

The Best Place on Earth Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Geophysical Gravity Survey	TOTAL COST: \$36,857.55
AUTHOR(S): Brian A. Jones	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR OF WORK: 13/14
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S)): Gravity Survey conducted November 28 - December 2, 2013
and January 5 - 8, 2014. Mineral Claim Exploration Work subm	nitted on April 25, 2014 - Event #5501412
PROPERTY NAME: West Basin, Vine and Vine Extension	
CLAIM NAME(S) (on which the work was done): 125 Tenure Numbers	s. Please see attached list.
COMMODITIES SOUGHT: Base Metal Sulphides MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:	
MINING DIVISION: Fort Steele Mining Division	NTS/BCGS: NTS 082F/08&09, 082G/15&12
LATITUDE: 49 ° 25 '0 " LONGITUDE: -115	• <u>53</u> <u>0</u> " (at centre of work)
OWNER(S): 1) PJX Resources Inc.	2)
MAILING ADDRESS: 5600-100 King Street West	
Toronto, Ontario, M5X 1C9	X
OPERATOR(S) [who paid for the work]: 1) PJX Resources Inc.	2)
MAILING ADDRESS: 5600-100 King Street West	
Toronto, Ontario, M5X 1C9	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Aldridge, Fort Steele, Purcell Supergroup, Lead Zinc	e, alteration, mineralization, size and attitude):

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Induced Polarization			
Seismic			
Other Gravity Survey - 24	2 Gravity Stations	see attached listing	\$36,857.55
Airborne			
EOCHEMICAL number of samples analysed for)			
Silt			
Rock			
Other			
RILLING otal metres; number of holes, size)			
Non-core			
ELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			·
BR. d. H			
ROSPECTING (scale, area)			
REPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			-
Legal surveys (scale, area)			
Road, local access (kilometres)/tr	ail		
Trench (metres)			
Other			
		TOTAL COST:	\$36,857.55

BC Geological Survey Assessment Report 34937

TECHNICAL ASSESSMENT REPORT VINE, VINE EXT and WEST BASIN PROPERTIES

Mineral Claim Tenure #'s 380410 through 380424, 832821, 938674 through 938676, 505873, 505880 through 505887, 506089 through 506092, 506105, 506107-506108, 506110, 506114 through 506120, 506122-506123, 506125 through 506150, 506155 through 506157, 506159-506160, 506162, 506165 through 506506169, 506171. 506173 through 506177, 506185 through 506190, 506780 through 506787, 970629, 970649, 1018945 through 1018947, 1018962, 1018964, 1018966, 1018967, 1018954 through 1018961, 1018963, 1018965, 992265, 503798, 505849-505850, 986841.

TECHNICAL EXPLORATION WORK GRAVITY DATA ACQUISITION, PROCESSING AND MODELLING

FORT STEELE MINING DIVISION, BRITISH COLUMBIA, CANADA

NTS 082F/08&09, NTS 082G/05&12 - 1:50,000 Maps

Centered Near Latitude N49° 25'; Longitude W115° 53'

> Author Brian Jones M.Sc. APEGGA # 48925 APEGBC # 173032

EXCEL GEOPHYSICS INC.

Box 5056 302 Centre Street S High River, Alberta, Canada T1V 1M3

Prepared For <u>PJX Resources Inc.</u> 5600 – 100 King Street West Toronto, Ontario M5X 1C9

Date Submitted: July 21, 2014

CONTENTS

1.0 SUMMARY	1
2.0 INTRODUCTION	2
3.0 PROPERTY DESCRIPTION	3
3.1 Location and Access	3
3.2 Physiography and Climate	4
3.3 Mineral Tenure and Claim Status	6
3.4 History and Adjacent Properties	7
4.0 TERMS OF REFERENCE	9
5.0 REGIONAL GEOLOGICAL SETTING	. 10
5.1 Proterozoic Purcell Supergroup Stratigraphy	
5.2 Intrusives - Proterozoic Moyie Sills	. 12
5.3 Structure	
5.4 Mineralization	
6.0 PROPERTY GEOLOGY	
7.0 TECHNICAL EXPLORATION WORK	. 15
7.1 Gravity Data Collection and Processing	. 15
7.2 Residual Maps	
7.3 Results of Survey and Interpretation	. 20
7.4 2 ¹ / ₂ D Gravity Models	
7.5 Conclusions and Recommendations	. 24
8.0 COST STATEMENT	
8.0 REFERENCES	. 28
9.0 DATE AND SIGNATURE PAGE	. 30

FIGURES

Figure 1. Regional Location Map	2
Figure 2. Access Map from Cranbrook	4
Figure 3. Color Elevation Map	
Figure 4. Rivers, Creeks, and Trails	
Figure 5. Regional Surface Geology	10
Figure 6. Surface Geology Legend	11
Figure 7. Bouguer Gravity	16
Figure 8. Deep Regional Gravity - 6 th Order Polynomial	18
Figure 9. 4 km below sea level (-4kmASL) Regional Gravity	19
Figure 104km ASL Residual Gravity	21
Figure 11. Target Model Map	22
Figure 124km ASL Residual Gravity with model profile lines (B, W, and Z)	23
Figure 13. Cross-section Z _A -Z _B .	23
Figure 14. Cross-section B _A -B _B	
Figure 15. Cross-section W _A -W _B	

TABLES

Table 1.	Cost Statement	26
Table 2.	Daily Log	27

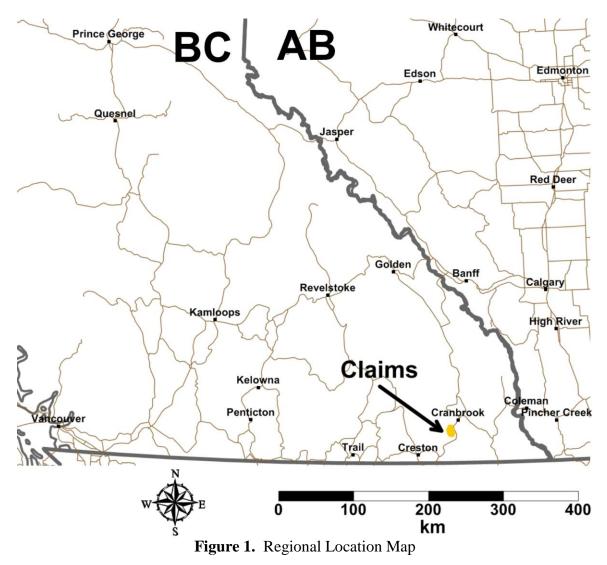
APPENDICES

Appendix A – Vine and West Basin	Tenures	31
Appendix B – PJX Resources 2013	_14 Gravity Survey Final Report v2	37

ATTACHMENTS

Vine & West Basin 2013_14 Bouguer Gravity Data.xls

1.0 SUMMARY


The Vine, Vine extension and West Basin properties are located in South Eastern British Columbia. The property is approximately 12 to 20 kilometres southwest of the city of Cranbrook. The closest community to the properties is Lumberton, which currently has no services. Lumberton is located near the junction between Vine and West Basin properties. Moyie Lake Provincial Park is situated south and east of the claims and also has no services at this time. The Vine property consists of nineteen contiguous claims (648 Ha), with 100% ownership belonging to PJX. To the northwest of the Vine property, the Vine Extension consists of 84 contiguous claims acquired by PJX with Klondike Gold Corp. retaining a 1% NSR. The Vine Extension (1km) adds an additional 7 claims to this total. To the south of the Vine properties, the West Basin property include 15 claims for which PJX has 100% interest.

Excel Geophysics Inc. collected 242 gravity stations over these claims between November 2013 and January 2014. These data were integrated with publically available GSC and ARIS data and processed using state of the art proprietary software. Gravity data extending to 10 km beyond the lease boundaries were utilized. This large buffer zone is essential to understand the regional gravity field which was then filtered to produce the best residual products over the leases. The interpretation presented in this report suggests a potential mineral deposit, perhaps of the same scope as the historical Sullivan deposit, on the mineral claims. The objective of the gravity data collection and modelling was to define the extents of some of the gravity anomalies in the area and determine if a sulphide deposit could account for the measured gravity anomaly within the geologic constraints provided.

2.0 INTRODUCTION

The following report describes and summarizes exploration work completed by Excel Geophysics Inc. (*Excel*) on the Vine, Vine Extension, and West Basin properties from November 2013 to April 2014 for PJX Resources Inc. (*PJX*).

The Vine property consists of nineteen contiguous claims (648 Ha), with 100% ownership belonging to *PJX*. To the northwest of the Vine property, the Vine Extension consists of 84 contiguous claims acquired by *PJX* with Klondike Gold Corp. retaining a 1% NSR. The Vine Extension (1km) adds an additional 7 claims to this total. To the south of the Vine properties, the West Basin property include 15 claims for which PJX has 100% interest. Appendix A contains a full listing of the tenure claims involved in this report. Figure 1 shows the general location of the claims.

3.0 PROPERTY DESCRIPTION 3.1 Location and Access

The Vine, Vine Extension and West Basin properties, covering approximately 116 square kilometers (44.8 square miles), is situated in the Fort Steele Mining Division of British Columbia, Canada. The property is centered near N49° 25' latitude and W115° 53' longitude in 1:50,000 NTS map sheet 093G/05.

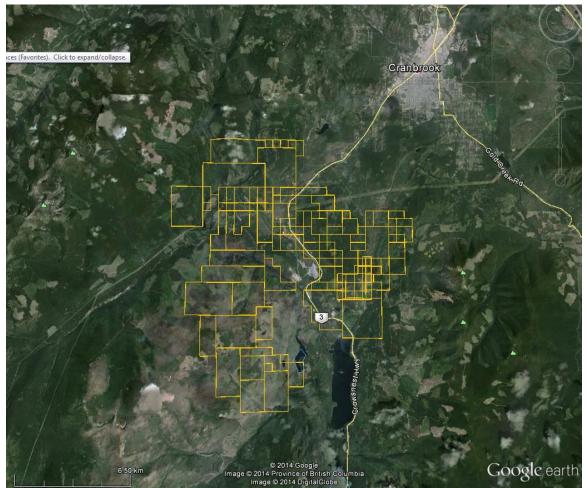
The area can be reached from the city of Cranbrook by driving the Crowsnest Hwy BC 3/95 south west for 22 km to the Moyie Lake Provincial Park. A Google Earth Image map is shown in Figure 2 to illustrate. The gravel roads Monroe Lake Road, Lamb Creek Road and Mineral Lake Road heading west from Moyie Lake provide access to the West Basin property. From these gravel roads logging trails venture further west into the claims. North of Moyie Lake, Lumberton Road allows access to the north part of the West Basin claims. The Vine claims can be accessed via Hidden Valley Road and Peavine Creek Road. Numerous logging roads in the Peavine drainage basin provide access into the interior of the Vine claims.

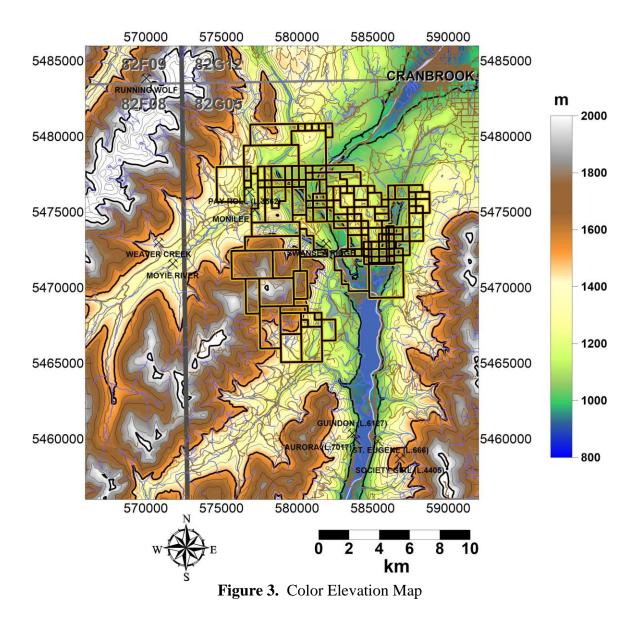
Cranbrook is a city with a population of about 20,000. An additional 70,000 people live nearby and use its services. The Canadian Rockies International Airport is 15 km from Cranbrook and offers scheduled flights via Air Canada to Vancouver, Calgary and Edmonton. Cranbrook has been at the centre of mining for many decades and has all the services that are required for a successful mining operation.

Railroad facilities are provided by Canadian Pacific as well as both Burlington Northern and Union Pacific Railways, which serve the US markets.

Moyie Lake campground is open May to October but offers no services. The unicorporated village of Moyie is on the east side of the Moyie Lake. Moyie grew because of the discovery of the St. Eugene Mine (an important silver-lead mine) and is currently a quiet retirement community. North of the claims is the ghost town of Lumberton which was built to support the lumber mill in the area.

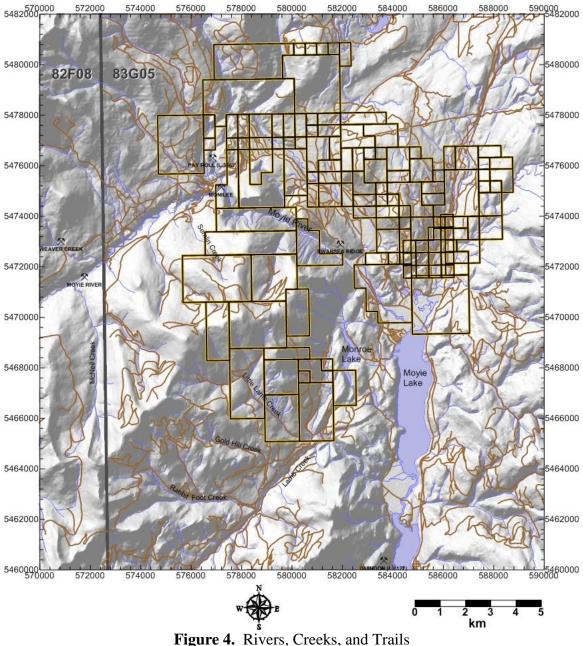
July 21, 2014




Figure 2. Access Map from Cranbrook

3.2 Physiography and Climate

The property is situated west of the Rocky Mountain Trench within the Moyie Range of the Purcell Mountains. The immature to mature coniferous forests consists predominantly of pine, spruce, fir and larch which have been actively logged over the past 30 years. A number of clear-cuts are present throughout the property in various stages of regeneration and are visible in Figure 2 Google map. In 2003 a large forest fire completely destroyed areas around Lamb Creek. The burned trees were clear cut and removed in 2004 as salvage.


Relief on the property is rolling to rugged; with elevations in some areas changing 1000 m over a one km distance along the steep sided stream valleys (Figure 3). Elevations range from 950 m along the Moyie River and Lake to over 2000 m in the central area of the property. The ridges have been glacially rounded.

The area is generally subject to heavy accumulation of snow during the winter months so clear access for exploration should be expected mid-May to late October. That being said, the ground exploration season can be extended by using 4WD vehicles, snowmobiles and long-line procedures given the reasonably extensive network of logging roads.

The Moyie River meanders through the central part of the claims and drains into Moyie Lake (Figure 4). The claims end at Lamb Creek to the south which also flows into Moyie Lake. Little Lamb Creek flows south through the southern claims and then merges with Lamb Creek. The Northeast claims lie within the Peavine Creek drainage

basin. The brown network of trails in Figure 4 show the extensive access routes into most of the claim area. More trails continue to be added to this area.

3.3 Mineral Tenure and Claim Status

The West Basin property consists of 15 contiguous mineral tenures covering 3429 Ha. The Vine property contains 19 contiguous mineral tenures covering 648 Ha. The Vine Extension property to the northwest is 84 contiguous claims (6301 Ha), and the Vine Extension (1km) mineral tenures add an additional 7 claims covering 1219 Ha. A complete listing of the mineral tenures in these properties can be for in Appendix A. All claim information was verified using the BC Government's Mineral Titles Online (MTO) website and is current as of the compilation of this report.

