

Ministry of Energy and Mines

BC Geological Survey

Assessment Report Title Page and Summary

TYPE OF REPO

TYPE OF REPORT [type of survey(s)]: Work Assessment Report	TOTAL COST: \$19,167.77
AUTHOR(S): Kristian L. Whitehead	SIGNATURE(S): Kristian L. Whitehead
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-10-216	YEAR OF WORK: 2015
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5552963, 5552953, 5559787
PROPERTY NAME: Frasergold	
CLAIM NAME(S) (on which the work was done): 204214 204347 2043	48 204887 204896 378209 402366 402367 405520
405682 413226 517995 517996 524992 544763 544765 54476	7 544769 547367 547369 547372 547374 548514
COMMODITIES SOUGHT: Gold, Silver & Copper	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:	
MINING DIVISION: Cariboo	NTS/BCGS:
LATITUDE: 52 ° 17 '30.16 " LONGITUDE: 120	0
OWNER(S): 1) Eureka Resources	2)
MAILING ADDRESS: 355 Burrard Street, Vancouver, BC, V6C 2G8	P
OPERATOR(S) [who paid for the work]: 1) Same as above	2)
MAILING ADDRESS: Same as above	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Orogenic, sedimentary hosted gold system & porphyry copper,	
-	
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT R	EPORT NUMBERS:

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil 71 + 6		204214, 37829	19,167.47
Silt			
Rock			
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
			¥
Other			
		TOTAL COST:	\$19,167.77

Regional Geochemical Sampling Program Assessment Report for Spring 2015, Frasergold Property, Williams Lake Area, British Columbia

BC Geological Survey Assessment Report 35521

Prepared For:
Eureka Resources
355 Burrard Street
Vancouver, British Columbia
V6C 2G8

Event Numbers: 5552963 / 5552953 / 5559787 Mine Permit No: MX-10-216

Cariboo Mining Division, British Columbia
Property location approximately 50 km east of Horsefly, BC, 100 km east of William Lake, BC, & 230 km southeast of Prince George, BC.

NTS Map Sheet 093A02, 07 UTM Coordinates NAD 1983, Zone 10N 52° 19′ 06″ North Latitude and 120° 35′ 25″ West Longitude

Dates of Work: April 26 - May 15, 2015

Operator: Eureka Resources Inc.

Owner of Claims: Eureka Resources Inc.

Prepared by: Kristian Whitehead, BSc., P.Geo., Consulting Geologist for Eureka Resources Inc.

Supervised by: Lawrence O'Neil, Director, Eureka Resources Inc.

Date Submitted: June 23rd, 2015

BC Geological Survey Assessment Report 35521

Table of Contents

		Page
1.	Introduction, Property Location, Access, Property Agreements and Mineral Claims Introduction	3
	Property Location	
	Access	
_	Property Agreements and Mineral Claims	_
2.		5
	History, Economic and General Assessment	
3.	Adjacent Properties Geological, Structural Description and Deposit Model of Project Area	8
٥.	Geological and Structural Description	0
	Geological Model	
4.	-	10
	Objective	
	Work Program Description	
	Summary of Results	
	Sampling Method and Approach	
	Sample Preparation, Analyses and Security	
_	Sampling Procedures and Protocols	24
5. 6.	Assessment Details and Statement of Expenditures Certificate of Author	21 21
o. 7.		21
٠.	bibliography	22
Fig	rures	
1.	Figure 1: Frasergold Property Location Map	3
2.	Figure 2: Frasergold Property Claim Map	4
3.		10
4.		14
5.		15
6. 7	1 1	16
7.	Figure 7: 18 PPM Extension Grid, Gold & Copper Assay Results Maps	17
Tal	bles	
1.	Table 1: Frasergold Property Claims List	5
2.	Table 2: Spring 2015 Statement of Expenditures	21
Ар	pendixes	
1.	Appendix A: Regional Sample Locations and Au, Ag & Cu Assay Values	23
2.	Appendix B: Regional Sampling Grid Maps with Au and Cu Assay Values	26
3.	Appendix C: Regional Sampling Program Assay Certificates	32

1. Introduction, Property Location, Access, Property Agreements and Mineral Claims

Introduction

Planning for the spring 2015 geological exploration program began in April with compiling of digital data collected from the previous 2007, 2008 and 2011 exploration years and combining it with previous historical data into one central database. The spring 2015 exploration field season began on April 26th and was concluded April 29th, with remaining data compilation and assay evaluation office work ongoing through to mid-May. The field season included 77 soil samples over two main locations on the property. Post field season work included data compilation, assay and geological interpretation and planning for future programs.

This report summarizes the entirety of the spring 2015 Frasergold exploration program along with the compilation work conducted and displays the results of such work.

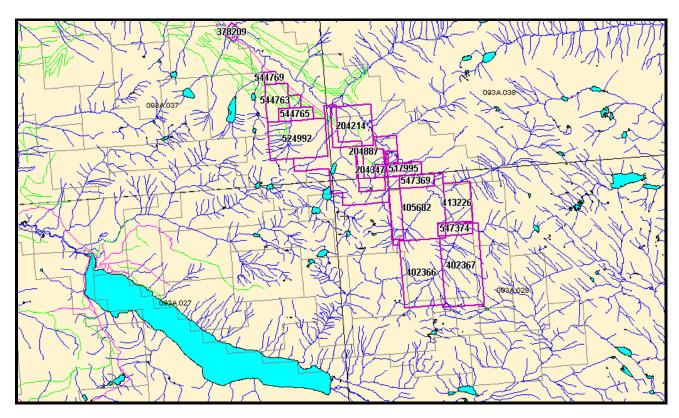
All full size maps pertaining to this report are contained within sleeves in the appendices of this report.

Property Location

The Frasergold Property claims are located approximately 50 kilometers east of the village of Horsefly, BC and 100 kilometers east northeast of city of Williams Lake, BC located on NTS map sheets 093A02, 07 at approximately 52° 19′ 06″ North latitude and 120° 35′ 25″ West longitude. The property outlined for assessment comprises 23 contiguous quartz mining claims covering approximately 3,360.07 hectares within the Mackay River valley, a tributary to the Horsefly River.

Access

The property is road accessible by a series of paved and gravel surfaced roads that lead east northeast from Williams Lake to the village of Horsefly and along the Horsefly River to Mackay River. Recent logging activities have provided a series of tracks that provide good access to most of the exploration areas on the property.


Figure 1. Property Location

Property Agreements and Mineral Claims

There are no currently existing agreements in place with the below listed claims.

Figure 2 Frasergold Property Claim Map

The claims and registered owners are listed in Table 1.

Table 1 Frasergold Claims

Tenure Number	Claim Name	Owner	Map Number	Issue Date	Good To Date	Status	Area (ha)
204214	MAC	107887 (100%)	093A038	1979/oct/19	2016/Oct/15	GOOD	225.00
204347	KAY #10	107887 (100%)	093A028	1980/sep/25	2016/Oct/15	GOOD	150.00
204348	KAY #11	107887 (100%)	093A038	1980/sep/25	2016/Oct/15	GOOD	50.00
204887	MAC 9 FR.	107887 (100%)	093A038	1984/jul/16	2016/Oct/15	GOOD	25.00
204896	MAC 11 FR	107887 (100%)	093A038	1984/jul/27	2016/Oct/15	GOOD	25.00
378209	L-1	107887 (100%)	093A037	2000/jun/18	2018/aug/30	GOOD	25.00
402366	KAY #10	107887 (100%)	093A028	2003/may/09	2016/Oct/15	GOOD	375.00
402367	KAY #11	107887 (100%)	093A028	2003/may/09	2016/Oct/15	GOOD	450.00
405520	J#1	107887 (100%)	093A038	2003/oct/04	2016/Oct/15	GOOD	100.00
405682	KAY #9	107887 (100%)	093A038	2003/sep/26	2016/Oct/15	GOOD	500.00
413226	J#2	107887 (100%)	093A028	2004/aug/17	2016/Oct/15	GOOD	150.00
517995	NUGGET	107887 (100%)	093A	2005/jul/18	2016/Oct/15	GOOD	59.31
517996	IMPERIAL	107887 (100%)	093A	2005/jul/18	2016/Oct/15	GOOD	494.31
524992	EUREKA	107887 (100%)	093A	2006/jan/10	2016/Oct/15	GOOD	296.52
544763	EUREKA	107887 (100%)	093A	2006/nov/01	2016/Oct/15	GOOD	98.81
544765	MISSING	107887 (100%)	093A	2006/nov/01	2016/Oct/15	GOOD	59.29
544767	ADD ON	107887 (100%)	093A	2006/nov/01	2016/Oct/15	GOOD	19.76
544769	ANOTHER	107887 (100%)	093A	2006/nov/01	2016/Oct/15	GOOD	19.76
547367	H#1	107887 (100%)	093A	2006/dec/14	2016/Oct/15	GOOD	19.77
547369	H#2	107887 (100%)	093A	2006/dec/14	2016/Oct/15	GOOD	59.32
547372	H#3	107887 (100%)	093A	2006/dec/14	2016/Oct/15	GOOD	79.11
547374	H#4	107887 (100%)	093A	2006/dec/14	2016/Oct/15	GOOD	59.34
548514	EUR #1	107887 (100%)	093A	2007/jan/03	2016/Oct/15	GOOD	19.77

2. History, Economic and General Assessment, and Adjacent Properties

Most of the following information was derived from technical reports supplied by Hawthorne Gold Corporation, including the March 2007 and January 2008 NI 43-101 reports.

History, Economic and General Assessment

The first record of work being conducted in the vicinity of the Frasergold property was in the late 1970's by Clifford E. Gunn who prospected the area after researching historic references to the placer gold potential of the region. During 1978 and 1979 he staked claims and prospected the area to cover a panned gold anomaly discovered in Frasergold Creek, from 1980 to 1982 the ground was optioned by Keron Holdings Ltd. and NCL Resources Ltd. A geology map was produced after preliminary soil and rock geochemical surveys were completed over the property, with results revealing a 10 kilometer long zone containing anomalous gold values from soil samples that was suspected to have a stratigraphic control.

In 1983 Eureka acquired the property and optioned it to Amoco Canada Petroleum Co. Ltd. ("Amoco"), during 1983 and 1984 Amoco collected rock and soil geochemical samples and conducted limited electromagnetic and magnetic surveys. Amoco also drilled 14 diamond drill holes totaling 4,519 meters, with 12 of the drill holes producing coarse visible gold. Anomalous intersections had values ranging from 0.023 oz Au /t over 7.5 meters to 0.342 oz Au /t over 1.5 meters, Amoco terminated the option agreement at the end of these programs and returned the property to Eureka.

Eureka continued exploring the Frasergold property in 1985 and 1986 and completed further soil and rock chip geochemical sampling, trenching and bulk sampling, reverse circulation and diamond drilling, metallurgical testing and an I.P. survey. Four holes totaling 406.5 meters were completed by reverse circulation drilling, and eighteen diamond drill holes, totaling 2,021 meters were completed in three areas. Twelve of the 18 holes had sections with visible gold and anomalous values ranged from 0.057 oz/t over 39.0 meters (hole 86-2) to 1.311 oz Au /t over 1.5 meters (hole 86-18).

A surface bulk sampling program was completed in 1985 by selecting eight sites for excavation. A total of 56 samples were collected and analyzed for gold content by fire assay. One sample, 86-12-2A from the Jay Zone, was submitted to Coastech Research Inc. who milled the material and completed cyanidation testing on the sample. Results from the cyanidation work were compared to the standard fire assay analyses. The mean fire assay (FA) values from the 56 samples varied from 0.06 oz Au/t to 0.128 oz Au/t. Coastech split bulk sample 86-12-2A into 24 composites and completed cyanidation leach metallurgical work on the samples. Leishman and Campbell (1986) report that the bulk sample FA assay results varied from 0.150 oz Au/t to 1.021 oz Au/t, with a weighted average of 0.479 oz Au/t. The gold content of bulk sample 86-12-2A was determined to be 0.137 oz Au/t (Marchant, 1985).

Eureka constructed a core storage facility to securely store all core from the 1986 and previous programs. The core storage building was located at a logging camp on the Horsefly River at the junction of the Horsefly River road and the road to Crooked Lake.

In 1987 Southlands Mining Corporation ("Southlands") undertook an option on the Frasergold property, with Eureka as operator. Southlands constructed and sampled eight trenches totaling 660 meters, and completed 21 reverse circulation holes totaling 1,710 meters.

In late 1987, Southlands optioned a portion of their interest to Sirius Resources Corp. ("Sirius"). Sirius completed 17 diamond drill holes totaling 1,536 meters, drilled 37 reverse circulation holes totaling 2,456 meters, and excavated 184 meters of underground workings to provide 524 tonnes of material for bulk sampling.

In the fall of 1988 Sirius completed work in the Eureka Peak zone, collecting 478 soil samples over a closely spaced grid, collecting 27 rock chip samples from hand trenches and drilling six diamond drill holes totaling 862 meters producing varying anomalous gold assay results.

In August 1989 a legal dispute between Eureka and Southlands over the validity of the option and joint venture agreement was resolved. During September, 1989, Eureka completed a program of underground channel sampling (284 samples), muck sampling (74 samples) from untested rounds, drill core sampling (297 samples) and relogging and geological mapping of underground workings.

In 1990, Eureka entered into a joint venture agreement with Asarco Company of Canada Ltd. (Asarco). During the period 1990 and 1991, Asarco drilled 25 diamond drill holes totaling 4,687.2 meters, and 156

reverse circulation holes totaling 15,720 meters. Four 1.25 ton bulk samples were collected in 1990 for metallurgical testing by Bacon, Donaldson and Associates Ltd. The average composite grade of these bulks samples was 0.068 oz Au/t while preliminary tests indicated gold recoveries ranging from 87 to 92%.

In 1991 the underground workings were lengthened by 114 meters, these workings produced 1,591 tons of material that was divided into nine lots for off-site milling. The calculated average grade of this material was 0.027 oz Au/t. By utilizing the drill hole and underground sample data K.V. Campbell, W. Gruenwald, L. Walters and M. Schatten prepared a 1991 report for Asarco Inc. and Eureka Resources Inc. which stated there is an "in situ resource" of 3,396,970 tons at an average grade of 0.05 oz Au/t within the Main Zone portion of the Frasergold property. The figures presented above do not conform to currently accepted CIM standards or NI43-101 Standards of Disclosure for mineral exploration projects, and should not be relied upon. Campbell et al (1991) emphasize that this is not an estimate of "ore reserves", which require detailed engineering and cost estimation. The exploration work completed to provide data for the above resource estimation was conducted using then acceptable industry best practices by professional people and recognized laboratories. This work would require confirmation testing to determine the validity of the results reported. However the work provides relevant data on the Frasergold project and is provided from sources believed to be reliable. The figures are presented here for historical context only and have not been relied upon by the authors as the sole means of determining the merits of the Frasergold property.

In January, 1991, the mining, geological and geotechnical engineering firm James Askew Associates, Inc. of Englewood, Colorado was commissioned by Asarco to conduct a pre-feasibility study of the Frasergold project. This study does not conform to the current usage of a pre-feasibility study as defined by NI43-101, and should not be relied upon. The Askew report does not take into account economic, mining, metallurgical, environmental, social or governmental factors. As part of this study, Askew completed "In Situ Reserves/Resources" for the project using hand drawn polygonal methods. The basis for drawing these mineralized envelopes was data collected by Asarco and others which is believed to be reliable. Askew used a 0.03 oz Au/t cutoff with a minimum true width thickness of three meters. Assays greater than 0.60 oz Au/t were cut to 0.60 oz Au/t. Zones of gold mineralization were extended half way to the adjacent section and were extended 75 meters downdip. A specific gravity of 2.7 was used in the calculations.

Based on these parameters, Askew (1991) summarized the gold mineralization at the Frasergold property as 6,612,675 tons of mineralized material at an average grade of 0.055 oz Au/t to represent 362,825 ounces of gold. Askew (1991) does not categorize the mineralized material due to "the comparatively small amount of geological and assay data for such a long strike length". The volume and gold content estimates used by Askew (1991) do not conform to the "CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines", issued in 2000 and modified with adoption of the "CIM Definition Standards – For Mineral Resources and Mineral Reserves" in 2005. The resource estimate provided by Askew (1991) does not use CIM compliant calculations and therefore do not fulfill NI 43-101 reporting standards, and should not be relied upon. However the Askew (1991) report is relevant to the current review of the Frasergold property as it provides an indication of the scope and depth of exploration conducted on the project.

A Qualified Person has not conducted sufficient work to classify the above noted historical estimate as current mineral resources, the authors and Hawthorne are not treating the historic estimate as current mineral resources and the historic resources should not be relied upon.

In 2007 Hawthorne conducted a major exploration program on the property. The 2007 drill program was laid out to test four previously defined zones of interest; including the Main Zone, the Grouse Creek West Zone, the Grouse Creek East Zone and the Frasergold Zone. A total of 16 HQ core size diamond drill holes totaling 3,615 meters and were drilled over a period of 3 ½ months, with an average depth of 226 meters.

Between 1980 and 2007 it is estimated that \$11.26 million has been expended on the exploration of the Frasergold property. A total of 39,582 meters of drilling in 344 holes has been completed on the property, along with 298 meters of underground drifts to provide access for bulk sampling and metallurgical testing.

The Frasergold 2008 exploration program was initiated on May 15th, 2008 with the crew mobilizing into camp and preparing for the drill program. SCS Drilling Ltd. of Merrit, BC mobilized two diamond drills onto the property on May 28th and began drilling shortly thereafter. Drilling utilizing two Boyles B15 drills continued until the July 17th whereby only a single drilled continued until completing the program on Aug 6th. SCS demobilized both drills and ancillary equipment on August 8th and was completed the same day. Hawthorne Gold geological crew remained in camp and continue to process to remaining unprocessed core. In addition to core logging duties the crew participated in several regional programs including soil sampling and mapping. The geological crew field season was concluded on August 24th with only a few crew members remaining to begin preparing the Atco trailer camp to be demobilized. Demobilization of the camp supplies and inventory as well as Atco trailers was concluded on September 26th. Both 2007 and 2008 split core was labelled and stacked within the large metal storage shed on the property and secured.

Lastly, in 2011 Teslin Resources conducted a modest exploration program which began on October 10th and was concluded October 21st, with data compilation and assay evaluation office work ongoing through to the end of December. The field season included 565 soil samples, 7 rock grab samples and 6 silt samples over three main locations on the property. Post field season work included data compilation, assay and geological interpretation and planning for future programs.

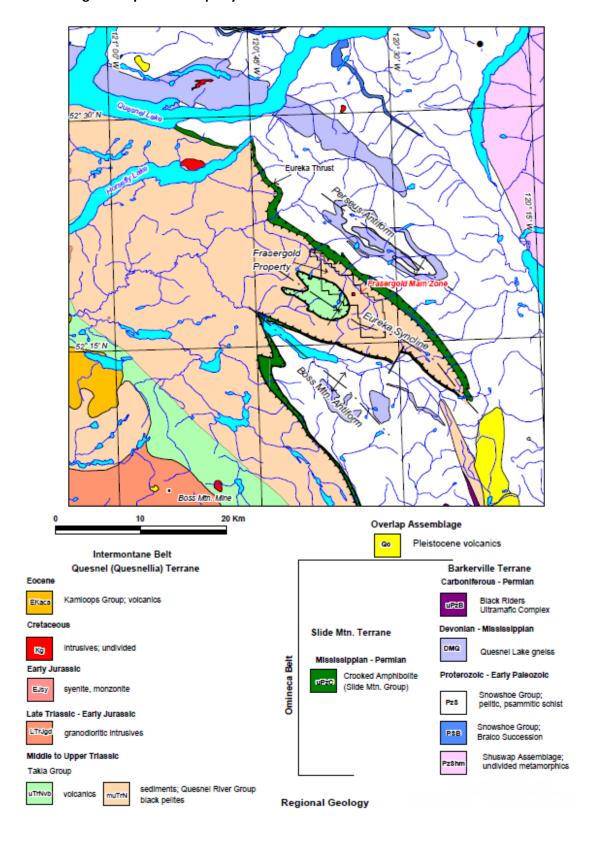
Adjacent Properties

There are no mines in the immediate vicinity of the Frasergold Property. The closest operating mine is Imperial Metal Corporation's Mount Polley copper-gold porphyry deposit located 30 kilometers to the northwest. Numerous gold and copper prospects are located throughout the region, including the Woodjam property 15 kilometers south of the village of Horsefly, Spanish Mountain 40 kilometers to the north by the town of Likely and QR past producing mine site 50 kilometers northwest.

3. Geological, Structural Description and Deposit Model of Project Area

Geological and Structural Description

The Frasergold property straddles the boundary between two major tectonic belts of the Canadian Cordillera; the Omineca Tectonic belt lies on the east side of the property while the Intermontane Belt occupies the west and central portions of the property. Three regional tectonostratigraphic terranes are present; Kootenay, Slide Mountain and Quesnellia terranes. The Slide Mountain and Quesnellia terranes are part of the Intermontane Belt which has been accreted eastward onto the Kootenay terrane of the Omineca Belt. The Eureka Thrust forms the tectonic boundary between these two Belts.


