

# ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2015 Geochemical Assessment Report on the Galore Creek Property

# **TOTAL COST:**

AUTHOR(S): Sarah L. Henderson

SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):

STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5582038

YEAR OF WORK: 2015

PROPERTY NAME: Galore Creek

CLAIM NAME(S) (on which work was done): 516459 & 516165

COMMODITIES SOUGHT: Copper, Gold, Silver

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Liard Mining Division

NTS / BCGS: 104G/3 and 104G/4, BCGS 104G.013

LATITUDE: \_\_\_\_57\_\_\_° \_\_\_07\_\_\_' \_\_\_08\_\_ LONGITUDE: \_\_\_131\_\_\_° \_\_27\_\_\_' \_\_\_58\_\_

" (at centre of work) UTM Zone: EASTING: 351005 NORTHING: 6334025

OWNER(S): Galore Creek Mining Corporation

MAILING ADDRESS:

Suite 3300, 550 Burrard Street, Vancouver, BC, V6C 0B3

OPERATOR(S) [who paid for the work]: Galore Creek Mining Corporation

MAILING ADDRESS:

Suite 3300, 550 Burrard Street, Vancouver, BC, V6C 0B3

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. (Do not use abbreviations or codes)

Porphyry, Alkalic, Alkali Syenites, Late Triassic, Stuhini Group, Stikine Terrane, Galore Creek Property, Saddle zone, copper-gold-silver mineralization, volcanics, basalt, syenite.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 2010 Diamond Drilling Assessment Report on the Galore Creek Property (AR 32119) 1990 Report on Soil, Rock Geochemical Sampling, VLF-EM, Magnetometer and Diamond Drill Surveys on (AR 20558A)

| TYPE OF WORK IN                | EXTENT OF<br>WORK                    | ON WHICH CLAIMS | PROJECT COSTS               |
|--------------------------------|--------------------------------------|-----------------|-----------------------------|
| THIS REPORT                    | (in metric units)                    |                 | APPORTIONED (incl. support) |
| GEOLOGICAL (scale, area)       |                                      |                 |                             |
| Ground, mapping                |                                      |                 |                             |
| Photo interpretation           |                                      |                 |                             |
| GEOPHYSICAL (line-kilometres)  |                                      |                 |                             |
| Ground                         |                                      |                 |                             |
| Magnetic                       |                                      |                 |                             |
| Electromagnetic                |                                      |                 |                             |
| Induced<br>Polarization        |                                      |                 |                             |
| Radiometric                    |                                      |                 |                             |
| Seismic                        |                                      |                 |                             |
| Other                          |                                      |                 |                             |
| Airborne                       |                                      |                 |                             |
| GEOCHEMICAL (number of sai     | mples analysed for)                  |                 |                             |
| Soil                           |                                      |                 |                             |
| Silt 9                         | ICP-MS &                             | 516459 &        | ΦΕΩΕ <b>7</b> Ω Δ           |
| Rock                           | Lithogeochemical                     | 516165          | \$5357.34                   |
| Other                          |                                      |                 |                             |
| DRILLING (total metres, number | er of holes, size, storage location) |                 |                             |
| Core                           |                                      |                 |                             |
| Non-core                       |                                      |                 |                             |
| RELATED TECHNICAL              |                                      |                 |                             |
| Sampling / Assaying            |                                      |                 |                             |
| Petrographic                   |                                      |                 |                             |
| Mineralographic                |                                      |                 |                             |
| Metallurgic                    |                                      |                 |                             |
| PROSPECTING (scale/area)       |                                      |                 |                             |
| PREPATORY / PHYSICAL           |                                      |                 |                             |
| Line/grid (km)                 |                                      |                 |                             |
| Topo/Photogrammetric (s        | scale, area)                         |                 |                             |
| Legal Surveys (scale, are      | ea)                                  |                 |                             |
| Road, local access (km)/       | trail                                |                 |                             |
| Trench (number/metres)         |                                      |                 |                             |
| Underground developme          | nt (metres)                          |                 |                             |

|       | Report      |       | \$2072    |
|-------|-------------|-------|-----------|
| Other | Preparation |       |           |
|       | •           | TOTAL | \$7429.32 |
|       |             | COST  |           |

Galore Creek Mining Corporation Suite 3300, 550 Burrard Street Vancouver, BC V6C 0B3 Tel +1 (604) 699-4572 Toll-free 1-877-717-GCMC (4262)



BC Geological Survey Assessment Report 35835

# 2015 GEOCHEMICAL ASSESSMENT REPORT ON THE GALORE CREEK PROPERTY

Event Number: 5582038 Claims Worked On: 516459 and 516165

Located in the Galore Creek Area Liard Mining Division British Columbia, Canada

NTS Map Sheet 104G/3 and 104G/4 BCGS Map Sheet 104G.013 57° 07′ 08″ North Latitude 131° 27′ 58″ West Longitude

Owned & Operated by Galore Creek Mining Corporation Suite 3300, 550 Burrard Street Vancouver, B.C. V6C 0B3

Prepared by

Sarah Henderson, B.Sc.

Galore Creek Mining Corporation Suite 3300, 550 Burrard Street Vancouver, B.C. V6C 0B3

February, 2016



## **TABLE OF CONTENTS**

**Page** INTRODUCTION......4 1.0 LOCATION, ACCESS & PHYSIOGRAPHY......7 2.0 3.0 EXPLORATION HISTORY......8 SPECTRUMGOLD/NOVAGOLD EXPLORATION......9 3.1 3.2 LAND TENURE AND CLAIM STATUS......12 4.0 2015 SUMMARY OF WORK......23 5.0 6.0 REGIONAL GEOLOGY.......24 6.1 6.2 6.3 7.0 GEOCHEMICAL SAMPLING......31 7.1 7.2 DISCUSSION AND CONCLUSIONS ......37 8.0

References



# **APPENDICES**

APPENDIX I

Figure 5

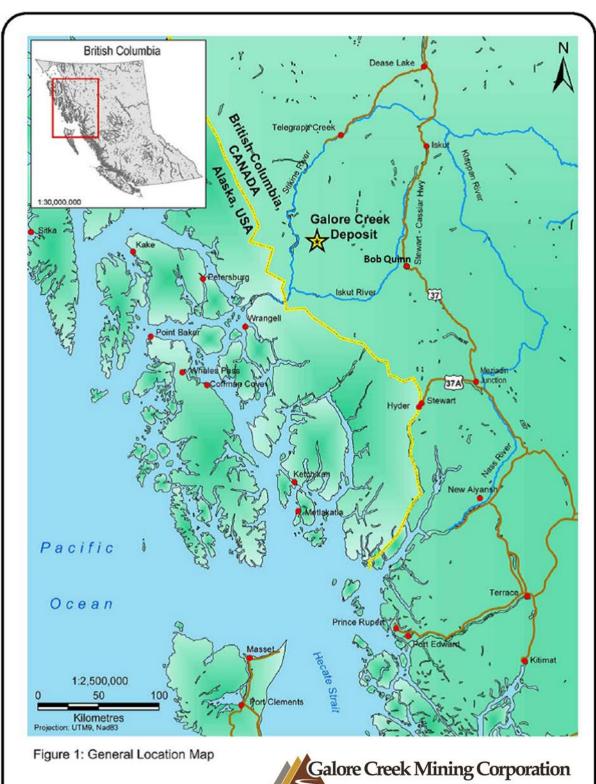
| APPENDIX II     | Statement of Expenditures                                                  |             |
|-----------------|----------------------------------------------------------------------------|-------------|
| APPENDIX III    | Statement of Qualification                                                 |             |
| APPENDIX IV     | Assay Certificates (Attached Digitally)                                    |             |
| APPENDIX V      | Analytical Procedures (Attached Digitally)                                 |             |
|                 |                                                                            |             |
| LIST OF TABLES  |                                                                            | <u>Page</u> |
| Table 1         | Galore Creek Property Claims                                               | 12          |
| Table 2         | Grace Property Claims                                                      | 13          |
| Table 3         | Galore Creek Property Mineral Claims                                       | 14          |
| Table 4         | Application of 2015 Assessment work – Galore Creek Property Mineral Claims | 20          |
| Table 5         | 2015 Galore Creek Geochemical Sample Locations                             | 32          |
| Table 6         | 2015 Galore Creek Claims Sampling and Results                              | 34          |
|                 |                                                                            |             |
| LIST OF FIGURES |                                                                            | <u>Page</u> |
| Figure 1        | General Location Map                                                       | 6           |
| Figure 2        | Galore Creek Property Claim Map                                            | 21          |
| Figure 3        | 2015 Geochemical Sample Location Map                                       | 22          |
| Figure 4        | Geological Map of the Copper Canyon and Galore Creek Area                  | 27          |

Volcanic Rock Classification Diagram

36



#### 1.0 INTRODUCTION


The Galore Creek Property (Figure 1) is located within the historic Stikine Gold Belt of northwestern British Columbia, approximately 75 kilometres northwest of Barrick Gold's decommissioned Eskay Creek mine. The property consists of 295 contiguous mineral claims, totaling 137,776.94 hectares registered in the name of Galore Creek Mining Corporation.

Galore Creek is characterized as an alkaline porphyry-style copper-gold-silver deposit. It consists of a number of mineralized zones including the Central Zone, comprised of Central—North (includes the Legacy Zone), Central-South and Bountiful, the Southwest Zone, the Junction and North Junction Zones, the Middle Creek Zone, and the West Fork Zone. The Galore Creek property is host to 6.8B pounds of Proven and Probable reserves grading 0.6% copper, 5.45 Moz. at 0.32 g/t gold and 102.0 Moz. at 6.0 g/t silver. Inclusive of Proven and Probable reserves Galore Creek is host to 8.9B pounds of Measured and Indicated resources grading 0.50% copper, 8.0 Moz. at 0.3 g/t gold and 136.0 Moz. at 5.2 g/t silver, as well as 346.6M tonnes of Inferred resources grading 0.42% copper, 0.24 g/t gold and 4.28 g/t silver. Mineral reserves and resources were estimated using an NSR cut-off grade of \$10.08/t milled, and Mineral Reserves are reported using commodity prices of US\$4.44/lb copper, US\$1,613/oz gold, and US\$40.34/oz silver (effective July 27, 2011) (AMEC, 2011).

In July 2003, SpectrumGold Inc. (now NovaGold Canada Inc.) entered into an option agreement to acquire a 100% interest in the Galore Creek property from Stikine Copper Limited. NovaGold carried out exploration programs on the property in years 2003 through 2007, and additional claims have been staked for the project. NovaGold Canada Inc. is a subsidiary wholly owned by NovaGold Resources Inc. On May 1, 2007, NovaGold and Teck Cominco Limited (Teck Cominco) announced the formation of a 50-50 partnership to develop the Galore Creek Mine. The Galore Creek Partnership was finalized on August 1, 2007 and the jointly controlled operating company, Galore Creek Mining Corporation (GCMC) was created to direct all aspects of project construction and operation. Galore Creek claims were subsequently transferred to GCMC in October 2007. In November 2007, NovaGold and Barrick Gold Corporation (Barrick) reached an agreement and announced that the Grace Property claims would be sold 100% to the Galore Creek Partnership. On December 3, 2007, all the Grace claims were transferred to GCMC. During March 2008, Galore Creek Mining Corporation acquired additional mineral claims in the Scud River area, Stikine River area and north of West More Creek. These claims are contiguous with the Galore Creek Property.



This report covers work completed on portions of the Galore Creek Property between August 22, 2015 and August 24, 2015. The work at Galore Creek was conducted entirely within the boundaries of mineral claims 516459, and 516165.







## 2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The Galore Creek property (Figure 1) is located within the Liard Mining Division of northwestern British Columbia, approximately 70 kilometres west of the Bob Quinn airstrip and 90 kilometres northeast of Wrangell, Alaska. The property is situated at the headwaters of Galore Creek, a tributary of the Scud River, which in turn flows into the Stikine River. The property lies at latitude 57°07′08″N and longitude 131°27′58″W, on NTS map sheets 104G/03 and 104G/04.

The town of Smithers, located 370 kilometres to the southeast, is the nearest major supply centre. An existing forest service road, and an access road built by GCMC provides access to the Chi'yone camp (km 36). During the 2015 program personnel, supplies, and equipment were transported via helicopter to, and staged from Teck's Schaft Creek camp, to the northeast of the GCMC claims.

Galore Creek is located in the humid continental climate zone of coastal BC. Summers are generally cool, and winters cold, with substantial snowfall. Property temperatures range from 20°C in the summer to well below -20°C in the winter. Annual precipitation is 76 centimetres with the majority (70%) falling as snow between September and February.

Physiographically, the Stikine-Iskut area is characterized by rugged mountains with elevations ranging between 500 to 2080 metres above sea level, active alpine glaciation and deep U-shaped valleys. Relief on the property varies from moderate to extreme. The tree line, located at an elevation of 1100 metres, divides forests of Balsam Fir, Sitka Spruce, Alder, Willow, Devils Club and Cedar from sparse grasses and brush above.



## 3.0 EXPLORATION HISTORY

Mineralization was first discovered in the upper Galore Creek valley in 1955 by M. Monson and W. Buchholz while prospecting for a subsidiary of Hudson Bay. Staking and sampling were completed in the area in 1955. Work in 1956 included mapping, trenching and diamond drilling. No further work was undertaken and most of the claims were allowed to expire.

In 1959, reconnaissance stream sediment surveys were carried out by Kennco Explorations (Western) Limited (the Canadian subsidiary of Kennecott Copper, now Rio Tinto Ltd.) in the Stikine River area. Results prompted Kennco to stake mineral claims around the remaining 16 Hudson Bay claims the following year. Four of the original claims were subsequently optioned by Consolidated Mining and Smelting Company of Canada Limited (Cominco) from W. Buchholz. Late in 1962, the three companies agreed to participate jointly in future exploration work. As a result, Stikine Copper Limited was incorporated in 1963, on the basis of the following interests: Kennco Explorations (Western) Limited (59%), Hudson Bay Mining and Smelting Company Limited (34%), and Consolidated Mining and Smelting Company of Canada Limited (5%).

Work conducted since discovery in 1955 outlined a significant copper-gold-silver mineralized zone in the Central Zone and identified several satellite mineralized zones, most importantly the Southwest, North Junction and Junction Zones. This work has included soil sampling, pole-dipole resistivity/induced polarization (IP), magnetics, electromagnetics (EM), radiometrics, very low frequency (VLF) and audio frequency magnetics (AFMAG) airborne geophysical surveys.

From 1960 to 1968, the property was operated by Kennco Exploration. Exploration work during this period included 53,164 metres of diamond drilling in 235 holes and 807 metres of underground development work in two adits. The Central Zone was the focus of most of this work. During the same period, a road was constructed from an airstrip at the confluence of the Stikine and Scud rivers along the Scud River and up Galore Creek to what was then an exploration camp.

No work was done between 1968 and 1972. In 1972, Hudson Bay became operator and in 1972 and 1973 an additional 25,352 metres of diamond drilling was completed in 111 holes. This work concentrated on the mineralization in the Central and North Junction Zones. A further 5,310 metres of diamond drilling was completed in 24 holes in 1976.



In 1989, Mingold Resources Inc. (an affiliated company of Hudson Bay) operated the property in order to investigate its gold potential. In 1990, Mingold completed 1,225 metres of diamond drilling in 18 holes.

Kennecott resumed as operator of the project in 1991 and completed 13,830 metres of diamond drilling in 49 holes. An airborne geophysics survey and over 90 line kilometres of IP survey were also completed. At the end of this initial exploration phase, a total of twelve prospects and deposits had been identified: Central, Junction, North Junction, West Rim, Butte, Southwest, Saddle, West Fork, South Butte, South 110, Middle Creek and North Rim.

# 3.1 SpectrumGold/NovaGold Exploration

In August 2003, SpectrumGold Inc. (now NovaGold Canada Inc.) entered into an option agreement to acquire a 100% interest in the Galore Creek property from Stikine Copper Limited, a company owned by QIT-FER et Titane Inc. (a wholly-owned subsidiary of Rio Tinto Ltd.) and Hudson Bay. In 2003, SpectrumGold carried out a 10 hole, 2,950 metre diamond drill program on the property. The work program was directed toward confirming grades of copper and gold mineralization defined by previous drilling in the Central and Southwest Zones.

In 2004, NovaGold Canada Inc. (NovaGold) carried out a 79 hole, 25,976 metre diamond drill program to upgrade and expand the existing resource, and to test several peripheral mineral occurrences and nearby properties. Extensive geophysical surveys were conducted to assist the exploratory drilling. The results of the 2004 drilling program provided the basis for geological modeling, resource estimation, preliminary mine planning and economic evaluation at Preliminary Assessment (PA) level.

In 2005, NovaGold completed a 260 hole, 63,190 metre diamond drill program on the Galore Creek property. The aim of the 2005 exploration program was to test for extensions of known mineralization and to explore for new targets within the Galore Creek valley. Additional drilling was utilized for engineering and environmental testing. Mapping focused on defining drill targets, major structures, and alteration assemblages. The geophysical program included a wide-spaced Vector IP reconnaissance program and IP surveys, conducted both south of the Central Zone and along the East Fork of Galore Creek.

In 2006, NovaGold completed 33,575 metres of diamond drilling in 57 holes. The 2006 drilling tested new exploration targets based on geophysical anomalies and new geological interpretations. The goal of the program was to upgrade the resource estimation categories.



In 2007, NovaGold completed 17 holes, totalling 4,547 metres on the Galore Creek property for the Galore Creek Mining Corporation (GCMC). Drilling focussed on the Southwest Zone, Central Replacement Zone, Butte Zone and reconnaissance targets.

# 3.2 Galore Creek Mining Corporation Exploration

In 2008, Galore Creek Mining Corporation (GCMC) completed nine diamond drill holes totalling 2,049.58 metres. The main objectives of the drill program were to obtain ABA (Acid Base Accounting) data in the Central, Southwest, North Junction and Junction pits, to confirm legacy grades in the Junction pit, and to collect metallurgical data in the Central pit.

In 2010, GCMC conducted a site investigation program of nine exploration diamond drill holes totalling 2,803.33 metres and four geotechnical boreholes totalling 240.70 metres. The main objectives of the exploration drilling were to obtain metallurgical and resource in-fill data in the Central deposit. A geotechnical borehole was drilled in an area under consideration for construction of a water-retaining dam. Three geotechnical boreholes were drilled in the Galore Valley to install standpipes to monitor drawdown associated with pump testing of nearby, previously installed, pump wells.

In 2011, GCMC's site investigation included a drilling program consisting of eighteen (18) exploration drill holes totalling 9,953.22 metres, and sixteen (16) geotechnical boreholes totalling 5,887.30 metres. The main objectives of the exploration drill program were to upgrade and possibly extend mineralization within the Central South and Bountiful zones. The SRK geotechnical site investigation program was undertaken to enable Feasibility-level design of the proposed open pits at Galore Creek.