3.4 History and Adjacent Properties

Much of the following section has been taken verbatim from a previous reporting in the Vine and West Basin area (Anderson, 2013 and Jones, 2013).

Mineral exploration in the Fort Steele Region began with placer gold mining on the Wildhorse River in the mid-1860s. Placer activity has been documented near the West Basin properties on both the Moyie River to the north and on Lamb Creek to the south. Activity focused on placer gold deposits until the late 1800s when lead deposits at St. Eugene and Sullivan were discovered. The region has been actively explored primarily for lead and zinc ever since.

The following historical production data is from the BC MINFILE Production Reports.

The St. Eugene Mine to the south of the West Basin property produced 182,690 grams of silver, 78,846 grams of gold, 113,034 kilograms of lead, and 14,483 kilograms of zinc. There were also three other past producers (Guidon, Aurora and Society Girl) in close proximity to St. Eugene with minor production mentioned. In the northwest area of the claims, Payroll recovered (in 1907) 715 grams of silver and 187 grams of gold. Monilee is also mentioned as a past producer in the same area as Payroll. Swansea Ridge, located adjacent to the Moyie River, was mined for railroad ballast.

Past government assessment reports, ARIS Report #31664 in particular concerning the Munroe property (part of the current West Basin property), contain excellent information about the history on the south end of the PJX claims. Cominco funded a variety of exploration programs from the 1960s to 1980s. When the property was dropped by Cominco, it was acquired by local prospectors who optioned to Placer Dome in 1987 and to Chapleau and Barhor Resources in 1992. Kokanee Explorations Ltd. (later Consolidated Ramrod Gold Corporation) entered into an agreement for the claims and proceeded to do extensive exploration including ground geophysics and considerable diamond drilling. Between 1992 and 1996 this joint venture drilled 32 holes totaling 13,708 meters. In the fall of 1996, the property was optioned to Citation Resources Inc. who drilled 13,717 meters in 17 holes between 1996 and 1997. Ramrod and Citation drilling targeted a Sullivan style Sedex (sedimentary exhalative) deposit (the Sullivan orebody mineralization is located stratigraphically at the contact between the lower and middle divisions of the Aldridge Formation). Exploration activities focused on areas where there was surface evidence for the presence of "venting" systems with the characteristics that has been identified with the formation of the large Sullivan Mine deposit.

St. Eugene Mining Corp. acquired the property in 2006 and carried out a limited drilling program focused on the area of known lenses of sulphide mineralization. This drilling consisted of 562.1 meters in 6 holes. The approach taken by St. Eugene was that the sulfide mineralization which had been intersected in a number of drill holes at the Vent Zone was mainly structurally controlled, and more closely fit the model for the St. Eugene mine 9 km to the south, where the silver/lead/zinc ores are constrained within a steeply dipping vein system, rather than the Sedex model which applied to the Sullivan deposit. The Coeur d'Alene sulphide deposits, 150 km to the south, are to a large extent also vein controlled and confined to the same package of early Proterozoic rocks.

The Vine property in the Peavine Creek drainage was staked in the late 1970's after highgrade lead-zinc-silver boulders were found along the base of the slope. Cominco work led to the identification of a massive sulphide vein trending approximately 310° which extends up the hillside hundreds of meters. Cominco was focused on exploration for Sedex-style mineralization at the Lower to Middle Aldridge contact (commonly referred to as the LMC or Sullivan time). The Vine vein was tested by a few short holes with deeper holes testing the LMC at depth away from the vein. The three deep holes intersected the LMC basin interval, finding anomalous amounts of lead and zinc. Exploration activity then ceased until 1989 when Kokanee Exploration Ltd acquired the Vine vein portion from Cominco Ltd. From 1989 thru 1991 Kokanee conducted geochemical, geophysical (VLF), mapping, trenching, and diamond drilling of the vein structure. Their work defined a resource of:

Proven: 164,000 tons at 5.2%Pb, 2.24%Az, 1.9 oz/t Ag, and 0.056 oz/t Au. Probable: 337,000 tons at 4.22%Pb, 2.51%Zn, 1.16 oz/t Ag, and 0.050 oz/t Au. These estimates are not NI43-101 compliant.

Consolidated Ramrod Gold Corp. took control in 1992 but did little to advance the property. The claims lapsed. In 2000 Supergroup Holdings Ltd. acquired the tenures and did a localized VLF survey looking for additional northwest trending structures. In 2005 Ruby Red Resources optioned the property. They continued the ground VLF survey and drilled a five-hole program testing the vein for cross-cutting structures which might enhance the tonnage. This was not successful.

In 2007 a small soil geochem survey was conducted over an area 600 metres northeast of the Vine vein because a parallel trending gabbro dyke was present. This work returned a modest Zn-Cu anomaly.

In 2013 PJX Resources staked and acquired the West Basin properties and acquired the Vine properties from Spirit Gold. In 2014, PJX Resources acquired the Vine Extension properties from Klondike Gold. Existing gravity and magnetic data were reprocessed and interpreted over the West Basin properties. On the Vine properties, drill hole V-78-1 was extended and a surface EM survey was completed on the southeastern part of the Vine property.

4.0 TERMS OF REFERENCE

At no point has the author ever visited the West Basin property, nor has the author any firsthand knowledge of the property geology or mineral occurrences that occur upon it. The author has had several limited visits to the Vine property in the last year.

This assessment report has been prepared by the author using documents and information provided by ARIS Reports publically available from the BC Government. While reasonable care has been taken in the preparation of this report, the author cannot guarantee the accuracy or completeness of all supporting documentation.

5.0 REGIONAL GEOLOGICAL SETTING

The regional geology can be seen in Figure 6 and the following descriptions have been taken from Trig Höy and John Lydon.

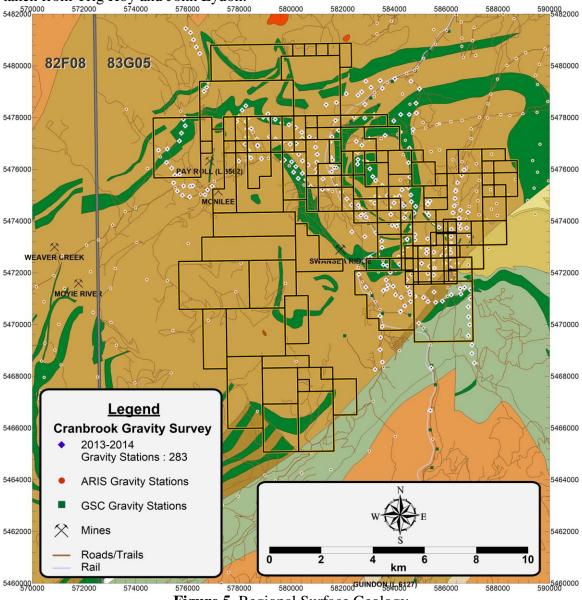


Figure 5. Regional Surface Geology

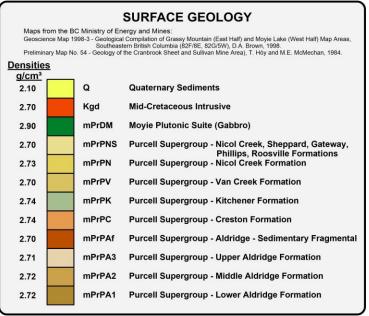


Figure 6. Surface Geology Legend

5.1 Proterozoic Purcell Supergroup Stratigraphy

The Vine property lies within the Purcell Anticlinorium, a gently north plunging structure that is cored by Paleoproterozoic sedimentary and minor volcanic rocks of the Purcell Supergroup and flanked by unconformably overlying Neoproterozoic clastic and carbonate rocks of the Windermere Supergroup. These are generally overlain by either Cambrian or Devonian rocks, part of the North American "miogeoclinal" sequence.

The Proterozoic Purcell Supergroup (host of the Sullivan Mine) and correlative Belt Supergroup in the United States constitute a thick prism of dominantly clastic sediments exceeding 10,000 metres in thickness, with the base unexposed. The oldest exposed strata is represented by the Fort Steele Formation fluvial/deltaic sequences of quartz arenite, quartz wacke and mudstone, comprising a sequence at least 200 metres thick. Fine-grained clastic beds at the top of the Fort Steele formation grade into very rusty-weathering, fine-grained quartz wacke and mudstone of the Aldridge Formation (1433 Ma +/- 10 Ma), at least 5000 metres thick in the Purcell Mountains. The Aldridge Formation grades upward over 300 metres through a sequence of carbonaceous mudstone with minor beds of grey and green mudstone and fine-grained quartz wacke and mudstone with minor white arenite.

The host rocks at the Vine are part of the Aldridge Formation. The exposed part of the Aldridge in the region is comprised of more than 3000 metres of mainly turbidite deposits within which are numerous, laterally extensive gabbroic sills referred to as the Moyie Intrusions. The Aldridge in Canada can be divided into three divisions: the Lower

Aldridge (base not exposed) which is a predominantly argillaceous/siltstone package of more distal turbidites and inter-turbidites; the Middle Aldridge (about 2100 metres) which has the greatest percentage of exposed Aldridge in Canada. It is dominantly quartzitic consisting of medium to thick, more proximal turbidites with enclosed thin bedded to laminated marker beds as inter-turbidite units. The final division is the Upper Aldridge (about 300 metres), which consists of a sequence of thin bedded, very rusty weathering argillaceous sediments representing the basin fill or cap sequence. The Aldridge uniquely contains widespread pyrrhotite.

The Aldridge is overlain by the shallow water to subaerial sediments of the Creston Formation. It is composed of green, mauve, and grey siltstone, argillite, and quartzite. There are three recognized subdivisions: a basal argillaceous to silty succession of thinbedded grey to green sediments with frequent lenticular bedding; the middle is again mauve, green or grey with thin to medium to thick bedded quartzites dominating; the upper division is intermixed green argillaceous siltstone and minor quartzite.

Subsequent to basin fill by the Creston, the overlying Kitchener Formation is a carbonate/argillite sequence of lower green dolomitic siltstone and an upper dark grey, carbonaceous/argillaceous silty dolomite and limestone.

5.2 Intrusives - Proterozoic Moyie Sills

The Moyie Sills (or Intrusives) comprise laterally extensive gabbro (to dioritic) sills which are restricted to the lower Aldridge and the lower part of the middle Aldridge in the Purcell Mountains. The sills comprise up to 30 percent of the lower to middle Aldridge stratigraphic succession, having an aggregate thickness in excess of 2000 metres, with the abundance decreasing upwards relative to the abundance of thick-bedded turbidites. In the Lamb Creek area west of Moyie Lake, an aggregate thickness of approximately 1300 metres of sills is interlayered with 2800 metres of lower and middle Aldridge sedimentary rock.

Moyie sills form an extensive suite of basaltic rocks that intruded lower and middle Aldridge turbidites and siltstones. Although it has been proposed that Moyie sills are coeval with deposition of upper Aldridge or Creston rocks, or perhaps with the Nicol Creek lavas, contact relationships between sills and Aldridge rocks indicate that some sills were extruded at very shallow depths in unconsolidated, water-saturated sediments. Others with fine-grained chilled margins have contact metamorphosed the country rocks. As these sills are interpreted to be part of a continuous magmatic event, they record an igneous/thermal event of regional extent during deposition of lower and middle Aldridge rocks. Hence, a Middle Proterozoic uranium-lead date of 1445 Ma from zircons in the Lumberton sill west of Cranbrook defines the minimum age of deposition of lower and basal middle Aldridge.

5.3 Structure

Rocks of the Purcell Supergroup have been affected by several separate phases of deformation, ranging from Middle Proterozoic through to Paleocene. The North American craton underwent two phases of extension, a compressional orogeny and subsequent continental rifting, followed by development of a miogeocline. Thrusting and folding associated with development of the Foreland Fold and Thrust belt took place from Cretaceous to Paleocene time and was followed by Eocene extension. Presently, the Purcell Supergroup is mainly exposed as a broad, shallow north plunging anticlinal structure referred to as the Purcell Anticlinorium.

The earliest deformation was associated with extension in the Middle Proterozoic which resulted in block faulting along the margin of the Purcell Basin, coincident with deposition of the Fort Steele and Aldridge formations. Movement along growth faults is interpreted to have ceased by upper middle to upper Aldridge time.

Three major right lateral reverse faults, St. Mary, Moyie and Hall Lake, have had a significant role in the structural history and fabric of the region, controlling facies and thickness changes in Proterozoic and Paleozoic strata. Much of the relative lateral movement between different thrust faults was along reactivated transfer faults of the Mesoproterozoic rift. There is also a complex set of normal faults which trend dominantly northward parallel to the Rocky Mountain trench and cut across the earlier thrust faults. The northeast trending St. Mary and Moyie faults characterize a broad structural zone that cuts across the Purcell Anticlinorium and Rocky Mountain trench and extends northeast across the Foreland Thrust belt. This structural zone is marked by a change in the structural grain from northerly north of the zone to northwesterly south of the zone and corresponding changes in the thickness and facies of sedimentary rocks that range from middle Proterozoic to early Paleozoic (Hoy, 1993).

5.4 Mineralization Sullivan Mine Type

The Sullivan orebody is a conformable iron-lead-zinc sulphide lens enclosed by metasedimentary rocks of the Middle Proterozoic (Helikian) Aldridge Formation, the basal formation of the Purcell Supergroup. The regional metamorphic grade is upper greenschist facies.

The orebody occurs near the top of the Lower Aldridge Formation, at the transition from the Lower to Middle Aldridge Formation ("Lower - Middle Contact or LMC"), and has the shape of an inverted and tilted saucer. The maximum dimensions are approximately 2000 metres north-south and 1600 metres east-west. In general, bedding dips flat to gently east in the western portion of the orebody, moderately east to northeast in the central portion, and gently east to northeast in the eastern portion.

The orebody attains a maximum thickness of 100 metres approximately 100 metres northwest of its geographic centre, and thins outward in all directions (averaging 21 metres in thickness). To the east, it thins gradually to a sequence of pyrrhotite-laminated mudstone 3 to 5 metres thick that persists laterally for some distance. To the north, the orebody thins less gradually and is truncated by the Kimberley fault. To the west, the orebody thins abruptly and is cut by the foot-wall gabbro. The gabbro (correlated to the Middle Proterozoic Moyie Intrusions) lies beneath the orebody and is typically concordant about 500 metres below its eastern edge. To the west, the gabbro rapidly cuts up-section through the host stratigraphy, transgressing to the footwall of the orebody near its western margin. Farther west, the gabbro cuts back down-section to approximately its original stratigraphic position. To the south, within the limit of economic mineralization, thickness changes are generally irregular and abrupt.

Pyrrhotite and pyrite (average ratio of 7:3) are the most abundant sulphides in the Sullivan orebody. Galena and sphalerite are the principal ore minerals. Minor but economically important minerals include tetrahedrite, pyrargyrite, boulangerite and arsenopyrite. Cassiterite is an important minor constituent in the western part of the orebody. Minerals constituting less than 1 percent include chalcopyrite, jamesonite, magnetite and less abundant scheelite and stannite. Principal non-sulphide minerals are quartz and calcite with abundant tourmaline, chlorite, muscovite, albite, pale brown to reddish-brown mica, garnet, tremolite, epidote, actinolite, cordierite and hornblende. Either quartz or calcite may make up 50 to 70 percent of the non-sulphide suite, chlorite 30 percent and the other minerals up to about 20 percent.

6.0 PROPERTY GEOLOGY

The Vine property lies just in the hangingwall of the Moyie right lateral reverse fault. The strike of the sedimentary rocks of the Aldridge Formation sub-parallel the Moyie fault ranging from Lower Aldridge to middle of the Middle Aldridge. The sediments dip variably to the northwest.