In the project area the Omineca Tectonic Belt is represented by Hadrynian to early Paleozoic quartz-mica schists and gneisses of the Snowshoe Group. These make up part of the Kootenay terrane; pericratonic, intensely deformed, variably metamorphosed rocks which appear to be stratigraphically related to ancestral North America. The Omineca Tectonic Belt is known for its prevalence of gold and tungsten mineral occurrences such as those in the Barkerville gold mining camp to the north of the property. The Quesnellia Terrane is composed of metavolcanic and phyllite rocks of Permian to Jurassic age. Numerous copper and gold deposits occur within this package of rocks, including the Mt. Polley mine 40 kilometres north of Frasergold.

The northwest trending, shallowly plunging, Eureka Syncline and Perseus Anticline are the dominant interpreted structures in the region. Well developed, northeast striking, near vertical extension joints are clearly manifested in the drainage pattern of the Eureka syncline. Towards the nose of the syncline, southeast of the project area, the syncline becomes overturned to the southwest with axial planes dipping steeply northeast, northeast of the MacKay River the northeast limb is also overturned to the southwest, however the syncline is upright in the area of the property. The core of the Eureka Syncline is occupied by Takla Group basic volcanic rocks consisting of basalt, augite porphyry flows, tuffs and volcanic breccias that have been metamorphosed to a low grade. The contact with the underlying sediments of the Quesnel River Group has been interpreted as a fault.

All of the pre-Tertiary rocks in the area are affected by regional dynamothermal metamorphism, with the lowest grades exposed along the Horsefly River road where clastic textures are preserved. In the Eureka Syncline, the metamorphic grade of all units increases towards the Perseus and Boss Mountain anticlines. Large areas reach medium grade amphibolite facies metamorphism and some rocks in the cores of the nearby anticlines reach the kyanite-staurolite-fibrolite zone and are associated with pegmatites. The age of the folding and metamorphism is considered to be Jurassic to early Cretaceous.

The northwest trending MacKay River valley appears to mark a major zone of vertical or near vertical fracturing. At this location the upper Triassic Quesnel River Group is sandwiched between two more competent units; younger intrusives and volcaniclastics to the south and older amphibolites, schists and gneisses to the north and east. Shearing and faulting appears to have been concentrated in the incompetent phyllite units striking along the valley.

General Geological Map of the Property

Geological Model

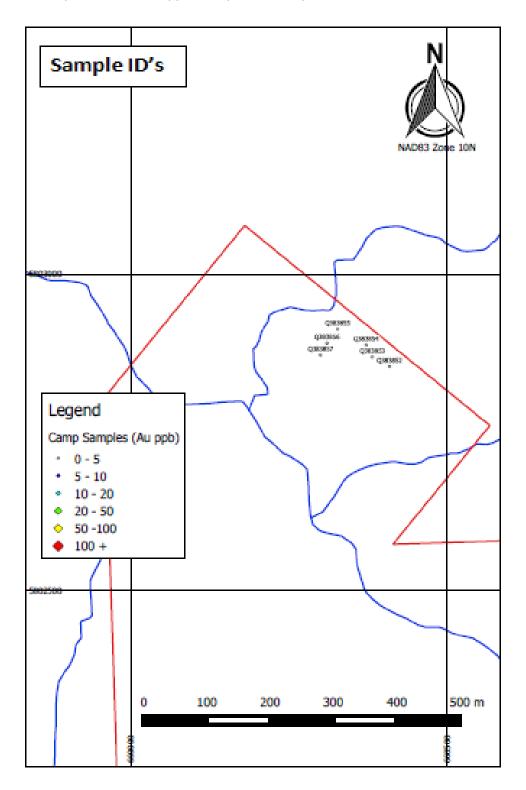
The mineral claims are centred on Eureka Peak and the Eureka Peak syncline. Two styles of gold mineralization are known within this portion of the syncline. The Frasergold gold-quartz zone is hosted within graphite rich (5-40%) phyllitic sediments and is located on the east limb of the syncline, whereas the Eureka Peak gold-sulphide mineralization is found closer to the core of the fold, near the base of volcanics that overlay the sediments. Both styles of gold mineralization fit within the Orogenic Gold model currently being applied to mineralization within the Cariboo Gold Belt. Deposits within the Orogenic Gold model range in size up to multi-million ounce deposits and include such noted examples as McRaes Flat (New Zealand), Paracatu (Brazil) and Sukhoi Log (Russia). The Frasergold zone mineralization appears to fit the orogenic lode-gold deposit type; gold tends to occur in quartz veins with coarse particulate gold occurring in segregations of stringers, veins, boudins and mullions. Gold has also been commonly observed as fine anhedral grains set in quartz often near the margins of veins. The gold also appears to be associated with sulphides, including pyrrhotite, pyrite and minor chalcopyrite and sphalerite. Petrographic studies show that a major part of the gold occurs with medium to coarse grained pyrite and pyrrhotite aggregates throughout the mineralized zone. Overall the sulphide content of the Frasergold zone varies from Tr-12% sulphides, and averaging about 2-3% sulphides. Pervasive low grade gold mineralization is also found within the knotted phyllite strata where quartz is absent, however the gold also appears to be associated with sulphides within the phyllitic strata. In most or all cases the phyllitic metasediments are graphite rich, with Tr-3% chlorite alteration.

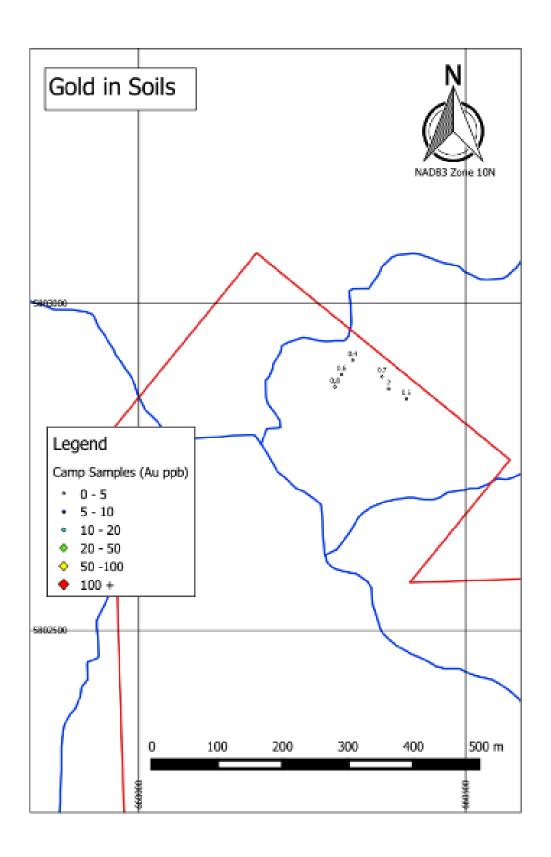
4. Generalized Description of Spring 2015 Exploration Program

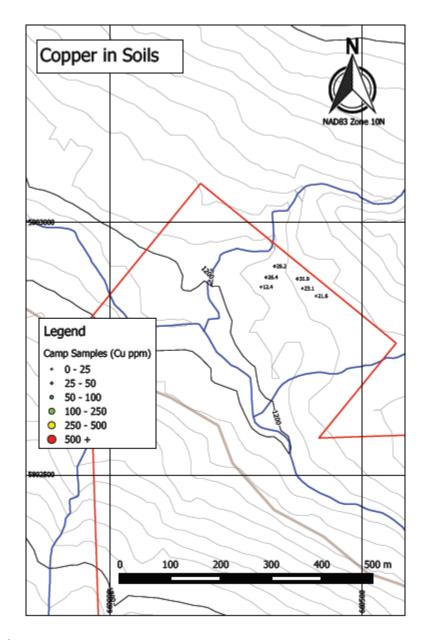
The spring program utilized a Bell 206 helicopter from Highland Helicopters based in William's Lake, BC. The crew was two geologists, and 1 senior field man and a helicopter pilot. The field program was completed in 2 days from April 27 – 28th. Priority was to conduct a soil sampling program extension grid running N-NW of the 18 ppm soil grid to follow up on an anomalous gold and copper trend.

<u>Objective:</u> To assist the planning of an exploration drill program for 2015 summer/fall, an area of the property was selected on the basis it may offer high grade mineralization, adding substantial value to the overall project. The area has been previously drill tested to a very limited extent, and the historical geochemical results for targeting drill holes are considered somewhat unreliable. It was therefore recommended to complete a detailed geochemistry program to evaluate the worth of this target area:

1) 18ppm Au Grid: An 18,000ppb gold soil sample assay value was detected by the Hawthorne crew in 2008/09/11 just northwest of the Main Zone. One hole drilled in 1986 probably was drilled too far down-slope from the bedrock origin of this sample, and consequently only intersected low-grade gold values. A 9.5km grid was recommended in this area, collecting 190 soil samples. The grid area is accessible by road.


Work Program Description:


1) <u>18ppm Extension Grid</u>: 9.5 line km and 190 soil samples proposed.


In total, approximately 4 line kilometers of the 9.5 line kilometers planned were traversed with 71 soil samples collected of the 190 planned due to time and weather constraints. Snow hindered the collection of the entirety of the proposed samples. The 71 samples were collected on claim # 204214.

2) <u>Camp Claim Sampling:</u> Six soil samples were collected on claim # 378209 which is used for camp and core storage. No positive results were derived from these soil samples.

Figure 4 – Camp Grid, Gold & Copper Assay Results Maps

Summary of Results:

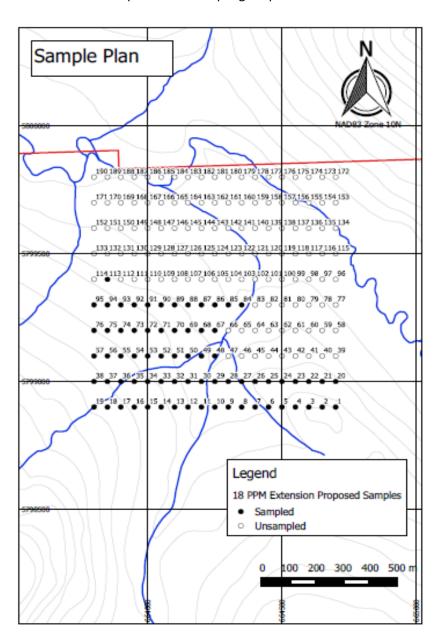
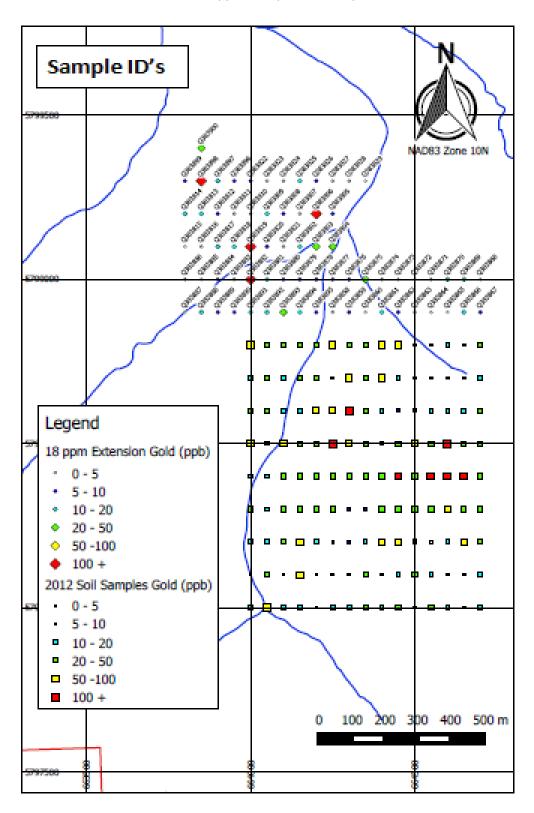
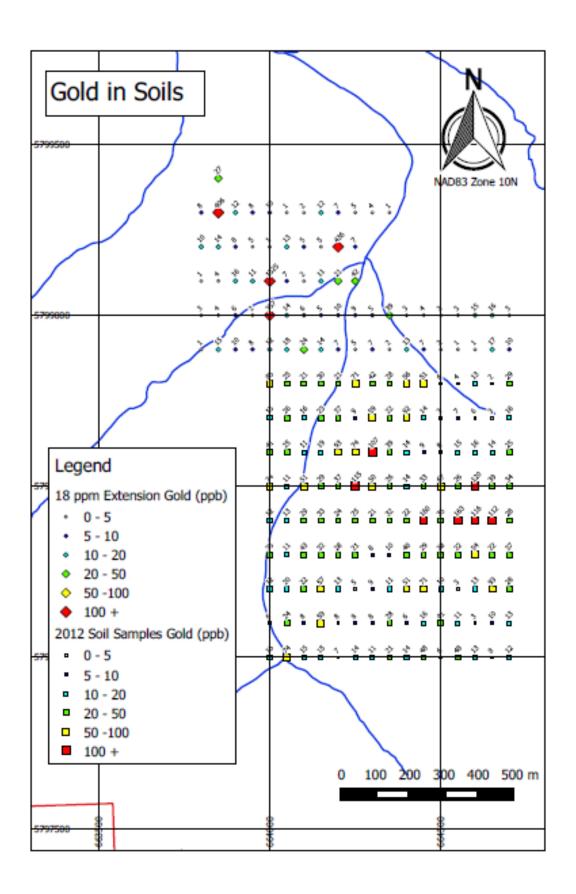
1) 18ppm Extension Grid duplicated the earlier anomaly, however did not provide results of similar magnitude. This can be rationalized by the "nuggety" nature of the gold. The grid area is all underlain by sedimentary rocks of the Quesnel River Group, therefore similar style gold mineralization found in the Main Frasergold resource is anticipated. Two significant gold anomalies were derived from this grid area, with soil values upto 18 ppm Au. These anomalies should be drill tested by at least 4 diamond drill holes. Preliminary field work is required to study the location, orientation and depths of the proposed drill holes.

In summary, a total of 4 drill holes have been proposed to follow up on results of the spring 2015 soil sampling program, each hole to a depth of 250 – 300 meters. This drilling is recommended for the summer / fall 2015 field season, totaling 1,000 meters, or approximately \$250,000.

The geochemical targets on the Eureka Bowl and 18ppm grids to date are certainly worthy of drilling, however the strength and size of the located anomalies cannot be classified as compelling. On the 18ppm grid, anticipated mineralization is expected to be of similar nature and grade as the Frasergold Main Zone. On the Eureka Bowl grid, the anticipated porphyry or replacement style mineralized body on surface would indicate a small deposit (5-10MT). One would therefore anticipate higher grade or a larger deposit at depth.

The 18 ppm extension grid proposed soil sampling map of the Frasergold property is shown in **Figure 3**; this map. All maps contained within this report are in **Appendix A & B** along with the soil grid map and samples collected. Not all samples were collected due to snow and time constraints.

Figure 5 - 18 PPM Extension Grid Proposed Soil Sampling Map

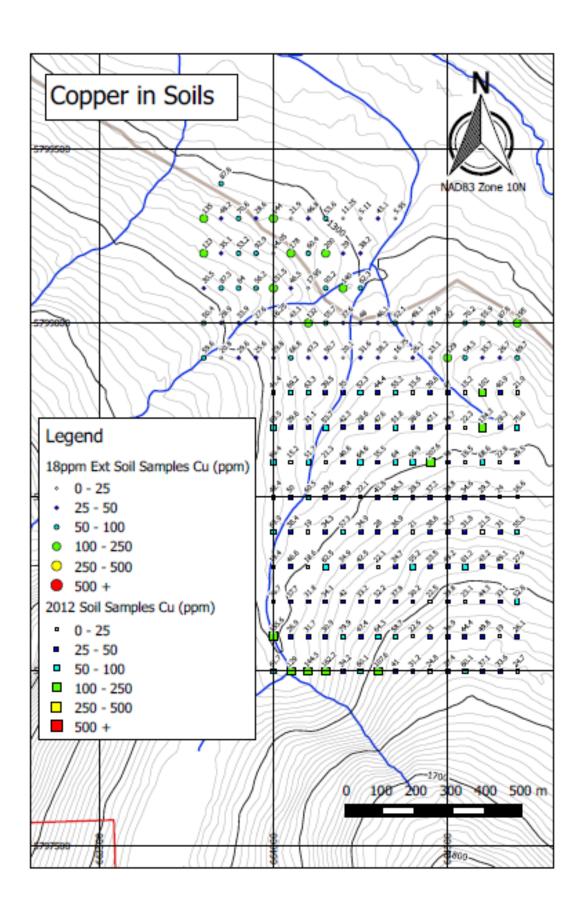

Figure 6 - 18 PPM Extension Grid Collected Soil Sample Map

Figure 7 - 18 PPM Extension Grid, Gold & Copper Assay Results Maps

Appendix A outlines the locations of where all regional samples were collected grouped by sample type. The table also displays the gold, silver and copper assay values for the samples that were submitted for analysis at ALS Global labs located in North Vancouver, BC.

Sampling Method and Approach

The sampling method and approach used by the Eureka Resources exploration team were based on sampling protocols and procedures commensurate with industry standard practice. All samples were collected under the supervision of an experienced Professional Geologist.

Sample Preparation, Analyses and Security

Regional sample preparation program completed in 2008 by Hawthorne included the collection of representative samples and conducting sampling programs according to industry standards. During the field season geologists described rock grab samples, soils and silt samples in as much detail as possible, the sample sites were recorded with GPS tools and flagged. Individual samples were placed in individual poly plastic sample bags along with their corresponding sample tag. Samples were then placed in rice bags with assay instructions, sealed with a tag lock and subsequently transported to the lab preparation facility. All field notes were transferred from paper records to a digital template and reviewed for discrepancies.

Sampling Procedures and Protocols

The surface and underground sampling procedures and protocols were as follows:

- 1) Soils and silts were collected primarily from the B Horizon with approximately 1kg worth of soil material.
- 2) Standard preparation for soils < 1kg
- 3) Dry, manually disaggregate and sieve 100 grams to -80 mesh, discard reject.
- 4) Analyze for gold and multi elements via Aqua Regia digestion ICP-MS analysis
- 5) Import digital data received by ALS Global's analytical lab into Eureka Resources' digital database. No samples bags were reported missing or tampered with and thus all samples were deemed legitimate and accepted.

5. Geochemical Sampling Program - Assessment Details and Statement of Expenditures

Table 2: Spring 2015 Statement of Expenditures

Site	Invoice #		Days	Hrs	Rate	Total	
Infiniti Drilling, Consulting	223	K.Whitehead P. Geo		36.00	81.25	2,925.00	
Pelly River Ventures, Consulting	1228	B.Macdonald, Geologist		1.25	45.00	56.25	
Infiniti Drilling, Consulting	223	B.Ccollum, Soil Sampler	2.0		600.00	1,200.00	
							4,181.25
Off-site	Invoice #		Days	Hrs	Rate	Total	
Infiniti Drilling, Consulting	224	K.Whitehead, P. Geo		27.00	81.25	2,193.75	
Pelly River Ventures, Consulting	1224	B.Macdonald, Geologist		11.00	45.00	495.00	
Infiniti Drilling, Kristian Whitehead, P.Geo	224	Labour, Office	1.0		530.00	530.00	
							3,218.75
Assaying					Rate	Total	
ALS Global Labs assays & processing					Total job	2,347.01	
							2,347.01
Transporation					Rate	Total	
Helicopter	19234	Highland Helicopters			Total job	2,238.53	
Other Transportation (Taxi / Flights)					Total job	1,277.32	
							2,238.53
Accomodation & Food					Rate	Total	
Includes: Coast Hotel, Williams's Lake (1 Ni	ght)				Total job	392.76	
as well as individual hotel and food							392.76
Miscellaneous					Rate	Total	
Supplies, Telephone, Courier, Shippers, etc					Total job	6,139.47	
Field Equipment Rental					Total job	650.00	
							6,789.47
							19,167.77

Total Eureka Resources Expenditure:

\$19, 167.77

6. Certificate of Author

I, Kristian Lorne Whitehead, B.Sc., P.Geo do hereby certify that:

 I am a Consulting Geologist for: Eureka Resources Inc.
 355 Burrard Street Vancouver, British Columbia, V6C 2G8

- 2. I am a graduate of the University of Victoria (B.Sc. Earth and Ocean Science 2004).
- 3. I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (Member # 143255).

