011-Jul-14813FN07-02GD350350.0350.4DEEPWeak chi cut by qtz py py veinsM40906111-Jul-14815, 816FN07-02GDZ65265.4DEEPWeak chi cut by qtz py py veinsM40906211-Jul-14815, 816FN08-06M2265265.4DEEPWeak chi cut by qtz run veinsM40906311-Jul-14819FN08-06M212.012.012.0.4SHALLOWAs in M409062, granodiorite!M40906311-Jul-14819FN08-06M230.030.0B3.0.4DEEPcut by py veinsM40906311-Jul-14820FN08-08GD30.030.4DEEPcut by py veinsM40906311-Jul-14821FN08-08GD35.535.4S5.8DEPcut by qtz veins with albite alteration cut by pyM40906611-Jul-14823FN08-02GD35.535.5.4S5.8DEPStong clay alterationM40906711-Jul-14824FN08-02GD7575.4SHALLOWStong clay alteration cut by qtz py veins cut by qtz py veinsM40906911-Jul-14823FN08-02GD7575.4SHALLOWStong clay alteration cut by qtz py veins cut							Seriously intense chl + mag granodiorite with qtz calcite			
FN07-02 GD 350 350.4 DEEP Weak chl cut by qtz py py veins M409061 11-Jul-14 814 FN07-02 GD 75 77 77.4 SHALLOW Weak chl cut by qtz - py + py veins M409062 11-Jul-14 815; 816 FN08-06 MZ 265 265 265.4 DEEP Weak ser cut by qtz - mo veins M409064 11-Jul-14 819 FN08-06 MZ 120 120.4 SHALLOW As in M409062, granodiorite! M409063 11-Jul-14 819 FN08-06 MZ 120 120.4 SHALLOW As in M409062, granodiorite! M409063 11-Jul-14 818 FN08-08 GD 330 330.4 DEEP cut by py veins M409065 11-Jul-14 820 FN08-08 GD 90 95 95.4 SHALLOW Strong ch = mt cut by py veins M409066 11-Jul-14 821 FN08-02 GD 355.4 355.8 DEEP veins M409067 11-Jul-14 822 <td>FN08-03</td> <td>GD</td> <td>125</td> <td>125</td> <td>125.5</td> <td>SHALLOW</td> <td>cutting that monzonite dykelet?</td> <td>M409060</td> <td>11-Jul-14</td> <td>813</td>	FN08-03	GD	125	125	125.5	SHALLOW	cutting that monzonite dykelet?	M409060	11-Jul-14	813
FN07-02GD757777.4SHALLOWWeak chi cut by qt2 - my veinsM40906211-Jul-14815; 816FN08-06MZ265265265.4DEEPWeak ser cut by qt2 - my veinsM40906411-Jul-14819FN08-06MZ120120120.4SHALLOWAs in M409062, granodioritelM40906311-Jul-14819FN08-06MZ330330.4SHALLOWSHALLOWAs in M409062, granodioritelM40906311-Jul-14819FN08-08GD330330.4DEEPcut by py veinsM40906511-Jul-14820FN08-08GD9095.4SHALLOWStrong chi = mt cut by py veinsM40906511-Jul-14821FN08-07GD355.4355.4DEEPveinsM40906711-Jul-14823FN08-07GD75.4SHALLOWStrong cla atteration atby py veins cut by qtz veins with albite atteration atb py veins cut by qtzM40906711-Jul-14823FN08-07GD75.775.4SHALLOWStrong cla atteration atbite qtz py veins cut by qtz py veins cut by qtzM40906911-Jul-14824FN08-07GD51.4SHALLOWStrong cla atteration atbite qtz py veins.M40906911-Jul-14825FN08-07GD51.4SHALLOWStrong cla atteration atbite qtz py veins.M40906911-Jul-14825FN08-07GD51.4SHALLOWStrong cla atteration qtz py veins.M40907111-Jul-14825 </td <td>FN07-02</td> <td>GD</td> <td>350</td> <td>350</td> <td>350.4</td> <td>DEEP</td> <td>Weak chl cut by qtz py + py veins</td> <td>M409061</td> <td>11-Jul-14</td> <td>814</td>	FN07-02	GD	350	350	350.4	DEEP	Weak chl cut by qtz py + py veins	M409061	11-Jul-14	814
FN08-06MZ265265265.4DEEPWeak ser cut by qtz - mo veinsM40906411-Jul-14819FN08-06MZ120120.4SHALLOWAs in M409062. granodioritelM40906311-Jul-14818FN08-08GD330330.4DEEPCut by py veinsM40906511-Jul-14820FN08-08GD9095.4SHALLOWStrong ch = mt cut by py veinsM40906611-Jul-14821FN08-08GD355.4355.4DEEPveins (cut by qtz veins with albite alteration cut by pyFN08-02GD355.3355.4DEEPveins (cut by qtz veins with albite alteration cut by pyFN08-02GD355.3355.4DEEPveins (cut by qtz veins with albite alteration cut by pyFN08-02MZ275274.5274.8DEEPStrong clay alterationM40906711-Jul-14822FN08-01GD505151.4SHALLOWcarbonate veinsM40907011-Jul-14824FN08-01GD5051.4SHALLOWStrong qtz sericite pyrite cut by py veins.M40907011-Jul-14824FN08-07GD100.6101SHALLOWalterationM40907011-Jul-14825FN08-07GD100.6101SHALLOWalterationM40907011-Jul-14826FN08-07GD100.6101SHALLOWalterationM40907011-Jul-14<	FN07-02	GD	75	77	77.4	SHALLOW	Weak chl cut by qtz - py + py veins	M409062	11-Jul-14	815; 816
FN08-06MZ120120120.4SHALLOWAs in M409062. granodiorite!M40906311-Jul-14818FN08-08GD330330330.4DEEPGD. weak chl cut by qtz veins with albite alteration also cut by py veinsM40906511-Jul-14820FN08-08GD909595.4SHALLOWStrong chl = mt cut by py veinsM40906611-Jul-14820FN08-02GD355355.4355.8DEEPveinsM40906811-Jul-14823FN08-02GD355355.4355.8DEEPveinsM40906711-Jul-14823FN08-02GD7575.4SHALLOWStrong clay alterationM40906711-Jul-14824FN08-02GD7575.4SHALLOWStrong qtz sericite pyrite cut by py veinsM40906711-Jul-14824FN08-03GD5051.4S1.4Strong qtz sericite pyrite cut by py veinsM40907011-Jul-14824FN08-01GD5051.4S1.4Strong qtz sericite pyrite cut by py veinsM40907011-Jul-14825FN08-07GD10010.010.1SHALLOWStrong qtz sericite pyrite cut by qtz py veins. Sericite alterationM40907211-Jul-14825FN08-07GD10010.010.1SHALLOWalterationM40907211-Jul-14826FN08-07GD10.010.0EPweak chlorite weak albite cut by qtz py veins. Sericite altera	FN08-06	MZ	265	265	265.4	DEEP	Weak ser cut by qtz - mo veins	M409064	11-Jul-14	819
FN08-08GD330330.4DEEPGD. weak chl cut by qt veins with albite alteration alsoM40906511-Jul-14820FN08-08GD90.095.095.4SHALLOWStorag chl = mt cut by py veinsM40906611-Jul-14821FN08-02GD355.3355.8DEEPweak chl cut by qt veins with albite alteration cut by pyM40906811-Jul-14823FN08-02GD355.3355.8DEEPveins veins with albite alteration cut by qt veins cut by qt veins with albite alteration qt veins with albite alteration cut by qt veins with albite alteration qt veins with albite alteration cut by q	FN08-06	MZ	120	120	120.4	SHALLOW	As in M409062. granodiorite!	M409063	11-Jul-14	818
FN08-08GD330330.4330.4DEEPcut by pveinsM40906511-Jul-14820FN08-08GD9095.495.4SHALLOWStrong ch = mt cut by py veinsM40906611-Jul-14821FN08-08GD355.355.4355.8DEEPveins (ht cut by qt zveins with albite alteration cut by pyM40906811-Jul-14823FN08-02MZ274.5274.5DEEPStrong clay alterationM40906711-Jul-14823FN08-02MZ75.75.4DEEPStrong clay alterationM40906711-Jul-14824FN08-02GD75.75.4SHALLOWcarbonate veinsM40906911-Jul-14824FN08-02GD50.51.4SHALLOWStrong qt z sericite pyrite cut by py veins. SericiteM40907011-Jul-14824FN08-01GD50.51.4SHALLOWStrong qt z sericite pyrite cut by py veins. SericiteM40907011-Jul-14824FN08-01GD10.010.0SHALLOWStrong qt z sericite pyrite cut by qt zp yveins. SericiteM40907011-Jul-14825FN08-07GD10.010.0SHALLOWStrong qt z sericite pyrite cut by qt zp yveins. SericiteM40907211-Jul-14826FN08-07GD10.010.0SHALLOWStrong qt z sericite pyrite cut by qt zp yveins. SericiteM40907211-Jul-14826FN08-07GD10.010.0SHALLOWalterationM409072 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>GD. w weak chl cut by qtz veins with albite alteration also</td><td></td><td></td><td></td></td<>							GD. w weak chl cut by qtz veins with albite alteration also			
FN08-08 GD 90 95 95.4 SHALLOW Strong chl = mt cut by py veins M409066 11-Jul-14 821 FN08-02 GD 355 355.4 355.8 DEEP weak chl cut by qtz veins with albite alteration cut by py M409068 11-Jul-14 823 FN08-02 GD 355 355.4 355.8 DEEP veins M409067 11-Jul-14 823 FN08-02 MZ 275 274.5 274.8 DEEP Strong clay alteration M409067 11-Jul-14 823 FN08-02 GD 75 75.4 SHALLOW carbonate veins M409069 11-Jul-14 824 FN08-01 GD 50 51.4 SHALLOW Strong qtz sericite pyrite cut by py veins. M409070 11-Jul-14 824 FN08-01 GD 50 51.4 SHALLOW Strong qtz sericite pyrite cut by py veins. M409070 11-Jul-14 825 FN08-07 GD 100 101.6 SHALLOW alteration M409072 11-Jul-14 827 FN08-07 GD 100 101.6	FN08-08	GD	330	330	330.4	DEEP	cut by py veins	M409065	11-Jul-14	820
FN08-02 GD 355 355.4 355.8 DEEP weak chl cut by qtz veins with albite alteration cut by py M409068 11-Jul-14 823 FN08-02 Z75 Z74.5 Z74.8 DEEP Strong clay alteration M409067 11-Jul-14 823 FN08-02 GD 75 Z74.8 DEEP Strong clay alteration M409067 11-Jul-14 824 FN08-02 GD 75 75.4 SHALLOW Carbonate veins M409069 11-Jul-14 824 FN08-01 GD 50 51.4 S1.4 SHALLOW Strong qtz sericite pyrite cut by yveins. Sericite M409070 11-Jul-14 824 FN08-01 GD 50 51.4 S1.4 SHALLOW Strong qtz sericite pyrite cut by yveins. Sericite M409070 11-Jul-14 824 FN08-01 GD 100 10.6 101 SHALLOW Strong qtz sericite pyrite cut by yveins. Sericite M409072 11-Jul-14 825 FN08-07 GD 100 10.0 SHALLOW alteration M409072 11-Jul-14 827 FN08-07 GD 100 10.0 SHALLOW alteration M409072 11-Jul-14 826	FN08-08	GD	90	95	95.4	SHALLOW	Strong chl = mt cut by py veins	M409066	11-Jul-14	821
FN08-02 GD 35.5 35.4 35.8 DEP vina M409068 11-Jul-14 823 FN08-02 MZ 27.5 274.5 274.8 DEP Stong clay alteration M409067 11-Jul-14 823 FN08-02 GD 75 75.4 SHALLOW Carbonate veins M409067 1-Jul-14 824 FN08-02 GD 75 75.4 SHALLOW carbonate veins M409069 1-Jul-14 824 FN08-01 GD 50 51.4 SHALLOW carbonate veins M409070 11-Jul-14 825 FN08-02 FO 50 51.4 SHALLOW Strong cla service pry reins. Service M409070 11-Jul-14 825 FN08-07 GD 10.0 10.0 SHALLOW alteration M409072 11-Jul-14 825 FN08-07 GD 10.0 10.0 SHALLOW alteration M409072 11-Jul-14 826 FN08-07 GD 24.3 24.3 DEP moly veins M409072 11-Jul-14 826							weak chl cut by qtz veins with albite alteration cut by py			
FN08-02 MZ 275 274.5 274.8 DEEP Strong clay alteration M409067 11-Jul-14 822 FN08-02 GD 75 75 75.4 SHALLOW Moderate cli + weak albite cut by qtz py veins cut by qtz hu	FN08-02	GD	355	355.4	355.8	DEEP	veins	M409068	11-Jul-14	823
FN08-02 GD 75 75 75.4 SHALLOW Moderate chl + weak albite cut by qtz py veins cut by qtz M409069 11-Jul-14 824 FN08-01 GD 50 51.4 51.4 SHALLOW carbonate veins M409070 11-Jul-14 824 FN08-01 GD 50 51.4 SHALLOW Strong qtz sericite pyrite cut by py veins. Sericite M409070 11-Jul-14 825 FN08-07 GD 100 100.6 101.4 SHALLOW alteration M409072 11-Jul-14 827 FN08-07 GD 243.3 243.7 DEEP moly veins M409071 11-Jul-14 826	FN08-02	MZ	275	274.5	274.8	DEEP	Strong clay alteration	M409067	11-Jul-14	822
FN08-02 GD 75 75.4 SHALLOW carbonate views M409069 11-Jul-14 824 FN08-01 GD 50 51.4 SHALLOW Strong qtz sericite pyrite cut by pyreins M409070 11-Jul-14 825 FN08-01 GD 100 10.4 10.4 M409070 11-Jul-14 825 FN08-07 GD 100 10.4 SHALLOW viewschlorite viewskalbite cut by qtz pyreins. Sericite M409072 11-Jul-14 827 FN08-07 GD 10.4 10.4 SHALLOW viewschlorite viewskalbite cut by qtz pyreins. Sericite M409072 11-Jul-14 827 FN08-07 GD 10.4 10.4 10.4 11-Jul-14 826							Moderate chl + weak albite cut by qtz py veins cut by qtz			
FN08-01 GD 50 51 51.4 SHALLOW Strong qtz sericite pyrite cut by py veins M409070 11-Jul-14 825 FN08-07 GD 100 100.6 101 SHALLOW weak chlorite weak albite cut by qtz py veins. Sericite alteration M409072 11-Jul-14 825 FN08-07 GD 100 100.6 SHALLOW alteration M409072 11-Jul-14 827 FN08-07 GD 243.3 243.7 DEEP moly veins M409071 11-Jul-14 826	FN08-02	GD	75	75	75.4	SHALLOW	carbonate veins	M409069	11-Jul-14	824
FN08-07 GD 100 100.6 101 SHALLOW weak chlorite weak albite cut by qtz py veins. Sericite alteration M409072 11-Jul-14 827 FN08-07 GD 243.3 243.7 DEEP weak chl with moderate albite cut by qtz py veins cut by qtz M409071 11-Jul-14 826	FN08-01	GD	50	51	51.4	SHALLOW	Strong qtz sericite pyrite cut by py veins	M409070	11-Jul-14	825
FN08-07 GD 100 10.6 101 SHALLOW alteration M409072 11-Jul-14 827 FN08-07 GD 243.3 243.7 DEEP moly veins M409071 11-Jul-14 826							weak chlorite weak albite cut by qtz py veins. Sericite			
FN08-07 GD 243.3 243.7 DEEP weak chl with moderate albite cut by qtz py veins cut by qtz M409071 11-Jul-14 826	FN08-07	GD	100	100.6	101	SHALLOW	alteration	M409072	11-Jul-14	827
FN08-07 GD 243.3 243.7 DEEP moly veins M409071 11-Jul-14 826							weak chl with moderate albite cut by qtz py veins cut by qtz			
	FN08-07	GD		243.3	243.7	DEEP	moly veins	M409071	11-Jul-14	826

