

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division

BC Geological Survey

Assessment Report Title Page and Summary

specting TOTAL COST: 7250.71
SIGNATURE(S): Report Signed
e YEAR OF WORK: 2015
568452
NTS/BCGS: BCGS 093e070, 093f061
00 " (at centre of work)
2)
2)
alteration, mineralization, size and attitude): rgillization, biogeochemistry, soils, rock sampling
PORT NUMBERS: 14557, 14837, 17520, 18882, 22906, 23928,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo Interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
	***************************************	·	
Radiometric	•		
Selsmic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil 29 samples		0.5g ICP-MS	
Siit			
Rock 11 samples 15g ICP-MS			
Other 10 biogeochemical (sprud	e branch tips)	0.5g ICP-MS	
DRILLING (total metres; number of holes, size)		·	
Core			
Non-core		****	
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic		7044	
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			•
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			100000
Road, local access (kilometres)/trail			the second secon
Trench (metres)			
Other			
P2 04 55		TOTAL COST:	\$7,250.71

BC Geological Survey Assessment Report 35644

Assessment Report

2015 Geochemical Sampling
And
Prospecting Report
On The
Uduk Epi Property
Tenures Worked On: 1026442 and 1026443

Located In The Nechako Plateau Area Central British Columbia Omineca Mining Division On

NTS: 093E09E and 093F12W BCGS: 093E070 and 093F061 Latitude 53°36' North and Longitude 126°00' West

> By Bernie Kreft

September 27th, 2015

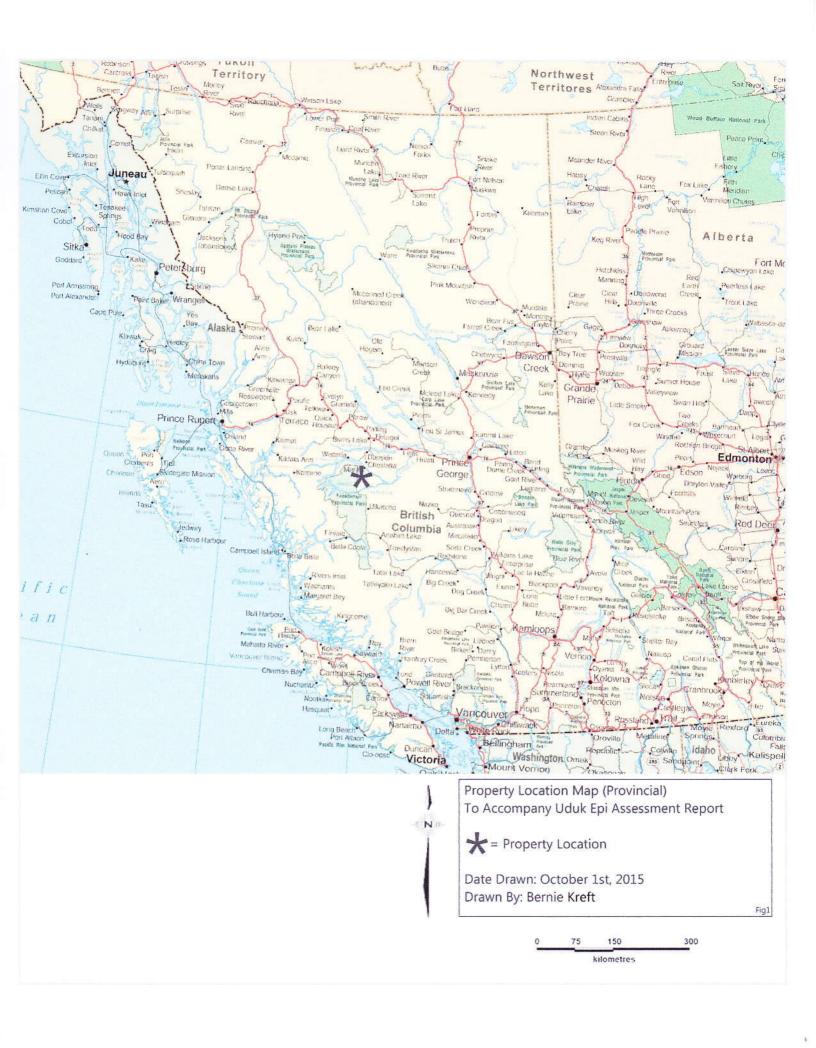
Table Of Contents

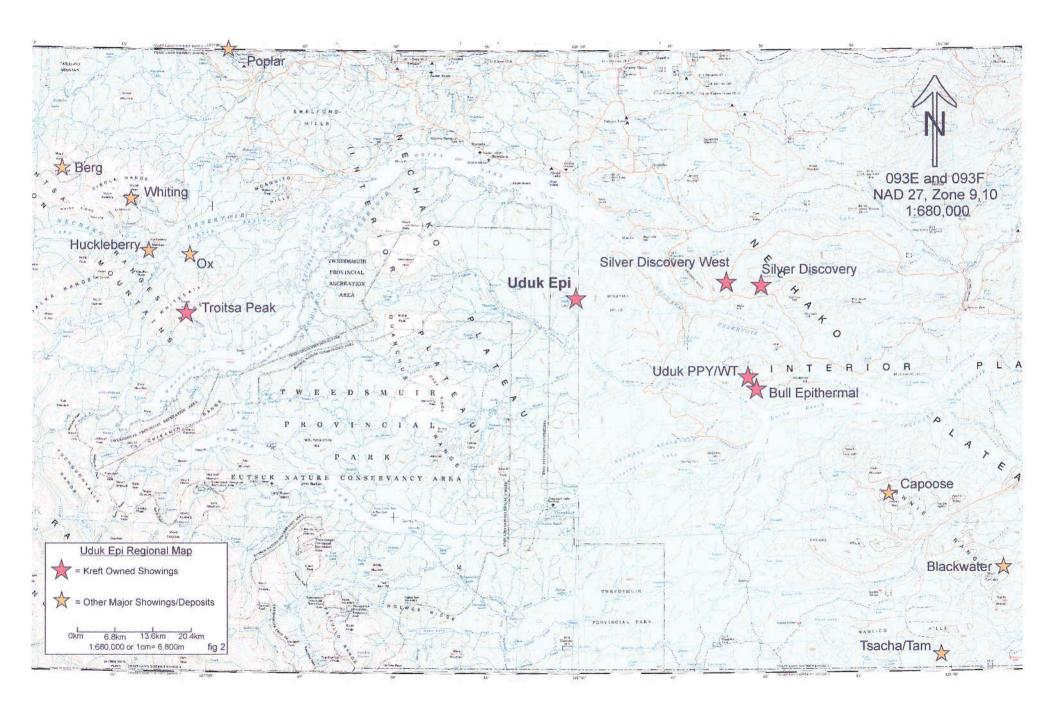
Location	Page 1
Claim Status Table	Page 1
Access	Page 1
Topography And Vegetation	Page 1
History And Previous Work	Page 1
BC Map (figure 1)	Page 2
Regional Map (figure 2)	Page 3
Claim Map (figure 3)	Page 4
Regional Geology	Page 6
Property Geology	Page 6
Alteration And Mineralization	Page 6
Current Work And Results	Page 7
Conclusions	Page 7
Recommendations	Page 8
Sample Label Map figure 4	Page 9
Gold Geochemistry Map figure 5	Page 10
Geology Map figure 7	Page 11
Rock Sample Table	Page 12
Vegetation Sample Table	Page 13
Soil Sample Table	Page 14
Statement Of Costs	Page 15
Statement Of Qualifications	Page 16
Assay Sheets	At Back

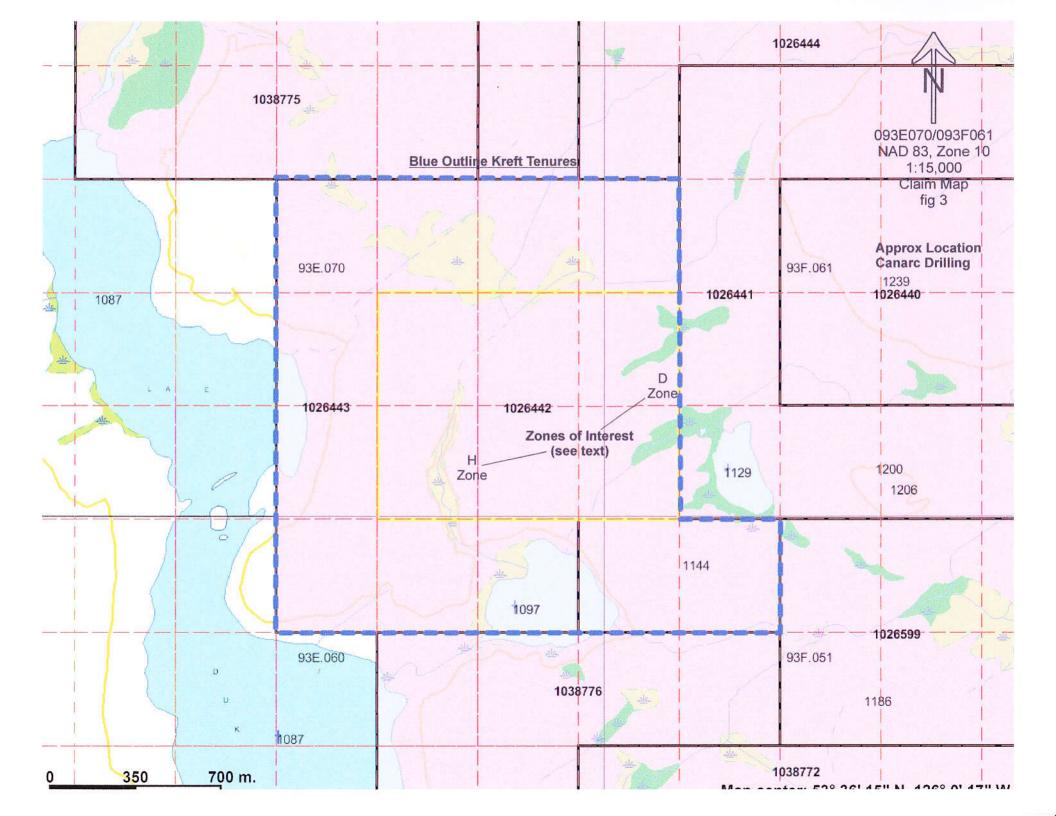
Location – The Uduk Epi project is located on BCGS map sheets 093E070 and 093F061 in the Omineca Mining Division approximately 70 kilometers south southwest of Burns Lake BC, in the Windfall Hills area, centered at 53°36' north and 126°00' west. The area of interest is located at about the 1130 metre elevation mark 10 kilometres south of Ootsa Lake and just east of Uduk Lake. A total of two tenures comprise the project, with claim data found on the following table:

Name	Tenure Numbers	Registered Owner	Expiry Date Y/M/D	Area (Ha)
Uduk	1026442	Kreft, John Bernard	2019-06-01	115.13
Uduk I	1026443		2017-06-01	211.07

Access – Access to the property was achieved by helicopter from Burns Lake an approximate 25 minute one-way flight time. The property can also be reached by a series of well-maintained logging roads and barges south from Burns Lake. Unfortunately logging in the immediate area of the property is currently at a standstill therefore the barge across Ootsa Lake only runs sporadically and usually only in the fall to service hunters and outfitters.