- 4. I have practiced my profession in the mineral exploration continuously since April 2002. I have worked as an exploration project geologist with StrataGold Corporation based in Vancouver, BC from April 2003 to February 2008. February 2008 to January 2010 Hawthorne Gold Corporation as a Senior Project Geologist. January 2010 to January 2011 Fire River Gold Corporation as a Senior Project Geologist. January 2011 to May 2011 as a Project Manager for Copper Creek Gold Corporation. May 2011 to November 2011 as a Senior Advisor, Hunter Dickinson Inc., November 2011 to 2013 as VP of Exploration Copper Creek Gold Corporation.
- 5. I have been involved with the exploration of the property that is the subject of the Assessment Report since mid February 2008. During the period of mid February 2008 until current. I oversaw the exploration programs on the property during the exploration season, reviewed and interpreted data, and recommended future plans and budgets for the property. My last visit to the property was on April 27, 2015.
- 6. I have had prior involvement with the property that is subject of the Assessment Report.
- I am responsible for the assessment report titled "Regional Geochemical Sampling Program Assessment Report for Spring 2015 Frasergold Property, Williams Lake Area, British Columbia" and dated May 20th, 2015.
- 8. As of the date of this Certificate, to my knowledge, information and belief, this Assessment Report contains all scientific and technical information that is required to be disclosed to make the assessment report not misleading.
- 9. I am currently independently employed as a professional geologist, and own shares of Eureka Resources Inc.

Dated this 5 day of June , 2015.

"Kristian Whitehead"

Kristian Lorne Whitehead, Bsc., P.Geo.

7. Bibliography

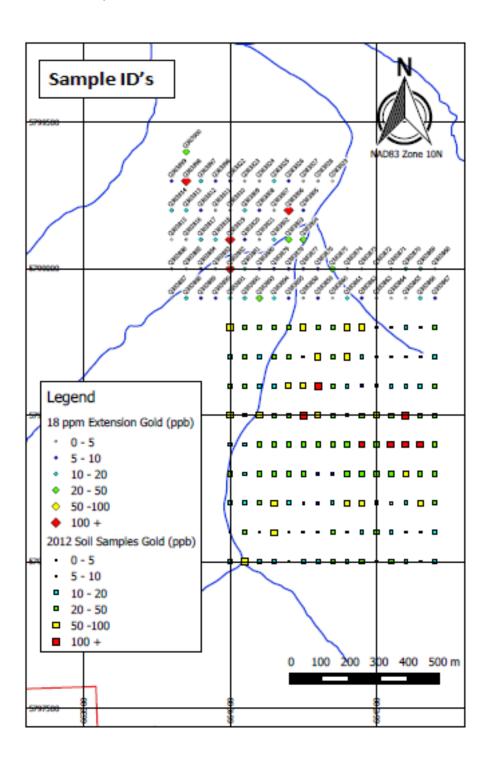
Dave Rhys, Panterra Geoservices inc., Memo to Michael Redfearn, Gordon Addie, Sheri Burt and Sam Slaney regarding Frasergold property field observations and report review, September 10, 2007.

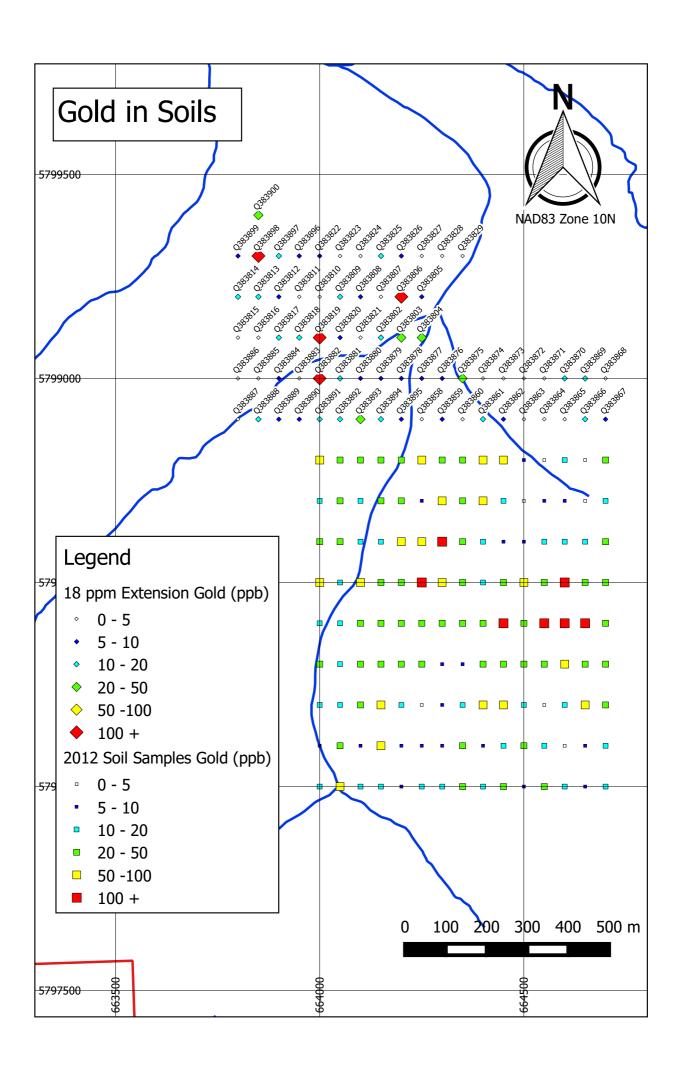
Geoffrey Goodall, Global Geological Services Incorporated, and K.V. Campbell, Earth Resource Surveys Incorporated. NI 43-101 Technical Report SUMMARY REPORT AND EXPLORATION PROPOSAL ON THE FRASERGOLD PROJECT, Cariboo Mining Division, BC, January 29, 2007 amended March 27, 2007.

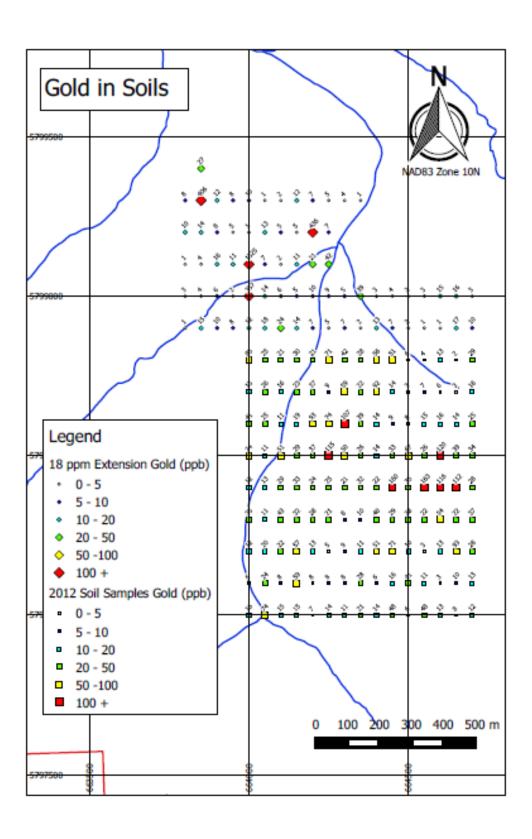
Eureka Resources Inc. website, news releases and property descriptions.

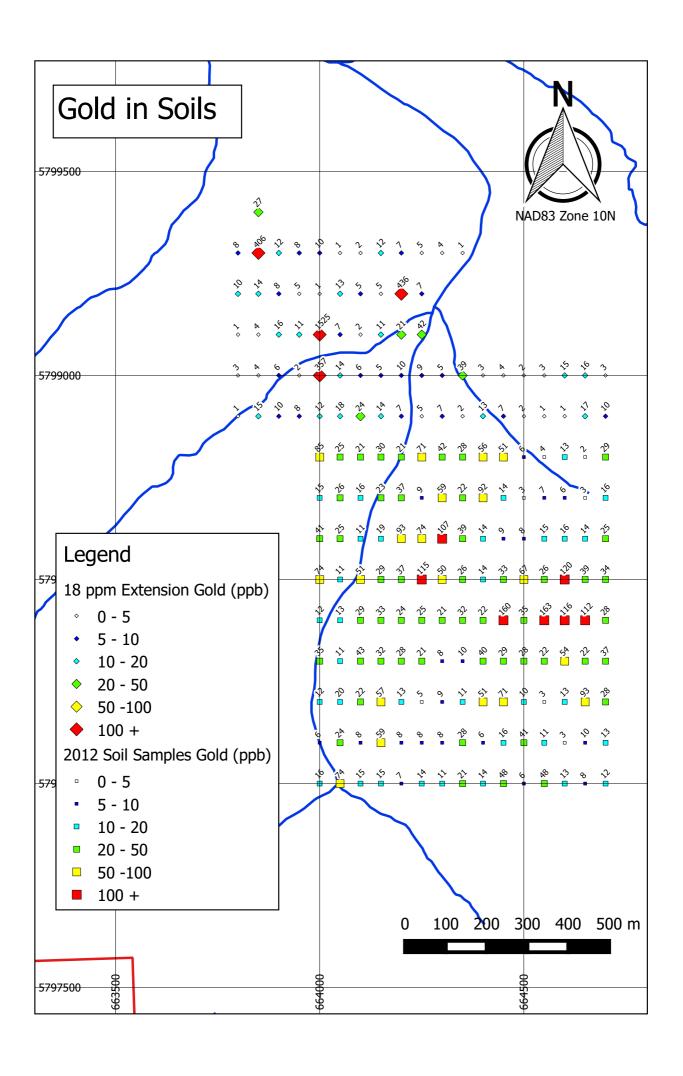
J. Sparling, Hawthorne Gold Corporation, and K.V. Campbell, Earth Resource Surveys Incorporated. NI 43-101 Technical Report SUMMARY REPORT AND EXPLORATION PROPOSAL ON THE FRASERGOLD PROJECT, Cariboo Mining Division, BC, January 31, 2008.

Appendix A- Regional Sample Locations and Au, Ag & Cu Assay Values

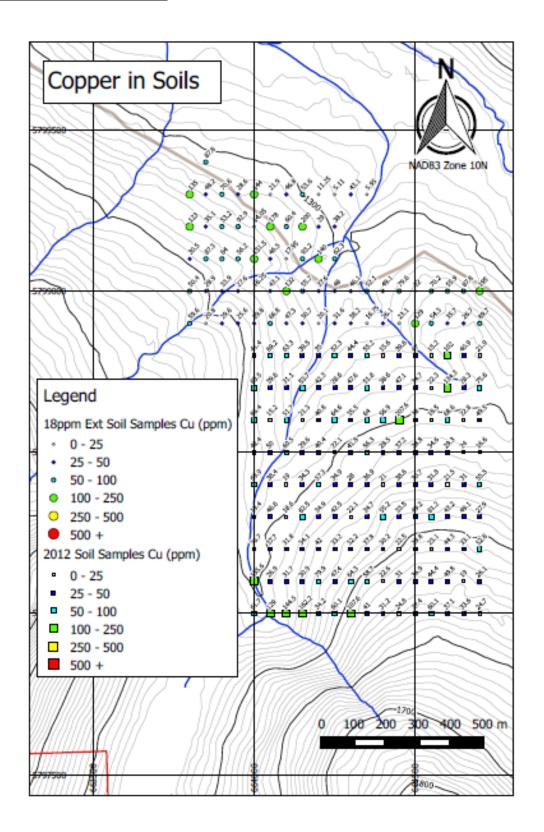

Job	Sample	Sample	Grid	Easting	Northing	Au	Ag	Cu
Number	Assay ID	Number	Gria	NAD83	NAD83	ppm	ppm	ppm
		>0.050		<100				
			Possibly	Anomalous:		<0.100		<150
			Probably	Anomalous:		<0.200		<500
			Definitely	Anomalous:		<0.500		>500
			Strongly	Anomalous:		>0.500		
VA15062445	Q383802	50	18 ppm Extension	664150	5799100	0.011	0.675	93.2
VA15062445	Q383803	49	18 ppm Extension	664200	5799100	0.021	1.070	140.0
VA15062445	Q383804	48	18 ppm Extension	664250	5799100	0.042	0.615	62.3
VA15062445	Q383805	67	18 ppm Extension	664250	5799200	0.007	1.425	38.2
VA15062445	Q383806	68	18 ppm Extension	664200	5799200	0.436	0.329	29.0
VA15062445	Q383807	69	18 ppm Extension	664150	5799200	0.005	0.705	200.0
VA15062445	Q383808	70	18 ppm Extension	664100	5799200	0.005	2.080	60.4
VA15062445	Q383809	71	18 ppm Extension	664050	5799200	0.013	1.215	178.0
VA15062445	Q383810	72	18 ppm Extension	664000	5799200	0.001	0.872	14.1
VA15062445	Q383811	73	18 ppm Extension	663950	5799200	0.005	0.676	92.9
VA15062445	Q383812	74	18 ppm Extension	663900	5799200	0.008	0.500	53.2
VA15062445	Q383813	75	18 ppm Extension	663850	5799200	0.014	0.291	35.1
VA15062445	Q383814	76	18 ppm Extension	663800	5799200	0.010	0.837	123.0
VA15062445	Q383815	57	18 ppm Extension	663800	5799100	0.001	0.164	30.5
VA15062445	Q383816	56	18 ppm Extension	663850	5799100	0.004	0.669	87.3
VA15062445	Q383817	55	18 ppm Extension	663900	5799100	0.016	1.015	64.0
VA15062445	Q383818	54	18 ppm Extension	663950	5799100	0.011	6.100	56.2
VA15062445	Q383819	53	18 ppm Extension	664000	5799100	1.525	11.000	151.5
VA15062445	Q383820	52	18 ppm Extension	664050	5799100	0.007	0.377	46.5
VA15062445	Q383821	51	18 ppm Extension	664100	5799100	0.002	0.992	18.0
VA15062445	Q383822	91	18 ppm Extension	664000	5799300	0.010	1.100	144.0
VA15062445	Q383823	90	18 ppm Extension	664050	5799300	0.001	0.970	21.9
VA15062445	Q383824	89	18 ppm Extension	664100	5799300	0.002	3.510	46.8
VA15062445	Q383825	88	18 ppm Extension	664150	5799300	0.012	0.672	53.6
VA15062445	Q383826	87	18 ppm Extension	664200	5799300	0.007	0.486	11.3

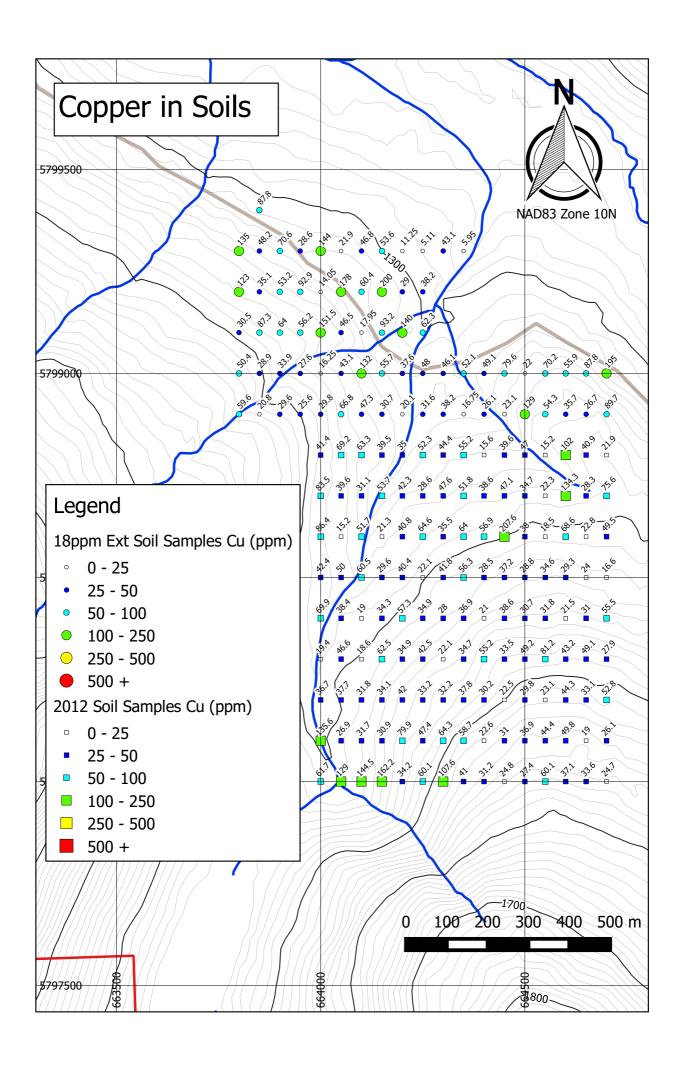

VA15062445	Q383827	86	18 ppm Extension	664250	5799300	0.005	0.563	5.1
VA15062445	Q383828	85	18 ppm Extension	664300	5799300	0.004	0.402	43.1
VA15062445	Q383829	84	18 ppm Extension	664350	5799300	0.001	0.599	6.0
VA15062459	Q383858	10	18 ppm Extension	664250	5798900	0.005	1.445	31.6
VA15062459	Q383859	9	18 ppm Extension	664300	5798900	0.007	0.964	38.2
VA15062459	Q383860	8	18 ppm Extension	664350	5798900	0.002	1.070	16.8
VA15062459	Q383861	7	18 ppm Extension	664400	5798900	0.013	1.155	26.1
VA15062459	Q383862	6	18 ppm Extension	664450	5798900	0.007	1.285	23.1
VA15062459	Q383863	5	18 ppm Extension	664500	5798900	0.002	1.360	129.0
VA15062459	Q383864	4	18 ppm Extension	664550	5798900	0.001	1.575	54.3
VA15062459	Q383865	3	18 ppm Extension	664600	5798900	0.001	6.980	35.7
VA15062459	Q383866	2	18 ppm Extension	664650	5798900	0.017	0.605	26.7
VA15062459	Q383867	1	18 ppm Extension	664700	5798900	0.010	1.570	89.7
VA15062459	Q383868	20	18 ppm Extension	664700	5799000	0.003	1.045	195.0
VA15062459	Q383869	21	18 ppm Extension	664650	5799000	0.016	1.770	87.8
VA15062459	Q383870	22	18 ppm Extension	664600	5799000	0.015	7.960	55.9
VA15062459	Q383871	23	18 ppm Extension	664550	5799000	0.003	1.095	70.2
VA15062459	Q383872	24	18 ppm Extension	664500	5799000	0.002	1.395	22.0
VA15062459	Q383873	25	18 ppm Extension	664450	5799000	0.004	16.250	79.6
VA15062459	Q383874	26	18 ppm Extension	664400	5799000	0.003	5.250	49.1
VA15062459	Q383875	27	18 ppm Extension	664350	5799000	0.039	0.702	52.1
VA15062459	Q383876	28	18 ppm Extension	664300	5799000	0.005	1.945	46.1
VA15062459	Q383877	29	18 ppm Extension	664250	5799000	0.009	1.355	48.0
VA15062459	Q383878	30	18 ppm Extension	664200	5799000	0.010	1.430	37.6
VA15062459	Q383879	31	18 ppm Extension	664150	5799000	0.005	5.330	55.7
VA15062459	Q383880	32	18 ppm Extension	664100	5799000	0.006	3.820	132.0
VA15062459	Q383881	33	18 ppm Extension	664050	5799000	0.014	1.080	43.1
VA15062459	Q383882	34	18 ppm Extension	664000	5799000	0.357	0.604	16.3
VA15062459	Q383883	35	18 ppm Extension	663950	5799000	0.002	1.125	27.6
VA15062459	Q383884	36	18 ppm Extension	663900	5799000	0.006	0.228	33.9
VA15062459	Q383885	37	18 ppm Extension	663850	5799000	0.004	1.210	28.9
VA15062459	Q383886	38	18 ppm Extension	663800	5799000	0.003	0.165	50.4
VA15062459	Q383887	19	18 ppm Extension	663800	5798900	0.001	0.709	59.6
VA15062459	Q383888	18	18 ppm Extension	663850	5798900	0.015	2.520	20.8
VA15062459	Q383889	17	18 ppm Extension	663900	5798900	0.010	0.674	29.6
VA15062459	Q383890	16	18 ppm Extension	663950	5798900	0.008	0.426	25.6
VA15062459	Q383891	15	18 ppm Extension	664000	5798900	0.012	5.260	29.8
VA15062459	Q383892	14	18 ppm Extension	664050	5798900	0.018	2.770	66.8

