BRITISH COLUMBIA
The Best Place on Earth

Mining & Minerals Division

BC Geological Survey

Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Geochemical

Ministry of Energy, Mines & Petroleum Resources

TYPE OF REPORT [type of survey(s)]: Geochemical	TOTAL COST: \$3,400.09
AUTHOR(S): Doug Warkentin	SIGNATURE(S):
	4 per
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	
5508667 - Apr 11/16 5603615 May 19/16	s): <u>5585177 - Jan 6/16, 5591856 - Feb 22/16, 5595919 - Mar 21/16</u>
PROPERTY NAME: Franklin	
CLAIM NAME(S) (on which the work was done): Alpha Twin, Averrill	NW, Buffalo, Bullion, Union Tails
COMMODITIES SOUGHT: Au, Ag, Cu, Pt, Pd MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: Franklin Car	mp - including 082ENE003, 082ENE008, 082ENE054, 082ENE06
MINING DIVISION: Greenwood	NTS/BCGS: NTS: 082E09W
LATITUDE: <u>49</u> ° <u>34</u> ' <u>55</u> " LONGITUDE: <u>118</u> OWNER(S):	
1) Doug Warkentin	2)
MAILING ADDRESS: 7069 McBride Street	
Burnaby, BC, V5E 1R1	
OPERATOR(S) [who paid for the work]: 1) Crucible Resources Ltd.	2)
MAILING ADDRESS: 7069 McBride Street	
Burnaby, BC, V5E 1R1	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structu Jurassic, Eocene, Carboniferous-Permian, Penticton Group, H	re, alteration, mineralization, size and attitude): larper Ranch Group, Volcaniclastic Rocks, Granites
Kettle River Formation, Marron Formation, Franklin Group, Lin	nestone Skarns, Averill Complex

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 00637, 17273, 21768, 26306, 26440, 27328

27604, 27929, 28790, 29306, 33945, 34310, 34714, 34846

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic		_	
Induced Polarization			
Radiometric			
Seismic			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			;
Silt		_	
Rock 6 samples - Ultratrace	ICP-MS	Averrill NW, Buffalo	\$2700.00
Other Tailings, 1 sample - IC	P-MS	Union Tails	\$450.30
DRILLING (total metres; number of holes, size)			
			,
RELATED TECHNICAL	prop and ICD Analysis	Averrill NW, Buffalo, Union Tails	\$240.70
Sampling/assaying 7 samples	, prep and ICP Analysis		\$249.79
		-	
Mineralographic			
Metallurgic		_	
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	\$3,400.09

BC Geological Survey Assessment Report 36027

Franklin Project

Greenwood Mining Division NTS 082E/08 and /09

Project Area Location: UTM NAD 83: Zone 11, 402000 East, 5489500 North

> Registered Owner: Doug Warkentin Operator: Crucible Resources Ltd.

Buffalo and Blue Jay Areas – Exploration and Sampling

Project Tenure Numbers: 1019846, 1019983, 1024505, 1028442, 1032615, 1032735, 1032842, 1033089, 1036687, 1036688, 1036689, 1036692, 1040223, 1040606, 1040607.

SOW Event Numbers: 5585177, 5591856, 5595919, 5598667, 5603615.

May 9, 2016

Prepared By: Doug Warkentin, P.Eng

TABLE OF CONTENTS

Introduction	3
Location and Access Tenure Information Regional Geology Local Geology Property History	3 3 6 7 10
Summary of Work Work Program	13
Sampling, Testing and Data Collection Interpretation of Results	14 16
References	17
Author's Qualifications	19
Statement of Costs	20

FIGURES

1. Franklin Project Location Map	4
2. Project Tenure Outline	5
3. Regional Geology, Franklin Camp Area	8

TABLES

klin Project Mineral Tenures	6
klin Camp – Documented Mineral Occurrences	10
prical Production from the Franklin Camp	11
Sample Description and Analytical Results	14
	klin Camp – Documented Mineral Occurrences prical Production from the Franklin Camp

Appendix 1 – Sample Location Maps

Appendix 2 – Assay Reports

Introduction

Location and Access

The Franklin project lies along the Burrell Creek valley in the Christina Range of the Monashee Mountains of Southeast BC, approximately 65 km north of Grand Forks, BC. It covers part of the historic Franklin Camp, including the abandoned town sites of Franklin and Gloucester City. The general project location is shown in Figure 1.

The property consists of a contiguous grouping of MTO claims covering much of Mt. McKinley and Mt. Franklin, extending across Burrell Creek to the east and along Franklin Creek to the northwest. The project area is crossed by the Burrell Creek Forest Service Road (FSR) which is a wellmaintained all-season two wheel drive accessible road. It connects with Grand Forks via the Granby Valley road to the south, and runs along the east side of the Burrell Creek Valley in the project area. Near the northeast boundary of the property a forestry spur road crosses Burrell Creek and splits into three branches, providing access to much of the western and north-western parts of the project area. These are recently active logging roads that mostly remain in good condition. The middle branch, accessing the upper part of Franklin Creek, has been decommissioned but remains passable by high clearance two-wheel drive vehicles. The other two branches, accessing the Mt. McKinley area south of Franklin Creek and the Gloucester Creek area to the north, appear to remain as active forestry roads and are in good condition where they pass through the property.

The entire area was part of an active exploration and mining camp in the early part of the last century, and there are therefore also many overgrown and unmaintained roads and trails accessing old workings, particularly in the areas surrounding Mt. Franklin and the north side of Mt. McKinley.

The area is mountainous, with deep valleys to the west of the broader Burrell Creek Valley. The east-facing slopes tend to be steep, while west-facing slopes are gentler. The climate is generally dry in the summer and the terrain is generally tree-covered, but with relatively little underbrush.

Tenure Information

The Franklin Project currently consists of 15 Mineral Titles Online claims with a total area of 1907 hectares. The project claims form a single contiguous block in an area covering the confluence of Franklin, Gloucester and Burrell Creeks, and covering much of Mt. McKinley and Mt. Franklin. It extends to the northwest along Franklin Creek, including the Twin Creek and McDonald Creek areas. The project claims also include smaller areas on the east side of Burrell Creek north of Dinsmore Creek and along the lower portion of Nichol Creek. The project claims cover large parts of the historically active Franklin mining camp, with a long history of past exploration and previous tenures. The area includes many reverted crown granted mineral claims that no longer hold title, along with a smaller number of crown grants that remain in good standing. The active crown grants principally cover the past producing Union and McKinley Mines, along with the area around the Homestake mine. Together these claims exclude title to approximately 80 hectares of the total project area.

The claims are all owned by the author, and Crucible Resources Ltd. has an option to acquire 100% ownership of these claims. Claim details are shown in Table 1. Expiry dates shown in this table reflect the application of work described in this report.

Figure 1 – Franklin Project Location Map

Figure 2 outlines the tenures of the Franklin Project.

Figure 2 – Project Tenure Outline

Title			Мар		Good To	Area
Number	Claim Name	Owner	Number	Issue Date	Date	(ha)
1019846	AVERRILL NW	145582 (100%)	082E	2013/may/28	2016/jun/01	83.77
1019983	AVERILL SW	145582 (100%)	082E	2013/jun/01	2016/jun/01	62.85
1024505	TWIN CREEK	145582 (100%)	082E	2013/dec/19	2016/jun/01	41.90
1028442	AV W PT	145582 (100%)	082E	2014/may/22	2016/jun/01	20.95
1032615	MCKINLEY-IXL	145582 (100%)	082E	2014/dec/08	2016/jun/01	712.69
1032735	BUFFALO	145582 (100%)	082E	2014/dec/14	2016/jun/03	41.89
1032842	W BANNER	145582 (100%)	082E	2014/dec/20	2016/jun/15	20.95
1033089	FRANKLIN CR SE	145582 (100%)	082E	2015/jan/03	2016/jun/01	125.78
1036687	BULLION	145582 (100%)	082E	2015/jun/12	2016/jun/01	104.78
1036688	ALPHA TWIN	145582 (100%)	082E	2015/jun/12	2016/jun/01	146.66
1036689	DANE-NICHOL	145582 (100%)	082E	2015/jun/12	2016/jun/01	104.82
1036692	DANISH	145582 (100%)	082E	2015/jun/12	2016/jun/01	251.49
1040223	AVERRILL	145582 (100%)	082E	2015/nov/29	2017/jan/31	20.95
1040606	UNION TAILS	145582 (100%)	082E	2015/dec/18	2016/jun/01	104.78
1040607	SE FRANKLIN	145582 (100%)	082E	2015/dec/18	2016/jun/01	62.87
Total 190						

Table 1: Franklin Project Mineral Tenures

Regional Geology

The Franklin Project covers much of the historic Franklin mining camp. The area is defined by major north-south regional faults that form a graben structure. The Granby fault, which runs to the east of the property, can be traced for more than 100 km to the south, where it forms the eastern boundary of the Republic graben in Washington State. In the Franklin camp area, this fault separates older metamorphic rocks to the east from younger intrusive rocks that surround and partly underlie the Franklin property.

While plutonic rocks are dominant regionally, the geology of the Franklin camp is more complex (Figure 3). The oldest rocks are a sequence of sediments, volcanics and related intrusives known locally as the Franklin Group. These are mapped as part of the Carboniferous Harper Ranch Group, and show strong similarities to the Brooklyn formation in the Greenwood-Grand Forks area (Caron 2004). This group includes argillite, conglomerate, chert, tuffaceous siltstone, limestone and greenstone, often showing significant alteration. The Franklin rocks are intruded by several distinct bodies of plutonic rock, including diorite/granodiorite from the Jurassic aged Nelson batholith and related bodies, as well as Jurassic aged porphyry dikes, the Jurassic Averill complex and the Eocene Coryell suite, including syenite stocks and lamprophyre dikes. Overlying the Franklin rocks and much of the intrusive rock are Eocene clastic sediments and volcanics of the Kettle River formation. In addition to sandstones and conglomerates, these rocks include tuffs and some areas of rhyolite. These are in turn overlain by andesites and trachytes of the Eocene Marron formation, which mainly occur at higher elevations.