The Vine vein structure is complex with anastomosing sulphide veins contained within a shear also containing gabbro and lamprophyre intrusions. The vein tracks northwest and dips 70 to 80° to the southwest. It has been traced by mapping, geophysics, and geochemistry for about 5 kilometres. More proximally, it has been trenched for about 2 kilometres and drilled over about 700 metres. Mineralization includes pyrrhotite, sphalerite, galena (silver), arsenopyrite, chalcopyrite, pyrite and locally gold. The vein cuts at least 1500 metres of Aldridge stratigraphy from below the Footwall Quartzites of the Lower Aldridge through the Lower/Middle Aldridge contact (Sullivan Time) up to at least Meadowbrook marker time.

The gravity survey and modelling efforts discussed in this assessment report were focused on identifying significant gravity highs which might indicate the location of Sedex type mineralization within the Middle and Lower Aldridge formations. Of particular interest were the "Sullivan Time" Lower/Middle Aldridge contact and the base of the Footwall Quartzite in the Lower Aldridge.

7.0 TECHNICAL EXPLORATION WORK 7.1 Gravity Data Collection and Processing

Between November 28th, 2013 and January 8th, 2014, Excel Geophysics Inc. acquired 242 new gravity stations on the West Basin and Vine properties. These gravity stations were integrated into a previous review of ARIS and GSC gravity data (Jones, 2013). Appendix B contains the Field Operations report for the gravity data collection.

Figure 8 shows the final Bouguer Gravity Map. The Moyie River likely follows an old fault line which can be seen as a gravity low trending from NW to SE through the project area. This fault truncates at the Moyie Fault, which trends SW to NE on the SE edge of the claims.

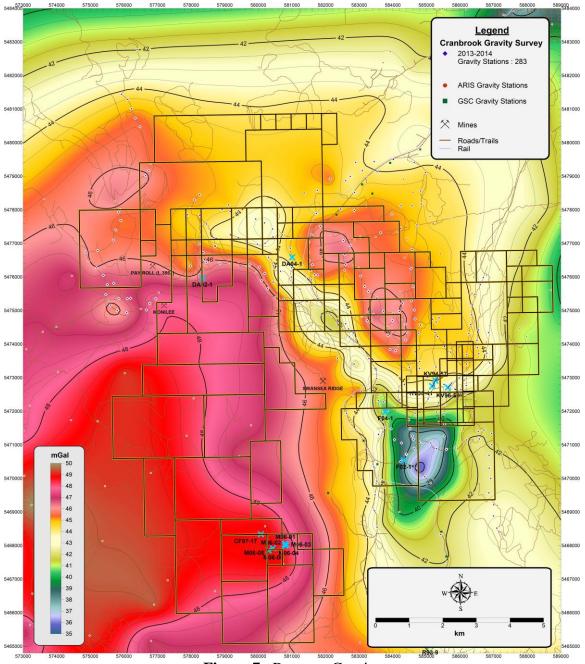
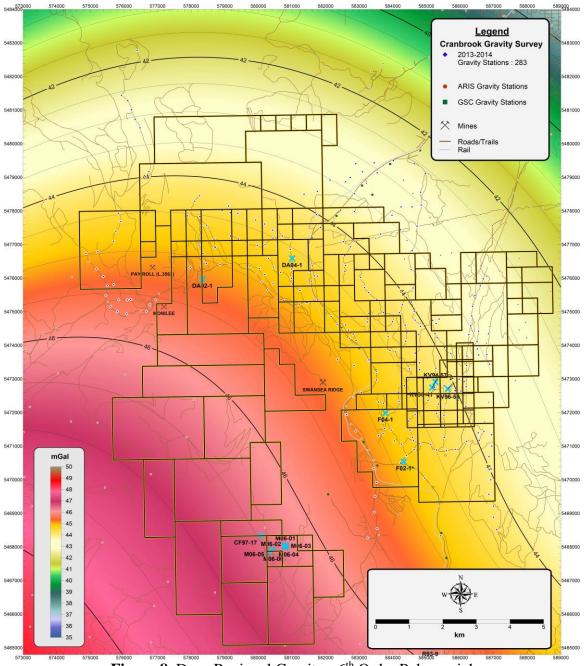


Figure 7. Bouguer Gravity

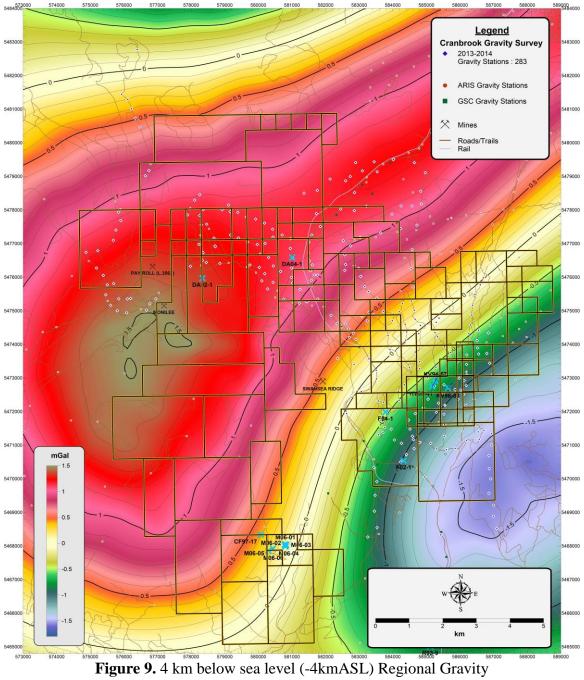
7.2 Residual Maps

The main priority of this project was to isolate the gravity anomalies of exploration interest from the newly collected gravity data. Excel uses proprietary software for all of our processing streams. This software has been developed over many decades and is continuously being upgraded and modified.

One of the most useful procedures in understanding the implications of the gravity signature is to separate the gravity signal into the response from different depths. The shape (or spectral property) of a gravity anomaly is depth dependent, which allows the Bouguer gravity map to be separated into a series of maps relating to the anomaly sources at varying depths. The change in the shape of gravity anomalies with changes in source depth is simply the result of geometric factors in the formulae for gravity, and is hence reliable and predictable. Numerous procedures have been developed over the past century to accomplish this separation.

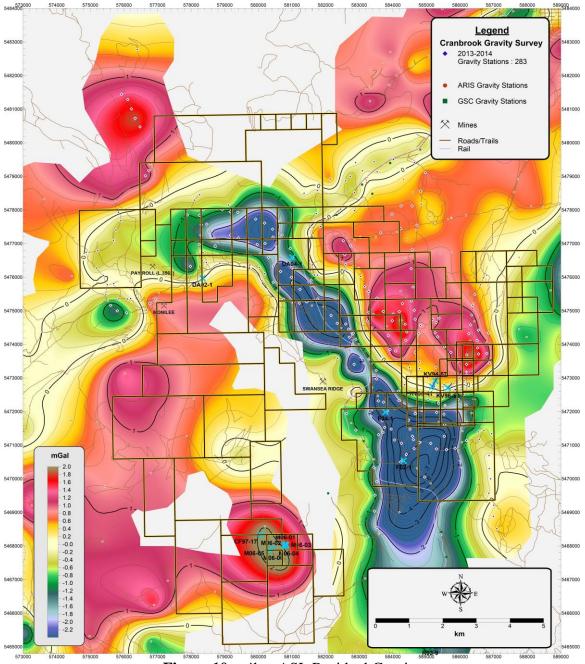

Initially, a 6th order polynomial was removed from the Bouguer gravity map. This removed the very deep regional slope from the Bouguer map (Figure 8). Additional filtering of the gravity maps used equivalent mass modeling (EQM). Equivalent mass modeling is computationally intensive; this method provides a focused result, with detailed mass distribution maps that are very reliable for mass edge definition. In equivalent mass modelling, as much of the gravity signal as possible is first placed in the deepest gravity map (called the regional map); in this case at 4 km below sea level (Figure 9). Whatever gravity signal is left over (the residual) must be due to shallower sources. This process can continue to as shallow a depth as the data spacing permits.

EQM modelling is similar in philosophy to seismic deconvolution, where the predictable aspects of the geophysical signal are removed and the earth model is brought into focus. For instance, the geometric spreading and the resulting interference patterns are eliminated when the gravity data are focused onto an equivalent mass layer.

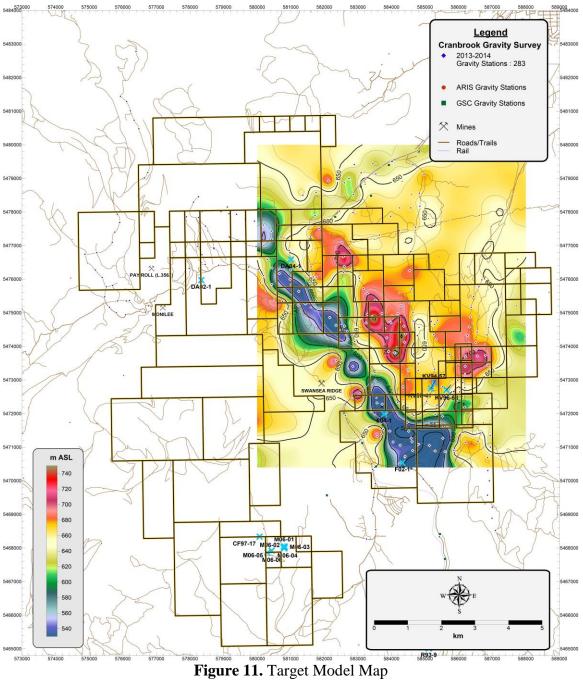

This procedure is primarily based on mathematical properties of the gravity field, and is hence relatively free of geologic assumptions and interpreter bias. The procedure tends to place mass anomalies deeper than they actually are; no absolute depths should be interpreted from these results. However, relative depths and horizontal locations are very precise, and can be used to guide further interpretations that include more geological constraints.

Figures 8 and 9 show the regional gravity signatures that has been taken out of the Bouguer gravity data. These anomalies are deep and regional and only shown for project completeness. No attempt has been made to interpret the regional significance of these maps, as the deep regional gravity needs to be viewed in a larger regional context. The balance of this report focuses on modelling the shallower residual that highlights features of exploration interest.

Excel Geophysics Inc. Technical Report – Vine, Vine Extension, West Basin Properties Gravity Acquisition, Processing and Modelling



Excel Geophysics Inc. Technical Report – Vine, Vine Extension, West Basin Properties Gravity Acquisition, Processing and Modelling


7.3 Results of Survey and Interpretation

The -4 km ASL Residual gravity map was used as a basis for the 3D mass model and the 2.5 D gravity modelling (Figure 10). A significant positive gravity response is seen on several of the northeast claims. On the West Basin claims to the southwest, data distribution is too sparse to allow for modelling, but several interesting gravity highs provide leads for future work in the area. Finally, within the central region of the claims along the Moyie River, a significant gravity low is seen. The edges of this low feature are not well defined. Additional definition of the gradients on the edge of the low would be needed to begin to explain its significance in terms of exploration targets.

oo 578000 578000 580000 581000 582000 583000 584000 58 Figure 10. -4km ASL Residual Gravity

The Vine area on the northeast claims was the focus of the 2013 gravity data program. Using the equivalent mass modelling routines, a target model map was generated using the -4 km residual gravity (Figure 11). The map shows the locations and approximate dimensions of a string of mass anomalies in the Vine area.

7.4 2¹/₂D Gravity Models

Three profile lines were chosen for 2½D Gravity Modelling. Figure 12 shows the location of the three profile lines (B, W and Z) on the -4km ASL Residual gravity map.

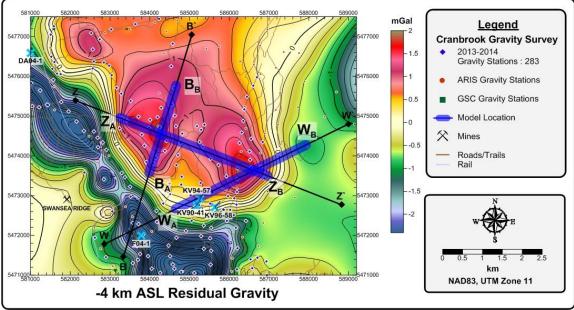


Figure 12. -4km ASL Residual Gravity with model profile lines (B, W, and Z).

Figure 13 through 15 show the results of the $2\frac{1}{2}D$ gravity modelling. The west side of cross-section Z_A - Z_B (Figure 13) and cross-section B_A - B_B (Figure 14) show that the gravity data can be modelled with a gabbro sill and an associated high density mineralization. The data spacing is insufficient to determine whether the high density mineralization occurs above, within or below the gabbro.

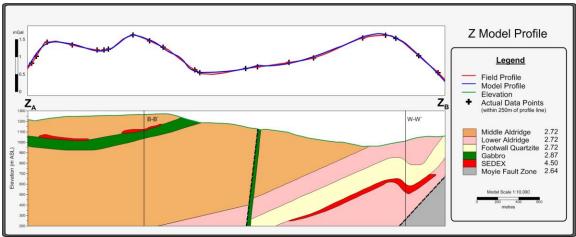


Figure 13. Cross-section Z_A-Z_B.

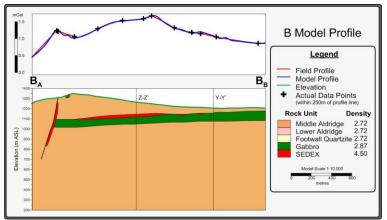


Figure 14. Cross-section B_A-B_B.

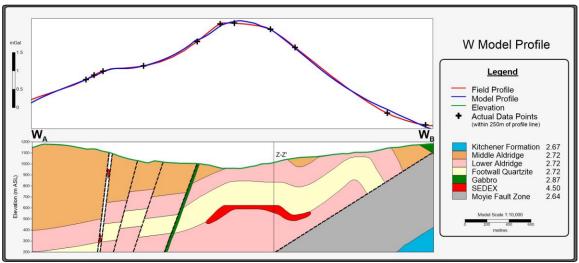


Figure 15. Cross-section W_A-W_B.

On the eastern end of profile Z_A - Z_B and on profile W_A - W_B , the gravity anomaly could be modelled as a single massive sulphide body at the base of the footwall quartzites in the lower Aldridge.

7.5 Conclusions and Recommendations

Gravity responds to the high density of both galena and sphalerite; economic deposits generate mappable anomaly patterns. Drilling without a significant positive gravity anomaly guarantees failure. Significant gabbros are mapped in the project area. Gabbros can also generate positive residual gravity anomalies. This fact is the significant exploration risk.

A detailed gravity survey will refine target geometries and depths to a potential sulphide deposit. Along with locating the target's position, gravity can give estimates of tonnage and depth.

8.0 COST STATEMENT

The technical work on the West Basin, Vine and Vine extension claims was filed on April 25, 2014. It was recorded as work done in the name of PJX Resources Inc. and also as event number 5501412. The costs for this survey are outlined in the following table (Table 1) based on the invoices from Excel Geophysics Inc.

