

Ministry of Energy and Mines BC Geological Survey

Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]:	TOTAL COST: \$4,569.34
AUTHOR(S): Kelly Krueger, Geo. I.T., Dustin Hayes, Geo. I.T.	SIGNATURE(S): Averaged
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): Not required	YEAR OF WORK: 2015
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S)	: Event No.'s 5581135 & 5581136 (December 9, 2015)
PROPERTY NAME: Cluxewe Property, Kilpala Property	
CLAIM NAME(S) (on which the work was done): CLUXEWE, KILPAL/	A, KILPALA 2
COMMODITIES SOUGHT: Limestone	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:	
MINING DIVISION: Nanaimo Mining Division	NTS/BCGS: <u>92L11</u>
Description Description OWNER(S): 1) Graymont Western Canada Inc.	<u>552</u> (at centre of work)
MAILING ADDRESS: Suite 260, 4311-12 Street N.E.	
Calgary, Alberta T2E 4P9	
DPERATOR(S) [who paid for the work]: 1) Graymont Western Canada Inc.	_ 2)
MAILING ADDRESS: Suite 260, 4311-12 Street N.E.	
Calgary, Alberta T2E 4P9	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Carbonates, limestone, Triassic, Quatsino, Karmutsen, Parson	e, alteration, mineralization, size and attitude): Is Bay
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT F	REPORT NUMBERS: N/A

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping 1:25,000; e	entire properties	CLUXEWE, KILPALA, KILPALA 2	\$3,064.84
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
		-	
		-	
		-	
		-	
Other		-	
GEOCHEMICAL			
(number of samples analysed for)			
Silt			
Rock 51 samples analyzed t	for whole rock constituents	CLUXEWE, KILPALA, KILPALA 2	\$1,504.50
Other			
DRILLING			
(total metres; number of holes, size)			
Core			
Non-core		-	
RELATED TECHNICAL			
Sampling/assaying		-	
Petrographic		-	
Mineralographic		-	
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		_
Trench (metres)			
Underground dev. (metres)			
Other			_
		TOTAL COST:	\$4,569.34

BC Geological Survey Assessment Report 35989

GRAYMONT WESTERN CANADA INC.

2015 EXPLORATION AND FIELDWORK ON THE KILPALA AND CLUXEWE PROPERTIES

NORTHERN VANCOUVER ISLAND, BRITISH COLUMBIA Nanaimo Mining Division

KILPALA, KILPALA 1, CLUXEWE

Geographic Coordinates 50°32' N to 50°34' N 127°00' W to 127°10' W

NTS Sheet 92 L/11

Owner:	J. Dahrouge Suite 18, 10509 81 Ave. Edmonton, Alberta T6E 1X7
Operator:	Graymont Western Canada Inc. 260, 4311 - 12 St. NE Calgary, Alberta T2E 4P9
Consultant:	Dahrouge Geological Consulting Ltd. 18, 10509 - 81 Avenue Edmonton, Alberta T6E 1X7
Authors:	K. Krueger, B.Sc., Geo.I.T. D. Hayes, B.Sc., Geo.I.T.
Date Submitted:	March 2, 2016

TABLE OF CONTENTS

Da	2	0
гσ	ιu	е

1.	Introduction 1.1 Geographic Setting 1.1.1 Location and Access 1.1.2 Topography, Vegetation and Climate 1.2 Property 1.3 History and Previous Investigations 1.4 Purpose of Work 1.5 Summary of Work	1 1 2 3 3 4 4
2.	Regional Geology 2.1 Stratigraphy 2.1.1 Mount Mark (Buttle Lake) Formation 2.1.2 Quatsino Formation 2.1.3 Parsons Bay Formation 2.1.4 Suquash Formation	4 5 5 7 8
	 2.2 Intrusions 2.2.1 Island Intrusions 2.2.2 Nimpkish Intrusions 2.2.3 Tertiary Intrusions 2.3 Structure 	8 9 9 9
3.	Property Geology	10 10 10 11 11 12
4.	Results of 2015 Exploration	12
5.	Discussion and Conclusions	13
6.	References	14

LIST OF TABLES

<u>Page</u>

Table 1.1 Table 1.2	List of Kilpala Claims List of Cluxewe Claims	3 3
Table 2.1 Table 2.2	Stratigraphy of the Northern Part of Vancouver Island	6
10010 2.2	Vancouver Island	7

LIST OF FIGURES

Fig. 1.1	Location Map	F1
Fig. 1.2	Access Map	F2
Fig. 1.3	2015 Exploration - Kilpala Property	F3
Fig. 1.4	2015 Exploration - Cluxewe Property	F4
Fig. 1.5	Claim Map - Kilpala Property	F5
Fig. 1.6	Claim Map - Cluxewe Property	F6
Fig. 2.1	Regional Geology	n pocket)

LIST OF APPENDICES

Appendix 1:	Itemized Cost Statement	A1
Appendix 2:	Analytical Laboratory Information and Techniques	A3
Appendix 3:	Assay Results - Central Analytical Laboratory of Graymont Western U.S. Inc	A4
Appendix 4:	Sample Descriptions and Assay Results from the Kilpala Property	A5
Appendix 5:	Sample Descriptions and Assay Results from the Cluxewe Property	A6
Appendix 6:	Statement of Qualifications	A10

INTRODUCTION

The Kilpala and Cluxewe claims were staked in March and April 2015 to cover exposures of Quatsino Formation south of Highway 19 and Port McNeill. Dahrouge Geological Consulting Ltd. (Dahrouge) and Graymont Western Canada Inc. (Graymont) completed surface sampling and mapping on the claims from June 5th to 6th, 2015. Both claims were staked via the BC Mineral Titles online staking system.

Exploration on the Kilpala Property involved mapping and collecting nine hand samples of Quatsino Formation limestones. The purpose of the work on the Kilpala Property was to map stratigraphic contacts with adjacent units and collect samples to test the limestone quality.

Work on the Cluxewe Property involved the collection of 42 limestone samples, which were assayed to test for limestone quality. Exploration focused on mapping geological contacts and collecting hand samples. This report describes the 2015 exploration and provides an interpretation of the results. Appendix 1 is an itemized cost breakdown of the 2015 work completed on the properties. The 2015 exploration was authorized by Darren Anderson of Graymont.

Two statements of work have been filed with respect to the exploration described in this report (event numbers 5581135 & 5581136).

1.1 GEOGRAPHIC SETTING

1.1.1 Location and Access

The Kilpala and Cluxewe properties are within the Insular Belt near the northern end of Vancouver Island, south-western British Columbia. The Kilpala Property lies approximately 5.5 km south-southeast of Port McNeill and 40 km east of Port Hardy. It can be accessed from E Main Logging Road, south of Highway 19. The Cluxewe claim covers a portion of Cluxewe River, and is located approximately 8 km southwest of the town of Port McNeill (Fig.'s 1.1 & 1.2).

Port Hardy, with a population of about 5,000, is approximately 450 km from Victoria via Highways 1 and 19 (Fig. 1.1). Port Hardy is serviced by daily air transport from Vancouver and has facilities and services expected for a community of its size. The regional economy, and that of the local communities, is primarily based on forestry, fishing, and tourism.

Port McNeill, with year-round facilities, is about 40 km southeast of Port Hardy via Highway 19. It is located on Broughton Strait, near the north end of the inside passage of Vancouver Island. It has a population of about 2,700 and is a service centre for the forestry and fishing industries, with several motels and restaurants.

1.

From Port McNeill, the Kilpala Property is accessed by driving westerly on Highway 19 (Island Highway), for about 1 km, then turning south onto E Main Logging Road. Approximately 1.5 km southeasterly along this forestry road is the northwest corner of the Kilpala Property. A relatively small network of logging roads in the vicinity provides excellent access throughout the Property (Fig. 1.2).

The Cluxewe Property is accessed by driving west from Port McNeill along Highway 19 for approximately 3.75 km, then south for 1.75 km along the well-maintained unpaved Keogh Main. The southern part of the Property can be reached by turning either west onto W Road or east onto Keogh Road. Many other logging roads and spurs in the area do not reach the Property but provide excellent access for regional exploration (Fig. 1.2).

The network of logging roads that traverse the Kilpala and Cluxewe properties, and the surrounding area, are owned and maintained by Western Forest Products Ltd. Access to the roads and other surface rights are not restricted; however, contacting the companies prior to utilizing the roads is highly recommended.

1.1.2 Topography, Vegetation and Climate

Topography in the Kilpala and Cluxewe property areas is characterized by discontinuous knobs and ridges of low relief. Elevations in the Kilpala Property range from 70 m to the north up to approximately 250 m near the southern boundary of the Property. In the Cluxewe Property, elevation reaches 250 m near the southern boundary, and drops to 70 m in areas cut by Cluxewe River (Fig.'s 1.3 & 1.4).

Much of the Kilpala and Cluxewe areas have been logged within the last 50 years. Portions that have been logged more than 10 years ago are covered by decomposing slash and a very thick cover of secondary growth. The remainder of the properties are covered with mature forest. Forest vegetation is variable and consists of tall stands of Alder, Balsam, Cedar, Hemlock, Douglas Fir, Poplar, and Spruce. Spruce and Cedar are predominant in areas of lower relief with poor drainage, while Douglas Fir and Hemlock are more common in areas with well-developed drainage. Tree cover is widely spaced with fairly open undergrowth. Near impenetrable underbrush is formed locally by Alder and Salal, or by immature Cedar and Spruce in areas of recent logging.

The area is considered part of the coastal rainforest climatic zone with generally mild and wet conditions. Temperatures rarely exceed 25°C during summer months and less than -20°C during winter months. Precipitation is considered heavy throughout the region, with average annual precipitation of 180 cm. Most precipitation occurs during winter months, however heavy

and prolonged rainfall during summer months is not uncommon.

