

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

Assessment Report
Title Page and Summary

TYPE OF REPORT [type of survey(s)]: TECHNICAL - PROSPECTING TOTAL COST: \$ 1946.86 SIGNATURE(S): AUTHOR(S): KEN ELLERBECK NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): YEAR OF WORK: 2014 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5545190 PROPERTY NAME: LD-COMSTOCK CLAIM NAME(S) (on which the work was done): 1024763 1024737 COMMODITIES SOUGHT: Au Ag Pb Zn Cu MINING DIVISION: NICOLA NTS/BCGS: 921-007 LATITUDE: 30 LONGITUDE: 120 44 **'**18 (at centre of work) OWNER(S): 2) 1) KEN ELLERBECK **MAILING ADDRESS:** 255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8 OPERATOR(S) [who paid for the work]: 1) KEN ELLERBECK 2) MAILING ADDRESS: 255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8 PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude): underlain by NEtrending Volcanic-sediment rocks of the Upper Triassic Nicola Group. E-SE facing sequence of calc-alkaline flors Silver-lead-zinc-barite bedded and replacement mineralization that occurs at the LD outcrop in limestone. Galena partially fills open spaces between fragments of limestone, brecciated limestone, and calcareous siltstone. Chalcopyrite in rhyolite and volcanic breccia + structurally controlled quartz-specularite chalcopyrite-(gold) veins. REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 34187 18888 32183

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
GEOPHYSICAL (line-kilometres) Ground			
Magnetic			
Electromagnetic			•
Induced Polarization			
Airharna			
GEOCHEMICAL number of samples analysed for)			
Soil			
Silt			
Rock			
Other			
ORILLING total metres; number of holes, size)			
Non-core			
ELATED TECHNICAL			
Sampling/assaying			
Petrographic			1
Mineralographic			
ROSPECTING (scale, area) 100M	x 300M	1024763 1024737	1946.86
REPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
	/trail		
Othor			
		TOTAL COST:	1946.86

BC Geological Survey Assessment Report 35284

KEN ELLERBECK

(Owner & Operator)

TECHNICAL EXPLORATION REPORT

(Event 5545190) on

PROSPECTING and EXPLORING

Work done on

Tenures 1024763 1024737

of the 16 Claim

LD-COMSTOCK CLAIM GROUP

Kamloops Mining Division BCGS Maps 92P.080

Centre of Work UTM 10 661700, 5547500

AUTHOR KEN ELLERBECK, PMP

REPORT SUBMITTED March 3, 2015

TABLE OF CONTENTS

Introduction	3
Purpose	3
Access and Location	3
Property Description	3
History	6
Summary of Work Done	8
Regional and Property Geology	14
Technical Data and Interpretation	16
Interpretation and Conclusions	17
Summary and Recommendations	17
Itemized Cost Statement	18
Statement of Qualifications	19
Selected References	20
ILLUSTRATIONS	
Figure 1 Location Map	4
Figure 2 Claim Location Google Earth	5
Figure 3 Regional Location Map Google Earth	5
Figure 4 Claim and Index - Map ARIS MapBuilder	6
Figure 5 Sample Location Area	9
Figure 6 Location and Typical Rock Pictures	10
Figure 7 LD- COMSTOCK Regional Geology	14
Figure 8 LD- COMSTOCK Local Geology	15
TABLES	
Table I: Particulars of Grab Samples 2014	9,16
Table II: Summarized Assay Results- Grab Samples-Ellerbeck (2014) – LD-COMSTOCK	16
APPENDIX	
Sample Preparation and Method of Analysis	22
Certificate of Analysis	24

INTRODUCTION

PURPOSE

In July 2014 a prospecting program was completed on Tenures 1024763 1024737 of the 16 Claim IM-COMSTOCK-LD CLAIM GROUP. The purpose of the prospecting program was to locate, if possible, and examine some historic reported geological features (VMS and gold bearing structures in particular) as well as to prospect for unidentified outcrops and showings of significance. Information for this report was obtained from sources cited under Selected References and from a property examination made on July 1, 2014.

ACCESS AND LOCATION

Road access to the Property from Kamloops, BC is by Highway 5A south for 80 km. to Merritt, BC. Driving time from Vancouver to Merritt is three hours (300 km) and from Kamloops is one hour. The property can be reached from the town of Merritt which is located at the junction of the Coquihalla Highway (Hwy 5) and Highway 97C. Access from Merritt is via the paved Coldwater road that departs from the eastern edge of Merritt and trends southerly, parallel to the west side of the Coquihalla Highway. At approximately 2 km on the Coldwater road the Fox Farm road branches to the east, passes under the Coquihalla Highway, and follows the valley of Godey Creek. Gravel and dirt roads pass through much of the property. A straight-line distance from Merritt to the centre of the property is 7 km; driving distance is approximately 10 km. A series of overgrown logging roads provide access for prospecting activities. However deadfall due to Pine Beetle infestation made vehicle access difficult.

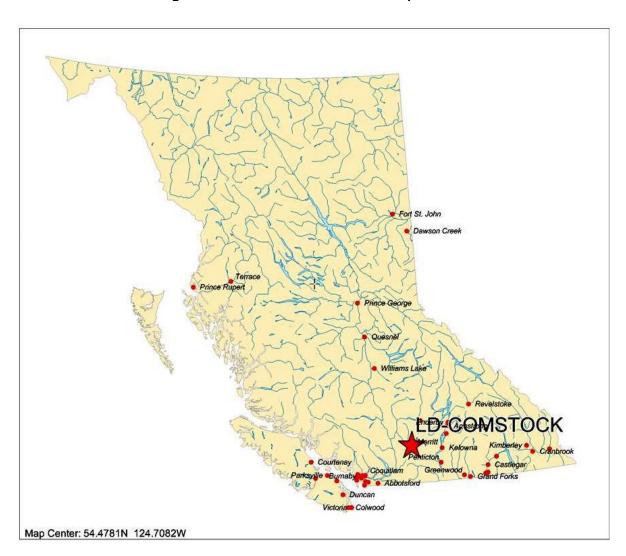
The Property is located within the dry belt of British Columbia with rainfall between 25 and 30 cm per year. Temperatures during the summer months could reach a high of 35°C and average 25°C with the winter temperatures reaching a low of -10°C and averaging 8°C.