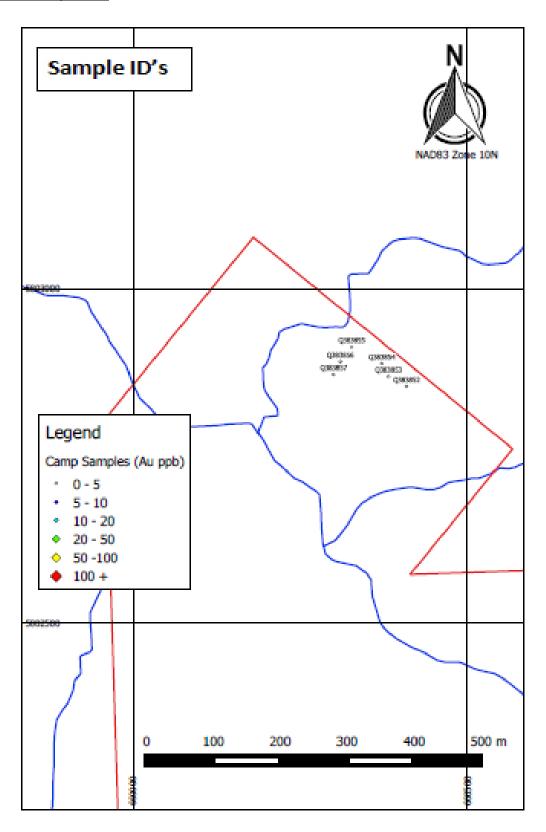

VA15062459	Q383893	13	18 ppm Extension	664100	5798900	0.024	0.221	47.3
VA15062459	Q383894	12	18 ppm Extension	664150	5798900	0.014	0.445	30.7
VA15062459	Q383895	11	18 ppm Extension	664200	5798900	0.007	0.865	20.1
VA15062459	Q383896	92	18 ppm Extension	663950	5799300	0.008	0.868	28.6
VA15062459	Q383897	93	18 ppm Extension	663900	5799300	0.012	1.305	70.6
VA15062459	Q383898	94	18 ppm Extension	663850	5799300	0.406	0.981	48.2
VA15062459	Q383899	95	18 ppm Extension	663800	5799300	0.008	1.500	135.0
VA15062459	Q383900	113	18 ppm Extension	663850	5799400	0.027	1.100	87.8
VA15062459	Q383852	1	Camp1	660409	5802854	0.001	0.374	21.6
VA15062459	Q383853	2	Camp2	660382	5802869	0.002	0.543	23.1
VA15062459	Q383854	3	Camp3	660372	5802888	0.001	0.635	31.9
VA15062459	Q383855	4	Camp4	660327	5802913	0.000	0.386	26.2
VA15062459	Q383856	5	Camp5	660310	5802891	0.001	0.345	26.4
VA15062459	Q383857	6	Camp6	660300	5802872	0.001	0.785	12.4


Appendix B: Regional Sampling Grid Maps with Au and Cu Assay Values

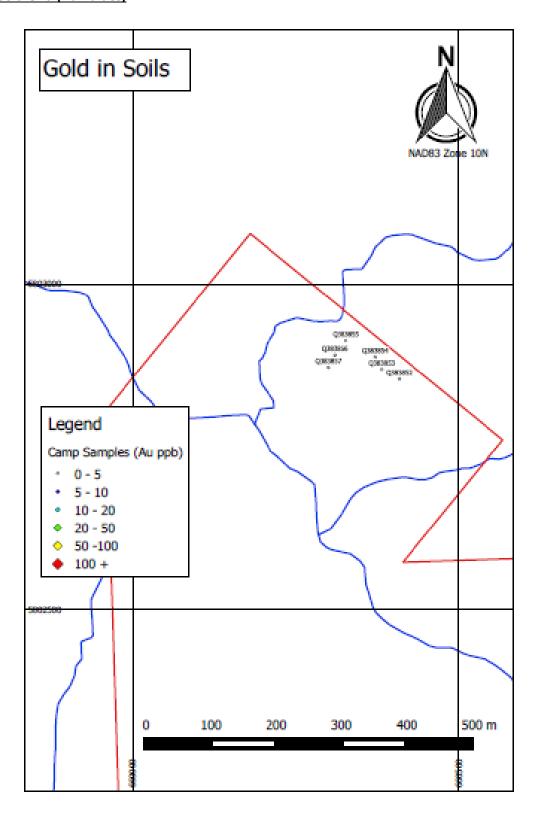
18PPM Extension Grid (Sample ID's)

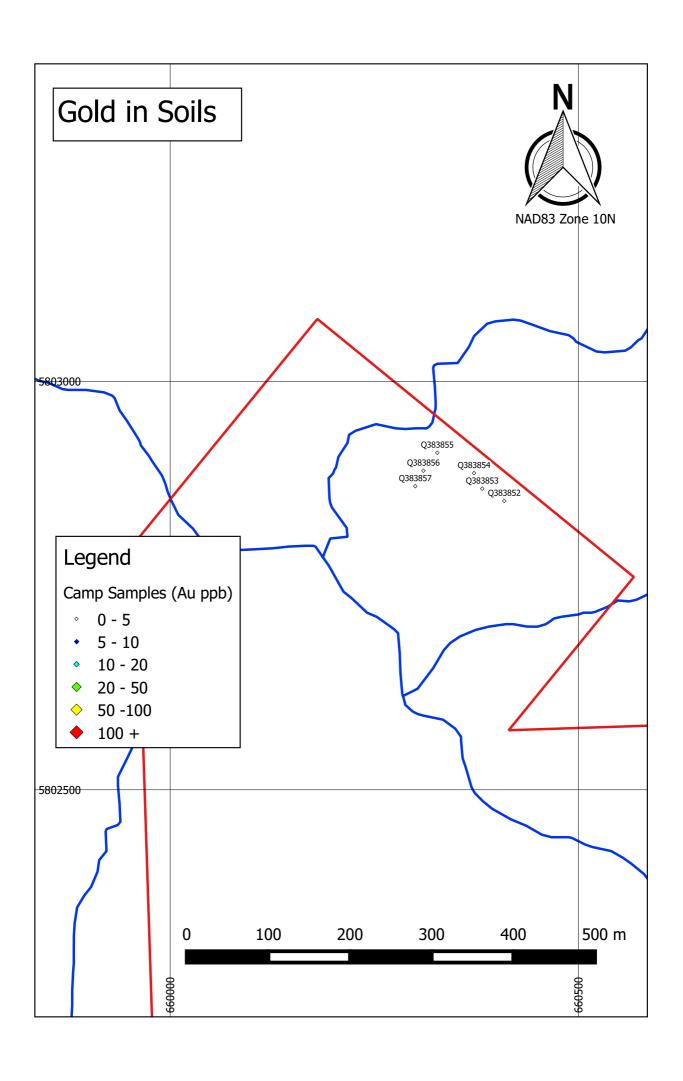




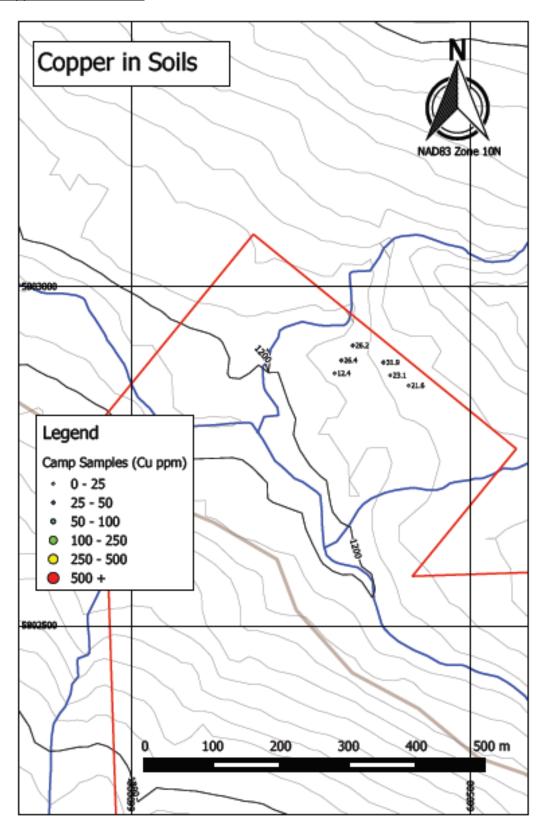


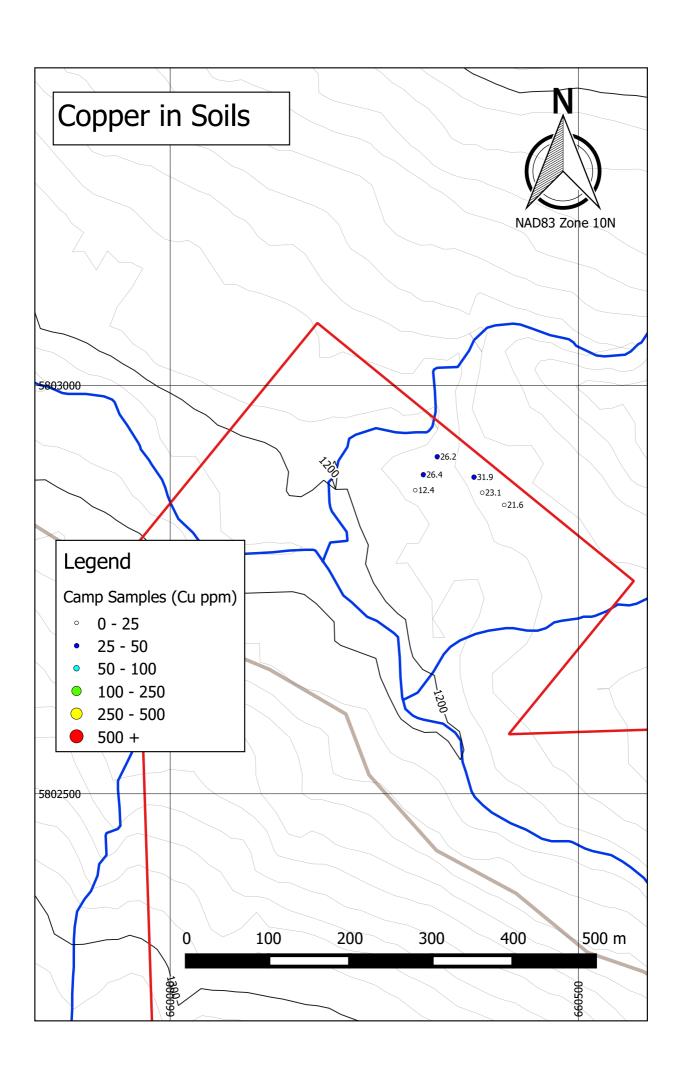
18PPM Extension Grid (Cu Values)





Camp Grid (Sample ID's)




Camp Gold Grid (Au Values)

Camp Copper Grid (Cu Values)

