

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geological and Geochemical Work – Assessment Report on the Rollie/Frank Creek Project, Cariboo Mining District, British Columbia

TOTAL COST: **\$28,209.00**

AUTHOR(S): **Rein Turna** SIGNATURE(S): **"Signed"** NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): **5579853 (September 28 to November 23, 2015)**

YEAR OF WORK: 2015 PROPERTY NAME: Rollie/Frank Creek CLAIM NAME(S) (on which work was done) 1038887

COMMODITIES SOUGHT: Gold, Silver & Copper MINERAL INVENTORY MINFILE NUMBER(S),IF KNOWN: N/K MINING DIVISION: Cariboo BCGS: 093A/11, 93A/12, 93A/13 & 93A/14 LATITUDE 52.74° N LONGITUDE 121.45° W UTM Zone NAD 83 EASTING 604800 NORTHING 5844500

OWNER(S): Barker Minerals Ltd. MAILING ADDRESS: 8384 Toombs Drive Prince George BC, V2K 5A3

OPERATOR(S) [who paid for the work]: **Barker Minerals Ltd.** MAILING ADDRESS: **8384 Toombs Drive Prince George BC, V2K 5A3**

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude **do not use abbreviations or codes**) **Upper Triassic, Lower Jurrassic, Andesitic Volcanics, Gold, Silver & Copper**

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping	N/A		
Photo interpretation	N/A		
GEOPHYSICAL (line-kilometres)			
Ground	N/A		
Magnetic	N/A		
Electromagnetic	N/A		
Induced Polarization	N/A		
Radiometric	N/A		
Seismic	N/A		
Other	N/A		
Airborne	N/A		
GEOCHEMICAL (number of same	les analysed for)		
Soil	33	1038887	\$ 2,542.09
Silt	N/A		
Rock	104	1038887	\$15,252.54
Other			
DRILLING (total metres, number of	fholes size storage location)		
Core	N/A		
Non-core	N/A		
Sampling / Assaying	137	1038887	\$10,414.37
Petrographic	N/A		
Mineralographic	N/A		
Metallurgic	N/A		
	N/A		
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL	N/A		
Topo/Photogrammetric (sca	ale, area) N/A		
Legal Surveys (scale, area) N/A		
Road, local access (km)/tra	il N/A		
Trench (number/metres)	N/A		
Underground development	(metres) N/A		
Other	N/A		
		TOTAL	
		COST	\$28,209.00

GEOLOGICAL & GEOCHEMICAL

ASSESSMENT REPORT

on the

ROLLIE - FRANK CREEK PROPERTIES

Cariboo Mining Division, British Columbia

The geographic coordinates of the Rollie property are: 52.74° North Latitude and 121.45° West Longitude or 604800 E and 5844500 N UTM coordinates (NAD 83)

The relevant maps are:

N.T.S. Map No. 93A/11, 93A/12, 93A/13 and 93A/14.

for

Barker Minerals Ltd. 8384 Toombs Drive Prince George, B.C. V2K 5A3

> Prepared by: Rein Turna

May 15, 2016 Amended August 24, 2016

2015 VMS Discovery – Two Mile Creek Drill Target

Figure No. 1 Massive sulphide discovered in 2015 in Two Mile Creek on the Rollie/Frank Creek property. Further exposures were hand trenched and sampled in 2015.

1.0 SUMMARY

Work performed in 2015 on Barker Minerals Ltd.'s Rollie/Frank Creek property consisted mainly of rock and soil sampling in Two Mile Creek area. In 2015 a flash flood exposed new outcrops containing massive sulphide mineralization. A total of 33 soil and 104 rock samples were collected and geochemical analyses were made on the samples collected in the 2015 program. Detailed maps and geochemical data are presented in Appendix H.

TABLE OF CONTENTS

	Page
1.0 SUMMARY	i
2.0 INTRODUCTION	1
3.0 PROPERTY DESCRIPTION and LOCATION	1
4.0 MINERAL CLAIMS	2
5.0 PHYSIOGRAPHY and ACCESSIBILITY	3
6.0 HISTORY	5
6.1 History of Work Done on the Rollie Creek Property	5
6.1.1 Work done on the Peacock Showing	5
6.1.2 Work done in 2014	6
6.1.3 Work done in 2015	6
7.0 GEOLOGY	7
7.1 Regional Geology	7
Quesnel Terrane	10
Slide Mountain Terrane	11
Barkerville Terrane	11
Cariboo Terrane	12
Glaciation and Glacial Deposits	12
7.2 Local Geology at Unlikely-Rollie Area, Southern Cariboo Lake	13
7.2.1 The Unlikely Showing (Minfile No. 093A 163)	13
8.0 EXPLORATION PROGRAM - 2016	14
8.1 Sampling Method and Approach	14
8.2 Economic Targets and Work Done	14
8.3 Area B (Two Mile Creek & Hall VMS Showing)	15
8.4 Area C (Rollie Bench Road)	15
9.0 CONCLUSIONS	15
10.0 RECOMMENDATIONS	15

LIST of FIGURES

		Page
Figure No. 1	Massive sulphide discovered in 2015 in Two Mile Creek	i
Figure No. 2	Main Property location in British Columbia	2
Figure No. 3	Barker Minerals Ltd. Mineral Claims	after pg. 2
Figure No. 4	Access Roads from Likely to several of Barker Minerals' propertie	es4
Figure No. 5	Terrane Map of Southern British Columbia	7
Figure No. 6	Terrane Map of Cariboo Lake – Wells Area	8
Figure No. 7	Geology of Wells-Cariboo Lake area	9
Figure No. 8	Schematic Regional Structural Section	10
Figure No. 9	Keymap for Rollie Creek Property Areas B, C i	n Appendix H
Figure No. 10	0 Rollie Ck Property Area B (Two Mile Creek) i	n Appendix H
Figure No. 1	1 Rollie Ck Property Area B (Hall VMS Showing) i	n Appendix H
Figure No. 12	2 Rollie Ck Property Area C (Rollie Bench Road) i	n Appendix H

LIST of TABLES

Table No. 1	Sample Coordinates and Descriptions	in Appendix G
Table No. 2	Two Mile Creek – XRF Sampling Results	after Fig. No. 10
Table No. 3	Hall VMS Showing – XRF Sampling Results	after Fig. No. 11
Table No. 4	Rollie Bench Road – XRF Sampling Results	after Fig. No. 12

LIST of APPENDICES

- Appendix A Glossary of Technical Terms and Abbreviations
- Appendix B Barker Minerals Ltd. Mineral Claims Details
- Appendix C Analytical Methods
- Appendix D References
- Appendix E Statements of Qualifications
- Appendix F Statement of Expenditures
- Appendix G Samples Descriptions and Coordinates
- Appendix H Rollie Creek Property Maps and XRF Data Tables

2.0 INTRODUCTION

This report describes assessment work performed in 2015 on Barker Minerals Ltd.'s Rollie/Frank Creek property. The work was concentrated in the area of **tenure no. 1038887**. Rock and soil samples were collected and analyzed by X-ray fluorescence (XRF) for multiple elements. The purpose was to add geochemical information to the existing database, and to identify potential mineralized lithologic horizons in an on-going mineral exploration program. Definitions of technical terms used in this report are provided in Appendix A, Glossary of Technical Terms and Abbreviations. Chemical abbreviations are used for the elements discussed. The elements and abbreviations are:

Ag Silver	As Arsenic	Au Gold
Ba Barium	Bi Bismuth	Cd Cadmium
Co Cobalt	Cr Chromium	Cu Copper
Fe Iron	K Potassium	Pb Lead
Sb Antimony	Sn Tin	Zn Zinc

3.0 PROPERTY DESCRIPTION and LOCATION

The Rollie/Frank Creek property consists of contiguous claims listed in Appendix B – Barker Minerals Ltd. Mineral Claims Details. The property's location in British Columbia is indicated in Figure No. 2 – Two Mile Creek Property Location in British Columbia, and the mineral claims are outlined in Figure No. 3 – Barker Minerals Ltd. Mineral Claims. The mineral claims comprising the property are located generally in the area between Quesnel and Cariboo Lakes of the Cariboo Mining Division in British Columbia and are 100% owned by Barker Minerals Ltd. of Prince George, B.C. The property is approximately 15 km northeast of the settlement of Likely and 80 km northeast the City of Williams Lake. The City of Prince George is 155 km to the north.

The geographic coordinates of the Rollie property are: 52.74° North Latitude and 121.45° West Longitude or 604800 E and 5844500 N UTM coordinates (NAD 83).

The relevant maps are: N.T.S. Map No. 93A/11, 93A/12, 93A/13 and 93A/14.

Figure No. 2 Barker Minerals Ltd. Rollie Property location in British Columbia.

4.0 MINERAL CLAIMS

Details about the mineral claims are provided in Appendix B – Barker Minerals Ltd. Mineral Claims Details. Fig. No. 3 on the next page illustrates the configuration of the mineral claims relevant to this report.

5.0 PHYSIOGRAPHY and ACCESSIBILITY

The following description in *italics*, is after McKinley, 2004:

The property is situated in the central part of the Quesnel Highland between the eastern edge of the Interior Plateau and the western foothills of the Columbia Mountains. This area contains rounded mountains that are transitional between the rolling plateaus to the west and the rugged Cariboo Mountains to the east. Pleistocene and Recent ice sheets flowed away from the high mountains to the east over these plateaus and down to the southwest (Cariboo River), west (Little River) and northeast (Quesnel Lake), carving U-shaped valleys. The elevation ranges from 700-1650 m.

Precipitation in the region is heavy, as rain in the summer and snow in the winter. Drainage is to the west via the Cariboo, Little and Quesnel Rivers to the Fraser River. Quesnel Lake, the main scenic and topographic feature in the region, is a deep, long, forked, glacier-carved lake with an outlet at 725 m elevation. Vegetation is old-growth spruce, fir, pine, hemlock and cedar forest in all but the alpine regions of the higher mountains (mainly above 1400 m elevation).

Access to the Rollie property is via gravel logging roads bearing northeast from Likely. Figure No. 4 shows access roads from Likely to Barker's mineral properties.

Figure No. 4 Access roads from Likely to several of Barker Minerals' properties.

6.0 HISTORY

6.1 History of Work Done in area of the Rollie property

6.1.1 Work done on the Peacock Showing (Minfile No. 093A 133) on Rollie).

For work done in 1926 and 1933 the relevant reports are the Minister of Mines Annual Reports (MMAR) for 1926, pg A178 and 1933, pg A138.

The Minister of Mines Annual Reports state a 50 foot width of schisted sediments show a 'stockwork' of quartz veins across Duck [Two Mile] Creek where a large number of veins average 1 foot wide, the widest 5 feet. The MMAR reports for 1926 and 1933 state the Peacock claims to be on Duck Creek. Geological Survey of Canada Map 278 (Bowman, 1889), indicates Duck Creek to be that which is now named Two Mile Creek. On the Peacock claims several quartz veins contained galena with silver values. A picked sample of galena contained 40% Pb, 6% Zn, 29 oz/Ton Ag and 0.02 oz/Ton Au. A rock sample from the enclosing pyritic schisted sedimentary rock assayed 1% copper. A prominent outcrop of apparently silicified green mica-schist occurred on the property.

Work was done in 1987-1988 for C.E. Carlson on the Duck 1 and Duck 2 claim groups totaling 154 claim units covering the lower portions of Rollie and Asserlind Creek drainages at the southwest end of Cariboo Lake. For work done in the 1980's the relevant reports are Assessment Reports 17254, 17426, 18298, 18794.

In 1987 1,179 soil samples were collected over a 1.5 km x 1.6 km area and analyzed for precious and base metals. The survey area was approximately 2.5 km north of Rollie (Duck) Creek. The area of the grid was underlain by dark grey and greenish phyllites and siltites in contact with diorite. Anomalous results in the soils were considered to result from abnormally high metal content of a dark grey phyllite formation carrying abundant up to 10-15 % disseminated pyrite. This rock typically had geochem values of 200-300 ppm Cu and 300-350 ppm Zn. This soil survey did not indicate any worthy drill targets. An EM geophysical survey was recommended.

In 1988 a soil survey (127 samples) and a total of 5.48 line km of a VLF-EM geophysical survey and 7 holes (1,034 m) of drilling were done. The soil samples were collected over a 700 m x 800 m area approximately 1.2 km south of Rollie Creek and adjacent to the Keithley Creek Road. The soils were analyzed for precious and base metals. No significant anomaly occurred. Further soil sampling was recommended but not done. The geophysical survey, done in the same area as the soil survey, defined a contact zone between granitic gneiss and weakly mineralized or graphitic phyllite. A moderately strong EM anomaly was attributed to a graphitic phyllite unit. Though no trenching or drilling targets were established by the EM survey further rock and soil sampling was recommended.

The drill program tested copper mineralization occurring in dark grey phyllite and siltite as strong disseminations and massive lenses. The drill holes were sparsely located, 3 on the

north side of the lower portion of Rollie Creek, 4 holes near Two Mile Creek where the "**Peacock**" showing is located in the Minfile. The exploration target was a sedimentaryhosted large tonnage Cu-Ag deposit. The drill program did not indicate such a deposit but recommendations were made to continue exploration for fault and vein related mineralization.