1.2 PROPERTY

The Kilpala and Cluxewe properties are being held in trust for Graymont by J. Dahrouge of Dahrouge Geological Consulting Ltd., based out of Edmonton, AB. The Kilpala Property consists of 2 contiguous claims (Table 1.1, Fig. 1.5). The KILPALA claim was staked by J. Dahrouge in late March 2015 through the BC Mineral Titles online staking system. In mid-April, KILPALA 2 was staked in the same manner by J. Dahrouge. The Cluxewe Property consists of 1 claim and was staked by J. Dahrouge through the BC Mineral Titles online staking system in mid-April (Table 1.2, Fig. 1.6).

TA	BL	Ε	1.	1	:
				-	-

LIST OF KILPALA CLAIMS

Claim Name	Tenure Number	Record Date	Current Expiry Date	Expected Expiry Date
KILPALA	1035119	2015 03 31	2016 03 31	2016 12 31
KILPALA 2	1035512	2015 04 17	2016 04 17	2016 12 31

TA	BL	.E	1	.2:
----	----	----	---	-----

LIST OF CLUXEWE CLAIMS

Claim Name	Tenure Number	Record Date	Current Expiry Date	Expected Expiry Date
CLUXEWE	1035513	2015 04 17	2016 04 17	2016 12 31

1.3 HISTORY AND PREVIOUS INVESTIGATIONS

To the knowledge of the authors, no previous exploration for high-calcium limestone has been conducted on the Kilpala and Cluxewe properties. There is, however, a large blasted pit adjacent to the Kilpala Property, currently held by Actus Minerals Corp. and operated by Western Forest Products. A large volume of marble has been recovered from the pit, presumably for use in road construction.

Initial exploration on the Kilpala Property occurred in February 2015, with a traverse of approximately 15 km completed to map geological contacts. In June 2015, nine hand samples were collected and analyzed. The Cluxewe Property was initially explored in June 2015, with the collection of 42 limestone samples and mapping of geological contacts.

1.4 PURPOSE OF WORK

The 2015 exploration program on the Kilpala and Cluxewe properties was primarily conducted in order to determine the limestone quality in the area. Mapping outcrop areas, checking access roads and identifying the presence of Tertiary intrusives were secondary objectives.

1.5 SUMMARY OF WORK

From June 5th to 6th, 2015, Dahrouge, on behalf of Graymont, conducted sampling of carbonate lithotypes within and surrounding the Kilpala and Cluxewe properties. Exploration on the properties consisted of surface sampling, checking access and geological mapping.

Nine samples from the Kilpala Property (Fig. 1.3, Appendix 4) and 42 samples from the Cluxewe Property (Fig. 1.4, Appendix 5) were collected. Samples were collected by chipping outcrops perpendicular to defined or assumed bedding. Bedding was commonly difficult to see due to the very-fine-grained homogeneous nature of the limestone. Where bedding was uncertain or had been obscured by structure, stratigraphic thicknesses were calculated using orientations from adjacent units. Where more than one bedding orientation was measured, the mean orientation was used.

Geological observations were recorded, including lithologic information, measurements of structural elements, and other pertinent details (Appendices 4 & 5). A solution of 10% HCl was used to assess carbonate quality in the field. Samples were shipped to Graymont's Central lab in Salt Lake City, Utah for preparation and analyses by standard ICP techniques, and LOI. Analytical procedures are described in Appendix 2 and complete assay results are provided in Appendix 3.

Field maps were created on 1:10,000 and 1:30,000 scale map sheets and concentrated on the Kilpala and Cluxewe claim areas. A magnetic declination of 18° east was used. Areas with visibly abundant or highly concentrated Tertiary dykes were noted.

Personnel were based in a motel in Port McNeill. Access to and from the properties was by a rented four-wheel-drive vehicle. Access throughout the properties was by four-wheel-drive truck where possible, and by extensive hiking. Notes were compiled regarding access and current road status, as roads in the area are commonly rehabilitated and overgrown or reactivated for logging purposes.

2.

REGIONAL GEOLOGY

The Insular Belt of the Pacific Margin comprises several discrete terranes of disparate origin,

the largest of which are Alexander and Wrangellia terranes (Gabrielse et al., 1991). The Wrangellia Terrane is a complex of Paleozoic through Cenozoic volcanic arc, oceanic, and clastic wedge assemblages comprising the modern Pacific Continental Margin from Vancouver Island northward to Queen Charlotte Islands. It is disrupted by north-westerly trending, dextral, transcurrent faults, westerly verging thrust faults, plutonic rocks, and anticlinoria.

Within the Insular Belt of south-western British Columbia, high-calcium limestone has previously been noted in the Mount Mark Formation of the Sicker Group, and the Quatsino and Parsons Bay formations of the Vancouver Group (Table 2.1).

2.1 STRATIGRAPHY

2.1.1 Mount Mark (Buttle Lake) Formation

The Pennsylvanian Mount Mark Formation of the Buttle Lake Group (Massey and Friday, 1988) conformably overlies and grades into the Cameron River Formation of the Sicker Group (Table 2.1). The Mount Mark Formation is equivalent to the Buttle Lake Formation (Massey and Friday, 1988). It consists of massive, fine- to coarse-grained, crinoidal limestone beds with minor argillaceous and chert interbeds. Significant outcrops of Mount Mark Formation are found within the Cowichan uplift of south-eastern Vancouver Island, near Tofino along the west coast, within the Buttle Lake Uplift between 50 and 100 km southeast of Nimpkish Lake, and along the southern part of Texada Island. It reaches thicknesses of 150 m near Buttle Lake and up to 300 m within the Cowichan uplift.

2.1.2 Quatsino Formation

The Upper Triassic Quatsino Formation of the Vancouver Group para-conformably overlies and is interbedded with volcanic and limestone litho-types of the Karmutsen Formation. The Karmutsen Formation includes basaltic and andesitic flows, tuffs, agglomerates, and breccias, with minor interbedded limestone (Hoadley, 1953). The Karmutsen is widely exposed along the southwest Pacific margin (Muller et al., 1974).

Outcrops of the Quatsino Formation are known from both Texada and Vancouver islands. Within the northern part of Vancouver Island, the formation is exposed along three parallel belts (Fig. 2.1):

Belt *	Length	Location
(West) Quatsino-Tlupana	165 km	from Quatsino Sound to Tlupana Inlet
(Central) Nimpkish	39 km	east and south of Nimpkish Lake
(East) Bonanza	30 km	west of Telegraph Cove to Bonanza Lake
* After McCammon (1968)		

The Quatsino Formation attains a maximum thickness of 760 m at a location south of Alice Lake, within the western belt (Fischl, 1992). Near Nimpkish Lake, within the central belt, Coffin and Soux (1988) reported a drill intersection thickness of about 135 m for the lower part of the Quatsino Formation. Within northern Vancouver Island, the Quatsino is divisible into lower and upper parts (Hoadley, 1953 and Muller et al., 1974). The lower part, with highly variable thickness (Table 2.2), is characterized as a thick-bedded to massive, brownish-grey to black, fine-grained to microcrystalline limestone (Muller et al., 1974) and a few thin interbeds of andesite or basalt (Hoadley, 1953).

	Stratigraphic Unit											
Period	Group	Formation	Lithology	Approx. Thick. (m)								
Tantiana	-	Tertiary Volcanics and Sediments		305								
lertiary	-	Tertiary Intrusions	Quartz diorite	-								
	Nanaimo		clastics, coal	125								
Crotosocus	Queen Charlotte		clastics, coal	305 - 1050								
Cretaceous	-	Longarm	clastics	60 - 400								
	-	Pacific Rim Sequence	clastics	-								
	-	Island Intrusions	granitic intrusives	-								
JURASSIC		Bonanza	volcanics									
		Harbledown	clastics and tuffs	305 - 5650								
	Vancouver	Parsons Bay ¹ - Sutton	calcareous clastics and limestone	305 - 710								
Triassic		Quatsino ¹	limestone	30 - 750								
		Karmutsen	volcanics	3000 - 6100								
		Sediment Sill Unit clastics and volc		750								
Pennsylvanian	Buttle Lake°	Mount Mark (Buttle Lake)	limestone	215								

STRATIGRAPHY OF THE NORTHERN PART OF VANCOUVER ISLAND*

* Modified after Muller et al. (1974) and Fischl (1992)

TABLE 2.1:

° Formerly of the Sicker Gp. (Massey and Friday, 1988)

¹ Equivalent to the Sutton Fm. of western Vancouver Island (Jeletzky,1970)

² In part, previously mapped as Sutton Fm. on southern Vancouver Island and equivalent to the Marble Bay Fm. of Texada Island (Fischl, 1992)

The upper part of the Quatsino Formation consists of thin-bedded limestone with black calcareous siltstone interbeds and laminations. Upwards, laminae and interbeds of calcareous black shale increase in frequency and thickness. Toward the top of the unit, the limestone is increasingly dark-grey or black, due to increasing quantities of carbonaceous matter (Hoadley, 1953). Bedding and color banding is distinctive and well preserved. Locally the upper part

contains abundant ammonites and pelecypods (Muller et al., 1974).

Toward central and southern Vancouver Island, the Quatsino Formation thins considerably and is complicated by intense faulting and folding. According to Fischl (1992), it is less than 75 m thick at Cowichan Lake, about 40 km south of Nanaimo.