Topography and Vegetation – The property is located on the Nechako plateau, just south of Ootsa Lake which is part of a series of artificial lakes formed behind the Kenney Dam. Upland surfaces are generally comprised of rolling hills with numerous small lakes and marshes, with many of the smaller drainages generally following striations remaining from glacial activity which crossed the area from the SW to NE. Topography in the area is moderate, with elevations ranging from 850 meters on Ootsa Lake to over 1200 meters on hill tops. Outcrop exposures are occasionally found at higher elevations, but become increasingly masked by glacial till at lower elevations.


The main economic activity in the area is logging, with several cut-blocks located just east of the property. Vegetation is dominated by evergreens (pine and spruce) with poplar and cottonwood in low-lying areas, and undergrowth of huckleberry and alder. Large areas of vegetation have been affected by the Rocky Mountain Pine beetle. Along the Nechako Reservoir, any area close to lake level is potentially liable to be flooded with no compensation. There are numerous ranches and farms and some tourism related businesses north of the property in the Takysie-Grassy Plains area.


History And Previous Work – A series of assessment reports detailing work completed within, or close to, current property boundaries exist within the public domain. A brief chronologically ordered summary of these reports is as follows:

AR14557 – Duk Claims – A&M Exploration – 1985 – Exploration defined a 2 square kilometre area of variably argillized, quartz veined and locally brecciated Ootsa Lake Group rhyolite within which were two areas (both located predominantly within current property environs) where quartz veining was found to be particularly abundant. Grab samples returned up to 3800 ppb Au, 68 ppm Ag and 210 ppm As along with weakly anomalous molybdenum and mercury. B-horizon soil sampling was undertaken but not found to be particularly useful for tracing mineralization due to the presence of thin but widespread glacial till.

AR14837 – Duk Claims – A&M Exploration for Asitka Res – 1986 – A 3-hole 77.0 metre Winkie drilling program was completed in the immediate vicinity of the 3800 ppb Au grab sample from the 1985 program ("D Zone"). Core recovery was generally poor due to the presence of intense clay alteration, sericite and the small core diameter used. Quartz-pyrite veins and zones of quartz cemented breccia occur throughout the drill core. Results of 903 ppb Au over 3.0 metres and 280 ppb Au and 17.4 ppm Ag over 3.35 metres were returned from areas of intensely brecciated quartz eye rhyolite and brecciated white argillized rhyolite with a matrix of grey quartz and 2% disseminated pyrite in hole #1.

AR17520 – Duk Claims – Comox Res – 1988 – A total of 18 line kilometres of IP surveying were completed, resulting in the identification of 3 main zones of coincident chargeability (greater than 20 m sec) and apparent resistivity highs as well as several smaller features. Both areas where quartz veining was found to be particularly abundant (AR 14557) are semi-coincident with IP features.

AR18882 – Duk Claims – Chalice Mining and Pacific Comox Res – 1988 – A 5-hole 358 metre drill program (NDB size core; 5.61 centimetres in diameter) targeted IP anomalies in the general vicinity of the D Zone. Hole 88-1, located approximately 25 metres southeast of Winkie hole 86-1, returned program highs of approximately 250 ppb Au over 12.07 metres and 1060 ppb Au over 3.05 metres.

AR22906 – Duk Claims – Homestake Mining and Pacific Comox Res – 1992 – Homestake collected 56 rock samples and 108 soil samples during a property visit. Results include up to 5740 ppb Au and 47.2 ppm Ag from a sample of a grey quartz vein and breccia in the D Zone, up to 1965 ppb Au from samples of quartz breccia within argillized flow banded rhyolite located approximately 1.0 kilometre southwest of the D Zone (H Zone) and a third area of interest currently on ground held by Canarc Resources.

AR23154 – Duk Claims – Pioneer Metals option from Pacific Comox Res – 1993 – Pioneer collected 864 C horizon soils at 25 metre intervals on east-west trending lines spaced 200 metres apart in hopes that a deeper sampling depth would yield more robust and coherent anomalies than those returned from the previous B horizon sampling. Results show a very strong gold in soil anomaly with values of up to 1230 ppb Au and a nearly adjacent string of 4 samples averaging 547 ppb Au, from the H Zone. North-south trending semi-coincident combined resistivity and chargeability highs (AR18882) are somewhat coincident with the highly anomalous gold values of the H Zone.

AR23928 – Duk Claims – Pioneer Metals option from Pacific Comox Res – 1994 – Work consisted of geological mapping, infill soil sampling, mechanized trenching and a test magnetometer survey. Detailed chip sampling of a single north-northwest trending 100m long trench through the core of the H Zone gold soil anomaly defined the previous year returned only a single anomalous rock sample value of 0.25 ppm Au. Trenching and sampling in an area now covered by tenures owned by Canarc Resources returned up to 0.41 g/t Au over 42.0 metres.

AR25136 – Duk Claims – Atna Resources – 1997 – Work consisted of a geological compilation and a 3-dimensional resistivity geophysical survey technique which was to map out zones of resistivity in three dimensions and chargeability in two dimensions. Results of the geological compilation suggests that the property displays many features similar to Echo Bay's Round Mountain deposit in Nevada (1986 reserves of 159 million tonnes of 1.37 gpt Au), and Phelps Dodge's McDonald deposit in Montana where a total of 375 million tons grading 0.67 g/t gold at a cut-off grade of 0.27 g/t gold, (Bartlett et al, 1996), have been defined. The resistivity data from the 3-D geo-electric survey show a strong northeasterly structural control on some of the highly resistive zones.

News Release – Canarc Property – 2014 – Canarc Resources completed a 3 hole, 1149 metre drill program on their Windfall Hills Property. Results of up to 28 metres grading 0.89 gpt Au and 39 gpt Ag were returned from hole WH14-03 which was drilled to test a large resistivity high with a flanking gold-silver-arsenic-antimony soil geochemical anomaly and an historic mineralized trench that assayed 0.41 gpt over 42 m. Gold mineralization is associated with quartz stock-works and alteration zones of silica, pyrite, K-feldspar, sericite and clay. Anomalous gold, silver, and arsenic values appear to be associated with areas of more intense multiple-stage silicification and brecciation. See table below for selected drill results.

Hole #	From- m	To-m	Meters	Ag-gpt	Au-gpt	AuEq -gpt
WH-14-03	11	39	28	39	0.89	1.54
Incl	11	13	2	63	2.19	3.24
and	17	19	2	92	2.45	3.98
and	137	143	6	19	0.66	0.96
Incl	137	139	2	22	1.28	1.63

Regional Geology – The Uduk Epi claims occur within the central part of the northwest trending Intermontane Belt of the northern Cordillera. The oldest rocks in the area are of the upper Triassic Takla group, which consists of an island are sequence of intermediate to mafic volcanics overlain by shale, conglomerate and greywacke. These rocks are in turn overlain by the early to mid-Jurassic Hazelton Group, consisting of calc-alkaline basaltic to rhyolitic volcanics overlain by a sedimentary group of greywacke, argillite and conglomerate. The Hazelton Group is unconformably overlain by the Eocene Ootsa Lake Group, which consists mainly of felsic to intermediate sub-aerial flows and pyroclastics. These rocks are in turn overlain by the flat lying andesitic to basaltic flows of the Miocene Endako Group.

Early Jurassic granitic, granodioritic and dioritic rocks of the Topley Intrusions and Late Cretaceous Bulkley Plutonic Suite stocks and dykes intrude the Hazelton and Takla Groups.

Property Geology – The property is underlain by Ootsa Lake volcanic rocks of which two units predominate in the claim area. Flow-banded rhyolite is the main rock unit encountered. Typically the rock is gray to purplish gray in colour with variations in colour and texture defining flow layering. This rock type is the most abundant rock type encountered by drilling. Porphyritic rhyolite outcrops throughout the greater part of the property. The rock is white to cream in colour and contains 10 to 20% gray quartz phenocrysts ranging from 0.5 to 1.5 millimetres in diameter and 0 to 20% white feldspar phenocrysts ranging in length from 0.5 to 3 millimetres.

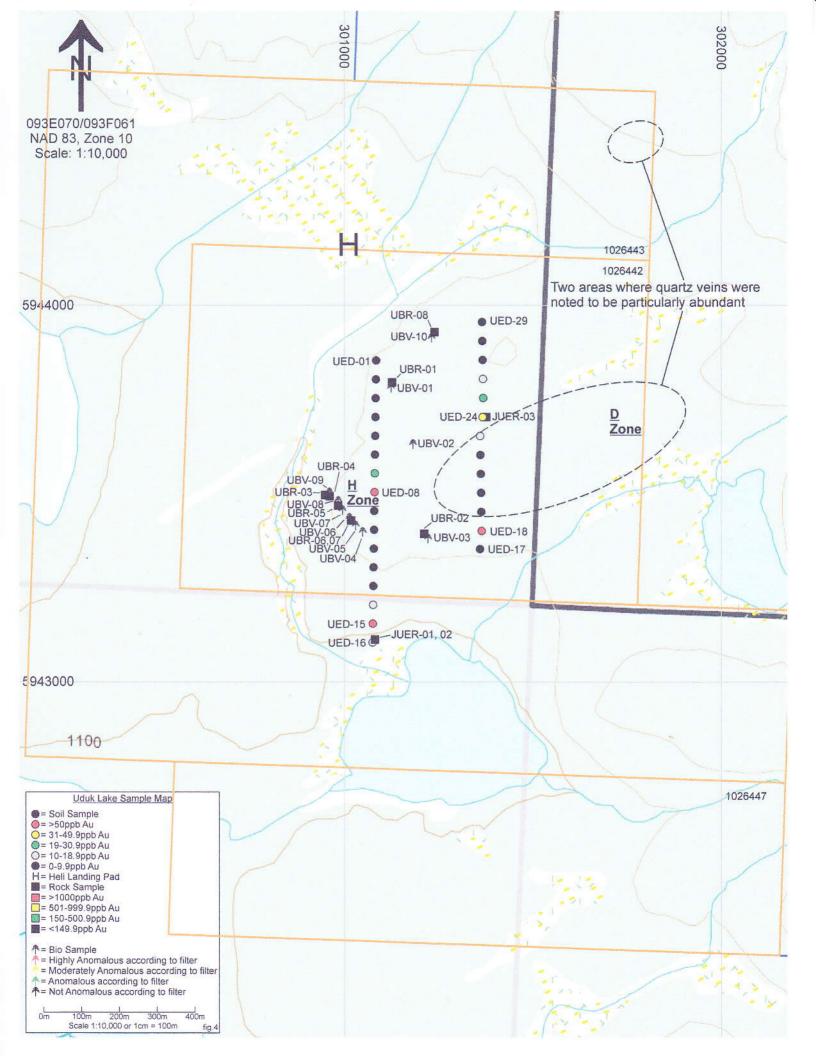
Alteration and Mineralization – Mapping has revealed a large area where the volcanic rocks have been argillized and quartz-veined. Because outcrops are not abundant due to thin but widespread glacial till, the area of alteration has not been well mapped and its full dimensions have yet to be defined. Intensity of argillization is variable. In some outcrops, the rhyolite has been completely argillized and in others, only the feldspar phenocrysts have been argillized. Feldspar phenocrysts commonly appear to have been altered and subsequently leached out, leaving a cavity with boxworks and linings of tiny quartz crystals. Minute molybdenite or or hematite crystals and light blue fluorite (?) crystals have been noted locally in some of the cavities. Quartz veins occur throughout the alteration zone. Abundance ranges from less than one per metre to about twenty per metre. The quartz is microcrystalline and has open drusy vugs. Vein widths range from 0.2 to 2.5 millimetres, although a few boulders of quartz up to 25 centimetres in diameter have been observed in float. Quartz-cemented breccia has been found in float and subcrop in several localities and occurs in zones up to 7 metres wide in drill core. The breccia typically is comprised of 0.1 to 3 centimetres of altered rhyolite fragments in a fine grained quartz matrix which contains pyrite as fine disseminations and in scattered 1-3 millimetre clots. Although pyrite is rare on surface, limonite is common as fracture and vug coatings throughout the alteration zone and significant amounts of pyrite (to 5%) were noted in drill core, where it occurs in quartz veinlets and in quartz-cemented breccias. Welldeveloped quartz vein stockworks have been mapped in two areas on the property, although they may be part of a single larger zone. Unfortunately, outcrops are non-existent between the two areas. The southwestern zone is about 600 metres by 200 metres as defined by mapping float and outcrop and is mostly situated on tenure 1026442. The northeastern zone is located on Canarc controlled tenures and was the focus of their 2014 drill program.

