ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geological and Geochemical Work - Assessment Report on the Doreen Project, Cariboo Mining District, British Columbia

TOTAL COST: \$15,463.00
AUTHOR(S): Rein Turna
SIGNATURE(S): "Signed"
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):
STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5511854 (May 30, to July
14, 2014) \& 5533288 (June 1 to November 1, 2014)
YEAR OF WORK: 2014
PROPERTY NAME: Doreen
CLAIM NAME(S) (on which work was done) $\mathbf{8 4 7 4 2 7}, \mathbf{8 4 7 4 3 5} \boldsymbol{\&} \mathbf{1 0 2 0 0 8 6 2}$

COMMODITIES SOUGHT: Gold, Silver \& Copper
MINERAL INVENTORY MINFILE NUMBER(S),IF KNOWN: N/K
MINING DIVISION: Cariboo
BCGS: 093A/07W
LATITUDE $52^{\circ} 17$ ' $\mathbf{3 0 "}$
LONGITUDE $\mathbf{1 2 0}^{\circ} \mathbf{5 7}^{\prime}$
UTM Zone 10N EASTING 640000 NORTHING 5797000
OWNER(S): Barker Minerals Ltd.
MAILING ADDRESS: 8384 Toombs Drive Prince George BC, V2K 5A3
OPERATOR(S) [who paid for the work]: Barker Minerals Ltd.
MAILING ADDRESS: 8384 Toombs Drive Prince George BC, V2K 5A3
REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude do not use abbreviations or codes)
Upper Triassic, Lower Jurrassic, Andesitic Volcanics, Gold, Silver \& Copper

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS

ASSESSMENT REPORT

on the

DOREEN PROJECT

Cariboo Mining Division, British Columbia

for
Barker Minerals Ltd. 8384 Toombs Drive
Prince George, B.C. V2K 5A3

Prepared by:
Rein Turna

March 9, 2015
Amended October 12, 2015

Figure No. 1. Google satellite image showing the location of the Doreen property relative to several of Barker Minerals' other mineral properties and QR and Mount Polley mines.

1.0 SUMMARY

Two hundred nine rock and soil samples were collected over an area of gossanous outcrops containing quartz veins in the central portion of the Doreen property. Samples were anomalous in copper, zinc and gold. The limited scope of the sampling program does not permit general conclusions. However, follow up of the anomalous geochemistry and continued exploration of the property is warranted.

TABLE OF CONTENTS

1.0 SUMMARY
Page
2.0 INTRODUCTION 1i
3.0 PROPERTY DESCRIPTION and LOCATION
3.0 PROPERTY DESCRIPTION and LOCATION 1
4.0 PHYSIOGRAPHY and ACCESSIBILITY 3
5.0 HISTORY 3
5.1 Work Done in 1974 3
5.2 Work Done in 1981 4
5.3 Work Done in 1983 4
5.4 Work Done in 1984 4
5.5 Work Done in 1984-85 5
5.6 Work Done in 1984 5
5.7 Work Done in 1987 5
5.8 Work Done in 1988 6
5.9 Work Done in 1989 6
5.10 Work Done in 1990 6
5.11 Work Done in 2010 7
5.12 Work Done in 2012 7
6.0 GEOLOGY 7
6.1 Regional Geology 7
6.2 Local Geology 8
6.3 Economic Target 9
7.02014 EXPLORATION SUMMARY 11
7.1 XRF Analysis Method 11
7.2 Geochemical Sampling and Results 11
8.0 CONCLUSIONS 12
9.0 RECOMMENDATIONS 12

LIST of TABLES

Table No. 1 Area A - XRF Sampling Results
after Fig. No. 6
Table No. 1a Area A - Sample Coordinates and Descriptions
Table No. 2 Area B - XRF Sampling Results \qquad nos see Appendix E

Table No. 2a Area B - Sample Coordinates and Descriptions after Fig. No. 7 see Appendix E

LIST of FIGURES

Page No.Figure No. 1 Google image of the Doreen Propertyi
Figure No. 2 Barker Minerals Ltd. Doreen Property Location 2
Figure No. 3 Barker Minerals Ltd. Doreen Claims with Tenure Numbers 2
Figure No. 4 Doreen Property Regional Geology 8
Figure No. 5 Doreen Property Key Map of 2014 Sampling Areas after pg. 12
Figure No. 6 Doreen Property Area A Sample Locations after pg. 12
Figure No. 6a Doreen Property Detail A1 Zn, Cu Geochemistry after pg. 12
Figure No. 7 Doreen Property Area B Sample Locations after pg. 12
Figure No. 7a Doreen Property Detail B1 Zn, Cu Geochemistry after pg. 12
LIST of APPENDICES
Appendix A References
Appendix B Analytical Method
Appendix C Statement of Authors' Qualifications
Appendix D Statement of Expenditures
Appendix E Sample Coordinates and Descriptions

2.0 INTRODUCTION

This report describes the work done on the Doreen property area and provides results of rock and soil sampling done by Barker Minerals Ltd. in 2014.

In this report chemical abbreviations are used for the elements discussed. The elements and abbreviations are:

Au Gold
Cu Copper
Zn Zinc
other abbreviations:
ppb parts per billion
ppm parts per million
XRF x-ray florescence

3.0 PROPERTY DESCRIPTION and LOCATION

The Doreen Property consists of contiguous claims outlined in Figure No. 3. - Barker Minerals Ltd. Doreen claims with tenure numbers:

847427
847435
847437
847438
847439
1020862
The mineral claims comprising the Doreen property are located 30 km east of the town of Horsefly, British Columbia. The mineral claims are located in the Cariboo Mining Division in British Columbia and are 100\% owned by Barker Minerals Ltd. of Prince George, B.C.

The geographic coordinates of the Doreen property are:
$52^{\circ} 17^{\prime} 30^{\prime \prime}$ North Latitude and $120^{\circ} 57^{\prime}$ West Longitude or 640000 E and 5797000 N UTM coordinates (NAD 83).
The relevant map is: N.T.S. Map No. 93A/07W.

Figure No. 2 Barker Minerals Ltd. Doreen property location.

Figure No. 3 Barker Minerals Ltd. Doreen claims with tenure numbers.

4.0 PHYSIOGRAPHY and ACCESSIBILITY

The following description in italics, is sourced from Doyle, L.E., (2013).

The property is situated regionally in the Interior Plateau physiographic area. Glacial drift of various depths occur on the property with outcrop scarce except in the higher elevation areas where a moderate amount of outcrop is exposed and will be mapped in follow up programs. Overburden is thin in the eastern part of the claims but increase in depth to the west.

The climate is typical for the central interior, with warm summers and moderately cold winters. Annual precipitation is around 40 centimetres.

The project area has been ravaged by beetle bug kill and is being actively logged for fir, spruce and pine in the area, principally during winters, which has created significant road access to the project areas.

The claims area covers moderately dissected, rolling hills near the transition between the Interior Plateau on the west and the Cariboo Mountains. on the east. Relief is about 500 m , from Doreen Lake (950 m elev.) to the hill on the north (1,550 m elev.)

Forests of cedar, fir, balsam and spruce cover the eastern and southern claims area. These have been logged in part recently. A large burn covers the remainder of the claims, and it has light to moderate second growth.

The south-facing slope north of the east end of Doreen Lake has been burned and logged. A network of old skid trails and recent bulldozer trails built by Eureka Resources, Inc. reaches the south-central part of the Dorfly 2 claim where most of the exploration work has been done.

The Doreen Property is situated some 85 km east of Williams Lake, British Columbia, within National Topographic System area 93A/7W, and are centered at $120^{\circ} 57^{\prime} \mathrm{W}$ longitude and 52° 17 '30"N latitude (Figure No. 1) Road access to the property is east for 55 kilometers on the paved road from 150 Mile House to Horsefly River for about 30 km to a branch road that goes south up Doreen Creek to Doreen Lake.

5.0 HISTORY

5.1 Work done in 1974.

The Minister of Mines Annual Report for 1974 (GEM 1974, pg 239) reports geological mapping and 62 soil samples collected on the DO claims on the north side of Doreen Lake at the 4,000 foot elevation. Disseminated pyrite and chalcopyrite occurred where diorite intrudes Jurassic sedimentary rocks. The work was done by Dome Exploration (Canada) Ltd. and Newconex Canadian Exploration Ltd. There are no records known of the results of this or any other work done before 1981.

5.2 Work done in 1981.

The relevant report is Assessment Report 10118 by Belik, G.D., 1981.
Work was done on the Dor Claims owned by Keron Holdings Ltd. 330 soil samples collected over a 3.5 line-km sampling grid had scattered anomalous Cu and Au . It was deemed there was a potential for porphyry-type Cu/Au mineralization. Follow up mapping and prospecting and rock and soil sampling was recommended.

5.3 Work done in 1983.

The relevant report is Assessment Report 11905 by Kerr, J.R., 1983
Work was done on the Dor Claims owned by Eureka Resources Inc. A $1,000 \mathrm{~m}$ long, E-W striking, Au anomaly was indicated by the soil survey. This coincided with a conductor anomaly indicated by the VLF-EM survey done over $3,000 \mathrm{~m}$ on the established grid. 887 soil samples over a grid and 45 rock samples were collected; these were analyzed for Au only. A sample of surficial fragmental ferricrete had 4,800 ppb Au. Some boulders of massive pyrrhotite, pyrite and chalcopyrite in the ferricrete assayed 0.022 to $0.155 \mathrm{oz} / T \mathrm{Au}$.

The 1,000 m E-W geochemical and conductor anomaly paralleled a strong fracture and shear trend in outcrops. This suggested the anomaly was possibly related to replacement type mineralization in a structural system, The possibility of stratabound VMS mineralization was not ruled out.

Trenching, 500 m of diamond drilling and further soil sampling and an extension of the VLF-EM survey was recommended.

5.4 Work done in 1984.

The relevant report is Assessment Report 13172 by Baerg R.J., and Bradish, L., 1984. Noranda Exploration Co. Ltd. conducted diamond drilling, geological, geochemical and geophysical surveys over the Dor claims, under option from the owners, Eureka Resources Inc. The property was now titled the Doreen Lake Property.

144 soil profile samples were collected and analyzed for base and precious metals. Fairly good correlations between Au, Cu and Mo were established and the known Au anomaly was substantiated.

HLEM, MAG and IP geophysical surveys were performed. The results suggested the E-W anomaly target was possibly related to the presence of a mineralized shear zone or narrow alteration zone.

Two short diamond drill holes, totaling 143 m , were done. The drilling determined the E-W conductor and Au geochemical anomaly discovered by Eureka the previous year was related to zones of disseminated and massive pyrrhotite. The controlling structures appeared to be open fractures or shears. The target zone, encountered in both holes, was 5.6 m and 11.0 m in true thickness. Core recovery was poor, averaging $70-80 \%$, in broken rock. The zone contained
pyrrhotite, with minor pyrite and trace chalcopyrite as massive veins and disseminations. The core in the zone had low Au values.

Mechanical trenching was attempted but was curtailed prematurely due to steep slopes and shallow overburden.

In the end, it was deemed the $1,000 \mathrm{~m} \mathrm{E-W} \mathrm{Au} \mathrm{anomaly} \mathrm{and} \mathrm{conductor}$, previous year, was related to isolated pods of Cu-Au bearing iron sulphides. No further work was recommended.

5.5 Work done in 1984-1985.

Work was resumed on the Dor claims by Eureka Resources Inc., as Noranda had apparently let go their option on the property. The new work was not reported in public assessment reports at the time, though it was evidently described in private company Summary reports. K.V. Campbell (Ass. Rpt. 17089, pgs. 15-16 and Fig. No. 7, 1988) provides some information:

Some of the core from Noranda's drill program in 1984 was re-sampled. Further soil and rock sampling was done. Trenching and chip sampling in 1985 uncovered several narrow bands of massive pyrrhotite and pyrite. A sample of massive sulphide float had $68,000 \mathrm{ppb}$ Au. A rock chip sample had 12,550 ppb Au. Other rock samples had Au values of several hundred or thousand ppb.

5.6 Work done in 1984.

The relevant report is Assessment Report 13339 by Wells, R.A., 1984.
Work was done on the HFR claims owned by Mr. Maurice Mathieu. These claims were staked in 1983 and worked by Mr. Mathieu during Sept.-Oct., 1984. The HFR claims covered a portion of the pre-existing Dor claims, worked by Noranda in 1984. The claim maps in the relevant assessment reports suggest the overlapping properties may have been partially in conflict.

400 soil samples were collected on the HFR property along reconnaissance traverses and analyzed for Au. The sample location map suggests some of the soils were inadvertently collected on the area of Noranda's Doreen Lake Property. There were no significant results in any case and no further work on HFR was recommended.

5.7 Work done in 1987.

The relevant report is Assessment Report 17089 by Campbell, K. V., 1988.
Work was done on the Doreen Lake Property still owned by Eureka Resources Inc. The property consisted of the original Dor claims, staked in 1981. The deposit type sought at this stage was Aubearing pyritic stockworks and disseminated pyrite in altered volcanic rocks, similar to the QR gold mine, 70 km to the northwest. Work in 1987 consisted mainly of geological mapping and modeling. A few rock and soil samples were collected for thin section and geochemical analysis. The work resulted in a comprehensive description of the geology.

