BRITISH COLUMBIA The Best Place on Earth	T RECOLUMN T
Ministry of Energy and Mines	Assessment Report Title Page and Summary
be deological balvey	The Tage and Summary
TYPE OF REPORT [type of survey(s)]: Prospecting, Geochemisty, PA	C withdrawal TOTAL COST: \$61,476.98
AUTHOR(S): Jacques Houle, P.Eng.	
	Y
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-8-32 / permit not	t required YEAR OF WORK: 2013-4
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5527229/2014/OCT/20;5527893/2014/OCT/24;5534269/DEC/13
PROPERTY NAME: Macktush	
CLAIM NAME(S) (on which the work was done): prospecting work on 3	23118, 323121, 323122, 382850, 398841, 508051, 512247,
518164, 518167, 518171, 530258, 604993, 604995, 604996, 83	3065
COMMODITIES SOUGHT: copper, silver, gold, molybdenum, rheniu	m
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092F012,-103	-155,-168,-221,-360,-361,-362,-412,-549,-550,-551,-553,-555
MINING DIVISION: Alberni	NTS/BCGS: 092F/02W / 092F006,-016,-026
LATITUDE: <u>49</u> ^o <u>11</u> <u>'14</u> " Longitude: <u>124</u>	^o <u>53</u> ' <u>38</u> " (at centre of work)
OWNER(S):	
1) Nanminto Resources Ltd.	2)
MAILING ADDRESS: 3009 Kingsway Avenue	
Port Alberni, BC V9Y 1X7	
OPERATOR(S) [who paid for the work]:	
1) World Organics Inc.	2)
MAILING ADDRESS: 349 West Georgia Street PO Box 2012	
Vancouver, BC V6B 3P8	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, mafic volcanics, felsic intrusives, basalt, granodiorite, guartz dior	alteration, mineralization, size and attitude): ite, jurassic, triassic, eocene, silicification, chloritization, skarn.
porphyry, epithermal, vein, pyrite, chalcopyrite, bornite, molybde	nite, copper, gold, silver

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 477, 1591, 5650, 5951, 6393, 6956, 9313, 935

10288, 11337, 12052, 12242, 12872, 13949, 15037, 15038, 15169, 15658, 15780, 15970, 16918, 17441, 17557, 18771, 18346,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			
Silt			
Rock 7 samples for multi-ele	ment ICP and gold FA	512247, 530258, 833065	175.25
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying		512247, 530258, 833065	2,098.51
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area) 1:200 s	cale, 2,500 hectares	<u>323118, 323121, 323122, 382850, 39</u>	56,750.00
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)			
Other research, cutting rock	samples, technical report		2,453.22
		TOTAL COST:	61.476.98
			,

2014 Assessment Report for

Prospecting and Geochemistry

October 2013 to December 2014

On the

BC Geological Survey Assessment Report 35129

Macktush Property

Alberni Mining Division

BCGS 092F006, 092F016 and 092F026 NTS 092F/02W

UTM Zone 10N 5452000N 364000E 49⁰ 11' 14" N 124⁰ 53' 38" W

For Nahminto Resources Ltd. And World Organics Inc.

Report written by Jacques Houle, P.Eng. Mineral Exploration Consulting 6552 Peregrine Road, Nanaimo, B.C. V9V 1P8

December 15, 2014

Contents

	Page
Introduction Property location, access and physiography Property definition, owner, operator, geology and history List of claims and work completed	3 4 16
Technical data, interpretation, conclusions and recommendations	17
Author's Qualifications	20
References	21
Tables:	
Table 1 – Cell Mineral Claims & Status as of November 30, 2014	4
Table 2 – Macktush Property Assessment Work Reports	6
Table 3 – Macktush Property 1987-1988 Drill Intercept Highlights	9
Table 4 – Macktush Property 2005 Drill Intercepts	11
Table 5 – Macktush Property 2005 Mineral Resource Estimates	12
Table 6 – Macktush Property 2006 Drill Intercepts	12
Table 7 – Macktush Property 2006 Mineral Resource Estimates	13
Table 8 – Macktush Property Mineral Occurrences	14
Table 9 – Macktush Property Mineral Resource Estimates Summa	ry 16
Table 10 – Macktush Property Proposed Work Program Summary	19
Figures:	
Macktush Property Mineral Tenures – 1:100,000	Figure 1
Macktush Property 2013-2014 Prospecting Locations – 1:100,000	Figure 2
Macktush Property 2013-2014 Rock Sample Locations – 1:50,000	Figure 3
MC Area 2003-2014 Drilling and Rock Sample Locations – 1:10,000) Figure 4
Cous South 2014 Rock Sample Locations – 1:10,000	Figure 5
Canal Main West 2003-2014 Rock Sample Locations – 1:10,000	Figure 6

Canal Main West 2003-2014 Rock Sample Locations – 1:10,000 MC Area 2014 Rock Geochemistry Highlights – 1:10,000 Cous South 2014 Rock Geochemistry Highlights – 1:10,000 Canal Main West 2014 Rock Geochemistry Highlights – 1:10,000 Figure 7 Figure 8

Figure 9

Appendices:

2014 Rock Sampling and Geochemistry Data	Appendix 1
2014 Prospecting Data	Appendix 2
2014 Mineral Tenure Data	Appendix 3

Introduction

Property location, access and physiography

The Macktush Property is located in NTS 092F02W, and situated in the Alberni Mining Division. The property is centred approximately 10 kilometres southwest of Port Alberni at Latitude 49⁰ 11' North, Longitude 124⁰ 54' West, or at UTM Zone 10 5450000 North 362000 East. The mineral claims that constitute the Property are contiguous, but contain two internal gaps, one due to a pre-existing Indian Reserve, and another due to a no staking reserve which post-dates the legacy mineral claims, but pre-dates the cell mineral claims. Therefore, the legacy claims in this area have been maintained and not converted to cell claims.

The Macktush property is easily accessed by a series of paved and gravel roads branching from the Pacific Rim Highway (Provincial Highway No. 4 also known as River Road) that runs between Port Alberni and Sproat Lake. The property can also be accessed by boat from Port Alberni, making use of occasional outwash beaches and embayments on the eastern limits of the property which are bounded by the tidewaters of the Alberni Inlet. An extensive network of active and deactivated forest access and logging roads exist within the Property, and provide excellent access to many portions of the Property.

The terrain over the Property consists mainly of steep-sided mountains with gentler topography in river valleys and areas of low elevation. Elevations range from 0 to 1,160 metres. The property is covered by a mixed forest of coniferous prime timber interspersed with second-growth forests and scattered clear-cut logged areas, with abundant streams and creeks in valleys. The climate is temperate coastal, cool and wet, with windstorms in late fall, and thick snow cover in the higher elevations from November to April, which may curtail exploration work. Temperatures range from highs of 25°C in the summer to lows of -10°C in the winter. There are typically hot dry spells in the summer when exploration work may be prevented due to forest fire hazard. The best time for exploration work is from April to October, with optimal months being June, July and September.

Port Alberni is a resource-based community of approximately 18,790 people with a sheltered deep sea port accessing the Pacific Ocean, and a paved highway accessing the rest of Vancouver Island. An underutilized railway network also exists between most of the major communities on the island, including Port Alberni. Various companies are actively logging portions of the property area and one of them holds surface rights over the north-east and eastern mineral claims of Macktush Property, as well as foreshore leases for booming cut logs along the shores of Alberni Inlet. Main haul roads and forest access roads throughout the property are maintained by various logging companies and the BC Ministry of Forests, Lands and Natural Resource Operations.

There are two aboriginal bands based in Port Alberni with interests and unsettled land claims for traditional territories that may cover portions of the Property, including the Hupacasath and the Tseshaht First Nations. The extreme southwestern portion of the Macktush Property is covered by treaty related lands of the Maa-nulth First Nations, established in 2011.

Property definition, owner, operator, geology and history

The Macktush Property is comprised of 39 contiguous mineral claims covering about 16,041 hectares, consisting of 17 legacy claims covering 6875 hectares and 22 cell claims covering 9166 hectares, held 100% held by Nahminto (see Table 1 below and Figure 1). On December 12, 2012 Nahminto completed an option agreement with World Organics Inc. ("WOI") for a 90% interest in a portion of the Macktush Property consisting of 8 claims totaling 3,334 hectares, known as the Macktush North Property. The commitments include \$250,000 in cash payments, 3.6 million common shares, and \$1.2 million in exploration expenditures over 3 years, plus 2% NSR. Upon completion of all commitments and final execution of the option agreement by World Organics, a joint venture will be formed with World Organics holding a 90% interest and Nahminto a 10% interest in the Macktush Property. The 2% net smelter return can be purchased for \$2 million, and includes the 1% payable to G4G. However, as of the date of this report WOI has not fulfilled any of the terms of the option joint venture agreement, but did partially fund the work program covered by this report. In late October, Nahminto reduced the size of the Macktush Property along its north, east and south boundaries by reducing 4 cell claims, and allowing 4 claims to lapse, including 2 legacy and 2 cells claims.

Tenure No.	Tenure Type	Owner	Map Number	Good To Date	Status	Area (Ha)
200212	COPPER #102	209027 (100%)	092F	2016/sep/30	GOOD	400
200213	COPPER #103	209027 (100%)	092F	2016/sep/30	GOOD	300
200214	COPPER #104	209027 (100%)	092F	2016/sep/30	GOOD	500
200279	COPPER #50	209027 (100%)	092F	2016/sep/30	GOOD	250
323117	SKY 3	209027 (100%)	092F	2016/sep/30	GOOD	450
323118	SKY 4	209027 (100%)	092F	2016/sep/30	GOOD	450
323119	SKY 5	209027 (100%)	092F	2016/sep/30	GOOD	300
323121	SKY 7	209027 (100%)	092F	2016/sep/30	GOOD	450
323122	SKY 8	209027 (100%)	092F	2016/sep/30	GOOD	375
361105	COPPER 106	209027 (100%)	092F	2016/sep/30	GOOD	450
361106	COPPER 107	209027 (100%)	092F	2016/sep/30	GOOD	400
361115	COPPER 109	209027 (100%)	092F	2016/sep/30	GOOD	500
361117	COPPER-108	209027 (100%)	092F	2016/sep/30	GOOD	500
382850	SKY 9	209027 (100%)	092F	2016/sep/30	GOOD	500
392530	SKY 11	209027 (100%)	092F	2016/sep/30	GOOD	100
398841	SKY 10	209027 (100%)	092F	2016/sep/30	GOOD	500
400348	COPPER #110	209027 (100%)	092F	2016/sep/30	GOOD	450
508051	MCSKY	209027 (100%)	092F	2015/sep/08	GOOD	126.709
512247		209027 (100%)	092F	2015/sep/08	GOOD	506.645
512249		209027 (100%)	092F	2015/sep/08	GOOD	1035.271
518164	DEVIL	209027 (100%)	092F	2015/sep/08	GOOD	147.6832
518167	COUS	209027 (100%)	092F	2015/sep/08	GOOD	316.606
518169	FOSSLI	209027 (100%)	092F	2015/sep/08	GOOD	527.528
518171	MCWEST	209027 (100%)	092F	2015/sep/08	GOOD	464.545
518174	ARDEN	209027 (100%)	092F	2015/sep/08	GOOD	105.629
530257		209027 (100%)	092F	2015/sep/08	GOOD	506.6547
530258		209027 (100%)	092F	2015/sep/08	GOOD	655.2786
530259	EASTMACTUSH	209027 (100%)	092F	2015/sep/08	GOOD	359.129
530260	EASTDAUNTLESS	209027 (100%)	092F	2015/sep/08	GOOD	168.967
604993	COUS 1	209027 (100%)	092F	2015/sep/08	GOOD	527.7288
604995	COUS 2	209027 (100%)	092F	2015/sep/08	GOOD	527.5568
604996	COUS 3	209027 (100%)	092F	2015/sep/08	GOOD	527.5108
833065	COUS 4	209027 (100%)	092F	2015/sep/08	GOOD	506.789
936509	WESTREX	209027 (100%)	092F	2015/sep/08	GOOD	528.1081
936529	TUSHWEST	209027 (100%)	092F	2015/sep/08	GOOD	507.1304
936530	COPPER#105	209027 (100%)	092F	2015/sep/08	GOOD	465.0663
936531	WESTCOP	209027 (100%)	092F	2015/sep/08	GOOD	338.2501
936532	SWTUSH	209027 (100%)	092F	2015/sep/08	GOOD	295.8932
989662	REX SE	209027 (100%)	092F	2015/sep/08	GOOD	21.1342
Subtotal	17	Legacy	Mineral Claims			6875
Subtotal	22	Cell	Mineral Claims			9165.8132
Total	39	Legacy plus Cell	Mineral Claims			16040.813

 Table 1 – Macktush Property Mineral Claims Status as of December 15, 2014

Vancouver Island consists of three tectonic terranes, the Wrangellia, Pacific Rim and Crescent. Wrangellia covers the northern 90% of the island, which also extends to the coastal mainland and the Queen Charlotte Islands. The Pacific Rim and Crescent terranes each cover about 5% of the south end of Vancouver Island and are thought to represent exotic tectonic plates, which collided with and became attached to Vancouver Island. Narrow slivers of the Pacific Rim terrane also exist along the southwest coast of the island. The terrane boundaries are marked by pronounced, east-west trending and north-dipping regional fault structures that contain major river systems on the southern island.