In 2012, the GCMC site investigation included a diamond drilling program consisting of forty-seven (47) exploration drill holes totalling 23,369.2 metres, nine (9) geotechnical boreholes totalling 3,296.1 metres, six (6) hydrogeological holes totalling 835.0 metres, and sixteen (16) overburden-geotechnical holes totalling 589.5 metres. The main objective of the exploration drill program was to upgrade Inferred resources to Measured and Indicated classification. Exploration drilling successfully encountered copper mineralization.

In 2013, GCMC's site investigation included a diamond drilling program consisting of twenty-two (22) exploration drill holes totalling 11,649 metres. The main objective of the drill program was to upgrade the Legacy Zone to an inferred classification, and explore the continuity and extents of this mineralized zone.



In 2014, GCMC's site investigation included a geochemical sampling program consisting of fourteen (14) rock samples taken from outcrop for lithogeochemical sampling. The main objective of the geochemical sampling program was to characterize the intrusive, volcanic, and sedimentary rock types to the northeast of the Galore Creek valley.



## 4.0 LAND TENURE AND CLAIM STATUS

In July 2003, SpectrumGold Inc. (now NovaGold Canada Inc.) entered into an option agreement to acquire a 100% interest in the Galore Creek property from Stikine Copper Limited, a company owned by QIT-FER et Titane Inc. and Hudson Bay Mining and Smelting Co. Limited.

The original Galore Creek property consisted of 292 two-post claims, of which 39 were fractions, all held in the name of Stikine Copper Limited. In July 2005, NovaGold converted the 292 claims into six cell claims to hold an area of 5,111 hectares and the claims are listed below in Table 1.

On March 28, 2007, NovaGold exercised the Stikine Copper Limited option and acquired 100% in the property as of June 1, 2007.

**Table 1 - Galore Creek Property Claims** 

| Tenure No. | Name                   | Owner                                                | Area (ha.) |
|------------|------------------------|------------------------------------------------------|------------|
| 516158     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373)  | 772.237    |
| 516165     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373)  | 667.543    |
| 516177     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373)  | 175.777    |
| 516178     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373)  | 457.053    |
| 516179     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373). | 1,317.270  |
| 516459     | GALORE 1 CELL<br>CLAIM | Galore Creek Mining Corporation (Client No. 211373)  | 1,721.252  |
| Totals:    | 6 claims               |                                                      | 5,111.132  |

Since the initial option agreement on the Galore Creek claims in 2003, NovaGold has acquired significant ground in the area through staking as well as purchase of mineral claims from other parties. All the claims are listed in Table 3.

On August 1, 2007, the Galore Creek Partnership (Teck Cominco Limited and NovaGold Canada Inc. 50/50) was established to develop the Galore Creek mine; the Partnership created the jointly controlled operating company called the Galore Creek Mining Corporation. In October



2007, all Galore Creek Property claims held by NovaGold Canada Inc. were transferred to the Galore Creek Mining Corporation.

In November 2007, NovaGold and Barrick Gold Corporation (Barrick) reached an agreement and announced the Grace property claims would be sold 100% to the Galore Creek Partnership. On December 3, 2007, all the Grace claims were transferred to Galore Creek Mining Corporation and Table 2 lists the Grace property mineral claims. These claims are now part of the Galore Creek Property and are listed in Table 3.

**Table 2 – Grace Property Claims** 

| Tenure No. | Name       | Owner                                               | Area (ha.) |
|------------|------------|-----------------------------------------------------|------------|
| 404921     | Grace 4    | Galore Creek Mining Corporation (Client No. 211373) | 500        |
| 404922     | Grace 5    | Galore Creek Mining Corporation (Client No. 211373) | 500        |
| 516161     | Cell Claim | Galore Creek Mining Corporation (Client No. 211373) | 543.835    |
| 516163     | Cell Claim | Galore Creek Mining Corporation (Client No. 211373) | 1244.967   |
| 517480     | Cell Claim | Galore Creek Mining Corporation (Client No. 211373) | 52.637     |
| Totals:    | 5 claims   |                                                     | 2,841.44   |

Between March 2008 and March 2014, Galore Creek Mining Corporation acquired additional mineral claims in the Scud River area, Stikine River area and West More area. These claims are contiguous with the Galore Creek Property claims and are listed in Table 3.



Table 3 - Galore Creek Property Mineral Claims, Liard Mining Division, BC

Owner: Galore Creek Mining Corporation - Client No. 211373

| Tenure<br>No. | Claim Name | Owner         | Tenure Type   | Issue Date  | Good To Date | Area (ha) |
|---------------|------------|---------------|---------------|-------------|--------------|-----------|
| 404921        | GRACE 4    | 211373 (100%) | Mineral Claim | 2003/sep/07 | 2024/dec/01  | 500       |
| 404922        | GRACE 5    | 211373 (100%) | Mineral Claim | 2003/sep/07 | 2024/dec/01  | 500       |
| 408613        | VIA 32     | 211373 (100%) | Mineral Claim | 2004/feb/29 | 2024/dec/01  | 450       |
| 410802        | J3         | 211373 (100%) | Mineral Claim | 2004/may/26 | 2024/dec/01  | 300       |
| 410810        | CONTACT 5  | 211373 (100%) | Mineral Claim | 2004/may/26 | 2024/dec/01  | 200       |
| 410812        | CONTACT 7  | 211373 (100%) | Mineral Claim | 2004/may/26 | 2024/dec/01  | 450       |
| 412228        | GL 16      | 211373 (100%) | Mineral Claim | 2004/jul/04 | 2024/dec/01  | 500       |
| 412241        | GL 29      | 211373 (100%) | Mineral Claim | 2004/jul/06 | 2024/dec/01  | 500       |
| 501126        | SPC11      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 368.042   |
| 501150        | SPC01      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.094   |
| 501166        | SPC02      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.096   |
| 501212        | SPC03      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.848   |
| 501276        | SPC04      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.851   |
| 501341        | SPC06      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 315.279   |
| 501401        | SPC07      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 210.367   |
| 501428        | SPC05      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 315.486   |
| 501454        | SPC09      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.097   |
| 501496        | SPC10      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.858   |
| 501524        | SPC12      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 367.917   |
| 501560        | SPC13      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 367.793   |
| 501583        | SPC14      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.171   |
| 501603        | SPC15      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.137   |
| 501634        | SPC16      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 280.043   |
| 501660        | SPC17      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.095   |
| 501669        | SPC18      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 437.659   |
| 501685        | SPC20      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 419.889   |
| 501726        | SPC19      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 437.421   |
| 501738        | SPC21      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 420.221   |
| 501755        | SPC22      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 385.557   |
| 501775        | SPC23      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.899   |
| 501787        | SPC24      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.661   |
| 501798        | SPC25      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.67    |
| 501815        | SPC26      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.408   |
| 501829        | SPC27      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 210.068   |
| 501839        | SPC29      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.001   |
| 501857        | SPC28      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.672   |
| 501865        | SPC30      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.002   |
| 501882        | SPC31      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.291   |
| 501891        | SPC32      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.136   |
| 501905        | SPC08      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 210.366   |
| 501931        | PORC01     | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 405.39    |
| 501965        | PORC02     | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 440.514   |
| 501999        | PORC03     | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 105.708   |



Table 3 - Galore Creek Property Mineral Claims - Continued

| 509232 | tunnel              | 211373 (100%) | Mineral Claim | 2005/mar/18 | 2024/dec/01 | 333.757  |
|--------|---------------------|---------------|---------------|-------------|-------------|----------|
| 509234 | porc 04             | 211373 (100%) | Mineral Claim | 2005/mar/18 | 2024/mar/18 | 440.357  |
| 509235 | porc 05             | 211373 (100%) | Mineral Claim | 2005/mar/18 | 2024/mar/18 | 405.158  |
| 509250 | porc 06             | 211373 (100%) | Mineral Claim | 2005/mar/18 | 2024/mar/18 | 123.308  |
| 509253 | sphaler 01          | 211373 (100%) | Mineral Claim | 2005/mar/18 | 2024/mar/18 | 422.571  |
| 509259 | sphaler 02          | 211373 (100%) | Mineral Claim | 2005/mar/18 | 2024/mar/18 | 211.356  |
| 509261 | ng 01               | 211373 (100%) | Mineral Claim | 2005/mar/18 | 2024/mar/18 | 420.826  |
| 509262 | ng 02               | 211373 (100%) | Mineral Claim | 2005/mar/18 | 2024/mar/18 | 105.208  |
| 509893 | NR 3                | 211373 (100%) | Mineral Claim | 2005/mar/30 | 2024/dec/01 | 70.379   |
| 511868 | SPHCR 01            | 211373 (100%) | Mineral Claim | 2005/apr/30 | 2024/apr/30 | 405.262  |
| 511869 | SPHCR02             | 211373 (100%) | Mineral Claim | 2005/apr/30 | 2024/apr/30 | 422.876  |
| 511870 | SPHCR03             | 211373 (100%) | Mineral Claim | 2005/apr/30 | 2024/apr/30 | 422.878  |
| 512425 |                     | 211373 (100%) | Mineral Claim | 2005/may/11 | 2024/dec/01 | 700.818  |
| 512426 |                     | 211373 (100%) | Mineral Claim | 2005/may/11 | 2024/dec/01 | 473.235  |
| 512478 | CONT 1              | 211373 (100%) | Mineral Claim | 2005/may/12 | 2024/may/26 | 770.372  |
| 516158 |                     | 211373 (100%) | Mineral Claim | 2005/jul/06 | 2024/dec/01 | 772.237  |
| 516161 |                     | 211373 (100%) | Mineral Claim | 2005/jul/06 | 2024/dec/01 | 543.835  |
| 516163 |                     | 211373 (100%) | Mineral Claim | 2005/jul/06 | 2024/dec/01 | 1244.967 |
| 516165 |                     | 211373 (100%) | Mineral Claim | 2005/jul/06 | 2024/dec/01 | 667.543  |
| 516177 |                     | 211373 (100%) | Mineral Claim | 2005/jul/06 | 2024/dec/01 | 175.777  |
| 516178 |                     | 211373 (100%) | Mineral Claim | 2005/jul/06 | 2024/dec/01 | 457.053  |
| 516179 |                     | 211373 (100%) | Mineral Claim | 2005/jul/06 | 2024/dec/01 | 1317.27  |
| 516235 |                     | 211373 (100%) | Mineral Claim | 2005/jul/07 | 2024/dec/01 | 1161.63  |
| 516271 |                     | 211373 (100%) | Mineral Claim | 2005/jul/07 | 2024/dec/01 | 315.411  |
| 516275 |                     | 211373 (100%) | Mineral Claim | 2005/jul/07 | 2024/dec/01 | 1407.331 |
| 516284 |                     | 211373 (100%) | Mineral Claim | 2005/jul/07 | 2024/dec/01 | 947.189  |
| 516285 |                     | 211373 (100%) | Mineral Claim | 2005/jul/07 | 2024/dec/01 | 614.229  |
| 516286 |                     | 211373 (100%) | Mineral Claim | 2005/jul/07 | 2024/dec/01 | 912.089  |
| 516327 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 999.585  |
| 516335 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 1354.185 |
| 516340 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 1195.156 |
| 516342 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 1107.372 |
| 516345 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 949.18   |
| 516359 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 789.736  |
| 516367 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 1052.596 |
| 516377 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 1143.352 |
| 516433 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 1318.728 |
| 516441 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 1390.457 |
| 516443 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 880.157  |
| 516445 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 985.011  |
| 516448 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 862.311  |
| 516452 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 879.374  |
| 516458 |                     | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 949.726  |
| 516459 | GALORE 1 CELL CLAIM | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 1721.252 |
| 516463 | NR 4                | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/dec/01 | 140.84   |
| 516474 | SPHCR 04            | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/jul/08 | 422.996  |



Table 3 - Galore Creek Property Mineral Claims - Continued

| 516475 | SPHCR 05 | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/jul/08 | 422.996  |
|--------|----------|---------------|---------------|-------------|-------------|----------|
| 516496 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1299.197 |
| 516498 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1105.922 |
| 516500 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1527.806 |
| 516503 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1178.494 |
| 516505 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1126.672 |
| 516508 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1020.993 |
| 516509 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1039.113 |
| 516511 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 968.695  |
| 516674 |          | 211373 (100%) | Mineral Claim | 2005/jul/11 | 2024/dec/01 | 157.819  |
| 516691 |          | 211373 (100%) | Mineral Claim | 2005/jul/11 | 2024/dec/01 | 563.2    |
| 517480 | GRACE G  | 211373 (100%) | Mineral Claim | 2005/jul/12 | 2024/jul/12 | 52.637   |
| 522318 | CONT 2   | 211373 (100%) | Mineral Claim | 2005/nov/15 | 2024/dec/01 | 386.718  |
| 522319 | CONT 3   | 211373 (100%) | Mineral Claim | 2005/nov/15 | 2024/dec/01 | 245.815  |
| 556327 |          | 211373 (100%) | Mineral Claim | 2007/apr/13 | 2024/dec/01 | 387.2667 |
| 556330 |          | 211373 (100%) | Mineral Claim | 2007/apr/13 | 2024/dec/01 | 281.5297 |
| 556331 |          | 211373 (100%) | Mineral Claim | 2007/apr/13 | 2024/dec/01 | 140.7942 |
| 556334 |          | 211373 (100%) | Mineral Claim | 2007/apr/13 | 2024/dec/01 | 211.1915 |
| 579405 | SCU 1    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.2202 |
| 579406 | SCUD 1   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9753 |
| 579407 | SCUD 2   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 122.4604 |
| 579408 | SCU 2    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.2223 |
| 579409 | SCUD 3   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 349.8247 |
| 579410 | SCU 3    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9756 |
| 579411 | SCUD 4   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9061 |
| 579412 | SCUD 5   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 349.7099 |
| 579413 | SCU 3    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.0939 |
| 579414 | SCUD 6   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 157.3518 |
| 579416 | SCU 4    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 401.6306 |
| 579417 | SCUD 7   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9056 |
| 579418 | SCU 5    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9768 |
| 579420 | SCUD 8   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.6281 |
| 579421 | SCU 6    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9789 |
| 579423 | SCUD 9   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.1346 |
| 579424 | SCU 7    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9808 |
| 579426 | SCU 8    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9835 |
| 579428 | SCUD 10  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 244.6974 |
| 579429 | SCU 9    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.2886 |
| 579431 | SCUD 11  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 366.949  |
| 579432 | SCU 10   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.2913 |
| 579434 | SCU 11   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.3084 |
| 579435 | SCUD 12  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 209.7657 |
| 579436 | SCU 12   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.7655 |
| 579437 | SCUD 13  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.4795 |
| 579439 | SCU 13   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.0121 |
| 579441 | SCU 14   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.2245 |
|        |          |               |               |             |             |          |



Table 3 - Galore Creek Property Mineral Claims - Continued

| 579443 | SCU 15   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.2253 |
|--------|----------|---------------|---------------|-------------|-------------|----------|
| 579454 | RDL 1    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.8799 |
| 579456 | RDL 2    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 439.4831 |
| 579457 | LIN 1    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.6811 |
| 579458 | RDL 3    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 439.34   |
| 579459 | LIN 2    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.7224 |
| 579461 | RDL 4    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.6429 |
| 579462 | LIN 3    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 298.7028 |
| 579463 | RDL 5    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.6515 |
| 579467 | RDL 6    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.5126 |
| 579469 | RDL 7    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.512  |
| 579470 | LIN 6    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 333.6831 |
| 579472 | LIN 7    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 438.8378 |
| 579473 | RDL 8    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.5266 |
| 579479 | LIN 10   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.016  |
| 579517 | SCUD S1  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.3757 |
| 579519 | SCUD S2  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.114  |
| 579521 | SCUD S3  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 350.0739 |
| 579523 | SCUD S4  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.2729 |
| 579526 | SCUD S5  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.2704 |
| 579528 | SCUD S6  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.7174 |
| 579530 | SCUD S7  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.7149 |
| 579532 | SCUD S8  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9041 |
| 579535 | SCUD S9  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.0905 |
| 579537 | SCUD S10 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 350.2287 |
| 579541 | SCUD S11 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 385.4026 |
| 579542 | SCUD S12 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.4623 |
| 579544 | SCUD S13 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9021 |
| 579545 | SCUD S14 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.0891 |
| 579547 | SCUD S15 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.4696 |
| 579548 | SCUD S16 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.4701 |
| 579549 | SCUD S17 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.4678 |
| 579550 | SCUD S18 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.4649 |
| 579551 | SCUD S19 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.2738 |
| 579552 | SCUD S20 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.7128 |
| 579553 | SCUD S21 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.7161 |
| 579554 | SCUD S22 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.7156 |
| 579556 | SCUD S22 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.7135 |
| 579557 | SCUD S23 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.4638 |
| 579558 | SCUD S24 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.4437 |
| 579559 | SCUD S25 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.964  |
| 579560 | SCUD S26 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.9651 |
| 579561 | SCUD S27 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.9638 |
| 585412 | RDL 21   | 211373 (100%) | Mineral Claim | 2008/may/29 | 2024/dec/01 | 35.1912  |
| 662956 | RLS 1    | 211373 (100%) | Mineral Claim | 2009/oct/31 | 2024/dec/01 | 70.3864  |
| 662967 | RLS 2    | 211373 (100%) | Mineral Claim | 2009/oct/31 | 2024/dec/01 | 70.3828  |