SampleID	Sample_Type	Orig_Grid_ID	Orig_North	Orig_East	Geologist	Date_Sampled	Comments	Sample_Width
							on margins of vein, approx. 30 cm	
M409077	ROCK_GRAB	UTM_NAD83_Z10N	6120129	366094	D. Lui	12-Jul-2014	envelope in old blast pit	0.2
							dissem py in chl - epi altered granite	
M409078	ROCK_GRAB	UTM_NAD83_Z10N	6120121	366041	D. Lui	12-Jul-2014	with epidote veins	0.1
							c.g. pyx - chl - mt - ep altered diorite	
M409079	ROCK_GRAB	UTM_NAD83_Z10N	6130496	361084	D. Lui	12-Jul-2014	(?) with f.g. diss. Py	0.15
							strong mt - chl - ep - px alteration with	
M409080	ROCK_GRAB	UTM_NAD83_Z10N	6130628	361385	D. Lui	12-Jul-2014	f.g. disssem cp	0.15
M409081	ROCK_GRAB	UTM_NAD83_Z10N	6122524	356912	D. Lui	14-Jul-2014	lake	0.1
							alteration in diorite; pervasive	
M409073	ROCK_GRAB	UTM_NAD83_Z10N	6120006	366335	D. Lui	14-Jul-2014	alteration	0.3
							1-3 mm py veins in sparsely altered	
M409074	ROCK_GRAB	UTM_NAD83_Z10N	6120123	366315	D. Lui	14-Jul-2014	diorite	0.3
							dicrete alteration in f.g. py mzn in	
M409075	ROCK_GRAB	UTM_NAD83_Z10N	6120148	366214	D. Lui	14-Jul-2014	relatively fresh biotite granite	0.15
M409076	ROCK_GRAB	UTM_NAD83_Z10N	6120124	366095	D. Lui	14-Jul-2014	quartz vein in blast pit with v.s.g py	0.15

SampleID	Sampled_Material	Host_Rock	Alt1_Mineral	Alt1_Intensity	Alt2_Mineral	Alt2_Intensity	Alt3_Mineral	Alt3_Intensity
M409077	Dissem	biotite granite	CL	М	SI	М		
M409078	Dissem	biotite granite	CL	М	EP	М	SI	W
M409079	Dissem	diorite (?)	CL	S	EP	S	MT	S
M409080	Dissem	diorite (?)	CL	S	EP	S	MT	S
M409081	Lithgeo	tufa						
M409073	Dissem	diorite	CL					
M409074	Dissem	diorite with c.g. hornblende	CL	W				
M409075	Dissem	biotite granite	CL	W	SI	W		
M409076	Vein	biotite granite	CL	М				

SampleID	Metallics1_Mineral	Metallics1_Intensity	Metallics2_Mineral	Metallics2_Intensity	Alt4_Mineral	Alt4_Intensity	True_Width	Strike_Length_Exposed
M409077	PY	2					2	2
M409078	РҮ	3			мт	w	0.5	
M409079	СР	0.2	РҮ	0.2	EP	S		20
M409080	СР	0.2			РХ	S	2	2
M409081								50
M409073	СР	0.2	РҮ	3				1
M409074	РҮ	1						10
M409075	СР	0.2	РҮ	2				1
M409076	РҮ	2					0.3	2

SampleID	Strike_Length_Exposed_Reason	StrikeDip_Measurement_Type	Alt1_Style	Alt2_Style	Strike	Dip
M409077	Overburden		PVS	PVS		
M409078						
M409079	Overburden					
M409080	Overburden					
M409081	Overburden					
M409073	Overburden					
M409074	Overburden					
M409075						
M409076	Overburden	Vein	PVS		215	47

Appendix C. Certificates of Analysis

ALS Canada Ltd. 2103 Dollarton Hwy

North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

CERTIFICATE VA14114568

Project: Redton

This report is for 32 Rock samples submitted to our lab in Vancouver, BC, Canada on 25-JUL-2014.

The following have access to data associated with this certificate:

DENNIS ARNE

DAN LUI

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
CRU- 21	Crush entire sample > 70% - 6 mm
LOG-23	Pulp Login - Rcvd with Barcode
BAG- 01	Bulk Master for Storage
PUL-21a	Pulverize sample to 90% <75um

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
OA- GRA05	Loss on Ignition at 1000C	WST- SEQ
TOT- ICP06	Total Calculation for ICP06	ICP- AES
ME- 4ACD81	Base Metals by 4- acid dig.	ICP- AES
Au- ICP21	Au 30g FA ICP- AES Finish	ICP- AES
ME- ICP06	Whole Rock Package - ICP- AES	ICP- AES
C- IR07	Total Carbon (Leco)	LECO
S- IR08	Total Sulphur (Leco)	LECO
ME- MS81	Lithium Borate Fusion ICP- MS	ICP- MS
ME- MS42	Up to 34 elements by ICP- MS	ICP- MS

