

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

TOTAL COST: 2875.33

BC Geological Survey

TYPE OF REPORT [type of survey(s)]: Geological and Geochemical

OTICE OF WORK PERMIT NUMBER(S)/DATE(S): n/a FATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S		YEAR OF WORK: 2015
TATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S		
): <u>SO\</u>	DW #5579281 / Nov.18, 2015
ROPERTY NAME: Aufeas		
_AIM NAME(S) (on which the work was done): 522383		
OMMODITIES SOUGHT: Au, Ag		
NERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092HSW036		
INING DIVISION: New Westminster		NTS/BCGS: 092H/6W
ATITUDE: 49 ° 19 '54.36 " LONGITUDE: 12	<u> </u>	o 47 ' 2.33 " (at centre of work)
vner(s): Donald Hunchuk	2)	
AILING ADDRESS: 19918 Silverhope Rd., Hope, BC V0X 1L2		
PERATOR(S) [who paid for the work]: Donald Hunchuk	2)	
AILING ADDRESS: 19918 Silverhope Rd., Hope, BC V0X 1L2		
ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur Dartz diorite, Cretaceous, Spuzzum Pluton, Wardle Fault, vein		

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping	1 hectare		\$2575.33
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Silt			
Rock			
Other			
DRILLING (total metres; number of holes, size)			
Non-core			
RELATED TECHNICAL			
Sampling/assaying	1 chip sample		\$300
Petrographic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Road, local access (kilometres)/			
Trench (metres)			
Othor			
		TOTAL COST:	\$2875.33
			

BC Geological Survey Assessment Report 35900

Geological and Geochemical Assessment Report on the Aufeas Property

Hope, British Columbia New Westminster Mining Division

Map Sheet 092H/6W

UTM 661000E, 5466700N (Zone 10) N49° 19' 54.36" W120° 47' 2.33 "

Claim 522383

Prepared for: Don Hunchuk

Prepared by: Helgi Sigurgeirson, P.Geo. December 27, 2015

Table of Contents

Introduction	
Location, Access and Physiography	1
Property Definition	1
Previous Work	3
Work Program Summary	3
Regional Geology	3
Property Geology	3
Geological Mapping	5
Geochemical Sampling	7
Conclusions and Recommendations	7
References	8
Statement of Qualifications	9
Cost Statement	10
<u>List of Figures</u>	
1. Location Map	1
2. Claim Map	2
3. Property Geology / Index Map	4
4. Geology and Sampling Map	6
5. Photograph: Aufeas Vein	5

Appendix I

Certificates of Analysis QC Certificates of Analysis

Appendix II

Statement of Work

Introduction

Location, Access and Physiography

The property is about 5 km southwest of Hope, BC (Figure 1). The showings are reached by traveling south on the Silver Skagit Road to a rough (4WD) road at 610915E, 5467135N, then west for about half a kilometer to a bridge. From the bridge, there is a rough trail up the south side of Wardle Creek to the Aufeas adit.

The property ranges from about 100 m elevation in the Silverhope Valley to about 900 m at it's western edge. The area has steep, forested slopes. That part of Wardle Creek leading up to the adit is a canyon, with cliffs to the north and south. Snow can be expected from November through till April.

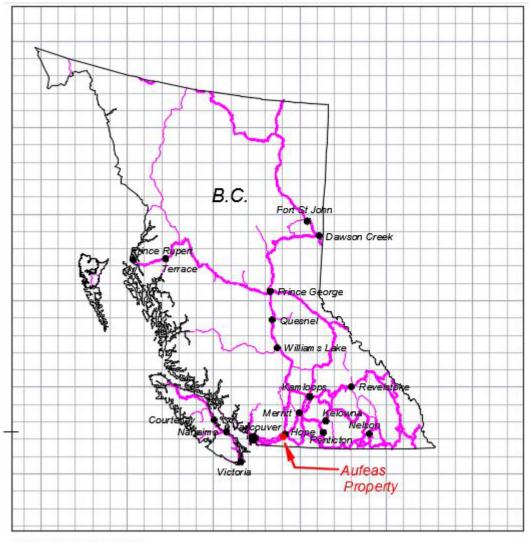


Figure 1: Location Map

Property Definition

The Aufeas Property consists of claim 522383 (Figure 2). The claim covers 147.33 hectares and is 100% owned by Donald Carl Hunchuk.