On the LD-COMSTOCK Claim Group moderate snow cover on the ground could be from December to April and would not hamper a year-round exploration program. Elevations range from 900m to 1645 m.

Merritt, BC, and Kamloops, BC both historic mining centers, could be a source of experienced and reliable exploration and mining personnel and a supply for most mining related equipment. Kamloops is serviced daily by commercial airline and is a hub for road and rail transportation. Vancouver, a port city on the southwest corner of, and the largest city in the Province of British Columbia, is four hours distant by road and less than one hour by air from Kamloops.

PROPERTY DESCRIPTION

Mineral Titles Online Report - LD-COMSTOCK Claim Group


Tenure Number	<u>Type</u>	Claim Name	Good Until	<u>Area</u> (ha)
905597	Mineral	PB1	20161106	83.0148
905612	Mineral	PB2	20161106	20.7547
1014621	Mineral	DOTCALM	20150701	20.7446
<u>1014834</u>	Mineral	РВ	20161106	186.7831
<u>1014836</u>	Mineral	PBE	20161106	41.5116
1014837	Mineral		20161106	20.7529
<u>1014839</u>	Mineral	OMG	20161106	20.7564

KEN ELLERBECK March 3, 2015 Page 3 of 27

<u>1018921</u>	Mineral	IOCG NORTH	20161106	62.249
<u>1019819</u>	Mineral	LUCKY 7	20161106	20.7531
1024366	Mineral	EVA	20160101	83.0041
1024737	Mineral	LD	20160101	248.9349
1024739	Mineral	EVA NORTH	20160101	145.2268
<u>1024763</u>	Mineral	LD WEST	20160101	82.9687
1024782	Mineral	LD WEST 2	20160101	62.2281
1025092	Mineral	COMSTOCK NORTH	20160101	124.4943
1034277	Mineral	COQ COMSTOCK	20160101	82.9883

Total Area: 1307.1654 ha

Figure 1 LOCATION MAP from MTO Mapbuilder

Figure 2 CLAIM LOCATION MAP (Base Map GOOGLE EARTH)

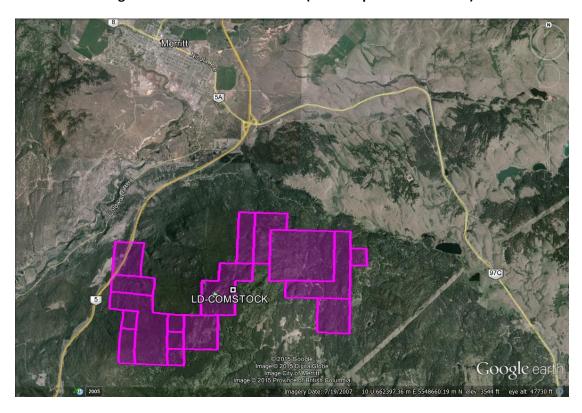
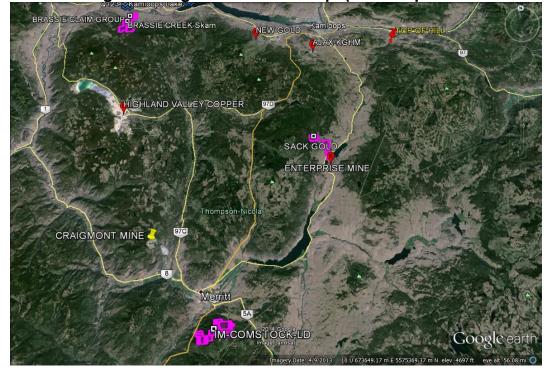



Figure 3 Regional Location Map (Base Map GOOGLE EARTH)

KEN ELLERBECK March 3, 2015 Page **5** of **27**

Figure 4 Claim Map and Index Map – UTM - ARIS MapBuilder

HISTORY

Exploration by others on land in and near the current LD-COMSTOCK Claim Group has been reported. Current tenures include most of the showings and workings reported.

From Structural Analysis Report on the Comstock Claims, Ken Ellerbeck Owner, July 4, 2013. Laurence Sookochoff, P. Eng. The Comstock Claims are included the present day LD-COMSTOCK Claim Group.

"The Property has a long history of exploration with the discovery, exploration, and limited development on three areas; the Diane Zone, the Charmer Zone, and the Comstock (Leadville) Zone. Only the Diane and the Charmer are described herein as these Zones, separated by a 200 metre barren area, have the same basic mineralogy and are for the most part are proximal to Tenure 1014834, the subject of the Structural Analysis of this report.

Historical exploration on the two zones, which are underlain by volcanics of the Western Facies of the Upper Triassic Nicola Group, resulted in the delineation of variable copper mineralization over an area of a 500 metre square area of the Diane Zone. Trenches within the zone expose a 250 metre northwest striking fault controlled zone of copper mineralization and the only location where within this area that gold values occur as defined by a geochemical survey. A discontinuous zone of auriferous quartz veining

occurs within this trend which has resulted in pervasive silicification of the volcanics. A diamond drilled intersection of the fault zone resulted in core assays of 24.70 grams gold /tonne (0.72 oz/ton) over a length of 0.76 metres.

At Shaft 3 southeast of the Diana Zone and midway to the Charm Zone, the volcanics are pervasively silicified with the shaft developed on a series of quartz veins trending at 160 degrees. With vein samples from the shaft returning 0.66% copper and 0.295 ounces gold per ton and from a pit 15 metres southeast of the shaft returning 1.38% copper and 0.295 ounces gold per ton over a one metre width, a gold zone is indicated on a structure that extends from the Diane Zone to the Charm Zone.