The soil samples affirmed the presence of the known E-W Au soil anomaly. A good positive correlation was observed between Au and Ag , Fe , Mo and Cu , with Cu and Fe having the best correlation with $A u$. No such correlation existed for Pb, V or Co .

Though it was concluded that the geochemistry for Doreen did not appear the same as that at the QR deposit, there remained a possibility that Au mineralization had a genetic relationship with a mapped diorite stock nearby to the south. Fractures, shears, breccias and otherwise permeable zones were considered to be the likely types of ore trap on Doreen. More extensive geological mapping and prospecting was recommended to discover such structural traps and possible alteration zones which, at QR, coincide with the main ore zone. A two-stage exploration program was recommended to include mapping, VLF-EM and MAG surveys and drilling.

5.8 Work done in 1988.

The relevant report is Assessment Report 17905 by Leishman, D.A., 1988.
Mechanical trenching was done on the Doreen Lake Property (Dor claims) by Eureka Resources Inc. Two trenches, approximately 50 m each, were excavated. The work was hampered by steep terrain and locally deep overburden. 27 rock samples, collected from the trenches, had no important Au geochemical results, the highest value being 21 ppb.

Steep terrain prevented the trenches being excavated near to the known Au soils anomaly. It was recommended diamond drilling would be the best way to properly test the Au soils anomaly in the future.

5.9 Work done in 1989.

The relevant report is Assessment Report 19551 by Barker, G.E., and Bysouth, G.D., 1990. Gibraltar Mines. Ltd. conducted diamond drilling over the Dor claims under option from the owners, Eureka Resources Inc. The property was now titled the Dor Mineral Claim Group, which included the claims owned by Eureka and some new claims owned by Gibraltar. Six drill holes (1,214 m) were completed. The drilling target was the inferred bedrock source of the large Au soil anomaly previously outlined by Eureka, and to determine the geological nature of the sulphide mineralization within and near the Au soil anomaly.

It was concluded that the drill program results indicated a plutonic porphyry mineralizing system was responsible for the geochemical anomaly. An IP geophysical survey was recommended to be done over most of the property and resulting anomalies be tested by drilling.

5.10 Work done in 1990.

The relevant report is Assessment Report 21291 by Barker, G.E., 1991
The assessment report states that Gibraltar Mines. Ltd. conducted an IP geophysical survey (totaling $12,000 \mathrm{~m}$) and diamond drilling (totaling $1,067 \mathrm{~m}$) over the Dor claims, under option from the owners, Eureka Resources Inc. The results of only one drill hole (214 m) were presented in the assessment report, though a statement was provided "no significant widths of ore grade material were encountered." Graphite and disseminated sulphides, in the hole reported on, were deemed sufficient to produce an IP anomaly. None of the IP survey was presented. The

Statement of Expenditures was for only $\$ 8,362.65$. The conclusion stated "no further work would be recommended within the general area around [the] drill hole."

5.11 Work done in 2010.

The relevant report is Assessment Report 31633 by Doyle, L.E., 2010.
Work was done on the Dorfly claims (Dorfly Project) by owner L.E. Doyle. These new claims covered the entire area of the former Dor Claims of Eureka Resources within a larger overall area. The old access road was refurbished and grid lines were cut for soil sampling. The purpose was to perform comprehensive surveys in the near future in a new effort to assess the 1,000 m E-W Au geochemical and EM conductor anomaly discovered in 1983 by Eureka Resources.

5.12 Work done in 2012.

The relevant report is Assessment Report 33621 by Doyle, L.E., 2013.
Barker Minerals Ltd. staked a new group of mineral claims (Doreen Project) over the area of the former Dorfly and Dor claims on the north side of Doreen Lake. 55 soil samples and 2 rock samples were collected in the area of the $1,000 \mathrm{~m} \mathrm{E-W} \mathrm{Au}$ anomaly from the 1983 survey. 22 of the soil samples were anomalous in Au, as determined by XRF analysis, a semi-quantitative method. The XRF analysis method can determine anomalies of low, medium or high intensity; conventional assay methods could subsequently determine accurate grades. It was recommended that geological, geochemical and geophysical surveys and drilling be done over the Doreen property to provide a definitive assessment of the 1,000 m anomaly, which was not adequately tested in previous work.

6.0 GEOLOGY

6.1 Regional Geology

The geological descriptions in italics below are sourced from Doyle, L.E. (2013).
The area referred to as the Quesnel Gold Belt lies within the Quesnel Trough, a linear belt of early Mesozoic volcanic and sedimentary rocks lying between the Omineca Crystalline Belt (early Paleozoic and Precambrian metasedimentary rocks) on the east and the Pinchi Geanticline (Paleozioc Cache Creek Group) on the west (Figure No. 4).

The Quesnel Trough in the section is composed of alkalic volcanics, volcaniclastics and sedimentary rocks intruded by comagmatic stocks and dike complexes (Campbell, 1978). The basal unit of the Trough is of Upper Triassic black argillite, located along the eastern boundary of the Trough and representing a back arc basinal facies.

Above the argillite unit lie a succession of augite porphyry breccias and flows with subordinate interbedded argillites. This area in turn is overlain by volcaniclastics and argillites of Upper Triassic and Lower Jurassic age.

Several volcanic centers emerged in the Lower Jurassic. These are recognized by subaerial volcanic flows and composite lenses of sandstone, grit and conglomerate (Saleken and Simpson (1984). Between Horsefly Lake and Horsefly River, Panteleyev (1987) considers
that felsic-clast conglomerates mark a series of small grabens, which may be part of a series of larger, northwesterly trending grabens along the medial axis of a volcanic arc. This same structural zone could have controlled emplacement of volcanic centers.

Figure No. 4 Regional Geology.

6.2 Local Geology

The Doreen claims are underlain by Upper Triassic - Lower Jurassic interbedded andesitic volcanics and argillites, which have been intruded by at least one small plug of quartz diorite north of Doreen Lake.

The black argillites have been hornfelsed into hard, flinty material, which is highly shattered, sheared and brecciated. Fine laminations are discernible in a few places and a fine fracture cleavage filled with quartz was noted in one case. Iron oxide coatings are common and some outcrops are thickly coated with gossan. The argillites have locally been bleached to light gray and is some places show partial silicification. Fine quartz stringers are common but not pervasive, as are iron oxide and fine pyrite-filled fractures. Where both quartz and pyrite stringers are present pyrite crosscuts quartz.

The volcanic rocks are predominantly hornblende andesite with subordinate hornblende pyroxene andesite. All those seen by the author in the main work area are flows, breccias or possibly volcaniclastics. In most cases the groundmass was either so fined grained, glassy and opaque or so altered the rocks could not be readily classified. Some did have the appearance of being dike rock (slightly coarser grained, less porphyritic) with a texture intermediate between typical flows and intrusives.

Feldspar is extensively saussuritized and sericitized. The groundmass has been variously altered to an assemblage of carbonate, chlorite, iron oxides, and less commonly, minor epidote. Some rocks have been silicified, with abundant crystocrystalline light gray quartz and quartz-filled stringers. Fine pyrite is ubiquitous, coating joint surfaces, forming irregular blebs to $1 / 2$ cm, disseminations and filling fine fractures.

The quartz diorite to the north of Doreen Lake is of fine to medium grained, pale green pyroxene set in feldspar groundmass that includes some intergranular quartz..It would be useful to know the extent of the plug or stock and if the mineralogy or alteration is zoned.

The structure has been mapped as interbedded volcanic and sedimentary rocks striking about 040°. The few bedding measurements made confirm this general strike and indicate a dip of 50$60^{\circ}$ to the northeast.

6.3 Economic Target

The geological descriptions in italics below are sourced from Doyle (2010).
Three general types of gold deposits are possible on the project, gold-bearing veins, stratabound occurrences and copper-gold porphyry type deposits.

The Doreen occurrence is classed as vein type. There are crosscutting vein-like bodies of massive pyrrhotite and pyrite in the area, some parts of which do carry gold. However, there is scarcity of megascopic quartz veining and the Doreen occurrence should not be confused with the goldquartz veins in the Upper Triassic rock units to the east.

The largest and most developed gold deposits are associated with the early Jurassic plutons, namely the Cariboo-Bell deposit and the QR deposit. The Cariboo-Bell (Mount Polley) deposit, 9 km southwest of Likely, has mineable reserves of 117 million tons grading $0.31 \% \mathrm{Cu}$ and 0.012 oz Au/ton. Mineralization is mainly confined to high level, intrusive breccia zones within an alkalic laccolith of early Jurassic age emplaced at the site of an Upper Triassic eruptive center (Saleken and Simpson, 1984).

The QR deposit, 15 km northwest of Likely, has a mineral inventory of about 1.1 million tons grading 0.2 oz Au/ton. Gold mineralization is located within a 300 m wide alteration halo about the QR stock in vocaniclastics, blocky basaltic conglomerate and breccia, and hornfelsed sediments. The QR stock has diorite margin and monzonite core (Fox et al, 1986).

There are two types of ore present at the QR deposit: pyritic stockworks in propylitized basalts and disseminated pyrite in massive, propylitized basaltic tuffs. The alteration assemblage includes variable amounts of pyrite, chlorite, fine-grained disseminated epidote, epodite-rich selvages on pyrite-carbonate veinlets, and thin pyrite-epidote coatings on fractures (Fox et al, 1986).

Fox et al have summarized the events as follows. They are repeated in full, as they could be directly applicable to an understanding of the mineralization on the Dor claims. The three stages are:

1. 'Mafic submarine volcanics of shoshonitic (alkalic) composition are deposited from fissure style eruptions. No textural zoning within the basaltic pile is present to indicate any central volcanic center. During waning stages of the mafic phase, a brief volcanic hiatus allows development of shelf-like limestones and calcareous sediments. Remnant heat flow from the mafic volcanics or perhaps the initial development of the central volcanic centers present during the subsequent felsic volcanic phase results in local fumarolic activity. This activity results in pyritecarbonate alteration of basaltic units near the top of the pile. Pyrite precipitates forming fine-grained framboidal, colloform masses and bedded textures accompanied by sparry calcite cement. Traces of chalcopyrite in this horizon and local beds of massive pyrite suggest that massive sulphide deposits may have formed at this time. Gold is not present at this stage.
2. Rapidly rising, differentiating, silica-poor diorite stocks begin to intrude the volcanic pile. Felsic breccias and flows are erupted from central volcanoes. Fragments of the stock and
the surrounding basaltic rocks are often taken up in eruptive breccia flows. Felsic rocks quickly grade outward from volcanic centers into distal volcaniclastic and epiclastic equivalents. Possible auriferous exhalative horizons may form at this time within proximal felsic strata.
3. Eventually the alkalic stock, now strongly differentiated, intrudes its own volcanic extrusives. Possible caldera collapse provides a plumbing system for a convection system of heated, acidic, oxidizing meteoric and/or magmatic fluids. Gold is taken into solution from the surrounding rock mass or contributed directly from magmatic fluids. When gold- laden solutions encounter the pyrite-carbonate horizon, formed in Stage 1, the strong pH-Eh barrier precipitates gold at the reaction front. Higher in the convective system no favorable host rock is present and the system diffuses into a large, low grade porphyry copper deposit.'

It follows from the above descriptions and models presented that gold exploration in the Quesnel Gold Belt should then focus on semi-conformable, stratabound mineralization hosted by permeable volcaniclastic or sedimentary rocks, preferably calcareous tuffs and siltstones, and developed in propylitic alteration zones about alkalic plugs, stocks and dikes. Major faults could have played a part in the mineralization, in so far as volcanic centers could be preferentially developed in grabens along a volcanic axis.

7.0 2014 EXPLORATION SUMMARY

7.1 XRF Analysis Method

A total of 209 samples (171 rock, 38 soil) were collected in 2014 areas designated Area A and Area B (Figure Nos. 6 and 7). Most rock and soil analyses were done in the field though many samples were collected for cleaning or drying before analysis by XRF at Barker Minerals' field office in Likely.

The rocks and soils were analyzed for multiple elements using the Niton XL3t handheld X-ray fluorescence analyzer from Thermo Scientific Inc. Further information on this instrument is at the Niton website http://www.niton.com/en/niton-analyzers-products/x|3/x|3t. An overview of sample analysis using energy dispersive X-ray fluorescence (EDXRF), adapted from the Niton website, is in Appendix B.

7.2 Geochemical Sampling and Results

Soil and rock samples were collected along reconnaissance lines along overgrown roads and off road. Gossanous outcrop locations were sampled relatively intensively at approximately 5 to 10 m intervals, generally across the strike of the local lithology.

In Area A, soils were anomalous in Cu up to 259 ppm and Zn up to 192 ppm . Rock sample results for Cu and Zn were $2,400 \mathrm{ppm}$ and 632 ppm , respectively. Rock sample no. 494 had 23 ppm Au . No soil sample was collected adjacent to this sample. The cause of this Au anomaly is not known at this time. Arsenic was spottily anomalous, with the highest values in rock being 373 ppm and 240 ppm, with accompanying anomalous Cu. Zinc was locally anomalous in rocks and soils. Sample locations and results for Area A are in Figure Nos. 6 and 6a and Table No. 1.