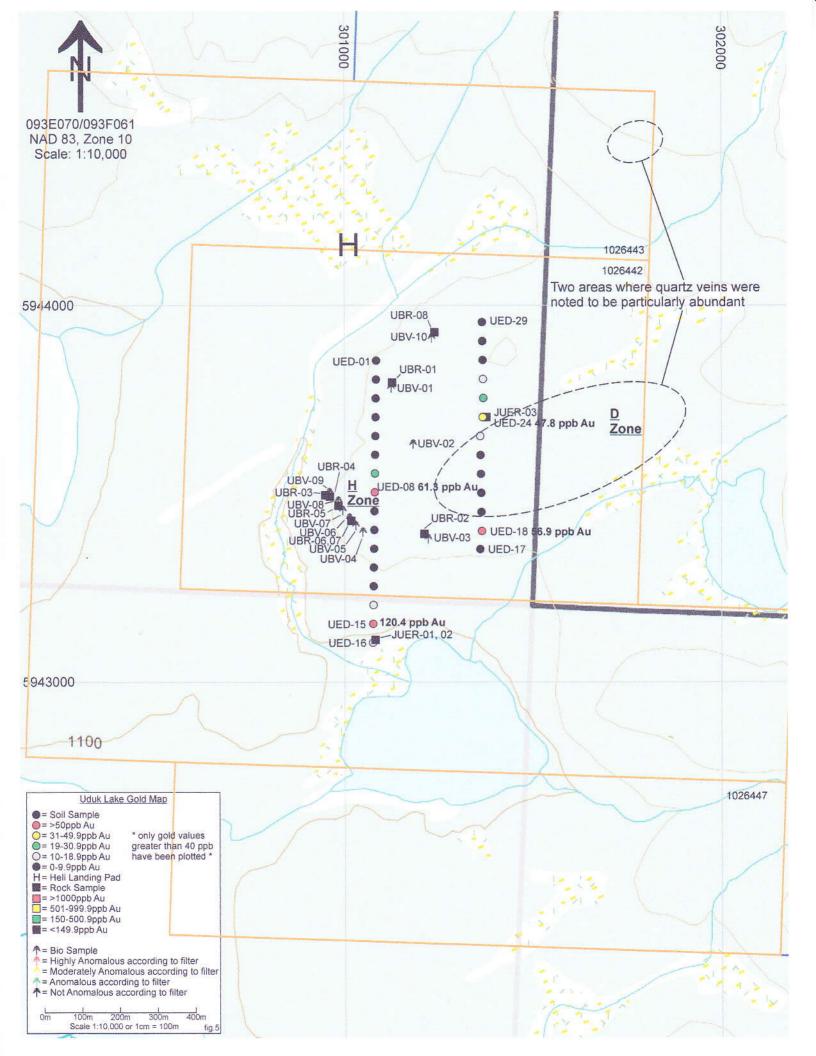
The two zones lie along and may be related to a northeast trending topographic lineament (fault or glacial feature?).

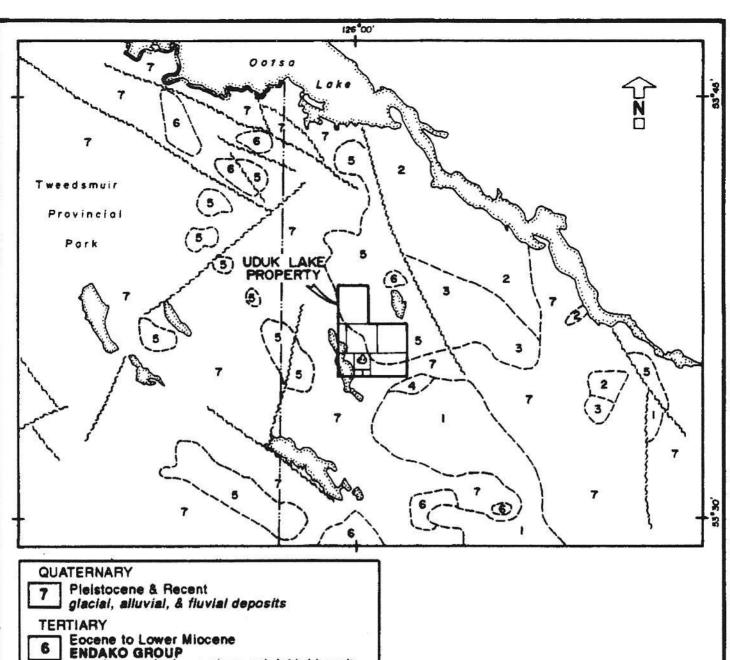
Current Work and Results – Exploration work at the Uduk Epi Project conducted on May 11th, 2015 yielded 10 vegetation (biogeochemical) samples, 11 rock samples and 29 C-horizon soil samples. Vegetation samples consisted of a standard 8.5x11 poly rock sample bag at least half-filled with the last 15cm of branches found on 8 to 12 cm in diameter pine trees. Rock samples were taken from outcrops and small hand dug pits and scrapings. Soil samples were taken at an average depth of about 40 centimetres using hand held augers. Sample sites were marked in the field using flagging inscribed with the sample code, with soils collected in standard soil sample packets and both vegetation and rock samples placed into standard 8.5x11 poly rock sample bags. All samples were analyzed by ACME, with vegetation samples prepped using VA475 (dry 50g and then ash at 475°), rocks prepped using PRP7-250 (pulverize and 250g split) and soils prepped using SS80 (dry and screen at 80 mesh). The vegetation and soil samples were analyzed using 1DX1 (36 element icp with 0.5g sample size) and the rock samples analyzed using 1DX2 (36 element icp with 15 gram sample size).

Fieldwork completed on the Uduk Epi Property during the 2015 field season was designed to crosscut the area between the D Zone and the H Zone to test the potential that the two zones are actually one continuous zone as well as to confirm, or disprove, the lack of gold within the H Zone trench. It also provided a test of the efficacy of biogeochemical vs deep auger soil sampling in this terrain and on this target.

Soil sampling encountered several sites with gold values of up to 120.4 ppb Au along with weakly anomalous amounts of Ag-As-Pb-Sb-Hg. Anomalous gold values appear to exist as two separate northeast trends which may be geologically controlled, possibly along the margins of a silicified and veined zone, or a function of glacially altered surficial topography. Irrespective of the actual controls on the anomalies, they do appear to suggest that the D Zone and H Zone are part of a larger zone at least 900 metres long in the east-west axis. The effectiveness of C-horizon soil sampling collected using hand held augers was proven on this property.


Vegetation/biogeochemical sampling was conducted along the H Zone trench and in other areas of the property. No obviously anomalous gold values were encountered possibly due to the typically sporadic uptake of gold in vegetation. Pathfinder elements were also very subdued which was expected given the limited amounts of pathfinder elements encountered to date. Given the low amounts of pathfinder elements (which are typically readily absorbed by vegetation) within this system, and the typically sporadic uptake of gold in vegetation, biogeochemical sampling doesn't appear to be an ideal geochemical sampling method for this property.


Rock sampling returned up to 24.8 ppb Au along with weakly anomalous amounts of Ag-As-Sb-Hg. Rock sampling confirmed the presence of epithermal style alteration and failed to encounter anomalous gold values within the H Zone trench.


Conclusions – Fieldwork conducted during 2015 coupled with the results of a review of previous exploration efforts on, and in the vicinity of, the current project claims confirms the presence of occasional epithermal style alteration and precious metal values cutting Eocene (approx. 47-56ma) Ootsa Lake volcanics, with this setting somewhat analogous to the Round Mountain deposit in Nevada (1986 reserves of 159 million tonnes of 1.37 gpt Au), and the McDonald deposit in Montana where a total of 375 million tons grading 0.67 g/t gold at a cut-off grade of 0.27 g/t gold have been defined. Although economic mineralization has yet to be identified on the property, this may be due to extensive glacial till

masking bedrock which has hindered mapping, geochemical sampling and likely geophysical survey results as well. Ultimately, when evaluating anomalies defined by either soil geochemistry or geophysical surveying, the effects of a northeast trending glacial regime should be taken into account. The H Zone which consists of a semi-coincident positive resistivity and chargeability anomalies coinciding with highly anomalous gold in rock and soil samples remains an attractive exploration target given that the only trench to date was oriented in a northwesterly direction when supporting geophysical data suggests the target may be similarly oriented.

Recommendations – Further work on the Uduk Epi project is highly recommended and should initially consist of detailed soil sampling and prospecting in the immediate area of the H Zone along with several additional soil sample lines between the H Zone and D Zone in an effort to further define anomalies encountered by the 2015 program. Prospecting at the sites of anomalous soil samples from the 2015 program should also be undertaken. Should results of this work be sufficiently encouraging, a program of grid style reverse circulation or Winkie type drilling should be undertaken to further define the anomalies.

6 Endako Group
massive, vesicular, and amygdaloidal basalt
and andesite; minor breccia and tuff

CRETACEOUS (?) & TERTIARY

5 Maestrichtian(?) to Eocene
OOTSA LAKE GROUP
rhyolite and dacite flows, breccia, and tuff;
minor andesite, basait and conglomerate

UPPER JURASSIC and/or CRETACEOUS

4 granite , quartz diorite, granodiorite & diorite

MIDDLE and (?) LOWER JURASSIC

3 HAZELTON GROUP

andesite, related tuffs & breccias, chert pebble conglomerate, shale & sandstone.

UPPER TRIASSIC and LOWER JURASSIC

TAKLA GROUP

red & brown shale, conglomerate, & greywacke

andesitic & basaltic flows, tuffs, & breccias; interbedded argillite & minor limestone.

Compiled from : GSC Memoir 324 (H.W. Tipper) GSC O.F. 708 (G.J. Woodsworth)

NTS 93-E/9, F/12

Pioneer Metals Corporation UDUK LAKE PROPERTY

Omineca M.D., B.C.