Table 3 - Galore Creek Property Mineral Claims - Continued

| 662975 | R 1       | 211373 (100%) | Mineral Claim | 2009/oct/31 | 2024/dec/01 | 87.9738  |
|--------|-----------|---------------|---------------|-------------|-------------|----------|
| 662982 | RLS 3     | 211373 (100%) | Mineral Claim | 2009/oct/31 | 2024/dec/01 | 105.567  |
| 975932 | HURON 001 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.5231 |
| 975933 | HURON 002 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.8049 |
| 975952 | HURON 003 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.5775 |
| 975953 | HURON 004 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 385.5836 |
| 975954 | HURON 005 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.9536 |
| 975955 | HURON 006 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.723  |
| 975956 | HURON 007 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 402.9514 |
| 975957 | JAY001    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 403.5812 |
| 975972 | HURON 008 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.7656 |
| 975993 | JAY002    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 421.4118 |
| 975994 | HURON 009 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.3235 |
| 975995 | JAY003    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 386.3496 |
| 975996 | HURON 010 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.4012 |
| 975997 | HURON 011 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.573  |
| 975998 | JAY004    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.8367 |
| 975999 | HURON 012 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.5844 |
| 976000 | JAY005    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 421.029  |
| 976002 | HURON 013 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.3275 |
| 976003 | JAY006    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 421.1768 |
| 976004 | HURON 014 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.7743 |
| 976005 | JAY007    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.9156 |
| 976006 | HURON 015 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.9419 |
| 976007 | HURON 016 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.7952 |
| 976008 | JAY008    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.9761 |
| 976012 | JAY009    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.6893 |
| 976032 | HURON 017 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.4339 |
| 976052 | HURON 018 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.4854 |
| 976053 | JAY010    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.6839 |
| 976054 | HURON 019 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.0853 |
| 976055 | HURON 020 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.0788 |
| 976056 | NAVO 001  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.795  |
| 976057 | JAY011    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.5354 |
| 976060 | JAY012    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.7231 |
| 976061 | NAVO 002  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.0959 |
| 976062 | JAY013    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.6981 |
| 976064 | JAY014    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 421.3459 |
| 976065 | JAY0015   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.8828 |
| 976066 | HURON 024 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.5249 |
| 976067 | JAY16     | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 316.0291 |
| 976068 | NAVO 003  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.4241 |
| 976070 | JAY017    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.881  |
| 976072 | JAY018    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.3879 |
| 976092 | HURON 027 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.007  |
| 976112 | NAVO 005  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.8963 |
|        |           | ()            |               |             |             |          |



Table 3 - Galore Creek Property Mineral Claims - Continued

| 976152 | HURON 028 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.4041 |
|--------|-----------|---------------|---------------|----------------------------|----------------------------|----------|
| 976153 | NAVO 006  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 349.2964 |
| 976154 | HURON 029 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.7264 |
| 976156 | HURON 030 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.6758 |
| 976157 | NAVO 007  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.607  |
| 976159 | NAVO 008  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.8969 |
| 976161 | NAVO 009  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.141  |
| 976163 | NAVO 010  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.8991 |
| 976172 | NAVO 011  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.1368 |
| 976173 | HURON 031 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.2289 |
| 976174 | NAVO 012  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.1327 |
| 976175 | HURON 032 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.0418 |
| 976176 | NAVO 013  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.1266 |
| 976177 | HURON 033 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 349.1978 |
| 976179 | HURON 034 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 261.8845 |
| 976180 | NAVO 14   | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.8991 |
| 976212 | NAVO 015  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 437.0713 |
| 976232 | HURON 035 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.3596 |
| 976234 | HURON 036 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.2952 |
| 976236 | NAVO 016  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 314.2504 |
| 976239 | NAVO 017  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.6337 |
| 976252 | NAVO 018  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 349.3086 |
| 976412 | HURON 050 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 349.9337 |
| 976452 | HURON 051 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 349.926  |
| 976456 | HURON 052 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 437.2404 |
| 976459 | HURON 053 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 349.9377 |
| 976461 | HURON 054 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 349.9392 |
| 976463 | HURON 055 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 419.7249 |
| 976467 | HURON 056 | 211373 (100%) | Mineral Claim | 2012/apr/02<br>2012/apr/02 | 2024/apr/02                | 437.022  |
| 976469 | HURON 057 | 211373 (100%) | Mineral Claim | 2012/apr/02<br>2012/apr/02 | 2024/apr/02                | 437.0772 |
| 976472 | HURON 058 | 211373 (100%) | Mineral Claim | 2012/apr/02<br>2012/apr/02 | 2024/apr/02<br>2024/apr/02 | 437.1779 |
| 976532 | HURON 059 | 211373 (100%) | Mineral Claim | 2012/apr/02<br>2012/apr/02 | 2024/apr/02<br>2024/apr/02 | 437.1779 |
| 976554 | HURON 060 | 211373 (100%) | Mineral Claim | 2012/apr/02<br>2012/apr/02 | 2024/apr/02<br>2024/apr/02 | 437.1827 |
| 976556 | HURON 061 | 211373 (100%) |               | •                          | •                          |          |
|        | HURON 062 | ` ,           | Mineral Claim | 2012/apr/02<br>2012/apr/02 | 2024/apr/02                | 436.942  |
| 976558 |           | 211373 (100%) | Mineral Claim | •                          | 2024/apr/02                | 436.9441 |
| 976560 | NAVO 029  | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 349.3167 |
| 976561 | HURON 063 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.9394 |
| 976572 | HURON 064 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.7731 |
| 976593 | HURON 065 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.526  |
| 976612 | HURON 066 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.8678 |
| 976632 | HURON 067 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.9275 |
| 976653 | HURON 068 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.6217 |
| 976656 | HURON 069 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 418.8978 |
| 976657 | HURON 070 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.6796 |
| 976672 | HURON 071 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.4646 |
| 976675 | HURON_072 | 211373 (100%) | Mineral Claim | 2012/apr/02                | 2024/apr/02                | 436.6764 |



Table 3 - Galore Creek Property Mineral Claims - Continued

| 005     | M:          |               |               |             |             | 407 770 040 |
|---------|-------------|---------------|---------------|-------------|-------------|-------------|
| 1040566 | SPC 42      | 211373 (100%) | Mineral Claim | 2015/dec/16 | 2016/dec/16 | 263.0019    |
| 1040495 | SPC 41      | 211373 (100%) | Mineral Claim | 2015/dec/12 | 2016/dec/12 | 315.6024    |
| 1034110 | SPC 40      | 211373 (100%) | Mineral Claim | 2015/feb/15 | 2018/may/20 | 52.612      |
| 1032810 | SPC 39      | 211373 (100%) | Mineral Claim | 2014/dec/18 | 2018/may/20 | 701.1912    |
| 1025944 | HUR 1       | 211373 (100%) | Mineral Claim | 2014/feb/14 | 2019/apr/08 | 157.802     |
| 1025793 | HUR         | 211373 (100%) | Mineral Claim | 2014/feb/08 | 2020/dec/01 | 157.4446    |
| 1021830 | SPC 38      | 211373 (100%) | Mineral Claim | 2013/aug/23 | 2019/dec/01 | 419.9081    |
| 1021815 | SPC 37      | 211373 (100%) | Mineral Claim | 2013/aug/22 | 2019/dec/01 | 1154.5208   |
| 1019756 | SPC 36      | 211373 (100%) | Mineral Claim | 2013/may/24 | 2024/may/24 | 281.0559    |
| 1019238 | SPC 35      | 211373 (100%) | Mineral Claim | 2013/may/04 | 2024/may/04 | 87.858      |
| 1018771 | SPC 34      | 211373 (100%) | Mineral Claim | 2013/apr/23 | 2024/apr/23 | 175.2671    |
| 1018229 | SPC 33      | 211373 (100%) | Mineral Claim | 2013/apr/03 | 2024/apr/03 | 104.9952    |
| 1017784 | HURON201303 | 211373 (100%) | Mineral Claim | 2013/mar/14 | 2024/mar/14 | 157.8589    |
| 1017782 | HURON201302 | 211373 (100%) | Mineral Claim | 2013/mar/14 | 2024/mar/14 | 104.9935    |
| 1017781 | HURON201301 | 211373 (100%) | Mineral Claim | 2013/mar/14 | 2024/mar/14 | 157.3895    |
| 1016352 | MAC         | 211373 (100%) | Mineral Claim | 2013/jan/27 | 2024/jan/27 | 771.4353    |
| 976753  | HURON_081   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 418.7768    |
| 976732  | HURON_080   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 418.7387    |
| 976718  | HURON_079   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.4558    |
| 976713  | HURON_075   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.4147    |
| 976692  | HURON_074   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.6657    |
| 976676  | HURON_073   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.6678    |
|         |             |               |               |             |             |             |

295 Mineral Claims Hectares: 137,776.940

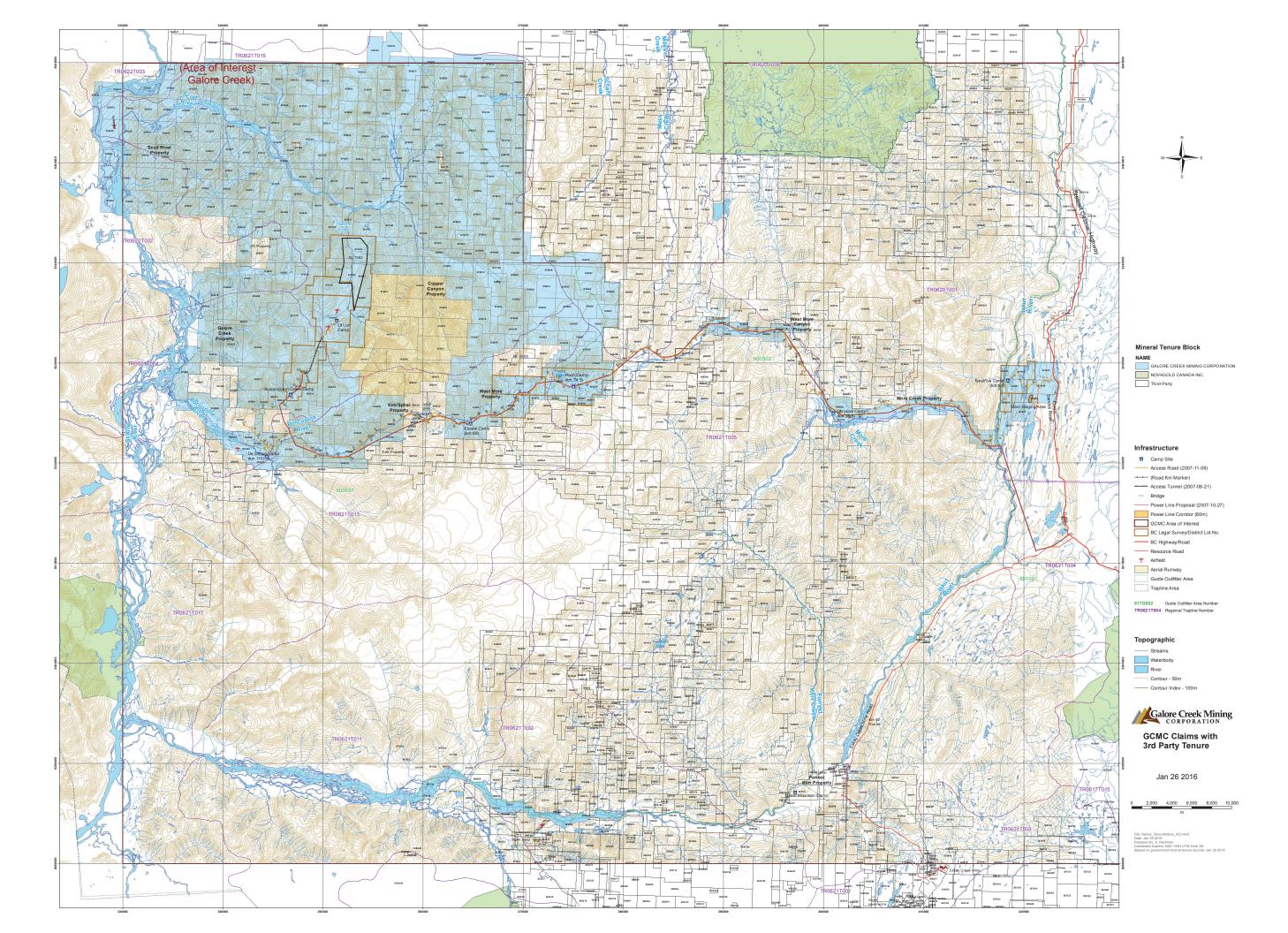

This report covers rock geochemical sampling on the Galore Creek Property between August 22, 2015 to August 24, 2015. The sampling work at Galore Creek includes nine (9) rock samples taken for geochemical analysis within mineral claims 516459 and 516165 (Figure 3) and applied to selected and contiguous claims held by the Galore Creek Mining Corporation. Under Event Number 5582038, assessment work was applied to two mineral claims (SPC 39 and SPC 40) listed in Table 4. The claim expiry dates will be advanced to May 20, 2018, subject to government approval.

Table 4 - Application of 2015 Assessment Work - Galore Creek Property Mineral Claims

**Owner: Galore Creek Mining Corporation - Client No. 211373** 

| _ | Tenure No. | Claim Name | Owner         | Tenure Type   | Issue Date  | Good To Date | Area<br>(ha) |
|---|------------|------------|---------------|---------------|-------------|--------------|--------------|
|   | 1032810    | SPC 39     | 211373 (100%) | Mineral Claim | 2014/dec/18 | 2018/may/20  | 701.19       |
| _ | 1034110    | SPC 40     | 211373 (100%) | Mineral Claim | 2015/feb/15 | 2018/may/20  | 52.61        |

Hectares 753.80



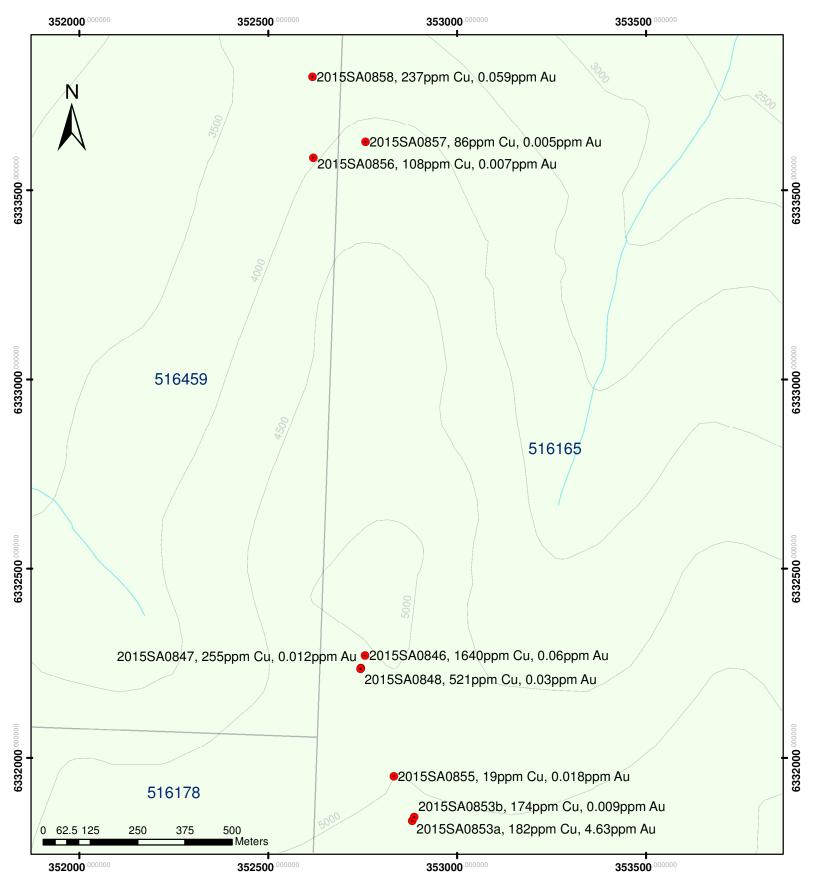



Figure 3. 2015 Geochemical Sample Location Map

# **LEGEND**

2015 Geochemical Samples

GCMC Mineral Tenure
River, Stream

Contour - 500ft



Scale 1:10,000 Datum: NAD83, UTM Zone 9 Date: 02/11/2016 Drawn by: S. Henderson



## 5.0 2015 SUMMARY OF WORK

The 2015 Galore Creek Mining Corporation field geochemical sampling program consisted of two days of work conducted between August 22, 2015 and August 24, 2015 at a cost of \$7,429.32. The purpose of the field work was to explore the Saddle zone for any significant surface copper mineralization as reported by Yarrow and Taylor (1990), and investigate the south end of claim 516165 for anomalous base and precious metal values. Nine rock samples were collected for geochemical analysis from claims 516459 and 516165 (Figure 3). This report discusses the work completed during this period. Details of the reported assessment work expenditures can be found in Appendix II.

On December 12, 2015, under Event Number 5582038, geochemical work and PAC funds totalling \$10,612 were filed on Galore Creek claims SPC 39 and SPC 40 (Table 4). The claim expiry dates will be advanced to May 20, 2018, upon government approval of this assessment report.

Helicopter support for the project was provided by Lake Else Air Ltd, of Terrace, BC. The following helicopter was supplied under charter arrangement or sublease: one Eurocopter (Astar) AS350B2.



#### 6.0 GEOLOGY

## 6.1 Regional Geology

The following description of the regional geology is an excerpt from Simpson (2003). It has been divided into three parts: stratigraphy, intrusives, and structure.

The Galore Creek deposits lie in Stikinia Terrane, an accreted package of Mesozoic volcanic and sedimentary rocks intruded by Cretaceous to Eocene plutonic and volcanic rocks. The eastern boundary of the Coast Plutonic complex lies about 7 kilometres to the west of the claims. The property lies within a regional transcurrent structure known as the Stikine Arch.

# Stratigraphy

Stikine Terrane at this latitude can be grouped into four tectonostratigraphic successions. The first, and most important one in this area, is a Late Paleozoic to Middle Jurassic island arc suite represented by the Stikine assemblage of Monger (1970), the Stuhini Group (Kerr, 1948) and Hazelton Group equivalent rocks. The other successions are; Middle Jurassic to early Late Cretaceous successor-basin sediments of the Bowser Lake Group (Tipper and Richards, 1976); Late Cretaceous to Tertiary transtensional continental volcanic-arc assemblages of the Sloko Group (Aiken, 1959); and Late Tertiary to Recent post-orogenic plateau basalt bimodal volcanic rocks of the Edziza and Spectrum ranges.

The oldest stratigraphy in the area is known as the Stikine assemblage and comprises Permian and older argillites, mafic to felsic flows and tuffs. These rocks grade upward into two distinctive Mississippian limestone members separated by intercalated volcanics and clastic sediments. The topmost stratigraphy consists of two regionally extensive Permian carbonate units which suggest a stable continental shelf depositional environment.

The Middle to Upper Triassic Stuhini Group unconformably overlies the Stikine assemblage. Stuhini Group rocks comprise a variety of flows, tuffs, volcanic breccia and sediments, and are important host rocks to the alkaline-intrusive related gold-silver-copper mineralization at Galore Creek. They define a volcanic edifice centered on Galore Creek and represent an emergent Upper Triassic island arc characterized by



shoshonitic and leucitic volcanics (de Rosen-Spence, 1985), distal volcaniclastics and sedimentary turbidites. The succession at Galore Creek was divided by Panteleyev (1975) into a submarine basalt and andesite lower unit overlain by more differentiated, partly subaerial alkali-enriched flows and pyroclastic rocks.

