BRITISH COLUMBIA The Best Place on Earth	SILVER	T COLUMN T
Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey		Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: Assessment	TOTAL COST	733,936 · IZ
AUTHOR(S): J. T. Shearer, M.Sc., P.Geo.	SIGNATURE(S):	rearer
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	\bigcirc	YEAR OF WORK: 2014
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5527167	
PROPERTY NAME: Silver Peak		
CLAIM NAME(S) (on which the work was done):		
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:		
MINING DIVISION: New Westminster	NTS/BCGS: 92H/6W (92H.033)	
LATITUDE: 49 ° 18 ' LONGITUDE: 121	^o 28 (at centre of wo	·k)
OWNER(S): 1) Homegold Resources Ltd.	2)	
MAILING ADDRESS: Unit 5 - 2330 Tyner Street		
Port Coquitlam, BC, V3C 2Z1		
OPERATOR(S) [who paid for the work]: 1) Same as above	2)	-
MAILING ADDRESS: Same as above		
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, Two main quartz vein systems, Eureka and Victoria, striking 053	alteration, mineralization, size and attitude): deg dipping 75 to 80 deg. SE.	
High values of silver were obtained from Upper Victoria drift		
All veins are hosted by siliceous Eocene Conglomerate		
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT R	EPORT NUMBERS:	
Assessment Report 20491, 18235, 11057		Next Page

F.

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			····
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			
Silt			
Rock			5,000 00
Other			,
DRILLING (total metres; number of holes, size)	1 1 014	7-1-11	100 000 00
Core X.es	ize shawdrill	536761	10,000
Non-core		<u></u>	
RELATED TECHNICAL			
Sampling/assaying			7,000
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/	trail		6,000
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	33,936 12

F

BC Geological Survey Assessment Report 35222

ASSESSMENT REPORT on the SILVER PEAK CLAIMS

SILVER PEAK 1-3 CLAIMS Tenure #562920, 568280, 594082, 594083, 596117 & 336759-336761 MINE 0700610, PERMIT MX-7-189 EVENT #5527167

SILVER PEAK AREA, HOPE, B.C. NEW WESTMINSTER MINING DISTRICT, BRITISH COLUMBIA Longitude 121°28'W/Latitude 49°18'N NTS 92H/6W, 92H.033

Prepared for

Homegold Resources Ltd. Unit 5 – 2330 Tyner Street Port Coquitlam, BC V3C 2Z1 Phone: 604-970-6402 Fax: 604-944-6102

By

J. T. Shearer, M.Sc., P.Geo. (BC & Ontario)

November 1, 2014

Fieldwork completed between October 25, 2013 and October 25, 2014

Table of Contents

		Page
ILLUSTRATIONS		ii
SUMMARY		iii
INTRODUCTION		1
PROPERTY DESCRIPTION	ON and LOCATION	6
ACCESSIBILITY, CLIMA	TE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY	8
Location	· · · · · · · · · · · · · · · · · · ·	
Access		8
Physiography		8
HISTORY		9
GEOLOGICAL SETTING	and MINERALIZATON	20
Property Geol	ogy	20
Mineralizatior	٦	22
EXPLORATION 2014		28
DRILLING 2014		40
INTERPRETATION and	CONCLUSIONS	
RECOMMENDATIONS		
REFERENCES		
APPENDICES		
Appendix I	Certificate of Qualifications	
Appendix II	Statement of Costs	
Appendix III	Sample Descriptions	
Appendix IV	Drill Log	54
Appendix V	XRF Results and Lab Assays	61

List of Illustrations

Figure 1: Location Map	2
Figure 2: Access Map	3
Figure 3: Claim Map	4
Figure 3a: Detail Claim Map	5
Figure 4: Topographic Map, 1:50,000	7
Figure 5: Longitudinal Section, Eureka Vein1	2
Figure 6: Plan Composite1	4
Figure 7: Plan of Sunray Crosscut, 1:5001	15
Figure 8: Plan of Eureka Level, 1:5001	6
Figure 9: Plan of Victoria Upper Level1	17
Figure 10: Regional Geology, 1:250,0002	21
Figure 11: Local Geology Map, 1:100,0002	24
Figure 12: Generalized Cross Section and Plan, 1924, 1:5,2502	26
Figure 13: Aeromagnetic Map, 1:63,3602	27
Figure 14: Silver Peak Project 2014, Drill Location and Results2	29
Figure 14a: Silver Peak Project 2014, Details3	30
Figure 14b: Silver Peak Project 2014, Details3	31
Figure 14c: Silver Peak Project 2014, Details3	32
Figure 15a-g: Cross-Sections DDH-14-1 to DDH-14-733-3	39

List of Tables

Table 1: Claim Status	6
Table 2: Diamond Drill Holes 2014	40

List of Photos

Photo 1:	Lower Level at Portal, Victoria Vein 2011	13
Photo 2:	Raise in Sunray Crosscut, Eureka Vein 2010	13
Photo 3:	Joining of the West Hanging Wall Vein & Low-grade Main Vein	41
Photo 4:	Upper Adit Veins at Lower Elevations	41
Photo 5:	Bifurcating Vein System at the Lower Portal	42
Photo 6:	Hole 14-03	42

SUMMARY

- 1) The Silver Peak Claims cover the Eureka-Victoria Silver Mine, which has the distinction of being the first Crown-granted mineral property in British Columbia.
- 2) High grade silver veins were first discovered prior to 1868 and considerable ore was shipped up until 1874. Assays of remnant oxide material are recorded up to 658 oz/Ag per ton.
- 3) The property is located 6 km south of the Town of Hope. An old logging road extends to the workings. Presently, access has been reopened and the workings are accessible by 4x4 vehicle or ATV.
- 4) The mine workings on the Eureka Vein comprise several adits, interconnected raises and a glory hole. Underground work was completed in 1924, 1961, 1971 and 1981. An indicated resource based on this work (Spencer, 1982) for only the eastern portion of the Eureka vein was reported as Indicated: 38,000 tonnes grading 449.15 grams (13.10 oz/ton) per tonne silver and Inferred: 10,900 tonnes grading 449.15 grams per tonne silver, which equals 707,400 ounces of silver. This is a historical figure and not to 43-101 standards.
- 5) The area is underlain by chloritized Eocene conglomerate on the east side of a major regional structure called the Hope Fault. To the east and south is granodiorite of the Oligocene to Miocene Mount Barr batholith. To the west is the Cretaceous quartz diorite of the Spuzzum Pluton. On the north is the Eocene Silver Creek Stock composed of quartz diorite.
- 6) Cutting the conglomerate at an angle to both bedding and joint planes are a number of quartz porphyry dykes. The largest has an average width of 6 metres and follows the line of Glory Hole gulch where the Eureka Vein is thickest, varying between 12 and 20 feet thick for a length of 600 feet.
- 7) The silver deposits occur in well-defined branching fracture zones in the conglomerate which coincide with northeast trending joint planes and areas of brecciation.
- 8) Chief gangue minerals are siderite, limonite and quartz. The principle ore mineral is tetrahedrite (friebergite) and silver oxides.
- 9) The mineralized zones are called the Eureka, Victoria (formerly the Van Bremer) and Victoria West. At least two minor zones cross the Glory Hole gulch below the Eureka lode.
- 10) The Eureka vein has been traced across the summit of Silver Peak for about 668 metres striking 053°, varying in width from 1.5 to 6 metres and dipping steeply to the southeast (75º-80ºSE). The Eureka Zone has been defined over 1,000 feet (300m) down dip. The zone is open down dip along strike.
- 11) The Victoria Lode has been traced for about 625 metres on the southwestern slopes of Silver Peak. The depth to which the Victoria mineralization persists has not been defined by work to date nor has any resource been calculated for the Victoria.

- 12) Minor diamond drilling was attempted in 1983 without the benefit of survey control and was stopped by bad weather on October 31, 1983 (Krueckl, 1983). It is unlikely that the correct target depth was reached.
- 13) Surveying by S. Nickel and Associates has established the correct location of the 1878 survey of the Crowngrant Mineral Claims which have been misplotted on recent maps by an NAD83 plot translation and further work has defined the relative positions and elevations of the workings.
- 14) In 2011 and 2014, the road was further upgraded, the Upper Victoria drift was sampled and the Lower Adit was driven by company personnel and sampled.
- 15) A short Shaw diamond drill program was completed in 2014 supported by a portable XRF unit. Continuity of the high-grade silver values was confirmed with Lab assays up to 9,618 g/tonne Ag. Spot XRF values were up to 20,228 g/tonne (590 oz./ton).
- 16) Drill hole 14-03 was sawn in half and assayed at AGAT Labs. Weight average from 0 to 3.31m averages 3,496.91 g/tonne silver (102oz/ton Ag). Drill hole 14-01 also was split and sent to AGAT Labs and assayed a weighted average from 0-2.1m of 2,717.3g/tonne (108.44oz/ton). Numerous spot XRF assays using a hand held XRF Unit gave high silver values.
- 17) A program of detail geological mapping, transit surveying, bulk sampling and continued larger machine diamond drilling is recommended to investigate the Victoria vein at a depth and along strike in 2016.

Respectfully submitted,

Shearen

J. T. Sheaker, M.Sc., P.Geo. (BC & Ontario) November 1, 2014

INTRODUCTION

The author was commissioned by Homegold Resources Ltd. to complete a summary technical report on the Eureka-Victoria Mine property.

The historic Eureka-Victoria Silver Mine was acquired by Homegold Resources Ltd. on June 12, 1995 when the three 1869 Crown grants reverted to the Crown. The surrounding ground was staked on November 3, 2000 when previous located claims lapsed.

The property is located on the rugged western slopes of Silver Peak between the elevations of 4,500 and 6,000 feet. A partially overgrown and deactivated road leads to the mine site, which was re-opened during the 2009 program. The general mine area is clearly visible from the Trans Canada Highway at the Village of Silver Creek and Lake of the Woods.

The veins are characterized by silver-rich tetrahedrite (freibergite) in a siderite and quartz gangue. The upper parts of the veins, which were oxidized, produced spectacularly high silver values up into the hundreds of ounces silver per ton. The primary unaltered vein material appears to average around 10 to 25 oz/ton silver. Minor preliminary metallurgical testing has been done in 1982 for bench scale leaching. The mineralization is amenable to leaching and metallurgical optimization tests are ongoing.

EUREKA VEIN (from Spencer, 1982)							
	Sample Location	Length	Oz/Ag	Width			
Block A	Surface samples	200 ft	15.73	3.0 ft			
	New Carbonate Level	214 ft	17.12	3.0 ft			
	Average grade		16.31	3.0 ft			
Block B	New Carbonate Level	214 ft	17.12	3.0 ft			
	Eureka Raise	200 ft	7.78	3.0 ft			
	Eureka Drift	280 ft	8.78	3.0 ft			
	Average grade		11.06	3.0 ft			
Block C	Eureka Drift	280 ft	8.78	3.0 ft			
Total Indicate	d Reserves	42,000 @ 13.10 oz/ton Ag					
Inferred Inver	itory, Block D	12,000 @ 13.10 oz/ton Ag					
Total Indicated and Inferred		54,000 ton @ 13.10 oz/ton Ag					
		(note: for a total of 707,400 ounces of contained					
			silver)				

Preliminary resource assessments (non NI 43-101 compliant) on the eastern portion of Eureka vein only, have been made (Spencer, 1982) suggesting the following inventory:

The vein systems have **not** been tested at depth below the Eureka Drift. The lack of accurate survey data apparently has hampered the exploration efforts in the past. The "Lower Tunnel" apparently did not explore the main Eureka vein as was demonstrated by a 20 ft cross-cut driven in late 1981.

A phased exploration program is proposed to adequately test the Victoria vein systems at depth and along strike and also the lower-grade Eureka vein.

4

Assessment Report on the Silver Peak Project November 1, 2014

Figure 3a Detail Claim Map

PROPERTY DESCRIPTION and LOCATION

TABLE I							
LIST OF CLAIMS							
			Location Date	Recorded	Current Expiry		
Claim Name	Tenure No.	Size (ha)		Owner	Date		
Silver Peak 1	336759	25.00	June 12/95	Nugent/Shearer	October 30, 2023		
Silver Peak 2	336760	25.00	June 12/95	Nugent/Shearer	October 30, 2023		
Silver Peak 3	336761	25.00	June 12/95	Nugent/Shearer	October 30, 2023		
Silver Peak Two	562920	252.69	July 13/07	Nugent/Shearer	October 30, 2020		
Silver Peak South	568280	105.31	Oct. 19/09	Nugent/Shearer	October 30, 2020		
	568967	21.06	Oct. 31/07	Nugent/Shearer	October 30, 2020		
Victoria South	568993	21.07	Oct. 31/07	Nugent/Shearer	October 30, 2020		
SP Middle	594082	315.91	Nov. 9/08	Nugent/Shearer	October 30, 2020		
SP East	594083	505.33	Nov. 9/08	Nugent/Shearer	October 30, 2020		
	595779	42.13	Dec. 10/08	Nugent/Shearer	October 30, 2020		
SP South	596117	210.67	Dec. 15/08	Nugent/Shearer	October 30, 2020		

The area is held by the Silver Peak 1-3 and cell claims as shown in Table 1 and Figure 3.

Total

1,549.17 ha

Cash may be paid in lieu if no work is performed. Following revisions to the Mineral Tenures Act on July 1, 2012, claims bear the burden of \$5 per hectare for the initial two years, \$10 per hectare for year three and four, \$15 per hectare for year five and six and \$20 per hectare each year thereafter.

With the implementation of "Mineral Titles On Line" in January 2005, the plotting of the Silver Peak Crown grants was altered to the south and away from the physical location of the workings. Survey work in 2009 using the original 1878 Legal Survey has resulted in an accurate plotting of the claim. The misplotting is related to the introduction of the NAD83 (refer to Figure 10).

ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY

LOCATION

The Eureka-Victoria mine is located 6 km south of the Town of Hope, Figure 1 and 2, bounded by Silverhope Creek to the northeast, Eureka Creek to the northwest and Sowerby Creek to the south and east. Topography rises very steeply from about 200 feet at the Fraser River to 6,810 feet elevation on the top of Isolillock (Holy Cross) Peak.

ACCESS

Access to the mine site is presently best by the recently opened old Eureka Creek logging road.

The lower slopes of Silver Peak have been logged off in the late 1950's and early 1960's. A series of logging roads extends up to the 4,500 foot level. A steep mine road in stable condition provides access from the logging road network. The main logging road has recently been cleared out by the present program. The road is driveable to the workings by 4x4 vehicles.

Due to the implementation of the British Columbia *Forest Practice Code* and its provisions for forest road standards, the opening of the access road for mining need a comprehensive plan. The result is that road "activation" tends to be more costly in the Province of British Columbia.

PHYSIOGRAPHY

The property is located on the rugged western slopes of Silver Peak between the elevations of 4,500 and 6,000 feet. A partially overgrown and deactivated road leads to the mine site, which was re-opened during the 2009 program. The general mine area is clearly visible from the Trans Canada Highway at the Village of Silver Creek and Lake of the Woods.

HISTORY

High grade silver deposits were discovered by Peter Emery in 1868 while hunting mountain goat. He showed samples of the mineralization to George Schooley of Yale who located ground for himself and friends. Cairnes (1924) records that:

In 1869 a company was formed by local and Victoria capital, called the Eureka Mining Company. About 1871 they sold out to the New Eureka Mining Company, Limited for \$80,000. That company had a capital of \$150,000. The Victoria claim was also disposed of by the original locators. The purchasers afterwards formed a company called the Victoria Silver Mining Company, Limited, with R. P. Rithet, secretary, and a nominal capital of \$60,000 in \$20 shares. Among the original subscribers were the well-known pioneers of British Columbia, E. P. Moody, who built the first sawmill on Burrard Inlet, H. Nelson, George Dietz, and George Dunbar. Cariboo pioneers were Francis Garesche, T. C. Hughes, and others prominent in the early history of British Columbia.

The amount of ore shipped apparently amounted to a considerable tonnage containing high values. The ore was packed part way down on Indian backs, and the rest of the way to Hope on packhorses. It was then floated on barges down the Fraser River, towed to Victoria, and loaded on sailing vessels for San Francisco. Some shipments went round Cape Horn to Swansea, Wales. This ore netted \$420 per ton.

The mines were **closed in 1874**, due in part, to the expensive methods of transportation, and, in part, to unfortunate litigation as to their ownership and management.

The mines were **reopened in 1920** for the present owners <u>Sperry and White of Seattle</u>, under the management of <u>A. S. Williamson</u>.

It is reported that during 1924 one of the old drifts was extended. There is no record of any production at this time except a 5 ton test sample was assayed 268 oz/Ag/ton. In 1961, Tru-West Exploration Ltd. with W. Ferguson, President and J. Knopp, Manager, drove a new cross-cut at an elevation of 5,200 feet extending 126 metres and a 69 metre raise driven about 60 metres from the portal. In 1963, a 3,500 foot aerial tramway was installed in June to move equipment and materials.

A new company, Holy Cross Mountain Mines Ltd., S. McClay, President, contracted 1.5 miles of new road in 1968 and in 1971 drove 205 feet of 6'x7' drift which employed 10 men for six months under the direction of A. Aalde.

Vanstates Exploration Ltd. acquired an option of the three Crown grants in 1980. In 1981, a 61 metre raise was driven from the Eureka drift and a new adit was driven 65 metres to intersect the raise. Based on this work, an indicated resource (Spencer, 1982) on only the eastern portion of the Eureka vein of:

<u>Indicated</u>	38,000 tonnes grading 449.15 grams per tonne silver (13.10 oz/ton)
Inferred	<u>10,900 tonnes</u> grading 449.15 grams per tonne silver
	48,900 tonnes (54,000 tons) - which equals 707,400 ounces of contained

silver.

Vanstates also attempted to carry out some diamond drilling in 1983. Unfortunately the drill sites were not surveyed and the drill crew was forced out by bad weather on October 31, 1983 without knowing if the target was reached (Krueckl, 1983).

A VLF-EM survey was conducted by J. Lloyd in 1982 and some prospecting was done for Guinet management by R. Yorston in 1990.

Geological mapping and sampling was completed by Homegold Resources between 1996 and 2001.

METALLURGICAL TESTING

Spencer (1982) reports that a 131 pound composite sample of assay reject material was shipped to Witteck Development Inc. in Mississauga, Ontario for bench scale leach testing. The results of this test work indicate the silver values are evenly distributed in the various size fractions and fine grinding was necessary to obtain optimum recoveries. The ore is amenable to leaching. A sample of coarser run-of-mine ore will be required for permeability testing of the potential heap leaching extraction method.

The testing of the Silver Peak mineralization in relation to flotation and leaching recoveries optimization tests are ongoing.