A Statement of Work (5579281) was filed for the work described in this report on November 18, 2015.

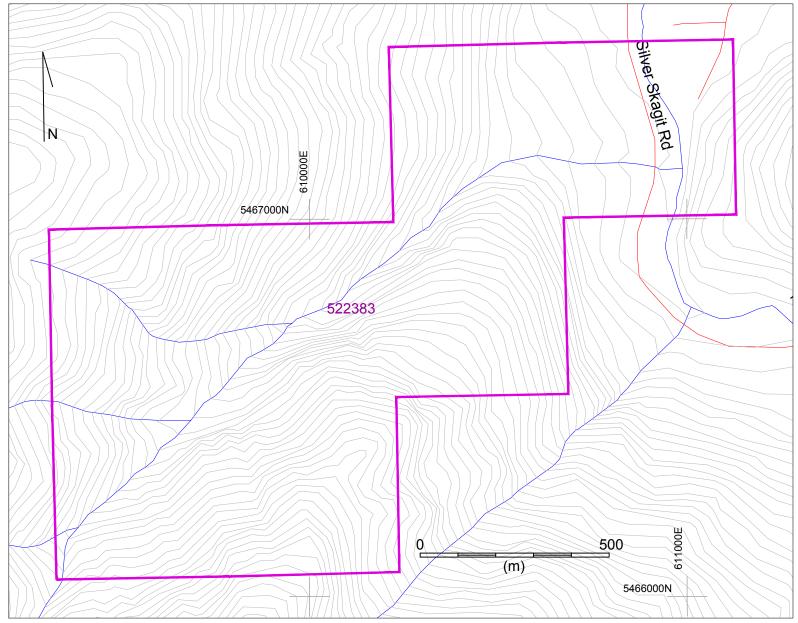


Figure 2: Claim Map (Modified from MapPlace, 2015)

Previous Work

The Aufeas vein was discovered in 1910. By 1915 335 m of crosscutting and drifting were completed (Brewer, 1915). The vein was mined from 1937 to 1940 and 487 tonnes were produced. 28.1 g/t Au, 37.4 g/t Ag & 0.93% Cu were recovered. A report by Victor Dolmage in 1938 concluded the average grade of the vein was 17 g/T Au.

A report on the Hunter Claim Group (Shearer, 1983) included prospecting that was done on the southeast corner of the present property. Several rock samples were taken, including a float sample of "oxidized silicified rock" in the creek about 400 m SW along the Wardle Creek Fault that assayed 1.35 opt Au.

Silver Cloud Mines Ltd. acquired the property in 1983 and carried out road construction, repair and underground development in support of a mapping, sampling and drilling program which was carried out in 1985 and 1986 (Allen, 1986). The program completed 914 m of diamond drilling. Sampling included 15 underground channel samples, 90 soil samples, 8 rock samples and 5 silt samples.

Minfile 092HSW 036, which documents the Aufeas Mine, is the only Minfile on the property.

Work Program Summary

The purpose of the 2015 mapping and sampling program was to map and sample the surface trace of the Aufeas Vein, and to assess possible drill sites for further testing of the Aufeas vein. 16 hours of fieldwork were done on October 10 & 11, 2015. 1 rock sample was taken and about 1 hectare of geological mapping was done.

Regional Geology

The property is entirely underlain by rocks of the Cretaceous Spuzzum Pluton, which is mainly composed of quartz diorites in the area of the property (Richards & McTaggart, 1976). The Spuzzum Pluton is truncated to the east of the property by the Fraser Fault system. The Oligocene to Miocene granodiorites of the Silver Creek Stock, which lies about 500 m southeast of the property, crosscuts both the Spuzzum Pluton and Fraser River fault system.