In Area B, soils were anomalous in Cu up to 366 ppm and Zn up to 370 ppm. Rock sample results for Cu and Zn were 2,656 ppm and 389 ppm , respectively. Soil sample no. 577 had 10 ppm Au , with accompanying anomalies in Zn and Cu . No rock sample was collected adjacent to this sample. The cause of this Au anomaly is also not known at this time. Sample locations and results for Area B are in Figure No. 7 and 7a and Table No. 2.

8.0 CONCLUSIONS

The areas of the Doreen property that were sampled had numerous anomalous values of Cu and Zn soil and rock samples. High values of $\mathrm{Au}(23 \mathrm{ppm}$ and 10 ppm) occurred in a rock and a soil. The sampled areas were underlain by gossanous bedrock containing sulphides and quartz veins were present.

The limited scope of the sampling program does not permit general conclusions. However, follow up of the anomalous geochemistry and continued exploration of the property is warranted.

More extensive and intensive sampling and geological mapping is required in order to follow up these anomalous results and determine the cause of the mineralization.

9.0 RECOMMENDATIONS

Continued sampling and mapping is recommended in Areas A and B and outward from these areas. The bounds of the quartz diorite plug should be determined and its relationship to the gossan and mineralization.

Table No. 1
Doreen Area A - XRF Sampling Results

XRF No.	Fig. No. / Area	Type Units	SAMPLE	Mo	Zr	Sr	Rb	Th	Pb	Se	As	Hg	Au	Zn	w	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd	Ag	Nb	Y	Bi	Cr	v	Ti
406	Fig 6/Area A	Soil ppm	dor 14-01 north	6	96	385	33		6 <LOD	< LOD		<LOD	<LOD	132	<LOD	111	<LOD	408	45224	975										
407	Fig 6/Area A	Soil ppm	dor north 14-01	< LOD	90	266	38		$7<$ LOD	< LOD		<LOD	<LOD	179	< LOD	108	<LOD	< LOD	49300	931										
408	Fig 6/Area A	Soil ppm	dor north 14-01	< LOD	113	258		< LOD	D < LOD	< LOD		<LOD	< LOD	153	< LOD	148	< LOD	< LOD	50429	928										
409	Fig 6/Area A	Soil ppm	dor north 14-01	6	78	153	50		$8<$ LOD	<LOD		< LOD	< LOD	105	< LOD	189	< LOD	522	129149	785										
410	Fig 6 / Area A	Soil ppm	dor north 14-01	< LOD	94	167	45		$8<$ LOD	< LOD		<LOD	< LOD	116	< LOD	107	< LOD	< LOD	150021	562										
411	Fig 6/Area A	Soil ppm	dorne	<LOD	90	163	71		$6<$ LOD	<LOD		<LOD	< LOD	101	< LOD	165		< LOD	106704	887										
412	Fig 6 / Area A	Soil ppm	dornf	< LOD	53	95	49		$11<$ LOD	< LOD		<LOD	< LOD	66	< LOD	259	< LOD	1061	278653	718										
413	Fig 6 / Area A	Soil ppm	dorng	9	44	73	39		8 <LOD	<LOD		<LOD	< LOD	78	< LOD	154	< LOD	< LOD	226855	263										
414	Fig $6 /$ Area A	Soil ppm	dornh	7	54	41	61		872	< LOD		<LOD	< LOD	108	< LOD	220	< LOD	763	261310	640										
415	Fig $6 /$ Area A	Soil ppm	dorni	5	67	212		< LOD	D 20	5		<LOD	< LOD	115	< LOD	236	< LOD	< LOD	97689	504										
416	Fig 6/Area A	Soil ppm	dornj	6	57	310		< LOD	- LOD	<LOD	11		< LOD	174	< LOD	118		< LOD	37979	787										
417	Fig 6/Area A	Soil ppm	dornk	<LOD	118	292	70		$9<$ LOD	<LOD		< LOD	< LOD	192	< LOD	100		< LOD	40286	776										
418	Fig 6/Area A	Soil ppm	dor n soils random 0 :	- 8	86	221	44		$9<$ LOD	<LOD		<LOD	< LOD	114	< LOD	170	< LOD	<LOD	79744	962										
421	Fig 6/Area A	Soil ppm	dor n soils random 0 :	< LOD	48	133	38		$7<$ LOD	<LOD		<LOD	< LOD	75	< LOD	200	<LOD	<LOD	232119	489										
422	Fig 6/Area A	Soil ppm	dor n soils random 0 :	< LOD	92	168	32		$10<$ LOD	< LOD		< LOD	<LOD	67	< LOD	105	< LOD	<LOD	85885	57										
423	Fig $6 /$ Area A	Soil ppm	dor n soils random	< LOD	71	178	30		$9<$ LOD	<LOD		<LOD	<LOD	66	< LOD	144	<LOD	<LOD	178874	379										
425	Fig 6/Area A	Rock ppm	dor 14-01 oc	< LOD	11	53	22		30 <LOD	<LOD	< LOD	<LOD	<LOD	69	< LOD	440	< LOD	< LOD	126360	LOD	< LOD	LOD	< LOD	< LOD		$7<$ LOD	<LOD	<LOD	<LOD	<LOD
426	Fig 6 / Area A	Rock ppm	dor 14-01 oc	6	9	46	17		26 <LOD	<LOD	< LOD	<LOD	<LOD	59	< LOD	1150	< LOD	< LOD	190166	< LOD	< LOD	< LOD	<LOD	< LOD		$5<$ LOD	<LOD	<LOD	<LOD	<LOD
427	Fig 6/Area A	Rock ppm	dor 14-01 oc	6	18	51		<LOD	D < LOD	<LOD	<LOD	<LOD	<LOD	54	< LOD	316	< LOD	< LOD	211744	< LOD	< LOD	< LOD	<LOD	<LOD		$5<$ LOD	<LOD	<LOD	<LOD	<LOD
429	Fig 6 / Area A	Rock ppm	dor 14-01 oc	10	15	45		< LOD	D 108	<LOD	< LOD	<LOD	<LOD	70	< LOD	174	< LOD	728	38778	< LOD		$8<$ LOD	<LOD	<LOD	<LOD	<LOD				
430	Fig 6/ Area A	Rock ppm	dor 14-01 oc	8	9		OD		23 < LOD	< LOD	< LOD	<LOD	<LOD		< LOD	418	< LOD	666	369404	< LOD	< LOD	< LOD	<LOD	<LOD		$8<$ LOD	<LOD	<LOD	<LOD	<LOD
431	Fig 6 / Area A	Rock ppm	dor 14-01 oc	6	11	42	19		17 <LOD	<LOD	<LOD	<LOD	< LOD	48	< LOD	531	< LOD	< LOD	257708	LOD	< LOD	< LOD	<LOD	< LOD		$5<$ LOD	<LOD	<LOD	<LOD	<LOD
432	Fig 6/Area A	Rock ppm	dor 14-01 oc	< LOD	< LOD		< LOD		$26<$ LOD	< LOD	< LOD	< LOD	< LOD	76	< LOD	321	< LOD	596	344356	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD					
433	Fig 6 / Area A	Rock ppm	dor 14-01 oc	< LOD	22	62		< LOD	D < LOD	< LOD	<LOD	<LOD	< LOD	44	119	202	< LOD	< LOD	234805	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD					
434	Fig 6/Area A	Rock ppm	dor 14-01 oc	8	9	27		<LOD	D < LOD		< LOD	368	< LOD	< LOD	221644	< LOD		8 <LOD	<LOD	<LOD	<LOD	<LOD								
435	Fig 6 / Area A	Rock ppm	dor 14-01 oc		LOD	1		<LOD	D < LOD	< LOD	< LOD	<LOD	< LOD	61	< LOD	208	< LOD	<LOD	267812	< LOD	< LOD	< LOD	< LOD	<LOD		$9<$ LOD	<LOD	<LOD	<LOD	<LOD
436	Fig 6/Area A	Rock ppm	dor 14-01 oc	8	10	22		< LOD	D < LOD	< LOD		4 < LOD	< LOD	62	< LOD	166	< LOD	< LOD	239574	< LOD		1 <LOD	<LOD	<LOD	<LOD	<LOD				
437	Fig 6 / Area A	Rock ppm	dor 14-01 oc	9	28	105	48		16 < LOD	<LOD	<LOD	<LOD	< LOD	46	< LOD	266	< LOD	<LOD	145235	< LOD	< LOD	< LOD	< LOD	<LOD		$5<$ LOD	<LOD	<LOD	<LOD	<LOD
438	Fig 6/Area A	Rock ppm	dor 14-01 oc	9	8	39	20		29 <LOD	< LOD	373	<LOD	< LOD	47	< LOD	291	< LOD	< LOD	282751	< LOD		$5<$ LOD	<LOD	<LOD	<LOD	<LOD				
439	Fig 6/Area A	Rock ppm	dor 14-01 oc		<LOD		<LOD		29 <LOD	<LOD	< LOD	<LOD	< LOD	56	< LOD	387	< LOD	< LOD	278990	< LOD		8 <LOD	<LOD	<LOD	<LOD	<LOD				
440	Fig 6/Area A	Rock ppm	dor 14-01 oc		< LOD		<LOD		$23<$ LOD	< LOD	< LOD	< LOD	< LOD		< LOD	364	< LOD	< LOD	300485	< LOD		1 <LOD	<LOD	<LOD	<LOD	<LOD				
441	Fig 6/Area A	Rock ppm	dor 14-01 oc	7	10	57	29		26 <LOD	<LOD	< LOD	<LOD	< LOD	47	< LOD	362	< LOD	<LOD	133322	< LOD	<LOD	< LOD	<LOD	< LOD		$6<$ LOD	<LOD	<LOD	<LOD	<LOD
442	Fig 6/Area A	Rock ppm	dor 14-01 oc	9	10		<LOD		28 <LOD	< LOD		< LOD	< LOD	55	218	559	< LOD	< LOD	246459	< LOD		1 <LOD	<LOD	<LOD	<LOD	<LOD				
443	Fig 6/ Area A	Rock ppm	dor 14-01 oc	7	12	28	8		29 <LOD	< LOD	< LOD	<LOD	< LOD	66	< LOD	376	< LOD	<LOD	213319	< LOD		$9<$ LOD	<LOD	<LOD	< LOD	< LOD				
444	Fig 6 / Area A	Rock ppm	dor 14-01 oc	8	7	12	5		22 <LOD	< LOD	< LOD	<LOD	<LOD	71	< LOD	932	<LOD	<LOD	258807	< LOD	< LOD	< LOD	< LOD	<LOD		8	$2<$ LOD	<LOD	< LOD	<LOD
445	Fig 6/Area A	Rock ppm	dor 14-01 oc	<LOD	27	11	19		28 <LOD	< LOD	< LOD	<LOD	<LOD	58	< LOD	110	< LOD	< LOD	105466	< LOD	<LOD	<LOD	<LOD	< LOD	<LOD					
446	Fig 6/Area A	Rock ppm	dor 14-01 oc	10	20	49		<LOD	D < LOD	< LOD	< LOD	<LOD	<LOD	85	< LOD	572	<LOD	1178	301471	< LOD	< LOD	< LOD	< LOD	<LOD		7	3 <LOD	<LOD	<LOD	<LOD
447	Fig 6 / Area A	Rock ppm	dor 14-01 oc		< LOD	14	4		$23<$ LOD	< LOD		1 <LOD	<LOD	59	< LOD	221	<LOD	899	219874	< LOD		7 <LOD	<LOD	<LOD	< LOD	< LOD				
448	Fig 6/Area A	Rock ppm	dor 14-01 oc	<LOD	12	42	9		19 <LOD	< LOD	< LOD	<LOD	<LOD	81	< LOD	827	< LOD	<LOD	202392	<LOD	< LOD	< LOD	< LOD	<LOD		$5<$ LOD	<LOD	<LOD	<LOD	<LOD
449	Fig 6/Area A	Rock ppm	dor 14-01 oc	<LOD	26	8		< LOD	D < LOD	<LOD		4 <LOD	< LOD	43	< LOD	526	< LOD	< LOD	220271	< LOD	< LOD	< LOD	<LOD	<LOD	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD
450	Fig 6/Area A	Rock ppm	dor 14-01 oc	<LOD	18	9	15		$35<$ LOD	< LOD	< LOD	<LOD	< LOD		< LOD	202	< LOD	686	170431	< LOD	< LOD	< LOD	< LOD	<LOD		7 <LOD	<LOD	<LOD	<LOD	<LOD
451	Fig 6/Area A	Rock ppm	dor 14-01 oc	<LOD	9	21	5		27 <LOD	< LOD	< LOD	<LOD	< LOD	40	< LOD	268	< LOD	< LOD	251778	< LOD		7 <LOD	<LOD	<LOD	<LOD	<LOD				
452	Fig 6/Area A	Rock ppm	dor 14-01 oc	<LOD	28	80		< LOD	D < LOD	< LOD		<LOD	< LOD		< LOD	178	< LOD	<LOD	128156	< LOD	< LOD	< LOD	<LOD	<LOD		4 <LOD	<LOD	<LOD	<LOD	<LOD
453	Fig 6/Area A	Rock ppm	dor 14-01 oc	<LOD	16	64	21		16 < LOD	< LOD	< LOD	<LOD	< LOD		< LOD	548	<LOD	<LOD	179436	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD					
454	Fig 6 / Area A	Rock ppm	dor 14-01 oc	<LOD	28	79		< LOD	D < LOD	< LOD		< LOD	< LOD		< LOD	269	< LOD	<LOD	139910	< LOD		7 <LOD	<LOD	<LOD	<LOD	<LOD				
455	Fig 6/Area A	Rock ppm	dor 14-01 oc	<LOD	17	46	16		19 < LOD	<LOD	<LOD	<LOD	< LOD	44	< LOD	200	< LOD	< LOD	246259	< LOD	< LOD	< LOD	<LOD							
456	Fig 6 / Area A	Rock ppm	dor 14-01 oc	8	14	36	15		19 <LOD	<LOD	< LOD	<LOD	< LOD	36	147		< LOD	499	318928	< LOD	< LOD	< LOD	<LOD	< LOD	<LOD	<LOD	<LOD	<LOD	< LOD	<LOD