6.1.2 Work done in 2014

The relevant report is Assessment Report 35157 by R. Turna, dated February 15, 2015.

Soils were sampled by Barker Minerals Ltd. along the Keithley Creek Road along the west shore of Cariboo Lake. Further soils and rocks were collected further west on the 1500 Road and Rollie Branch Road. Approximately 160 soils and 50 rocks were analyzed. A "vms" massive sulphide boulder was discovered on the lower portion of the 1500 Road, 1.0 km north of the "Unlikely" showing.

An intense vertical shear, striking E-W, was mapped in the "Unlikely" outcrop. An E-W topographic lineament, visible in satellite photos, runs from the Unlikely showing to the Frank Creek massive sulphide prospect, 5.0 km eastward.

6.1.3 Work done in 2015

The relevant assessment reports are by Turna, R., dated July 31, 2015 and November 30, 2015 and March 15, 2016.

160 rock samples were collected in initial sampling during spring and summer of the year in Area B, mainly along the Keithley Creek Road between Two Mile Creek and Keithley Creek. New outcrops of massive sulphide mineralization were discovered on the steep slopes above the road near the known Unlikely showing at the Cariboo Lake shore.

Later, the same year, follow-up work at Rollie, Area B, collected 18 rock samples and 52 soils. These were collected on the "Rollie Bench Road" along the upper side of Two Mile Creek (misnamed Duck Creek in the reports). Numerous rocks and soils were anomalous in Zn (up to 695 ppm) and Cu (up to 271 ppm). One soil had 11.15 ppm Au and there were several anomalous results in Bi and As.

Forty nine rock samples were collected in two areas, Details B1 and B2 on Two Mile Creek. When a beaver dam broke in 2015, a previously unknown massive sulphide occurrence ("Hall vms" showing) was exposed. Rock samples collected at the new exposure had up to 93,244 ppm in Cu, 682 ppm in Zn, 347 ppm in Pb and 262 ppm in Bi.

Comprehensive geological, geochemical and geophysical surveys were recommended to follow up the 2014 and 2015 work.

7.1 Regional Geology

Figure No. 5 Terrane Map of Southern British Columbia. Barker Minerals' properties are indicated by the red star over the Barkerville subterrane. The brown star to the SE is the Barkerville Gold Mine Ltd.' Goldstream volcanogenic massive sulphide deposit. Map is from Ferri, F. & Schiarizza, P., 2006.

Figure No. 6 Terrane Map of Cariboo Lake – Wells Area. Several Barker Minerals' properties are indicated by red stars. Map is from Ferri, F. & Schiarizza, P., 2006.

Figure No. 7 Geology of Wells-Cariboo Lake area. Highlighted on the BCGS map are Barker Minerals' Frank Creek and Unlikely massive sulphide prospects. The Harveys Ridge succession consists of siltstone, quartzite and the Frank Creek volcanics. Map is from Ferri, F. & Schiarizza, P., 2006.

The geological descriptions below derive mainly from Struik (1988), Panteleyev et al. (1996) and Payne and Perry (2001).

During the mid-Jurassic the North American continental plate collided with a group of island arcs to the west. Regional deformation and metamorphism are related to these events.

Figure No. 8 Schematic regional structural section from southwest to northeast across the four Terranes in Barker Minerals' claims area, showing the relative structural position of the Terranes. The Terrane symbols are BV-Barkerville, C-Cariboo, Sma-Slide Mountain (Antler Formation), SMc-Slide Mountain (Crooked amphibolite), QN-Quesnel and NA-North American. (after Struik, 1988).

Quesnel Terrane

The Late Triassic to Early Jurassic Quesnel Terrane...was accreted to the North American continent, in part by subduction and in part by obduction. The Eureka Thrust fault marks the boundary between the Quesnel and Barkerville terranes. The terrane is partly submarine and partly subaerial, consisting of volcanic and volcaniclastic rocks and co-magmatic intrusions, with minor carbonate lenses and related sedimentary rocks.

The principal assemblage in the Quesnel Terrane is the Triassic-Jurassic Nicola Group island arc – marginal basin sequence. The underlying rocks are the Crooked Amphibolite, part of the Slide Mountain assemblage, a mylonitized mafic and ultramafic unit of oceanic marginal basin volcanic and sedimentary rocks. Rocks of Quesnel Terrane and Crooked Amphibolite are structurally coupled and tectonically emplaced by the Eureka Thrust onto the Barkerville Terrane, to the east.

Two lithostratigraphic subdivisions of the Quesnel Terrane consists of: a basal Middle to Late Triassic metasedimentary unit of dominantly black phyllitic rocks, approximately 7 km thick, and an overlying Late Triassic to Early Jurassic volcanic arc assemblage, approximately 9 km thick. The overlying volcanic rocks outline a northwesterly trending belt of subaqueous and subaerial volcanic rocks, deposited along a series of volcanic-intrusive centres that define the Quesnel island arc of predominantly alkalic basalts.

Within...the northern extension of the Quesnel Trough, the term...Takla Group has been applied to rocks identical to the Quesnel belt rocks...Equivalent rocks to the south...are generally referred to as Nicola Group...Baily (1978) pointed out the similarity of the Quesnel volcanic units with both the Nicola Group rocks to the south and the Takla Group rocks to the north...The term Takla leads to ambiguity because in northern British Columbia it has been used for rocks in both Quesnel and Stikine terranes...The usage for the Triassic-Jurassic volcanic arc and related rocks in Quesnellia currently preferred is Nicola Group. The term Takla Group possibly should be discarded... (Panteleyev et al., (1996).

The Quesnel Trough is a well-mineralized region typical of other Late Triassic to Early Jurassic volcano-plutonic island arcs in the Cordillera. It hosts a wide variety of mineral deposits. The principal recent exploration and economic development targets in the central Quesnel belt are alkalic intrusion-related porphyry copper-gold deposits and gold-bearing propylitic alteration zones formed in volcanic rocks peripheral to some of the intrusions. Other important targets are auriferous quartz veins in the black phyllite metasedimentary succession. The veins in some black phyllite members have potential to be mined as large tonnage, low-grade deposits. Tertiary rocks are mineralized with copper and gold. Antimony-arsenic and mercury mineralization in some apparently low temperature quartzcalcite veins indicated the potential for epithermal deposits. Placer mining for gold, said to occur together with platinum, has been of major historical and economic importance.

Slide Mountain Terrane

Rocks of the Devonian to Late Triassic Slide Mountain Terrane were partly obducted, partly subducted during collision of an oceanic plate with the continent. Small slices of mainly mafic volcanic rocks and ultramafic rocks of the Slide Mountain Terrane occur in and parallel to the Eureka thrust. Minor lithologies include chert, meta-siltstone and argillite.

The Crooked Amphibolite, considered to likely be a part of the Slide Mountain Terrane, includes three major constituent rock types: greenstone, metagabbro and meta-ultramafite. North of Quesnel Lake, the map units consist of mafic metavolcanics, amphibolite, chlorite schist, serpentinite, ultramafic rocks and pillow lavas. Chemical analyses indicate subalkaline tholeiitic compositions of basalts formed on the ocean floor. If the Crooked Amphibolite is a sheared and metamorphosed equivalent of the Antler Formation and is part of the Slide Mountain Terrane, it is separated from the underlying Barkerville Terrane by the Eureka Thrust, a wide zone of mylonitization. The Crooked amphibolite and the overlying rocks of Quesnel Terrane are structurally coupled and emplaced tectonically onto Barkerville Terrane.

Barkerville Terrane

The Barkerville Terrane is made up of the Snowshoe Group and Quesnel Lake gneiss. The Snowshoe Group rocks are Upper Proterozoic to Upper Devonian metasediments, considered correlative in age with the Eagle Bay Formation in the Kootenay Terrane to the south. The Snowshoe Group rocks are dominated by varieties of grit, quartzite, pelite,

limestone and volcaniclastic rocks. The stratigraphic sequence is not well understood. The region was deformed by intense, complex, in part isoclinal folding and overturning. Locally, strong shear deformation produced mylonitic textures. The Quesnel Lake Gneiss is a Devonian to Mississippian intrusive unit varying in composition from diorite to granite to syenite. It is generally coarse grained, leucocratic, often with megacrysts of potassium feldspar. The main body of gneiss is 30 km long by 3 km wide and is elongated parallel to the eastern border of the Intermontane belt. Its contacts are in part concordant with, and in part perpendicular to, metamorphic layering.

The contact between the Barkerville Terrane and Cariboo Terrane to the east is the Pleasant Valley Thrust. The Barkerville and Cariboo Terranes were juxtaposed prior to emplacement of the Slide Mountain Terrane which was thrust over both of them. The northeastern third of the Barkerville Terrane is the main zone of economic interest in the Cariboo district. Struik described it as "gold-enriched", because it contains the historic Wells and Barkerville gold mines and the Cariboo Hudson deposit, approximately 40 km and 20 km northwest of the project area, respectively.

Cariboo Terrane

The northeastern part of Barker Minerals' 'Peripheral' claim group is underlain by Precambrian to Permo-Triassic marine peri-cratonic sedimentary strata of the Cariboo terrane. The Cariboo Terrane consists mainly of limestone and dolomite with lesser siliceous, clastic, sedimentary rocks and argillite. Some geologists believe that the Cariboo Terrane is a shallow, near-shore facies and the Barkerville is a deeper, offshore facies of the same erosion-deposition system. No rifting is suspected between the Cariboo Terrane and the North American continent, in contrast to that between the Barkerville Terrane and the North American continent. Lithologies within the Cariboo Terrane correlate well with parts of the Classier Platform and Selwyn Basin of Yukon and northern British Columbia.

The Cariboo and Barkerville Terranes are separated by the regional Pleasant Valley Thrust fault, which dips moderately to steeply northeast. Struik (1988) states the Cariboo block was thrust from the east over the Barkerville block along a strike length of over 100 km. The Cariboo Terrane was cut by the Jurassic-Cretaceous Little River stock, a medium-grained granodiorite grading to quartz monzonite. Some of the carbonate layers in the lowest part of the Cariboo terrane (or upper part of the Barkerville Terrane) are enriched in zinc and lead. Since the 1970's, preliminary exploration on stratiform Zn-Pb targets has been conducted in this area.

Glaciation and glacial deposits

The last glacial stage that affected the Quesnel Highland, the Fraser glaciation, began 30,000 years ago. Much of this ice had melted by 10,000 years ago, but small remnants are preserved high in the alpine areas of the Cariboo Mountains. At lower elevations, glaciers of this age scoured the debris left by preceding ice advances, almost completely destroying them, leaving a chaotic assemblage of unsorted till, moraine and drift, with lenses of gravel and sand that had been roughly sorted by melt water and rivers, leaving behind beds of silt and clay that were stratified by settlement in ice-dammed lakes. In the Cariboo area, the

debris covers bedrock in valleys below 1,700 m, leaving typical glacial features such as Ushaped valleys, ice-sculpted drumlins, moraine terraces and glacier and river benches. On the Barker Minerals properties, glacial deposits range from one to a few tens of metres thick. Some glacial till deposits are overlain by well-bedded glaciolacustrine clay and silt deposits up to a few tens of metres thick.

In much of the Cariboo district, a layer of distinctive, hard, compact, semi-rigid blue clay sits either on or slightly above bedrock and acts as "false" bedrock. It was formed from glacial drift left behind by the last ice advance prior to the Fraser glaciation and was compacted by the weight of the Fraser stage ice. In the placer-gold areas of the Cariboo, large amounts of gold were recovered from gravel resting on this clay. In places the clay layer was penetrated by the placer miners to reach richer "pay streaks" on true bedrock below.

7.2 Local Geology at Unlilely – Rollie Area, Southern Cariboo Lake

The Unlikely prospect is a volcanogenic massive sulphide prospect, similar to the Frank Creek prospect on the opposite side of Cariboo Lake. The geology (Figure No. 7) for Wells-Cariboo Lake area shows the location of the Unlikely and Frank Creek massive prospects.

7.2.1 The Unlikely Showing, (Minfile No. 093A 163)

For relevant reports see F. Ferri, (2002, 2003).

The "**Unlikely**" Cu-bearing semi massive sulphide occurrence was discovered in 2001. It is located along the Keithley Creek Road, approximately 2 kilometres southwest of the community of Keithley Creek on the west side of Cariboo Lake.

Mineralogy, overall characteristics and association with mafic metavolcanics suggest this a stratiform massive sulphide mineralization similar to that at Frank Creek (5.0 km to the east). The showing is up to 1.5 m thick and can be traced for approximately 10 to 15 m. The mineralized zone is highly siliceous and appears to be silicified Harveys Ridge lithologies. Green-mica bearing, ankerite altered and silicified horizons up to several metres thick occur above the showing. Chemical analyses suggest these are highly altered mafic volcanic sequences originally of alkaline composition (Minfile No. 093A 163).