Regional Geology Map

1:250,000 Date Oct. 1994

Figure 2

Rock Sample Table

					Wgt	Pb	Ag	As	Au	Sb	Hg
	Easting	Northing	Description	Туре	KG	PPM	PPM	PPM	PPB	PPM	PPM
JUER-01	698083	5943096	green spherulitic rhyolite w minor limonite	Rock	0.72	6.1	0.1	5.8	<0.5	0.3	<0.01
JUER-02	698083	5943096	Silicic rhyo w vuggy fracs and hairline QV stkwk	Rock	0.59	7.6	0.2	106.1	<0.5	4	0.35
JUER-03	698359	5943701	Rhyo w vuggy fracs and hairline QV stkwk	Rock	0.42	8.7	0.2	16.7	2	0.8	<0.01
UBR-01	698125	5943793	weak silicic rhyo w qtz veins and tr diss py	Rock	0.39	7.7	<0.1	4.4	<0.5	0.5	<0.01
UBR-02	698045	5943396	brx and silicic green volc w chalcedonic cement	Rock	0.48	10.9	1.3	33.6	4.8	1.5	<0.01
UBR-03	697956	5943491	Silicic rhyo w vuggy fracs and hairline QV stkwk	Rock	0.34	7.6	4.2	37.8	20	0.8	<0.01
UBR-04	697966	5943483	Silicic rhyo w vuggy fracs and hairline QV stkwk	Rock	0.28	20.2	0.3	73	0.7	33.4	0.71
UBR-05	697980	5943470	Silicic rhyo w hairline QV stkwk	Rock	0.65	4.9	0.2	12.3	<0.5	0.5	0.04
UBR-06	698017	5943420	silicic veined brx vuggy rhyo	Rock	0.6	6.3	0.4	53.5	24.8	1.2	0.02
UBR-07	698017	5943420	silicic veined brx vuggy rhyo	Rock	0.29	9.6	0.1	14.9	<0.5	0.8	0.02
UBR-08	698017	5943420	Silicic rhyo w vuggy fracs and hairline QV stkwk	Rock	0.49	16.4	0.1	71	6.2	2	0.03

Vegetation Sample Table

				Pre Ash Wt	Ashed Wt	Wgt	Pb	Ag	As	Au	Sb	Hg
	Type	Easting	Northing	G	G	KG	PPM	PPM	PPM	PPB	PPM	PPM
UBV-01	Veg	698122	5943778	50.248	0.809	0.17	11	1	2.5	3.2	0.1	<0.01
UBV-02	Veg	698172	5943581	50.165	0.707	0.15	16.6	3.9	1.6	2.3	0.1	<0.01
UBV-03	Veg	698222	5943382	50.488	0.772	0.13	9.6	2.5	1.3	6.5	0.2	<0.01
UBV-04	Veg	698048	5943398	50.334	0.905	0.13	36.9	3.1	1.3	6.5	0.1	<0.01
UBV-05	Veg	698029	5943413	50.549	1.055	0.16	6.8	0.9	1.1	4.2	<0.1	<0.01
UBV-06	Veg	698012	5943435	50.107	1.035	0.16	6.3	2.2	1.2	4.4	<0.1	<0.01
UBV-07	Veg	697996	5943458	50.84	1.024	0.14	7.1	2.3	0.9	6.5	<0.1	<0.01
UBV-08	Veg	697983	5943479	50.863	0.703	0.15	10.2	4	1.6	4.5	0.1	< 0.01
UBV-09	Veg	697960	5943500	50.866	0.939	0.15	7.9	1.7	0.6	3.1	<0.1	<0.01
UBV-10	Veg	698228	5943916	50.478	0.842	0.16	11	2.5	0.6	3.2	0.1	<0.01

Soil Sample Table

<u>Name</u>	Easting	Northing	<u>Notes</u>	<u>Analyte</u>	<u>Pb</u>	Ag	As	Au	Sb	Hg
UED-01	698084	5943849		Soil	11.1	0.2	16.9	4.8	0.5	0.03
UED-02	698082	5943799	Brown "c" horizon, angular	Soil	16.3	0.5	11.7	1.3	0.5	0.03
UED-03	698082	5943750		Soil	13.2	0.3	7.5	<0.5	0.4	0.03
UED-04	698079	5943701	Rounded, brown	Soil	11.9	0.2	11.3	4.6	0.5	0.03
UED-05	698078	5943652		Soil	10	0.1	10.1	<0.5	0.2	0.04
UED-06	698078	5943601	Brown	Soil	9.9	0.1	12	5.2	0.3	0.04
UED-07	698080	5943551		Soil	9.7	<0.1	13.1	20.4	0.5	0.02
UED-08	698078	5943497	Brown,rounded, some rust	Soil	10.7	0.1	17.8	61.3	0.7	0.01
UED-09	698078	5943452		Soil	10.1	0.2	5.8	<0.5	0.2	0.03
UED-10	698080	5943401	Brown, angular, some rust	Soil	10.4	0.9	12.9	6.5	0.4	0.04
UED-11	698081	5943352		Soil	4.8	0.2	2.5	<0.5	<0.1	0.03
UED-12	698079	5943303	Brown/Green angular	Soil	7.4	0.4	6.4	<0.5	0.2	0.03
UED-13	698080	5943250	Pale green angular	Soil	3.8	0.2	1.5	3.3	<0.1	0.02
UED-14	698082	5943203	Brown angular, larger rocks in area are limonitic	Soil	9.6	0.6	4.7	17.5	0.3	0.03
UED-15	698080	5943152	Brown, little rust, angular	Soil	26	0.5	19.5	120.4	0.9	0.02
UED-16	698083	5943097		Soil	20.3	0.3	17.7	16.7	1.2	0.02
UED-17	698358	5943352	Brown, rusty, angular	Soil	9.7	0.2	9.6	3.5	0.6	0.02
UED-18	698360	5943400	Light grey, angular	Soil	8.2	0.2	14.9	56.9	0.9	0.02
UED-19	698361	5943451	Brown, little pale green, rounded	Soil	7.9	0.2	4.7	0.7	0.3	0.02
UED-20	698360	5943502	Muddy	Soil	10.3	<0.1	3.3	5.2	0.2	<0.01
UED-21	698360	5943550	Brown, rusty, angular	Soil	10.8	< 0.1	5.3	4.6	0.3	0.01
UED-22	698360	5943601		Soil	8.8	<0.1	6.7	3.6	0.4	0.02
UED-23	698361	5943650	Rusty, pale green, angular	Soil	9.6	<0.1	9.9	18.5	0.3	0.02
UED-24	698359	5943701	Rusty, angular	Soil	12.5	0.8	22.1	47.8	1	0.04
UED-25	698357	5943759	Rusty angular	Soil	11.6	0.3	23.6	22.8	0.8	0.03
UED-26	698359	5943801		Soil	11.3	0.6	15.6	17.5	0.6	0.04
UED-27	698361	5943848	Brown, rounded	Soil	8.5	<0.1	8.4	2.6	0.4	0.01
UED-28	698360	5943901	Brown/Grey, muddy	Soil	10.2	<0.1	6.3	4.8	0.2	0.02
UED-29	698360	5943949		Soil	11.3	<0.1	6.6	6.2	0.3	0.02

Statement Of Costs

Truck Travel (round trip Whitehorse to Fraser Lake) 505.5 km x \$0.75/km	\$379.13
Wages Justin Kreft (0.5 field day and 0.5 travel day x \$250/day) May 11-13, 2015	\$250.00
Acme Analytical (10 veg, 11 rocks, 29 soil)	\$1,279.56
Westland Helicopters (1.6 hrs x \$1,250/hr divided between two properties)	\$1,000.00
Report Writing, Mailing and Duplication	\$2,360.00
Wages Kyle Eide (0.5 field day and 0.5 travel day x \$250/day) May 11-13, 2015	\$250.00
Wages Jarret Kreft (0.5 field day and 0.5 travel day x \$250/day) May 11-13, 2015	\$250.00
Wages Bernie Kreft (0.5 field day and 0.5 travel day x \$500/day) May 11-13, 2015	\$500.00
Food, Field Supplies, Hotel (4 x 1.0 days x \$150/day)	\$600.00
Sample Shipping Greyhound	\$36.75
Sub Total	\$6,905.44
5% Management Fee	\$345.27
Total	\$7,250.71

Statement Of Qualifications

I, Bernie Kreft, directed and participated in the exploration work described herein.

I have 30 years prospecting experience in the Yukon and BC.

This report is based on fieldwork directed or conducted by the author, and includes information from various publicly available assessment reports.

This report is based on fieldwork completed during May 11-13 of the 2015 field season.

This report is based on fieldwork completed on the Uduk Epi Project

Respectfully Submitted,

Bernie Kreft

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

Submitted By:

Bernie Kreft

Receiving Lab:

Report Date:

Canada-Vancouver

Received:

May 19, 2015

Page:

May 29, 2015 1 of 5

CERTIFICATE OF ANALYSIS

VAN15001056.1

CLIENT JOB INFORMATION

Project: None Given Shipment ID:

P.O. Number

Number of Samples:

SAMPLE DISPOSAL

DISP-PLP

Dispose of Pulp After 90 days

DISP-RJT

Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Kreft, Bernie
1 Locust Place

Whitehorse YT Y1A 5G9

CANADA

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
PRP70-250	92	Crush, split and pulverize 250 g rock to 200 mesh			VAN
AQ201	92	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN
DRPLP	92	Warehouse handling / disposition of pulps			VAN
DRRJT	92	Warehouse handling / Disposition of reject			VAN
FA430	7	Lead Collection Fire - Assay Fusion - AAS Finish	30	Completed	VAN
FA530	1	Lead collection fire assay 30G fusion - Grav finish	30	Completed	VAN

ADDITIONAL COMMENTS

BUREAU MINERAL LABORATORIES
VERITAS Capada

www.bureauveritas.com/um

Client:

Kreft, Bernie

I Locust Place

Whitehorse YT Y1A 5G9 CANADA

Project:

None Given

Report Date:

May 29, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:

3 of 5

Part 1 of 2

CERTIFICATE OF ANALYSIS	
DA NOVA SOME NO. THE SELECT SOME A VISUAL Y ASSESSED WINNERS WAS A MANUSE VALUE AND VALUE WHEN A VICE AND READER.	
HIS SECOND WOOD IN SECOND HER WANT IN SECOND WITH SECOND HIS SECOND WITH A RESIDENCE OF THE SECOND PROPERTY OF THE	
20° ≤ 1 mm sp. Ac mi 1 ac 10 a. Ac 1 mm 1 mm 2 mm 2 mm 2 mm 2 mm 1 mm 1 m	

	WARANI	N 64 B	27V 48	1 4 65	Bat III ()	II ESP	2	1864 KIN	
	VAN	97. IIII 18	STW.	1月間)	<i>0</i> 00 S.1	P ESP)	(甲)		