Table No. 1
Doreen Area A - XRF Sampling Results

RF No.	Fig. No. / Area	Type Units	SAMPLE	Mo	Zr	Sr	Rb	Th	Pb	Se	As	Hg	Au	Zn	w	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd	Ag	Nb	Bi	Cr	V	Ti
457	Fig 6	Rock ppm	01	<LOD	28	75	9		1 < LOD	<LOD		LOD	<LOD	89	LOD	80	LOD	<LOD	155033	LOD	<LOD	< LOD	LOD	LOD	<LOD	<LOD	LOD	LOD	LOD
458	Fig	Rock p	dor 14-01 oc	LOD	37	109	12	25		5 <LOD		4 < LOD	< LOD	136	LOD	27	OD	< LOD	18	OD	<LOD	<LO	< LOD	D	LOD	<LOD	<LOD	<LOD	<LOD
459	Fig 6 / Area A	Rock pp	dor 14-01	7	15	56		24	427	< LOD	<LOD	< LOD	< LOD	97	178	1059	LOD	<LOD	29	OD	<LOD	<LOD	<LOD	<LOD	6 4	D	LOD	LOD	<LOD
460	Fig 6 / Area A	Rock pp	dor 14-01 oc	7	45	76		7 <LOD	<LOD	<LOD		3 < LOD	< LOD	101	< LOD	229	OD	656	2123	OD	< LOD	<LOD	<LO	< LOD	5 <	LOD	D	LOD	OD
461	Fig 6 / Area A	Rock ppm	dor 14-01	LOD	24	87	37		$1<$ LOD	< LOD	< LOD	< LOD	< LOD	44	171	643	OD	< LOD	131	OD	< LOD	< LOD	< LOD	< LOD	D < LOD	<LOD	< LOD	<LOD	< LOD
462	Fig 6	Rock pp	-1	<LOD	27	76		6 < LOD	<LOD	< LO	OD	LOD	<LOD	49	< LOD	89	OD	<LOD	2348	D	<LOD	<	< LOD	D	5 <LOD	<LOD	<LOD	<LOD	<LOD
463	Fig 6	Rock pp	dor 14-01	< LOD	21	72	25		$9<$ LOD	< LOD	< LOD	< LOD	< LOD	37	137	541	OD	< LOD	1683	OD	OD	< LOD	< LO	<LOD	6 2	$2<$ LOD	<LOD	<LOD	<LOD
464	Fig 6	Rock p	4-01	7	33	60		1 <LOD	<LOD	<		2 <LOD	OD	55	D	158	OD	< LOD	2367	D	<LOD	< LOD	<	OD	< L	<LOD	<LOD	<LOD	<LOD
465	Fig 6 / Area A	Rock ppm	dor 14-01	7	30	95		2 < LOD	< LOD	< LOD		7 <LOD	< LOD	56	D	2400	LOD	OD	12	OD	< LOD	< LOD	< LOD	D	< LOD	<LOD	<LOD	<LOD	<LOD
466	Fig	Rock	-02	OD	45	27		6 < LOD	< LOD	LOD	<LOD	LO	< LOD	28	< LOD	72		< LOD	2699	OD		< LOD	<LOD	< LOD	4	<LOD	<LOD	< LOD	<LOD
467	Fig 6/Area A	Rock ppm	dor 14-02	5	80	48		1 < LOD	< LOD	< LOD	< LOD	< LO	OD	40	D	63		< LOD	2122	OD	<LOD	< LOD	<LOD	LOD	D	$2<$ LOD			
468	Fig 6 / Area A	Rock ppm	4-02	OD	LOD				< LOD	< LO	OD	< LOD	< LOD	60	D	152	LOD	<LOD	3075	OD	LOD	<LOD	<	OD	OD	<LOD	LOD	< LOD	<LOD
469	Fig 6/Area A	Rock ppm	dor 14-02	5	80	67		1 <LOD	< LOD	< LOD		1 < LOD	< LOD	53	D	99	OD	<LOD	156	OD	<LOD	< LOD	<LOD	<LOD	<LOD <LOD	<LOD	<LOD	<LOD	<LOD
470	Fig 6 / Area A	Rock ppm	-02	< LOD	45	81		2 <LOD	<LOD	<LOD		6 < LOD	< LOD	116	OD	196	OD	<LOD	95	LOD	<LOD	<LOD	< LOD	LOD	LOD < LOD	<LOD	<LOD	<LOD	<LOD
471	Fig 6 / Area A	Rock ppm	dor 14-02 oc	LOD	81	342		8 < LOD	<LOD	<LOD		$9<$ LOD	<LOD	50	D	58	OD	220	268	OD	<LOD	<LOD	<LOD	<LOD	10	$2<$ LOD	<LOD	< LOD	<LOD
472	Fig 6 / Area A	Rock ppm	dor 14-02	<LOD	44	129	5	5	8 <LOD	<LOD	<LOD	<LOD	< LOD	42	D	76	OD	<LOD	658	OD	<LOD	<LOD	< LOD	OD		< LOD	<LOD	<LOD	<LOD
473	Fig 6	Rock pp	dor 14-02 oc	D	65	95	6		LOD	< LO	<LOD	<LOD	<	29	D	LOD	D	<LOD	1104	D	<LOD	< LOD	< LO	<LOD		$2<$ LOD	LOD	LOD	<LOD
474	Fig $6 /$ Area A	Rock ppm	-02	<LOD	74	306	2		<LOD	<LOD		3 <LOD	<LOD	62	D	35	OD	<LOD	58	OD	<LOD	< LOD	< LOD	OD		$2<$ LOD	<LOD	<LOD	<LOD
475	Fig 6 / Area A	Rock ppm	do	< LOD	8	55	8	8	2	< LOD	OD	< L	<LOD		LOD	84	LOD	650	45	LOD	OD	<	< LOD	D	<LOD	LOD	<LOD	<LOD	<LOD
476	Fig 6 / Area A	Rock ppm	dor 14-02		OD		D	<LOD	< LOD	< LO	<LOD	<LOD	< LOD	90	D	325	OD	<LOD	3364	LOD	< LOD	< LOD	<LOD	<LOD	OD	<LOD	<LOD	<LOD	<LOD
477	Fig $6 /$	Rock p	do	5	77	170		8 <LOD	<LOD	< LO	OD	< LOD	<LOD		OD		LOD	<LOD	71	D	OD	< LOD	<LOD	D		$3<$ LOD	<LOD	<LOD	<LOD
478	Fig $6 /$ Area A	Rock ppm	4-02	LOD	68	55		4 < LOD	<LOD	< LOD	<LOD	<LOD	<LOD	58	D	102	OD	<LOD	1691	LOD	<LOD	< LOD	<LOD	OD	OD	<LOD	<LOD	< LOD	<LOD
479	Fig 6 / Area A	Roc	dor 14-02 oc	D	34	182	22		LOD	< LOD		< LOD	<LOD	77		116	OD	330	72885	LOD	D	<LOD	<LOD	< LOD		$2<$	<LOD	<LOD	<LOD
480	Fig 6 / Area A	Rock ppm	-02	OD	28	313	0		<LOD	<LOD		7 < LOD	< LOD	52	LOD	102	LOD	< LOD	317	OD	OD	<LOD	< LOD	OD	5 2	2 <LOD	<LOD	< LOD	<LOD
481	Fig $6 /$ Area A	Ro	dor 14-02 oc	<LOD	67	22		7 < LOD	< LOD	<LOD	OD	<LOD	< LOD	34			OD	< LOD	3376	LOD	< LOD	<LOD	<LOD	< LOD	6 2	$2<$ LOD		<LOD	<LOD
482	Fig 6 / Area A	Rock ppm	-03	<LOD	OD	1025			8 < LOD	<LOD		7 <LOD	< LOD	34	OD	127	LOD	< LOD	145	LOD	LOD	< LOD	< LOD	LOD	OD < LOD	<LOD	< LOD	<LOD	<LOD
483	Fig 6 / Area A	Rock	do	<LOD	9	21	OD	OD	D	< LOD	OD	< LOD	<LOD	101	D	122	LOD	D	18588	OD	D	<LOD	<LOD	< LOD	OD <LOD	LOD	<LOD	LOD	<LOD
484	Fig $6 /$ Area A	Rock ppm	4-03	<LOD	LOD	1566			< LOD	<LOD	< LOD	< LOD	< LOD	37	OD	< LOD	OD	<LOD		< LOD	<LOD	< LOD	< LOD	<LOD	<LOD <LOD	<LOD	<LOD	<LOD	<LOD
485	Fig 6 / Area A	Rock ppm	dor	<LOD	LOD	1419	4	442	<	< LOD	OD	< LOD	<LOD	60	LOD	129	<LOD	D	3136	455	< LOD	<LOD	<LOD	< LOD	<LOD <LO	LOD	<LOD	LOD	<LOD
486	Fig 6/Area A	Rock ppm	dor	< LOD	21	27		8 <LOD	< LOD	<LOD	< LOD	< LOD	< LOD	59	D	< LOD	OD	<LOD	15650	LOD	<LOD	< LOD	< LOD	<LOD	< LOD < LOD	LO	<LOD	< LOD	<LOD
487	Fig 6 / Area A	Rock ppm	dor	7	8	22		630	< LOD	15		3	< LOD			135	LOD	< LOD	1969	OD	<LOD	<LOD	<LOD	< LOD	OD	$2<$ LOD	<	LO	LO
488	Fig 6/Area A	Rock ppm	do	OD	30	46		8 < LOD	< LOD	< LOD		1 < LOD	< LOD	49	D	50	D	<LOD	1220	LOD	<LOD	< LOD	< LOD	< LOD	<LOD < LOD	<LO	<LOD	< LOD	< LOD
489	Fig 6 / Area A	Rock ppm	dor 14-03	< LOD	78	80		6 < LOD	<LO	<LOD	<LOD	<	<LOD	36		33	< LOD	<LOD	5367	OD	< LOD	<LOD	<LOD	<LOD	5 2	$2<$ LO	<LOD	LO	LOD
490	Fig $6 /$	Rock p	dor 14-03	7	7				3 <LOD	< LOD	< LOD	< LOD	< LOD	46	< LOD	120	D	< LOD	805	LOD	<LOD	< LOD	< LOD	< LOD	<LOD < LOD	<LOD	<LOD	<LOD	<LOD
491	Fig 6 / Area A	Rock p	dor 14-0	OD	68	139		5 < LOD	<LOD	OD		$9<$ LOD	< LOD	30			LOD	OD	1137	< LOD	LOD	LOD	< LOD	< LOD	OD	<LO	<LOD	<LOD	
492	Fig $6 /$ Area A	Rock ppm	dor 14-03	<LOD	36	12		8 < LOD	< LOD	< LOD		6 < LOD	OD	26	< LOD	40	OD	<LOD	1172	OD	< LOD	< LOD	<LOD	<	<LOD <LOD	<LOD	LOD	<LOD	<LOD
493	Fig 6 / Area A	Rock ppm	dor 14-03	<LOD	37	10		2 LOD		$1<$ LOD	<LOD	< LOD	< LOD	25		320	205	OD	3130	OD	71	61	< LO	LOD	<LOD < LOD	<LOD	<LOD	<LOD	<LOD
494	Fig 6/Area A	Rock ppm	dor	<LOD		20		5 < LOD	< LOD	<LOD	< LOD	< LO	23	18	< LOD		<LOD	LOD	92	OD	< LOD	< LOD	<LOD	<LOD	<LOD < LOD	<LOD	<LOD	<LOD	<LOD
495	Fig 6 / Area A	Rock ppm	dor 14-03	<LOD	45	52	38		4 < LOD	<LOD	<LOD	< LOD	OD	31	OD	497	LOD	<LOD	69761	LOD	<LOD	< LOD	< LOD	LOD	7 <LOD	<LOD	<LOD	<LOD	<LOD
496	Fig 6/Area A	Rock ppm	dor 14-03	< LOD	58	71		1 < LOD	<LOD	<LOD	<LOD	<LOD	D	33	< LOD	50	OD	<LOD	56	OD	< LOD	< LOD	<LOD	< LO	<LOD <LOD	<LO	<	<LO	<LOD
497	Fig $6 /$ Area A	Rock ppm	dor 14-03	7	36	85		6 < LOD	< LOD	<LOD	<LOD	<LOD	< LOD		OD		< LOD	<LOD	584	<LOD	<LOD	< LOD	<LOD	<LOD	<LOD <LOD	LO	<LO	LOD	< LOD
498	Fig 6/Area A	Rock ppm	dor 14-03	<LOD	20	26		< LOD	<LOD	<LOD	< LOD	<LOD	<LOD	132	< LOD	408	LOD	<LOD	2947	LOD	<LOD	<LOD	<LOD	<LO	<LOD <LOD	<LO	<LOD	<LO	<LO
499	Fig $6 /$ Area A	Rock ppm	dor 14-04	< LOD	26	89		< LOD	<LOD		<LOD	<LOD	<LOD	43	OD	173		<LOD	23026	< LOD		<LOD	<LOD	<LOD	<LOD <LOD	<LOD	<LOD	<LO	LOD
500	Fig $6 /$ Area A	Rock ppm	dor 14-04 oc	5	23	494		619	9 <LOD	<LOD	<LOD	<LOD	< LOD		< LOD		<LOD	<LOD	498	LOD	< LOD	<LOD	<LOD	<LOD	5 <LOD	<LO	<LO	<LOD	< LO
501	Fig 6/Area A	Rock ppm	dor 14-04 oc	<LOD	33	227	23		7 < LOD	<LOD		6 <LOD	<LOD		D		<LOD	<LOD	6649	< LOD	< LOD	<LOD	<LOD	<LOD	<LOD 2	$2<$ LOD	<LOD	<LOD	<LOD
502	Fig 6/Area A	Rock ppm	dor 14-04 oc	< LOD	<LOD		D	< LOD	<LOD	<LOD	< LOD	<LOD	< LOD		< LOD		OD	<LOD	17817	<LOD	< LOD	< LOD	<LOD	<LOD	<LOD <LOD	<	<LOD	< LOD	<LOD
03	Fig 6/Area A	Rock ppm	dor 14-05 oc	5	52	172	19	15	5 < LOD	<LOD		0 < LOD	< LOD		LOD	492	LOD	<LOD	22548	< LOD	<LOD	< LOD	< LOD	< LOD	43	$3<$ LOD	< LO	< 1	<LOD

