

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

TYPE OF REPORT [type of survey(s)]: geochemical, prospecting

TOTAL COST: 15562

AUTHOR(S): Joel Gillham		SIGNATURE(S): 'joel gillham'									
	NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): m-189 May 25 -Jun 1 2015 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): Event #5564621; July 31, 2015										
PROPERTY NAME: Shasta & Baker/Chappelle											
CLAIM NAME(S) (on which the work was done):											
COMMODITIES SOUGHT: Gold, Silver, Copper MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094E145, 094	4E02	26									
MINING DIVISION: Omineca	TL02	NTS/BCGS: 094E06E									
LATITUDE: 57 ° 15 ' " LONGITUDE: 127	0	·)								
OWNER(S): 1) Sable Resources Ltd (held under Multinational Mining)	2)		,								
MAILING ADDRESS: 355 Montroyal Blvd, North Vancouver BC, V7N 4G3											
OPERATOR(S) [who paid for the work]: 1) Sable Resources Ltd	_ 2)										
MAILING ADDRESS: 355 Montroyal Blvd, North Vancouver BC, V7N 4G3											
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Toodoggone volcanics, Stuhini Group, Jurassic, Epithermal por											
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT R 27653	REPOI	RT NUMBERS:									

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic		_	
Electromagnetic		_	
Induced Polarization		_	
Radiometric		_	
Calamia			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil		_	
Silt		_	
Rock 20		505651, 505434, 505435,505436	15562
Other			
DRILLING (total metres; number of holes, size)			
Core		_	
Non-core		_	
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Road, local access (kilometres)/s			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	15562
		101AL 0001.	10002

BC Geological Survey Assessment Report 35687

GEOCHEMICAL REPORT ON THE NORTHWEST CHAPPELLE AND SHASTA/SILVER REEF PROSPECTS

OMINECA MINING DIVISION

NTS: 94E/2, 7; 3, 6E LAT: 57' 15'N LONG: 127' 00'W

OWNER: SABLE RESOURCES LTD. #1290 - 625 Howe Street Vancouver, B.C. V6C 2T6

BY:

J. GILLHAM

October 29, 2015

TABLE OF CONTENTS

TABLE OF CONTENTS	2
LIST OF TABLES	2
LIST OF FIGURES	
1 SUMMARY	3
2 INTRODUCTION	4
2.1 LOCATION AND ACCESS.	4
2.2 PHYSIOGRAPHY	
2.3 PROPERTY HISTORY	4
2.4 CLAIM STATUS	5
3 GEOLOGY	9
3.1 REGIONAL GEOLOGY	10
3.2.1 BAKER PROPERTY GEOLOGY	10
3.2.2 SHASTA PROPERTY GEOLOGY	
4 2012 EXPLORATION PROGRAM	12
4.1 BAKER	
4.2 SHASTA	15
5 RESULTS AND DISCUSSION	19
6 REFERENCE	20
7 STATEMENT OF COSTS	21
8 STATEMENT OF QUALIFICATIONS	22
App anding I. Sample legation / accale amical recult mana	
Appendix I - Sample location/ geochemical result maps	
Appendix II – Assay Reports	
Appendix III – Rock Samples	
LIST OF TABLES	
2.1 PROPERTY LOCATION	3
2.2 MINERAL TENURE	
LIST OF FIGURES	
1.1 PROPERTY LOCATION	3
2.1 MINERAL TENURES	
3.1 PROPERTY GEOLOGY	11
3.2.2 SIMPLIFIED STRUCTURE & GEOLOGY SHASTA	
4.0.1 EXPLORATION LOCATIONS	
4.1.1 PHOTO OF UPPER QUARTZ FLOAT FIELD - NORTHWEST CHAPPELLE	
4.1.2 PHOTO OF VEIN EXPOSURE NORTHWEST CHAPPELLE	
4.2.1 PHOTO OF VEIN AT SHASTA NORTH- SAMPLE JCG150525-2	16
4.2.2 PHOTO OF SILVER REEF QUARTZ STOCKWORK VEIN	16
4.2.4 PHOTO OF SILVER REEF SHOWING FROM ACROSS DRAINAGE	
1.2.1111010 01 QUINTE STOCKWORK - STANLES JOO130330-02	10

1. SUMMARY

Exploration work described in this report consists of geochemical sampling of outcrop and float on contiguous mineral tenures held by Sable Resources Ltd ('Sable') surrounding the past producing Baker and Shasta mines. A total of 20 float and grab rock samples were collected and assayed for multi-elements using an ICP technique at AGAT labs in Burnaby. Sampled material consisted of both outcrop and float from quartz veins and alteration zones. The purpose of the sampling program was to further investigate an area of the Baker property between the West Chappelle and Caribou zones, and to evaluate mineralization in the footwall of the projected extensions of the Shasta fault to the south and north. Exploration at Shasta encountered low grade gold and silver values in outcrop to the north and south. Results from Baker were generally disappointing in terms of gold and silver values, but the abundance of quartz encountered was encouraging. Hand trenching in the quartz float field at the northwest chappelle zone was unsuccessful at uncovering bedrock.

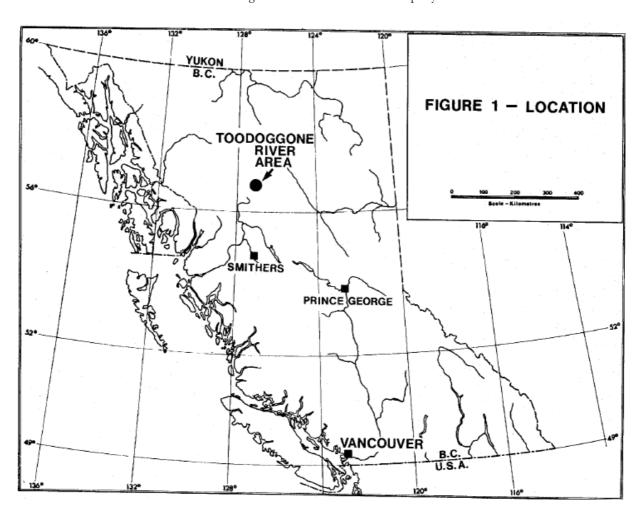


Figure 1.1 Location of Sable Property.

2. INTRODUCTION

2.1 Location and Access

Sable's Baker property, formerly known as the Chappelle property, is located in the Toodoggone River area of North-Central British Columbia, approximately 450 km north of Prince George (Figure 1). The Toodoggone region hosts low-grade, large tonnage Copper-Gold Porphyry deposits, such as Aurico's past producing Kemess South Mine, 30 km to the south, and high-grade, low tonnage Gold-Silver Epithermal deposits, such as Sable's Baker and Shasta mines, and the nearby historic Cheni (Lawyers) Mine (Sable 2011). The property owned by Sable consists of approximately 58 km² of contiguous mineral tenures. Sable has year-round camp facilities in place located at their 100% owned Baker mill, to support mining, mineral processing, and exploration activities. UTM coordinates of the Baker and Shasta Mines and associated infrastructure is provided in Table 1. Access to the property is gained via the Omineca Resource Road from Mackenzie, the Sturdee Airstrip located 10 km south of the Sable Camp, or from a year-round airstrip located at the Kemess Mine, approximately 30 km southeast.

Facility	UTM Location (Zone 9V)	
	Easting	Northing
Baker Property	613909	6350701
Baker Mill	613746	6350046
Sable Camp	613551	6350195

Table 2.1 UTM coordinates of the Baker and Shasta Mines and associated infrastructure.

2.2 Physiography

The property is moderately rugged, with elevations ranging between 1250 and 1800 metres above sea-level (masl). Slope gradients commonly reach 60 percent. Most of the property is covered by a 50 year old burn, Tree line is at approximately 1600 masl. Drainage is provided by a and forest regrowth is minimal. number of small creeks which feed Jock creek, a tributary of the Finlay River. Jock Creek flows diagonally through the property in a northeast direction. Mean annual precipitation ranges from 50 to 75 Average temperatures vary from -20°C cm, most of this occurring as rainfall during the summer months. in winter to +12°C in the summer. The onset of winter conditions limits exploration past October, and snow can persist at higher elevations until late June. Overburden depth is variable, ranging from 0m (outcrop) to 20m depending on location, but averages somewhere between 1 and 4 m over much of the Bedrock surface below the overburden is glacially modified, being highly irregular or property. hummocky.

2.3 Property History

Gold-silver mineralization was discovered on the Baker (formerly Chappelle) property by Kennco Explorations (Western) Limited in 1969. Several quartz vein structures were identified including the A Vein. Conwest Exploration ltd optioned the property in 1973 and constructed an airstrip at Blake Lake and a road to the property prior to driving a 200 metre adit to further explore the A Vein. Underground diamond drilling was also carried but results were not encouraging and the option was terminated.

DuPont of Canada Exploration Limited acquired the property in 1974 and over the next five years completed 8700 metres of diamond drilling and 460 metres of underground development on the **A** Vein structure. A production decision was made in 1979, and the mine was put into production as the Baker

mine. An airstrip was constructed in the Sturdee River Valley to facilitate air freighting of all equipment including a 90 tonnes per day mill.

The Baker Mine (referred to as the "A" deposit) was operated by Dupont Canada during the period 1981 – 83 as an underground and open pit gold - silver mine. The Dupont operation included a 90 tons per day whole ore cyanidation plant using the Merrill-Crowe process. Sable Resources acquired the Baker site including the processing facility in 1989 and subsequently modified it to a flotation circuit with optional concentrate cyanidation. Sable operates the Shasta mine on a seasonal basis.

The Multinational B deposit, located adjacent to Adit Creek and upstream of the "A" deposit, was a high grade gold-silver-copper deposit from which flotation concentrates were shipped off-site. This mine was intermittently operated by Sable during 1991-1997.