Testing in 2011 by G&T Metallurgical returned silver leach recoveries of up to 80%. Samples used averaged over 150 oz./ton which is representative of the high grade encountered in the Upper Victoria Adit.

FIELD PROCEDURES

Samples carefully collected in 2011 from the Victoria Upper workings used an electric chipper tool to give channel samples from the walls and back.

Samples collected in the new Lower Victoria working being driven by Homegold miners were collected form each 6 foot round and also carefully channelled from the face and back. These samples proved to be low in silver.

Drifting was done by jackleg drills to produce a 7x7 drift.

PROSPECTING and BULK SAMPLING

Prospecting and geological mapping was completed on Silver Peak 4 claims along the old logging/mining road system in 2001.

The siderite-tetrahedrite veins (both the Eureka and Victoria veins) were noted on surface to be steeply (75°-80°) dipping to the southeast. They rhyolite porphyry in Glory Hole Gulch was observed to be oriented 325°/75° east. There is a possible faulted segment of the rhyolite dyke oriented 105°/48° south.

The major regionally extensive Hope Fault is seen just to the west of Blue Lake. The schistose quartzite and shale/slate, which occur immediately to the east of Blue Lake, appear to owe their schistocity to

movement along this major structure. Similar schistose quartzites were noted just north of the Silver Peak 4 claim again immediately adjacent to the presumed trace of the Hope Fault.

The host (Eocene) conglomerate is variably altered by chlorite and silicification. Thin sandstone and shaley interbeds are relatively common over narrow intervals. Framework clasts in the conglomerate are mainly well rounded but occasionally angular intervals were noted

In 2009, three vein samples were collected from (1) two near the entrance to the lower adit and (2) from the portal of the Sunray Cross-cut. All the 2009 samples assayed relatively low in silver with the best running 106.2 g/tonne – see assay certificates in Appendix III.

In 2010, a number of grab samples were collected from the Upper Victoria drift, that assayed very high in silver content.

In 2011, the Upper Victoria drift was channel sampled (refer to Figure 7).

UNDERGROUND WORKINGS 2011

The old Eureka drift exposed a 280 foot strike length of silver mineralization which was sampled in 1980 and averaged 8.78 oz. silver per ton across a 3.0 foot mining width. To assess the vertical continuity of this mineralization, a raise was driven in 1981 on the mineralized vein at 45° for a distance of 200 feet. Chip samples across a 3 foot width from the back of the raise were taken at 5 foot intervals and the initial 155 feet of the raise averaged 7.78 oz silver per ton. The upper portion of the raise was not chip sampled due to access problems. Muck samples from the raise were taken for each 6 foot round over the entire 200 foot distance driven and the average grade of the 35 muck samples was 7.12 oz silver per ton. The mineralization exposed by the raise was weak from 75 to 125 feet where the vein thinned, nevertheless, the average grade compares reasonably well to that of the drift and indicates that there is vertical continuity to the mineralization.

A new level was driven on the mineralized vein some 125 feet vertically above the Eureka level in 1981. This new drift, the Carbonate level, was advanced 214 feet on the vein and broke through to the Eureka raise some 170 feet from the drift collar. Chip samples across a 3 foot width of the drift back were taken at 5 to 10 foot intervals and averaged 17.12 oz silver per tonne for the 214 foot drift length. 26 muck samples from the drift averaged 26.4 oz silver per tonne thus confirming the above average grade mineralization on this level. The drift was still in good mineralization at the face.

Photo 1, Lower Level at Portal, Victoria Vein 2011

Photo 2, Raise in Sunray Crosscut, Eureka Vein 2010

16 Assessment Report on the Silver Peak Project November 1, 2014

Mineral Processing and Metallurgical Testing

A mineralogical assessment on a feed sample was completed by G&T Metallurgical (ALS Metallurgy). The principle objective of this study was to identify and quantify the mineral compositions of the feed sample. The present silver bearing minerals, together with the silver deportment by mineral species, were of particular interest. To achieve the objective, standard analytical protocols, QEMSCAN Bulk Mineral Analysis (BMA) and Trace Mineral Search (TMS) were performed on the representative cuts of the unsized sample.

The feed sample was received on April 5, 2011, and the analyses were completed on May 9, 2011. The data was sent in electronic format as it became available.

The feed sample was assayed at about 0.4% silver. The silver bearing minerals present in the feed sample were dominantly acanthite/argentite and pyrargyrite, which carried about 99% of the total silver in the feed. A trace amount of native silver and pearceite was also observed. This data can be located in Appendix ii, Table 1 and 2.

It is of interest to note that some of the silver bearing minerals in the feed sample were finely crystallized, and were included in the non-sulphide minerals. This fragmentation characteristic of the silver minerals in the feed was particularly shown in QEMSCAN Images 1 to 3, which are attached to this letter. The complex structures of the silver minerals may cause difficulties in processing the ore. A further mineralogical study, the QEMSCAN Particle Mineral Analysis on the sized sample, is recommended to assess the effect of primary grind sizing on silver mineral liberation.

G&T Metallurgical also completed a test program to evaluate a sample provided by Homegold Resources Ltd. The assessment investigated the response of the sample to cyanide leaching for silver. The program was conducted in accordance with the proposal dated June 2, 2011.

The program was conducted on a sample designated Feed, in the form of crushed ore. No details were provided about the origin of the sample. The measured feed grade of the sample was measured to be 4407 g/tonne of silver.

The sample was ground to a nominal 66μ m K80. A standard cyanide leach bottle roll test was conducted on the sample. The test was 72 hours in duration and utilized cyanide solution strength of 5,000 g/tonne NaCN. The test was modulated with lime to pH 11.0 and used a 500 gram test charge. The results of this test are shown on the following table.

Product	Cumulative	Volume	Units	Assay – g/t	Distribution - %			
	Time – Hrs.	or Mass		Silver	Silver			
Cyanide Liquor (4hr)	6	1000	ml	248	11.4			
Cyanide Liquor (24hr)	24	1000	ml	876	40.5			
Cyanide Liquor (48hr)	48	1000	ml	1640	76.4			
Cyanide Liquor (72hr)	72	1000	ml	1670	79.4			
Cyanidation Tails		494.4	g	910	20.6			
Calculated Feed		500	g	4360	100.0			

Cumulative Metallurgical Balance

At the target sodium cyanide concentration of 5000 ppm, the sodium cyanide consumption was approximately 16.9 kg/tonne. Lime consumption was about 8.0 kg/tonne under these conditions.

After a 48 hour leaching period, silver from the Feed sample was approximately 76 percent extracted into solution. After a 72 hour leach period, 79 percent of the silver was extracted into solution.

Parameter	Time	Added (g)		Residual (g)		Consumed (g)		рΗ	Dissolved
	Cum	NaCN	CaO	NaCN	CaO	NaCN	Cao		O ₂ (mg/L)
Natural		-	-	-	-	-	-	6.6	1.7
Leach 1	4	1.00	2.69	0.17	0.02	0.83	2.67	11.0	6.2
Leach 2	24	4.86	1.49	0.40	0.30	4.63	1.21	11.0	6.4
Leach 3	48	4.64	0.00	2.90	0.30	2.14	0.00	11.	6.6
Leach 4	72	2.14	0.00	4.20	.20	0.84	0.10	11.0	6.9
Total	72	12.64	4.18	4.20	0.20	8.44	3.98		

Mass of Sample	500
Volume of Water	1000
Pulp Density	33

Nach Consumption	16.9 kg/tonne
Lime Consumption	8.0 kg/tonne

GEOLOGICAL SETTING and MINERALIZATION

PROPERTY GEOLOGY

Cairnes (1944) compiled the regional geology of the Hope Area as Map 737A. This was revised by Monger (1970). The area around Hope encompasses the major tectonic boundary between the Coast Plutonic Complex and the Cascade Fold Belt. A recent contribution to the regional geological setting is by Richards and McTaggart (1976), Figure 4.

Structurally the area lies within imbricate fault slices between the Yale and Hope Faults and the Shuksan Thrust to the west. The graben created by the Yale and Hope Faults is a major fault system that extends northward for many kilometres and controls the course of the Fraser River.

The intrusive evolution of the area is varied and complex. The Silver Peak Claims are underlain to the west by late Cretaceous Spuzzum Intrusions, which range in age from 73 m.y. to 89 m.y. These are the oldest plutonic rocks of the region. The Yale Intrusions northeast of Hope are a group of stocks and sills that lie along a belt extending from 5 km north of Yale southward to near the head of Silver Creek. This suite of rocks range from tonalite and granodiorite to quartz monzonite. All units of the Yale intrusion display some degree of cataclastic foliation.

The Silver Creek Stock, 5 km south of Hope, is about 25 km² in area. It is composed of homogeneous and unfoliated medium grained tonalite. Richards and McTaggart (1976) page 944, describe the stock as follows:

"The stock intruded and metamorphosed Eocene conglomerate and has been intruded by the Miocene Mount Barr batholith. The walls of the stock appear to be vertical. A single K Ar. determination on hornblende gave an age of 35 m.y., which is considered to be the time of emplacement of the stock. That the stock is epizonal is suggested by the high-temperature structural state of the alkali feldspar, fine grained margins, adjacent hornfels, and mid-Tertiary age."

Emplacement of the Mount Barr batholith has been dated at 21 m.y. (Richards and McTaggart, 1976) and is exposed 4 km south of the Silver Peak Group. The later phases of the Mount Barr batholith at 16 m.y. represent the youngest major intrusive phase in the area.

MINERALIZATION

The area to the west of the claims is underlain by diorite and tonalite of the Spuzzum intrusions (McTaggart and Thompson, 1967). Two main units are distinguished: a central zoned diorite complex and a surrounding tonalite, Figure 5. The diorite is a fresh, medium-grained rock consisting of bronze-brown hypersthene and black augite with variable hornblende. Biotite is a minor constituent and quartz was rarely identified.

Richards and McTaggart, 1976, describe the dioritic complex as follows:

"The diorite complex is crudely zoned, with hypersthene-augite diorite (rarely norite) in its core regions and hypersthene-hornblende diorite (rarely tonalite) at its margins. The mineralogical variation appears continuous, but three varieties have been defined: hypersthene-augitehornblende diorite and a marginal zone of biotite-hypersthene-hornblende diorite. Only a small chemical differences accompany the pronounced mineralogical variation."

The area immediately around the Eureka-Victoria Mines working is best described in Cairnes (1924) as reproduced below:

"The upper 2,000 feet of Silver Peak is composed chiefly of a massive conglomerate of Lower Cretaceous age. Other remnants of this formation occur on the southern flank of Hope Mountain and in the Fraser Valley on either side of the river near Hope. The conglomerate varies greatly in the size of its constituent pebbles. A large proportion might be regarded as a coarse-grained grit, but in other sections it contains cobbles varying up to 6 or 8 inches in diameter. The general attitude on Silver Peak is nearly north and south, with an average high dip to the east. The attitude is, however, subject to local variation and syncline. This conglomerate has been invaded by a large batholithic body of quartz diorite, locally known as "granite", that comes in contact with the conglomerate on all except the southern flank of Silver Peak, where a narrow band of highly metamorphosed sediments, probably also of Cretaceous age, intervene. These sediments on the divide between Silver Peak and Isolillock Mountain form a belt less than 200 feet wide, but their width at lower elevation could not be determined. They comprise both shaly and sandy materials, but their original character has been largely marked by the metamorphism to which they have been subjected by the quartz diorite, as well as by an earlier intrusive lying farther to the northwest.

Cutting the conglomerate at an angle to both bedding and joint planes are a number of quartz porphyry dykes. The largest of these has an average width of 20 feet and follows in an irregular fashion the line of the Glory Hole gulch, which cuts through the middle of the property in an eastwest direction.

Mineral Deposits. The mineral deposits at the Eureka-Victoria mines occur in well-defined fracture zones in the conglomerate. These coincide with a prominent set of joint-planes, which intersect the conglomerate in a general northeast-southwest direction. Along these joint fissures, more or less movement and brecciation of the conglomerate has occurred, so that fracture zones, many of them several feet wide, have been developed. These zones furnished relatively easy passage to the mineralizing solutions forming the present ore deposits.

The principal deposits occur in veins within the fracture zones. They rarely occupy the entire width of the zone, often form only a minor part of it, and in general, favour the hanging-wall side. Together with the

intervening and in some cases sparingly mineralized conglomerate gangue they constitute the ore-bodies or lodes. Only in rare instances can the high-grade vein material be mined separately.

The chief gangue minerals are siderite, limonite and quartz. The first occurs either as a brownish, coarsely crystalline mineral with large lustrous cleavage surfaces, or as a cream-coloured aggregate intergrown with clear crystalline quartz. The limonite occurs in two generations. That of the first is, in part, pseudomorphous after siderite and forms characteristic wedge-shaped crystals that project into open fissures in the vein. That of the second generation has been deposited over the older gangue minerals, is quite soft, and shows a botryoidal structure. The quartz is formed in two generations, the first intergrown with the siderite as well with tetrahedrite and iron sulphides, and the second forming crystals on the surfaces of the other minerals.

The principal ore mineral is the sulphantimonide of copper, tetrahedrite. This mineral carries a varying proportion of lead as well as the primary silver values in the deposits. It occurs in intergrown or deposited at different stages the siderite, quartz and pyrite and may replace the earlier formed minerals. It is disseminated irregularly throughout the ore-bodies in small specks or irregular masses that rarely exceed a cubic centimetre in size.

A concentration of silver values occurs in certain of the upper sections of the ore bodies. There, superficial processes involving oxidation, carbonatization, and solution have resulted in the substantial reduction of gangue minerals and a differential enrichment of the mineral content of the veins. The tetrahedrite there has suffered decomposition. The copper has largely disappeared and the little left converted to carbonates. The lead has been largely retained, probably as an amorphous carbonate, and holds the silver values. The oxidation products of the silver and lead have lent a characteristic yellowish appearance to the decomposed ore. The result is a rich concentrate, running into hundreds of dollars per ton, from which shipments were made in the early years of mining.

Description of Ore-bodies. *The principal mineral deposits occur in the Eureka, Victoria and Victoria West ore-bodies. A couple of minor bodies cross the Glory Hole gulch below the Eureka lode outcrops.*

The Eureka lode, at present the most important ore-body, has been traced across the summit of Silver Peak for about 1,400 feet, its course for the greater part of the way being well defined by solid conglomerate walls. Its width varies, according to the surveys made by the management, from 5 to 20 feet, and is greatest east of the Glory Hole gulch where for about 600 feet it is between 12 and 20 feet. The western section of 800 feet has been neither close followed nor measured, but may average 5 feet in width. The actual proportion of the vein and mineral disposition within this fracture zone is extremely variable. In part the entire zone is occupied by gangue mineral, but these are mostly confined to narrow veins or stringers within the fractured belt and their combined width is measurable in inches rather than feet.

An adit was driven, in the early days, from the eastern side of Silver Peak, and at 5,190 feet above sea-level, for a distance of 240 feet along the principal ore-body. At the face a sample taken across 2 feet of ore was assayed by the Mines Branch, and ran 4.42 ounces in silver per ton and 0.17 per cent copper. Near the mouth of the adit some gangue richly impregnated with tetrahedrite is said to have assayed high in silver. Farther up the hill the values have been concentrated by oxidation and an adit disclosing copper-stained ore was driven for 20 feet along a narrow vein of this oxidized ore.

Where the Eureka ore-body crosses the Glory Hole gulch it encounters a wide rhyolite dyke. This dyke does not cross the ore-body, but forms the northwest wall for a distance corresponding to its width. The opposite wall is conglomerate, but the dyke may reappear again farther up the gulch.

The Victoria lode originally constituted the old Van Bremer mine. It has been traced for approximately 1,200 feet on the southwestern slope of Silver Peak, its course, like that of the Eureka ore-body, being obscured at lower elevations by snow. The general character of this lode is essentially similar to the other.

At an elevation of 5,510 feet, or 90 feet above the snowbank (figure 6), a drift 8 feet long, known as the lower Victoria tunnel, has been driven on the ore-body, the mineralized part of which has a width of 14 inches. A sample across this was assayed by the Mines Branch and showed: silver, 11.65 ounces per ton; no gold; no lead; and 0.30 per cent copper.

Two hundred and twenty feet above this shore drift another adit has been driven for 50 feet along a vein of richly oxidized ore. The vein, which strikes nearly east and west and dips at about 70 degrees south, has an average width of a foot. A sample taken at the portal of this tunnel across 14 inches of ore was assayed by the Mines Branch, and yielded 168.75 ounces silver per ton, a trace of gold, 1.12 per cent copper, and 11.96 per cent lend. A sample taken the previous year from the riches part of this vein gave an assay return of 658.42 ounces silver, and 26.72 per cent lead.

At 50 feet below the portal of the upper adit this enrichment is not noticeable. A sample was taken across a vein 12 inches wide in which the gangue minerals were siderite and limonite. This sample, assayed by the Mines Branch, yielded 38.65 ounces silver, trace of gold, 1.04 per cent lead and 44.37 per cent iron.

The Victoria South ore-body, and the smaller veins crossing the Glory Hole gulch below the Eureka lode, are composed of much the same materials."

(More recent work by G. E. Rouse showed that the conglomerate is of Eocene age based on pollen fossils.)

Sampling results by Vanstates Resources in 1981 (Spencer, 1982) are shown on Figure 8 from which the mineral inventory of 54,000 tons averaging 13.10 oz/ton was calculated on the eastern portion of the Eureka vein.

Limited prospecting and sampling was completed in 1995. Assay results of a suite of altered, chloritic conglomerate samples collected in 1995 are shown in Table 2. This suite of typically chlorite altered but unmineralized conglomerate averaged about 68.5% of SiO₂ and 14.1% Al₂O₃, but the combined alkali content (Na₂O+K₂O) is 4.3%.

Figure 13 Aeromagnetic Map

27 Assessment Report on the Silver Peak Project November 1, 2014

EXPLORATION 2014

The bifurcating nature of the vein system as observed above the lower Victoria Portal was confirmed at the Upper Adit and drilled area. The constituent veins branch and coalesce vertically as well as horizontally. The high grade vein is not a separate unrelated vein at some unknown relationship to the "main" vein but rather an integral part of the bifurcating nature of the entire Victoria vein system (see attached photos). The high-grade portion of the system can more accurately be referred to as the "West Hangingwall Branch" of the vein system.

The higher grade silver values have been followed by XRF to a lower elevation where they are cut off by an igneous sill (probably a rhyolite porphyry).

Below the sill the Hangingwall and Main veins appear to continue to lower elevations. However, in a major observation, the "Upper" vein system and the "Lower" vein system are offset by approximately 70 meters E-W. There will be a vertical displacement as well as horizontal but more mapping is required to define the vertical displacement. The dips vary from northeast and southwest. The marked variability of the dip and undulating strike and dip may be important guides to ore location.

The observation that the vein system has been displaced is actually quite startling and very significant. No previous work even hinted at such a displacement.