Property Geology

The dominant rock type observed in the area of the workings was a medium grained, dark green-grey quartz diorite (Figure 3). It is commonly weakly foliated. A light grey quartz monzonite? was also observed at several locations. The dominant structure in the area is the Wardle Creek Fault, which Allen (1983) reports as striking 035° and dipping 55° to 70° to the southeast. The Aufeas Vein, and the other veins reported in the area, appear to be splays off this structure. Lineaments paralleling the Wardle Creek fault are common in the area, as are subordinate, east trending lineaments with a similar orientation to the Aufeas Vein.

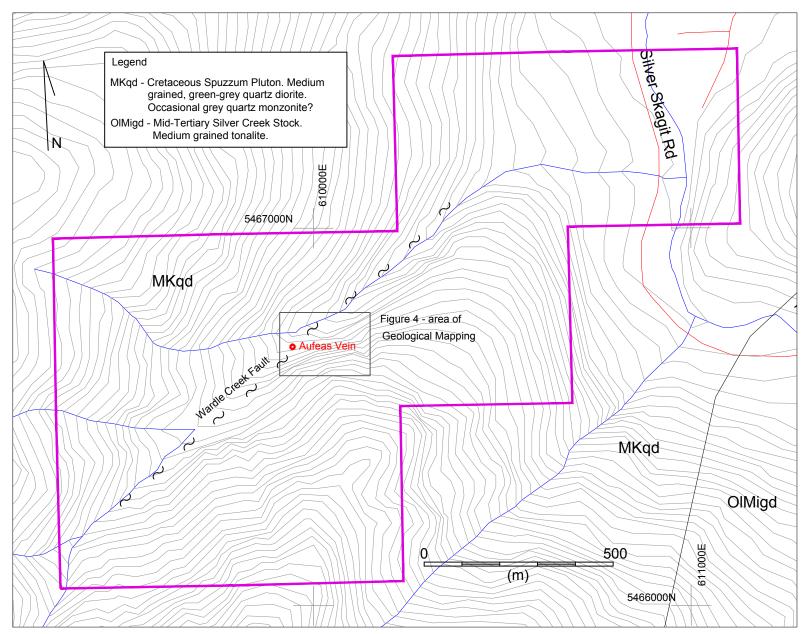


Figure 3: Property Geology / Index Map (Modified from MapPlace, 2015)

Geological Mapping

The purpose of the geological mapping was to locate and characterize the Aufeas Vein on surface. A small section of the vein was exposed by digging at an accessible section of the recessive lineament at approximately the location indicated by the historical mapping (Figure 4). The vein was exposed over about 1 m, and was 30 cm wide. The vein featured about 20 cm of fractured, limonitic arsenopyrite, pyrite and quartz and about 10 cm of gouge (Figure 5). It was oriented approximately 055/55 SE, though an accurate determination could not be made due to the limited exposure. The contacts between the vein and the host rock was sharp. Both the footwall and hanging wall diorites were bleached to a light grey within 30 cm of the vein, and had limonitic fracture coatings.

Altered diorite similar to that adjacent to the Aufeas Vein was seen in outcrop adjacent to the 0.5 cm quartz veinlet shown on Figure 4 and in float at a couple locations further down the canyon. There is considerable outcrop visible along the canyon walls and careful mapping should be able to constrain the areas where significant mineralized veins might be present. In the area mapped, the recessive lineament marking the Aufeas Vein was the only structure observed in the rock faces that could have contained the vein.

Figure 5: The Aufeas Vein.