The Shasta property area claims were staked in 1972 by Shasta Mines and Oil Ltd., who later changed their name to International Shasta Resources Ltd. Propsecting, soil and rock geochemical surveys, geological mapping and magnetometer surveys were carried out between 1973 and 1975 by W Meyers and Associates Ltd on behalf othe owner. Most of this work was carried out on the south side of Jock Creek. In 1978, the property was optioned by Asarco Ltd. But due to poor results from resampling of old trenches, the option was terminated. Newmont Exploration Canada Ltd. Optioned the property in 1983 and during gthe next two years skaed additional claims, conducted extensive soil geochemical, geological and geophysical surveys, and completed 2,675m of diamond drilling. Newmont's drilling identified the Creek Zone and two other mineralized structures, the Ranier and Jock zones.

Esso Minerals Canada Ltd. Optioned the property in 1987 and carried out two seasons of exploration consisting of geological mapping, soil geochemistry and VLF-R geophysical surveys, backhoe trenching and diamond drilling. The main result of this work was the discovery of the JM and O-zones.

Homestake Mining (Canada) Ltd purchased Esso's interest in the Shasta property in the spring of 1989, and continued exploration during the summer of 1989, with a program of exploration and delineation drilling as well as geochemical and geophysical surveys. By the end of the 1989 field season, total exploration work included 5,140 geochemical soil samples, 200 line km of VLF-R and 4.0 line km of IP geophysical surveys, 4.0 km of backhoe trenches, geological mapping at 1:10,000 and 1:1,000 scales, 13,774m exploration diamond drilling and 1,093m of delineation and condemnation diamond drilling. Cumulative expenditures by Newmont, Esso and Hoestake to the end of 1989 totalled approximately \$2.8 million.

In 1990, Homestake continued to work the property, and completed 9.27 km of geochemical soil sampling, 14.94 line km of VLF-R geophysical surveys, and 4,777m of BQ-thinwall diamond drilling in twenty seven holes. International Shasta and Sable Resources made a deal where Sable would mine 100,000 tonnes and process it at the Baker mill which Sable had recently acquired. Sable mined the JM and Creek zones, by both open pit and underground methods, and completed 285m of diamond drilling in 5 holes.

Following the exploration program in 1990, Homestake dropped the option, and Sable acquired the Shasta property from International Shasta, and put the deposit into production, with mined material being processed at the Baker mill. Sable Resources mined and milled a total of 230,000 tons from the JM, D, and Creek zones of the deposit between 1989 and 2012 with most of the production coming between 1989-1991, and 2007-2012.

2.4 Claim Status

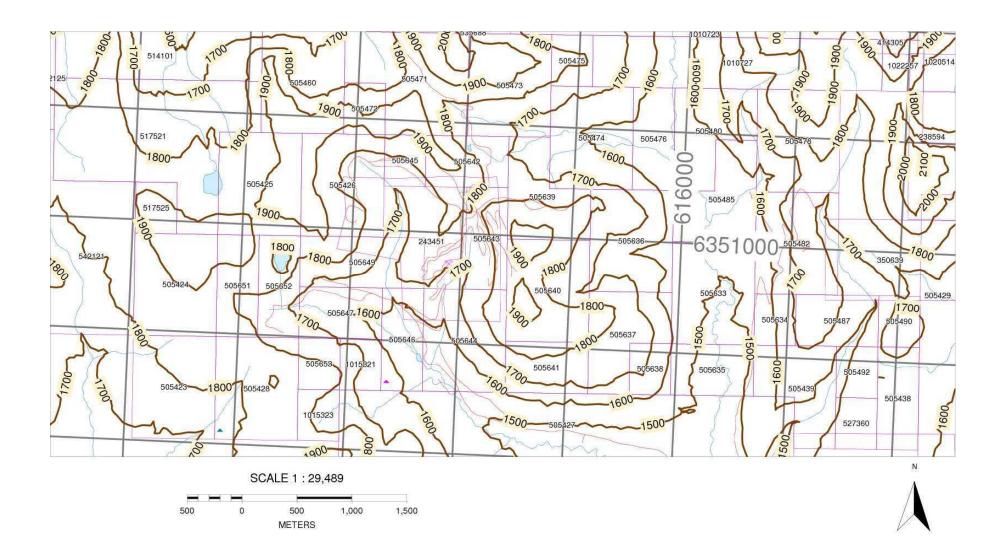

The work in this report occurs on mineral tenures held by Multinational Mining Inc, a wholly owned subsidiary of Sable Resources Ltd. These claims are part of a large contiguous package (Table 1.1) that extends from the historic Chappelle claims (focus of this report) to the southeast past the Shasta mine (Figure 2.1).

Table 2.2 Mineral Tenures

	Tabi	e 2.2 Mineral 16	Map		
Tenure Number	Owner	Tenure Type	Number	Issue Date	Area (ha)
243451	119151 (100%)	Mineral	094E025	1980/sep/10	157.8
243454	119151 (100%)	Mineral	094E025	1990/jun/13	100.0
245273	119151 (100%)	Mineral	094E025	1970/nov/09	25.0
245274	119151 (100%)	Mineral	094E025	1970/nov/09	25.0
350639	119151 (100%)	Mineral	094E025	1996/sep/11	450.0
505423	119151 (100%)	Mineral	094E	2005/feb/01	69.984
505424	119151 (100%)	Mineral	094E	2005/feb/01	69.969
505425	119151 (100%)	Mineral	094E	2005/feb/01	69.953
505426	119151 (100%)	Mineral	094E	2005/feb/01	69.953
505427	119151 (100%)	Mineral	094E	2005/feb/01	577.469
505428	119151 (100%)	Mineral	094E	2005/feb/01	69.984
505429	119151 (100%)	Mineral	094E	2005/feb/01	612.271
505430	119151 (100%)	Mineral	094E	2005/feb/01	559.951
505431	119151 (100%)	Mineral	094E	2005/feb/01	437.658
505432	119151 (100%)	Mineral	094E	2005/feb/01	175.129
505434	119151 (100%)	Mineral	094E	2005/feb/01	105.026
505435	119151 (100%)	Mineral	094E	2005/feb/01	280.196
505436	119151 (100%)	Mineral	094E	2005/feb/01	245.097
505438	119151 (100%)	Mineral	094E	2005/feb/01	34.992
505439	119151 (100%)	Mineral	094E	2005/feb/01	52.488
505460	119151 (100%)	Mineral	094E	2005/feb/02	69.937
505471	119151 (100%)	Mineral	094E	2005/feb/02	87.421
505472	119151 (100%)	Mineral	094E	2005/feb/02	17.485
505473	119151 (100%)	Mineral	094E	2005/feb/02	69.937
505474	119151 (100%)	Mineral	094E	2005/feb/02	69.946
505475	119151 (100%)	Mineral	094E	2005/feb/02	17.483
505476	119151 (100%)	Mineral	094E	2005/feb/02	34.973
505478	119151 (100%)	Mineral	094E	2005/feb/02	69.947
505480	119151 (100%)	Mineral	094E	2005/feb/02	52.459
505482	119151 (100%)	Mineral	094E	2005/feb/02	69.962
505485	119151 (100%)	Mineral	094E	2005/feb/02	52.467
505487	119151 (100%)	Mineral	094E	2005/feb/02	34.987
505490	119151 (100%)	Mineral	094E	2005/feb/02	17.493

119151 (100%)	Mineral	094E	2005/feb/02	17.495
119151 (100%)	Mineral	094E	2005/feb/02	69.97
119151 (100%)	Mineral	094E	2005/feb/02	17.493
119151 (100%)	Mineral	094E	2005/feb/02	34.99
119151 (100%)	Mineral	094E	2005/feb/02	69.962
119151 (100%)	Mineral	094E	2005/feb/02	52.482
119151 (100%)	Mineral	094E	2005/feb/02	17.495
119151 (100%)	Mineral	094E	2005/feb/02	52.466
119151 (100%)	Mineral	094E	2005/feb/02	69.969
119151 (100%)	Mineral	094E	2005/feb/02	34.99
119151 (100%)	Mineral	094E	2005/feb/02	34.975
119151 (100%)	Mineral	094E	2005/feb/02	34.98
119151 (100%)	Mineral	094E	2005/feb/02	69.977
119151 (100%)	Mineral	094E	2005/feb/02	17.487
119151 (100%)	Mineral	094E	2005/feb/02	34.988
119151 (100%)	Mineral	094E	2005/feb/02	34.986
119151 (100%)	Mineral	094E	2005/feb/02	52.474
119151 (100%)	Mineral	094E	2005/feb/02	34.984
119151 (100%)	Mineral	094E	2005/feb/02	34.984
119151 (100%)	Mineral	094E	2005/feb/02	17.495
119151 (100%)	Mineral	094E	2006/feb/09	17.497
119151 (100%)	Mineral	094E	2006/jun/14	104.877
	119151 (100%) 119151 (100%)	119151 (100%) Mineral	119151 (100%) Mineral 094E 119151 (100%) Mineral 094E <td>119151 (100%) Mineral 094E 2005/feb/02 119151 (100%) Mineral 094E 2005/feb/02 119151</td>	119151 (100%) Mineral 094E 2005/feb/02 119151

Fig 2.1 Mineral Tenure

3 GEOLOGY

3.1 Regional Geology

The Toodoggone River area lies within the Stikine Terrane on the eastern margin of the Intermontane Belt, in the Cassiar-Omineca Mountains. This 2 - 20 kilometer wide, northwesterly belt extends 90 kilometers from Thutade Lake on the south to the Stikine River on the north.