#### **Intrusives**

Three intrusive episodes have been recognized in the region. The earliest and most important is the Middle Triassic to Middle Jurassic Hickman plutonic suite that is coeval with Upper Triassic Stuhini Group volcanic flows. The Mount Hickman batholith comprises three plutons known as Hickman, Yehinko and Nightout. The latter two are exposed north of the map area. The Schaft Creek porphyry copper deposit is associated with the Hickman stock, and is located 39 km northeast of Galore Creek. This stock is crudely zoned with a pyroxene diorite core and biotite granodiorite margins. Alkali syenites of the Galore complex like those found at the nearby Copper Canyon deposit and the pyroxene diorite bodies of the zoned Hickman pluton have been interpreted as differentiated end members of the Stuhini volcanic-Hickman plutonic suite, by Souther (1972) and Barr (1966). The alkali syenites are associated with important copper-goldsilver mineralization at Galore Creek and at Copper Canyon. These rocks are believed to be at least as old as Early Jurassic in age, based on K-Ar dating of hydrothermal biotite in the syenites intruding the sequences (Allen, 1966). An Ar-Ar age of 212 Ma (Logan et al., 1989) in syenite may give the time of crystallization of the intrusive rocks at Copper Canyon, to the east of Galore Creek. More recent U-Pb dates of Galore Creek syenites have given ages ranging from 205-210 Ma (Mortensen, 1995).

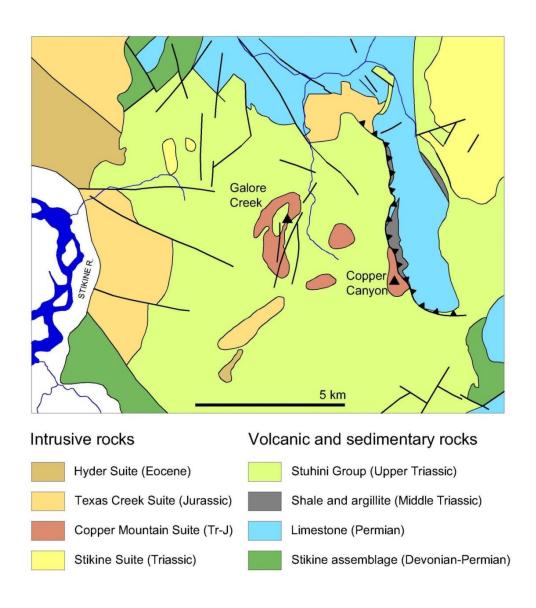
Coast Range intrusions comprise the large plutonic mass west of the map area. Three texturally and compositionally distinct intrusive phases were mapped by previous workers. From inferred oldest to youngest, they are potassium feldspar megacrystic granite to monzonite; biotite hornblende diorite to granodiorite; and biotite granite. Small tertiary intrusive stocks and dikes are structurally controlled in their distribution. At Galore Creek young post-mineral basalt and felsite dikes are abundant as a dike swarm in the northwest part of the property. Elsewhere, Tertiary intrusions may be important in their association with small gold occurrences.

#### Structure



The regional geology has been affected by polyphase deformation and four main sets of faults. The oldest phase of folding is pre-Permian to post-Mississippian and affected the Paleozoic rocks between Round Lake and Sphaler Creek. This deformation is characterized by bedding plane parallel foliation in sediments and fragment flattening in volcaniclastics. Pre-Late Triassic folding is characterized by large, upright, tight to open folds with north to northwest trend of axial plane traces and westerly fold vergence. Metamorphism accompanying the first two phases of deformation reached greenschist facies. The third phase of folding is manifested as generally upright chevron folds with fold axes pointed west-northwesterly.

The oldest and longest-lived fault structures in the area have a north strike and subvertical dip. The best example occurs on the west flank of the Hickman batholith, where a major fault juxtaposes Permian limestone with a narrow belt of Stuhini Group volcanics. The second important fault type occurs at Copper Canyon as a west directed thrust fault with a north strike and east dip of 30 to 50 degrees. It juxtaposes overturned Permian limestone and Middle Triassic shale with Stuhini volcanics below. Early to Middle Jurassic syenite intrusions occupy this contact. A third important set of faults with north-west strike mark the boundary between Upper Triassic and Paleozoic rocks between Scud River and Jack Wilson Creek. The youngest faults have a northeast strike direction and are of great local importance. At Galore Creek, some of these faults show considerable post-mineral movement of up to 200 metres while others appear to control the emplacement of mineralized intrusive phases and breccia bodies.


# **6.2** Property Geology

The Galore Creek intrusive-volcanic complex is composed of multiple intrusions emplaced into volcanic and sedimentary rocks of similar composition. Country rocks to the syenite intrusions are volcanic flows and volcaniclastic sediments, with subordinate greywacke, siltstone and local conglomerate (Enns et al., 1995). Augite-bearing volcanic flows and tuffs underlie and are interbedded with the pseudoleucite-bearing and orthoclase-bearing flows, tuffaceous and fragmental units, which are prominent in the south and southwest parts of the complex (Enns et al., 1995). Multiple alkali syenite intrusive phases occur in the complex and are divided into the pre- to syn-mineralization intrusives (i1 to i4), syn- to post-mineralization intrusives (i5 to i9) and post-mineralization intrusives (i10 to i12). The complex is centered in the west fork of Galore Creek and is approximately 5 kilometres in length and 2 kilometres in width. To date, twelve copper-gold-silver mineralized zones have been identified on the property. Most zones,



including the Central, North Junction, Junction, Middle Creek, West Rim, Butte and South 110, occur in highly altered volcanic rocks and to a lesser degree in syenite intrusions. The Southwest, Opulent, and Saddle zones are hosted by breccias and the North Rim and West Fork zones occur within syenite intrusions.

**Figure 4: Geological map of the Copper Canyon and Galore Creek area** (adapted from Enns et al., 1995, and Logan and Koyanagi, 1994, by Twelker, 2007).





# 6.3 Galore Creek Lithologic Descriptions

The following section is summarized from Workman (2011) to describe Galore Creek deposit lithologies encountered during the 2015 geochemical sampling program:

#### **VOLCANIC ROCKS**

# (V1) AUGITE-BEARING VOLCANICS:

Augite-bearing flows contain porphyritic and, infrequently, amygdaloidal textures. Augite phenocrysts vary in size from 2-5 mm and are generally euhedral to subhedral, stubby and dark green to black. They comprise up to 30% of the rock and are supported in a medium to dark green, aphanitic groundmass. The augite phenocrysts are usually altered to biotite, epidote and chlorite. Locally, strong garnet-biotite-orthoclase alteration is also observed. Interbedded with the augite bearing flows are augite-bearing volcaniclastics in the form of fine and coarse lapilli tuffs, tuff breccias and flow breccias, containing subangular to subrounded fragments of augite porphyry. These volcaniclastics are generally matrix supported.

#### (V2) PSEUDOLEUCITE-BEARING VOLCANICS:

The original textures are often obliterated by intense orthoclase and sericite alteration. Copper/gold mineralization appears to occur preferentially in these rocks. In unaltered areas, euhedral and broken pseudoleucite phenocrysts up to 1.5 cm occur within a bluish grey to salmon pink groundmass. These phenocrysts often exhibit orthoclase-sericite altered cores. Rims are sometimes altered to sericite, magnetite and chlorite.

## (V3) ORTHOCLASE-BEARING VOLCANICS:

Orthoclase-bearing volcanics are predominantly fine to coarse crystal lithic tuffs, with possible subordinate flows. They are often strongly mineralized with disseminated bornite, chalcopyrite and gold. They appear to be cogenetic and coeval with dark syenite porphyry intrusives, which may be their subvolcanic equivalents. The crystal fragments in the tuffs are broken orthoclase shards up to 7 mm across and are supported by a highly altered biotite-orthoclase +/- garnet-anhydrite matrix. Rare bedding is preserved locally.



# **UNDIFFERENTIATED VOLCANICS (V4, V5, V6)**

In some areas, intense alteration has obliterated original textures resulting in the more vague classification of "undifferentiated volcanics". Such rocks have been classified on the basis of colour and association.

## (V4) MAFIC VOLCANICS:

Mafic volcanic rocks (V4) are dark green, chloritic flows and tuffs, common in the north part of the Central Zone. These are interbedded, and may in part be correlated with, unit V1 (augite-bearing volcanics). Porphyritic and amygdaloidal flow textures have been preserved locally and volcanic clasts are sometimes preserved in pyroclastic rocks.

# (V5) INTERMEDIATE VOLCANICS:

Intermediate volcanic rocks (V5) are very common in the Central Zone. These rocks are medium greenish grey volcaniclastics and flows, and may be aphyric equivalents of the pseudoleucite bearing volcanic units. Included in this unit are possible trachy-andesites containing subrounded orthoclase phyric fragments. Aphanitic volcanic clasts up to 3 cm across have also been observed within a fine grained to aphanitic matrix. Secondary biotite occurs both as a spotted to patchy alteration and as coarse aggregates and veins.

## (V6) FELSIC VOLCANICS:

Intense orthoclase flooding has resulted in pale grey, felsic volcanic rocks (V6) which are fine to medium grained volcaniclastics and flows. V6 rocks are present in the north and central part of the Central Zone, often interbedded with pseudoleucite volcanic rocks which may be their equivalent.

## **INTRUSIVE ROCKS**

## (i6/i8) EQUIGRANULAR AND PORPHYRITIC SYENITES:

This closely related family of syenites occur as tabular and irregular, anastomosing, steep dikes. They are distinguished primarily on matrix and phenocryst size differences.

Fine grained syenite (i6) is a medium green-grey, equigranular, fine grained intergrowth of orthoclase, altered hornblende and epidote.



Fine grained syenite porphyry (i7) is greenish grey, and composed of 2-5%, 2-10 millimetre, subhedral, tabular, and equant orthoclase phenocrysts set in a greenish, often epidote rich, fine grained groundmass of orthoclase, altered hornblende, and epidote. The rock is locally crystal poor, and texturally equivalent to i6 and i8.

Medium grained syenite (i8) is a medium green to grey, equigranular intergrowth of orthoclase, altered hornblende, epidote, and rare 2-5 millimetre orthoclase phenocrysts.



## 7.0 GEOCHEMICAL SAMPLING

#### 7.1 Introduction

The 2015 geochemical sampling program at Galore Creek was carried out between August 22, 2015 and August 24, 2015. The sampling program consisted of nine (9) rock outcrop samples taken for ICP-MS and lithogeochemical analysis within the Saddle Zone area and on the ridge east of the Bountiful deposit within the GCMC claim block group. The Saddle Zone is located on a ridge overlooking the west fork of the Galore Creek valley, approximately 2.5km to the southeast of Galore Creek's main Central Zone deposit.

The following description of the Saddle zone is excerpted from Yarrow & Taylor (1990):

The Saddle Zone occurs above treeline on a steep west facing slope near the southeast corner of the property. The zone is comprised of a magnetite cemented intrusive fragment breccia containing varying amounts of chalcopyrite, malachite and bornite with associated gold values. In plan it has a rough oval shape with approximate dimensions of 110 meters by 60 meters. Actual breccia-country rock contacts are obscured by rock scree and rubble.

The main objectives of the sampling program were to explore the Saddle Zone for mineral potential and surface magnetite breccia bodies encountered during Mingold's 1990 exploration program (Yarrow & Taylor, 1990), and to investigate the south end of claim 516165, which has been covered by glacial ice until recently. Sampling and prospecting on the ridge directly east of the Bountiful zone was completed to assess for the occurrence and nature of any sulphide mineralization.

Nine rock outcrop or sub-crop samples were collected during the 2015 sampling program by geologists Alicia Carpenter and Sarah Henderson. Eight of the samples were collected for ICP multi-element assaying, and one for lithogeochemical analysis. At each ICP sample location, approximately 1 kg of rock was chipped using a hammer and collected for assay. ICP samples were taken from outcrops suspected to have anomalous base or precious metal content. 3kg of rock were chipped from the outcrop that was taken for lithogeochemical analysis. The lithogeochemical sample was taken for rock characterization, thus effort was made to ensure that the least-weathered, least-altered material was collected. A waypoint was taken at each sample location using a handheld GPS, and all samples were given field descriptions of lithology, alteration and mineralization where present. Samples were bagged in poly sample



bags, zap strapped, and flown to Schaft Creek camp, where they were stored in a secure location until shipment.

Samples were shipped to ALS Minerals Laboratories in North Vancouver for preparation and analysis. Sample preparation consisted of typical drying, crushing, splitting, and pulverizing (Prep Code PREP-31). The eight ICP samples were assayed by aqua regia digestion using a 51-element ICP-MS and ICP-AES analytical package at ALS (ME-MS41). Gold assays were performed by fire assay with an atomic absorption finish (Au-AA23), and copper values above 10,000 ppm were assayed by aqua regia digestion with ICP-AES finish (ME-OG46). A complete characterization package (CCP-PKG01) and XRF spectrometry (ME-XRF26) were used to quantify the major, trace, and rare earth elements, base metals, and gold present within the lithogeochemical rock sample. Standards, Blanks, and Duplicates were inserted into the sample batch at ALS to maintain geochemical quality control. Please see Appendix V for details of analytical and QA/QC procedures.

Locations and types of all samples collected during the 2015 field program can be found in Table 5 below.

**Table 5: 2015 Galore Creek Geochemical Sample Locations** 

| WPT  | UTM_E* | UTM_N*  | Elevation (m) | Sample ID   | Sample Type  | Claim # |
|------|--------|---------|---------------|-------------|--------------|---------|
| 846  | 352756 | 6332271 | 1554          | 2015SA0846  | ICP-MS       | 516165  |
| 847  | 352745 | 6332238 | 1529          | 2015SA0847  | ICP-MS       | 516165  |
| 848  | 352744 | 6332236 | 1529          | 2015SA0848  | ICP-MS       | 516165  |
| 853a | 352881 | 6331834 | 1563          | 2015SA0853a | ICP-MS       | 516165  |
| 853b | 352886 | 6331844 | 1563          | 2015SA0853b | Lithogeochem | 516165  |
| 855  | 352832 | 6331952 | 1531          | 2015SA0855  | ICP-MS       | 516165  |
| 856  | 352619 | 6333586 | 1220          | 2015SA0856  | ICP-MS       | 516459  |
| 857  | 352757 | 6333628 | 1239          | 2015SA0857  | ICP-MS       | 516165  |
| 858  | 352617 | 6333800 | 1171          | 2015SA0858  | ICP-MS       | 516459  |

<sup>\*</sup>UTM NAD 83, Zone 9

# 7.2 Summary of Geochemical Results

The following section describes the lithology, alteration and mineralization where present for each sample taken, as well as the geochemical results of the rock samples taken on the GCMC



claims (from Table 5). ALS assay certificates are located in Appendix IV. A map of the locations of the geochemical samples can be found in Figure 3.

The majority of the nine rock types encountered during the 2015 sampling program were identified as volcanic and alkaline igneous rocks found within the Galore Creek deposit – either intrusives of the Galore Creek syenite complex (i7 or i8), or Stuhini Group volcanics (V1-V6). All samples were assayed to test for metals of interest.

One sample (2015SA0853b) was analyzed for lithogeochemical characterization purposes.

# 7.2.1 ICP Sampling

Sample descriptions, and copper, gold, and silver assay results from the nine samples collected are presented below in Table 6.

Eight samples collected during the 2015 field program returned elevated Cu values (2015SA0846, 0847, 0848, 853a, 0853b, 0856, and 0858). Six (6) of these samples contained copper oxide mineralization (malachite), and originated from rock outcrop or sub-crop in the southern end of claim 516165. One sample showing trace chalcopyrite (2015SA0855) did not return anomalous Cu values. Yarrow and Taylor (1990) report the occurrence of chalcopyrite and magnetite mineralization in breccia bodies in the Saddle zone; and numerous rock outcrops and sub-crops were encountered that contained massive magnetite veining or brecciation, consistent with 1990 Saddle zone exploration results and with breccia mineralization present in the West Fork and Southwest zones of the Galore Creek deposit. No breccia bodies or outcropping exhibiting significant chalcopyrite or bornite mineralization were encountered during the 2015 program; however new ground was covered during the 2015 traverse, thus it is probable numerous areas that were sampled in 1990 were not located during the 2015 program.

Samples 2015SA0856 and 2015SA0858, which returned elevated copper values, were taken from outcrop east of the Bountiful zone deposit mapped as equigranular, medium-grained syenite (i8). No copper sulphide mineralization was observed at the outcrops where the samples were taken. Trace malachite was seen in sample 2015SA0858, and it is assumed this is responsible for the slightly elevated Cu value in that sample. Trace fine-grained disseminated pyrite was observed in sample 2015SA0856.