Appendix C: Regional Sampling Program Assay Certificates

SOCIALS - Finalized NT "INVOICE - Infants brilling Corporation" SAMPLES: 19 SECTIVE 2015-0-29 DATE FINALIZED: 2015-05-11 SCT "Sid cample Prog. for Procious" FINICATE COMMENTS: "ME-MG-ELL Gold decerminations SAMPLE - 19	s by this method are seni-quantitative di	ue so the small sample weight used (0.5g), "							
ME-MS-11 MS-MS-11 MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-M	Su Be Bi Ca ppm ppm ppm NS 1605 Si Ca 1605 Si Ca Ca Ca Ca Ca Ca Ca C	Cd Ce Co Cr ppm ppm ppm ppm ppm 1.05 56.5 20.0 12.7 18.41 0.19 1.05 26.8 20.0 25. 0.19 1.825 20.1 27 22.0 0.15 0.20 18.7 10.05 28.1 0.11 0.300 15.2 9.30 26.5	Cs Cu Fe Ga Ge ppm ppm N ppm ppm 1 386 6630 2.47 8.92 0.1 0.876 93.2 402 2.7 0.0 0.885 540 4.89 3.11 0.0 0.612 62.3 2.86 5.66 0.0 0.321 382 5.88 4.86 0.0	Hg In K Li	a U Mg Mn pm ppm % ppm 10.15 6.2 0.62 670 12.96 11.3 0.62 670 12.96 12.1 0.62 5405 7.54 6.7 0.54 642 7.37 6 0.37 642	Mo N3 N3 N3 P Pb ppm N Ppm N3 N3 P Pb N3 N3 N3 N3 N3 P Pb N3 N	Pet Pet Re S S S S S S S S S	Se	8 1.65 0.061 0.109 0.009 42.6 0.136 5.39 157.5 0.18 8 181 0.802 0.002 0.002 1.005 36.2 0.122 6.80 200 0.32 1 0.882 0.107 0.052 0.882 72.6 0.152 1.596 66.3 0.38 8 1.605 0.075 0.008 0.646 66.1 0.159 1.645 75.9 0.38
000	78.0 0.22 0.255 103.5 0.36 0.207 93.7 0.38 0.207 44.4 0.07 0.226 79.6 0.22 0.27 94.6 0.22 0.22 95.6 0.00 0.227	0.11 0.157 16.6 6.88 21.0 0.55 0.81 16.1 19.55 44 0.07 18.0 16.1 19.55 44 0.07 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	\$1.00 2.5 4.76 0.0 1.005 60.4 4.00 4.00 0.1 1.005 178 5.71 3.18 0.0 1.056 54.05 1.79 54.02 0.0 0.756 90.9 2.75 2.65 4.70 0.0 0.821 53.2 2.64 4.7 0.0 0.664 55.1 2.64 4.7 0.0	8 0.007 0.084 0.025 0.07 2 0.006 0.088 0.022 0.06 7 0.008 0.06 0.020 0.05 6 0.006 0.06 0.066 0.06 6 0.005 0.088 0.028 0.1 6 0.008 0.007 0.025 0.06 2 0.008 0.007 0.005 0.06	7.20 3.1 0.27 246 7.2 9.5 0.57 385 9.0 5.4 0.35 736 5.32 11.6 1.21 960 7.52 2.4 0.17 381 8.73 11.2 0.51 661 12 11.4 0.5 422 17.6 7.3 0.37 241 11.96 12 0.07 1240	4.50 0.005 0.41 25.3 0.084 10 4.69 0.005 0.282 23.8 0.119 10 2.6 0.005 0.686 46 0.133 11 2.6 0.005 0.686 46 0.133 11	1,50	\$ 1.8 0.26 17.25 d-0.05 0.0 0.18 0.20 20.6-0.005 0.0 6 12 0.00 26.9-0.005 0.0 1 0.5 0.31 18.2-0.005 0.0 2 1.1 0.16 28.2-0.005 0.0 9 1.3 0.22 56.3-0.005 0.0	0.180 0.05 0.084 1.90 52.2 0.080 8.40 66.2 0.15 1.21 0.07 0.071 0.071 0.075 0.07
0.0001 0.820 1.60 9.00 c0 0.0001 0.564 0.40 0.3 c0 0.0009 0.669 1.2 11.4 c0 0.0009 0.669 1.3 13.4 c0 0.0009 6.1 1.7 7.40 c0 1.525 11 2.80 12.65 c0 0.0000 0.377 1.66 12.75 c0 0.0000 0.302 0.00 5.81 c0	661 007 0190 1745 029 0207 1765 028 0230 196 041 0380 280 042 0342 105 030 0206	0.02 0.687 26 28.1 75.1 0.2 0.109 18.15 8.77 28.1 0.00 0.662 27 83.75 28.1 0.11 0.667 20 15.8 28.1 0.66 1.85 18.7 17.6 85.1 1.65 20 17.5 28.2 56.1 0.00 0.511 28.2 10.7 27.0 0.1 0.20 23.55 6.85 25.1	0.671 20.5 20.00 474 01 117 97.3 23.4 419 0 0.095 64 23.8 382 382 2.09 56.2 275 255 01 2.06 25.5 442 5.00 01	6 0.012 0.027 0.016 0.00 6 0.000 0.000 0.030 0.00 6 0.000 0.006 0.022 0.11 3 0.006 0.250 0.025 0.00 7 0.017 0.252 0.001 0.12 8 0.000 0.000 0.001 0.12	15:86 12 0.57 1280 7:1 1.7 0.55 162 13:2 6.5 0.38 890 13:8 11.2 0.38 580 13:8 13:2 0.38 580 21 18:3 0.5 2200 13:5 12:5 0.62 280 13:5 12:5 0.62 280 13:6 6.78 6.7 0.22 280	4.16 0.006 0.652 16.25 0.063 1 4.01 0.012 0.261 24.2 0.079 1 5 0.012 0.162 275 0.079 1 2.06 0.014 0.169 36.2 0.211 1 4.26 0.014 0.275 63.2 0.279 1	2.25 0.008 0.000 12.75 0.008 0.04 0.028 2.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 0.7 0.41 21.7 0.006 0.0 5 1.4 0.28 36.5 0.005 0.0 5 1.5 0.40 148.5 0.005 0.0 5 1.5 0.29 36.5 0.005 0.0 7 4.6 0.29 53.1 0.005 0.0 7 1.8 0.27 12.8 0.005 0.0	0.000
0.0006 11 1.64 11.76 00 0.0002 0.90 0.4 5.53 00 0.0002 0.50 1.25 82 00 0.0002 0.50 0.90 12.55 00 0.0002 0.666 0.3 2.66 00 0.0008 0.561 0.42 4.5 00 0.0008 0.561 0.42 4.5 00	127 0.26 0.253 123.5 0.05 0.162 88.2 0.10 0.266 75.3 0.08 0.25 46.7 0.06 0.216 35.7 0.06 0.229	0.27 0.807 12.75 25.2 50.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0	121 564 6.65 6.82 05 0.6% 219 122 215 05 125 668 608 515 05 057 53.6 621 476 05 0700 1175 122 410 05	9 0.011 0.099 0.021 0.09 2 0.017 0.171 0.014 0.06	8.46 18 0.75 627 6.6 1.8 0.55 899 8.41 6.5 0.40 2860 4.21 4.7 0.60 407 12.45 1.5 0.00 242 11.75 1.6 0.1 262 4.75 7.4 0.76 266	5.14 0.00 0.886 49.4 0.995 12 2.45 0.007 0.273 12.95 0.962 1 10 0.008 0.32 25.5 0.322 12	2.25 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.200 0.200 0.0000 0.000	9 1.5 0.36 27.2-0.005 0.0 0.7 0.22 26.2-0.005 0.0 5 1.5 0.36 27.8-0.005 0.0 2 0.9 0.27 26-0.005 0.0 2 0.8 0.2 812-0.005 0.0 6 0.3 0.3 812-0.005 0.0	0.642 0.00 0.102 1.88 667 0.128 7.89 117 0.01 0.18 7.89 117 0.17 0.18 7.89 117 0.17 0.18 7.89 117 0.17 0.18 0.
MDdill-Finalized f: "Invited - Infinit brilling Corporation" MM*US: 50									
GER: ** ME NS41/ME NS41/ME NS41/ME NS41/ME NS	Ra Re Ri Ca	GEL ME MEET ME MEET ME MEET ME MEET CE CO CT	Cr. Cu Ga Ga Ga	Mr. Mr. In Mr. In	u U Mg Mn	Mo Na Na Ni P Pb	Pd Pt Rb Re S Sb Sc	Se Sn Sr Ta Te	NE MEET NE MEE
No. No.	614 0.64 0.69 68.2 0.5 0.20 81.9 0.66 0.32 47.9 0.3 0.66 28.6 0.65 0.90	0.79 S8.4 21.5 68.2 32.4 0.1 0.632 28.05 12.05 65.1 0.11 0.656 10.7 10.8 32.1 0.14 0.656 10.7 10.8 32.1 0.14 0.622 18.9 36.55 76.4 0.11 0.202 16.8 12.9 46 0.07 0.206 17.5 20.65	208 216 kH7 608 01 18 221 234 566 01 259 219 276 55 01 218 262 646 886 01 168 264 506 879 01	4 0.022 0.081 0.024 0.1 8 0.007 0.086 0.021 0.07 6 0.086 0.099 0.027 0.16 9 0.012 0.009 0.018 0.12 4 0.02 0.013 0.09 0.09	92 117 0.96 478 928 182 0.46 556 9.80 15.9 0.30 532 9.86 26.6 0.66 390 8.08 16 0.52 296 9.31 16.8 0.46 1875	2.66 0.007 2.78 26.1 0.158 1 2.28 0.008 2.27 26.2 0.12 2 3.05 0.000 3.2 86.9 0.136 1 4.46 0.008 5.06 26.5 0.085 1 3.81 0.009 5.01 26.6 0.089	pgm pgm pgm pgm % pgm	6 1 0.62 6.11 0.08 0.0 6 0.7 0.67 8.08 0.02 0.0 6 0.9 0.42 8.0 0.01 0.0 9 1.2 0.66 7.92 0.02 0.0 8 1 0.09 6.62 0.05 0.0	7 499 0119 0179 0.9 52.2 0.616 459 161.5 17 8 269 017 0165 089 71.3 0.579 269 97.9 0 8 5.66 0120 0166 1.06 661 0784 2.65 97.9 0
0.005 1.445 0.72 18.55 c0 0.007 0.864 0.98 23.2 c0 0.0008 1.00 0.07 5.22 c0 0.0128 1.155 0.66 8.51 c0 0.0005 1.285 0.55 8.51 c0 0.0005 1.36 1.38 4.9 c0	679 0.11 0.872 611 0.17 0.222 551 0.07 0.365 388 0.16 0.278 652 0.07 0.388 363 0.11 0.688	0.17 0.507 22:1 7.76 27:1 0.2 0.682 16.6 7.66 26:1 0.17 0.300 16.25 6.56 12.61 0.09 0.477 12.76 72.7 15.0 0.00 0.31 222 5.22 12.0 0.00 0.988 16.7 36.05 22.6	0.996 21.6 4.68 6.59 01 0.991 28.2 286 276 01 0.272 16.75 2.66 4.85 01 0.667 26.1 2.27 3.99 0 0.668 23.1 2.72 6.81 01 0.571 129 8.92 5.16 01	8 0.000 0.110 0.000 0.00 4 0.000 0.111 0.020 0.00 7 0.002 0.000 0.001 0.00 9 0.002 0.000 0.00 0 0.002 0.000 0.00 7 0.002 0.000 0.00 7 0.002 0.000 0.000 0.00	8.26 9 0.2 219 7.28 2.3 0.11 525 6.78 0.3 0.16 506 11 3 0.07 188 7.32 8.8 0.38 875	4.55 0.006 0.66 22.7 0.114 1 0.000 1 0.00 0.000 1 0.000 1 1.4 0.000 1	665 0001-0000 471-0001 0.00 0.66 10 10 0002-0000 120-0001 0.00 0.00 1 120 0001-0000 120-0001 0.00 0.16 0 866 0001-0000 126-0001 0.00 0.46 0 866 0001-0000 412-0001 0.00 0.46 0 866 0001-0000 208-0001 0.00 0.20 18	\$ 1.7 0.27 12.11-00.005 0: 8 1.7 0.12 12.55-00.005 0:0 5 1.4 0.28 9.91-00.005 0:0 1 1.5 0.18 8.05-00.005 0:1 6 1.7 0.54 5.65-00.005 0:1 6 4.8 0.27 4.26 0.006 0:2	8 0.811 0.002 0.007 0.007 22.31 0.000 2.87 02 0.2 8 0.312 0.00 0.003 0.011 52.3 0.000 0.07 52.6 0.0 0 0.206 0.006 0.000 0.511 28.5 0.03 0.07 52.6 0.0 1 0.000 0.00 0.511 28.5 0.13 1.005 98.6 0.0 1 0.000 0.00 0.565 60 0.221 1.135 78.7 0.0 2 2.00 0.005 0.006 2.28 0.00 0.295 2.29 200 1.1
0.0002 1.575 0.69 6.60 c0 0.0002 6.98 0.6 4.05 c0 0.0124 0.605 0.78 11.6 c0 0.0007 1.57 11 6.90 c0 0.0002 1.05 0.96 4.37 c0 0.0002 1.05 0.96 4.37 c0 0.0016 1.77 0.96 2.36 0.06 0.0166 7.96 1.31 2.7 c0	51 0.16 0.20 65.6 0.12 0.65 78.6 0.25 0.26 68.1 0.29 0.677 53.3 0.2 0.29	0.00 0.000 14.1 6.6 12.00 0.11 0.557 13.0 7.00 11.4 0.05 0.405 21.1 12.0 36.0 0.00 0.712 20.2 16.5 36.1 0.06 2.35 28.85 26.4 19.30 0.05 0.800 19.05 14.1 15.0 0.06 0.701 15.65 11.3 24.5	108 26.7 4.89 4.78 0.0 0.77 26.7 5.22 6.42 0 1.09 89.7 3.55 3.4 0.0 1.005 195 4.95 2.79 0.0 1.00 97.0 4.70 2.15 0.0	6 0.011 0.087 0.08 0.06	7.65 2.6 0.07 977 6.2 3.7 0.1 880 90.2 4.8 0.12 550 9.42 12.2 0.42 550 9.22 7.6 0.10 500 8.09 8.2 0.35 829 7.84 10.5 0.10 829	6.00 0.005 0.612 26.2 0.151 1/ 7.68 0.006 0.200 81.5 0.11 20 0.000 0.10 120 0.161 11.8 0.000 0.165 87.1 0.126 1/	275 0.001 0.002 265 0.003 0.00 0.577 0.0 185 0.001 0.002 5.64 0.003 0.00 0.657 17 12.1 0.002 0.002 7.67 0.003 0.00 0.65 17 10.6 0.004 0.000 6.000 6.000 0.00 0.00 0.	6 2.0 0.20 11.75 0.006 0.1 6 2 0.25 4.82 0.006 0.1 5 2.6 0.16 6.44 0.005 0.2 6 7.0 0.17 4.22 0.005 0.2 6 5 6 0.20 2.74 0.005 0.2	0 1.60 0.005 0.005 0.609 64.8 0.151 1.675 102.5 0.1 2.207 0.003 0.000 1.54 24 0.007 4 172 0.7 2.164 0.003 0.56 1.80 0.03 0.364 8.52 620 0.7 1.106 0.008 0.500 1.30 0.57 0.177 2.6 1865 0.7
0.0004 1.095 0.99 4.34:-00 0.0004 1.295 0.22 2.34:-00 0.0004 56.25 1.00 4.87:-00 0.0005 6.35 0.62 0.36:-00 0.0006 0.700 1.27 9.66:-00 0.0006 1.995 1.29 9.82:-00	66.9 0.26 0.655 28.1 0.06 0.502 31.9 0.26 0.89 105 0.19 0.071 42.9 0.20 0.202 106 0.38 0.385	0.06 1.0 16.45 9.78 27.1 0.06 0.295 15.1 4.6 8.36 0.00 0.752 22.4 14.4 16.7 2.72 28 5.36 2.76 9.9 0.07 0.691 26 11.7 26 0.5 1.395 19.9 16.6 28.9	1.055 70.2 6.79 5.36 0.0 0.866 22 1.84 2.62 0.0 0.97 79.6 5.72 2.55 0.0 0.797 69.1 0.59 1.255 0.1	\$ -0.002 0.005 0.004 0.00 3 0.00 0.105 0.004 0.00 8 0.071 0.208 0.000 0.00 3 0.008 0.000 0.005 0.00 5 0.00 0.106 0.027 0.00	7.44 10.6 0.18 806 8.12 97 0.41 806 7.6 1.1 0.00 128.5 9.8 7.8 0.19 556 6.80 2 0.15 1280 12.7 10.6 0.20 801 12.7 10.6 0.20 200	8.99 0.005 0.241 27.9 0.082 1 36.4 0.005 0.299 66.8 0.138 1 7.6 0.000 0.166 1285 0.186 1 7.5 0.005 0.262 36.2 0.094 1 3.96 0.008 0.266 41.1 0.127 1	21 0.002-0.002 871-0.001 0.00 0.666 1.3 1.85-0.001 0.000 6.11-0.001 0.0 0.666 0.6 82.0 0.001-0.000 6.4-0.001 0.0 0.55 1.2 61 0.002-0.002 2.28 0.166 0.46 0.80 0.7 61 0.001-0.000 2.28 0.166 0.46 0.80 0.7 1.85 0.001-0.000 2.28 0.001 0.0 0.0 0.2 1.5 1.85 0.001-0.000 2.2 0.004 0.0 0.0 0.2 1.5	6 2.2 0.38 2.96-0.005 0.9 5 4 0.17 4.44-0.005 0.9 7 47.2 0.1 151 0.009 0.0 5 19 0.12 5.38-0.005 0.0 5 2.6 0.90 200-0.005 0.0	\$ 0.777 0.029 0.098 0.275 20.98 0.186 0.005 60.9 0.0 \$ 1.996 0.004 0.000 1.41 28.9 0.208 2.79 202 0.0 0.270 0.00 0.000 1.55 8.4 0.000 1.73 206 2.3 1.70 0.005 0.009 1.005 22.6 0.005 2.84 118 1 0.0556 0.007 0.009 1.005 22.6 0.005 2.84 118 1.8
0.0096 1.265 1.27 15.2 -0.0 0.0098 1.63 1.26 8.85 -0.0 0.0056 5.33 1.28 8.87 -0.0 0.0056 3.80 2.72 13.55 -0.0 0.0562 1.08 1.26 90.8 -0.0 0.550 0.604 0.77 9-0.0 0.0002 1.255 0.78 8.81 -0.0	60 0.25 0.298 129 0.3 0.280 108 0.47 0.280 298 0.85 0.227 715 0.22 0.27 801 0.11 0.228	0.56 0.611 24.8 12.25 25.0 0.09 0.69 24.4 12.25 20.4 0.15 0.617 18.5 8.89 26.1 0.36 4.19 27.7 27 45.4 0.00 0.666 25.9 9.63 22.4 0.00 0.606 25.9 6.43 12.4	0.514 48 2.56 2.88 01 0.612 27.6 2.51 414 0.1 1.4 55.7 468 5.68 01 2.7 122 5.61 6.92 01 0.91 43.1 4.64 2.92 01 0.619 4.515 2.56 4.79	2 0.056 0.11 0.006 0.00 9 0.06 0.071 0.027 0.1 7 0.000 0.186 0.086 0.00 7 0.001 0.176 0.084 0.2 2 0.011 0.106 0.000 0.00	11.25 11.2 0.38 688 13.25 13.6 0.65 629 9.89 11.8 0.28 262 16.05 20.3 0.68 6650 11.7 9.3 0.32 271 12.0 5.7 0.71 500	6.16 0.006 0.226 34.8 0.1 1; 5.27 0.05 0.296 34 0.075 1; 8.07 0.009 0.202 26.9 0.115 2.5 0.006 0.120 26.1 0.106 1;	225 0.001-0.003 412 0.001 0.00 0.876 1 285 0.001-0.003 724-0.001 0.00 0.202 1 295 0.001-0.003 0.001 0.00 0.00 0.00 0.200 1 225 0.005-0.003 1.004 0.000 0.05 0.876 2 255 0.005-0.003 1.004 0.000 0.05 0.876 2 256 0.001-0.003 527-0.001 0.00 0.205 1 286-0.000 0.003 0.000 0.00 0.00 0.206 1 286-0.000 0.003 0.000 0.000 0.00 0.00 0.206 1 207 0.000	6 2.1 0.15 0.05 0.005 0.0 6 1.8 0.26 10.05 0.005 0.0 6 2.5 0.20 16.1 0.005 0.0 6 2.1 0.66 21.4 0.005 0.1 8 2.8 0.18 7.65 0.005 0.1	8 125 0.000 0.006 0.734 26 0.114 242 112 0.0 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.015 121 0.0 121 0.0 0.0 0.000 0.000 121 0.0 121 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
0.0002 1.125 0.36 8.91 co 0.0009 0.228 1.15 12.65 co 0.0008 1.21 0.00 15.13 co 0.0002 0.56 1.21 15.2 co 0.0001 0.300 0.00 6.21 co 0.0011 0.300 0.00 6.21 co 0.0011 0.300 0.00 6.21 co 0.0011 0.501 15.1 co	\$1.8 0.36 0.36 45.3 0.35 0.34 2065 0.25 0.29 61.2 0.06 0.09 53.1 0.1 0.302	0.12 0.225 20.1 9.27 21.1 0.00 0.361 27.8 9.3 20.0 0.00 0.207 7.55 22.1 0.11 0.206 20.0 11.75 22.5 0.11 0.206 20.0 11.75 22.5 0.12 0.127 18.7 6.66 21.4 0.12 0.127 18.7 6.66 21.4 0.12 0.080 20.7 9.64 26.6	0.416 23.9 4.01 4.78 0.1 0.717 28.9 3.16 4.82 0 0.811 50.4 3.75 4.27 0.1 0.622 58.6 4.09 4.02 0.1	7 0.000 0.065 0.027 0.06 6-0.002 0.060 0.017 0.06 1 0.000 0.005 0.009 0.06 8 0.006 0.077 0.015 0.06	16.95 11.9 0.41 420 2.02 5.9 0.66 402 9.28 8.5 0.27 276 13.95 15.6 0.40 200	3.37 0.008 0.161 28.4 0.072 1.07 0.009 0.236 24.9 0.067	600 0001 0000 457-0001 0.00 0.77 0.00 0.00 0.77 0.00 0.00	2 0.8 0.34 6.71-0.005 0.0 3 1 0.15 8.02-0.005 0.0 9 0.4 0.19 22.7-0.005 0.0	7 0.346 0.022 0.006 0.422 40.4 0.009 1.69 60.5 0.0 9 0.722 0.00 0.022 0.057 36.1 0.00 2.76 86.5 0.0 9 0.372 0.118 0.005 0.179 66.6 0.007 1.75 86.6 0.0
0.0001 0.436 1.15 11.1-00 0.002 5.36 1.00 0.03-00 0.008 2.77 1.66 115-00 0.000 0.221 1.30 10.15-00 0.0126 0.465 1.12 7.31-00 0.000 0.000 0.000 0.000 0.000 0.000	1005 0.26 0.26 801 0.21 0.26 157.5 0.36 0.270 100 0.26 0.26 93.6 0.09 0.281	0.08 0.965 22.1 12.05 22.1 0.06 0.612 20 0.98 22.1 0.06 2.16 20 21.4 22.1 0.11 0.696 25 9.22 26 0.06 0.690 25 7.16 27.0 0.07 0.241 24.2 5.11 25.5	1.09 25.6 24.2 5.16 0.0 0.855 29.8 2.9 3.65 0.0 1.365 66.8 4.1 4.06 0.0 0.627 67.3 2.8 2.72 0.0 1.1 20.7 28.6 4.61 0.0 0.996 20.1 2.21 4.09	8 0.006 0.072 0.027 0.08 6 0.000 0.006 0.026 0.05 7 0.002 0.006 0.006 0.1 5 0.008 0.067 0.027 0.07 5 0.008 0.061 0.027 0.07 2 0.008 0.008 0.027 0.00	18.66 9/8 0.36 1270 13.9 11.5 0.32 466 15.3 15.2 0.42 5570 11.96 12.9 0.41 247 12.8 9.2 0.32 247 12.2 9.2 0.32 258	4.50 0.00 0.166 26.0 0.071 1 4.80 0.004 0.157 47.5 0.117 1 5.17 0.000 0.211 28.7 0.058 1 3.80 0.00 0.182 18.95 0.068 3.1 0.005 0.184 12.15 0.068	85° -0.001 -0.002 850° -0.001 0.00 0.222 0.8 845° -0.001 -0.000 650° -0.001 0.00 0.315 0. 825° -0.001 -0.000 650° -0.001 0.00 0.315 0. 825° -0.002 -0.000 5.15° -0.001 0.00 0.568 1 9.1 -0.002 -0.000 1.015° -0.001 0.00 0.500 0. 806° -0.002 -0.000 1.015° -0.001 0.00 0.000 0.	1 12 029 7.54 0.005 0.0 6 1.8 0.18 5.04 0.005 0.0 6 2.9 0.21 1875 0.005 0.0 1 2 0.15 846 0.005 0.0 2 1.7 0.2 848 0.005 0.0 0 0.8 0.8 0.2 856 0.005 0.0	8 0.758 0.000 0.118 1.51 34.9 0.007 12.25 123.5 1.0 8 0.021 0.025 0.008 0.611 28.2 0.000 2.25 204 0.1 7 0.025 0.002 0.001 0.60 34.9 0.00 2.76 57.9 0.0 8 0.022 0.00 0.007 0.300 26.3 0.00 12.4 57.9 0.0
6 0.000 0.868 0.8 5.56 00 7 0.0122 1.305 1.65 8.08 00 8 0.406 0.980 1.3 8.36 00 9 0.0008 1.5 1.72 8.36 00	98.4 0.09 0.196 156.5 0.35 0.22 156.5 0.21 0.198	02 0.86 10.9 7.23 33.5 0.65 0.91 19.2 17.8 66.4 0.55 0.27 17.8 18.85 66.4 0.80 1.46 16.95 26.5 86.4	0.772 28.6 2.43 4.79 0.1 1.075 70.6 3.22 4.61 0.1 0.768 48.2 3.68 4.33 0	4 0.006 0.062 0.008 0.06 2 0.009 0.1 0.025 0.1	5.56 2.8 0.31 223 20.1 16 0.69 282 9.62 11.6 0.59 1280	2.11 0.007 0.425 13.2 0.112 1 2.53 0.012 0.264 36.2 0.121 1 2.07 0.011 0.225 26 0.061	764 0.002 0.002 7.77 0.001 0.00 0.161 1.3 0.00 0.000 0.000 7.89 0.005 0.00 0.292 2. 0.00 0.000 0.000 0.22 0.00 0.00 0.262 3. 91 0.000 0.002 7.9 0.007 0.00 0.362 12.	5 0.7 0.25 18-0.006 0.0 1 1.9 0.17 22.2-0.006 0.0 2 1.4 0.17 27.9-0.006 0.0	\$ 0.186 0.000 0.007 0.005 \$1 0.005 1.86 40 0.22 0.484 0.007 0.006 1.22 \$3.7 0.005 6.75 1.05 0.22 0.485 0.006 0.007 0.005 0.007 0.007 \$2.00 \$5.1 0.15 7 0.272 0.009 0.007 0.006 \$1.0 0.005 \$2.0 0.005 \$2.0 \$6.1 0.11 7 0.272 0.009 0.007 0.006 \$1.0 0.005 \$2.0 0.005 \$2.0 \$4.0 0.005

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY- 2015 This copy reported on 8- MAY- 2015

Account: INDRCO

CERTIFICATE VA15062459

Project: Soil Sample Prog.for Precious

This report is for 50 Soil samples submitted to our lab in Vancouver, BC, Canada on 29- APR- 2015.

The following have access to data associated with this certificate:

BRANDON MACDONALD LAWRENCE ONEILL KRISTIAN WHITEHEAD

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
SCR- 41	Screen to - 180um and save both
LOG- 24	Pulp Login - Rcd w/o Barcode

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Zn- OG46	Ore Grade Zn - Aqua Regia	VARIABLE
ME- MS41L	Super Trace AR by ICP- MS	

To: INFINITI DRILLING CORPORATION ATTN: KRISTIAN WHITEHEAD 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

Q383887

Q383888

Q383889

Q383890

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION **2763 PANORAMA DRIVE** NORTH VANCOUVER BC V7G 1V7

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY- 2015 Account: INDRCO

Project: Soil Sample Prog.for Precious

0.090

0.202

0.259

0.258

0.06

0.10

0.24

0.28

0.39

0.12

0.12

0.08

0.182

0.127

0.488

0.345

6.25

18.70

28.7

32.1

14.95

6.96

9.64

13.05

43.0

31.6

35.6

22.2

0.423

0.864

0.977

1.090

IIIInera	15								CI	ERTIFIC	ATE O	F ANAL	YSIS.	VA150	62459	
Sample Description	Method	WEI- 21	ME- MS41L													
	Analyte	Recvd Wt.	Au	Ag	AI	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOR	0.02	0.0002	0.001	0.01	0.01	10	0.5	0.01	0.001	0.01	0.001	0.003	0.001	0.01	0.005
Q383851		0.08	0.353	60.8	1.62	47.4	10	95.6	0.28	9.43	0.79	58.4	21.5	48.2	32.4	1.045
Q383852		0.64	0.0006	0.374	2.60	2.93	<10	44.4	0.64	0.459	0.10	0.433	18.05	13.05	45.3	2.08
Q383853		0.46	0.0020	0.543	1.69	2.05	<10	68.3	0.50	0.283	0.11	0.456	19.70	10.80	33.2	1.800
Q383854		0.58	0.0007	0.635	2.60	2.90	<10	81.9	0.68	0.352	0.14	0.412	18.90	16.85	74.4	2.59
Q383855		0.70	0.0004	0.386	1.46	3.49	<10	47.9	0.30	0.491	0.11	0.282	16.80	12.90	40.0	2.18
Q383856		0.54	0.0006	0.345	2.08	3.25	<10	39.6	0.45	0.502	0.07	0.316	17.15	10.45	44.1	1.680
Q383857		0.42	0.0008	0.785	0.98	2.58	<10	39.7	0.24	0.495	0.14	0.249	14.40	10.15	30.4	0.773
Q383858		0.64	0.0050	1.445	0.73	19.55	<10	47.9	0.11	0.372	0.17	0.507	22.1	7.74	27.2	0.595
Q383859		0.54	0.0070	0.964	0.98	10.30	<10	43.1	0.17	0.222	0.20	0.483	16.60	7.46	26.2	0.591
Q383860		0.52	0.0018	1.070	0.47	5.23	<10	55.1	0.07	0.245	0.17	0.303	14.25	4.56	12.45	0.272
Q383861		0.48	0.0128	1.155	0.66	8.51	<10	39.8	0.14	0.278	0.09	0.477	13.75	7.27	15.60	0.447
Q383862		0.54	0.0065	1.285	0.55	3.48	<10	46.2	0.07	0.334	0.04	0.310	22.2	5.22	12.50	0.658
Q383863		0.54	0.0017	1.360	1.28	4.79	<10	36.7	0.31	0.439	0.03	0.948	14.70	18.05	22.6	0.571
Q383864		0.68	0.0013	1.575	0.49	6.92	<10	69.4	0.10	0.376	0.04	0.499	14.10	6.60	12.95	0.562
Q383865		0.66	0.0013	6.98	0.60	4.05	<10	51.0	0.14	0.392	0.11	0.557	13.90	7.98	11.40	1.080
Q383866		0.62	0.0174	0.605	0.78	11.60	<10	45.4	0.12	0.415	0.05	0.406	21.1	12.80	26.6	0.770
Q383867		0.66	0.0097	1.570	1.10	6.99	<10	78.4	0.25	0.284	0.08	0.713	20.2	16.50	24.7	1.090
Q383868		0.90	0.0032	1.045	0.94	4.17	<10	48.1	0.29	0.477	0.06	2.15	18.85	26.4	19.35	1.005
Q383869		0.60	0.0161	1.770	0.94	3.24	<10	53.3	0.20	0.359	0.05	0.859	19.05	14.10	19.00	1.860
Q383870		0.68	0.0146	7.96	1.21	2.70	<10	53.1	0.24	0.338	0.04	0.731	15.45	11.30	24.5	1.340
Q383871		0.66	0.0034	1.095	0.99	4.34	<10	66.9	0.24	0.455	0.04	1.300	16.45	9.78	27.2	1.015
Q383872		0.62	0.0024	1.395	0.23	2.24	<10	28.1	0.04	0.162	0.04	0.235	15.10	4.60	8.36	0.856
Q383873		0.58	0.0041	16.25	1.09	4.87	<10	31.9	0.24	0.397	0.03	0.752	23.4	14.40	16.70	0.970
Q383874		0.50	0.0025	5.25	0.62	0.78	<10	105.0	0.19	0.071	2.72	23.0	5.34	3.76	9.80	0.737
Q383875		0.68	0.0393	0.702	1.27	10.60	<10	42.9	0.29	0.222	0.07	0.431	26.0	11.70	20.0	0.536
Q383876		0.48	0.0054	1.945	1.29	9.62	<10	106.0	0.28	0.245	0.50	1.525	19.90	16.60	28.8	1.040
Q383877		0.42	0.0094	1.355	1.27	15.20	<10	43.0	0.25	0.298	0.16	0.611	24.8	13.25	25.5	0.574
Q383878		0.44	0.0098	1.430	1.35	8.85	<10	119.0	0.30	0.282	0.09	0.690	24.4	12.25	30.6	0.913
Q383879		0.66	0.0053	5.33	1.78	8.87	<10	108.0	0.47	0.297	0.15	0.637	18.50	8.89	39.1	1.400
Q383880		0.62	0.0056	3.82	2.72	13.55	<10	298	0.85	0.327	0.36	4.19	37.7	37.0	45.9	2.70
Q383881		0.74	0.0142	1.080	1.35	10.80	<10	73.5	0.22	0.270	0.09	0.606	25.9	9.43	31.6	0.791
Q383882		0.74	0.357	0.604	0.77	9.00	<10	80.1	0.11	0.224	0.14	0.376	27.9	6.14	18.75	0.512
Q383883		0.68	0.0022	1.125	0.76	8.91	<10	66.8	0.09	0.181	0.12	0.225	24.1	9.27	21.1	0.867
Q383884		0.76	0.0059	0.228	1.16	17.65	<10	51.8	0.16	0.248	0.09	0.361	37.8	9.30	24.6	0.416
Q383885		0.68	0.0038	1.210	0.99	15.30	<10	45.3	0.15	0.240	0.04	0.287	29.7	7.55	23.1	0.717
Q383886		0.60	0.0032	0.165	1.21	15.20	<10	109.5	0.25	0.229	0.11	0.295	30.4	11.75	28.9	0.811