Samples collected from the lower extension (and proved to be silver bearing at 4,191g/tonne) of the high-grade hangingwall were found at least 110m in elevation below the drilled area (and 100m west of the Lower Portal). The area above the Upper Adit should also be prospected by Helicopter access. The old reports of high-grade at the "Glory Hole" should be quantified (to the west on the Eureka System but perhaps more related to the rhyolite sill).

It is not immediately apparent where the dislocation is occurring, but it may be related to the intrusion of the rhyolite porphyry. The displacement is left lateral but complicated by perhaps multiple displacements which allow the hangingwall vein to continue to lower elevations.

The shape of a larger drill program is emerging whereby drillsites can be located to the west (1) along the lower bench near the 1860's cabin site; (2) build a drillsite west of the Lower Portal on the trail up to the 1860's cabin site. These holes will cross-cut the 2 segments of the off-set vein systems.

The Victoria Vein has been traced for about 625 metres on the southwestern slopes of Silver Peak. The depth to which the Victoria mineralization persists has not been defined by work to date nor has any resource been calculated for the Victoria. In 1924 a 1.4m adit was driven and a sample over 36cm assayed 399.43 g/tonne (11.65 oz./ton). About 70m above an adit was driven for 15m. A sample taken from the portal across 35.6cm assayed 22,574.59 g/tonne (658.43 oz./ton Ag).

The Victoria West Zone has traced approximately 275m. No previous work is known on the Victoria West Zone. Future exploration programs need to take into account the expected presence of new zones within the vein system and further define the Victoria West Zone.

Underground Workings

Figure 14 Silver Peak Project 2014 (see figures 15a, 15b and 15c for details) This entire figure is on Tenure #336761

Figure 14a Silver Peak Project 2014 Details

Figure 14b Silver Peak Project 2014 Details

Figure 14c Silver Peak Project 2014 Details

Cross Section DH14-3

Scale 1cm=1m

Figure 15c

45 Rusty, leached mineralized vein OM Brecciated conglomerate 0.7m 1M Cross Section DH14-4 Scale 2Cm=1m Figure 15d

Sparse vein & brecciated conglomerate -22° 0m Altered intrusive -1.8m 2m Cross Section DH14-6 Scale 1cm=1m Figure 15f

DRILLING 2014

Core drilling in 2014 was successful in delineating the continuity of the high-grade silver values and mineralogy within the vein system. A total of seven very short holes were completed.

Diamond Drill Holes 2014						
Hole #	Northing	Easting	Dip	Azimuth	Elevation	Length (m)
					(m)	
14-01	5462568	611654.85	-84°	360°	1783	2.81
14-02	5462567.9	611653.60	-30°	090°	1783	1.00
14-03	5462567.8	611653.10	-90°	180°	1780	4.23
14-04	5462566	0611627	-45°	180°	1734	1.00
14-05	5462566.9	611644.7	-85°	165°	1774	6.00
14-06	5462566.9	611630.7	-22°	123°	1754	2.00
14-07	5462566.5	611630.7	-37°	133°	1754	2.50
						T. I. I. I. O. 72.

Table 2 Diamond Drill Holes 2014

Total 19.73m

Drilling was completed using a Portable Shaw Drill giving E-size core. Drill logs are contained in Appendix IV.

Holes were mainly down-dip but demonstrated continuity of silver values.

Drill hole 14-03 was sawn in half and assayed at AGAT Labs. Weight average from 0 to 3.31m averages 3,496.91 g/tonne silver (102oz/ton Ag). Drill hole 14-01 also was split and sent to AGAT Labs and assayed a weighted average from 0-2.1m of 2,717.3g/tonne (108.44oz/ton). Numerous spot XRF assays using a hand held XRF Unit gave high silver values.

Assays were conducted by using an XRF Unit factory calibrated (Cert No. 0154-0557-1) on October 30, 2013, Instrument #540557 Type Olympus DPO-2000 Delta Premium. The instrument was calibrated using Alloy Certified reference materials by ARM1 and NIS5 standards. Only certified operators were employed and that were experienced in XRF assay procedures. Read times were 120 seconds or greater.

The core is stored at Unit 5 – 2330 Tyner Street, Port Coquitlam, BC.

Photo 4: Upper Adit Veins at Lower Elevations

Photo 3: Joining of the West (high-grade) Hanging Wall Vein and the Low-Grade Main Vein

Photo 5: Bifurcating Vein System at the Lower Portal

Photo 6: Hole 14-03

INTERPRETATION and CONCLUSIONS

The bifurcating nature of the vein system as observed above the lower Victoria Portal was confirmed at the Upper Adit and drilled area. The constituent veins branch and coalesce vertically as well as horizontally. The high grade vein is not a separate unrelated vein at some unknown relationship to the "main" vein but rather an integral part of the bifurcating nature of the entire Victoria vein system (see attached photos). The high-grade portion of the system can more accurately be referred to as the "West Hangingwall Branch" of the vein system.

The higher grade silver values have been followed by XRF to a lower elevation where they are cut off by an igneous sill (probably a rhyolite porphyry).

Below the sill the Hangingwall and Main veins appear to continue to lower elevations. However, in a major observation, the "Upper" vein system and the "Lower" vein system are offset by approximately 70 meters E-W. There will be a vertical displacement as well as horizontal but more mapping is required to define the vertical displacement. The dips vary from northeast and southwest. The marked variability of the dip and undulating strike and dip may be important guides to ore location.

The observation that the vein system has been displaced is actually quite startling and very significant. No previous work even hinted at such a displacement.

Samples collected from the lower extension (to be confirmed by XRF) of the high-grade hangingwall were found at least 110m in elevation below the drilled area (and 100m west of the Lower Portal). The area above the Upper Adit should also be prospected by Helicopter access. The old reports of high-grade at the "Glory Hole" should be quantified (to the west on the Eureka System but perhaps more related to the rhyolite sill).

It is not immediately apparent where the dislocation is occurring, but my suspicion is that the dislocation is related to the intrusion of the rhyolite porphyry. The displacement is left lateral but complicated by perhaps multiple displacements which allow the hangingwall vein to continue to lower elevations.

The shape of a larger drill program is emerging whereby drillsites can be located to the west (1) along the lower bench near the 1860's cabin site; (2) build a drillsite west of the Lower Portal on the trail up to the 1860's cabin site. These holes will cross-cut the 2 segments of the off-set vein systems.

The Eureka-Victoria Mine was the first Crown-granted mineral property in British Columbia. A substantial unknown quantity of high-grade oxidized silver ore was produced between 1868 and 1874. Grades of oxide material range up to 500-600 oz/ton silver. Primary mineralization consists of silver-rich tetrahedrite (friebergite) in a siderite-quartz gangue. Underground drifting in 1924, 1962, 1971 and 1981 has suggested a mineral inventory on the eastern portion of the Eureka vein of 54,000 tons averaging 13.10 oz/ton silver. The vein system consists of three main veins: (1) Eureka, (2) Victoria (formerly Van Bremmer) and the (3) Victoria West. The veins strike about 053° and dip steeply to the southeast. Several smaller veins are known at lower elevations. None of the veins has been tested at depth, although the Eureka Vein has been traced over 300 metres of dip length and is open down dip.

The mine has been developed on several levels and raises between the levels. Access is available by a combination of logging and mining roads that have recently been cleaned out and repaired in 2009. The road is now driveable to the workings.

Exploration in the past has been hampered by a lack of detailed survey control. Accurate survey control will be especially important as the vein system is tested at depth. A three-phase exploration program is recommended to establish transit and EDM survey control, geologically map the area around the vein system, diamond-drill to test the veins at depth and bulk sample the eastern part of the Eureka vein.

The portal of the Eureka drift requires stabilization and the raise in the Sunray Cross-cut needs ladders to access the Eureka level.

The Silver Peak Project encompasses about 1,464.1 ha in 8 claims. Current anniversary dates range from October 3, 2012 to October 30, 2014. Permits currently in good standing are MX-7-189 (Mine#0700610) with the Ministry of Energy, Mines and Petroleum Resources (MEMPR) covering exploration and bulk sampling up to 10,000 tonnes.

High grade silver veins were first discovered prior to 1868 and considerable ore was shipped up until 1874. Assays of remnant oxide material are recorded up to 658 oz./Ag per ton.

The property is located 6 km south of the Town of Hope, BC, Canada. A logging/mining road extends to the workings. Presently, access has been reopened and the workings are accessible by 4x4 vehicles.

The area is underlain by chloritized Eocene-age conglomerate on the east side of a major regional structure called the Hope Fault. To the east and south is granodiorite of the Oligocene to Miocene Mount Barr batholith. To the west is the Cretaceous quartz diorite of the Spuzzum Pluton. On the north is the zoned Eocene Silver Creek Stock composed of quartz diorite.

The mineralized zones are called the Eureka, Victoria (formerly the Van Bremer) and Victoria West. Numerous other minor zones cross the Glory Hole gulch below the Eureka lode which require investigation.

The Eureka vein has been traced across the summit of Silver Peak for about 668 metres striking 053°, varying in width from 1.5 to 6 metres and dipping steeply to the southeast (75°-80°SE). The Eureka Zone has been defined over 1,000 feet (300m) down dip. The zone is open down dip and along strike.

The Victoria Vein has been traced for about 625 metres on the southwestern slopes of Silver Peak. The depth to which the Victoria mineralization persists has not been defined by work to date nor has any resource been calculated for the Victoria. In 1924 a 1.4m adit was driven and a sample over 36cm assayed 399.43 g/tonne (11.65 oz./ton). About 70m above an adit was driven for 20m. A sample taken from the portal across 35.6cm assayed 22,574.59 g/tonne (658.43 oz./ton Ag). Further check samples have been collected.

The Victoria West Zone has traced approximately 366m. No previous work is known on the Victoria West Zone. Future exploration programs need to take into account the expected presence of new zones within the vein system and further define the Victoria West Zone.

Previous work, as documented by B.E. Spencer, P.Eng., May 25, 1982, gives estimates for two zones on the northeast portion of the Eureka vein of indicated and inferred of 54,000 tons at 13.10 oz./ton silver (449.15g/tonne), from close spaced underground sampling using a stoping width of 0.914m. Recent sampling in 2010 has confirmed these grades up to 874 g/tonne (25.55 oz/ton Ag).

To the northeast approximately 500m to 600m, there are anomalous silver values in soil suggestive that the zones might continue to the northeast under overburden cover and possibly even further.

In summary, the Eureka Vein shows a documented preliminary resource over an explored 150m section of vein of about 54,000 tons. The vein is known over a distance of over 500metres of unexplored length and possibly covered for an equal length to the northeast suggestive of a permissive geological potential volume of an additional possible approximately 400,000 tons. The Victoria vein holds a similar geological potential as the Eureka Vein at somewhat higher grade of silver. The Victoria West is largely unknown. Given a down dip possibility of 450m or greater (the northeast extension is at an elevation 240m below the lower level workings), the geological potential of the Eureka and Victoria veins based on past exploration is approximately 1.35 million tonnes (both veins over a strike length of 1200m and a dip extent of 450m by an average 0.9m to 1.5m wide, ore shoots of 75m long, spaced 100m apart) with an average grade of 13oz/ton (could be higher due to the effect of the Victoria high grade) gives in the order of a global geological 17.7 million ounces of potential silver in each vein (or a total of about 35 million ounces of Ag). The reader should note that these figures are geological potential and not resources as per NI 43-101 standards. This appears on the basis of available data to be the order of magnitude of the potential mineralization at Silver Peak. A few kilometres to the west is a gold vein at much lower elevations. Gold content would be expected to increase at depth. The strike extent and down dip continuity is still open in this analysis.

In 2011, the road was further upgraded, the Upper Victoria drift was sampled and the Lower Adit was driven by company personnel and sampled.

The new Lower Victoria drift driven in 2011 by Homegold personnel returned generally low silver values (see Photo 1) demonstrates how the Lower Victoria splits and bifurcates over a wide horizontal distance. Future plans call for a raise up to the Upper Victoria drift. The high-grade demonstrate silver grades up to 15,517.0 g/tonne Ag, 4.3% Pb and 2.94% Cu. Bi ran 2756ppm.

An exploration program of bulk sampling at a cost of \$60,000 (see next page) and detail geological mapping, follow-up soil sampling, survey control and diamond drilling is recommended to test the mineral potential at a nominal cost of Phase II of \$246,000. Further work will be required contingent on success of Phase II.

Respectfully submitted,

J. T. Shearer, M.Sc., P.Geo. (BC & Ontario) November 1, 2014

RECOMMENDATIONS

Timing – Scope of	September 2 nd to October 15 th 2014 Work: Phase 1 – 100 tonnes	Rationale: Approx. 13,300 oz. @ \$19 x 77% = \$195,135 (r	ninus costs)
Average (Phase 2 – 100 additional tonnes Grade - >100oz/ton Silver	>3000g/tonne = 74% >4000g/tonne = 77% 100 oz/ton = 3428g 117 oz/ton = 4000g Treatment/refining Assays control/containers - \$152/ton extra	
Phase 1 (a)	Clean road old cabin to Lower Victoria Sept. 2-4, 3 days @ \$2000/day	a and smooth out lower section	\$ 6,000.00
(b)	Set up small fly camp?		1,000.00
(c)	Secure cableway (zipline)		5,000.00
(d)	Plugger drill balcony to just inside Portal 1m wide x 20m long x 2m deep x 2.6 SG = 114 tonnes		3,000.00
(e)	Explosives		
(f)	Hand muck to bags and down zipline		15,000.00
(g)	Truck downhill 3,0 5T per trip, 20 trips, 10 days (using smaller 5 ton truck)		
(h)	Truck to crusher		2,000.00
(i)	Crush to 3/8 inch minus @ \$10 per tonne		1,000.00
(j)	Arms-length sampling (guestimate, might be less)		5,000.00
(k)	Deliver to container in Vancouver		1,000.00
(I)	Miscellaneous – ATV, light trucks for program, hotel, meals, food for camp, fuel, small bags, rope (?)		6,000.00
(m)	Put road to bed		3,000.00
(n)	Contingencies 10% 5,00 (possible rental of XRF)		
		Total	5 60,000.00

Note: We are then in a position to evaluate Phase 2. A platform anchored to the face will be required, might be better in 2015.

Technical Consulting	7,000
Assessment Report on the Silver Peak Project	

Chip and channel sampling, grade control		6,000
Assays		20,000
Office Staff/Accounting		14,000
Communication		1,400
Office Rent (Hope), Office equipment		3,500
Transportation		700
Equipment Lease		-
EIA and related costs		3,000
Permits & assoc. costs		15,000
Legal, Insurance & Other		24,000
	TOTAL	94,600

REFERENCES

British Columbia Minister of Mines, Annual Report:

1874, p.15;	1875, p.17;	1890, p.378;	1902, p.196;	1921, p.197;
1924, p.138;	1926, p. 198;	1962, p.92;	1963, p.90;	1968, p.78.

Cairnes, C. E., 1921:

Coquihalla Area, British Columbia, Geological Survey of Canada, Sum. Rept., 1920, Pt A, pp 23-41.

1924a:

Reconnaissance of Silver Creek, Skagit and Similkameen Rivers, Yale District B.C., Geological Survey of Canada, Sum. Rept., 1923, Pt A, pp 46-80.

1924b:

Coquihalla Area, British Columbia, Geological Survey of Canada, Memoir 139, 187 pp.

1944:

Hope Area, Geological Survey of Canada, Map 737A, 1" = 4 miles, 1 sheet.

Krueckl, G. P., 1983:

Field Program Report on the Eureka-Victoria Property, Hope, B.C., Private Report for Vanstates Resources Ltd., dated December 12, 1983, 6 pp.

Lloyd, J., 1983:

VLF-EM Report on the Silver Peak Area. Assessment Report 11057 for Lynn Beard, Feb. 1983.

McTaggart, K. C. and Thompson, R. M., 1967:

Geology of part of the Northern Cascades in Southern British Columbia. Canadian Journal of Earth Sciences, Vol. 4, pp 1199-1228.

Monger, J. W. H., 1970:

Hope Map-Area, West Half, British Columbia, Geological Survey of Canada, Paper 69-47, 75 pp.

Richards, T. A. and McTaggart, K. C., 1976:

Granitic Rocks of the Southern Coast Plutonic Complex and Northern Cascades of British Columbia, Geological Society of America Bulletin, V87, pp. 935-953.

Shearer, J. T., 1983:

Diamond Drilling and Prospecting Report on the Hunter Group, 92H/5E + 6W. Assessment Report #18,235, October 8, 1983, 12 pp.

1996:

Geological and Prospecting Report on the Eureka-Victoria Mine.

1998:

Summary Report on the Eureka-Victoria Mine, 16 pp.

2001:

Geological and Prospecting Assessment Report on the Eureka-Victoria Mine, 18pp.

2011:

Assessment Report on the Eureka-Victoria Mine, for Homegold Resources Ltd., 22pp.

Spencer, B. E., 1980a:

Report on the Eureka-Victoria Property for Vanstates Resources Ltd., September 2, 1980, 9pp.

1980b:

Progress Report on the Eureka-Victoria Property for Vanstates Resources Ltd., December 5, 1980, 8pp.

1981a:

Summary Report on the Eureka-Victoria Property, Private Report in the Vanstates Prospectus, dated February 5, 1981.

1981b:

Report on the Lucky Chance Mineral Claims for Vanstates Resources Ltd., May 25, 1981, 3pp.

1981c:

Report on the Eureka-Victoria Exploration Project for Vanstates Resources Ltd., June 9, 1981, 3pp.

1982a:

Progress Report on the Eureka-Victoria Property for Vanstates Resources Ltd., May 25, 1982, (Ore Reserve Calculation and Witteck Metallurgical Reports).

1982b:

Report on the Eureka-Victoria Property for Vanstates Resources Ltd., September 27, 1982, 10pp.

1982c:

Report on the Eureka-Victoria Property, Hope, B.C., Private Report for Vanstates Resources Ltd., dated September 27, 1982, 10 pp.

Yorston, R., 1990:

Assessment Report 20491 for Guinet Management, September 1990.

APPENDIX I

STATEMENT of QUALIFICATIONS

STATEMENT of QUALIFICATIONS

I J. T. (Jo) Shearer, of Unit 5 – 2330 Tyner St. Port Coquitlam, BC, V3C 2Z1, do hereby certify that:

- 1. I am an independent consulting geologist and principal of Homegold Resources Ltd.
- 2. My academic qualifications are:
 - Bachelor of Science, Honours Geology from the University of British Columbia, 1973

- Associate of the Royal School of Mines (ARSM) from the Imperial College of Science and Technology in London, England in 1977 in Mineral Exploration

- Master of Science from the University of London, 1977
- 3. My professional associations are:

- Member of the Association of Professional Engineers and Geoscientists in the Province of British Columbia, Canada, Member #19,279 and the APGO in Ontario, Member 1867.