The Franklin rocks were the main focus of early exploration in the Mt McKinley and Mt Franklin areas, particularly for precious metal-bearing quartz veins and for silicified zones and skarn deposits with high base metal values along limestone contacts. Another type of mineralization identified in the early days of exploration was the so-called 'Black Lead' zones of shear hosted massive chalcopyrite with some PGM values. These tend to form small erratic pods along contact zones of the pyroxenite phase of the Averill plutonic complex. Rare Earth Element (REE) mineralization has also been reported in these rocks, but the style of the mineralization is unknown. The Averill complex was originally correlated to the Eocene Coryell intrusives, but recent dating suggests a Jurassic age. The complex covers much of the north end of the Franklin camp and is a concentrically zoned differentiated intrusion with pyroxenite at its centre, grading outward through monzogabbro to monzonite, with trachytic syenite intruding the pyroxenite and monzogabbro along the axis of the pluton. The black lead mineralization generally occurs along the syenite-pyroxenite contacts.

Other possible styles of mineralization have been identified in more recent exploration programs, including epithermal gold and volcanogenic massive sulphide (VMS). Several areas of epithermal-style alteration and veining have been identified associated with intrusive contact zones but no significant economic mineralization has yet been identified in these areas. There are also apparent intrusive contact zones associated with low-grade base metal mineralization that have seen very limited exploration. The potential for VMS mineralization is suggested by the correlation of the Franklin rocks with similar formations along the Granby fault to the south, where economic VMS deposits have been discovered in the Belcher district in Washington State.

Local Geology

The Franklin Property is primarily underlain by Franklin group rocks and the overlying Eocene sediments and volcanic rocks of the Kettle River and Marron formations. The property also includes significant intrusive contact zones in and around the Franklin rocks. To the northwest the project area also covers part of the Averill complex, including several known occurrences of the 'Black Lead' mineralization and significant exposures of pyroxenite.

The project area partly overlaps the main historic producers in the camp, the Union and McKinley, and the other two historic producers, the Maple Leaf and the Homestake, both lie just outside the property boundary. While the actual mine workings are held by active crown granted claims, these are small and do not cover potential extensions or parallel zones. By far the most important ore zones discovered to date were at the Union Mine (see Table 3, below). The ore was a relatively low sulphide replacement-style vein with some adjacent zones of higher base metal sulphide content. The mineralization consisted of a zone of almost complete replacement of a limestone horizon in Franklin sediments which was later fractured into small irregular sections by multiple faults. Precious metal grades were highest at the intersections of these faults, indicating that the faulting also played a role in later mineralization.

In its best sections, the Union mine produced some of the highest grade ore mined in BC. Ore grades were found to diminish with depth and to the east, and the vein was truncated by a larger fault to the west. More recent exploration has identified small ore remnants and unmined zones within the old workings, but no significant extensions of the mineralization have been found since active mining ceased in the 1940's. Recent drilling to the west of the western fault boundary identified a silicified zone carrying anomalous precious metal values, but it is not clear whether this is an extension of the Union zone. Mill tailings are deposited within the Franklin property boundaries in two separate locations, to the south and east of the mine, and parts of these have been reprocessed on two separate occasions.

- CPH Carboniferous to Permian Harper Ranch Group volcaniclastic rocks
- ECsy Eocene Coryell Plutonic Suite syenitic to monzonitic intrusive rocks
- **EPeMK** Eocene Penticton Group: Marron, Kettle River, Springbrook, Marama and Skaha Formations undivided volcanic rocks
- KOL Cretaceous Okanogan Batholith: Ladybird and Valhalla Intrusions undivided intrusive rocks

MJqr - Middle Jurassic - granite, alkali feldspar granite intrusive rocks

MJNqd - Middle Jurassic Nelson Batholith - granodioritic intrusive rocks

PrG - Proterozoic Grand Forks Gneiss/Monashee Complex - paragneiss metamorphic rocks

Figure 3 – Regional Geology, Franklin Camp Area

There are numerous other mineral occurrences on the property. A significant band of limestone runs through the Franklin Creek valley with a north-south orientation and is associated with the high grade skarn mineralization found at the McKinley mine. Other more poorly defined occurrences have also been identified along this trend and may indicate additional skarn mineralization. At the IXL showing to the west of the McKinley Mine, shallow zones of skarn-type mineralization have also been identified. This area has seen considerable modern exploration; including trenching and drilling that has identified significant zones of copper-gold surface mineralization in Franklin group rocks and altered porphyry intrusives in contact with

small bodies of Franklin limestone. Drilling has shown that some of the best exposures of surface mineralization are cut off at shallow depths by intrusive rocks, however the mineralized rocks are covered by Eocene sediments to the east and potential thickening in this direction has not yet been tested. In addition, at least one hole has shown more significant depths of lower grade copper-gold mineralization in both Franklin volcanics and porphyry intrusives.

In the Mt Franklin area numerous small quartz veins have been identified in Franklin rocks, some carrying significant gold and/or base metals. The best known occurrences in this area, the Homestake and the Banner, lie just outside the claim area, but several are also known within the project area. These include the Bullion and Verde showings as well as some unnamed occurrences in the Twin Creek area, near the Alpha and Deadwood showings. On the southeast flank of Mt Franklin pyrite, chalcopyrite and copper carbonate mineralization occurs in Franklin rocks near the contact with Eocene volcanics at the Nellie showing. This area reportedly shows evidence of hydrothermal alteration associated with nearby intrusives. There is also reportedly copper mineralization at the Alpha showing, near the contact between the Franklin rocks and the Averill intrusives.

In the northwest part of the property the Franklin rocks are intruded by the Averill complex, and several occurrences of copper mineralization with platinum values were historically reported within the project boundaries. These include at least two styles of mineralization. The first type of occurrence is as shear zones along the pyroxenite contact at the Averill, Golden and Buffalo showings, which are typical of the Black Lead type of mineralization, while the second type consists of larger zones of pyroxenite carrying disseminated copper mineralization. This is the style at the Ottawa showing and may also be closely related to the Evening Star and Blue Jay showings, which are reported as disseminated copper in pyroxenite. The Buffalo showing may also include areas of this type of mineralization. The mineralization historically reported from the Averill complex has been primarily the Black Lead type, found in narrow and discontinuous shear zones along contact zones between pyroxenite and syenite, where copper, platinum and sometimes other precious metals appear to be concentrated by secondary hydrothermal enrichment. It has been suggested that the source of these values is enriched heavy mineral differentiated zones within the intrusive, likely within the pyroxenite phase. More recent work also points toward extensive low-grade copper mineralization within the pyroxenite, particularly where wider sections of pyroxenite are exposed in the northwest part of the complex.

To the east of Burrell Creek few mineral showings are reported, but recent work has identified at least one previously explored mineralized shear zone in Franklin volcanics not far from a contact with granodiorite intrusive rocks. The Dane showing includes significant gold values in addition to copper and silver values. High copper and silver values with minor to significant gold values is a more common pattern of mineralization to the south, normally occurring in east-west striking veins or shear zones. The highest value veins in the Mt. Franklin area are more typically associated with lead and zinc mineralization, also often with high silver values. To the south, in addition to the small east-west striking copper-bearing vein structures, there are showings of high grade contact mineralization, intrusive related copper-zinc and copper-molybdenum mineralization as well as epithermal-style vein systems in granodiorite which are locally reported to carry some gold values.

A summary of all known showings occurring within the Franklin project claim area is included in Table 2.

Table 2: Franklin Projects -	Documented Mineral Occurences
------------------------------	-------------------------------

Name Minfile		Location	Minerals	Reported Grades	Width	Year
					(m)	
Minfile showings						
Ottawa	082ENE061	Franklin Crk	Pt, Cu	2.1 g/t Pt	grab	1918
Buffalo	082ENE008	McDonald Crk	Cu, Pt, Pd	6.5 g/t Pt	grab	1918
Blue Jay	082ENE054	McDonald Crk	Ag, Cu	2.7 g/t Ag, 0.24% Cu	grab	1988
Royal Tinto	082ENE010	McDonald Crk	Fe			
Averill	082ENE007	McDonald Crk	Cu, Pt, Pd	0.9 g/t Pt, 3.5 g/t Pd, 53 g/t Ag, 6.7% Cu	grab	1988
Verde	082ENE020	Twin Creek	Au, As, Co	2.98 g/t Au	grab	2003
Alpha	082ENE052	Mt. Franklin	Au, Ag, Cu	0.68 g/t Au, 3.42 g/t Ag, 0.8% Cu	1.5 m	1965
Golden	082ENE053	Mt. Franklin	Pt, Cu	2.1 g/t Pt	grab	1918
Bullion	082ENE013	Mt. Franklin	Ag, Au, Cu, Pb, Zn	1.1 g/t Au, 100 g/t Ag, 2.5% Pb	grab	2003
Jimmy	082ENE042	Mt. Franklin	Ag, Pb, Zn	20.0 g/t Ag,1.94% Pb, 3.40% Zn	grab	1988
Yellow Jacket	082ENE021	Mt. Franklin	Cu, Pb, Zn			
Franklin Limestone	082ENE062	Mt. Franklin	Limestone			
Nellie	082ENE059	Mt. Franklin	Cu			
Little	082ENE004	Dinsmore Crk	Pb, Zn	1.82 g/t Au, 1.9 g/t Ag	0.07	2006
IXL	082ENE033	Mt. McKinley	Cu, Au, Pb, Zn	3.85 g/t Au, 0.8% Cu	5.5	2003
Non-minfile occuren	ces					
Dane		Dane Crk	Au, Ag, Cu	2.16 g/t Au, 162 g/t Ag, 5.7% Cu	grab	2006
United Verde		Mt. Franklin?	Au, Ag	5.5 g/t Au	shaft	1914
Golden Zone		Gloucester Crk	Au			
Mary Ann		Gloucester Crk	Au			
Evening Star		Franklin Crk	Pt, Cu, Au, Ag	\$0.49 to \$14.35 in Au, Cu and Ag	2-400 m	1906
Last Chance		Mt. McKinley	Au, Ag	1.9 g/t Au, 13.5 g/t Ag, 0.1% Zn	grab	2005
Jack		Mt. McKinley	Zn, Ag, Cu	17.5 g/t Ag, 2.9% Pb, 6.5% Zn	grab	2005

Property History

The property has a long history of exploration, and some minor development. None of the recorded past producing mines of the Franklin camp are directly covered by the property, although the principal ones are located on small active crown-granted mineral claims that are partly or fully overlain by MTO claims that are part of the property. The property covers much of the historical Franklin camp, which was actively explored beginning in the 1890's, and was the source of minor base metal and significant precious metal production (Table 3) in the first half of the last century.