The oldest rocks in the area are the Permian Asitka Group limestones which are in thrust contact with Upper Triassic Takla (Stuhini) Group volcanics. Takla Group rocks are dominantly alkaline to subalkaline, submarine, mafic flows and derived sediments. Unconformably overlying the Takla Group are Lower to Middle Jurassic Toodoggone Formation rocks. They form a sequence of volcanic and associated sedimentary rocks, and are further divided into a lower and upper cycle (Diakow et al 1993). The Jurassic Toodoggone volcanic rocks represent a distinct quartz-bearing facies of the Hazelton Group and comprise dominantly calcalkaline, intermediate to felsic subaerial volcanic rocks and associated sediments. The youngest rocks in the area are chert-pebble conglomerates and sandstones of the Cretaceous to Tertiary Sustut Group, which unconformably overlies the Toodoggone volcanics. Lower Jurassic to Upper Triassic Omineca plutonic rocks, resting on granodiorite and quartz monzonite, intrude the Takla and Toodoggone volcanics.

Several precious metal epithermal vein deposits have been discovered in the Toodoggone area in the last four decades. These deposits are generally related to structures cutting Toodoggone volcanic rocks or older Takla rocks. The character of the deposits is generally related to the level of deposition within the hydrothermal system. Precious metal mineralization at the Baker Mine is hosted in quartz veins cutting basaltic volcanics of the Takla Group. The Cheni Mine mineralization is largely in silicified zones and amethystine breccias. The Shasta Mine is characterized by braided stockwork zones of quartz, calcite and potassium feldspar with grey sulphides and electrum.

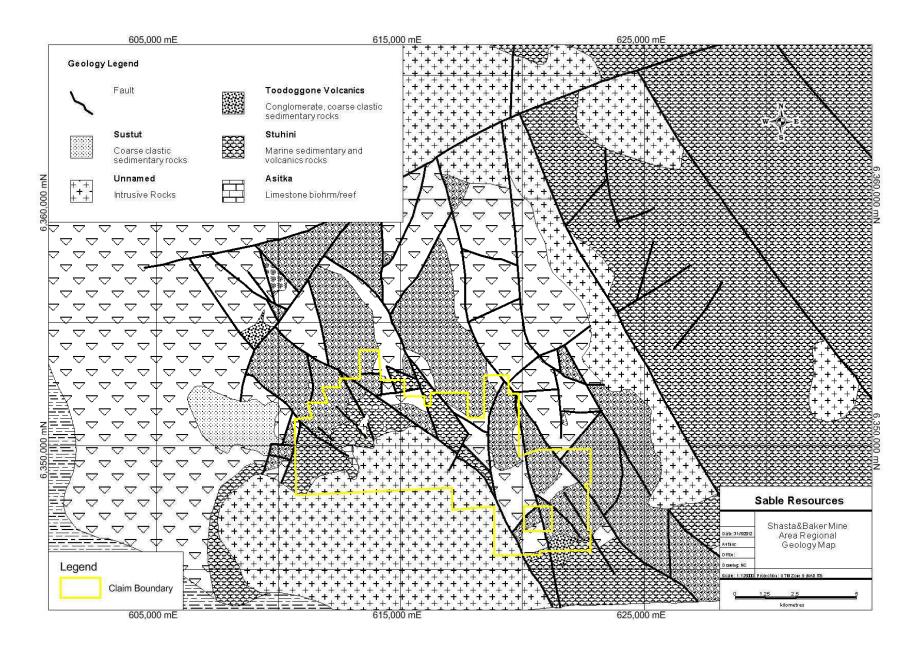
The structure of the Toodoggone area is dominated by steeply dipping normal faults of Lower Jurassic to Tertiary age, which have north to northwesterly trends, and are truncated by younger, northeast trending faults.

3.2 Property Geology

3.2.1 Baker Property Geology

The Baker property is underlain by an uplifted fault block of Takla Group volcanics in thrust contact with Asikta limestone both having been intruded by quartz monzonite of the Black Lake stock. The stock is exposed at the southern margin of the property, and has locally altered the limestone to an epidote-diopside skarn along their contact. The limestone also occurs towards the south of the property, and forms the prominent cliffs of Castle Mountain. Broken and iron-oxide stained augite phyric andesite to basalt flows of Takla Group are the dominant rock types on the property, and are the principal host of mineralization at Baker. To the north, upper cycle Toodoggone formation volcanics of Diakow (1990) are present in fault contact with Takla Group rocks. Numerous hornblende-feldspar porphyritic apophyses of the Black Lake stock intrude and brecciate the Takla host rocks. The similar composition to the overlying Toodoggone volcanics suggests that these may be feeders for the overlying volcanism.

Prominent Propylitic and Sericitic alteration on the property has weathered a gossanous rust colour. An assemblage of quartz-sericite-chlorite-pyrite gives way to an argillic clay assemblage proximal to veins. Milky quartz veins are the principal host to economic mineralization, and commonly exhibit polyphase breccia, and vuggy textures. Gold-silver mineralization is associated with pyrite, sphalerite, galena and chalcopyrite, with precious metal mineralization in the form of electrum and acanthite.


Mineralization occurs within steeply dipping structures on the property, commonly with a northeast strike. The hypabyssal hornblende-feldspar porphyry has exploited these structures, and silicification with or without mineralization, occurs along these intrusive contacts

3.2.2 SHASTA PROPERTY GEOLOGY

The Shasta property is underlain predominately by a succession of feldspar,quartz, biotite and hornblende crystal-rich pyroclastic and epiclastic rocks within the Toodoggone volcanics. In the Shasta deposit area these rocks have been informally termed the basal series, the pyroclastic series and the epivolcaniclastic series, based on differences in composition and depositional environments (Holbek, 1989). In general, the epivolcaniclastic rocks occur to the west and north of the Shasta deposit area, whereas the pyroclastic rocks host the minaralization and underlie most of the area immediately south and east of the Shasta deposit. The oldest rocks in the property area are pyroxene-feldspar-bearing basalt flows and derived fragmental rocks of the Upper Triassic Stuhini Group (Takla Group). These rocks are exposed on the extreme southern edge of the property, strike east-northeast and dip gently to the northwest. Unconformably overlying the Stuhini Group are a series of pyroclastic and epivolcaniclastic rocks termed the 'basal series', that are typical of Hazelton Group rocks. This unit consists of dark green lapilli tuffs characterised by quartz and feldspar phenocrysts less than 2 millimeters in diameter, and interbedded purple and green volcanic-derived sediments (Marsdena nd Moore, 1990).

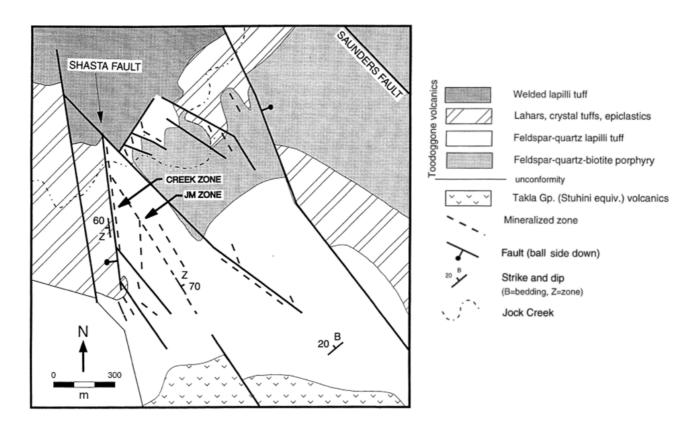

The structure on the Shasta property is dominated by north to northwest trending normal and/or dextral block faulting. The rock units are gently tilted and lack any evidence of ductile deformation, although regionally, the Toodoggone volcanic rocks are reported to display broad open folds (Panteleyev, 1982). Tilting and rotation of the fault blocks and fracturing on the property is important because structural breaks controlled the initial emplacement and the subsequent displacement of mineralization.

Fig 3.2 Property Geology

Mineralization on the Shasta property, which consists of acanthite, electrum, native silver and gold along with uneconomic amounts of sphalerite, galena and chalcopyrite, is hosted by structurally controlled quartz-carbonate stockwork veins and breccia zones. The best precious metal grades typically occur within the breccias or adjacent areas of intense stockwork veins.

Fig 3.2.2. Simplified structure and geology of the Shasta deposit area (after Thiersch, Williams-Jones & Clark 1997)

4. 2015 EXPLORATION PROGRAM

The 2015 exploration program investigated 3 areas of interest: an area of the Baker property in the northwest corner between the west chappelle and caribou vein showings; and, to the north and south of Shasta deposit. 6 field days were spent by a two-person team, investigating outcrop, float and digging shallow hand trenches. 20 samples were submitted for multi-element ICP-MS analysis to AGAT Labs of Burnaby. The assay results are in appendix I.

Efforts were largely focused on exploring for gold-silver mineralized structural, and broad stockwork zones that have previously been the subject of significant exploration, development and mining at both the Baker and Shasta mines.