- Fellow of the Geological Association of Canada, Fellow #F439
- Elected Fellow of SEG (Society of Economic Geologists)
- 4. I have been professionally active in the mining industry continuously for over 40 years since initial graduation from university. I have personally worked on several epithermal precious metal properties.
- 5. I am responsible for the preparation of all sections of the technical report entitled "Assessment Report on the Eureka-Victoria Mine Project, Westminster Mining Divisions dated November 1, 2014" for Homegold Resources Ltd. I have carried out mapping and sample collection and am familiar with the regional geology and geology of nearby properties. I have become familiar with the previous work conducted on the Silver Peak Project (Eureka-Victoria Mine) by examining in detail the available reports and maps and have discussed previous work with persons knowledgeable of the area.

Signed at Vancouver BC this 1st day of November, 2014

J. T. Shearer, M.Sc., P.Geo. Qualified Person **APPENDIX II**

STATEMENT of COSTS

Appendix II Statement of Costs 2014

Wages	Total
J.T. Shearer, M.Sc., P.Geo.,	
8 days @ \$700/day, July, 11, 24, Aug. 3,5,6,10,15,18,19,25, 2014	\$ 5,600.00
Expenses	
Truck, Fully equipped 4x4, 23 days @ \$75/day	1,725.00
Food & Meals	904.69
Fuel	1,227.98
Supplies for Shaw Drill	4,095.43
Hotel	3,135.75
Milton Mankowske, 12 days @ \$375/day,	4,500.00
June 24+26, Sept. 27, October1-15, 2014	
Milton Mankowske, Drilling, 21 Days @ \$375/day	7,875.00
July 21, 28, Aug. 1-19, 2014	
Jeremy Marlow, Drill Helper, 5 days @ \$300/day	1,500.00
Jared Put, Drill Helper, 12 days @ \$300/day	3,600.00
ATV, 19 days @ \$50/day	950.00
Genex	1,317.28
ATAT Laboratories, Invoices 14K55821M+14K58759M	1407.40
Tri-West Contracting, Invoices 2622 (storage)	100.00
Tri-west Contracting, Invoice 2592 (excavator work on road)	9,118.30
XRF Rental, Romquest Technologies	2,140.00

Grand Total \$49,196.83

Event #	5527167
Date	October 20, 2014
File	\$33,936.12
PAC Debit	\$10,063.88
Total	\$44,000.00

APPENDIX III

SAMPLE DESCRIPTIONS

Appendix III

Sample Descriptions

Sample Interval	Description
DDH-14-1 0-0.7m	Oxidized Mineralized Vein – rubbly core, rusted leached appearance
DDH-14-1 0.7-1.4m	Highly Altered Brecciated Conglomerate – mineralized, quite rusty, come short sections of heavy vein near lower part
DDH-14-1 1.4-2.1m	Oxidized Mineralized Vein – very rusty, rubbly core, fragments in vein, some sections vuggy, leached
DDH-14-1 2.1-2.8m	Less Altered Brecciated Conglomerate – close packed pebbles, some rusty spots, some cross-cutting vein material
DDH-14-3 0-0.35m	Rubble; highly oxidized vein material, highly mineralized, at 0.34m XRF reading of 348g minor malachite
DDH-14-3 0.35-0.87m	Lower grade wall rocks, ore at 0° to core axis, wavy contact, undulating, rounded "breccia" fragments
DDH-14-3 0.87-1.95m	Grade at contact 3639g – very vuggy – xl lend chocolate brown, some metallic polishing
DDH-14-3 1.95-2.90m	Conglomerate (Eocene) broken and rusty
DDH-14-3 2.90-3.31m	Less altered fresher conglomerate, vugs right through core
DDH-14-3 3.31-3.81m	Less altered conglomerate, very vuggy; pyrite/siderite/arsenopyrite

Samples Analyzed by XRF (Assay results in Appendix V) Plotted on Figure 14

SP15-6 – SP15-10 SP Upper Vic1 to SP Upper Vic 81 DDH-14-1-1 to DDH-15-1-9 DDH-14-2-0 to DDH-14-2-1 DDH-14-3-0 to DDH-14-3-10 DDH-14-4-0 to DDH-14-4-2 Portal, High-grade vein

These samples are all vein material in and around the Upper Victoria Workings. Results are plotted on Figure 14. Spot XRF readings on the drill core are on heavy sulfide mineralization.

Sample Descriptions of Samples Collected at Lower Elevations of the Hanging Wall Vein

Yellow crust on Sample in vein material		
XRF Results		
Le	44.40	
Si	12.55	
S	11.24	
Pb	12.69	
Fe	6.04	
Р	3242	
Cl	2.36	
Sb	3.58	
Са	3.11	

As	9568
Та	3975
К	3984
Ag	4191
Cu	561
Sn	746
Cd	610
Zn	398
Nb	328
Мо	134

Previous XRF on Yellow Crust

	XRF Results
127	
Cu	6.95
Fe	4.21
S	3117
Ag	151
As	171
Sb	156
Pb	553

Dyke, Igneous Dyke, feldspar phenos, fine grained dark matrix

	XRF Results
Le	60.19
Si	28.29
Al	5.45
Fe	2.70
К	2.26
Са	3207
Р	2647
Ti	2027
S	1370
Mn	788
V	361
Zr	135
Zn	134
Rb	70
Sr	63
As	62
Cu	43
Υ	25

APPENDIX IV

DRILL LOGS

Page 1 of 1

SECTION: <u>DH-14-01</u>

Diamond Drill Log

Northing:	5462568	Drill Hole	survey	
Easting:	611654.85	Method:	Brunton	
Elevation:	1783m	Azimuth	Dip	Depth
Azimuth:	360	360	-84	Collar
Inclination:	-84			
Grid:	No Grid			
Length (m):	2.81m			
Core size:	E-size			
Contractor:	Mankowske			
Drill Type:	Shaw Drill			

DDH#: <u>DH 14 #1</u>

Property:	Silver Peak
NTS:	92H/6W
Claim:	336760
Date Started:	Aug. 10, 2014
Date Completed	:Aug. 10, 2014
Logged by:	J.T. Shearer,
	M.Sc., P.Geo.

Samples Split: Logged on August 14, 2014 Core sawn and set to AGAT Lab for assay

Purpose:	: At Upper Adit testing down-dip continuity					
from (m)	to (m)	Description	from/to	width (m)	Ag g/tonne tonne	
0.00	0.7	Oxidized Mineralized Vein – rubbly core recovery (most of core loss at top of Hole), rusted leached appearance	0-0.7	0.7	808	
0.7	1.4	Highly Altered Brecciated Conglomerate – mineralized, quite rusty, come short sections of heavy vein near lower part	0.7-1.4	0.7	726	
1.4	2.1	Oxidized Mineralized Vein – very rusty, rubbly core, fragments in vein, some sections vuggy, leached XRF at 1.7 – 5229 g/tonne Ag XRF at 1.75 – 3777 g/tonne Ag	1.4-2.1	0.7	9618	
2.1	2.8 (3.0)	Less Altered Brecciated Conglomerate – close packed pebbles, some rusty spots, some cross-cutting vein material	2.1-2.8 (3.0)	0.9	124	
		End of Hole 2.80m (3.00)				
		Overall approx. 80% core recovery				
		Weighted average over 2.1m = 3,717.3 g/tonne (108.44 oz./ton)				

Page 1 of 1

SECTION: <u>DH-14-02</u>

Diamond Drill Log

Northing:	5462567.9	_	Drill Hole	survey	
Easting:	611653.60	-	Method:	Brunton	
Elevation:	1783m	-	Azimuth	Dip	Depth
Azimuth:	090	-	090	-30	Collar
Inclination:	-30	-			
Grid:	No Grid	-			1
Length (m):	1.00m	-			
Core size:	E-size	-			
Contractor:	Mankowske	-			
Drill Type:	Shaw Drill	_			

DDH#: <u>DH 14 #2</u>

Property:	Silver Peak
NTS:	92H/6W
Claim:	336760
Date Started:	Aug. 11, 2014
Date Completed	:Aug. 11, 2014
Logged by:	J.T. Shearer,
	M.Sc., P.Geo.

Samples Split: Logged on August 14, 2014

	r				
Purpose:	At Upp	er Victoria Adit, test for continuity			
from (m)	to (m)	Description	from/to	width (m)	Ag g/tonne tonne
0.00	0.25	Very Rusty Mineralized Vein – XRF at 0.05m 2879 g/tonne Ag			
0.25	2.60	Brecciated Conglomerate and Vein Material – rusty, abundant carbonate (siderite?), altered throughout			
2.60		Relatively Fresh Green Conglomerate – dark green matrix, heterolithic pebbles, white chert prominent			

Page 1 of 1

SECTION: <u>DH-14-03</u>

Diamond Drill Log

Northing:	5462567.8	•	Drill Hole	survey	
Easting:	611653.10		Method:	Brunton	
Elevation:	1780m		Azimuth	Dip	Depth
Azimuth:	180		180	-90	Collar
Inclination:	-90				
Grid:	N				
Length (m):	4.23m				
Core size:	E-size				
Contractor:	Mankowske				
Drill Type:	Shaw Drill				

DDH#: <u>DH 14 #3</u>

Property:	Silver Peak
NTS:	92H/6W
Claim:	336760
Date Started:	Aug. 13, 2014
Date Completed	:Aug. 13, 2014
Logged by:	J.T. Shearer,
	M.Sc., P.Geo.

Samples Split: Logged on August 15, 2014

Purpose:	To tes	To test down-dip continuity of vein mineralogy and grade						
from (m)	to (m)	Description	from/to	width (m)	Ag g/tonne tonne			
0.00	0.34	Rubble; highly oxidized vein material, highly mineralized, at 0.34m XRF reading of 348g minor malachite	0-0.35	0.35	9,228			
0.34	1.27	Lower grade wall rocks, ore at 0° to core axis, wavy contact, undulating, rounded "breccia" fragments Breccia pipe? Matrix supported?	0.35-0.87	0.52	4,685			
1.27	1.75	Grade at contact 3639g – very vuggy – xl lend chocolate brown, some metallic polishing at 1.42; at 1.57 XRF 1101g; at 170 SRF 327	0.87-1.95	1.08	3,721			
1.75	2.19	Conglomerate (Eocene) broken and rusty	1.95-2.90	0.95	211			
2.19	3.29	Less altered fresher conglomerate, vugs right through core	2.90-3.31	0.41	4,610			
3.29	3.62	High grade mineralization; XRF 2227g at 3.3.m, lower contact 10° to core axis						
3.62	3.99	Less altered conglomerate, very vuggy; pyrite/siderite/arsenopyrite	3.31-3.81	0.50	657			
3.99	4.23	DYKE , porphyritic altered felsite; abundant quartz eyes, 5-10% mafics, orange feldspar, Granodiorite?						
		End of Hole 5m						
		NOTE: weighted average of 3,496.91 g/tonne over 3.31m (102oz/ton)						

Page 1 of 1

SECTION: <u>DH-14-04</u>

Diamond Drill Log

Northing:	5462566	Drill Hole	survey	
Easting:	611627	Method:	Brunton	
Elevation:	1734m	Azimuth	Dip	Depth
Azimuth:	180	180	-45	Collar
Inclination:	-45			
Grid:	No Grid			
Length (m):	1.00m			
Core size:	E-size			
Contractor:	Mankowske			
Drill Type:	Shaw Drill			

DDH#: <u>DH 14 #4</u>

Property:	Silver Peak
NTS:	92H/6W
Claim:	336760
Date Started:	Aug. 12, 2014
Date Completed	:Aug. 12, 2014
Logged by:	J.T. Shearer,
	M.Sc., P.Geo.

Samples Split: Logged on August 15, 2014

Purpose:					
from (m)	to (m)	Description	from/to	width (m)	Ag g/tonne tonne
0.00	0.7	Rusty, Leached Mineralized Vein – very rubbly core, leached, rusty, XRF at 0.15m is 256 g/tonne Ag			
0.7	1.00	Brecciated Conblomerate – very altered, appears silicified, vuggy			
		End of Hole 1.00m (3.28 ft.)			

Page 1 of 1

SECTION: <u>DH-14-05</u>

Diamond Drill Log

Northing:	5462566.9	_	Drill Hole	survey	
Easting:	611644.7	-	Method:	Brunton	
Elevation:	1774m	-	Azimuth	Dip	Depth
Azimuth:	165	-	165	-85	Collar
Inclination:	-85	_			
Grid:	No Grid	_			
Length (m):	6.00m	_			
Core size:	E-size	_			
Contractor:	Mankowske	_			
Drill Type:	Shaw Drill	_			

DDH#: <u>DH 14 #5</u>

Property:	Silver Peak
NTS:	92H/6W
Claim:	336760
Date Started:	Aug. 14, 2014
Date Completed	:Aug. 14, 2014
Logged by:	J.T. Shearer,
	M.Sc., P.Geo.

Samples Split: Logged on August 16, 2014

Purpose:		-			-
from (m)	to (m)	Description	from/to	width (m)	Ag g/tonne tonne
0.00	0.2	Rusty, Leached Mineralized Vein – XRF 201 g/tonne Ag			
0.2	2.55	Brecciated Chloritic Conglomerate – chlorite, pebbles broken and brecciated, sheared in places, iron stained			
2.55	2.80	Leached Siderite Vein – barren, mostly fine grained, manganese staining			
2.80	5.70	Brecciated, Highly Altered Conglomerate – interspersed with short mineralized vein intervals XRF at 2.85m – 112 g/tonne XRF at 3.05m – 372 g/tonne XRF at 3.10m – 916 g/tonne Below 3.10m very manganiferous XRF at 5.65m – 520 g/tonne Gradational contact zone			
5.70	6.00	Less Altered Intrusive			
		End of Hole 6.00m (20 ft.)			

Page 1 of 1

SECTION: <u>DH-14-06</u>

Diamond Drill Log

Northing:	5462566.9	Drill Hole	survey	
Easting:	611630.7	Method:	Brunton	
Elevation:	1754m	Azimuth	Dip	Depth
Azimuth:	123	123	-22	Collar
Inclination:	-22			
Grid:	No Grid			
Length (m):	2.00m			
Core size:	E-size			
Contractor:	Mankowske			
Drill Type:	Shaw Drill			

DDH#: <u>DH 14 #6</u>

Property:	Silver Peak
NTS:	92H/6W
Claim:	336760
Date Started:	Aug. 18, 2014
Date Completed	:Aug. 18, 2014
Logged by:	J.T. Shearer,
	M.Sc., P.Geo.

Samples Split: Logged on August 18, 2014

Purpose:					
from (m)	to (m)	Description	from/to	width (m)	Ag g/tonne tonne
0.00	1.80	Sparse Vein and Brecciated Conglomerate – sheared intervals, minor intervals with vuggy leached vein segmants, relatively unaltered, little chlorite			
1.80	2.00	Altered Intrusive – fine grained felsite, appears to be K-spra alteration			
		End of Hole 2.00m (6.6 ft.)			

Page 1 of 1

SECTION: <u>DH-14-07</u>

Diamond Drill Log

Northing:	5462566.5	_	Drill Hole survey		
Easting:	611630.7	_	Method:	Brunton	
Elevation:	1754m	_	Azimuth	Dip	Depth
Azimuth:	133	_	133	-37	Collar
Inclination:	-37	_			
Grid:	No Grid	_			
Length (m):	2.50m	_			
Core size:	E-size	_			
Contractor:	Mankowske	_			
Drill Type:	Shaw Drill	_			

DDH#: <u>DH 14 #7</u>

Property:	Silver Peak
NTS:	92H/6W
Claim:	336760
Date Started:	Aug. 19, 2014
Date Completed	:Aug. 19, 2014
Logged by:	J.T. Shearer,
	M.Sc., P.Geo.

Samples Split: Logged on August 19, 2014

Purpose:					
from (m)	to (m)	Description	from/to	width (m)	Ag g/tonne tonne
0.00	2.50	Relatively Fresh Brecciated Conglomerate – very sparse chlorite, occasional sulfides on fracture surfaces, very limited mineralization			
		End of Hole 2.50m			

APPENDIX V

XRF RESULTS and LAB ASSAYS

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD. UNIT# 5-2330 TYNER STREET PORT COQUITLAM, BC V3C2Z1 (604) 696-1022

ATTENTION TO: JO SHEARER

PROJECT NO: Silver Peak Project

AGAT WORK ORDER: 14V879293

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, Certified Assayer - Director - Technical Services (Mining)

DATE REPORTED: Aug 29, 2014

PAGES (INCLUDING COVER): 6

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 14V879293 PROJECT NO: Silver Peak Project 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

	(202-064) Fire Assay - Au Ore Grade, Gravimetric finish											
DATE SAMPLED: Aug	22, 2014			DATE RECEIVED: Aug 21, 2014	DATE REPORTED: Aug 29, 2014	SAMPLE TYPE: Drill Core						
	Analyte:	Sample Login Weight	Au									
	Unit:	kg	ppm									
Sample ID (AGAT ID)	RDL:	0.01	0.05									
DDH-14-3 0-0.35m (57236	62)	0.06	0.20									
DDH-14-3 0.35-0.87m (572	23663)	0.13	0.83									
DDH-14-3 0.87-1.95m (572	23664)	0.26	0.93									
DDH-14-3 1.95-2.90m (572	23665)	0.25	<0.05									
DDH-14-3 2.90-3.31m (572	23666)	0.14	0.26									
DDH-14-3 3.31-3.81m (572	23667)	0.16	0.07									
DDH-14-1 0-0.7m (572366	68)	0.12	0.07									
DDH-14-1 0.7-1.4m (57236	669)	0.16	<0.05									
DDH-14-1 1.4-2.1m (57236	670)	0.16	1.05									
DDH-14-1 2.1-2.8m (57236	671)	0.15	0.07									

Comments: RDL - Reported Detection Limit

Certified By:

Roy Cardinall

Certificate of Analysis

AGAT WORK ORDER: 14V879293 PROJECT NO: Silver Peak Project 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

(202-066) Fire Assay - Ag Ore Grade, Gravimetric finish											
DATE SAMPLED: Aug 2	22, 2014		DATE RECEIVED: Aug 21, 2014	DATE REPORTED: Aug 29, 2014	SAMPLE TYPE: Drill Core						
	Analyte:	Ag									
	Unit:	ppm									
Sample ID (AGAT ID)	RDL:	5									
DDH-14-3 0-0.35m (572366)	2)	9228									
DDH-14-3 0.35-0.87m (5723	8663)	4685									
DDH-14-3 0.87-1.95m (5723	8664)	3721									
DDH-14-3 1.95-2.90m (5723	8665)	211									
DDH-14-3 2.90-3.31m (5723	8666)	4610									
DDH-14-3 3.31-3.81m (5723	8667)	657									
DDH-14-1 0-0.7m (5723668))	808									
DDH-14-1 0.7-1.4m (572366	9)	726									
DDH-14-1 1.4-2.1m (572367	'0)	9618									
DDH-14-1 2.1-2.8m (572367	'1)	124									

Comments: RDL - Reported Detection Limit

Certified By:

Roy Cardinall

Quality Assurance - Replicate AGAT WORK ORDER: 14V879293 PROJECT NO: Silver Peak Project 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

Parameter								

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 14V879293 PROJECT NO: Silver Peak Project 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: HOMEGOLD RESOURCES LTD.