The Charm Zone some 750 metres to the southeast from the Diane and equal in mineralized area, is separated by a 200 metre barren section containing lower overall copper values and much less gold values except within Shaft 3 located at the northwestern edge of the Zone. Trenches and two more shafts expose quartz-specularite veins over a discontinuous strike length of 800 metres. Assays of samples from the southeasterly trending zone of quartz veins returned values of 0.64 grams per tonne gold from Shaft 1, 2.35 grams per tonne gold and 1.8 per cent copper from Shaft 2, 10.11 grams per tonne gold from shaft 3. There are strong indicators for an overlapping gold/silver laden epithermal system to an established copper mineralizing event at the Diane and the Charmer Zones. This appears as the upper winged portion of an epithermal model with the gold bearing quartz zones of the Diane trench area (Figure 14) and Shaft 3 (Figure 7.) being the core, or one of the slayed cores, to the system. To test this supposition, the quartz zone(s) should be tested at depth intervals to determine the mineralogical sequence with increasing depth which could determine the location of the potential "bonanza zone" of the epithermal system (Figures 15 & 16).

The results of the Structural Analysis have shown four locations of intersecting major structures that were determined as prospective areas to explore for surficial geological indicators of a potential sub-surface mineral resource. As the majority of the zones on the Property follow northwest fractures with the width and continuity of the veining appearing strongest where fracturing is the most intense, the intersection locations, which do not correlate with any of the known mineral zones, may result in an intense fracture zone that would accommodate porphyritic type of mineralization in the volcanic."

And:

From LD PROPERTY Geological Report with Interpretation of IP Geophysical Survey, 92I/02 UTM 619000E; 5559000N (UTM ZONE 10; NAD 83), Prepared for Navigo Ventures Inc., Owner and Operator, Event # 4825543, Locke B. Goldsmith, P.Eng., P.Geo. Consulting Geologist, July 2, 2010, Revised October 6, 2011.

"Numerous individuals and companies have explored the Iron Mountain area beginning in 1896. Most of the work was focused on the Comstock and Charmer occurrences, located one to three km south of the LD claims. Investigations in the 1980s recognized the style of mineralization to be of volcanogenic massive sulphide deposition around rhyolite domes in a Kuroko-type setting (Howell, 1981; Crooker, 1987; Christopher, 1989).

Historical exploration work on the LD property has been limited to prospecting and sampling around the original showings, usually as work incidental to other projects. Two of these programs (Boronowski, 1984; Christopher, 1989) included analyses from several rock samples and soil samples, ground magnetics, and very low frequency electromagnetics (VLF EM). In 2007 and 2008 two survey lines of induced polarization and six lines of mobile metal ion soil sampling were completed to the east of the LD mineral occurrence (Mark, 2009); and

"The exploration target for the LD property is a volcanogenic massive sulphide (VMS) base and precious metal deposit. Bedrock mineralization has been found in several locations on the property. At the LD occurrence moderately coarse crystalline galena partially fills open spaces between fragments of limestone, brecciated limestone, and calcareous siltstone. Rotated blocks of bedded

impure barite carry sphalerite, galena, and minor amounts of grey copper (tetrahedrite?). Bedding in the blocks of barite is discontinuous and contorted. Veinlets of barite may contain sulphides. A related type of mineralization exposed 1 km southwest of the LD property at the Comstock zone is comprised of banded veins and possibly bedded zinc-lead-barite mineralization in a flow-banded, potassium-rich felsic lava (rhyolite). Both types of zinc-lead-barite occurrences formed penecontemporaneously. The Comstock type formed in association with felsic volcanism in rhyolitic domes. The LD style of mineralization is interpreted as transportation into sedimentary basins flanking the domes.

Stratigraphically below and adjacent to the LD occurrence an early stage of silica flooding and quartz veining is followed by a later stage of crosscutting quartz +/- carbonate veinlets with associated orange-brown limonite and trace amounts of chalcopyrite and galena. This horizon may represent the stratiform chalcopyrite "yellow ore" and the underlying stringer mineralization of the Kuroko model.

Another type of mineral showing present in the area and on the LD property is structurally controlled auriferous quartz-chalcopyrite-specularite-(gold) veins. These veins trend northerly and northwesterly, oriented in the prevailing directions of faulting. In the Kuroko model, quartzchalcopyrite veins grade downwards into siliceous chimneys that were sea floor feeder vents, in a similar setting to silicious sinter around present-day hot springs (Urabe and Sato, 1978). The LD occurrence has been examined in previous exploration programs (Boronowski and Hendrickson, 1984; Christopher, 1989). Descriptions of the Boronowski (1984) rock samples have not been found. Descriptions of the Christopher (1989) rock samples are included in Table 3. Geochemical analyses of the Boronowski (1984) and Christopher (1989) rock samples are shown in Table 4. Both groups of values are plotted on the property geology map, Figure 4.

The LD-COMSTOCK Claim Group was acquired by online staking by the Author and Current Owner since 2011. See Page 3 and 4 of this report for Tenure list.

SUMMARY OF WORK DONE 2014

The Tenure Numbers in the LD-COMSTOCK Claim Group on which work was performed: Prospecting was conducted on 1024737 AND 1024763 on July 1, 2014. (Figure 4 Index - Work Areas).

One (1) field day was spent on the LD-COMSTOCK Claim Group project, including prospecting and travelling to and from the property. One (1) day was spent researching reference material, and a further one (1) day was spent compiling data, drafting and writing this report.