To: CSA GLOBAL CANADA GEOSCIENCES LTD ATTN: DAN LUI 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - A Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method	WEI- 21	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	C- IR07
	Analyte	Recvd Wt.	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5	SrO	BaO	C
	Units	kg	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	LOR	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
M409051		0.78	43.5	17.20	12.70	12.60	6.07	1.43	1.88	<0.01	0.94	0.18	0.07	0.11	0.06	0.40
M409052		0.16	45.6	16.15	13.10	11.85	6.45	1.48	1.03	<0.01	0.95	0.19	0.06	0.14	0.05	0.06
M409053		1.28	53.7	15.55	8.23	5.78	3.15	3.32	3.25	<0.01	0.67	0.10	0.45	0.08	0.25	0.65
M409054		0.72	53.1	16.75	9.02	5.78	2.53	4.21	1.68	<0.01	0.64	0.08	0.50	0.11	0.37	0.62
M409055		0.98	45.7	5.34	18.50	12.25	10.00	0.51	0.50	<0.01	1.23	0.24	0.07	0.02	0.02	0.67
M409056		0.90	46.9	16.35	12.45	9.97	5.75	2.64	1.48	<0.01	0.93	0.20	0.49	0.11	0.11	0.27
M409057		0.84	50.4	16.00	10.45	7.31	4.29	3.01	2.47	<0.01	0.89	0.16	0.53	0.11	0.15	0.16
M409058		0.82	67.9	15.30	3.26	2.78	1.12	4.24	3.10	<0.01	0.32	0.03	0.18	0.16	0.26	0.12
M409059		0.98	50.0	16.15	11.10	7.25	4.11	3.29	2.28	<0.01	0.80	0.16	0.58	0.12	0.24	0.38
M409060		0.86	50.2	16.00	11.80	7.61	3.74	2.73	3.12	<0.01	1.17	0.21	0.40	0.08	0.10	0.36
M409061		0.88	53.7	16.40	8.53	5.21	3.23	3.71	3.00	<0.01	0.72	0.11	0.47	0.10	0.23	0.32
M409062		0.80	51.0	16.45	9.41	6.99	3.81	3.08	3.07	<0.01	0.96	0.18	0.51	0.10	0.22	0.35
M409063		0.80	50.6	16.00	10.90	6.66	3.65	3.02	3.59	<0.01	0.79	0.14	0.50	0.10	0.21	0.16
M409064		0.66	69.2	14.45	2.72	2.19	1.09	3.52	3.80	<0.01	0.31	0.03	0.17	0.09	0.30	0.25
M409065		0.82	54.0	16.25	7.72	4.93	2.82	3.44	3.25	<0.01	0.69	0.11	0.45	0.10	0.33	0.63
M409066		0.88	50.0	14.55	11.85	8.13	5.63	2.46	2.06	<0.01	0.43	0.23	0.77	0.08	0.13	0.18
M409067		0.48	72.3	14.50	3.03	0.61	0.99	2.77	3.02	<0.01	0.30	0.01	0.18	0.03	0.08	0.03
M409068		0.96	57.1	15.20	8.22	4.97	2.62	3.53	2.50	<0.01	0.64	0.11	0.42	0.09	0.19	0.36
M409069		0.88	44.6	17.05	10.90	8.77	5.13	3.00	1.73	<0.01	0.79	0.18	0.63	0.12	0.09	0.62
M409070		0.84	46.6	16.05	8.98	7.45	2.38	0.67	3.56	<0.01	0.68	0.13	0.46	0.04	0.08	1.85
M409071		0.86	53.1	15.60	8.98	5.49	3.05	3.48	2.74	<0.01	0.69	0.12	0.49	0.10	0.22	0.42
M409072		0.96	51.2	17.15	9.85	7.36	3.83	3.02	2.89	<0.01	0.80	0.18	0.61	0.11	0.20	0.38
M409073		1.48	53.7	17.25	8.33	1.88	2.52	2.64	6.49	<0.01	0.77	0.08	0.53	0.06	0.27	0.13
M409074		1.36	55.2	18.30	7.12	3.33	1.62	3.35	5.19	<0.01	0.53	0.06	0.29	0.09	0.25	<0.01
M409075		1.20	52.8	17.45	9.38	5.08	3.36	3.37	3.29	<0.01	0.81	0.17	0.49	0.09	0.16	0.03
M409076 M409077 M409078 M409079 M409080		1.58 1.44 0.88 1.62 1.10	85.9 52.6 48.8	5.53 16.95 14.95	2.66 9.01 13.00	0.07 3.93 3.66	0.09 2.96 2.43	0.31 2.50 3.18	4.50 6.18 4.26	<0.01 <0.01 <0.01	0.11 0.73 0.78	0.01 0.12 0.08	0.07 0.49 0.42	0.01 0.08 0.06	0.09 0.27 0.13	0.01 0.10 0.02
M409081 K644351		0.24 0.12														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - B Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method	S- IR08	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81
	Analyte	S	Ba	Ce	Cr	Cs	Dy	Er	Eu	Ga	Gd	Hf	Ho	La	Lu	Nb
	Units	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.01	0.5	0.5	10	0.01	0.05	0.03	0.03	0.1	0.05	0.2	0.01	0.5	0.01	0.2
M409051		2.14	532	13.3	20	3.10	2.30	1.22	0.86	18.7	2.51	0.9	0.41	6.5	0.20	2.1
M409052		0.95	425	11.3	20	3.48	2.46	1.38	0.81	18.3	2.80	1.0	0.47	5.4	0.19	3.3
M409053		1.96	2230	29.4	10	2.32	3.21	1.86	1.12	17.8	3.46	1.4	0.64	15.1	0.24	6.0
M409054		2.77	3330	34.2	10	5.73	3.33	2.03	1.19	18.0	3.85	1.5	0.65	17.2	0.28	4.6
M409055		2.66	215	13.3	40	0.19	3.09	1.91	0.82	16.1	3.41	1.3	0.62	5.6	0.23	2.5
M409056		2.05	940	24.2	10	2.28	3.60	1.86	1.22	18.9	3.91	1.3	0.66	11.5	0.25	2.1
M409057		2.89	1290	32.8	10	2.07	3.60	2.22	1.34	18.8	4.71	1.6	0.77	16.5	0.35	4.5
M409058		1.10	2220	94.6	10	0.89	2.03	1.18	1.07	15.8	2.90	3.5	0.35	58.6	0.17	23.2
M409059		2.38	2080	29.6	10	1.76	3.55	1.92	1.29	17.5	4.21	1.2	0.70	14.2	0.28	2.4
M409060		2.19	900	30.1	10	3.65	4.00	2.56	1.10	20.7	4.61	2.6	0.79	14.4	0.31	4.3
M409061		2.60	2070	33.2	20	2.52	3.38	1.90	1.19	18.4	3.98	1.8	0.66	16.8	0.27	5.0
M409062		1.73	1950	31.6	20	2.46	3.98	2.11	1.32	19.0	4.47	2.2	0.76	15.0	0.27	3.5
M409063		3.11	1865	34.7	10	1.64	3.97	2.33	1.21	18.1	4.75	1.8	0.80	17.0	0.31	4.0
M409064		0.75	2650	96.8	10	2.17	1.95	1.11	1.00	15.0	2.76	3.8	0.36	60.6	0.17	24.2
M409065		1.32	2910	31.5	10	3.50	3.33	1.89	1.22	18.0	3.96	1.3	0.70	15.7	0.29	5.5
M409066		1.32	1145	37.1	10	1.78	4.28	2.27	1.33	15.2	5.42	3.7	0.84	17.5	0.37	2.7
M409067		0.90	683	92.7	10	8.13	1.93	1.07	1.00	16.7	2.77	3.2	0.32	58.2	0.18	27.5
M409068		1.89	1740	32.9	10	1.67	3.18	1.86	1.14	17.4	3.81	1.4	0.62	16.8	0.27	7.0
M409069		2.19	805	23.4	10	2.85	3.29	1.64	1.15	18.7	3.83	1.0	0.58	10.9	0.19	1.3
M409070		2.76	675	31.5	10	14.25	3.80	2.14	1.09	17.6	3.94	0.9	0.77	15.5	0.30	2.8
M409071		2.28	1975	32.6	10	2.72	3.71	2.08	1.20	16.6	4.16	1.8	0.74	15.9	0.29	4.3
M409072		1.90	1715	32.3	10	2.25	3.62	2.15	1.37	18.4	4.47	3.7	0.70	15.7	0.25	3.7
M409073		1.80	2460	42.1	10	3.81	4.49	2.56	1.09	18.7	5.04	2.8	0.90	20.6	0.39	6.5
M409074		1.63	2210	24.6	10	3.09	2.52	1.50	1.10	18.9	2.90	3.4	0.47	12.7	0.24	4.4
M409075		0.40	1470	35.3	10	3.74	3.85	2.43	1.22	19.8	4.68	2.9	0.82	17.5	0.36	4.3
M409076 M409077 M409078 M409079 M409080		0.41 1.54 6.56	801 2440 1180	7.7 38.7 36.7	10 10 10	0.90 4.81 2.72	0.50 4.39 3.98	0.28 2.56 2.43	0.17 1.29 0.93	4.8 18.8 18.3	0.66 4.81 4.55	1.2 2.2 1.7	0.08 0.81 0.79	4.0 18.3 18.0	0.04 0.39 0.35	1.4 4.7 4.4
M409081 K644351																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - C Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method	ME-MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81
	Analyte	Nd	Pr	Rb	Sm	Sn	Sr	Ta	Tb	Th	Tm	U	V	W	Y	Yb
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.1	0.03	0.2	0.03	1	0.1	0.1	0.01	0.05	0.01	0.05	5	1	0.5	0.03
M409051		8.5	1.79	105.5	2.13	2	912	<0.1	0.40	0.84	0.19	0.94	496	5	11.0	1.07
M409052		8.0	1.69	52.3	2.33	1	1195	<0.1	0.42	0.81	0.18	0.78	537	3	11.5	1.27
M409053		16.2	3.73	125.0	3.45	1	682	0.1	0.53	2.14	0.25	1.71	213	24	16.4	1.55
M409054		18.2	4.19	77.0	4.06	1	929	0.2	0.56	3.30	0.26	2.11	209	20	17.7	1.69
M409055		9.9	1.96	10.8	2.90	3	170.5	<0.1	0.50	0.85	0.24	1.49	726	5	15.4	1.57
M409056		15.0	3.39	59.0	3.94	2	959	<0.1	0.57	1.58	0.26	1.32	400	19	17.4	1.61
M409057		18.4	4.39	98.2	4.50	2	869	0.1	0.66	2.05	0.31	2.07	302	17	20.1	1.85
M409058		28.6	9.10	75.2	4.19	1	1310	1.0	0.38	16.80	0.18	3.39	55	7	10.9	1.10
M409059		17.0	3.91	82.2	4.18	2	1035	0.1	0.59	1.96	0.28	1.76	360	29	18.4	1.74
M409060		16.9	4.06	137.5	4.23	2	660	0.2	0.61	2.87	0.33	1.93	335	21	20.3	2.19
M409061		17.6	4.09	92.2	3.96	2	813	0.1	0.58	2.37	0.29	1.76	212	24	17.8	1.72
M409062		19.0	4.16	116.5	4.57	2	868	0.1	0.67	3.26	0.30	2.21	275	18	19.8	2.03
M409063		19.3	4.52	103.5	4.71	2	878	0.2	0.66	2.83	0.33	2.08	268	115	20.7	2.05
M409064		29.2	9.23	89.1	4.08	1	752	1.4	0.35	17.50	0.17	3.92	48	29	10.7	1.10
M409065		17.0	4.12	109.0	4.10	1	837	0.1	0.57	2.04	0.28	1.56	213	13	17.3	1.76
M409066		21.8	4.98	67.2	5.19	1	707	0.1	0.75	3.76	0.37	1.95	177	12	22.2	2.27
M409067		29.0	8.89	94.6	3.94	1	282	1.1	0.36	14.00	0.14	2.34	54	9	9.8	1.03
M409068		16.6	4.11	91.5	3.55	2	773	0.2	0.55	2.17	0.24	1.78	184	6	17.0	1.74
M409069		15.3	3.25	92.8	4.01	2	1025	<0.1	0.57	1.31	0.22	1.07	371	13	15.7	1.46
M409070		17.6	4.01	145.5	4.03	2	324	0.1	0.66	1.16	0.29	1.36	224	37	20.1	2.09
M409071 M409072 M409073 M409074 M409075		17.9 18.9 22.3 12.4 19.8	4.11 4.22 5.44 2.98 4.40	93.4 99.0 233 161.5 126 5	4.28 4.38 5.09 2.70 4.45	1 1 2 1	859 879 542 794 704	0.2 0.2 0.3 0.2 0.2	0.64 0.66 0.77 0.43 0.67	3.21 2.35 4.62 5.71 5.38	0.30 0.31 0.41 0.21 0.32	2.20 1.68 2.90 2.82 3.76	215 256 198 139 261	10 65 47 78 12	19.2 18.9 24.6 13.4 21.3	2.05 1.93 2.49 1.37 2.19
M409075 M409077 M409078 M409079 M409080		3.4 21.4 20.0	0.86 5.08 4.70	146.5 233 165.0	0.66 4.81 4.59	1 2 3	94.9 708 544	0.1 0.2 0.2 0.2	0.09 0.71 0.64	2.52 4.30 2.86	0.04 0.35 0.35	0.86 2.61 3.01	22 241 220	576 28 63	2.8 22.6 21.2	0.24 2.35 2.23
M409081 K644351																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - D Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method	ME- MS81	ME- MS42	ME- MS42	ME- MS42	ME- MS42	ME- MS42	ME- MS42	ME- MS42	OA- GRA05	TOT- ICP06	ME- 4ACD81	ME- 4ACD81	ME- 4ACD81	ME- 4ACD81	ME- 4ACD81
	Analyte	Zr	As	Bi	Hg	Sb	Se	Te	Tl	LOI	Total	Ag	Cd	Co	Cu	Li
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm
	LOR	2	0.1	0.01	0.005	0.05	0.2	0.01	0.02	0.01	0.01	0.5	0.5	1	1	10
M409051		25	0.8	0.67	0.006	0.11	2.7	0.37	0.11	4.46	101.20	<0.5	0.5	37	649	10
M409052		28	0.7	0.15	0.011	0.10	1.7	0.03	0.12	3.01	100.06	<0.5	<0.5	35	362	20
M409053		45	4.1	0.44	0.030	0.83	4.4	0.09	0.06	4.47	99.00	0.7	<0.5	24	853	20
M409054		56	1.9	0.34	0.034	0.30	3.9	0.11	0.22	5.20	99.97	<0.5	<0.5	26	813	20
M409055		36	1.7	0.27	0.013	0.49	4.2	0.14	0.02	4.01	98.39	<0.5	0.8	54	714	<10
M409056		40	0.8	0.51	0.011	0.20	1.6	0.16	0.12	3.29	100.67	<0.5	0.6	40	519	20
M409057		54	2.5	0.93	0.011	1.20	3.8	0.27	0.06	4.36	100.13	0.8	<0.5	27	838	10
M409058		143	0.7	0.68	0.005	0.18	1.7	0.11	0.07	2.35	101.00	<0.5	<0.5	6	264	10
M409059		40	1.6	0.43	0.026	0.48	3.1	0.23	0.07	4.19	100.27	<0.5	<0.5	36	880	20
M409060		97	8.9	5.63	0.043	0.33	1.8	2.80	0.43	2.92	100.08	1.5	2.6	21	893	10
M409061		72	1.7	0.57	0.009	0.59	3.3	0.13	0.06	4.22	99.63	0.8	<0.5	27	959	20
M409062		77	1.1	0.56	0.007	0.21	1.7	0.24	0.10	3.35	99.13	<0.5	<0.5	21	465	20
M409063		61	1.5	0.35	<0.005	0.49	2.8	0.15	0.05	3.98	100.14	<0.5	<0.5	61	681	10
M409064		157	2.8	0.18	0.048	0.85	1.8	0.09	0.07	2.44	100.31	<0.5	<0.5	7	237	10
M409065		47	5.7	0.45	0.023	1.07	2.3	0.10	0.11	4.20	98.29	<0.5	<0.5	21	365	20
M409066		157	1.5	0.28	0.015	0.87	2.5	0.13	0.10	2.92	99.24	0.6	0.5	29	921	20
M409067		147	2.3	0.14	0.092	1.63	1.7	0.04	0.16	3.29	101.11	<0.5	<0.5	10	261	20
M409068		49	1.5	0.74	<0.005	0.44	3.8	0.08	0.04	3.50	99.09	<0.5	<0.5	27	629	10
M409069		33	1.5	1.20	0.005	0.44	2.0	0.66	0.13	4.63	97.62	0.8	0.5	24	785	20
M409070		30	20.3	0.72	0.026	0.78	3.4	0.22	0.19	7.93	95.01	0.5	<0.5	19	833	20
M409071 M409072 M409073 M409074 M409075		65 165 109 134 99	2.6 1.4 3.1 1.0 6.8	0.35 1.06 1.10 0.87 0.89	0.010 0.008 0.008 <0.005 0.009	0.82 0.33 0.39 1.08 0.59	3.6 1.7 1.7 1.4 0.8	0.12 0.63 0.66 0.31 0.56	0.09 0.14 0.17 0.10 0.17	4.01 3.09 4.03 3.37 2.96	98.07 100.29 98.55 98.70 99.41	0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	28 20 16 15 23	752 317 461 287 194	10 20 20 10
M409076 M409077 M409078 M409079 M409080		41 80 58	1.0 1.2 3.7	16.30 1.04 4.55	<0.005 <0.005 <0.005	0.06 0.06 0.37	1.2 0.8 3.9	9.78 0.26 2.21	0.09 0.47 0.14	1.73 2.45 7.19	101.08 98.27 98.94	1.2 <0.5 <0.5	<0.5 <0.5 <0.5	1 20 76	46 332 862	<10 <10 10 10
M409081 K644351																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - E Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method Analyte Units LOR	ME- 4ACD81 Mo ppm 1	ME- 4ACD81 Ni ppm 1	ME- 4ACD81 Pb ppm 2	ME- 4ACD81 Sc ppm 1	ME- 4ACD81 Zn ppm 2	Au- ICP21 Au ppm 0.001	
M409051 M409052 M409053 M409054 M409055		546 22 334 199 709	16 14 7 4 69	9 5 6 5 <2	32 39 15 12 79	102 109 82 65 128		
M409056 M409057 M409058 M409059 M409060		45 192 129 55 7	14 7 4 9 8	<2 7 8 5 14	29 22 4 19 23	120 114 28 90 186		
M409061 M409062 M409063 M409064 M409065		248 21 134 308 259	5 6 9 4 7	6 6 4 8 7	15 20 19 4 15	82 102 80 29 80		
M409066 M409067 M409068 M409069 M409070		20 330 228 12 201	18 6 6 10 9	6 3 6 5 5	23 4 14 24 17	138 21 82 120 45		
M409071 M409072 M409073 M409074 M409075		629 12 8 35 6	6 6 3 3 7	6 7 12 11 7	16 17 16 11 19	77 94 69 35 101	0.001 0.002 0.001	
M409076 M409077 M409078 M409079 M409080		71 4 13	<1 4 3	7 12 6	1 17 15	2 88 42	0.002 0.001 0.001 0.005 0.002	
M409081 K644351							0.003 0.682	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

		CERTIFICATE COM	MENTS	
Applies to Method:	Processed at ALS Vancouve Au- ICP21 LOG- 22 ME- MS42 S- IR08	LABORA Pr located at 2103 Dollarton Hwy, Nort BAG- 01 LOG- 23 ME- MS81 TOT- ICP06	TORY ADDRESSES th Vancouver, BC, Canada. C- IR07 ME- 4ACD81 OA- GRA05 WEI- 21	CRU- 21 ME- ICP06 PUL- 21 a

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6- AUG- 2014 This copy reported on 8- AUG- 2014 Account: CSAGCG

CERTIFICATE VA14114773

Project: Redton

This report is for 28 Rock samples submitted to our lab in Vancouver, BC, Canada on 25-JUL-2014.