Table No. 1
Doreen Area A - XRF Sampling Results

XRF No.	Fig. No. / Area	Type Units	SAMPLE	Mo	Zr	Sr	Rb	Th	Pb	Se	As Hg	Au	Zn	w	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd		Nb Y	Bi		v	
504	Fig 6/Area A	Rock ppm	dor 14-05	5	37	231		2 <LOD	< LOD	< LOD	<LOD < LOD	<LOD	129	LOD	63	LOD	<LOD	3794	LOD	<LOD	<LOD	< LOD	< LOD	<LOD < LOD	LO	LO	LO	LOD
505	Fig	Rock pp	06	D	55	148	50	14	4 <LOD	OD	15 <LOD	D	42	<LOD	42	LOD	D	66	D	D	D	< LOD	< LOD	4	2 <LOD	<LOD	LOD	
506	Fig 6	Rock p	6	< LOD	27	58		4 < LOD	< LOD	D	OD < LOD	< LOD	82	< LOD	133	OD	< LOD	1892	D	LOD	<LOD	OD	<	D	<LOD	<LOD	<LOD	
507	Fig	Rock p	06	<LOD	32	44		4 < LOD	OD	< LOD	<LOD < LOD	<LOD		LOD	89	LOD	< LOD	178394	LOD	<LOD	<LOD	< LOD	<LOD	OD	<LOD	<LOD	LOD	
508	Fig 6	Rock p	06	< LOD	12	23		5 <LOD	< LOD	D	15 < LOD	< LOD	76	LOD	147	OD	816	2375	OD	OD	OD	OD	<	< LOD	$2<$ LOD	<LOD	<LOD	
509	Fig 6 / Area A	Rock	06	<LOD	61	297		0 <LOD	<LOD	<LOD	<LOD < LO	<LOD		<LOD	367	OD	< LOD	102116 <	LOD	< LOD	< LOD	< LOD	<LOD	OD	< LOD	<LOD	<LOD	
510	Fig 6	Rock	dor 14-06 oc	< LOD	18	36	13	30	< LOD	D	<LOD < LOD	< LOD	47	LOD	105	OD	OD	271305	LOD	<LOD	D	D	<LOD	LOD	$2<$ LOD	<LOD	<LOD	
511	Fig	Rock	06	<LOD	33	65		< LOD	OD	D	OD < LOD	< LOD		< LOD	54	LOD	OD	$146727<$	< LOD	OD	D	D	<LOD	LOD	<LOD	<LOD	<LOD	
512	Fig 6	Rock	06	<LOD	47	53		5 < LOD	< LOD	D	< LOD < LOD	<LOD		LOD	116	126	OD	2207	D		D	OD	< L	<LOD	<	<LOD	<LOD	
513	Fig	Rock	07	<LOD	28	64		< LOD	OD	<LOD	10 < LOD	OD	49	< LOD	LOD	< LOD	OD	155094 <	OD	OD	D	OD	< L	OD	<LOD	<LOD	<LOD	<LOD
514	Fig 6	Rock p	dor 14-07 oc	<LOD	32	56		4 <LOD		D	22 <LOD	<LOD	11	D	122	OD	OD	21967	OD	OD	D	OD	< L	<LOD	<LOD	<LOD	<LOD	LOD
515	Fig	Rock	14-07	<LOD	30	16		7 <LOD	OD	D	<LOD < LOD	OD	137	< LOD	106	LOD	OD	13569	OD	OD	OD	OD	< LOD	OD	$2<$ LOD	<LOD	<LOD	<LOD
516	Fig 6	Rock p	dor 14-07 oc	<	56	14		OD	OD	D	<LOD < LOD	OD	52		77	OD	OD	8860		<LOD	< LOD	OD	< LOD		<LOD	LOD	LOD	<LOD
517	Fig	Rock	07	<LOD	19	37		2 <LOD	OD	D	9 <LOD	OD	179		70		LOD	22308	OD	OD	OD	OD	< LOD	D	<LOD	<LOD	<LOD	<LOD
518	Fig 6	Rock p	dor 14-07 oc	D	45	77		8 < LOD	OD	<LOD	23	OD	42	LOD	95		LOD	19114	OD	<LOD	D	OD	<	OD	<LOD	<LOD	< LOD	<LOD
519	Fig	Rock	dor 14-07 oc	<LOD	49	48	8	18	< LOD	D	$10<$ LOD	OD			OD	OD	OD	17	< LOD	OD	D	OD	<LOD	OD	< LO	<LOD	<LOD	<LOD
520	Fig 6	Rock p	dor 14-07 oc	< LOD	51	31		8 <LOD	OD	D	$29<$ LOD	< LOD	28		72	LOD	< LOD	18068	OD	< LOD	D	OD	< LOD	OD	<LOD	<LOD	<LOD	<LOD
521	Fig	Rock	dor 14-07 oc	<	20	31		1 <LOD	<LOD	<LOD	$55<$ LOD	OD	60		158	D	D	28993	OD	OD	OD	LOD	< LOD	LOD	<LOD	<LOD	<LOD	<LOD
522	Fig 6	Rock pp	dor 14-07 oc	< LOD	24	40	5	532	< LOD	D	LOD < LOD	LOD	72	LOD	20	OD	OD	281	LOD	OD	OD	LOD	< LOD	LOD	2 < LO	<LOD	<LOD	LOD
523	Fig	Ro	dor 14-07 oc	<	4			<LOD	D		$113<$ LOD	<LOD	17			OD	D	58832	< LOD	< LOD	D	D	<LOD	OD	<LOD	<LOD	<LOD	LOD
524	Fig 6 / Area A	Rock ppm	dor 14-07 oc	OD	65	78		9 < LOD	<LOD	D	<LOD < LOD	<LOD	42	LOD		LOD	<LOD	6827	LOD	OD	OD	< LOD	< LOD	<LOD < LO	<LOD	<LOD	<LOD	Lod
525	Fig	Ro	dor 14-07 oc	<	15	13			7 <LOD		<LOD <	<LOD	50	OD	47	OD	< LOD	40798	LOD	OD	<LOD	<LOD	D	4	2 <LO	<LOD	<	
526	Fig 6 / Area A	Rock pp	07	<LOD	15	25		7 <LOD	<LOD	D	<LOD < LOD	<LOD	43	<LOD	128	D	590	32	< LOD	< LOD	D	LOD	< LOD	OD	<LOD	<LOD	<LOD	LO
527	Fig 6	Roc	do	< LOD	26	46		20	0	D	<LOD < LO	< LOD	73		141	OD	< LOD	191415	LOD	LOD	<LOD	< LOD	<LOD	OD	$2<$	<LOD	<LOD	
528	Fig 6 / Area A	Rock ppm	dor 14-07 oc	5	92	11	6	22	OD	D	<LOD < LOD	<LO	33	OD	163	OD	< LOD	448	< LOD	6	$2<$	<LOD	<LOD	Lod				
529	Fig $6 /$	Ro	dor 14-07 oc	OD	42	53		OD	<LOD		12	<LOD	60	OD	35		LOD	173121	LOD	< LOD	<LOD	<LOD	<LOD	D			<LOD	
530	Fig $6 /$	Rock p	dor 14-07 oc	10	20	12	9	23	3 LOD	D	LOD	<LOD	58		330	OD	< LOD	1603	< LOD	< LOD	<LOD	< LOD	<LOD	8	$2<$ LOD	<LOD	< LOD	
531	Fig $6 /$	Ro	dor 14-07 oc	29	19	35		< LOD		8 < LOD	$88<$ LOD	< LOD			424		1112	3431		< LOD	<LOD	< LOD	<LOD	7 <	<LOD	<LOD	<LOD	
532	Fig 6	R	dor 14-07 oc	OD	32	16		LOD	< LOD	<LOD	$22<$ LOD	<LOD			122	OD	< LO	2290	LOD	< LOD	<LOD	OD	< LOD	OD	<LOD	<LOD	< LOD	Lod
533	Fig 6	R	r	<LOD	52	148		LOD	OD	D	$14<$ LOD	<LOD			126		OD	2027	LOD	< LOD	OD	OD	<LOD	OD	$2<$ LOD	<LOD	<LOD	
534	Fig	Rock ppm	dor 14-07	<LOD	28	25		3 <LOD	<LOD	<LOD	$24<$ LOD	<LOD			329		< LOD	2295		< LOD	<LOD	<LOD	<LOD	5	< L	<LOD	<LOD	<0
535	Fig $6 /$	Ro	dor 14-07	<LOD	24	58		$9<$ LOD	<LOD		<LOD < LOD	< LO					< LOD	20	OD	<LOD	OD	<LOD	< LOD	OD	<LOD	<LOD	<LOD	<LOD
536	Fig	Rock ppm	dor 14-08 o	<LOD	26	56		3 <LOD	<LOD	< LOD	<LOD <	<LOD			115		<LOD	1481		<LOD	<LOD	D	< LOD	<LOD < LOD	<LOD	<LOD	<LOD	
537	Fig $6 /$	Ro	dor 14-08 o	<LOD	29	42	2		< LOD		<LOD < LOD	<LOD			59		< LOD	1672	OD	OD	OD	<LOD	< LOD	OD <LOD	<LOD	<LOD	<LOD	<Lo
538	Fig 6	Rock pp	dor 14-08 o	<LOD	169	105	1	17	7		8 <	<LOD			83		< LOD			< LOD	<LOD	< LOD	D	8 <	<LO	<LOD	<LOD	
539	Fig 6 / Area A	Rock	dor 14-08 o	<LOD	17	7		5 <LOD	<LOD	D	<LOD < LOD	<			131		<LOD	31	< LOD	D	OD	<LOD	< LOD	OD	$2<$ LOD	<LOD	<LOD	
540	Fig $6 /$	Rock pp	dor 14-08 oc	<LOD	52	88		2 <LOD	<LOD	D	<LOD < LOD	<					D		LOD	OD	OD	< LOD	D	4 <LOD	LOD	45	54	
54	Fig 6 / Area A	Rock ppm	dor 14-08 oc	<LOD	64	8	40	018	< LOD	< LOD	<LOD < LOD	<LOD			67		<LOD	59033	OD	LOD	< LOD	<LOD	< LOD	<LOD <LOD	<LOD	<LOD	<LOD	<Lod
542	Fig $6 /$	Rock ppm	-08 oc	<LOD	18	5		8 <LOD	<LOD	< LOD	<LOD < LOD	<LOD	39		48		OD	25755	< LOD		<LOD	<LOD	< LOD	<LOD <LOD	<LO	LOD	LOD	LOD
54	Fig 6 / Area A	Rock ppm	dor 14-09 oc	15	75	190		6 <LOD	<LOD	< LOD	<LOD < LOD	<LOD	243		143		<LOD	68471	LOD	<LOD	<LOD	<LOD	< LOD	4	$3<$ LOD	<LOD	<LOD	<LOD
544	Fig 6 / Area A	Rock ppm	dor 14-09 oc	7	57	156	23	313	3 LOD	<LOD	LOD	<LOD	472		416		< LOD	4120		OD	<LOD	<LOD	LOD	4	3 <LO	LOD	LOD	<LOD
54	Fig 6/Area A	Rock ppm	dor 14-09 oc	4	50	178		2 <LOD	<LOD	<	8 <LOD	< LOD	632	< LOD	938	D	257	41740	62	D	< LOD	< LOD	< LOD	5	4 < LOD	<	<Lo	< 10
546	Fig 6 / Area A	Rock ppm	dor 14-09 oc	14	50	210		2 <LOD	<LOD	< LOD	23 LOD	<LOD	337	< LOD	405	OD	<LOD	71555		<LOD	<LOD	<LOD	< LOD	4	$3<$ LOD	<LO	LOD	<LoD
547	Fig 6/Area A	Rock ppm	dor 14-09 oc	8	30	44		9 <LOD	< LOD	< LOD	$23<$ LOD	< LOD	43	< LOD	146	OD	< LOD	227609	< LOD	<LOD	< LOD	< LOD	< LOD	<LOD <LOD	<LOD	<LOD	<LO	< Lod
548	Fig 6 / Area A	Rock ppm	dor 14-09 oc	7	27	48		3 <LOD		4 < LOD	$21<$ LOD	<LOD	313	< LOD	442	LOD	< LOD	162357	< LOD	<LOD	< LOD	<LOD	< LOD	$5<$ LOD	<LOD	<LOD	<LOD	< 10
549	Fig 6/Area A	Rock ppm	dor 14-09 oc	<LOD	27	44		3 <LOD	<LOD	<LOD	12 <LOD	<LOD		D	339	OD	< LOD	184029 <	LOD	< LOD	$2<$ LOD	<LO	LOD	< LOD				
550	Fig 6 / Area A	Rock ppm	dor 14-09 oc	<LOD	23	75		724	4 < LOD	< LOD	68 <LOD	<LOD	105	LOD	220	LOD	675	195120	< LOD	5	$2<$ LOD	<LOD	<LOD					