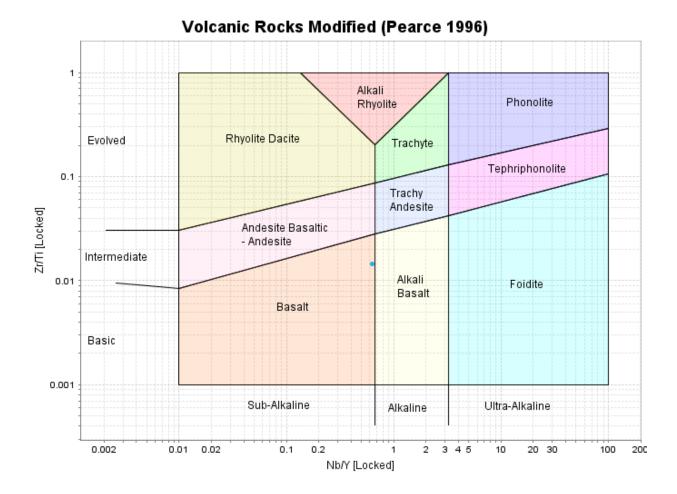
**Table 6: 2015 Galore Creek Claims Sampling and Results** 

| UTM*_E | UTM*_N  | Sample Type and Description                                                                                                                                                                                                                                                                                                                                       | Sample ID           | Au    | Cu    | Ag    |
|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-------|-------|
|        |         |                                                                                                                                                                                                                                                                                                                                                                   |                     | ppm   | ppm   | ppm   |
| 352756 | 6332271 | ICP – GRAB: "i7" porphyry sub-crop. 30%, 2-3mm, subhedral, sericite altered kspar + minor plag phenos. Trace malachite on fractures.                                                                                                                                                                                                                              | 2015SA0846          | 0.06  | 1640  | 1.59  |
| 352745 | 6332238 | ICP – GRAB: "i7". Green, chlorite altered, fine-grained equigranular groundmass with 30%, 2-3mm, sericite altered feldspar phenos. ~2%, 3-4mm lathy, kspar phenos. Trace malachite on fractures.                                                                                                                                                                  | 2015SA0847          | 0.012 | 255   | 0.21  |
| 352744 | 6332236 | ICP – GRAB: Close to WPT 847. Same lithology, more malachite observed.                                                                                                                                                                                                                                                                                            | 2015SA0848          | 0.03  | 521   | 0.5   |
| 352881 | 6331834 | ICP – GRAB: Medium grained equigranular syenite (i8) – silicified? Abundant (~0.5-2%) disseminated pyrite + py in veins, locally up to 5-10%. Sample 2015SA0853A taken for ICP. Outcrop right next to the toe of the glacier (farthest south exposure). ~5 m east - shear zone: oxidized, brecciated, with pyrite - appears volcanic. Shear orientation: 216/062. | 2015SA0853 <b>a</b> | 4.63  | 182.5 | 1.57  |
| 352886 | 6331844 | LITHO – GRAB: further north, ~10m away from the shear zone @WPT 853a: change in rock type. Aphanitic, light grey-green unit with ~0.5% biotite phenos (after mafic). Volcanic or Intrusive? No sulphides seen. Lithogeochem sample taken for characterization.                                                                                                    | 2015SA0853b         | 0.009 | 174   | <0.05 |
| 352832 | 6331952 | ICP – GRAB: Greenish coloured, appears intrusive ("i7"?) but could be volcanic.  Disseminated magnetite and trace cpy within outcrop. Calcite replacement.                                                                                                                                                                                                        | 2015SA0855          | 0.018 | 18.9  | 0.07  |
| 352619 | 6333586 | ICP – GRAB: North side of ridge - east of<br>Bountiful pit. i8 (medium-grained, equigranular<br>syenite). Fairly fresh, weak epi alteration. Very<br>trace, fine-grained, disseminated pyrite.                                                                                                                                                                    | 2015SA0856          | 0.007 | 107.5 | 0.1   |
| 352757 | 6333628 | ICP – GRAB: i8 equigranular kspar, hbl/bio. No sulphides observed.                                                                                                                                                                                                                                                                                                | 2015SA0857          | 0.005 | 85.7  | 0.08  |
| 352617 | 6333800 | ICP – GRAB: Classic i8. Trace malachite, no sulphides observed.                                                                                                                                                                                                                                                                                                   | 2015SA0858          | 0.059 | 237   | 0.12  |

<sup>\*</sup>UTM NAD 83, Zone 9



Six of the samples with elevated copper also returned elevated silver values (2015SA0846, 0847, 0848, 0853a, 0856, and 0858).


One sample (2015SA0853a) returned an anomalous Au value of 4.63 ppm (g/t) Au, which is similar in magnitude to Au values in intervals intersected or re-assayed during 1990 drilling and sampling in the Saddle zone (Yarrow & Taylor, 1990). Sample 2015SA0853a was a grab sample taken from outcrop mapped as an equigranular syenite intrusive of the Galore Creek syenite complex (i8), mineralized with abundant (0.5% to 10% locally) disseminated and vein-hosted pyrite. No copper sulphides were noted where the sample was taken; however this sample was taken from outcrop that was recently exposed by the retreat of glacial ice, and the entire outcrop was not investigated. Near this sample, a brecciated shear zone was mapped within a volcanic rock outcrop five meters to the east, with pyrite noted in the shear. A contact has been inferred between the intrusive (i8) unit where sample 2015SA0853a was taken, and the sheared volcanic. Much of the area between these two outcrops is covered in glacial till and loose rubble.

#### 7.2.2. Lithogeochemical Sampling

Sample 2015SA0853b sent for lithogeochemical characterization was mapped as light greygreen and aphanitic, with approximately 0.5% biotite phenocrysts (altering primary mafic crystals). No sulphides were observed in the sample. The outcrop was not identified as a Galore Creek deposit lithology, thus a sample was taken for lithogeochemical characterization. Sample 2015SA0853b originated from outcrop in close proximity to the brecciated, oxidized, and pyrite mineralized shear zone described above.



Figure 5. Volcanic Rock Classification Diagram (Pearce, 1996, Modified after Winchester & Floyd 1977)



Sample 2015SA0853b plots as a sub-alkaline basalt (see Figure 5) on the volcanic rock classification diagram above (Pearce, 1996). Based on this classification, this unit is part of the regional Stuhini volcanic package which hosts mineralization of the Galore Creek deposit. It is interesting to note that this sample also returned anomalous copper values of 174 ppm though no copper bearing minerals were observed (see Table 6).



#### 8.0 DISCUSSION AND CONCLUSIONS

During the 2015 field season, a total of nine rock samples were collected on the main GCMC claim package, to the southeast and east of the main Galore Creek deposit, for ICP-MS and lithogeochemical analysis.

The purpose of the field work was to explore the Saddle zone area for any significant surface copper mineralization, and investigate the south end of claim 516165 for anomalous base and precious values where glacial retreat has recently uncovered new ground. Sampling and prospecting on the ridge directly east of the Bountiful zone was completed to assess for the occurrence and nature of any sulphide mineralization.

Sampling from the 2015 geochemical program returned anomalous assay results – eight samples with elevated copper, six samples with elevated silver, and one sample with high gold grades. The majority of these samples displayed copper oxide mineralization, and were taken in the south end of claim 516165. The three samples from taken east of the Bountiful zone did not display any significant sulphide mineralization.

Sample 2015SA0853a, which returned elevated gold was a grab sample taken from the southernmost outcrop, recently exposed by retreating glacial ice. Recommended work includes chip sampling over this outcrop, to follow up on this showing to the east and west following the retreat line of glacial ice, and to characterize typical pyrite mineralization and gold in the outcrop if present. The shear zone at field station 0853a should also be mapped and traced, and the lithological units on either side should be sampled.

Future work should also focus on identification of the extent of mineralized breccia bodies in the Saddle zone reported in 1990 by Mingold, through detailed sampling and mapping. In addition, following up on all anomalous values encountered during the 2015 field program, and locating trenches reported by Yarrow and Taylor (1990) that returned significant Cu and Au values is recommended.



**APPENDIX I** 

**REFERENCES** 



#### References

Aiken, J.D. (1959); Atlin Map-area, British Columbia, *Geological Survey of Canada*, Memoir 307, 89 Pages.

Allen, D.G. (1966); Mineralogy of Stikine Copper's Galore Creek Deposits, Unpublished MSc Thesis UBC, 38 Pages.

AMEC (2011); Galore Creek Project British Columbia NI 43-101 Technical Report on Pre-Feasibility Study, prepared by Gill, R., Kulla, G., Wortman, G., Melnyk, J., and Rogers, D.

Barr, D.A. (1966); The Galore Creek Copper Deposits, CIM Bulletin, Vol.59, Pages 841-853.

De Rosen Spence, A. (1985); Shoshonites and Associated Rock of Central British Columbia, *B.C. Ministry of Mines and Petroleum Resources*, Geological Fieldwork 1984, Paper 1985-1, Pages 426-442.

Enns, S.G., Thompson, J.F.H, Stanley, C.R. and Yarrow, E.W (1995); The Galore Creek porphyry copper-gold deposits, Northwestern British Columbia, in *'Porphyry Copper Deposits of the Northern Cordillera'*. ed. by Schroeter, T., Canadian Institute of Mining and Metallurgy Special Volume 46, Paper No. 46, Pages 630-644.

Kerr, F.A. (1948); Lower Stikine and Western Iskut River Areas, B.C.; *Geological Survey of Canada*, Memoir 246.

Logan, J.M., Victor, M., Koyanagi and Rhys (1989); Geology and Mineral Occurrences of The Galore Creek Area, NTS 104G/03 and 04, *Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources*, Mineral Resources Division, Geological Survey Branch, Open File 1989-8 (2 sheets).

Monger, J.W.H. (1970); Upper Palaeozoic Rocks of Western Cordillera and Their Bearing on Cordillera Evolution. *Canadian Journal of Earth Sciences*, Vol. 14, Pages 1832-1859.

Mortensen, J.K., Ghosh, D. and Ferri, F. (1995); U-Pb age constraints of intrusive rocks associated with copper-gold porphyry deposits in the Canadian Cordillera in *Porphyry Copper (± Au) Deposits of the Alkalic Suite – Paper 46*, CIM Special Volume 46, Pages 142-158.

Panteleyev, A. (1975); Galore Creek Map-Area, *B.C. Ministry of Energy, Mines and Petroleum Resources*, Geological Fieldwork 1974, Paper 1976-1, pages 79-81.

Pearce, J.A. (1996); In Wyman, D.A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, *Geological Association of Canada*, Short Course Notes 12, Pages 71-113



Simpson, R.G. (2003); Independent Technical Report for the Galore Creek Property, *A report prepared for SpectrumGold Inc.* 

Souther, J.G. (1972); Telegraph Creek Map Area, British Columbia, *Geological Survey of Canada*, Paper 71-44, 38 Pages.

Tipper, H.W., Richards, T.A. (1976); Jurassic Stratigraphy and History of North-Central British Columbia, *Geological Survey of Canada*, Bulletin 270, 73 Pages.

Twelker, E. (2007); A Breccia-centered Ore and Alteration Model for the Copper Canyon Alkalic Cu-Au Porphyry Deposit, British Columbia, Unpublished MSc Thesis, University of Alaska Fairbanks, 139 Pages.

Workman, Erin (2011); 2010 Diamond Drilling Assessment Report on the Galore Creek Property (AR 32119).

Yarrow, E.W., & Taylor, K.J. (1990); Report on Soil, Rock Geochemical Sampling, VLF-EM, Magnetometer and Diamond Drill Surveys on the Galore Creek Group I, II & III Claims (AR 20558A).



#### **APPENDIX II**

## STATEMENT OF EXPENDITURES



\$3,183.44

\$10,612.76

# **Statement of Expenditures**

#### **Galore Creek Geochemical Sampling program**

Period of Field Work: August 22, 2015 to August 24, 2015

Work Performed on Claims: 516459 & 516165

**FUNDS DEBITED FROM PAC (211373)** 

Event Number: 5582038

**Total Assessment Work Applied to Mineral Claims:** 

| TOTAL WORK AVAILABLE FOR ASSESSMENT CREDIT:                                                                           |           | \$7.429.32 |
|-----------------------------------------------------------------------------------------------------------------------|-----------|------------|
|                                                                                                                       | Subtotal: | \$7,429.32 |
| Report preparation (GCMC)                                                                                             |           | \$2,072    |
| Geochemical Sampling and Report Preparation Costs:  Geologists Sarah Henderson and Alicia Carpenter (Aug 22 & Aug 24) | , 2015)   | \$2392.00  |
|                                                                                                                       |           |            |
| Shipping (Bandstra)                                                                                                   |           | \$100      |
| ALS Minerals Lab (9 samples)                                                                                          |           | \$557.02   |
| Sample Assaying and Freight Costs:                                                                                    |           |            |
| Camp accommodation rate per day: \$235 (2 crew/day, 2 days)                                                           |           | \$940      |
| Helicopter, fuel, food, safety, and maintenance crews                                                                 |           |            |
| Camp Support Costs:                                                                                                   |           |            |
| Helicopter Fuel (123L @\$1.77/litre)                                                                                  |           | \$218.30   |
| Astai 330B2 (\$1,130/111) — 1 110ui                                                                                   |           | \$1,150    |
| Helicopter Support – Lake Else Air Ltd<br>Astar 350B2 (\$1,150/hr) – 1 hour                                           |           | Ć1 1F0     |
| Indirect Sampling Costs:                                                                                              |           |            |



### **APPENDIX III**

## STATEMENT OF QUALIFICATION



#### **GEOLOGIST'S CERTIFICATE**

I, Sarah L. Henderson, do hereby certify that:

- I am a geologist in the minerals exploration industry employed by:
   Galore Creek Mining Corporation
   3300-550 Burrard Street
   Vancouver, BC, V6C 0B3
- 2. I graduated from the University of British Columbia, Vancouver, British Columbia, with a Bachelor of Science degree in Earth and Ocean Science in 2009.
- 3. I have practiced my profession with exploration companies in British Columbia and Ontario, Canada for seven years. I've worked continuously for the last four and a half years on the Galore Creek Project, B.C.
- 4. I am the author of the '2015 Geochemical Assessment Report on the Galore Creek Property', dated February, 2016.
- 5. The Assessment Report is based on site visits, information provided by independent consultants under contract to the Galore Creek Mining Corporation, historical reports, and from information available from public files.
- 6. I have no interest in the property herein.

Dated at Vancouver, British Columbia, Canada this 26<sup>th</sup> day of February, 2016.

Sarah L. Henderson



#### **APPENDIX IV**

### **ASSAY CERTIFICATES**

(Attached Digitally)



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET **VANCOUVER BC V6C 0B3** 

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29- SEP- 2015

Account: GALCRE

## CERTIFICATE VA15143387

Project: Galore Creek P.O. No.: 13053

This report is for 9 Rock samples submitted to our lab in Vancouver, BC, Canada on

15- SEP- 2015.

The following have access to data associated with this certificate:

SARAH HENDERSON

|          | SAMPLE PREPARATION             |  |  |  |  |  |  |  |
|----------|--------------------------------|--|--|--|--|--|--|--|
| ALS CODE | DESCRIPTION                    |  |  |  |  |  |  |  |
| WEI- 21  | Received Sample Weight         |  |  |  |  |  |  |  |
| LOG- 22  | Sample login - Rcd w/o BarCode |  |  |  |  |  |  |  |
| CRU- QC  | Crushing QC Test               |  |  |  |  |  |  |  |
| CRU- 31  | Fine crushing - 70% < 2mm      |  |  |  |  |  |  |  |
| SPL- 21  | Split sample - riffle splitter |  |  |  |  |  |  |  |
| PUL- 31  | Pulverize split to 85% < 75 um |  |  |  |  |  |  |  |

|           | ANALYTICAL PROCEDU        | RES        |
|-----------|---------------------------|------------|
| ALS CODE  | DESCRIPTION               | INSTRUMENT |
| Au- ICP21 | Au 30g FA ICP- AES Finish | ICP- AES   |
| ME- MS41  | 51 anal. aqua regia ICPMS |            |
| Au- AA23  | Au 30g FA- AA finish      | AAS        |

To: GALORE CREEK MINING CORPORATION **ATTN: SARAH HENDERSON** SUITE 3300, 550 BURRARD STREET **VANCOUVER BC V6C 0B3** 

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION **SUITE 3300, 550 BURRARD STREET** VANCOUVER BC V6C 0B3

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29- SEP- 2015 Account: GALCRE

| iiiiiei a                                                       | 13                                |                                      |                                  |                                 |                               |                              |                              |                              | C                          | ERTIFIC                     | CATE O                        | F ANAI                        | _YSIS                        | VA151                         | 43387                            |                              |
|-----------------------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------|---------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------------|------------------------------|
| Sample Description                                              | Method<br>Analyte<br>Units<br>LOR | WEI- 21<br>Recvd Wt.<br>kg<br>0.02   | Au- AA23<br>Au<br>ppm<br>0.005   | Au- ICP21<br>Au<br>ppm<br>0.001 | ME- MS41<br>Ag<br>ppm<br>0.01 | ME- MS41<br>Al<br>%<br>0.01  | ME- MS41<br>As<br>ppm<br>0.1 | ME- MS41<br>Au<br>ppm<br>0.2 | ME- MS41<br>B<br>ppm<br>10 | ME- MS41<br>Ba<br>ppm<br>10 | ME- MS41<br>Be<br>ppm<br>0.05 | ME- MS41<br>Bi<br>ppm<br>0.01 | ME- MS41<br>Ca<br>%<br>0.01  | ME- MS41<br>Cd<br>ppm<br>0.01 | ME- MS41<br>Ce<br>ppm<br>0.02    | ME- MS41<br>Co<br>ppm<br>0.1 |
| 2015SA846<br>2015SA847<br>2015SA848<br>2015SA853a<br>2015SA853b |                                   | 1.62<br>2.84<br>1.18<br>1.62<br>1.04 | 0.060<br>0.012<br>0.030<br>4.63  | 0.009                           | 1.59<br>0.21<br>0.50<br>1.57  | 1.22<br>1.25<br>1.14<br>0.62 | 4.1<br>4.5<br>5.1<br>56.8    | <0.2<br><0.2<br><0.2<br>4.3  | <10<br><10<br><10<br><10   | 80<br>40<br>40<br>30        | 0.65<br>0.35<br>0.33<br>0.64  | 0.09<br>0.04<br>0.06<br>0.55  | 1.81<br>1.50<br>1.39<br>2.13 | 0.23<br>0.14<br>0.19<br>8.27  | 17.70<br>14.90<br>13.75<br>14.55 | 16.0<br>12.0<br>10.1<br>36.8 |
| 2015SA855<br>2015SA856<br>2015SA857<br>2015SA858                |                                   | 1.52<br>2.86<br>1.52<br>2.28         | 0.018<br>0.007<br>0.005<br>0.059 |                                 | 0.07<br>0.10<br>0.08<br>0.12  | 1.30<br>1.79<br>1.65<br>1.86 | 5.2<br>5.1<br>2.9<br>2.3     | <0.2<br><0.2<br><0.2<br><0.2 | <10<br>10<br><10<br><10    | 340<br>60<br>60<br>90       | 0.88<br>0.25<br>0.37<br>0.33  | 0.03<br>0.04<br>0.04<br>0.04  | 4.14<br>1.70<br>1.22<br>2.00 | 0.36<br>0.08<br>0.08<br>0.04  | 23.2<br>13.50<br>17.45<br>17.15  | 19.3<br>17.2<br>15.7<br>18.0 |
|                                                                 |                                   |                                      |                                  |                                 |                               |                              |                              |                              |                            |                             |                               |                               |                              |                               |                                  |                              |
|                                                                 |                                   |                                      |                                  |                                 |                               |                              |                              |                              |                            |                             |                               |                               |                              |                               |                                  |                              |
|                                                                 |                                   |                                      |                                  |                                 |                               |                              |                              |                              |                            |                             |                               |                               |                              |                               |                                  |                              |
|                                                                 |                                   |                                      |                                  |                                 |                               |                              |                              |                              |                            |                             |                               |                               |                              |                               |                                  |                              |
|                                                                 |                                   |                                      |                                  |                                 |                               |                              |                              |                              |                            |                             |                               |                               |                              |                               |                                  |                              |
|                                                                 |                                   |                                      |                                  |                                 |                               |                              |                              |                              |                            |                             |                               |                               |                              |                               |                                  |                              |
|                                                                 |                                   |                                      |                                  |                                 |                               |                              |                              |                              |                            |                             |                               |                               |                              |                               |                                  |                              |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION **SUITE 3300, 550 BURRARD STREET** VANCOUVER BC V6C 0B3