DataBC, Province of British Columbia 2013 | DataBC

⇒ iMapBC a/ess/sv/imapbc/?Project=Local635609258388870000 ☆☆☆ ◎ iMapBC Search... Markup Analysis Help Scale: 1: 5,000 + Jump to a map bookmark... * Map Laye Map Scale & Bookmarks ☼ Roads Basemap ▼ 1024737 ck) 1024763 CLAIM LINE Track TO MERRITT) ht Rail Transit -... s, Shorelines, etc. (1:20 **CLAIM LINE** LD4 LD-COMSTOCK LD3 2014 WORK AREA LD2 do ppm tu ppm kg ppm ppn n ppm LD1 342 41 Cral 347 108 LD4 Grab 50 < 0.005 2 finite Bank Filter... Lat: ap Layers

Figure 5 Sample Location Area Map

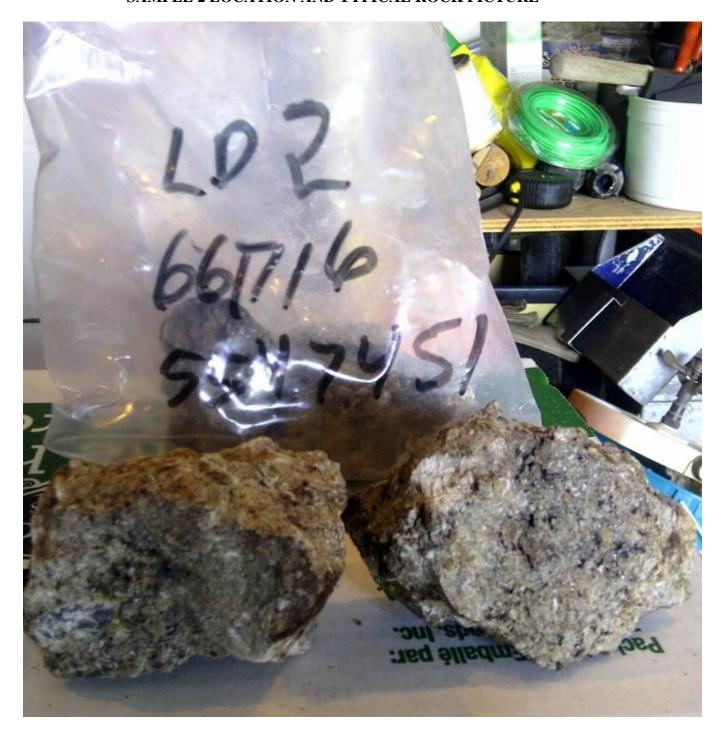
2014 WORK PROGRAM

Sampling Program - The author was on the LD-COMSTOCK Claim Group in July 2014 to select rock samples for verification of the reported mineralization and geology on the Property. Four (4) grab samples were taken from 4 different sites. Three (3) grab samples were submitted for assay.

Table I. Particulars of Grab Samples taken by ELLERBECK (2014) LD-COMSTOCK

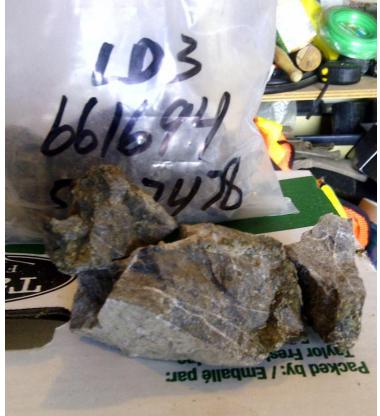
LOCATION	UTM LOCATION		DESCRIPTION
/ SAMPLE #			All OUTCROP unless indicated
LD1	0661674	5547390	Limestone – altered – calcite inclusions - vuggy
LD2	0661716 5547451		Limestone – gray – calcite – quartz inclusion
LD3	0661694	5547478	Limestone – fine grained
LD4	0661727	5547596	Rhyolite – dark gray – iron stained

FIGURE 6 LOCATION AND TYPICAL ROCK PICTURES SAMPLE 1 LOCATION AND TYPICAL ROCK PICTURE



SAMPLE 2 LOCATION AND TYPICAL ROCK PICTURE

KEN ELLERBECK March 3, 2015 Page **10** of **27** KEN ELLERBECK

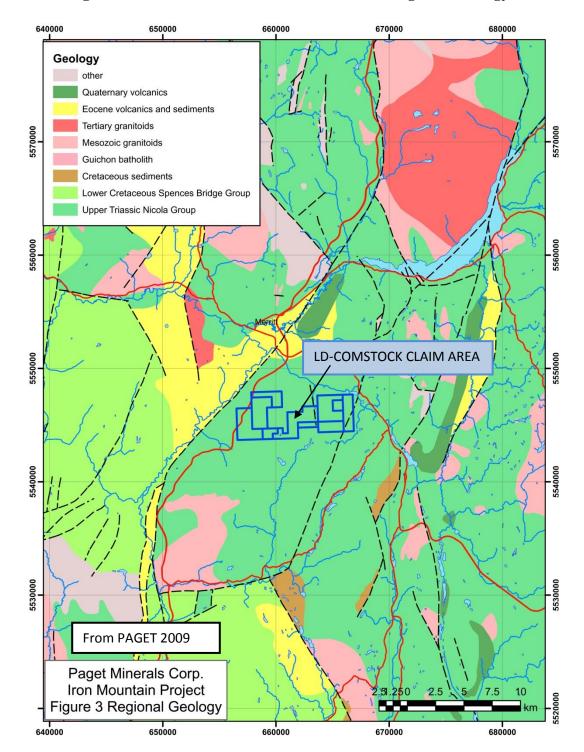

SAMPLE 2 LOCATION AND TYPICAL ROCK PICTURE

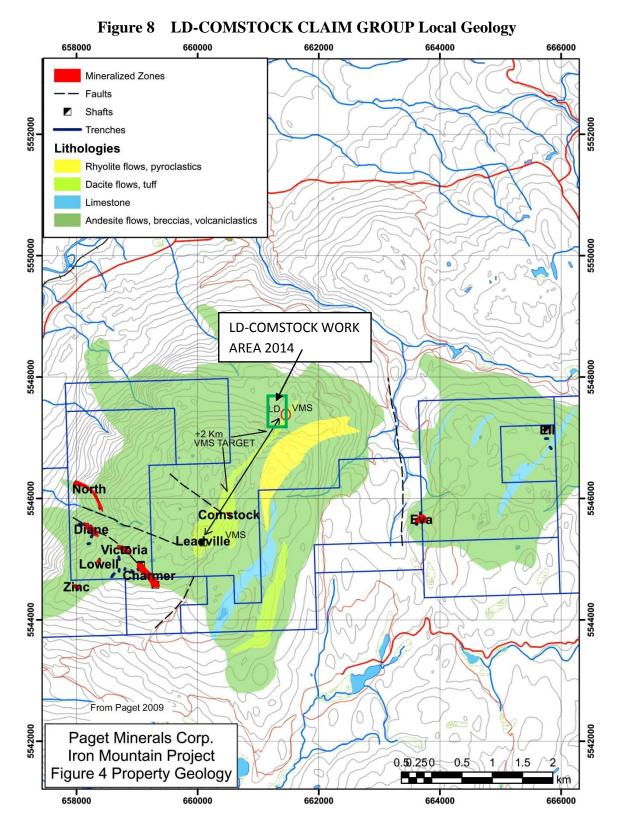
KEN ELLERBECK Page **11** of **27** March 3, 2015