0.40

0.42

0.60

0.78

0.0011

0.0145

0.0097

0.0081

0.709

2.52

0.674

0.426

0.92

1.10

1.51

1.16

6.31

8.28

15.00

11.10

<10

<10

<10

<10

61.2

53.1

91.5

100.5

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY- 2015 Account: INDRCO

Project: Soil Sample Prog.for Precious

CERTIFICATE OF ANALYSIS V	VA15062459
---------------------------	------------

1																
Sample Description	Method Analyte Units LOR	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001	ME- MS41L Nb ppm 0.002
Q383851		6850	4.53	8.31	0.106	0.279	1.510	7.97	0.20	10.00	11.7	0.95	478	27.2	0.086	0.328
Q383852		21.6	3.87	6.03	0.054	0.022	0.081	0.024	0.10	9.23	18.2	0.44	556	2.66	0.007	2.78
Q383853		23.1	2.94	5.44	0.038	0.007	0.086	0.021	0.07	9.49	15.9	0.39	533	2.28	0.008	2.37
Q383854		31.9	3.76	5.50	0.050	0.036	0.049	0.027	0.16	9.96	24.6	0.66	399	3.05	0.009	3.20
Q383855		26.2	4.46	8.85	0.059	0.012	0.029	0.018	0.12	8.08	14.0	0.53	224	4.45	0.008	5.06
Q383856		26.4	5.06	8.78	0.054	0.020	0.071	0.030	0.09	9.21	14.8	0.44	197.5	3.81	0.009	5.01
Q383857		12.40	4.31	13.95	0.049	0.172	0.038	0.020	0.05	7.14	3.4	0.33	390	4.47	0.011	14.20
Q383858		31.6	4.48	6.58	0.048	0.004	0.118	0.026	0.03	10.85	4.2	0.20	348	4.55	0.006	0.460
Q383859		38.2	3.96	2.74	0.044	0.009	0.131	0.028	0.03	8.26	9.0	0.30	218	4.70	0.006	0.306
Q383860		16.75	2.46	4.35	0.027	<0.002	0.093	0.011	0.06	7.23	2.3	0.11	515	5.43	0.006	0.186
Q383861		26.1	3.37	3.93	0.030	0.002	0.063	0.020	0.03	6.78	4.3	0.16	546	6.70	0.006	0.147
Q383862		23.1	2.72	6.81	0.032	<0.002	0.065	0.015	0.03	11.00	3.0	0.07	188.0	15.85	0.006	0.549
Q383863		129.0	8.92	5.14	0.067	0.031	0.109	0.058	0.03	7.12	8.8	0.24	875	45.9	0.005	0.411
Q383864		54.3	5.37	5.91	0.052	<0.002	0.077	0.034	0.05	7.65	2.6	0.07	977	36.4	0.007	0.200
Q383865		35.7	4.89	4.78	0.041	<0.002	0.113	0.038	0.04	6.20	3.7	0.10	800	40.1	0.004	0.281
Q383866		26.7	5.22	6.42	0.050	0.002	0.073	0.027	0.03	10.20	4.8	0.13	1530	6.92	0.005	0.612
Q383867		89.7	3.55	3.40	0.048	0.027	0.070	0.024	0.06	9.43	12.2	0.42	1650	7.48	0.004	0.203
Q383868		195.0	4.95	2.79	0.068	0.026	0.063	0.045	0.04	9.22	7.6	0.31	1040	30.0	0.003	0.190
Q383869		87.8	4.29	3.15	0.060	0.011	0.087	0.030	0.05	8.99	8.2	0.35	829	11.80	0.003	0.165
Q383870		55.9	4.16	3.96	0.045	0.019	0.165	0.037	0.04	7.44	10.6	0.18	816	5.91	0.004	0.561
Q383871		70.2	4.79	5.34	0.054	0.004	0.076	0.030	0.05	8.12	9.7	0.41	360	25.5	0.004	0.283
Q383872		22.0	1.840	3.62	0.026	<0.002	0.025	0.014	0.03	7.60	1.1	0.03	139.5	8.99	0.005	0.241
Q383873		79.6	5.73	3.55	0.067	0.020	0.105	0.054	0.03	9.80	7.8	0.19	556	36.4	0.005	0.219
Q383874		49.1	0.580	1.255	0.159	0.071	0.208	0.009	0.02	6.49	2.0	0.15	1290	7.68	0.009	0.166
Q383875		52.1	3.82	2.60	0.043	0.048	0.083	0.025	0.03	12.70	10.6	0.28	301	7.50	0.005	0.262
Q383876		46.1	3.33	3.34	0.041	0.040	0.106	0.027	0.08	10.40	13.5	0.49	1050	3.94	0.008	0.204
Q383877		48.0	3.56	2.88	0.052	0.014	0.110	0.026	0.03	11.25	11.2	0.38	498	6.16	0.006	0.226
Q383878		37.6	3.51	4.14	0.049	0.010	0.071	0.027	0.10	13.25	13.6	0.45	419	5.27	0.010	0.216
Q383879		55.7	4.08	5.68	0.047	0.007	0.185	0.046	0.09	9.89	11.8	0.28	392	8.07	0.009	0.292
Q383880		132.0	5.61	6.93	0.077	0.031	0.178	0.044	0.20	16.05	20.3	0.48	4450	7.51	0.016	0.178
Q383881		43.1	4.64	3.92	0.052	0.011	0.106	0.033	0.07	11.70	9.3	0.32	371	7.13	0.007	0.237
Q383882		16.25	3.16	4.72	0.052	0.002	0.056	0.021	0.05	13.80	5.7	0.21	502	3.73	0.008	0.268
Q383883		27.6	2.96	4.28	0.042	< 0.002	0.066	0.009	0.05	11.80	5.7	0.28	477	1.85	0.008	0.218
Q383884		33.9	4.01	4.78	0.057	0.003	0.045 0.069	0.027 0.017	0.06 0.04	18.40	11.2	0.42	345	2.87	0.011	0.255
Q383885		28.9	3.16	4.82	0.050	<0.002				14.30	7.1	0.26	233	3.49	0.009	0.165
Q383886		50.4	3.75	4.27	0.051	0.003	0.035	0.019	0.06	14.95	11.9	0.41	420	3.37	0.008	0.161
Q383887		59.6	4.09	4.02	0.038	0.006	0.077	0.015	0.05	3.02	5.9	0.66	402	1.07	0.009	0.236
Q383888		20.8	3.67	5.42	0.049	0.013	0.102	0.017	0.03	9.28	8.5	0.37	274	2.39	0.006	0.493
Q383889		29.6	4.29	4.98	0.052	0.002	0.079	0.032	0.06	13.95	15.6	0.43	393	2.70	0.008	0.248
Q383890		25.6	3.43	5.16	0.048	0.004	0.072	0.027	0.08	14.65	9.9	0.26	1270	3.48	0.012	0.146

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY- 2015 Account: INDRCO

Project: Soil Sample Prog.for Precious

IIIInera	13								CE	ERTIFIC	CATE O	F ANAL	YSIS	VA150	62459	
Sample Description	Method	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L
	Analyte	Ni	P	Pb	Pd	Pt	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.04	0.001	0.005	0.001	0.002	0.005	0.001	0.01	0.005	0.005	0.1	0.01	0.01	0.005	0.01
Q383851		31.9	0.046	4190	0.003	<0.002	7.93	0.011	2.84	65.2	4.38	4.0	185.0	32.0	<0.005	0.10
Q383852		26.1	0.158	9.74	0.001	<0.002	24.2	<0.001	0.03	0.115	2.64	1.0	0.42	6.11	0.048	0.04
Q383853		25.2	0.120	7.92	0.001	<0.002	17.75	<0.001	0.03	0.088	2.06	0.7	0.47	8.03	0.021	0.04
Q383854		35.9	0.126	9.15	0.001	<0.002	29.3	<0.001	0.03	0.107	3.44	0.9	0.42	8.80	0.041	0.07
Q383855		26.5	0.085	12.60	0.001	<0.002	26.9	<0.001	0.03	0.117	2.99	1.2	0.65	7.92	0.024	0.08
Q383856		26.6	0.089	14.70	<0.001	<0.002	17.90	<0.001	0.03	0.128	3.74	1.0	0.59	6.62	0.057	0.05
Q383857		17.10	0.108	13.60	0.001	<0.002	7.76	<0.001	0.03	0.096	1.705	0.6	1.39	9.07	0.072	0.05
Q383858		22.7	0.114	16.50	0.001	<0.002	4.71	<0.001	0.03	0.466	1.015	1.7	0.27	13.10	<0.005	0.10
Q383859		31.4	0.092	13.00	0.002	<0.002	3.29	<0.001	0.03	0.309	1.080	1.7	0.13	12.55	<0.005	0.09
Q383860		15.85	0.178	9.39	0.001	<0.002	3.89	<0.001	0.03	0.186	0.350	1.4	0.28	9.90	<0.005	0.08
Q383861		23.8	0.225	13.45	0.001	<0.002	3.69	<0.001	0.03	0.415	0.510	1.6	0.18	8.05	<0.005	0.12
Q383862		21.7	0.078	15.60	<0.001	<0.002	4.12	<0.001	0.03	0.297	0.716	1.7	0.54	5.45	<0.005	0.09
Q383863		86.7	0.168	36.4	0.002	<0.002	2.98	<0.001	0.05	0.839	1.435	4.8	0.27	4.26	0.006	0.23
Q383864		37.6	0.159	37.9	<0.001	<0.002	3.32	<0.001	0.07	0.790	0.410	4.1	0.43	9.29	<0.005	0.18
Q383865		59.0	0.128	16.75	0.001	<0.002	7.65	<0.001	0.04	0.517	0.495	3.9	0.29	11.75	<0.005	0.15
Q383866		26.2	0.151	14.95	<0.001	<0.002	5.64	<0.001	0.02	0.453	1.400	2.0	0.35	4.82	<0.005	0.13
Q383867		81.5	0.110	12.50	0.002	<0.002	7.67	<0.001	0.02	0.454	1.795	3.6	0.16	6.44	<0.005	0.19
Q383868		133.0	0.144	30.6	0.004	<0.002	6.38	<0.001	0.02	0.620	2.04	7.9	0.17	4.23	<0.005	0.20
Q383869		87.1	0.124	19.35	0.002	<0.002	9.70	<0.001	0.02	0.970	0.926	5.5	0.19	3.70	<0.005	0.21
Q383870		52.8	0.143	12.20	0.002	<0.002	8.51	<0.001	0.02	0.530	1.240	4.1	0.28	3.02	0.012	0.30
Q383871 Q383872 Q383873 Q383874		79.2 27.9 65.8 138.5	0.144 0.033 0.128 0.186	21.0 4.18 23.3 4.10	0.003 <0.001 0.001 0.003	<0.002 <0.002 <0.002 <0.002	8.71 6.11 4.60 2.23	<0.001 <0.001 <0.001 0.158	0.02 0.02 0.02 0.02 0.44	0.486 0.366 0.550 0.301	1.395 0.474 1.255 0.777	6.7 2.2 4.0 47.2	0.28 0.38 0.17 0.10	3.78 3.96 4.44 151.0	<0.005 <0.005 <0.005 0.009	0.17 0.16 0.16 0.02
Q383875 Q383876 Q383877 Q383878 Q383879		36.3 41.1 34.8 34.0 26.9	0.094 0.127 0.100 0.075 0.115	11.05 12.25 12.25 12.85 12.90	0.001 0.002 0.001 0.001 0.003	<0.002 <0.002 <0.002 <0.002 <0.002	7.60 4.12 7.63 9.05	<0.001 0.004 0.001 <0.001 0.002	0.02 0.05 0.02 0.03 0.05	0.420 0.288 0.474 0.282 0.259	1.575 1.850 1.940 1.860 1.260	1.9 2.6 2.1 1.8 2.5	0.13 0.19 0.15 0.24 0.39	5.38 29.9 10.50 10.05 14.10	<0.005 <0.005 0.005 <0.005 <0.005	0.10 0.08 0.08 0.09 0.09
Q383880		74.1	0.195	17.25	0.005	<0.002	17.05	0.003	0.06	0.478	2.84	3.1	0.46	31.4	<0.005	0.15
Q383881		32.1	0.174	16.10	0.001	<0.002	6.20	<0.001	0.02	0.326	1.280	2.8	0.18	7.45	<0.005	0.14
Q383882		17.30	0.130	8.84	<0.001	<0.002	5.87	<0.001	0.02	0.243	1.025	1.0	0.20	8.53	<0.005	0.09
Q383883		15.70	0.076	8.09	0.001	<0.002	4.41	<0.001	0.03	0.271	0.982	0.5	0.30	8.59	<0.005	0.06
Q383884		27.2	0.084	10.05	0.001	<0.002	4.57	<0.001	0.02	0.421	1.425	0.9	0.19	6.69	<0.005	0.07
Q383885		20.9	0.073	9.26	0.001	<0.002	4.89	<0.001	0.03	0.374	0.772	0.8	0.24	6.71	<0.005	0.07
Q383886		28.4	0.072	10.00	0.001	<0.002	6.92	<0.001	0.02	0.422	1.300	1.0	0.15	8.02	<0.005	0.09
Q383887		24.9	0.057	5.32	0.005	0.002	3.91	<0.001	0.04	0.453	2.79	0.4	0.18	22.7	<0.005	0.09
Q383888		16.55	0.070	8.57	0.001	<0.002	4.66	<0.001	0.02	0.296	1.505	0.7	0.31	10.40	<0.005	0.06
Q383889		22.7	0.055	14.55	0.001	<0.002	6.13	<0.001	0.02	0.339	1.210	1.1	0.27	10.20	<0.005	0.06
Q383890		21.4	0.083	9.67	<0.001	<0.002	8.59	<0.001	0.02	0.333	0.861	1.2	0.29	7.54	<0.005	0.07

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY-2015

Account: INDRCO

Project: Soil Sample Prog.for Precious

Method Analyce Sample Description No. 8411 No.	IIIInera	15								CI	ERTIFIC	CATE OF ANALYSIS	VA15062459
0383852 2,69 0.098 0.132 1,030 47.3 0.512 3.92 123.5 0.62 0383853 2,48 0.088 0.173 0.807 42.8 0.468 3.76 1.56 0383855 3.68 0.170 0.145 0.800 52.2 0.616 4.58 141.5 1.56 0383855 3.68 0.170 0.145 0.880 0.713 0.678 3.69 97.9 0.81 0383857 2.98 0.411 0.090 0.530 1.070 0.661 2.63 51.3 1.565 0.8383859 0.811 0.021 0.047 6.967 57.5 0.128 1.870 68.1 0.31 0.383859 0.811 0.021 0.047 0.697 57.5 0.128 1.870 68.1 0.31 0.383850 0.130 0.021 0.047 0.695 4.90 0.228 0.049 0.049 0.383861 1.200 0.023 0.410	Sample Description	Analyte Units	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Zn %	
\$\begin{align*} \begin{align*} \be	Q383852 Q383853 Q383854		2.69 2.48 4.93	0.095 0.088 0.119	0.132 0.137 0.173	1.030 0.867 0.900	47.3 42.8 52.2	0.512 0.458 0.616	3.92 3.76 4.58	123.5 87.3 141.5	0.62 0.30 1.56	1.515	
Q383861	Q383856 Q383857 Q383858		5.06 2.98 0.503	0.132 0.401 0.053	0.106 0.060 0.055	1.040 0.530 0.476	68.1 107.0 57.5	0.734 0.661 0.128	3.65 2.63 1.670	97.9 51.3 68.1	0.96 15.65 0.31		
Q383865 0.367 0.021 0.091 0.969 35.9 0.297 1.535 132.5 0.08 Q383866 1.480 0.035 0.085 0.469 44.8 0.151 1.475 102.5 0.16 Q383867 2.07 0.013 0.108 1.140 24.0 0.097 4.00 173.0 0.78 Q383869 1.285 0.018 0.141 1.290 26.7 0.127 3.40 184.5 0.31 Q383870 1.990 0.028 0.101 1.105 26.5 0.132 2.67 186.0 0.62 Q383871 1.065 0.017 0.078 0.275 30.8 0.210 1.995 250 0.12 Q383872 0.777 0.017 0.078 0.275 30.8 0.314 0.826 60.9 0.04 Q383873 1.995 0.014 0.103 1.410 28.9 0.28 2.79 302 0.58 Q383874 0.373	Q383861 Q383862 Q383863		0.226 1.000 3.03	0.016 0.031 0.011	0.083 0.080 0.091	0.511 0.565 2.38	28.5 49.0 48.6	0.130 0.221 0.376	1.695 1.135 2.22	94.9 78.7 393	0.19 0.10 1.17		
Q383870 1.990 0.028 0.101 1.105 26.5 0.132 2.67 166.0 0.62 Q383871 1.065 0.017 0.154 0.963 63.3 0.210 1.995 250 0.12 Q383872 0.777 0.017 0.078 0.275 30.8 0.134 0.826 60.9 0.04 Q383873 1.995 0.014 0.103 1.410 28.9 0.208 2.79 302 0.58 Q383874 0.373 0.010 0.092 3.16 8.4 0.024 7.13 305 2.22 Q383876 0.854 0.017 0.079 1.095 29.6 0.077 7.07 143.0 1.08 Q383877 1.250 0.029 0.056 0.734 26.0 0.114 3.42 112.0 0.43 Q383878 0.988 0.021 0.082 0.816 36.1 0.103 5.66 121.0 0.33 Q383881 0.977 <t< td=""><td>Q383865 Q383866 Q383867 Q383868</td><td></td><td>1.480 2.07 1.640</td><td>0.035 0.013 0.013</td><td>0.085 0.108 0.146</td><td>0.469 1.140 3.89</td><td>44.8 24.0 30.3</td><td>0.151 0.097 0.344</td><td>1.475 4.00 8.53</td><td>102.5 173.0 429</td><td>0.16 0.78 0.76</td><td></td><td></td></t<>	Q383865 Q383866 Q383867 Q383868		1.480 2.07 1.640	0.035 0.013 0.013	0.085 0.108 0.146	0.469 1.140 3.89	44.8 24.0 30.3	0.151 0.097 0.344	1.475 4.00 8.53	102.5 173.0 429	0.16 0.78 0.76		
Q383875 3.78 0.015 0.059 1.025 22.6 0.085 2.94 118.0 1.90 Q383876 0.854 0.017 0.079 1.095 29.6 0.077 7.07 143.0 1.08 Q383877 1.250 0.029 0.056 0.734 26.0 0.114 3.42 112.0 0.43 Q383878 0.988 0.021 0.082 0.816 36.1 0.103 5.66 121.0 0.33 Q383880 0.198 0.028 0.099 2.28 52.2 0.123 5.00 101.5 0.21 Q383880 0.475 0.026 0.213 2.60 58.4 0.147 18.40 275 0.80 Q383881 0.977 0.021 0.070 0.942 36.9 0.118 2.42 108.5 0.42 Q383883 0.550 0.037 0.059 0.330 44.7 0.086 1.185 43.3 0.11 Q383884 1.580	Q383870 Q383871 Q383872 Q383873		1.990 1.065 0.777 1.995	0.028 0.017 0.017 0.014	0.101 0.154 0.078 0.103	1.105 0.963 0.275 1.410	26.5 63.3 30.8 28.9	0.132 0.210 0.134 0.208	2.67 1.905 0.826 2.79	166.0 250 60.9 302	0.62 0.12 0.04 0.58		
Q383880 0.475 0.026 0.213 2.60 58.4 0.147 18.40 275 0.80 Q383881 0.977 0.021 0.070 0.942 36.9 0.118 2.42 108.5 0.42 Q383882 0.949 0.033 0.067 0.379 36.7 0.103 1.545 62.5 0.08 Q383883 0.550 0.037 0.059 0.330 44.7 0.086 1.185 43.3 0.11 Q383884 1.580 0.019 0.046 0.447 30.8 0.084 1.800 72.5 0.13 Q383885 0.348 0.022 0.056 0.422 40.4 0.099 1.690 60.5 0.06 Q383887 0.722 0.020 0.052 0.557 34.1 0.080 2.76 84.5 0.12 Q383888 1.035 0.049 0.375 60.0 0.116 1.200 45.4 0.45	Q383875 Q383876 Q383877 Q383878		3.78 0.854 1.250 0.988	0.015 0.017 0.029 0.021	0.059 0.079 0.056 0.082	1.025 1.095 0.734 0.816	22.6 29.6 26.0 36.1	0.085 0.077 0.114 0.103	7.07 3.42 5.66	118.0 143.0 112.0 121.0	1.90 1.08 0.43 0.33		
Q383885 0.348 0.022 0.056 0.422 40.4 0.099 1.690 60.5 0.06 Q383886 0.722 0.020 0.052 0.557 34.1 0.080 2.76 84.5 0.12 Q383887 0.327 0.118 0.035 0.179 96.8 0.077 1.215 36.8 0.34 Q383888 1.035 0.085 0.049 0.375 60.0 0.116 1.200 45.4 0.45	Q383880 Q383881 Q383882 Q383883		0.475 0.977 0.949 0.550	0.026 0.021 0.033 0.037	0.213 0.070 0.067 0.059	2.60 0.942 0.379 0.330	58.4 36.9 36.7 44.7	0.147 0.118 0.103 0.086	18.40 2.42 1.545 1.185	275 108.5 62.5 43.3	0.80 0.42 0.08 0.11		
Q383889	Q383885 Q383886 Q383887 Q383888		0.348 0.722 0.327 1.035	0.022 0.020 0.118 0.085	0.056 0.052 0.035 0.049	0.422 0.557 0.179 0.375	40.4 34.1 96.8 60.0	0.099 0.080 0.077 0.116	1.690 2.76 1.215 1.200	60.5 84.5 36.8 45.4	0.06 0.12 0.34 0.45		