The rocks that make up Vancouver Island range in age from Paleozoic to Pliocene and represent three major volcano-sedimentary events (Paleozoic, Triassic and Jurassic), one major sedimentary event (Cretaceous) and four major intrusive events (Triassic, Jurassic, Eocene and Miocene/Pliocene). Major structural features consist of northwest-trending, north-south trending and north-east trending faults and folds. This includes many northwest-trending, low-angle thrust faults and fold axes. The oldest rocks are generally the most structurally disrupted, and areas of high metamorphic grades occur within and locally near the Pacific Rim terrane in the south and along the southwest coast of the island.

Port Alberni is located in Wrangellia in south-central Vancouver Island and is surrounded by some of the most varied and structurally complex geology on the island. Port Alberni also sits between two major uplifts exposing the island's oldest Paleozoic volcanosedimentary rocks of the Sicker and Buttle Lake Groups, the Cowichan Uplift to the southeast and the Myra Falls Uplift to the northwest. Small stocks of the Triassic Mount Hall Gabbro suite occasionally intrude the Paleozoic rocks southeast of Port Alberni. The immediate Port Alberni area is mainly underlain by Triassic mafic volcanic rocks of the Karmutsen Formation of the Vancouver Group. These are commonly intruded by large granodiorite sills, stocks and dikes of the Jurassic Island plutonic suite. Locally inliers consist of Triassic Quatsino Formation sedimentary limestones of the Vancouver Group that are overlain by Jurassic volcanics of the Bonanza Group, sandstones, shales and conglomerates of the Cretaceous Nanaimo Group. All units are occasionally intruded by small quartz diorite stocks and dikes of the Tertiary-Eocene Mount Washington plutonic suite. The Macktush property is mostly underlain by Karmutsen mafic volcanics and Island felsic intrusives, with local inliers of possible Quatsino limestone and/or Parson Bay and Bonanza sediments and volcanics. These rocks are variably block-faulted and folded, and represent ideal settings for clustered copper-goldsilver-molybdenum porphyry, skarn and epithermal vein deposits. The Macktush Property hosts eighteen (18) documented BC MINFILE occurrences, including two prospects and one developed prospect, plus 58 other mineral occurrences identified and located by operators and documented by the author or others (see Table 8 below).

The following summary outlines the exploration history to the extent known of the area now covered by the Macktush Property. It is based primarily on information obtained from the BC government websites including MapPlace, Mineral Titles Online, MINFILE and ARIS. Source data from the author's files collected while consulting for SYMC or Nahminto, plus other data kindly provided by G4G, were used to produce technical figures. A list of reports completed and filed for mineral tenure assessment work on the Property and publicly available on the ARIS website appears in Table 2, and a summary of the key points mainly from selected ARIS reports follows Table 2.

Table 2 - Macktush Property Assessment Work Reports

Report	Year	Author	Owner/Operator	Work Program / MINFILE #s – Names
477	1962	Hallof, P.G., and Bell, R.A.	Cruikshank Explorations Ltd.	Geophysical / 092F155 - Holk, 092F168 - Dauntless, 092F383 - Bell, 092F549 - Stamp 3
1591	1968	Fox, P.E., and Allan, J.F.	Amax Exploration Inc.	Geological, Geochemical, Geophysical / 092F221 – Rex
5650	1974	Guppy, Walter	Walter Guppy	Prospecting / 092F361 – Summit
5981	1976	Vollo, N.B.	Cous Creek Copper Mines Ltd.	Geophysical / 092F360 - Cous Creek
6393	1977	Anderson, R.E.	Bethlehem Copper Corporation	Geological, Geophysical / 092F360 - Cous Creek
6956	1977	Nethery, R.J.	Bethlehem Copper Corporation	Geophysical, Drilling (Percussion) / 092F360 - Cous Creek
9313	1981	Timmins, W.G. and Rolston, T.	Pacific Seadrift Resources Ltd.	Geophysical (Airborne) / 092F103 - Kola, 092F360 - Cous Creek, 092F361 - Summit, 092F362 - Buck 1, 092F412 - Sproat Lake, 092F553 - Creek, 092F555 - Sky 2
9356	1981	Timmins, W.G. and Rolston, T.	Missile Resources Ltd.	Geophysical (Airborne) / none
10288	1982	Wing, B.J. and Timmins, W.G.	Pacific Seadrift Resources Ltd.	Geological, Geochemical / 092F103 - Kola, 092F555 - Sky 2
11337	1983	von Rosen, G.	International Phasor Telecom Ltd.	Geophysical / 092F155 - Holk, 092F168 - Dauntless, 092F383 - Bell, 092F549 - Stamp 3, 092F551 - Devils Den
12052a	1983	Riteman, L.A.	Pacific Seadrift Resources Ltd.	Prospecting / 092F103 – Kola, 092F555 - Sky 2
12052b	1983	Marks, D.G.	Pacific Seadrift Resources Ltd.	Geophysical / 092F103 - Kola, 092F555 - Sky 2
12242	1984	De La Mothe, D.	Cous Creek Copper Mines Ltd.	Geological / 092F360 - Cous Creek
12872	1985	Krueckl, G.P.	Cous Creek Copper Mines Ltd.	Geological / 092F360 - Cous Creek
13949	1985	Marks, D.G.	Amstar Venture Corp.	Geochemical / 092F103 - Kola, 092F553 – Creek
15037	1986	Royer, G.A.	Triactor Resources Corporation	Geological / 092F361 - Summit, 092F555 - Sky 2
15038	1986	Royer, G.A.	United Chieftain Resources Ltd.	Geological / 092F155 - Holk, 092F168 - Dauntless, 092F383 - Bell, 092F549 - Stamp 3, 092F551 - Devils Den
15169	1986	Royer, G.A.	Mariah Resources Ltd.	Geological / 092F362 - Buck 1, 092F412 - Sproat Lake
15658	1986	Sookochoff, L.	Amstar Venture Corp.	Drilling (Core) / 092F103 – Kola
15780	1986	Royer, G.A.	Alta Management Corporation	Geological / 092F360 - Cous Creek
15970	1987	Poloni, J.R.	Ramcor Resources Ltd.	Geochemical / 092F383 – Bell
16918	1988	Laanela, H.	Abstract Enterprises Corp.	Geological, Geochemical, Geophysical / 092F360 - Cous Creek
17441	1987	Laanela, H.	Veto Resources Ltd.	Geological, Geochemical, Geophysical / 092F361 - Summit, 092F555 - Sky 2
17557	1988	Stritychuk Hopkins, J.M. and Leriche, P.D.	Napier Explorations Inc.	Geological, Geochemical / 092F155 - Holk, 092F168 - Dauntless, 092F551 - Devils Den
18771	1989	Leriche, P.D. and Yacoub, F.F.	Brockton Resources Inc.	Geochemical / 092F155 - Holk, 092F168 - Dauntless, 092F551 - Devils Den
19346	1989	Kidlark, R.G.	Brockton Resources Inc.	Geological, Geochemical, Geophysical / 092F155 - Holk, 092F168 - Dauntless, 092F549 - Stamp 3, 092F551 - Devils Den
21512	1991	Wilson, J.R.	SYMC Resources Ltd.	Geological, Drilling (Core) -092F012 - Macktush

28497	2006	Houle, J.	SYMC Resources Ltd.	Drilling (Core), Geophysical - 092F 012 - Macktush, 092F103 - Kola, 092F155 - Holk, 092F168 - Dauntless, 092F221 - Rex, 092F362 - Buck1, 092F383 - Bell, 092F412 - Sproat Lake, 092F549 - Stamp 3, 092F551 - Devils Den, 092F553 - Creek, 092F555 - Sky 2
28727	2006	McConnell, C.	Ashworth Explorations Ltd.	Geological, Geochemical - 092F360 - Cous Creek, 092F361 - Summit
28989	2007	Houle, J.	SYMC Resources Ltd.	Drilling (Core), Prospecting - 092F 012 - Macktush, 092F103 - Kola, 092F155 - Holk, 092F168 - Dauntless, 092F221 - Rex, 092F362 - Buck1, 092F383 - Bell, 092F412 - Sproat Lake, 092F549 - Stamp 3, 092F551 - Devils Den, 092F553 - Creek, 092F555 - Sky 2
32297	2011	Sanabria, R.O. and Hills, L.	G4G Resources Ltd.	Geological, Geochemical - 092F 012 - Macktush, 092F103 - Kola, 092F155 - Holk, 092F168 - Dauntless, 092F221 - Rex, 092F360 - Cous Creek, 092F361 - Summit, 092F362 - Buck1, 092F383 - Bell, 092F412 - Sproat Lake, 092F549 - Stamp 3, 092F551 - Devils Den, 092F553 - Creek, 092F555 - Sky 2
32484	2011	Sanabria, R.O. and Hills, L.	G4G Resources Ltd.	Geological, Geochemical - 092F 012 - Macktush, 092F103 - Kola, 092F155 - Holk, 092F168 - Dauntless, 092F221 - Rex, 092F360 - Cous Creek, 092F361 - Summit, 092F362 - Buck1, 092F383 - Bell, 092F412 - Sproat Lake, 092F549 - Stamp 3, 092F551 - Devils Den, 092F553 - Creek, 092F555 - Sky 2
33140	2012	McLelland, D.	Nahminto Resources Ltd.	Geophysical -092F 012 - Macktush, 092F103 - Kola, 092F155 - Holk, 092F168 - Dauntless, 092F221 - Rex, 092F360 - Cous Creek, 092F361 - Summit, 092F362 - Buck1, 092F383 - Bell, 092F412 - Sproat Lake, 092F549 - Stamp 3, 092F551 - Devils Den, 092F553 - Creek, 092F555 - Sky 2
33217	2012	Houle, J.	Nahminto Resources Ltd.	Prospecting, Geochemical - 092F 012 - Macktush, 092F103 - Kola, 092F155 - Holk, 092F168 - Dauntless, 092F221 - Rex, 092F360 - Cous Creek, 092F361 - Summit, 092F362 - Buck1, 092F383 - Bell, 092F412 - Sproat Lake, 092F549 - Stamp 3, 092F551 - Devils Den, 092F553 - Creek, 092F555 - Sky 2
34121	2013	Houle, J., and Pezzot, T.	Nahminto Resources Ltd.	Geophysical, Prospecting, Geochemical - 092F 012 - Macktush, 092F103 - Kola, 092F155 - Holk, 092F168 - Dauntless, 092F221 - Rex, 092F360 - Cous Creek, 092F361 - Summit, 092F362 - Buck1, 092F383 - Bell, 092F412 - Sproat Lake, 092F549 - Stamp 3, 092F551 - Devils Den, 092F553 - Creek, 092F555 - Sky 2

1920 - An unknown party excavated two adits and a shaft targeting the Dauntless vein in the northeast part of the property (MINFILE 092F168).

1962 – Cruikshank Explorations Ltd. completed an I.P. ground geophysical survey along the western side of the Alberni Inlet covering old excavations containing copper mineralization in several MINFILE showings Holk (092F155), Dauntless (092F168), Bell (092F383) and Stamp 3(092F549) (Halloff, P.E. and Bell, R.A. 1968).