The following have access to data associated with this certificate:

DENNIS ARNE

DAN LUI

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
FND- 03	Find Reject for Addn Analysis
SPL-21X	Crush split for send out
TRSPEC- 20	Spectral Scan VNIR and SWIR
INTERP-10	Spectral Interpretation
DPTH- 01	Depth

To: CSA GLOBAL CANADA GEOSCIENCES LTD ATTN: DAN LUI 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method Analyte Units LOR	DPTH- 01 START m 0.00	DPTH- 01 END m 0.00	INTERP- 10 Selected Unity 0	INTERP- 10 IsWeight Unity 0	INTERP- 10 Reflecta Unity 0.00001	INTERP- 10 QA/QC Re Unity 0	INTERP- 10 SWIRNois % 0.001	INTERP- 10 QA/QC_No Unity 0	INTERP- 10 White Mi % 0.01	INTERP- 10 Chlorite % 0.01	INTERP- 10 Epidote % 0.01	INTERP- 10 Kaolinit % 0.01	INTERP- 10 Gypsum % 0.01	INTERP- 10 Carbonat % 0.01	INTERP- 10 Amphibol % 0.01
M409051 M409052 M409053 M409054 M409055		0 1 2 3 4	1 2 3 4 5	Porphyry Porphyry Porphyry Porphyry Porphyry	TRUE TRUE TRUE TRUE TRUE	0.19851 0.22980 0.23435 0.27489 0.28438	ОК ОК ОК ОК	4.077 4.330 5.814 4.791 5.885	ок ок ок ок	50.0 50.0 30.0	40.0 35.0 30.0 10.00 5.00				10.00 10.00	65.0
M409056 M409057 M409058 M409059 M409060		5 6 7 8 9	6 7 8 9 10	Porphyry Porphyry Porphyry Porphyry Porphyry	TRUE TRUE TRUE TRUE TRUE	0.20216 0.21236 0.32495 0.23059 0.18365	OK OK OK OK	9.427 6.986 5.116 4.518 6.797	OK OK OK OK	40.0 55.0 50.0 55.0	15.00 15.00 15.00 5.00 40.0	45.0			10.00	45.0 30.0
M409061 M409062 M409063 M409064 M409065		10 11 12 13 14	11 12 13 14 15	Porphyry Porphyry Porphyry Porphyry Porphyry	TRUE TRUE TRUE TRUE TRUE	0.17283 0.21874 0.17990 0.31231 0.19610	OK OK OK OK	5.042 8.048 8.108 6.742 5.769	OK OK OK OK	60.0 55.0 60.0 65.0	20.0 20.0 25.0 5.00 25.0		15.00		20.0 25.0 15.00 10.00 10.00	
M409066 M409067 M409068 M409069 M409070		15 16 17 18 19	16 17 18 19 20	Porphyry Porphyry Porphyry Porphyry Porphyry	TRUE TRUE TRUE TRUE TRUE	0.20098 0.28099 0.18968 0.19935 0.23188	OK OK OK OK	5.341 3.933 5.879 6.217 4.637	OK OK OK OK	30.0 90.0 40.0 80.0	25.0 5.00 15.00 50.0 10.00	25.0			5.00 10.00	45.0
M409071 M409072 M409073 M409074 M409075		20 21 22 23 24	21 22 23 24 25	Porphyry Porphyry Porphyry Porphyry Porphyry	TRUE TRUE TRUE TRUE TRUE	0.15194 0.15231 0.17873 0.19462 0.14011	OK OK OK OK	9.624 13.064 8.374 9.205 10.156	OK OK OK OK	45.0 50.0 35.0	40.0 20.0 65.0 10.00 10.00	15.00			15.00 20.0	30.0
M409076 M409077 M409078		25 26 27	26 27 28	Porphyry Porphyry Porphyry	TRUE TRUE TRUE	0.22758 0.20231 0.15391	OK OK OK	10.198 5.222 8.005	ОК ОК ОК	80.0 20.0	15.00 25.0			30.0	5.00	25.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method Analyte Units LOR	INTERP- 10 Prehnite % 0.01	INTERP- 10 Montmori % 0.01	INTERP- 10 Nontroni % 0.01	INTERP- 10 Jarosite % 0.01	INTERP- 10 Fe Carbo % 0	INTERP- 10 Goethite % 0	INTERP- 10 wavWhite Unity 0.001	INTERP- 10 White Mi Unity 0	INTERP- 10 XTWhite Unity 0.001	INTERP- 10 wavChlor Unity 0.001	INTERP- 10 Chlorite Unity 0	INTERP- 10 Ka- Di- Wt Unity 0.001	INTERP- 10 wavMain Unity 0.001	INTERP- 10 wavAlOH Unity 0.01	INTERP- 10 D_AIOH Unity 0.0001
M409051 M409052 M409053 M409054 M409055		10.00 15.00	30.0 80.0	30.0				2206.749 2201.885 2202.044	musc musc musc	2.173 1.547 0.625	2251.329 2250.209 2250.795 2248.496	Mg-Fe Mg-Fe Mg-Fe Mg	1.008 1.003 1.004 1.007 0.999	2336.613 2332.950 2339.810 2206.875 2319.752	2206.75 2201.89 2202.04 2206.88 2197.96	0.0776 0.0566 0.0593 0.0637 0.0027
M409056 M409057 M409058 M409059 M409060		5.00	75.0					2202.532 2203.223 2202.998 2200.923	musc musc musc musc	1.153 1.068 1.081 1.361	2252.313 2248.154 2250.192 2251.326 2251.956	Mg-Fe Mg Mg-Fe Mg-Fe Mg-Fe	1.002 1.009 1.006 1.014 1.005	2324.955 2331.978 2344.034 2338.434 2335.078	2202.53 2203.22 2197.70 2203.00 2200.92	0.0303 0.0756 0.0604 0.0973 0.0505
M409061 M409062 M409063 M409064 M409065			70.0					2205.618 2204.069 2200.221 2207.444	musc musc musc musc	0.736 1.518 1.309 1.016	2244.813 2249.370 2248.762	Mg Mg-Fe Mg	1.012 1.012 1.009 1.015 1.014	2339.768 2337.000 2334.166 2205.726 2207.444	2205.62 2204.07 2200.22 2205.73 2207.44	0.1050 0.0859 0.1018 0.1250 0.1262
M409066 M409067 M409068 M409069 M409070		10.00	60.0			Present		2199.246 2206.646 2204.985 2198.161	para-musc musc musc para-musc	0.454 0.782 0.659 1.032	2252.839 2250.193 2250.786	Mg-Fe Mg-Fe Mg-Fe	1.004 1.020 1.008 1.005 0.965	2327.363 2206.646 2338.592 2336.790 2198.161	2199.25 2206.65 2202.22 2204.98 2198.16	0.0309 0.3011 0.0652 0.0489 0.3201
M409071 M409072 M409073 M409074 M409075			75.0 70.0					2202.401 2201.576 2208.462	musc musc musc	0.699 0.777 0.567	2250.657 2250.847 2251.637 2252.780 2253.062	Mg-Fe Mg-Fe Mg-Fe Mg-Fe Mg-Fe	1.012 1.007 1.010 1.010 1.014	2339.283 2327.191 2339.113 2200.449 2339.338	2202.40 2201.58 2208.46 2200.45 2200.31	0.0781 0.0554 0.0647 0.0899 0.0965
M409076 M409077 M409078					100		Present	2202.252 2202.261	musc musc	1.274	2252.900	Mg-Fe	1.002 1.015 0.999	2262.200 2202.252 2318.835	2211.09 2202.25 2202.26	0.0382 0.1305 0.0281

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method Analyte Units LOR	INTERP- 10 wavFeOH Unity 0.01	INTERP- 10 D_FeOH Unity 0.0001	INTERP- 10 wavMgOH- Unity 0.01	INTERP- 10 D_MgOH- c Unity 0.0001	INTERP- 10 wavH2O Unity 0.01	INTERP- 10 D_H2O Unity 0.0001	INTERP- 10 FeSlope Unity 0.0001	INTERP- 10 wavFeOxi Unity 0.01	INTERP- 10 intFeOxi Unity 0.0001		
M409051 M409052 M409053 M409054 M409055		2251.33 2250.21 2250.80 2248.50	0.0656 0.0400 0.0499 0.0364	2336.61 2332.95 2339.81 2340.09 2319.75	0.1449 0.1212 0.0720 0.0529 0.1283	1913.89 1911.71 1912.48 1907.70 1906.52	0.0357 0.0366 0.0949 0.1077 0.1173	1.1776 1.2134 1.0854 1.1886 1.3011				
M409056 M409057 M409058 M409059 M409060		2252.31 2248.15 2250.19 2251.33 2251.96	0.0314 0.0473 0.0344 0.0780 0.0342	2324.95 2331.98 2344.03 2338.43 2335.08	0.0794 0.0932 0.0670 0.1625 0.0701	1909.84 1913.91 1915.28 1911.59 1912.67	0.0263 0.0708 0.1599 0.0901 0.0371	1.1565 1.1364 1.0582 1.2204 1.1285				
M409061 M409062 M409063 M409064 M409065		2244.81 2249.37 2248.76	0.0694 0.0551 0.0495	2339.77 2337.00 2334.17 2343.77 2341.14	0.1109 0.1005 0.1100 0.0517 0.0977	1910.69 1912.72 1913.10 1908.34 1909.18	0.1427 0.0566 0.0778 0.2146 0.1242	1.1455 1.1792 1.1126 1.0527 1.1654				
M409066 M409067 M409068 M409069 M409070		2252.84 2250.19 2250.79	0.0415 0.0581 0.0633	2327.36 2347.07 2338.59 2336.79 2344.15	0.1099 0.1488 0.0848 0.1102 0.1875	1909.44 1907.03 1921.73 1911.63 1907.59	0.0681 0.3847 0.1557 0.0743 0.3102	1.2311 1.0820 1.1024 1.1307 1.2732				
M409071 M409072 M409073 M409074 M409075		2250.66 2250.85 2251.64 2252.78 2253.06	0.0736 0.0316 0.1023 0.0493 0.0640	2339.28 2327.19 2339.11 2339.48 2339.34	0.1199 0.0755 0.1127 0.0674 0.1181	1911.34 1910.65 1915.37 1919.32 1916.52	0.1117 0.0713 0.1141 0.2023 0.1909	1.1056 1.1044 1.1718 1.1496 1.2495				
M409076 M409077 M409078		2262.20 2252.90	0.0725 0.0234	2340.69 2318.83	0.0876 0.0410	1929.00 1916.42 1937.87	0.2858 0.1024 0.0985	0.9292 1.1646 1.0538	902.99	0.8808		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 6- AUG- 2014 Account: CSAGCG

Project: Redton

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS Mineral percentages represent relative spectral contribution, NOT weight percent or abundance. See method description for more details. INTERP- 10
	LABORATORY ADDRESSES
Applies to Method:	Processed at ALS Reno located at 4977 Energy Way, Reno, NV, USA. DPTH- 01 TRSPEC- 20
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. FND- 03 SPL- 21X
Applies to Method:	Processed by the aiSIRIS software at AusSpec International, Australia INTERP- 10

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 1 Total # Pages: 2 (A - E)Plus Appendix Pages Finalized Date: 11-AUG- 2014 Account: CSAGCG

CERTIFICATE VA14114568

Project: Redton

This report is for 32 Rock samples submitted to our lab in Vancouver, BC, Canada on 25- JUL- 2014.

The following have access to data associated with this certificate: DAN LUI

DENNIS ARNE

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
CRU- 21	Crush entire sample > 70% - 6 mm
LOG-23	Pulp Login - Rcvd with Barcode
BAG- 01	Bulk Master for Storage
PUL-21a	Pulverize sample to 90% < 75um

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
OA- GRA05	Loss on Ignition at 1000C	WST- SEQ
TOT- ICP06	Total Calculation for ICP06	ICP- AES
ME- 4ACD81	Base Metals by 4- acid dig.	ICP- AES
Au- ICP21	Au 30g FA ICP- AES Finish	ICP- AES
ME- ICP06	Whole Rock Package - ICP-AES	ICP- AES
C- IR07	Total Carbon (Leco)	LECO
S- IR08	Total Sulphur (Leco)	LECO
ME- MS81	Lithium Borate Fusion ICP- MS	ICP- MS
ME- MS42	Up to 34 elements by ICP- MS	ICP- MS