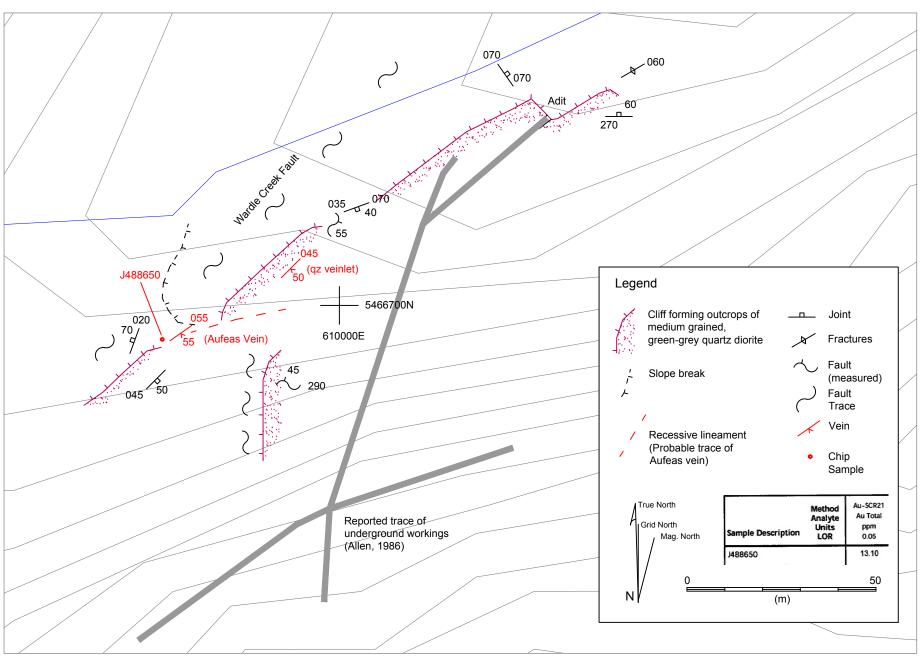


Figure 4: Geology and Sampling Map

Geochemical Sampling

A 30 cm chip sample was taken across the Aufeas vein (J488650) at the location shown on Figure 4. A screen metallics procedure was used. Samples were crushed to 70% less than 2 mm, 250 g were riffle split off and pulverized to 85% passing 75 microns. A subsample was subjected to aqua regia digestion and analyzed for 34 elements by ICP-AES. The reject was then screened to 100 microns with the entire oversized fraction analyzed by fire assay with gravimetric finish and reported as the Au(+) fraction. The -100 fraction was then pulverized to 85% passing 75 microns, then 2 subsamples were taken and assayed by fire assay with AAS finish. The average of these results was reported as the Au(-) fraction. Appendix I contains the assay and QA/QC certificates.

The purpose of the rock sampling was to compare compare the grade and nature of the vein on surface with that in the underground sampling. A second purpose was to check whether coarse gold might be affecting the assays. The Au grade sample J488650 of 13.1 ppm over 30 cm is similar to the better values from the channel and drillcore samples reported in 1986. Ag (3 ppm) and Cu (41 ppm) values are low compared to previous sampling, perhaps due to weathering. The plus fraction from the screen metallics assay was considerably higher grade then the minus fraction and resulted in the overall Au grade increasing by 1 ppm relative to the minus fraction. One sample is not enough to determine whether the Au grades from previous sampling may have been under reported due to the presence of coarse Au, but the results suggest there may be a modest but significant effect.

Conclusions and Recommendations

The Aufeas Vein appears to be similar in grade and character on surface to the vein as it was described and sampled in the underground workings approximately 80 m down dip. Only a small section of the surface trace was exposed. The vein is likely cut off by the Wardle Fault to the west. In the area examined, the vein is generally covered by a significant amount of overburden that has sloughed down from above. Further east it becomes inaccessible as it contours out along the steep canyon walls. The steepness of the canyon limits the options for further drilling of the Aufeas Vein. Horizontal holes from near the mouth of the adit could extend the vein to the east by about 100 m. To test the vein further along strike would require longer holes (c. 300 m) to be drilled from on top of the ridge.

Considerable work could be done to better define the known veins or attempt to locate others in the area. Some specific recommendations:

- 1. Map and sample the area of the Bluff Vein that was described in the 1983 report.
- 2. Map the canyon walls. Careful mapping should constrain possible vein locations.
- 3. Prospect the southeast corner of the claims to follow up on the 1.35 opt float sample found there. The less extreme slopes in this area would make soil sampling relatively easy compared to the canyon.
- 4. Map and sample the ridge to the southeast of the Aufeas Vein. Till was reported on the ridges and likely reduced the effectiveness of soil sampling in this area, though there were some noteworthy anomalies that should be followed up on.

References

Allen, D.G. (1986) Geological Report on the Aufeas Gold Prospect; *B.C. Ministry of Energy and Mines*, Assessment Report 15872.

