

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

TOTAL COST: \$2000.00

TYPE OF REPORT [type of survey(s)]: TECHNICAL - PROSPECTING

AUTHOR(S): KEN ELLERBECK	SIGNATURE(S)
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR OF WORK: 2015
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5547843
PROPERTY NAME: LD-COMSTOCK	
CLAIM NAME(S) (on which the work was done): 1034277 - COQ COM	ISTOCK
COMMODITIES SOUGHT: Au Ag Pb Zn Cu	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092ISE156	092ISE052 092ISE053 092ISE022
MINING DIVISION: NICOLA	NTS/BCGS: 92I-007
LATITUDE: 50 ° 3 '15 " LONGITUDE: 120	o 47 '42 " (at centre of work)
OWNER(S): 1) KEN ELLERBECK	2)
MAILING ADDRESS: 255 WEST BATTLE STREET	
KAMLOOPS BC V2C 1G8	
OPERATOR(S) [who paid for the work]: 1) KEN ELLERBECK	2)
MAILING ADDRESS:	
255 WEST BATTLE STREET	
KAMLOOPS BC V2C 1G8	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure underlain by NEtrending Volcanic-sediment rocks of the Upper	, alteration, mineralization, size and attitude): Triassic Nicola Group. E-SE facing sequence of calc-alkaline flo
malachite, chalcopyrite, pyrite and quartz-specularite veins or si	tockwork along narrow shears and fractures in mixed
porphyritic and aphanitic andesite flows and lithic tuffs. Limonite	and malachite -secondary after pyrite and chalcopyrite(locally)
late-stage quartz-hematite-limonite veining has been superimpo	sed on the massive hematite mineralization.
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT R	EPORT NUMBERS: 34187 18888 32183

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
		_	
			•
Seismic			
Other			77000
Airborne			
GEOCHEMICAL number of samples analysed for)	* 4		
Soil	and an experience of the second secon		
			H. M
Rock		_	
Other			
DRILLING total metres; number of holes, size)			
Core	i je		
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metalluraia			
PROSPECTING (scale, area) 100M	x 300M	1034277	2000.00
REPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Laralauminua (anala araa)			
	/trail		
Othor			
		TOTAL COST:	2000.00
		101742 00011	2000.00

BC Geological Survey Assessment Report 35356

KEN ELLERBECK

(Owner & Operator)

TECHNICAL EXPLORATION REPORT

(Event 5547843) on

PROSPECTING and EXPLORING

Work done on

Tenures 1034277

of the 16 Claim

LD-COMSTOCK CLAIM GROUP

Kamloops Mining Division BCGS Maps 921.007

Centre of Work UTM 10 657700, 5547000

AUTHOR

KEN ELLERBECK, PMP

REPORT SUBMITTED

March 26, 2015

TABLE OF CONTENTS

Introduction	3
Purpose	3
Access and Location	3
Property Description	3
History	6
Summary of Work Done	8
Regional and Property Geology	16
Technical Data and Interpretation	22
Interpretation and Conclusions	23
Summary and Recommendations	23
Itemized Cost Statement	24
Statement of Qualifications	25
Selected References	26
ILLUSTRATIONS	
Figure 1 Location Map	4
Figure 2 Claim Location Google Earth	5
Figure 3 Regional Location Map Google Earth	5
Figure 4 Claim and Index - Map ARIS MapBuilder	6
Figure 5 Sample Location Area	8
Figure 6 Location and Typical Rock Pictures	10
Figure 7 LD- COMSTOCK Regional Geology	17
Figure 8 LD- COMSTOCK Local Geology	20
TABLES	
Table I: Particulars of Grab Samples 2015	9,22
Table II: Summarized Assay Results- Grab Samples-Ellerbeck (2015) – LD-COMSTOCK	22
APPENDIX	
Sample Preparation and Method of Analysis	28
Certificate of Analysis	30

INTRODUCTION PURPOSE

In February 2015 a prospecting program was completed on Tenures 1034277 of the 16 Claim IM-COMSTOCK-LD CLAIM GROUP. The purpose of the prospecting program was to locate, if possible, extensions of historic reported geological features (copper and gold bearing structures in particular) as well as to prospect for unidentified outcrops and showings of significance. Information for this report was obtained from sources cited under Selected References and from a property examination made on February 21, 2015.

ACCESS AND LOCATION

Road access to the Property from Kamloops, BC is by Highway 5A south for 80 km. to Merritt, BC and then a 12 km south on Highway 5A. Driving time from Vancouver to Merritt is three hours (300 km) and from Kamloops is one hour. Access from Merritt is via the paved Coldwater road that departs from the eastern edge of Merritt and trends southerly, parallel to the west side of the Coquihalla Highway and from Comstock Road 12 km south of Merritt, BC.

A series of overgrown logging roads provide access for prospecting activities. However deadfall due to Pine Beetle infestation made vehicle access difficult.

The Property is located within the dry belt of British Columbia with rainfall between 25 and 30 cm per year. Temperatures during the summer months could reach a high of 35°C and average 25°C with the winter temperatures reaching a low of -10°C and averaging 8°C. On the LD-COMSTOCK Claim Group moderate snow cover on the ground could be from December to April and would not hamper a year-round exploration program. Elevations range from 900m to 1645 m.

Merritt, BC, and Kamloops, BC both historic mining centers, could be a source of experienced and reliable exploration and mining personnel and a supply for most mining related equipment.