To: CSA GLOBAL CANADA GEOSCIENCES LTD ATTN: DAN LUI 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - A Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method	WEI- 21	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	ME- ICP06	C- IR07
	Analyte	Recvd Wt.	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2	MnO	P2O5	SrO	BaO	C
	Units	kg	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	LOR	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
M409051		0.78	43.5	17.20	12.70	12.60	6.07	1.43	1.88	<0.01	0.94	0.18	0.07	0.11	0.06	0.40
M409052		0.16	45.6	16.15	13.10	11.85	6.45	1.48	1.03	<0.01	0.95	0.19	0.06	0.14	0.05	0.06
M409053		1.28	53.7	15.55	8.23	5.78	3.15	3.32	3.25	<0.01	0.67	0.10	0.45	0.08	0.25	0.65
M409054		0.72	53.1	16.75	9.02	5.78	2.53	4.21	1.68	<0.01	0.64	0.08	0.50	0.11	0.37	0.62
M409055		0.98	45.7	5.34	18.50	12.25	10.00	0.51	0.50	<0.01	1.23	0.24	0.07	0.02	0.02	0.67
M409056		0.90	46.9	16.35	12.45	9.97	5.75	2.64	1.48	<0.01	0.93	0.20	0.49	0.11	0.11	0.27
M409057		0.84	50.4	16.00	10.45	7.31	4.29	3.01	2.47	<0.01	0.89	0.16	0.53	0.11	0.15	0.16
M409058		0.82	67.9	15.30	3.26	2.78	1.12	4.24	3.10	<0.01	0.32	0.03	0.18	0.16	0.26	0.12
M409059		0.98	50.0	16.15	11.10	7.25	4.11	3.29	2.28	<0.01	0.80	0.16	0.58	0.12	0.24	0.38
M409060		0.86	50.2	16.00	11.80	7.61	3.74	2.73	3.12	<0.01	1.17	0.21	0.40	0.08	0.10	0.36
M409061		0.88	53.7	16.40	8.53	5.21	3.23	3.71	3.00	<0.01	0.72	0.11	0.47	0.10	0.23	0.32
M409062		0.80	51.0	16.45	9.41	6.99	3.81	3.08	3.07	<0.01	0.96	0.18	0.51	0.10	0.22	0.35
M409063		0.80	50.6	16.00	10.90	6.66	3.65	3.02	3.59	<0.01	0.79	0.14	0.50	0.10	0.21	0.16
M409064		0.66	69.2	14.45	2.72	2.19	1.09	3.52	3.80	<0.01	0.31	0.03	0.17	0.09	0.30	0.25
M409065		0.82	54.0	16.25	7.72	4.93	2.82	3.44	3.25	<0.01	0.69	0.11	0.45	0.10	0.33	0.63
M409066		0.88	50.0	14.55	11.85	8.13	5.63	2.46	2.06	<0.01	0.43	0.23	0.77	0.08	0.13	0.18
M409067		0.48	72.3	14.50	3.03	0.61	0.99	2.77	3.02	<0.01	0.30	0.01	0.18	0.03	0.08	0.03
M409068		0.96	57.1	15.20	8.22	4.97	2.62	3.53	2.50	<0.01	0.64	0.11	0.42	0.09	0.19	0.36
M409069		0.88	44.6	17.05	10.90	8.77	5.13	3.00	1.73	<0.01	0.79	0.18	0.63	0.12	0.09	0.62
M409070		0.84	46.6	16.05	8.98	7.45	2.38	0.67	3.56	<0.01	0.68	0.13	0.46	0.04	0.08	1.85
M409071		0.86	53.1	15.60	8.98	5.49	3.05	3.48	2.74	<0.01	0.69	0.12	0.49	0.10	0.22	0.42
M409072		0.96	51.2	17.15	9.85	7.36	3.83	3.02	2.89	<0.01	0.80	0.18	0.61	0.11	0.20	0.38
M409073		1.48	53.7	17.25	8.33	1.88	2.52	2.64	6.49	<0.01	0.77	0.08	0.53	0.06	0.27	0.13
M409074		1.36	55.2	18.30	7.12	3.33	1.62	3.35	5.19	<0.01	0.53	0.06	0.29	0.09	0.25	<0.01
M409075		1.20	52.8	17.45	9.38	5.08	3.36	3.37	3.29	<0.01	0.81	0.17	0.49	0.09	0.16	0.03
M409076 M409077 M409078 M409079 M409080		1.58 1.44 0.88 1.62 1.10	85.9 52.6 48.8	5.53 16.95 14.95	2.66 9.01 13.00	0.07 3.93 3.66	0.09 2.96 2.43	0.31 2.50 3.18	4.50 6.18 4.26	<0.01 <0.01 <0.01	0.11 0.73 0.78	0.01 0.12 0.08	0.07 0.49 0.42	0.01 0.08 0.06	0.09 0.27 0.13	0.01 0.10 0.02
M409081 K644351		0.24 0.12														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - B Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method Analyte Units LOR	S- IR08 S % 0.01	ME-MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME- MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2
M409051 M409052 M409053 M409054 M409055		2.14 0.95 1.96 2.77 2.66	532 425 2230 3330 215	13.3 11.3 29.4 34.2 13.3	20 20 10 10 40	3.10 3.48 2.32 5.73 0.19	2.30 2.46 3.21 3.33 3.09	1.22 1.38 1.86 2.03 1.91	0.86 0.81 1.12 1.19 0.82	18.7 18.3 17.8 18.0 16.1	2.51 2.80 3.46 3.85 3.41	0.9 1.0 1.4 1.5 1.3	0.41 0.47 0.64 0.65 0.62	6.5 5.4 15.1 17.2 5.6	0.20 0.19 0.24 0.28 0.23	2.1 3.3 6.0 4.6 2.5
M409056 M409057 M409058 M409059 M409059		2.05 2.89 1.10 2.38	940 1290 2220 2080	24.2 32.8 94.6 29.6	10 10 10 10	2.28 2.07 0.89 1.76	3.60 3.60 2.03 3.55	1.86 2.22 1.18 1.92	1.22 1.34 1.07 1.29	18.9 18.8 15.8 17.5	3.91 4.71 2.90 4.21	1.3 1.6 3.5 1.2	0.66 0.77 0.35 0.70	11.5 16.5 58.6 14.2	0.25 0.35 0.17 0.28	2.1 4.5 23.2 2.4
M409000 M409061 M409062 M409063 M409064		2.60 1.73 3.11 0.75	2070 1950 1865 2650	33.2 31.6 34.7 96.8	20 20 10 10	2.52 2.46 1.64 2.17	3.38 3.98 3.97 1.95	1.90 2.11 2.33 1.11	1.19 1.32 1.21 1.00	18.4 19.0 18.1 15.0	3.98 4.47 4.75 2.76	1.8 2.2 1.8 3.8	0.79 0.66 0.76 0.80 0.36	16.8 15.0 17.0 60.6	0.31 0.27 0.27 0.31 0.17	5.0 3.5 4.0 24.2
M409065 M409066 M409067 M409068 M409069 M409070		1.32 1.32 0.90 1.89 2.19	2910 1145 683 1740 805 675	31.5 37.1 92.7 32.9 23.4	10 10 10 10 10	3.50 1.78 8.13 1.67 2.85	4.28 1.93 3.18 3.29 2.80	1.89 2.27 1.07 1.86 1.64	1.22 1.33 1.00 1.14 1.15 1.00	15.2 16.7 17.4 18.7	3.96 5.42 2.77 3.81 3.83 2.04	1.3 3.7 3.2 1.4 1.0	0.70 0.84 0.32 0.62 0.58	15.7 17.5 58.2 16.8 10.9	0.29 0.37 0.18 0.27 0.19	5.5 2.7 27.5 7.0 1.3
M409070 M409071 M409072 M409073 M409074 M409075		2.78 2.28 1.90 1.80 1.63 0.40	1975 1715 2460 2210 1470	32.6 32.3 42.1 24.6 35.3	10 10 10 10 10	2.72 2.25 3.81 3.09 3.74	3.80 3.71 3.62 4.49 2.52 3.85	2.14 2.08 2.15 2.56 1.50 2.43	1.09 1.20 1.37 1.09 1.10 1.22	17.6 16.6 18.4 18.7 18.9 19.8	4.16 4.47 5.04 2.90 4.68	1.8 3.7 2.8 3.4 2.9	0.77 0.74 0.70 0.90 0.47 0.82	15.9 15.7 20.6 12.7 17.5	0.29 0.25 0.39 0.24 0.36	4.3 3.7 6.5 4.4
M409075 M409076 M409077 M409078 M409079 M409080		0.40 0.41 1.54 6.56	801 2440 1180	7.7 38.7 36.7	10 10 10 10	0.90 4.81 2.72	0.50 4.39 3.98	0.28 2.56 2.43	0.17 1.29 0.93	4.8 18.8 18.3	0.66 4.81 4.55	1.2 2.2 1.7	0.82 0.08 0.81 0.79	4.0 18.3 18.0	0.30 0.04 0.39 0.35	1.4 4.7 4.4
M409081 K644351																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - C Total # Pages: 2 (A - E)Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81	ME- MS81
	Analyte	Nd	Pr	Rb	Sm	Sn	Sr	Ta	Tb	Th	Tm	U	V	W	Y	Yb
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.1	0.03	0.2	0.03	1	0.1	0.1	0.01	0.05	0.01	0.05	5	1	0.5	0.03
M409051		8.5	1.79	105.5	2.13	2	912	<0.1	0.40	0.84	0.19	0.94	496	5	11.0	1.07
M409052		8.0	1.69	52.3	2.33	1	1195	<0.1	0.42	0.81	0.18	0.78	537	3	11.5	1.27
M409053		16.2	3.73	125.0	3.45	1	682	0.1	0.53	2.14	0.25	1.71	213	24	16.4	1.55
M409054		18.2	4.19	77.0	4.06	1	929	0.2	0.56	3.30	0.26	2.11	209	20	17.7	1.69
M409055		9.9	1.96	10.8	2.90	3	170.5	<0.1	0.50	0.85	0.24	1.49	726	5	15.4	1.57
M409056		15.0	3.39	59.0	3.94	2	959	<0.1	0.57	1.58	0.26	1.32	400	19	17.4	1.61
M409057		18.4	4.39	98.2	4.50	2	869	0.1	0.66	2.05	0.31	2.07	302	17	20.1	1.85
M409058		28.6	9.10	75.2	4.19	1	1310	1.0	0.38	16.80	0.18	3.39	55	7	10.9	1.10
M409059		17.0	3.91	82.2	4.18	2	1035	0.1	0.59	1.96	0.28	1.76	360	29	18.4	1.74
M409060		16.9	4.06	137.5	4.23	2	660	0.2	0.61	2.87	0.33	1.93	335	21	20.3	2.19
M409061		17.6	4.09	92.2	3.96	2	813	0.1	0.58	2.37	0.29	1.76	212	24	17.8	1.72
M409062		19.0	4.16	116.5	4.57	2	868	0.1	0.67	3.26	0.30	2.21	275	18	19.8	2.03
M409063		19.3	4.52	103.5	4.71	2	878	0.2	0.66	2.83	0.33	2.08	268	115	20.7	2.05
M409064		29.2	9.23	89.1	4.08	1	752	1.4	0.35	17.50	0.17	3.92	48	29	10.7	1.10
M409065		17.0	4.12	109.0	4.10	1	837	0.1	0.57	2.04	0.28	1.56	213	13	17.3	1.76
M409066		21.8	4.98	67.2	5.19	1	707	0.1	0.75	3.76	0.37	1.95	177	12	22.2	2.27
M409067		29.0	8.89	94.6	3.94	1	282	1.1	0.36	14.00	0.14	2.34	54	9	9.8	1.03
M409068		16.6	4.11	91.5	3.55	2	773	0.2	0.55	2.17	0.24	1.78	184	6	17.0	1.74
M409069		15.3	3.25	92.8	4.01	2	1025	<0.1	0.57	1.31	0.22	1.07	371	13	15.7	1.46
M409070		17.6	4.01	145.5	4.03	2	324	0.1	0.66	1.16	0.29	1.36	224	37	20.1	2.09
M409071		17.9	4.11	93.4	4.28	1	859	0.2	0.64	3.21	0.30	2.20	215	10	19.2	2.05
M409072		18.9	4.22	99.0	4.38	1	879	0.2	0.66	2.35	0.31	1.68	256	65	18.9	1.93
M409073		22.3	5.44	233	5.09	2	542	0.3	0.77	4.62	0.41	2.90	198	47	24.6	2.49
M409074		12.4	2.98	161.5	2.70	1	794	0.2	0.43	5.71	0.21	2.82	139	78	13.4	1.37
M409075		19.8	4.40	126.5	4.45	1	704	0.2	0.67	5.38	0.32	3.76	261	12	21.3	2.19
M409076 M409077 M409078 M409079 M409080		3.4 21.4 20.0	0.86 5.08 4.70	146.5 233 165.0	0.66 4.81 4.59	1 2 3	94.9 708 544	0.1 0.2 0.2	0.09 0.71 0.64	2.52 4.30 2.86	0.04 0.35 0.35	0.86 2.61 3.01	22 241 220	576 28 63	2.8 22.6 21.2	0.24 2.35 2.23
M409081 K644351																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - D Total # Pages: $\overline{2}$ (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method	ME- MS81	ME- MS42	ME- MS42	ME- MS42	ME- MS42	ME- MS42	ME- MS42	ME- MS42	OA- GRA05	TOT- ICP06	ME- 4ACD81	ME- 4ACD81	ME- 4ACD81	ME- 4ACD81	ME- 4ACD81
	Analyte	Zr	As	Bi	Hg	Sb	Se	Te	TI	LOI	Total	Ag	Cd	Co	Cu	Li
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm
	LOR	2	0.1	0.01	0.005	0.05	0.2	0.01	0.02	0.01	0.01	0.5	0.5	1	1	10
M409051		25	0.8	0.67	0.006	0.11	2.7	0.37	0.11	4.46	101.20	<0.5	0.5	37	649	10
M409052		28	0.7	0.15	0.011	0.10	1.7	0.03	0.12	3.01	100.06	<0.5	<0.5	35	362	20
M409053		45	4.1	0.44	0.030	0.83	4.4	0.09	0.06	4.47	99.00	0.7	<0.5	24	853	20
M409054		56	1.9	0.34	0.034	0.30	3.9	0.11	0.22	5.20	99.97	<0.5	<0.5	26	813	20
M409055		36	1.7	0.27	0.013	0.49	4.2	0.14	0.02	4.01	98.39	<0.5	0.8	54	714	<10
M409056		40	0.8	0.51	0.011	0.20	1.6	0.16	0.12	3.29	100.67	<0.5	0.6	40	519	20
M409057		54	2.5	0.93	0.011	1.20	3.8	0.27	0.06	4.36	100.13	0.8	<0.5	27	838	10
M409058		143	0.7	0.68	0.005	0.18	1.7	0.11	0.07	2.35	101.00	<0.5	<0.5	6	264	10
M409059		40	1.6	0.43	0.026	0.48	3.1	0.23	0.07	4.19	100.27	<0.5	<0.5	36	880	20
M409060 M409061		97 72	8.9	5.63 0.57	0.043	0.33 0.59	1.8 3.3	2.80 0.13	0.43	2.92 4.22	100.08 99.63	1.5 0.8	2.6 <0.5	21 27	893 959	10 20
M409062		77	1.1	0.56	0.007	0.21	1.7	0.24	0.10	3.35	99.13	<0.5	<0.5	21	465	20
M409063		61	1.5	0.35	<0.005	0.49	2.8	0.15	0.05	3.98	100.14	<0.5	<0.5	61	681	10
M409064		157	2.8	0.18	0.048	0.85	1.8	0.09	0.07	2.44	100.31	<0.5	<0.5	7	237	10
M409065		47	5.7	0.45	0.023	1.07	2.3	0.10	0.11	4.20	98.29	<0.5	<0.5	21	365	20
M409066		157	1.5	0.28	0.015	0.87	2.5	0.13	0.10	2.92	99.24	0.6	0.5	29	921	20
M409067		147	2.3	0.14	0.092	1.63	1.7	0.04	0.16	3.29	101.11	<0.5	<0.5	10	261	20
M409068		49	1.5	0.74	<0.005	0.44	3.8	0.08	0.04	3.50	99.09	<0.5	<0.5	27	629	10
M409069		33	1.5	1.20	0.005	0.44	2.0	0.66	0.13	4.63	97.62	0.8	0.5	24	785	20
M409070		30	20.3	0.72	0.026	0.78	3.4	0.22	0.19	7.93	95.01	0.5	<0.5	19	833	20
M409071 M409072 M409073 M409074 M409075		65 165 109 134 99	2.6 1.4 3.1 1.0 6.8	0.35 1.06 1.10 0.87 0.89	0.010 0.008 0.008 <0.005 0.009	0.82 0.33 0.39 1.08 0.59	3.6 1.7 1.7 1.4 0.8	0.12 0.63 0.66 0.31 0.56	0.09 0.14 0.17 0.10 0.17	4.01 3.09 4.03 3.37 2.96	98.07 100.29 98.55 98.70 99.41	0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	28 20 16 15 23	752 317 461 287 194	10 20 20 10
M409076 M409077 M409078 M409079 M409080		41 80 58	1.0 1.2 3.7	16.30 1.04 4.55	<0.005 <0.005 <0.005	0.06 0.06 0.37	1.2 0.8 3.9	9.78 0.26 2.21	0.09 0.47 0.14	1.73 2.45 7.19	101.08 98.27 98.94	1.2 <0.5 <0.5	<0.5 <0.5 <0.5	1 20 76	46 332 862	<10 10 10
M409081 K644351																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - E Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method Analyte Units LOR	ME- 4ACD81 Mo ppm 1	ME- 4ACD81 Ni ppm 1	ME- 4ACD81 Pb ppm 2	ME- 4ACD81 Sc ppm 1	ME- 4ACD81 Zn ppm 2	Au- ICP21 Au ppm 0.001	
M409051 M409052 M409053 M409054 M409055		546 22 334 199 709	16 14 7 4 69	9 5 6 5 <2	32 39 15 12 79	102 109 82 65 128		
M409056 M409057 M409058 M409059 M409060		45 192 129 55 7	14 7 4 9 8	<2 7 8 5 14	29 22 4 19 23	120 114 28 90 186		
M409061 M409062 M409063 M409064 M409065		248 21 134 308 259	5 6 9 4 7	6 6 4 8 7	15 20 19 4 15	82 102 80 29 80		
M409066 M409067 M409068 M409069 M409070		20 330 228 12 201	18 6 6 10 9	6 3 6 5 5	23 4 14 24 17	138 21 82 120 45		
M409071 M409072 M409073 M409074 M409075		629 12 8 35 6	6 6 3 3 7	6 7 12 11 7	16 17 16 11 19	77 94 69 35 101	0.001 0.002 0.001	
M409076 M409077 M409078 M409079 M409080		71 4 13	<1 4 3	7 12 6	1 17 15	2 88 42	0.002 0.001 0.001 0.005 0.002	
M409081 K644351							0.003 0.682	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 11- AUG- 2014 Account: CSAGCG