Table No. 1
Doreen Area A - XRF Sampling Results

XRF No.	Fig. No. / Area	Type Units	SAMPLE			Sr	Rb	Th	Pb	Se	s	Hg	Au	Zn	w	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd		Nb		Bi	Cr		
551	Fig 6/ Area A	p	9	OD	24	98	10	< LOD	<LOD	<LOD		<LOD	<LOD	17	< LOD	209	D	<LOD	13308	LOD	<LOD	<LOD	<LOD	< LOD	< LOD	<LOD	<LOD	<LOD	<LOD	
552	Fig 6 / Area A	ck p	dor 14-09 oc	< LOD	38	177		OD	OD	OD		< LOD	< LOD	184	< LOD		< LOD	LOD	12329	21	OD	<LOD	< LOD	<	LOD		$2<$ LOD	LOD	LOD	
553	Fig	ck p	9	6	26	129		OD	< LOD	D	<LOD	OD	<	59	< LOD	159	<LOD	<LOD	1908	LOD	<LOD	<LOD	LOD	< LOD		0 <LOD	<LOD	LOD	LOD	
554	Fig 6	ck pp	14-09	LOD	20	29	0		LOD	< LOD	OD	<LOD	< LOD		<LOD	123	< LOD	<LOD	9832	OD	< LOD	<LOD	LOD	<LOD	OD	<LOD	<LOD	LOD	<LOD	
555	Fig 6	ck pp	dor 14-09 oc	< LOD	35	216	8		19 <LOD	< LOD		4 < LOD	<LOD	67		142	LOD	< LOD	6377	LOD	< LOD	<LOD	< LOD	< LOD	< LOD		<LO	<LOD	< LOD	
556	Fig 6	ck pp	-09	<LOD	<LOD		D	OD	< LOD	D		D	<LOD	159		221	< LOD	556	2754	OD	< LOD	OD	< LOD	< LOD	OD		$3<$ LOD	LOD	<LOD	
557	Fig 6 / Area A	ck pp	dor 14-quar	< LOD	LOD	69			<LOD	OD	OD	OD	< LOD				OD	< LOD	20	OD	<LOD	<LOD	LOD	< LOD	< LOD	<LOD	<LOD	<LOD	<LOD	
558	Fig 6	ck pp	do	< LOD	41	347		OD	<LOD	< LOD		D	< LOD	61		52	< LOD	<LOD	36584	LOD	<LOD	< LOD	OD	< LOD	< LOD		2 LOD	LOD	<LOD	
559	Fig $6 /$ Area A	Rock ppm	dor 14-quar	< LOD	55	237	24		< LOD	< LOD		< LOD	<LOD	129	<	298	< LOD	40	62284	3142	< LOD	<LOD	< LOD	<LOD		4	<LOD	LOD	<LOD	<LOD
560	Fig $6 /$ Area A	ck pp	dor 14-q	< LOD	10	367	5		< LOD	LOD	<LOD	OD	<LOD			< LOD	< LOD	< LOD	37169	OD	< LOD	<LOD	LOD	<LOD	< LOD	<LO	<LOD	LOD	< LOD	
561	Fig $6 /$	Rock p	dor	<	< LOD	537			14 < LOD	< LOD	OD							D			< LOD	OD	< LOD	< LOD	< LOD	<LOD	<LOD	< LOD	< LOD	
562	Fig 6 / Area A	Rock pp	dor 14-qua	< LO	11	166		<LOD	<LOD	<LOD	< LOD	D	< LOD		<LOD		< LOD	< LOD	44		<LOD	<LOD	<LOD	< LOD	D	<LOD	<LOD	<LOD		

Table No. 2
Doreen Area B-XRF Sampling Results

XRF No.	Fig. No. / Area	Type Units	SAMPLE	Mo	Zr	Sr	Rb	Th	h Pb	Se	As	Hg	Au	Zn	w	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd	Ag	Nb	Y	Bi	Cr	v	Ti
563	Fig 7/Area B	Soil ppm	dor rsoils 14-01	5	88	265	50		$8<$ LOD	< LOD		17 < LOD	< LOD	155	< LOD	158	< LOD	368	62268	724										
564	Fig 7/ Area B	Soil ppm	dor r soils 14-02	< LOD	83	251		< LOD	OD < LOD	< LOD		11 < LOD	< LOD	160	< LOD	125	< LOD	< LOD	48452	699										
565	Fig 7/ Area B	Soil ppm	dor r soils 14-02	< LOD	< LOD	< LOI	LOD	< LOD	D < LOD																					
566	Fig 7/ Area B	Soil ppm	dor r soils 14-02	5	86	239	50		7 <LOD	< LOD		17 < LOD	< LOD	147	< LOD	161	< LOD	< LOD	66342	1052										
567	Fig 7/ Area B	Soil ppm	dor rsoils 14-03	< LOD	76	208		< LOD	D < LOD	< LOD		12 <LOD	< LOD	173	< LOD	131	< LOD	< LOD	37865	678										
568	Fig 7/ Area B	Soil ppm	dor rsoils 14-04	7	69	161		< LOD	D < LOD	< LOD		11 <LOD	< LOD	154	< LOD	127	< LOD	251	48221	782										
569	Fig 7/ Area B	Soil ppm	dor r soils 14-05	<LOD	73	184	58		7 <LOD	<LOD		11 < LOD	< LOD	370	< LOD	154	< LOD	< LOD	67323	2345										
570	Fig 7/ Area B	Soil ppm	dor r soils 14-06	<LOD	65	214		< LOD	D < LOD	<LOD		$9<$ LOD	< LOD	184	< LOD	110	< LOD	<LOD	41686	1988										
571	Fig 7/ Area B	Soil ppm	dor r soils 14-07	< LOD	71	282	44		6 < LOD	< LOD		12 < LOD	< LOD	119	< LOD	216		5 < LOD	70079	1346										
572	Fig 7/ Area B	Soil ppm	dor rsoils 14-08	5	93	224	49		6 < LOD	< LOD		$9<$ LOD	<LOD	172	< LOD	94	< LOD	265	42205	728										
573	Fig 7/ Area B	Soil ppm	dor r soils 14-09	7	95	268	43		$5<$ LOD	< LOD		10 < LOD	< LOD	146	< LOD	103	< LOD	< LOD	42997	733										
574	Fig 7/ Area B	Soil ppm	dor r soils 14-10	9	78	255		<LOD	OD < LOD	148	< LOD	54	< LOD	< LOD	29917	1066														
575	Fig 7/ Area B	Soil ppm	dor r soils 14-11	<LOD	79	299		<LOD	D < LOD	< LOD		8 < LOD	< LOD	126	< LOD	105	< LOD	231	43463	949										
576	Fig 7/ Area B	Soil ppm	dor rsoils 14-12	<LOD	75	315	37		8 <LOD	< LOD		$9<$ LOD	< LOD	118	< LOD	98	< LOD	<LOD	35296	872										
577	Fig 7/ Area B	Soil ppm	dor r bra 14-01	< LOD	98	284	60		$9<$ LOD	< LOD		16 < LOD	10	220	< LOD	154		1 < LOD	58834	900										
578	Fig 7/ Area B	Soil ppm	dor r bra 14-02	16	67	244	41		$16<$ LOD			21 <LOD	<LOD	114	< LOD	309	< LOD	< LOD	120007	883										
579	Fig 7 / Area B	Soil ppm	dor r bra 14-03	<LOD	73	285		< LOD	OD < LOD	< LOD		11 < LOD	< LOD	170	< LOD	159	< LOD	< LOD	55624	917										
580	Fig 7/ Area B	Soil ppm	dor r bra 14-03	<LOD	68	241		< LOD	D < LOD	<LOD		$8<$ LOD	< LOD	170	< LOD	230	< LOD	< LOD	78483	1248										
581	Fig 7/ Area B	Soil ppm	dor r bra 14-03	8	61	185	39		$9<$ LOD	< LOD		11 < LOD	< LOD	144	< LOD	297	< LOD	< LOD	126753	1377										
582	Fig 7/ Area B	Soil ppm	dor r bra 14-04	11	58	168	41		$10<$ LOD	< LOD		16 < LOD	< LOD	131	< LOD	324	< LOD	453	134567	1574										
583	Fig 7/ Area B	Soil ppm	dor r bra 14-05	10	56	177	53		$26<$ LOD	< LOD		22 < LOD	< LOD	110	< LOD	366	< LOD	< LOD	226043	944										
584	Fig 7 / Area B	Soil ppm	dor r bra 14-06	< LOD	60	176		< LOD	OD < LOD	< LOD		10 < LOD	< LOD	109	< LOD	124	< LOD	< LOD	40217	824										
585	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	58	384		<LOD	D < LOD	< LOD	< LOD	- LOD	< LOD	55	< LOD	84	< LOD	<LOD	65707	< LOD		2 <LOD	<LOD	LOD	<LOD					
586	Fig 7/Area B	Rock ppm	dor r oc 14-02	<LOD	44	349		< LOD	D < LOD	< LOD	< LOD	- LOD	< LOD	59	< LOD	< LOD	< LOD	<LOD	79612	2963	< LOD	< LOD	<LOD	< LOD		4	$2<$ LOD	<LOD	<LOD	<LOD
587	Fig 7/ Area B	Rock ppm	dor r oc 14-02	< LOD	59	385	28		18 <LOD	<LOD	<LOD	- LOD	< LOD	48	< LOD	170	< LOD	<LOD	67281	< LOD		5	$2<$ LOD	<LOD	LOD	Lod				
588	Fig 7 / Area B	Rock ppm	dor r oc 14-02	7	24	125		<LOD	OD < LOD	<LOD	<LOD	- LOD	< LOD	48	< LOD	77	< LOD	<LOD	174517	LOD	< LOD		$2<$ LOD	<LOD	<LOD	LOD				
589	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	56	260		<LOD	D < LOD	<LOD	<LOD	- LOD	< LOD	30	< LOD	317	< LOD	<LOD	47894	< LOD		6	$2<$ LOD	<LOD	<LOD	<LOD				
590	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	47	206	30		14 < LOD	38	< LOD	282		2 < LOD	115144	LOD	< LOD		$2<$ LOD	<LOD	<LOD	<LOD								
591	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	42	154	16		23 <LOD	< LOD	< LOD	- LOD	< LOD	77	< LOD	248	< LOD	<LOD	60341	< LOD		6 <LOD	<LOD	<LOD	<LOD	<LOD				
592	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	39	488	33		16 <LOD	< LOD	< LOD	- LOD	< LOD	88	< LOD	125	< LOD	< LOD	79976	LOD	< LOD	< LOD	< LOD	< LOD		5	$2<$ LOD	<LOD	<LOD	<LOD
593	Fig 7/Area B	Rock ppm	dor r oc 14-02	< LOD	47	226	27		$23<$ LOD	< LOD	< LOD	< LOD	< LOD	36	< LOD	85	< LOD	< LOD	60149	< LOD		8	$2<$ LOD	<LOD	<LOD	<LOD				
594	Fig 7 / Area B	Rock ppm	dor r oc 14-02	< LOD	47	110		<LOD	OD < LOD	40	< LOD	345	< LOD	< LOD	193196	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD									
595	Fig 7/Area B	Rock ppm	dor r oc 14-02	<LOD	43	215		< LOD	D < LOD	< LOD	< LOD	- LOD	< LOD	212	< LOD	< LOD	< LOD	< LOD	48776	< LOD		$2<$ LOD	<LOD	<LOD	<LOD					
596	Fig 7 / Area B	Rock ppm	dor r oc 14-02	< LOD	30	192		<LOD	D < LOD	41	< LOD	235	< LOD	< LOD	202917	< LOD		< LOD	< LOD	< LOD	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD				
597	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	38	47		< LOD	D < LOD	<LOD	< LOD	- LOD	< LOD	66	< LOD	245	< LOD	< LOD	129538	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD					
598	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	47	105	15		14 < LOD	<LOD	<LOD	- LOD	< LOD	389	< LOD	580	< LOD	< LOD	132143		< LOD		$2<$ LOD	<LOD	<LOD	<LOD				
599	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	41	31		<LOD	OD < LOD	109	< LOD	145	< LOD	< LOD	186468	< LOD	<LOD	<LOD	<LOD	<LOD	DD									
600	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	7	19		< LOD	OD < LOD	< LOD	< LOD	- LOD	<LOD	34	< LOD	96	< LOD	< LOD	50595	< LOD	< LOD	< LOD	<LOD	< LOD	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD
601	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	37	80		< LOD	D < LOD	51	< LOD	351		< LOD	234913	< LOD	<LOD	<LOD	<LOD	<LOD	OD									
602	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	62	53		< LOD	D < LOD	131	< LOD	212	< LOD	< LOD	117759	2683	< LOD	<LOD	< LOD	< LOD		5	$2<$ LOD		<LOD					
603	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	9		< LOD		834		8 <LOD	- LOD	< LOD		< LOD	884	< LOD	<LOD	80917		<LOD	< LOD	<LOD	< LOD	< LOD	<LOD	<LOD	<LOD	<LOD	OD
604	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	47	210		< LOD	- LOD	< LOD	<LOD	- LOD	< LOD	24	< LOD	106	< LOD	<LOD	100841	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD					
605	Fig 7/ Area B	Rock ppm	dor r oc 14-02	<LOD	51	299	26		12 < LOD	< LOD	< LOD	- LOD	< LOD		< LOD		< LOD	< LOD	52471	< LOD		$2<$ LOD	<LOD	<LOD	<LOD					
606	Fig 7 / Area B	Rock ppm	dor r oc 14-02	<LOD	42	253	34		15 < LOD	<LOD	<LOD	- LOD	< LOD	39	< LOD	357	< LOD	<LOD	140660	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD					
607	Fig 7/ Area B	Rock ppm	dor r oc 14-02	< LOD	66	190	29		14 <LOD	<LOD	<LOD	- LOD	< LOD	73	< LOD	564		7 < LOD	133551	< LOD		4	3 <LOD	<LOD	<LOD	<LOD				
608	Fig 7/ Area B	Rock ppm	dor r oc 14-02	5	17	30		< LOD	D < LOD	< LOD	<LOD	- LOD	<LOD		< LOD	207	< LOD	<LOD	103598	< LOD	<LOD	<LOD	<LOD	<LOD	<LOD					