On Texada Island, the Quatsino Formation is divisible into a northern and southern belt. The northern belt is up to 3 km wide by 13 km long and the southern belt, which is located on the southwest coast, is up to 6 km long. Based on chemical composition, Mathews and McCammon (1957) divided the northern belt into three members, each up to 200 m thick. The lowermost member is composed predominantly of high-calcium limestone; the middle member is predominantly high-calcium limestone with some dolomitic interbeds; the upper member is dominantly dolomite and dolomitic limestone.

	Quatsino Formation *									
Location	Lower Part	Upper Part	Description							
LUCATION	Approx. Thick. (m)	Approx. Thick. (m)	Description							
Western Belt										
Alice Lake	488	302	- immediately south of Alice Lake							
Klaskino	25	49	- along north side of Klaskino Inlet (50°18'50", 127°51'50")							
Central Nimpkish Belt										
Tsulton Property°	~ 135	-	- opposite halfway Islands on Nimpkish Lake							
Eastern Belt										
Beaver Cove	76 +	140	- along a tributary of Tsulton River south of Beaver Cove (50°29'50", 126°53'20")							

TABLE 2.2: MEASURED THICKNESS OF THE QUATSINO FORMATION FROM THE NORTHERN PART OF VANCOUVER ISLAND*

* Modified after Muller et al. (1974)

° After Coffin and Soux (1988; Appendix 2)

2.1.3 Parsons Bay Formation

The Parsons Bay Formation of the Vancouver Group conformably overlies and is interbedded with limestones of the underlying Quatsino Formation (Fig. 2.1). The lower part consists of light-grey limestone with laminae and thin interbeds of calcareous black shale (Muller et al., 1974). The Parsons Bay Formation has a similar distribution to the Quatsino Formation. Near Alice Lake, it is up to 610 m thick and is only about 60 m thick near Beaver Cove (Muller et al., 1974).

Along the west-central part of Vancouver Island, near Checleset Bay, the Parsons Bay

Formation includes a massive limestone unit between 18 and 27 m thick within its upper part, which was termed the 'Sutton Limestone Formation' by Jeletzky (1970). Near Smith Cove, on the southern side of Quatsino Inlet, the Sutton Formation is divisible into upper and lower members. Jeletzky (1976) described the Upper Limestone Member as predominately quite pure, grey, well-bedded limestone up to 45 m thick.

2.1.4 Suquash Formation

The Suquash Formation of the Nanaimo Group directly overlies the Karmutsen Formation volcanics (Fig. 2.1). Muller et al. (1974) described it as a sedimentary unit dominantly comprised of pebble-conglomerate, shale and coal. Although no type locality has been identified for the Suquash Formation, it has been observed to typically be up to 107 m thick. The coal seams within the Suquash Formation are separated by shales and interbedded with fine-grained sandstone (Massey et al., 2005).

2.2 INTRUSIONS

2.2.1 Island Intrusions

Within the northern part of Vancouver Island, Jurassic dykes, sills, stocks, and batholiths are widespread. The Island Intrusions (Eastwood, 1965), which have invaded all rock types, are medium to coarse-grained and range in composition from gabbro to quartz monzonite. Typically elongate in a north-westerly direction, they form narrow 3 km to 8 km wide north-westerly trending belts separated by Upper Triassic volcanic and sedimentary rocks (Hoadley, 1953). The intrusive belts are up to 80 km in length and show a pronounced decrease in size towards the western part of Vancouver Island. Localized recurrent folding of the Quatsino Formation, along north-westerly axes, was accompanied by emplacement of andesitic sills and dykes (Carlisle, 1972). According to Hoadley (1953),

"The fact that the lineation is more or less parallel with the general fold structure of the invaded rocks indicates that the intrusions were associated with orogenic disturbances, and that they were intruded at about the time the invaded rocks were folded. They were probably guided in part by contemporaneous faults."

Intense metamorphism associated within the emplacement of large scale batholiths and stocks is common. Most bodies exhibit well-developed intrusive breccias within marginal zones. Within a few kilometres of the intrusive bodies, limestone lithotypes can be strongly contorted, fractured, and jointed, cut by numerous dykes, and altered to calc-silicate minerals. Skarn mineralization is common; however, it rarely results in the complete alteration of limestone bodies (Eastwood, 1965).

Smaller stocks, sills, and dykes genetically related to the Island Intrusions generally exhibit limited metamorphism and sharp contacts with the surrounding country rock. However, these intrusive bodies are most abundant within the contact aureole of the larger batholiths.

2.2.2 Nimpkish Intrusions

The Nimpkish Batholith is an irregular-shaped intrusive situated between Nimpkish Lake south-easterly to Woss Lake, where it is in tectonic contact with the Vernon Batholith. Muller et al. (1974) include the Bonanza Batholith along the eastern shore of Bonanza Lake and several smaller plutons in the vicinity of Beaver Cove within this group. These intrusives are evident throughout the entire Vancouver Group.

Contacts of the Nimpkish Batholith are highly irregular and include a large number of small sills and dykes (Gunning, 1932b), which are

"...frequently much contorted, fractured, and sheared near the intrusive and in a number of places are silicified and mineralized with pyrite, pyrrhotite and calcite. In a few places, and particularly where the granodiorite intrudes limestone, contact metamorphic silicates, magnetite, and copper, iron or zinc sulphides are quite extensively developed."

2.2.3 Tertiary Intrusions

Small Tertiary stocks to medium intrusive bodies, commonly as dykes, sills and small plutons, are exposed throughout the entire length of Vancouver Island. These rocks vary widely in size, texture, and mineralogical composition and include medium- to coarse-grained granite porphyry, diorite porphyry, gabbro, and finer-grained dacitic rocks.

According to Hoadley (1953), the Tertiary intrusions are most commonly dark-green to black, diabasic gabbro dykes, which vary in width from a few centimetres up to 5 m. Furthermore (Hoadley, 1953),

"where these dykes occur in Vancouver Group rocks they are almost impossible to distinguish in the field from dykes associated with the Triassic volcanic rocks."

Near Port Alberni, Massey and Friday (1988) note that these intrusives occur as dykes up to 3 m wide and are commonly found along fault zones, which may have acted as conduits for emplacement.

2.3 STRUCTURE

The northern part of Vancouver Island is dominated by north to north-westerly trending anticlinoria, which are flanked by fault blocks with outward dipping stratigraphy. The region is cut by steep normal or strike-slip vertical faults. Detailed accounts of regional structure are available in Hoadley (1953) and Muller et al. (1974).

The main structural elements of the Nimpkish Lake Block from northeast to southwest are Bonanza Fault, Nimpkish Syncline, and Nimpkish Fault. Bonanza and Nimpkish faults define the respective eastern and western boundaries of Nimpkish Block. Both structures have variable amounts of displacement and are in part defined by valley lineaments.

3. PROPERTY GEOLOGY

3.1 STRATIGRAPHY AND LITHOLOGY

During exploration, two lithological units were identified and mapped on the Kilpala and Cluxewe properties: the Karmutsen and Quatsino formations. The Karmutsen Formation is comprised of incompletely metamorphosed basaltic and andesitic flows, tuffs, agglomerates, and breccias, with minor inter-bedded limestone (Hoadley, 1953). The high-quality limestone occurrences on/near the Kilpala and Cluxewe properties are part of the Quatsino Formation of the Vancouver Group. Though the Parsons Bay and Suquash formations border both the Kilpala and Cluxewe properties, neither were examined in detail during the 2015 exploration. The following is a brief summary of the units encountered on or near the properties.

3.1.1 Karmutsen Formation

Exposures of the Karmutsen Formation can be traced from the eastern shore of Nimpkish Lake south-easterly towards Noomas rail crossing. The southerly contact of the Karmutsen Formation with the overlying Quatsino Formation is well exposed along a forestry road leading westerly from Noomas rail crossing (Fig. 2.1). The uppermost part of the Karmutsen Formation consists of rusty-brown to brown weathered, green fresh, medium-grained volcanics. Outcrops are typically recessive and deeply weathered. The Karmutsen Formation forms southerly contacts with the overlying Quatsino Formation limestones on both Kilpala and Cluxewe properties.

3.1.2 Quatsino Formation

As previously indicated in Section 2.1.2, the most detailed published work on the stratigraphy of the Quatsino Formation is that of Hoadley (1953) and Muller et al. (1974); they indicate that the Quatsino is divisible into a lower and an upper part. The lower part, with highly variable thickness, is thick-bedded to massive, brownish-grey to black, fine-grained to microcrystalline limestone with a few thin interbeds of andesite or basalt. The upper part

consists of thin-bedded limestone with black calcareous siltstone interbeds and laminations. Laminae and interbeds of calcareous black shale increase in frequency and thickness upwards.

The lower part of the Quatsino Formation is the main limestone unit that outcrops on the properties. The majority consists of variably recrystallized, massive to thick-bedded, grey weathered, dark-grey to black fresh, micritic limestone with rare patches of chert.

The upper part of the Quatsino Formation is variably buff to medium-grey weathered, very dark grey to black fresh, thick-bedded, interbedded micritic limestone and buff dolomite.

Within the lower part of the Quatsino Formation, clear bedding surfaces or sedimentary laminae are rare. Definitive bedding surfaces generally indicate shallow north to north-easterly dips. Variations are common due to wavy bedding planes.

The lack of a readily recognized marker horizon within the massive limestones of the Quatsino Formation hinders stratigraphic correlations. Therefore, thickness determinations must be taken with caution as the continuity of stratigraphy across vast covered intervals with probable concealed internal structures is uncertain. Slight variations in major and minor constituents may aid in correlating stratigraphy.

3.1.3 Intrusions

Throughout the area, dykes and sills, presumably part of the Tertiary Suite of intrusives, vary from a few centimetres to more than 5 m thick. The intrusives appear preferentially aligned along the pre-existing structural fabric which is dominantly steeply dipping to vertical, and northwest to northeast. Several dykes and sills occur at other orientations. The intrusives are typically recessive and generally only evident in well exposed outcrops of massive limestone.