PROPERTY DESCRIPTION

MTO-LD-COMSTOCK Claim Group

Tenure Number	<u>Type</u>	<u>Claim Name</u>	Good Until	Area (ha)
<u>905597</u>	Mineral	PB1	20161106	83.0148
905612	Mineral	PB2	20161106	20.7547
1014621	Mineral	DOTCALM	20160101	20.7446
<u>1014834</u>	Mineral	РВ	20170901	186.7831
<u>1014836</u>	Mineral	PBE	20161106	41.5116
1014837	Mineral		20161106	20.7529
<u>1014839</u>	Mineral	ОМС	20161106	20.7564
<u>1018921</u>	Mineral	IOCG NORTH	20170901	62.249
1019819	Mineral	LUCKY 7	20170901	20.7531
<u>1024366</u>	Mineral	EVA	20160101	83.0041
1024737	Mineral	LD	20160101	248.9349
1024739	Mineral	EVA NORTH	20160101	145.2268
1024763	Mineral	LD WEST	20160101	82.9687
1024782	Mineral	LD WEST 2	20160101	62.2281
1025092	Mineral	COMSTOCK NORTH	20160101	124.4943
1034277	Mineral	COQ COMSTOCK	20170901	82.9883

Total Area: 1307.1654 ha

Figure 1 LOCATION MAP from MTO Mapbuilder

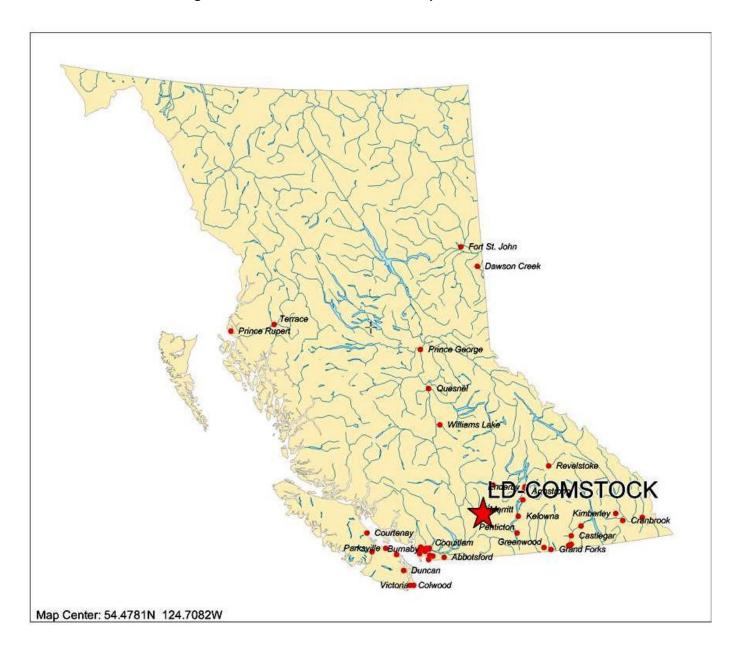


Figure 2 CLAIM LOCATION MAP (Base Map GOOGLE EARTH)

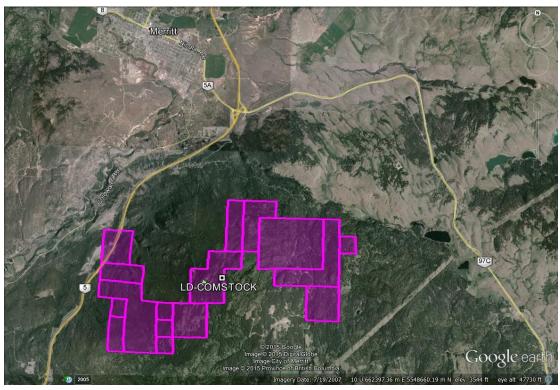


Figure 3 Regional Location Map (Base Map GOOGLE EARTH)

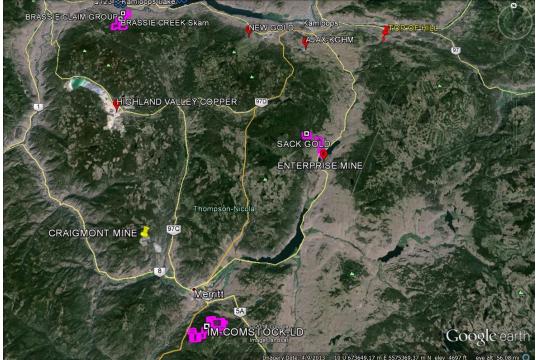


Figure 4 Claim Map and Index Map – UTM - ARIS MapBuilder

HISTORY

Exploration by others on land in and near the current LD-COMSTOCK Claim Group has been reported. Current tenures include most of the showings and workings reported.

From Structural Analysis Report on the Comstock Claims, Ken Ellerbeck Owner, July 4, 2013, Laurence Sookochoff, P. Eng. The Comstock Claims are included the present day LD-COMSTOCK Claim Group.

"The Property has a long history of exploration with the discovery, exploration, and limited development on three areas; the Diane Zone, the Charmer Zone, and the Comstock (Leadville) Zone. Only the Diane and the Charmer are described herein as these Zones, separated by a 200 metre barren area, have the same basic mineralogy and are for the most part are proximal to Tenure 1014834, the subject of the Structural Analysis of this report. Historical exploration on the two zones, which are underlain by volcanics of the Western Facies of the Upper

Triassic Nicola Group, resulted in the delineation of variable copper mineralization over an area of a 500 metre square area of the Diane Zone. Trenches within the zone expose a 250 metre northwest striking fault controlled zone of copper mineralization and the only location where within this area that gold values occur as defined by a geochemical survey. A discontinuous zone of auriferous quartz veining occurs within this trend which has resulted in pervasive silicification of the volcanics. A diamond drilled intersection of the fault zone resulted in core assays of 24.70 grams gold /tonne (0.72 oz/ton) over a length of 0.76 metres.

At Shaft 3 southeast of the Diana Zone and midway to the Charm Zone, the volcanics are pervasively silicified with the shaft developed on a series of quartz veins trending at 160 degrees. With vein samples from the shaft returning 0.66% copper and 0.295 ounces gold per ton and from a pit 15 metres southeast

of the shaft returning 1.38% copper and 0.295 ounces gold per ton over a one metre width, a gold zone is indicated on a structure that extends from the Diane Zone to the Charm Zone.

The Charm Zone some 750 metres to the southeast from the Diane and equal in mineralized area, is separated by a 200 metre barren section containing lower overall copper values and much less gold values except within Shaft 3 located at the northwestern edge of the Zone. Trenches and two more shafts expose quartz-specularite veins over a discontinuous strike length of 800 metres. Assays of samples from the southeasterly trending zone of quartz veins returned values of 0.64 grams per tonne gold from Shaft 1, 2.35 grams per tonne gold and 1.8 per cent copper from Shaft 2, 10.11 grams per tonne gold from shaft 3.