The stratiform nature, lithologic association and mineralogy are similar to that at Frank Creek, 5 km to the east. Sulphides consist of disseminated pyrite, pyrrhotite and chalcopyrite. Sulphide mineralization is variable from about 10 to 50%. The main sulphide body is about 2 metres wide by 10 metres long. The strike of the sulphide horizon is parallel with overall bedding. The mineralized zone appears to be silicified and there are quartz veins nearby. The sulphides also form discontinuous lenses parallel to the bedding.

Little attention has been paid to the Unlikely showing t during the course of work in previous years at Frank Creek to the east. A re-examination of Unlikely in 2014 outlined two mineralized horizons similar in nature to that found at Frank Creek, 3 metres apart, in

addition to the known main sulphide body. They run parallel to each other and are approximately 150 cm to 350 cm in thickness. One layer is exposed over a strike length of 4 metres; the second layer is exposed over 3 metres. Both horizons have sulphides comprised of pyrite with minor chalcopyrite and are open in both directions along strike, and at depth.

Host rocks are dark grey to black phyllites and siltstones. Relatively massive, blocky Fe carbonate-altered horizons of volcanic rock occur above the showing. Bedding is locally intensely folded adjacent to an east-west shear in the outcrop. This tight folding may be related to drag within a shear zone that has had significant movement as it contrasts sharply with the overall much more gentle folding in the outcrops around.

8.0 EXPLORATION PROGRAM, 2015

8.1 Sampling Method and Approach

Rock samples were analyzed for multiple elements using the Niton XL3t handheld X-ray fluorescence analyzer from Thermo Scientific Inc. Further information on this instrument is at the Niton website <u>http://www.niton.com/en/niton-analyzers-products/xl3/xl3t</u>. An overview of sample analysis using energy dispersive X-ray fluorescence (EDXRF), adapted from the Niton website, is in Appendix C.

Most rock analyses were done at Barker Minerals' field office in Likely. Coordinates were collected at all sample locations. The coordinates are provided in Table No. 1. The rocks were analyzed in a manner to determine both their "high grade" and "low grade" values at each site, in order to minimize a "nugget" effect and to determine background values. Soil line coordinates were collected intermittently along the lines in order to ensure accurate placement of the soil lines on maps. Soil material was from the "B" soil horizon from a depth of 20-30 cm. The XRF analysis method does not replace laboratory assay. It detects the presence or absence of multiple elements in prospecting and, up to a certain point, the intensity of mineralization and correlation among elements in a specimen. The XRF is very useful in analysis for base economic and pathfinder metals though Au needs to be in relatively high grade in order to be detected by the XRF. Altogether 137 geochemical analyses were made, 104 of rock and 33 soil.

8.2 Economic Targets and Work Done

Rock sampling was done over outcrops, many newly exposed by a recent major flood on Two Mile Creek. The economic target is volcanogenic massive sulphide and gold-bearing quartz veins.

Two Mile Creek was swept by a flash flood in July, 2015 when a beaver dam in the creek's head waters burst. The flood scoured the entire creek down from Two Mile Lake down and

exposed new mineralized outcrops and temporarily blocked the Keithley Creek Road at the Cariboo Lake shore. New mineralized outcrops ("Hall vms" showing) were revealed.

8.3 Area B

(Two Mile Creek)

Thirty six rock samples were collected from outcrop, newly exposed by the flash flood in 2015. Massive sulphide mineralization occur in the outcrop, consisting mainly of pyrite though chalcopyrite was identified. Zn (up to 823 ppm), Cu (up to 7,379 ppm), and Pb (up to 10,911 ppm) anomalies occurred in argillite and quartzose schists. Rock sample 4585 had 12.04 ppm Au in pyritic argillite.

(Hall VMS Showing)

Sixty eight rock samples were collected from outcrop at the VMS Hall showing, a 2 m x 10 m massive sulphide body. The mineralization is primarily pyrite, pyrrhotite and chalcopyrite with Cu values up to 48,069 ppm in a grab sample. The size of this massive sulphide body is unknown at present and is open in dip and strike directions. It is likely to be a continuation of the Unlikely Showing, 700 m to the east on the Cariboo Lake shore. The stratigraphic horizon containing these massive sulphides may be the same as that which includes Barker Minerals' Frank Creek massive sulphide prospect 6.0 km to the east.

8.4 Area C (Rollie-Bench Road)

Fill-in soil sampling was done on the Rollie Bench Road near where massive sulphide boulders were discovered in 2014.

Thirty three soil samples were collected in an area of massive sulphide float. Most of them had fairly high results in Zn, up to 184 ppm. Soil sample 2978 had 9.32 ppm Au. Cu and other elements had no important results, however, in the limited sampling area.

9.0 CONCLUSIONS

The Zn and Au results in rocks and soils in this small work program provide encouragement for further sampling. The Hall VMS showing is particularly interesting considering its apparent relationship with the known Unlikely and Frank Creek massive sulphides.

10.0 RECOMMENDATIONS

More extensive and intensive geochemical sampling in the Unlikely-Two Mile Creek area is required to follow up this massive sulphide and gold prospect. Comprehensive geological mapping and geophysical surveys are also warranted.

APPENDIX A

Glossary of Technical Terms and Abbreviations

Glossary of Technical Terms and Abbreviations

- Anomalous Chemical and mineralogical changes and higher than typical background values in elements in a rock resulting from reaction with hydrothermal fluids or increase in pressure or temperature.
- Anomaly The geographical area corresponding to anomalous geochemical or geophysical values.
- Argentiferous Containing silver.
- Background The typical concentration of an element or geophysical response in an area, generally referring to values below some threshold level, above which values are designated as anomalous.
- BBE Black Bear East property.
- BCGS British Columbia Geological Survey.
- B.C. MEMPR British Columbia Ministry of energy Mines and Petroleum Resources.

- Cratonic Pertaining to a craton, an old part of the continental crust, generally making up the interior portion of a continent such as North America.
- DCIP An electrical method which uses the injection of current and the measurement of voltage and its rate of decay to determine the subsurface resistivity and chargeability.
- DDH Diamond drill hole.
- eg. *exemplī grātiā* (for the sake of example).
- EM Electromagnetic.
- E-W East-West.
- Float Loose rocks or boulders; the location of the bedrock source is not known.
- GBC Geoscience BC.
- GSC Geological Survey of Canada.

Grab sample	A sample of a single rock or selected rock chips collected from within a restricted area of interest.
g/t	Grams per tonne (metric tonne). 34.29 g/t (metric tonnes) = 1.00 oz/T (short tons).
На	Hectare - an area totalling 10,000 square metres, e.g., an area 100 metres by 100 metres.
HLEM	Horizontal loop electromagnetic.
IP	Induced polarization.
km	Kilometre.
lb.	Pound.
Leucocratic	Light-coloured.
m	Metre.
Max-Min	An HLEM technique to test for resistivity and conductivity of rocks.
MT	Magnetotelluric. A electrical method that uses natural variations in the Earth's magnetic field to induce electric current in the ground to determine the subsurface resistivity.
my	Million years.
NE-SW	Northeast-Southwest.
NNW-SSE	North northwest – South southeast.
NW	Northwest.
NW-SE	Northwest - Southeast.
N-S	North-South.
OF	Open File.
oz.	Ounce.
oz/T	ounces per ton (Imperial measurement).

	34.29 g/t (metric tonnes) = 1.00 oz/T (short tons).
oz/st	ounces per short ton (Imperial measurement, same as oz/T). 34.29 g/t (metric tonnes) = 1.00 oz/st (short tons).
ppb	Parts per billion.
ppm	Parts per million (1 ppm = 1,000 ppb = 1 g/t).
Protolith	The original rock before it was metamorphosed.
QUEST	Quesnellia Exploration Strategy, a BCGS geophysical survey.
Sedex	Sedimentary-exhalative mineral deposit type.
SE	Southeast.
TEM or TDEM	1 Time Domain EM.
Tensor-magn	etotelluric See MT.
Tholeiitic	A type of basalt. The most common volcanic rocks on Earth, produced by submarine volcanism at mid-ocean ridges and make up much of the ocean crust. Chemically, these basalts have been described as subalkaline, that is, they contain less (Na ₂ O plus K ₂ O) at similar SiO ₂ than alkali basalt.
TRIM	Terrain Resource Information Management, series of 1:20,000 scale maps.
VLF	Very low frequency.
VLF-EM	Very low frequency electromagnetic.
VMS	Volcanic-related massive sulphide.
XRF	X-ray florescence.

APPENDIX B

Barker Minerals Ltd. - Mineral Claim Details

Barker Minerals Ltd. Claim Details

Title	Claim			Title Sub	Мар		Good To		
Number	Name	Owner	Title Type	Туре	Number	Issue Date	Date	Status	Area (ha)
504428		140410 (100%)	Mineral	Claim	093A	2005/jan/21	2016/jul/28	GOOD	215.3073
1038860		140410 (100%)	Mineral	Claim	093A	2005/jun/09	2016/jul/28	GOOD	58.7279
1038862		140410 (100%)	Mineral	Claim	093A	2005/jun/09	2016/jul/28	GOOD	58.7418
1038868		140410 (100%)	Mineral	Claim	093A	2015/sep/27	2016/jul/28	GOOD	2547.09
1038883		140410 (100%)	Mineral	Claim	093A	2015/sep/27	2016/jul/28	GOOD	2561.086
1038884		140410 (100%)	Mineral	Claim	093A	2015/sep/27	2016/jul/28	GOOD	2132.5744
1038885		140410 (100%)	Mineral	Claim	093A	2015/sep/27	2016/jul/28	GOOD	1311.383
1038886		140410 (100%)	Mineral	Claim	093A	2015/sep/27	2016/jul/28	GOOD	2780.958
1038887		140410 (100%)	Mineral	Claim	093A	2015/sep/27	2016/jul/28	GOOD	1213.733
1038888		140410 (100%)	Mineral	Claim	093A	2015/sep/27	2016/jul/28	GOOD	2505.148

APPENDIX C

Analytical Methods

Overview of sample analysis using energy dispersive X-ray fluorescenc using the Thermo Scientific Niton XL3t handheld XRF analyzer

Thermo Scientific portable energy-dispersive x-ray fluorescence (EDXRF) analyzers, commonly known as XRF analyzers, can quickly and nondestructively determine the elemental composition of metal and precious metal samples of rocks, ore and soil.

Up to 40 elements may be analyzed simultaneously by measuring the characterisitic fluorescence x-rays emitted by a sample. XRF analyzers can quantify elements ranging from magnesium (Mg - element 12) through uranium (U - element 92) and measure x-ray energies from 1.25 keV up to 85 keV in the case of Pb K-shell fluorescent x-rays excited with a ¹⁰⁹Cd isotope. These instruments also measure the elastic (Raleigh) and inelastic (Compton) scatter x-rays emitted by the sample during each measurement to determine, among other things, the approximate density and percentage of the light elements in the sample.

Elemental Analysis - A Unique Set of Fingerprints

How does XRF work? Each of the elements present in a sample produces a unique set of characteristic x-rays that is a "fingerprint" for that specific element. XRF analyzers determine the chemistry of a sample by measuring the spectrum of the characteristic x-ray emitted by the different elements in the sample when it is illuminated by x-rays. These x-rays are emitted either from a miniaturized x-ray tube, or from a small, sealed capsule of radioactive material.

- 1. A fluorescent x-ray is created when an x-ray of sufficient energy strikes an atom in the sample, dislodging an electron from one of the atom's inner orbital shells.
- 2. The atom regains stability, filling the vacancy left in the inner orbital shell with an electron from one of the atom's higher energy orbital shells.
- 3. The electron drops to the lower energy state by releasing a fluorescent x-ray, and the energy of this x-ray is equal to the specific difference in energy between two quantum states of the electron.

Atom emits characteristic X-rays when illuminated by x-rays from a primary source.

When a sample is measured using XRF, each element present in the sample emits its own unique fluorescent x-ray energy spectrum. By simultaneously measuring the fluorescent x-rays emitted by the different elements in the sample, the Thermo Scientific portable XRF analyzers can rapidly determine those elements present in the sample and their relative concentrations - in other words, the elemental chemistry of the sample.

Overview of the Thermo Scientific Niton XL3t handheld XRF analyzer.

APPENDIX D

REFERENCES

REFERENCES

All Assessment Reports listed below are available for free download at the Ministry of Energy, Mines and Petroleum Resources' website for the Assessment Report Indexing System (ARIS). http://www.em.gov.bc.ca/Mining/Geolsurv/Aris/default.htm

Bailey, D.G., Geology of the Central Quesnel Belt, British Columbia (Parts of NTS 93A, 93B, 93G and 93H), BC Geological Survey Branch, Open File 1990-31.

Ballantyne, S.B., Hornbrook, E.W.H., Johnson, W.M., National Geochemical Reconnaissance, Quesnel Lake, British Columbia, NTS 093A, GSC Open File 776, 1981. (Alternately, BC MEMPR Open File BC RGS-5).