Item	Contractor	Dates	# of Days	Cost Per Day	Total Cost
Geophysical Field Crew & Equipment:	Excel Geophysics	November 28 – December 2, 2013	9	\$ 2,546.82	\$ 22,921.37
1-2 Gravity Operators,	Inc.	January $5 - 8$,			
1 Supervisor	inc.	2014 o,			
3 Gravity Meters,					
5 GPS units,					
1 truck, 2-3 ATVs or					
snow machines					
Meals	Various	November 28 –	9	\$ 150.00	\$ 1,350.00
	Restaurants	December 2, 2013			
		January 5 – 8,			
		2014			
Accommodation	Super 8,	November 28 –	8	\$ 210.28	\$ 1,682.21
	Cranbrook,	December 2, 2013			
	BC	January 5 – 7,			
	~	2014			
Field Supplies	Canadian				\$ 30.25
	Tire				
Fuel	Various				\$ 523.04
	Vendors		-
Processing, Mapping	Excel		3	\$ 1,500.00	\$ 4,500.00
Modelling and	Geophysics				
Interpretation	Inc.		2.5
Final Report Writing	Excel		2.5	\$ 1,000.00	\$ 2,500.00
and Preparation	Geophysics				
	Inc.				¢ 2 250 C0
Administration Fee	PJX				\$ 3,350.68
	Resources Ltd.				
Total Value of Work	Llu.				\$ 26 957 55
1 otal value of work					\$ 36,857.55

Table 1. Cost Statement

Table 2. Daily Log

Date	Work Description	Equipment Used
November 28, 2013	Mobilized from High River, AB to Cranbrook, BC. Scouted area and set up GPS base station.	1 4x4 pick-up truck 2 Leica GPS 1 Handheld Garmin
November 29, 2013	Acquired Gravity 61 Stations. Operated with 3 crews. Established GPS base stations. Preliminary processing of field data in field office.	1 4x4 pick-up truck 3 ATV Gravity Meters G-472, 645, 353 5 Leica GPS 3 Handheld Garmin
November 30, 2013	Acquired Gravity 53 Stations. Operated with 3 crews. Established GPS base stations. Preliminary processing of field data in field office.	1 4x4 pick-up truck 3 ATV Gravity Meters G-472, 645, 353 5 Leica GPS 3 Handheld Garmin
December 1, 2013	Acquired Gravity 59 Stations. Operated with 3 crews. Established GPS base stations. Preliminary processing of field data in field office.	1 4x4 pick-up truck 3 ATV Gravity Meters G-472, 645, 353 5 Leica GPS 3 Handheld Garmin
December 2, 2013	Acquired 18 Gravity Stations. Operated with 2 crews walking lines. Established GPS base stations. Prepared to demobilize from Cranbrook, BC to High River, AB	1 4x4 pick-up truck 3 ATV Gravity Meters G-472, 353 5 Leica GPS 2 Handheld Garmin
January 5, 2014	Mobilized from High River, AB to Cranbrook, BC. Acquired 7 Gravity Stations. Operated with 1 crew. Established GPS base stations. Preliminary processing of field data in field office.	 1 4x4 pick-up truck 2 snow machines Gravity Meter G-353 4 Leica GPS 1 Handheld Garmin
January 6, 2014	Acquired 26 Gravity Stations. Operated with 1 crew. Established GPS base stations. Preliminary processing of field data in field office.	 1 4x4 pick-up truck 2 snow machines Gravity Meter G-645 4 Leica GPS 1 Handheld Garmin
January 7, 2014	Acquired 18 Gravity Stations. Operated with 3 crews. Preliminary processing of field data in field office.	 1 4x4 pick-up truck 2 snow machines Gravity Meter G-645 4 Leica GPS 1 Handheld Garmin
January 8, 2014	Demobilized from Cranbrook, BC to High River, AB.	1 4x4 pick-up truck 1 Handheld Garmin

8.0 REFERENCES

Abitibi Mining Corp., 1998, Yahk River Area, BC Assessment Report #25,271.

Abitibi Mining Corp., 1998, Strata, Form, Spirit and Fran Claims, Moyie Lake Area, BC Assessment Report #25,526.

Anderson, D., 2013. Diamond Drilling and Geophysical Surveys on the Vine Property, BC Assessment Report.

Brown, D. A., 1998: Geological Compilation of Grassy Mountain (East Half) and Moyie Lake (West Half) Map Areas, Southeastern British Columbia (82F/8E, 82G/5W); B.C. Ministry of Energy and Mines, Geoscience Map 1998-3, 1:50,000 scale map.

Coombes, S., 1998, Irishman Creek Option, BC Assessment Report #25,567.

Excel Geophysics, 1997: Weaver Creek Galena Property, Geophysical Report, BC Assessment Report #24687

Hoy, T., and Diakow, L., 1982; Geology of the Moyie Lake area; Preliminary map No.49; British Columbia Ministry of Energy, Mines and Resources.

Jones, B., 2013. Technical Report West Basin Property. Technical Exploration Work – Gravity and Magnetic Data Processing and Interpretation. BC Assessment Report.

Klein, Jan., 2006; Report on a Helicopter-borne Aerotem II/Magnetic Survey over the Moyie Lake and Monroe Lake grids, SE British Columbia, executed by Aeroquest Limited on behalf of St. Eugene Mining Corporation Ltd. BC Assessment Report 28450.

Lydon, J., 2007; Geology and Metallogeny of the Belt-Purcell Basin, in Goodfellow, W.D., ed., Mineral Deposits of Canada: A synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Reports Division, Special Publication No. 5, p 581-607.

Pighi, D.L.,2007; Assessment Report on Diamond Drill holes M-06-1 to M-0606, Munroe Property, Fort Steele Mining District. BC Mines and Petroleum Assessment Report 29242.

Rodgers, G.M., 1998, Lew and Bingo Claims. BC Assessment Report # 25,467.

Sedex Mining Corp. 1998, Lamb Creek Area, BC Assessment Report #25,395.

Thomas, M.D., Schetselaar, E., and De Kemp, E., 2013. Magnetic contribution to 3D crustal modeling in the Purcell Anticlinorium, southeastern cordillera. Geological Survey of Canada, Open File 7321, Poster. Doi:10.4095/292187.

Trennamen, R., and Klewchuk, P., 2010, Report on Geological Compilation Monroe Lake Property, BC Assessment Repot 31664.

Woodfill, R., 1997; South Moyie Area, BC Assessment Report # 24786.

9.0 DATE AND SIGNATURE PAGE

STATEMENT OF QUALIFICATIONS

BRIAN ALEXANDER JONES

I, Brian A. Jones, do hereby certify that:

- 1. I am a consulting geophysicist of Excel Geophysics Inc., with an office at 302 Centre Street S, High River, Alberta, T1V 1M3.
- 2. I am a graduate of the University of Toronto with the following degrees:

B.A.Sc. (1971) – Engineering Science, Geophysics option

M.Sc. (1973) – Department of Physics, Geophysics division *Thesis: A Gravity Survey and Interpretation in Northwestern Ontario*

- 3. I have actively practiced my profession of exploration geophysics throughout Canada for the past forty years.
- 4. I am registered as a Professional Geophysicist with Alberta APEGGA #48925 and British Columbia APEGBC #173032.
- 5. I am an active member of the Canadian Society of Exploration Geophysicists and the Society of Exploration Geophysicists.

Statement of Qualifications

I, Brian Jones, of the Town of High River, Alberta do hereby state:

1. I am a member of APEGBC # 173032

2. This report is based on information obtained by myself during the work exploration program.

Brian Jones M.Sc. July 21, 2014

APPENDIX A – VINE and WEST BASIN TENURES

Property	Tenure Number	Owner	Claim Name	Owner	Tenure Type	Tenure Sub Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
Vine	380410	PJX	VP 6	256589 (100%)	Mineral	Claim	082G041	2000/sep/04	2023/nov/01	GOOD	25
Vine	380411	PJX	VP 7	256589 (100%)	Mineral	Claim	082G041	2000/sep/04	2023/nov/01	GOOD	25
Vine	380412	PJX	VP 8	256589 (100%)	Mineral	Claim	082G041	2000/sep/04	2023/nov/01	GOOD	25
Vine	380413	PJX	VP 9	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380414	PJX	VP 10	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380415	PJX	VP 11	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380416	PJX	VP 12	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380417	PJX	VP 13	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380418	PJX	VP 14	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380419	PJX	VP 15	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380420	PJX	VP 16	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380421	PJX	VP 17	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380422	PJX	VP 18	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380423	PJX	VP 19	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	380424	PJX	VP 20	256589 (100%)	Mineral	Claim	082G031	2000/sep/04	2023/nov/01	GOOD	25
Vine	832821	PJX	VINENW	256589 (100%)	Mineral	Claim	082G	2010/sep/05	2023/nov/01	GOOD	84.08
Vine	938674	PJX		256589 (100%)	Mineral	Claim	082G	2011/dec/23	2015/dec/23	GOOD	21.02
Vine	938675	PJX		256589 (100%)	Mineral	Claim	082G	2011/dec/23	2015/dec/23	GOOD	147.1
Vine	938676	PJX		256589 (100%)	Mineral	Claim	082G	2011/dec/23	2015/dec/23	GOOD	21.02
Vine Ext	505873	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	434.9
Vine Ext	505880	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	42.05
Vine Ext	505881	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	21.03
Vine Ext	505882	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	21.03
Vine Ext	505883	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	84.09
Vine Ext	505884	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	42.05
Vine Ext	505885	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	509.5
Vine Ext	505886	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	42.05
Vine Ext	505887	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/04	2015/sep/05	GOOD	42.05
Vine Ext	506089	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.04
Vine Ext	506090	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	21.02

Property	Tenure Number	Owner	Claim Name	Owner	Tenure Type	Tenure Sub Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
Vine Ext	506091	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.04
Vine Ext	506092	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	21.02
Vine Ext	506105	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	84.04
Vine Ext	506107	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	84.04
Vine Ext	506108	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.02
Vine Ext	506110	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	84.04
Vine Ext	506114	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	84.06
Vine Ext	506115	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.03
Vine Ext	506116	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.02
Vine Ext	506117	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	21.01
Vine Ext	506118	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.02
Vine Ext	506119	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	105
Vine Ext	506120	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.02
Vine Ext	506122	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.01
Vine Ext	506123	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.01
Vine Ext	506125	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	21.01
Vine Ext	506126	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	21
Vine Ext	506127	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.01
Vine Ext	506128	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	21.01
Vine Ext	506129	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.01
Vine Ext	506130	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	21.01
Vine Ext	506131	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	42.01
Vine Ext	506132	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	21.01
Vine Ext	506133	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/sep/05	GOOD	84.02
Vine Ext	506134	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.01
Vine Ext	506135	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.01
Vine Ext	506136	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.01
Vine Ext	506137	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.01
Vine Ext	506138	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.01
Vine Ext	506139	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	420.1

Property	Tenure Number	Owner	Claim Name	Owner	Tenure Type	Tenure Sub Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
Vine Ext	506140	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.01
Vine Ext	506141	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/30	GOOD	525
Vine Ext	506142	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.01
Vine Ext	506143	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/20	GOOD	462
Vine Ext	506144	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/20	GOOD	63.04
Vine Ext	506145	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/20	GOOD	21.01
Vine Ext	506146	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/20	GOOD	42.03
Vine Ext	506147	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/20	GOOD	21.02
Vine Ext	506148	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.04
Vine Ext	506150	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.03
Vine Ext	506155	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.01
Vine Ext	506156	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.02
Vine Ext	506157	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.02
Vine Ext	506159	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.02
Vine Ext	506160	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.01
Vine Ext	506162	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.01
Vine Ext	506165	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	84.04
Vine Ext	506166	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.02
Vine Ext	506167	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.01
Vine Ext	506168	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	21.01
Vine Ext	506169	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.03
Vine Ext	506171	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.03
Vine Ext	506173	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	273.2
Vine Ext	506174	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.04
Vine Ext	506175	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.04
Vine Ext	506176	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	42.04
Vine Ext	506177	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	63.07
Vine Ext	506185	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	398.9
Vine Ext	506186	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	20.99
Vine Ext	506187	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	20.99

Property	Tenure Number	Owner	Claim Name	Owner	Tenure Type	Tenure Sub Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
Vine Ext	506188	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	20.99
Vine Ext	506189	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	20.99
Vine Ext	506190	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/07	2015/nov/19	GOOD	41.99
Vine Ext	506780	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/11	2015/nov/19	GOOD	84.07
Vine Ext	506781	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/11	2015/nov/19	GOOD	21.01
Vine Ext	506782	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/11	2015/nov/19	GOOD	21.01
Vine Ext	506783	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/11	2015/nov/19	GOOD	21.01
Vine Ext	506784	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/11	2015/nov/19	GOOD	63.04
Vine Ext	506785	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/11	2015/nov/19	GOOD	21.01
Vine Ext	506786	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/11	2015/nov/19	GOOD	42.02
Vine Ext	506787	PJX		256589 (100%)	Mineral	Claim	082G	2005/feb/11	2015/nov/19	GOOD	42.02
Vine Ext	970629	PJX	LUMB 1	256589 (100%)	Mineral	Claim	082G	2012/mar/23	2015/aug/30	GOOD	105
Vine Ext	970649	PJX	LUMB 2	256589 (100%)	Mineral	Claim	082G	2012/mar/23	2015/aug/30	GOOD	168.1
Vine Ext (1km)	1018945	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/29	2014/apr/29	GOOD	105
Vine Ext (1km)	1018946	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/29	2014/apr/29	GOOD	84.08
Vine Ext (1km)	1018947	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/29	2014/apr/29	GOOD	84.01
Vine Ext (1km)	1018962	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	189.2
Vine Ext (1km)	1018964	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	294.3
Vine Ext (1km)	1018966	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	147.1
Vine Ext (1km)	1018967	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	315.2
West Basin	1018954	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	315.7
West Basin	1018955	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	126.3
West Basin	1018956	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	252.6
West Basin	1018957	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	378.8
West Basin	1018958	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	84.16
West Basin	1018959	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	168.3
West Basin	1018960	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	504.7
West Basin	1018961	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	315.4
West Basin	1018963	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	336.4
West Basin	1018965	PJX		256589 (100%)	Mineral	Claim	082G	2013/apr/30	2014/may/15	GOOD	210.4

Excel Geophysics Inc.

Technical Report – Vine, Vine Extension, West Basin Properties	
Gravity Acquisition, Processing and Modelling	

Property	Tenure Number	Owner	Claim Name	Owner	Tenure Type	Tenure Sub Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
West Basin	992265	PJX	SEMS RIDGE 01- 12	256589 (100%)	Mineral	Claim	082G	2012/jun/01	2014/may/15	GOOD	420.7
West Basin	503798	PJX		256589 (100%)	Mineral	Claim	082G	2005/jan/15	2014/may/15	GOOD	84.17
West Basin	505849	PJX	Fors	256589 (100%)	Mineral	Claim	082G	2005/feb/04	2014/may/15	GOOD	21.04
West Basin	505850	PJX	Fors	256589 (100%)	Mineral	Claim	082G	2005/feb/04	2014/may/15	GOOD	21.04
West Basin	986841	PJX	FORS SW	256589 (100%)	Mineral	Claim	082G	2012/may/16	2014/may/15	GOOD	189.4

APPENDIX B – GRAVITY SURVEY FIELD OPERATIONS REPORT

PJX GRAVITY SURVEY 2013/2014 FIELD OPERATIONS REPORT Version 2 – Updated Surface Geology

CRANBROOK, BRITISH COLUMBIA, CANADA

Centered Near

Latitude 49° 26' N, Longitude 115° 51' W

Survey Period

November 28th - December 2nd, 2013 January 5th – January 8th, 2014

Submitted By

EXCEL GEOPHYSICS INC.

Box 5056 302 Centre Street S High River, Alberta, Canada T1V 1M3

Prepared For

PJX RESOURCES INC.