SAMPLE 3 LOCATION AND TYPICAL ROCK PICTURE

Page **12** of **27** KEN ELLERBECK March 3, 2015

SAMPLE 4 LOCATION AND TYPICAL ROCK PICTURE




KEN ELLERBECK March 3, 2015 Page **13** of **27**

SUMMARY OF REGIONAL AND PROPERTY GEOLOGY REGIONAL GEOLOGY

Figure 7 LD-COMSTOCK CLAIM GROUP Regional Geology

LOCAL GEOLOGY

KEN ELLERBECK March 3, 2015 Page 15 of 27

SUMMARY OF REGIONAL AND PROPERTY GEOLOGY (.....continued)

Prospecting on the LD-COMSTOCK Tenure 1024763 confirmed the presence of LIMESTONE and andesitic volcanic rocks and altered Gossan Alteration in the Work Area.

Elevated levels of Pb, Zn, Ag and Mo were found in LD2 and LD3 (Limestone samples). Elevated levels of Zn and Ag were found in LD4.

Table I. Particulars of Grab Samples taken by ELLERBECK (2014) LD-COMSTOCK

LOCATION	UTM LOCATION		DESCRIPTION
/ SAMPLE #			All OUTCROP unless indicated
LD1	0661674	5547390	Limestone – iron stained – vugs - slight alteration
LD2	0661716 5547451		Limestone – gray – calcite – quartz inclusion-altered
LD3	0661694	5547478	Limestone – fine grained – gray/brown
LD4	0661727	5547596	Rhyolite – dark gray – iron stained - greasy

TECHNICAL DATA AND INTERPRETATION

Table II. Summarized Assay Results- Grab Samples-Ellerbeck (2014) – LD-COMSTOCK

Sample No.	Sample Type	Cu ppm	Pb ppm	Zn ppm	Au ppm	Ag ppm	Mo ppm
LD2	Grab	13	134	342	<0.005	0.4	41
LD3	Grab	19	67	347	<0.005	1.0	108
LD4	Grab	18	10	50	<0.005	0.5	2

PURPOSE

In July 2014 a prospecting program was completed on Tenures 1024763 of the 16 Claim IM-COMSTOCK-LD CLAIM GROUP. The purpose of the prospecting program was to locate, if possible, and examine some historic reported geological features (VMS and gold bearing structures in particular) as well as to prospect for unidentified outcrops and showings of significance. Information for this report was obtained from sources cited under Selected References and from a property examination made on July 1, 2014.

There was no reference in previous work of assays of limestone and rhyolite outcrops in the vicinity of the LD showing. The writer wished to determine the extent of skarn-type mineralization in the limestone outcrops, or similar to the LD occurrence, where reportedly moderately coarse crystalline galena partially fills open spaces between fragments of limestone, brecciated limestone, and calcareous siltstone. Also there were no reported assays of the prominent rhyolite outcrop in the LD showing vicinity.

PROSPECTING RESULTS - Outcrops

LD1: confirmed previous local/property and regional geological mapping - limestone;

LD2: confirmed previous local/property and regional geological mapping - limestone;

LD3: confirmed previous local/property and regional geological mapping - limestone;

LD4: confirmed previous local/property and regional geological mapping - rhyolite;

ASSAY RESULTS

LD2: elevated levels of Pb, Zn, Ag, Mo confirmed mineralizing influence beyond LD showing;

LD3: elevated levels of Pb, Zn, Ag, Mo confirmed mineralizing influence beyond LD showing;

LD4: elevated levels of Zn, Ag confirmed mineralization within rhyolite;

INTERPRETATIONS AND CONCLUSIONS

The reported presence of mineralization in various historic ARIS assessment report references within the LD-COMSTOCK Claim Group was confirmed by sampling and assaying various outcroppings during the July 1, 2014 prospecting program.

Rather than locate and assay rocks from the main LD showing and other previously noted mineralized rock occurrences, the writer chose to sample and assay outcrops in the vicinity of the LD showing.

The presence of mineralization within limestone and rhyolite outcrops within the LD-COMSTOCK Claim Group was confirmed by the assay results from LD2, LD3, and LD4. Elevated values of Pb, Zn and Mo were confirmed in limestone outcrop. This mineralization is assumed to be the result of the LD style of mineralization which is interpreted as transportation of mineralization into sedimentary basins flanking rhyolite domes. The writer refers to this as a skarn-type mineralization which warrants further detailed field investigation.

SUMMARY AND RECOMMENDATIONS

The 2014 field program showed that mineralization is present in the limestone and rhyolite outcrops in the vicinity of the LD showing.

Previous geological mapping of the area between the VMS LD showing and the VMS Comstock showing approximately 2 km. to the south of the LD showing indicates the presence of both limestone and rhyolite rocks in the 2 km separation.

The 2014 field program assay results indicate that a careful examination of the limestone and rhyolite between the 2 known VMS occurrences is warranted.

Therefore it is recommended by the Author that a comprehensive prospecting plan be created and executed in the field as soon as practical in order to confirm and map the extent of the limestone and rhyolite rocks between the LD and Comstock showings.