The intrusives are commonly rusty-brown weathered, green fresh, and fine- to mediumgrained. Commonly, they exhibit strong jointing parallel to intrusive alignment.

Associated alteration includes thin haloes to several metres of thermal recrystallization with negligible chemical alteration, and thin zones of skarnification adjacent to intrusives. A large intrusive body was mapped in 2015 in the central portion of the Kilpala Property, which has caused marbelization of much of the limestone (Fig. 1.3).

3.2 RECENT SEDIMENTS AND WEATHERING

Much of the region is covered by a veneer of unconsolidated glacial sediments, which range in thickness up to several metres. Within upland areas, bedrock exposures are common. It is expected that within valleys such as at Cluxewe River, unconsolidated sediments may be tens of metres thick. Surficial weathering has resulted in a weathering profile that varies from a few centimetres up to several metres thickness. Many of the erosional (topographic) features appear elongate along the pre-existing structural trend. Locally, the bedrock surface is highly irregular.

3.3 STRUCTURE

Structural measurements were collected from numerous locations on the properties (Appendices 4 & 5). Where unequivocally determined, original bedding is generally shallow dipping, whereas joints and cleavages are steeply dipping or near vertical. Intensity of deformation within the limestone unit varies, so that individual outcrops may display either mentioned planar structures or none of them.

4.

RESULTS OF 2015 EXPLORATION

The 2015 exploration program on the Kilpala Property was primarily conducted in order to sample the limestones and determine their quality. Outlining outcrop areas and checking access roads were secondary objectives. The 2015 exploration on the Kilpala Property concentrated on/near the claims KILPALA and KILPALA 2 (Fig. 1.3).

The 2015 exploration program on the Cluxewe Property was conducted to determine limestone quality and extent. Checking access roads was a secondary objective.

All samples from the 2015 program were shipped from Campbell River, BC to Graymont's Central lab in Salt Lake City, Utah for preparation and analyses by standard ICP techniques, and LOI (Appendices 2 & 3).

The nine Quatsino samples from the Kilpala Property were similar in quality, generally ranging from 95.65% to 99.15% CaCO₃, 0.23% to 0.98% MgCO₃, and 0.37% to 3.22% SiO₂. In total, 12.5 m of Quatsino Formation were sampled on the Kilpala Property.

The 42 Quatsino Formation samples from the Cluxewe Property had a wide range from 20.94% to 99.18% CaCO₃, 0.38% to 5.4% MgCO₃, and 0.18% to 34.26% SiO₂. Of the 42 Quatsino samples collected from the Cluxewe Property, 33 returned values greater than 95% CaCO₃. The best section was 2015-02 (Appendix 5) which averaged 97.50% CaCO₃, 1.39% MgCO₃, and 0.46% SiO₂ over approximately 31.75 m. In total, 107.25 m of Quatsino Formation was sampled on the Cluxewe Property. Section 2015-01 and samples 82115-6, collected from the center of the Cluxewe Property, returned relatively low CaCO₃ percentages and higher MgCO₃ and SiO₂ values, possibly due to localized intrusive dykes which were not visible in outcrop.

5.

DISCUSSION AND CONCLUSIONS

A total of 51 surface samples were collected on the Kilpala and Cluxewe properties; as distinct stratigraphic markers are difficult to identify within the Quatsino Formation, it is likely only a portion of the lower part of the formation was sampled. In addition, the properties were examined to identify new access routes and outcrop locations.

Surface sampling of outcrops on the properties returned high-quality results, often in excess of 95% CaCO₃ with relatively minor amounts of MgCO₃ and SiO₂, except for where major structures and/or intrusives are present. Quatsino Formation samples that returned values below 95% CaCO₃ above 5% MgCO₃ and/or relatively high SiO₂ are likely the result of cross-cutting dykes or structures.

The excellent quality and ideal logistical location of Quatsino Formation carbonates within the Kilpala and Cluxewe properties warrant further examination. Both properties are located minutes away from a major highway, and within a few kilometres of potential loading terminals along the coast.

Further exploration in the central portion of both properties would be beneficial to confirm the quality of the Quatsino Formation limestone. The next phase of exploration on the Kilpala and Cluxewe properties should consist of additional detailed geologic mapping, ground magnetic surveys to identify intrusive bodies and limestone sampling. Diamond drilling is also recommended on both properties, to follow up on promising exploration results.

theethed.

K. Krueger, B.Sc., Geo. I.T.

D. Hayes, B.Sc., Geo. I.T.

Edmonton, Alberta 2016 03 02

REFERENCES

- Broughton, S.E. and Bruce, I.E. (1988) Summary of field work and preliminary evaluation -Bonanza Lake Marble Property; Klohn Leonoff Ltd., private report for White Marble Mountain Corporation *in* Industrial Mineral File.
- Brown, H. (1994) Geologic investigation of the Bonanza Claims Group, Vancouver Island, British Columbia; B.C. Min. Energy, Mines Petr. Res. assessment report 23487, 17 p., 4 fig.
 - (1995) Continued geologic investigation and core drilling of the Bonanza Claims Group, Vancouver Island, British Columbia; B.C. Min. Energy, Mines Petr. Res. assessment report 24202, 19 p., 5 fig
- Carlisle, D. (1972) Butte Inlet Map-Area, Vancouver Island, British Columbia (92 K) *in* Report of Activities, Part A: April to October, 1971, Paper 72-1, Part A, pp. 21-23.
- Coffin, D. and Soux, C. (1988) Diamond drill program on Tsulton Property, Nanaimo Mining Division, British Columbia; B.C. Min. Energy, Mines Petr. Res. assessment report 17759, 10 p., 5 fig.
 - _____(1992) Drilling and mapping report on the Bonanza and the Ranch properties, Nanaimo Mining Division, British Columbia; B.C. Min. Energy, Mines Petr. Res. assessment report 22354, 8 p., 6 fig.
- Dahrouge, J. and Pana, D. (1999) Geological mapping on the Nimpkish Property, Nanaimo Mining Division, British Columbia; B.C. Min. Energy, Mines Petr. Res. assessment report 26136, 54 p., 8 fig.
- Dawson, G.M. (1887) Report on a geological examination of the northern part of Vancouver Island and adjacent coasts; Geol. Surv. Can., Ann. Rept. 1886, v. 2, pt. B, pp. 1-107.
- Devlin, J. and Rychter, A. (1987) A prospecting report on the Leo d'Or Mineral Claims; B.C. Min. Energy, Mines Petr. Res. assessment report 16111, 11 p., 3 fig.
- Dolmage, V. (1919) Quatsino Sound and certain mineral deposits of the west coast of Vancouver, Island, British Columbia; Can. Dept. Mines, Geol. Surv., Sum. Rept. 1918, pt. B, pp. 30-38.
- Eastwood, G.E.P. (1965) Replacement magnetite on Vancouver Island, British Columbia; Economic Geology, v. 60, pp. 124-148.
- Fischl, P (1992) Limestone and dolomite resources of British Columbia; B.C. Min. Energy, Mines Petr. Res., Min. Res. Div., Geol. Surv. Branch, Open File 1992-18.
- Gabrielse, H., Monger, J.W.H., Wheeler, J.O., and Yorath, C.J. (1991) Part A. Morphogeological belts, tectonic assemblages and terranes; *in* Chapter 2 of Geology of the Cordilleran Orogen in Canada, H. Gabrielse and C.J. Yorath (ed.); Geol. Surv. Can., Geology of Canada, No. 4, pp. 15-28.

6.

- Gidluck, M.J. and Dahrouge, J. (1999) Preliminary conclusions from the Nimpkish Lake reconnaissance program; Office Memo Dated Oct. 5, 1999, Continental Lime Ltd.
- Gidluck, M.J. and Stabb, G.T. (2000) Diamond drill program on the Nimpkish Lake Property, Nanaimo Mining Division, British Columbia; B.C. Min. Energy, Mines & Petr. Res. assessment report 26386, 104 p., 7 fig.
- Goudge, M. F. (1945) Limestones of Canada, their occurrence and characteristics, part V, Western Canada; Can. Dept. Mines Res., Bur. Mines No. 811, pp. 114-117.
- Gunning, D. F. (1982) Bonanza River exploration project, Mineral Claim DORO 1, Nanaimo Mining Division; B.C. Min. Energy, Mines & Petr. Res. assessment report 10193, 7 p., 2 fig.
- Gunning, H.C. (1930) Geology and mineral deposits of the Quatsino-Nimpkish Area, Vancouver Island; Can. Dept. Mines, Geol. Surv. Sum. Rept. 1929, pt. A, pp. 94-143.

(1932) Preliminary report on the Nimpkish Lake Quadrangle, Vancouver Island, B.C.; Can. Dept. Mines, Geol. Surv. Sum. Rept. 1931, pt. A, pp. 22-35.

_____(1938a) Preliminary geological map, Nimpkish, East Half, British Columbia; Can. Dept. Mines, Geol. Surv. Paper 38-2.

_____(1938b) Preliminary geological map, Nimpkish, West Half, British Columbia; Can. Dept. Mines, Geol. Surv. Paper 38-3.