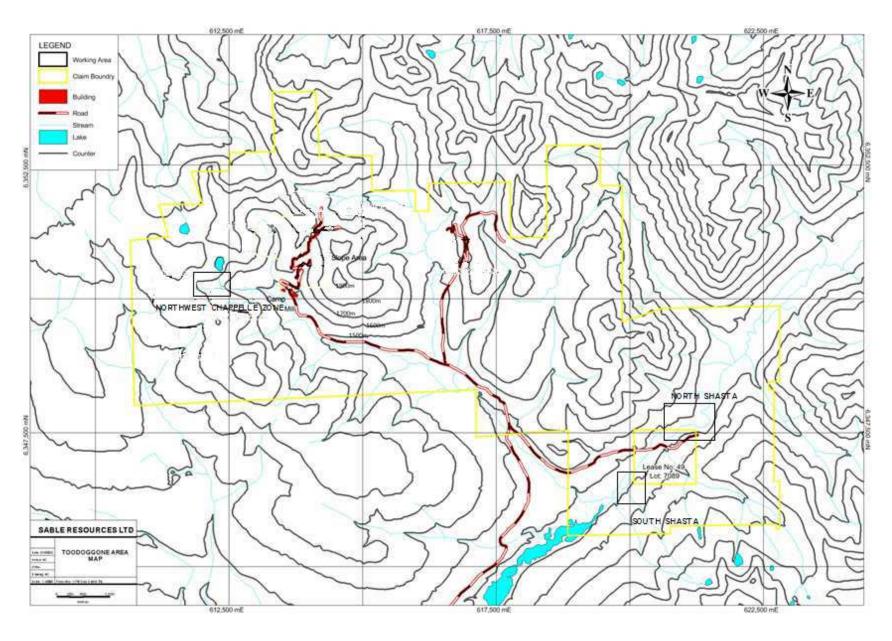


Fig 4.0.1 Exploration Locations

4.1 Baker -

Two days were spent investigating the Northwest Chappelle zone and 8 samples were collected and submitted for assays (Northwest Chappelle zone sample location map - Appendix I). An outcropping quartz vein was located in a sloughed in historic trench, and cleaned/retrenched by hand to expose a 2.8 wide vein striking 290 degrees and dipping 80 degrees to the north (fig 4.1.1). The vein was sampled over it's width including 10 cm of wallrock either side for a 3 metre wide sample (jcg150601-3). Two zones were located containing abundant quartz float: the upper zone along a prominent local topographic high of gossanous rubble with no outcrop measured 100 by 10 metres running north-south (fig 4.1.2); and, the lower zone measuring 15 by 20 metres located 150 metres to the southeast of the upper zone. Two trenches were dug by hand on the upper zone but were abandoned at approximately 1 metre depth and were unsuccessful at exposing bedrock.

Fig4.1.1 - Looking North - upper quartz float boulder field

Fig 4.1.2 - Looking West. 2.8 m Quartz vein outcrop (sample jcg150601-3)

4.2 Shasta (North and South)

Four days were spent investigating north and south of the Shasta mining lease 243454. Elevated gold and silver values were obtained with a sample high of 2.06 ppm Au and 126 ppm Ag from an 18cm wide calcite-chlorite-quartz-epidote vein (fig xxx) located to the north of Shasta, and a high of 0.54 ppm Au and 5.01 ppm Ag from a grab sample taken from outcropping quartz stockwork to the southwest of the lease. Efforts were generally successful at locating quartz stockwork in the footwall of the interpreted extensions of the Shasta fault.

To the north of Shasta, the Shasta fault was traced to the location of samples jcg150526-2 (hangingwall) and jcg150526-3 (footwall) before the structure was covered by overburden. Efforts to trace the structure further to the north were unsuccessful and included several shallow hand dug trenches which did not reach bedrock.



Fig 4.2.1 - 18cm quartz vein north of Shasta (sample jcg150525-2)

Further to the east, across Jock creek, there is generally good exposure of the prospective 'pyroclastic' unit (Holbek 1989). A narrow, 18cm wide, quartz structure was sampled and returned gold and silver values consistent with lower grade (sub-ore) material encountered in and near the Shasta mine's mineralized structures. No effort was made to trace this structure upslope to the south during this investigation.

To the south, the Silver Reef showing was located and samples of both the quartz rich 'vein' and minor quartz stockwork country rock returned negligible gold values. Silver was elevated in the 'vein' relative to the country rock (1.81 vs 0.56 ppm respectively) but both were very low. While quartz is abundant at the prospect, it appears to be the early, barren quartz described by Thiersch, Williams-Jones & Clark (1997).

To the south of Silver Reef, across the drainage, 1-2% quartz stockwork was present in all exposures comprising the cliffs above the drainage. No outcrop could be located in the immediate vicinity of the depression along the projected extension of the Shasta fault. Of the three samples taken from this footwall stockwork, one returned elevated gold and silver values of 0.54 and 5.01 ppm Au and Ag respectively.



Fig 4.2.2 - Silver Reef showing - quartz stockwork 'vein'

Fig 4.2.3 - View northeast towards the Silver Reef showing from across the drainage to the south

Fig 4.2.4 - Quartz stockwork. Sample jcg150530-2

5. RESULTS AND DISCUSSION

The 2015 prospecting program investigated an area of the Baker system with significant quartz float near known outcropping veins. A previously unrecorded vein outcrop at the south end of the area was discovered but did not return elevated values of gold or silver (0.01 ppm Au, 0.32 ppm Ag). Hand trenching (to 1m) within the abundant float field did not encounter bedrock, and geochemical results of the sampled quartz float were low (high of 0.09 ppm Au, 1.90 ppm Ag). Based on the poor assay resuts, it would appear no further work on this vein showing/ float field is warranted at this time. However, this showing, along with a number of previously investigated structurally controlled silica/vein prospects within the larger Baker alteration system yielding low-grade silver and gold mineralization continue to have merit as exploration targets. The presence of milling infrastructure (Baker mill) and the historic bonanza grades mined at the Baker 'A' and 'B' veins make the exploration for additional high-grade structurally controlled gold-silver mineralization on the Baker property a priority. It must be noted that both the 'A' and 'B' veins contain significant low-grade and barren sections within the quartz structure similar to those encountered at the other prospects on the Baker property, so it would be premature to conclude that the prospects investigated are of no further economic interest.

In addition to exploration for high-grade Baker style veins, a porphyry Cu-Au deposit model should be developed for the Baker property. Fluid inclusion research by Duuring et al (2009) confirms that the Baker veins are porphyry related and formed at depths permissible for a porphyry system, rather than the previously held assumption of a shallow epithermal system. Further, the geologic setting and extensive alteration are consistent with a porphyry setting. A gridded soil/talus/rock sampling program over the Baker system to determine relative enrichment and depletion of porphyry pathfinder metals should be conducted as should detailed mapping in the context of a porphyry system.

The extensive quartz stockwork found at Shasta below the interpreted southern extension of the Shasta fault provides a large area of prospective ground that has received very little exploration attention in the past. While grades reported in this and past surveys are generally low for the southern footwall extension of the Shasta deposit, outcrop exposure is minimal aside from the exposures in the cliff faces found at the Silver Reef prospect and directly to the south on the other side of the drainage, and the possibility of near surface, high grade mineralization seems plausible.

To the north of known Shasta mineralization, there is limited outcrop of the prospective stratigraphic unit and subsurface methods of investigation are warranted. The vein that returned the high Au and Ag values (2 and 126 ppm respectively) should be traced on surface to the south, and if possible to the north.

The coincident silicification and disseminated sulphides within and proximal to mineralized strucutres at Shasta, and the lack of those features in the country rock, should produce a good contrast in an IP survey. Chargibility and resistivity highs would lend support to drill testing known structural targets and would likely produce additional 'blind' targets on the property for drill testing.

6 REFERENCES

Delancey, Peter R., (1989): 1989 Exploration Report on the Chappelle Property; a report for Multinational Resources Inc.

Diakow, L.J., Panteleyev, A. and Schroeter, T.G, (1993): Geology of the early Jurassic Toodoggone Formation and gold-silver deposits in the Toddoggone River Map Area, Northern British Columbia. B.C.E.M.P.R. Bulletin 86, 72 pp.

Duuring, P., Rowins, S.M., McKinley, B.S.Mm, Dickinson, J.M., Diakow, L.J., Kim, Y., Creaser, R.A., (2009):Examining potential genetic links between Jurassic porphyry Cu–Au±Mo and epithermal Au±Ag mineralization in the Toodoggone district of North-Central British Columbia, Canada

Espinosa, S., (2004): Geophysical Report. Induced Polarization Survey on the Upper Ridge Zone Project For Sable Resources Ltd.

Holbek, P.M., (1989): 1988 Exploration Report on the Shasta Claim Group; an in house report for Esso Minerals Canada Ltd.

Kraft, E.M., (2004): Report on the 2004 Exploration Program; a report for Sable Resources Ltd.

Marsden, H.M., Moore, J.M., (1988): Geological Fieldwork, Paper 1989-1

Marsden, H.M., and Moore, J.M., (1990): Stratigraphic and Structural Setting of the Shasta Silver-Gold Deposit, North-Central, B.C.; B.C.E.M.P.R. Geological Fieldwork 1989, Paper 1990-1, pp. 305-3 14.

McPherson, M.D., Oiye, M., Holbek, P.M., (1991): 1990 Exloration report on the Shasta Claim Group; A report for International Shasta Resources Ltd. and Homestake Canada Ltd.

Panteleyev, A., (1982): Geology between Toodoggone and Sturdee Rivers, B.C.; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1982, Paper 1983-1, pp. 143-148.

Schroeter, T.G., (1982): Toodoggone River, B.C.; B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1981, Paper 1982- 1, pp. 122- 1331

Thiersch, P.C., Williams-Jones, A.E., Clark, J.R., (1997): Epithermal ineralization and ore controls of the Shasta Au-Ag deposit, Toodoggone District, British Columbia, Canada.