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29- SEP- 2015 Account: GALCRE

| Minera                                                          | IS                                |                            |                               |                              |                              |                               |                               |                               | CI                            | ERTIFIC                          | CATE O                       | F ANAL                       | YSIS                         | VA151                        | 43387                      |                               |
|-----------------------------------------------------------------|-----------------------------------|----------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|-------------------------------|
| Sample Description                                              | Method<br>Analyte<br>Units<br>LOR | ME- MS41<br>Cr<br>ppm<br>1 | ME- MS41<br>Cs<br>ppm<br>0.05 | ME- MS41<br>Cu<br>ppm<br>0.2 | ME- MS41<br>Fe<br>%<br>0.01  | ME- MS41<br>Ga<br>ppm<br>0.05 | ME- MS41<br>Ge<br>ppm<br>0.05 | ME- MS41<br>Hf<br>ppm<br>0.02 | ME- MS41<br>Hg<br>ppm<br>0.01 | ME- MS41<br>In<br>ppm<br>0.005   | ME- MS41<br>K<br>%<br>0.01   | ME- MS41<br>La<br>ppm<br>0.2 | ME- MS41<br>Li<br>ppm<br>0.1 | ME- MS41<br>Mg<br>%<br>0.01  | ME- MS41<br>Mn<br>ppm<br>5 | ME- MS41<br>Mo<br>ppm<br>0.05 |
| 2015SA846<br>2015SA847<br>2015SA848<br>2015SA853a<br>2015SA853b |                                   | 5<br>6<br>5<br>4           | 0.67<br>0.20<br>0.25<br>0.83  | 1640<br>255<br>521<br>182.5  | 4.87<br>3.64<br>3.31<br>5.85 | 6.61<br>5.13<br>4.88<br>2.94  | 0.14<br>0.16<br>0.16<br>0.13  | 0.21<br>0.19<br>0.28<br>0.07  | 0.02<br><0.01<br>0.01<br>0.04 | 0.127<br>0.013<br>0.020<br>0.059 | 0.22<br>0.16<br>0.16<br>0.49 | 10.6<br>8.1<br>8.0<br>6.7    | 11.9<br>5.8<br>4.4<br>5.0    | 1.08<br>0.56<br>0.43<br>0.65 | 1220<br>452<br>408<br>5170 | 2.97<br>1.20<br>1.45<br>5.57  |
| 2015SA855<br>2015SA856<br>2015SA857<br>2015SA858                |                                   | 11<br>2<br>2<br>3          | 0.77<br>0.16<br>0.48<br>0.32  | 18.9<br>107.5<br>85.7<br>237 | 4.80<br>4.21<br>4.11<br>4.70 | 7.18<br>6.03<br>6.48<br>5.72  | 0.14<br>0.15<br>0.15<br>0.13  | 0.04<br>0.19<br>0.21<br>0.13  | 0.01<br>0.01<br>0.01<br>0.01  | 0.038<br>0.015<br>0.019<br>0.013 | 0.31<br>0.17<br>0.21<br>0.32 | 13.0<br>6.6<br>9.0<br>8.3    | 8.1<br>6.6<br>9.2<br>7.7     | 1.78<br>1.17<br>1.07<br>1.18 | 1780<br>760<br>826<br>841  | 0.56<br>0.51<br>0.92<br>0.57  |
|                                                                 |                                   |                            |                               |                              |                              |                               |                               |                               |                               |                                  |                              |                              |                              |                              |                            |                               |
|                                                                 |                                   |                            |                               |                              |                              |                               |                               |                               |                               |                                  |                              |                              |                              |                              |                            |                               |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION **SUITE 3300, 550 BURRARD STREET** VANCOUVER BC V6C 0B3

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29- SEP- 2015 Account: GALCRE

| Minera                                                          | IS                                |                              |                               |                              |                              |                              |                              |                                     | Cl                              |                               | CATE O                       | F ANAL                       | YSIS                         | VA151                          | 43387                            |                                 |
|-----------------------------------------------------------------|-----------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------|---------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|----------------------------------|---------------------------------|
| Sample Description                                              | Method<br>Analyte<br>Units<br>LOR | ME- MS41<br>Na<br>%<br>0.01  | ME- MS41<br>Nb<br>ppm<br>0.05 | ME- MS41<br>Ni<br>ppm<br>0.2 | ME- MS41<br>P<br>ppm<br>10   | ME- MS41<br>Pb<br>ppm<br>0.2 | ME- MS41<br>Rb<br>ppm<br>0.1 | ME- MS41<br>Re<br>ppm<br>0.001      | ME- MS41<br>S<br>%<br>0.01      | ME- MS41<br>Sb<br>ppm<br>0.05 | ME- MS41<br>Sc<br>ppm<br>0.1 | ME- MS41<br>Se<br>ppm<br>0.2 | ME- MS41<br>Sn<br>ppm<br>0.2 | ME- MS41<br>Sr<br>ppm<br>0.2   | ME- MS41<br>Ta<br>ppm<br>0.01    | ME- MS41<br>Te<br>ppm<br>0.01   |
| 2015SA846<br>2015SA847<br>2015SA848<br>2015SA853a<br>2015SA853b |                                   | 0.07<br>0.08<br>0.09<br>0.01 | 0.16<br>0.77<br>0.85<br><0.05 | 5.7<br>5.7<br>4.3<br>12.7    | 1220<br>1530<br>1370<br>2590 | 21.1<br>5.5<br>4.7<br>104.0  | 9.1<br>6.4<br>6.9<br>28.2    | 0.010<br>0.004<br>0.006<br>0.003    | 0.03<br><0.01<br>0.01<br>4.41   | 0.73<br>1.07<br>1.08<br>1.35  | 9.3<br>2.1<br>2.0<br>21.8    | 0.6<br>0.4<br>0.4<br>4.5     | 0.9<br>0.6<br>0.9<br>0.2     | 58.0<br>134.0<br>153.5<br>85.9 | <0.01<br><0.01<br><0.01<br><0.01 | 0.04<br><0.01<br>0.01<br>0.11   |
| 2015SA855<br>2015SA856<br>2015SA857<br>2015SA858                |                                   | 0.03<br>0.06<br>0.08<br>0.06 | 0.07<br>0.32<br>0.48<br>0.24  | 9.3<br>2.7<br>2.5<br>3.6     | 2230<br>2510<br>1960<br>2790 | 11.2<br>3.9<br>14.9<br>2.0   | 17.1<br>6.8<br>8.3<br>14.6   | <0.001<br><0.001<br><0.001<br>0.001 | 0.03<br><0.01<br><0.01<br><0.01 | 0.57<br>0.48<br>0.21<br>0.29  | 16.4<br>5.1<br>6.8<br>5.6    | 0.7<br>0.5<br>0.5<br>0.6     | 0.2<br>0.3<br>0.3<br>0.2     | 180.0<br>200<br>179.0<br>142.0 | <0.01<br><0.01<br><0.01<br><0.01 | <0.01<br><0.01<br><0.01<br>0.01 |
|                                                                 |                                   |                              |                               |                              |                              |                              |                              |                                     |                                 |                               |                              |                              |                              |                                |                                  |                                 |
|                                                                 |                                   |                              |                               |                              |                              |                              |                              |                                     |                                 |                               |                              |                              |                              |                                |                                  |                                 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 29- SEP- 2015 Account: GALCRE

| CERTIFICATE OF ANALYSIS | VA15143387 |
|-------------------------|------------|
| CERTIFICATE OF ANALTSIS | VAIDI4000/ |

| Method   Market   M |                                      |                  |            |                |                |              |            |              | <u> </u>       |           | _1\\ 1\\ 1\\ | CATE OF ANALISIS | VA13143367 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|------------|----------------|----------------|--------------|------------|--------------|----------------|-----------|--------------|------------------|------------|
| 2015SA847       1.1       0.180       <0.02       0.57       139       0.85       9.76       68       5.1         2015SA848       1.1       0.177       <0.02       0.78       118       1.06       9.01       65       8.4         2015SA853a       0.6       0.006       0.33       0.35       84       0.47       11.60       256       2.1         2015SA853b       1.6       0.024       0.14       0.70       177       0.24       10.80       234       1.4         2015SA856       0.6       0.209       0.02       0.26       177       0.57       11.05       70       4.6         2015SA857       1.7       0.152       0.02       0.47       162       0.44       13.35       64       4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Description                   | Analyte<br>Units | Th<br>ppm  | Ti<br>%        | TI<br>ppm      | U<br>ppm     | V<br>ppm   | W<br>ppm     | Y<br>ppm       | Zn<br>ppm | Zr<br>ppm    |                  |            |
| 201 5SA856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2015SA847<br>2015SA848<br>2015SA853a |                  | 1.1<br>1.1 | 0.180<br>0.177 | <0.02<br><0.02 | 0.57<br>0.78 | 139<br>118 | 0.85<br>1.06 | 9.76<br>9.01   | 68<br>65  | 5.1<br>8.4   |                  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2015SA855<br>2015SA856<br>2015SA857  |                  | 0.6<br>1.7 | 0.209<br>0.152 | 0.02<br>0.02   | 0.26<br>0.47 | 177<br>162 | 0.57<br>0.44 | 11.05<br>13.35 | 70<br>64  | 4.6<br>4.9   |                  |            |



ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com

To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Project: Galore Creek

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29- SEP- 2015 Account: GALCRE

CERTIFICATE OF ANALYSIS VA15143387

|                    |                                                                                                                                      | <u> </u>        | CERTIFICATE OF ANAL | -1313 VA13143367   |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|--------------------|--|--|--|--|--|
|                    | CI                                                                                                                                   | ERTIFICATE COMM | ENTS                |                    |  |  |  |  |  |
| Applies to Method: | ANALYTICAL COMMENTS  Gold determinations by this method are semi- quantitative due to the small sample weight used (0.5g).  ME- MS41 |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      | I ARORAT        | DRY ADDRESSES       |                    |  |  |  |  |  |
| Applies to Method: |                                                                                                                                      |                 |                     | CRU- QC<br>SPL- 21 |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |
|                    |                                                                                                                                      |                 |                     |                    |  |  |  |  |  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET **VANCOUVER BC V6C 0B3** 

Page: 1 Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 1- OCT- 2015

Account: GALCRE

## CERTIFICATE VA15143592

Project: Galore Creek

P.O. No.: 13053

This report is for 1 Rock sample submitted to our lab in Vancouver, BC, Canada on

15- SEP- 2015.

The following have access to data associated with this certificate:

SARAH HENDERSON

|          | SAMPLE PREPARATION            |
|----------|-------------------------------|
| ALS CODE | DESCRIPTION                   |
| FND- 02  | Find Sample for Addn Analysis |

|            | ANALYTICAL PROCEDUR           | ES         |
|------------|-------------------------------|------------|
| ALS CODE   | DESCRIPTION                   | INSTRUMENT |
| ME- 4ACD81 | Base Metals by 4- acid dig.   | ICP- AES   |
| ME- XRF26  | Whole Rock By Fusion/XRF      | XRF        |
| OA- GRA05x | LOI for XRF                   | WST- SEQ   |
| ME- MS42   | Up to 34 elements by ICP- MS  | ICP- MS    |
| S- IR08    | Total Sulphur (Leco)          | LECO       |
| C- IR07    | Total Carbon (Leco)           | LECO       |
| ME- MS81   | Lithium Borate Fusion ICP- MS | ICP- MS    |

To: GALORE CREEK MINING CORPORATION **ATTN: SARAH HENDERSON** SUITE 3300, 550 BURRARD STREET **VANCOUVER BC V6C 0B3** 

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Signature:

Colin Ramshaw, Vancouver Laboratory Manager



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION **SUITE 3300, 550 BURRARD STREET** VANCOUVER BC V6C 0B3

Page: 2 - A Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 1- OCT- 2015 Account: GALCRE

| iiiiiei a          |                                   |                                 |                               |                               |                                 |                                 |                               |                               | CI                            | ERTIFIC                        | CATE O                         | F ANAL                         | YSIS                          | VA151                          | 43592                               |                                 |
|--------------------|-----------------------------------|---------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------------|---------------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- XRF26<br>Al2O3<br>%<br>0.01 | ME- XRF26<br>BaO<br>%<br>0.01 | ME- XRF26<br>CaO<br>%<br>0.01 | ME- XRF26<br>Cr2O3<br>%<br>0.01 | ME- XRF26<br>Fe2O3<br>%<br>0.01 | ME- XRF26<br>K2O<br>%<br>0.01 | ME- XRF26<br>MgO<br>%<br>0.01 | ME- XRF26<br>MnO<br>%<br>0.01 | ME- XRF26<br>Na2O<br>%<br>0.01 | ME- XRF26<br>P2O5<br>%<br>0.01 | ME- XRF26<br>SiO2<br>%<br>0.01 | ME- XRF26<br>SrO<br>%<br>0.01 | ME- XRF26<br>TiO2<br>%<br>0.01 | OA- GRA05x<br>LOI 1000<br>%<br>0.01 | ME- XRF26<br>Total<br>%<br>0.01 |
| 015SA853b          |                                   | 13.62                           | 0.17                          | 9.26                          | 0.01                            | 9.82                            | 5.89                          | 3.71                          | 0.42                          | 2.22                           | 0.49                           | 44.22                          | 0.09                          | 0.61                           | 8.39                                | 99.32                           |
|                    |                                   |                                 |                               |                               |                                 |                                 |                               |                               |                               |                                |                                |                                |                               |                                |                                     |                                 |
|                    |                                   |                                 |                               |                               |                                 |                                 |                               |                               |                               |                                |                                |                                |                               |                                |                                     |                                 |
|                    |                                   |                                 |                               |                               |                                 |                                 |                               |                               |                               |                                |                                |                                |                               |                                |                                     |                                 |
|                    |                                   |                                 |                               |                               |                                 |                                 |                               |                               |                               |                                |                                |                                |                               |                                |                                     |                                 |
|                    |                                   |                                 |                               |                               |                                 |                                 |                               |                               |                               |                                |                                |                                |                               |                                |                                     |                                 |
|                    |                                   |                                 |                               |                               |                                 |                                 |                               |                               |                               |                                |                                |                                |                               |                                |                                     |                                 |
|                    |                                   |                                 |                               |                               |                                 |                                 |                               |                               |                               |                                |                                |                                |                               |                                |                                     |                                 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION **SUITE 3300, 550 BURRARD STREET** VANCOUVER BC V6C 0B3

Page: 2 - B Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 1- OCT- 2015 Account: GALCRE

| e.a                | 13                                |                              |                              |                             |                               |                               |                               |                               | C                            | ERTIFIC                       | CATE O                     | F ANAL                       | _YSIS                         | VA151                        | 43592                         |                              |
|--------------------|-----------------------------------|------------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|------------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS81<br>Ba<br>ppm<br>0.5 | ME- MS81<br>Ce<br>ppm<br>0.5 | ME- MS81<br>Cr<br>ppm<br>10 | ME- MS81<br>Cs<br>ppm<br>0.01 | ME- MS81<br>Dy<br>ppm<br>0.05 | ME- MS81<br>Er<br>ppm<br>0.03 | ME- MS81<br>Eu<br>ppm<br>0.03 | ME- MS81<br>Ga<br>ppm<br>0.1 | ME- MS81<br>Gd<br>ppm<br>0.05 | ME- MS81<br>Ge<br>ppm<br>5 | ME- MS81<br>Hf<br>ppm<br>0.2 | ME- MS81<br>Ho<br>ppm<br>0.01 | ME- MS81<br>La<br>ppm<br>0.5 | ME- MS81<br>Lu<br>ppm<br>0.01 | ME- MS81<br>Nb<br>ppm<br>0.2 |
| :015SA853b         |                                   | 1430                         | 23.3                         | 20                          | 0.89                          | 2.93                          | 1.73                          | 0.99                          | 15.3                         | 3.25                          | <5                         | 1.7                          | 0.67                          | 13.7                         | 0.26                          | 9.9                          |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |
|                    |                                   |                              |                              |                             |                               |                               |                               |                               |                              |                               |                            |                              |                               |                              |                               |                              |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - C Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 1- OCT- 2015 Account: GALCRE

| mnera              | 13                                |                              |                               |                              |                               |                            |                              |                              | C                             | ERTIFIC                       | CATE O                        | F ANAI                       | LYSIS                     | VA151                     | 43592                       |                               |
|--------------------|-----------------------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------|-----------------------------|-------------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS81<br>Nd<br>ppm<br>0.1 | ME- MS81<br>Pr<br>ppm<br>0.03 | ME- MS81<br>Rb<br>ppm<br>0.2 | ME- MS81<br>Sm<br>ppm<br>0.03 | ME- MS81<br>Sn<br>ppm<br>1 | ME- MS81<br>Sr<br>ppm<br>0.1 | ME- MS81<br>Ta<br>ppm<br>0.1 | ME- MS81<br>Tb<br>ppm<br>0.01 | ME- MS81<br>Th<br>ppm<br>0.05 | ME- MS81<br>Tm<br>ppm<br>0.01 | ME- MS81<br>U<br>ppm<br>0.05 | ME- MS81<br>V<br>ppm<br>5 | ME- MS81<br>W<br>ppm<br>1 | ME- MS81<br>Y<br>ppm<br>0.5 | ME- MS81<br>Yb<br>ppm<br>0.03 |
| 2015SA853b         |                                   | 12.2                         | 2.92                          | 110.5                        | 2.93                          | 1                          | 837                          | 0.3                          | 0.53                          | 2.42                          | 0.25                          | 1.52                         | 377                       | 4                         | 15.8                        | 2.02                          |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |
|                    |                                   |                              |                               |                              |                               |                            |                              |                              |                               |                               |                               |                              |                           |                           |                             |                               |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION **SUITE 3300, 550 BURRARD STREET** VANCOUVER BC V6C 0B3