Exploration in the Franklin camp area began around 1896, when the first claims were staked. The camp was very active in the early 1900's when most of the principal showings were discovered and developed with small shafts and adits. As early as 1901 the Banner vein had seen considerable development and test shipments had been made, although there is no record of the production from that vein. During this same period considerable development occurred on the McKinley property and ore shipments may have been made during that period, although again there is no record of the production.

Mine	Years of Operation		Gold Production (ounces)	Historical Grades
Union	1913-89	122,555	55,525	14.1 g/t Au, 353 g/t Ag, 0.2% Zn, 0.1% Pb, 0.01% Cu
Maple Leaf	1915-16	36	2	1.7 g/t Au, 172 g/t Ag, 7.6% Cu
Homestake	1940-41	453	223	15.3 g/t Au, 30.0 g/t Ag, 0.12% Zn, 0.06% Pb
McKinley	1949	132	2	0.47 g/t Au, 215 g/t Ag, 17.1% Zn, 11.2% Pb

 Table 3. Historical Production from the Franklin Camp

The first actual recorded production from the camp came from the Union property. The Union vein was discovered in 1913 when a silicified zone near earlier workings on an adjacent quartz vein carrying lead and zinc was found to be rich in gold and silver. Shipments of high grade ore began almost immediately from a large open cut, with adits later developed to access more of the ore. Development and small shipments continued from the Union vein until 1920, when operations were shut down due to the high cost of transporting ore to the smelter.

In 1914 a provincial government survey of the area included ore sampling and production data from the Union mine. The same report included sample assays from the Union and Banner claims, and also included assays from a shaft under development on the 'United Verde' claim which returned a value of 0.16 opt Au. The location of this claim has not been verified, but a search of available records from the time indicates that it was located in July 1913 and maintained until July 1922 but never crown granted. The government report places it west of the Union mine on 'Banner Mountain' (Mt. Franklin), while contemporary news reports place it 'across the river' from the Union, which would be to the east.

In 1915 and 1916 two small shipments of copper ore were made from the Maple Leaf mine. At the smelter this ore was found to carry an average of 8 g/t platinum, which resulted in new interest in the Franklin Camp for its PGM potential. Following this discovery, in 1918 the federal government's munitions department carried out an evaluation of the platinum potential of the entire camp. Numerous showings of copper from 'Black Lead' and pyroxenite zones were sampled, with grades ranging from less than 1 g/t to 13 g/t Pt, with the highest grades coming from the Maple Leaf workings. Samples from within the claim boundaries of the Franklin Project include a sample from a small shaft on the Golden claim, which assayed 2.1 g/t Pt, a sample from a shaft dump and an adit dump at the Averill showing that each assayed 3.1 g/t Pt, a sample from a shaft dump and from open cuts at the Buffalo showing, which assayed 6.5 g/t and 2.7 g/t Pt respectively, and a sample from large open cuts on the Ottawa claim that assayed 2.1 g/t Pt. While there is very limited information about any of the samples collected, the Ottawa showing has been described as consisting of open cuts exposing pyroxenite mineralized with disseminated copper. It is not known if the 1918 platinum sample came from a selected high grade zone or from the broader disseminated mineralization.

In 1927 Hecla Mining Company bonded the Union and Maple Leaf properties and began to develop milling ore on the Union vein. By 1929 a 145 ton per day concentrator had been constructed and milling operations began in 1930. Full mine production lasted until 1932, when most of the known ore had been mined out, and the mine closed in 1933. In that same year a cyanidation plant was constructed to retreat the tailings, which operated from 1934-36. Lease operators produced a small amount of additional ore between 1937 and 1942. During this same

period that the Union mine and mill was in operation, a small amount of ore was also produced from the nearby Homestake mine. Some ore from the Homestake was likely processed at the Union mill, but the recorded production relates only to direct ore shipments from 1941 and 1942.

In 1964 Franklin Mines Ltd acquired most of the Franklin camp and carried out geological and geophysical surveys along with limited sampling of old workings. This included sampling of the Alpha tunnel, within the current project area, which averaged 0.12% Cu and 1 g/t Ag over its entire 18 meter length, with the 3 meters before the face assaying 0.41% Cu, 5.1 g/t Ag and 0.69 g/t Au. They also mapped the Buffalo area and carried out detailed sampling of a 33 meter adit on the Buffalo claim. Samples showed minimal precious metals values, but there were copper values, including an average of 0.34% Cu over 12 meters of the tunnel toward the face. Sampling around the Averill showing returned minimal Pt assays (max. 0.14 g/t), but showed extensive low grade copper mineralization, including an average of 0.16% Cu along 16.8 meters of the Averill Tunnel.

In 1968 Newmont Exploration acquired part of the camp and carried out a work program which included airborne and ground geophysics, trenching and drilling of three holes at the IXL showing in 1969. Limited information is available regarding this work program, but in general, good mineralization was encountered in trenches but this same mineralization was not found in the drill core. One of the holes reportedly encountered ultramafic rocks with disseminated chalcopyrite, but this zone was not assayed.

In 1979 Pearl Resource acquired part of the camp, including the Union mine and surrounding area. Their work focused on the Union mine and included re-opening the lowest adit and a program of underground drilling in 1984.

In 1986 Longreach Resources Ltd acquired a large part of the Franklin camp and carried out an exploration program that included geochemical sampling, geophysical surveys and drilling of several targets, primarily aimed at platinum. The following year the property was renamed the Platinum Blonde property and optioned to Placer Development Limited who carried out additional drilling, prospecting and geochemical sampling over the entire property. This project was also focused mainly on PGM mineralization and the property primarily covered the northern part of the camp, overlapping much of the northern and north-western portions of the current Franklin project claims. This work identified several precious and base metal soil anomalies, some of which do not appear to have been fully investigated, including a strong and fairly extensive copper anomaly in the northwest, in an area likely underlain by a pyroxenite zone in the Averill complex rocks, and roughly corresponding to the areas of the historical Ottawa and Evening Star claims. Prospecting also resulted in several gold-bearing samples being collected in the Twin Creek area, including one assaying 16.8 g/t Au. No follow-up in this area is recorded.

From 1987 to 1989 Sumac Ventures ran a heap leach operation on the Union mine tailings, reportedly recovering 13,300 grams of gold and about 400,000 grams of silver from 42,500 tonnes of tailings and waste rock. The operation appears to have been terminated due to operational difficulties rather than depletion of the available values.

In 1991 Canamax conducted an airborne geophysical survey over the IXL area along with rock and soil sampling. A new zone of low-grade copper mineralization in diorite was identified about 1.5 km south of the main IXL showing.

In 1993 and 94 Sway Resources drilled up to 29 short diamond drill holes and 14 percussion holes in the Banner-Homestake area and carried out rock and silt sampling, and diamond drilled 900 meters in 8 holes at the IXL showing, but available results of this work are very limited and poorly documented. Some high grade drill intercepts were reported to the west of the Homestake workings at the North Banner showing, as well as high grade surface samples from at least two separate locations on the Deadwood Crown Grant.. In 2001 Tuxedo Resources Ltd. acquired much of the south and west portions of the Franklin camp and an airborne geophysical survey was flown that year. In 2003 rock sampling, soil geochemistry, trenching and a small drill program were carried out in the IXL and Banner-Homestake areas. Good mineralization was encountered, but the extent was limited. In addition, there were at least one strong gold and base metal soil anomaly identified int eh North Deadwood area that has not been fully explored. A single drill hole showed significant widths of low grade gold mineralization below the IXL trenches.

In 2004 Solitaire Minerals carried out trenching and a limited drill program in the Union and Maple Leaf areas. Drilling failed to clearly identify a western extension of the Union vein, but a promising silicified zone carrying anomalous precious metal values was intersected under a cap of overlying volcanic rocks. Work on the Maple Leaf crush zone, to the north of the old Maple Leaf workings, identified low grade gold mineralization with intermittent bands of high grade base metal mineralization that also carried higher gold grades.

Also in 2004, New Cantech Ventures conducted an 11 hole, 1741 meter drill program at the IXL showing, indicating that encouraging surface mineralization encountered in trenches was generally cut off at shallow depths by feldspar porphyry and syenite intrusions. Follow-up work in 2005 by Nanika Resources Inc. found evidence of new mineralized zones to the east, near the McKinley mine, mainly based on samples showing good zinc grades, but also occasional samples with good copper, silver and gold grades at the Jack and Last Chance showings. No follow-up work was reported.

In 2006 and 2007 Yankee Hat Minerals conducted limited rock sampling and prospecting in the Dane and Little area and conducted an airborne geophysical survey covering much of the Franklin camp, including some less-explored areas to the east of Burrell Creek. Few strong targets were identified with the exception of a relatively strong conductivity target to the south of the Dane showing. A small subcrop sample of gold in quartz was also found somewhat further to the south, a few hundred meters northwest of the probable location of the Little showing.

Sampling by Crucible Resources between 2012 and 2015 confirmed the presence of high grade copper-gold-silver mineralization at the Dane showing, while limited soil sampling showed only slightly anomalous base metal values in the area below the showings. A small occurrence of copper-gold mineralization was identified near the Nellie showing, and in the northwest multiple occurrences of copper mineralization were located and sampled, with some showing minor gold and PGM values as well. The old Union tailings were sampled and some significant gold and silver values were found to remain despite previous reprocessing operations.