7 STATEMENT OF COSTS

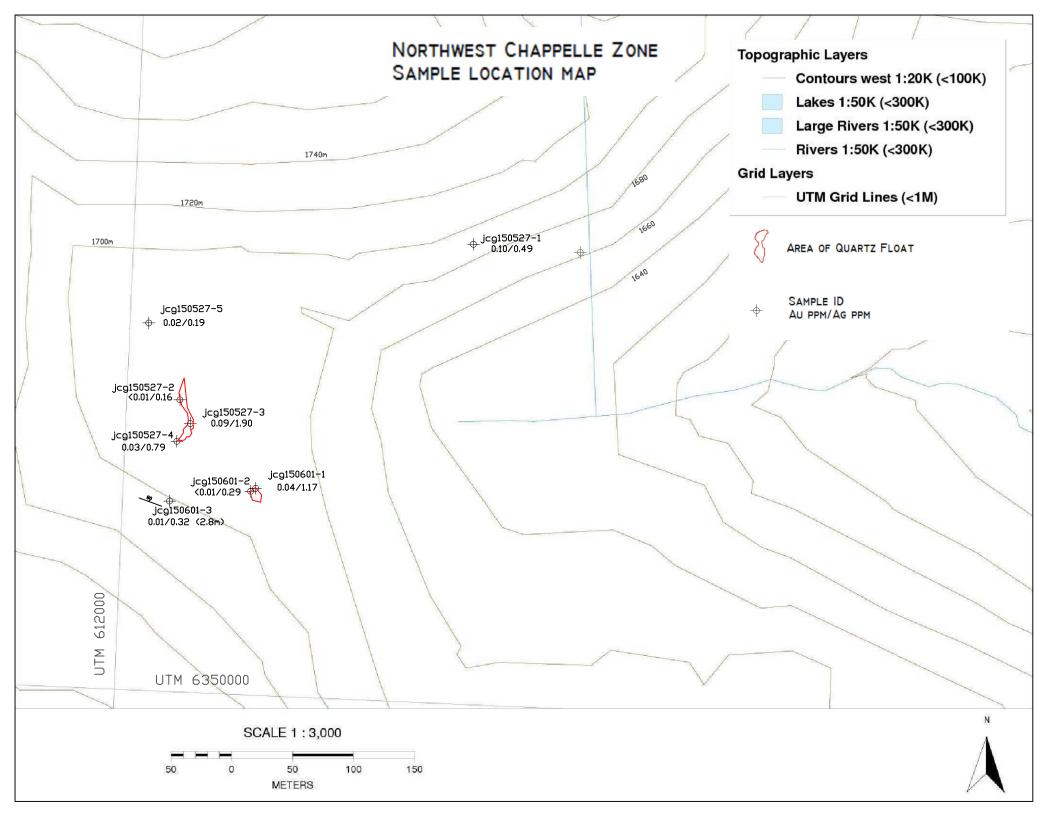
Statement of costs

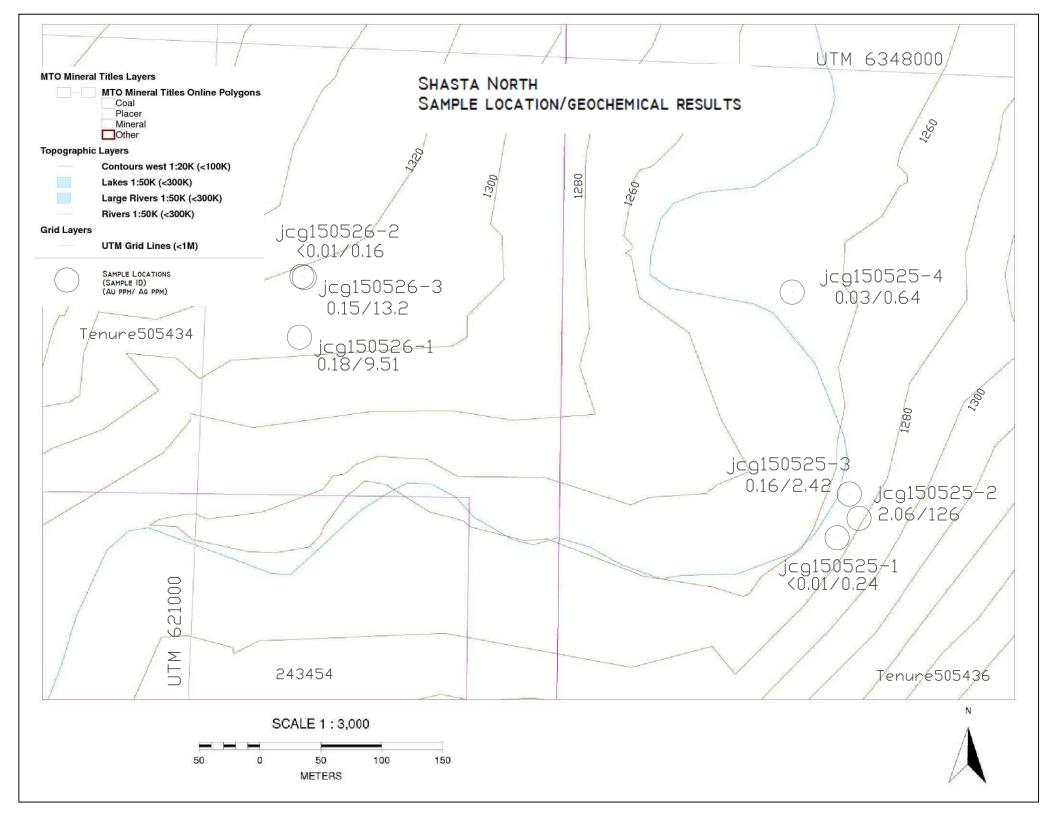
	#	\$/	\$
Labour			
Field Geo (J.Gillham)	8	\$425.00	\$3,400
Field Assistant	8	\$275.00	\$2,200
Assays	20	\$28.00	\$560
Transportation			
Vehicle rental	10	\$100.00	\$1,000
Km's	3318	\$0.40	\$1,120
Fuel	518	\$1.13	\$585
Accomodation			
Motel - PG	4	\$79.00	\$316
Camp	12	\$75.00	\$900
Tools, Field Supplies, misc. Equipment			
Supplies			\$416
Phone Rental and use			\$382
Management	10%		\$1,183
Report Prep			\$3,500
Total			\$15,562

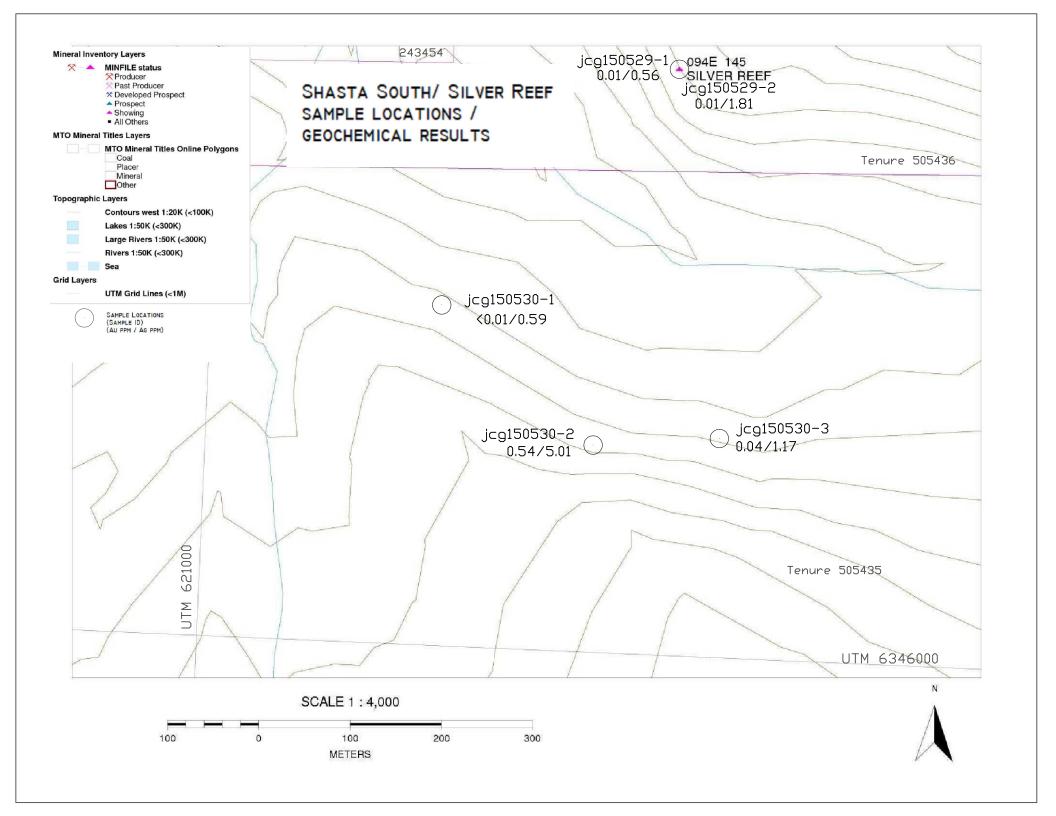
8 STATEMENT OF QUALIFICATIONS

I, Joel Gillham, of 7676 Ontario St, Vancouver, British Columbia, Canada, hereby certify that:

I graduated from Simon Fraser University with a Bachelor of Science degree in Earth Sciences (2007);


I have been continuously employed as a geoscientist in the mineral exploration industry since 2005;


I have been involved in the exploration, development and mining of the property that is the subject of this report since 2006.