5600 – 100 King Street West Toronto, Ontario, Canada M5X 1C9

Date Updated: February 7, 2014

CONTENTS

INTRODUCTION	1
SAFETY	2
GRAVITY SURVEY PARAMETERS	3
GRAVITY SURVEY PROCEDURE	3
GRAVITY BASE STATIONS	4
GPS CONTROL BASE	6
GPS SURVEY PROCEDURE AND PROCESSING	7
GRAVITY DATA REDUCTION	7
SURFACE GEOLOGY COMPILATION	9
DATA QUALITY	11
APPENDIX A - UTM Zone 11 Coordinate System Parameters	
APPENDIX B - Data Listing Format of Reports in 11 x 17 binder	13

ii

FIGURES

Figure 1.	Location of <i>PJX</i> Gravity Program
Figure 2.	Vine Gravity Program
Figure 3.	Typical Gravity Station Setup
Figure 4.	CGSN Gravity Base 9025-1980, Cranbrook, BC
Figure 5.	Super 8 Motel <i>Excel</i> Gravity Base 0 4231, Cranbrook, BC 5
Figure 6.	CSRS GPS Pillar 89HP3C, Fort Steele, BC
Figure 7.	GPS Control Base 448 11282, Cranbrook, BC
Figure 8.	Operator taking a gravity reading at a field GPS base station7
Figure 9.	Surface Geology Map 10
Figure 10	. Surface Geology Legend 11

TABLES

Table 1.	Gravity Survey Parameters	3
Table 2.	Project Personnel	3
Table 3.	PJX Gravity Bases (NAD83/WGS84, UTM Zone 11)	5
Table 4.	PJX GPS Bases	6
Table 5.	Gravity Correction Formulae	8
Table 6.	UTM Zone 11 Mapping Parameters 1	2

iii

ENCLOSURES

CD-ROM

Final Report

1. PJX Resources 2013_14 Gravity Survey Final Report v2.pdf

Digital Data (Data listings in Microsoft Excel spreadsheet)

- 1. PJX Resources 2013_14 Observed Gravity Data_v2.xls
- 2. PJX Resources 2013_14 Bouguer Gravity Data_v2.xls

Images (full size maps in .jpg format)

- 1. 01_BouguerGravity_v2.jpg
- 2. 02_ColorElevationMap_v2.jpg
- 3. 03_ElevationShadedReliefMap_v2.jpg
- 4. 04_SurfaceGeologyMap_v2.jpg

UNDER SEPARATE 11" X 17" COVER

Hardcopy Maps

- 1. Bouguer Gravity Map
- 2. Color Elevation Map
- 3. Elevation Shaded Relief Map
- 4. Surface Geology Map

Hardcopy Data Listing

- 1. PJX Resources 2013_14 Observed Gravity Data v2
- 2. PJX Resources 2013_14 Bouguer Gravity Data v2

INTRODUCTION

The following report describes the field operations of the land gravity survey conducted by *Excel Geophysics Inc. (Excel)* for *PJX Resources (PJX)* near Cranbrook, British Columbia. This survey was conducted over two time periods from November 28^{th} to December 2^{nd} , 2013 and January 5^{th} to January 8^{th} , 2014. The survey area was located approximately 20 km south of Cranbrook, British Columbia. Figure 1 shows the location of the project. A total of 191 land gravity stations were collected during the 2013 data collection and 51 stations were acquired during the January 2014 data collection. The survey was designed to provide gravity maps for *PJX* over their Vine mining claims. Figure 2 shows the final station locations. In addition, 41 gravity stations were acquired on April 23, 2013 and are included with the data from the present survey for a total of 283 gravity stations which have been processed as one data set.

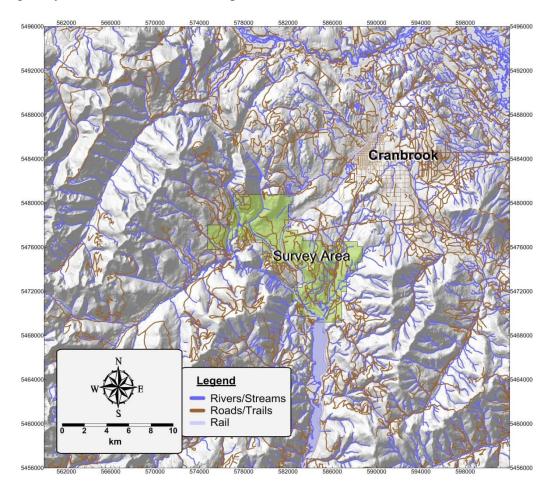


Figure 1. Location of *PJX* Gravity Program

1

SAFETY

Each *Excel* crew member held valid safety certificates in Emergency First Aid, H₂S Awareness, Wildlife Awareness, and WHMIS. An emergency response plan containing contact numbers and emergency procedures was distributed and explained to all field staff. Safety meetings were held by the field staff on a regular basis to identify any safety hazards. There were no injuries or incidents during this survey. Excel ensured that each member of the crew was equipped with appropriate outdoor wear, two-way radios, cell phones and emergency first-aid kits.

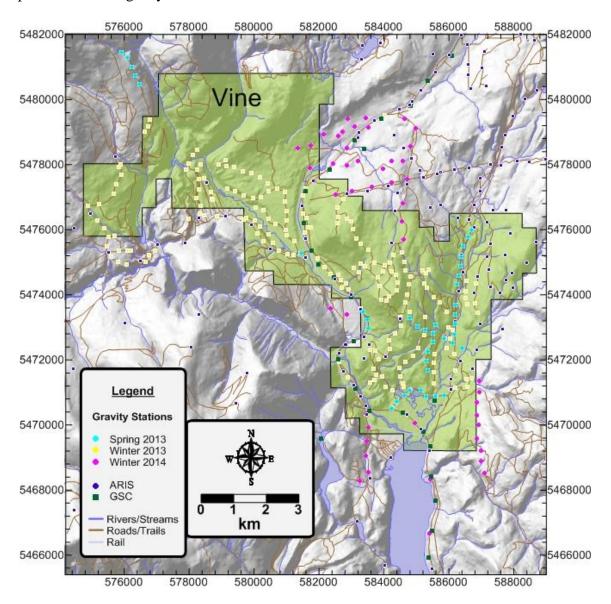


Figure 2. Vine Gravity Program

GRAVITY SURVEY PARAMETERS

The following two tables outline the main details of the gravity survey as well as the people involved with this project.

Table 1. Gravity Survey Parameters

Gravity Survey Parameters	
General Survey Location	Cranbrook, BC Latitude: 49° 26' N Longitude: 115° 51' W
Survey Duration	November 28 th to December 02, 2013 January 5 th to January 8 th , 2014
Gravity Station Spacing	~300 m
Gravity Stations Acquired	Total: 283 stations 41 April 2013 191 December 2013 51 January 2014
Terrain Corrections	Inner (0 to 50 m) Outer (50 m to 25 km)
Methods of Transportation	Truck, ATV, Snowmobile and Foot
Land Gravity Meters Used	LaCoste and Romberg G-472, G-645 & G-353

Table 2. Project Personnel

Project Personnel					
Excel Operations Manager	Peter Mawhinney				
Gravity Field Crew	Peter Mawhinney	Brittany Beagle			
	Nicholas Smith	Brian Jones			
Data Processors	Nicole Trenholm	Sheldon Kasper			

GRAVITY SURVEY PROCEDURE

The survey crew consisted of two to three *Excel* geophysical operators. *Excel* had a supervisor on site for the duration of the project to coordinate all aspects of the operation including data quality control, client communications, staffing, environmental compliance and adherence to safety guidelines. Survey operations were based out of the Super 8 Motel, located in Cranbrook, BC.

Trucks were used to transport the crew and equipment to and from the survey area. Three LaCoste and Romberg G-series land gravity meters were used for this survey. The project

was surveyed via an all-terrain vehicle, snowmobile, truck and by foot where required. Gravity stations were laid out at 300 meter spacing. Terrain corrections for zones B and C (2 to 50 m) were recorded at each station using inclinometers. On average, a gravity reading was obtained every fifteen minutes.

A Garmin GPS navigation system equipped with a pre-programmed set of station coordinates was used for navigation to each gravity station. The precise location of the gravity meter at each station was determined using geodetic grade dual frequency Leica GPS receivers. This aspect of the survey is described in detail under GPS survey procedure and processing. Figure 3 shows a typical gravity station setup in the field.

Figure 3. Typical Gravity Station Setup.

GRAVITY BASE STATIONS

The gravity survey was tied to the Canadian Gravity Standardization Network (CGSN) gravity base 9025-1980 located at the Cranbrook Post Office under the benchmark on the NE corner of the building. The CGSN 9025-1980 gravity base is shown in Figure 4.



Figure 4. CGSN Gravity Base 9025-1980, Cranbrook, BC

Field base 0 4231 was previously established by *Excel* at the Super 8 Motel in Cranbrook, BC. This base was used as the main base for the gravity survey operations. Figure 5 shows the location of Field base 0 4231. A gravity reading was taken at this gravity base at the beginning and end of each day to determine meter drift. Table 3 shows the coordinates and gravity values for the main gravity bases used for this gravity survey.

Figure 5. Super 8 Motel Excel Gravity Base 0 4231, Cranbrook, BC

Base Name	UTMx (m)	UTMy (m)	Observed Gravity (mGal)
CGSN Base 9025-1980	589213	5484895	980699.79
Excel Control Base 0 4231	591119	5487570	980700.65

Table 3. PJX Gravity Bases (NAD83/WGS84, UTM Zone 11)

GPS CONTROL BASE

Precise elevation data is required for processing gravity data, therefore high quality differential GPS data is recorded at each gravity station. *Excel* established 448 11282 as the main GPS control base at the Super 8 hotel which could then be used for the duration of the survey. This control base was tied to the Canadian Base Network (CBN) using a pillar located along highway 93-95, 3.8 km SW of the junction with the road to Fort Steele Heritage Park (CSRS 89HP3C Pier 3) shown in Figure 6. GPS control base 448 11282 at the Super 8 hotel can be seen in Figure 7. Coordinates for each of the control bases can be found in Table 4. The control base 448 11282 was reoccupied each day as the control base for the survey.

Figure 6. CSRS GPS Pillar 89HP3C, Fort Steele, BC

Figure 7. GPS Control Base 448 11282, Cranbrook, BC

Table 4.	PJX	GPS	Bases

Base Name	NAD 83 Latitude	NAD 83 Longitude	Ellipsoidal Elevation (m)	Orthometric Elevation (m)	
CSRS 89HP3C	49° 36' 00.8383" N	115° 40' 10.0469" W	809.270	823.839	
448 11282	49° 32' 2.5704" N	115° 44' 25.9564" W	855.164	899.668	

Excel Geophysics Inc. D:\448-PJX Gravity Survey\Final Report\PJX Resources 2013_14 Gravity Survey Final Report v2.doc

GPS SURVEY PROCEDURE AND PROCESSING

In addition to the control base at the hotel, *Excel* personnel set up at least two field GPS bases each day in close proximity to where gravity data were being acquired for the day. The control base was used to solve the precise location of the field bases each day. All of the base GPS units form a network of bases which was then used to solve the "rover" GPS data. Figure 8 shows an example of a GPS field base set up in the survey area.

Figure 8. Operator taking a gravity reading at a field GPS base station.

A roving GPS unit was carried by *Excel* personnel to acquire accurate GPS data at each gravity station. These rover units were placed on range poles or mounted on ATV's and data were acquired for several minutes at each station.

GPS data were processed each evening using Leica Geo Office post-processing software. The network of three GPS base stations ensured that multiple solutions were generated for each rover station. Factors such as satellite position, signal strength, and topography affect the results and the final values for each gravity station were selected based on the highest quality solutions. Typically GPS survey results have an accuracy of approximately 2 cm, which is more than adequate for a precise gravity survey.

GRAVITY DATA REDUCTION

The LaCoste and Romberg land gravity meter (G-series) is operated manually and is capable of reliable and repeatable gravity readings to an accuracy of better than 0.01 mGal by experienced operators. The operator must ensure that the meter is operated at the recommended regulated temperature and is level during the reading.

The station id, date, time, dial reading and instrument height are recorded in a field notebook at each land gravity station. A gravity base is measured at the beginning and end of each day to correctly account for meter drift. Each evening the field data are entered into a computer and corrected for sun/moon tidal effects, instrument height, and instrument drift to obtain the observed gravity. Refer to the *Observed Gravity Data Listing* (PJX Resources Observed Gravity Data v2.xls) for the raw data, observed gravity and intermediate reduction values for each day.

After the GPS coordinates and elevations are processed and merged with the observed gravity for each station, intermediate corrections are applied to the observed gravity to yield final Bouguer anomaly values. See Table 5 for the formulae used to determine the intermediate corrections and Bouguer gravity values. The Bouguer gravity has been calculated using variable density Bouguer and terrain corrections. near surface correction model was developed using the digital elevations and surface geology maps. This model was used to calculate both the terrain corrections and Bouguer correction for each station. Refer to the *Variable Density Bouguer Gravity Data Listings* (PJX Resources 2013_14 Bouguer Gravity Data v2.xls) for the intermediate corrections, station densities and final variable density Bouguer gravity values.

A Bouguer gravity map was created using all data acquired by Excel as well as available GSC and Aris data. For details on the GSC and Aris data please refer to the previous *Technical Report West Basin* dated June 18, 2013.

Gravity Corrections	Description
Latitude Correction	International Association of Geodesy, World Geodetic System 1984. = 978032.67714 $\times \left(\frac{1 + (0.00193185138639 \times \sin^2(\text{latitude}))}{\sqrt{1 - (0.00669437999013 \times \sin^2(\text{latitude}))}}\right)$
Free Air Correction	$= (h - datum) \times 0.3086 \frac{mGal}{m}$
Bouguer Correction	Calculated using near surface mass model with variable density.
Terrain	B and C Zone (2 to 50 m) field observations with variable density.
Corrections	Outer terrain corrections (50 m to 25 km) calculated using near surface mass model with variable density.
Final Bouguer Values	= Observed Gravity – Latitude Correction + Free Air Correction + Bouguer Correction + Inner Terrain Correction + Outer Terrain Correction

Table 5. Gravity Correction Formulae

Excel Geophysics Inc. D:\448-PJX Gravity Survey\Final Report\PJX Resources 2013_14 Gravity Survey Final Report v2.doc

SURFACE GEOLOGY COMPILATION

Several sources of surface geology were used to provide a detailed representation for the area. From the BC Ministry of Energy and Mines, the following list of maps were used to create the geology map shown in Figure 9.

Geoscience Map 1998-3 – Geological Compilation of the Grassy Mountain (East Half) and Moyie Lake (West Half) map areas, Southeastern British Columbia.

Geoscience Map 2004-1 – Geology of the St. Mary Map Sheet (NTS82F/09), T. Hoy and W. Jackaman, 2004.

Preliminary Map No. 54 – Geology of the Cranbrook Sheet and Sullivan Mine Area, T. Hoy and M.E. McMechan, 1984.

Geofile 2005-4 – Digital Geology Map of British Columbia: Tile NM11 Southeast B.C., Version 1.0 2005, N.W.D. Massey, D.G. MacIntyre, P.J. Desjardins, and R.T. Cooney, 2005.

PJX uses Geoscience Map 1998-3 as the basis for their surface geology in the Vine area. Geoscience map 1998-3 was digitized in mid-January 2014 and added to the surface geology mapset for terrain and Bouguer correction calculations. A prior version of this report (dated January 13, 2014) used Preliminary Map No. 49 as the main surface geology for the Vine area. Density values were assigned to each rock unit based on the rock unit description. Previous studies in the area were considered in determining optimum densities (Figure 10).