Page: 2 - D Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 1- OCT- 2015 Account: GALCRE

| Minera             | IS                                |                            |                                |                                |                              |                              |                               |                              | CI                           |                              | CATE O                       | F ANAL                       | YSIS                         | VA151                         | 43592                          |                                |
|--------------------|-----------------------------------|----------------------------|--------------------------------|--------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|--------------------------------|--------------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS81<br>Zr<br>ppm<br>2 | ME- 4ACD81<br>Ag<br>ppm<br>0.5 | ME- 4ACD81<br>Cd<br>ppm<br>0.5 | ME- 4ACD81<br>Co<br>ppm<br>1 | ME- 4ACD81<br>Cu<br>ppm<br>1 | ME- 4ACD81<br>Li<br>ppm<br>10 | ME- 4ACD81<br>Mo<br>ppm<br>1 | ME- 4ACD81<br>Ni<br>ppm<br>1 | ME- 4ACD81<br>Pb<br>ppm<br>2 | ME- 4ACD81<br>Sc<br>ppm<br>1 | ME- 4ACD81<br>Zn<br>ppm<br>2 | ME- MS42<br>As<br>ppm<br>0.1 | ME- MS42<br>Bi<br>ppm<br>0.01 | ME- MS42<br>Hg<br>ppm<br>0.005 | ME- MS42<br>In<br>ppm<br>0.005 |
| 2015SA853b         | LOK                               | 53                         | <0.5                           | 1.0                            | 22                           | 174                          | 10                            | <1                           | 11                           | 44                           | 37                           | 199                          | 9.1                          | 0.04                          | <0.005                         | 0.032                          |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |
|                    |                                   |                            |                                |                                |                              |                              |                               |                              |                              |                              |                              |                              |                              |                               |                                |                                |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - E Total # Pages: 2 (A - E)
Plus Appendix Pages
Finalized Date: 1- OCT- 2015 Account: GALCRE

| mera               | linerais                          |                                |                               |                              |                              |                               |                               |                           | CERTIFICATE OF ANALYSIS VA15143592 |
|--------------------|-----------------------------------|--------------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|---------------------------|------------------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS42<br>Re<br>ppm<br>0.001 | ME- MS42<br>Sb<br>ppm<br>0.05 | ME- MS42<br>Sc<br>ppm<br>0.1 | ME- MS42<br>Se<br>ppm<br>0.2 | ME- MS42<br>Te<br>ppm<br>0.01 | ME- MS42<br>TI<br>ppm<br>0.02 | S- IR08<br>S<br>%<br>0.01 | C- IR07<br>C<br>%<br>0.01          |
| 2015SA853b         |                                   | <0.001                         | 0.25                          | 23.0                         | 0.5                          | 0.08                          | 0.09                          | 0.09                      | 1.86                               |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |
|                    |                                   |                                |                               |                              |                              |                               |                               |                           |                                    |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 1- OCT- 2015

Account: GALCRE

Project: Galore Creek

CERTIFICATE OF ANALYSIS VA15143592

|                    |                                                 | CERTIFICATE COA     | ANACNIC |  |  |  |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------|---------------------|---------|--|--|--|--|--|--|--|--|--|--|
|                    |                                                 | CERTIFICATE COM     | IMENIS  |  |  |  |  |  |  |  |  |  |  |
|                    | LABORATORY ADDRESSES                            |                     |         |  |  |  |  |  |  |  |  |  |  |
| Applies to Method: | Processed at ALS Vancouv<br>C- IR07<br>ME- MS81 | ME- MS42<br>S- IR08 |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |
|                    |                                                 |                     |         |  |  |  |  |  |  |  |  |  |  |



#### **APPENDIX V**

### **ANALYTICAL PROCEDURES**

(Attached Digitally)



Fire Assay Procedure

# Au- AA23 & Au- AA24 Fire Assay Fusion, AAS Finish

### **Sample Decomposition:**

Fire Assay Fusion (FA-FUS01 & FA-FUS02)

## **Analytical Method:**

Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven, 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

| Method<br>Code | Element | Symbol | Units | Sample<br>Weight<br>(g) | Lower<br>Limit | Upper<br>Limit | Default<br>Overlimit<br>Method |
|----------------|---------|--------|-------|-------------------------|----------------|----------------|--------------------------------|
| Au-<br>AA23    | Gold    | Au     | ppm   | 30                      | 0.005          | 10.0           | Au-<br>GRA21                   |
| Au-<br>AA24    | Gold    | Au     | ppm   | 50                      | 0.005          | 10.0           | Au-<br>GRA22                   |

Revision 04.00 Aug 17, 2005



# <u>Complete Characterization</u>

By combining a number of methods into one cost effective package, a complete characterization is obtained. This package combines the whole rock package ME-ICP06 plus carbon and sulfur by combustion furnace (ME-IR08) to quantify the major elements in a sample. Trace elements including the full rare earth element suite are reported from three digestions with either ICP-AES or ICP-MS finish: A lithium borate fusion for the resistive and rare earth elements (ME-MS81), a four acid digestion for the basemetals (ME-4ACD81) and an aqua regia digestion for the volatile gold related trace elements (ME-MS42).

The nature of Lithophile elements and the matrices in which they occur require stronger dissolution procedures. The most accurate results will therefore be obtained using fusion as the dissolution procedure.

# Whole Rock Geochemistry - ME-ICP06 and OA-GRA05 Analysis of major oxides by ICP-AES

## ME-ICP06

## **Sample Decomposition:**

Lithium Metaborate/Lithium Tetraborate (LiBO<sub>2</sub>/Li<sub>2</sub>B4O<sub>2</sub>) Fusion\* (FUS LI01)

#### **Analytical Method:**

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (0.200 g) is added to lithium metaborate/lithium tetraborate flux, mixed well and fused in a furnace at 1025°C. The resulting melt is then cooled and dissolved in an acid mixture containing nitric, hydrochloric and hydrofluoric acids. This solution is then analyzed by ICP-AES. Results are corrected for spectral inter-element interferences and reported.

| Element  | Symbol                         | Units | Lower Limit | Upper Limit |
|----------|--------------------------------|-------|-------------|-------------|
| Silica   | SiO <sub>2</sub>               | %     | 0.01        | 100         |
| Aluminum | Al <sub>2</sub> O <sub>3</sub> | %     | 0.01        | 100         |
| Iron     | Fe <sub>2</sub> O <sub>3</sub> | %     | 0.01        | 100         |
| Calcium  | CaO                            | %     | 0.01        | 100         |

Revision 04.00 January 10<sup>th</sup>, 2014



| Element    | Symbol                         | Units | Lower Limit | Upper Limit |
|------------|--------------------------------|-------|-------------|-------------|
| Magnesium  | MgO                            | %     | 0.01        | 100         |
| Sodium     | Na <sub>2</sub> O              | %     | 0.01        | 100         |
| Potassium  | K <sub>2</sub> O               | %     | 0.01        | 100         |
| Chromium   | Cr <sub>2</sub> O <sub>3</sub> | %     | 0.01        | 100         |
| Titanium   | TiO <sub>2</sub>               | %     | 0.01        | 100         |
| Manganese  | MnO                            | %     | 0.01        | 100         |
| Phosphorus | $P_2O_5$                       | %     | 0.01        | 100         |
| Strontium  | SrO                            | %     | 0.01        | 100         |
| Barium     | BaO                            | %     | 0.01        | 100         |

# OA-GRA05 Loss on Ignition

## **Sample Decomposition:**

Thermal decomposition Furnace (OA-GRA05)

### **Analytical Method:**

Gravimetric

If required, the total oxide content is determined from the ICP analyte concentrations and loss on Ignition (L.O.I.) values. A prepared sample (1.0 g) is placed in an oven at 1000°C for one hour, cooled and then weighed. The percent loss on ignition is calculated from the difference in weight.

| Method Code | Element             | Symbol | Units | Lower<br>Limit | Upper<br>Limit |
|-------------|---------------------|--------|-------|----------------|----------------|
| OA-GRA05    | Loss on<br>Ignition | LOI    | %     | 0.01           | 100            |

Revision 04.00



# **Total Carbon - Method Code C-IR07**

## **Sample Decomposition:**

**LECO Furnace** 

#### **Analytical Method:**

Infrared Spectroscopy

The sample is combusted in a LECO induction furnace. The generated CO2 is quantitatively detected by infrared spectrometry and reported as percent carbon.

| Method Code | Element | Symbol | Units | Lower<br>Limit | Upper<br>Limit |
|-------------|---------|--------|-------|----------------|----------------|
| C-IR07      | Carbon  | С      | %     | 0.01           | 50             |

# **Specialty Assay Procedure - Total Sulphur S-IR08**

## **Sample Decomposition:**

**Various** 

#### **Analytical Method:**

Leco sulphur analyzer, Gravimetric

The sample is analyzed for Total Sulphur using a Leco sulphur analyzer. Sulphur dioxide released from the sample is measured by an IR detection system and the Total Sulphur result is provided.

| Method Code | Element | Symbol | Units | Lower<br>Limit | Upper<br>Limit |
|-------------|---------|--------|-------|----------------|----------------|
| S-IR08      | Sulphur | S      | %     | 0.01           | 50             |

Revision 04.00



# ME-MS81 Lithogeochemistry

## **Sample Decomposition:**

Lithium Borate (LiBO<sub>2</sub>/Li<sub>2</sub>B<sub>4</sub>O<sub>2</sub>) Fusion (FUS-LI01)\*

#### **Analytical Method:**

Inductively Coupled Plasma - Mass Spectroscopy (ICP - MS)

A prepared sample (0.100 g) is added to lithium metaborate/lithium tetraborate flux, mixed well and fused in a furnace at 1025°C. The resulting melt is then cooled and dissolved in an acid mixture containing nitric, hydrochloric and hydrofluoric acids. This solution is then analyzed by inductively coupled plasma - mass spectrometry.

| Element    | Symbol | Unit | Lower Limit | Upper Limit |
|------------|--------|------|-------------|-------------|
| Barium     | Ва     | ppm  | 0.5         | 10000       |
| Cerium     | Ce     | ppm  | 0.5         | 10000       |
| Chromium   | Cr     | ppm  | 10          | 10000       |
| Cesium     | Cs     | ppm  | 0.01        | 10000       |
| Dysprosium | Dy     | ppm  | 0.05        | 1000        |
| Erbium     | Er     | ppm  | 0.03        | 1000        |
| Europium   | Eu     | ppm  | 0.03        | 1000        |
| Gallium    | Ga     | ppm  | 0.1         | 1000        |
| Gadolinium | Gd     | ppm  | 0.05        | 1000        |
| Hafnium    | Hf     | ppm  | 0.2         | 10000       |
| Holmium    | Но     | ppm  | 0.01        | 1000        |
| Lanthanum  | La     | ppm  | 0.5         | 10000       |
| Lutetium   | Lu     | ppm  | 0.01        | 1000        |
| Niobium    | Nb     | ppm  | 0.2         | 2500        |
| Neodymium  | Nd     | ppm  | 0.1         | 10000       |

Revision 04.00 January 10<sup>th</sup>, 2014



| Element      | Symbol | Unit | Lower Limit | Upper Limit |  |
|--------------|--------|------|-------------|-------------|--|
| Praseodymium | Pr     | ppm  | 0.03        | 1000        |  |
| Rubidium     | Rb     | ppm  | 0.2         | 10000       |  |
| Samarium     | Sm     | ppm  | 0.03        | 1000        |  |
| Tin          | Sn     | ppm  | 1           | 10000       |  |
| Strontium    | Sr     | ppm  | 0.1         | 10000       |  |
| Tantalum     | Ta     | ppm  | 0.1         | 2500        |  |
| Terbium      | Tb     | ppm  | 0.01        | 1000        |  |
| Thorium      | Th     | ppm  | 0.05        | 1000        |  |
| Thallium     | TI     | ppm  | 0.5         | 1000        |  |
| Thullium     | Tm     | ppm  | 0.01        | 1000        |  |
| Uranium      | U      | ppm  | 0.05        | 1000        |  |
| Vanadium     | V      | ppm  | 5           | 10000       |  |
| Tungsten     | W      | ppm  | 1           | 10000       |  |
| Yttrium      | Y      | ppm  | 0.5         | 10000       |  |
| Ytterbium    | Yb     | ppm  | 0.03 1000   |             |  |
| Zirconium    | Zr     | ppm  | 2 10000     |             |  |

\*Note: Minerals that may not recover fully using the lithium borate fusion include zircon, some metal oxides, some rare-earth phosphates and some sulphides. Basemetals also do not fully recover using this method.



# **ME-4ACD81 Addition of Basemetals**

#### **Sample Decomposition:**

4-Acid (GEO-4ACID)

### **Analytical Method:**

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES

A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. The residue is topped up with dilute hydrochloric acid and the resulting solution is analyzed by inductively coupled plasma-atomic emission spectrometry. Results are corrected for spectral interelement interferences.

| Element    | Symbol | Units | Lower Limit | Upper Limit |
|------------|--------|-------|-------------|-------------|
| Silver     | Ag     | ppm   | 0.5         | 100         |
| Cadmium    | Cd     | ppm   | 0.5         | 1000        |
| Cobalt     | Со     | ppm   | 1           | 10000       |
| Copper     | Cu     | ppm   | 1           | 10000       |
| Lithium    | Li     | ppm   | 10          | 10000       |
| Molybdenum | Мо     | ppm   | 1           | 10000       |
| Nickel     | Ni     | ppm   | 1           | 10000       |
| Lead       | Pb     | ppm   | 2           | 10000       |
| Zinc       | Zn     | ppm   | 2           | 10000       |



# <u>Geochemical Procedure - ME-MS42</u> <u>Single Element Trace Level Methods Using ICP-MS</u>

## **Sample Decomposition:**

Aqua Regia Digestion (GEO-AR01)

#### **Analytical Method:**

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.50 g) is digested with aqua regia for 45 minutes. After cooling, the resulting solution is diluted to 12.5 mL with de-ionized water, mixed and analyzed by inductively coupled plasma-mass spectrometry. The analytical results are corrected for inter element spectral interferences.

| Element   | Symbol | Units | Lower<br>Limit | Upper<br>Limit |
|-----------|--------|-------|----------------|----------------|
| Arsenic   | As     | ppm   | 0.1            | 250            |
| Bismuth   | Bi     | ppm   | 0.01           | 250            |
| Mercury   | Hg     | ppm   | 0.005          | 250            |
| Antimony  | Sb     | ppm   | 0.05           | 250            |
| Selenium  | Se     | ppm   | 0.2            | 250            |
| Tellurium | Te     | ppm   | 0.01           | 250            |



#### QUALITY ASSURANCE OVERVIEW

#### Laboratory Accreditation and Certification



#### ISO/IEC 17025

The North American analytical laboratories are accredited by the Standards Council of Canada (SCC) for specific tests listed in the Scopes of Accreditation to ISO/IEC 17025, the General Requirements for the Competence of Testing and Calibration Laboratories, and the PALCAN Handbook (CAN-P-1570).

Accreditation to this ISO standard involves detailed, on-site audits to evaluate our quality management system and verify the technical competence of our methods and personnel. This technical verification includes the requirement for successful participation in interlaboratory proficiency testing programs and full method validation.

ALS has taken the additional step to list all sample preparation laboratories in North America as part of the Scopes of Accreditation for our analytical laboratories. By doing this ALS acknowledges that sample preparation is performed at locations that are monitored regularly for quality control practices.

The scope of accreditation for ALS Geochemistry Vancouver includes the following methods:

- Au-AA: Determination of Au by Lead Collection Fire Assay and AAS
- Au/Ag-GRA: Determination of Au and Ag by Lead Collection Fire Assay and Gravimetric Finish
- PGM-ICP: Determination of Au, Pt and Pd by Lead Collection Fire Assay and ICP-AES
- ME-ICP41: Multi-Element (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Ti, Tl, U, V, W, Zn) Determination by Aqua Regia Digestion and ICP-AES

Lab Accreditation & QA Overview (rev08.00)

Revision: 07.00 Issuing Authority: Erin Miller August 6, 2014 Page 1 of 10

- ME-MS41: Multi-Element (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr) Determination by Aqua Regia Digestion and ICP-AES and ICP-MS
- ME-ICP61: Multi-Element (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Ti, Tl, U, V W, Y, Zn and Zr) Determination by 4-Acid Digestion and ICP-AES
- ME-MS61: Multi-Element (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr) Determination by 4-Acid Digestion and ICP-AES and ICP-MS
- ME-ICP81: Al, Co, CU, Fe, Mg, Mn, Ni, Pb, S and Zn by Sodium Peroxide Fusion and ICP-AES
- OG46: Ag, Cu, Mo, Pb, and Zn Determination of Ores and High Grade Material Using ICP-AES Following an Aqua Regia Digestion
- OG62: Ag, Cu, Mo, Pb and Zn Determination of Ores and High Grade Material Using ICP-AES Following a Four-Acid Digestion
- AA45: Ag, Cu, Pb and Zn Determination of Base Meals Using AAS Following an Aqua Regia Digestion
- AA46: Ag, Cu, Pb, Zn and Mo Determination of Ores and High Grade materials Using AAS Following an Aqua Regia Digestion
- AA61: Ag, Co, Cu, Ni, Pb and Zn Determination of Base Metals Using AAS Following a Four-Acid Digestion
- AA62: Ag, Co, CU, Mo, Ni, Pb and Zn Determination of Ores and High Grade Materials Using AAS Following a Four-Acid Digestion
- **ME-ICP06**: SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, CaO, MgO, Na<sub>2</sub>O, K<sub>2</sub>O, Cr<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, MnO, P<sub>2</sub>O<sub>5</sub>, SrO, BaO, Total Determination of Major Oxides by Lithium Metaborate/Lithium Tetraborate Fusion and ICP-AES
- OA-GRA05: LOI Loss on Ignition
- ME-MS81: Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tl, Tm, U, V, W, Y, Yb, Zr Determination of Rare Earth Elements by Lithium Borate Fusion and ICP-MS
- ME-ICP41a: Multi-Element (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, Hf, Hg, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn) Determination of Low Grade Ores by Aqua Regia Digestion and ICP-AES
- ME-ICP61a: Multi-Element (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, Hf, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr Determination of Low Grade Ores by Four-Acid Digestion and ICP-AES
- **ME-XRF06**: SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, CaO, MgO, Na<sub>2</sub>O, K<sub>2</sub>O, Cr<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, MnO, P<sub>2</sub>O<sub>5</sub>, SrO, BaO, Total Determination of Major Oxides by Lithium Metaborate/Lithium Tetraborate Fusion and XRF
- OA-GRA06: LOI Loss on Ignition
- ME-XRF26: SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, CaO, MgO, Na<sub>2</sub>O, K<sub>2</sub>O, Cr<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, MnO, P<sub>2</sub>O<sub>5</sub>, SrO, BaO, Total Determination of Major Oxides by Lithium Metaborate/Lithium Tetraborate Fusion and XRF
- OA-GRA05x: LOI Loss on Ignition
- S-IR08: S Determination of Total S by Leco Furnace and Infrared Spectroscopy
- C-IR07: C Determination of Total C by Leco Furnace and Infrared Spectroscopy
- OA-VOL08: Fizz Rating, NP, MPA, NNP, Ratio (NP:MPA) Acid Base Accounting

The scope of accreditation for ALS Geochemistry Reno includes the following methods:

- Au-AA: Determination of Au by Lead Collection Fire Assay and AAS
- Au/Ag-GRA: Determination of Au by Lead Collection Fire Assay and Gravimetric Finish

The scope of accreditation for ALS Geochemistry Val d'Or includes the following methods:

- Au-AA: Determination of Au by Lead Collection Fire Assay and AAS
- Au-GRA: Determination Au by Lead Collection Fire Assay and Gravimetric Finish

Aside from laboratory accreditation, ALS Geochemistry has been a leader in participating in, and sponsoring, the assayer certification program in British Columbia. Many of our analysts have completed this demanding program that includes extensive theoretical and practical examinations. Upon successful completion of these examinations, they are awarded the title of Registered Assayer.