- Henneberry, R.T. (1995) Initial assessment of the Cove Property, Nanaimo Mining Division, Vancouver Island, B.C.; B.C. Min. Energy, Mines & Petr. Res. assessment report 24129, 24 p., 5 fig.
- Hoadley, J.W. (1953) Geology and mineral deposits of the Zeballos-Nimpkish Area, Vancouver Island, British Columbia; Geol. Surv. Can., Mem. 272, 82 p.
- Hora, Z.D. (1986) New developments in industrial minerals, *in* Geological Fieldwork 1985, A summary of Field Activities and Current Research, B.C. Min. Energy and Mines, Paper 1986-1, pp. 239-240.
- Jeletzky, J.A. (1970) Mesozoic stratigraphy of northern and eastern parts of Vancouver Island, British Columbia *in* Report of Activities, April to October 1969; Geol. Surv. Can., Paper 70-1A, pp. 209-214.
- Jeletzky, J.A. (1976) Mesozoic and Tertiary rocks of Quatsino Sound, Vancouver Island, British Columbia; Geol Surv. Can., Bull. 242, 243 p.
- Kluczny, P. and Krueger, K. (2014) 2013 exploration and fieldwork on the MQ, Nimpkish & Bonanza Lake Properties, Nanaimo Mining Division, British Columbia; B.C. Min. Energy, Mines & Petr. Res. assessment report 34609, 19 p., 9 fig.
- Kluczny, P. and Krueger, K. (2015) 2014 exploration and fieldwork on the MQ and Nimpkish Properties, Nanaimo Mining Division, British Columbia; B.C. Min. Energy, Mines & Petr. Res. assessment report 34923, 19 p., 11 fig.

- Kluczny, P. and Miller, W. (2011) 2010 exploration and fieldwork on the MQ, Nimpkish & Bonanza Lake Properties, Nanaimo Mining Division, British Columbia; B.C. Min. Energy, Mines & Petr. Res. assessment report 31663, 24 p., 7 fig.
- Krukowski, S. (1993) Unpublished field notes, analyses, and map, Nimpkish Lake Property, Vancouver Island, British Columbia; Continental Lime Inc.

_____(2000) Preliminary decrepitation testing of select Nimpkish Lake samples, Unpublished e-mail to Mark Gidluck dated Jan. 7, 2000, Continental Lime Inc.

- Mathews, W.H. and McCammon, J.W. (1957) Calcareous deposits of southwestern British Columbia; B.C. Dept. of Mines, Bull. No. 40, 105 p.
- Minfile 92L-282, Capsule geology and bibliography for 92L-282 Port McNeill, B.C. Geol. Surv. Branch, B.C. Min. Energy and Mines.
- Massey, N.W.D. and Friday, S.J. (1988) Geology of the Alberni Nanaimo Lakes Area, Vancouver Island *in* B.C. Min. Energy, Mines, and Petr. Res., Geological Fieldwork, 1988, pp. 61-74.
- Massey, N.W.D., MacIntyre, D.G., Desjardins, P.J. and Cooney, R.T. (2005) Digital geology map of British Columbia: Tile NM9 Mid Coast, B.C. Ministry of Energy & Mines, GeoFile 2005-2.
- McCammon, J.W. (1968) Limestone deposits at the north end of Vancouver Island; B.C. Min. Mines Petr. Res., Ann. Rept. 1968, pp. 312-318.
- Muller, J.E. and Carson, D.J.T. (1969) Geology and mineral deposits of Alberni Map-Area, British Columbia (92F); Geol. Surv. Can. Paper 68-50, 52 p.
- Muller, J.E., Northcote, K.E., and Carlisle, D. (1974) Geology and mineral deposits of the Alert-Cape Scott map-area Vancouver, Island, British Columbia; Geol. Surv. Can., Paper 74-8, 77 p.
- _____(1980) The Paleozoic Sicker Group of Vancouver Island, British Columbia; Geol. Surv. Can., Paper 79-30, 22 p.
- Read, P.B. (1988) Petrographic analysis of marbles, Leo D'Or marble claims, Bonanza Lake, Vancouver Island; Geotex Consultants Ltd., private report for White Marble Mountain Corporation in Industrial Mineral File.
- Roddick, J.A. (1980) Geology, Alberta Bay Cape Scott, British Columbia, 1:250 000; Geol. Surv. Can., Map 1552A.
- Soux, C. and Coffin, D. (1988) Diamond drill program on Bonanza Property, Nanaimo Mining Division, B.C; B.C. Ministry of Energy, Mines & Petr. Resources assessment report 17760, 10 p., 5 fig.

APPENDIX 1: ITEMIZED COST STATEMENT FOR THE 2015 EXPLORATION

a)	Personnel	<u>I</u>						
	J. Dahroug 0.04 0.04	je, geolog days days	ıst @	project supervision \$ 990.00	\$	39.60		
	P. Kluczny 0.07 0.07	, geologis days days	t @	project planning & preparations, reporting \$ 795.00	\$	57.24		
	K. Krueger 0.84 0.43 1.27	, geologis days days days days	et @	field work and travel June 5 - 6 project planning & preparations, reporting \$ 520.00	\$	661.19		
	D. Hayes, 0.84 0.49 1.33	geologist days days days days	@	field work and travel June 5 - 6 project planning & preparations, data entry \$ 475.00	\$	630.28		
	C. Salame 0.84 0.06 0.90	, assistan days days days days	t @	field work and travel June 5 - 6 project planning & preparations, data entry \$ 350.00	\$	315.74		
	A. Syed, a 0.56 0.02 0.58	ssistant days days days days	@	field work and travel June 5 - 6 project planning & preparations, data entry \$ 350.00	\$	204.40		
	A. Molella, 0.33 0.33	reception hrs hrs	ist @	logistics, prepare shipments \$ 42.00	\$	13.73		
							\$	1,922.17
b)	Food and 2 m 4 m	Accomm an-days an-days	<u>oda</u> @ @	ation \$ 136.16 accommodations \$ 60.50 meals	\$ \$	330.87 271.04	\$	601.91
c)	<u>Transport</u>	<u>ation</u> Vehicles:		Truck rental Magnetometers Welding Services/ Equipment Repair Flights Taxi Fuel	\$ \$ \$ \$ \$	103.15 231.12 16.31 68.07 1.85 29.06	\$	449.55
d)	<u>Instrumen</u>	it Rental		GPS (2) SPOT Locators (2) Laptop (1) Padias (4)	\$ \$ \$ ¥	4.48 5.23 6.35 6.16	·	
					Ψ	0.10	\$	22.21

f) <u>Analyse</u>	<u>s</u>	Central Lab of Graymont Western U.S. Inc. (51 rock samples)		
51	samples	@ \$ 4.50 preparation fee	\$ 229 50	
51	samples	@ \$ 25.00 sample analysis	\$ 1.275.00	
			 	\$ 1,504.50
a) Other				
3/		Courier and Shipping	\$ 25.69	
		Software Rental (ArcGIS)	\$ 5.88	
		Disposable Supplies	\$ 30.07	
		Plots	\$ 7.35	
				\$ 68.99
Total				\$ 4,569.34

0 10 6 Kelly Krueger, B.Sc., Geo.I.T.

Edmonton, Alberta March 2, 2016

e) <u>Drilling</u>

n/a

APPENDIX 2: ANALYTICAL LABORATORY INFORMATION AND TECHNIQUES

Name and Address of the Lab:

Graymont Western US Inc., Central Laboratory. 670 East 3900 South, Suite 205 Salt Lake City, Utah, 84107

Statement of Qualifications:

Jared Leikam obtained a B.S. in Chemistry from the University of Utah in the class of 2003. Jared started working for Graymont in February of 2004 and has been working with the ICP Spectrometer for two and a half years, under the direct supervision of Carl Paystrup (Lab Supervisor).

Vonda Stuart obtained a B.S. in Chemistry from Weber State University in 2004. Vonda started with Graymont in August of 2007 and started working in the ICP Lab the following September.

Sample Preparation, Procedures, Reagents, Equipment, etc.:

For the ICP sample preparation, 0.5 grams of the sample is mixed with 3 g of lithium carbonate. The sample and the lithium carbonate are then fused together in a muffle furnace at 850°C. Following the fusion process, the samples are dissolved in 1:1 HCl; a total of 40 mL 1:1 HCl is used in the dissolving process. The samples are then diluted to 200 mL and spiked with 10 ppm Co. Cobalt is used as an internal standard. At this point the samples are ready for analysis on the Perkin Elmer, Optima 7300V.

Mesh Size Fraction, Split and Weight of Sample:

Upon receiving the samples, the prep room technician riffles and then splits the stone down to a manageable size (roughly 200 g). The stone is then dried in an oven at 120°C. Once the samples have been dried they get pulverized to a -200 mesh size. A split of this pulverized material is then sent for testing in the main part of the lab.

Quality Control Procedures:

The ICP spectrometer is calibrated with two certified reference materials prior to analyzing a batch of samples. A batch typically contains 96 samples. Every 12th sample in a batch is a certified limestone reference sample. In addition to the 8 reference samples imbedded in the batch, there are 2 limestone reference samples analyzed at the beginning and at the end of the batch to ensure the accuracy of our Na and P numbers. Every element being analyzed in a sample is backed up by data from the certified reference materials. We also use an internal standard (10 ppm Co) to further ensure the quality and accuracy of the analysis.