1968 – Amax Exploration Inc. discovered a pyritic alteration zone 250 m. wide by 1.35 km long containing molybdenite in quartz stringers and chalcopyrite-bearing float at the Rex showing (MINFILE 092F221) in the central part of the property (Fox, P.E. and Allan, J.F. 1968).

1976 – Cous Creek Copper Mines completed a ground magnetic survey over 4 km. long zone of copper-magnetite skarn mineralization, the Cous Creek prospect (MINFILE 092F360) discovered in 1972 in the north-central part of the property (Vollo, N.B. 1976).

1977 – Bethlehem Copper Corporation completed geological mapping and sampling, pulse electromagnetic surveys, and two percussion drill holes with negative results on the Cous Creek prospect (Anderson, R.E. and Nethery, R.J. 1977).

1981 – W.G. Timmins Exploration and Development Ltd. completed airborne magnetic geophysical surveys for two companies with separate properties covering what is now the northwestern part of the property, covering several MINFILE copper occurrences Kola 092F103, Cous Creek 092F360, Summit 092F361, Buck 1 092F362, Creek 092F553 and Sky 2 092F555, plus the Sproat Lake 092F412 limestone showing (Timmins, W.G. and Rolston, T. 1981).

1982-1983 - W.G. Timmins and subsequently Trans-Arctic Explorations Ltd. completed geological, geochemical, prospecting and ground geophysical surveys for Pacific Seadrift Resources Ltd. over the northwest part of the property including the Kola and Sky 2 occurrences. At the Kola MINFILE 092F103 prospect, trench sampling of massive sulphides yielded an average of 7.7% Cu, 124 g/t Ag and 6.5 g/t Au across 0.6 metres width along 4.5 metres length (Wing, B.J. and Timmins, W.G. 1982).

1984-1985 – Cous Creek Copper Mines completed geological work outlining the skarn potential at the Cous Creek MINFILE 092F360 prospect (De La Mothe, D. 1984; and Krueckl, G.P. 1985). There is anecdotal evidence of bulk sampling of copper, silver and gold mineralized rock from surface trenches and trucking to Kamloops, B.C. completed by Lornex Mines during this period (personal communication – McMaster, H. 2012).

1981-1986 - Herbert McMaster and Sylvester Tresierra performed work including prospecting, trenching and sampling over the Macktush occurrence (MINFILE 092F012) in what is now the mid/southern central part of the property (Houle, J. 2007).

1985-1986 - Amstar Venture Corporation completed a 221 sample geochemistry program, and a 22 hole drill program totaling 1,308m over the MC (MINFILE 092F103) prospect in centre of the northwest part of the property. The program was aimed at investigating and defining the series of shear related zones of massive chalcopyrite and pyrite pods and lenses which comprise the MC prospect, the main one of which is exposed for approximately 10m along strike. Highlights of the program include a grab sample that returned 7.27% Cu, 23 g/t Ag and 2.8 g/t Au, a 70 metre long gold anomaly in soil extending over the main sulphide zone, and definition of the main sulphide zone to a depth of 40 metres, open at depth, with returned values as high as 3.01% Cu, 37 g/t Ag, and 2.5 g/t Au (Marks, D.G. 1985; Sookochoff, L. 1986).

1986 – Trans-Arctic Explorations Ltd. completed geological mapping for United Chieftain Resources Ltd. in the northeast portion of the property covering five MINFILE occurrences Holk 092F155, Dauntless 092F168, Bell 092F383, Stamp 3 092F549 and Devils Den 092F551 (Royer, G.A. 1986).

1986 – Trans-Arctic Explorations Ltd. completed extensive geological mapping and limited rock and/or soil geochemistry for three companies on separate adjacent properties covering five MINFILE occurrences Cous Creek 092F360, Summit 092F361, Buck 1 092F362, Creek 092F553 and Sky 2 092F555 in the north-central part of the property (Royer, G.A. 1986).

1987-1988 – Ashworth Explorations Ltd. completed extensive geological mapping, rock and soil geochemistry and ground magnetic surveys for two companies on separate adjacent properties covering three MINFILE occurrences Cous Creek 092F360, Summit 092F361, and Sky 2 092F555 in the north-central part of the property (Laanela, H. 1987, 1988). The geological setting and target areas for both known and new Cu skarn mineralization were established.

1987 - SYMC Resources Ltd. purchased the 'Macktush' property, then much more limited in size, from Herbert McMaster and Sylvester Tresierra (SYMC Resources Limited (1998) Prospectus). Work included some photo-lineament interpretation, extensive trenching and rehabilitation, and sampling on a series of northeast trending quartz-calcite-sulphide veins in the southern part of the Macktush property known as the Fred, David, Sy and Jack Veins (Wilson, J.R. 1991). Ten short holes were drilled on the Fred Vein as well, three of which totaling 279.5m depth were logged and sampled under the supervision of John R. Wilson, P.Geo (Wilson, J. R. 1991). Core from the remaining holes was spilled on the ground and subsequently disposed of (personal communication from H. McMaster). This work occurred in the southeast part of the property. Highlights of the drill program are displayed in Table 3 below.

1988 - SYMC Resources Ltd. completed one short drill hole (DDH88-05) on the Fred Vein, in the southeastern part of the Macktush property (see Table 3 below) (Houle, J. 2007).

Hole	Interval (m)	Length(m)	Au (g/t)	Ag (g/t)	Cu (%)
DDH87-01	109.58-110.72	1.14	5.97	2.06	0.03
DDH87-03	33.50-34.29	0.79	3.84	16.46	0.80
	36.59-40.39	3.81	44.23	172.80	0.95
DDH87-08	71.63-72.88	1.25	9.94	1.71	0.03
DDH88-05	47.22-48.80	1.58	0.21	3.09	0.02

 Table 3 - Drill Intercept Highlights from SYMC Resources 1987-1988

1988 – Napier Explorations Inc. conducted geological mapping and geochemical sampling on the northeast part of the property covering the MINFILE occurrences Holk 092F155, Dauntless 092F168 and Devils Den 092F551. Soil sampling identified two copper-zinc+/-gold anomalies, and rock samples from quartz-sulphide veins yielded up to 4.15 g/t Au from the Holk, and 1.7% Cu from Dauntless (Stritychuk Hopkins, J.M. and Leriche, P.D.)

1989 - Brockton Resources Inc. conducted geological mapping, grid layout, claim staking, soil sampling, trench blasting and VLF- EM and magnetometer geophysics over the northeastern quadrant of the Macktush property. The combined soil sampling and geophysics highlighted nine possibly targets on the property, most corresponding to anomalous gold or copper soil values or coincident mag-VLF-EM liniments (Kidlark, R.G. 1989).

1993 - SYMC conducted limited rock sampling over the Dauntless Vein, a northeasterly trending quartz-sulphide vein exposed on the Dauntless claims, in the northeast part of the property. The vein is believed to extend over a strike length of 400m and varies

between 1.5m to 0.5m thick. Highlights of the program included 24 grab samples of vein material contained 17.5 to 27.2% copper, up to 37.7 g/t silver, and up to 0.89 g/t gold (SYMC news release December 7, 1998).

1996 - SYMC conducted a trenching and chip sampling program over the Fred and David Showings and the Beach Road mineral occurrence. A limited program of geological mapping was also conducted. This work covered a limited area in the southeastern portion of the property.

1999 - SYMC contracted Canadian Environmental and Metallurgical Inc. (CEMI) who conducted preliminary metallurgical testing of a 25km composite sample from the Dauntless North vein, composed of vein material. Results returned a head grade of 17.61% copper, 0.24 g/t gold, 36.69 g/t silver and 21.11% sulphur and showed recoveries of 99.73% copper, 85.09% gold, 98.72% silver and 99.8% sulphur in the flotation concentrate. CEMI advised that high metal recoveries could be obtained using simple, conventional grinding and flotation circuits (Houle, J. 2007).

2000 - SYMC drilled four short holes to test the down-dip continuity of the Fred Vein. The holes were drilled northeast along the strike of Fred Vein from the 1987-88 holes. Core samples from these holes were destroyed during analyses, and no re-sampling was possible. Core log records however, suggest down-dip continuity of the Fred Vein structure. (documented communication between Mr. J. Houle, P.Eng. and Mr. R. Davey, P. Eng.).

2001 - SYMC conducted a moderate exploration program in the southwest portion of the property and discovered an extension of the Fred Vein. This extended the total known strike length of the Fred Vein to 1000m, leaving it open at both ends. In 2001 a representative sample of Fred Vein material was metallurgically tested by CEMI. The sample returned a head grade of 14.57 g/t gold, 59.66 g/t silver, 0.05% copper, and 3.134% zinc. It produced a flotation concentrate grading 131.31 g/t gold, 349.29 g/t silver, 0.36% copper and 28.50% zinc. It was determined by CEMI that this mineralized vein material would be relatively simple to process (SYMC news release June 7, 2001).

2002 - SYMC took samples of hanging wall and footwall material from the Dauntless North and Fred Vein and contracted CEMI to perform acid-base accounting on them. Acid-base accounting returned neutralizing to acid potential ratios of 4.2 and 4.8, respectively on the material taken from the Dauntless North Vein, indicating that the material sampled had contained neutralizing potential and is not acid generating. Acid-base accounting completed in 2002 on hanging wall and footwall material from the Fred Vein yielded neutralizing to acid potential ratios of 47.6 and undefined, respectively. The undefined value was due to the sulphur content of the sample being less than the analytical detection limit of 0.01%. These results indicated that the material sampled contained strong neutralizing potential and was not acid generating. SYMC also constructed a 1400m excavator road from the shore of Port Alberni Inlet to the dauntless vein, in the northeast portion of the property.

2003-2004 - SYMC linked the excavator road to the local network of logging roads in the northeast portion of the property, uncovering 5-10 sulphidic shear hosted veins running paralleling the road. These 5cm -10cm sulphidic veins were oriented at 150° to 205°, dipping 60° to 80° east. Individual shear veins contained up to 75% sulphides, mainly chalcopyrite, bornite, pyrite and possibly trace amounts of sphalerite, tetrahedrite, native

copper and covellite, and the zone was named the Tasha Zone. Four select grab samples were taken in 2003 of these veins. These samples returned an average grade of 5.58% copper, 0.095% zinc, 8.70 g/tonne Ag and 0.146 g/tonne Au over an average thickness of 0.2 metres (SYMC December 7, 2004 Technical Report). SYMC suggested that the mineralogy and geochemistry found at the Tasha Zone suggested that the property may host Volcanic Redbed copper-silver deposits as well as copper-silver quartz-sulphide stockwork veins (Houle, J. 2007).

2005 - In the spring of 2005, SYMC conducted limited rock sampling and trenching of the Dauntless South adit, which follows a vein oriented at 130/70, and the Herbert Jr. vein, oriented at 080/80. Ten select grab samples were taken from a rock dump and vein mineralization of the Dauntless vein. These samples yielded an average of 10.7% copper, 0.523% zinc, 27.9 grams of silver per tonne and 0.262 grams of gold per tonne over an average thickness of 0.6 metres (SYMC February 7, 2005 press release). Ten chip samples from trenching the Herbert Jr. vein yielded an average of 13.7% copper, 14.8 grams of silver per tonne and 0.294 grams of gold per tonne over an average of 1 metre. (SYMC March 16, 2005 press release).

SYMC also conducted preliminary prospecting in the Bowl Zone in 2005, a coppermolybdenum-gold-silver stockwork vein or disseminated porphyry occurrence located about 1,000 metres northwest of the Fred and David veins. Mapping and chip sampling of the Bowl zone failed to detect any significant in situ mineralization, though mineralized float samples were located in lower areas, suggesting that there may be mineralization under cover, and future drilling to test the Bowl Zone was advised (Houle, J. 2006).