Table No. 2
Doreen Area B - XRF Sampling Results

APPENDIX A

REFERENCES

Baerg, R.J. and Bradish, L., 1984, Geological, Geochemical, Geophysical, Diamond Drilling Report on the Doreen Lake Property, Assessment Report 13172.

Barker G.E., 1991, Diamond Drill Report on the Dor Claim Group, Assessment Report 21291.
Barker G.E. and Bysouth G, 1990, Diamond Drill Report on the Dor Dor Claim Group, Assessment Report 19551.
B.C Ministry of Mines, G.E.M., 1974; page 239.

Belik, G.D., 1981; Geochemical Report on the Dor Claims, Assessment Report 10118.
Belik, G.D., 1982, Summary Report on the Dor claims, for Eureka Resources Inc.
Belik, G.D., 1984, Summary report on the Dor claims, for Eureka Resources, Inc.
Campbell, K.V., 1988, Report on the Geology and Proposal for Exploration of the Doreen Lake Property, Assessment Report 17089.

Campbell, R.B., 1978, Geological Map, Quesnel Lake, Geological Survey of Canada, Open File 574.

Crone. J.D., 1985, Letter reviewing geophysical surveys over the Dor claim group, for Eureka Resources, Inc., dated May 27, 1985.

Doyle, L.E., 2010, Physical \& Geochemical Work on the Dorfly Project, Assessment Report 61633.
Doyle, L.E., 2013, Geological \& Geochemical Work Assessment Report on the Doreen Project, Assessment Report 33621.

Fox, P.E., Cameron, R.S., Hoffman, S.J., 1986; Geology and soil geochemistry of the Quesnel River gold deposit, British Columbia, Proceedings, The Association of Exploration Geochemists and The Cordilleran Section, Geological Association of Canada, Vancouver, May, 1986, p.61-71.

Kerr, J.R., 1983, Geochemical and Geological Report on the Dor Claims, Assessment Report 11905.

Leishman, D.A., 1984, Summary report on the Dor claims, for Eureka Resources, Inc., 18 pp.
Leishman, D.A., 1985, Summary report on the Dor claims, for Eureka Resources, Inc., 14 pp.
Leishman, D.A., 1988, Geological and Trenching Report on the Dor Claims, Assessment Report 17905.

Panteleyev, A., 1987, Quesnel gold belt - alkalic volcanic terrane between Horsefly and Quesnel Lakes, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1986, Paper 1987-1, p. 125-133.

Saleken, L.W., Simpson, R.G., 1984, Cariboo - Quesnel gold belt: a geological overview, Western Miner, April 1984, p. 15-20.

Wells R.A., 1984, Assessment Report on the HFR Group of Mineral Claims in the Cariboo Mining Division, Assessment Report 13339.

APPENDIX B

ANALYTICAL METHOD

Overview of sample analysis using energy dispersive X-ray fluorescenc

 using the Thermo Scientific Niton XL3t handheld XRF analyzerThermo Scientific portable energy-dispersive x-ray fluorescence (EDXRF) analyzers, commonly known as XRF analyzers, can quickly and nondestructively determine the elemental composition of metal and precious metal samples of rocks, ore and soil.

Up to 40 elements may be analyzed simultaneously by measuring the characterisitic fluorescence x-rays emitted by a sample. XRF analyzers can quantify elements ranging from magnesium (Mg element 12) through uranium (U - element 92) and measure x-ray energies from 1.25 keV up to 85 keV in the case of Pb K -shell fluorescent x -rays excited with a ${ }^{109} \mathrm{Cd}$ isotope. These instruments also measure the elastic (Raleigh) and inelastic (Compton) scatter x-rays emitted by the sample during each measurement to determine, among other things, the approximate density and percentage of the light elements in the sample.

Elemental Analysis - A Unique Set of Fingerprints

How does XRF work? Each of the elements present in a sample produces a unique set of characteristic x-rays that is a "fingerprint" for that specific element. XRF analyzers determine the chemistry of a sample by measuring the spectrum of the characteristic x-ray emitted by the different elements in the sample when it is illuminated by x-rays. These x-rays are emitted either from a miniaturized x-ray tube, or from a small, sealed capsule of radioactive material.

1. A fluorescent x-ray is created when an x-ray of sufficient energy strikes an atom in the sample, dislodging an electron from one of the atom's inner orbital shells.
2. The atom regains stability, filling the vacancy left in the inner orbital shell with an electron from one of the atom's higher energy orbital shells.
3. The electron drops to the lower energy state by releasing a fluorescent x-ray, and the energy of this x-ray is equal to the specific difference in energy between two quantum states of the electron.

Atom emits characteristic X-rays when illuminated by x-rays from a primary source.
When a sample is measured using XRF, each element present in the sample emits its own unique fluorescent x-ray energy spectrum. By simultaneously measuring the fluorescent x-rays emitted by the different elements in the sample, the Thermo Scientific portable XRF analyzers can rapidly determine those elements present in the sample and their relative concentrations - in other words, the elemental chemistry of the sample.

Overview of the Thermo Scientific Niton XL3t handheld XRF analyzer.

APPENDIX C

STATEMENT OF AUTHORS' QUALIFICATIONS

I, Rein Turna, of the City of West Vancouver, British Columbia, hereby certify that:

1. I am Vice President of Exploration of Barker Minerals Ltd.
2. I am a graduate of the University of British Columbia with a B.Sc. in Geological Sciences granted in 1975.
3. I am a registered member of the Professional Engineers and Geoscientists of British Columbia.
4. I have worked as a geologist in British Columbia, Saskatchewan, Ontario, Yukon and Northwest Territories in Canada since 1975.
R. Turna, P.Geo.

March 9, 2015

APPENDIX D

STATEMENT OF EXPENDITURES

Barker Minerals Ltd.

Geological and geochemical work was completed between May 30 to November 1, 2014 Work was done on the following claims: 847427, 847435 \& 1020862

Geological

Planning, managing all exploration related work, including XRF analysis and report writing

Louis Doyle

1.5 days @ \$600.00/day wages \$ 900.00

Interpretation, report writing \& maps
Rein Turna - Geologist
3 days @ \$500.00/day wages \$ 1,500.00

Sample collection

Louis Doyle

2 days @ \$600.00/day wages \$ 1,200.00
2 days @ \$150.00/day room \& board \$ 300.00
2 days @ \$150.00/day vehicle \& gas \$ 300.00
Brian Hall
2 days @ \$400.00/day wages \$ 800.00
2 days @ \$150.00/day room \& board \$ 300.00
2 days @ \$150.00/day vehicle \& gas \$ 300.00
Aaron Doyle
2 days @ \$500.00/day wages \$ 1,000.00
2 days @ \$150.00/day room \& board \$ 300.00
Geological - Total $\$ \mathbf{6 , 9 0 0 . 0 0}$

Geochemical

Sample preparation and handling
Louis Doyle
1 day @ \$600.00/day wages \$ 600.00
1 day @ \$150.00/day room \& board \$ 150.00

XRF analysis

Brian Hall
2 days @ \$400.00/day wages \$ 800.00
2 days @ \$150.00/day room \& board \$ 300.00

Barker Minerals Ltd.

Geological and geochemical work was completed between May 30 to November 1, 2014
Work was done on the following claims:
847427, 847435 \& 1020862

Geochemical (continued)

Louis Doyle

2 days @ $\$ 600.00 /$ day wages	$\$$	$1,200.00$
2 days @ $\$ 150.00 /$ day room \& board	$\$$	300.00

XRF rental
. 25 @ \$5,000.00/month
\$ 1,250.00
Geochemical total
\$ 4,600.00
Travel - mobe and demobe
Brian Hall
1 day @ \$400.00/day wages \$ 400.00
1 day @ \$150.00/day room \& board \$ 150.00
1 day @ \$150.00/day vehicle \& gas \$ 150.00
Aaron Doyle
1 day @ \$500.00/day wages \$ 500.00
1 day @ \$150.00/day room \& board \$ 150.00
1 day @ \$150.00/day vehicle \& gas \$ 150.00
Louis Doyle
1 day @ \$600.00/day wages \$ 600.00
1 day @ \$150.00/day room \& board \$ 150.00
1 day @ \$150.00/day vehicle \& gas \$ 150.00
Mobe and demobe total \$ 2,400.00

Miscellaneous expenditures

Safety equipment (MTC), exploration supplies \& equipment, communication devices \& quad
Exploration supplies \& equipment $\quad \$ \quad 425.00$

MTC rental
2 days @ \$250.00/day vehicle \& gas \$ 500.00
Communication devices
Hand held radios
4 days @ \$7.00/day
\$ 28.00

Barker Minerals Ltd.