9

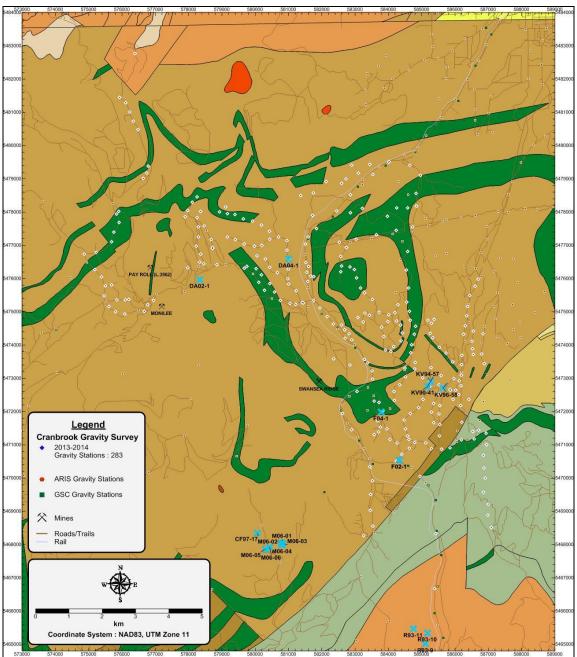


Figure 9. Surface Geology Map

10

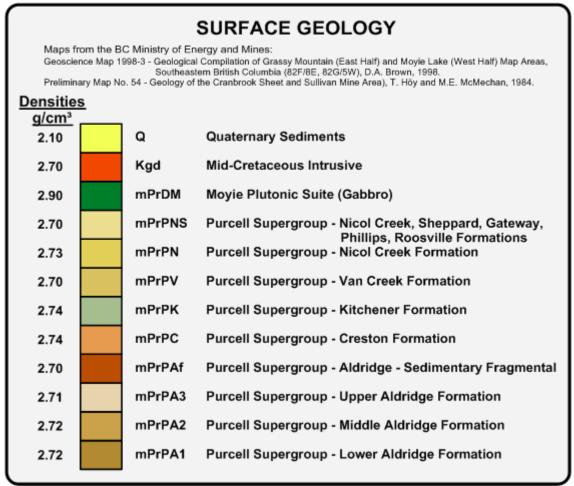


Figure 10. Surface Geology Legend

DATA QUALITY

Gravity measurements were of excellent quality. Verification gravity readings (repeat observations) were better than ± 0.02 mGal. Relative station elevations were estimated to be better than 2 cm, and horizontal locations were estimated to be better than 5 cm. A critical examination of the residual gravity maps reveals that the final survey values are clearly within a total error envelope of better than ± 0.05 mGal.

APPENDIX A - UTM Zone 11 Coordinate System Parameters

The coordinate system used for mapping purposes is UTM Zone 11 (WGS84). Parameters for the coordinate system are shown in Table 6.

Table 6.	UTM Zone 11 Mapping Parameters

Project Mapping System								
Datum	WGS 84							
Ellipsoid	WGS 84							
Latitude of Origin	Equator, 0°							
Central Meridian	117° W							
Grid Projection	UTM Zone 11							
Scale Factor	0.9996							
False Easting	500,000.0 m							
False Northing	0.0 m							

Ellipsoids:	WGS 84
Semi-major axis	6,378,137.0 m
Semi-minor axis	6,356,752.3 m

APPENDIX B - Data Listing Format of Reports in 11 x 17 binder

Observed Gravity Data

The *Complete Observed Gravity Data Listing* (PJX Resources 2013_14 Observed Gravity Data.xls) contains a listing of all gravity data collected by the crew during the survey period. The data is presented in chronological order.

The LaCoste and Romberg G-series land gravity meter uses a zero length spring supporting a mass on a beam as is standard in all modern gravity meters. While the meter is level, a counter dial is turned to adjust the position of the beam until the force of gravity is balanced by the mechanical force of the zero length spring. A calibration table is used to convert the counter reading value to a value in mGal. While the zero length spring system may drift during a day, this drift can be accurately identified and corrected by reoccupying a known gravity station one or more times during the day.

Each gravity loop is separated by a blank row. The primary gravity base is always assigned a line number of 0 to distinguish it from other readings, and can be seen at the start and end of each gravity loop. The date, time, Greenwich Mean offset, and project location (latitude and longitude) are used to compute the sun/moon gravity tide correction.

The relative gravity is computed by summing all of the terms:

Relative Gravity = calibrated counter reading + instrument height correction + tide correction - drift correction

Observed Gravity = relative station gravity - relative base gravity + base absolute gravity

Gravity base values can be seen in Table 3.

Bouguer Gravity Data

The Variable Density Bouguer Gravity Data Listing (PJX Resources 2013_14 Bouguer Gravity Data.xls) displays the observed gravity and coordinate data with intermediate corrections and variable density Bouguer gravity values. Latitude and longitude values are given as well as UTM Zone 11 coordinates in WGS84. The elevations shown are orthometric height above mean sea level, calculated using the Canada HT2.0 geoid model. The intermediate corrections include the latitude, free air, variable density Bouguer and terrain corrections.

The final Bouguer gravity is computed as follows:

Bouguer Anomaly (*Variable Density***)** = observed gravity - latitude corr. + free air corr. + Bouguer corr. + (inner terrain corr. + outer terrain corr.)

The Bouguer listing provides the rock density at each station location based on the surface geology. The Bouguer correction and outer terrain corrections were calculated using a near surface model developed by merging information from the digital elevation and surface geology compilations. The average elevation of the surveyed stations in this project was approximately 1085 metres. Based on this value, an elevation datum of 1100 meters was chosen to minimize the effect of the variable density Bouguer correction.

Outer terrain corrections were also calculated using the near surface mass model. The inner terrain corrections applied at each gravity station were calculated at the station density. The results are displayed in the listings.

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number			UTM	Zone 11		Gravity	Density
		NA	D 83	NA	D 83			
						(metres)		
		(decimal	degrees)	(me	tres)	(above sea level)	(mGal)	(g/cm ³)
1	1	49.44251	-115.87453	581587.19	5477257.84	996.33	980683.28	2.77
1	2	49.44062	-115.87571	581504.75	5477046.60	994.53	980682.89	2.74
1	3	49.43559	-115.87566	581516.76	5476487.43	995.28	980682.34	2.73
1	4	49.43293	-115.87535	581543.96	5476191.81	993.90	980681.44	2.74
1	5	49.43042	-115.87504	581570.07	5475913.97	992.33	980680.63	2.73
1	6	49.42535	-115.87244	581767.11	5475352.65	988.79	980679.45	2.73
1	7	49.42326	-115.86993	581952.57	5475122.74	992.15	980677.55	2.72
1	8	49.42089	-115.86711	582161.16	5474862.67	990.64	980677.05	2.72
1	9	49.41878	-115.86460	582346.58	5474631.39	988.27	980677.38	2.72
1	10	49.41498	-115.85977	582703.80	5474213.98	982.19	980678.77	2.72
1	11	49.40911	-115.85185	583288.16	5473570.01	972.25	980679.97	2.73
1	12	49.40042	-115.85518	583060.86	5472600.58	968.28	980682.51	2.89
1	13	49.39457	-115.86132	582625.56	5471942.69	959.24	980680.65	2.72
1	14	49.39013	-115.85767	582897.54	5471452.95	948.94	980682.27	2.72
2	1	49.42430	-115.88005	581216.87	5475227.79	997.34	980678.07	2.72
2	2	49.42455	-115.88249	581039.95	5475253.42	1014.47	980675.88	2.72
2	3	49.42541	-115.88638	580756.26	5475344.03	1024.76	980675.08	2.80
2	4	49.42823	-115.89293	580277.02	5475651.28	1035.94	980674.13	2.90
2	5	49.43043	-115.89529	580102.16	5475892.60	1039.79	980673.65	2.89
2	6	49.43528	-115.91240	578853.65	5476413.99	1055.46	980671.18	2.72
2	7	49.42473	-115.94135	576771.07	5475211.24	1129.91	980656.45	2.72
2	8	49.42303	-115.94275	576672.32	5475020.98	1156.93	980650.36	2.72
2	9	49.42239	-115.95090	576082.31	5474941.30	1215.86	980638.40	2.72
2	10	49.42297	-115.95476	575801.23	5475002.04	1234.15	980635.15	2.72
2	11	49.42445	-115.95744	575604.48	5475164.42	1244.24	980633.61	2.72
2	12	49.42731	-115.95940	575458.06	5475479.58	1249.81	980633.81	2.72
3	1	49.42802	-115.87969	581237.22	5475641.27	997.75	980677.77	2.72
3	2	49.42976	-115.88275	581012.63	5475831.44	1010.60	980676.18	2.72
3	3	49.43289	-115.88753	580660.98	5476174.83	1008.68	980676.84	2.72
3	4	49.43435	-115.89050	580443.01	5476333.82	999.89	980680.32	2.72

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number			UTM 2	Zone 11		Gravity	Density
		NA	D 83	NA	D 83			
						(metres)		
		(decimal	degrees)	,	tres)	(above sea level)	(mGal)	(g/cm ³)
3	5	49.43665	-115.89241	580300.75	5476588.07	998.77	980680.73	2.72
3	6	49.43127	-115.88313	580982.01	5475999.91	1012.68	980676.51	2.72
3	7	49.43379	-115.88290	580994.56	5476279.78	1017.94	980676.92	2.72
3	8	49.43647	-115.88256	581015.18	5476578.37	1020.98	980677.18	2.72
3	9	49.43902	-115.88341	580949.00	5476860.22	1024.75	980677.19	2.72
3	10	49.44161	-115.88322	580958.64	5477149.13	1023.83	980677.61	2.72
3	11	49.44260	-115.88665	580708.47	5477255.41	1025.90	980676.57	2.72
3	12	49.44207	-115.89042	580436.22	5477192.45	1029.47	980674.88	2.72
3	13	49.44042	-115.89370	580200.76	5477005.35	1031.02	980674.09	2.72
3	14	49.44019	-115.89692	579968.05	5476975.85	1038.51	980673.03	2.72
3	15	49.44086	-115.90094	579675.07	5477046.03	1034.66	980673.00	2.74
3	16	49.44201	-115.90467	579403.44	5477170.72	1007.06	980678.09	2.72
3	17	49.44280	-115.90786	579170.35	5477255.44	1004.06	980678.56	2.72
3	18	49.44421	-115.89058	580421.26	5477430.41	1029.88	980674.67	2.72
3	19	49.44589	-115.89382	580183.11	5477612.81	1030.08	980674.29	2.72
3	20	49.44696	-115.89748	579916.11	5477728.74	1038.21	980672.85	2.79
3	21	49.44760	-115.90127	579640.56	5477795.22	1063.57	980668.52	2.84
3	22	49.44886	-115.90472	579388.35	5477932.01	1075.16	980667.01	2.84
3	23	49.44907	-115.90785	579161.37	5477951.76	1081.75	980665.79	2.83
3	24	49.44964	-115.91112	578923.64	5478012.44	1104.63	980661.78	2.83
3	25	49.45086	-115.90851	579110.66	5478149.92	1113.35	980660.60	2.77
3	101	49.43760	-115.89582	580051.61	5476689.64	998.99	980680.99	2.73
4	1	49.42774	-115.88875	580580.90	5475600.92	994.69	980679.87	2.82
4	2	49.42998	-115.89065	580438.98	5475847.65	994.65	980680.28	2.82
4	3	49.43235	-115.89404	580189.75	5476107.60	1006.92	980678.93	2.84
4	4	49.43406	-115.89622	580028.40	5476295.11	1007.39	980678.93	2.85
4	5	49.43471	-115.90008	579747.54	5476363.78	1025.59	980676.52	2.88
5	1	49.43997	-115.91426	578711.12	5476933.08	1046.53	980671.99	2.72
5	2	49.44209	-115.91467	578678.29	5477168.61	1047.71	980670.76	2.72
5	7	49.44582	-115.91759	578460.66	5477580.79	1062.44	980668.78	2.72

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number			UTM 2	Zone 11		Gravity	Density
		NA	D 83	NA	D 83			
						(metres)		
		(decimal	degrees)	(me	tres)	(above sea level)	(mGal)	(g/cm ³)
5	8	49.44817	-115.92034	578257.66	5477839.16	1078.47	980666.14	2.72
5	9	49.44975	-115.91886	578362.44	5478016.27	1069.58	980667.62	2.72
5	10	49.45228	-115.92236	578104.46	5478293.98	1111.53	980659.65	2.82
5	11	49.45373	-115.92029	578252.36	5478457.13	1119.70	980658.56	2.84
5	12	49.44568	-115.91981	578299.72	5477562.49	1074.63	980666.42	2.72
5	13	49.44287	-115.91997	578292.38	5477249.65	1066.52	980667.53	2.72
5	14	49.44046	-115.92089	578230.18	5476980.88	1078.58	980665.72	2.72
5	15	49.43819	-115.91919	578356.39	5476730.79	1064.14	980669.16	2.72
5	16	49.43557	-115.91795	578450.87	5476440.65	1065.34	980669.02	2.72
5	17	49.43611	-115.91952	578335.98	5476499.21	1068.06	980668.40	2.72
5	20	49.44839	-115.92533	577895.37	5477857.72	1103.81	980661.13	2.73
5	21	49.43459	-115.92450	577977.46	5476324.92	1178.63	980645.64	2.72
5	90	49.45003	-115.92420	577974.94	5478042.18	1096.50	980662.74	2.77
5	100	49.43976	-115.91423	578713.46	5476909.86	1046.42	980672.18	2.72
6	1	49.42598	-115.93888	576948.65	5475353.02	1094.30	980662.76	2.72
6	12	49.45006	-115.95288	575895.68	5478015.93	1334.12	980619.10	2.83
6	13	49.45898	-115.94244	576638.72	5479017.97	1372.92	980611.94	2.74
6	14	49.46036	-115.94098	576742.16	5479172.78	1374.88	980611.29	2.76
6	15	49.46228	-115.94030	576788.79	5479387.23	1376.68	980610.38	2.78
6	27	49.44936	-115.95371	575836.96	5477936.70	1343.74	980617.26	2.84
6	28	49.44710	-115.95277	575908.29	5477686.63	1334.45	980618.80	2.90
6	29	49.44456	-115.95487	575760.41	5477402.81	1338.35	980618.10	2.90
6	30	49.44186	-115.95597	575684.39	5477100.75	1336.06	980618.36	2.87
6	32	49.43911	-115.96244	575219.58	5476788.92	1333.27	980618.13	2.79
6	38	49.43873	-115.96724	574872.03	5476742.20	1328.06	980618.83	2.73
6	39	49.43450	-115.96305	575182.90	5476275.56	1302.25	980623.89	2.79
6	40	49.43248	-115.96027	575387.47	5476053.39	1278.37	980628.68	2.72
6	41	49.42998	-115.95866	575507.73	5475777.06	1257.21	980632.54	2.72
6	42	49.43025	-115.95610	575693.33	5475810.26	1248.70	980634.09	2.72
6	46	49.42617	-115.95405	575847.63	5475358.29	1243.45	980634.53	2.72

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number			UTM 2	UTM Zone 11		Gravity	Density
		NA	D 83	NA	D 83			
						(metres)		
		(decimal	degrees)	(me	tres)	(above sea level)	(mGal)	(g/cm ³)
6	47	49.42611	-115.95055	576101.75	5475355.63	1226.84	980637.76	2.72
6	48	49.42620	-115.94920	576199.88	5475367.08	1222.42	980637.92	2.72
7	1	49.43448	-115.87449	581603.12	5476365.97	997.99	980681.39	2.76
7	2	49.43181	-115.87367	581667.68	5476069.44	994.35	980680.84	2.76
7	3	49.43174	-115.87242	581758.07	5476063.51	1002.44	980679.22	2.78
8	6	49.41928	-115.85231	583237.05	5474700.15	1181.17	980644.52	2.72
8	7	49.42158	-115.85153	583290.02	5474956.67	1211.81	980639.88	2.72
8	8	49.42097	-115.84968	583425.10	5474890.32	1225.78	980637.99	2.72
8	9	49.42177	-115.84561	583719.18	5474984.12	1236.79	980636.13	2.72
8	10	49.42532	-115.84820	583525.15	5475376.43	1233.72	980636.98	2.72
8	11	49.42712	-115.85153	583280.35	5475572.85	1258.40	980631.74	2.77
8	12	49.42846	-115.85316	583160.02	5475719.55	1296.79	980623.89	2.86
8	13	49.43125	-115.85467	583046.07	5476028.08	1310.70	980621.49	2.90
8	14	49.43343	-115.85550	582981.75	5476269.45	1297.63	980624.47	2.90
8	15	49.43416	-115.85734	582847.24	5476348.37	1294.18	980624.89	2.90
8	16	49.43447	-115.86084	582593.10	5476378.84	1281.94	980626.20	2.86
8	17	49.43712	-115.86112	582568.67	5476673.55	1219.82	980638.62	2.74
8	18	49.43946	-115.85870	582739.60	5476936.43	1179.63	980647.62	2.72
8	19	49.43292	-115.86118	582571.20	5476206.10	1312.98	980618.83	2.90
8	21	49.41441	-115.85701	582904.90	5474152.98	977.62	980680.50	2.72
8	100	49.41606	-115.85810	582822.97	5474335.87	983.10	980679.42	2.74
8	101	49.41714	-115.86001	582682.51	5474454.11	984.88	980678.77	2.74
8	102	49.41854	-115.86115	582597.72	5474608.28	986.55	980678.34	2.75
9	1	49.38637	-115.83899	584259.23	5471056.45	930.85	980682.46	2.72
9	2	49.38731	-115.84187	584049.09	5471157.07	970.49	980675.89	2.72
9	3	49.39024	-115.84315	583951.34	5471481.25	978.07	980674.54	2.72
9	4	49.39247	-115.84678	583684.21	5471726.12	1043.42	980665.27	2.74
9	5	49.39509	-115.84456	583840.67	5472019.29	1057.40	980661.01	2.86
9	6	49.39791	-115.83975	584184.96	5472338.46	1058.89	980663.92	2.78
9	7	49.40037	-115.83995	584166.19	5472611.89	1074.60	980661.87	2.72