In 2005, SYMC conducted a sequential diamond drilling program designed to delineate four of the more advanced exploration targets. SYMC also contracted Fugro Airborne Surveys Corp. (Fugro) who flew a detailed 1,661 line km. magnetic, electromagnetic and radiometric airborne geophysical program over the Macktush property in September. Several targets were identified. From May to December, 2005 a total of 2,136 metres in 35 holes of diamond drilling was completed on the Herbert Jr. Vein, Tasha Zone, Dauntless North Veins and David Vein (see Table 4 for drill highlights). Along with previous rock chip sample data, this drill data was used to estimate indicated mineral resources for all four zones. Low-angle (5-30 degree) plunge directions were also revealed within the vein systems in the two target areas which were more extensively drilled (the David Vein and Dauntless North Veins) and possibly within Dauntless Herbert Jr. Vein as well, suggesting an orientation which may have property-wide implications (Houle, J. 2006).

Hole	Vein	Interval (m)	Length(m)	Cu %	Ag (g/t)	Au (g/t)
DH-05-03	HJV	99.7-100.2	0.5	5.237	8.800	0.142
DT-05-03	Tasha	15.4 – 43.3	27.9	0.139	0.554	0.004
DV-05-09	DNV3	7.0 - 8.4	1.4	3.309	15.000	0.105
And	DNV4	16.2 – 16.7	0.5	4.261	5.000	0.039
MD-05-01	David	9.0 – 10.7	1.7	0.049	16.000	3.282
MD-05-02	David	9.9 – 11.4	1.5	0.061	16.000	3.159

Table 4 - Drill Highlights from SYMC Resources Ltd. 2005

Several indicated resource estimates were reported by SYMC in the 2006 assessment report (Table 5), updating and replacing prior mineral resource estimates (Houle, 2006).

Vein/Zone	Tonnes	Gold g/t	Silver g/t	Copper %	Category
David Vein	16,278	5.65	25.6	0.310	Indicated
North Veins	14,171	0.043	6.16	2.05	Indicated
Herbert Jr. Vein	8,479	0.118	6.66	5.16	Indicated
Tasha Zone	20,423	0.005	0.564	0.160	Indicated

 Table 5 – Macktush Property Mineral Resource Estimates 2005

2006 - SYMC conducted an advanced prospecting program targeting geophysical targets picked out in the 2005 Fugro airborne survey, including 288 select rock grab samples, 26 stream moss mat samples and 66 soil samples. SYMC also completed an 11 hole diamond drilling program totaling 982 m targeting the Zinc, Jack and Moly Veins, as well as the MC 1, 2 and 3 zones (see Table 6 for drill highlights). Prospecting work returned elevated metal values in rock float and stream moss mat samples with selected highlights as follows:

- Sample 343652 from the West cluster yielded 1.37% Cu and 24.7 ppm Mo from a select grab of float sample of massive iron-copper skarn
- Sample 343856 from the Cous cluster yielded 5.55 g/t Au from a select outcrop grab of a rusty quartz-sulphide vein containing 5% pyrite
- Sample 343892 from the Rex cluster yielded 13.9% Cu, 0.126% Zn, 93.4 ppm Mo, 29 g/t Ag and 2.71 g/t Au from a select outcrop grab of a 0.25 m. thick, banded to brecciated sulphide-quartz vein containing chalcopyrite, bornite and pyrite

This work established the Rex cluster as an outstanding exploration target, with elevated mineralization in rock grab samples and stream moss mat samples. Four new targets in the Cous cluster, plus the West cluster were also identified and further prospecting mapping, sampling, trenching and/or drilling was recommended for all three targets (Houle, J. 2007).

Hole	Vein	Interval (m)	Length(m)	Cu %	Ag (g/t)	Au (g/t)
MC-06-01	MC2	62.5 – 79.1	16.6	0.164	2.051	0.194
Including		70.6 – 71.2	0.6	1.380	15.30	1.193
MC-06-02	MC1	32.5 – 32.8	0.3	1.009	24.00	0.692
MC-06-03	MC-2	70.9 – 72.6	1.7	0.306	4.000	0.218
MJ-06-02	Jack	82.0 - 82.6	0.6	0.020	0.900	2.161

Table 6 - Drill Highlights from SYMC Resources Ltd. 2006

Several indicated resource estimates were reported by SYMC in the 2007 assessment report (Table 7), updating and replacing prior mineral resource estimates (Houle, 2007).

Vein/Zone	Tonnes	Gold g/t	Silver g/t	Copper %	Category
Fred Vein	65,475	13.91	48.1	0.59	Indicated
Zinc Vein	35,710	8.97	44.5	0.57	Indicated
Jack Vein	13,994	2.00	0.8	0.02	Indicated
Moly Vein	504	4.27	1.5	0.01	Indicated
MC1 Zone	21,851	0.26	6.9	0.43	Indicated
MC2 Zone	138,499	0.33	5.2	0.47	Indicated
MC3 Zone	17,618	0.38	1.0	0.05	Indicated

Table 7 – Macktush Property Mineral Resource Estimates 2006

- G4G Resources conducted a partial grid based soil survey to the west of the REX MINFILE showing, and an extensive contour soil survey covering the majority of drainages on the Property, with 241 soil samples taken in total. Highlights included several samples with over 600ppm Cu and over 0.7ppm Ag proximal to the Rex showing. Reconnaissance geological mapping and rock grab sampling were also completed, with sample result highlights of 6.76% Cu and 18.9 ppm Ag from base metal veins near the Dauntless showing. The program supported the Rex showing as a possible target for a copper porphyry style deposit. A new area to the southwest of the Rex showing was also identified by elevated Cu and Ag values in soil samples (Sanabria, et al. 2011).

– Auracle Geospatial Science Inc. completed a satellite remote sensing survey and analyses for Nahminto Resources Ltd. on the entire Macktush Property. Several areas on or near the Property were delineated as prospective targets, including one along the southern boundary of the Property as it existed at the time of the survey. As a result, two additional cell claims totaling 761 hectares were selected to extend the southern boundary of the property on May 8, 2012. An additional cell claim totaling 21 hectares was selected on May 23, 2012 to cover an internal gap between cell and legacy mineral claims. (McLelland, 2012)

– Nahminto Resources Ltd. completed extensive prospecting of both old and new logging road exposures of blasted rock outcrop throughout the Macktush Property. The author visited the Macktush Property to inspect, locate by GPS, sample and map sites of newly discovered or recognized mineralization, including the Christine Zone and Canal Main South Zone.

– Nahminto Resources Ltd. continued prospecting old and new logging road exposures of blasted rock outcrop throughout the Macktush Property. The author visited the Macktush Property to inspect, locate by GPS, sample and map sites of newly discovered or recognized mineralization, including the Canal Main North Zone, Mainline Zone, Quartz Sericite Zone, Quartz Sericite Porphyry Zone, Quartz Vein West Dauntless, West Holk Zone, North Christine Zone and West Christine Zone. On February 4, 2013 the 5 year Amended Mines Act Permit MX-8-32 was issued by the BC Ministry of Energy and Mines to Nahminto Resources Ltd. for a program of road rehabilitation, trenching and up to 20,000 m. of diamond drilling program at the Rex Target.

Name	UTM E.	UTM N.	Elev	Category	Туре	Au	Ag	Cu	Мо	Fe	Lst.
Macktush 092F012	365693	5442798	450	Dev.Prosp.	Porph. Cu-Mo-Au	Au	Ag	Cu	Мо		
Kola/MC 092F103	357702	5450630	640	Prospect	Cu-Ag Qtz. Veins	Au	Ag	Cu			
Holk 092F155	365909	5455028	90	Showing	Cu-Ag Qtz. Veins	Au	Ag	Cu			
Dauntless 092F168	366846	5452780	20	Prospect	Cu-Ag Qtz. Veins	Au	Ag	Cu			
Rex 092F221	360661	5446692	550	Showing	Porph. Cu-Mo-Au			Cu	Мо		
Cous Creek 092F360	360412	5451982		Prospect	Cu Skarn	Au	Ag	Cu		Fe	
Summit 092F361	359708	5453853		Showing	Cu-Ag Qtz. Veins			Cu			
Buck 1 092F362	356650	5452202	520	Showing	Porph. Cu-Mo-Au	Au		Cu			
Bell 092F383	366003	5450576		Showing	Cu-Ag Qtz. Veins			Cu			
Sproat Lk. 092F412	356461	5453505	440	Showing	Sed. Limestone						Lst.
Stamp 3 092F549	366901	5451698	30	Showing	Cu-Ag Qtz. Veins	Au		Cu			
DevilsDen 092F551	364498	5456051	180	Showing	Cu-Ag Qtz. Veins	Au		Cu			
Creek 092F551	356249	5449277	420	Showing	Porph. Cu-Mo-Au			Cu			
Sky 2 092F555	358907	5451031	280	Showing	Cu Skarn			Cu			
Foss 092F614	359881	5452884		Showing	Cu Skarn		Ag	Cu			
J.F. 092F617	365427	5451826	200	Showing	Qtz. Vein	Au					
Fosselli Ck. Rd. 092F618	360179	5450458	650	Showing	Cu Skarn	Au		Cu			
Rex East 092F619	361158	5446309		Showing	Porph. Cu-Mo-Au	Au	Ag	Cu	Мо		
Rex South East 092F629	361754	5445861		Showing	Porph. Cu-Mo-Au			Cu			
Dauntless Vein L. Adit	366705	5452670	92	Prospect	Qtz.Vein	Au	Ag	Cu			
Dauntless Vein U. Adit	366686	5452667	96	Prospect	Qtz.Vein	Au	Ag	Cu			
Dauntless S. Vein Adit	366755	5452201	79	Showing	Qtz.Vein	Au	Ag	Cu			
Herbert Jr. Vein	366766	5452277	75	Prospect	Qtz.Vein	Au	Ag	Cu			
Sara Vein	366797	5452362	59	Showing	Qtz.Vein						
Vein S. of Sara Vein	366822	5452425	56	Showing	Qtz.Vein						
Sara Vein Adit	366821	5452337	49	Showing	Qtz.Vein						
Middle Vein	366768	5452251	70	Showing	Qtz.Vein						
Tasha Zone	366533	5453382	52	Prospect	RedBed?		Ag	Cu			
Mainline Pit	364370	5452743	181	Showing	Qtz.Vein	Au	Ag	Cu	Мо		
Beach Adit	366874	5452318	-4	Showing	Qtz.Vein			Cu			
Upper Adit	366812	5452351	32	Showing	Qtz.Vein		Ag	Cu			
Flat Vein	366809	5452653	50	Showing	Qtz.Vein			Cu			
Stamp 3 Adit	366953	5451568	3	Showing	Qtz.Vein	Au	Ag	Cu			
South Adit	366869	5452229	5	Showing	Qtz.Vein			Cu			
Quartz Sericite Alt'n.	362316	5447651	691	Showing	?						
Sericite Zone	366297	5456424	28	Showing	?						
Quartz Sericite Alt'n.	364479	5454344	234	Showing	?						
Quartz Sericite Porphyry	364575	5453874	229	Showing	Porphyry						
Quartz Sericite Alt'n.	364621	5453255	207	Showing	?						