	Method Analyte		AQ201 Mo	AQ201 Cu	AQ201 Pb	AQ201	AQ201	AQ201 Ni	AQ201 Co	AQ201 Mn	AQ201 Fe	AQ201	AQ201	AQ201 Th	AQ201	AQ201	AQ201 Sb	AQ201 Bi	AQ201	AQ201 Ca	AQ20
	Unit	Wgt kg	ppm	ppm	ppm	Zn	Ag ppm	ppm	ppm	ppm	ге %	As ppm	Au	ppm	Sr ppm	Cd ppm	ppm	ppm	ppm	%	0
-	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2		0.00
UBR-01	Rock	0.39	1.6	1.2	7.7	8	< 0.1	0.4	< 0.1	41	0.42	4.4	∗0.5	10.5	4	< 0.1	0.5	< 0.1	≈2	0.03	0.007
UBR-02	Rock	0.48	33.9	1.2	10.9	10	1.3	0.6	0.1	72	0.63	33.6	4.8	4.7	5	∹0.1	1.5	0.2	<2	0.01	0.010
UBR-03	Rock	0.34	10.6	2.2	7.6	7	4.2	0.7	0.1	48	0.76	37.8	20.0	7.3	3	<0.1	0.8	< 0.1	<2	< 0.01	0.003
UBR-04	Rock	0.28	1.6	4.2	20.2	32	0.3	0.8	0.2	70	1,67	73.0	0.7	8.8	7	<0.1	33.4	< 0.1	<2	0.03	0.006
UBR-05	Rock	0.65	1.0	1.3	4.9	14	0.2	0.6	0.1	44	0.53	12.3	<0.5	8.3	5	<0.1	0.5	< 0.1	<2	0.02	0.003
UBR-06	Rock	0.60	4.9	2.0	6.3	11	0.4	0.7	<0.1	48	0.76	53.5	24.8	6.5	6	<0.1	1.2	< 0.1	<2	0.03	0.005
	D I	0.00	C) A	1.7	n c	1.4	0.4	0.7	0.2	53	0.58	14.9	<0.5	3.5	7	-0.1	0.0	-0.1	-0	0.00	
UBR-07	Rock	0.29	0.4	1.7	9.6	14	0.1	U.1	U.Z.	50.0	0.00	14.0	100	0.0	1	< 0.1	0.8	< 0.1	<2	0.03	0.003

MINERAL LABORATORIES

www.bureauveritas.com/um

Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

Project:

None Given

Report Date:

May 29, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:

3 of 5

Part:

2 of 2

CERTIFICATE OF ANALYSIS

着下品	N.C	Mark a	YALI	1	6.1
7 m 9	6. III	[[] [] []	YA'M R	THE THE	@ 2000 S

	Method Analyte	AQ201 La	AQ201 Cr	AQ201 Mg	AQ201 Ba	AQ201 Ti	AQ201 B	AQ201 Al	AQ201 Na	AQ201 K	AQ201 W	AQ201 Hg	AQ201 Sc	AQ201 TI	AQ201 S	AQ201 Ga	AQ201 Se	AQ201 Te	FA430 Au	FA530 Au
	Unit MDL	ppm 1	ppm 1	0.01	ppm 1	0.001	ppm 1	0.01	0.001	% 0.01	ppm 0.1	ppm 0.01	ppm 0.1	ppm 0.1	0.05	ppm 1	ppm 0.5	ppm 0.2	ppm 0.005	gm/t 0.9
JBR-01	Rock	35	1	<0.01	55	<0.001	×1	0.45	0.029	0.38	<0.1	<0.01	1.3	0.2	<0.05	2	<0.5	s0.2		
	Rock Rock	35 27	1 2	100000000000000000000000000000000000000	55 104	<0.001	<1	0.45	0.029	0.38	<0.1	<0.01	1.3	0.2	<0.05 <0.05	2 2	<0.5 <0.5	14-10-10-1	isl <u> isl</u>	
JBR-02	CONTRACTOR OF THE PARTY OF THE	2000000	1 2 2	< 0.01							-	- Anna tale in		2007 / mt.			< 0.5	< 0.2		
JBR-02 JBR-03	Rock	27		<0.01	104	0.001	<1	0.30	0.004	0.29	<0.1	<0.01	0.8	0.2	< 0.05	2	< 0.5	<0.2 <0.2		
JBR-02 JBR-03 JBR-04	Rock Rock	27 11	2	<0.01 <0.01 <0.01	104 55	0.001 0.002	<1	0.30	0.004	0.29	<0.1	<0.01 <0.01	0.8 1.5	0.2	<0.05 <0.05	2	<0.5 <0.5	<0.2 <0.2 <0.2		
IBR-02 IBR-03 IBR-04 IBR-05	Rock Rock Rock	27 11 12	2 2	<0.01 <0.01 <0.01 <0.01	104 55 64	0.001 0.002 0.002	<1 <1 <1	0.30 0.60 0.68	0.004 0.013 0.011	0.29 0.21 0.31	<0.1 <0.1 0.2	*0.01 *0.01 0.71	0.8 1.5	0.2 0.1 0.2	<0.05 <0.05 0.05	2 5 7	<0.5 <0.5 <0.5	<0.2 <0.2 <0.2		
JBR-01 JBR-02 JBR-03 JBR-04 JBR-05 JBR-06 JBR-07	Rock Rock Rock Rock	27 11 12 22	2 2 2	<0.01 <0.01 <0.01 <0.01 <0.01	104 55 64 42	0.001 0.002 0.002 0.001	<1 <1 <1 <1	0.30 0.60 0.68 0.46	0.004 0.013 0.011 0.014	0.29 0.21 0.31 0.33	<0.1 <0.1 0.2 <0.1	*0.01 *0.01 0.71 0.04 0.02	0.8 1.5 1.7 1.1	0.2 0.1 0.2 0.2	<0.05 <0.05 0.05 <0.05	2 5 7	<0.5 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2		

Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

www.bureauveritas.com/um

Project:

None Given

Report Date:

May 29, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:

2 of 5

Part: 1 of 2

CERTIFICATE OF ANALYSIS

SHE IS A DAY OF SHEET																				San San Land
Method	WGHT	AQ201																		
Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р
Unit	kg	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	- 1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001

JUER-01	Rock	0.72	0.3	4.1	6.1	40	0.1	0.2	0.2	103	0.35	5.8	< 0.5	2.0	4	< 0.1	0.3	0.2	<2	0.03	0,008
JUER-02	Rock	0.59	0.7	3.3	7.6	19	0.2	0.2	0.4	51	0.56	106.1	<0.5	6.5	8	<0.1	4.0	< 0.1	<2	0.04	0.005
JUER-03	Rock	0.42	0.9	1.3	8.7	8	0.2	0.4	<0.1	66	0.61	16.7	2.0	3.7	5	< 0.1	0.8	<0.1	<2	<0.01	0.006

Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

www.bureauveritas.com/um

Project:

None Given

Report Date:

May 29, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:

2 of 5

Part: 2 of 2

CERTIFICATE OF ANALYSIS

	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	FA430	FA530
	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se	Te	Au	Au
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	gm/t
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.005	0.9
JUER-01 Rock		27	<1	0.01	41	< 0.001	<1	0.49	0,007	0.32	<0.1	< 0.01	0.8	0.1	<0.05	2	<0.5	<0.2		
JUER-02 Rock		31	<1	0.01	69	< 0.001	<1	0.44	0.021	0.30	0.1	0.35	0.7	0.1	< 0.05	2	<0.5	< 0.2	Winter Chinese	
JUER-03 Rock	K	23	2	< 0.01	42	< 0.001	<1	0.27	0.010	0.23	<0.1	<0.01	0.6	0.2	0.05	<1	< 0.5	< 0.2		

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

VAN15001057.1

Submitted By:

Bernie Kreft

Receiving Lab:

Canada-Vancouver

Received:

May 19, 2015

Report Date:

June 04, 2015

Page:

1 of 5

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project: None Given

Shipment ID:

P.O. Number

Number of Samples: 111

SAMPLE DISPOSAL

DISP-PLP

Dispose of Pulp After 90 days

DISP-RJT

Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
VA475	111	Vegetation Ashing at 475	50		VAN
Split Ash from VA475	111	Analysis sample split/packet			VAN
AQ200	111	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN
DRPLP	111	Warehouse handling / disposition of pulps			VAN
DRRJT	100	Warehouse handling / Disposition of reject			VAN

ADDITIONAL COMMENTS

All vegetation samples are twigs & needles except for JUKIV-01 to JKIV-04 are twigs only.

Invoice To:

Kreft, Bernie
1 Locust Place

Whitehorse YT Y1A 5G9

CANADA

CC:

Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

Project:

None Given

Report Date:

June 04, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:

2 of 5

Part:

1 of 2

VA			

	Method	20.34.04.02.000						AQ200		AQ200			AQ200		AQ200				AQ200		AQ2
		Ash Wus	hed Wt	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	
	Unit	g	g	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm		ppm	ppm	bl
	MDL	0.001	0.001	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0,1	
IDV.04	Vegetation	50.248	n eng	0.17	3.6	113.7	11.0	3324	10	20.4	17	>10000	0.10	7.5	27	e0.1	314	18.6	0.1	<0.1	e-út-10
	Vegetation Vegetation	50.248 50.165	0.809	0.17	3.6	113.7	11.0	3324	1.0	20.4		>10000	0.10	2.5	3.2	<0.1	314			<0.1	
JBV-02	Vegetation	50.165	0.707	0.15	5.1	136.8	16.6	3170	3.9	29,5	2.9	>10000	0.14	1.6	2.3	<0.1	265	25.4	0.1	<0.1	
JBV-02 JBV-03	Vegetation Vegetation	50.165 50.488	0.707 0.772	0.15 0.13	5.1 4.5	136.8 107.6	16.6 9.6	3170 3402	3.9 2.5	29.5 15.2	2,9	>10000 >10000	0.14	1.6	2.3 6.5	<0.1 <0.1	265 178	25.4 6.7	0.1 0.2	<0.1 <0.1	
JBV-02 JBV-03 JBV-04	Vegetation Vegetation Vegetation	50.165 50.488 50.334	0.707 0.772 0.905	0.15 0.13 0.13	5.1 4.5 7.8	136.8 107.6 98.5	16.6 9.6 36.9	3170 3402 2997	3.9 2.5 3.1	29,5 15,2 19,9	2.9 2.2 1.8	>10000 >10000 >10000	0.14 0.10 0.11	1.6 1.3 1.3	2.3 6.5 6.5	<0.1 <0.1 <0.1	265 178 346	25.4 6.7 26.3	0.1 0.2 0.1	<0.1 <0.1 <0.1	
JBV-02 JBV-03 JBV-04 JBV-05	Vegetation Vegetation Vegetation Vegetation	50.165 50.488 50.334 50.549	0.707 0.772 0.905 1.055	0.15 0.13 0.13 0.16	5.1 4.5 7.8 1.8	136.8 107.6 98.5 98.7	16.6 9,6 36.9 6.8	3170 3402 2997 2590	3.9 2.5 3.1 0.9	29.5 15.2 19.9 11.5	2.9 2.2 1.8 1.6	>10000 >10000 >10000 >10000	0.14 0.10 0.11 0.05	1.6 1.3 1.3	2.3 6.5 6.5 4.2	<0.1 <0.1 <0.1 <0.1	265 178 346 388	25.4 6.7 26.3 7.8	0.1 0.2 0.1 <0.1	<0.1 <0.1 <0.1 <0.1	
JBV-02 JBV-03 JBV-04 JBV-05 JBV-06	Vegetation Vegetation Vegetation Vegetation Vegetation	50.165 50.488 50.334 50.549 50.107	0.707 0.772 0.905 1.055 1.035	0.15 0.13 0.13 0.16 0.16	5.1 4.5 7.8 1.8 1.5	136.8 107.6 98.5 98.7 87.3	16.6 9.6 36.9 6.8 6.3	3170 3402 2997 2590 3555	3.9 2.5 3.1 0.9 2.2	29.5 15.2 19.9 11.5 13.9	2.9 2.2 1.8 1.6 2.5	>10000 >10000 >10000 >10000 >10000	0.14 0.10 0.11 0.05 0.07	1.6 1.3 1.3 1.1 1.2	2.3 6.5 6.5 4.2 4.4	<0.1 <0.1 <0.1 <0.1 <0.1	265 178 346 388 309	25.4 6.7 26.3 7.8 10.5	0.1 0.2 0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	
JBV-02 JBV-03 JBV-04 JBV-05 JBV-06 JBV-07	Vegetation Vegetation Vegetation Vegetation Vegetation Vegetation Vegetation	50.165 50.488 50.334 50.549 50.107 50.840	0.707 0.772 0.905 1.055 1.035 1.024	0.15 0.13 0.13 0.16 0.16 0.14	5.1 4.5 7.8 1.8 1.5 4.4	136.8 107.6 98.5 98.7 87.3 102.2	16.6 9.6 36.9 6.8 6.3 7.1	3170 3402 2997 2590 3555 2862	3.9 2.5 3.1 0.9 2.2 2.3	29.5 15.2 19.9 11.5 13.9 11.3	2.9 2.2 1.8 1.6 2.5 1.9	>10000 >10000 >10000 >10000 >10000 >10000	0.14 0.10 0.11 0.05 0.07 0.08	1.6 1.3 1.3 1.1 1.2 0.9	2.3 6.5 6.5 4.2 4.4 6.5	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	265 178 346 388 309 290	25.4 6.7 26.3 7.8 10.5 7.5	0.1 0.2 0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
JBV-01 JBV-02 JBV-03 JBV-04 JBV-05 JBV-06 JBV-07 JBV-08 JBV-09	Vegetation Vegetation Vegetation Vegetation Vegetation	50.165 50.488 50.334 50.549 50.107	0.707 0.772 0.905 1.055 1.035	0.15 0.13 0.13 0.16 0.16	5.1 4.5 7.8 1.8 1.5	136.8 107.6 98.5 98.7 87.3	16.6 9.6 36.9 6.8 6.3	3170 3402 2997 2590 3555	3.9 2.5 3.1 0.9 2.2	29.5 15.2 19.9 11.5 13.9	2.9 2.2 1.8 1.6 2.5 1.9 2.9	>10000 >10000 >10000 >10000 >10000	0.14 0.10 0.11 0.05 0.07	1.6 1.3 1.3 1.1 1.2	2.3 6.5 6.5 4.2 4.4	<0.1 <0.1 <0.1 <0.1 <0.1	265 178 346 388 309	25.4 6.7 26.3 7.8 10.5	0.1 0.2 0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	

AQ200 AQ200

Mg

Cr

ppm

AQ200

Ba

ppm

AQ200

Ti

AQ200

ppm

AQ200

Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

AQ200

ppm

TI

AQ200

%

Project:

None Given

Report Date:

AQ200

ppm

June 04, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:

%

AQ200 AQ200

Na

%

2 of 5

AQ200 AQ200

ppm

Sc

ppm

Part:

AQ200

Se

ppm

AQ200

ppm

2 of 2

CERTIFICATE OF ANALYSIS

Method

Analyte

Unit

AQ200 AQ200

Ca

AQ200

ppm

AQ200

Ga

ppm

	MDL	0.01	0.001	111	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
UBV-01	Vegetation	16.97	4.702	<1	2	3.33	182	0.020	293	3.25	0.154	>10	<0.1	<0.01	2.2	<0.1	0,61	2	<0.5	<0.2
UBV-01 UBV-02	Vegetation Vegetation	16.97 11.43	4.702 >5	<1 <1	2 2	3.33	182 192	0.020 0.022	293 569	3.25 4.32	0.154 0.314	>10	<0.1	<0.01	2.2	<0.1 <0.1	0.61	2	<0.5	<0.2 <0.2
															Participation of the Control of the	-		2 1 1		***
UBV-02	Vegetation	11.43	>5	<1		3,81	192	0.022	569	4.32	0.314	>10	<0.1	<0.01	2.3	<0.1	0.70	1	0.6	<0.2
UBV-02 UBV-03	Vegetation Vegetation	11.43 16.51	>5 4.144	<1 <1	2	3.81 3.05	192 280	0.022	569 624	4.32 3.48	0.314	>10 >10	<0.1 <0.1	<0.01	2.3 2.0	<0.1 <0.1	0.70 0.65	1	0.6	<0.2 <0.2
UBV-02 UBV-03 UBV-04	Vegetation Vegetation Vegetation	11.43 16.51 16.31	>5 4.144 4.322	<1 <1 <1	2 1 2	3.81 3.05 3.52	192 280 215	0.022 0.019 0.021	569 624 527	4.32 3.48 3.04	0.314 0.203 0.126	>10 >10 >10	<0.1 <0.1 <0.1	<0.01 <0.01 <0.01	2.3 2.0 2.3	<0.1 <0.1 <0.1	0.70 0.65 0.66	1 1 2	0.6 0.8 1.0	<0.2 <0.2 <0.2
UBV-02 UBV-03 UBV-04 UBV-05	Vegetation Vegetation Vegetation Vegetation	11.43 16.51 16.31 20.77	>5 4.144 4.322 4.303	<1 <1 <1 <1	2 1 2 <1	3.81 3.05 3.52 3.53	192 280 215 277	0.022 0.019 0.021 0.017	569 624 527 262	4.32 3.48 3.04 2.81	0.314 0.203 0.126 0.133	>10 >10 >10 >10 >10	<0.1 <0.1 <0.1 <0.1	<0.01 <0.01 <0.01 <0.01	2.3 2.0 2.3 1.8	<0.1 <0.1 <0.1 <0.1	0.70 0.65 0.66 0.57	1 1 2 <1	0.6 0.8 1.0 <0.5	<0.2 <0.2 <0.2 <0.2
UBV-02 UBV-03 UBV-04 UBV-05 UBV-06	Vegetation Vegetation Vegetation Vegetation Vegetation Vegetation	11.43 16.51 16.31 20.77 18.48	>5 4.144 4.322 4.303 3.917	<1 <1 <1 <1 <1	2 1 2 <1	3.81 3.05 3.52 3.53 3.23	192 280 215 277 217	0.022 0.019 0.021 0.017 0.017	569 624 527 262 323	4.32 3.48 3.04 2.81 3.21	0.314 0.203 0.126 0.133 0.170	>10 >10 >10 >10 >10 >10	<0.1 <0.1 <0.1 <0.1 <0.1	<0.01 <0.01 <0.01 <0.01 <0.01	2.3 2.0 2.3 1.8 1.9	<0.1 <0.1 <0.1 <0.1 <0.1	0.70 0.65 0.66 0.57 0.51	1 1 2 <1 1	0.6 0.8 1.0 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2
UBV-02 UBV-03 UBV-04 UBV-05 UBV-06 UBV-07	Vegetation Vegetation Vegetation Vegetation Vegetation Vegetation Vegetation	11.43 16.51 16.31 20.77 18.48 18.02	>5 4.144 4.322 4.303 3.917 4.182	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	2 1 2 <1 <1	3.81 3.05 3.52 3.53 3.23 4.02	192 280 215 277 217 272	0.022 0.019 0.021 0.017 0.017 0.018	569 624 527 262 323 270	4.32 3.48 3.04 2.81 3.21 3.84	0.314 0.203 0.126 0.133 0.170 0.153	>10 >10 >10 >10 >10 >10 >10	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	2.3 2.0 2.3 1.8 1.9 1.9	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.70 0.65 0.66 0.57 0.51 0.49	1 1 2 <1 1 <1	0.6 0.8 1.0 <0.5 <0.5 <0.5	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

VAN15001058.1

Submitted By:

Bernie Kreft

Receiving Lab:

Canada-Vancouver

Received:

May 19, 2015

Report Date:

May 29, 2015

Page:

1 of 8

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project: None Given

Shipment ID:

P.O. Number

Number of Samples:

SAMPLE DISPOSAL

DISP-PLP

Dispose of Pulp After 90 days

183

DISP-RJT-SOIL

Immediate Disposal of Soil Reject

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

Kreft, Bernie
1 Locust Place

Whitehorse YT Y1A 5G9

CANADA

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
Dry at 60C	183	Dry at 60C			VAN
SS80	183	Dry at 60C sieve 100g to -80 mesh			VAN
AQ201	183	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN

ADDITIONAL COMMENTS

CC:

Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

Project:

None Given

Report Date:

May 29, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:

2 of 8

ert: 1 of

A100	HINT (8) (8)	mark III	arrest 1	OF THE SECTION	loss end	mar and State of the No.	tones (1236)	F. 190 Yes	1607 7930		T. M. william St. S.	F 'G000
	maid sec 200		HERSE!	IT (BORBHER A. V	200 100	HEROTE SUL T	18/60/5100	A 45 1, 45	89° A 58	Miss.7	AL -981	1. 945
	5 WOOR SELTER	1997 E	statili i	F 6890-8-7	90E 50G	trendina virez is	test600	- A D A	$W \longrightarrow W$	SHITTING:	EPAN, VIII	Pierr, William
	2 month 960' 460		_ (SYN)() . 2	0.000		amazille an '0		<i>88</i> 0, 1, 95,	7,635, 3	THE PERSON	108,747,31	5,747,2002

THE PERSON NAMED IN				100		TO STATE OF THE PARTY OF	MACHINE TO SERVICE					MALE SE								
Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La
Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	dqq	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
MDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1

UED-01	Soil	2.2	12.6	11.1	74	0.2	10.4	7.4	487	2.29	16.9	4.8	3.2	32	<0.1	0.5	0.1	39	0.28	0.055	28
UED-02	Soil	1.0	10.4	16.3	99	0.5	12.2	6.5	400	2.30	11.7	1.3	3.1	11	0.2	0.5	<0.1	46	0.11	0.058	15
UED-03	Soil	1.2	5.7	13.2	192	0.3	6.8	3.3	275	1,70	7.5	<0,5	2,5	8	0.2	0.4	<0.1	29	0.08	0.066	18
UED-04	Soil	1.4	7.7	11.9	105	0.2	10.1	4.2	153	1.97	11.3	4.6	3.4	9	< 0.1	0.5	<0.1	36	0.09	0.088	17
UED-05	Soil	1.0	7.7	10.0	53	0.1	10.5	4.4	157	1.60	10.1	<0.5	1,9	21	<0.1	0,2	<0.1	33	0.21	0.057	15
UED-06	Soil	2.1	7.2	9.9	121	0.1	14.2	6.5	261	2.90	12.0	5.2	2.4	15	<0.1	0.3	<0.1	59	0.16	0.107	13
UED-07	Soil	1.6	6.0	9.7	43	<0.1	7.5	5.3	455	1.96	13.1	20.4	2.7	9	<0.1	0.5	<0.1	43	0.10	0.042	14
UED-08	Soil	1.1	8.3	10.7	42	0.1	6,5	4.3	181	1.87	17.8	61.3	4.0	17	<0.1	0.7	<0.1	40	0.16	0.017	20
UED-09	Soil	0.8	4.8	10.1	146	0.2	5.0	3.1	268	1.25	5.8	<0.5	2.1	13	<0.1	0.2	<0.1	27	0.13	0.056	18
UED-10	Soil	1.7	7.5	10.4	158	0.9	4.8	2.5	221	1.07	12.9	6.5	2.4	10	0.2	0.4	<0.1	17	0.12	0.104	24
UED-11	Soil	1.4	2.5	4.8	107	0.2	1.2	0.6	223	0.44	2.5	<0.5	1.4	8	0.2	<0.1	<0.1	5	0.10	0.031	21
UED-12	Soil	4.8	2.7	7.4	120	0.4	0.9	0.9	650	0.57	6.4	<0.5	1.1	6	0.1	0.2	0.3	7	0.07	0.020	13
UED-13	Soil	0.9	2.3	3.8	35	0.2	0.5	0.3	88	0.29	1.5	3.3	0.9	6	< 0.1	< 0.1	0.1	3	0.09	0.021	17

Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

Project:

None Given

Report Date:

May 29, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

Soil

PHONE (604) 253-3158

UED-13

Page:

2 of 8

Part: 2 of 2

CERTIFICATE OF ANALYSIS

		Method		AQ201		AQ201				AQ201	AQ201	AQ201	AQ201	AQ201	AQ201			
		Analyte	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Hg	Sc	TI	S	Ga	Se	Т
		Unit MDL	ppm 1	% 0.01	ppm 1	0.001	ppm 1	0.01	0.001	% 0.01	ppm 0.1	ppm 0.01	ppm 0,1	ppm 0.1	0.05	ppm 1	ppm 0.5	ppr 0.
		111021		0.01	<u> </u>	0.001		0.01	0.001	0.01	0.1	0.01	0,1	0.1	0,05		0.0	0.
																	W	
IED-01	Soil		18	0.32	97	0.065	<1	1.49	0.016	0.11	<0.1	0.03	3.6	0,2	<0.05	5	<0.5	<0
	Soil Soil		18 19	0.32 0.24	97 105	0.065 0.062	<1	1.49 1.75	0.016 0.011	0.11	<0.1	0.03	2.3	0.1	<0.05 <0.05	5	<0.5	<0
ED-02				State of the latest of the lat					-				*****	2007.00		5 5		<0 <0
JED-02 JED-03	Soil		19	0.24	105	0.062	1	1.75 1.30 2.05	0.011	0.06	<0.1	0.03	2.3	0.1	<0.05	5	<0.5	<0 <0 <0
ED-02 ED-03 ED-04	Soil Soil		19 12	0.24 0.14	105 79	0.062 0.032	1	1.75 1.30	0.011	0.06 0.04	<0.1 <0.1	0.03	2.3 1.7 2.1 2.4	0.1 <0.1	<0.05 <0.05 <0.05 <0.05	5 5 5 4	<0.5 <0.5 <0.5 <0.5	<0 <0 <0 <0
IED-02 IED-03 IED-04 IED-05	Soil Soil Soil		19 12 17	0.24 0.14 0.20	105 79 90	0.062 0.032 0.043	1 1 <1	1.75 1.30 2.05	0.011 0.009 0.012	0,06 0,04 0.05	<0.1 <0.1 <0.1	0.03 0.03 0.03	2,3 1,7 2,1	0.1 <0.1 0.1	<0.05 <0.05 <0.05	5 5 5	<0.5 <0.5 <0.5	<0 <0 <0 <0
ED-02 ED-03 ED-04 ED-05 ED-06	Soil Soil Soil Soil		19 12 17 16	0.24 0.14 0.20 0.29	105 79 90 116	0.062 0.032 0.043 0.047	1 1 <1 <1	1.75 1.30 2.05 1.65	0.011 0.009 0.012 0.013	0.06 0.04 0.05 0.07	<0.1 <0.1 <0.1 <0.1	0.03 0.03 0.03 0.04	2.3 1.7 2.1 2.4	0.1 <0.1 0.1	<0.05 <0.05 <0.05 <0.05	5 5 5 4	<0.5 <0.5 <0.5 <0.5	<0 <0 <0 <0
ED-02 ED-03 ED-04 ED-05 ED-06 ED-07	Soil Soil Soil Soil Soil		19 12 17 16 21	0.24 0.14 0.20 0.29 0.27	105 79 90 116 101	0.062 0.032 0.043 0.047 0.060	1 1 <1 <1 <1	1.75 1.30 2.05 1.65 2.20	0.011 0.009 0.012 0.013 0.012	0.06 0.04 0.05 0.07 0.07	<0.1 <0.1 <0.1 <0.1 <0.1	0.03 0.03 0.03 0.04 0.04	2.3 1.7 2.1 2.4 2.3	0.1 <0.1 0.1 0.1 <0.1	<0.05 <0.05 <0.05 <0.05 <0.05	5 5 5 4 7	<0.5 <0.5 <0.5 <0.5 <0.5	<0 <0 <0 <0 <0 <0
ED-02 ED-03 ED-04 ED-05 ED-06 ED-07 ED-08	Soil Soil Soil Soil Soil		19 12 17 16 21 15	0.24 0.14 0.20 0.29 0.27 0.17	105 79 90 116 101 64	0.062 0.032 0.043 0.047 0.060 0.073	1 1 <1 <1 <1 <1 1	1.75 1.30 2.05 1.65 2.20 0.99	0.011 0.009 0.012 0.013 0.012 0.011	0.06 0.04 0.05 0.07 0.07 0.06	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.03 0.03 0.03 0.04 0.04 0.02	2.3 1.7 2.1 2.4 2.3 1.6	0.1 <0.1 0.1 0.1 <0.1 <0.1	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	5 5 5 4 7 3	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0 <0 <0 <0 <0 <0 <0
JED-02 JED-03 JED-04 JED-05 JED-06 JED-07 JED-08 JED-09	Soil Soil Soil Soil Soil Soil		19 12 17 16 21 15	0.24 0.14 0.20 0.29 0.27 0.17 0.22	105 79 90 116 101 64 55	0.062 0.032 0.043 0.047 0.060 0.073 0.079	1 1 <1 <1 <1 <1 1	1.75 1.30 2.05 1.65 2.20 0.99 0.75	0.011 0.009 0.012 0.013 0.012 0.011 0.016	0.06 0.04 0.05 0.07 0.07 0.06 0.08	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.03 0.03 0.03 0.04 0.04 0.02 0.01	2.3 1.7 2.1 2.4 2.3 1.6 2.6	0.1 <0.1 0.1 0.1 <0.1 <0.1	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	5 5 5 4 7 3	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0 <0
JED-01 JED-02 JED-03 JED-04 JED-05 JED-06 JED-07 JED-08 JED-09 JED-10	Soil Soil Soil Soil Soil Soil Soil Soil		19 12 17 16 21 15 15	0.24 0.14 0.20 0.29 0.27 0.17 0.22 0.12	105 79 90 116 101 64 55 104	0.062 0.032 0.043 0.047 0.060 0.073 0.079 0.019	1 1 <1 <1 <1 <1 1 <1	1.75 1.30 2.05 1.65 2.20 0.99 0.75 1.31	0.011 0.009 0.012 0.013 0.012 0.011 0.016 0.010	0.06 0.04 0.05 0.07 0.07 0.06 0.08 0.06	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	0.03 0.03 0.04 0.04 0.02 0.01 0.03	2.3 1.7 2.1 2.4 2.3 1.6 2.6 1.4	0.1 <0.1 0.1 0.1 <0.1 <0.1 0.1	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	5 5 5 4 7 3 3	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0 <0 <0 <0 <0 <0 <0 <0

0.53

800.0

< 0.1

0.11

0.02

0.4

< 0.05

<0.5

0.002

0.01

2

Client:

Kreft, Bernie

1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

Project:

None Given

Report Date:

May 29, 2015

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

Soil

0.9

5.7

11.3

48

< 0.1

7.2

3.4

PHONE (604) 253-3158

UED-29

Page:

3 of 8

14

< 0.1

0.3

< 0.1

31

0.14

0.043

1 of 2 Part:

CERTIFI	CATE OF A	AN	ALY	'SIS													V/	N1	500	1058	8.1	
	Meti	nod	AQ201																			
	Ana	lyte	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La
	ι	Jnit	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm							
	N	IDL	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0,001	1
UED-14	Soil		1.9	3.0	9.6	99	0.6	1.2	1.0	609	0.58	4.7	17.5	1.2	12	0.2	0.3	0.1	8	0.12	0.034	22
UED-15	Soil		4.8	7.8	26.0	51	0.5	4.8	3.4	199	1.63	19.5	120.4	1.6	16	<0.1	0.9	0.2	29	0.14	0.015	24
UED-16	Soil		4.9	5.0	20.3	34	0.3	4.1	2.2	115	1.29	17.7	16.7	2.1	11	<0.1	1.2	0.1	24	0.09	0.012	20
UED-17	Soil		1.5	4.2	9.7	70	0.2	4.3	2.6	258	1.41	9.6	3.5	2.3	12	<0.1	0.6	0.1	21	0.11	0.026	25
UED-18	Soil		1.7	2.2	8.2	74	0.2	1.1	0.5	55	0.61	14.9	56.9	1.3	4	< 0.1	0.9	< 0.1	7	0.04	0.024	17
UED-19	Soil		0.7	6.2	7.9	110	0.2	8.5	4.2	162	1.73	4.7	0.7	2.3	11	<0.1	0.3	<0.1	36	0.09	0.061	14
UED-20	Soil		1.0	3.4	10.3	30	<0.1	3.2	1.4	82	0.80	3,3	5.2	1,8	12	<0.1	0.2	0.1	15	0.11	0.027	25
UED-21	Sail		0.9	5.7	10.8	39	<0,1	6.7	3.4	142	1.37	5,3	4.6	2,4	15	<0.1	0,3	0.1	29	0,16	0,050	17
UED-22	Soil		0.8	7.2	8.8	29	< 0.1	7.7	3.8	184	1.59	6.7	3.6	3.3	22	<0.1	0.4	<0.1	39	0.20	0.039	21
UED-23	Soil		1.2	6.4	9.6	43	<0.1	7.9	4.2	148	1.59	9,9	18.5	2.9	13	<0.1	0.3	<0.1	36	0.13	0.051	16
UED-24	Soil		1.3	6.9	12.5	105	0.8	6.5	3.6	183	1.87	22.1	47.8	3.6	9	0.2	1.0	<0.1	36	0.08	0.083	18
UED-25	Soil		1.5	4.4	11.6	61	0.3	2.7	1.5	67	1.25	23,6	22.8	3.0	6	<0.1	0.8	<0.1	20	0.06	0.077	24
UED-26	Soil		1.2	7.3	11.3	61	0.6	8.3	4.3	134	1.78	15.6	17.5	3.0	10	<0.1	0.6	<0.1	36	0.10	0.060	19
UED-27	Soil		1.4	5.8	8.5	42	<0.1	9.5	4.5	156	1.65	8.4	2.6	2.3	15	<0.1	0.4	<0.1	39	0.15	0.033	15
UED-28	Soil		1.2	6.1	10.2	58	<0.1	9.4	4.4	152	1.42	6.3	4.8	2.5	12	<0.1	0.2	<0.1	29	0.13	0.054	16