There are strong indicators for an overlapping gold/silver laden epithermal system to an established copper mineralizing event at the Diane and the Charmer Zones. This appears as the upper winged portion of an epithermal model with the gold bearing quartz zones of the Diane trench area (Figure 14) and Shaft 3 (Figure 7.) being the core, or one of the slayed cores, to the system. To test this supposition, the quartz zone(s) should be tested at depth intervals to determine the mineralogical sequence with increasing depth which could determine the location of the potential "bonanza zone" of the epithermal system (Figures 15 & 16).

The results of the Structural Analysis have shown four locations of intersecting major structures that were determined as prospective areas to explore for surficial geological indicators of a potential sub-surface mineral resource. As the majority of the zones on the Property follow northwest fractures with the width and continuity of the veining appearing strongest where fracturing is the most intense, the intersection locations, which do not correlate with any of the known mineral zones, may result in an intense fracture zone that would accommodate porphyritic type of mineralization in the volcanic."

And:

From LD PROPERTY Geological Report with Interpretation of IP Geophysical Survey, 92I/02 UTM 619000E; 5559000N (UTM ZONE 10; NAD 83), Prepared for Navigo Ventures Inc., Owner and Operator, Event # 4825543, Locke B. Goldsmith, P.Eng., P.Geo. Consulting Geologist, July 2, 2010, Revised October 6, 2011.

"Numerous individuals and companies have explored the Iron Mountain area beginning in 1896. Most of the work was focused on the Comstock and Charmer occurrences, located one to three km south of the LD claims. Investigations in the 1980s recognized the style of mineralization to be of volcanogenic massive sulphide deposition around rhyolite domes in a Kuroko-type setting (Howell, 1981; Crooker, 1987; Christopher, 1989).

Historical exploration work on the LD property has been limited to prospecting and sampling around the original showings, usually as work incidental to other projects. Two of these programs (Boronowski, 1984; Christopher, 1989) included analyses from several rock samples and soil samples, ground magnetics, and very low frequency electromagnetics (VLF EM). In 2007 and 2008 two survey lines of induced polarization and six lines of mobile metal ion soil sampling were completed to the east of the LD mineral occurrence (Mark, 2009); and

"The exploration target for the LD property is a volcanogenic massive sulphide (VMS) base and precious metal deposit. Bedrock mineralization has been found in several locations on the property. At the LD occurrence moderately coarse crystalline galena partially fills open spaces between fragments of limestone, brecciated limestone, and calcareous siltstone. Rotated blocks of bedded impure barite carry sphalerite, galena, and minor amounts of grey copper (tetrahedrite?). Bedding in the blocks of barite is discontinuous and contorted. Veinlets of barite may contain sulphides. A related type of mineralization exposed 1 km southwest of the LD property at the Comstock zone is comprised of banded veins and possibly bedded zinc-lead-barite mineralization in a flow-banded, potassium-rich felsic lava (rhyolite). Both types of zinc-lead-barite occurrences formed penecontemporaneously. The Comstock type formed in association with felsic volcanism in rhyolitic domes. The LD style of mineralization is interpreted as transportation into sedimentary basins flanking the domes. Stratigraphically below and adjacent to the LD occurrence an early stage of silica flooding and quartz veining is followed by a later stage of crosscutting quartz +/- carbonate veinlets with associated orange-brown limonite and trace amounts of chalcopyrite and galena. This horizon may represent the stratiform chalcopyrite "yellow ore" and the underlying stringer mineralization of the Kuroko model.

Another type of mineral showing present in the area and on the LD property is structurally

controlled auriferous quartz-chalcopyrite-specularite-(gold) veins. These veins trend northerly and northwesterly, oriented in the prevailing directions of faulting. In the Kuroko model, quartzchalcopyrite veins grade downwards into siliceous chimneys that were sea floor feeder vents, in a similar setting to silicious sinter around present-day hot springs (Urabe and Sato, 1978).

The LD occurrence has been examined in previous exploration programs (Boronowski and Hendrickson, 1984; Christopher, 1989).

The LD-COMSTOCK Claim Group was acquired by online staking by the Author and Current Owner since 2011. See Page 3 of this report for Tenure list.

SUMMARY OF WORK DONE 2015

The Tenure Numbers in the LD-COMSTOCK Claim Group on which work was performed: Prospecting was conducted on 1034277 on February 21, 2015. (Figure 4 Index - Work Areas). One (1) field day was spent on the LD-COMSTOCK Claim Group project, including prospecting and travelling to and from the property. One (1) day was spent researching reference material, and a further one (1) day was spent compiling data, drafting and writing this report.

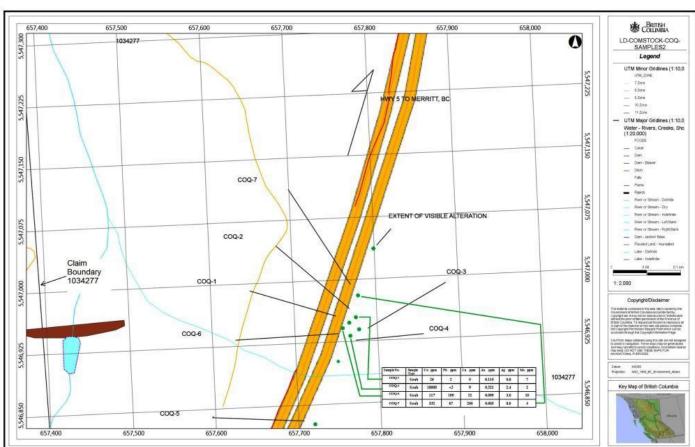


Figure 5 Sample Location Area Map

2015 WORK PROGRAM

Sampling Program - The author was on the LD-COMSTOCK Claim Group in February 2015 to select rock samples for verification of the reported mineralization and geology on the Property.

Seven (7) grab samples were taken from 7 different sites within approximately 150 m. altered andesite zone. Four (4) grab samples were submitted for assay.