Barker, G.E. and Bysouth, G.D., March 29, 1988, Geochemical Soil survey Report on the Duck 1 Claim Group, March 29, 1988, (Assessment Report 17254).

Barker, G.E. and Bysouth, G.D., VLF – EM16 Electromagnetic Survey on the Duck 2 Claim Group, May 13 1988. (Assessment Report 17426).

Barker, G.E. and Bysouth, G.D., Diamond Drill Report on the Duck 1 Claim Group. January 20, 1989. (Assessment Report 18298).

Barker, G.E., Geochemical Soil Survey on the Duck 2 Claim Group, April 10, 1989. (Assessment Report 18794).

Barnett, C.T and Kowalczyk, P.L. Airborne Electromagnetics and Airborne Gravity in the QUEST Project Area, Williams Lake to MacKenzie, British Columbia (parts of NTS 093A,B,G,H,J,K,N,O; 094C,D), Geoscience BC Report 2008-1.

Bowman, A., Report on the Geology of the Mining District of Cariboo, British Columbia, in Geological and Natural History Survey of Canada Reports and Maps of Investigations and Surveys, 1887-1888; Selwyn, A R C; Geological Survey of Canada, Annual Report vol. 3, pt. 1, 1889; pages 1C-49C 5 sheets, including a Map of the Cariboo Mining District, GSC Map 278, (1889).

Brown, A.S., Geology of the Cariboo River Area, British Columbia, BC Department of Mines and Petroleum Resources, Bulletin No. 47, 1963.

Ferri, F., Geology of the Frank Creek – Cariboo Lake Area, Central British Columbia, (93A/11, 14), B.C. Ministry of Energy and Mines, Open File 2001-11, 1:25,000 scale map.

Ferri, F., Geological Setting of the Frank Creek Massive Sulphide Occurrence near Cariboo Lake, East-Central British Columbia (93A/11, 14), in Geological Fieldwork 2000, B.C. Ministry of Energy and Mines, Paper 2001-1.

Ferri, F., Hőy, T., and Friedman, R.M., Description, U-Pb Age and Tectonic Setting of the Quesnel Lake Gneiss, East-Central British Columbia, in Geological Fieldwork 1998, B.C. Ministry of Energy and Mines, Paper 1999-1.

Ferri, F., and O'Brien, B.H., Preliminary Geology of the Cariboo Lake Area, Central British Columbia (093A/11, 12, 13 and 14), in Geological Fieldwork 2001, B.C. Ministry of Energy and Mines, Paper 2002-1.

Ferri, F., and O'Brien, B.H., Geology of the Cariboo Lake Area, Central British Columbia (093A/11, 12, 13 and 14), B.C. Ministry of Energy and Mines, Open File 2003-1.

Ferri, F., and O'Brien, B.H., Geology and Massive Sulphide Potential of the Barkerville Terrane, Cariboo Lake Area, British Columbia, BC Geological Survey Branch, Cordillerran Roundup Poster No. 8, Information Circular 2002-3. <u>http://www.empr.gov.bc.ca/DL/GSBPubs/InfoCirc/IC2002-3/08-Ferri_Barkerville.pdf</u>

Ferri, F. & Schiarizza, P., Re-interpretation of the Snowshoe Group stratigraphy across a south-west verging nappe structure and its implications for regional correlations within the Kootenay terrane in Geological Association of Canada GAC Special Paper 45, 2006.

Geological Survey of Canada, Likely Survey, 2009. An airborne geophysical survey in 2008-2009 covering a 30 km x 150 km area oriented NW-SE between the latitudes of Quesnel and Williams Lake. A series of 1:50,000 scale magnetic and gamma-ray spectrometric maps, published as GSC Open Files 6157 to 6166.

Geological Survey of Canada, Cariboo Lake Survey, 2009. A detailed airborne geophysical survey over the central portion of the Likely survey. The flight lines were 200 m apart and oriented NE-SW as before. A series of 1:20,000 scale magnetic and electromagnetic maps published as GSC Open Files 6232 to 6252.

Hőy, T. and Ferri, F., Stratabound Base Metal Deposits of the Barkerville Subterrane, Central British Columbia (093A/NW), , in Geological Fieldwork 1997, B.C. Ministry of Energy and Mines, Paper 1998-1.

Lane, B. and MacDonald K., Volcanogenic Massive Sulphide Potential in the Slide Mountain and Barkerville Terranes, Cariboo Mountains, in BC Mines Branch, Exploration and Mining in British Columbia – 1999, pp 65-77.

Levson, V.M. and Giles, T.R., Geology of Tertiary and Quaternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A, B, G, H), BC Geological Survey Branch, Bulletin 89.

Logan, J.M. and Moynihan, D.P., Geology and Mineral Occurrences in the Quesnel River Map Area, central British Columbia (NTS 093B/16), in Geological Fieldwork 2008, B.C. Ministry of Energy and Mines, Paper 2009-1.

Logan, J.M. et. al., Bedrock Geology of the QUEST Map Area, central British Columbia, BCGS Map 2010-1, GBC Report 2010-5, GSC Open File 6476.

McKinley, S. D., (2004), Technical Report on the Cariboo Properties of Barker Minerals Ltd. (Including The Frank Creek and Sellers Creek Road Massive Sulphide Projects, the Ace Massive Sulphide and Vein Gold Project, the Kangaroo Copper-Gold Project, the Rollie Creek Project and the Quesnel Platinum Project), July 19, 2004. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA), (and as Appendix VI in Assessment Report 27655 by Doyle, L.E. and Appendix I in Assessment Report 28248 by Doyle, L.E.).

Payne, J.G. and Perry, B.J., Qualification Report on Exploration of the Barker Minerals Ltd. Property, including the Frank Creek, Ace and Sellers Creek Road VMS Projects and the Quesnel Platinum Project, October 25, 2001. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA).

Perry, B.J., Report on Exploration of the Barker Minerals Ltd. Property, including the Frank Creek and Sellars Creek Road VMS Projects, the Ace VMS and Vein Gold Project and the Quesnel Platinum Project; Cariboo Mining Division, British Columbia, Canada – NTS 93A and 93 B, October 21, 2002. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA), (and as Appendix 5 in Assessment Report 27125 by Doyle, L.E.).

QUEST Survey: regarding numerous reports and maps see <u>www.geosciencebc.com/s/Quest.asp</u>.

Schiarizza, P., Bedrock Geology and Lode Gold Occurrences, Cariboo Lake to Wells, British Columbia (Parts of NTS 93A/13, 14; 93H/3,4), BC Ministry of Energy, Mines, and Petroleum Resources, Open File 2004-12.

Schiarizza, P. and Ferri, F., Barkerville Terrane, Cariboo Lake to Wells: A New Look at Stratigraphy, Structure and Regional Correlations of the Snowshoe Group, in Geological Fieldwork 2002, B.C. MEMPR, Paper 2003-1.

Struik, L.C., Bedrock Geology of Quesnel Lake (93A10) and Part of Mitchell Lake (93A15) Map Areas, Central British Columbia, GSC Open file 962, 1983.

Struik, L.C., Structural Geology of the Cariboo Gold Mining District, East Central British Columbia, GSC Memoir 421, 1988.

Turna, R., Technical Report on Frank Creek Property, SCR and Peacock (Rollie Creek) Prospects, Cariboo Lake Area, Cariboo Mining Division, British Columbia, May 29, 2008. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA).

Turna, R. Geological, Geochemical, Prospecting and Physical Work Assessment Report on the Frank Creek, Black Bear East and Peripheral Properties. February 18, 2015, Amended September 7, 2015. (Assessment Report 35157).

Turna, R., Geological, Geochemical, Prospecting and Physical Work Assessment Report on the Frank Creek, Black Bear East and Peripheral Properties. February 18, 2015, Amended September 7, 2015. (Assessment Report 35157).

Turna, R., Geochemical Assessment Report on the Ace, Mag and Rollie Creek Properties, July. 31, 2015 Amended Dec. 5, 19, 2015 (Assessment Report 35468).

Turna, R., Geological and Geochemical Work Assessment Report on the Ace, Frank Creek, Rollie & Black Bear East Properties, November 30, 2015, Amended April 12, 2016 (Assessment Report 35717).

Turna, R., Geochemical Assessment Report on the Main Group comprised of the Two Mile Creek, Ace, Black Bear East and Peripheral Properties, March 15, 2016.

Additional References:

Barker Minerals Ltd. website <u>http://www.barkerminerals.com/s/Background.asp</u> BC Ministry of Energy Mines and Petroleum Resources, Mineral Deposit Models:

Deposit Type G06 – Noranda/Kuroko Massive Sulphide Cu-Pb-Zn Deposit Type I01 - Au-quartz veins

BC Ministry of Energy Mines and Petroleum Resources, Minfile Mineral Inventory:

Minfile No. 093A 163 (Unlikely) http://minfile.gov.bc.ca/report.aspx?f=PDF&r=Minfile_Detail.rpt&minfilno=093A++163

APPENDIX E

STATEMENT of AUTHOR'S QUALIFICATIONS

Statement of Author's Qualifications

I, Rein Turna, of the City of West Vancouver, British Columbia, hereby certify that:

- 1. I am Vice President of Exploration of Barker Minerals Ltd.
- 2. I am a graduate of the University of British Columbia with a B.Sc. in Geological Sciences granted in 1975.
- I am a registered member of the Professional Engineers and Geoscientists of British Columbia.
- 4. I have worked as a geologist in British Columbia, Saskatchewan, Ontario, Yukon and Northwest Territories in Canada since 1975.
- 5. I carried out or supervised work described in this report.

R. Turna, P.Geo. May 1, 2016

APPENDIX F

STATEMENT of EXPENDITURES

Barker Minerals Ltd.

Work was completed between September 28 and November 23, 2015

Work was done on claim # 1038887

Event # 5579853

Rollie/Frank Creek Property - Geological

	Date	Days	Rate	Sub-total
Louis Doyle				
Planning, managing & interpretation	November 12, 2015	1	\$ 600.00	\$ 600.00
Room & board		1	\$ 150.00	\$ 150.00
Rein Turna - Geologist				
Report writing and maps	September 30, 2015	1	\$ 600.00	\$ 600.00
Report writing and maps	November 13, 2015	1	\$ 600.00	\$ 600.00
Report writing and maps	November 16, 2015	1	\$ 600.00	\$ 600.00
Report writing and maps	November 22, 2015	1	\$ 600.00	\$ 600.00
Report writing and maps	November 23, 2015	1	\$ 600.00	\$ 600.00
Room & board		5	\$ 150.00	\$ 750.00
Colleen Doyle				
Report compilation and filing	November 23, 2015	1	\$ 350.00	\$ 350.00
Room & board		1	\$ 150.00	\$ 150.00
				\$ 5.000.00
Rollie/Frank Creek Property - Geoche	mical			• • • • • • • • • •
	inioui			
Louis Doyle	November 4, 2015	1	¢ 600.00	¢ 600.00
Soli sample collections	November 4, 2015	1	\$ 000.00 \$ 150.00	\$ 600.00 \$ 150.00
Vehicle & gas		1	\$ 150.00	\$ 150.00 \$ 150.00
Brian Hall			¢ 100.00	φ ισοισσ
Soil sample collections	November 4, 2015	1	\$ 500.00	\$ 500.00
Room & board		1	\$ 150.00	\$ <u>150.00</u>
Vehicle & gas		1	\$ 150.00	\$ 150.00
			+	•
Pock sample collections	November 5, 2015	1	\$ 600.00	\$ 600.00
Rock sample collections	November 6, 2015	1	\$ 600.00	\$ 000.00 \$ 600.00
Room & board		1	\$ 150.00	\$ 150.00
Vehicle & gas		1	\$ 150.00	\$ 150.00
Brian Hall			,	•
Rock sample collections	November 5 2015	1	\$ 500.00	\$ 500.00
Rock sample collections	November 6, 2015	1	\$ 500.00	\$ 500.00
Room & board	,	1	\$ 150.00	\$ 150.00
Vehicle & gas		1	\$ 150.00	\$ 150.00
Brian Hall - Operator				
XRF in-situ rock sampling	November 10, 2015	1	\$ 500.00	\$ 500.00
Room & board		1	\$ 150.00	\$ 150.00

Barker Minerals Ltd.