Summary of Work

A site visit was conducted in October 2015, which was primarily focused on exploration of historical workings and showings related to mineralized pyroxenite of the Averill complex in the northwest part of the property. One day was spent on site, and work consisted of a traverse in the MacDonald Creek area, including the areas of the Buffalo, Blue Sky and Evening Star occurrences. A number of sites were sampled, resulting in the collection of six rock samples. The Buffalo adit was located and as well as a pit which may have been the Buffalo shaft.

In addition a short survey was conducted in the vicinity of the original Union tailings site, which still contains some material that was not moved during past reprocessing. Principal accumulations were mapped and a single composite sample was collected.

Historical research and compilation related to past exploration work was also carried out.

Work Program

Sampling, Testing and Data Collection

A site visit was conducted on October 27th, 2015, which included work in two separate areas. The major part of the work was a traverse completed primarily along the slope to the northwest of McDonald Creek. Beginning from the Franklin Creek road, the traverse partly followed overgrown roadways within or near the historical Evening Star, Buffalo and Blue Jay crown grants. Several small workings, including pits, an adit and open cuts were identified and some were sampled. Map 1, in Appendix 1, shows the specific locations of the samples collected. In addition, an area east of the Union mine workings and close to the confluence of Gloucester and Burrell Creeks was visited. This appears to be the original location of the Union tailings prior to the reprocessing operation in the 1980's. Locations of remaining accumulations of tailings were recorded and a single composite sample was prepared. The tailings location is shown on Map 2 in Appendix 1.

All rock and tailings samples were digested in aqua regia using a 0.5 gram sample. Rock samples were analyzed with a 53 element scan by Ultratrace ICP-MS, while the tailings sample was analyzed with a 36 element scan by ICP-MS. All of these samples were analysed by Bureau Veritas Commodities Canada Ltd (formerly Acme Analytical Laboratories Ltd.) in Vancouver.

In addition to the site visit, archival research was conducted in relation to historical claims that were not crown granted, in an attempt to improve available exploration and location information for non-Minfile mineral occurrences which may lie within the property. This included a visit to the provincial archives in Victoria In March 2016.

The site sampling and research work carried out is described below.

Northwest Area Rock Samples

A total of 6 samples were collected from the McDonald Creek area, in the northwest part of the property. The traverse completed passed through the historical Evening Star, Buffalo and Blue Jay claims, and possibly the Ottawa at the western end of the traverse. These claims were all underlain by the Averill Complex, and past work was primarily aimed at high grade copper in 'Black Lead' type ore, or in pyroxenite. Later sampling showed PGM values associated with the copper. The current work was aimed mainly at finding and sampling historical workings, particularly where past work indicated significant platinum values or where widespread copper mineralization was reported.

Sample #	Date	te Description		UTM	Width	Au	Ag	Pt	Pd	Cu	Pb
			East	North	(m)	g/t	g/t	g/t	g/t	%	%
	Northwest A	rea - Rock									
CR151027-1	27/10/2015	Dense pyrox, hard, Fe stain	399420	5493035	1.5	0.01	0.3	0.006	0.038	0.025	0.00
CR151027-2	27/10/2015	Pyrox with qtz, Fe and Cu stain, beside -1	399420	5493034	0.5	0.03	1.4	0.011	0.056	0.152	0.00
CR151027-3	27/10/2015	Sheared pyrox with Cu staining, beside -2	399420	5493033	0.5	0.09	1.7	0.030	0.051	0.097	0.00
CR151027-4	27/10/2015	Friable pyrox with minor qtz, Fe stain	399835	5492997	2	0.03	0.3	0.003	0.033	0.033	0.00
CR151027-5	27/10/2015	Across back of Buffalo tunnel entrance	399428	5493167	1.5	0.01	0.4	0.011	0.016	0.041	0.00
CR151027-6	27/10/2015	Well mineralized pyrox in road exposure	398728	5493420	1.5	0.04	2.3	0.019	0.069	0.225	0.00
CR151027-6	27/10/2015	Repeat Assay	398728	5493420	1.5	0.09	2.4	0.028	0.155	0.225	0.00
	Union Tailin	gs Area - Rock									
CR151027-T1	27/10/2015	Composite - Gloucester Creek Pond Area	402450	5490450	-	0.72	31.5	-	-	0.007	0.02

Table 4 - Rock Sample Descriptions and Analytical Results

The details of the rock samples collected are shown in Table 4, including the most relevant assay values. The first three samples (CR151027-1 to -3) were taken from a pit with a relatively large dump. The pit was in the general area indicated for the 'Buffalo' shaft sampled for platinum in 1918 and may be the top of the shaft if it has caved, or possibly a related open cut. The cut or pit trends east-west and mineralized pyroxenite is partly exposed at the eastern end. Sample 1 was a chip sample over 1.5 meters of dense pyroxenite wall rock showing some iron staining which immediately overlies a more mineralized zone. Sample 2 was from the 0.5 meter mineralized zone directly underlying the rock from sample 1. It included quartz veinlets and prominent copper staining. The third sample was from 0.5 meters of a sheared and oxidized zone immediately to the south of sample 2. This zone also included quartz and lesser amounts of copper staining. The width of this zone is unknown, as the exposure is covered by slide material to the south.

The next sample (CR151027-4) was collected from the Blue Jay area. A ridge between two branches of McDonald creek appears to have been stripped along the top in multiple locations. An open cut also appeared to have been made on the hillside below. A chip sample was collected across 2 metres of one of the more prominent cuts at the top of the ridge, consisting mainly of soft pyroxenite with minor quartz and some iron staining.

On the Buffalo reverted crown grant a prominent ridge above the old roadway shows iron and copper staining. Part way up this ridge is the Buffalo tunnel, which remains open. A chip sample (CR151027-5) was collected across 1.5 meters above the tunnel entrance. The rock is fine grained intrusive material showing some silicification and iron staining but was not as well mineralized as material visible on the steep ridge exposure to the west. A final sample was collected at the Franklin Creek road (CR151027-6). This was from a well mineralized 1.5 meter section of a wider exposure of pyroxenite showing variable copper staining. Although historical data is limited, this occurrence may be part of the Ottawa showing.

Union Tailings Area Sampling

The largest accumulation of tailings from the past producing Union mine is located below the Franklin Creek road, approximately 1 kilometre south of the mine. This material remains from a cyanide heap leach operation in the 1980's, but there are other locations with tailings from the mine, including the original tailings dump, which is located near the confluence of Gloucester and Burrell Creeks, about 1 kilometre northeast of the present main site. It is apparent that most, if not all of the tailings produced during the mine and mill operations in the early 1930's were originally deposited at the Gloucester Creek site, but mostly removed either during the 1980's operation or during an earlier reprocessing operation in the 1930's. The original footprint is bounded by Burrell Creek and is crossed by the Franklin Creek Road, but significant accumulations appear to now be limited to a few piles in a bermed area to the north of the road. The area was not fully surveyed, but the principal tailings accumulations were recorded and a composite sample (CR151027-T1) was prepared by combining subsamples from each of these piles.

Franklin Camp Undocumented Historical Exploration Research

As noted above, there are numerous documented Minfile showings on the property. Most of these are associated with crown granted mineral claims that have since reverted, the locations of which are well documented. When the camp was active early in the last century there was also considerable exploration and development work carried out on located claims that were never crown granted, and the locations and nature of this work are less well known. An example is the Dane showing, which has been located and sampled during modern surface programs, showing substantial past development work and encouraging grades, but no record is available of the original claims or work.

One such showing of interest is the United Verde claim, which is mentioned in local newspaper and government reports from 1914. It was initially reported as a new strike similar to the Union vein, and a government report included an assay from the bottom of a shaft that was then being sunk, showing a grade of approximately 5.5 g/t Au. These two sources give varying general descriptions of the location, and no map has been found showing the claim.

An archival search was carried out to find additional information but no definitive records have been found. Office ledgers confirmed the location of the claim, and an adjoining fractional claim (United Verde Fraction) in 1913, and Certificates of Work were recorded annually until the claim expired in 1922. The claims were owned by the same group who were operating the Union mine at the time, and at least one other claim group, the Hummingbird claims, were staked by the same group during that period. Its location is also unknown. The United Verde has sometimes been assumed to be the same as the Verde crown grant, which lies in the Twin Creek area of the property, but these records show them to be unrelated.

Interpretation of Results

Site Work

McDonald Creek

Assay results from the samples collected in the McDonald Creek area did not disclose any high grade mineralization, but all samples showed some at least anomalous levels of copper and precious metals. The best results were from pyroxenite where copper staining and/or minor chalcopyrite was present, with the highest copper and silver values coming from part of a larger pyroxenite body near the Franklin Creek Road at 0.23% Cu and 2.3 g/t Ag. This sample also assayed 0.13 g/t combined Au+PGM, but a duplicate assay of this sample assayed 0.27 g/t Au+PGM indicating considerable variability in these values. Samples from the trench below the Buffalo area also showed strongly anomalous values, including the highest Au and Pt values. Two adjacent samples averaged 0.12% Cu, 1.6 g/t Ag and 0.13 g/t Au + PGM over 1 meter. This location in particular is worth follow-up, as the exposure was very limited, and may not represent the best mineralization.

The apparent widespread presence of anomalous copper values in this area is encouraging. Also, as with other areas of the Averill complex, gold and PGM values tend to associate with the copper, although the results from the Buffalo area trench show that they are not necessarily directly proportionate.

Union Tailings

Work at the original Union tailings site showed that most of the material has been removed, but some significant accumulations remain, which would add materially to the total inventory available. The composite sample returned fairly average values for gold and lower than average values for silver when compared with previous sampling from other areas.

Historical Research

Past development work is an important indicator for targeting current exploration efforts, particularly where there is an indication of past success such as the gold value reported from a shaft sample on the United Verde claim in 1914. Research has so far failed to find additional details of the

property location or the work conducted, but it has confirmed the history and ownership of the claim, including confirming that it was completely separate from the crown-granted Verde claim. The most likely location is on Mt. Franklin between the Union and Homestake mines. If this can be confirmed it would be an important finding, as this area has generally seen more limited exploration than other parts of the camp due to the presence of the Eocene volcanic cover that overlies the older Franklin formation that hosts the Union and Homestake mines.