	Sample					CaCO3	MgCO3	Fe2O3	AI2O3	SrO	MnO	SiO2	BaO	K2O	Na2O	P2O5	TiO2	ICP	S	LOI(1000)
Lab ID	Date	Plant	Property	Sample Type	Remarks	%	%	%	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	Tot. %	%	%
2015069632	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82109	97.66	0.42	0.118	0.077	654	151	1.05	3	79	117	1155	15	99.5424	<.005	43.56
2015069633	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82110	20.94	5.4	4.938	3.829	693	656	28.53	555	5285	15272	6942	3974	66.9747	2.24	10.04
2015069634	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82111	24.02	3.77	3.811	3.288	598	755	27.5	504	6701	9725	2839	2667	64.7679	1.71	12.69
2015069635	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82112	31.39	2.26	2.321	2.244	518	979	29.39	486	8048	7066	3064	1727	69.7938	1.11	16.17
2015069636	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82113	29.09	2.74	2.754	2.968	524	1002	28.39	422	6568	9464	11323	1955	69.0678	1.27	13.63
2015069637	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82114	28.16	4.64	3.52	4.029	298	1737	34.26	109	1920	10996	4436	1948	76.7534	0.204	14.22
2015069638	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82115	23.18	4.46	2.712	3.635	602	756	28.69	465	4624	22188	1062	1695	65.8162	1.24	11.84
2015069639	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82116	8.07	10.71	6.693	6.64	1180	1124	30.71	538	8731	21190	2857	7609	67.1459	0.015	4.95
2015069640	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82117	95.68	1.4	2.393	0.142	523	496	0.64	7	109	281	<100	52	100.4018	0.027	43.93
2015069641	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82118	96.43	3.43	0.098	0.082	452	52	0.18	7	33	259	<100	14	100.3017	<.005	44.04
2015069642	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82119	97.34	1.38	0.19	0.127	496	108	0.41	9	90	224	<100	39	99.5436	0.048	43.82
2015069643	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82120	98.24	0.61	0.149	0.115	530	63	0.43	7	74	180	<100	21	99.6315	0.016	43.83
2015069644	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82121	98.52	0.48	0.117	0.096	467	84	0.62	7	66	106	<100	19	99.9079	<.005	43.56
2015069645	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82122	97.84	0.56	0.176	0.13	547	151	0.68	5	89	116	109	26	99.4903	0.014	43.67
2015069646	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82123	95.83	2.87	0.167	0.097	1293	163	0.43	3	43	154	<100	2	99.5598	0.021	43.96
2015069647	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82124	96.86	1.76	0.225	0.13	1263	176	0.56	8	41	104	<100	45	99.6987	0.027	43.73
2015069648	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82125	95.9	2.34	0.211	0.104	1217	115	1.04	3	54	158	<100	13	99.751	0.015	43.54
2015069649	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82126	95.9	2.2	0.152	0.127	1238	91	1.4	4	49	162	<100	21	99.9355	0.009	43.27
2015069650	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82127	97.86	1.17	0.145	0.126	767	96	0.79	129	41	187	<100	23	100.2153	0.038	43.62
2015069651	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82128	97.08	0.67	0.126	0.254	1406	114	1.08	108	595	169	<100	54	99.4546	0.04	43.45
2015069652	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82129	96.97	0.65	0.128	0.168	830	125	1.56	5	317	163	<100	14	99.6214	0.018	43.3
2015069653	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82130	97.77	0.61	0.118	0.097	1475	118	0.9	3	142	133	<100	14	99.6835	0.011	43.58
2015069654	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82131	98.06	0.56	0.11	0.099	1128	148	0.64	2	114	131	<100	22	99.6235	0.005	43.72
2015069655	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82132	98	0.61	0.135	0.156	1075	133	0.49	1	157	82	<100	16	99.5374	0.011	43.76
2015069656	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82133	97.9	0.56	0.135	0.137	740	122	0.74	2	137	56	<100	46	99.5823	0.009	43.71
2015069657	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82134	96.45	2.07	0.162	0.078	1602	138	0.57	3	66	96	<100	4	99.5209	0.036	43.89
2015069658	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82135	97.13	0.65	0.106	0.086	2352	85	1.26	4	120	110	186	27	99.5204	0.012	43.45
2015069659	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82136	95.02	3.68	0.192	0.094	937	147	0.6	12	53	104	<100	15	99.7128	0.015	43.91
2015069660	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82137	96.17	0.38	0.158	0.189	2662	108	2.79	45	408	118	<100	62	100.0273	0.009	42.36
2015069661	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82138	97.13	0.69	0.177	0.522	797	228	1.39	5	467	99	<100	147	100.0833	<.005	42.87
2015069662	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82139	95.65	0.23	0.273	0.171	1463	150	3.22	11	255	69	<100	14	99.7402	0.007	42.3
2015069663	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82140	99.15	0.48	0.094	0.131	864	89	1.16	5	99	79	339	26	101.1651	<.005	42.68
2015069664	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82141	96.72	0.42	0.134	0.1	756	95	3.04	3	188	111	200	11	100.5504	<.005	42.1
2015069665	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82142	95.67	0.98	0.365	0.484	1455	177	2	10	994	651	149	304	99.873	0.063	42.54
2015069666	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82143	81.9	2.91	1.57	0.36	315	408	10.86	1048	75	75	1246	142	97.9309	0.038	38.3
2015069667	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82144	97.79	0.63	0.175	0.116	1818	78	0.68	8	208	113	627	17	99.6779	0.007	43.59
2015069668	6/13/2015	202	Kilpala	Limestone	DahrougeVancouver_Island82145	98.38	0.48	0.142	0.066	1691	101	0.37	3	85	58	238	45	99.6601	<.005	43.82
2015070307	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82176	97.79	0.67	0.101	0.166	1582	160	0.44	5	281	147	<100	497	99.4342	0.01	43.72
2015070308	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82177	99.18	0.5	0.077	0.057	1884	144	0.31	3	63	91	<100	44	100.3469	0.005	43.42
2015070309	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82178	98.65	0.52	0.06	0.062	1762	192	0.33	4	65	58	<100	38	99.8339	<.005	43.76
2015070310	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82179	81.78	4.64	1.498	2.146	1088	224	7.71	14	1054	1125	686	1976	98.3907	0.243	37.36
2015070311	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82180	97.5	0.75	0.151	0.127	1479	204	1.08	5	117	127	<100	3	99.8015	0.038	43.38
2015070312	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82181	98.29	0.5	0.112	0.065	1728	103	0.53	3	58	67	<100	40	99.6969	0.005	43.69
2015070314	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82182	96.97	1.69	0.156	0.099	1436	156	0.53	3	48	89	<100	12	99.6194	0.02	43.81
2015070315	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82183	96.9	0.38	0.192	0.229	344	487	1.79	3	374	99	<100	74	99.6291	0.034	43.07
2015070316	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82184	96.31	0.73	0.227	0.367	387	399	1.89	4	604	167	<100	190	99.6991	0.121	42.81
2015070317	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82185	96.4	1.4	0.125	0.219	736	68	1.24	9	347	84	<100	35	99.5119	0.042	43.48
2015070318	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82186	97.22	0.98	0.116	0.199	945	76	0.93	8	416	110	<100	42	99.6047	0.05	43.55
2015070319	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82187	98.29	0.56	0.097	0.115	1526	87	0.51	6	154	81	<100	7	99.7581	0.029	43.63
2015070320	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82188	95.67	2.99	0.13	0.117	754	95	0.77	3	71	55	<100	11	99.7759	0.045	43.76
2015070321	6/13/2015	202	Cluxewe	Limestone	DahrougeVancouver_Island82189	93.97	4.87	0.123	0.182	754	92	0.84	10	257	68	<100	20	100.1051	0.053	43.64

APPENDIX 4: SAMPLE DESCRIPTIONS AND ASSAY RESULTS FROM THE KILPALA PROPERTY

Notes: Stratigraphic thicknesses are based on measured attitudes of bedding listed below, with appropriate interpolations. Attitudes are strike and dip (right-hand rule). Sections are listed in numerical order of samples, which does not necessarily represent stratigraphic order. Most samples consist of chips at 30 cm intervals. UTM coordinates are NAD83, Zone 9N. Section locations are shown in Figure 1.3. Stratigraphy Abbreviations (Tq - Triassic Quatsino Formation; Tbp - Triassic Parsons Bay Formation)

Sample	Strat Unit	Strat Tkns (m)	Description	CaCO₃ (%)	MgCO₃ (%)	SiO₂ (%)	Al₂O₃ (%)	Fe₂O₃ (%)	SrO (ppm)	MnO (ppm)	P₂O₅ (ppm)
Isolated Sa	amples										
82137 UTM 636	Tq 799E, 560 ⁻	3 1975N	Marble, medium grey weathered, white fresh, cryptocrystalline, moderately-bedded, resistant, hard, very strong HCl reaction, structure(s): joint, local-scale, 13/81SE; bedding (possible), local-scale, 119/47 SW; bedding (possible), local-scale, 110/29 SW	96.17	0.38	2.79	0.189	0.158	2662	108	50
82138 UTM 636	Tq 921E, 5601	grab 1961N	Lime Mudstone, light grey to medium grey weathered, medium grey fresh, micritic, massive, resistant, strong HCI reaction, structure(s): calcite vein, undetermined-scale, moderate	97.13	0.69	1.39	0.522	0.177	797	228	50
82139 UTM 636	Tq 232E, 560 ⁻	3 1928N	$\underline{\textbf{Marble}}$ tan to light grey weathered, white fresh, cryptocrystalline, massive, resistant, very strong HCl reaction	95.65	0.23	3.22	0.171	0.273	1463	150	50
82140 UTM 638	Tq 836E, 5602	grab 2285N	Marble , white to medium grey weathered and fresh, cryptocrystalline, massive, resistant, hard, alteration: oxide, pervasive, very strong HCl reaction	99.15	0.48	1.16	0.131	0.094	864	89	339
82141 UTM 638	Tq 819E, 5602	3.5 2290N	Lime Mudstone, dark grey weathered, dark grey to very-dark grey fresh, cryptocrystalline to micritic, moderately-bedded, resistant, strong HCI reaction, structure(s): fracture, undetermined-scale, very strong; calcite veinlet, undetermined-scale, moderate; bedding (possible), local-scale, 13/69 SE	96.72	0.42	3.04	0.100	0.134	756	95	200
82142 UTM 639	Tq 142E, 560	grab 1861N	Marble to Lime Mudstone, medium grey weathered, white to medium grey fresh, cryptocrystalline, massive, resistant, hard, strong HCI reaction	95.67	0.98	2.00	0.484	0.365	1455	177	149
82143 UTM 638	Tq 164E, 5602	grab 2626N	<u>Argillaceous Lime Mudstone</u> , medium grey weathered, medium grey to dark grey fresh, cryptocrystalline, resistant, alteration: oxide, fracture-related, strong HCI reaction, structure(s): calcite vein, undetermined-scale, moderate	81.90	2.91	10.86	0.360	1.570	315	408	1246
82144 UTM 637	Tq 993E, 5602	3 2621N	Lime Mudstone, tan to light grey weathered, medium grey fresh, micritic, resistant, weak fetid odour, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak	97.79	0.63	0.68	0.116	0.175	1818	78	627
82145 UTM 638	Tq 011E, 5602	grab 2590N	Lime Mudstone, light grey to medium grey weathered, medium grey fresh, micritic, moderately-bedded to massively-bedded, resistant, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak; bedding (possible), local-scale, 330/62 NE	98.38	0.48	0.37	0.066	0.142	1691	101	238