ATTENTION TO: JO SHEARER

Parameter														

Method Summary

CLIENT NAME: HOMEGOLD RESOURCES LTD. AGAT WORK ORDER: 14V879293 **PROJECT NO: Silver Peak Project** ATTENTION TO: JO SHEARER PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE Solid Analysis Sample Login Weight MIN-12009 BALANCE Au GRAVIMETRIC Ag MIN-200-12004 GRAVIMETRIC

XRF X-ray fluorecence.

MEASUREMENT REPORT XMET7500 MINERALS LE

The Business of Science*

Name	Clas	s	Da	te	Tir 17	ne :04:01	Dur 61.2	ation 2 s
sp 15 6	Soil	_2Cond_FP	U9. Ti pom	V ppm	Cr ppm	Mn ppm	Fe ppm	Cu ppm
Element	K ppm 9 19816	La ppm 2298	2874	68 25	71	7339	54302 156	222
±	179	52	34 Ph nnm	25 Sr ppm	Zr ppm	Agppm	Sb ppm	Pb ppm
Element	Zn ppm 351	AS ppm 870 122	67 3	35 3	71 (946	6912 44	276
PASS/FAIL: PA Reference:	SS (Spectrum	similarity:	1.00)					
	Cla	CC	D	ate	Ti	me	Du	ration
Name sp 15 7	Soi	I_2Cond_FI	> 0'	9/08/2014	1 Mp.ppm	7:09:18 Fe nnm	Cu ppm	Zn ppm
Element	K ppm 18059	Ca ppm 3344 71	Ti ppm 2659 34	Cr ppm 72 9	11824 41	66644 183	5088 35	550 11
±		Senom	Rb ppm	Sr ppm	Zr ppm	Ag ppm	Sb ppm 15654	11 ppm 42
±	2160 211	15 4	100 4	35 4	95 4	26	75	10
Element	Pb ppm 20228							
± PASS/FAIL: PA Reference:	483 ASS (Spectru	m similarity	y: 1.00)					
Name	Cl	ass oil 2Cond_l	:р (Date 09/08/2014		Time 17:12:17	6	0.6 s
Element	K ppm 16839	Ca ppm 3587	Ti ppm 2479	Cr ppm 72	Mn ppm 12294 42	Fe ppm 63319 177	4668 33	499 11
±	170	71 Dh mar	33 Sr nnm	9 7r ppm	Agppm	Sb ppm	Tl ppm	Pb ppm
Element	As ppm 1602 203	100 4	36 3	94 4	1854) 14555 70	63 10	464
PASS/FAIL: F Reference:	ASS (Spectru	ım similari	ty: 1.00)					
	(lace		Date		Time		Duration
Name sp 15 9	5	ioil_2Cond_	FP	09/08/2014	Croom	17:20:28 Mn ppm	Feppm	Cu ppm
Element	K ppm	Ca ppm 1831	Ti ppm 4803	84	106	3980	47473 138	5511 31
±	192	58	41	30 Sr nnm	Z4 Zr ppm	Agoom	Sn ppm	Sb ppm
Element	Zn ppm 165	As ppm 438 59	Rb ppm 70 3	32 32	86 3	(<u>391</u>) 13	65 19	2022 27
t	0 Ph nnm	55						
Element	1983							
± PASS/FAIL: Reference:	PASS (Spectr	rum similar	ity: 1.00)					
Name		Class		Date	٨	Time 17:23:11		Duration 60.7 s
sp 15 10	14	Soil_2Cond	I_FP Tinnm	mag V	- Cr ppm	n Mn ppr	m Fe ppm	Cu ppm
Element	20687	1441	4281	94 29	107 24	3404	132	30
±	181	53	D Rh nnr	n Sr ppm	n Zr ppm	Agoph	n Cd ppm	Sn ppm
Element +	2n ppm 137 6	365 59	73 3	29 2	79 3	(360)	46	18
<u> </u>								

Element Sb ppm Ba ppm Pb ppm

	1898	234	1986					
± PASS/FAIL: PAS Reference:	26 S (Spectr	72 um similarity:	131 1.00)					
Name sp upper vic 1	(Class Soil_2Cond_FP		Date 10/08/2014		Time 10:22:40	Ē	Duration 51.1 s
Element ±	K ppm 12166 153	Ca ppm 5407 84	Ti ppm 1669 30	Cr ppm 40 10	Mn ppm 15242 50	Fe ppm 96696 229	Cu ppm 9145 51	2n ppm 1179 17
Element ±	As ppm 4602 319	Se ppm 23 5	Rb ppm 96 5	Sr ppm 43 5	Zr ppm 109 6	(1290) 25	Sb ppm 23252 103	Tl ppm 212 15
Element ±	Pb ppm 36461 738		4.00)					
PASS/FAIL: PAS Reference:	S (Spectr	um similarity:	1.00)					
Name sp upper vic 2		Class Soil_2Cond_FP		Date 10/08/2014		Time 10:25:49	[(Duration 51.2 s
Element	K ppm 6611 117	Ca ppm 5259 80	Ti ppm 877 23	Cr ppm 35 8	Mn ppm 10217 39	Fe ppm 80555 197	Cu ppm 12765 55	Zn ppm 545 12
Element	As ppm 4271 211	Se ppm 14 4	Rb ppm 43 3	Sr ppm 15 3	Zr ppm 51 3	Ag ppm 4213 27	Sn ppm 89 22	Sb ppm 18235 78
± PASS/FAIL: PAS	Tl ppm 99 10 55 (Specti	Pb ppm 16118 478 rum similarity:	1.00)					
Name		Class		Date		Time		Duration
sp upper vic 3 Element ±	K ppm 10849 140	Ca ppm 4512 75	, Ti ppm 2251 31	Cr ppm 57 9	Mn ppm 8548 35	Fe ppm 88406 202	Cu ppm 6701 40	Zn ppm 779 13
Element	As ppm 1909 164	Rb ppm 41 3	Sr ppm 40 3	Zr ppm 50 4	Agopm 1579 19	Sn ppm 72 21	Sb ppm 11662 59	Tl ppm 53 8
Element	Pb ppm 11497							
± PASS/FAIL: PA Reference:	371 SS (Spect	rum similarity	: 1.00)					
Name sp upper vic 4		Class Soil_2Cond_Fl	5	Date 10/08/2014		Time 10:32:48		Duration 61.1 s
Element	K ppm 13540 146	Ca ppm 2300 57	Ti ppm 2838 32	V ppm 61 24	Cr ppm 78 20	Mn ppm 6199 28	Fe ppm 57152 154	Cu ppm 2195 21
Element	Zn ppm 336	As ppm 626 77	Rb ppm 31 2	n Sr ppm 39 2	Zr ppm 46 3	As ppm (426) 11	Sn ppm 60 16	Sb ppm 3530 30
± Element	o Pb ppm 3261	1	2	-				
± PASS/FAIL: PA Reference:	173 SS (Spect	rum similarity	r: 1.00)					

Name sp upper vic 5	(Class Soil_2Cond_FP		Date 10/08/2014	1	lime 10:36:55		Duration 61.2 s
Element +	K ppm 11743 141	Ca ppm 4789 76	Ti ppm 2844 33	Cr ppm 54 18	Mn ppm 7106 30	Fe ppm 65164 165	Cu ppm 3179 25	Zn ppm 690 11
Element	As ppm 980	Sr ppm 49	Zr ppm 57	263	Sn ppm 77	Sb ppm 1254	Ta ppm 95	Pb ppm 3887
± PASS/FAIL: PAS Reference:	90 S (Spectr	3 um similarity:	3 1.00)	13	21	27	29	201
Name sp upper vic 6	(Class Soil_2Cond_FP		Date 11/08/2014	-	Time 09:49:53		Duration 60.5 s
Element	K ppm 15684 154	Ca ppm 889 42	Ti ppm 2456 29	V ppm 67 22	Cr ppm 54 17	Mn ppm 7539 30	Fe ppm 59453 156	Cu ppm 354 9
± PASS/FAIL: PAS	Zn ppm 316 7 SS (Spectr	As ppm 868 44 um similarity:	Rb ppm 54 2 1.00)	Sr ppm 27 2	Zr ppm 57 3	Sb ppm 222 17	Pb ppm 261 99	
Reference:								
Name sp upper vic 7		Class Soil_2Cond_FP		Date 11/08/2014		Time 09:55:32		Duration 61.2 s
Element	K ppm 19240 172	Ca ppm 991 48	Ti ppm 3327 34	V ppm 105 27	Cr ppm 83 21	Mn ppm 8080 32	Fe ppm 82919 187	Cu ppm 310 9
Element ±	Zn ppm 492 10	As ppm 892 57	Rb ppm 68 3	Sr ppm 43 3	Zr ppm 59 4	Sn ppm 82 19	Sb ppm 346 22	Ba ppm 244 74
Element + PASS/FAIL: PAS Reference:	Pb ppm 783 127 55 (Spectr	um similarity:	1.00)					
Name		Class Soil 2Cond FF	,	Date 11/08/2014		Time 10:03:44		Duration 60.6 s
Element ±	K ppm 13142 140	 Ca ppm 1055 40	Ti ppm 2122 27	V ppm 69 21	Mn ppm 10306 34	Fe ppm 30317 110	Cu ppm 178 6	Zn ppm 397 7
Element	As ppm 178	Rb ppm 64	Sr ppm 34	Zr ppm 49 3	Sn ppm 75 14	Sb ppm 122 15	Ba ppm 200 52	Pb ppm 140 47
PASS/FAIL: PAS Reference:	SS (Specti	rum similarity	: 1.00)	5				
Name sp upper vic 9		Class Soil_2Cond_Fl	b	Date 11/08/2014		Time 10:07:49		Duration 61.2 s
Element	K ppm 15598 156	Ca ppm 691 39	Ti ppm 2908 31	V ppm 68 24	Mn ppm 9553 34	Fe ppm 52157 146	Ni ppm 18 5	Cu ppm 270 8
Element	Zn ppm 325	As ppm 653	Rb ppm 92	Sr ppm	Zr ppm 79 3	Sb ppm 227 20	Ba ppm 252 68	Pb ppm 263 87
± PASS/FAIL: PA Reference:	SS (Spect	rum similarity	: 1.00)	5	J	20	00	
Name sp upper vic 1	0	Class Soil_2Cond_Fl	P	Date 11/08/2014		Time 10:11:59		Duration 61.2 s
Element	Kppm	Ca ppm	Ti ppm	V ppm	Cr ppm	Mn ppm	Fe ppm	Ni ppm

						The Busi	ness of Sci	ence"
+	18830 174	1276 52	3130 33	87 26	76 21	5906 28	87374 193	35 6
Element	Cu ppm	Zn ppm	As ppm	Rb ppm	Sr ppm	Zr ppm 189	Sn ppm 87	Sb ppm 150
±	9	8	58	4	3	4	22	24
Element	Ba ppm	Pb ppm						
	383	300						
PASS/FAIL: PAS Reference:	SS (Spect	rum similarity:	1.00)					
Name	1	Class Soil 2Cond FF		Date 11/08/2014	T 1	Time 10:16:33	C 6	ouration 1.3 s
Element	Kopm	Ca ppm	Ti ppm	Vppm	Mn ppm	Fe ppm	Ni ppm	Cu ppm
	11577	1624	3185	104	3947	33805	32	21
±	136	50	32 Dh nnm	20 Sr.ppm	ZZ Zr ppm	Sn nnm	Sh nnm	Bannm
Element	20 ppm 69	186	48	79	92	68	70	271
± PASS/FAIL: PA: Reference:	3 SS (Spect	18 rum similarity:	2 1.00)	2	3	14	15	53
Name sp upper vic 1.	2	Class Soil_2Cond_FF	,	Date 11/08/2014	۲ 1	Time 10:19:17	C 6	ouration
Element	K ppm	Ca ppm	Ti ppm	V ppm	Cr ppm	Mn ppm	Fe ppm	Ni ppm
+	16878	48	3210	26	22	31	170	5
Element	Cu ppm 219	Zn ppm 562	As ppm 519	Rb ppm 74	Sr ppm 35	Zr ppm 60	Sn ppm 85	Sb ppm 275
±	8	10	48	3	3	3	18	21
Element	Ba ppm 250	Pb ppm 849						
±	68	108	4.00					
PASS/FAIL: PA Reference:	SS (Spect	rum similarity	: 1.00)					
Name	3	Class	0	Date 11/08/2014		Fime 10:35:20	E e	Ouration
Flement	Knpm	Cappm	Ti ppm	Vppm	Mn ppm	Fe ppm	Cu ppm	Zn ppm
Licificity	12560	881	4582	90	8405	40245	16631	552
±	143 Dh	43	39 7r nnm	29	SZ Sn nnm	Sh ppm	Bannm	Phone
Element	42	64	54	(113)	52 52	69	195	57
± PASS/FAIL: PA Reference:	2 SS (Spect	2 rum similarity	3 : 1.00)	10	16	17	61	24
Name sp upper vic 1	4	Class Soil_2Cond_Fl	0	Date 11/08/2014		Time 10:41:27	[e	Duration 51.2 s
Element	Kppm	Ca ppm	Ti ppm	Cr ppm	Mn ppm	Feppm	Cu ppm	Zn ppm
±	1290 67	6248 76	14	30 6	8	54257 153	72	8
Element	As ppm	Rb ppm	Zr ppm	Ag ppm	Sn ppm	Sb ppm 13445	TI ppm 23	Pb ppm 8051
±	148	20	2	16	14	58	7	333
PASS/FAIL: PA Reference:	SS (Spect	rum similarity	: 1.00)					
Name		Class		Date		Time		Duration
sp upper vic 1	5	Soil_2Cond Fl	p	11/08/2014		10:48:40	(50.9 s

Element K ppm Ca ppm Ti ppm Mn ppm Fe ppm Cu ppm Zn ppm As ppm

The	Rusiness	of Science	
1110	DRIVENED	WI DELETTE	

	1533	7088	300	17834	13894	17678	537	5965
± Element	87 So ppm	90 Ph nom	20 Sr. ppm	52 Zr ppm	106	62 Cd ppm	12 Sn nnm	383 Shinnm
ciement	118	123	56	140	2053	269	224	30069
± Flement	6 Au nnm	o Hg opm	5 Tl ppm	o Pb ppm	20	25	22	121
1	248	129	350	63805 914				
PASS/FAIL: PA Reference:	SS (Spectru	um similarity:	1.00)	511				
Name sp upper vic 1	6 S	lass oil_2Cond_FP		Date 11/08/2014	T 1	ime 1:36:05	D 6	uration 1.2 s
Element	K ppm	Ca ppm	Ti ppm	Cr ppm	Mn ppm	Fe ppm 232692	Cu ppm 8155	Zn ppm 929
±	68	53	16	8	39	329	56	18
Element	As ppm 1129	Rb ppm 20	Ag ppm 3430	Sn ppm 139	8934	Pb ppm 3233		
± PASS/FAIL: PA	่ 120 SS (Spectru	3 um similarity:	28 1.00)	22	61	268		
Reference:								
Name		lass		Date	Ţ	ime	D	uration
sp upper vic 1	/ S Koom	Ca ppm	Ti ppm	Cr ppm	، Mn ppm	Fe ppm	Cu ppm	Zn ppm
+	4573 102	12786	765 25	53 10	1508 19	173230 319	28442 103	1148 20
Element	As ppm	Rb ppm	Sr ppm	Zr ppm	Agppm	Cd ppm	Sn ppm	Sb ppm
±	5861 208	58 5	18 4	45 5	48	23	33	138
Element	Au ppm	Pb ppm						
±	18 SS (Spectru	462	1.00)					
Reference:	55 (Specire	ani sirinarity.	1.00)					
Name	c	lass		Date	т	ime	C	uration
sp upper vic 1	8 S	ioil_2Cond_FF	Tinnm	11/08/2014	1 Mp.ppm	2:52:03	6 Cu ppm	0.6 s 7n nnm
Element	к ррт 11464	2157	1301	41	2414	37336	3857	207
± Element	As ppm	S6 Rb ppm	Z3 Zr ppm	ARDDIN	Sn ppm	Sb ppm	Ba ppm	Tl ppm
+	728 64	42	33' 3	1295	95 17	5007 33	222 63	14 4
Element	Pb ppm							
	2099 143 SS (Spectru	um similarity	1.00)					
Reference:	SS (Speech	ann Sinniarrey.	. 1.00)					
Name	C	lass		Date	Т	ime	C	uration
sp upper vic 1	9 S	Soil_2Cond_FF	Tinnm	11/08/2014 Cr.ppm	Mn nnm	3:04:47 Fe ppm	6 Cu ppm	Zn ppm
ciement	10037	926	1365	90 8	24660	173750	2897	1658 21
± Element	Rb ppm	45 Sr ppm	Zr ppm	Agppm	Sn ppm	Sb ppm	Tlppm	Pb ppm
±	57 4	47 4	49 4	(537)	94 23	740 29	31 7	2810 201
DACC/EATL · DA	SS (Snortri	um similarity	1 00)					

PASS/FAIL: PASS (Spectrum similarity: 1.00 Reference:

Name sp upper vic 20		Class Soil_2Cond_FP		Date 11/08/2014	Ti 13	me 3:12:42	I e	Duration 50.6 s
Element	K ppm 15115 153	Ca ppm 703 40	Ti ppm 595 17	V ppm 48 15	Cr ppm 2082 18	Mn ppm 5026 41	Fe ppm 61464 160	Cu ppm 761 13
Element	Zn ppm 561	As ppm 862	Rb ppm 44	Ag ppm (102)	Sn ppm 75	Sb ppm 166	Pb ppm 238	
± PASS/FAIL: PAS Reference:	9 S (Specti	44 rum similarity:	3 1.00)	11	18	20	99	
Name sp upper vic 21		Class Soil_2Cond_FP		Date 11/08/2014	Ti 13	me 3:59:41	I e	Duration 51.2 s
Element	K ppm 814 62	Ca ppm 2698 54	Ti ppm 156 14	Cr ppm 141 8	Mn ppm 6314 33	Fe ppm 282260 363	Cu ppm 6382 53	Zn ppm 422 13
Element	As ppm 515	Rb ppm 39	Ag ppm 2184	Cd ppm 49	Sn ppm 85	Sb ppm 7876	Pb ppm 400	10
± PASS/FAIL: PAS Reference:	60 S (Specti	3 rum similarity:	24 1.00)	15	21	59	134	
Name sp upper vic 22		Class Soil_2Cond_FP		Date 11/08/2014	Ti 14	me 4:04:19	1	Duration 41.1 s
Element ±	K ppm 5457 125	Ti ppm 624 22	Cr ppm 136 9	Mn ppm 821 15	Fe ppm 195881 348	Cu ppm 25 8	Zn ppm 413 13	As ppm 3933 25
Element	Rb ppm 16 4	Sn ppm 80 23	Sb ppm 198 26					
Reference:	S (Specti	rum similarity:	1.00)					
Name sp upper vic 23		Class Soil_2Cond_FP		Date 11/08/2014	Ti 1₄	me 4:06:09	ļ	Duration 38.6 s
Element ±	K ppm 2567 104	Ti ppm 295 20	Cr ppm 112 9	Mn ppm 1137 18	Fe ppm 203810 357	Cu ppm 35 9	Zn ppm 657 16	As ppm 15864 53
Element +	Se ppm 18 4	Rb ppm 15 4	Cd ppm 59 16	Sb ppm 637 27				
PASS/FAIL: PAS Reference:	S (Spect	rum similarity:	1.00)					
Name sp upper vic 24		Class Soil_2Cond_FP		Date 11/08/2014	Ti 14	me 4:09:35		Duration 32.6 s
Element ±	K ppm 5783 154	Ca ppm 2521 85	Ti ppm 811 32	Cr ppm 142 13	Mn ppm 39000 116	Fe ppm 267296 456	Cu ppm 4956 63	Zn ppm 1019 26
Element	As ppm 916	Rb ppm 32	Ag ppm 235	Sn ppm 131	Sb ppm 1888 53	Pb ppm 578 227		
PASS/FAIL: PAS Reference:	S (Spect	rum similarity:	1.00)	50	55			
Name sp upper vic 25	5	Class Soil_2Cond_FP		Date 11/08/2014	Ti 14	me 4:30:51		Duration 50.8 s
Element	K ppm 944 61	Ti ppm 70 14	Cr ppm 80 7	Mn ppm 19463 51	Fe ppm 156197 252	Cu ppm 1588 22	Zn ppm 141 7	As ppm 813 50
Element	Sn ppm	Sb ppm					P. S. SYLL	

80 601 ± 17 22 PASS/FAIL: PASS (Spectrum similarity: 1.00) Reference:

Name sp upper vic 26	5	Class Soil_2Cond_FP		Date 11/08/2014		Time 14:32:56		Duration 60.6 s
Element ±	K ppm 21637 182	Ca ppm 948 45	Ti ppm 3370 34	V ppm 67 25	Cr ppm 50 17	Mn ppm 235 8	Fe ppm 44919 137	Cu ppm 888 13
Element	Zn ppm 119 5	As ppm 778 41	Rb ppm 61	Zr ppm 38 3	Ag ppm 138	Sn ppm 61 15	Sb ppm 105 16	Ba ppm 222 57
Element	Pb ppm 292	41	2	5	10	15	10	57
± PASS/FAIL: PAS Reference:	92 55 (Spect	rum similarity:	1.00)					
Name sp upper vic 27	7	Class Soil_2Cond_FP		Date 11/08/2014		Time 14:36:42		Duration 60.6 s
Element ±	Ca ppm 1306 43	Cr ppm 76 8	Mn ppm 17689 50	n Fe ppm 167321 268	Cu ppm 4331 37	Zn ppm 223 9	As ppm 1966 93	Ag ppm 262 16
Element	Sn ppm 115 23	Sb ppm 1933 33	Pb ppm 939 205					
PASS/FAIL: PAS Reference:	SS (Spect	rum similarity:	1.00)					
Name sp upper vic 28	3	Class Soil_2Cond_FP		Date 11/08/2014		Time 14:39:18		Duration 60.7 s
Element ±	K ppm 20881 177	Ca ppm 795 43	Ti ppm 2140 27	Mn ppm 2369 18	Fe ppm 49744 144	Cu ppm 1208 15	Zn ppm 99 4	As ppm 124 27
Element ± PASS/FAIL: PAS Reference:	Rb ppm 84 3 SS (Spect	Zr ppm 53 3 rum similarity:	Sn ppm 80 16 1.00)	Sb ppm 85 18	Ba ppm 306 61	Pb ppm 366 60		
Name sp upper vic 29)	Class Soil_2Cond_FP		Date 11/08/2014		Time 14:40:46		Duration 31.2 s
Element ±	K ppm 14697 224	Ca ppm 1303 73	Ti ppm 264 22	Cr ppm 2540 30	Mn ppm 920 31	Fe ppm 92012 274	Ni ppm 107 13	Cu ppm 3635 40
Element	Zn ppm 209 11	As ppm 3396 195	Rb ppm 54 5	Sr ppm - 38 4	Ag ppm 127 17	Sb ppm 280 29	Tl ppm 38 9	Pb ppm 6707 437
PASS/FAIL: PAS Reference:	S (Spect	rum similarity:	1.00)					
Name sp upper vic 30)	Class Soil_2Cond_FP		Date 11/08/2014		Time 14:42:08		Duration 20.6 s
Element ±	K ppm 12362 267	Ca ppm 991 88	Ti ppm 1482 46	Cr ppm 148 50	Mn ppm 1190 27	Fe ppm 193916 466	Cu ppm 2041 43	Zn ppm 475 20
Element	As ppm 227	Rb ppm 58	Zr ppm 90	Sb ppm 172				
PASS/FAIL: PAS Reference:	55 SS (Spect	rum similarity:	1.00)	45				

Name sp upper vic 31	C S	Class Soil_2Cond_FP		Date 11/08/2014		Time 14:43:15		Duration 22.1 s
Element	K ppm 8935 211	Ca ppm 1412 84	Ti ppm 786 35	Cr ppm 52 14	Mn ppm 3824 40	Fe ppm 111366 340	Cu ppm 988 26	Zn ppm 327 13
Element	As ppm 1151	Rb ppm 16	Zr ppm 20	Sb ppm 347	Pb ppm 541			
± PASS/FAIL: PAS Reference:	97 S (Spectru	5 um similarity:	5 1.00)	30	214			
Name sp upper vic 32	s c	lass oil_2Cond_FP		Date 11/08/2014		Time 15:50:25		Duration 41.1 s
Element	K ppm 14677 191	Ca ppm 818 47	Ti ppm 1848 30	Mn ppm 414 10	Fe ppm 32322 135	Cu ppm 13 3	Zn ppm 31 3	As ppm 339 27
r Element	Rb ppm	Zr ppm	Sn ppm	Sb ppm	Ba ppm 143	5	5	27
± PASS/FAIL: PAS Reference:	2 S (Spectru	2 um similarity:	11 1.00)	12	43			
Name sp upper vic 33	s S	lass oil_2Cond_FP		Date 11/08/2014		Time 15:51:30		Duration 31.1 s
Element	K ppm 6474	Ca ppm 6453	Ti ppm 1265	V ppm 93	Cr ppm 143	Mn ppm 36295	Fe ppm 259366	Cu ppm 817
± Element	Zn ppm	As ppm	Rb ppm	Sr ppm	Ag ppm	Sb ppm	Tl ppm	20
± PASS/FAIL: PAS Reference:	14 S (Spectru	106 um similarity:	5 1.00)	5	222	32	10	
Name sp upper vic 34		Class Soil_2Cond_FP		Date 11/08/2014		Time 16:04:16		Duration 31.1 s
Element	K ppm 2790 120	Ca ppm 3102 87	Ti ppm 712 29	V ppm 93 29	Cr ppm 183 45	Mn ppm 103466 194	Fe ppm 282034 496	Cu ppm 173 20
Element	Zn ppm 468 22	As ppm 5942 254	Rb ppm 45 7	Zr ppm 26 7	Sn ppm 165 41	Sb ppm 327 45	Tl ppm 114 17	
PASS/FAIL: PAS Reference:	S (Spectru	um similarity:	1.00)					
Name sp upper vic 35	5 5	Class Soil_2Cond_FP		Date 11/08/2014		Time 16:05:30		Duration 36.6 s
Element	K ppm 5029 125	Ca ppm 5855 98	Ti ppm 919 28	V ppm 126 28	Cr ppm 135 35	Mn ppm 124993 167	Fe ppm 58607 245	Ni ppm 193 15
Element	Cu ppm 195	Zn ppm 412	As ppm 142	Sr ppm 104	Zr ppm 36	Sn ppm 183	Tl ppm 25	
± PASS/FAIL: PAS Reference:	13 SS (Spectri	13 um similarity:	28 1.00)	6	6	38	/	
Name sp upper vic 36	5 5	Class Soil_2Cond_FP		Date 11/08/2014		Time 16:06:45		Duration 30.6 s
Element	K ppm 19533 244	Ca ppm 2068 82	Ti ppm 2595 45	V ppm 137 39	Cr ppm 107 36	Mn ppm 45547 113	Fe ppm 116250 317	Cu ppm 73 11
Element	Zn ppm	As ppm	Rb ppm	Sr ppm	Zr ppm	Sn ppm	Sb ppm	

OXFORD INSTRUMENTS

						The Busi	tess of Sc	ience
± PASS/FAIL: PAS Reference:	155 10 55 (Specti	196 39 rum similarity:	110 6 1.00)	43 5	56 6	143 33	151 36	
Name	7	Class Soil 2Cond FP		Date 11/08/2014		Time 16:07:39		Duration 20.6 s
Element	K ppm	Ca ppm	Ti ppm	Mn ppm	Fe ppm	Cu ppm	Zn ppm	As ppm
±	16159 285	710 73	2893 59	67	276	6	6	37
Element	Rb ppm 56	Zr ppm 56	Ba ppm 283					
± PASS/FAIL: PAS	4 SS (Specti	4 rum similarity:	85 1.00)					
Reference:								
Name	2	Class		Date		Time 16:08:42		Duration
Element	K ppm	Ti ppm	Mn ppm	Fe ppm	Cu ppm	As ppm	Rb ppm	Zr ppm
±	20390 312	953 34	343 13	108	32 5	70 17	3	2
Element	Sb ppm 74	Ba ppm 201						
± PASS/FAIL: PAS Reference:	16 SS (Specti	56 rum similarity:	1.00)					
Name		Class		Date		Time		Duration
Sp upper VIC 39	y Kppm	Ti ppm	Mn ppm	Fe ppm	Co ppm	Cu ppm	Zn ppm	Rb ppm
±	6109 149	1935 37	8518 44	38058 168	110 23	216 9	110 6	34 3
Element	Sr ppm	Zr ppm	Sn ppm	Sb ppm 164	Pb ppm 172			
± PASS/FAIL: PAS Reference:	3 SS (Specti	4 rum similarity:	19 1.00)	21	56			
Name		Class		Date		Time		Duration
Sp upper vic 40	y Kippm	Ca ppm	Ti ppm	V ppm	Cr ppm	Mn ppm	Fe ppm	Cu ppm
±	1145 67	1079 43	121 14	47 14	130 8	54992 93	234629 315	5489 47
Element	Zn ppm	Rb ppm	Sr ppm	Ag ppm 288	Sb ppm 664	Pb ppm 167		
± PASS/FAIL: PAS Reference:	22 SS (Spect	3 rum similarity:	3 1.00)	14	25	54		
Name	1	Class Soil 2Cond EP		Date 13/08/2014		Time 13:11:04		Duration 61.1 s
Element	K ppm	Ca ppm	Ti ppm	V ppm	Cr ppm	Mn ppm	Fe ppm	Cu ppm
±	69	45	17	18	32	104	392	53
Element	Zn ppm 1320	As ppm 807	Rb ppm 19	Sr ppm 100	Ag ppm (275)	Cd ppm 63	Sn ppm 118	Sb ppm 2132
± Flement	25 Ph nnm	140	5	6	20	22	29	43
+	3565 311							
PASS/FAIL: PAS	SS (Spect	rum similarity:	1.00)					

Reference:

Name sp upper vic 42	2	Class Soil_2Cond_FP		Date 13/08/2014		Time 13:16:27		Duration 61.3 s
Element	K ppm 877 61	Ca ppm 776 38	Ti ppm 221 14	V ppm 94 17	Cr ppm 196 32	Mn ppm 28166 72	Fe ppm 369027 417	Cu ppm 4594 51
Element	Zn ppm	As ppm	Rb ppm	Sr ppm	Agppm	Sn ppm	Sb ppm	Pb ppm
± PASS/FAIL: PAS Reference:	1227 24 55 (Specti	187 52 rum similarity:	5 5 1.00)	34 5	236 19	27	1545 39	116
Name sp upper vic 43	3	Class Soil_2Cond_FP		Date 13/08/2014	1	Time 13:48:21		Duration 41.1 s
Element ±	K ppm 11158 158	Ti ppm 1110 24	Cr ppm 54 19	Mn ppm 121 9	Fe ppm 7421 63	Rb ppm 26 2	Sr ppm 87 2	Zr ppm 42 2
Element ±	Sn ppm 38 11	Sb ppm 45 13	Ba ppm 199 45					
PASS/FAIL: PAS Reference:	S (Spectr	rum similarity:	1.00)					
Name sp upper vic 44	L	Class Soil_2Cond_FP		Date 13/08/2014		Time 13:53:55		Duration 29.1 s
Element +	K ppm 2650 122	Ca ppm 793 63	Ti ppm 575 30	Mn ppm 88224 154	Fe ppm 41110 219	Co ppm 149 33	Ni ppm 200 16	Cu ppm 166 13
Element	Zn ppm 3525	As ppm 194	Sr ppm 44	Zr ppm 26	Mo ppm 32	Sn ppm 173	Ba ppm 506	
PASS/FAIL: PAS Reference:	S (Spectr	rum similarity:	1.00)	0	'	50	172	
Name sp upper vic 45	;	Class Soil_2Cond_FP		Date 13/08/2014	-	Time 13:56:45		Duration 20.6 s
Element ±	K ppm 6513 205	Ca ppm 13183 194	Ti ppm 3892 67	V ppm 166 56	Mn ppm 890 22	Fe ppm 39840 208	Ni ppm 28 8	Cu ppm 30 7
Element +	Zn ppm 115 7	Rb ppm 27 4	Sr ppm 325 6	Zr ppm 90 6	Sn ppm 100 28	Ba ppm 392 105		
PASS/FAIL: PAS Reference:	Ś (Spectr	rum similarity:	1.00)					
Name sp upper vic 46	5	Class Soil_2Cond_FP		Date 13/08/2014	-	Time 14:07:18		Duration 40.2 s
Element ±	K ppm 22528 225	Ca ppm 66323 290	Ti ppm 2663 44	V ppm 278 45	Mn ppm 916 18	Fe ppm 93000 265	Cu ppm 1351 23	Zn ppm 44 5
Element	Rb ppm 97	Sr ppm 218 5	Zr ppm 45 5	Sn ppm 109 23	Ba ppm 2917 113			
PASS/FAIL: PAS Reference:	S (Specti	rum similarity:	1.00)	23				
Name sp upper vic 49	9	Class Soil_2Cond_FP		Date 13/08/2014		Time 18:12:20		Duration 41.3 s
Element ±	K ppm 1560 118	Ca ppm 8824 132	Ti ppm 411 30	Mn ppm 13418 63	Fe ppm 51382 226	Cu ppm 35655 123	Zn ppm 816 21	As ppm 8986 647
Element	Se ppm	Rb ppm	Sr ppm	Zr ppm	Ag ppm	Cd ppm	Sn ppm	Sb ppm

				1		The Busi	ness of Sci	ence
±	135 10	190 10	87 9	162 10	5715	555 46	434 57	47915 223
Element	Au ppm	Hg ppm	Tl ppm	Pb ppm 86191				
±	30	25	27	1543				
PASS/FAIL: PAS Reference:	SS (Spectru	um similarity:	1.00)					
Name sp upper vic 50	b S	lass oil_2Cond_FP		Date 13/08/2014		Time 18:14:10	C 4	ouration 1.3 s
Element ±	K ppm 1869 103	Ca ppm 8576 125	Ti ppm 487 28	Mn ppm 21330 79	Fe ppm 50432 254	Cu ppm 36206 125	Zn ppm 1051 23	As ppm 7796 663
Element +	Se ppm 104 10	Rb ppm 154 10	Sr ppm 79 9	Zr ppm 186 11	Ag ppm 3858 54	Cd ppm 466 47	Sn ppm 286 57	Sb ppm 44691 217
Element	Au ppm	Hg ppm	TI ppm	Pb ppm				
+	315 31	96 25	400 27	91747 1585				
PASS/FAIL: PAS Reference:	55 (Spectru	um similarity:	1.00)					
Name sp upper vic 5	1 S	lass oil_2Cond_FP		Date 13/08/2014		Time 18:15:16	С З	Ouration 10.7 s
Element	K ppm 1888 114	Ca ppm 8781 147	Ti ppm 609 36	Mn ppm 21749 97	Fe ppm 76789 340	Cu ppm 50097 187	Zn ppm 1271 32	As ppm 9071 900
Element	Se ppm	Rb ppm	Sr ppm	Zr ppm	Agppin	Cd ppm	Sn ppm	Sb ppm
±	167 15	186 14	83 12	164 15	4826	554 62	413 77	51915 299
Element	Au ppm 337	Hg ppm 129	Tl ppm 453	Pb ppm 100993				
± PASS/FAIL: PAS Reference:	43 55 (Spectrเ	36 um similarity:	38 1.00)	2145				
Name sp upper vic 52	2 S	lass oil_2Cond_FP		Date 13/08/2014		Time 18:18:32	C 6	ouration 0.9 s
Element ±	K ppm 4063 108	Ca ppm 11920 115	Ti ppm 568 25	Cr ppm 61 11	Mn ppm 4788 31	Fe ppm 138266 292	Cu ppm 28788 100	Zn ppm 1146 20
Element	As ppm	Se ppm	Rb ppm	Sr ppm	Zr ppm	Agppm	Sn ppm	Sb ppm
±	10407 372	52 7	112 6	33 5	92 6	60	40	32284 138
Element	Au ppm	Tl ppm	Pb ppm					
±	230 22	89 17	29562 846					
PASS/FAIL: PAS Reference:	55 (Spectru	um similarity:	1.00)					
Name	C	lass		Date	18 a 1 - 3	Time	Ę	Juration
sp upper vic 53	3 S	oil_2Cond_FP	Tinnm	13/08/2014	Mana	18:22:30 Fe nom	Coppo	0.9 S
clement	3856	12462	475	69	4930	166429	145	44377
± Element	97 7n nnm	11/ As ppm	24 Se nom	12 Rh nnm	34 7r nnm	345 Δσ.nnm	46 Cd ppm	13/ Sn nnm
ciement	1202	13595	50 ppm	93	62	25155	50	613
± Element	23 Shaam	419 Ta ppm	8	/ Ti nnm	/ Ph nnm	88	31	46
±	54602 201	534 139	236 26	150 20	26542 945			