Table 8 – Macktush Property Mineral Occurrences

Quartz Sericite Altn.	364717	5452591	163	Showing	?	Au	Ag	Cu			
Qtz. Vein W. Dauntless	362712	5455177	316	Showing	Qtz.Vein						
Porphyry W. Dauntless	361569	5454469	414	Showing	Porphyry						
Quartz Sericite Alt'n.	366895	5451831	4	Showing	?						
Upper Holk	365600	5454850	150	Showing	Qtz.Vein	Au	Ag	Cu			
Mainline North	364450	5454450	250	Showing	Qtz.Vein	Au	Ag	Cu			
Porphyry	366000	5453250	250	Showing	Porphyry	Au	Ag	Cu			
Mainline	365150	5450850	200	Showing	Porphyry	Au	Ag	Cu			
Fred Vein Adit	364929	5443574	562	Prospect	Qtz.Vein	Au	Ag	Cu	Мо		
David Vein Trench	365001	5443649	540	Prospect	Qtz.Vein	Au	Ag	Cu			
Sy Vein Trench	365056	5443153	650	Showing	Qtz.Vein	Au	Ag	Cu			
Jack Vein	364707	5443272	752	Showing	Qtz.Vein	Au	Ag	Cu			
Upper Bowl Zone	363619	5444427		Showing	Qtz.Vein		Ag	Cu	Мо		
Branch 1111	363556	5445319		Showing	Porphyry	Au	Ag	Cu			
Epi. Vn. W. Macktush	362768	5443415	847	Showing	Qtz.Vein						
Skarn/Marble Pod	362614	5443335	836	Showing						Skarn	Marble
Skarn/Marble Pod	362538	5443335	830	Showing						Skarn	Marble
Flat Vein W. Macktush	361870	5443896	820	Showing	Qtz.Vein						
Rex creek bed	360652	5446351	574	Showing	Porphyry						
The Pit	360137	5445833	687	Showing	Porphyry						
Canal Main #1	364200	5451840	171	Showing	Porphyry			Cu			
Qtz. Vein S. Macktush	361862	5442864	204	Showing	Qtz.Vein						
Qtz. Str'rs. S. Macktush	362480	5442551	199	Showing	Qtz.Vein						
Canal Main Roadcut	366092	5449176	34	Showing	Qtz.Vein			Cu			
Porphyry	363550	5446000	500	Showing	Porphyry						
Branch 1111 North	363550	5445350	700	Showing	?	Au	Ag	Cu			
North Bowl Zone	363600	5444700	700	Showing	?	Au	Ag	Cu			
Cu-Fe Skarn	363650	5444400	800	Showing	Fe Skarn			Cu		Mt.	
North Bowl Zone	363600	5444350	800	Showing	Qtz.Vein		Ag	Cu			
Lower Bowl Zone	364100	5444250	550	Showing	Qtz.Vein	Au	Ag	Cu			
South Bowl Zone	364050	5444100	600	Showing	Qtz.Vein	Au	Ag	Cu			
Fe-Cu Skarn	364350	5443100	750	Showing	Fe Skarn			Cu		Mt.	
W. Macktush	361650	5443150	350	Showing	Qtz.Vein	Au	Ag	Cu			
W. Macktush Porphyry	360700	5444000	350	Showing	Porphyry	Au	Ag	Cu			
Canal Main South	367570	5443867	32	Showing	Porphyry Cu-Mo		Ag	Cu	Мо		
West Dauntless	362717	5455185	316	Showing	Qtz. Vein		Ag	Cu			
Christine Zone	364358	5454297	277	Showing	Qtz. Vein		Ag	Cu			

The indicated mineral resource estimates for all veins/zones tested by drilling completed to date on the Property are clearly too small and/or of too low grades to consider being subjected to scoping or other economic studies at this time. However, the estimates do provide baselines from which to measure possible future increases in mineral resources

if additional drilling or other work is successful in increasing the sizes and/or grades of the veins/zones, as per the recommendations in this report.

Vein/Zone	Tonnes	Gold g/t	Silver g/t	Copper %	Category	Source
David Vein	16,278	5.65	25.6	0.31	Indicated	Houle, J. 2006
Fred Vein	65,475	13.91	48.1	0.59	Indicated	Houle, J. 2007
Zinc Vein	35,710	8.97	44.5	0.57	Indicated	Houle, J. 2007
Jack Vein	13,994	2.00	0.8	0.02	Indicated	Houle, J. 2007
Moly Vein	504	4.27	1.5	0.01	Indicated	Houle, J. 2007
Dauntless North Veins	14,171	0.04	6.2	2.05	Indicated	Houle, J. 2006
Herbert Jr. Vein	8,479	0.12	6.7	5.16	Indicated	Houle, J. 2006
Tasha Zone	20,423	0.01	0.6	0.16	Indicated	Houle, J. 2006
MC1 Zone	21,851	0.26	6.9	0.43	Indicated	Houle, J. 2007
MC2 Zone	138,499	0.33	5.2	0.47	Indicated	Houle, J. 2007
MC3 Zone	17,618	0.38	1.0	0.05	Indicated	Houle, J. 2007

Table 9 - Macktush Property Mineral Resource Estimate Summary by Vein/Zone

List of claims and work completed

From October 21, 2013 to December 9, 2014 intermittently for a total of 108 days, prospector Herb McMaster of Port Alberni, occasionally accompanied by others, used a 4x4 truck to locate and access old and new logging road exposures of blasted rock outcrop mainly in the northeast part of the Macktush Property. Mr. McMaster carefully prospected each new blasted rock outcrop exposure by walking along the road ditches, breaking selected and random rocks with a hammer, inspecting them for possible sulphide mineralization with a hand lens, tracing any mineralized rocks to their outcrop sources in the roadcuts, and flagging those sites with flagging tape. Due to a lack of available maps of the new roads, those lacking any apparent mineralization in blasted rock or bedrock have not been spatially located, with approximate prospecting traverses shown in Figure 2, and prospecting dates and observations shown in Appendix 2.

On October 22-23, 2014 the author visited the Macktush Property for a total of 2 days to inspect, locate by GPS, sample and map sites of newly discovered mineralization in areas of available access, accompanied by Mr. Herbert McMaster Sr. and Mr. Herbert McMaster Jr. On those dates the author collected 7 rock samples from the Macktush Property in 3 areas at sites shown on Figure 3, situated on mineral claims 512247 (3 samples in the MC Area shown on Figure 4), 833065 (2 samples in the Cous South Area shown on Figure 5), and 530258 (2 samples in the Canal Main West Area shown on Figure 6). All 7 rock samples are located in or adjacent to rock cuts of logging roads, and consist of outcrop samples, with sample site details shown in Appendix 1.

All 7 rock samples were taken in duplicate, and one of each duplicate sample pair was sent on October 24, 2014 by the author via Greyhound Bus Parcel Express to AGAT Laboratories in Burnaby, B.C. for geochemical analysis, as per the chain of custody form which appears in Appendix 1. The other duplicate sample pair was retained by the author, cut into 1 to 2 cm. thick slabs by the author using a rock saw, and analyzed using

a binocular microscope with descriptions shown in Appendix 1. On November 28, 2014 final geochemical results were received from AGAT Laboratories in Report 14V908379, which is also shown in Appendix 1.

Technical Data, Interpretation, Conclusions and Recommendations

The 2014 rock sample geochemistry data has been compiled with historic geochemistry data from the Macktush Property accumulated and documented by the author since 2003. Primarily the 2014 data is presented in detail in this report; historic data has been presented in previous assessment reports completed and submitted by the author (ARIS Report 28497, Houle, 2006; ARIS Report 28989, Houle, 2007; ARIS Report 33217, Houle, 2012; ARIS Report 34121, Houle 2013). Locations of historic mineral occurrences documented on the Macktush Property also appear in Figure 3.

Elevated geochemistry values in target and/or indicator elements were obtained from 6 of the 7 rock samples, including highly elevated values in copper, silver and gold plus indicator elements from 4 samples, which will be described by location as follows:

MC Area Mineral Claim 512247:

E5123183 - UTM 357769E 5450761N 605 m. elev.

Select outcrop grab sample taken by the author along the west side of the recently refurbished Cous 405 Road approximately 150 m. northeast of, and possibly contiguous with, the MC Zone from a 0.1 m. thick, locally magnetic copper skarn zone @ 235/70 hosted by silicified and chloritic mafic volcanics, containing 45% zoned massive sulphides including chalcopyrite, pyrite, pyrrhotite, magnetite and malachite. This sample yielded values of 9.46% or 94600 ppm copper, 89.6 g/t or ppm silver, 6.59 g/t or 6590 ppb gold, 367 ppm zinc, 674 ppm nickel, 660 ppm cobalt and 370 ppm arsenic. Geochemistry highlights appear in Figure 7. These results potentially extend the MC Zone, which was diamond drill tested by 3 short holes in 2005 (ARIS Report 28989, Houle, 2005) to the north. Additional detailed prospecting, detailed geological mapping and additional diamond drilling are recommended for this area.

E5123184 and E 5123185 – UTM 357715E 5450582 615 m. elev.

Select outcrop grab samples taken by the author along the west side of the recently refurbished Cous 405 Road at the MC Zone, consisting of a 0.5 m. thick, locally magnetic copper skarn zone @ 200/70 hosted by silicified and chloritic mafic volcanics. Sample E5123184 was taken from a chalcopyrite-rich portion of the zone containing 75% zoned massive sulphides including chalcopyrite, pyrite, sphalerite and a grey felted sulphide. This sample yielded values of 2.62% or 26200 ppm copper, 49.4 g/t or ppm silver, 1.31 g/t or 1310 ppb gold, 405 ppm zinc, 373 ppm nickel, 1150 ppm cobalt, 803 ppm arsenic, 34 ppm antimony and 64 ppm selenium. Sample E5123185 was taken from a pyrrhotite-rich portion of the zone containing 75% zoned massive sulphides including pyrite, pyrrhotite, chalcopyrite, magnetite, malachite and a grey felted sulphide. This sample yielded values of 1.04% or 10400 ppm copper, 30.3 g/t or ppm silver, 244 ppb gold, 401 ppm zinc, 393 ppm nickel, 1190 ppm cobalt, 1180 ppm arsenic, 38 ppm antimony and 66 ppm selenium. Geochemistry highlights appear in Figure 7. These

results are consistent with historical 1990's trench sampling from the MC Zone (documented in ARIS Report 28989, Houle, 2005). Detailed geological mapping and additional diamond drilling are recommended for this area.

Cous South Area Mineral Claim 833065:

E5123182 - UTM NAD83 Zone 10N 358314E 5449349N 872 m. elev.

Select outcrop grab sample taken by the author along the south side of the recently extended Cous 405 Road from a 0.5 m. thick sulphide-quartz stockwork zone @ 245/50 hosted by highly silicified probable mafic volcanics, containing 25% massive to net-textured sulphides consisting mainly of mainly pyrite, plus chalcopyrite and a grey felted sulphide mineral. This sample yielded values of 2880 ppm copper, 3.2 ppm silver, 120 ppb gold, 299 ppm arsenic and 78 ppm selenium. This sample is located approximately 700 m. southwest and possibly along strike of the MC Zone. Sample E5123181 was taken by the author from a similar but narrower structure located approximately 300 m. southwest and over a small knoll from sample E 5123182, and yielded lower geochemistry values. Geochemistry highlights for both samples appear in Figure 8. Additional detailed prospecting, geological mapping and possibly soil geochemistry are recommended over this area.

Canal Main West Area Mineral Claim 530258:

E5123186 - UTM NAD 83 Zone 10N 366918E 5443314N 160 m. elev.

Select outcrop grab sample taken by the author along the south side of an un-named logging road extending west from the Canal Main Road from a 10 m. wide rusty zone of granodiorite containing 10% quartz stringers @ 060/80 plus minor tourmaline, epidote, chlorite and calcite. This sample yielded values of 683 ppm copper and 0.458% sulphur. The sample is located approximately 800 m. southwest and possibly along strike from samples E5123067 and E5123068 taken by the author in 2012 (ARIS Report 33217, Houle 2012). Sample E5123187 was taken by the author from a single 0.25 m. thick quartz-chlorite vein located 5 m. east of sample E5123186, and yielded lower geochemistry values. Geochemistry highlights for both samples appear in Figure 9. Additional detailed prospecting, geological mapping and possibly soil geochemistry are recommended over this area.

The Macktush Property is an excellent and large exploration property with multiple targets of porphyry, skarn and epithermal veins at different stages of advancement. The three target areas explored in 2014 and other known targets and un-explored areas on the Property warrant continued systematic exploration programs. A 2 phase, 2 year, \$2.15 million exploration work program is proposed for the Macktush Property, summarized in Table 10 with key points for year 1 as follows:

Phase 1 Year 1 - \$850,000

- Prospector to continue inspecting and if warranted, prospecting new logging roads, and to establish and maintain cooperation with tenure holders
- Geologists and field assistants to conduct GPS-grid based soil geochemistry, prospecting and mapping of Rex target extensions, Cous target, and West target,

plus assumed other new target derived from geophysics; geologist to model data as received to establish priority trenching and drilling targets

- Prospector to supervise construction of new access trails and repairs to existing roads, subject to existing permit conditions and future amendments, required to undertake trenching and diamond drilling of priority targets, supervised by Geologist, with all required reports to follow
- Phase 2 Year 2 program and other future programs subject to change based on results and recommendations from Phase 1 Year program.