APPENDIX 5: SAMPLE DESCRIPTIONS AND ASSAY RESULTS FROM THE CLUXEWE PROPERTY

Notes: Stratigraphic thicknesses are based on measured attitudes of bedding listed below, with appropriate interpolations. Attitudes are strike and dip (right-hand rule). Sections are listed in numerical order of samples, which does not necessarily represent stratigraphic order. Most samples consist of chips at 30 cm intervals. UTM coordinates are NAD83, Zone 9N. Section locations are shown in Figure 1.4. Stratigraphy Abbreviations (Tq - Triassic Quatsino Formation; Tbp - Triassic Parsons Bay Formation)

Sample	Strat Unit	Strat Tkns (m)	Description	CaCO₃ (%)	MgCO₃ (%)	SiO₂ (%)	Al₂O₃ (%)	Fe₂O₃ (%)	SrO (ppm)	MnO (ppm)	P₂O₅ (ppm)
Isolated Sa	amples										
82109 UTM 631	Tq 364E, 560 ²	3 I505N	Lime Mudstone, very-light grey to tan weathered, medium grey to dark grey fresh, micritic to very fine-grained, moderately-bedded, homogeneous, alteration: oxide, fracture-related, strong HCl reaction, structure(s): bedding (possible), local-scale, 310/78 NE	97.66	0.42	1.05	0.077	0.118	654	151	1155
82115 UTM 631	Tq 523E, 560 ²	0.5 1750N	<u>Mudstone</u> , black to dark grey weathered and fresh, micritic, fissile, weak HCl reaction, structure(s): calcite vein, undetermined-scale, moderate; bedding (undulatory), local-scale, 160/25 W	23.18	4.46	28.69	3.635	2.712	602	756	1062
82116 UTM 631	Tq 545E, 560 ⁷	1 1766N	Mudstone to Strongly Dolomitic Lime Wackestone , light grey weathered, light grey to medium grey fresh, fine-grained to medium-grained, thinly-bedded, resistant, weak HCl reaction, structure(s): dyke, undetermined-scale; calcite vein, undetermined-scale, weak; bedding (possible), local-scale, 284/64 NE	8.07	10.71	30.71	6.640	6.693	1180	1124	2857
82127 UTM 631	Tq 438E, 560 ²	3 1322N	Carbonaceous Lime Mudstone, medium grey weathered and fresh, micritic to very fine-grained, massive, resistant, hard, homogeneous, moderate HCI reaction, structure(s): calcite vein, undetermined-scale, weak	97.86	1.17	0.79	0.126	0.145	767	96	50
82128 UTM 631	Tq 401E, 5601	grab 300N	Carbonaceous Lime Mudstone, medium grey weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, resistant, hard, alteration: oxide, fracture-related, strong HCI reaction	97.08	0.67	1.08	0.254	0.126	1406	114	50
82134 UTM 631	Tq 296E, 560 ⁷	3 I 175N	Carbonaceous Lime Mudstone, dark grey to tan weathered, medium brown-grey fresh, micritic, massive, resistant, strong HCI reaction, structure(s): fracture, undetermined-scale, weak; calcite veinlet, undetermined-scale, weak	96.45	2.07	0.57	0.078	0.162	1602	138	50
82135 UTM 631	Tq 308E, 560 ²	grab I 192N	Carbonaceous Lime Mudstone , dark grey weathered, dark grey to medium grey fresh, micritic, massive, resistant, pockety, strong HCI reaction, structure(s): fracture, undetermined-scale, weak; calcite veinlet, undetermined-scale, weak	97.13	0.65	1.26	0.086	0.106	2352	85	186
82136 UTM 631	Tq 310E, 5601	3 I248N	Carbonaceous Lime Mudstone to Slightly Dolomitic Lime Mudstone , dark grey weathered and fresh, micritic, moderately-bedded, resistant, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak; bedding (possible), local-scale, 180/26 W	95.02	3.68	0.60	0.094	0.192	937	147	50
82183 UTM 631	Tq 435E, 560 ²	grab I 129N	Lime Mudstone, tan to very-light grey weathered, medium grey fresh, micritic, massive, resistant, pockety, vuggy (calcite-filled), moderate HCl reaction, structure(s): fracture, undetermined-scale, moderate; calcite vein, undetermined-scale, moderate	96.90	0.38	1.79	0.229	0.192	344	487	50
82184 UTM 631	Tq 491E, 5601	1.75 071N	Lime Mudstone, tan weathered, light grey to medium grey fresh, cryptocrystalline to micritic, resistant, pockety, vuggy (calcite-filled), strong HCI reaction, structure(s): dyke, undetermined-scale; calcite veinlet, undetermined-scale, moderate	96.31	0.73	1.89	0.367	0.227	387	399	50

A6

Sample	Strat Unit	Strat Tkns (m)	Description	CaCO₃ (%)	MgCO₃ (%)	SiO₂ (%)	Al₂O₃ (%)	Fe₂O₃ (%)	SrO (ppm)	MnO (ppm)	P₂O₅ (ppm)	
Section 20	15-01 <u>(</u> U	ITM 631499E	<u>. 5601736N)</u>									
82110	Τq	2	Mudstone , dark grey to dark brown-grey weathered, very-dark grey to black fresh, cryptocrystalline to micritic, laminated, fissile, argillaceous, banded, alteration: oxide, fracture-related, moderate HCI reaction, structure(s): fracture, undetermined-scale, strong; calcite veinlet, undetermined-scale, strong; bedding (undulatory), local-scale, 190/22 W; bedding (undulatory), local-scale, 186/40 W	20.94	5.40	28.53	3.829	4.938	693	656	6942	
82111	Τq	1	<u>Mudstone</u> , dark grey to dark brown-grey weathered, very-dark grey to black fresh, cryptocrystalline to micritic, laminated, fissile, argillaceous, banded, alteration: oxide, fracture-related, moderate HCI reaction, structure(s): fracture, undetermined-scale, strong; calcite veinlet, undetermined-scale, strong; bedding (undulatory), local-scale, 200/34 NW	24.02	3.77	27.50	3.288	3.811	598	755	2839	
82112	Τq	2	<u>Mudstone</u> , dark grey to dark brown-grey weathered, very-dark grey to black fresh, cryptocrystalline to micritic, sandy, silty, alteration: oxide, fracture-related, moderate HCl reaction, structure(s): fracture, undetermined-scale, strong; calcite veinlet, undetermined-scale, strong; bedding (undulatory), local-scale, 179/26 W; bedding (undulatory), local-scale, 178/22 W	31.39	2.26	29.39	2.244	2.321	518	979	3064	
82113	Τq	2	Mudstone , dark grey to dark brown-grey weathered, very-dark grey to black fresh, cryptocrystalline to micritic, laminated, fissile, argillaceous, banded, alteration: oxide, fracture-related, moderate HCI reaction, structure(s): fracture, undetermined-scale, strong; calcite veinlet, undetermined-scale, strong; bedding (undulatory), local-scale, 171/20 SW	29.09	2.74	28.39	2.968	2.754	524	1002	11323	
82114	Τq	2.5	Mudstone , dark grey to dark brown-grey weathered, very-dark grey to black fresh, cryptocrystalline to micritic, laminated, fissile, argillaceous, banded, alteration: oxide, fracture-related, moderate HCI reaction, structure(s): fracture, undetermined-scale, strong; calcite veinlet, undetermined-scale, strong; bedding (undulatory), local-scale, 190/22 W; bedding (undulatory), local-scale, 186/40 W	28.16	4.64	34.26	4.029	3.520	298	1737	4436	A7
Section 20	<u>15-02 (U</u>	<u>ITM 631790E</u>	<u>, 5602088N)</u>									
82117	Тq	1.5	<u>Carbonaceous Lime Mudstone</u> , very-light grey to tan weathered, dark grey to medium grey fresh, micritic, thickly-bedded to massively-bedded, resistant, pockety, homogeneous, strong HCl reaction, structure(s): calcite vein, undetermined-scale, weak	95.68	1.40	0.64	0.142	2.393	523	496	50	
82118	Τq	7	Carbonaceous Lime Mudstone to Slightly Dolomitic Lime Mudstone , very-light grey to tan weathered, dark grey to medium grey fresh, micritic, thickly-bedded to massively-bedded, resistant, pockety, homogeneous, strong HCI reaction, structure(s): calcite vein, undetermined-scale, weak	96.43	3.43	0.18	0.082	0.098	452	52	50	
82119	Τq	6	Carbonaceous Lime Mudstone , very-light grey to tan weathered, dark grey to medium grey fresh, micritic, fossils: crinoid ossicle, rare, thickly-bedded to massively-bedded, resistant, pockety, homogeneous, strong HCI reaction, structure(s): calcite vein, undetermined-scale, weak	97.34	1.38	0.41	0.127	0.190	496	108	50	
82120	Τq	6.75	Carbonaceous Lime Mudstone, very-light grey to tan weathered, dark grey to medium grey fresh, micritic, thickly-bedded to massively-bedded, resistant, pockety, homogeneous, strong HCl reaction, structure(s): calcite vein, undetermined-scale, weak	98.24	0.61	0.43	0.115	0.149	530	63	50	
82121	Τq	4	Carbonaceous Lime Mudstone , very-light grey to tan weathered, dark grey to medium grey fresh, micritic, thickly-bedded to massively-bedded, resistant, pockety, homogeneous, strong HCI reaction, structure(s): dyke, undetermined-scale, weak; calcite vein, undetermined-scale, weak; bedding (possible), local-scale, 170/33 W; bedding (possible), local-scale, 166/32 SW	98.52	0.48	0.62	0.096	0.117	467	84	50	