KEN ELLERBECK March 3, 2015 Page 17 of 27

ITEMIZED COST STATEMENT

Exploration Work type	LD COMSTOCK	Days			Totals
PROSPECTING & EXPLORATION					
Personnel (Name)* / Position		Days	Rate	Subtotal*	
Ken Ellerbeck / Owner	July 1, 2014	1	\$400.00	\$400.00	
G. Ellerbeck / Helper	July 1, 2014	1	\$200.00		
			\$0.00		
			\$400.00		
			\$200.00		
			\$0.00	\$0.00	
				\$600.00	\$600.00
Office Studies	List Personnel (note - Office of				
Literature search	Ken Ellerbeck	0.5			
Database compilation	Ken Ellerbeck	0.5	\$400.00	\$200.00	
General research	Ken Ellerbeck	0.5	\$400.00	\$200.00	
Report preparation	Ken Ellerbeck	1.0	\$400.00	\$400.00	
Other (specify)				\$0.00	Que
				\$1,000.00	\$1,000.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Prospect	see Personnel Field Days				
Underground					
Trenches				\$0.00	\$0.00
	**************************************	*); 		2.430
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Soil	ALS MINERALS Vancouver	0.0	\$49.46	\$0.00	
Rock	ALS MINERALS Vancouver	3.0	\$44.00	\$132.00	
				\$132.00	\$132.00
Transportation		No.	Rate	Subtotal	***
KM Kamloops-Property-return	July 1, 2014	225.00	\$0.95		
KM Kamloops-Lab-return	, , ,	30.00	\$0.95		
			4.535.5	\$0.00	
	-	-		\$242.25	\$242.25
Accommodation & Food	Rates per day	1			V =0.110
Hotel	naco por cary		\$0.00	\$0.00	
Camp			\$0.00		
Meals	2 man-days @\$30/day	2.00	\$30.00	T	
	z man dayo giporady		400.00	\$60.00	\$60.00
Miscellaneous				400.00	\$00.00
Telephone			\$0.00	\$0.00	
Other (Specify)			φοισσ	40.00	
Curior (opeciny)				\$0.00	\$0.00
Equipment Rentals				70.00	ψ0.00
Field Gear (Specify)			\$0.00	\$0.00	
Other (Specify)	+		φ0.00	φ0.00	
other (Specify)				\$0.00	\$0.00
Freight, rock samples				φ0.00	Ψ0.00
Tolging Took Samples			\$0.00	\$0.00	
			\$0.00		
			\$0.00	\$0.00	\$0.00
			4	ψυ.υυ	Ψ0.00
TATAL	_				#0.004.0 F
TOTAL Expenditures	5				\$2,034.25

Page **18** of **27** KEN ELLERBECK March 3, 2015

STATEMENT OF AUTHOR'S QUALIFICATIONS

STATEMENT OF AUTHOR'S QUALIFICATIONS

KENNETH C. ELLERBECK, PMP

I hold a BSc in Mechanical Engineering, University of Alberta, Edmonton, 1973.

I have completed University level introductory geology courses.

I hold a Certificate in Project Management from University of British Columbia, Sauder School of Business, 2010.

I hold a Project Management Professional designation – PMP – 1391810 – 2011.

I have been actively involved in all aspects of mineral exploration since 1980 in the Province of British Columbia.

I have managed staking and exploration programs since 1980 on my own mineral tenures as well as for tenures held by both private and publicly-held junior exploration companies.

My mineral exploration experience includes staking, prospecting, trenching, trench mapping, line cutting and grid construction, geochemical surveys, geophysical surveys, diamond drilling supervision and general exploration program supervision.

SIGNED

KENNETH C. ELLERBECK

KEN ELLERBECK March 3, 2015 Page 19 of 27

LIST OF SELECTED REFERENCES

BC Geological Survey, Ministry of Energy, Mines & Petroleum Resources – MINFILE : 092ISE107

British Columbia Survey Branch, The Map Place.

Geologist, July 2, 2010, Revised October 6, 2011.

LD PROPERTY Geological Report with Interpretation of IP Geophysical Survey, 92I/02 UTM 619000E; 5559000N (UTM ZONE 10; NAD 83), Prepared for Navigo Ventures Inc., Owner and Operator, Event # 4825543, Locke B. Goldsmith, P.Eng., P.Geo. Consulting

Structural Analysis Report on the Comstock Claims, Ken Ellerbeck Owner, July 4, 2013. Laurence Sookochoff, P. Eng. The Comstock Claims are included the present day IM-COMSTOCK-LD Claim Group.

Tony Barresi, August 2008, Rock Geochemistry on the Iron Mountain Mineral Claims, Nicola Mining Division, B.C. Pembrook Mining Corp.

Addie, L., 2002. Report on till geochemistry, LD property, LD group. Assessment report # 26766.

Boronowski, A, and Hendrickson, G., 1984. Geochemical and geophysical assessment report on the Diane group. Private report for Kidd Creek Mines Ltd. Assessment report # 13114.

Cavey, G., Lebel, J.L., P.Eng., amd Jerema, M., 1986. Report on detailed geological, geochemical, and geophysical surveys on the Stirling group, Diane 1-5 mineral claims, Nicola Mining Division,

Merritt, B.C. Private report for International Maple Leaf Resource Corporation. Assessment report # 16058A and B.

Christopher, P. A., P.Eng., 1989. Geochemical, geological, geophysical, and diamond drilling report on the Iron Mountain property, Merritt Area, B.C. Private report for Golden Dynasty Resources Ltd. Assessment report # 18888.

Crooker, G. F., 1987. Geochemical and geophysical assessment report on the Iron Mountain property, Nicola Mining Division, Merritt area, B.C. Private report for Golden Dynasty Resources Ltd. Assessment report # 16817.

Howell, W. A., 1981. Iron Mountain project M491, 1980 report, geological and geochemical surveys on the Gyprock group of mineral claims, Nicola Mining Division. Private report for Chevron Standard Limited. Assessment report # 9018.

Krueckl, G.P., P.Eng., 1986. Assessment report on work carried out on the SS claim, Merritt B.C.

Private report for Tamara Resources Inc. Assessment report # 15100.

Mark, D. G., P.Geo, 2009. Exploration report on 2007 IP and resistivity surveys and a 2008 MMI soil geochemistry survey, LD property, Iron Mountain, Merritt area, Nicola Mining Division, B.C.

McMillan, W. J., 1979. Nicola Project, Merritt area. In Geological Fieldwork 1978. MEMP Paper 1979-1, pp 41-46.