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY- 2015

Account: INDRCO

Project: Soil Sample Prog.for Precious

Sample Description	Method	WEI- 21	ME- MS41L													
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOR	0.02	0.0002	0.001	0.01	0.01	10	0.5	0.01	0.001	0.01	0.001	0.003	0.001	0.01	0.005
Q383891		0.74	0.0120	5.26	1.08	10.30	<10	80.1	0.21	0.240	0.05	0.612	29.0	8.98	23.3	0.815
Q383892		0.58	0.0183	2.77	1.64	11.50	<10	157.5	0.39	0.273	0.36	2.16	30.2	21.4	31.1	1.245
Q383893		0.60	0.0240	0.221	1.33	10.15	<10	103.0	0.26	0.241	0.11	0.636	25.0	9.32	29.0	0.677
Q383894		0.60	0.0135	0.445	1.12	7.31	<10	97.3	0.23	0.231	0.06	0.569	25.0	7.16	27.5	1.100
Q383895		0.70	0.0067	0.865	0.61	10.60	<10	39.6	0.09	0.234	0.07	0.241	24.3	5.11	16.50	0.595
Q383896		0.64	0.0080	0.868	0.80	5.56	<10	84.4	0.09	0.196	0.20	0.344	10.90	7.23	33.3	0.772
Q383897		0.62	0.0122	1.305	1.65	8.08	<10	156.5	0.35	0.220	0.65	0.941	19.20	17.80	66.4	1.075
Q383898		0.54	0.406	0.981	1.30	8.35	<10	156.5	0.21	0.198	0.55	0.370	17.30	18.85	46.6	0.768
Q383899		0.46	0.0078	1.500	1.72	8.36	<10	212	0.38	0.179	0.83	1.440	16.95	24.5	84.4	0.991
Q383900		0.62	0.0273	1.100	1.66	8.62	<10	178.0	0.31	0.202	0.72	0.649	16.60	19.00	76.7	0.947

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY- 2015 Account: INDRCO

Project: Soil Sample Prog.for Precious

Sample Description	Method	ME- MS41L														
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOR	0.01	0.001	0.004	0.005	0.002	0.004	0.005	0.01	0.002	0.1	0.01	0.1	0.01	0.001	0.002
Q383891		29.8	3.90	3.95	0.056	0.003	0.063	0.026	0.05	13.90	11.5	0.33	466	4.53	0.010	0.146
Q383892		66.8	4.10	4.06	0.067	0.031	0.104	0.026	0.10	15.30	15.2	0.43	1670	4.88	0.014	0.157
Q383893		47.3	3.80	3.72	0.055	0.003	0.067	0.027	0.07	11.95	12.9	0.41	247	5.17	0.009	0.211
Q383894		30.7	2.86	4.61	0.051	0.034	0.091	0.027	0.06	12.80	9.2	0.32	239	3.86	0.010	0.182
Q383895		20.1	2.31	4.08	0.043	0.002	0.084	0.012	0.02	12.20	3.3	0.16	208	3.10	0.006	0.184
Q383896		28.6	2.43	4.79	0.034	0.006	0.082	0.018	0.06	5.54	3.8	0.31	323	2.11	0.007	0.425
Q383897		70.6	3.22	4.61	0.052	0.009	0.100	0.025	0.10	10.10	16.0	0.69	383	2.53	0.012	0.244
Q383898		48.2	3.68	4.33	0.050	0.006	0.085	0.018	0.07	9.42	11.6	0.59	1380	2.07	0.011	0.225
Q383899		135.0	3.31	4.34	0.073	0.008	0.169	0.023	0.09	12.60	12.5	0.62	1290	1.98	0.012	0.257
Q383900		87.8	3.68	4.27	0.055	0.011	0.132	0.024	0.09	9.74	15.4	0.62	680	2.68	0.010	0.238

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7 Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY- 2015 Account: INDRCO

VA15062459

Project: Soil Sample Prog.for Precious

Sample Description	Method Analyte Units LOR	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005	ME- MS41L Te ppm 0.01
Q383891		26.9	0.071	9.45	<0.001	<0.002	6.65	<0.001	0.02	0.316	0.760	1.8	0.18	5.06	<0.005	0.08
Q383892		47.5	0.117	13.35	0.004	<0.002	9.02	0.009	0.04	0.397	2.46	2.9	0.21	19.75	< 0.005	0.08
Q383893		33.7	0.058	12.35	0.002	<0.002	5.15	< 0.001	0.03	0.358	1.100	2.0	0.16	9.66	<0.005	0.09
Q383894		18.95	0.069	9.10	0.002	<0.002	10.15	< 0.001	0.02	0.204	0.662	1.7	0.20	9.02	<0.005	0.07
Q383895		13.15	0.048	7.05	0.002	<0.002	3.79	<0.001	0.01	0.234	0.598	8.0	0.20	9.58	< 0.005	0.06
Q383896		13.20	0.112	7.61	0.002	0.002	7.77	<0.001	0.02	0.191	1.145	0.7	0.25	18.00	<0.005	0.05
Q383897		34.2	0.121	10.45	0.004	< 0.002	7.89	0.005	0.04	0.239	2.41	1.9	0.17	32.2	< 0.005	0.09
Q383898		26.0	0.061	9.42	0.004	0.002	6.32	0.002	0.04	0.281	3.43	1.4	0.17	27.9	< 0.005	0.07
Q383899		50.0	0.108	9.10	0.008	0.002	7.90	0.007	0.06	0.368	12.85	3.1	0.19	32.4	<0.005	0.07
Q383900		34.8	0.105	10.20	0.005	< 0.002	7.35	0.005	0.04	0.279	7.92	1.7	0.16	32.9	< 0.005	0.11

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7- MAY- 2015 Account: INDRCO

Project: Soil Sample Prog.for Precious

ample Description	Method Analyte Units LOR	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	Zn- OG46 Zn % 0.001	
383891		0.566	0.017	0.065	0.554	29.7	0.086	1.885	96.2	0.11		
383892		0.758	0.019	0.118	1.510	34.9	0.087	12.35	133.5	1.05		
(383893		0.621	0.025	0.068	0.631	33.3	0.091	2.26	104.0	0.12		
383894		0.235	0.022	0.091	0.690	34.9	0.090	2.74	57.9	80.0		
2383895		0.322	0.030	0.077	0.304	35.3	0.068	1.240	42.3	0.09		
(383896		0.186	0.087	0.067	0.355	51.0	0.076	1.460	40.0	0.21		
383897		0.434	0.037	0.094	1.230	53.7	0.075	6.75	114.5	0.37		
2383898		0.457	0.035	0.067	0.453	49.1	0.076	3.62	65.1	0.13		
2383899		0.271	0.039	0.087	0.886	52.9	0.085	17.10	103.5	0.25		
Q383900		0.404	0.037	0.080	1.235	51.6	0.079	9.48	94.6	0.29		

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7- MAY- 2015

Account: INDRCO

Project: Soil Sample Prog.for Precious

			02111110/112 01 /110/12	
		CERTIFICATE COM	MENTS	
		ANALYT	ICAL COMMENTS	
			ICAL COMMENTS	
Applies to Method:	ME- MS41L	d are semi- quantitative due to	the small sample weight used (0.5g).	
		LABORA	TORY ADDRESSES	
	Processed at ALS Vancouver located	d at 2103 Dollarton Hwy, Nort	h Vancouver, BC, Canada.	
Applies to Method:	LOG- 22 SCR- 41	LOG- 24 WEI- 21	ME- MS41L Zn- OG46	ME- OG46

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11- MAY- 2015

Account: INDRCO

CERTIFICATE VA15062445

Project: Soil sample Prog. for Precious

This report is for 29 Soil samples submitted to our lab in Vancouver, BC, Canada on 29- APR- 2015.

The following have access to data associated with this certificate:

BRANDON MACDONALD LAWRENCE ONEILL KRISTIAN WHITEHEAD

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
SCR- 41	Screen to - 180um and save both
LOG- 24	Pulp Login - Rcd w/o Barcode

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
Ag- OG46 ME- OG46 ME- MS41L	Ore Grade Ag - Aqua Regia Ore Grade Elements - AquaRegia Super Trace AR by ICP- MS	VARIABLE ICP- AES

To: INFINITI DRILLING CORPORATION ATTN: KRISTIAN WHITEHEAD 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 2 - A
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 11- MAY- 2015
Account: INDRCO

Project: Soil sample Prog. for Precious

IIIInera	15								CI	RTIFIC	ATE O	F ANAL	YSIS	VA150	62445	
Sample Description	Method	WEI- 21	ME- MS41L													
	Analyte	Recvd Wt.	Au	Ag	AI	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOR	0.02	0.0002	0.001	0.01	0.01	10	0.5	0.01	0.001	0.01	0.001	0.003	0.001	0.01	0.005
Q383801		0.08	0.519	>100	1.03	53.1	10	182.5	0.34	1.685	1.05	56.5	20.3	12.70	18.45	1.385
Q383802		0.54	0.0113	0.675	1.37	10.70	<10	95.0	0.30	0.277	0.19	1.015	28.8	20.8	35.5	0.876
Q383803		0.50	0.0207	1.070	1.26	18.25	<10	102.5	0.31	0.313	0.19	1.835	29.1	37.7	32.9	0.805
Q383804		0.52	0.0417	0.615	1.23	14.30	<10	69.6	0.13	0.264	0.15	0.234	18.70	10.05	38.7	0.442
Q383805		0.48	0.0069	1.425	1.11	18.70	<10	57.5	0.13	0.382	0.11	0.393	15.20	9.38	35.6	0.521
Q383806		0.56	0.436	0.329	0.91	11.60	<10	53.0	0.09	0.281	0.11	0.157	14.60	6.84	21.4	0.617
Q383807		0.46	0.0048	0.705	1.32	10.30	<10	78.3	0.22	0.255	0.16	0.813	16.10	13.55	41.0	1.130
Q383808		0.54	0.0052	2.08	1.06	9.65	<10	102.5	0.26	0.287	0.27	1.825	14.60	14.40	33.1	1.005
Q383809		0.54	0.0125	1.215	2.02	13.05	<10	92.7	0.33	0.195	0.46	0.909	11.50	34.6	64.5	1.195
Q383810		0.66	0.0010	0.872	0.55	6.20	<10	44.4	0.07	0.229	0.11	0.156	14.95	5.86	18.35	1.265
Q383811		0.38	0.0046	0.676	1.51	9.03	<10	79.4	0.22	0.170	0.34	0.582	20.0	21.3	56.2	0.764
Q383812		0.48	0.0075	0.500	1.24	10.15	<10	94.6	0.23	0.223	0.15	0.411	27.3	13.40	41.0	0.821
Q383813		0.52	0.0137	0.291	1.06	14.15	<10	105.5	0.18	0.237	0.11	0.313	36.3	8.30	30.2	0.644
Q383814		0.64	0.0101	0.837	1.81	9.01	<10	157.5	0.36	0.227	0.42	0.497	26.0	29.1	75.9	1.575
Q383815		0.52	0.0013	0.164	0.44	9.30	<10	66.1	0.07	0.193	0.20	0.109	14.15	8.77	38.7	0.671
Q383816		0.34	0.0039	0.669	1.20	11.40	<10	174.5	0.29	0.237	0.29	0.666	27.0	18.75	34.3	1.170
Q383817		0.56	0.0159	1.015	1.24	10.20	<10	176.5	0.28	0.233	0.31	0.657	30.0	15.90	28.5	0.975
Q383818		0.30	0.0109	6.10	1.70	7.43	<10	195.0	0.41	0.248	0.96	1.450	18.70	17.60	35.2	2.09
Q383819		0.44	1.525	11.00	2.33	12.85	<10	240	0.62	0.312	1.05	3.90	17.50	24.3	56.1	3.06
Q383820		0.58	0.0069	0.377	1.66	12.75	<10	105.0	0.33	0.286	0.09	0.511	28.2	10.70	37.7	0.825
Q383821		0.56	0.0020	0.992	0.97	5.91	<10	64.4	0.14	0.244	0.10	0.379	13.55	6.85	25.7	0.887
Q383822		0.54	0.0095	1.100	1.64	11.75	<10	127.0	0.28	0.253	0.27	0.887	18.75	25.3	59.3	1.310
Q383823		0.42	0.0012	0.970	0.40	5.52	<10	133.5	0.05	0.182	0.46	0.307	8.89	6.41	18.35	0.476
Q383824		0.56	0.0021	3.51	1.25	8.30	<10	89.3	0.19	0.266	0.28	0.693	15.70	20.9	35.4	1.325
Q383825		0.62	0.0123	0.672	0.97	13.15	<10	75.3	0.08	0.250	0.21	0.433	8.94	14.80	39.8	0.570
Q383826		0.50	0.0073	0.486	0.30	3.66	<10	46.7	0.04	0.216	0.09	0.227	27.1	3.52	9.25	0.789
Q383827		0.56	0.0048	0.563	0.42	4.16	<10	35.7	0.04	0.229	0.12	0.080	23.7	2.71	11.15	0.482
Q383828		0.58	0.0040	0.402	1.48	9.57	<10	44.3	0.12	0.236	0.10	0.182	9.25	11.15	95.4	0.621
Q383829		0.50	0.0005	0.599	0.12	0.77	<10	38.6	0.03	0.077	0.07	0.246	18.15	1.190	5.96	0.360

Q383829

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION **2763 PANORAMA DRIVE** NORTH VANCOUVER BC V7G 1V7

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11- MAY- 2015 Account: INDRCO

Project: Soil sample Prog. for Precious

IIIInera	112								CI	RTIFIC	ATE O	F ANAL	YSIS	VA150	62445	
Sample Description	Method	ME- MS41L														
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOR	0.01	0.001	0.004	0.005	0.002	0.004	0.005	0.01	0.002	0.1	0.01	0.1	0.01	0.001	0.002
Q383801		4620	3.47	8.92	0.115	0.094	1.090	12.45	0.44	10.15	6.2	0.62	489	36.8	0.064	0.316
Q383802		93.2	4.02	3.70	0.071	0.009	0.073	0.027	0.09	12.95	11.3	0.53	673	7.81	0.005	0.277
Q383803		140.0	4.89	3.11	0.068	0.009	0.063	0.026	0.06	12.95	12.1	0.62	1405	9.83	0.006	0.206
Q383804		62.3	3.96	5.46	0.041	0.007	0.059	0.019	0.06	7.54	6.7	0.54	342	3.38	0.005	0.732
Q383805		38.2	5.98	4.85	0.049	0.010	0.071	0.031	0.03	7.37	6.0	0.37	442	6.33	0.004	0.632
Q383806		29.0	3.31	6.74	0.040	0.006	0.038	0.013	0.05	7.29	3.1	0.27	248	3.86	0.005	0.841
Q383807		200	3.50	4.76	0.038	0.007	0.084	0.025	0.07	7.80	9.5	0.57	380	4.52	0.005	0.410
Q383808		60.4	4.05	4.03	0.061	0.006	0.088	0.023	0.06	10.90	5.4	0.35	738	4.49	0.004	0.238
Q383809		178.0	5.71	3.18	0.067	0.024	0.046	0.013	0.12	5.32	11.6	1.21	969	2.60	0.005	0.446
Q383810		14.05	1.790	5.02	0.036	0.004	0.060	0.016	0.04	7.52	2.4	0.17	391	2.08	0.006	0.299
Q383811		92.9	3.75	3.65	0.050	0.005	0.048	0.018	0.10	9.73	11.2	0.81	603	3.10	0.008	0.348
Q383812		53.2	3.64	4.70	0.056	0.008	0.047	0.025	0.06	13.00	11.4	0.50	423	4.38	0.007	0.370
Q383813		35.1	3.54	4.98	0.052	0.005	0.056	0.016	0.06	17.95	7.7	0.37	261	3.44	0.009	0.284
Q383814		123.0	4.40	5.36	0.057	0.006	0.071	0.038	0.09	11.95	13.0	0.57	1240	3.57	0.011	0.253
Q383815		30.5	3.08	4.74	0.036	0.012	0.027	0.016	0.03	7.10	1.7	0.15	143.0	4.14	0.006	0.653
Q383816		87.3	3.34	4.19	0.040	0.004	0.079	0.033	0.08	13.30	6.5	0.28	819	4.01	0.013	0.241
Q383817		64.0	3.38	3.82	0.046	0.003	0.076	0.022	0.11	13.80	11.2	0.34	1060	5.00	0.011	0.168
Q383818		56.2	2.75	3.55	0.063	0.026	0.253	0.025	0.09	13.85	13.2	0.38	1480	2.06	0.014	0.189
Q383819		151.5	4.43	5.04	0.087	0.017	0.252	0.041	0.12	21.0	18.3	0.50	2700	4.26	0.014	0.275
Q383820		46.5	5.59	6.02	0.058	0.008	0.079	0.034	0.06	13.50	12.5	0.42	348	5.61	0.007	0.739
Q383821		17.95	2.82	5.37	0.037	0.008	0.095	0.015	0.03	6.78	6.7	0.22	310	4.09	0.007	0.945
Q383822		144.0	4.45	4.83	0.053	0.011	0.093	0.021	0.09	9.46	14.0	0.75	627	5.14	0.010	0.484
Q383823		21.9	1.820	3.15	0.027	0.017	0.171	0.014	0.06	4.60	1.8	0.15	819	2.45	0.007	0.273
Q383824		46.8	4.08	5.15	0.038	0.002	0.080	0.027	0.06	8.41	6.5	0.44	2460	10.00	0.008	0.320
Q383825		53.6	4.31	4.74	0.037	0.013	0.054	0.017	0.04	4.31	4.7	0.49	407	3.12	0.008	0.808
Q383826		11.25	1.320	4.19	0.035	<0.002	0.032	0.011	0.04	13.45	1.5	0.07	243	6.37	0.006	0.190
Q383827		5.11	1.120	5.58	0.039	0.003	0.050	<0.005	0.06	11.75	1.6	0.10	211	1.90	0.008	0.548
Q383828		43.1	4.91	6.22	0.035	0.013	0.055	0.014	0.05	4.75	7.4	0.76	256	4.07	0.005	1.380