	Phase 1 – Year 1		-		
Item	Units	Unit Cost	Scheduling	Prog	gram Cost
Prospecting	40 days for 1 prospector	\$500 per day	Summer	\$	20,000
Geochemistry/geology - Rex target	10 days for 1 geologist, 3 samplers	\$5,000 per day	Summer	\$	50,000
Geochemistry/geology - Cous target	10 days for 1 geologist, 3 samplers	\$5,000 per day	Summer	\$	50,000
Geochemistry/geology - West target	10 days for 1 geologist, 3 samplers	\$5,000 per day	Summer	\$	50,000
Geochemistry/geology - Other target	10 days for 1 geologist, 3 samplers	\$5,000 per day	Summer	\$	50,000
Access trails / road repairs/trenching	20 days for 1 backhoe, 1 prospector	\$2,500 per day	Fall	\$	50,000
Diamond Drilling – 2000 metres	30 days,1 drill, 1 geologist, 1 sampler	\$250 per metre	Fall	\$	500,000
Reports	20 days for 1 geologist	\$750 per day	Winter	\$	15,000
Contingency				\$	65,000
Phase 1 Sub-total			1 Year	\$	850,000
	Phase 2 – Year 2		1		
Item	Units	Unit Cost	Scheduling	Prog	gram Cost
Access trails / road repairs/trenching	20 days for 1 backhoe, 1 prospector	\$2,500 per day	Spring	\$	50,000
Prospecting	20 days for 1 prospector	\$500 per day	Spring	\$	10,000
Property geological mapping	30 days for 1 geologist, 1 assistant	\$2,500 per day	Summer	\$	75,000
Geochemistry/geology - Other target	10 days for 1 geologist, 3 samplers	\$5,000 per day	Summer	\$	50,000
Diamond Drilling – 4000 metres	60 days, 1 drill, 1 geologist, 1 sampler	\$250 per metre	Summer/Fall	\$	1,000,000
Reports	20 days for 1 geologist	\$750 per day	Winter	\$	15,000
Contingency				\$	100,000
Phase 2 Sub-total			1 Year	\$	1,300,000
	Phases 1 and 2 (2 Years)		1		
Phases 1 and 2 Combined			2 years	\$	2,150,000

Table 10 – Macktush Property Proposed Work Program

Additional work programs may be recommended conditional upon results. Respectfully submitted by:

Jacques Houle, P.Eng.

Author's Qualifications

I, Jacques Houle, P.Eng. do hereby certify that:

I am currently self-employed as a consulting geologist by: Jacques Houle, P.Eng. Mineral Exploration Consulting 6552 Peregrine Road, Nanaimo, British Columbia, Canada V9V 1P8

I graduated with a Bachelor's of Applied Science degree in Geological Engineering with specialization in Mineral Exploration from the University of Toronto in 1978.

I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia, the Society of Economic Geologists, the Association for Mineral Exploration British Columbia, and the Vancouver Island Exploration Group; I am also a member of the Technical Advisory Committee for Geoscience B.C., and of the advisory committee for the Earth Science Department of Vancouver Island University.

I have worked as a geologist for 36 years since graduating from university, including 5 years as a mine geologist in underground gold and silver mines, 15 years as an exploration manager, 3 years as a government geologist and 11 years as a mineral exploration consultant.

I previously worked on the Macktush Property from 2003 to 2007, and from 2011 to 2014, and I am independent of both Nahminto Resources Ltd. and World Organics Inc.

Dated this 15th Day of December, 2014.

Signature of Author

Jacques Houle, P.Eng Print name of Author

References

B. C. Ministry of Energy and Mines websites:

Assessment Reports

http://www.empr.gov.bc.ca/Mining/Geoscience/ARIS/Pages/default.aspx

Landowner Notification

http://www.empr.gov.bc.ca/Titles/MineralTitles/Admin/Notices/Pages/LandownerNotification.aspx

MapPlace

http://www.empr.gov.bc.ca/Mining/Geoscience/MapPlace/Pages/default.aspx

Mineral Deposit Profiles http://www.empr.gov.bc.ca/Mining/Geoscience/MineralDepositProfiles/Pages/default.aspx

MINFILE http://www.em.gov.bc.ca/Mining/Geolsurv/Minfile/

Ministry Publications http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/Pages/default.aspx

Mineral Titles Online https://www.mtonline.gov.bc.ca/mtov/home.do

Appendix 1

Sampling and Geochemistry Data

Chain of Custody Record - Mining	Lab	or	atc	ories		web	minir	ng.aş P:	g atlab 905.5	s.com 01.999	5623 Mi Mi • www. 98 - F: 9	McA ssis aga	dam saug L42 Itlabs .501.	Road a, ON 1N9 5.com	Laboratory Use Only Arrival Condition: Good Poor (complete notes) AGAT WO#:
Report To Company: Jacques Houle P.Eng. Mineral Exploration Cor Contact: Jacques Houle	ראב ר <u>ינו</u> א ב E	epor ame: mail:	t Info Jaco jhou	ormation ques Hou ule06@st	ule naw.c	ca						epo S J F	ort Fo Single Packa Der pa	rmat ge ge	Turnaround Time Required (TAT)
Address: 6552 Peregrine Road Nanaimo, B.C. V9V 1P8 Phone: 250-390-3930 Fax:	A	analys ame: mail:	Jaco jhou	uthorizat ques Hou ule06@sl	ion ule naw.c	ca						N P E] F	Aultip Packa per pa Excel Forma nclud	le ges ge t ed	Rush surcharges may apply Material Matter Drill Core Pulp Z Rock Water
Client Project #:		+ Re if Mo>50 ppm	f base metals over limit			AGAT	Anal	ysis	Metho	d					Image: Second state Image: Second state Image: Second state Image: Second state
Sample Sequence Number From To	ty	201-070	201-072												226-001 □ Other
															Sample Storage (Pulp and Reject Material Handling Upon Analysis Completion) Return to Client Discard Material Store Reject for 60 days (and return to client) Store Pulp for 90 days (and return to client) Store beyond 60/90 days (Storage fees apply)
Samples Relinquished by (print name & sign): Jacques Houle Date/1	Time	Special Instruction							Courier Greyhound Bus Parcel Express Print Name						
Jacques Houle Jate/Time Samples Received by (print name & sign): Date/Time Include disposal fee with invoice for analyses											Date Page 1 of 1				

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION 6552 PEREGRINE ROAD NANAIMO, BC V9V1P8 (250) 390-3930

ATTENTION TO: JACQUES HOULE

PROJECT:

AGAT WORK ORDER: 14V908379

SOLID ANALYSIS REVIEWED BY: Yufei Chen, Lab Co-ordinator

DATE REPORTED: Nov 27, 2014

PAGES (INCLUDING COVER): 8

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 14V908379 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

			(2	201-070)	4 Acid Di	igest - Me	etals Pac	kage, IC	P-OES fi	nish					
DATE SAMPLED: Oc	t 29, 2014			DATE REC	EIVED: Oct	28, 2014		DATE	REPORTED): Nov 27, 2	014	SA	MPLE TYPE	: Rock	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5123181 (6006088)		0.8	3.46	151	10	<0.5	<1	0.19	<0.5	9	156	81.0	630	14.3	12
E5123182 (6006089)		3.2	4.29	299	<1	<0.5	<1	0.13	<0.5	7	221	31.1	2880	29.2	30
E5123183 (6006090)		89.6	1.20	370	<1	<0.5	<1	0.03	4.2	6	660	28.2	>10000	26.8	15
E5123184 (6006091)		49.4	0.58	803	<1	<0.5	<1	0.26	<0.5	7	1150	14.2	>10000	38.4	17
E5123185 (6006092)		30.3	0.48	1180	<1	<0.5	<1	0.21	<0.5	6	1190	18.9	>10000	42.8	16
E5123186 (6006093)		0.7	6.66	19	315	0.7	<1	3.21	<0.5	31	33.2	18.2	683	4.22	13
E5123187 (6006094)		0.6	2.92	11	297	0.5	<1	0.09	<0.5	34	2.0	50.6	58.5	0.98	6
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.005	1
E5123181 (6006088)		<1	0.04	5	12	2.40	670	0.6	0.02	47.6	285	2	<10	6.92	2
E5123182 (6006089)		<1	0.03	3	16	1.93	420	1.8	0.01	68.5	343	15	<10	>10	12
E5123183 (6006090)		6	0.01	3	3	0.70	620	<0.5	<0.01	674	47	12	<10	>10	8
E5123184 (6006091)		<1	0.01	<2	2	0.27	383	4.4	<0.01	373	80	<1	<10	>10	34
E5123185 (6006092)		<1	0.02	<2	2	0.21	537	6.2	<0.01	393	29	<1	<10	>10	38
E5123186 (6006093)		<1	1.24	15	7	1.14	901	<0.5	1.69	12.4	542	<1	51	0.458	1
E5123187 (6006094)		<1	1.18	16	4	0.18	244	4.0	0.71	2.3	20	3	54	0.024	1
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ті	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5123181 (6006088)		17	21	<5	10	<10	<10	<5	0.31	<5	<5	164	<1	4	88.3
E5123182 (6006089)		7	78	<5	6	<10	<10	<5	0.11	<5	<5	167	<1	5	65.1
E5123183 (6006090)		3	17	<5	26	11	19	<5	0.02	<5	<5	73.7	<1	2	367
E5123184 (6006091)		1	64	<5	14	<10	<10	<5	0.01	<5	<5	16.3	<1	3	405
E5123185 (6006092)		<1	66	<5	12	<10	13	<5	0.01	<5	<5	7.9	<1	2	401
E5123186 (6006093)		14	21	<5	251	<10	<10	6	0.19	<5	<5	87.7	<1	29	75.6
E5123187 (6006094)		2	<10	<5	24	<10	<10	56	0.04	<5	<5	19.5	1	30	13.3

Certified By:

M. che

Certificate of Analysis

AGAT WORK ORDER: 14V908379 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish													
DATE SAMPLED: Oct 29, 2014 DATE RECEIVED: Oct 28, 2014 DATE REPORTED: Nov 27, 2014 SAMPLE TYPE: Rock													
	Analyte:	Zr	Cu-OL										
	Unit:	ppm	%										
Sample ID (AGAT ID)	RDL:	5	0.01										
E5123181 (6006088)		20											
E5123182 (6006089)		7											
E5123183 (6006090)		<5	9.46										
E5123184 (6006091)		<5	2.62										
E5123185 (6006092)		<5	1.04										
E5123186 (6006093)		21											
E5123187 (6006094)		426											

Comments: **RDL** - Reported Detection Limit

6006088-6006094 As, Sb values may be low due to digestion losses.