Table I. Particulars of Grab Samples taken by ELLERBECK (2014) LD-COMSTOCK

LOCATION	UTM L	OCATION	DESCRIPTION
/ SAMPLE #			All OUTCROP unless indicated
COQ-1	657764	5546944	Gray-green andesite-altered –silicified-iron staining
COQ-2	657771	5546951	Quartz-pyrite-vugs-contact with altered andesite
COQ-3	657767	5546944	Gray-green silicified andesite – distinct iron banding
COQ-4	657767	5546944	Malachite, chalcopyrite, quartz, altered andesite
COQ-5	657718	5546823	Poorly cemented sediments-gravels-overlying andesite
COQ-6	657755	5546940	Silicified andesite-iron veins-
COQ-7	657779	5546980	Float-silicified andesite, minor malachite-hematite

FIGURE 6 LOCATION AND TYPICAL ROCK PICTURES COQ-1 LOCATION AND TYPICAL ROCK PICTURE

COQ-2 LOCATION AND TYPICAL ROCK PICTURE

KEN ELLERBECK March 26, 2015 Page **10** of **33**

COQ-3 LOCATION AND TYPICAL ROCK PICTURE

KEN ELLERBECK March 26, 2015 Page **11** of **33**

COQ-4 LOCATION AND TYPICAL ROCK PICTURE

KEN ELLERBECK March 26, 2015 Page **12** of **33**

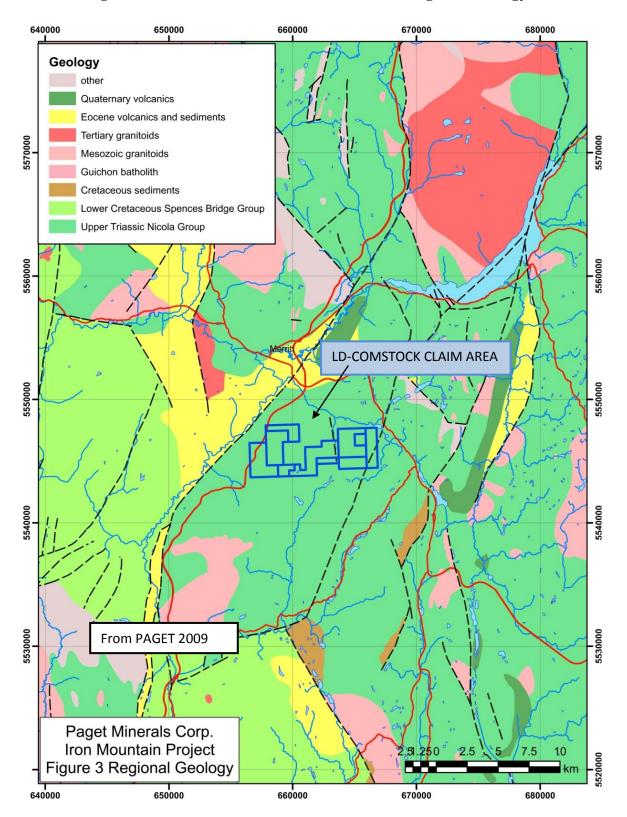
COQ-5 LOCATION AND TYPICAL ROCK PICTURE

KEN ELLERBECK March 26, 2015 Page **13** of **33**

COQ-6 LOCATION AND TYPICAL ROCK PICTURE

KEN ELLERBECK March 26, 2015 Page **14** of **33**

COQ-7 LOCATION AND TYPICAL ROCK PICTURE


KEN ELLERBECK March 26, 2015 Page **15** of **33**

SUMMARY OF REGIONAL AND PROPERTY GEOLOGY REGIONAL GEOLOGY

The Iron Mountain area is underlain by a northeast trending belt of Upper Triassic volcanic and sedimentary rocks of the Nicola Group (Figure 3). Iron Mountain is located within a northeast-trending fault-bounded segment of the Nicola Group which represents the southern structural extension of the Nicola Horst. Evidence of Proterozoic basement has been documented in the core of the Nicola Horst northeast of the property (Erdmer, 2002). The Nicola Horst is bounded by northeast trending faults which were active during regional Eocene extension. Nicola Group within the horst is bounded on its west side by Lower Cretaceous andesites of the Spences Bridge Group and Eocene andesites of the Princeton Group.

The western Nicola belt, in which the Iron Mountain Project is situated, comprises an east to southeast facing sequence of calc-alkaline andesitic flows that grade upward into pyroclastic rocks, epiclastic sediments and abundant limestone. Intrusive rocks of probable Late Triassic – Early Jurassic age crop out about four kilometers southwest of the property.

Figure 7 LD-COMSTOCK CLAIM GROUP Regional Geology

LOCAL GEOLOGY

From Bradford for Paget Minerals Corp, 2010: "The lower western slopes of Iron Mountain are underlain mainly by at least 1500 metres of andesitic to basaltic andesite flows, breccias and minor tuff of the Upper Triassic Nicola Group (Figure 4). Toward the top of the sequence the andesitic rocks are intercalated with two major felsic units consisting of a lower dacite and upper rhyolite.

The overall trend of these units is about 030, dipping moderately to steeply to the east. The felsic succession hosts silver-lead-zinc-barite mineralization of possible volcanogenic origin (Leadville occurrence). The felsic volcanics are overlain by red and green lapilli tuffs and intermediate flows, which in turn are overlain by a sedimentary unit consisting of limestones and minor shales.

The andesitic volcanic sequence which underlies most of the property is heterogeneous, and includes massive aphanitic to amygdaloidal flows and flow breccias, minor andesitic tuff and tuff breccia, and feldspar phyric andesitic flows or sills. Rare argillaceous interflow sedimentary units are also present. Lensoid beds of sedimentary banded jasper are present (Cavey et al., 1986). In thin section the jasper is reported to consist of an intergrowth of minutely spherulitic hematite and cherty silica with delicate 1-4 mm laminations.

The area east of Iron Mountain is underlain by a thick east dipping homoclinal sequence dominated by andesitic volcaniclastic rocks intercalated with feldspar phyric andesite flows and minor thin limestone beds."

And from

Sookochoff for Ken Ellerbeck, 2013: "**DIANE** prospect (Polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092ISE022

Within Property

Regionally the area is underlain by a northeast trending belt of volcanic and sedimentary rocks of the Upper Triassic Nicola Group. These have been divided into three subparallel belts by two persistent north trending, high angle fault systems, the Alleyne-Summers Creek system to the east and the Allison system to the west. The north to northeast trending, steeply east dipping western belt, in which the Diane occurrence is wholly situated, comprises an east to southeast facing sequence of calc-alkaline flows that grade upward into pyroclastic rocks, epiclastic sediments and abundant limestone. The rocks are chiefly andesites, but range compositionally from basalt to rhyolite and vary from aphanitic to coarsely porphyritic. The pyroclastic members include tuff, lapilli tuff, breccia and tuff breccia, and are intimately related with the flows. Local calcareous marine sedimentary members, chiefly limestone with lesser argillite and conglomerate, also occur.