Brewer, W. (1915) Aufeas Gold Mining Co.; B.C. Ministry of Mines, Annual Report, 1915. pages K255-256.

Dolmage, V. (1938) The Aufeas Gold Deposit; B.C. Ministry of Energy Mines and Petroleum Resources, Property File.

MapPlace (2015) BC Map UTM Zone 10 showing part of Map Sheet 092H/6W. BC Geological Survey http://webmap.em.gov.bc.ca/mapplace/minpot/BC_UTM.cfm?zone=10 (December 26, 2015).

Richards, T.A. and McTaggart, K.C. (1976) Granitic rocks of the southern Coast Plutonic Complex and northern Cascades of British Columbia; *Geological Society of America*, Bulletin, Volume 87, pages 935-953.

Shearer, J.T. (1983) Diamond Drilling and Prospecting Report on the Hunter Group; *B.C. Ministry of Energy and Mines*, Assessment Report 11656.

Statement of Qualifications

- I, Helgi Sigurgeirson, certify the following:
 - 1. I graduated in 1995 from the University of British Columbia with a B.Sc. in the Geological Sciences.
 - 2. I have worked in mining and mineral exploration continuously since graduation.
 - 3. I have worked on VMS, porphyry, epithermal and mesothermal Au vein, anorthosite hosted Ti, and nephrite exploration programs in Canada, Mexico and China. I have developed and operated 3 dimension stone quarries on the BC coast.
 - 4. I am a professional geoscientist in the Association of Professional Engineers and Geoscientists of British Columbia, and have been a member in good standing (member #28920) since 2004.
 - 5. I carried out the work program described herein and wrote this report.

H. Sigurgeirson, P. Scient

December 28, 2015

Date

Cost Statement

Consultant	Days	Rate	A mount	Total
H. Sigurgeirson, P.Geo.	Fieldwork: October 10 & 11	\$450.00	2	\$900.00
	Travel (1/2 rate): August 9 & 12	\$225.00	1	\$225.00
	Report Preparation	\$1,000.00		\$1,000.00
Subtotal				\$2,125.00
Mileage				
2007 F-150 4x4	300 km @ \$0.50/km	\$0.50	300	\$150.00
	_			
Expenses				
Accommodations				\$267.81
Fuel				\$69.00
Food				\$125.37
Ferry				\$63.15
Subtotal				\$525.33
Accave	1 cample @ \$75/cample	\$75.00	1	\$75.00
Assays	1 sample @ \$75/sample	\$75.00	ı	\$75.00
Total =	\$2,875.33			

Appendix I

Certificates of Analysis &
QC Certificates of Analysis

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-NOV-2015 This copy reported on

2-NOV-2015 **Account: SAXGEO**

CERTIFICATE VA15161970

This report is for 1 Rock sample submitted to our lab in Vancouver, BC, Canada on 22-OCT-2015.

The following have access to data associated with this certificate: HELGI SUGURGEIRSON

SAMPLE PREPARATION					
ALS CODE	DESCRIPTION				
WEI-21	Received Sample Weight				
PUL-QC	Pulverizing QC Test				
LOG-21	Sample logging - ClientBarCode				
CRU-31	Fine crushing - 70% <2mm				
SPL-21	Split sample - riffle splitter				
PUL-31	Pulverize split to 85% <75 um				

	ANALYTICAL PROCEDURES					
ALS CODE	DESCRIPTION	INSTRUMENT				
ME-ICP41a	High Grade Aqua Regia ICP-AES	ICP-AES				

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **ATTN: HELGI SUGURGEIRSON 47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-NOV-2015

Account: SAXGEO

CERTIFICATE OF ANALYSIS VA15161970

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50	ME-ICP41a Hg ppm 5
J488650		1.22	3	0.67	>100000	50	<5	<10	0.75	<5	22	17	41	18.15	<50	<5
																*
	٠															
•																
	8															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsgiobal.com

Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - B Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 1-NOV-2015