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number			UTM 2	UTM Zone 11		Gravity	Density
		NA	D 83	NA	D 83			
						(metres)		
		(decimal	degrees)	(me	tres)	(above sea level)	(mGal)	(g/cm ³)
9	8	49.40204	-115.83745	584344.25	5472800.03	1119.13	980653.62	2.73
9	9	49.40417	-115.83502	584516.79	5473039.60	1178.14	980642.91	2.78
9	11	49.41114	-115.84085	584082.59	5473807.85	1308.19	980618.05	2.74
9	12	49.41150	-115.84315	583914.93	5473845.38	1321.56	980613.37	2.74
9	13	49.41522	-115.84383	583859.44	5474258.42	1282.76	980624.34	2.72
9	14	49.41778	-115.84456	583801.88	5474541.97	1262.72	980629.78	2.72
9	15	49.41924	-115.84202	583983.50	5474707.24	1252.01	980632.42	2.72
9	16	49.42102	-115.84155	584014.89	5474905.81	1233.89	980636.52	2.72
9	17	49.42161	-115.83907	584193.25	5474973.82	1226.37	980638.04	2.72
9	18	49.42377	-115.83773	584286.92	5475214.95	1221.34	980639.53	2.72
9	19	49.41824	-115.83677	584365.86	5474601.32	1259.26	980630.59	2.74
9	20	49.41616	-115.83616	584414.05	5474371.13	1290.61	980623.38	2.74
9	21	49.41396	-115.83660	584385.53	5474126.07	1342.54	980610.74	2.75
9	22	49.41246	-115.83980	584155.84	5473955.84	1358.95	980606.24	2.74
9	26	49.40659	-115.83528	584494.31	5473308.15	1217.57	980635.98	2.80
9	27	49.39746	-115.84617	583719.80	5472281.50	1041.09	980664.86	2.90
9	28	49.39782	-115.84822	583570.45	5472318.86	1035.91	980666.02	2.90
9	31	49.39071	-115.84581	583756.92	5471530.59	1022.58	980669.64	2.72
9	32	49.38877	-115.84835	583575.99	5471312.55	1031.56	980668.45	2.72
9	33	49.38941	-115.84654	583706.75	5471386.28	1034.55	980667.71	2.72
9	125	49.41936	-115.83845	584242.53	5474723.83	1255.23	980632.66	2.73
10	1	49.38731	-115.83411	584612.16	5471166.12	946.65	980679.28	2.72
10	2	49.38824	-115.83448	584583.53	5471268.99	947.87	980678.95	2.72
10	3	49.39015	-115.83541	584512.86	5471480.40	951.31	980678.28	2.72
10	4	49.39255	-115.83591	584472.19	5471746.11	977.92	980675.11	2.72
10	5	49.39431	-115.83322	584664.97	5471944.81	1016.50	980670.36	2.72
10	6	49.39583	-115.82981	584909.75	5472117.92	1056.08	980662.98	2.72
10	7	49.39807	-115.82784	585048.66	5472369.17	1079.39	980659.32	2.72
10	8	49.40153	-115.82515	585237.67	5472756.86	1089.28	980658.47	2.72
10	9	49.40661	-115.82441	585282.45	5473322.32	1130.10	980651.63	2.72

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number			UTM 2	UTM Zone 11		Gravity	Density
		NA	D 83	NA	D 83			
						(metres)		
		(decimal	degrees)	(me	tres)	(above sea level)	(mGal)	(g/cm ³)
10	13	49.41586	-115.82457	585255.08	5474350.65	1135.36	980653.71	2.74
10	14	49.41858	-115.82403	585289.80	5474654.11	1159.20	980649.45	2.72
10	15	49.41941	-115.82546	585184.62	5474744.64	1155.47	980650.47	2.73
10	19	49.41787	-115.83054	584818.61	5474567.26	1170.96	980647.30	2.83
10	20	49.41953	-115.83264	584663.42	5474749.84	1169.34	980647.72	2.81
10	21	49.42193	-115.83293	584637.87	5475016.04	1184.77	980646.04	2.83
10	22	49.42444	-115.83407	584551.24	5475294.15	1200.95	980643.31	2.80
10	23	49.41566	-115.83124	584771.92	5474321.07	1191.52	980642.54	2.81
10	24	49.41291	-115.83223	584704.26	5474014.23	1214.74	980637.48	2.80
10	25	49.41075	-115.83281	584665.90	5473773.53	1222.62	980635.71	2.79
10	26	49.40812	-115.83106	584797.79	5473482.70	1217.84	980636.01	2.73
10	115	49.41973	-115.82283	585374.59	5474783.15	1161.13	980649.21	2.72
11	1	49.38808	-115.82142	585531.79	5471266.26	939.25	980679.62	2.72
11	2	49.39123	-115.82121	585541.24	5471616.88	943.37	980681.04	2.72
11	3	49.39401	-115.82142	585521.33	5471924.85	947.20	980681.77	2.72
11	5	49.40355	-115.81499	585971.51	5472993.39	960.38	980683.13	2.72
11	6	49.40800	-115.81553	585924.47	5473486.99	1006.26	980676.48	2.75
11	7	49.41050	-115.81822	585725.00	5473762.03	1046.96	980668.97	2.75
11	8	49.41205	-115.82076	585537.87	5473931.03	1082.86	980662.59	2.75
11	9	49.41473	-115.82356	585330.28	5474226.72	1126.31	980655.11	2.75
11	11	49.40995	-115.80679	586554.83	5473714.54	992.67	980679.03	2.72
11	12	49.41159	-115.80726	586518.28	5473895.85	985.93	980680.29	2.72
11	13	49.41359	-115.80738	586506.05	5474117.74	973.34	980682.12	2.72
11	14	49.41634	-115.80667	586552.06	5474424.82	970.42	980682.61	2.72
11	15	49.41559	-115.80266	586844.66	5474345.76	1040.16	980669.49	2.72
11	16	49.41008	-115.80347	586795.77	5473732.57	1048.79	980668.00	2.72
11	17	49.40746	-115.80235	586881.15	5473441.82	1047.01	980667.56	2.74
11	18	49.40294	-115.81293	586121.75	5472927.83	951.84	980684.38	2.72
11	19	49.40041	-115.81432	586025.75	5472645.22	948.49	980684.27	2.72
11	20	49.39629	-115.81241	586171.24	5472188.92	943.91	980683.01	2.72

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number				UTM Zone 11		Gravity	Density
		NA	D 83	NA.	D 83			
						(marked)		
		(1	1	,		(metres)		(1 2)
			degrees)	,	etres)	(above sea level)	(mGal)	(g/cm ³)
11	21	49.39791	-115.81553	585941.68	5472365.90	944.18	980683.62	2.72
11	22	49.39168	-115.81206	586204.63	5471676.56	942.43	980681.82	2.73
11	24	49.38949	-115.80515	586709.76	5471441.90	1037.47	980664.81	2.77
11	25	49.38911	-115.80750	586539.80	5471396.34	1018.39	980668.37	2.75
11	26	49.38715	-115.80711	586571.61	5471178.87	1043.45	980663.82	2.82
11	27	49.38691	-115.81229	586196.10	5471146.91	955.89	980679.02	2.80
448	1	49.46142	-115.83198	584639.08	5479407.80	1008.89	980681.98	2.72
448	2	49.45034	-115.82939	584846.08	5478178.27	1056.28	980672.71	2.77
448	3	49.44472	-115.83127	584719.70	5477551.28	1106.14	980662.87	2.77
448	4	49.43817	-115.83340	584576.52	5476820.52	1159.88	980652.29	2.89
448	5	49.43312	-115.83398	584542.73	5476258.85	1167.40	980650.86	2.82
448	6	49.42818	-115.83329	584601.47	5475711.04	1205.98	980642.71	2.82
448	7	49.45871	-115.82753	584966.17	5479111.02	1033.53	980677.80	2.79
448	8	49.45377	-115.82951	584830.95	5478560.20	1039.99	980675.91	2.89
448	9	49.40770	-115.85793	582848.94	5473406.41	979.42	980678.24	2.72
448	10	49.40938	-115.86467	582357.30	5473586.39	1000.72	980677.32	2.72
448	11	49.44474	-115.87093	581844.36	5477510.32	1000.83	980682.84	2.82
448	12	49.44931	-115.86250	582447.58	5478027.13	1002.50	980682.33	2.75
448	13	49.45369	-115.85671	582860.12	5478520.27	993.32	980683.98	2.72
448	14	49.45915	-115.84728	583534.04	5479138.11	990.97	980685.15	2.72
448	15	49.45686	-115.86031	582593.78	5478869.42	1001.38	980682.95	2.72
448	16	49.44823	-115.87253	581722.94	5477895.89	993.65	980683.22	2.72
448	17	49.45002	-115.85193	583212.93	5478117.41	1037.89	980676.29	2.84
448	18	49.44885	-115.85689	582854.99	5477982.77	1040.05	980675.60	2.87
448	19	49.46186	-115.84844	583445.96	5479438.14	990.59	980685.12	2.72
448	20	49.45947	-115.85332	583096.16	5479166.27	994.40	980684.54	2.72
448	21	49.45801	-115.85837	582732.70	5478999.34	1003.03	980682.51	2.72
448	22	49.45742	-115.86666	582132.97	5478923.91	1032.02	980678.01	2.76
448	23	49.45440	-115.87199	581751.31	5478582.82	1026.54	980677.84	2.72
448	24	49.45373	-115.87742	581358.81	5478501.99	1044.10	980674.86	2.72

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number			UTM 2	Zone 11		Gravity	Density
		NA	D 83	NA	D 83			
						(metres)		
		(decimal	degrees)	(me	tres)	(above sea level)	(mGal)	(g/cm ³)
448	25	49.46172	-115.85607	582893.23	5479413.72	1012.88	980680.91	2.76
448	26	49.44385	-115.83803	584230.49	5477447.36	1133.09	980657.95	2.90
448	27	49.44274	-115.84622	583639.11	5477315.26	1116.54	980660.90	2.81
448	28	49.44167	-115.85468	583027.91	5477186.20	1138.99	980656.07	2.78
448	29	49.44085	-115.86161	582526.34	5477087.35	1124.50	980658.83	2.72
448	30	49.44774	-115.84148	583974.13	5477875.94	1098.17	980664.85	2.90
448	31	49.44993	-115.83769	584244.89	5478124.10	1090.89	980666.15	2.90
448	32	49.44988	-115.83315	584573.87	5478122.82	1082.90	980667.71	2.86
448	33	49.38553	-115.80202	586944.07	5471004.29	1102.95	980651.21	2.76
448	34	49.38273	-115.80323	586861.28	5470691.78	1117.47	980648.92	2.74
448	35	49.37926	-115.80322	586867.94	5470305.84	1140.42	980644.25	2.74
448	36	49.37650	-115.80267	586913.17	5470000.20	1166.74	980638.79	2.74
448	37	49.37264	-115.80352	586857.74	5469570.56	1208.10	980630.86	2.74
448	38	49.36944	-115.80164	586999.96	5469216.03	1239.69	980625.21	2.74
448	39	49.36647	-115.80184	586990.85	5468886.53	1246.84	980623.76	2.74
448	40	49.36318	-115.80050	587094.18	5468521.33	1266.20	980619.87	2.74
448	41	49.37626	-115.84938	583522.90	5469921.11	937.82	980683.03	2.72
448	42	49.37257	-115.85020	583469.58	5469510.00	963.68	980679.14	2.72
448	43	49.36833	-115.85056	583450.66	5469037.43	1008.00	980670.77	2.72
448	44	49.36393	-115.84954	583532.28	5468549.83	1032.14	980665.21	2.72
448	45	49.36145	-115.85343	583253.52	5468269.86	1048.28	980663.84	2.72
448	46	49.37728	-115.82977	584944.55	5470055.60	931.25	980679.27	2.74
448	47	49.36173	-115.82352	585424.92	5468334.50	973.19	980673.32	2.74
448	48	49.34684	-115.82433	585391.70	5466677.87	976.32	980671.02	2.74
448	1061	49.46246	-115.84052	584018.25	5479513.72	988.00	980685.78	2.72
448	1071	49.38859	-115.80203	586937.86	5471344.71	1077.80	980656.54	2.81
448	1072	49.38004	-115.85050	583435.07	5470339.43	941.70	980683.32	2.72
448	4231	49.42467	-115.87687	581447.47	5475272.73	994.32	980677.84	2.72
448	11291	49.43421	-115.90114	579671.88	5476307.56	1046.78	980672.73	2.85
448	11301	49.40046	-115.81651	585866.58	5472647.79	950.61	980683.92	2.72

Line	Station	Latitude	Longitude	UTMx	UTMy	Elevation	Observed	Station
Number	Number			UTM 2	Zone 11		Gravity	Density
		NA	D 83	NA	D 83			
						(metres)		
		(decimal	degrees)	(me	tres)	(above sea level)	(mGal)	(g/cm ³)
448	12011	49.46237	-115.84060	584013.12	5479502.77	987.93	980685.77	2.72
448	12021	49.42479	-115.87725	581419.06	5475285.69	994.39	980677.76	2.72

		Corrections			Bouguer Anomaly
Latitude	Free Air	Bouguer	Inner	Outer	
		_	Terrain	Terrain	Variable Density
			(2m - 53m)	(53m - 25km)	
			Variable Density		
		(mGal)			+400 (mGal)
981020.55	-31.99	12.03	0.03	3.00	45.81
981020.38	-32.55	12.13	0.04	3.10	45.23
981019.93	-32.32	12.00	0.01	3.37	45.47
981019.69	-32.74	12.20	0.00	3.67	44.88
981019.46	-33.23	12.34	0.01	4.00	44.28
981019.01	-34.32	12.74	0.01	4.77	43.64
981018.82	-33.28	12.32	0.00	4.63	42.39
981018.61	-33.75	12.49	0.00	4.40	41.58
981018.42	-34.48	12.76	0.00	4.34	41.57
981018.08	-36.36	13.45	0.00	4.54	42.32
981017.56	-39.42	14.64	0.01	6.19	43.82
981016.78	-40.65	15.87	0.02	4.88	45.84
981016.25	-43.44	16.09	0.02	7.20	44.27
981015.86	-46.62	17.25	0.00	6.87	43.92
981018.92	-31.68	11.73	0.09	4.12	43.40
981018.94	-26.39	9.77	0.10	3.85	44.26
981019.02	-23.22	8.82	0.04	3.80	45.50
981019.27	-19.77	7.76	0.04	3.36	46.25
981019.46	-18.58	7.28	0.04	3.20	46.11
981019.90	-13.75	5.08	0.06	3.52	46.19
981018.95	9.23	-3.41	0.07	4.66	48.05
981018.80	17.57	-6.49	0.07	4.83	47.53
981018.75	35.75	-13.22	0.16	3.89	46.25
981018.80	41.40	-15.30	0.05	3.30	45.80
981018.93	44.51	-16.46	0.02	3.03	45.79
981019.19	46.23	-17.09	0.01	2.95	46.72
981019.25	-31.55	11.68	0.02	3.50	42.17
981019.40	-27.59	10.21	0.02	3.21	42.63
981019.68	-28.18	10.43	0.12	3.13	42.66
981019.82	-30.90	11.43	0.00	3.23	44.27