The Diane occurrence is underlain by a complex basal package of aphanitic, amygdaloidal and porphyritic flows and pyroclastic rocks of intermediate composition. These rocks are overlain by a transitional sequence of intermediate to felsic flows and pyroclastics with local fossiliferous limestone and limy sediment interbeds and minor lenses of banded jasper. These sequences form part of the Upper Triassic Nicola Group and have been subdivided into four units. The first unit is comprised of limestones and limy sediments, the second is mixed rhyolite to rhyodacite flows and minor tuffs, the third is mixed dacite to rhyolite flows and pyroclastics and the fourth is mixed andesite flows and pyroclastics. The rocks exposed on the property have undergone lower greenschist facies metamorphism (chlorite, epidote, sericite and carbonate alteration

mineralogy). The Nicola Group rocks strike north-northeast with variable southeast dips. Gentle large scale folding is apparent. Two sets of northeast and northwest trending faults are evident. Massive hematite, controlled and localized in fractures and occurring in association with limonite and malachite, is the predominant mineralization. Both the limonite and malachite appear to be secondary after pyrite and chalcopyrite, which occurs locally. Fracture intensity appears to determine both the distribution of hydrothermal mineralization and the amount of alteration in the host rock. At present, seven mineralized zones have been located and the majority of these zones follow northwest fractures. In several locations, late-stage quartz-hematite-limonite veining has been superimposed on the massive hematite mineralization. The width and continuity of this veining vary along strike, but appear to be strongest where fracturing in the volcanics is most intense. The emplacement of this mineralization, which is locally auriferous, has not had an effect on the massive hematite, but has resulted in intense alteration of the surrounding rocks.

MINERALIZATION: COMSTOCK CLAIM GROUP, DIANE prospect (Polymetallic veins Ag-Pb-Zn+/-Au), MINFILE 092ISE022 Within Property

The Original zone, where trenching has exposed fault-controlled hematite-limonite +/- malachite mineralization over a distance of approximately 250 metres, is the only location where gold Values occur. This mineralization is hosted by andesitic flows and pyroclastics and strikes between 133 and 143 degrees, with steep southwest dips. The mineralized trend varies up to several metres in width and appears to splay into several thinner zones to the north. A discontinuous zone of auriferous quartz veining hosting iron oxides with lesser chlorite and sericite has been defined within this trend and appears to have resulted in the pervasive silicification of the host volcanics. Rock samples have assayed up to 9.73 grams per tonne gold (Assessment Report 17721). Recent diamond drilling has intersected extensions of the Original zone at a depth of 59 metres and averaged 15.56 grams per tonne gold and 16.43 grams per tonne silver across 1.38 metres. Values of over 1 per cent copper have also been recorded (Assessment Report 17721).

The South and Lowell zones, 225 and 500 metres south of the Original zone respectively, contain malachite, chalcopyrite, pyrite and quartz-specularite veins or stockwork along narrow shears and fractures in mixed porphyritic and aphanitic andesite flows and lithic tuffs. Trench samples from the South zone returned assays of up to 0.45 per cent copper over 2 metres and from the Lowell zone, up to 0.20 per cent copper over 7 metres (Assessment Report 16058). Fracture sets in the Lowell zone appear to strike 040 degrees and dip steeply to the southeast. The Zinc zone is approximately 960 metres south of the Original zone and comprises a homogeneous felsic tuff with a small shear or fracture containing limonite and a few quartz veinlets. A rock sample of a limonitic, grey-pink rhyolitic tuff assayed 5.4 per cent zinc (Assessment Report 16058). Three samples from a trench averaged 1.6 per cent zinc over 3 metres (Assessment Report 16058).

Structural Geology (from Boronowski 1984)

The Nicola Group of the Iron Mountain property dips moderately to steeply southeastward and strikes northeasterly. The stratigraphic top faces eastward.

The shear zones within the Charmer Zone contain quartz, quartz-specularite and specularite veins, these veins tend predominantly parallel to the NW-SE and E-W fractured directions. The veins within the shear zones of the Aberford Zone trend generally between 320' and 010" and dip steeply, The east-west trending veins, such as those found in the Charmer Zone, are rare.

The quartz, quartz-specularite and specularite veins, these veins contain fragments of the host rock and vein material. This indicates several periods of movement within the shear zones after emplacement of the veins. According to J. Scott (1984), the veins demonstrate several episodes of hydrothermal injection and fracturing.