Project: Redton

		CERTIFICATE COM	MENTS	
Applies to Method:	Processed at ALS Vanco Au- ICP21 LOG- 22 ME- MS42 S- IR08	LABORA uver located at 2103 Dollarton Hwy, Nort BAG- 01 LOG- 23 ME- MS81 TOT- ICP06	TORY ADDRESSES h Vancouver, BC, Canada. C- IR07 ME- 4ACD81 OA- GRA05 WEI- 21	CRU- 21 ME- ICP06 PUL- 21a

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 4- AUG- 2014 This copy reported on 8- AUG- 2014 Account: CSAGCG

CERTIFICATE VA14115364

Project: Redton							
This report is for 4 Rock samples submitted to our lab in Vancouver, BC, Canada on 25-JUL-2014.							
DENNIS ARNE DAN III							
	27.11 201						

	SAMPLE PREPARATION					
ALS CODE	DESCRIPTION					
FND- 02 Find Sample for Addn Analysis						
	ANALYTICAL PROCEDUR	ES				
ALS CODE	DESCRIPTION	INSTRUMENT				
ME- ICP61	33 element four acid ICP- AES	ICP- AES				

To: CSA GLOBAL CANADA GEOSCIENCES LTD ATTN: DAN LUI 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 4- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method Analyte Units LOR	ME- ICP61 Ag ppm 0.5	ME- ICP61 Al % 0.01	ME- ICP61 As ppm 5	ME- ICP61 Ba ppm 10	ME- ICP61 Be ppm 0.5	ME- ICP61 Bi ppm 2	ME- ICP61 Ca % 0.01	ME- ICP61 Cd ppm 0.5	ME- ICP61 Co ppm 1	ME- ICP61 Cr ppm 1	ME- ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01	ME- ICP61 Ga ppm 10	ME- ICP61 K % 0.01	ME- ICP61 La ppm 10
M409079		1.0	2.51	10	90	<0.5	<2	9.49	1.4	82	24	1920	19.40	20	0.09	20
M409080		1.6	3.30	12	120	0.5	<2	7.89	1.2	79	28	3430	19.60	20	0.22	<10
M409081		<0.5	0.04	<5	120	<0.5	<2	29.8	0.5	<1	6	15	0.08	<10	0.01	<10
K644351		1.0	5.93	19	710	0.7	<2	2.27	<0.5	13	58	6050	4.40	10	0.91	140

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610-1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 4- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method	ME- ICP61														
	Analyte	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	Th	Ti	TI	U
	Units	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOR	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20	0.01	10	10
M409079		5.80	2440	<1	0.31	64	9000	<2	0.03	<5	77	255	<20	0.97	<10	<10
M409080		5.58	2180	<1	0.76	71	860	<2	0.20	<5	69	326	<20	1.05	<10	10
M409081		0.36	10	<1	0.01	10	130	<2	0.02	<5	1	125	<20	<0.01	<10	<10
K644351		1.14	914	497	2.07	41	640	48	0.86	8	13	281	<20	0.32	<10	<10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 4- AUG- 2014 Account: CSAGCG

Project: Redton

Sample Description	Method Analyte Units LOR	ME- ICP61 V ppm 1	ME- ICP61 W ppm 10	ME- ICP61 Zn ppm 2	
M409079 M409080 M409081 K644351	LOR	1 858 963 3 106	10 <10 <10 10	2 174 132 29 118	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: CSA GLOBAL CANADA GEOSCIENCES LTD 610- 1155 WEST PENDER STREET VANCOUVER BC V6E 2P4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 4- AUG- 2014 Account: CSAGCG

Project: Redton

	CERTIFICATE COMMENTS
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. FND- 02 ME- ICP61

Appendix D. Geochemical and Hyperspectral Orientation Study of the Redton Cu-Mo Project

CSA Global Resource Industry Consultants

CSA Global Canada Geosciences Ltd Suite 610 - 1155 West Pender Street Vancouver, B.C. V6E 2P4

> T +1 604 681 8000 E csacanada@csaglobal.com

Incorporation Number: BC0943947

www.csaglobal.com

Date: August 29, 2014 Report No: R243.2014

Technical Report for

KISKA METALS CORPORATION

Geochemical and Hyperspectral Orientation Study of the Redton **Cu-Mo Project** British Columbia, Canada

By

Dennis Arne PhD, PGeo (BC, ON), RPGeo (Australia)

For:

Kiska Metals Corporation Suite 575 510 Burrard Street Vancouver, B.C. Canada

Dennis Arne Managing Director

Executive Summary

A total of 30 samples of core and outcrop grab sample have been analysed by total fusion and 4acid digestion methods to obtain high-quality whole-rock geochemical data mainly from the Falcon prospect. Coarse reject material has also been analysed with a TerraSpec spectrometer to obtain hyperspectral data in the visible to near and short-wave infrared spectrum (VNIR and SWIR). These data have allowed for the classification of the intrusive rock types at Redton and the identification of hydrothermal alteration involving both spectral and aspectral minerals. Spatial trends in the data have been assessed in an attempt to vector towards the core of the hydrothermal system responsible for Cu mineralization, although the sample density is low.

Classification of the granodioritic intrusive rocks using immobile trace elements and normative mineralogy suggests that they range from quartz monzodiorite to quartz monzogabbro in composition. The monzonites have alkaline compositions and may be monzogranites based on normative mineralogy. The two main groups of intrusive rocks have distinctly different rare earth element profiles. No attempt has been made to assess the fertility of the intrusive suites.

Multi-variant statistics indicate separate trace element associations for the Cu and Mo mineralization: Cu is associated with Zn, As and Ag, as well as a range of elements commonly associated with mafic rocks; Mo is associated with Sb and Hg. General element ratio diagrams are consistent with phyllic alteration in most samples, but it is generally not pronounced except in one sample. One sample from a quartz vein associated with highly anomalous W contains K-feldspar and jarosite. Several other samples show major element trends consistent with clay alteration and data from one sample are consistent with the formation of albite.

The dominant hydrothermal assemblage from the hyperspectral data consists of white mica, probably involving a mix of illite and muscovite, and chlorite. This assemblage is consistent with either phyllic or distal propylitic alteration. A shift in the position of the AIOH absorption peak in the white micas towards shorter wavelength in samples with anomalous Cu is suggestive of a more paragonitic composition resulting from hydrothermal fluids tending towards acidic compositions. Chlorites associated with these samples tend towards Mg-rich compositions.

Amphibole (hornblende) has been identified in altered rocks from the Falcon prospect, as have smectite clays consistent with low-temperature alteration. The latter is associated with the presence of magnetite. The low levels of epidote identified in the samples suggest that propylitic alteration is not widespread and that the some chlorite may be related to a low-temperature alteration.

Spatial analysis of the data suggest that the area in the vicinity of FN07-02/FN08-08 is most prospective for Cu within the Falcon prospect, but that there may be evidence for potassic alteration in outcrop samples collected to the northwest of Falcon in an area of elevated W.

Contents

E	xecutive	e Summary	I
С	ontents		
1	Intro	duction	1
	1.1	Background	1
	1.2	Methodology	1
2	Resu	lts	2
	2.1	Whole-rock Geochemistry	2
	2.2	Hyperspectral Data	7
3	Conc	lusions and Targeting Implications	12
4	Reco	mmendations	14

Figures

Figure 1. Classical PCA scaled coordinates. The Cu-Zn mafic association is circled
Figure 3. Trace element classification of igneous rocks compared to field classifications4
Figure 2. Chondrite-normalized REE patterns for the Redton rock samples
Figure 4. K/Al and Na/Al molar ratios plotted with expected generic rock compositions. The
black arrow shows the expected trend for phyllic alteration; the green arrow shows
the expected trend for clay alteration6
Figure 5. Fe+Mg/Al and K/Al molar ratio diagram plotted with generic parent rock
compositions. The arrow shows the expected trend for phyllic alteration6
Figure 6. Spatial distribution of relative proportions of hyeprspectrally-active minerals in the
SWIR range7
Figure 7. Distribution of Cu in samples with either no white mica, muscovitic white mica, and
white mica tending towards paragonite in composition9
Figure 8. Scatter plot of AIOH peak position and Mo content of the Redton samples9
Figure 9. Chlorite composition inferred from the position of the FeO absorption peak in chlorite10
Figure 10. Comparison of interpreted jarosite spectrum in sample M409076 with the reference
jarosite spectrum from TSG in purple. Spectra are hull quotient-corrected
Figure 11. Comparison of interpreted jarosite spectrum in sample M409055 with the reference
hornblende spectrum from TSG in purple. Spectra are hull quotient-corrected
Figure 12. Summary thematic maps of the Redton project area13

Tables

Table 1.	Summary statistics for commodity and pathfinder elements from the Redton project	2
Table 2.	Spearman Rank correlation matrix for commodity and pathfinder elements	3
Table 3.	Relative proportions of minerals that absorb in the SWIR portion of the spectrum	8

1 Introduction

1.1 Background

CSA Global was retained in July, 2014 to undertake a lithogeochemical and hyperspectral orientation study of the Redton Cu-Mo project in British Columbia, Canada. Copper mineralization hosted by granodiorite in the Falcon Zone at Redton is associated with quartz-magnetite veins and propylitic alteration, and is interpreted to pre-date emplacement of a Mo-bearing quartz stockwork hosted by quartz monzonite porphyry dikes. The purpose of the study was to obtain high quality geochemical and hyperspectral data for a selected group of samples from drill core and outcrop to constrain alteration and attempt to define vectors towards the higher temperature, potassic-rich portion of the hydrothermal system responsible for Cu mineralization. This memo summarizes the outcome of this orientation study and makes recommendations for follow-up work.

1.2 Methodology

A total of 30 samples with descriptions were compiled for this study by Dan Lui of Kiska Metals Ltd. These included 22 samples from 10 drill holes from the Falcon zone and 9 outcrop samples. A certified reference material (CRM), CDN Resource Laboratories CM-13, was also submitted with the samples. Samples of core and hand samples from outcrop were crushed and pulverized at ALS Minerals in Vancouver (PREP-22). Twenty-eight of the samples were submitted for complete characterization by CCP-PKG01. This package uses a mix of ICP-AES (ME-ICP06) and ICP-MS (ME-MS81) instrumental finishes for major and trace elements, respectively, following a lithium borate fusion. The base metals were analyzed following a 4-acid digestion (ME-4ACD81) and the volatile trace elements As, Bi, Hg, Sb, Se, Te and TI were analyzed by ICP-MS following an aqua regia digestion (ME-MS42). Total C and S were analyzed by Leco furnace (ME-IR08). The 9 outcrop samples were also analyzed for Au using a fire assay with an ICP-AES finish (Au-ICP-21). Six of these outcrop samples were also analyzed by ICP-AES following a 4-acid digestion similar to that undertaken within the complete characterization package (ME-ICP61). The geochemical data were interpreted using ioGAS geochemical assessment software. The raw data were imported into ioGAS and any values below the lower limit of detection (LLD) were converted to positive values at ½ the LLD.

A 50 g split of coarse crusher material was sent to the ALS facility in Nevada for analysis by TerraSpec 4. The coarse crusher material provides a homogenized sample with multiple rock surfaces exposed for analysis to provide a "bulk" hyperspectral result for the sample. The TerraSpec 4 analyzes between 350 and 2500 nm at a resolution of between 3 and 6 nm, and therefore covers both the visible to near infrared (VNIR) and short-wave infrared (SWIR) portions of the electromagnetic spectrum. The hyperspectral data were initially interpreted using the automated software program aiSIRIS by AusSpec International using a porphyry Cu model. The spectra were also manually checked using The Spectral Geologist software (TSG) developed by CSIRO.

2 Results

2.1 Whole-rock Geochemistry

Aside from the internal laboratory QA\QC program, quality of the geochemical data was assessed for Cu, Mo and Au using a single CRM, CDN CM-13. All three elements were within acceptable ranges of the certified values.

Summary statistics for relevant commodity and pathfinder elements are given in Table 1. Gold analyses were not available for all of the drill core samples from the historical data. The highest Cu values came from the two outcrop samples collected approximately 10 km NNW from the Falcon Zone. The three distal rock samples will not be included in the detailed lithogeochemical interpretation of the Falcon Zone samples as they were only subjected to analysis following a 4-acid digestion.