### Quality Assurance Program

The quality assurance program is an integral part of all day-to-day activities at ALS Geochemistry and involves all levels of staff. Responsibilities are formally assigned for all aspects of the quality assurance program.

As part of the program, checks are made to monitor quality at both sample preparation and analytical stages.

| Quality Assurance Program             | Overview                                                                                                                                                                                                                     |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Preparation Quality<br>Control | Quality Specifications  Fineness of crushing and pulverizing checked and monitored according to method specifications.  Sample Preparation Duplicates  Inserted every 50 samples.  Split taken from coarse crushed material. |
| Analytical Quality Control            | Blanks, reference materials and pulp duplicates are inserted into every analytical run.  Frequency details can be found on page 6.                                                                                           |

### Sample Preparation Quality Specifications

Standard specifications for sample preparation are clearly defined and monitored. The specifications for our most common methods are as follows:

- Crushing (CRU-31)
  - > 70% of the crushed sample passes through a 2 mm screen
- Ringing (PUL-31)

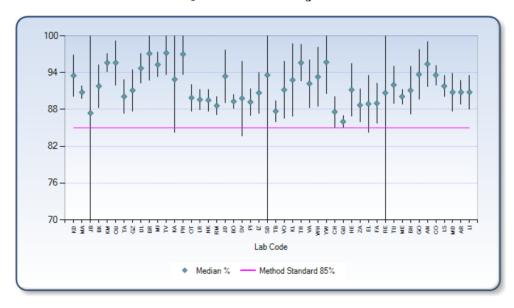
Lab Accreditation & QA Overview (rev08.00)

Revision: 08.00 Issuing Authority: Laura Glaubach October 23, 2015 Page 3 of 10

- > 85% of the ring pulverized sample passes through a 75 micron screen (Tyler 200 mesh)
- · Samples Received as Pulps
  - >85% of the sample passes through a 75 micron screen (Tyler 200 mesh)

These characteristics are measured and results reported to verify the quality of sample preparation. Our standard operating procedures require that samples at every preparation station are tested regularly throughout each shift. Measurement of sample preparation quality allows the identification of equipment, operators and processes that are not operating within specifications.

QC results from all global sample preparation laboratories are captured by the LIM System and the QA Department compiles a monthly review report for senior management on the performance of each laboratory from this data.


# CRU-31 (Fine crushing - 70% < 2mm)

01-Jul-2014 to 01-Aug-2014

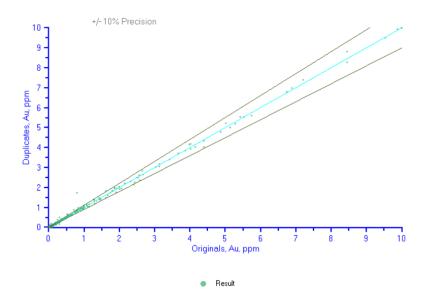


### PUL-31 (Pulverize split to 85% < 75 um)

01-Jul-2014 to 01-Aug-2014



### Other Sample Preparation Specifications


Sample preparation is a vital part of any analysis protocol. Many projects require sample preparation to other specifications, for instance >90% of the crushed sample to pass through a 2 mm screen. These procedures can easily be accommodated and the Prep QC monitoring system is essential in ensuring the required specifications are routinely met.

#### Sample Preparation Duplicates

In addition to routine screen tests, sample preparation quality is monitored at ALS Geochemistry through the insertion of sample preparation duplicates. For every 50 samples prepared, an additional split is taken from the coarse crushed material to create a pulverizing duplicate. The additional split is processed and analyzed in a similar manner to the other samples in the submission. The precision of the preparation duplicate results is highly dependent on the individual sample mineralogy, analytes of interest and procedures selected for sample preparation. Therefore the data is most relevant at the client /project level.

All preparation duplicate data is automatically captured, sorted and retained in the QC Database and available on Webtrieve $^{\text{TM}}$  for client review. The data is also available on the QC Data Certificates.

### Duplicates Report Method: Au-AA23 Analyte: Au





### Analytical Quality Control - Reference Materials, Blanks & Duplicates

The LIMS inserts quality control samples (reference materials, blanks and duplicates) on each analytical run, based on the rack sizes associated with the method. The rack size is the number of sample including QC samples included in a batch. The blank is inserted at the beginning, standards are inserted at random intervals, and duplicates are analysed at the end of the batch. Quality control samples are inserted based on the following rack sizes specific to the method:

| Rack Size | Methods                                                                           | Quality Control Sample Allocation  |  |
|-----------|-----------------------------------------------------------------------------------|------------------------------------|--|
| 20        | Specialty methods including specific gravity, bulk density, and acid insolubility | 2 standards, 1 duplicate, 1 blank  |  |
| 28        | Specialty fire assay, assay-grade, umpire and concentrate methods                 | 1 standard, 1 duplicate, 1 blank   |  |
| 39        | XRF methods                                                                       | 2 standards, 1 duplicate, 1 blank  |  |
| 40        | Regular AAS, ICP-AES and ICP-MS methods                                           | 2 standards, 1 duplicate, 1 blank  |  |
| 84        | Regular fire assay methods                                                        | 2 standards, 3 duplicates, 1 blank |  |

Laboratory staff analyse quality control samples at least at the frequency specified above. If necessary, they may include additional quality control samples above the minimum specifications.

All data gathered for quality control samples - blanks, duplicates and reference materials - are automatically captured, sorted and retained in the QC Database.

### Quality Control Limits and Evaluation

Quality Control Limits for reference materials and duplicate analyses are established according to the precision and accuracy requirements of the particular method. Data outside control limits are identified and investigated and require corrective actions to be taken. Quality control data is scrutinised at a number of levels. Each analyst is responsible for ensuring the data submitted is within control specifications. In addition, there are a number of other checks.

#### Certificate Approval

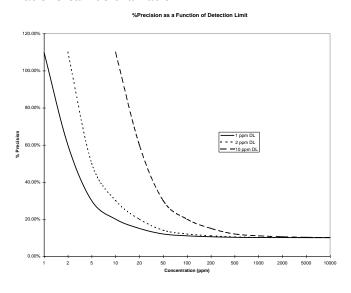
If any data for reference materials, duplicates, or blanks falls beyond the control limits established, it is automatically flagged red by the computer system for serious failures, and yellow for borderline results. The Department Manager(s) conducting the final review of the Certificate is thus made aware that a problem may exist with the data set.

### Precision Specifications and Definitions

Most geochemical procedures are specified to have a precision of  $\pm$  10%, and assay procedures  $\pm$  5%. The precision of Au analyses is dominated by the sampling precision.

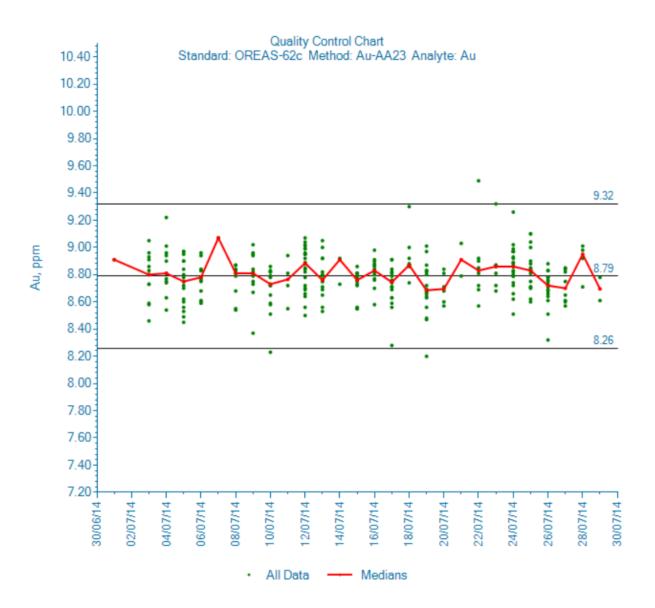
Precision can be expressed as a function of concentration:

$$P_c = (\frac{DetectionLimit}{c} + P) \times 100\%$$


where  $P_c$  – the precision at concentration c

c – concentration of the element

P - the "Precision Factor" of the element. This is the precision of the method at very high concentrations, i.e. 0.05 for 5%.


(M. Thompson, 1988. Variation of precision with concentration in an analytical system. Analyst, 113: 1579-1587.)

As an example, precision as a function of concentration (10% precision) is plotted for three different detection limits. The impact of detection limit on precision of results for low-level determinations can be dramatic.



### **Evaluation of Trends**

Control charts for frequently used method codes are generated and evaluated by laboratory staff on a regular basis. The control charts are evaluated to ensure internal specifications for precision and accuracy are met. The data is also reviewed for any long-term trends and drifts.



### External Proficiency Tests

Proficiency testing provides an independent assessment of laboratory performance by an outside agency. Test materials are regularly distributed to the participants and results are processed by a central agency. The results are usually converted to a Z-Score to rate the laboratory's result against the consensus value from all participating labs.

All ALS Geochemistry analytical facilities in North America participate in proficiency tests for the analytical procedures routinely done at each laboratory. ALS Geochemistry has participated for many years in proficiency tests organized by organizations such as Canadian Certified Reference Materials Projects, and Geostats as well as a number of independent studies organized by consultants for specific clients. We have participated also participated in several certification studies for new certified reference materials by CANMET and Rocklabs.

Feedback from these studies is invaluable in ensuring our continuing accuracy and validation of methods.

### **Quality Assurance Meetings**

A review of quality assurance issues is held regularly at Technical and Quality Assurance Meetings. The meetings cover such topics as:

- Results of internal round robin exchanges, external proficiency tests and performance evaluation samples
- Monitoring of control charts for reference materials
- Review of quality system failures
- Incidents raised by clients
- Results of internal quality audits
- Other quality assurance issues

The Quality Assurance Department and senior laboratory management participate in these meetings.



**Geochemical Procedure** 

# ME- MS41 Ultra- Trace Level Methods Using ICP- MS and ICP- AES

### **Sample Decomposition:**

Aqua Regia Digestion (GEO-AR01)

### **Analytical Method:**

Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.50 g) is digested with aqua regia in a graphite heating block. After cooling, the resulting solution is diluted to with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver and tungsten and diluted accordingly. Samples are then analysed by ICP-MS for the remaining suite of elements. The analytical results are corrected for inter-element spectral interferences.

| Element   | Symbol | Units | Lower Limit | Upper Limit |
|-----------|--------|-------|-------------|-------------|
| Silver    | Ag     | ppm   | 0.01        | 100         |
| Aluminum  | Al     | %     | 0.01        | 25          |
| Arsenic   | As     | ppm   | 0.1         | 10 000      |
| Gold      | Au     | ppm   | 0.2         | 25          |
| Boron     | В      | ppm   | 10          | 10 000      |
| Barium    | Ва     | ppm   | 10          | 10 000      |
| Beryllium | Ве     | ppm   | 0.05        | 1 000       |
| Bismuth   | Bi     | ppm   | 0.01        | 10 000      |
| Calcium   | Ca     | %     | 0.01        | 25          |
| Cadmium   | Cd     | ppm   | 0.01        | 1 000       |
| Cerium    | Ce     | ppm   | 0.02        | 500         |
| Cobalt    | Со     | ppm   | 0.1         | 10 000      |
| Chromium  | Cr     | ppm   | 1           | 10 000      |

Revision 04.00 Sep 20, 2006





# **Geochemical Procedure**

| Element    | Symbol | Units | Lower Limit | Upper Limit |
|------------|--------|-------|-------------|-------------|
| Cesium     | Cs     | ppm   | 0.05        | 500         |
| Copper     | Cu     | ppm   | 0.2         | 10 000      |
| Iron       | Fe     | %     | 0.01        | 50          |
| Gallium    | Ga     | ppm   | 0.05        | 10 000      |
| Germanium  | Ge     | ppm   | 0.05        | 500         |
| Hafnium    | Hf     | ppm   | 0.02        | 500         |
| Mercury    | Hg     | ppm   | 0.01        | 10 000      |
| Indium     | In     | ppm   | 0.005       | 500         |
| Potassium  | K      | %     | 0.01        | 10          |
| Lanthanum  | La     | ppm   | 0.2         | 10 000      |
| Lithium    | Li     | ppm   | 0.1         | 10 000      |
| Magnesium  | Mg     | %     | 0.01        | 25          |
| Manganese  | Mn     | ppm   | 5           | 50 000      |
| Molybdenum | Мо     | ppm   | 0.05        | 10 000      |
| Sodium     | Na     | %     | 0.01        | 10          |
| Niobium    | Nb     | ppm   | 0.05        | 500         |
| Nickel     | Ni     | ppm   | 0.2         | 10 000      |
| Phosphorus | Р      | ppm   | 10          | 10 000      |
| Lead       | Pb     | ppm   | 0.2         | 10 000      |
| Rubidium   | Rb     | ppm   | 0.1         | 10 000      |
| Rhenium    | Re     | ppm   | 0.001       | 50          |
| Sulphur    | S      | %     | 0.01        | 10          |
| Antimony   | Sb     | ppm   | 0.05        | 10 000      |
| Scandium   | Sc     | ppm   | 0.1         | 10 000      |
| Selenium   | Se     | ppm   | 0.2         | 1 000       |
| Tin        | Sn     | ppm   | 0.2         | 500         |
| Strontium  | Sr     | ppm   | 0.2         | 10 000      |

Revision 04.00 Sep 20, 2006





# **Geochemical Procedure**

| Element   | Symbol | Units | Lower Limit | Upper Limit |
|-----------|--------|-------|-------------|-------------|
| Tantalum  | Та     | ppm   | 0.01        | 500         |
| Tellurium | Те     | ppm   | 0.01        | 500         |
| Thorium   | Th     | ppm   | 0.2         | 10000       |
| Titanium  | Ti     | %     | 0.005       | 10          |
| Thallium  | TI     | ppm   | 0.02        | 10 000      |
| Uranium   | U      | ppm   | 0.05        | 10 000      |
| Vanadium  | V      | ppm   | 1           | 10 000      |
| Tungsten  | W      | ppm   | 0.05        | 10 000      |
| Yttrium   | Υ      | ppm   | 0.05        | 500         |
| Zinc      | Zn     | ppm   | 2           | 10 000      |
| Zirconium | Zr     | ppm   | 0.5         | 500         |

**NOTE**: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.

Revision 04.00 Sep 20, 2006



# ME-XRF26 - Silicate / Whole Rock by Fusion / XRF

# **Sample Decomposition:**

Lithium Borate Fusion (WEI-GRA12b)

# **Analytical Method:**

X-Ray Fluorescence Spectroscopy (XRF)

A prepared sample (0.66 g) is fused with a 12:22 lithium tetraborate – lithium metaborate flux which also includes an oxidizing agent (Lithium Nitrate), and then poured into a platinum mold. The resultant disk is in turn analyzed by XRF spectrometry.

The XRF analysis is determined in conjunction with a loss-on-ignition at 1000°C. The resulting data from both determinations are combined to produce a "total".

| Analyte    | Symbol                         | Units | Lower Limit | Upper Limit |
|------------|--------------------------------|-------|-------------|-------------|
| Aluminum   | Al <sub>2</sub> O <sub>3</sub> | %     | 0.01        | 100         |
| Barium     | BaO                            | %     | 0.01        | 66          |
| Calcium    | CaO                            | %     | 0.01        | 60          |
| Chromium   | Cr <sub>2</sub> O <sub>3</sub> | %     | 0.01        | 10          |
| Iron       | Fe <sub>2</sub> O <sub>3</sub> | %     | 0.01        | 100         |
| Potassium  | K <sub>2</sub> O               | %     | 0.01        | 15          |
| Magnesium  | MgO                            | %     | 0.01        | 50          |
| Manganese  | MnO                            | %     | 0.01        | 39          |
| Sodium     | Na <sub>2</sub> O              | %     | 0.01        | 10          |
| Phosphorus | $P_2O_5$                       | %     | 0.01        | 46          |
| Sulphur    | SO <sub>3</sub>                | %     | 0.01        | 34          |
| Silicon    | SiO <sub>2</sub>               | %     | 0.01        | 100         |
| Titanium   | TiO <sub>2</sub>               | %     | 0.01        | 30          |

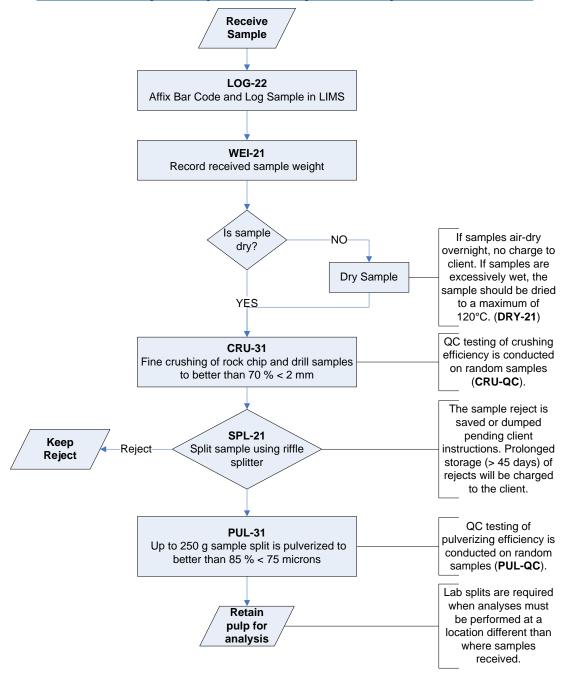


### Sample Preparation Package

# PREP-31 Standard Sample Preparation: Dry, Crush, Split and Pulverize

Sample preparation is the most critical step in the entire laboratory operation. The purpose of preparation is to produce a homogeneous analytical sub-sample that is fully representative of the material submitted to the laboratory.

The sample is logged in the tracking system, weighed, dried and finely crushed to better than 70 % passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen. A split of up to 250 g is taken and pulverized to better than 85 % passing a 75 micron (Tyler 200 mesh, US Std. No. 200) screen. This method is appropriate for rock chip or drill samples.


| Method Code | Description                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------|
| LOG-22      | Sample is logged in tracking system and a bar code label is attached.                             |
| CRU-31      | Fine crushing of rock chip and drill samples to better than 70 % of the sample passing 2 mm.      |
| SPL-21      | Split sample using riffle splitter.                                                               |
| PUL-31      | A sample split of up to 250 g is pulverized to better than 85 % of the sample passing 75 microns. |



# Sample Preparation Package

### Flow Chart -

# <u>Sample Preparation Package - PREP-31</u> Standard Sample Preparation: Dry, Crush, Split and Pulverize



Revision 03.03 March 29, 2012