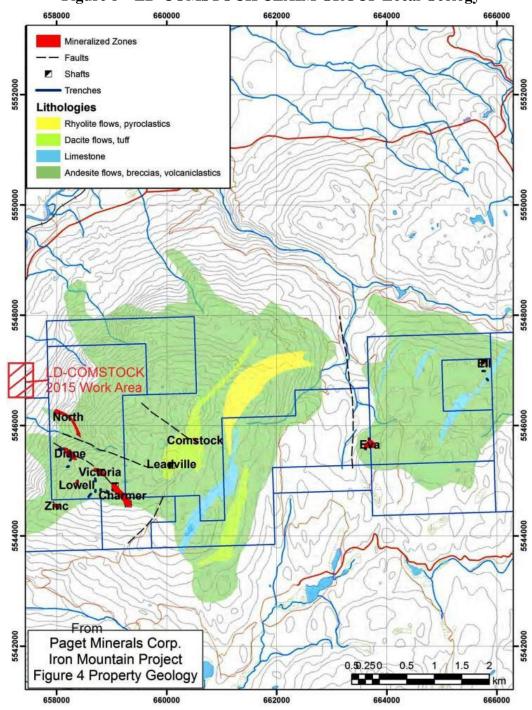
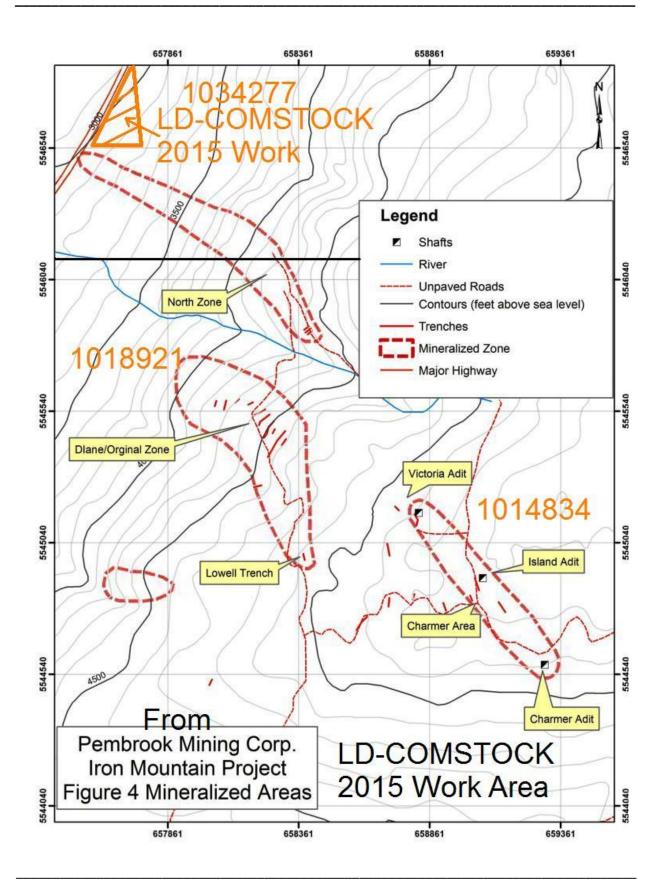



Figure 8 LD-COMSTOCK CLAIM GROUP Local Geology

KEN ELLERBECK March 26, 2015

SUMMARY OF REGIONAL AND PROPERTY GEOLOGY (.....continued)

Prospecting on the LD-COMSTOCK Tenure 1034277 confirmed the presence of mineral bearing veins and altered andesitic volcanic rocks in the Work Area.

Elevated levels of Au were found in COQ-2-4-6;

Elevated levels of Cu, Pb, Zn, Ag and Mo were found in COQ-6-7;

Elevated levels of Cu, Ag were found in COQ-2-4.

Table I. Particulars of Grab Samples taken by ELLERBECK (2015) LD-COMSTOCK

LOCATION	UTM LO	OCATION	DESCRIPTION
/ SAMPLE #			All OUTCROP unless indicated
COQ-1	657764	5546944	Gray-green andesite-altered –silicified-iron staining
COQ-2	657771	5546951	Quartz-pyrite-vugs-contact with altered andesite
COQ-3	657767	5546944	Gray-green silicified andesite – distinct iron banding
COQ-4	657767	5546944	Malachite, chalcopyrite, quartz, altered andesite
COQ-5	657718	5546823	Poorly cemented sediments-gravels-overlying andesite
COQ-6	657755	5546940	Silicified andesite-iron veins-
COQ-7	657779	5546980	Float-silicified andesite, minor malachite-hematite

TECHNICAL DATA AND INTERPRETATION

Table II. Summarized Assay Results- Grab Samples-Ellerbeck (2014) – LD-COMSTOCK

Sample No.	Sample Type	Cu ppm	Pb ppm	Zn ppm	Au ppm	Ag ppm	Mo ppm
COQ-2	Grab	26	2	5	0.115	0.8	7
COQ-4	Grab	18000	<2	9	0.321	2.4	2
COQ-6	Grab	117	109	12	0.099	3.0	10
COQ-7	Grab	532	67	200	0.005	8.0	4

PURPOSE

In February 2015 a prospecting program was completed on Tenures 1034277 of the 16 Claim IM-COMSTOCK-LD CLAIM GROUP. The purpose of the prospecting program was to locate, if possible, extensions of historic reported geological features (copper and gold bearing structures in particular) as well as to prospect for unidentified outcrops and showings of significance. Information for this report was obtained from sources cited under Selected References and from a property examination made on February 21, 2015.

There was no reference in previous work of assays at the western extent of the North Zone. The writer wished to determine the extent and type (if any) of Cu, Au mineralization.

PROSPECTING RESULTS - Outcrops

COQ-1 to COQ-7 inclusive: confirmed local/property and regional geological mapping.

ASSAY RESULTS

Elevated levels of Au were found in COQ-2-4-6; Elevated levels of Cu, Pb, Zn, Ag and Mo were found in COQ-6-7; Elevated levels of Cu, Ag were found in COO-2-4.

INTERPRETATIONS AND CONCLUSIONS

The reported presence of mineralization in various historic ARIS assessment report references within the LD-COMSTOCK Claim Group was confirmed by sampling and assaying rocks from various outcroppings during the February 21, 2015 prospecting program.

Rather than locate and assay rocks from the reported main LD-Comstock showing and other previously noted mineralized rock occurrences, the writer chose to sample and assay outcrops up to 2.8 km away from known recorded mineral showings in an unrecorded 150 m. altered zone. The presence of mineralization within quartz veins within altered andesite outcrops within the LD-COMSTOCK Claim 1034277 was confirmed by the assay results from COQ-2-4-6-7. This mineralization is assumed to be the result of the alteration of host andesite by solutions forming quartz veins in faulting. Possibly epithermal event(s).

SUMMARY AND RECOMMENDATIONS

The 2015 field program showed that mineralization is present in the host volcanic/andesite of the LD-Comstock property.

There is no previous detailed geological mapping of the area examined on February 21, 2015. There is a 2.8km separation from similar reported mineralization. Diane – North Zone – Lowell. The 2015 field program assay results indicate that a careful examination of the andesite between the new discovery zone and the known andesite/quartz occurrences is warranted.

Therefore it is recommended by the Author that a comprehensive prospecting plan be created and executed in the field as soon as practical in order to confirm and map the extent of the altered andesite and quartz veins between the reported property showings and the new discovery covered in this report.