5.95

0.660

1.005

0.021

< 0.002

0.035

0.005

0.03

9.41

0.5

0.02

38.5

2.62

0.010

0.118

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11- MAY- 2015 Account: INDRCO

Project: Soil sample Prog. for Precious

									CERTIFICATE OF ARACTSIS VATSUUZ-				<u> </u>			
Sample Description	Method	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L							
	Analyte	Ni	P	Pb	Pd	Pt	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm						
	LOR	0.04	0.001	0.005	0.001	0.002	0.005	0.001	0.01	0.005	0.005	0.1	0.01	0.01	0.005	0.01
Q383801		11.65	0.078	9610	0.005	<0.002	23.9	0.019	1.61	134.0	4.25	3.1	341	60.8	<0.005	0.13
Q383802		56.4	0.090	16.40	0.005	0.002	7.90	<0.001	0.02	0.418	2.57	2.1	0.26	14.25	<0.005	0.14
Q383803		69.3	0.096	17.30	0.004	0.002	4.65	<0.001	0.02	0.521	2.89	2.0	0.12	15.70	<0.005	0.18
Q383804		24.0	0.095	9.90	0.002	0.002	3.90	<0.001	0.02	0.352	2.27	1.0	0.29	21.3	<0.005	0.11
Q383805		22.9	0.235	14.80	0.002	<0.002	6.93	<0.001	0.02	0.419	2.11	1.1	0.19	13.05	<0.005	0.13
Q383806		14.75	0.155	9.76	0.002	<0.002	4.21	<0.001	0.02	0.241	1.520	0.9	0.32	17.30	<0.005	0.11
Q383807		25.3	0.084	10.35	0.005	0.002	10.25	<0.001	0.04	0.261	1.605	1.3	0.26	17.25	<0.005	0.09
Q383808		23.8	0.119	10.55	0.007	0.004	8.02	0.001	0.05	0.296	2.49	1.8	0.24	20.6	<0.005	0.08
Q383809		46.0	0.133	12.45	0.008	0.004	5.31	<0.001	0.01	0.399	3.60	1.2	0.09	26.9	<0.005	0.09
Q383810		9.35	0.088	8.52	0.002	0.002	10.15	<0.001	0.02	0.163	0.711	0.5	0.31	18.20	<0.005	0.04
Q383811		38.9	0.113	8.39	0.005	0.003	7.78	<0.001	0.02	0.339	2.82	1.1	0.16	28.2	<0.005	0.07
Q383812		30.8	0.058	9.57	0.003	0.002	7.08	0.001	0.02	0.282	1.890	1.3	0.22	16.30	<0.005	0.07
Q383813		23.3	0.048	9.54	0.003	<0.002	6.29	<0.001	0.02	0.361	1.680	1.1	0.23	12.55	<0.005	0.07
Q383814		39.4	0.099	10.25	0.008	0.002	12.75	0.003	0.04	0.428	8.71	1.7	0.29	23.5	<0.005	0.08
Q383815		16.35	0.043	8.02	0.005	0.004	3.85	<0.001	0.02	0.425	2.89	0.7	0.41	21.7	<0.005	0.09
Q383816		24.2	0.079	9.87	0.002	<0.002	9.36	0.001	0.04	0.377	1.635	1.4	0.28	18.60	<0.005	0.07
Q383817		37.5	0.078	10.85	0.008	<0.002	8.30	0.001	0.03	0.334	1.755	1.5	0.43	14.85	<0.005	0.06
Q383818		36.2	0.211	11.55	0.004	<0.002	8.47	0.014	0.14	0.210	1.485	3.5	0.23	34.6	0.005	0.06
Q383819		63.2	0.179	17.30	0.008	<0.002	12.50	0.009	0.09	0.530	4.27	4.6	0.29	53.1	<0.005	0.10
Q383820		29.7	0.101	13.20	0.001	0.002	7.67	<0.001	0.02	0.329	2.57	1.8	0.27	12.85	<0.005	0.10
Q383821		14.35	0.112	9.91	0.003	<0.002	5.14	<0.001	0.03	0.217	1.435	1.1	0.40	14.70	<0.005	0.07
Q383822		49.4	0.095	11.25	0.008	0.003	9.86	0.001	0.04	0.348	4.99	1.5	0.26	27.2	<0.005	0.09
Q383823		12.95	0.062	7.27	0.001	0.003	5.63	<0.001	0.05	0.297	1.000	0.7	0.23	26.2	<0.005	0.04
Q383824		25.5	0.122	12.85	0.003	<0.002	11.95	0.001	0.05	0.319	1.755	1.5	0.31	27.8	<0.005	0.07
Q383825		23.5	0.059	11.50	0.004	0.002	4.68	<0.001	0.04	0.403	2.33	0.9	0.27	24.0	<0.005	0.09
Q383826		10.55	0.035	8.00	0.001	<0.002	7.50	<0.001	0.02	0.201	0.553	0.8	0.30	9.13	<0.005	0.09
Q383827		4.73	0.076	8.07	<0.001	<0.002	7.32	<0.001	0.02	0.153	0.894	0.3	0.39	13.45	<0.005	0.04
Q383828		24.8	0.056	15.30	0.003	0.002	3.98	<0.001	0.03	0.221	1.385	0.8	0.30	9.53	<0.005	0.08
Q383829		4.83	0.023	5.66	0.002	<0.002	2.62	<0.001	0.03	0.077	0.442	1.0	0.19	5.59	<0.005	0.04

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11- MAY- 2015 Account: INDRCO

Project: Soil sample Prog. for Precious

CERTIFICATE OF ANALYSIS	VA15062445

Method Analyte Units LOR	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	Ag- OG46 Ag ppm 1	
	3.60 1.450 1.810 0.882 1.405	0.105 0.041 0.032 0.107 0.071	3.06 0.109 0.092 0.052 0.058	0.690 0.929 1.035 0.382 0.444	59.8 42.6 36.2 72.6 69.1	13.45 0.124 0.122 0.152 0.159	6.89 5.39 6.83 1.595 1.645	7340 157.5 204 65.3 75.9	2.09 0.18 0.33 0.38 0.38	107	
	0.936 0.308 0.149 1.210 0.155	0.101 0.082 0.050 0.147 0.056	0.093 0.080 0.046 0.071 0.080	0.279 0.508 1.190 0.590 0.280	71.8 58.5 52.3 59.9 41.7	0.152 0.126 0.093 0.093 0.101	1.340 2.62 9.43 6.42 1.240	45.9 71.4 66.3 108.5 32.3	0.29 0.24 0.15 0.67 0.14		
	1.005 0.812 0.672 0.397 0.926	0.078 0.065 0.040 0.052 0.148	0.073 0.072 0.068 0.087 0.035	0.535 0.615 0.451 0.929 0.293	55.0 54.6 49.4 69.7 96.0	0.103 0.116 0.111 0.129 0.123	3.60 2.85 2.32 6.41 1.430	100.5 81.8 71.9 100.0 35.0	0.16 0.21 0.14 0.18 0.35		
	0.172 0.477 0.210 0.268 2.52	0.032 0.023 0.018 0.036 0.077	0.072 0.089 0.111 0.154 0.093	0.816 0.855 2.00 4.34 0.618	45.8 36.8 35.0 55.0 60.3	0.133 0.097 0.060 0.134 0.165	5.30 4.22 17.35 44.8 2.19	68.6 114.0 86.0 162.5 105.5	0.09 0.13 0.60 0.37 0.39		
	1.110 0.912 0.117 0.239 0.514	0.104 0.107 0.046 0.082 0.192	0.073 0.102 0.072 0.097 0.050	0.424 1.030 0.208 0.774 0.336	50.8 69.7 41.7 66.7 92.9	0.158 0.138 0.098 0.134 0.160	1.260 7.99 0.993 4.05 1.840	67.6 117.0 58.6 96.3 65.9	0.47 0.37 0.09 0.18 0.44		
	0.333 1.250 1.090 1.310	0.029 0.066 0.160 0.019	0.061 0.071 0.045 0.029	0.236 0.176 0.233 0.195	36.4 39.4 67.9 17.2	0.097 0.111 0.184 0.072	1.000 0.932 0.875 0.787	38.9 20.6 60.1 18.7	0.02 0.14 0.48 0.07		
	Analyte Units	Analyte Units LOR	Analyte Units LOR	Analyte Units LOR Th Ti Tl Tl ppm pped pped pped pped pped pped pped pped pped	Analyte Units LOR Th Ti TI U U LOR 0.002 0.001 0.002 0.005 3.60 0.105 3.06 0.690 1.450 0.041 0.109 0.929 1.810 0.032 0.092 1.035 0.882 0.107 0.052 0.382 1.405 0.071 0.058 0.444 0.936 0.101 0.093 0.279 0.308 0.082 0.080 0.508 0.149 0.050 0.046 1.190 1.210 0.147 0.071 0.590 0.155 0.056 0.080 0.280 1.005 0.078 0.073 0.535 0.812 0.065 0.072 0.615 0.672 0.040 0.068 0.451 0.397 0.052 0.087 0.929 0.926 0.148 0.035 0.293 0.210 0.018 0.111 2.00 <td>Analyte Units LOR Th Ti Tl U V Units LOR 0.002 0.001 0.002 0.005 0.1 3.60 0.105 3.06 0.690 59.8 1.450 0.041 0.109 0.929 42.6 1.810 0.032 0.092 1.035 36.2 0.882 0.107 0.052 0.382 72.6 1.405 0.071 0.058 0.444 69.1 0.936 0.101 0.093 0.279 71.8 0.308 0.082 0.080 0.508 58.5 0.149 0.050 0.046 1.190 52.3 1.210 0.147 0.071 0.590 59.9 0.155 0.056 0.080 0.280 41.7 1.005 0.078 0.073 0.535 55.0 0.812 0.065 0.072 0.615 54.6 0.672 0.040 0.068 0.451 49.4 <t< td=""><td>Malyte Units LOR Th Ti TI U V W Units LOR 0.002 0.001 0.002 0.005 0.1 0.001 3.60 0.105 3.06 0.690 59.8 13.45 1.450 0.041 0.109 0.929 42.6 0.124 1.810 0.032 0.092 1.035 36.2 0.122 0.882 0.107 0.052 0.382 72.6 0.152 1.405 0.071 0.058 0.444 69.1 0.159 0.936 0.101 0.093 0.279 71.8 0.152 0.308 0.082 0.080 0.508 58.5 0.126 0.149 0.050 0.046 1.190 52.3 0.093 1.210 0.147 0.071 0.590 59.9 0.093 0.155 0.056 0.080 0.280 41.7 0.101 1.005 0.078 0.073 0.535 55.0 <td< td=""><td>Analyte Units Th Ti TI U V W Y LOR 0.002 0.001 0.002 0.005 0.1 0.001 0.003 3.60 0.105 3.06 0.690 59.8 13.45 6.89 1.810 0.032 0.092 1.035 36.2 0.124 5.39 1.810 0.032 0.092 1.035 36.2 0.122 6.83 0.882 0.107 0.052 0.382 72.6 0.152 1.595 1.405 0.071 0.058 0.444 69.1 0.159 1.645 0.936 0.101 0.093 0.279 71.8 0.152 1.340 0.308 0.082 0.080 0.508 58.5 0.126 2.62 0.149 0.050 0.046 1.190 52.3 0.093 6.42 0.155 0.056 0.080 0.280 41.7 0.101 1.240 1.005 0.078</td><td>Analyte Units Th Ti Ti Ti U V W Y Zn LOR 0.002 0.001 0.002 0.005 0.1 0.001 0.003 0.1 3.60 0.005 3.06 0.092 59.8 13.45 6.89 7340 1.450 0.041 0.109 0.929 42.6 0.124 5.39 157.5 1.810 0.032 0.092 1.035 36.2 0.122 6.83 204 0.882 0.107 0.052 0.382 72.6 0.152 1.595 65.3 1.405 0.071 0.058 0.444 69.1 0.152 1.595 65.3 0.338 0.082 0.080 0.508 58.5 0.152 1.340 45.9 0.338 0.082 0.080 0.508 58.5 0.126 2.62 71.4 0.149 0.050 0.046 1.190 52.3 0.093 9.43 66.3 </td></td<></td></t<><td>Analyte Units Th Ti Ti Ti Units V W Y Zn Zr Ppm Louis Louis Lou</td><td>Analyte Units Units LOR</td></td>	Analyte Units LOR Th Ti Tl U V Units LOR 0.002 0.001 0.002 0.005 0.1 3.60 0.105 3.06 0.690 59.8 1.450 0.041 0.109 0.929 42.6 1.810 0.032 0.092 1.035 36.2 0.882 0.107 0.052 0.382 72.6 1.405 0.071 0.058 0.444 69.1 0.936 0.101 0.093 0.279 71.8 0.308 0.082 0.080 0.508 58.5 0.149 0.050 0.046 1.190 52.3 1.210 0.147 0.071 0.590 59.9 0.155 0.056 0.080 0.280 41.7 1.005 0.078 0.073 0.535 55.0 0.812 0.065 0.072 0.615 54.6 0.672 0.040 0.068 0.451 49.4 <t< td=""><td>Malyte Units LOR Th Ti TI U V W Units LOR 0.002 0.001 0.002 0.005 0.1 0.001 3.60 0.105 3.06 0.690 59.8 13.45 1.450 0.041 0.109 0.929 42.6 0.124 1.810 0.032 0.092 1.035 36.2 0.122 0.882 0.107 0.052 0.382 72.6 0.152 1.405 0.071 0.058 0.444 69.1 0.159 0.936 0.101 0.093 0.279 71.8 0.152 0.308 0.082 0.080 0.508 58.5 0.126 0.149 0.050 0.046 1.190 52.3 0.093 1.210 0.147 0.071 0.590 59.9 0.093 0.155 0.056 0.080 0.280 41.7 0.101 1.005 0.078 0.073 0.535 55.0 <td< td=""><td>Analyte Units Th Ti TI U V W Y LOR 0.002 0.001 0.002 0.005 0.1 0.001 0.003 3.60 0.105 3.06 0.690 59.8 13.45 6.89 1.810 0.032 0.092 1.035 36.2 0.124 5.39 1.810 0.032 0.092 1.035 36.2 0.122 6.83 0.882 0.107 0.052 0.382 72.6 0.152 1.595 1.405 0.071 0.058 0.444 69.1 0.159 1.645 0.936 0.101 0.093 0.279 71.8 0.152 1.340 0.308 0.082 0.080 0.508 58.5 0.126 2.62 0.149 0.050 0.046 1.190 52.3 0.093 6.42 0.155 0.056 0.080 0.280 41.7 0.101 1.240 1.005 0.078</td><td>Analyte Units Th Ti Ti Ti U V W Y Zn LOR 0.002 0.001 0.002 0.005 0.1 0.001 0.003 0.1 3.60 0.005 3.06 0.092 59.8 13.45 6.89 7340 1.450 0.041 0.109 0.929 42.6 0.124 5.39 157.5 1.810 0.032 0.092 1.035 36.2 0.122 6.83 204 0.882 0.107 0.052 0.382 72.6 0.152 1.595 65.3 1.405 0.071 0.058 0.444 69.1 0.152 1.595 65.3 0.338 0.082 0.080 0.508 58.5 0.152 1.340 45.9 0.338 0.082 0.080 0.508 58.5 0.126 2.62 71.4 0.149 0.050 0.046 1.190 52.3 0.093 9.43 66.3 </td></td<></td></t<> <td>Analyte Units Th Ti Ti Ti Units V W Y Zn Zr Ppm Louis Louis Lou</td> <td>Analyte Units Units LOR</td>	Malyte Units LOR Th Ti TI U V W Units LOR 0.002 0.001 0.002 0.005 0.1 0.001 3.60 0.105 3.06 0.690 59.8 13.45 1.450 0.041 0.109 0.929 42.6 0.124 1.810 0.032 0.092 1.035 36.2 0.122 0.882 0.107 0.052 0.382 72.6 0.152 1.405 0.071 0.058 0.444 69.1 0.159 0.936 0.101 0.093 0.279 71.8 0.152 0.308 0.082 0.080 0.508 58.5 0.126 0.149 0.050 0.046 1.190 52.3 0.093 1.210 0.147 0.071 0.590 59.9 0.093 0.155 0.056 0.080 0.280 41.7 0.101 1.005 0.078 0.073 0.535 55.0 <td< td=""><td>Analyte Units Th Ti TI U V W Y LOR 0.002 0.001 0.002 0.005 0.1 0.001 0.003 3.60 0.105 3.06 0.690 59.8 13.45 6.89 1.810 0.032 0.092 1.035 36.2 0.124 5.39 1.810 0.032 0.092 1.035 36.2 0.122 6.83 0.882 0.107 0.052 0.382 72.6 0.152 1.595 1.405 0.071 0.058 0.444 69.1 0.159 1.645 0.936 0.101 0.093 0.279 71.8 0.152 1.340 0.308 0.082 0.080 0.508 58.5 0.126 2.62 0.149 0.050 0.046 1.190 52.3 0.093 6.42 0.155 0.056 0.080 0.280 41.7 0.101 1.240 1.005 0.078</td><td>Analyte Units Th Ti Ti Ti U V W Y Zn LOR 0.002 0.001 0.002 0.005 0.1 0.001 0.003 0.1 3.60 0.005 3.06 0.092 59.8 13.45 6.89 7340 1.450 0.041 0.109 0.929 42.6 0.124 5.39 157.5 1.810 0.032 0.092 1.035 36.2 0.122 6.83 204 0.882 0.107 0.052 0.382 72.6 0.152 1.595 65.3 1.405 0.071 0.058 0.444 69.1 0.152 1.595 65.3 0.338 0.082 0.080 0.508 58.5 0.152 1.340 45.9 0.338 0.082 0.080 0.508 58.5 0.126 2.62 71.4 0.149 0.050 0.046 1.190 52.3 0.093 9.43 66.3 </td></td<>	Analyte Units Th Ti TI U V W Y LOR 0.002 0.001 0.002 0.005 0.1 0.001 0.003 3.60 0.105 3.06 0.690 59.8 13.45 6.89 1.810 0.032 0.092 1.035 36.2 0.124 5.39 1.810 0.032 0.092 1.035 36.2 0.122 6.83 0.882 0.107 0.052 0.382 72.6 0.152 1.595 1.405 0.071 0.058 0.444 69.1 0.159 1.645 0.936 0.101 0.093 0.279 71.8 0.152 1.340 0.308 0.082 0.080 0.508 58.5 0.126 2.62 0.149 0.050 0.046 1.190 52.3 0.093 6.42 0.155 0.056 0.080 0.280 41.7 0.101 1.240 1.005 0.078	Analyte Units Th Ti Ti Ti U V W Y Zn LOR 0.002 0.001 0.002 0.005 0.1 0.001 0.003 0.1 3.60 0.005 3.06 0.092 59.8 13.45 6.89 7340 1.450 0.041 0.109 0.929 42.6 0.124 5.39 157.5 1.810 0.032 0.092 1.035 36.2 0.122 6.83 204 0.882 0.107 0.052 0.382 72.6 0.152 1.595 65.3 1.405 0.071 0.058 0.444 69.1 0.152 1.595 65.3 0.338 0.082 0.080 0.508 58.5 0.152 1.340 45.9 0.338 0.082 0.080 0.508 58.5 0.126 2.62 71.4 0.149 0.050 0.046 1.190 52.3 0.093 9.43 66.3	Analyte Units Th Ti Ti Ti Units V W Y Zn Zr Ppm Louis Louis Lou	Analyte Units Units LOR

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: INFINITI DRILLING CORPORATION 2763 PANORAMA DRIVE NORTH VANCOUVER BC V7G 1V7

Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 11- MAY- 2015

Account: INDRCO

Project: Soil sample Prog. for Precious

		CERTIFICATE CO	MMENTS							
Applies to Method:	ANALYTICAL COMMENTS Gold determinations by this method are semi- quantitative due to the small sample weight used (0.5g). ME- MS41L									
			RATORY ADDRESSES							
Applies to Method:	Ag- OG46	ver located at 2103 Dollarton Hwy, N LOG- 22	orth Vancouver, BC, Canada. LOG- 24	ME- MS41L						
	ME- OG46	SCR- 41	WEI- 21	1112 1113 112						