Dated at Vancouver, BC this 10th day of May 2013

Joel Gillham, B.Sc

Don't from

APPENDIX II

Assay Reports

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON, ON (403)

ATTENTION TO: MEL RAHAL; JOEL GILLHAM

PROJECT:

AGAT WORK ORDER: 15T998262

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Aug 25, 2015

PAGES (INCLUDING COVER): 12

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 15T998262

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MEL RAHAL; JOEL GILLHAM

		((201-174)) Aqua R	egia Dig	jest (30g) - Metal:	s Packa	ge, ICP/I	CP-MS fi	nish					
DATE SAMPLED: Jul 2	0, 2015		DATE RECEIVED: Jul 21, 2015					DATE REPORTED: Aug 25, 2015					SAMPLE TYPE: Rock			
	Analyte:	Sample Login Weight	Ag	Al	As	Au	В	Ва	Ве	Bi	Ca	Cd	Ce	Со	Cr	
	Unit:	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	
Sample ID (AGAT ID)	RDL:	0.01	0.01	0.01	0.1	0.01	5	1	0.05	0.01	0.01	0.01	0.01	0.1	0.5	
JCG 150525-1 (6763520)		0.87	0.24	1.10	1.8	<0.01	<5	60	0.25	0.01	0.70	0.03	14.1	7.3	33.3	
JCG 150525-2 (6763521)		0.33	126	0.53	1.8	2.06	<5	22	0.10	0.02	19.3	1.25	8.50	3.2	24.8	
JCG 150525-3 (6763522)		0.45	2.42	0.78	6.2	0.16	<5	49	0.22	0.04	0.70	0.12	13.2	4.9	54.2	
JCG 150525-4 (6763523)		0.64	0.64	0.64	1.7	0.03	<5	72	0.21	0.09	1.20	0.21	18.0	5.1	33.0	
JCG 150526-1 (6763524)		0.49	9.51	0.30	7.5	0.18	<5	76	< 0.05	0.03	0.15	0.09	3.24	1.0	61.4	
JCG 150526-2 (6763525)		0.61	0.48	1.13	1.0	<0.01	<5	100	0.21	0.06	1.14	0.13	28.1	8.7	34.7	
JCG 150526-3 (6763526)		0.27	13.2	0.49	2.1	0.15	<5	96	0.11	0.06	0.10	0.05	16.1	1.8	39.5	
JCG 150527-1 (6763527)		0.72	0.49	0.86	3.3	0.10	<5	1040	0.23	<0.01	1.88	0.09	16.9	8.9	66.5	
JCG 150527-2 (6763528)		0.86	0.16	0.44	7.6	<0.01	<5	23	0.12	0.16	0.08	0.04	5.69	2.3	115	
JCG 150527-3 (6763529)		0.40	1.90	0.20	22.9	0.09	<5	15	<0.05	0.25	0.05	0.03	0.66	1.1	114	
JCG 150527-4 (6763530)		0.24	0.79	0.19	8.9	0.03	<5	18	<0.05	0.18	0.33	0.06	1.11	1.0	133	
JCG 150527-5 (6763531)		0.86	0.19	0.27	16.4	0.02	<5	14	0.18	0.07	0.28	0.31	10.5	2.4	46.6	
JCG 150529-1 (6763532)		0.72	0.56	0.89	31.8	0.01	<5	41	0.10	0.15	0.14	0.02	15.4	7.0	30.9	
JCG 150529-2 (6763533)		0.58	1.81	0.15	10.5	0.01	<5	356	<0.05	0.04	0.04	1.49	2.89	1.6	88.8	
JCG 150530-1 (6763534)		0.89	0.59	0.55	1.0	<0.01	<5	85	0.26	0.02	4.51	0.17	20.1	5.3	35.7	
JCG 150530-2 (6763535)		0.44	0.79	1.24	3.9	0.03	<5	418	0.21	0.03	1.94	0.15	13.8	10.6	61.1	
JCG 150530-3 (6763536)		0.67	5.01	0.41	19.2	0.54	<5	34	0.16	0.25	1.40	0.15	14.0	3.2	79.3	
JCG 150601-1 (6763537)		0.51	1.17	0.08	13.0	0.04	<5	19	<0.05	0.27	0.03	0.03	0.33	1.0	143	
JCG 150601-2 (6763538)		0.27	0.29	0.24	10.6	<0.01	<5	4	<0.05	0.08	0.13	0.02	4.16	8.0	108	
JCG 150601-3 (6763539)		0.72	0.32	0.57	18.7	0.01	<5	19	0.11	0.12	0.14	0.09	2.50	1.7	135	

Certified By:

y of stomura

Certificate of Analysis

AGAT WORK ORDER: 15T998262

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MEL RAHAL; JOEL GILLHAM

		((201-174)) Aqua R	egia Dig	gest (30g) - Metal	s Packa	ge, ICP/I	CP-MS fi	nish					
DATE SAMPLED: Jul 2	20, 2015		DATE RECEIVED: Jul 21, 2015					DATE REPORTED: Aug 25, 2015					SAMPLE TYPE: Rock			
	Analyte:	Cs	Cu	Fe	Ga	Ge	Hf	Hg	ln	K	La	Li	Mg	Mn	Мс	
	Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	
Sample ID (AGAT ID)	RDL:	0.05	0.1	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.1	0.1	0.01	1	0.05	
JCG 150525-1 (6763520)		0.31	5.2	2.14	4.74	0.09	0.22	<0.01	0.007	0.14	6.1	13.9	0.82	868	0.24	
JCG 150525-2 (6763521)		0.13	42.2	1.10	1.68	< 0.05	0.06	0.02	<0.005	0.04	4.1	3.5	0.55	5100	1.14	
JCG 150525-3 (6763522)		0.33	4.7	1.20	2.81	0.10	0.15	<0.01	< 0.005	0.12	6.3	4.7	0.53	844	0.44	
JCG 150525-4 (6763523)		0.48	5.8	1.53	2.60	0.09	0.07	<0.01	0.006	0.15	9.0	3.2	0.36	924	0.22	
JCG 150526-1 (6763524)		1.90	3.9	0.92	1.42	0.07	0.05	<0.01	<0.005	0.13	1.5	1.8	0.19	373	2.19	
JCG 150526-2 (6763525)		1.21	5.2	2.24	4.33	0.09	0.08	0.11	0.010	0.10	13.6	11.7	0.70	921	0.43	
JCG 150526-3 (6763526)		1.17	4.5	1.61	2.10	0.08	0.10	0.01	0.009	0.17	8.4	2.1	0.19	432	0.69	
JCG 150527-1 (6763527)		<0.05	14.7	1.16	2.87	0.23	0.28	<0.01	0.006	<0.01	8.2	3.0	0.63	485	0.45	
JCG 150527-2 (6763528)		0.28	7.7	1.30	2.08	0.06	0.03	<0.01	0.009	0.07	2.2	11.4	0.41	156	1.57	
JCG 150527-3 (6763529)		0.31	10.7	1.55	0.94	0.07	0.03	0.02	0.010	0.05	0.3	1.0	0.16	46	3.65	
JCG 150527-4 (6763530)		0.16	10.4	0.84	0.86	0.07	< 0.02	<0.01	0.006	0.03	0.6	1.1	0.15	472	4.22	
JCG 150527-5 (6763531)		0.50	16.7	0.52	0.46	0.10	0.23	<0.01	<0.005	0.14	8.5	0.2	0.01	102	7.43	
JCG 150529-1 (6763532)		0.76	2.1	3.52	3.69	0.10	0.17	<0.01	0.012	0.17	6.8	9.2	0.46	498	1.25	
JCG 150529-2 (6763533)		0.15	34.4	0.90	0.61	0.07	0.10	<0.01	0.020	0.08	1.3	0.9	0.05	64	0.74	
JCG 150530-1 (6763534)		1.15	18.7	2.19	2.66	0.07	0.22	<0.01	0.012	0.16	10.1	3.3	0.26	1180	0.52	
JCG 150530-2 (6763535)		0.57	28.1	2.83	5.05	0.09	0.09	<0.01	0.013	0.11	6.1	15.4	0.64	1310	0.42	
JCG 150530-3 (6763536)		2.59	2.7	1.69	2.85	0.13	0.06	<0.01	0.010	0.14	7.8	3.3	0.15	613	0.97	
JCG 150601-1 (6763537)		0.13	11.0	1.02	0.33	0.08	< 0.02	<0.01	<0.005	0.03	0.2	0.2	0.02	34	1.74	
JCG 150601-2 (6763538)		0.30	10.6	0.95	0.41	0.08	< 0.02	<0.01	0.009	0.02	1.5	0.3	0.01	47	2.09	
JCG 150601-3 (6763539)		0.61	12.5	1.49	2.18	0.07	0.03	<0.01	< 0.005	0.07	1.0	6.0	0.41	116	3.61	

Certified By:

y of stomura

CLIENT NAME: MISC AGAT CLIENT ON

Certificate of Analysis

AGAT WORK ORDER: 15T998262

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: MEL RAHAL; JOEL GILLHAM

		((201-174)	Aqua R	egia Dig	est (30g) - Meta	ls Packa	ge, ICP/I	CP-MS fi	nish				
DATE SAMPLED: Jul 2	20, 2015		Γ	DATE RECE	EIVED: Jul 2	21, 2015		DATE REPORTED: Aug 25, 2015					SAMPLE TYPE: Rock		
	Analyte:	Na	Nb	Ni	Р	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.01	0.05	0.2	10	0.1	0.1	0.001	0.005	0.05	0.1	0.2	0.2	0.2	0.01
JCG 150525-1 (6763520)		0.04	0.15	2.1	823	3.4	6.2	<0.001	0.363	0.20	1.3	<0.2	<0.2	20.2	<0.01
JCG 150525-2 (6763521)		<0.01	0.09	1.3	205	163	1.4	<0.001	0.678	0.22	0.5	1.0	<0.2	454	<0.01
JCG 150525-3 (6763522)		0.02	0.16	2.8	703	5.1	5.9	<0.001	0.086	0.59	0.7	<0.2	<0.2	42.2	<0.01
JCG 150525-4 (6763523)		0.02	0.06	2.5	755	7.3	10.5	<0.001	0.375	0.21	0.7	0.3	<0.2	21.5	<0.01
JCG 150526-1 (6763524)		<0.01	0.11	2.4	312	39.0	10.0	< 0.001	0.075	0.42	0.3	<0.2	<0.2	5.6	<0.01
JCG 150526-2 (6763525)		0.03	0.08	4.4	945	4.0	6.0	<0.001	0.067	0.20	1.4	0.2	<0.2	26.2	<0.01
JCG 150526-3 (6763526)		0.01	0.12	1.9	595	14.9	11.0	<0.001	0.166	0.45	0.7	<0.2	<0.2	12.2	<0.01
JCG 150527-1 (6763527)		<0.01	0.33	8.6	1410	1.5	0.3	<0.001	0.059	0.45	2.4	<0.2	0.2	327	<0.01
JCG 150527-2 (6763528)		<0.01	0.16	6.2	359	1.7	5.5	0.001	0.070	0.42	2.0	0.8	0.2	6.2	<0.01
JCG 150527-3 (6763529)		<0.01	0.10	3.9	155	8.4	2.2	<0.001	0.358	0.84	8.0	1.8	<0.2	5.3	<0.01
JCG 150527-4 (6763530)		<0.01	0.09	4.8	286	5.4	1.5	<0.001	0.215	0.93	0.9	0.6	0.2	4.7	<0.01
JCG 150527-5 (6763531)		<0.01	0.34	3.9	881	3.4	6.3	0.012	0.043	0.26	8.0	0.7	8.0	4.9	<0.01
JCG 150529-1 (6763532)		0.03	0.06	2.4	862	10.2	9.4	<0.001	2.13	1.38	1.5	<0.2	<0.2	7.0	<0.01
JCG 150529-2 (6763533)		<0.01	0.12	2.8	261	85.4	3.4	< 0.001	0.197	3.10	0.5	<0.2	<0.2	5.7	<0.01
JCG 150530-1 (6763534)		0.02	0.07	2.4	882	13.6	8.7	< 0.001	0.083	0.41	1.2	0.3	0.3	100	<0.01
JCG 150530-2 (6763535)		0.02	0.07	3.5	616	5.8	6.4	<0.001	0.182	0.18	3.9	0.3	<0.2	86.6	<0.01
JCG 150530-3 (6763536)		<0.01	0.07	2.0	200	618	10.4	<0.001	0.831	0.92	0.7	8.0	<0.2	38.6	<0.01
JCG 150601-1 (6763537)		<0.01	0.17	4.9	73	14.1	1.3	<0.001	0.140	0.79	0.5	0.6	0.2	2.1	<0.01
JCG 150601-2 (6763538)		<0.01	0.24	3.4	137	4.1	1.3	<0.001	0.038	0.29	0.5	0.5	<0.2	7.5	<0.01
JCG 150601-3 (6763539)		<0.01	0.53	7.3	228	5.9	3.9	0.002	0.125	0.46	2.5	1.4	0.4	4.6	<0.01

Certified By:

y of stomura

Certificate of Analysis

AGAT WORK ORDER: 15T998262

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MEL RAHAL; JOEL GILLHAM

(201-174) Aqua Regia Digest (30g) - Metals Package, ICP/ICP-MS finish												
0, 2015			DATE REC	EIVED: Jul	21, 2015		DATE I	REPORTED	SAMPLE TYPE: Rock			
Analyte:	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr		
Unit:	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm		
RDL:	0.01	0.1	0.005	0.02	0.05	0.5	0.05	0.05	0.5	0.5		
	<0.01	1.5	0.031	0.04	0.42	22.8	0.08	6.04	69.0	8.8		
	0.01	0.3	0.009	< 0.02	0.13	9.1	0.11	8.94	101	2.0		
	<0.01	1.5	0.043	0.05	0.47	12.5	0.21	4.87	62.3	18.9		
	0.01	1.2	<0.005	0.07	0.43	15.3	0.07	6.11	65.7	4.1		
	0.01	8.0	<0.005	0.06	0.14	7.3	0.16	1.03	39.6	2.0		
	<0.01	1.2	0.009	0.04	0.38	25.9	0.09	10.9	67.3	2.5		
	<0.01	1.8	0.008	0.08	0.38	9.3	0.14	2.45	38.3	4.2		
	0.02	1.0	0.119	< 0.02	0.63	61.9	0.11	7.14	22.3	12.8		
	0.07	0.1	0.005	0.05	< 0.05	34.9	0.06	4.54	9.5	1.5		
	1.02	<0.1	<0.005	0.04	< 0.05	14.1	0.05	0.86	5.5	1.0		
	0.49	<0.1	<0.005	0.02	0.19	12.7	< 0.05	1.90	11.8	1.4		
	0.21	0.9	0.120	0.07	0.15	11.5	0.16	12.8	7.0	9.6		
	0.06	1.6	<0.005	0.09	0.30	25.9	< 0.05	6.10	52.6	8.2		
	0.04	0.5	< 0.005	0.04	0.11	5.2	< 0.05	1.29	75.3	4.0		
	0.02	1.6	0.022	0.06	0.90	41.0	0.19	11.1	35.8	8.6		
	0.01	1.0	0.012	0.05	0.28	32.5	0.10	10.5	90.3	3.6		
	0.02	0.4	0.005	0.10	0.15	41.3	0.07	4.08	16.8	2.3		
	0.31	<0.1	0.005	0.03	0.17	7.0	< 0.05	0.22	3.6	0.9		
	0.19	<0.1	<0.005	<0.02	<0.05	3.6	< 0.05	0.49	2.9	0.9		
	0.05	0.2	0.069	0.06	0.05	38.6	0.18	1.41	13.8	1.6		
	Analyte: Unit:	O, 2015 Analyte: Te Unit: ppm RDL: 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 0.07 1.02 0.49 0.21 0.06 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01	Analyte: Te Th Unit: ppm ppm RDL: 0.01 0.1 <0.01 1.5 0.01 0.3 <0.01 1.5 0.01 1.5 0.01 0.8 <0.01 1.2 0.01 0.8 <0.01 1.2 0.01 0.8 <0.01 1.2 0.01 0.8 <0.01 1.2 0.01 1.2 <0.01 1.8 0.02 1.0 0.07 0.1 1.02 <0.1 0.49 <0.1 0.21 0.9 0.06 1.6 0.04 0.5 0.02 1.6 0.01 1.0 0.02 0.4 0.31 <0.1 0.19 <0.1	Analyte: Te Th Ti Unit: ppm ppm % RDL: 0.01 0.1 0.005 <0.01 1.5 0.031 0.01 0.3 0.009 <0.01 1.5 0.043 0.01 1.5 0.043 0.01 1.2 <0.005	Analyte: Te Th Ti TI Unit: ppm ppm % ppm RDL: 0.01 0.1 0.005 0.02 <0.01 1.5 0.031 0.04 <0.01 1.5 0.043 0.05 <0.01 1.5 0.043 0.05 <0.01 1.5 0.043 0.05 <0.01 1.5 0.043 0.05 <0.01 1.2 <0.005 0.07 <0.01 0.8 <0.005 0.07 <0.01 1.2 <0.005 0.06 <0.01 1.8 <0.009 0.04 <0.02 1.0 0.119 <0.02 <0.07 0.1 0.005 0.05 <0.02 1.0 0.119 <0.02 <0.01 <0.005 0.04 <0.02 0.1 <0.005 0.04 <0.02 0.1 <0.005 <0.005 <0.02 0.6	O, 2015 DATE RECEIVED: Jul 21, 2015 Analyte: Te Th Ti Tl U Unit: ppm ppm ppm ppm ppm RDL: 0.01 0.1 0.005 0.02 0.05 <0.01 1.5 0.031 0.04 0.42 <0.01 1.5 0.043 0.05 0.47 <0.01 1.5 0.043 0.05 0.47 <0.01 1.2 <0.005	Analyte: Te Unit: Th ppm ppm % ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	O, 2015 DATE RECEIVED: Jul 21, 2015 DATE I Analyte: Te Th Ti TI U V W Unit: ppm ppm ppm % ppm 10.00<	O, 2015 DATE RECEIVED: Jul 21, 2015 DATE REPORTED Analyte: Te Th Ti TI U V W Y Unit: ppm ppm <td< td=""><td>O, 2015 DATE RECEIVED: Jul 21, 2015 DATE REPORTED: Aug 25, 20 Analyte: Te Th Ti TI U V W Y Zn Unit: ppm ppm</td><td> </td></td<>	O, 2015 DATE RECEIVED: Jul 21, 2015 DATE REPORTED: Aug 25, 20 Analyte: Te Th Ti TI U V W Y Zn Unit: ppm ppm		

Comments: RDL - Reported Detection Limit

Certified By:

y Latomina

Quality Assurance - Replicate AGAT WORK ORDER: 15T998262 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: MEL RAHAL; JOEL GILLHAM

(201-174) Aqua Regia Digest (30g) - Metals Package, ICP/ICP-MS finish													
		ATE #1											
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD					
Ag	6763528	0.164	0.219	28.7%	6763539	0.32	0.39	19.7%					
Al	6763520	1.10	1.07	2.8%	6763539	0.566	0.554	2.1%					
As	6763528	7.6	7.4	2.7%	6763539	18.7	19.2	2.6%					
Au	6763528	< 0.01	< 0.01	0.0%	6763539	0.01	0.01	0.0%					
В	6763528	< 5	< 5	0.0%	6763539	< 5	< 5	0.0%					
Ва	6763528	23	26	12.2%	6763539	19	17	11.1%					
Be	6763528	0.12	0.12	0.0%	6763539	0.11	0.11	0.0%					
Bi	6763528	0.16	0.17	6.1%	6763539	0.12	0.12	0.0%					
Ca	6763520	0.70	0.67	4.4%	6763539	0.14	0.14	0.0%					
Cd	6763528	0.04	0.08		6763539	0.09	0.10	10.5%					
Ce	6763528	5.69	6.32	10.5%	6763539	2.50	2.48	0.8%					
Со	6763528	2.3	2.3	0.0%	6763539	1.74	1.82	4.5%					
Cr	6763520	33.3	33.0	0.9%	6763539	135	132	2.2%					
Cs	6763528	0.279	0.272	2.5%	6763539	0.61	0.62	1.6%					
Cu	6763520	5.24	5.28	0.8%	6763539	12.5	12.5	0.0%					
Fe	6763520	2.14	2.09	2.4%	6763539	1.49	1.53	2.6%					
Ga	6763528	2.08	1.90	9.0%	6763539	2.18	2.21	1.4%					
Ge	6763528	0.056	0.053	5.5%	6763539	0.07	0.07	0.0%					
Hf	6763528	0.03	0.03	0.0%	6763539	0.03	0.03	0.0%					
Hg	6763528	< 0.01	< 0.01	0.0%	6763539	< 0.01	< 0.01	0.0%					
In	6763528	0.009	0.009	0.0%	6763539	< 0.005	< 0.005	0.0%					
K	6763520	0.137	0.130	5.2%	6763539	0.07	0.07	0.0%					
La	6763528	2.2	2.4	8.7%	6763539	1.0	1.0	0.0%					
Li	6763528	11.4	11.4	0.0%	6763539	6.0	4.8	22.2%					
Mg	6763520	0.82	0.82	0.0%	6763539	0.41	0.41	0.0%					
Mn	6763520	868	869	0.1%	6763539	116	115	0.9%					
Мо	6763528	1.57	1.69	7.4%	6763539	3.61	3.78	4.6%					
Na	6763520	0.035	0.034	2.9%	6763539	< 0.01	< 0.01	0.0%					
Nb	6763528	0.157	0.134	15.8%	6763539	0.529	0.502	5.2%					
Ni	6763520	2.1	2.7	25.0%	6763539	7.26	7.14	1.7%					
Р	6763520	823	845	2.6%	6763539	228	244	6.8%					