ITEMIZED COST STATEMENT

Exploration Work type	LD-COMSTOCK	Days			Totals
PROSPECTING & EXPLORATIO	N				
Personnel (Name)* / Position	Field Days (list actual days)	Days	180000000000000000000000000000000000000	Subtotal*	
Ken Ellerbeck / Owner	February 21, 2015	1	\$400.00	\$400.00	
G. Ellerbeck / Helper	February 21, 2015	1	\$200.00	\$200.00	
	100 - 500,0000 - 500		\$0.00	\$0.00	
			\$400.00	\$0.00	
			\$200.00	\$0.00	
			\$0.00	\$0.00	
		10		\$600.00	\$600.00
Office Studies	List Personnel (note - Office of	nly, do no	t include	field days	
Literature search	Ken Ellerbeck	0.5			
Database compilation	Ken Ellerbeck	0.5	\$400.00	\$200.00	
General research	Ken Ellerbeck	0.5	\$400.00		
Report preparation	Ken Ellerbeck	1.0	\$400.00	- American Company	
Other (specify)	111621 1121111 114012			\$0.00	
				\$1,000.00	\$1,000.00
Ground Exploration Surveys	Area in Hectares/List Personnel				T-/
Prospect	see Personnel Field Days				
Underground	Soo : closime : rola Dajo				
Trenches				\$0.00	\$0.00
Trenends				40.00	70.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Soil	ALS MINERALS Vancouver	0.0	\$49.46		
Rock	ALS MINERALS Vancouver	4.0	\$48.00	1,	
TROCK	TIES THINE TO IES TUTICS ATE.	1.0	φ 10100	\$192.00	\$192.00
Transportation		No.	Rate	Subtotal	4152.00
KM Kamloops-Property-return	February 21, 2015	225.00	\$0.95		
KM SAMPLES TO LAB	February 27, 2015	25.00	\$0.95		
INT SAMPLES TO LAD	1 Ebidal y 27, 2013	25.00	φ0.55	\$0.00	
				\$237.50	\$237.50
Accommodation & Food	Rates per day	-		\$237.30	\$237.30
Hotel	Rates per day		\$0.00	\$0.00	
Camp			\$0.00	\$0.00	
Meals	2 man-days @\$30/day	2.00	\$30.00	\$60.00	
iriedis	2 man-days @\$30/day	2.00	\$30.00	\$60.00	\$60.00
Miscellaneous				\$00.00	\$00.00
Telephone			\$0.00	\$0.00	
Other (Specify)			\$0.00	\$0.00	
Other (Specify)				\$0.00	\$0.00
Equipment Rentals				φυ.υυ	\$0.00
Field Gear (Specify)			\$0.00	\$0.00	
Other (Specify)			φ0.00	φ0.00	
other (opecity)				\$0.00	\$0.00
Freight, rock samples				φυ.υυ	\$0.00
reight, rock samples			\$0.00	\$0.00	
			\$0.00		
			\$0.00	\$0.00	\$0.00
	Ť	T P		\$0.00	\$0.00
TOTAL Expenditures					\$2,089.50

STATEMENT OF AUTHOR'S QUALIFICATIONS

STATEMENT OF AUTHOR'S QUALIFICATIONS

KENNETH C. ELLERBECK, PMP

I hold a BSc in Mechanical Engineering, University of Alberta, Edmonton, 1973.

I have completed University level introductory geology courses.

I hold a Certificate in Project Management from University of British Columbia, Sauder School of Business, 2010.

I hold a Project Management Professional designation – PMP – 1391810 – 2011.

I have been actively involved in all aspects of mineral exploration since 1980 in the Province of British Columbia.

I have managed staking and exploration programs since 1980 on my own mineral tenures as well as for tenures held by both private and publicly-held junior exploration companies.

My mineral exploration experience includes staking, prospecting, trenching, trench mapping, line cutting and grid construction, geochemical surveys, geophysical surveys, diamond drilling supervision and general exploration program supervision.

SIGNED

KENNETH C. ELLERBECK

KEN ELLERBECK

March 26, 2015

Page **25** of **33**

LIST OF SELECTED REFERENCES

BC Geological Survey, Ministry of Energy, Mines & Petroleum Resources – MINFILE: 092ISE107, MINFILE 092ISE022

British Columbia Survey Branch, The Map Place.

LD PROPERTY Geological Report with Interpretation of IP Geophysical Survey, 92I/02 UTM 619000E; 5559000N (UTM ZONE 10; NAD 83), Prepared for Navigo Ventures Inc.,

Owner and Operator, Event # 4825543, Locke B. Goldsmith, P.Eng., P.Geo. Consulting Geologist, July 2, 2010, Revised October 6, 2011.

Structural Analysis Report on the Comstock Claims, Ken Ellerbeck Owner, July 4, 2013. Laurence Sookochoff, P. Eng.

Tony Barresi, August 2008, Rock Geochemistry on the Iron Mountain Mineral Claims, Nicola Mining Division, B.C. Pembrook Mining Corp.

Addie, L., 2002. Report on till geochemistry, LD property, LD group. Assessment report # 26766.

Boronowski, A, and Hendrickson, G., 1984. Geochemical and geophysical assessment report on the Diane group. Private report for Kidd Creek Mines Ltd. Assessment report # 13114.

Cavey, G., Lebel, J.L., P.Eng., amd Jerema, M., 1986. Report on detailed geological, geochemical, and geophysical surveys on the Stirling group, Diane 1-5 mineral claims, Nicola Mining Division,

Merritt, B.C. Private report for International Maple Leaf Resource Corporation. Assessment report # 16058A and B.

Christopher, P. A., P.Eng., 1989. Geochemical, geological, geophysical, and diamond drilling report on the Iron Mountain property, Merritt Area, B.C. Private report for Golden Dynasty Resources Ltd. Assessment report # 18888.

Crooker, G. F., 1987. Geochemical and geophysical assessment report on the Iron Mountain property, Nicola Mining Division, Merritt area, B.C. Private report for Golden Dynasty Resources Ltd. Assessment report # 16817.

Howell, W. A., 1981. Iron Mountain project M491, 1980 report, geological and geochemical surveys on the Gyprock group of mineral claims, Nicola Mining Division. Private report for Chevron Standard Limited. Assessment report # 9018.

Krueckl, G.P., P.Eng., 1986. Assessment report on work carried out on the SS claim, Merritt B.C.

Private report for Tamara Resources Inc. Assessment report # 15100.