Certified By:

J. che

Certificate of Analysis

AGAT WORK ORDER: 14V908379 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)											
DATE SAMPLED: Oc	29, 2014			DATE RECEIVED: Oct 28, 2014	DATE REPORTED: Nov 27, 2014	SAMPLE TYPE: Rock						
	Analyte:	Sample Login Weight	Au									
	Unit:	kg	ppm									
Sample ID (AGAT ID)	RDL:	0.01	0.001									
E5123181 (6006088)		1.23	0.079									
E5123182 (6006089)		1.35	0.120									
E5123183 (6006090)		1.45	6.59									
E5123184 (6006091)		1.06	1.31									
E5123185 (6006092)		1.10	0.244									
E5123186 (6006093)		1.01	0.024									
E5123187 (6006094)		0.91	0.002									

Comments: RDL - Reported Detection Limit

Certified By:

J. che - .

Quality Assurance - Replicate AGAT WORK ORDER: 14V908379 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

	(201-070) 4 Acid Digest - Metals Package, ICP-OES finish													
		REPLIC	ATE #1			REPLIC	ATE #2							
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD						
Ag	6006088	0.8	0.8	0.0%	6006094	0.60	0.54	10.5%						
AI	6006088	3.46	3.30	4.7%	6006094	2.92	3.29	11.9%						
As	6006088	151	156	3.3%	6006094	11	7							
Ва	6006088	10	9	10.5%	6006094	297	309	4.0%						
Be	6006088	< 0.5	< 0.5	0.0%	6006094	0.5	0.5	0.0%						
Bi	6006088	< 1	< 1	0.0%	6006094	< 1	< 1	0.0%						
Са	6006088	0.19	0.18	5.4%	6006094	0.09	0.09	0.0%						
Cd	6006088	< 0.5	< 0.5	0.0%	6006094	< 0.5	< 0.5	0.0%						
Се	6006088	9	9	0.0%	6006094	34	36	5.7%						
Co	6006088	156	153	1.9%	6006094	2.03	2.31	12.9%						
Cr	6006088	81.0	98.3	19.3%	6006094	50.6	53.7	5.9%						
Cu	6006088	630	598	5.2%	6006094	58.5	55.8	4.7%						
Fe	6006088	14.3	13.8	3.6%	6006094	0.98	1.02	4.0%						
Ga	6006088	12	11	8.7%	6006094	6	6	0.0%						
In	6006088	< 1	< 1	0.0%	6006094	< 1	< 1	0.0%						
к	6006088	0.036	0.032	11.8%	6006094	1.18	1.26	6.6%						
La	6006088	5	5	0.0%	6006094	16	17	6.1%						
Li	6006088	12	12	0.0%	6006094	4	4	0.0%						
Mg	6006088	2.40	2.26	6.0%	6006094	0.18	0.19	5.4%						
Mn	6006088	670	623	7.3%	6006094	244	253	3.6%						
Мо	6006088	0.6	1.1		6006094	4.0	1.8							
Na	6006088	0.02	0.02	0.0%	6006094	0.71	0.72	1.4%						
Ni	6006088	47.6	46.3	2.8%	6006094	2.33	2.60	11.0%						
Р	6006088	285	249	13.5%	6006094	20	25	22.2%						
Pb	6006088	2	< 1		6006094	3	2							
Rb	6006088	< 10	< 10	0.0%	6006094	54	57	5.4%						
S	6006088	6.92	6.67	3.7%	6006094	0.024	0.027	11.8%						
Sb	6006088	2	6		6006094	1	< 1							
Sc	6006088	17	16	6.1%	6006094	2	2	0.0%						
Se	6006088	21	< 10		6006094	< 10	< 10	0.0%						
Sn	6006088	< 5	< 5	0.0%	6006094	< 5	< 5	0.0%						

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

Quality Assurance - Replicate AGAT WORK ORDER: 14V908379 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Sr	6006088	10	9	10.5%	6006094	24	23	4.3%						
Та	6006088	< 10	< 10	0.0%	6006094	< 10	< 10	0.0%						
Те	6006088	< 10	< 10	0.0%	6006094	< 10	< 10	0.0%						
Th	6006088	5	6	18.2%	6006094	56	56	0.0%						
Ti	6006088	0.309	0.303	2.0%	6006094	0.04	0.04	0.0%						
ТІ	6006088	< 5	< 5	0.0%	6006094	< 5	< 5	0.0%						
U	6006088	< 5	< 5	0.0%	6006094	< 5	< 5	0.0%						
V	6006088	164	159	3.1%	6006094	19.5	18.8	3.7%						
W	6006088	< 1	< 1	0.0%	6006094	1	< 1							
Y	6006088	4	4	0.0%	6006094	30	30	0.0%						
Zn	6006088	88.3	84.4	4.5%	6006094	13.3	15.0	12.0%						
Zr	6006088	20	29		6006094	426	398	6.8%						
			•	(20	02-052) F	Fire Ass	ay - Tra	ice Au,	CP-OES	S finish (ppm)		•	
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Au	6006088	0.0793	0.0850	6.9%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14V908379 PROJECT: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				(201	-070) 4	Acid D	igest -	Metals Pa	ackage,	ICP-OE	S finis	h		
		CRM #1 ((ref.GTS-2a))										
Parameter	Expect	Actual	Recovery	Limits										
AI	6.96	6.31	91%	90% - 110%										
As	124	128	103%	90% - 110%										
Ва	186	175	94%	90% - 110%										
Ca	4.01	4.25	106%	90% - 110%										
Ce	24	22	92%	90% - 110%										
Со	22.1	21.2	96%	90% - 110%										
Cu	88.6	90.6	102%	90% - 110%										
Fe	7.56	7.44	98%	90% - 110%										
к	2.021	2.026	100%	90% - 110%										
Mg	2.412	2.327	96%	90% - 110%										
Mn	1510	1520	101%	90% - 110%										
Na	0.617	0.586	95%	90% - 110%										
Ni	77.1	76.3	99%	90% - 110%										
Р	892	945	106%	90% - 110%										
S	0.348	0.352	101%	90% - 110%										
Sr	92.8	89.1	96%	90% - 110%										
Zn	208	192	92%	90% - 110%										
				(20)2-052)	Fire As	say - T	race Au,	ICP-OE	S finish	(ppm)			
	CRM #1 (ref.1P5K)													
Parameter	Expect	Actual	Recovery	Limits										
Au	1.44	1.39	97%	90% - 110%										

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION PROJECT: AGAT WORK ORDER: 14V908379 ATTENTION TO: JACQUES HOULE

SAMELING SITE.		SAMFLED DT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag	MIN-200-12002/12020		ICP/OES
AI	MIN-200-12002/12020		ICP/OES
As	MIN-200-12002/12020		ICP/OES
Ва	MIN-200-12002/12020		ICP/OES
Ве	MIN-200-12002/12020		ICP/OES
Ві	MIN-200-12002/12020		ICP/OES
Са	MIN-200-12002/12020		ICP/OES
Cd	MIN-200-12002/12020		ICP/OES
Се	MIN-200-12002/12020		ICP/OES
Co	MIN-200-12002/12020		ICP/OES
Cr	MIN-200-12002/12020		ICP/OES
Cu	MIN-200-12002/12020		ICP/OES
Fe	MIN-200-12002/12020		ICP/OES
Ga	MIN-200-12002/12020		
	MIN 200 12002/12020		
	MIN-200-12002/12020		
	MIN-200-12002/12020		
La	MIN-200-12002/12020		
	MIN-200-12002/12020		
Mg	MIN-200-12002/12020		ICP/OES
Mn	MIN-200-12002/12020		ICP/OES
Mo	MIN-200-12002/12020		ICP/OES
Na	MIN-200-12002/12020		ICP/OES
Ni	MIN-200-12002/12020		ICP/OES
Р	MIN-200-12002/12020		ICP/OES
Pb	MIN-200-12002/12020		ICP/OES
Rb	MIN-200-12002/12020		ICP/OES
S	MIN-200-12002/12020		ICP/OES
Sb	MIN-200-12002/12020		ICP/OES
Sc	MIN-200-12002/12020		ICP/OES
Se	MIN-200-12002/12020		ICP/OES
Sn	MIN-200-12002/12020		ICP/OES
Sr	MIN-200-12002/12020		ICP/OES
Та	MIN-200-12002/12020		ICP/OES
Те	MIN-200-12002/12020		ICP/OES
Th	MIN-200-12002/12020		ICP/OES
Ті	MIN-200-12002/12020		ICP/OES
ті	MIN-200-12002/12020		ICP/OES
U	MIN-200-12002/12020		ICP/OES
V	MIN-200-12002/12020		ICP/OES
W	MIN-200-12002/12020		ICP/OES
Y	MIN-200-12002/12020		ICP/OES
Zn	MIN-200-12002/12020		ICP/OES
 7r	MIN-200-12002/12020		ICP/OES
 Cu-Ol	MIN-200-12002/12020		ICP/OES
Sample Login Weight	MIN-12009		BALANCE
	12000	BUGBEE E. A Textbook of Fire	
Au	MIN-200-12006	Assaving	ICP-OES

2003-2014 Rock Sample Locations for Macktush Project

		•					
Sample # Da	ate	Sampler	Location	Details	Easting	Northing	Elevation
E5123181	22-Oct-14	J.Houle	Cous South - east side roadcut	Select outcrop grab from 0.15 m. thick quartz-sulphide stockwork zone @ 300/70 in mafic volcanics; contains 10% quartz, 5% pyrite, 5% FeOx	358007	5449264	840
E5123182	22-Oct-14	J.Houle	Cous South - west side roadcut	Select outcrop grab from 0.5 m. thick sulphide-quartz stockwork zone @ 245/50 in mafic volcanics; contains 10% silica/quartz, 15% pyrite, traces Cpy, Bo, 5% FeOx	358314	5449349	872
E5123183	22-Oct-14	J.Houle	MC North - Cous 405 w. side rdcut	Select outcrop grab from 0.1 m. rusty, sulphide zone @ 235/70 in mafic volcanics; contains 25% jarosite, 10% cpy, 15% FeO, trace malachite	357769	5450761	605
E5123184	22-Oct-14	J.Houle	MC Zone - Cous 405 w. side rdcut	Select outcrop grab from 0.5 m. thick Cpy-rich portion of sulphide zone @ 200/70 in mafic volcanics; contains 25% silica+chlorite, 10% Cpy, 5% Po, 25% FeOx, trace malachite	357715	5450582	615
E5123185	22-Oct-14	J.Houle	MC Zone - Cous 405 w. side rdcut	Select outcrop grab from 0.5 m. thick Po-rich portion of sulphide zone @ 200/70 in mafic volcanics; contains 25% silica+chlorite, 25% Po, 2% Cpy, 15% FeOx	357715	5450582	615
E5123186	23-Oct-14	J.Houle	Logging Rd W Canal Mn - s. side rd.	Random outcrop grab from 10 m. wide rusty zone of granodiorite containing 10% quartz stringers @ 060/80; contains 15% silica/quartz, 5% chlorite, 5% FeOx	366918	5443314	160
E5123187	23-Oct-14	J.Houle	Logging Rd W Canal Mn - s. side rd.	Select outcrop grab from 0.25m. Thick rusty quartz-chlorite vein @ 0/60 in granodiorite 5m. east of E5123186; contains 75% silica, 19% chlorite, 5% FeOx	366925	5443315	159

2003-	2003-2014 Sample Descriptions for Macktush Project																									
Sampl	e#D	escription																								
E51231	81 G	reen, white and I	ronze, locally	vuggy and r	usty 25% (quartz-sulpl	nide stockw	ork veins in	chloritic, fi	ne grained i	mafic volca	nic; 20% q	uartz, 5% fi	ne to mediu	m grained of	clustered su	ulphides inc	luding 4% p	oyrite, 0.5%	chalcopyri	te					
E51231	25123182 Pale grey and bronze, fine grained, highly silicified and sulphidic (mafic?) volcanic; 25% clustered massive to net-textured sulphides including 20% pyrite, 3% grey felted sulphide, 2% chalcopyrite																									
E51231	83 G	rey, bronze, orar	ge and black,	fine to medi	um graine	d, banded a	nd brecciat	ed, rusty an	id vuggy, la	cally magn	etic, coppe	r skarn; 45°	% zoned ma	assive sulph	ides includi	ing 20% ch	alcopyrite, 2	20% pyrite,	2% pyrrotit	e, 2% mag	netite, 1% i	malachite				
E51231	84 Br	onze and orang	e, fine to medi	um grained,	brecciated	d, rusy and	vuggy copp	er skarn; 75	5% zoned n	nassive sul	phides inclu	iding 40% j	oyrite, 25%	felted grey s	sulphide, 99	% chalcopy	rite, 1% spł	nalerite								
E51231	E5123185 Bronze, white, black and orange, fine to medium grained, brecciated, rusty and vuggy, locally magnetic copper skarn or skarn vein; 75% intergrown massive to semi-massive sulphides including 40% pyrite, 20% grey felted sulphide, 10% chalcopyrite, 5% pyrrhotite, 10% quartz, trace magnetite/sphalerite																									
E51231	86 G	rey-green, white	and brown, me	edium to coa	arse graine	ed altered qu	uartz diorite	55% guart	z/feldspar	ohenocrysts	with 5% fi	ne, brown t	ourmaline?	Clusters an	d 5% epido	te clusters,	35% chlori	itic mafic cl	usters, trac	e calcite						
EE1024	07 \4	hite areas areas	and brown fin	o aroinod au	uorta oblori	ite teurmeli	no2 Voint 7	20/ autorta o	antainad fi	an ataalawa	الدماح مام مراج	o tourmolin	o I / o o loito													