		Corrections			Bouguer Anomaly
Latitude	Free Air	Bouguer	Inner	Outer	
			Terrain	Terrain	Variable Density
			(2m - 53m)	(53m - 25km)	
			Variable Density		
		(mGal)			+400 (mGal)
981020.02	-31.24	11.56	0.00	3.27	44.30
981019.54	-26.95	9.97	0.00	3.02	43.01
981019.77	-25.32	9.37	0.00	2.78	43.99
981020.01	-24.39	9.02	0.00	2.64	44.45
981020.23	-23.22	8.59	0.00	2.51	44.83
981020.47	-23.50	8.69	0.00	2.47	44.80
981020.55	-22.87	8.46	0.00	2.52	44.13
981020.51	-21.76	8.05	0.00	2.56	43.21
981020.36	-21.29	7.87	0.00	2.69	43.01
981020.34	-18.98	7.02	0.06	2.79	43.58
981020.40	-20.16	7.51	0.52	3.34	43.80
981020.50	-28.68	10.61	0.13	4.02	43.67
981020.57	-29.61	10.95	0.03	4.30	43.65
981020.70	-21.64	8.00	0.00	2.62	42.96
981020.85	-21.58	7.98	0.05	2.79	42.69
981020.94	-19.07	7.22	0.03	2.97	43.05
981021.00	-11.24	4.33	0.02	2.78	43.42
981021.11	-7.67	2.96	0.03	2.92	44.14
981021.13	-5.63	2.16	0.16	3.07	44.42
981021.18	1.43	-0.55	0.04	3.09	44.61
981021.29	4.12	-1.55	0.16	2.94	44.97
981020.11	-31.17	11.57	0.00	3.43	44.71
981019.22	-32.50	12.42	0.04	4.16	44.76
981019.42	-32.51	12.43	0.01	3.92	44.70
981019.64	-28.72	11.05	0.14	3.71	45.47
981019.79	-28.58	11.03	0.25	3.62	45.45
981019.85	-22.96	8.95	0.06	3.37	46.10
981020.32	-16.50	6.10	0.02	3.49	44.79
981020.51	-16.14	5.97	0.06	3.60	43.74
981020.84	-11.59	4.29	0.02	3.78	44.43

		Corrections			Bouguer Anomaly
Latitude	Free Air	Bouguer	Inner	Outer	
			Terrain	Terrain	Variable Density
			(2m - 53m)	(53m - 25km)	
			Variable Density		
		(mGal)			+400 (mGal)
981021.05	-6.64	2.46	0.06	3.84	44.79
981021.19	-9.39	3.47	0.08	4.33	44.92
981021.42	3.56	-1.36	0.29	4.46	45.18
981021.55	6.08	-2.35	0.09	4.20	45.03
981020.83	-7.83	2.89	0.25	3.71	44.63
981020.58	-10.33	3.82	0.16	3.91	44.51
981020.36	-6.61	2.44	0.55	3.63	45.38
981020.16	-11.07	4.09	0.02	3.69	45.73
981019.92	-10.70	3.95	0.00	3.74	46.10
981019.97	-9.86	3.64	0.00	3.93	46.15
981021.07	1.17	-0.44	0.03	3.77	44.60
981019.84	24.26	-8.97	0.04	3.61	44.75
981021.22	-1.08	0.41	0.08	4.03	44.96
981020.30	-16.53	6.11	0.02	3.51	44.99
981019.07	-1.76	0.65	0.05	5.17	47.81
981021.22	72.25	-27.62	0.03	3.21	45.74
981022.02	84.22	-31.37	0.04	3.33	46.15
981022.14	84.83	-31.75	0.04	3.63	45.89
981022.32	85.38	-32.13	0.04	4.04	45.41
981021.16	75.22	-28.83	0.03	3.15	45.68
981020.96	72.35	-28.18	0.02	3.21	45.24
981020.73	73.56	-28.64	0.00	3.10	45.39
981020.49	72.85	-28.14	0.00	3.08	45.66
981020.24	71.99	-27.20	0.04	2.91	45.62
981020.21	70.38	-26.16	0.03	3.25	46.12
981019.83	62.41	-23.58	0.03	2.98	45.91
981019.65	55.04	-20.38	0.02	2.99	46.71
981019.42	48.51	-17.94	0.01	2.97	46.68
981019.45	45.89	-16.97	0.02	3.08	46.66
981019.08	44.27	-16.37	0.02	3.01	46.38

		Corrections			Bouguer Anomaly
Latitude	Free Air	Bouguer	Inner	Outer	
			Terrain	Terrain	Variable Density
			(2m - 53m)	(53m - 25km)	
			Variable Density		
		(mGal)			+400 (mGal)
981019.08	39.14	-14.47	0.02	3.39	46.77
981019.09	37.78	-13.97	0.36	3.79	46.79
981019.83	-31.48	11.81	0.01	3.62	45.51
981019.59	-32.60	12.23	0.00	4.24	45.12
981019.58	-30.11	11.37	0.01	4.74	45.65
981018.47	25.05	-9.26	0.24	3.79	45.87
981018.67	34.50	-12.77	0.13	2.97	46.04
981018.62	38.82	-14.36	0.04	2.86	46.72
981018.69	42.21	-15.62	0.02	2.24	46.29
981019.01	41.26	-15.28	0.02	2.16	46.14
981019.17	48.88	-18.39	0.03	2.80	45.90
981019.29	60.73	-23.44	0.14	3.66	45.69
981019.54	65.02	-25.37	0.02	3.84	45.46
981019.73	60.99	-23.82	0.03	3.70	45.64
981019.80	59.92	-23.41	0.05	4.04	45.70
981019.83	56.15	-21.71	0.24	5.05	46.10
981020.06	36.98	-13.80	0.15	4.55	46.43
981020.27	24.57	-9.10	0.06	3.12	45.99
981019.69	65.73	-25.67	0.11	5.71	45.01
981018.03	-37.77	13.97	0.01	5.41	44.10
981018.18	-36.08	13.43	0.00	5.33	43.92
981018.28	-35.53	13.23	0.00	4.94	43.13
981018.40	-35.01	13.08	0.00	4.99	43.01
981015.52	-52.20	19.30	0.04	4.65	38.73
981015.61	-39.97	14.78	0.02	4.20	39.32
981015.87	-37.63	13.92	0.38	4.40	39.76
981016.07	-17.46	6.50	0.05	3.47	41.76
981016.30	-13.15	5.10	0.03	3.28	39.98
981016.55	-12.69	4.79	0.03	2.97	42.47
981016.77	-7.84	2.90	0.03	3.11	43.29

		Corrections			Bouguer Anomaly
Latitude	Free Air	Bouguer	Inner	Outer	
			Terrain	Terrain	Variable Density
			(2m - 53m)	(53m - 25km)	
			Variable Density		
		(mGal)			+400 (mGal)
981016.92	5.90	-2.19	0.19	3.36	43.95
981017.11	24.11	-9.10	0.11	3.31	44.22
981017.74	64.25	-23.93	0.07	5.43	46.12
981017.77	68.37	-25.47	0.08	6.88	45.47
981018.10	56.40	-20.87	0.04	4.07	45.87
981018.33	50.21	-18.58	0.01	3.06	46.16
981018.46	46.91	-17.36	0.02	2.47	46.00
981018.62	41.32	-15.29	0.02	2.10	46.05
981018.68	39.00	-14.43	0.01	1.97	45.90
981018.87	37.45	-13.86	0.01	1.83	46.09
981018.37	49.15	-18.31	0.06	2.81	45.92
981018.19	58.82	-21.91	0.19	3.84	46.14
981017.99	74.85	-27.95	0.19	5.95	45.80
981017.86	79.91	-29.76	0.09	6.98	45.60
981017.33	36.28	-13.77	0.11	3.29	44.56
981016.51	-18.18	7.14	0.02	3.14	40.48
981016.55	-19.78	7.77	0.01	3.33	40.80
981015.91	-23.89	8.84	0.12	3.52	42.32
981015.74	-21.12	7.81	0.08	3.76	43.25
981015.79	-20.20	7.47	0.04	3.51	42.75
981018.47	47.90	-17.79	0.04	2.44	46.78
981015.61	-47.32	17.50	0.03	4.07	37.95
981015.69	-46.95	17.36	0.03	4.09	37.79
981015.86	-45.89	16.97	0.07	4.32	37.89
981016.07	-37.67	13.94	0.34	4.30	39.94
981016.23	-25.77	9.53	0.17	3.61	41.66
981016.37	-13.55	5.01	0.27	3.77	42.11
981016.57	-6.36	2.35	0.33	3.80	42.87
981016.88	-3.31	1.22	0.24	3.85	43.60
981017.33	9.29	-3.43	0.13	3.84	44.12

		Corrections			Bouguer Anomaly
Latitude	Free Air	Bouguer	Inner	Outer	
			Terrain	Terrain	Variable Density
			(2m - 53m)	(53m - 25km)	
	Variable Density				
		(mGal)			+400 (mGal)
981018.16	10.91	-4.06	0.15	2.36	44.90
981018.40	18.27	-6.76	0.02	2.15	44.72
981018.48	17.12	-6.35	0.05	1.98	44.79
981018.34	21.90	-8.40	0.07	2.43	44.96
981018.49	21.40	-8.16	0.16	2.55	45.19
981018.70	26.16	-10.03	0.06	1.94	45.46
981018.93	31.15	-11.83	0.11	1.75	45.56
981018.14	28.24	-10.76	0.16	2.82	44.85
981017.90	35.41	-13.44	0.10	3.08	44.73
981017.70	37.84	-14.32	0.03	3.00	44.57
981017.47	36.37	-13.49	0.02	3.09	44.53
981018.51	18.87	-6.98	0.03	2.16	44.78
981015.67	-49.61	18.36	0.02	4.49	37.20
981015.96	-48.34	17.88	0.04	4.43	39.09
981016.20	-47.15	17.44	0.04	4.66	40.55
981017.06	-43.09	15.93	0.16	4.50	43.58
981017.46	-28.93	10.80	0.02	3.50	44.41
981017.68	-16.37	6.11	0.09	3.20	44.33
981017.82	-5.29	1.98	0.05	3.06	44.57
981018.06	8.12	-3.03	0.12	2.50	44.75
981017.63	-33.12	12.24	0.08	4.06	44.66
981017.78	-35.20	13.01	0.08	4.07	44.48
981017.96	-39.09	14.45	0.18	4.45	44.16
981018.20	-39.99	14.78	0.15	4.52	43.88
981018.14	-18.47	6.83	0.07	3.48	43.27
981017.64	-15.80	5.84	0.01	3.41	43.82
981017.41	-16.35	6.09	0.01	3.47	43.37
981017.00	-45.72	16.90	0.00	4.59	43.15
981016.78	-46.76	17.29	0.00	4.47	42.49
981016.41	-48.17	17.81	0.00	4.80	41.04

		Corrections			Bouguer Anomaly
Latitude	Free Air	Bouguer	Inner	Outer	
			Terrain	Terrain	Variable Density
			(2m - 53m)	(53m - 25km)	
			Variable Density		
		(mGal)			+400 (mGal)
981016.55	-48.08	17.78	0.00	4.55	41.31
981016.00	-48.63	18.05	0.04	5.69	40.97
981015.80	-19.30	7.26	0.04	4.97	41.98
981015.77	-25.19	9.41	0.10	4.76	41.68
981015.59	-17.45	6.68	0.04	4.74	42.23
981015.57	-44.47	16.87	0.26	5.90	42.01
981022.24	-28.12	10.41	0.01	1.63	43.67
981021.25	-13.49	5.08	0.01	1.51	44.57
981020.74	1.89	-0.71	0.07	1.52	44.90
981020.16	18.48	-7.24	0.03	1.63	45.04
981019.71	20.80	-7.96	0.01	1.54	45.55
981019.26	32.70	-12.50	0.01	1.75	45.41
981022.00	-20.51	7.77	0.01	1.42	44.49
981021.55	-18.52	7.25	0.00	1.49	44.58
981017.43	-37.21	13.77	0.00	4.38	41.75
981017.58	-30.64	11.33	0.01	4.98	45.42
981020.75	-30.61	11.70	0.03	2.75	45.96
981021.15	-30.09	11.25	0.01	2.52	44.87
981021.55	-32.92	12.19	0.01	2.31	44.01
981022.03	-33.65	12.45	0.01	2.08	44.01
981021.83	-30.44	11.26	0.01	2.20	44.16
981021.06	-32.82	12.15	0.02	2.82	44.34
981021.22	-19.17	7.39	0.03	1.95	45.28
981021.11	-18.50	7.20	0.01	2.04	45.23
981022.28	-33.76	12.50	0.00	2.13	43.71
981022.06	-32.59	12.06	0.00	2.13	44.09
981021.93	-29.92	11.08	0.01	2.17	43.91
981021.88	-20.98	7.87	0.02	2.39	45.43
981021.61	-22.67	8.39	0.07	2.53	44.55
981021.55	-17.25	6.38	0.02	2.53	44.99

		Corrections			Bouguer Anomaly
Latitude	Free Air	Bouguer	Inner	Outer	
			Terrain	Terrain	Variable Density
			(2m - 53m)	(53m - 25km)	
			Variable Density		
		(mGal)			+400 (mGal)
981022.26	-26.88	10.08	0.05	2.31	44.20
981020.67	10.21	-4.02	0.05	1.53	45.07
981020.57	5.11	-1.95	0.05	1.88	45.41
981020.47	12.03	-4.55	0.11	2.43	45.63
981020.40	7.56	-2.80	0.09	3.01	46.30
981021.01	-0.57	0.22	0.03	1.64	45.16
981021.21	-2.81	1.11	0.07	1.63	44.93
981021.21	-5.28	2.05	0.04	1.52	44.84
981015.45	0.91	-0.34	0.23	5.18	41.75
981015.20	5.39	-2.01	0.12	5.10	42.32
981014.88	12.47	-4.64	0.14	4.98	42.32
981014.64	20.60	-7.67	0.25	5.05	42.38
981014.29	33.36	-12.42	0.15	4.67	42.32
981014.01	43.11	-16.05	0.10	4.42	42.78
981013.74	45.31	-16.87	0.09	4.41	42.97
981013.44	51.29	-19.09	0.04	4.55	43.22
981014.62	-50.05	18.50	0.14	5.75	42.76
981014.29	-42.07	15.55	0.15	5.29	43.78
981013.91	-28.39	10.49	0.01	4.27	43.25
981013.51	-20.94	7.74	0.09	3.78	42.36
981013.29	-15.96	5.90	0.02	3.52	44.03
981014.71	-52.08	19.38	0.01	4.48	36.35
981013.32	-39.13	14.57	0.15	6.32	41.90
981011.98	-38.17	14.21	0.07	7.20	42.35
981022.33	-34.56	12.80	0.04	2.00	43.71
981015.72	-6.85	2.61	0.06	4.96	41.61
981014.95	-48.85	18.06	0.03	5.58	43.19
981018.95	-32.61	12.07	0.00	3.89	42.24
981019.80	-16.42	6.35	0.02	3.25	46.12
981016.78	-46.10	17.05	0.00	4.53	42.61

	Corrections					
Latitude	Free Air	Bouguer	Inner	Outer		
			Terrain	Terrain	Variable Density	
			(2m - 53m)	(53m - 25km)		
			Variable Density			
	(mGal)					
981022.32	-34.59	12.80	0.04	1.99	43.70	
981018.96	-32.59	12.06	0.00	3.85	42.11	