Mark, D. G., P.Geo, 2009. Exploration report on 2007 IP and resistivity surveys and a 2008 MMI soil geochemistry survey, LD property, Iron Mountain, Merritt area, Nicola Mining Division, B.C.

McMillan, W. J., 1979. Nicola Project, Merritt area. In Geological Fieldwork 1978. MEMP Paper 1979-1, pp 41-46.

McMillan, W. J., 1981. Nicola project, Merritt area. B.C. MEMP preliminary map 47.

Nelles, D. M., 1988. Diamond drilling report on the Stirling group (Diane 1-5 mineral claims, Nicola Mining Division, B.C. Private report for Merlin Resources Inc. Assessment report # 17721.

Preto, V. A., 1975. Geology of the central part of the Nicola Group, British Columbia.

B.C. Ministry of Mines & Pet. Res., Preliminary Map 18.

Price, B. J., P.Geo., 2006. Geological and assessment report, 2005 work program, Iron 1 mineral

claims, Iron Mountain, Merritt, B.C., Nicola Mining Division. Private report for Del Exploration Ltd. Assessment report # 27926.

Reynolds, P., P.Geo., 2002. Geological report on the Iron Property, Nicola Mining Division, B.C.

Private report for Nubio Ventures Inc. Assessment report # 26878.

Richards, G.G., and Howell, W.A., 1981. Geochemical and geological report on a portion of the Stud and Four mineral claims in the Nicola Mining Division. Private report for G.G. Richards and K. W. Livingstone. Assessment report # 10977.

Map 886 A, Nicola, (Geol.) Sc. Accomp. Memoir 249, Geol. Survey of Canada (1948). BC Geological Survey, Ministry of Energy, Mines & Petroleum Resources – MINFILE: 092ISE107

LIST OF SOFTWARE PROGRAMS USED

ADOBE PHOTOSHOP 7.0
PAINT for WINDOWS
ARIS MAPBUILDER – Map Data downloads
Imap BC – Map Data downloads
MtOnline - MINFILE downloads.

APPENDIX

SAMPLE

PREPARATION AND METHOD OF ANALYSIS

KEN ELLERBECK

March 26, 2015

Page 28 of 33

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: KEN ELLERBECK **255 WEST BATTLE STREET** KAMLOOPS BC V2C 1G8

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 8-MAR-2015 This copy reported on 9-MAR-2015 Account: ELLERK

CERTIFICATE KL15026600

Project: COQ Samples

This report is for 4 Rock samples submitted to our lab in Kamloops, BC, Canada on 23-FEB-2015.

The following have access to data associated with this certificate: KEN ELLERBECK

_	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% < 2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
Cu-OG46	Ore Grade Cu - Aqua Regia	VARIABLE
Au-AA23	Au 30g FA-AA finish	AAS

To: KEN ELLERBECK ATTN: KEN ELLERBECK 255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

LD-COMSTOCK CLAIM GROUP

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

KA

To: KEN ELLERBECK 255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8-MAR-2015 Account: ELLERK

Project: COQ Samples

CERTIFICATE OF ANALTSIS RETSUEDOU	CERTIFICAT	E OF	ANALYSIS	KL15026600
-----------------------------------	------------	------	-----------------	------------

		APPTIFICATE:		
		CERTIFICATE COM	MMENTS	
		LABOR	ATORY ADDRESSES	
	Processed at ALS Kamloo	ops located at 2953 Shuswap Drive, Ka	amloops, BC, Canada.	
Applies to Method:	CRU-31	CRU-QC	LOG-22	PUL-31
	PUL-QC	SPL-21	WEI-21	
		uver located at 2103 Dollarton Hwy, No		
Applies to Method:	Au-AA23	Cu-OG46	ME-ICP41	ME-OG46

APPENDIX 2

ASSAY RESULTS

KEN ELLERBECK

March 26, 2015

Page **30** of **33**

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KEN ELLERBECK 255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8 Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 8-MAR-2015 Account: ELLERK

KL15026600

Project: COQ Samples CERTIFICATE OF ANALYSIS

											<i></i>	. ,	- 1 0 10			
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 8 ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
COQ-2 657771 55469 COQ-4 657767 55469		1.03 0.23	0.115 0.321	0.8 2.4	0.08 0.95	<2 <2	<10 <10	80 280	<0.5 <0.5	7 <2	0.03	<0.5 <0.5	17 14	15 7	26 >10000	4.36 4.54
COQ-6 657755 55469		0.55	0.099	3.0	0.28	<2	<10	70	<0.5	<2	0.06	< 0.5	19	4	117	3.59
COQ-7 657779 55469		0.97	0.005	8.0	1.10	<2	<10	110	<0.5	2	4.43	3.3	29	3	532	3.97

KEN ELLERBECK

March 26, 2015

Page **31** of **33**

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KEN ELLERBECK 255 WEST BATTLE STREET KAMLOOPS BC V2C 1G8

Page: 2 - B Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 8-MAR-2015
Account: ELLERK

Project: COQ Samples

Minerals							CERTIFICATE OF ANALYSIS KL150266						26600	00		
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP4 Sr ppm 1
COQ-2 657771 5546; COQ-4 657767 5546; COQ-6 657755 5546; COQ-7 657779 5546;	944 940	<10 <10 <10 <10	<1 <1 <1 <1	0.02 0.12 0.06 0.16	<10 <10 10 10	0.01 0.66 0.05 0.38	48 152 46 780	7 2 10 4	0.06 0.07 0.10 0.04	2 4 2 6	230 510 310 1320	2 <2 109 67	0.18 0.78 0.07 0.02	<2 4 3 3	<1 4 2 14	40 16 11 25

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: KEN ELLERBECK **255 WEST BATTLE STREET** KAMLOOPS BC V2C 1G8

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 8-MAR-2015 Account: ELLERK

CERTIFICATE OF ANALYSIS KL15026600

Project: COQ Samples

									U	ERTIFICATE OF ANALYSIS	KL15026600
Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Cu-OG46 Cu % 0,001		
COQ-2 657771 55469 COQ-4 657767 55469 COQ-6 657755 55469 COQ-7 657779 55469	44	<20 <20 <20 <20	<0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10	<10 <10 <10 <10	8 26 19 33	<10 <10 <10 <10	5 9 12 200	1.800		

Page **32** of **33**

KEN ELLERBECK

March 26, 2015