Sample	Strat Unit	Strat Tkns (m)	Description	CaCO₃ (%)	MgCO₃ (%)	SiO₂ (%)	Al₂O₃ (%)	Fe₂O₃ (%)	SrO (ppm)	MnO (ppm)	P₂O₅ (ppm)
82122	Τq	6.5	<u>Carbonaceous Lime Mudstone</u> , very-light grey to tan weathered, dark grey to medium grey fresh, micritic, thickly-bedded to massively-bedded, resistant, pockety, homogeneous, strong HCI reaction, structure(s): dyke, undetermined-scale; calcite vein, undetermined-scale, weak	97.84	0.56	0.68	0.130	0.176	547	151	109
Section 20	<u>015-03 (U</u>	TM 631425E	<u>. 5601462N)</u>								
82123	Τq	1.5	Slightly Dolomitic Lime Mudstone, light grey to tan weathered, medium grey fresh, cryptocrystalline to micritic, massive, resistant, homogeneous, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak	95.83	2.87	0.43	0.097	0.167	1293	163	50
82124	Τq	3.75	Lime Mudstone, light grey to tan weathered, medium grey fresh, cryptocrystalline to micritic, massive, resistant, homogeneous, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak	96.86	1.76	0.56	0.130	0.225	1263	176	50
82125	Τq	2	Slightly Dolomitic Lime Mudstone, light grey to tan weathered, medium grey fresh, cryptocrystalline to micritic, massive, resistant, homogeneous, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak	95.90	2.34	1.04	0.104	0.211	1217	115	50
82126	Τq	2	Lime Mudstone, light grey to tan weathered, medium grey fresh, cryptocrystalline to micritic, massive, resistant, homogeneous, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak	95.90	2.20	1.40	0.127	0.152	1238	91	50
Section 20	015-04 <u>(</u> U	TM 631401E	<u>, 5601340N)</u>								
82129	Τq	1.75	Carbonaceous Lime Mudstone , light grey to tan weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded, resistant, homogeneous, strong HCI reaction, structure(s): fracture, undetermined-scale, weak; calcite veinlet, undetermined-scale, weak; bedding (undulatory), local-scale, 203/32 NW; bedding (undulatory), local-scale, 201/34 NW	96.97	0.65	1.56	0.168	0.128	830	125	50 A8
82130	Τq	2.5	Carbonaceous Lime Mudstone, light grey to tan weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded, resistant, homogeneous, strong HCI reaction, structure(s): fracture, undetermined-scale, weak; calcite veinlet, undetermined-scale, weak	97.77	0.61	0.90	0.097	0.118	1475	118	50
82131	Τq	1	<u>Carbonaceous Lime Mudstone</u> , light grey to tan weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded, resistant, homogeneous, pockety, strong HCl reaction, structure(s): fracture, undetermined-scale, weak; calcite veinlet, undetermined-scale, weak; bedding (undulatory), local-scale, 220/42 NW	98.06	0.56	0.64	0.099	0.110	1128	148	50
82132	Τq	2	<u>Carbonaceous Lime Mudstone</u> , light grey to tan weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded, resistant, homogeneous, pockety, strong HCl reaction, structure(s): fracture, undetermined-scale, weak; calcite veinlet, undetermined-scale, weak	98.00	0.61	0.49	0.156	0.135	1075	133	50
82133	Τq	2.25	Carbonaceous Lime Mudstone , light grey to tan weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded, resistant, homogeneous, strong HCI reaction, structure(s): fracture, undetermined-scale, weak; calcite veinlet, undetermined-scale, weak	97.90	0.56	0.74	0.137	0.135	740	122	50
Section 20	<u>015-05 (U</u>	TM 631380E	<u>, 5601264N)</u>								
82176	Τq	3	Lime Mudstone, medium grey weathered and fresh, micritic, thickly-bedded, resistant, homogeneous, moderate HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak	97.79	0.67	0.44	0.166	0.101	1582	160	50
82177	Τq	3	Lime Mudstone, very-light grey weathered, medium grey fresh, cryptocrystalline to micritic, thickly-bedded, resistant, homogeneous, moderate HCI reaction, structure(s): fracture, undetermined-scale, weak; calcite veinlet, undetermined-scale, weak	99.18	0.50	0.31	0.057	0.077	1884	144	50

Sample	Strat Unit	Strat Tkns (m)	Description	CaCO₃ (%)	MgCO₃ (%)	SiO₂ (%)	Al₂O₃ (%)	Fe₂O₃ (%)	SrO (ppm)	MnO (ppm)	P₂O₅ (ppm)	
82178	Τq	3	Lime Mudstone, light grey weathered, medium grey to medium brown-grey fresh, cryptocrystalline to micritic, thickly-bedded, resistant, homogeneous, moderate HCI reaction, structure(s): fracture, undetermined-scale; calcite veinlet, undetermined-scale, weak	98.65	0.52	0.33	0.062	0.060	1762	192	50	
82179	Τq	3	<u>Argillaceous Lime Mudstone</u> , light grey to tan weathered, medium grey fresh, cryptocrystalline to micritic, thickly-bedded, resistant, homogeneous, moderate HCI reaction, structure(s): dyke, undetermined-scale; calcite veinlet, undetermined-scale, weak	81.78	4.64	7.71	2.146	1.498	1088	224	686	
82180	Τq	3	Lime Mudstone, light grey weathered, medium grey to medium brown-grey fresh, cryptocrystalline to micritic, thickly-bedded, resistant, homogeneous, moderate HCI reaction, structure(s): fracture, undetermined-scale; calcite veinlet, undetermined-scale, weak	97.50	0.75	1.08	0.127	0.151	1479	204	50	
82181	Τq	3	Lime Mudstone, light grey weathered, medium grey to medium brown-grey fresh, cryptocrystalline to micritic, thickly-bedded, resistant, homogeneous, moderate HCI reaction, structure(s): fracture, undetermined-scale; calcite veinlet, undetermined-scale, weak	98.29	0.50	0.53	0.065	0.112	1728	103	50	
82182	Τq	3	Lime Mudstone, light grey weathered, medium grey to medium brown-grey fresh, cryptocrystalline to micritic, thickly-bedded, resistant, homogeneous, strong HCl reaction, structure(s): fracture, undetermined-scale; calcite veinlet, undetermined-scale, weak	96.97	1.69	0.53	0.099	0.156	1436	156	50	
Section 20	<u>15-06 (U</u>	<u>TM 631356E</u>	<u>, 5601166N)</u>									
82185	Τq	2.75	Lime Mudstone, very-light grey to light grey weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded to thickly-bedded, resistant, hard, very strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak; bedding (undulatory), local-scale, 170/31SW	96.40	1.40	1.24	0.219	0.125	736	68	50	A9
82186	Τq	1.75	Lime Mudstone, very-light grey to light grey weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded to thickly-bedded, resistant, hard, strong HCl reaction, structure(s): calcite veinlet, undetermined-scale, weak	97.22	0.98	0.93	0.199	0.116	945	76	50	
82187	Τq	2.25	Lime Mudstone, very-light grey to light grey weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded to thickly-bedded, resistant, hard, strong HCl reaction, structure(s): calcite veinlet, undetermined-scale, weak	98.29	0.56	0.51	0.115	0.097	1526	87	50	
82188	Τq	2	Slightly Dolomitic Lime Mudstone, very-light grey to light grey weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded to thickly-bedded, resistant, hard, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak	95.67	2.99	0.77	0.117	0.130	754	95	50	
82189	Τq	2.25	Dolomitic Lime Mudstone , very-light grey to light grey weathered, medium grey to dark grey fresh, cryptocrystalline to micritic, moderately-bedded to thickly-bedded, resistant, hard, strong HCI reaction, structure(s): calcite veinlet, undetermined-scale, weak	93.97	4.87	0.84	0.182	0.123	754	92	50	

APPENDIX 6: STATEMENT OF QUALIFICATIONS

K. Krueger is a geological consultant with Dahrouge Geological Consulting Ltd. based in Edmonton, Alberta. She obtained a degree in Geology from the University of Alberta, Edmonton in 2012 and has been employed in the mineral exploration industry since. She is registered as a Geo. I.T. with the Association of Professional Engineers and Geoscientists of Alberta.

D. Hayes is a geological consultant with Dahrouge Geological Consulting Ltd. based in Edmonton, Alberta. He obtained a degree in Geology from the University of Alberta, Edmonton in 2014 and has been employed in the mineral exploration industry intermittently since. He is registered as a Geo. I.T. with the Association of Professional Engineers and Geoscientists of Alberta.

F2