Account: SAXGEO

CERTIFICATE OF ANALYSIS VA15161970

Sample Description	Method Analyte Units LOR	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Th ppm 100	ME-ICP41a Ti % 0.05
J488650		0.18	<50	0.20	290	<5	<0.05	14	150	80	9.23	220	<5	32	<100	<0.05
	,	,														
					×											
		4														
	*															
		e e														

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-NOV-2015 **Account: SAXGEO**

Minera	ıs							CERTIFIC	ATE OF A	NALYSIS	VA1516	61970	i.
Sample Description	Method Analyte Units LOR	ME-ICP41a TI ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10							
J488650		<50	<50	14	<50	90							
a.													
		41											
,		2											
											20.00		

ALS Canada Ltd. 2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 1-NOV-2015

Account: SAXGEO

CERTIFICATE OF ANALYSIS VA15161970

	Processed at ALC Vancounor I	LABOR ocated at 2103 Dollarton Hwy, No	RATORY ADDRESSES	
Applies to Method:	CRU-31 PUL-QC	LOG-21 SPL-21	ME-ICP41a WEI-21	PUL-31
;	i			
a				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsqlobal.com

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 1 Total # Pages: 2 (A) **Plus Appendix Pages** Finalized Date: 3-NOV-2015

This copy reported on 4-NOV-2015

Account: SAXGEO

CERTIFICATE VA15163737

This report is for 1 Reject sample submitted to our lab in Vancouver, BC, Canada on 22-OCT-2015.

The following have access to data associated with this certificate: $_{\mbox{\scriptsize HELGI SUGURGEIRSON}}$

SAMPLE PREPARATION					
ALS CODE	DESCRIPTION				
FND-03	Find Reject for Addn Analysis				
SCR-21	Screen to -100 to 106 um				
PUL-32	Pulverize 1000g to 85% < 75 um				
SPL-21	Split sample - riffle splitter				
BAG-01	Bulk Master for Storage				

ANALYTICAL PROCEDURES						
ALS CODE	DESCRIPTION	INSTRUMENT				
Au-SCR21	Au Screen Fire Assay - 100 to 106 um	WST-SIM				
Au-AA25	Ore Grade Au 30g FA AA finish	AAS				
Au-AA25D	Ore Grade Au 30g FA AA Dup	AAS				

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **ATTN: HELGI SUGURGEIRSON 47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - A Total # Pages: 2 (A)
Plus Appendix Pages
Finalized Date: 3-NOV-2015

Account: SAXGEO

CERTIFICATE OF ANALYSIS VA15163737

											KINIOATE O	71117121010	
M88650 13.10 24.9 12.10 1.600 64.25 775.0 13.40 10.80	Sample Description	Method Analyte Units LOR	Au Total ppm	Au (+) F ppm	Au (-) F ppm	Au (+) m mg	WT. + Fr g	WT Fr g	Au ppm	Au ppm 0.01			
	J488650		13.10	24.9	12.10	1.600	64.25	775.0	13.40	10.80			
		,											
			8										
													10
													2
			×										

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 3-NOV-2015 Account: SAXGEO

	VA1516373	

		CERTIFICATE COM	MENTS	
Applies to Method:	Processed at ALS Vancouver locat Au-AA25 FND-03	BAG-01 SPL-21		
,				

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-NOV-2015 This copy reported on 2-NOV-2015 **Account: SAXGEO**

QC CERTIFICATE VA15161970

This report is for 1 Rock sample submitted to our lab in Vancouver, BC, Canada on 22-OCT-2015.

The following have access to data associated with this certificate: HELGI SUGURGEIRSON

SAMPLE PREPARATION						
ALS CODE	DESCRIPTION					
WEI-21	Received Sample Weight					
PUL-QC	Pulverizing QC Test					
LOG-21	Sample logging - ClientBarCode					
CRU-31	Fine crushing - 70% < 2mm					
SPL-21	Split sample - riffle splitter					
PUL-31	Pulverize split to 85% <75 um					

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41a	High Grade Aqua Regia ICP-AES	ICP-AES

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **ATTN: HELGI SUGURGEIRSON 47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - A Total # Pages: 2 (A - C)
Plus Appendix Pages Finalized Date: 1-NOV-2015