References

BC MINISTRY of ENERGY and MINES, Minfile Records.

CANNON, R.W. and PINSENT, R.H., 1988: Geological, Geochemical and Geophysical Assessment Report on the Platinum Blonde Property, BC Assessment Report #17273.

CARON, L.J., 2004: Geology, Geochemistry, Trenching and Diamond Drilling Report on the Franklin Property, for Tuxedo Resources Ltd., BC Assessment Report #27328.

CARON, L.J., 2005: Rock Sampling, Trenching and Diamond Drilling on the Union Property, for Solitaire Minerals Corp., BC Assessment Report #27604.

CARON, L.J., 2005: Geology, Rock Sampling, Prospecting, Trenching on the IXL Property, for Nanika Resources Inc., BC Assessment Report #27929.

CARON, L.J., 2006: Assessment Report on the 2006 Exploration Program, Prospecting and Rock Sampling, Union Property, Franklin Camp, for Yankee Hat Minerals Ltd., BC Assessment Report #28790.

CARON, L.J., 2007: Airborne Geophysical Survey, Union Property, Franklin Camp, for Yankee Hat Minerals Ltd., BC Assessment Report #29306.

CUI, J. and ZHANG, L., 2008: Metallurgical Recovery of Metals from Electronic Waste: a Review, in Journal of Hazardous Materials 158, pp 228-256.

DRYSDALE, C.W., 1915: Geology of the Franklin Mining Camp, British Columbia. GSC Memoir 56.

HARRIS, F.R., 1991: Geological and Geochemical Report on the IXL Claims, for Canamax Resources Inc., BC Assessment Report #21768.

KEEP, M. and RUSSELL, J.K., 1992: Mesozoic Alkaline Rocks of the Averill Plutonic Complex, in Can. Jour. of Earth Sci., Vol. 29, pp 2508-2520.

LISLE, T.E. and CHILCOTT, R., 1964: Report on Franklin Mining Camp, for Franklin Mines Ltd., BC Assessment Report #637.

THOMLINSON, W., 1920: Mineral Investigations - Platinum, Munitions Resources Commission, Canada, Final Report.

TRIBE, N.L., 2000: Geological Mapping Report on the Doe 2 Claim, BC Assessment Report #26440.

WARKENTIN, D., 2012: Franklin Project Exploration and Geochemical Sampling Report, for Crucible Resources Ltd., BC Assessment Report #33945.

WARKENTIN, D., 2013: Franklin Project Exploration and Geochemical Sampling Report, for Crucible Resources Ltd., BC Assessment Report #34310.

WARKENTIN, D., 2014: Franklin Project: Union Tails and Franklin South Areas – Metallurgical Testing Report, for Crucible Resources Ltd., BC Assessment Report #34846.

WARKENTIN, D., 2015: Franklin Project: Union Tails Area – Metallurgical Testing Report, for Crucible Resources Ltd., BC Assessment Report #35477.

WILKINSON, W.J and CRELLIN, J.D., 2000: Prospecting, Geological and Geochemical Assessment Report on the Averill Property, Franklin Mining Camp, B.C. Assessment Report #26306.

Author's Qualifications

I, Douglas Warkentin, P.Eng., a professional engineer with a business address at 7069 McBride St., Burnaby, B.C., certify that:

I have been a Registered Member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia since 1992.

I am a graduate of the University of British Columbia, Vancouver, B.C. and hold a degree of Bachelor of Applied Science in Mining and Mineral Process Engineering.

I have practiced my profession as a Metallurgist and Mineral Process Engineer for 28 years.

I am currently employed as a Metallurgical Engineer by Kemetco Research Inc., Vancouver B.C., and have previously been employed as a Mineral Process Engineer by Vista Mines Inc., Coastech Research Inc., NTBC Research Corp., Biomet Mining Ltd., Blue Sky Mines Ltd., and Vizon Scitec Inc. I have also served as a Director of Duncastle Gold Corp., a TSX-Venture listed company.

Since 2001 I have acted as an independent engineering consultant for a number of mining clients.

I am a qualified person for the purposes of National Instrument 43-101 in relation to metallurgical testing and evaluation programs.

I directly conducted or supervised all sampling, sample handling and preparation related to the Franklin Project that is described in this report.

I am the sole author of this report.

I am not aware of any material fact or material change with respect to the subject matter of this technical report that is not reflected in this report, the omission to disclose which would make this report misleading.

Dated at Vancouver, B.C., this 10th day of May 2016.

Doug Warkentin, PEng. Metallurgical Engineer

Statement of Costs

Site Exploration, Research and Sampling

Logistics and Site La Doug Warken		Oct 26-28, 2015 (16 hours @ \$55/hr)	\$880.00
Research and Comp Doug Warken		Mar 18-24, 2016 (14 hours @ \$55/hr)	\$770.00
Transportation (2 day	/s vehic	le rental, ferries, plus fuel)	\$374.19
Accommodation (1 n	ight)		\$89.27
Food and Supplies (3	3 days)		\$46.84
Sample Analysis			
Sample Preparation	•	nples @ \$8.13/sample) nples @ \$13.41/sample)	\$8.13 \$80.43
Sample Assaying	•	nple @ \$16.64/sample) nples @ \$24.10/sample)	\$16.64 \$144.59
Report Preparation			\$990.00
Total Cost			\$3,400.09

Appendix 1 – Sample Location Maps

Scale 1:8,000

Scale 1:8,000

Appendix 2 – Assay Reports

MINERAL LABORATORIES

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Client: Crucible Resources Ltd. 745 East 30th Ave Vancouver BC V5V 2V8 CANADA

Submitted By: Doug Warkentin Receiving Lab: Canada-Vancouver Received: January 22, 2016 Report Date: February 09, 2016 Page: 1 of 2

VAN16000164.1

CLIENT JOB INFORMATION

Project:	Franklin/Nevada
Shipment ID:	
P.O. Number	
Number of Samples:	30

SAMPLE DISPOSAL

PICKUP-PLP	Client to Pickup Pulps
PICKUP-RJT	Client to Pickup Rejects

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
PRP70-250	18	Crush, split and pulverize 250 g rock to 200 mesh			VAN
SLBHP	12	Sort, label and box pulps			VAN
AQ200	24	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN
AQ250_EXT	6	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed	VAN
DRPLP	30	Warehouse handling / disposition of pulps			VAN
DRRJT	18	Warehouse handling / Disposition of reject			VAN
AQ374	3	1:1:1 Aqua Regia Digestion ICP-ES Finish	0.4	Completed	VAN

ADDITIONAL COMMENTS

Invoice To:

Crucible Resources Ltd. 745 East 30th Ave Vancouver BC V5V 2V8 CANADA

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. **" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

												Clier	nt:	745 E	ast 30th	Ave	UTCES 8 CANAE				
BUREAU MIN VERITAS Can	ERAL LABORATOR	IES		www	bureau	veritas	s.com/u	ım				Projec		Frank	(lin/Neva	da					
Bureau Veritas Com	nmodities Canada Lte	d.										Repor	t Date:	Febru	uary 09, 2	2016					
0050 Shaughnessy	St Vancouver BC V	AD AES	CANAL	۵۵																	
PHONE (604) 253-3		OF OES	CANAL									Page:		2 of 2	:				Pa	art: 1	of 5
CERTIFIC	ATE OF AN	IALY	′SIS													VA	N 16	6000)164	.1	
	Method	WGHT	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200
	Analyte	Wgt	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
CR151026-1	Rock	1.24	20.6	24.9	145.9	277	1.5	35.4	4.1	805	1.59	29.6	243.6	2.4	375	3.8	0.7	0.1	64	3.85	0.035
CR151026-1A	Rock	0.56	8.9	10.3	19.6	76	0.3	17.0	3.6	449	1.09	18.1	4.7	1.3	3	1.5	0.4	0.2	7	0.03	0.010
CR151026-2	Rock	1.57	1.1	16.2	73.2	739	0.5	8.3	5.2	350	1.41	71.1	68.4	5.8	13	16.2	0.4	0.5	23	0.24	0.032
CR151026-3	Rock	2.32	5.8	4.5	18.8	46	0.4	10.6	4.9	689	2.46	125.4	58.6	5.4	14	0.7	0.2	<0.1	5	0.18	0.065
CR151026-4	Rock	2.29	1.2	63.4	22.1	73	0.8	39.4	8.2	340	1.55	19.4	15.4	5.6	45	0.5	0.5	0.2	27	0.87	0.074
CR151026-5	Rock	1.38	1.7	16.2	1381.5	406	4.7	6.8	3.1	461	2.15	90.9	115.3	6.4	5	14.1	2.2	2.1	13	0.04	0.033
CR151026-6	Rock	1.06	1.2	63.0	>10000	>10000	43.6	11.4	4.3	493	3.18	74.1	263.5	5.4	8	251.0	13.8	20.2	19	0.15	0.038
CR151027-1	Rock	1.03																			
CR151027-2	Rock	2.31																			
CR151027-3	Rock	1.65																			1
CR151027-4	Rock	0.92																			
CR151027-5	Rock	2.08																			
CR151027-6	Rock	1.54																			
CR151127-1	Rock	1.56	0.7	109.9	3.7	20	<0.1	26.8	6.7	772	1.73	2.4	<0.5	0.6	9	<0.1	0.1	<0.1	19	0.31	0.068
CR151127-2	Rock	0.46	0.2	28.5	1.5	16	<0.1	1679.7	81.1	791	4.61	5.5	2.3	<0.1	<1	<0.1	0.3	<0.1	19	0.01	0.002
CR151127-3	Rock	0.50	0.5	16.8	1.6	41	<0.1	26.2	8.3	850	1.67	1.1	<0.5	0.1	9	<0.1	<0.1	<0.1	33	0.27	0.064
CR151127-4	Rock	1.56	1.0	209.4	1.5	60	<0.1	25.1	12.9	549	4.05	2.0	2.3	0.3	8	<0.1	0.1	<0.1	86	0.28	0.057
CR151127-5	Rock	1.38	0.2	47.1	2.9	83	<0.1	99.9	26.1	853	4.57	16.7	1.1	0.1	42	0.1	0.2	<0.1	113	3.69	0.083
CR151027-T1	Rock Pulp	0.09	2.9	74.2	201.1	580	31.5	6.3	3.3	1141	2.15	21.7	715.7	0.3	91	4.2	5.4	<0.1	50	4.12	0.046
CR151127-G1	Rock Pulp	0.07	0.1	3.9	3.7	24	<0.1	229.1	20.5	230	2.86	2.5	<0.5	0.2	4	<0.1	0.1	<0.1	32	0.15	0.009
CR151127-G2	Rock Pulp	0.08	0.2	9.7	2.4	36	<0.1	317.9	21.5	169	2.90	3.0	0.8	0.2	3	<0.1	0.1	<0.1	45	0.15	0.021
CR151127-G3	Rock Pulp	0.04	0.3	51.7	2.2	46	<0.1	735.6	43.1	406	3.67	11.3	4.4	0.2	5	<0.1	0.3	<0.1	65	0.21	0.063
AMP-F01-T1	Rock Pulp	0.06	20.4	729.5	884.0	3311	4.7	150.9	11.9	784	7.29	15.2	18.8	2.6	119	21.0	46.1	2.7	28	5.30	0.235
AMP-F02-T1	Rock Pulp	0.03	38.0	1456.7	2612.0	>10000	13.4	224.2	17.1	943	4.46	53.2	34.9	4.1	166	108.5	171.6	10.5	45	13.18	0.270
AMP-F01-C1	Rock Pulp	0.03	25.2	>10000	2517.3	9483	56.4	231.1	19.8	1224	3.61	64.1	879.6	3.4	146	75.3	168.7	9.8	42	14.46	0.290
AMP-F01-C2	Rock Pulp	0.03	21.4	2702.7	2402.7	9192	20.8	127.8	13.3	998	3.11	59.2	59.8	3.4	146	78.1	158.0	9.1	40	16.15	0.303
AMP-F01-C3	Rock Pulp	0.03	21.5	1631.1	2424.0	9310	16.1	123.3	13.5	1211	3.22	60.6	169.4	3.4	162	83.8	165.9	8.9	41	16.46	0.354
AMP-F02-C1	Rock Pulp	0.04	36.7	4013.9	2510.1	9045	50.6	220.7	16.5	926	3.39	65.0	199.9	4.5	142	88.1	227.8	11.4	43	15.22	0.251
AMP-F02-C2	Rock Pulp	0.04	35.7	2055.6	2528.9	9252	30.5	200.0	16.8	919	3.32	65.6	115.6	4.7	147	89.2	238.0	10.6	42	15.65	0.245
AMP-F02-C3	Rock Pulp	0.04	30.0	1484.2	2434.8	8990	24.2	156.4	14.9	845	2.98	65.9	191.4	4.4	144	88.9	247.0	10.9	41	15.65	0.241