Work was completed between September 28 and November 23, 2015

Work was done on claim # 1038887

Event # 5579853

Rollie/Frank Creek Property - Geochemical (continued)

Louis Doyle				
XRF in-situ rock sampling	November 10, 2015	1	\$ 600.00	\$ 600.00
Room & board		1	\$ 150.00	\$ 150.00
Vehicle & gas		1	\$ 150.00	\$ 150.00
Louis Doyle				
Search & expose source of VMS float	November 19, 2015	1	\$ 600.00	\$ 600.00
Search & expose source of VMS float	November 20, 2015	1	\$ 600.00	\$ 600.00
Search & expose source of VMS float	November 21, 2015	1	\$ 600.00	\$ 600.00
Search & expose source of VMS float	November 22, 2015	1	\$ 600.00	\$ 600.00
Room & board		4	\$ 150.00	\$ 600.00
Vehicle & gas		4	\$ 150.00	\$ 600.00
Brian Hall				
Search & expose source of VMS float	November 19, 2015	1	\$ 500.00	\$ 500.00
Search & expose source of VMS float	November 20, 2015	1	\$ 500.00	\$ 500.00
Search & expose source of VMS float	November 21, 2015	1	\$ 500.00	\$ 500.00
Search & expose source of VMS float	November 22, 2015	1	\$ 500.00	\$ 500.00
Room & board		4	\$ 150.00	\$ 600.00
Louis Doyle				
Rock sample preparations & descriptions	November 7, 2015	1	\$ 600.00	\$ 600.00
Room & board		1	\$ 150.00	\$ 150.00
Louis Doyle				
Soil sample drying & XRF preparation	November 8, 2015	1	\$ 600.00	\$ 600.00
Room & board		1	\$ 150.00	\$ 150.00
Brian Hall - XRF operator				
XRF analysis	November 12, 2015	1	\$ 500.00	\$ 500.00
XRF analysis	November 17, 2015	1	\$ 500.00	\$ 500.00
Room & board		2	\$ 150.00	\$ 300.00
XRF rental		10	\$ 200.00	\$ 2,000.00
			Sub-total	\$ 17,050.00
Rollie/Frank Creek Property - Travel t	o and from			
Brian Hall				
Travel to and from	November 18, 2015	1	\$ 500.00	\$ 500.00
Travel to and from	November 23, 2015	1	\$ 500.00	\$ 500.00
Room & board		2	\$ 150.00	\$ 300.00
Vehicle & gas		2	\$ 150.00	\$ 300.00

Barker Minerals Ltd.

Work was completed in various stages between September 28 to November 23, 2015

Work was done on claim #'s 1038887

Event # 5579853

Rollie/Frank Creek Property - Travel to and from (continued)						
Louis Doyle						
Travel to and from	November 18, 2015	1	\$6	600.00	\$	600.00
Travel to and from	November 23, 2015	1	\$6	600.00	\$	600.00
Room & board		2	\$ ´	150.00	\$	300.00
Vehicle & gas		2	\$ ´	150.00	\$	300.00
			Su	b-total	\$	3,400.00
Rollie/Frank Creek Property - M	lisc. expenditures					
Safety equipment (MTC), exploration	supplies & equipment, communicati	ion dev	vices	& quad		
Exploration supplies & equipment					\$	225.00
MTC rental		8	\$ 2	250.00	\$	2,000.00
Communication devices						
Hand held radios		16	\$	7.00	\$	112.00
Satelite phones		16	\$	12.00	\$	192.00
Spot emergency locators		16	\$	5.00	\$	80.00
			Su	b-total	\$	2,609.00
Rollie/Frank Creek Property Ex	penditure Summary					
			Su	ıb-total	\$	5,000.00
			Su	ıb-total	\$	17,050.00
			Su	b-total	\$	3,400.00
			Su	b-total	\$	2,609.00
	Rollie/Frank Creek Property - E	xpend	ditur	e Total	\$	28,059.00

APPENDIX G

ROCK SAMPLE DESCRIPTIONS AND COORDINATES

Table No. 1 Sample Coordinates and Descriptions

XRF No.	Field No.	<u>Fig. No. / Area</u>	Type	Easting	Northing	XRF	Target & Description	
						<u>XRF</u> 1 = s 2 = q 3 = s	<u>Target Features</u> ample of main mass uartz vein ulphide bleb	4 = sulphide band 5 = rusty, altered 6 = other
	Rollie Area B,	Two Mile Creek Rock Sa	ampling			-		
4579 4580 4581 4582 4583 4584 4585 4586 4587	15b-01 a b 15b-02 a b 15b-03 a b	Fig. 10 / Detail B3 Fig. 10 / Detail B3	Rock Rock Rock Rock Rock Rock Rock Rock	604523 604523 604515 604515 604515 604535 604535 604535	5844643 5844645 5844631 5844633 5844635 5844635 5844608 5844610 5844612	1 1 1 1 1 1 1 1	Outcrop, black argillite Outcrop, black argillite	e with quartz, magnetic e with quartz, magnetic e with quartz, magnetic e, not magnetic, pyrite, chalcopyrite e, not magnetic, pyrite, chalcopyrite e, not magnetic, pyrite, chalcopyrite e, not magnetic, pyrite e, not magnetic, pyrite e, not magnetic, pyrite e, not magnetic, pyrite
4588	15b-04	Fig. 10 / Detail B3	Rock	604508	5844578	1	Outcrop, quartz-sericit	te schist, not magnetic, 2% pyrite
4589 4590 4591 4592	a b 15b-05 a	Fig. 10 / Detail B3 Fig. 10 / Detail B3 Fig. 10 / Detail B3 Fig. 10 / Detail B3	Rock Rock Rock Rock	604508 604508 604510 604510	5844580 5844582 5844560 5844562	1 1 1 1	Outcrop, quartz-sericit Outcrop, quartz-sericit Outcrop, sericite schis Outcrop, sericite schis	te schist, not magnetic, 2% pyrite te schist, not magnetic, 2% pyrite t, not magnetic, 2% pyrite t, not magnetic, 2% pyrite
4593 1501	0 15b-06	Fig. 10 / Detail B3	ROCK	604510	5844504	1	Outcrop, sericite scris	r, not magnetic, 2% pyrite
4595 4596	a b	Fig. 10 / Detail B3 Fig. 10 / Detail B3	Rock Rock	604483 604483	5844551 5844553	1 1	Outcrop, argillite, not Outcrop, argillite, not	magnetic, pyrite magnetic, pyrite magnetic, pyrite
4597	15b-07	Fig. 10 / Detail B3	Rock	604471	5844525	1	Outcrop, quartz schist	, not magnetic, grey
4598 4599 4600 4601 4602	a b 15b-08 a b	Fig. 10 / Detail B3 Fig. 10 / Detail B3 Fig. 10 / Detail B3 Fig. 10 / Detail B3 Fig. 10 / Detail B3	Rock Rock Rock Rock Rock	604471 604471 604489 604489 604489	5844527 5844529 5844504 5844506 5844508	1 1 1 1 1	Outcrop, quartz schist Outcrop, quartz schist Outcrop, quartz schist Outcrop, quartz schist Outcrop, quartz schist	, not magnetic, grey , not magnetic, grey , not magnetic , not magnetic , not magnetic
4603	15b-09	Fig. 10 / Detail B3	Rock	604471	5844496	1	Outcrop, chromian mi	ca schist, not magnetic

Table No. 1
Sample Coordinates and Descriptions

XRF No.	Field No.	Fig. No. / Area	Туре	Easting	Northing	XRF	Target & Description
4604	а	Fig. 10 / Detail B3	Rock	604471	5844498	1	Outcrop, chromian mica schist, not magnetic
4605	b	Fig. 10 / Detail B3	Rock	604471	5844500	1	Outcrop, chromian mica schist, not magnetic
4606	15b-10	Fig. 10 / Detail B3	Rock	604500	5844485	1	Float, sandstone
4607	а	Fig. 10 / Detail B3	Rock	604500	5844487	1	Float, sandstone
4608	b	Fig. 10 / Detail B3	Rock	604500	5844489	1	Float, sandstone
4609	15b-11	Fig. 10 / Detail B3	Rock	604495	5844468	1	Float, quartz-mica schist, not magnetic
4610	а	Fig. 10 / Detail B3	Rock	604495	5844470	1	Float, quartz-mica schist, not magnetic
4611	b	Fig. 10 / Detail B3	Rock	604495	5844472	1	Float, quartz-mica schist, not magnetic
4612	15b-12	Fig. 10 / Detail B3	Rock	604516	5844464	1	Float, quartz-mica schist, not magnetic
4613	а	Fig. 10 / Detail B3	Rock	604516	5844466	1	Float, quartz-mica schist, not magnetic
4614	b	Fig. 10 / Detail B3	Rock	604516	5844468	1	Float, quartz-mica schist, not magnetic

Rollie Area B, Hall VMS Showing Rock Sampling

Rollie Area C, Rollie Bench Road Soil Sampling 2959 Fig. 12 / Area C Soil 605413 5845468 B horizon, brown 2960 Fig. 12 / Area C Soil 605413 5845468 B horizon, brown 2961 Fig. 12 / Area C Soil 605456 5845476 B horizon, brown 2962 Fig. 12 / Area C Soil 605463 5845498 B horizon, brown 2963 Fig. 12 / Area C Soil 605463 5845513 B horizon, brown 2964 Fig. 12 / Area C Soil 605556 5845534 B horizon, brown 2965 Fig. 12 / Area C Soil 605556 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605559 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2967 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2968 Fig. 12 / Area C Soil 605675 5845615 B horizon, br	2533 to 260	00 Fig. 11 / Area B	Rock	604770	5844410	1	Outcrop, argillite
2959 Fig. 12 / Area C Soil 605413 5845468 B horizon, brown 2960 Fig. 12 / Area C Soil 605413 5845468 B horizon, brown 2961 Fig. 12 / Area C Soil 605446 5845476 B horizon, brown 2962 Fig. 12 / Area C Soil 605456 5845498 B horizon, brown 2963 Fig. 12 / Area C Soil 605463 5845513 B horizon, brown 2964 Fig. 12 / Area C Soil 605556 5845534 B horizon, brown 2965 Fig. 12 / Area C Soil 605556 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605599 5845576 B horizon, brown 2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605675 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605675 5845630 B horizon, brown <td< td=""><td></td><td>Rollie Area C, Rollie Bench Road S</td><td>Soil Sampling</td><td></td><td></td><td></td><td></td></td<>		Rollie Area C, Rollie Bench Road S	Soil Sampling				
2960 Fig. 12 / Area C Soil 605413 5845468 B horizon, brown 2961 Fig. 12 / Area C Soil 605446 5845476 B horizon, brown 2962 Fig. 12 / Area C Soil 605456 5845498 B horizon, brown 2963 Fig. 12 / Area C Soil 605463 5845513 B horizon, brown 2964 Fig. 12 / Area C Soil 605551 5845534 B horizon, brown 2965 Fig. 12 / Area C Soil 605556 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605599 5845576 B horizon, brown 2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605683 5845642 B horizon, brown <td>2959</td> <td>Fig. 12 / Area C</td> <td>Soil</td> <td>605413</td> <td>5845468</td> <td></td> <td>B horizon, brown</td>	2959	Fig. 12 / Area C	Soil	605413	5845468		B horizon, brown
2961 Fig. 12 / Area C Soil 605446 5845476 B horizon, brown 2962 Fig. 12 / Area C Soil 605456 5845498 B horizon, brown 2963 Fig. 12 / Area C Soil 605463 5845513 B horizon, brown 2964 Fig. 12 / Area C Soil 605511 5845534 B horizon, brown 2965 Fig. 12 / Area C Soil 605556 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605599 5845576 B horizon, brown 2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605683 5845642 B horizon, brown	2960	Fig. 12 / Area C	Soil	605413	5845468		B horizon, brown
2962 Fig. 12 / Area C Soil 605456 5845498 B horizon, brown 2963 Fig. 12 / Area C Soil 605463 5845513 B horizon, brown 2964 Fig. 12 / Area C Soil 605511 5845534 B horizon, brown 2965 Fig. 12 / Area C Soil 605556 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605529 5845576 B horizon, brown 2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2961	Fig. 12 / Area C	Soil	605446	5845476		B horizon, brown
2963 Fig. 12 / Area C Soil 605463 5845513 B horizon, brown 2964 Fig. 12 / Area C Soil 605511 5845534 B horizon, brown 2965 Fig. 12 / Area C Soil 605556 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605599 5845576 B horizon, brown 2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2962	Fig. 12 / Area C	Soil	605456	5845498		B horizon, brown
2964 Fig. 12 / Area C Soil 605511 5845534 B horizon, brown 2965 Fig. 12 / Area C Soil 605556 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605599 5845576 B horizon, brown 2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2963	Fig. 12 / Area C	Soil	605463	5845513		B horizon, brown
2965 Fig. 12 / Area C Soil 605556 5845554 B horizon, brown 2966 Fig. 12 / Area C Soil 605599 5845576 B horizon, brown 2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2964	Fig. 12 / Area C	Soil	605511	5845534		B horizon, brown
2966 Fig. 12 / Area C Soil 605599 5845576 B horizon, brown 2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2965	Fig. 12 / Area C	Soil	605556	5845554		B horizon, brown
2967 Fig. 12 / Area C Soil 605628 5845593 B horizon, brown 2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2966	Fig. 12 / Area C	Soil	605599	5845576		B horizon, brown
2968 Fig. 12 / Area C Soil 605654 5845605 B horizon, brown 2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2967	Fig. 12 / Area C	Soil	605628	5845593		B horizon, brown
2969 Fig. 12 / Area C Soil 605675 5845615 B horizon, brown 2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2968	Fig. 12 / Area C	Soil	605654	5845605		B horizon, brown
2970 Fig. 12 / Area C Soil 605683 5845630 B horizon, brown 2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2969	Fig. 12 / Area C	Soil	605675	5845615		B horizon, brown
2971 Fig. 12 / Area C Soil 605689 5845642 B horizon, brown	2970	Fig. 12 / Area C	Soil	605683	5845630		B horizon, brown
	2971	Fig. 12 / Area C	Soil	605689	5845642		B horizon, brown