30 rows - Univariate	Cu_ppm	Mo_ppm	Pb_ppm	Zn_ppm	As_ppm	Sb_ppm	Bi_ppm	W_ppm	Ag_ppm	Hg_ppm	Au_ppm
Count Numeric	30	30	30	30	28	28	28	28	30	28	13
Count Null	0	0	0	0	2	2	2	2	0	2	17
Minimum	46	0.5	1	2	0.7	0.06	0.14	3	0.25	0.0025	5.00E-04
Maximum	3430	709	14	186	20.3	1.63	16.3	576	1.6	0.092	0.005
Mean	717.40	159.27	6.23	87.23	3.01	0.55	1.48	46.61	0.49	0.02	0.00
Median	665	63	6	85	1.65	0.46	0.62	19.5	0.25	0.0095	0.001
Geometric Mean	547.87	49.20	5.15	70.59	2.02	0.40	0.68	20.83	0.39	0.01	0.001
Standard Deviation	625.33	194.41	3.21	43.06	3.90	0.39	3.15	106.88	0.39	0.02	0.001
Range	3384	708.5	13	184	19.6	1.57	16.16	573	1.35	0.0895	0.0045
90 percentile	955.2	524.8	11.9	137.4	7.01	1.092	4.658	81.7	1.18	0.0435	0.0042
95 percentile	2599.5	665	12.9	179.4	15.17	1.4365	11.4985	368.55	1.545	0.0722	0.005
99 percentile	3430	709	14	186	20.3	1.63	16.3	576	1.6	0.092	0.005

Table 1. Summary statistics for commodity and pathfinder elements from the Redton project.

Spearman Rank correlation coefficients for the Falcon Zone samples are given in Table 2. There are statistically significant positive correlations at the 95% probability level between Cu, Zn, As and Ag. Statistically significant Spearman Rank correlations occur for Mo, Sb and Hg. Therefore, the two styles of mineralization (Cu and Mo) have distinct trace element signatures.

Classical principal component analysis (PCA) using a log conversion and a correlation matrix indicates that Cu and Zn are associated with the "mafic" elements, Mg, Ca, Sc, Ti, Co, V, Mn and Fe (PC1), suggesting an affinity with mafic rocks types (Figure 1). By contrast, Mo is affiliated with negative Eigenvectors on PC3, indicating a different elemental association, consistent with a separate phase of mineralization.

Spearman	Cu_ppm	Mo_ppm	Pb_ppm	Zn_ppm	As_ppm	Sb_ppm	Bi_ppm	W_ppm	Ag_ppm	Hg_ppm	Au_ppm
Cu_ppm	1	0.097	-0.27	0.42	0.33	0.18	-0.027	0.0014	0.48	0.25	-0.34
Mo_ppm	0.097	1	-0.33	-0.27	0.11	0.39	-0.59	-0.32	0.014	0.34	0.22
Pb_ppm	-0.27	-0.33	1	-0.13	0.051	-0.12	0.55	0.21	0.08	-0.25	0.18
Zn_ppm	0.42	-0.27	-0.13	1	-0.1	-0.13	0.0078	-0.4	0.2	0.13	-0.037
As_ppm	0.33	0.11	0.051	-0.1	1	0.55	0.059	0.16	0.26	0.51	-0.44
Sb_ppm	0.18	0.39	-0.12	-0.13	0.55	1	-0.33	-0.0027	0.17	0.42	0.2
Bi_ppm	-0.027	-0.59	0.55	0.0078	0.059	-0.33	1	0.42	0.32	-0.55	0.093
W_ppm	0.0014	-0.32	0.21	-0.4	0.16	-0.0027	0.42	1	0.11	-0.21	0.16
Ag_ppm	0.48	0.014	0.08	0.2	0.26	0.17	0.32	0.11	1	0.14	0.16
Hg_ppm	0.25	0.34	-0.25	0.13	0.51	0.42	-0.55	-0.21	0.14	1	-0.35
Au_ppm	-0.34	0.22	0.18	-0.037	-0.44	0.2	0.093	0.16	0.16	-0.35	1

Table 2.	Spearman R	Rank correlation	matrix fo	or commodity	and pat	thfinder element	ts.
----------	------------	------------------	-----------	--------------	---------	------------------	-----

Figure 1. Classical PCA scaled coordinates. The Cu-Zn mafic association is circled.

The use of major element classification schemes has been avoided because of the reliance on alkali elements likely to have been mobilized during hydrothermal alteration but the following conclusions are generally supported by the use of such schemes. In terms of trace element ratios, the rocks generally plot in the mafic to intermediate fields, generally forming two distinct clusters of data, while the monzonites plot as alkaline intermediate rocks (Figure 2). The trace element data from the granodiorites tend to cluster within two distinct groups, with the rocks described in drill core as granodiorite and in the field as either granite or diorite forming a coherent group with moderately dipping REE profiles

(Figure 3). By contrast, 3 of the 4 core samples logged as monzonite show much steeper profiles, with La/Yb ratios >10.

A QAP classification using normative mineralogy calculated from major element data for sample M409064 suggests that the rock term monzogranite is more appropriate than monzonite, given normative quartz contents greater than 20%. The same approach for sample M409060 suggests a rock name of quartz monzodiorite or quartz monzogabbro for the rocks identified as granodiorite in the drill core. Notwithstanding these conclusions about rock nomenclature, the field names have been retained for consistency and clarity in this report.

Figure 2. Trace element classification of igneous rocks compared to field classifications.

Average Cu is highest in the granodiorites and the highest average Mo occurs in the monzonite samples. However, the highest Mo values occur in the granodiorite, even though the Mo mineralization is spatially associated with the monzonite, indicating that this mineralizing event has affected both rock types. This observation is consistent with intrusion of the monzonite after Cu mineralization of the granodiorite, followed or accompanied by Mo mineralization that has also overprinted the granodiorite locally.

Figure 3. Chondrite-normalized REE patterns for the Redton rock samples.

There is little evidence for potassic alteration in the geochemical data (Figure 4). Most samples cluster near the K/Al and Na/Al molar ratios expected for pristine intrusive rocks suggesting minor to moderate mass transfer related to hydrothermal alteration. One sample showing clear evidence of potassic alteration (sample M409076) was collected from quartz vein material and has highly anomalous W (576 ppm). Two other samples, M409073 and M409077 (circled), define a potassic trend, either due to hydrothermal alteration or the presence of primary potassic minerals, such as biotite. There is some evidence of Na loss in a few samples with intense phyllic alteration (e.g. M409070) or possible clay alteration (M409051, M409052 and M409055), but these are not enriched in Cu. A single sample, M409054, shows evidence of Na enrichment consistent with albite veining in hole FN08-05. A different set of general element ratios places the majority of samples on the muscovite-chlorite tie line, with only sample M409076 showing clear evidence of K-feldspar (Figure 5).

Figure 4. K/Al and Na/Al molar ratios plotted with expected generic rock compositions. The black arrow shows the expected trend for phyllic alteration; the green arrow shows the expected trend for alkali depletion and/or clay alteration.

Figure 5. Fe+Mg/Al and K/Al molar ratio diagram plotted with generic parent rock compositions. The arrow shows the expected trend for phyllic alteration.

2.2 Hyperspectral Data

The automated software package aiSIRIS performs a quality check on the data and all spectra for this study were found to be adequate. A summary of the relative abundances of minerals identified within the SWIR portion of the spectrum analysed is presented in Table 3. Note that these are not total mineral abundances and refer only to relative proportions of hyperspecterally active minerals. Alteration assemblages are dominated by white mica and chlorite, suggesting either phyllic or distal propylytic alteration. The white micas are inferred to be of predominantly muscovitic composition, and the chlorite is either Mg-Fe or Mg-rich. Clay minerals have also been identified in some of the deep core samples, consistent with the presence of distal propylitic/argillic alteration. The spatial distribution of the relative proportions of the hyperspectrally-active minerals in the SWIR are shown in Figure 6.

The position of the main AlOH absorption peak in white micas can be used as an indicator of white mica composition, which in turn can be used to infer changes in fluid chemistry and temperature during hydrothermal alteration. The range shown by the Falcon samples is small, from 2198 nm to 2208 nm, but two samples with wavelengths just under 2200 nm are tending towards paragonitic compositions and both contain anomalous Cu greater than 800 ppm (Figure 7). These samples come from drill holes FN08-01 and FN08-08 (shallow) in granodioritic host rocks and contain 201 and 20 ppm Mo, respectively. There is a suggestion in the data that the AlOH peak position increases in wavelength with increasing Mo content (Figure 8), but it is not statistically significant. Using a similar approach, it is suggested that elevated Cu is associated with chlorite having a dominant Mg composition (Figure 9), although the wavelength position of the FeOH absorption peak in chlorite will be affected by the presence of other Fe-bearing minerals in the samples, such as amphibole and biotite. Although biotite was identified in the hand samples, it may have been chloritized as a manual inspection of the spectra from these samples indicates they are a good fit for a mixture of chlorite and muscovite.

Figure 6. Spatial distribution of relative proportions of hyeprspectrally-active minerals in the SWIR range.

M409078

20

25

Sample	White Mica	Chlorite	Epidote	Kaolinite	Gypsum	Carbonate	Amphibole	Prehnite	Montmorillonite	Nontronite	Jarosite
M409051	50	40						10			
M409052	50	35						15			
M409053	30	30				10			30		
M409054		10				10			80		
M409055		5					65			30	
M409056	40	15					45				
M409057	55	15					30				
M409058		15				10			75		
M409059	50	5	45								
M409060	55	40						5			
M409061	60	20				20					
M409062	55	20				25					
M409063	60	25				15					
M409064		5		15		10			70		
M409065	65	25				10					
M409066	30	25					45				
M409067	90	5				5					
M409068		15	25						60		
M409069	40	50						10			
M409070	80	10				10					
M409071	45	40	15								
M409072	50	20					30				
M409073	35	65									
M409074		10				15			75		
M409075		10				20			70		
M409076											100 (?)
M409077	80	15				5					

Table 3. Relative proportions of minerals that absorb in the SWIR portion of the spectrum.

Sample M409076 from a quartz vein has returned a 100% hyperspectral mineralogy of jarosite, which is a good match for the reference spectra for jarosite in TSG (Figure 10). The automated software has identified amphibole in several samples but has provided no further details regarding mineralogy. A manual inspection of the spectra for sample M409055 and comparison with reference hornblende in the TSG spectral reference library suggests that the amphibole is very likely hornblende (Figure 11). Further, the Spectral Assistant algorithm in TSG interprets the white micas to be mainly illite in nature, with a component of muscovite. Overall, the interpretation from aiSIRIS appears reliable for those spectra examined in detail manually, although manual inspection of the data offers significant refinements in the interpretation of the data.

25

30

Figure 7. Distribution of Cu in samples with either no white mica, muscovitic white mica, and white mica tending towards paragonite in composition.

Figure 8. Scatter plot of AIOH peak position and Mo content of the Redton samples.

Figure 9. Chlorite composition inferred from the position of the FeO absorption peak in chlorite.

Figure 10. Comparison of interpreted jarosite spectrum in sample M409076 with the reference jarosite spectrum from TSG in purple. Spectra are hull quotient-corrected.

Figure 11. Comparison of interpreted jarosite spectrum in sample M409055 with the reference hornblende spectrum from TSG in purple. Spectra are hull quotient-corrected.

3 Conclusions and Targeting Implications

Although the data set is small and the associations described in previous sections are not compelling, there are a few preliminary generalizations that can be made regarding the data that may have implications for future targeting within the intrusive complex at Redton:

- Rare earth element (REE) profiles indicate that the samples identified in the field as granodiorite, granite and diorite (and perhaps should be classified as quartz monzodiorite or quartz monzogabbro) form a reasonably coherent magmatic suite;
- The monzonites (or perhaps more correctly, monzogranites) form a distinct magmatic group with the highest average Mo on the basis of having steeper REE profiles;
- A common assemblage of white mica, chlorite and carbonate is consistent with phyllic alteration, although the intensity of this alteration is only strong in a single sample (M409070);
- A shift towards lower wavelengths for the main AlOH absorption peak in the white micas (i.e. shift towards paragonite compositions) in a few samples is subtle, but consistent with lower pH fluids during hydrothermal alteration;
- The presence of common smectite clays and illite is indicative of low-temperature alteration under near-neutral pH conditions, compatible with an outer propylitic alteration or overprinting by a retrograde, cooling hydrothermal system;
- The presence of albite, for which is there is only clear evidence in one sample (M409054), and epidote is consistent with propylitic alteration in some samples, although the widespread presence of chlorite suggests that it may be related to a retrograde overprint rather than mainstage propylitic alteration. Cross-cutting relationships observed in the field suggest that the formation of at least some chlorite in veins pre-dates Mo mineralization;
- Elevated Cu is associated with white mica tending towards paragonite compositions and chlorite with Mg-rich composition (with allowance for the presence of other FeOH-bearing minerals in the samples); and
- Clear evidence for the presence of strong potassic alteration occurs in only one outcrop sample of mainly quartz vein material (M409076), which contains highly anomalous W and is also the sample interpreted to contain jarosite;

Many of these conclusions are summarized spatially in 2D in Figure 12. Note that some of the parameters used to identify compositional variations in white mica and chlorite have been inverted for the purpose of displaying the feature of interest (i.e. low FeOH and AlOH wavelengths) as positive features on the thematic maps. Principal component PC1 includes Cu along with a range of mafic minerals, and inverse PC3 is loaded by Mo, but has been inverted so this association plots as having

positive values. Using the same reasoning, the molar Na/Al ratio has been inverted so that loss of Na plots as a positive thematically. The monzonite samples have been excluded from the plot so that emphasis is placed on the granodioritic host rock, even though it too has been affected by the later phase of Mo mineralization.

Both Cu and Mo are elevated in the area of drill holes FN08-08/FN07-02 and FN08-04/FN08-05, respectively (Figure 12), and these areas are also highlighted by principal components PC1 and inverse PC3, respectively. Elevated Cu values correspond to the presence of paragonitic white mica and Mg-chlorite. Drill hole FN08-05 in particular contains hornblende and smectite clays, the latter indicative of retrograde alteration. These samples also are reported to contain magnetite, suggesting that rock magnetism may be a potential vector within the hydrothermal system at Redton. The outcrop samples collected to the northwest of the drilling have the highest K/Al ratios, suggestive of either potassic alteration or a more potassic primary magmatic phase. At least two of these samples have relatively low wavelength AlOH positions in their white micas, similar to that observed in the samples from FN08-08. The area in which outcrop samples were collected is also the area from which a sample with elevated W and jarosite has been identified.

Figure 12. Summary thematic maps of the Redton project area.