McMillan, W. J., 1981. Nicola project, Merritt area. B.C. MEMP preliminary map 47.

Nelles, D. M., 1988. Diamond drilling report on the Stirling group (Diane 1-5 mineral claims, Nicola Mining Division, B.C. Private report for Merlin Resources Inc. Assessment report # 17721.

Preto, V. A., 1975. Geology of the central part of the Nicola Group, British Columbia. B.C. Ministry of Mines & Pet. Res., Preliminary Map 18.

Price, B. J., P.Geo., 2006. Geological and assessment report, 2005 work program, Iron 1 mineral claims, Iron Mountain, Merritt, B.C., Nicola Mining Division. Private report for Del Exploration Ltd. Assessment report # 27926.

Reynolds, P., P.Geo., 2002. Geological report on the Iron Property, Nicola Mining Division, B.C.

Private report for Nubio Ventures Inc. Assessment report # 26878.

Richards, G.G., and Howell, W.A., 1981. Geochemical and geological report on a portion of the Stud and Four mineral claims in the Nicola Mining Division. Private report for G.G. Richards and K. W. Livingstone. Assessment report # 10977.

Map 886 A, Nicola, (Geol.) Sc. Accomp. Memoir 249, Geol. Survey of Canada (1948).

BC Geological Survey, Ministry of Energy, Mines & Petroleum Resources – MINFILE : 092ISE107

British Columbia Survey Branch, The Map Place.

LIST OF SOFTWARE PROGRAMS USED

ADOBE PHOTOSHOP 7.0
PAINT for WINDOWS
ARIS MAPBUILDER – Map Data downloads
Imap BC – Map Data downloads
MtOnline - MINFILE downloads.

APPENDIX

SAMPLE

PREPARATION AND METHOD OF ANALYSIS

KEN ELLERBECK

March 3, 2015

Page

22 of

27

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KEN ELLERBECK **255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8**

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-DEC-2014 Account: ELLERK

CERTIFICATE KL14173159

This report is for 12 Rock samples submitted to our lab in Kamloops, BC, Canada on 20-NOV-2014.

The following have access to data associated with this certificate: KEN ELLERBECK

ALC CODE	ALCOOPE DECORPTION				
ALS CODE	DESCRIPTION				
WEI-21	Received Sample Weight				
LOG-22	Sample login - Rcd w/o BarCode				
CRU-QC	Crushing QC Test				
PUL-QC	Pulverizing QC Test				
CRU-31	Fine crushing - 70% < 2mm				
SPL-21	Split sample - riffle splitter				
PUL-31	Pulverize split to 85% < 75 um				

ANALYTICAL PROCEDURES				
ALS CODE	DESCRIPTION	INSTRUMENT		
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES		
Au-AA23	Au 30g FA-AA finish	AAS		

To: KEN ELLERBECK ATTN: KEN ELLERBECK **255 WEST BATTLE STREET** KAMLOOPS BC V2C 1G8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager

LD-COMSTOCK CLAIM GROUP

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KEN ELLERBECK 255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 1-DEC-2014 Account: ELLERK

CERTIFICATE OF ANALYSIS KL14173159

7						
CERTIFICATE COMMENTS						
,		LABOR	ATORY ADDRESSES			
	Processed at ALS Kamloo	ps located at 2953 Shuswap Drive, Kai	mloops, BC, Canada.			
Applies to Method:	CRU-31	CRU-QC	LOG-22	PUL-31		
	PUL-QC	SPL-21	WEI-21			
	Processed at ALS Vancour	ver located at 2103 Dollarton Hwy, No	rth Vancouver, BC, Canada.			
Applies to Method:	Au-AA23	ME-ICP41				

APPENDIX 2

ASSAY RESULTS

Minerals

KEN ELLERBECK

March 3, 2015

Page **24** of **27**

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KEN ELLERBECK 255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-DEC-2014 Account: ELLERK

CERTIFICATE	OF AI	VALYSIS	KL14	173159

D2	Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
LD4	LD2						14	<10	60		<2			<1	2		0.64
Sack 3 1.02 <0.005																	
Sack 4 0.79 <0.005 <0.2 0.71 <2 <10 60 <0.5 <2 0.41 <0.5 4 9 9 1.36 Sack 5 1.36 <0.005 0.3 3.01 <2 <10 110 <0.5 <2 3.74 <0.5 19 18 91 5.87 Bag - 3-14 0.89 <0.005 <0.2 1.75 4 <10 50 <0.5 <2 3.74 <0.5 5 4 12 3.23 Bag - 6-14 0.47 0.005 <0.2 2.34 <2 <10 100 <0.5 <2 3.79 <0.5 9 7 18 4.35 Bag - 8-14 0.80 <0.005 <0.2 2.34 <2 <10 100 <0.5 <2 3.79 <0.5 9 7 18 4.35 Bag - 8-14 0.80 <0.005 <0.2 1.04 <2 <10 30 <0.5 2																	
Sack 5																	
Bag -3-14 0.89 <0.005	Sack 4		0.79	<0.005	<0.2	0.71	<2	<10	60	<0.5	<2	0.41	<0.5	4	9	9	1.36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								<10							18		
Bag - 8-14																	
M-5-14 0300629 5632837 2.01 <0.005 1.7 0.19 <2 <10 30 <0.5 6 0.03 <0.5 <1 5 6 0.41 M-3-14 0300616 5632823 0.89 <0.005 0.5 0.24 <2 <10 50 <0.5 <2 0.01 <0.5 <1 5 9 0.91																	
M-3-14 0300616 5632823																	
	M-5-14 0300629 563	32837	2.01	<0.005	1.7	0.19	<2	<10	30	<0.5	6	0.03	<0.5	<1	5	6	0.41
M-1-14 0300594 5632856 0.99 <0.005 12.2 0.02 <2 <10 <10 <0.5 51 <0.01 <0.5 <1 13 4 0.58	M-3-14 0300616 563	32823															
	M-1-14 0300594 563	32856	0.99	< 0.005	12.2	0.02	<2	<10	<10	< 0.5	51	< 0.01	< 0.5	<1	13	4	0.58