Table No. 1
Sample Coordinates and Description

				Sample Co	ordinates and	d Descriptions
XRF No.	Field No.	<u>Fig. No. / Area</u>	Туре	Easting	Northing	XRF Target & Description
2972		Fig. 12 / Area C	Soil	605356	5845499	B horizon, brown
2973		Fig. 12 / Area C	Soil	605320	5845499	B horizon, brown
2974		Fig. 12 / Area C	Soil	605320	5845513	B horizon, brown
2975		Fig. 12 / Area C	Soil	605320	5845529	B horizon, brown
2976		Fig. 12 / Area C	Soil	605322	5845548	B horizon, brown
2977		Fig. 12 / Area C	Soil	605323	5845563	B horizon, brown
2978		Fig. 12 / Area C	Soil	605325	5845582	B horizon, brown
2979		Fig. 12 / Area C	Soil	605326	5845603	B horizon, brown
2980		Fig. 12 / Area C	Soil	605361	5845604	B horizon, brown
2981		Fig. 12 / Area C	Soil	605391	5845606	B horizon, brown
2982		Fig. 12 / Area C	Soil	605390	5845593	B horizon, brown
2983		Fig. 12 / Area C	Soil	605389	5845576	B horizon, brown
2984		Fig. 12 / Area C	Soil	605390	5845559	B horizon, brown
2985		Fig. 12 / Area C	Soil	605391	5845542	B horizon, brown
2986		Fig. 12 / Area C	Soil	605392	5845522	B horizon, brown
2987		Fig. 12 / Area C	Soil	605394	5845506	B horizon, brown
2988		Fig. 12 / Area C	Soil	605395	5845479	B horizon, brown
2989		Fig. 12 / Area C	Soil	605354	5845477	B horizon, brown
2990		Fig. 12 / Area C	Soil	605317	5845483	B horizon, brown
2991		Fig. 12 / Area C	Soil	605280	5845497	B horizon, brown

APPENDIX H

Rollie Creek Property Maps and XRF Data Tables

	<u>Upper Falls</u>	Area	Rock S	<u>Samples</u>	XRF	Results	(ppm)
	XRF #	Zn	Cu	Pb	Bi	Au	
	4579 4580	42 20	7379 <1 OF	1493	33		
	4581 4582	84 42	2211 21	10911	165		
	4583 4584 4585	42 52 48	84 28 <mark>116</mark>			12.04	
	4586 4587	52 54	23 <lo[< td=""><td>2</td><td></td><td></td><td></td></lo[<>	2			
	4588 4589 4590	274 238 185	<lo[<lo[<lo[< td=""><td>225</td><td></td><td></td><td></td></lo[<></lo[</lo[225			
4579	4591 4592	102 159	224 166				
4580 4581	4593 4594 4505	43 45	46 LOD				
	4595 4596 4597	36 47	25 70				
	4598 4599	52 36	640 73		43		
<mark>4585</mark> 4586	4600 4601 4602	382 605	455 92	220			
4587	4602 4603 4604	101 304	74 91	555			
	4605 4606	95 108	52 65				
	4607 4608	136 47	145 78	4022			
	4609 4610 4611	55 19 24	234 <lo[94</lo[4922 D 155			
	4612 4613	83 100	135 287				
	4614	63	68				

Results over 100 ppm marked in red.

See Table No. 2 for XRF results.

	BARKER MINE	ERALS LTD.
	ROLLIE CREEK	C PROPERTY
	Area B (Two	Mile Creek)
	Rock Sample	e Numbers
	and Zn, Cu Geoc	hemistry (ppm)
····	Cariboo Mining D	Division, B.C.
40 50	NTS Mapsheet: 93 A/11	Date: May 10, 2016
		Fig.No. 10

Table No. 2 Rollie Area B - XRF Sampling Results

XRF No.	Field No.	Fig. No./Area	Туре	Units	Мо	Zr	Sr	U	Rb	Th	Pb	Se	As	Hg	Au	Zn W	Cu	Ni	Со	Fe	Mn	Sb S	Sn Cd	Ag	Nb	Y	Bi Cr	V	Ti
4579	15B-01	Fig. 10 / Rollie B	rock	ppm	3	< LOD	2 <	LOD	< LOD <	< LOD	1493	< LOD	57	< LOD	< LOD	42 < LOD	7379	134	< LOD	64728	< LOD	108	98 < L(DD < LOD	7	< LOD	<mark>33</mark> < L	OD < LO	D < LOD
4580	15B-01a	Fig. 10 / Rollie B	rock	ppm	9	5 ·	<lod <<="" td=""><td>LOD</td><td>< LOD</td><td>17</td><td>85</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>20 < LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>60654</td><td>< LOD</td><td>74</td><td>44 < L(</td><td>DD < LOD</td><td>6</td><td>< LOD</td><td>< LOD < L</td><td>OD < LO</td><td>D < LOD</td></lod>	LOD	< LOD	17	85	< LOD	< LOD	< LOD	< LOD	20 < LOD	< LOD	< LOD	< LOD	60654	< LOD	74	44 < L(DD < LOD	6	< LOD	< LOD < L	OD < LO	D < LOD
4581	15B-01b	Fig. 10 / Rollie B	rock	ppm	< LOD	< LOD ·	< LOD	14	< LOD <	< LOD	10911	54	< LOD	< LOD	< LOD	84 < LOD	2211	1127	< LOD	206618	< LOD	< LOD <	< LOD < LO	DD < LOD	6	< LOD	165 < L	OD < LO	D < LOD
4582	15B-02	Fig. 10 / Rollie B	rock	ppm	< LOD	130	11	8	46	11 <	< LOD	42 < LOD	21	< LOD	< LOD	8143	208	< LOD <	< LOD < LO	DD < LOD	9	5	< LOD < L	OD < LO	D < LOD				
4583	15B-02a	Fig. 10 / Rollie B	rock	ppm	< LOD	234	19	10	74	20 <	< LOD	42 < LOD	84	< LOD	< LOD	65582	< LOD	< LOD <	< LOD < LO	DD < LOD	24	9	< LOD < L	OD < LO	D < LOD				
4584	15B-02b	Fig. 10 / Rollie B	rock	ppm	7	116	9 <	LOD	34 <	< LOD <	< LOD	52 < LOD	28	< LOD	< LOD	12488	< LOD	< LOD <	< LOD < LO	DD < LOD	12	4	< LOD < L	OD < LO	D < LOD				
4585	15B-03	Fig. 10 / Rollie B	rock	ppm	30	140	10 <	LOD	36	14 <	< LOD	14	< LOD	< LOD	12.04	48 < LOD	116	< LOD	< LOD	51358	294	< LOD <	< LOD < LO	DD < LOD	11	5	< LOD < L	OD < LO	D < LOD
4586	15B-03a	Fig. 10 / Rollie B	rock	ppm	< LOD	120	13	13	39	11 <	< LOD	7	< LOD	11	< LOD	52 < LOD	23	120	< LOD	91903	710	< LOD <	< LOD < LO	DD < LOD	10	7	< LOD < L	OD < LO	D < LOD
4587	15B-03b	Fig. 10 / Rollie B	rock	ppm	< LOD	103	11 <	LOD	32	13 <	< LOD	9	< LOD	10	< LOD	54 < LOD	< LOD	133	< LOD	102205	635	< LOD <	< LOD < LO	DD < LOD	7	3	< LOD < L	0D < L0	D < LOD
4588	15B-04	Fig. 10 / Rollie B	rock	ppm	< LOD	127	77 <	LOD	< LOD <	< LOD	23	< LOD	< LOD	< LOD	< LOD	274 < LOD	< LOD	250	< LOD	111816	2486	< LOD <	< LOD < LO	DD < LOD	31	3	< LOD < L	OD < LO	D < LOD
4589	15B-04a	Fig. 10 / Rollie B	rock	ppm	< LOD	68	33 <	LOD	< LOD <	< LOD	225	< LOD	70	< LOD	< LOD	238 < LOD	< LOD	220	< LOD	92785	< LOD	< LOD <	< LOD < LO	DD < LOD	15	< LOD	< LOD < L	OD < LO	D < LOD
4590	15B-04b	Fig. 10 / Rollie B	rock	ppm	< LOD	92	83 <	LOD	< LOD	17 <	< LOD	185 < LOD	< LOD	132	< LOD	87728	< LOD	< LOD <	< LOD < LO	DD < LOD	16	2	< LOD < L	0D < L0	D < LOD				
4591	15B-05	Fig. 10 / Rollie B	rock	ppm	< LOD	207	126 <	LOD	2	21 <	< LOD	102 < LOD	224	243	< LOD	217735	< LOD	< LOD <	< LOD < LO	DD < LOD	48	4	< LOD < L	0D < L0	D < LOD				
4592	15B-05a	Fig. 10 / Rollie B	rock	ppm	< LOD	188	240	10	3 <	< LOD <	< LOD	< LOD	14	< LOD	< LOD	159 < LOD	166	453	< LOD	215585	2627	< LOD <	< LOD < L(DD < LOD	51	5	< LOD < L	OD < LO	D < LOD
4593	15B-05b	Fig. 10 / Rollie B	rock	ppm	< LOD	20	62 <	LOD	< LOD <	< LOD <	< LOD	43 < LOD	46	< LOD	< LOD	88305	< LOD	< LOD <	< LOD < L(DD < LOD	4	< LOD	< LOD < L	OD < LO	D < LOD				
4594	15B-06	Fig. 10 / Rollie B	rock	ppm	< LOD	104	7 <	LOD	29 <	< LOD <	< LOD	45 < LOD	< LOD	< LOD	< LOD	9457	< LOD	< LOD <	< LOD < L(DD < LOD	7	< LOD	< LOD < L	OD < LO	D < LOD				
4595	15B-06a	Fig. 10 / Rollie B	rock	ppm	4	54	13	8	15	14 <	< LOD	< LOD	9	< LOD	< LOD	85 < LOD	188	< LOD	< LOD	68027	< LOD	< LOD <	< LOD < LO	DD < LOD	5	< LOD	< LOD < L	0D < L0	D < LOD
4596	15B-06b	Fig. 10 / Rollie B	rock	ppm	< LOD	102	8 <	LOD	34	7 <	< LOD	36 < LOD	25	< LOD	< LOD	6528	< LOD	< LOD <	< LOD < LO	DD < LOD	7	2	< LOD < L	0D < L0	D < LOD				
4597	15B-07	Fig. 10 / Rollie B	rock	ppm	< LOD	103 ·	<lod <<="" td=""><td>LOD</td><td>2 <</td><td>< LOD <</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>47 < LOD</td><td>70</td><td>< LOD</td><td>< LOD</td><td>64470</td><td>< LOD</td><td>< LOD <</td><td>< LOD < LO</td><td>DD < LOD</td><td>< LOD</td><td>2</td><td>< LOD < L</td><td>0D < L0</td><td>D < LOD</td></lod>	LOD	2 <	< LOD <	< LOD	47 < LOD	70	< LOD	< LOD	64470	< LOD	< LOD <	< LOD < LO	DD < LOD	< LOD	2	< LOD < L	0D < L0	D < LOD				
4598	15B-07a	Fig. 10 / Rollie B	rock	ppm	< LOD	138 -	<lod <<="" td=""><td>LOD</td><td>4 <</td><td>< LOD</td><td>39</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>52 < LOD</td><td>640</td><td>186</td><td>i < LOD</td><td>302380</td><td>< LOD</td><td>59</td><td>67 < L</td><td>DD < LOD</td><td>< LOD</td><td>< LOD</td><td>43 < L</td><td>0D < L0</td><td>D < LOD</td></lod>	LOD	4 <	< LOD	39	< LOD	< LOD	< LOD	< LOD	52 < LOD	640	186	i < LOD	302380	< LOD	59	67 < L	DD < LOD	< LOD	< LOD	43 < L	0D < L0	D < LOD
4599	15B-07b	Fig. 10 / Rollie B	rock	ppm	< LOD	95 ·	<lod <<="" th=""><th>LOD</th><th>< LOD <</th><th>< LOD <</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>36 < LOD</th><th>73</th><th>< LOD</th><th>< LOD</th><th>58667</th><th>< LOD</th><th>< LOD <</th><th>< LOD < LO</th><th>DD < LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD < L</th><th>0D < LO</th><th>D < LOD</th></lod>	LOD	< LOD <	< LOD <	< LOD	36 < LOD	73	< LOD	< LOD	58667	< LOD	< LOD <	< LOD < LO	DD < LOD	< LOD	< LOD	< LOD < L	0D < LO	D < LOD				
4600	15B-08	Fig. 10 / Rollie B	rock	ppm	9	147	13	14	45	24 <	< LOD	33	23	< LOD	< LOD	382 112	455	< LOD	< LOD	108642	< LOD	< LOD <	< LOD < LO	DD < LOD	24	4	< LOD < L	0D < LO	D < LOD
4601	15B-08a	Fig. 10 / Rollie B	rock	ppm	< LOD	25	5 <	LOD	8 <	< LOD <	< LOD	13	< LOD	< LOD	< LOD	605 < LOD	92	< LOD	< LOD	104739	< LOD	35 <	< LOD < LO	DD < LOD	5	< LOD	< LOD < L	0D < L0	D < LOD
4602	15B-08b	Fig. 10 / Rollie B	rock	ppm	6	60	69	14	5	19	339	< LOD	26	< LOD	< LOD	823 < LOD	386	< LOD	< LOD	69855	< LOD	< LOD <	< LOD < LO	DD < LOD	4	4	< LOD < L	0D < L0	D < LOD
4603	15B-09	Fig. 10 / Rollie B	rock	ppm	< LOD	142	66 <	LOD	86	18 <	< LOD	101 < LOD	74	< LOD	< LOD	75454	< LOD	< LOD <	< LOD < L(DD < LOD	24	2	< LOD < L	0D < L0	D < LOD				
4604	15B-09a	Fig. 10 / Rollie B	rock	ppm	< LOD	145	28 <	LOD	70 <	< LOD <	< LOD	304 < LOD	91	122	< LOD	96423	4810	< LOD <	< LOD < L(DD < LOD	23	2	< LOD < L	0D < L0	D < LOD				
4605	15B-09b	Fig. 10 / Rollie B	rock	ppm	< LOD	166	49 <	LOD	117 <	< LOD «	< LOD	95 < LOD	52	< LOD	< LOD	48003	< LOD	< LOD <	< LOD < L(DD < LOD	27	2	< LOD < L	0D < L0	D < LOD				
4606	15B-10	Fig. 10 / Rollie B	rock	ppm	< LOD	71	288 <	LOD	16 <	< LOD <	< LOD	108 < LOD	65	< LOD	< LOD	46903	< LOD	< LOD <	< LOD < L(DD < LOD	22	2	< LOD < L	0D < L0	D < LOD				
4607	15B-10a	Fig. 10 / Rollie B	rock	ppm	< LOD	158	62 <	LOD	75	18 <	< LOD	136 < LOD	145	279	< LOD	135195	< LOD	< LOD <	< LOD < L(DD < LOD	37	4	< LOD < L	0D < L0	D < LOD				
4608	15B-10b	Fig. 10 / Rollie B	rock	ppm	< LOD	62	756	12	20 <	< LOD <	< LOD	47 < LOD	78	< LOD	< LOD	24542	< LOD	< LOD «	< LOD < LO	JD < LOD	22	4	< LOD < L	0D < LO	D < LOD				
4609	15B-11	Fig. 10 / Rollie B	rock	ppm	10	< LOD ·	<lod <<="" td=""><td>LOD</td><td>< LOD <</td><td>< LOD</td><td>4922</td><td>57</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>53 < LOD</td><td>234</td><td>988</td><td>< LOD</td><td>212001</td><td>< LOD</td><td>< LOD <</td><td>< LOD < LO</td><td></td><td>9</td><td>< LOD</td><td>< LOD < L</td><td>0D < LO</td><td>D < LOD</td></lod>	LOD	< LOD <	< LOD	4922	57	< LOD	< LOD	< LOD	53 < LOD	234	988	< LOD	212001	< LOD	< LOD <	< LOD < LO		9	< LOD	< LOD < L	0D < LO	D < LOD
4610	15B-11a	Fig. 10 / Rollie B	rock	ppm	< LOD	< LOD ·	<lod <<="" td=""><td>LOD</td><td>< LOD <</td><td>< LOD</td><td>155</td><td>< LOD</td><td>66</td><td>< LOD</td><td>< LOD</td><td>19 < LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>124191</td><td>< LOD</td><td>< LOD <</td><td>< LOD < LO</td><td></td><td>< LOD</td><td>< LOD</td><td>< LOD < L</td><td></td><td></td></lod>	LOD	< LOD <	< LOD	155	< LOD	66	< LOD	< LOD	19 < LOD	< LOD	< LOD	< LOD	124191	< LOD	< LOD <	< LOD < LO		< LOD	< LOD	< LOD < L		
4611	15B-11D	Fig. 10 / Rollie B	rock	ppm	< LOD	< LOD	2 <	LOD	<lud <<="" td=""><td>< LOD</td><td>85</td><td>< LOD</td><td>29</td><td>< LOD</td><td>< LOD</td><td>24 < LOD</td><td>94</td><td>< LOD</td><td>< LOD</td><td>2/433</td><td>< LOD</td><td>< LOD «</td><td></td><td>ראר COD > ארי</td><td>< LOD</td><td>< LOD</td><td>< LOD < L</td><td>UD < LO</td><td></td></lud>	< LOD	85	< LOD	29	< LOD	< LOD	24 < LOD	94	< LOD	< LOD	2/433	< LOD	< LOD «		ראר COD > ארי	< LOD	< LOD	< LOD < L	UD < LO	
4612	158-12	Fig. 10 / Rollie B	rock	ppm	/	92	68 <	LOD	4	26 <	< LUD	< LOD	< LUD	< LUD	< LOD	83 < LOD	135	139		319104	2301	< LOD <			21	3	< LOD < L		
4613	15B-12a	Fig. 10 / Rollie B	rock	ppm	< LOD	16	13 <		< LOD <	< LOD <		< LOD	< LOD	< LOD	< LOD	100 < LOD	287	244	< LOD	222207	2458	< LOD <	< LOD < L(< LOD	< LOD	< LOD < L		
4614	12R-15D	Fig. 10 / Rollie B	rock	ppm	< LOD	40	27 <	LOD	< LOD <	< LOD <	< LOD	63 < LOD	68	< LOD	< LOD	202898	< LOD	< LOD <	< LOD < LO	סר < rod	8	< LOD	< LOD < L	UD < LO	υ < LOD				