140

1.45

6.6

6.2

2.5

Project:

Client:

Kreft, Bernie 1 Locust Place

Whitehorse YT Y1A 5G9 CANADA

None Given

Report Date:

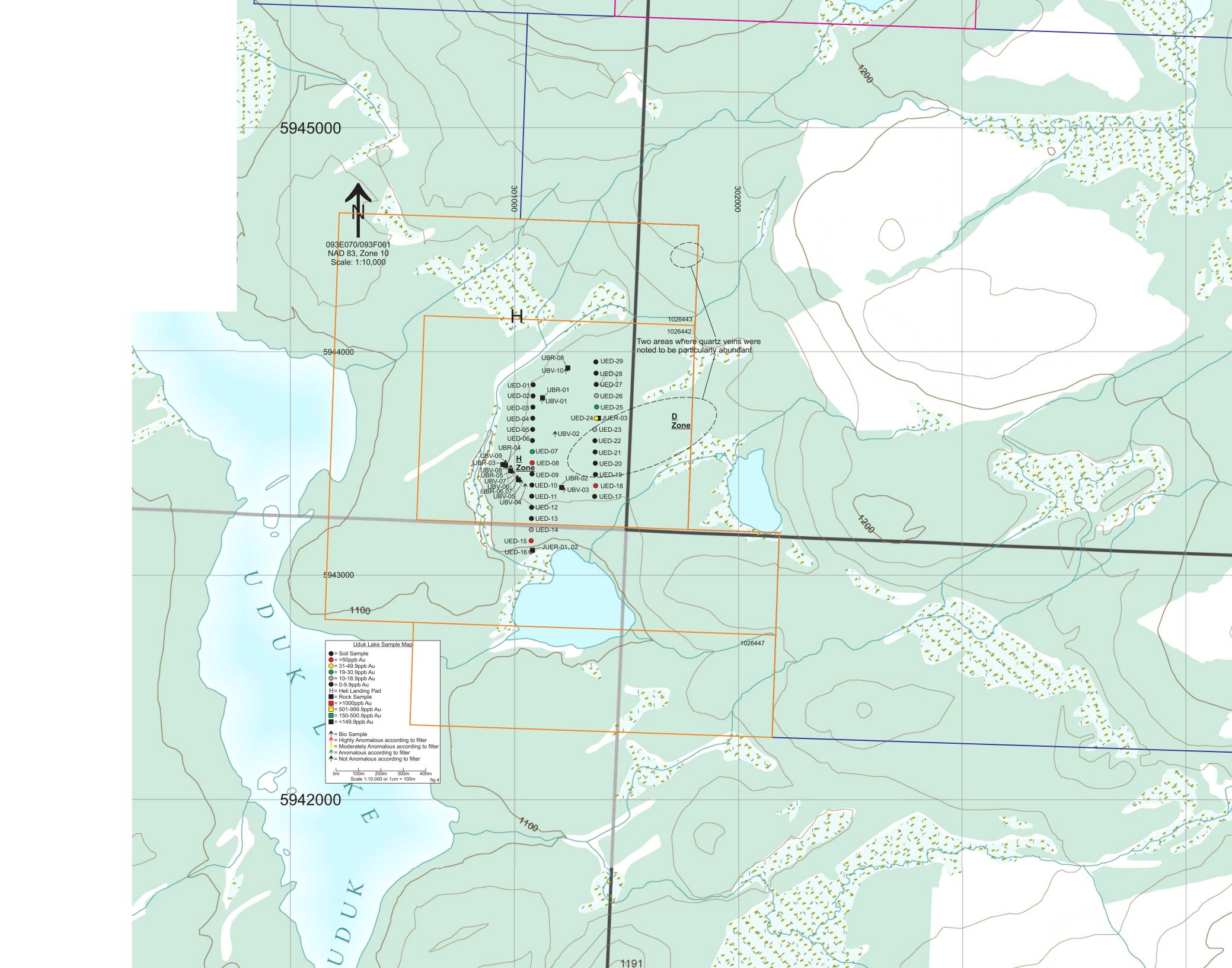
May 29, 2015

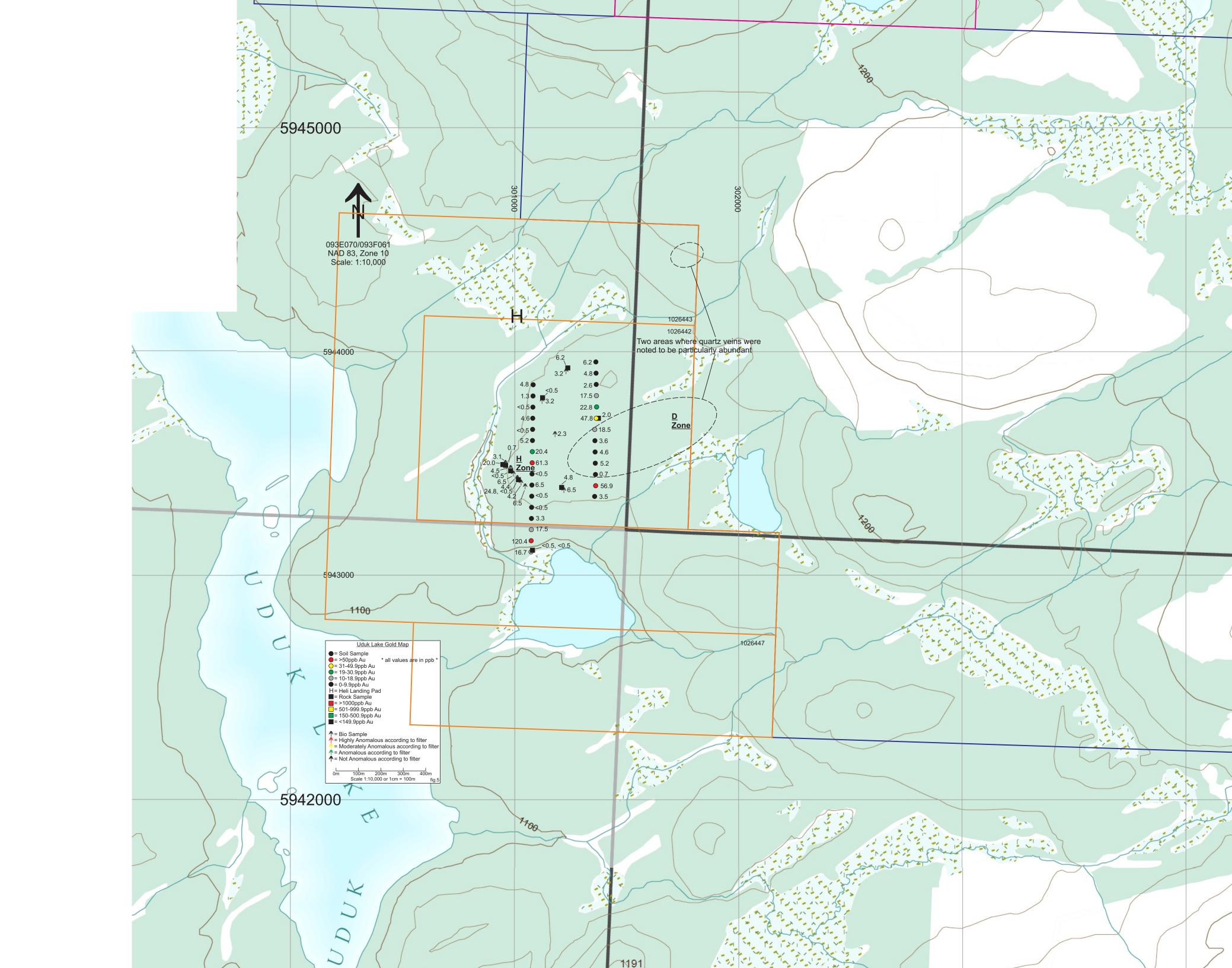
Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

Page:


3 of 8


Part: 2 of 2

CERTIFICATE OF ANALYSIS

VAN15001058.1

		Method	AQ201															
		Analyte	Cr	Mg	Ва	Ti	В	Al	Na	к	W	Hg	Sc	TI	s	Ga	Se	Te
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
UED-14	Soil		4	0.04	138	0.006	<1	0.60	0.009	0.10	<0.1	0.03	0.7	0.2	<0.05	3	<0.5	<0.2
UED-15	Soil		12	0.16	62	0.043	<1	0.78	0.011	0.12	<0.1	0.02	1.4	0.3	<0.05	3	<0.5	<0.2
UED-16	Soil		10	0.14	42	0.059	<1	0.61	0.010	0.09	<0.1	0.02	1.1	0.1	<0.05	2	<0.5	<0.2
UED-17	Soil		9	0.12	73	0.027	<1	0,80	0.009	0.13	<0.1	0.02	1.2	0.2	<0.05	3	<0.5	<0.2
UED-18	Soil		3	0.02	61	0.005	<1	0.80	0.007	0.07	<0.1	0.02	0.6	0.2	<0.05	3	<0.5	<0.2
UED-19	Soil		16	0.18	87	0.076	<1	1.15	0.011	0.06	<0.1	0.02	2.4	<0.1	<0.05	4	<0.5	<0.2
UED-20	Soil		7	0.10	54	0.035	<1	0.67	0.010	0.07	<0.1	<0.01	1.1	<0.1	<0.05	2	<0.5	<0.2
UED-21	Soil		14	0.19	80	0.064	<1	1.12	0.012	0.06	<0.1	0.01	1.8	<0.1	<0.05	3	<0.5	<0.2
UED-22	Soil		20	0.22	98	0.107	<1	0,89	0.018	0.06	<0.1	0.02	3.6	0.1	<0.05	3	<0.5	<0.2
UED-23	Soil		16	0.18	89	0,059	<1	1.33	0.011	0.05	<0.1	0.02	2.2	<0.1	<0.05	4	<0.5	<0.2
UED-24	Soil		14	0.13	99	0.035	<1	1.43	0.008	0.05	<0.1	0.04	1.7	0.2	0.05	4	<0.5	<0.2
UED-25	Soil		8	0.06	61	0.015	<1	1.13	0.006	0.06	<0.1	0.03	1.2	0.2	<0.05	4	<0.5	<0.2
UED-26	Soil		14	0.15	100	0.047	<1	1.30	0.010	0.06	<0.1	0.04	1.7	<0.1	<0.05	4	<0.5	<0.2
UED-27	Soil		17	0.20	94	0.077	<1	1.15	0.011	0.05	<0.1	0.01	1.8	<0.1	<0.05	3	<0.5	<0.2
UED-28	Soil		15	0,18	101	0.055	<1	1.54	0.011	0,04	<0.1	0.02	2.0	<0.1	<0.05	4	<0.5	<0.2
UED-29	Soil	-	13	0.20	83	0.066	<1	1.21	0.012	0.05	<0.1	0.02	2.0	<0.1	<0.05	4	<0.5	<0.2