Account: SAXGEO

QC CERTIFICATE OF ANALYSIS VA15161970

								1	QC	CERTIF	IOATE	OI AIV				
Sample Description	Method Analyte Units LOR	ME-ICP41a Ag ppm 1	ME-ICP41a AI % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05
	STANDARDS															
OGGeo08 Fairget Range - Lower OREAS-134b Target Range - Lower Upper	Bound	20 14 23 >200 189 >200	2.31 2.13 2.56 0.39 0.27 0.49	130 100 1 140 210 200 250	370 270 480 630 390	<5 <6 - 3 11 <5 <5 <5	20 30 <10 <10 <10	0.99 0.68 1.12 4.15 3.69	19 - 8 - 29 - 569 - 518 - 608	98 85 . 109 104 94 118	86 72 96 12 	8210 7,970 8,810 1320 1290 1435	4.94 4.86 5.70 11.60 11.35.4 13.16	<50	<5 5 11.77 <5 •65	1.05 9.66 1.22 0.13 50.05
							BL	ANKS								
BLANK Farger Range - Lover Upper	Bankia Bollaid	<1 * 4 * * * * * * * * * * * * * * * * * * *	<0.05 * <0.05 * 0.10	<10 <10 20	<50 <50 100	<5 <5 10	<10 <10 20	<0.05 <0.05	<5 - <5 - 10 /	<5 <5 10 *	<5 <5 10 /	<5 ₹6 10	<0.05 <0.05 0.10	<50 <50 100	<5 	<0.05 \$0.05 0.10
							DUPL	ICATES								
J488650 DUP Target Range - Lower Upper	Round Bound	3 3 2	0.67 0.68 0.60 0.75	>100000 >100000 96500 >100000	50 50 <<50 100	<5 <5 <5 10	<10 10 <10 +20	0.75 0.74 0.67 0.82	<5 <5 5 10	22 23 17 28	17 17 11 -	41 41 35 47	18.15 17.85 47.30 18.70	<50 <50 <50 100	<5 <5 <5 10	0.18 0.18 0.12 0.12
							5			·		T.				

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - B Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 1-NOV-2015

Account: SAXGEO

OC CERTIFICATE OF ANALYSIS VA15161970

									५८	CLKIII	ICATE	OI AIV	AL 1 313	VAIS	516197	· ·
Sample Description	Method Analyte Units LOR	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Th ppm 100	ME-ICP41a Ti % 0.05	ME-ICP41a TI ppm 50
							STAN	DARDS								
OGGeo08 IsrgerRenge - Love Alpha OREAS-134b		<50 450 130 <50	1.83	420 350 480 3470	916 864 1005 10	0.33 0.21 0.42 <0.05	8570 8250 9520 35	790 680 910 250	7760 >50000	3.05 >10.0	40 90	6 < 5 17 <5	67 55 78 18	200 <100	0.46 <0.05	<50 <50 100 70
Target Range : Lower Upper		* <60 130 * 1	# 2.06	3280 3840	45 - 13.	<0.05 - 0.17	<5 25	170 390	⇒124000 >50000	17.90 10.00	80 130 (a	220012000000000000000000000000000000000	34	<100 300	<0.05) 0.13	- 160 - 160
							BLA	ANKS								
BLANK BLANK BLANGER-LOWER BLANK		<50 - 460 - 100 *	<0.05 <0.05 0.10	<30 <30 	<5 <5 - 10	<0.05 <0.05 0.10	<5 <5 10	<50 ≤50 100	<10 <10 20	<0.05 <0.05 0.10	20 #10 20	<5 < 5 10	<5 <5 10	<100 <100 200	<0.05 <0.05 0.10	<50 <50 100
41							DUPL	ICATES								
J488650 DUP		<50 <50	0.20 0.20	290 290	<5 <5	<0.05 <0.05	14 12	150 130	80 40	9.23 9.07	220 220	<5 <5	32 33	<100 <100	<0.05 <0.05	<50 <50
kargerakabor - cower Lipper		<50 100	0.14	250 250 330	. <5 10 •			90 190		8.78 9.52	220 200 - 3 240 - 3	\$ 10	26 39	<190 200	- <0.05 - <0.45	**************************************
												Ti.				
	4															
																*
	ii .															
v.																
,																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - C Total # Pages: 2 (A - C) **Plus Appendix Pages** Finalized Date: 1-NOV-2015