In all cases <LOD means below level of detection

<u>LEGEND</u>

X 2570 Rock sample location and number

<u>a</u>	1110	011011	ing noo	i ourri
	<u>XR</u>	F Res	ults (pp	<u>om)</u>
	XRF #	Zn	Cu	Bi
	2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2583 2584 2588 2588 2588 2588 2588 2588 2589 2590 2591 2592 2593 2594 2595 2595 2597 2598	56 34 72 40 38 58 35 189 41 78 49 172 64 47 47 47 47 47 47 47 47 47 47 47 53 53 76 687 38	52 75 318 106 3926 <lod <lod 105 168 <lod 29628 1712 12589 100 345 879 320 126 296 241 114 60 255 369 153 161 153</lod </lod </lod 	66 240 52

Results over 100 ppm marked in red.

		of ARF results.
	BARKER MINE	ERALS LTD.
	ROLLIE CREEK	C PROPERTY
	Area B (Hall V	'MS Showing)
	Rock Sample	e Numbers
	and Zn, Cu Geoc	hemistry (ppm)
0.50	Cariboo Mining D	Division, B.C.
	NTS Mapsheet: 93 A/11	Date: May 14, 2016
		Fig.No. 11

Soo Table No. 3 for VPE regults

Table No. 3 Rollie Area B - XRF Sampling Results

2334 Fig. 11/Area B rock ppm 1 3 2100 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2535 fig. 11/wea 8 rock ppm 11 23 $72 < 100 < 100 < 100$ 25 < 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2536 Fig. 11/Area B rock ppm < LOD < LOD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2536 Fig. 11/res B rock ppm<(10)	8 < LOD 11 < LOD < LOD < LOD < LOD < LOD < LOD 11 < LOD < LOD < LOD < LOD < LOD 11 < LOD < LOD < LOD < LOD < LOD 10 < LOD < LOD < LOD < LOD < LOD 10 < LOD < LOD < LOD < LOD < LOD 12 3 < LOD < LOD < LOD < LOD < LOD 12 3 < LOD < LOD < LOD < LOD < LOD 10 4 < LOD 136 < LOD < LOD < LOD < LOD 10 6 < LOD < LOD < LOD < LOD 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1537 Fig. 11/Area B rock ppm<<100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fig. 11/Area B rock ppm 11 1 ± CD0 CDD 13 10 CDD 13 CDD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2539 Fig. 11/Area B rock ppm 10 9 43<00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1250 Fig. 11/Area 8 rock ppm 8 14 19 < 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
IE Fig. 11/Area B rock ppm<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1252 Fig. 11/Area B rock ppm Cl0D 18 Cl0D S 15 Cl0D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2543 Fig. 11/Area B rock ppm 5 11 19 Q100 Q20<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2544 Fig. 11/Area B rock ppm 2100 2100 2100 2100 2100 2100 110 1100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2545 Fig. 11/Area B rock ppm 9 13 13 < LOD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2546 Fig. 11/Area 8 rock ppm 9 < LOD	$7 < LOD < LOD < LOD < LOD < LOD < LOD \\ 0 < LOD \\ 0 < LOD < LOD \\ 0 < LOD < LOD \\ 0 < LO$
2547 Fig. 11/Area B rock ppm< LOD 13 <lod< td=""> LOD 34<lod< td=""> 14<lod< td=""> LOD 15 LOD LOD 13145 LOD LOD</lod<></lod<></lod<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2548 Fig. 11/Area B rock ppm Q 10 11 10 10 ClD ClD Q 2 Q 2 ClD ClD Q 2 All ClD ClD Q 2 ClD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2549 Fig. 11/Area B rock ppm 9 10 15 13 4 < LOD < LOD	DD 6 < LOD < LOD < LOD < LOD DD 5 < LOD < LOD < LOD < LOD < LOD DD < LOD < LOD < LOD < LOD < LOD < LOD DD < LOD < LOD < LOD < LOD < LOD < LOD DD 9 < LOD < LOD < LOD < LOD < LOD < LOD DD < LOD < LOD < LOD < LOD < LOD < LOD
2550 Fig. 11/Area 8 rock ppm 5 11 25 < LOD	DD 5 < LOD < LOD < LOD < LOD < LOD DD < LOD < LOD < LOD < LOD < LOD < LOD DD 9 < LOD < LOD < LOD < LOD < LOD < LOD DD < LOD
2551 Fig. 11/Area B rock ppm 8 8 28 < LOD	DD < LOD < L
2552 Fig. 11/Area B rock ppm 6 < LOD 14 < LOD 7 16 < LOD 17 < LOD < LOD < LOD 53 < LOD 352 < LOD < LOD 103992 < LOD < LOD < LOD < LOD < LOD < LOD LOD < LOD < LOD < LOD LOD < LOD < LOD < LOD < LOD 100 < LOD < L	DD 9 < LOD <
2553 Fig. 11/Area 8 rock ppm 7 6 10 < LOD 4 < LOD < LOD 13 < LOD < LOD 51 < LOD 2125 LOD < LOD 100 < LOD LOD < LOD < LOD < LOD LOD < LOD	
2554 Fig. 11/Area B rock ppm 11 11 12 < LOD < L	
2555 Fig. 11/Area B rock ppm < LOD	OD 9 < LOD < LOD < LOD < LOD < LOD < LOD
2556 Fig. 11/Area B rock ppm 8 16 9 < LOD	DD 10 2 < LOD < LOD < LOD < LOD
2557 Fig. 11/Area B rock ppm < LOD	DD < LOD < LOD < LOD < LOD < LOD < LOD
2558 Fig. 11/Area B rock ppm 8 < LOD	DD 6 < LOD < LOD < LOD < LOD < LOD < LOD
2559 Fig. 11/Area B rock ppm 5 < LOD 5 11 < LOD < LOD 66 < LOD < LOD 35 < LOD 282 219 < LOD 214880 < LOD	DD 5 < LOD < LOD < LOD < LOD < LOD < LOD
2560 Fig. 11/Area B rock ppm 7 < LOD	DD < LOD < LOD 277 < LOD < LOD < LOD
2561 Fig. 11/Area B rock ppm< <lod< td=""> 32 22 < LOD 5 16 < LOD <lod< td=""> LOD LOD <lod< th=""><th>DD 7 < LOD 63 < LOD < LOD < LOD</th></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<>	DD 7 < LOD 63 < LOD < LOD < LOD
2562 Fig. 11/Area B rock ppm 8 9 17 16 < LOD 33 < LOD 50 < LOD < LOD < LOD 52 < LOD 308 369 < LOD 340127 < LOD	OD 9 2 < LOD < LOD < LOD < LOD
2563 Fig. 11/Area B rock ppm 11 < LOD 17 15 < LOD 35 < LOD 56 < LOD < LOD < LOD 61 < LOD 176 314 768 308248 < LOD 100 < LOD <	DD < LOD < LOD 132 < LOD < LOD < LOD
2564 Fig. 11/Area B rock ppm 8 54 8 < LOD 2 < LOD 38 < LOD 418 < LOD < LOD 99603 < LOD <	DD < LOD < LOD 113 < LOD < LOD < LOD
2565 Fig. 11/Area B rock ppm 11 14 19 < LOD 9 < LOD 19 < LOD 2LOD 47 < LOD 664 169 < LOD 176115 < LOD < LOD < LOD < LOD < LOD < LOD 2LOD < LOD < LOD 2LOD < LOD < LO	DD 6 < LOD < LOD < LOD < LOD < LOD < LOD
2566 Fig. 11/Area B rock ppm 8 < LOD 5 < LOD < LOD 18 < LOD < LOD < LOD < LOD < LOD 46 < LOD 535 < LOD < LOD 95603 < LOD < LOD < LOD < LOD < LOD < LOD 20 2567 Fig. 11/Area B rock ppm 9 9 24 12 < LOD 21 < LOD <	DD 5 < LOD < LOD < LOD < LOD < LOD < LOD
2567 Fig. 11/Area B rock ppm 9 9 24 12 < LOD 21 < LOD <lod< td=""> <lod< td=""> 604 <lod< td=""> 237666 < LOD <lod< td=""> <lod< td=""> <lod< td=""> <lod< td=""> 237666 < LOD <lod< td=""> <lod< td=""></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<></lod<>	JD <lod <lod="" <lod<="" th=""></lod>
2568 Fig. 11/Area B rock ppm 9 / 4/ <lod 21="" 22="" 26="" 266942="" 293="" 44="" <lod="" <math=""><LOD $<$LOD $<$L</lod>	JD <lod <lod="" <lod<="" th=""></lod>
	JU < LOU
	JD 6 < LOD < LOD < LOD < LOD < LOD < LOD
2570 Fig. 11/Area B rock ppm 7 10 20 < LOD 9 < LOD 23 < LOD < LOD 56 < LOD 52 185 404 156/41 < LOD < L	
$\frac{2571}{16} + \frac{11}{4} + \frac{10}{10} + 1$	
$\frac{2572}{2572}$ Fig. 11/Area B rock ppm 6 37 26 < LOD 16 < LOD <	
$\frac{2573}{100} = \frac{11}{4000} = \frac{100}{100} =$	
$\frac{2574}{2575} \text{Fig. 11/Area B} \text{fock} \text{ppm} \qquad 8 11 30 < 100 3 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 $	
$\frac{2576}{10} = \frac{11}{4} = \frac{100}{100} = 1$	
$\frac{2577}{16} = \frac{11}{4} = \frac{12}{10} = \frac{10}{10} = \frac{10}{10} = \frac{100}{10} = \frac{100}{$	JD 3 < LOD < LOD 151 < LOD 443
2578 Fig 11/Area B rock npm 6 < 10D 6 < 10D < 10D 21 < 10D 14 < 10D < 10D 41 < 10D 105 < 10D 123790 < 10D <	<u>, 100 < 100 < 100 < 100 < 100 < 100 < 100 </u>
2579 Fig. 11/Area B rock ppm 10 < 10D 21 < 10D 33 < 10D 30 < 10D < 10D < 10D 78 292 168 < 10D < 10D 163947 < 10D <	DD <lod <l<="" <lod="" th=""></lod>
2580 Fig. 11/Area B rock ppm 10 < LOD 20 < LOD <	DD < LOD < L