4 Recommendations

The following recommendations for further work can be made on the basis of the results of this orientation study:

- On the assumption that previous geochemistry on the Falcon project has employed a 4-acid digestion, the larger drill hole geochemical data set should be investigated for evidence of Na depletion and K-enrichment associated with phyllic and/or potassic alteration. The greater abundance of data within this dataset (1502 samples) would allow spatial trends in the data to be modelled in 3D;
- The area in which outcrop samples were collected to the northwest of Falcon should be investigated further. Rather than providing the background samples for this study as anticipated, some of these samples contain highly anomalous Cu and trace elements concentrations, some of which (eg. W), are typically associated with the centres of hydrothermal systems. Some of these samples also display elevated molar K/Al ratios suggestive of potassic alteration, although this interpretation remains to be confirmed;
- The whole-rock data have not been assessed in terms of overall porphyry Cu-Mo prospectivity and this work should be a carried out now that a high-quality geochemical data set is available. The purpose of this work would be to place Redton within a larger regional perspective regarding its potential. Additional analyses (eg. FeO by titration) may be required to maximize the effectiveness of this work;
- There appears to be evidence for a low-temperature, near-neutral hydrothermal overprint affecting the Falcon project area. In particular, while chlorite is widespread, epidote is not, suggesting that much of the chlorite may be unrelated to propylitic alteration and may have resulted from a retrograde hydrothermal overprint. This should be confirmed through petrographic examination of selective samples to establish the paragenesis of the main alteration minerals;
- Magnetic susceptibility readings should either be integrated with the geochemical data, if already available, or collected during future exploration programs, as there is a suggestion based on field descriptions provided for this study that magnetite is associated with early magnetite-chlorite vein systems; and
- While the hyperspectral data have suggested trend in mineral compositions, in particular those
 of the white micas and chlorite, the conclusions presented here are based on a very small data
 set and should be treated as preliminary in nature. Should coarse reject material be available for
 the core samples previously analysed from the Falcon project, it would be beneficial to have
 these analysed by TerraSpec to provide a larger data set for integration with the existing
 geochemical data.

Appendix E. Induced Polarization Survey

LOGISTICAL REPORT

INDUCED POLARIZATION AND MAGNEOMETER SURVEYS

REDTON PROPERTY, KEMESS AREA, BC

on behalf of

KISKA METALS CORPORATION 575 – 510 Burrard Street Vancouver, BC V6C 3A8 604-669-0898

Survey performed: September 10-16, 2014

by

Brad Scott, Geologist (GIT) SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

September 22, 2014

TABLE OF CONTENTS

1	Introduction	page 1							
2	Survey coverage and procedures	1							
3.	Personnel	2							
4.	Instrumentation	2							
	Appendix								
Sta	tement of Qualifications	rear of report							
Ac	companying Maps (1:5 000 scale unless otherwise noted)	CD-ROM							
Cha Cha	argeability/resistivity pseudosections (1:10 000 scale): Lines 62600E, 63000E, 63400E, 63800E argeability contour plan – triangular-filtered values (UTM coordinat	es)							

Resistivity contour plan – triangular-filtered values (UTM coordinates)

Total field magnetometer contour plan (UTM coordinates)

Stacked magnetometer profiles (idealized grid coordinates)

Accompanying Data Files

One (1) CD-ROM with all survey data and plots in Surfer 9 and pdf formats rear of report

1. INTRODUCTION

Induced Polarization (IP) and total field magnetometer (mag) surveys were performed at the Redton Property, Kemess area, B.C. within the period September 10-16, 2014, 2014. In addition, non-differential GPS readings were taken at each electrode location, subject to satellite reception.

The survey was performed by Scott Geophysics Ltd. on behalf of Kiska Ketals Corp. This report describes the instrumentation and procedures, and presents the results of the survey.

2. SURVEY COVERAGE AND PROCEDURES

The pole-dipole array was used. Readings were taken at an "a" spacing of 200 metres at "n" separations of 1 to 6, reading at 100 metre intervals (200/1-6). The on line current electrode was located to the south of the potential electrodes.

Total field magnetometer readings were taken at 12.5 metre intervals and corrected for diurnal variation against a fixed base station cycling at 10 second intervals.

GPS readings were taken at each station and at the remote ("infinite") electrode locations, subject to satellite reception. Elevation measurements are barometric altimeter readings, calibrated to GPS altitude at the beginning of each line.

A total of 11.2 kilometres of IP and mag survey were performed.

The survey results are presented on the accompanying pseudosections and plans. All survey data are archived to the accompanying CD-ROM.

3. PERSONNEL

Gord Stewart was the crew chief on the survey on behalf of Scott Geophysics Ltd. Kelly Franz was the representative on behalf of Kiska Metals Corp.

4. INSTRUMENTATION

A GDD GRx8 receiver and two GDD TxII transmitters (8600 watts total) were used for the IP survey. Readings were taken in the time domain using a 2 second on/2 second off alternating square wave. The chargeability values plotted on the accompanying pseudosections and plans are for the interval 690-1050 msec after shutoff. Due to the closeness of the remote ("infinite") electrode, resistivities were calculated using it's actual position, rather than considering it as an idealized infinite.

Scintrex ENVI proton precession magnetometers were used for both the field and base units for the magnetometer survey.

GPS readings were taken with a Garmin GPSMap GPS receiver.

Respectfully Submitted,

kg

Brad Scott, Geologist (GIT)

Statement of Qualifications

for

Brad Scott, Geologist (GIT)

of

1230 Harrison Way, Gabriola, B.C. VOR 1X2

I, Brad Scott, hereby certify the following statements regarding my qualifications and involvement in the program of work on behalf of Kiska Metals Corp. at the Redton Property, Kemess area, B.C. as presented in this report.

The work was performed by individuals trained and qualified for its performance.

I have no material interest in the property under consideration in this report.

I graduated from the University of British Columbia with a Bachelor of Science degree (Geology) in 2000.

I am a member-in-training of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I have been practising my profession in the field of Mineral Exploration since 2000.

Respectfully submitted,

KA

Brad Scott

Appendix F. Claim Data

			Tenure		
Claim Name	Owner	Issue Date	Number	Area (Ha)	Good-To Date
CS046	Redton Resources Inc.	12-Jan-05	502205	439.299	April-25-14
CS047	Redton Resources Inc.	12-Jan-05	502260	457.865	April-25-14
HS068	Redton Resources Inc.	12-Jan-05	502303	457.8	April-25-14
cs052	Redton Resources Inc.	12-Jan-05	502322	457.925	April-25-14
cs055	Redton Resources Inc.	12-Jan-05	502347	458.166	April-25-14
cs056	Redton Resources Inc.	12-Jan-05	502356	458.173	April-25-14
cs57	Redton Resources Inc.	12-Jan-05	502359	458.181	April-25-14
cs058	Redton Resources Inc.	12-Jan-05	502368	421.409	April-25-14
cs059	Redton Resources Inc.	12-Jan-05	502373	458.287	April-25-14
cs070	Redton Resources Inc.	12-Jan-05	502419	457.567	April-25-14
cs072	Redton Resources Inc.	12-Jan-05	502426	457.809	April-25-14
cs073	Redton Resources Inc.	12-Jan-05	502431	457.807	April-25-14
cs075	Redton Resources Inc.	12-Jan-05	502439	458.033	April-25-14
cs076	Redton Resources Inc.	12-Jan-05	502440	458.032	April-25-14
cs077	Redton Resources Inc.	12-Jan-05	502445	458.21	April-25-14
cs078	Redton Resources Inc.	12-Jan-05	502448	458.209	April-25-14
cs079	Redton Resources Inc.	12-Jan-05	502451	458.211	April-25-14
cs080	Redton Resources Inc.	12-Jan-05	502455	458.45	April-25-14
cs081	Redton Resources Inc.	12-Jan-05	502460	458.45	April-25-14
cs082	Redton Resources Inc.	12-Jan-05	502463	458.69	April-25-14
cs083	Redton Resources Inc.	12-Jan-05	502469	458.928	April-25-14
CS085	Redton Resources Inc.	12-Jan-05	502492	458.645	April-25-14
CS086	Redton Resources Inc.	12-Jan-05	502497	458.885	April-25-14
CS087	Redton Resources Inc.	12-Jan-05	502504	440.143	April-25-14
CS098	Redton Resources Inc.	12-Jan-05	502571	274.867	April-25-14
CS101	Redton Resources Inc.	12-Jan-05	502605	459.194	April-25-14
CS102	Redton Resources Inc.	12-Jan-05	502610	459.43	April-25-14
HS111	Redton Resources Inc.	12-Jan-05	502612	459.652	April-25-14
HS112	Redton Resources Inc.	12-Jan-05	502614	459.656	April-25-14
HS118	Redton Resources Inc.	12-Jan-05	502628	459.901	April-25-14
HS119	Reation Resources Inc.	12-Jan-05	502629	459.908	April-25-14
HS123	Region Resources Inc.	12-Jan-05	502639	460.157	April 25-14
	Redioil Resources Inc.	12-Jan-05	502644	400.157	April 25-14
HS125	Redion Resources Inc.	12-Jan-05	502654	400.101	April 25-14
LS120	Redion Resources Inc.	12-Jan-05	502656	400.104	April 25-14
	Redion Resources Inc.	13-Jan 05	502659	400.100	April 25-14
HS120	Redton Resources Inc.	13-Jan-05	502661	460 396	April-25-14
HS130	Redton Resources Inc.	13-Jan-05	502663	460 397	April-25-14
CS120	Redton Resources Inc.	13-Jan-05	502677	442 668	April-25-14
HS134	Redton Resources Inc.	13-Jan-05	502680	442 343	April-25-14
CS122	Redton Resources Inc.	13-Jan-05	502682	461.369	April-25-14
HS135	Redton Resources Inc.	13-Jan-05	502684	460.966	April-25-14
CS123	Redton Resources Inc.	13-Jan-05	502686	461.379	April-25-14
CS124	Redton Resources Inc.	13-Jan-05	502688	461.117	April-25-14
CS125	Redton Resources Inc.	13-Jan-05	502690	461.121	April-25-14
CS126	Redton Resources Inc.	13-Jan-05	502691	461.278	April-25-14
CS127	Redton Resources Inc.	13-Jan-05	502695	424.435	April-25-14
CS128	Redton Resources Inc.	13-Jan-05	502696	461.449	April-25-14
Ext03	Redton Resources Inc.	21-Jan-05	504423	55.38	April-25-14
HAL 1	Rimfire Minerals Corporation	13-Jan-06	525350	440.421	April-25-14
New Bord	Rimfire Minerals Corporation	18-Jun-07	560768	166.037	April-25-14
CS045	Redton Resources Inc.	12-Jan-05	502179	457.474	April-25-14
MIN 3	Rimfire Minerals Corporation	19-Jun-07	560856	203.077	April-25-14
MIN 4	Rimfire Minerals Corporation	19-Jun-07	560857	221.535	April-25-14
TOTAL	55	claim s		23.665	hectares

Appendix G. Statement of Expenditures

Rimfire N	linerals Corporation										
Redton											
Project E	xpense April 2, 2014-July 20,2014										
	Acct Name										
	Professional Fees and Wages										
	Kiska Metals Corporation										
		Time					Total				
	Dan Lui, Project Geologist	8.6	days	@	\$ 520	per day	\$	4,485	\$	4,800	
	CSA Global Canada Geosciences Ltd.										
	Dennis Arne	16.00	hours	@	\$ 200	per hour	\$	3,200			
	Rob Mackie	1.00	hours	0	\$ 150	per hour	\$	150			
									\$	3,350	
	Equipment Rentals										
	Truck	5.00	days	@	\$ 85	per day	\$	425	\$	425	
	Expenses										
	Accomodation						\$	1,000			
	Airfare & Airport Taxes						\$	1,120			
	Chemical Analysis						\$	1,895			
	Reporting						\$	2,600	\$	6,615	
TOTAL EX	(PENSE								Ş	15,190	CAD

											-	_
Rimfire N	1inerals Corporation											
Redton												
Project E	xpense July 20-September 24, 2014											
	Acct Name											
												_
	Professional Fees and Wages											
	Kiska Metals Corporation											
		Time					Total					
	Kelly Franz, Geologist	10.9	days	@	\$ 440	per day	\$	4,800				
	Ron Prasad GIS Specialist	7.5	hours	@	\$ 39	per hour	\$	291	\$	5,090		
												_
	Equipment Rentals											
	Truck	8.00	days	@	\$ 148	per day	\$	1,181				
	Trailer	2.00	days	@	\$ 75	per day	\$	150				
	Handheld Radios	10.00	days	@	\$ 2	per day	\$	20				
	Magnetic Susc. Meter	5.00	days	@	\$ 6	per day	\$	30	\$	1,381		
	Expenses											
	Accomodation						Ś	16.633				
	Airfare & Airport Taxes						Ś	1.071				
	Automotive Expenses						Ś	827				
	Camp Food						Ś	42				
	Chemical Analysis						Ś	1.227				
	Freight						\$	145				
	Fuel						\$	4,436				
	Geophysical						\$	42,432				
	Helicopter						\$	31,883				
	Linecutting						\$	13,175				
	Materials & Supplies						\$	484				
	Meals						\$	207				
	Taxi & Bus						\$	34	\$	112,594		
	ZENSE								ć	110 065	CAD	
TOTALEX	AFEINJE								<u>></u>	119,005	CAD	

Appendix H. Geologist's Certificate

I, DANIEL LUI, do hereby certify that,

- 1. I am presently a geologist with Kiska Metals Corporation, with offices at 575 510 Burrard Street, Vancouver, British Columbia, Canada since February, 2007.
- 2. I reside at 201-2211 Wall St., Vancouver, British Columbia, Canada.
- 3. I am the author of the report entitled "2010 Geological Report on the Kliyul Project."
- 4. I graduated from the University of British Columbia, Vancouver, BC, Canada with a Honours Bachelor of Science degree in geology in 2002, and from the University of Western Ontario with a Master of Science degree in geology in 2005 and I have practiced my profession continuously since 2002
- 5. Since 2002 I have been involved in mineral exploration for gold, silver, copper, and uranium in Canada, United States of America, Australia, and Serbia.
- 6. This report is based upon field work carried out by me in the autumn of 2010.

Dated at Vancouver, British Columbia, this <u>17th</u> day of October, 2014.

Topic

Daniel K. Lui, Chief Geologist

Appendix I. Digital Data
ERROR: undefined OFFENDING COMMAND: eexec

STACK:

/quit -dictionary--mark-