Account: SAXGEO

QC CERTIFICATE OF ANALYSIS VA15161970 ME-ICP41a ME-ICP41a ME-ICP41a ME-ICP41a Method Ų Zn **Analyte** ppm Units ppm ppm ppm **Sample Description** LOR 50 50 10 **STANDARDS** <50 81 <50 7090 OGGeo08 <50 <50 >50000 <5 OREAS-134b **BLANKS** <10 <50 <5 <50 BLANK **DUPLICATES** J488650 <50 14 <50 90 DUP <50 14 <50 40

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 1-NOV-2015

Account: SAXGEO

QC CERTIFICATE	OF ANALYSIS	VA15161970
QU ULIXIII IUNIL	OI MIME 1313	

2		CERTIFICATE COMME	NTS	
Applies to Method:	Processed at ALS Vancouver locate CRU-31 PUL-QC	LABORATOI ed at 2103 Dollarton Hwy, North Va LOG-21 SPL-21	RY ADDRESSES ancouver, BC, Canada. ME-ICP41a WEI-21	PUL-31
į				
·				

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 1 Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 3-NOV-2015 This copy reported on 4-NOV-2015 **Account: SAXGEO**

QC CERTIFICATE VA15163737

This report is for 1 Reject sample submitted to our lab in Vancouver, BC, Canada on 22-OCT-2015.

The following have access to data associated with this certificate: HELGI SUGURGEIRSON

SAMPLE PREPARATION						
ALS CODE	DESCRIPTION					
FND-03	Find Reject for Addn Analysis					
SCR-21	Screen to -100 to 106 um					
PUL-32	Pulverize 1000g to 85% < 75 um					
SPL-21	Split sample - riffle splitter					
BAG-01	Bulk Master for Storage					

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au-SCR21	Au Screen Fire Assay - 100 to 106 um	WST-SIM
Au-AA25 Au-AA25D	Ore Grade Au 30g FA AA finish Ore Grade Au 30g FA AA Dup	AAS AAS

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **ATTN: HELGI SUGURGEIRSON 47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - A Total # Pages: 2 (A)
Plus Appendix Pages
Finalized Date: 3-NOV-2015

Account: SAXGEO

QC CERTIFICATE OF ANALYSIS VA15163737

			QC CERTIFICATE OF ANALTSIS	VA13103737
Method Analyte Units Sample Description LOR	Au-AA25 Au-AA25D Au Au ppm ppm 0.01 0.01			
		STANDAR	DS	
BP-13 Talgat Congressioner Bounds Upper Bound OxJ111 Talgat Range Lower Bound	0.36 0.36 0.33 0.33 0.39 0.89 2.18 2.18 2.03 2.03			
Upper Bound	231 23ti	BLANK!		e .
BLANK	<0.01 <0.01	BLANK	S	
Targer Range - Lower Bound Upper Bound	<0.01 <0.01 , 0.02 0.02			
Name of the second seco		DUPLICAT	res	
ORIGINAL DUP	0.05 0.06 0.06			
Targetelligere Voller Sounds. Upper Round	0.05 0.05 0.007 0.07			
J488650 DUP Target Pange - Lower Bound Upper Bound	13.40 10.80 13.05 13.05 12.65 13.39 13.90 12.55	2		
ORIGINAL DUP Target Range - Lower Bound Up par Bound	0.09 0.12 0.12 0.09 8.10 0.12 0.14			
~				3

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com
Fax: +1 (604) 984 0218

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 3-NOV-2015

Account: SAXGEO

T T			QC CERTIFICATE OF	ANALISIS	VA15163/3/
		CERTIFICATE COM	MENTS		
	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.				
Applies to Method:	Au-AA25 FND-03	Au-AA25D PUL-32	Au-SCR21 SCR-21		BAG-01 SPL-21
:					
*					