Sample	Easting	Northing	Elevation	Geology	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	υ	Au	Th	Sr	Cd	Sb	Bi	×	Ca	P Li	a Cr	r M	lg Ba	i Ti	в	AI	Na	ĸ	W Hg	Sc	TI	S	Ga	Se	Te	Re	In	Au**	Sample
Number	metres	metres	metres	Code	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	% pi	pm pp	om %	pp	m %	ppm	%	%	%	ppm ppr	n ppm	ppm	%	ppm	ppm	ppm	ppm	oom	ppm	gm
E512318	1 358007	7 5449264	840		0.6	630	2	2 88.3	0.8	47.6	156	670	14.3	151	<5	79	<5	10	< 0.5	2	<1	164	0.19	285	5	81	2.4	10	0.31	3.46	0.02	0.04	<1	1	17 <5	5 6.92	2 12	2 21	<10)	<1	0.079	1.23
E512318	358314	4 5449349	872		1.8	2880	15	5 65.1	3.2	68.5	221	420	29.2	299	<5	120	<5	6	< 0.5	12	<1	167	0.13	343	3	31.1	1.93	<1	0.11	4.29	0.01	0.03	<1		7 <5	5 >10	30	78	<10)	<1	0.12	1.35
E512318	3 357769	9 5450761	605		< 0.5	94600	12	2 367	89.6	674	660	620	26.8	370	<5	6590	<5	26	4.2	8	<1	73.7	0.03	47	3	28.2	0.7	<1	0.02	1.2	< 0.01	0.01	<1		3 <5	5 >10) 15	5 17	7 19)	6	6.59	1.45
E512318	4 357715	5 5450582	615		4.4	26200	<1	1 405	49.4	373	1150	383	38.4	803	<5	1310	<5	14	< 0.5	34	<1	16.3	0.26	80	<2	14.2	0.27	<1	0.01	0.58	< 0.01	0.01	<1		1 <	5 >10	<mark>ک</mark> 17	64	<10)	<1	1.31	1.06
E512318	5 357715	5 5450582	615		6.2	10400	<1	1 401	30.3	393	1190	537	42.8	1180	<5	244	<5	12	< 0.5	38	<1	7.9	0.21	29	<2	18.9	0.21	<1	0.01	0.48	< 0.01	0.02	<1	•	<1 <5	5 >10) 16	66	5 13	5	<1	0.244	1.1
E512318	366918	8 5443314	160		< 0.5	683	<1	1 75.6	0.7	12.4	33.2	901	4.22	19	<5	24	6	251	< 0.5	1	<1	87.7	3.21	542	15	18.2	1.14	315	0.19	6.66	1.69	1.24	<1	1	14 <5	0.458	3 13	3 21	<10)	<1	0.024	1.01
E512318	366925	5 5443315	159		4	58.5		3 13.3	0.6	2.3	2	244	0.98	11	<5	2	56	24	< 0.5	1	<1	19.5	0.09	20	16	50.6	0.18	297	0.04	2.92	0.71	1.18	1		2 <5	5 0.024	+ 6	6 <10) <10)	<1	0.002	0.91

Appendix 2

Prospecting Data

Dates	Prospectors Names	Figure 2 Locations	Prospecting Locations and Highlights
21-Oct-13	Herb McMaster	1	Cous 405
22-Oct-13	Herb McMaster	1	Cous 405
23-Oct-13	Herb McMaster	1	Cous 405
24-Oct-13	Herb McMaster	1	Cous 405
25-Oct-13	Herb McMaster	1	Cous 405
26-Oct-13	Herb McMaster	1	Cous 405
27-Oct-13	Herb McMaster	1	Cous 405
28-Oct-13	Herb McMaster	1	Cous 405
30-Oct-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
1-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
2-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
4-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
6-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
7-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
9-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
10-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
13-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
14-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
15-Nov-13	Herb McMaster	2	Cous Main, Cous 401 & Summit 205
19-Nov-13	Herb McMaster	3	Canal Main West
21-Nov-13	Herb McMaster	1,3	Cous 405, Canal Main West
23-Nov-13	Herb McMaster	1	Cous 405
24-Nov-13	Herb McMaster	1	Cous 405
25-Nov-13	Herb McMaster	1	Cous 405
15-Dec-13	Herb McMaster	3	West of Canal Main
20-Dec-13	Herb McMaster	3	West of Canal Main
21-Dec-13	Herb McMaster	3	West of Canal Main
22-Dec-13	Herb McMaster	3	West of Canal Main
1-Jun-14	Herb McMaster	1	Cous 405
2-Jun-14	Herb McMaster	1	Cous 405
4-Jun-14	Herb McMaster	1	Cous 405
7-Jun-14	Herb McMaster	1	Cous 405
8-Jun-14	Herb McMaster	1	Cous 405
14-Jun-14	Herb McMaster	1	Cous 405
15-Jun-14	Herb McMaster	1	Cous 405
17-Jun-14	Herb McMaster	3	West of Canal Main
19-Jun-14	Herb McMaster	3	West of Canal Main
2-Aug-14	Herb McMaster	1	Cous 405
9-Aug-14	Herb McMaster	1	Cous 405
10-Aug-14	Herb McMaster	1	Cous 405
11-Aug-14	Herb McMaster	3	West of Canal Main
12-Aug-14	Herb McMaster	3	West of Canal Main
13-Aug-14	Herb McMaster	3	West of Canal Main
14-Aug-14	Herb McMaster	3	West of Canal Main
16-Aug-14	Herb McMaster	3	West of Canal Main
17-Aug-14	Herb McMaster	1	Cous 405
18-Aug-14	Herb McMaster	1	Cous 405
19-Aug-14	Herb McMaster	1	Cous 405
22-Aug-14	Herb McMaster	1	Cous 405
23-Aug-14	Herb McMaster	1	Cous 405
24-Aug-14	Herb McMaster	1	Cous 405
27-Aug-14	Herb McMaster	5	Port Alberni office
28-Aug-14	Herb McMaster	3	West of Canal Main
29-Aug-14	Herb McMaster	3	West of Canal Main
31-Aug-14	Herb McMaster	1	Cous 405
6-Sep-14	Herb McMaster	1	Cous 405
7-Sep-14	Herb McMaster	1	Cous 405

2013-2014 Prospecting Record for Macktush Property

8-Sep-14	Herb McMaster	3	West of Canal Main
9-Sep-14	Herb McMaster	3	West of Canal Main
10-Sep-14	Herb McMaster	3	West of Canal Main
11-Sep-14	Herb McMaster	3	West of Canal Main
13-Sep-14	Herb McMaster	1	Cous 405
14-Sep-14	Herb McMaster	1	Cous 405
15-Sep-14	Herb McMaster	3	West of Canal Main
16-Sep-14	Herb McMaster	3	West of Canal Main
17-Sep-14	Herb McMaster	3	West of Canal Main
20-Sep-14	Herb McMaster	1	Cous 405
21-Sep-14	Herb McMaster	1	Cous 405
23-Sep-14	Herb McMaster	3	West of Canal Main
25-Sep-14	Herb McMaster	3	West of Canal Main
27-Sep-14	Herb McMaster	1	Cous 405
28-Sep-14	Herb McMaster	1	Cous 405
1-Oct-14	Herb McMaster	4	Cous 424. Cous 521
2-0ct-14	Herb McMaster	4	Cous 424, Cous 521
4-0ct-14	Herb McMaster	4	Cous 424 Cous 521
5-Oct-14	Herb McMaster	4	Cous 424, Cous 521
22-Oct-14	H&H McMaster Houle	12	Cous 405, Cous Main, Cous 401 & Summit 205
23-Oct-14	H&H McMaster Houle	3	West of Canal Main
24-Oct-14	H&H McMaster	3.2	West of Canal Main Summit Main
25-Oct-14	Herb McMaster, Dan Bruner	2	Summit Main
27-Oct-14	Herb McMaster, Dan Bruner	2	Summit Main
28-Oct-14	Herb McMaster	2	Summit Main
20 Oct 14	Herb McMaster	2	Summit Main
30-Oct-14	Herb McMaster	2	Summit Main
1-Nov-14	Herb McMaster	2	Summit Main
3-Nov-14	Herb McMaster	2	Summit Main
7-Nov-14	Herb McMaster	2	Summit Main
8-Nov-14	Herb McMaster	2	Summit Main
9-Nov-14	Herb McMaster	2	Summit Main Summit 205
10-Nov-14	Herb McMaster, Dan Bruner	2	Summit 205
12-Nov-14	Herb McMaster	2	Summit 205
13-Nov-14	Herb McMaster	2	Summit 205
14-Nov-14	Herb McMaster	2	Summit Main Summit 205
15-Nov-14	Herb McMaster	2	Summit 205
16-Nov-14	Herb McMaster	2	Summit 205, 209
17-Nov-14	Herb McMaster, Dan Bruner	2	Summit 205, 209
18-Nov-14	Herb McMaster, Dan Bruner	2	Summit 205, 209
19-Nov-14	Herb McMaster	2	Summit 205, 209
28-Nov-14	Herb McMaster Dan Bruner	2	Summit Main
29-Nov-14	Herb McMaster, Dan Bruner	2	Summit Main
2-Dec-1/	Herh McMaster, Dan Bruner	2	Summit Main Summit 205 Summit 209
3-Dec-14	Herb McMaster, Dan Bruner	2	Summit Main, Summit 205, Summit 209
4-Dec-14	Herb McMaster	2	Summit 31
5-Dec-14	Herb McMaster	2	Summit 31
6-Dec-14	Herh McMaster	2	Summit 31
7-Dec-14	Herb McMaster	2	Summit 31
8-Dec-14	Herb McMaster	2	Summit 31
9-Dec-1/	Herh McMaster Dan Bruner	2	Summit Main
5 500 14		-	

Prepared and Approved by: Jacques Houle, P.Eng. Appendix 4

Mineral Tenure Data

Macktush Property	y Cost Statement - Prospecting, Geochemistry	- Octob	er 2013 -	December 20	014
Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Herb McMaster / Prospector	Oct 21-28,30, Nov 1,2,4,6,7,9,10,13-15,19,21	21	\$400.00	\$8,400.00	
Herb McMaster / Prospector	Nov 23-25, Dec 15,20-22, Jun 1,2,4,7,8,14-15	14	\$400.00	\$5,600.00	
Herb McMaster / Prospector	Jun 17,19, Aug 2,9-14, 16-19, 22-24, 27-29, 31	20	\$400.00	\$8,000.00	
Herb McMaster / Prospector	Sep 6-11, 13-17, 20,21,23,25,27.28, Oct 1,2,4,5	21	\$400.00	\$8,400.00	
Herb McMaster / Prospector	Oct 22-25, 27-30, Nov 1,3,7-10, 12-19, 28-29	24	\$400.00	\$9,600.00	
Herb McMaster / Prospector	Dec 2-9, 2014	8	\$400.00	\$3,200.00	
Herbert McMaster / Field Assistant	Oct 22-24, 2014	3	\$250.00	\$750.00	
Dan Bruner / Field Assistant	Nov 10,17,18,28,29, Dec 2,3,9, 2014	8	\$250.00	\$2,000.00	
Jacques Houle / Geologist	Oct 22-23, 2014	2.00	\$756.00	\$1,512.00	
				\$47,462.00	\$47,462.00
Office Studies	List Personnel (note - Office only, do not incl	ude fiel	d days		
General research	Jacques Houle - October 20,24, 2014	0.30	\$831.60	\$249.48	
Report preparation	Jacques Houle - Nov 9-11,28-29, Dec 11-13	2.65	\$831.60	\$2,203.74	
				\$2,453.22	\$2,453.22
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Rock	8 rock samples by AGAT Laboratories - estimate	7	\$25.04	\$175.25	
				\$175.25	\$175.25
Transportation		No.	Rate	Subtotal	
truck rental	McMaster's Dodge 4x4 pickup truck	108	\$100.00	\$10,800.00	
truck rental	Houle's Ford 4x4 pickup truck	1.00	\$378.00	\$378.00	
				\$11,178.00	\$11,178.00
Accommodation & Food	Rates per day				
Hotel - Houle Oct 22 - Port Alberni	\$151.20 per day including meals	1.00	\$151.20	\$151.20	
				\$151.20	\$151.20
Miscellaneous					
Other (Specify)	Rock samples to lab by Greyhound - estimate			\$19.51	
				\$19.51	\$19.51
Equipment Rentals					
Field Gear (Specify)	Houle field equipment and supplies	0.50	\$75.60	\$37.80	
				\$37.80	\$37.80
TOTAL Expenditures					\$61,476.98