Geological and geochemical work was completed between May 30 to November 1, 2014
Work was done on the following claims:
847427, 847435 \& 1020862

Miscellaneous expenditures (continued)

Spot emergency locators
2 days @ \$5.00/day \$ 10.00
Quad
2 days x 2 quads @\$150.00/day
\$ 600.00
Total miscellaneous

Doreen expenditure summary

Geoligical
Geochemical
Mobe and demobe
Miscellaneous

Total \$ 6,900.00
Total \$ 4,600.00
Total \$ 2,400.00
Total \$ 1,563.00
\$ 15,463.00

APPENDIX E
SAMPLE COORDINATES AND DESCRIPTIONS

Table No. 1a
Doreen Area A - Sample Coordinates and Descriptions

XRF No.	Fig. No. / Area	Type	Easting	Northing	Description
406	Fig 6 / Area A	Soil	641488	5796497	B, brown
407	Fig 6 / Area A	Soil			B, brown
408	Fig 6 / Area A	Soil			B, brown
409	Fig 6 / Area A	Soil			B, brown
410	Fig 6 / Area A	Soil			B, brown
411	Fig 6 / Area A	Soil			B, brown, rusty
412	Fig 6 / Area A	Soil	641508	5796490	B, brown, rusty
413	Fig 6 / Area A	Soil			B, brown, rusty
414	Fig 6 / Area A	Soil			B, brown, rusty
415	Fig 6 / Area A	Soil			B, brown, rusty
416	Fig 6 / Area A	Soil			B, brown, rusty
417	Fig 6 / Area A	Soil	641527	5796483	B, brown
418	Fig 6 / Area A	Soil	641528	5796491	B, brown
421	Fig 6 / Area A	Soil	641528	5796495	B, brown, rusty
422	Fig 6 / Area A	Soil	641530	5796494	B, brown, rusty
423	Fig 6 / Area A	Soil	641528	5796494	B, brown, rusty
425	Fig 6 / Area A	Rock	641529	5796497	Outcrop, rust
426	Fig 6 / Area A	Rock	641528	5796495	Outcrop, rusty
427	Fig 6 / Area A	Rock	641529	5796496	Outcrop, rusty
429	Fig 6 / Area A	Rock	641529	5796495	Outcrop, rus
430	Fig 6 / Area A	Rock	641529	5796494	Outcrop, rust
431	Fig 6 / Area A	Rock	641530	5796496	Outcrop, rusty
432	Fig 6 / Area A	Rock	641530	5796496	Outcrop, rusty
433	Fig 6 / Area A	Rock	641530	5796497	Outcrop, rusty
434	Fig 6 / Area A	Rock	641530	5796497	Outcrop, rusty
435	Fig 6 / Area A	Rock	641530	5796495	Outcrop, rusty
436	Fig 6 / Area A	Rock	641530	5796495	Outcrop, rust
437	Fig 6 / Area A	Rock	641530	5796494	Outcrop, rusty
438	Fig 6 / Area A	Rock	641530	5796494	Outcrop, rusty
439	Fig 6 / Area A	Rock	641530	5796493	Outcrop, rusty
440	Fig 6 / Area A	Rock	641530	5796493	Outcrop, rusty
441	Fig 6 / Area A	Rock	641531	5796497	Outcrop, rusty
442	Fig 6 / Area A	Rock	641531	5796497	Outcrop, rusty
443	Fig 6 / Area A	Rock	641531	5796497	Outcrop, rusty
444	Fig 6 / Area A	Rock	641531	5796497	Outcrop, rusty
445	Fig 6 / Area A	Rock	641531	5796497	Outcrop, rusty
446	Fig 6 / Area A	Rock	641531	5796496	Outcrop, rusty
447	Fig 6 / Area A	Rock	641531	5796496	Outcrop, rusty
448	Fig 6 / Area A	Rock	641531	5796496	Outcrop, rusty
449	Fig 6 / Area A	Rock	641531	5796496	Outcrop, rusty
450	Fig 6 / Area A	Rock	641531	5796496	Outcrop, rusty
451	Fig 6 / Area A	Rock	641531	5796495	Outcrop, rusty
452	Fig 6 / Area A	Rock	641531	5796495	Outcrop, rusty
453	Fig 6 / Area A	Rock	641531	5796495	Outcrop, rusty
454	Fig 6 / Area A	Rock	641531	5796495	Outcrop, rusty
455	Fig 6 / Area A	Rock	641531	5796495	Outcrop, rusty
456	Fig 6 / Area A	Rock	641531	5796494	Outcrop, rusty

Table No. 1a
Doreen Area A - Sample Coordinates and Descriptions

XRF No. Fig. No. / Area

Fig 6 / Area A Rock
Fig 6 / Area A Rock
Fig 6 / Area A Rock

Fig 6 / Area A Rock

Fig 6 / Area A Rock 6415315796494 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415315796494 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415315796494 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415315796494 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415315796493 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415315796493 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415315796493 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415315796493 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415315796493 Outcrop, rusty volc. or sed.
Fig 6 / Area A Rock 6415405796489 Outcrop, patchy rust on volc. or sed.
Fig 6 / Area A Rock 641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641540
641543
641544
641544
641544
Fig 6 / Area A Rock 641550
Fig 6 / Area A Rock 641550

Northing Description

5796489 Outcrop, patchy rust on volc. or sed.
5796490 Outcrop, patchy rust on volc. or sed.
5796491 Outcrop, patchy rust on volc. or sed.
5796492 Outcrop, patchy rust on volc. or sed. 5796492 Outcrop, patchy rust on volc. or sed. 5796493 Outcrop, patchy rust on volc. or sed. 5796494 Outcrop, patchy rust on volc. or sed. 5796494 Outcrop, patchy rust on volc. or sed. 5796494 Outcrop, patchy rust on volc. or sed. 5796487 Outcrop, patchy rust on volc. or sed. 5796488 Outcrop, 3 cm quartz vein 5796488 Outcrop, yellow, rusty sed. 5796488 Outcrop, volc. or sed. with patchy rust. 5796489 Outcrop, volc. or sed. with patchy rust. 5796489 Outcrop, volc. or sed. with patchy rust. 5796489 Outcrop, volc. or sed. with patchy rust. 5796490 Outcrop, volc. or sed. with patchy rust. 5796490 Outcrop, volc. or sed. with patchy rust. 5796486 Outcrop, volc. or sed. with patchy rust. 5796486 Outcrop, volc. or sed. with patchy rust.

Table No. 1a
Doreen Area A - Sample Coordinates and Descriptions

Fig. No. / Area
Fig 6 / Area A Rock Fig 6 / Area A Rock Fig 6 / Area A Rock 641553 Fig 6 / Area A Rock 641553 Fig 6 / Area A Fig 6 / Area A
Fig 6 / Area A Fig 6 / Area A Fig 6 / Area A Fig 6 / Area A Rock Fig 6 / Area A Rock

Easting Northing Description
6415505796487 Outcrop, volc. or sed. with patchy rust.
5796487 Outcrop, volc. or sed. with patchy rust.
5796486 Outcrop, sed. with rusty patches
5796486 Outcrop, sed. with rusty patches
5796486 Outcrop, sed. with rusty patches
5796487 Outcrop, sed. with rusty patches
5796487 Outcrop, sed. with rusty patches
5796487 Outcrop, sed. with rusty patches
5796488 Outcrop, sed. with rusty patches
5796488 Outcrop, sed. with rusty patches
5796487 Outcrop, sed. with rusty patches
5796487 Outcrop, sed. with rusty patches
5796488 Outcrop, sed. with rusty patches 5796488 Outcrop, sed. with rusty patches 5796488 Outcrop, sed. with rusty patches 5796488 Outcrop, sed. with rusty patches 5796488 Outcrop, sed. with rusty patches 5796489 Outcrop, sed. with rusty patches 5796490 Outcrop, sed. with rusty patches 5796491 Outcrop, sed. with rusty patches 5796488 Outcrop, sed. with rusty patches 5796489 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible 5796489 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible 5796490 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible 5796490 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible 5796490 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible 5796490 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible 5796490 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible 5796490 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible

Table No. 1a
Doreen Area A - Sample Coordinates and Descriptions

XRF No. Fig. No. / Area Type Easting Northing Description

551 Fig 6 / Area A Rock 6415645796491 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible
552 Fig 6 / Area A Rock 6415645796491 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible

Fig 6 / Area A Rock 6415645796491 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible
Fig 6 / Area A Rock 6415645796491 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible
Fig 6 / Area A Rock 6415645796491 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible
Fig 6 / Area A Rock 6415645796491 Outcrop, rusty vol. or sed. with chalcopyrite, sphalerite visible
Fig 6 / Area A Rock 6415645796492 Outcrop, sed. with rusty patches
Fig 6 / Area A Rock 6415645796492 Outcrop, sed. with rusty patches
Fig 6 / Area A Rock 6415645796493 Outcrop, sed. with rusty patches
Fig 6 / Area A Rock 6415645796493 Outcrop, sed. with rusty patches
Fig 6 / Area A Rock 6415645796494 Quartz boulder
Fig 6 / Area A Rock 6415645796494 Quartz boulder

Table No. 2a
Doreen Area B - Sample Coordinates and Descriptions

XRF No.	Fig. No. / Area	Type	Easting	Northing	Description
563	Fig 7 / Area B	Soil	640532	5796799	B, brown
564	Fig 7 / Area B	Soil	640557	5796796	B, brown
565	Fig $7 /$ Area B	Soil	640557	5796796	B, brown
566	Fig $7 /$ Area B	Soil	640581	5796800	B, brown
567	Fig $7 /$ Area B	Soil	640613	5796799	B, brown
568	Fig 7 / Area B	Soil	640637	5796792	B, brown
569	Fig 7 / Area B	Soil	640655	5796790	B, brown
570	Fig $7 /$ Area B	Soil	640670	5796799	B, brown
571	Fig 7 / Area B	Soil	640694	5796811	B, brown
572	Fig 7 / Area B	Soil	640717	5796814	B, brown
573	Fig $7 /$ Area B	Soil	640739	5796813	B, brown
574	Fig 7 / Area B	Soil	640762	5796822	B, brown
575	Fig 7 / Area B	Soil	640774	5796833	B, brown
576	Fig 7 / Area B	Soil	640786	5796846	B, brown
577	Fig 7 / Area B	Soil	640566	5796848	B, brown
578	Fig 7 / Area B	Soil	640592	5796846	B, brown
579	Fig $7 /$ Area B	Soil	640617	5796845	B, brown
580	Fig $7 /$ Area B	Soil	640635	5796836	B, brown
581	Fig 7 / Area B	Soil	640657	5796828	B, brown
582	Fig 7 / Area B	Soil	640674	5796823	B, brown
583	Fig 7 / Area B	Soil	640683	579681	B, brown, rusty
584	Fig $7 /$ Area B	Soil	640705	5796813	B, brown
585	Fig 7 / Area B	Rock	640674	5796823	Outcrop, sed. with patchy rust
586	Fig 7 / Area B	Rock	640674	5796823	Outcrop, sed. with patchy rust
587	Fig 7 / Area B	Rock	640674	5796823	Outcrop, sed. with patchy rust
588	Fig 7 / Area B	Rock	640674	5796823	Outcrop, sed. with patchy rust
589	Fig $7 /$ Area B	Rock	640674	5796823	Outcrop, sed. with patchy rust
590	Fig 7 / Area B	Rock	640674	5796823	Outcrop, sed. with patchy rust
591	Fig $7 /$ Area B	Rock	640674	5796834	Outcrop, sed. with patchy rust
592	Fig 7 / Area B	Rock	640674	579683	Outcrop, sed. with patchy rust
593	Fig 7 / Area B	Rock	640674	579683	Outcrop, sed. with patchy rust
594	Fig $7 /$ Area B	Rock	640674	579683	Outcrop, sed. with patchy rust
595	Fig 7 / Area B	Rock	640674	5796834	Outcrop, sed. with patchy rust
596	Fig 7 / Area B	Rock	640674	5796846	Outcrop, sed. with patchy rust
597	Fig 7 / Area B	Rock	640674	5796846	Outcrop, sed. with patchy rust
598	Fig $7 /$ Area B	Rock	640674	5796846	Outcrop, sed. with patchy rust
599	Fig $7 /$ Area B	Rock	640674	5796846	Outcrop, sed. with patchy rust
600	Fig $7 /$ Area B	Rock	640674	5796846	Outcrop, sed. with patchy rust
601	Fig 7 / Area B	Rock	640674	5796857	Outcrop, sed. with patchy rust
602	Fig $7 /$ Area B	Rock	640674	5796857	Outcrop, sed. with patchy rust
603	Fig $7 /$ Area B	Rock	640674	5796857	Outcrop, sed. with patchy rust
604	Fig 7 / Area B	Rock	640674	5796857	Outcrop, sed. with patchy rust
605	Fig 7 / Area B	Rock	640674	5796857	Outcrop, sed. with patchy rust
606	Fig 7 / Area B	Rock	640674	5796857	Outcrop, sed. with patchy rust
607	Fig $7 /$ Area B	Rock	640674	5796857	Outcrop, sed. with patchy rust
608	Fig 7 / Area B	Rock	640674	5796868	Outcrop, sed. with patchy ru

Table No. 2a
Doreen Area B - Sample Coordinates and Descriptions

XRF No.	Fig. No. / Area	Type	Easting	Northing	Description
609	Fig $7 /$ Area B	Rock	640674	5796868 Outcrop, sed. with patchy rust	
610	Fig 7 / Area B	Rock	640674	5796868 Outcrop, sed. with patchy rust	
611	Fig 7 / Area B	Rock	640674	5796868 Outcrop, sed. with patchy rust	
612	Fig 7 / Area B	Rock	640674	5796868 Outcrop, sed. with patchy rust	
613	Fig 7 / Area B	Rock	640674	5796868 Outcrop, sed. with patchy rust	
614	Fig 7 / Area B	Rock	640696	5796817 Outcrop, sed. with quartz vein	
615	Fig 7 / Area B	Rock	640696	5796817 Outcrop, sed. with quartz vein	
616	Fig 7 / Area B	Rock	640705	5796813 Outcrop, sed. with patchy rust	
617	Fig 7 / Area B	Rock	640705	5796813 Outcrop, sed. with patchy rust	
618	Fig 7 / Area B	Rock	640705	5796813 Outcrop, sed. with patchy rust	