												Clier	nt:	745 E	East 30th	Ave	UTCES 8 CANAD				
BUREAU MINE VERITAS Cana	ERAL LABORATOR ada	IES		www.	bureau	veritas	s.com/u	ım				Projec	rt:	Frank	din/Neva	da					
Bureau Veritas Com	modities Canada Lte	d.										Repor	t Date:	Febru	uary 09, 2	2016					
9050 Shaughnessy S	St. Vancouver BC V	6P 6E5		Δ۵																	
PHONE (604) 253-3												Page:		2 of 2	2				Pa	art: 2	of 5
CERTIFIC	ATE OF AN	IALY	′SIS													VA	N16	6000)164	.1	
	Method	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ250	AQ250	AQ250
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Те	Mo	Cu	Pb
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.01	0.01	0.01
CR151026-1	Rock	11	14	0.38	31	0.001	<20	0.56	0.003	0.11	<0.1	<0.01	2.3	<0.1	<0.05	2	3.8	<0.2			
CR151026-1A	Rock	4	3	0.06	20	<0.001	<20	0.21	<0.001	0.05	0.1	<0.01	0.4	<0.1	<0.05	<1	0.7	<0.2			
CR151026-2	Rock	9	15	0.43	29	0.072	<20	0.71	0.047	0.20	2.3	<0.01	2.9	0.1	0.30	3	1.1	<0.2			
CR151026-3	Rock	13	4	0.09	44	<0.001	<20	0.29	0.013	0.19	<0.1	<0.01	1.9	0.1	<0.05	<1	1.2	<0.2			
CR151026-4	Rock	12	23	0.60	44	0.095	<20	1.25	0.070	0.28	2.0	<0.01	2.8	0.2	0.37	4	3.2	<0.2			
CR151026-5	Rock	13	7	0.17	23	0.013	<20	0.47	0.002	0.19	0.2	<0.01	0.8	<0.1	0.25	2	2.2	0.3			
CR151026-6	Rock	9	14	0.42	28	0.056	<20	0.75	0.012	0.18	0.6	0.02	1.5	0.1	2.22	3	13.8	1.3			
CR151027-1	Rock																		0.74	251.92	15.35
CR151027-2	Rock																		0.74	1523.00	32.32
CR151027-3	Rock																		0.37	972.33	3.55
CR151027-4	Rock																		0.31	332.68	8.40
CR151027-5	Rock																		0.53	413.98	22.28
CR151027-6	Rock																		0.31	2252.54	1.94
CR151127-1	Rock	6	7	0.23	120	0.054	<20	0.43	0.015	0.13	<0.1	0.04	1.8	<0.1	< 0.05	2	<0.5	<0.2			
CR151127-2	Rock	<1	743	2.50	14	0.003	<20	0.26	0.001	<0.01	<0.1	0.14	6.8	<0.1	< 0.05	1	0.6	<0.2			
CR151127-3	Rock	<1	9	0.55	148	0.058	<20	0.85	0.042	0.17	<0.1	0.02	2.0	<0.1	<0.05	4	<0.5	<0.2			
CR151127-4	Rock	2	7	0.83	126	0.106	<20	1.33	0.018	0.12	<0.1	0.24	3.3	<0.1	0.36	5	1.5	<0.2			
CR151127-5	Rock	1	101	1.96	31	0.128	<20	2.17	0.037	0.10	<0.1	0.29	12.1	<0.1	< 0.05	6	1.0	<0.2			
CR151027-T1	Rock Pulp	3	13	0.88	19	0.018	<20	1.02	0.007	0.07	1.0	0.07	3.0	<0.1	0.06	4	1.9	0.2			
CR151127-G1	Rock Pulp	1	415	0.90	18	0.057	<20	0.42	0.012	0.01	<0.1	0.02	1.6	<0.1	<0.05	2	<0.5	<0.2			
CR151127-G2	Rock Pulp	1	343	1.36	11	0.080	<20	0.73	0.013	<0.01	<0.1	0.02	2.0	<0.1	<0.05	4	<0.5	<0.2			
CR151127-G3	Rock Pulp	1	239	2.82	72	0.115	<20	1.72	0.014	0.09	0.4	0.04	3.4	<0.1	< 0.05	5	<0.5	<0.2			
AMP-F01-T1	Rock Pulp	8	191	0.50	443	0.190	113	2.08	0.418	0.17	2.4	0.88	1.4	<0.1	0.45	5	0.8	<0.2			
AMP-F02-T1	Rock Pulp	12	367	0.87	120	0.212	173	3.58	0.266	0.22	2.5	5.00	2.8	0.1	1.56	10	2.3	0.2			
AMP-F01-C1	Rock Pulp	10	262	0.82	35	0.178	245	3.83	0.199	0.12	2.5	8.84	2.2	0.1	2.23	9	3.3	0.4			
AMP-F01-C2	Rock Pulp	10	223	0.77	35	0.174	248	3.88	0.161	0.12	3.1	7.76	2.2	<0.1	2.61	10	2.9	0.3			
AMP-F01-C3	Rock Pulp	10	231	0.80	39	0.182	263	3.90	0.170	0.13	2.9	6.15	2.4	<0.1	2.59	10	3.3	0.2			
AMP-F02-C1	Rock Pulp	12	369	0.80	48	0.180	299	3.69	0.145	0.18	2.4	14.36	2.8	0.1	2.74	11	4.8	0.3			
AMP-F02-C2	Rock Pulp	13	343	0.83	50	0.182	286	3.79	0.141	0.18	2.6	10.31	2.8	0.1	2.77	12	3.1	0.3			
AMP-F02-C3	Rock Pulp	12	278	0.82	43	0.174	275	3.68	0.130	0.18	2.4	8.61	2.6	0.1	2.79	12	3.7	0.3			

												Clier	nt:	745 E	East 30th	Resou Ave V5V 2V		2000			
	NERAL LABORATOR	IES		www	.bureau	uverita	s.com/u	um				Projec			din/Neva						
Bureau Veritas Cor	mmodities Canada Lte	d.										Repor	t Date:	Febru	uary 09, 2	2016					
9050 Shaudhnessy	St Vancouver BC V	6P 6E5	CANA	AC																	
PHONE (604) 253-				577								Page:		2 of 2	2				Pa	art: 3	of 5
CERTIFIC	ATE OF AN	IALY	′SIS	i.												VA	N 16	6000)164	.1	
-	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
	Analyte	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg
	Unit	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%
	MDL	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001	0.5	0.5	0.01
CR151026-1	Rock																				
CR151026-1A	Rock																				
CR151026-2	Rock																				
CR151026-3	Rock																				
CR151026-4	Rock																				
CR151026-5	Rock																				
CR151026-6	Rock																				
CR151027-1	Rock	120.4	297	16.5	26.3	1032	7.57	1.7	0.5	7.0	2.8	323.0	0.46	0.09	0.07	296	3.03	0.566	39.0	33.2	1.45
CR151027-2	Rock	131.5	1394	13.2	24.4	1211	6.60	1.5	0.7	29.7	3.5	318.6	0.98	0.09	0.24	253	4.32	0.526	46.0	26.5	1.53
CR151027-3	Rock	115.4	1747	8.8	20.4	968	6.02	1.8	0.8	89.4	4.2	214.4	0.26	0.05	0.23	228	2.39	0.555	50.3	24.4	1.32
CR151027-4	Rock	101.4	260	24.1	20.6	966	6.07	1.9	0.6	33.7	3.2	150.3	0.24	0.07	0.12	228	1.84	0.404	27.6	53.8	1.19
CR151027-5	Rock	102.6	444	5.1	15.1	969	5.33	3.3	5.3	12.3	34.1	179.6	0.38	0.14	0.33	222	1.72	0.382	43.8	11.5	0.48
CR151027-6	Rock	87.4	2342	19.5	29.5	1781	6.96	1.2	0.4	43.5	3.0	488.0	0.31	0.12	0.21	251	5.58	0.560	41.0	50.3	2.01
CR151127-1	Rock																				
CR151127-2	Rock																				
CR151127-3	Rock																				
CR151127-4	Rock																				
CR151127-5	Rock																				
CR151027-T1	Rock Pulp																				
CR151127-G1	Rock Pulp																				
CR151127-G2	Rock Pulp																				
CR151127-G3	Rock Pulp																				
AMP-F01-T1	Rock Pulp																				
AMP-F02-T1	Rock Pulp																				
AMP-F01-C1	Rock Pulp																				
AMP-F01-C2	Rock Pulp																				
AMP-F01-C3	Rock Pulp																				
AMP-F02-C1	Rock Pulp																				
AMP-F02-C2	Rock Pulp																				
AMP-F02-C3	Rock Pulp											-									