Quality Assurance - Replicate AGAT WORK ORDER: 15T998262 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MEL RAHAL; JOEL GILLHAM 6763528 1.7 16.2% 6763539 5.9 5.9 0.0% Rb 6763528 5.5 3.3 6763539 3.9 3.7 5.3% Re 6763528 0.001 0.001 0.0% 6763539 0.002 0.002 0.0% S 6763520 0.363 0.360 0.8% 6763539 0.125 0.127 1.6% Sb 6763528 0.417 0.435 4.2% 0.511 10.3% 6763539 0.461 Sc 6763528 2.0 2.0 0.0% 6763539 2.5 2.5 0.0% Se 6763528 0.8 8.0 0.0% 6763539 1.4 1.4 0.0% 0.2 Sn 6763528 0.2 0.0% 6763539 0.4 0.4 0.0% 6763528 10.2% 6763539 0.0% Sr 6.2 5.6 4.6 4.6 Та 6763528 < 0.01 < 0.01 0.0% 6763539 < 0.01 < 0.01 0.0% 6763528 0.07 0.11 6763539 0.050 0.067 29.1% Te Th 6763528 0.15 0.16 6.5% 6763539 0.2 0.2 0.0% 6763520 0.0305 0.0234 26.3% 6763539 0.069 0.069 Τi 0.0% ΤI 6763528 0.054 0.055 1.8% 6763539 0.056 0.051 9.3% U 0.0% 6763528 < 0.05 < 0.05 6763539 0.050 0.044 12.8% ٧ 2.7% 6763520 22.8 22.2 6763539 38.6 38.8 0.5% W 6763528 0.062 0.076 20.3% 6763539 0.182 0.192 5.3% Υ 6763528 4.54 4.48 1.3% 6763539 1.41 1.34 5.1% Zn 6763520 70.0 1.4% 0.7% 69.0 6763539 13.8 13.9 Zr 6763528 1.5 1.0 6763539 1.6 1.4 13.3% (202-064) Fire Assay - Au Ore Grade, Gravimetric finish **REPLICATE #1** Parameter Sample ID Original Replicate RPD 6763543 304 286 6.1% Au (202-066) Fire Assay - Ag Ore Grade, Gravimetric finish **REPLICATE #1 Parameter** Sample ID Original Replicate RPD 6763543 11027 11121 0.8% Αg

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 15T998262 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MEL RAHAL; JOEL GILLHAM

			(2	01-174) A	qua R	egia Di	gest (3	0g) - Met	als Pac	kage, I	CP/ICP	-MS finis	h		
CRM #1															
Parameter	Expect	Actual	Recovery	Limits											
Ag	152	150	98%	90% - 110%											
Cu	3440	3531	102%	90% - 110%											
Pb	12200	12252	100%	90% - 110%											
Zn	9310	9771	104%	90% - 110%											
				(20	2-064)	Fire As	say - A	Au Ore G	rade, G	ravimet	tric fin	ish			
	CRM #1														
Parameter	Expect	Actual	Recovery	Limits											
Au	14.9	15.7	105%	95% - 105%											
				(20	2-066)	Fire As	say - A	Ag Ore G	rade, G	ravimet	ric fin	sh			
	CRM #1														
Parameter	Expect	Actual	Recovery	Limits											
Ag	1586	1552	97%	95% - 105%											

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 15T998262

PROJECT: ATTENTION TO: MEL RAHAL; JOEL GILLHAM

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.		SAMPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Sample Login Weight	MIN-12009		BALANCE
Ag	MIN-200-12017		ICP-MS
Al	MIN-200-12017		ICP/OES
As	MIN-200-12017		ICP-MS
Au	MIN-200-12017		ICP-MS
В	MIN-200-12017		ICP/OES
Ва	MIN-200-12017		ICP-MS
Be	MIN-200-12017		ICP-MS
Bi	MIN-200-12017		ICP-MS
Ca	MIN-200-12017		ICP/OES
Cd	MIN-200-12017		ICP-MS
Ce	MIN-200-12017		ICP-MS
Co	MIN-200-12017		ICP-MS
Cr	MIN-200-12017		ICP/OES
Cs	MIN-200-12017		ICP-MS
Cu	MIN-200-12017		ICP-MS
Fe	MIN-200-12017		ICP/OES
Ga	MIN-200-12017		ICP-MS
Ge	MIN-200-12017		ICP-MS
Hf	MIN-200-12017		ICP-MS
	MIN-200-12017		ICP-MS
Hg	MIN-200-12017		ICP-MS
In	MIN-200-12017		ICP/OES
K			
La L:	MIN-200-12017		ICP-MS
Li	MIN-200-12017		ICP-MS
Mg	MIN-200-12017		ICP/OES
Mn	MIN-200-12017		ICP/OES
Mo	MIN-200-12017		ICP-MS
Na	MIN-200-12017		ICP/OES
Nb	MIN-200-12017		ICP-MS
Ni	MIN-200-12017		ICP-MS
P	MIN-200-12017		ICP/OES
Pb	MIN-200-12017		ICP-MS
Rb	MIN-200-12017		ICP-MS
Re	MIN-200-12017		ICP-MS
S	MIN-200-12017		ICP/OES
Sb	MIN-200-12017		ICP-MS
Sc	MIN-200-12017		ICP-MS
Se	MIN-200-12017		ICP-MS
Sn	MIN-200-12017		ICP-MS
Sr	MIN-200-12017		ICP-MS
Та	MIN-200-12017		ICP-MS
Те	MIN-200-12017		ICP-MS
Th	MIN-200-12017		ICP-MS
Ti	MIN-200-12017		ICP/OES
TI	MIN-200-12017		ICP-MS
U	MIN-200-12017		ICP-MS
V	MIN-200-12017		ICP/OES
W	MIN-200-12017		ICP-MS
· v	IVIII N-200-1201/		IOI -IVIO

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 15T998262

PROJECT: ATTENTION TO: MEL RAHAL; JOEL GILLHAM

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Υ	MIN-200-12017		ICP-MS
Zn	MIN-200-12017		ICP-MS
Zr	MIN-200-12017		ICP-MS
Sample Login Weight	MIN-12009		BALANCE
Au			GRAVIMETRIC
Ag	MIN-200-12004		GRAVIMETRIC

APENDIX III

Rock Sample Descriptions

	UTM	I zone 9				
Sample ID	East	North	elvation	type	location	Description
jcg150525-1	621510	6347593		grab	shasta	feldspar crystal tuff with epidote-pyrite alteration on fracture surfaces. minor qtz stockwork
jcg150525-2	621428	6347609		grab	shasta	quartz-calcite(chlorite-epidote) vein - 18cm wide
jcg150525-3	621420	6347629		grab	shasta	feldspar crystal tuff with epidote-pyrite alteration on fracture surfaces. minor qtz stockwork
jcg150525-4	621173	6347795		grab	shasta	feldspar crystal tuff with epidote-pyrite alteration on fracture surfaces. minor qtz stockwork
jcg150526-1	621068	6347758		grab	shasta	kspar altered feldspar tuff with quartz stockwork
jcg150526-2	621070	6347808		grab	shasta	minor chlorite altered feldspar tuff
jcg150526-3	621072	6347807		grab	shasta	kspar altered feldspar tuff with quartz stockwork
jcg150527-1	612588	6350529	1724	float	baker	quartz-epidote stockwork in takla basalt
jcg150527-2	612107	6350274		float	baker	massive textured white quartz float
jcg150527-3	612124	6350235		float	baker	massive textured white quartz float
jcg150527-4	612102	6350206		float	baker	massive textured white quartz float
jcg150527-5	612056	6350400		grab	baker	clay altered fine grained andesite 1-2% PY
jcg150529-1	621519	6346610	1528	grab	shasta	kspar altered feldspar tuff
jcg150529-2	621520	6346611	1528	grab	shasta	qtz sw vein
jcg150530-1	621264	6346357	1488	grab	shasta	qtz sw veinlets 1-2cm in grey feldspar tuff
jcg150530-2	621427	6346206	1533	grab	shasta	qtz sw veinlets 1-2cm in grey feldspar tuff
jcg150530-3	621563	6346213		grab	shasta	qtz sw veinlets 1-10cm in grey feldspar tuff
jcg150601-1	612231	6350129	1747	float	baker	drusy white quartz. iron staining and f.g. sulphides <1%
jcg150601-2	612223	6350124		float	baker	drusy white quartz. iron staining and f.g. sulphides <1%
jcg150601-3	612090	6350108	1788	channel	baker	290/80N striking 2.8m quartz vein with <1% f.g. sulphides and 1" clay alteration halo