The Business of Science^{*}

PASS/FAIL: PASS (Spectrum similarity: 1.00) Reference:

				/				
Name sp upper vic 59	9	Class Soil_2Cond_FP	/	Date 14/08/2014		Time 09:46:15	[e	Duration 50.8 s
Element	K ppm 2445	Ca ppm 8053	Ti ppm 257	Cr ppm 109	Mn ppm 18811	Fe ppm 271206	Cu ppm 38375	Zn ppm 926
±	86	93	22	12	63 Ch mmm	412 Dh. n. n. n.	141	23
Element	As ppm 14195	20228	La ppm 113	5n ppm 438	36737	Рб ррт 1669		
±	297	77	27	40	157	655		
Reference:	ss (Spectr	rum similarity:	1.00)					
Name		Class Soil 2Cond FP		Date 14/08/2014		Time 10:04:25	E A	Ouration
Element	Knnm	Ca nnm	Tippm	V npm	Cr ppm	Mn ppm	Fe ppm	Co ppm
	2320	1427	255	76	208	65466	371863	850
±	84	51	18	18	10	115	430	68 Ch
Element	Cu ppm 17252	2n ppm 2421	As ppm 1147	Rb ppm 65	Sr ppm 79	(1880)	Sn ppm 134	Sb ppm 1877
±	103	36	133	7	7	32	34	48
Element	Pb ppm							
±	295							
PASS/FAIL: PAS	SS (Spectr	um similarity:	1.00)					
nerer ence.								
Name	-	Class		Date		Time	Ľ	Juration
sp upper vic 61		Soil_2Cond_FP	-	14/08/2014		10:10:12	- 6	o1.1 s
Element	K ppm 6677	Ca ppm 1645	li ppm	V ppm 77	Cr ppm 132	Mn ppm 118247	Fe ppm 163391	289
±	108	49	14	16	27	136	306	46
Element	Cu ppm	Zn ppm	As ppm	Sr ppm	Agppm	Cd ppm	Sn ppm	Sb ppm
+	6206 49	1642	5393 27	75 4	18	122	79 23	960 31
Element	TI ppm							
	66							
± PASS/FAIL: PAS	8 S (Spectr	um similarity:	1.00)					
Reference:	- (
Name		Class		Date		Time	Г	Juration
sp upper vic 62	2	Soil_2Cond_FP		14/08/2014		10:22:34	1	13.3 s
Element	K ppm	Ca ppm	Ti ppm	Mn ppm	Fe ppm	Cu ppm	Zn ppm	As ppm
±	1645 49	5167	181	310 6	46511	33	300 6	4776
Element	Se ppm	Rb ppm	Sr ppm	Zr ppm	Agppm	Sn ppm	Sb ppm	Hg ppm
+	33	49	18	50 2	9087	129 15	18906 58	36 7
- Floment	Z Tl nnm	2 Ph nnm	2	2	2	15	50	
·	157	23123						
± PASS/FAIL: PAS	/ SS (Spectr	381 um similarity:	1.00)					
Reference:	(-)							
Name		Class		Data	Maria .	Time		Juration
sp upper vic 63	3	Class Soil 2Cond FP		14/08/2014		10:32:15	L	0.8 s
Element	Kppm	Ca ppm	Ti ppm	Cr ppm	Mn ppm	Fe ppm	Co ppm	Cu ppm
	1162	4260	216	44	1370	125074	109	12270
1	00	04	14	/	1.5	251	50	57

						The Busi	ness of Sci	ience*
Element ± Element [±] PASS/FAIL: PAS Reference:	Zn ppm 746 13 Tl ppm 49 8 SS (Spectr	As ppm 2919 161 Pb ppm 7844 360 um similarity:	Se ppm 17 3	Rb ppm 13 2	Zr ppm 19 3	Ag ppm 1413 17	Cd ppm 49 12	Sb ppm 9251 53
Name	4 9	Class Soil 2Cond FP		Date 14/08/2014		Time 10:48:04	E E	Duration 51.3 s
Element ±	K ppm 1993 82	Ca ppm 3691 65	Ti ppm 272 19	Cr ppm 49 9	Mn ppm 34788 72	Fe ppm 161270 268	Cu ppm 11226 61	Zn ppm 805 16
Element ± PASS/FAIL: PAS Reference:	As ppm 2705 174 55 (Spectro	Sr ppm 99 4 um similarity:	As ppm 2520 23 1.00)	Cd ppm 60 14	Sb ppm 6384 50	Tl ppm 48 9	Pb ppm 7817 389	
Name sp upper vic 7	1 9	Class Soil 2Cond FP		Date 14/08/2014	-	Time 11:47:08	[2	Duration 24.7 s
Element ±	K ppm 658 106	Ca ppm 711 67	Ti ppm 126 26	V ppm 91 29	Cr ppm 185 50	Mn ppm 71719 188	Fe ppm 393565 694	Cu ppm 1285 53
Element	Zn ppm 4842	As ppm 1080	Rb ppm 34	Sr ppm 159	Sb ppm 350			
± PASS/FAIL: PAS Reference:	79 55 (Spectr	um similarity:	1.00)		58			
Name sp upper vic 79	9 9	Class Soil_2Cond_FP		Date 14/08/2014		Time 13:26:26	[3	Ouration 81.2 s
Name sp upper vic 79 Element	9 9 K ppm 767 97	Class Soil_2Cond_FP Ca ppm 1209 67	Ti ppm 87 21	Date 14/08/2014 Mn ppm 29219 80	- Fe ppm 15978 134	Time 13:26:26 Cu ppm 6780 46	[3 Zn ppm 774 14	Ouration 81.2 s As ppm 1821 241
Name sp upper vic 79 Element ± Element	9 5 K ppm 767 97 Se ppm 25	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30	Ti ppm 87 21 Sr ppm 32	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26	Fe ppm 15978 134 Sb ppm 3487	Time 13:26:26 Cu ppm 6780 46 Tl ppm 154	2n ppm 774 14 Pb ppm 20770	Ouration 81.2 s As ppm 1821 241
Name sp upper vic 79 Element ± Element ± PASS/FAIL: PAS Reference:	69 5 K ppm 767 97 Se ppm 25 4 55 (Spectri	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 3 um similarity:	Ti ppm 87 21 Sr ppm 32 3 1.00)	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3	Fe ppm 15978 134 Sb ppm 3487 40	Time 13:26:26 Cu ppm 6780 46 Tl ppm 154 11	2n ppm 774 14 Pb ppm 20770 556	Ouration 81.2 s As ppm 1821 241
Name sp upper vic 79 Element ± Element ± PASS/FAIL: PAS Reference: Name sp upper vic 80	9 5 K ppm 767 97 Se ppm 25 4 55 (Spectri	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 um similarity: Class Soil 2Cond FP	Ti ppm 87 21 Sr ppm 32 3 1.00)	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3 Date 14/08/2014	Fe ppm 15978 134 Sb ppm 3487 40	Time 13:26:26 Cu ppm 6780 46 Tl ppm 154 11	[3 Zn ppm 774 14 Pb ppm 20770 556	Ouration 1.2 s As ppm 1821 241 Ouration 1.3 s
Name sp upper vic 79 Element ± Element ± PASS/FAIL: PAS Reference: Name sp upper vic 80 Element ±	69 5 K ppm 767 97 Se ppm 25 4 55 (Spectru 55 (Spectru 0 55 K ppm 3687 88	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 um similarity: Class Soil_2Cond_FP Ca ppm 15060 115	Ti ppm 87 21 Sr ppm 32 3 1.00) Ti ppm 539 19	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3 Date 14/08/2014 Mn ppm 870 13	Fe ppm 15978 134 Sb ppm 3487 40 Fe ppm 65424 185	Fime 13:26:26 Cu ppm 6780 46 Tl ppm 154 11 11 Fime 13:28:36 Co ppm 77 25	2n ppm 774 14 Pb ppm 20770 556 Cu ppm 17231 65	Ouration 1.2 s As ppm 1821 241 Ouration 51.3 s Zn ppm 364 10
Name sp upper vic 79 Element ± Element * PASS/FAIL: PAS Reference: Name sp upper vic 80 Element ± Element	69 K ppm 767 97 Se ppm 25 4 55 (Spectru 55 (Spectru 55 (Spectru 60 K ppm 3687 88 As ppm 4686 126	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 um similarity: Class Soil_2Cond_FP Ca ppm 15060 115 Rb ppm 54	Ti ppm 87 21 Sr ppm 32 3 1.00) Ti ppm 539 19 Zr ppm 33	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3 Date 14/08/2014 Mn ppm 870 13 ***********************************	Fe ppm 15978 134 Sb ppm 3487 40 Fe ppm 65424 185 Cd ppm 56	Fime 13:26:26 Cu ppm 6780 46 Tl ppm 154 11 13:28:36 Co ppm 77 25 Sn ppm 280	2n ppm 774 14 Pb ppm 20770 556 Cu ppm 17231 65 Sb ppm 32264 100	Ouration 1.2 s As ppm 1821 241 Ouration 51.3 s Zn ppm 364 10 Pb ppm 1798 278
Name sp upper vic 79 Element ± Element ± PASS/FAIL: PAS Reference: Name sp upper vic 80 Element ± Element ± Element	69 5 K ppm 767 97 Se ppm 25 4 55 (Spectru 0 5 K ppm 3687 88 As ppm 4686 126 55 (Spectru	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 um similarity: Class Soil_2Cond_FP Ca ppm 15060 115 Rb ppm 54 3 um similarity:	Ti ppm 87 21 Sr ppm 32 3 1.00) Ti ppm 539 19 Zr ppm 33 3 1.00)	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3 2 Date 14/08/2014 Mn ppm 870 13 4 Sppm 8967 34	Fe ppm 15978 134 Sb ppm 3487 40 Fe ppm 65424 185 Cd ppm 56 14	Time 13:26:26 Cu ppm 6780 46 Tl ppm 154 11 154 11 Time 13:28:36 Co ppm 77 25 Sn ppm 280 20	Zn ppm 774 14 Pb ppm 20770 556 Cu ppm 17231 65 Sb ppm 32264 100	Ouration 1.2 s As ppm 1821 241 Ouration 51.3 s Zn ppm 364 10 Pb ppm 1798 278
Name sp upper vic 79 Element ± Element ± PASS/FAIL: PAS Reference: Name sp upper vic 80 Element ± Element ± PASS/FAIL: PAS Reference: Name sp upper vic 81	69 5 K ppm 767 97 Se ppm 25 4 55 (Spectru 55 (Spectru 3687 88 As ppm 4686 126 55 (Spectru 126 55 (Spectru 126 56 (Spectr	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 um similarity: Class Soil_2Cond_FP Ca ppm 15060 115 Rb ppm 54 3 um similarity:	Ti ppm 87 21 Sr ppm 32 3 1.00) Ti ppm 539 19 Zr ppm 33 3 1.00)	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3 Date 14/08/2014 Mn ppm 870 13 Ms ppm 8967 34 Date 14/08/2014	Fe ppm 15978 134 Sb ppm 3487 40 - - - - - - - - - - - - - - - - - -	Time 13:26:26 Cu ppm 6780 46 Tl ppm 154 11 Time 13:28:36 Co ppm 77 25 Sn ppm 280 20	2n ppm 774 14 Pb ppm 20770 556 Cu ppm 17231 65 Sb ppm 32264 100	Ouration 1.2 s As ppm 1821 241 Ouration 51.3 s Zn ppm 364 10 Pb ppm 1798 278 Ouration 51.1 s
Name sp upper vic 79 Element Element PASS/FAIL: PAS Reference: Name sp upper vic 80 Element Element PASS/FAIL: PAS Reference: Name sp upper vic 80 Element	69 K ppm 767 97 Se ppm 25 4 55 (Spectrum) 55 (Spectrum) 60 55 (Spectrum) 4686 126 55 (Spectrum) 4687 55 (Spectrum) 4686 126 55 (Spectrum) 4687 55 (Spectrum) 4687 55 (Spectrum) 4687 55 (Spectrum) 4686 126 55 (Spectrum) 4687 55 (Spectrum) 55 (Spectrum)	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 um similarity: Class Soil_2Cond_FP Ca ppm 15060 115 Rb ppm 54 3 um similarity: Class Soil_2Cond_FP Ca ppm 4878 73	Ti ppm 87 21 Sr ppm 32 3 1.00) Ti ppm 539 19 Zr ppm 33 3 1.00) Ti ppm 239 18	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3 Date 14/08/2014 Mn ppm 870 13 Asppm 8967 34 Date 14/08/2014 Cr ppm 62 10	Fe ppm 15978 134 Sb ppm 3487 40 - - - - - - - - - - - - - - - - - -	Time 13:26:26 Cu ppm 6780 46 Tl ppm 154 11 Time 13:28:36 Co ppm 77 25 Sn ppm 280 20 Time 13:35:30 Fe ppm 124443 244	Zn ppm 774 14 Pb ppm 20770 556 Cu ppm 17231 65 Sb ppm 32264 100 Cu ppm 19415 76	Ouration 1.2 s As ppm 1821 241 Ouration 51.3 s Zn ppm 364 10 Pb ppm 1798 278 Ouration 51.1 s Zn ppm 1262 18
Name sp upper vic 79 Element Element PASS/FAIL: PAS Reference: Name sp upper vic 80 Element FASS/FAIL: PAS Reference: Name sp upper vic 80 Element Sp upper vic 81 Element Sp upper vic 82 Element Sp upper vic 83 Element	 K ppm 767 97 Se ppm 25 4 55 (Spectrude) K ppm 3687 88 As ppm 4686 126 55 (Spectrude) 4686 126 55 (Spectrude) 55 (Spectrude) 56 (Spectrude) 56 (Spectrude) 57 (Spectrude) 58 (Spectrude) 59 (Spectrude) 50 (Spectrude) 50 (Spectrude) 51 (Spectrude) 52 (Spectrude) 53 (Spectrude) 54 (Spectrude) 55 (Spectrude) 55 (Spectrude) 55 (Spectrude) 55 (Spectrude) 56 (Spectrude) 56 (Spectrude) 56 (Spectrude) 55 (Spectrude) 55 (Spectrude) 55 (Spectrude) 55 (Spectrude) 56 (Spectrude) 56 (Spectrude) 56 (Spectrude) 56 (Spectrude) 56 (Spectrude) 56 (Spectrude) 57 (Spectrude) 58 (Spectrude) 58 (Spectrude) 59 (Spectrude) 50 (Spectrude) 50 (Spectrude) 50 (Spectrude) 51 (Spectrude) 51 (Spectrude) 52 (Spectrude) 53 (Spectrude) 54 (Spectrude) 55 (Spectrude) 55 (Spectrude) 56 (Spectrude) 56 (Spectrude) 56 (Spectrude) 56 (Spectrude) 56 (Spectrude) <li< th=""><th>Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 um similarity: Class Soil_2Cond_FP Ca ppm 54 3 um similarity: Class Soil_2Cond_FP Ca ppm 4878 73 Se ppm</th><th>Ti ppm 87 21 Sr ppm 32 3 1.00) Ti ppm 539 19 Zr ppm 33 3 1.00) Ti ppm 239 18 Rb ppm 16</th><th>Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3 Date 14/08/2014 Mn ppm 870 13 ***********************************</th><th>Fe ppm 15978 134 Sb ppm 3487 40 Fe ppm 65424 185 Cd ppm 56 14 Mn ppm 26339 64 Ag ppm 4037</th><th>Fime 13:26:26 Cu ppm 6780 46 Tl ppm 154 11 Fime 13:28:36 Co ppm 77 25 Sn ppm 280 20 Fime 13:35:30 Fe ppm 124443 244 Sb ppm 11858</th><th>Zn ppm 774 14 Pb ppm 20770 556 Cu ppm 17231 65 Sb ppm 32264 100 Cu ppm 19415 76 Tl ppm 116</th><th>Ouration 1.2 s As ppm 1821 241 Ouration 1.3 s Zn ppm 364 10 Pb ppm 1798 278 Ouration 1.1 s Zn ppm 1262 18 Pb ppm 19007</th></li<>	Class Soil_2Cond_FP Ca ppm 1209 67 Rb ppm 30 3 um similarity: Class Soil_2Cond_FP Ca ppm 54 3 um similarity: Class Soil_2Cond_FP Ca ppm 4878 73 Se ppm	Ti ppm 87 21 Sr ppm 32 3 1.00) Ti ppm 539 19 Zr ppm 33 3 1.00) Ti ppm 239 18 Rb ppm 16	Date 14/08/2014 Mn ppm 29219 80 Zr ppm 26 3 Date 14/08/2014 Mn ppm 870 13 ***********************************	Fe ppm 15978 134 Sb ppm 3487 40 Fe ppm 65424 185 Cd ppm 56 14 Mn ppm 26339 64 Ag ppm 4037	Fime 13:26:26 Cu ppm 6780 46 Tl ppm 154 11 Fime 13:28:36 Co ppm 77 25 Sn ppm 280 20 Fime 13:35:30 Fe ppm 124443 244 Sb ppm 11858	Zn ppm 774 14 Pb ppm 20770 556 Cu ppm 17231 65 Sb ppm 32264 100 Cu ppm 19415 76 Tl ppm 116	Ouration 1.2 s As ppm 1821 241 Ouration 1.3 s Zn ppm 364 10 Pb ppm 1798 278 Ouration 1.1 s Zn ppm 1262 18 Pb ppm 19007

± 269 5 4 PASS/FAIL: PASS (Spectrum similarity: 1.00)

Reference:

Name DDH 14 1		Class Soil_2Cond_FP		Date 14/08/2014	T 2	ime 0:30:00	[Duration 31.1 s
Element ±	K ppm 2782 101	Ca ppm 826 49	Ti ppm 209 18	Cr ppm 25 8	Mn ppm 9951 47	Fe ppm 49675 187	Cu ppm 1253 20	Zn ppm 515 11
Element	As ppm 233	Sr ppm	Ag ppm 145	Sb ppm 621				
± PASS/FAIL: PA Reference:	30 SS (Spect	1 rum similarity:	1.00)	15				
Name DDH 14 1 1		Class Soil_2Cond_FP		Date 14/08/2014	T 2	ïme 0:34:35	[Duration 31.1 s
Element	K ppm 614	Ti ppm 75	Mn ppm 1133	n Fe ppm 17424	Cu ppm 227	Zn ppm 16	As ppm 31	Rb ppm 14
± Element	65 Sb ppm	11	16	108	/	2	9	1
± PASS/FAIL: PAS Reference:	5 5 SS (Spect	rum similarity:	1.00)					
Name DDH 14 1 2		Class Soil 2Cond FP		Date 14/08/2014	T 2	ime 0:35:57	[Ouration
Element	K ppm 1282 76	Ca ppm 677 45	Ti ppm 83 15	Cr ppm 31 7	Mn ppm 10720	Fe ppm 68273 220	Cu ppm 2224 28	Zn ppm 188 8
Element	As ppm	Sb ppm	15		-12	220	20	U
± PASS/FAIL: PAS Reference:	38 55 (Spect	14 rum similarity:	1.00)					
Name DDH 14 1 3		Class Soil 2Cond FP		Date 14/08/2014	T 2	ime 0:36:54	[Ouration
Element	K ppm 782	Ti ppm 112	Mn ppm 2378	Fe ppm 22471	Cu ppm 351	Zn ppm 49	As ppm 113	Sb ppm 133
± PASS/FAIL: PAS Reference:	67 55 (Spect	12 rum similarity:	22 1.00)	124	10	3	18	8
Name DDH 14 1 4		Class Soil_2Cond_FP		Date 14/08/2014	T 2	ime 0:38:01	[3	Ouration 0.6 s
Element ±	K ppm 1792 93	– – Ti ppm 292 18	Cr ppm 28 9	Mn ppm 1932 22	Fe ppm 73055 236	Cu ppm 383 13	Zn ppm 192 8	As ppm 1295 13
Element	Rb ppm 22	Sb ppm 99	Tl ppm 21					
± PASS/FAIL: PAS Reference:	2 SS (Spect	13 rum similarity:	5 1.00)					
Name DDH 14 1 5		Class Soil_2Cond_FP		Date 14/08/2014	T 2	ime 0:39:18	[3	ouration
Element	K ppm 475	Ti ppm 45	Mn ppm 1160	Fe ppm 22162	Cu ppm 121	Zn ppm 38	As ppm 40	Ba ppm 48
± PASS/FAIL: PAS	59 SS (Spect	10 rum similarity:	16 1.00)	122	6	3	10	14

Reference:

Name DDH 14 1 6	C S	lass oil_2Cond_FP		Date 14/08/2014		Time 20:40:25	:	Duration 31.1 s
Element	K ppm 9326 185	Ca ppm 925 67	Ti ppm 1399 37	Cr ppm 173 13	Mn ppm 28696 95	Fe ppm 196980 406	Cu ppm 3524 50	Zn ppm 1404 28
Element	As ppm 448	Rb ppm 35	Sr ppm 36	Zr ppm	Ag ppm 354	Sn ppm 151	Sb ppm 233	
± PASS/FAIL: PAS Reference:	62 ວິS (Spectru	5 um similarity:	5 1.00)	6	23	31	34	
Name DDH 14 1 7	C S	lass oil_2Cond_FP		Date 14/08/2014		Time 20:41:46		Duration 31.2 s
Element	K ppm 5226	Ca ppm 610	Ti ppm 634	Mn ppm 9517	Fe ppm 41253	Cu ppm 735	Zn ppm 385	As ppm 268
± Element	Rb ppm 15	49 Sr ppm 12	Zr ppm	45 Sb ppm 348	Pb ppm 715	10	10	49
± PASS/FAIL: PAS Reference:	SS (Spectru	um similarity:	1.00)	14	ΠŪ			
Name DDH 14 1 8	C	lass oil_2Cond_FP		Date 14/08/2014		Time 20:42:45		Duration 30.6 s
Element	K ppm 514	Mn ppm 234	Fe ppm 940	Cu ppm 29	Ba ppm 54			
± PASS/FAIL: PAS Reference:	58 SS (Spectru	8 um similarity:	25 1.00)	3	16			
Name DDH 14 1 9	C S	lass oil_2Cond_FP		Date 14/08/2014		Time 20:44:03	!	Duration 32.6 s
Element	K ppm 4602 135	Ti ppm 345 19	Mn ppm 330 10	n Fe ppm 9989 79	Co ppm 38 12	Cu ppm 2192 22	Zn ppm 97 4	As ppm 64 2
Element	Rb ppm 18	Zr ppm	Sn ppm 52	Sb ppm 47	Hg ppm 14			
± PASS/FAIL: PAS Reference:	SS (Spectru	⊿ um similarity:	1.00)	14	3			
Name DDH 14 13	C	lass oil_2Cond_FP		Date 14/08/2014		Time 20:47:03		Duration 30.6 s
Element ±	K ppm 8128 182	Ca ppm 13093 168	Ti ppm 853 39	Cr ppm 102 17	Mn ppm 3620 40	Fe ppm 241936 547	Cu ppm 23077 147	Zn ppm 1966 41
Element	As ppm 5386	Rb ppm 53	Zr ppm 37	Ag ppm 5229	Cd ppm 127	Sn ppm 216	Sb ppm 42770	Pb ppm 3782
± PASS/FAIL: PAS Reference:	289 55 (Spectrเ	8 um similarity:	8 1.00)	56	36	50	214	638
Name DDH 14 14	C	lass oil_2Cond_FP		Date 14/08/2014		Time 20:48:19	:	Duration 31.1 s
Element	K ppm 1971	Ca ppm 3125	Ti ppm 295	Cr ppm 84	Mn ppm 2095	Fe ppm 241850	Cu ppm 9121	Zn ppm 1117 27
± Element	As ppm 2118	Rb ppm	Ag ppm 3716	Sn ppm 138	28 Sb ppm 8071	408	04	21
PASS/FAIL · PAS	SS (Spectri	o Im similarity:	1.00)	20	19			

Reference:

Name DDH 14 2 0	0	Class Soil_2Cond_FP		Date 14/08/2014	T 2	ime 0:53:03		Duration 31.2 s
Element	K ppm 3081	Ca ppm 7380	Ti ppm 489	Cr ppm 137	Mn ppm 1734	Fe ppm 350123	Cu ppm 21560	Zn ppm 5402
± Element	138 Ac nom	126 Ph nnm	34	16 Cd ppm	30 Shaam	614 Ph ppm	152	68
Element	2133	48	2879	130	20674	5736		
± PASS/FAIL: PAS Reference:	55 (Spectru	8 um similarity:	47 1.00)	34	154	611		
Name DDH 14 2 1	(S	lass foil 2Cond_FP	1	Date 14/08/2014	Ti 2	ime 0:54:52		Duration 31.1 s
Element	K ppm 2664	Ca ppm 833	Ti ppm 369	Cr ppm 139	Mn ppm 4842	Fe ppm 239323	Cu ppm 8078	Zn ppm 702
± Element	As ppm	60 Rb ppm	24 Sn ppm	Sb ppm	39	450	//	21
+	953 98	28	101 27	957 37				
PASS/FAIL: PAS Reference:	55 (Spectru	um similarity:	1.00)					
Name DDH 14 3 0	0	lass oil 2Cond FP		Date 14/08/2014	Ti 21	ime 0:57:16		Duration 29.0 s
Element	Kppm	Ti ppm	Cr ppm	Mn ppm	Fe ppm	Cu ppm	Zn ppm	As ppm
±	3914 123	762 25	27 8	1894 22	63141 220	1151 21	348 10	456 59
Element	Rb ppm	Sb ppm	Pb ppm					
± PASS/FAIL: PAS Reference:	2 SS (Spectru	13 um similarity:	131 1.00)					
Name DDH 14 3 1	C S	lass oil_2Cond_FP		Date 14/08/2014	Ti 20	ime 0:58:17		Duration 30.5 s
Element ±	K ppm 301 87	Ca ppm 2799 79	Ti ppm 167 19	Mn ppm 3788 29	Fe ppm 21279 129	Cu ppm 4677 37	Zn ppm 96 7	As ppm 2121 198
Element	Se ppm	Rb ppm	Zr ppm	Agppm	Sb ppm	TI ppm	Pb ppm 13672	
±	3 S (Spactri	2 2 Im cimilarity	2	11	47	8	451	
Reference:	s (specifi	ini Similanty.	1.00)					
Name DDH 14 3 2	C S	lass oil 2Cond FP		Date 14/08/2014	Ti 2	me 1:00:10	79.4637	Duration 31.2 s
Element	K ppm 390 94	Ca ppm 978 64	Ti ppm 127 24	Cr ppm 228 14	Mn ppm 5947 48	Fe ppm 360437 582	Cu ppm 9850 102	Zn ppm 1302 36
Element	As ppm	Rb ppm	Ag ppm	Sb ppm	Pb ppm	501		
±	2996	74 8	339	3682 73	1313 457			
PASS/FAIL: PAS Reference:	S (Spectru	um similarity:	1.00)					
Name DDH 14 3 3	C S	lass oil_2Cond_FP		Date 14/08/2014	Ti 2	me 1:02:02		Duration 31.1 s
Element ±	K ppm 633 92	Ca ppm 3519 89	Ti ppm 149 26	Cr ppm 141 14	Mn ppm 2840 35	Fe ppm 347574 603	Cu ppm 6353 83	Zn ppm 881 29
Element	As ppm	Rb ppm	Ag ppm	Cd ppm	Sn ppm	Sb ppm		

± PASS/FAIL: PA	2238 173 SS (Spectr	44 8 um similarity	3639 48 : 1.00)	116 32	150 49	22379 154	ness of Sci	uence"
Reference: Name DDH 14 3 4 Element ± Element ± PASS/FAIL: PA: Reference:	K ppm 940 90 As ppm 5214 213 SS (Spectro	Class Soil_2Cond_FF Ca ppm 4446 89 Rb ppm 38 6 um similarity	Ti ppm 282 25 Ag ppm 2521 36 : 1.00)	Date 14/08/2014 Cr ppm 106 13 Sb ppm 19055 122	7 22 23 28 28	Time 21:03:51 Fe ppm 277158 492	[3 Cu ppm 5133 64	Ouration 36.6 s Zn ppm 609 22
Name DDH 14 3 5 Element ± Element [±] PASS/FAIL: PA: Reference:	K ppm 351 87 As ppm 3480 164 SS (Spectre	Class Soil_2Cond_FF Ca ppm 1072 62 Rb ppm 25 6 um similarity	Ti ppm 93 22 Ag ppm 100 27 : 1.00)	Date 14/08/2014 Cr ppm 110 12 Sn ppm 131 32	7 22 995 20 5b ppm 4613 62	Time 21:05:18 Fe ppm 220962 436	[3 Cu ppm 3141 48	Ouration 31.2 s Zn ppm 757 22
Name DDH 14 3 6 Element ± Element ‡ PASS/FAIL: PA: Reference:	(5 1472 91 As ppm 2289 106 SS (Spectr	Class Soil_2Cond_FF Ca ppm 1036 59 Ag ppm 326 19 um similarity	Ti ppm 201 22 Sb ppm 4439 51 : 1.00)	Date 14/08/2014 Cr ppm 34 11	7 22 Mn ppm 532 15	Time 21:07:11 Fe ppm 110075 299	[3 2617 35	Ouration 81.1 s Zn ppm 325 12
Name DDH 14 3 7 Element ± Element ± PASS/FAIL: PA: Reference:	K ppm 6146 157 Rb ppm 24 4 SS (Spectr	Class Soil_2Cond_FF Ca ppm 796 63 Ag ppm 373 16 um similarity	Ti ppm 690 27 Sb ppm 2341 36 : 1.00)	Date 14/08/2014 Mn ppm 2827 27	T Fe ppm 45339 189	Time 21:08:46 Cu ppm 626 15	[3 Zn ppm 213 8	Duration 81.2 s As ppm 1927 82
Name DDH 14 3 8 Element ± Element * PASS/FAIL: PA: Reference:	K ppm 649 104 As ppm 5262 272 SS (Spectr	Class Soil_2Cond_FF Ca ppm 2326 83 Rb ppm 57 9 um similarity	Ti ppm 109 28 Ag ppm 2226 49 : 1.00)	Date 14/08/2014 Cr ppm 149 16 Sb ppm 10641 122	T 22 Mn ppm 25347 102	Time 21:09:56 Fe ppm 364789 618	[29220 186	Ouration 80.6 s Zn ppm 2888 53
Name	(Class		Date	Т	īme	[Duration

DDH 14 3 9	S	oil_2Cond_FP		14/08/2014	2	1:11:38	3	81.1 s
Element ±	K ppm 532 86	Ca ppm 838 58	Ti ppm 190 21	Cr ppm 33 11	Mn ppm 1553 22	Fe ppm 102174 287	Cu ppm 2239 32	Zn ppm 266 12
± PASS/FAIL: PAS Reference:	As ppm 2066 114 S (Spectru	Ag pom 339 19 Im similarity:	3598 48 1.00)	Рб ррт 1094 253				
Name DDH 14 3 10	C Si	lass oil_2Cond_FP		Date 14/08/2014	T 2	ime 1:13:25	[Duration 31.2 s
Element	K ppm 190 54	Mn ppm 576	Fe ppm 7585 71	Cu ppm 17 3	As ppm 52 12	Rb ppm 23 1	Sn ppm 21 6	Sb ppm 69 7
PASS/FAIL: PAS Reference:	S (Spectru	im similarity:	1.00)	5	12		0	
Name DDH 14 4 0	C	lass oil_2Cond_FP		Date 14/08/2014	T 2	ime 1:16:03	[Duration 30.5 s
Element ±	K ppm 388 64	Ca ppm 987 50	Ti ppm 86 16	Cr ppm 37 8	Mn ppm 462 12	Fe ppm 90196 266	Cu ppm 1162 22	Zn ppm 46 6
Element ± PASS/FAIL: PAS Reference:	As ppm 372 42 S (Spectru	Ag ppm 255 10 Im similarity:	Sb ppm 1713 26 1.00)					
Name DDH 14 4 1	C	lass oil 2Cond FP		Date 14/08/2014	Т 2	ime 1:17:29	[Duration 31.2 s
Element	K ppm 327 73	Ca ppm 1364 59	Ti ppm 109 18	Cr ppm 60 9	Mn ppm 913 17	Fe ppm 129944 315	Cu ppm 3025 38	Zn ppm 42 6
Element ± PASS/FAIL: PAS Reference:	As ppm 1910 18 S (Spectru	Sb ppm 2095 32 ım similarity:	1.00)					
Name DDH 14 4 2	C	lass oil 2Cond FP		Date 14/08/2014	T 2	ime 1:18:36	[Duration 31.2 s
Element ±	K ppm 9386 180	Ti ppm 1849 37	Mn ppm 556 14	n Fe ppm 17048 115	Cu ppm 115 7	Zn ppm 15 4	As ppm 1533 66	Rb ppm 37 3
Element ± PASS/FAIL: PAS Reference:	Zr ppm 24 3 SS (Spectru	Sb ppm 138 23 Im similarity:	1.00)					
Name	C	lass		Date 15/08/2014	T 1	ime 3:34:56	I	Duration 20.5 s
Element	K ppm 5657 204	Ca ppm 1108 95	Ti ppm 1693 54	Cr ppm 75 19	Mn ppm 31032 122	Fe ppm 122841 367	Cu ppm 1738 37	Zn ppm 313 16
Element	As ppm 2069 134	Rb ppm 176 8	Zr ppm 94 8	Ag ppm 107 30	Sn ppm 183 47	Sb ppm 179 51	Ba ppm 641 176	

PASS/FAIL: PASS (Spectrum similarity: 1.00) Reference:

Name SP PORTAL 35		Class Soil_2Cond_FP		Date 15/08/2014		Гіте 17:51:19	D 61	uration 0.8 s
Element ±	K ppm 2892 106	Ca ppm 6760 92	Ti ppm 453 23	Mn ppm 4191 26	Fe ppm 11594 92	Cu ppm 22691 68	Zn ppm 317 9	As ppm 2003 356
Element	Se ppm 111 5	Rb ppm 110 5	Sr ppm 44 5	Zr ppm 124 6	Ag ppm 5435	Cd ppm 318 25	Sn ppm 237 29	Sb ppm 27519 114
Element	Au ppm 279	Hg ppm 128	Tl ppm 456	Pb ppm 62954	50	20		
± PASS/FAIL: PAS Reference:	15 S (Spectro	12 um similarity:	14 1.00)	851				
Name high gradw vei 1	n S	Class Soil_2Cond_FP		Date 16/08/2014		Time 11:01:51	D 4	uration 0.1 s
Element ±	Ca ppm 2079 69	Ti ppm 91 19	Mn ppm 5658 32	Fe ppm 14140 105	Cu ppm 6285 37	Zn ppm 227 8	As ppm 1995 221	Se ppm 36 4
Element	Rb ppm 31	Sr ppm 18	Zr ppm 41	Ag ppm 1076	Cd ppm 49	Sb ppm 11704	TI ppm 209	Pb ppm 24313
± PASS/FAIL: PAS Reference:	S (Spectro	um similarity:	5 1.00)	17	14	04	10	514
Name high gradw vei 3	n <u>s</u>	Elass Soil_2Cond_FP		Date 16/08/2014		Time 11:21:00	D 3	uration 0.6 s
Element ±	K ppm 1306 151	Ca ppm 9683 162	Ti ppm 492 40	Mn ppm 5177 47	Fe ppm 68501 311	Cu ppm 13867 92	Zn ppm 719 23	As ppm 3233 717
Element ±	Se ppm 103 12	Rb ppm 183 13	Sr ppm 90 11	Zr ppm 189 12	Ag ppm 3341 61	Cd ppm 342 55	Sb ppm 56592 281	Au ppm 299 33
Element	TI ppm 429 31	Pb ppm 87934 1719						
PASS/FAIL: PAS Reference:	S (Spectr	um similarity:	1.00)					
Name high gradw vei 4	n <u>(</u>	Class Soil_2Cond_FP		Date 16/08/2014		Time 12:25:10	D 6	uration 3.4 s
Element ±	K ppm 962 75	Ca ppm 4517 72	Ti ppm 255 17	Mn ppm 623 12	Fe ppm 58751 165	Cu ppm 8569 42	Zn ppm 362 9	As ppm 5689 304
Element +	Se ppm 101 4	Rb ppm 72 4	Sr ppm 36 4	Zr ppm 92 4	Ag ppm 2930 26	Cd ppm 12 18	Sb ppm 20723 88	Au ppm 263 12
Element	Hg ppm 148	Tl ppm 342	Pb ppm 43761					
± PASS/FAIL: PAS Reference:	10 SS (Spectr	11 um similarity:	1.00)					
Name SP UPPWR VIC	59 11	Class Soil_2Cond_FP		Date 16/08/2014		Time 15:21:53	D 3	ouration 1.1 s
Element	K ppm 1341 109	Ca ppm 1626 75	Ti ppm 163 25	Cr ppm 91 14	Mn ppm 78901 161	Fe ppm 209213 424	Cu ppm 18363 122	Zn ppm 1640 35
Element	As ppm	Ag ppm	Sb ppm	Tl ppm	Pb ppm			

1162 1035 2349 236 30 54 PASS/FAIL: PASS (Spectrum similarity: 1.00) Reference:

77 16 6898 528

E CUWA A/P E FOT