												Clier	t:	745 E	East 30th	Ave	UTCES 8 CANAE				
BUREAU VERITAS Cana	E RAL LABORATOR ada	IES		www	.bureau	verita	s.com/u	ım				Projec	t: t Date:	20222 - 1022	klin/Neva uary 09, 2						
Bureau Veritas Com	modities Canada Lt	d.										Repor	Dute.	rebit	uary 09, 2	2010					
9050 Shaughnessy	St Vancouver BC V	6P 6E5	CANAE	A																	
PHONE (604) 253-3	158											Page:		2 of 2	2				Pa	art: 4	of 5
				6								U				> / 0		000	104		
CERTIFIC	ATE OF AN		SIS													VA	N16	5000)164	.1	
	Method		AQ250	AQ250		AQ250				AQ250		AQ250		AQ250	AQ250			AQ250			AQ250
	Analyte	Ва	Ti	в	AI	Na	к	W	Sc	TI	S	Hg	Se	Те	Ga	Cs	Ge	Hf	Nb	Rb	Sn
	Unit	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CR151026-1	MDL	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02	0.02	0.1	0.1
CR151026-1A	Rock Rock																				
CR151026-2	Rock																				
CR151026-3	Rock																				
CR151026-4	Rock																				~
CR151026-5	Rock																				
CR151026-6	Rock																				
CR151027-1	Rock	345.5	0.175	<20	1.05	0.074	0.54	0.2	7.8	0.09	<0.02	<5	0.2	0.02	7.3	0.93	0.2	0.30	0.05	32.0	0.5
CR151027-2	Rock	258.8	0.140	<20	1.04	0.081	0.38	0.3	9.4	0.05	0.10	<5	0.4	0.07	6.9	0.69	0.2	0.12	0.05	19.9	0.7
CR151027-3	Rock	71.1	0.140	<20	0.88	0.080	0.13	0.2	9.8	0.03	<0.02	<5	0.2	0.10	6.8	0.40	0.2	0.06	0.16	6.8	0.8
CR151027-4	Rock	121.8	0.170	<20	1.07	0.147	0.39	0.2	7.7	0.06	<0.02	<5	0.2	0.03	7.5	0.83	0.2	0.12	0.07	22.9	0.8
CR151027-5	Rock	83.9	0.157	<20	0.62	0.058	0.08	0.1	6.7	<0.02	0.03	<5	0.3	<0.02	7.5	0.51	0.2	0.07	0.62	2.0	1.0
CR151027-6	Rock	32.7	0.123	<20	1.13	0.047	0.04	0.4	14.9	<0.02	<0.02	<5	0.3	0.06	8.5	0.54	0.3	0.07	0.05	1.5	0.7
CR151127-1	Rock																				
CR151127-2	Rock																				
CR151127-3	Rock																				
CR151127-4	Rock																				
CR151127-5	Rock																				
CR151027-T1	Rock Pulp																				
CR151127-G1	Rock Pulp																				
CR151127-G2	Rock Pulp																				
CR151127-G3	Rock Pulp																				
AMP-F01-T1	Rock Pulp																				
AMP-F02-T1	Rock Pulp																				
AMP-F01-C1	Rock Pulp																				
AMP-F01-C2	Rock Pulp																				
AMP-F01-C3	Rock Pulp																				
AMP-F02-C1	Rock Pulp																				
AMP-F02-C2	Rock Pulp																				
AMP-F02-C3	Rock Pulp																				

												Clien	t:	745 1	acible Resources Ltd. East 30th Ave souver BC V5V 2V8 CANADA		
VERITAS Can	ERAL LABORATOR ada modities Canada Lte			www	.burea	uveritas	s.com/u	ım				Projec Report			klin/Nevada uary 09, 2016		
050 Shaughnessy	St Vancouver BC V	6P 6E5 (CANA	DA													
PHONE (604) 253-3	3158											Page:		2 of 2	2	Part:	5 of 5
CERTIFIC	ATE OF AN	IALY	SIS												VAN16000	164.1	
	Method		AQ250	AQ250	40250	40250	AQ250	AQ250	AQ250	40250	40250	AQ374	40274	AQ374			
	Analyte	Ta	Zr	AQ250 Y	Ce	AQ250	Re	Be	Li	Pd	Pt	Cu Cu	Pb	Zn			
	Unit	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb	%	%	%			
	MDL	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2		0.01	0.01			
CR151026-1	Rock		(282)		2015 4			(2)2)07	1993	2.72702			100000	100000			
CR151026-1A	Rock																
CR151026-2	Rock																
CR151026-3	Rock																
CR151026-4	Rock																
CR151026-5	Rock																
CR151026-6	Rock											0.005	1.52	0.98			
CR151027-1	Rock	<0.05	8.6	17.37	72.3	0.07	<1	0.5	21.2	38	6						
CR151027-2	Rock	<0.05	7.7	17.75	81.1	0.04	<1	0.8	22.0	56	11						
CR151027-3	Rock	<0.05	5.1	19.26	89.4	0.05	<1	0.6	17.2	51	30						
CR151027-4	Rock	<0.05	8.9	9.33	45.3	0.03	<1	0.9	15.0	33	3						
CR151027-5	Rock	<0.05	5.8	16.48	76.4	0.03	<1	1.7	8.0	16	11						
CR151027-6	Rock	<0.05	4.1	20.43	76.9	0.07	<1	1.3	18.5	69	19						
CR151127-1	Rock																
CR151127-2	Rock																
CR151127-3	Rock																
CR151127-4	Rock																
CR151127-5	Rock																
CR151027-T1	Rock Pulp																
CR151127-G1	Rock Pulp																
CR151127-G2	Rock Pulp																
CR151127-G3	Rock Pulp																
AMP-F01-T1	Rock Pulp																
AMP-F02-T1	Rock Pulp											0.141	0.24	0.96			
AMP-F01-C1	Rock Pulp											1.526	0.24	0.86			
AMP-F01-C2	Rock Pulp																
AMP-F01-C3	Rock Pulp																
AMP-F02-C1	Rock Pulp																
AMP-F02-C2	Rock Pulp																
AMP-F02-C3	Rock Pulp																

ALL												Clien	t:	745 E	ast 30th	Ave	Irces L 3 canada				
	RAL LABORATORI	ES		140404/	huropu	veritas	com/u	m				Draiad				200					
VERITAS Canad	а			www.	buleau	ventas	.com/u					Project		2022	lin/Nevad						
Bureau Veritas Comm	odities Canada Lto	d.										Report	Date:	Febru	ary 09, 2	016					
9050 Shaughnessy St	Vancouver BC V	6P 6F5 (CANAD	A																	
PHONE (604) 253-31												Deve		4 . 6 4					Par	t: 2 o	
												Page:		1 of 1					Par	t: 20	JT 5
QUALITY C	ONTROL	REP	OR	Г												VA	N16	000	164	.1	
	Method	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ250	AQ250	AQ250
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	ті	S	Ga	Se	Те	Мо	Cu	Pb
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.01	0.01	0.01
Pulp Duplicates																					
CR151027-6	Rock																		0.31	2252.54	1.94
REP CR151027-6	QC																		0.30	2254.72	2.01
CR151127-G3	Rock Pulp	1	239	2.82	72	0.115	<20	1.72	0.014	0.09	0.4	0.04	3.4	<0.1	<0.05	5	<0.5	<0.2			
REP CR151127-G3	QC	1	244	2.91	72	0.121	<20	1.79	0.016	0.09	0.3	0.05	3.9	<0.1	<0.05	5	0.8	<0.2			
Core Reject Duplicates																					
CR151026-3	Rock	13	4	0.09	44	<0.001	<20	0.29	0.013	0.19	<0.1	<0.01	1.9	0.1	<0.05	<1	1.2	<0.2			
DUP CR151026-3	QC	13	4	0.09	50	0.001	<20	0.31	0.010	0.21	<0.1	<0.01	1.9	0.1	<0.05	<1	<0.5	<0.2			
Reference Materials																					
STD DS10	Standard	17	51	0.80	394	0.072	<20	1.01	0.066	0.34	3.4	0.29	2.6	5.4	0.30	5	2.3	5.2			
STD DS10	Standard	5																	13.54	157.87	159.56
STD GC-7	Standard																				
STD OREAS133B	Standard	1																			
STD OREAS45EA	Standard	7	793	0.10	139	0.091	<20	3.13	0.018	0.05	<0.1	<0.01	72.9	<0.1	<0.05	13	1.3	<0.2			
STD OREAS45EA	Standard	6																	1.43	684.79	15.68
STD DS10 Expected		17.5	54.6	0.775	412	0.0817		1.0259	0.067	0.338	3.32	0.3	2.8	5.1	0.29	4.3		5.01	13.6		
STD OREAS45EA Experience	cted	7.06	849	0.095	148	0.0984		3.13	0.02	0.053			78	0.072	0.036	12.4	0.78	0.07	1.6	709	14.3
STD GC-7 Expected		2																			
STD OREAS133B Expect	ted																				
BLK	Blank	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	0.2	<0.1	<0.05	<1	<0.5	<0.2			
BLK	Blank																		<0.01	<0.01	<0.01
BLK	Blank																				
Prep Wash		[
ROCK-VAN	Prep Blank	4	3	0.40	56	0.059	<20	0.85	0.043	0.05	<0.1	0.01	1.9	<0.1	<0.05	4	<0.5	<0.2			
ROCK-VAN	Prep Blank	4	2	0.43	53	0.064	<20	0.83	0.052	0.06	<0.1	<0.01	1.9	<0.1	<0.05	4	0.7	<0.2			