Page **25** of **27**

LD-COMSTOCK CLAIM GROUP

ALS) Minerals

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

TO: KEN ELLERBECK
255 WEST BATTLE STREET
KAMLOOPS BC V2C 1G8

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-DEC-2014 Account: ELLERK

								C	ERTIFIC	CATEO	F ANAL	YSIS	KL141	73159	
Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP4 Sr ppm 1
D2	<10	<1	0.02	<10	0.32	3970	41	0.01	<1	130	134	0.03	8	1	78
D3	<10	<1	0.06	<10	0.25	4690	108	0.01	1	180	67	0.16	6	2	82
D4 ack 3	<10 <10	<1 <1	0.26 0.16	10 10	0.04 0.46	457 338	2 <1	0.01 0.06	2 7	730 700	10	0.36	2 <2	3 2	25 23
ack 4	<10	<1	0.16	10	0.46	325	<1	0.06	6	820	2 2	0.01	<2	2	18
ack 5	10	1	0.32	<10	2.28	1155	<1	0.03	15	1880	<2	0.16	<2	12	79
ag -3-14	<10	<1	0.14	10	1.06	664	1	0.03	6	710	7	0.11	<2	4	54
ag -6-14	10	<1	0.16	10	1.47	702	<1	0.03	6	930	3	0.03	<2	7	47
ag -8-14 I-5-14 0300629 5632837	10 <10	<1 <1	0.72 0.09	10 <10	0.56 0.02	450 22	<1 1	0.06 0.05	5 1	970 50	<2 24	0.01	<2 <2	3 <1	18 16
I-3-14 0300616 5632823 I-1-14 0300594 5632856	<10 <10	<1 <1	0.10 0.01	<10 <10	0.02 <0.01	23 23	1 2	0.04 0.01	1	120 10	13 41	0.03 0.19	<2 <2	<1 <1	16 <1

Page **26** of **27**

LD-COMSTOCK CLAIM GROUP

Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KEN ELLERBECK
255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-DEC-2014

Account: ELLERK

CERTIFICATE OF ANALYSIS KL1417315	
-----------------------------------	--

									CERTIFICATE OF ARAETSIS RE14170100
	COMP NOW IT THE	ME IODAA	ME IODAA	ME IODAA	ME IODAA	ME IOD44	ME 10044	ME 100.44	
	Method	ME-ICP41 Th	ME-ICP41 Ti	ME-ICP41 TI	ME-ICP41 U	ME-ICP41 V	ME-ICP41 W	ME-ICP41 Zn	
	Analyte	ppm	%	ppm		ppm	ppm	ppm	
Sample Description	Units LOR	20	0.01	10	ppm 10	1	10	2	
	LOK	11000	35060031	2000	1000	95	1075/000	1000	
_D2		<20	<0.01	<10	<10	17	<10	342	
LD3		<20	<0.01	10	<10	23	<10	327	
LD4		<20	<0.01	<10	<10	3	<10	50	
Sack 3		<20	0.08	<10	<10	25	<10 <10	41 45	
Sack 4		<20	0.12	<10	<10	34	110000000		
Sack 5		<20	0.20	<10	<10	183	<10	105	
Bag -3-14		<20	<0.01	<10	<10	16	<10	67	
Bag -6-14		<20	0.01	<10	<10	32	<10	89	
Bag -8-14		<20	0.12	<10	<10	37	<10	65	
M-5-14 0300629 563	PLOCE STATE OF THE PARTY OF THE	<20	<0.01	<10	<10	2	<10	11	
M-3-14 0300616 563		<20	<0.01	<10	<10	3	<10	16	
M-1-14 0300594 563	32856	<20	< 0.01	<10	<10	1	10	17	

Print and Close

Cancel

Mineral Titles Online

Mineral Claim Exploration and Development Work/Expiry Date Change Confirmation

Recorder: ELLERBECK, KENNETH CECIL (107608)

Recorded: 2015/MAR/03

Submitter: ELLERBECK, KENNETH CECIL (107608)

Effective: 2015/MAR/03

D/E Date: 2015/MAR/03

Confirmation

If you have not yet submitted your report for this work program, your technical work report is due in 90 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission.

Please attach a copy of this confirmation page to your report. Contact Mineral Titles Branch for more information.

Event Number: 5545190

Work Type: Technical Work
Technical Items: Prospecting

Work Start Date: 2014/JUL/01 Work Stop Date: 2014/JUL/01 Total Value of Work: \$ 2000.00

Mine Permit No:

Summary of the work value:

Title Number	Claim Name/Property	Issue Date	Good To Date	New Good To Date	# of Days For- ward	Area in Ha	Applied Work Value	Sub- mission Fee
1024366	EVA	2013/dec/12	2015/jul/01	2016/jan/01	184	83.00	\$ 209.15	\$ 0.00
1024737	LD	2014/jan/01	2015/jul/01	2016/jan/01	184	248.93	\$ 627.45	\$ 0.00
1024739	EVA NORTH	2014/jan/01	2015/jul/01	2016/jan/01	184	145.23	\$ 366.05	\$ 0.00
1024763	LD WEST	2014/jan/01	2015/jul/01	2016/jan/01	184	82.97	\$ 209.13	\$ 0.00
1024782	LD WEST 2	2014/jan/02	2015/jul/01	2016/jan/01	184	62.23	\$ 156.85	\$ 0.00
1025092	COMSTOCK NORTH	2014/jan/14	2015/jul/01	2016/jan/01	184	124.49	\$ 313.79	\$ 0.00
1014621	DOTCALM	2012/nov/19	2015/jul/01	2016/jan/01	184	20.74	\$ 64.44	\$ 0.00

Financial Summary:

Total applied work value:\$ 1946.86

PAC name: KEN ELLERBECK

Debited PAC amount: \$ 0.0 Credited PAC amount: \$ 53.14

Total Submission Fees: \$ 0.0

Total Paid: \$ 0.0

Please print this page for your records.

The event was successfully saved.

Click <u>here</u> to return to the Main Menu.

Page 27 of 27