												Clien	t:	745 E	ast 30th /	Ave	rces L				
BUREAU MINERA VERITAS Canada	L LABORATORI	ES		www.	bureau	veritas	.com/u	m				Project	:	Frankl	in/Nevad	а					
ounddu												Report		20222 - 107	ary 09, 20						
Bureau Veritas Commoo	dities Canada Lto	d.													,,,						
9050 Shaughnessy St \	/ancouver BC V	6P 6E5 (CANAD	A																	
PHONE (604) 253-3158												Page:		1 of 1					Part	t: 3 o	f 5
			0.00	-														000	101		i i i i i i i i i i i i i i i i i i i
QUALITY CC	NIROL	REP	OR													VA	N16	000	164.	1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
	Analyte	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg
	Unit	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%
	MDL	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001	0.5	0.5	0.01
Pulp Duplicates																					
CR151027-6	Rock	87.4	2342	19.5	29.5	1781	6.96	1.2	0.4	43.5	3.0	488.0	0.31	0.12	0.21	251	5.58	0.560	41.0	50.3	2.01
REP CR151027-6	QC	87.2	2390	19.7	31.0	1804	7.08	0.8	0.4	85.5	3.0	484.6	0.29	0.14	0.21	258	5.71	0.557	42.9	52.1	2.02
CR151127-G3	Rock Pulp																				
REP CR151127-G3	QC																				
Core Reject Duplicates																					
CR151026-3	Rock																				
DUP CR151026-3	QC																				
Reference Materials																					
STD DS10	Standard				0.020 000		10 1 10 10	00.555	197-10		1000		00.13/05	1/2-3122	000000000				20201203		
STD DS10	Standard	398.9	2289	71.8	13.1	895	2.81	49.1	3.0	83.4	7.7	69.5	3.03	8.60	13.71	43	1.05	0.081	16.6	53.8	0.80
STD GC-7	Standard																				
STD OREAS133B	Standard	-																			
STD OREAS45EA	Standard	00.0	200	070.0	50.0	10.1	04.74	40.0	10	54.5	10.4	4.2	0.04	0.05	0.00	010	0.00	0.000	7.0	7045	0.00
STD OREAS45EA	Standard	32.9	296 2020	378.6	52.9 12.9	404	21.74 2.7188	10.2	1.9 2.59	51.5 91.9	10.4	4.2 67.1	0.04	0.35	0.29	310	0.03	0.029	7.2	784.5	0.09 0.775
STD DS10 Expected STD OREAS45EA Expecte	d	370 31.4	2020	74.6 381	12.9	875 400	23.51	46.2	1.73	53	7.5	3.5	2.62	9	11.65 0.26	43 303	1.0625	0.0765	7.06	54.6 849	0.095
	a	31.4	260	301	52	400	23.51	10.3	1.73	53	10.7	3.5	0.03	0.32	0.26	303	0.036	0.029	7.06	049	0.095
STD GC-7 Expected STD OREAS133B Expected	4																				
BLK	Blank	1																			
BLK	Blank	0.2	<2	<0.1	<0.1	<1	<0.01	0.1	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	<2	<0.01	<0.001	<0.5	<0.5	<0.01
BLK	Blank	0.2	74	-0.1	-0.1		-0.01	0.1	-0.1	-0.2	-0.1	40.0	-0.01	-0.02	-0.02	-2	-0.01	-0.001	-0.5	-0.0	-0.01
Prep Wash	Diarity	-																			
ROCK-VAN	Prep Blank																				
ROCK-VAN	Prep Blank	1																			
	i iep Biank																				

A D V A D A D A D A D A D A D A D A D A												Clien	t:	745 E	ast 30th /	Ave	CANADA				
	RAL LABORATOR	IES		140404/	hureau	veritas	com/u	m				Project									
VERITAS Canad	da			****	buleau	ventas	.com/u	m				Report		20222 - 102	in/Nevad						
Bureau Veritas Comm	nodities Canada Lte	d.										Report	Date.	Febru	ary 09, 20	016					
9050 Shaughnessy S	t Vancouver BC V	6P 6E5	CANAE	DA																	
PHONE (604) 253-31	58											Page:		1 of 1					Part	: 40	f 5
												i age.		1011			C				1.5
QUALITY C	ONTROL	REP	POR	Т												VA	N 16	000	164.	1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
	Analyte	Ва	Ті	в	AI	Na	к	w	Sc	TI	S	Hg	Se	Те	Ga	Cs	Ge	Hf	Nb	Rb	Sn
	Unit	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02	0.02	0.1	0.1
Pulp Duplicates				70/ -1			-					_		-							
CR151027-6	Rock	32.7	0.123	<20	1.13	0.047	0.04	0.4	14.9	<0.02	< 0.02	<5	0.3	0.06	8.5	0.54	0.3	0.07	0.05	1.5	0.7
REP CR151027-6	QC	35.8	0.126	<20	1.15	0.049	0.04	0.4	14.8	<0.02	<0.02	<5	0.4	0.06	8.7	0.55	0.3	0.06	0.05	1.5	0.8
CR151127-G3	Rock Pulp	-																			
REP CR151127-G3	QC	-																			
Core Reject Duplicates	Deale																				
CR151026-3 DUP CR151026-3	Rock	0																			
Reference Materials	QC	-																			
STD DS10	Standard	0																			
STD DS10	Standard	417.7	0.080	<20	1.01	0.066	0.33	3.4	2.8	5.42	0.29	331	2.4	5.34	4.5	2.73	<0.1	0.05	1.25	29.7	1.8
STD GC-7	Standard	417.3	0.000	-20	1.01	0.000	0.00	5.4	2.0	0.42	0.23	551	2.4	0.04	4.5	2.15	-0.1	0.00	1.20	20.1	1.0
STD OREAS133B	Standard																				
STD OREAS45EA	Standard																				
STD OREAS45EA	Standard	153.9	0.092	<20	3.14	0.020	0.05	<0.1	71.6	0.06	0.04	7	0.7	0.06	12.3	0.67	0.2	0.65	0.09	7.5	0.9
STD DS10 Expected		412	0.0817		1.0259	0.067	0.338	3.32	2.8	5.1	0.29	300	2.3	5.01	4.3	2.63	0.08	0.06	1.25	27.7	1.6
STD OREAS45EA Expe	ected	148	0.0984		3.13	0.02	0.053		78	0.072	0.036	10	0.78	0.07	12.4	0.71	0.26	0.68	0.09	7.5	0.83
STD GC-7 Expected																					
STD OREAS133B Expe	cted																				
BLK	Blank																				
BLK	Blank	<0.5	< 0.001	<20	<0.01	<0.001	<0.01	<0.1	0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1	<0.02	<0.1	<0.02	<0.02	<0.1	<0.1
BLK	Blank	1																			
Prep Wash		1																			
ROCK-VAN	Prep Blank																				
ROCK-VAN	Prep Blank	2 																			

												Client	::	745 E	cible Resources Ltd. East 30th Ave ouver BC V5V 2V8 CANADA		
BUREAU MINERA	AL LABORATORI	ES		www	bureau	veritas	.com/u	m				Project		Frank	din/Nevada		
VENTIAS Canada					Jaroad							Report		20222 - 107			
Bureau Veritas Commo	dities Canada Lto	d.										report	Buto.	rebru	lary 09, 2016		
9050 Shaughnessy St	Vancouver BC V	6P 6E5 (CANAD	A													
PHONE (604) 253-3158	8											Page:		1 of 1		Part:	5 of 5
												ge					
QUALITY CO	ONTROL	REP	OR	Г											VAN160001	64.1	
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ374	AQ374	AQ374			
	Analyte	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt	Cu	Pb	Zn			
	Unit	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppb	ppb	%	%	%			
	MDL	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2	0.001	0.01	0.01			
Pulp Duplicates																	
CR151027-6	Rock	<0.05	4.1	20.43	76.9	0.07	<1	1.3	18.5	69	19						
REP CR151027-6	QC	<0.05	3.9	20.60	78.0	0.06	<1	1.3	18.4	155	28				0 -		
CR151127-G3	Rock Pulp																
REP CR151127-G3	QC																
Core Reject Duplicates																	
CR151026-3	Rock																
DUP CR151026-3	QC																
Reference Materials																	
STD DS10	Standard																
STD DS10	Standard	<0.05	2.0	7.38	34.1	0.25	49	0.4	19.6	89	187						
STD GC-7	Standard											0.574	>10	22.49			
STD OREAS133B	Standard											0.031	5.26	11.32			
STD OREAS45EA	Standard																
STD OREAS45EA	Standard	<0.05	24.2	5.74	18.9	0.08	<1	0.4	2.4	55	103						
STD DS10 Expected			2.2	7.77	37	0.23	50	0.63	19.4	110	191						
STD OREAS45EA Expected	ed	~	23	5.09	17.7	0.08		0.41	2.37	66	108						
STD GC-7 Expected												0.555	10.44	22.06			
STD OREAS133B Expecte	ed											0.032	5.07	11.12			
BLK	Blank																
BLK	Blank	<0.05	<0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<2						
BLK	Blank											<0.001	0.02	0.01			
Prep Wash		[
ROCK-VAN	Prep Blank																
ROCK-VAN	Prep Blank																