Table No. 3 Rollie Area B - XRF Sampling Results

XRF No.	Fig. No./Area	Туре	Units	Mo Zr	Sr U	Rb	Th	Pb	Se	As	Hg	Au	Zn	W	Cu	Ni	Со	Fe	Mn	Sb	Sn	Cd	Ag	Nb	Y	Bi	Cr	V	Ti
2581	Fig. 11/Area B	rock	ppm	6 < LOD	14 < LOD	4	16	< LOD	14	< LOD	<lod <<="" th=""><th>< LOD</th><th>172 <</th><th>< LOD</th><th>29628 <</th><th>< LOD</th><th>< LOD</th><th>133067</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>66</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	172 <	< LOD	29628 <	< LOD	< LOD	133067	< LOD	66	< LOD	< LOD	< LOD						
2582	Fig. 11/Area B	rock	ppm	< LOD 7	22 < LOD	4	< LOD	< LOD	< LOD	13	<lod <<="" th=""><th>< LOD</th><th>64 <</th><th>< LOD</th><th>1712 •</th><th>< LOD</th><th>< LOD</th><th>146980</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>6</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	64 <	< LOD	1712 •	< LOD	< LOD	146980	< LOD	6	< LOD								
2583	Fig. 11/Area B	rock	ppm	< LOD < LOD	3 < LOD	< LOD	< LOD	< LOD	< LOD	< LOD	<lod <<="" th=""><th>< LOD</th><th>47 <</th><th>< LOD</th><th>12589 <</th><th>< LOD</th><th>< LOD</th><th>104090</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>4</th><th>< LOD</th><th>240</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	47 <	< LOD	12589 <	< LOD	< LOD	104090	< LOD	4	< LOD	240	< LOD	< LOD	< LOD				
2584	Fig. 11/Area B	rock	ppm	< LOD 25	51 < LOD	13	< LOD	< LOD	17	< LOD	<lod <<="" th=""><th>< LOD</th><th>47 <</th><th>< LOD</th><th>100</th><th>188</th><th>< LOD</th><th>214427</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	47 <	< LOD	100	188	< LOD	214427	< LOD										
2585	Fig. 11/Area B	rock	ppm	6 15	65 10	15	< LOD	< LOD	< LOD	< LOD	<lod <<="" th=""><th>< LOD</th><th>44 <</th><th>< LOD</th><th>345 <</th><th>< LOD</th><th>< LOD</th><th>167826 ·</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>6</th><th>2</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	44 <	< LOD	345 <	< LOD	< LOD	167826 ·	< LOD	6	2	< LOD	< LOD	< LOD	< LOD				
2586	Fig. 11/Area B	rock	ppm	< LOD < LOD	32 < LOD	< LOD	24	< LOD	24	24	<lod <<="" th=""><th>< LOD</th><th>64 <</th><th>< LOD</th><th>879 <</th><th>< LOD</th><th>< LOD</th><th>191994 -</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>2</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	64 <	< LOD	879 <	< LOD	< LOD	191994 -	< LOD	2	< LOD	< LOD	< LOD	< LOD					
2587	Fig. 11/Area B	rock	ppm	6 4	3 8	< LOD	< LOD	< LOD	24	22	<lod <<="" th=""><th>< LOD</th><th>21 <</th><th>< LOD</th><th>320 <</th><th>< LOD</th><th>< LOD</th><th>119351 -</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>52</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	21 <	< LOD	320 <	< LOD	< LOD	119351 -	< LOD	52	< LOD	< LOD	< LOD						
2588	Fig. 11/Area B	rock	ppm	7 14	15 < LOD	< LOD	20	< LOD	< LOD	< LOD	<lod <<="" th=""><th>< LOD ·</th><th>< LOD <</th><th>< LOD</th><th>126 •</th><th>< LOD</th><th>< LOD</th><th>58668</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>8</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD ·	< LOD <	< LOD	126 •	< LOD	< LOD	58668	< LOD	8	< LOD								
2589	Fig. 11/Area B	rock	ppm	7 10	32 < LOD	9	19	< LOD	18	25	<lod <<="" th=""><th>< LOD</th><th>31 <</th><th>< LOD</th><th>296 <</th><th>< LOD</th><th>< LOD</th><th>163444 ·</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>6</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	31 <	< LOD	296 <	< LOD	< LOD	163444 ·	< LOD	6	< LOD								
2590	Fig. 11/Area B	rock	ppm	98	25 < LOD	< LOD	< LOD	< LOD	20	12	<lod <<="" th=""><th>< LOD</th><th>35 <</th><th>< LOD</th><th>241</th><th>186</th><th>< LOD</th><th>236681</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>5</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	35 <	< LOD	241	186	< LOD	236681	< LOD	5	< LOD								
2591	Fig. 11/Area B	rock	ppm	9 < LOD	39 10	5	21	< LOD	17	16	<lod <<="" th=""><th>< LOD</th><th>48 <</th><th>< LOD</th><th>114 <</th><th>< LOD</th><th>< LOD</th><th>146212 -</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>5</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	48 <	< LOD	114 <	< LOD	< LOD	146212 -	< LOD	5	< LOD								
2592	Fig. 11/Area B	rock	ppm	6 4	13 < LOD	8	< LOD	< LOD	< LOD	7	<lod <<="" th=""><th>< LOD</th><th>27 <</th><th>< LOD</th><th>60 <</th><th>< LOD</th><th>< LOD</th><th>95070 ·</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	27 <	< LOD	60 <	< LOD	< LOD	95070 ·	< LOD										
2593	Fig. 11/Area B	rock	ppm	14 13	29 10	6	< LOD	< LOD	29	12	<lod <<="" th=""><th>< LOD</th><th>61 <</th><th>< LOD</th><th>255</th><th>< LOD</th><th>< LOD</th><th>217467</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	61 <	< LOD	255	< LOD	< LOD	217467	< LOD										
2594	Fig. 11/Area B	rock	ppm	<lod <lod<="" th=""><th>29 < LOD</th><th>< LOD</th><th>32</th><th>< LOD</th><th>31</th><th>64</th><th><lod <<="" th=""><th>< LOD</th><th>53</th><th>250</th><th>369</th><th>< LOD</th><th>864</th><th>256133</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>9</th><th>2</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod></th></lod>	29 < LOD	< LOD	32	< LOD	31	64	<lod <<="" th=""><th>< LOD</th><th>53</th><th>250</th><th>369</th><th>< LOD</th><th>864</th><th>256133</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>9</th><th>2</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	53	250	369	< LOD	864	256133	< LOD	9	2	< LOD	< LOD	< LOD	< LOD				
2595	Fig. 11/Area B	rock	ppm	<lod <lod<="" th=""><th>42 < LOD</th><th>< LOD</th><th>25</th><th>< LOD</th><th>41</th><th>77</th><th><lod <<="" th=""><th>< LOD</th><th>76 <</th><th>< LOD</th><th>153 <</th><th>< LOD</th><th>1012</th><th>260218</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>2</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod></th></lod>	42 < LOD	< LOD	25	< LOD	41	77	<lod <<="" th=""><th>< LOD</th><th>76 <</th><th>< LOD</th><th>153 <</th><th>< LOD</th><th>1012</th><th>260218</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>2</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	76 <	< LOD	153 <	< LOD	1012	260218	< LOD	2	< LOD	< LOD	< LOD	< LOD					
2596	Fig. 11/Area B	rock	ppm	7 8	82 < LOD	10	< LOD	< LOD	16	14	<lod <<="" th=""><th>< LOD</th><th>66 <</th><th>< LOD</th><th>161 •</th><th>< LOD</th><th>< LOD</th><th>171494 ·</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	66 <	< LOD	161 •	< LOD	< LOD	171494 ·	< LOD										
2597	Fig. 11/Area B	rock	ppm	89	73 < LOD	14	22	< LOD	19	28	<lod <<="" th=""><th>< LOD</th><th>87 <</th><th>< LOD</th><th>166 <</th><th>< LOD</th><th>< LOD</th><th>207857</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>9</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	87 <	< LOD	166 <	< LOD	< LOD	207857	< LOD	9	< LOD								
2598	Fig. 11/Area B	rock	ppm	79	55 < LOD	7	23	< LOD	31	17	<lod <<="" th=""><th>< LOD</th><th>38 <</th><th>< LOD</th><th>80 <</th><th>< LOD</th><th>623</th><th>194559</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>8</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	38 <	< LOD	80 <	< LOD	623	194559	< LOD	8	< LOD								
2599	Fig. 11/Area B	rock	ppm	9 < LOD	33 < LOD	5	29	< LOD	49	19	<lod <<="" th=""><th>< LOD</th><th>51 <</th><th>< LOD</th><th>78</th><th>223</th><th>561</th><th>271510</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	51 <	< LOD	78	223	561	271510	< LOD										
2600	Fig. 11/Area B	rock	ppm	9 < LOD	151 < LOD	< LOD	27	< LOD	16	33	<lod <<="" th=""><th>< LOD</th><th>52 <</th><th>< LOD</th><th>164 <</th><th>< LOD</th><th>< LOD</th><th>216172 -</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>7</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th><th>< LOD</th></lod>	< LOD	52 <	< LOD	164 <	< LOD	< LOD	216172 -	< LOD	7	< LOD								

In all cases <LOD means below level of detection

	Ballia Brazarty Sail Samples VBE Basylta (2200)
_	XRF # Zn Cu Au
	2959 147 61 2960 135 <lod 2961 19 41 2964 75 <lod 2965 86 23 2966 120 37 2967 128 27 2968 131 <lod 2970 110 36 2971 125 <lod 2972 118 <lod 2973 100 69 2974 109 57 2975 87 29 2976 159 61 2977 134 57 2978 159 99 9.32 2979 105 <lod 2980 104 80 2981 179 47 2982 184 33 2983 153 <lod 2984 183 62 2985 164 30 2986 133 64 2987 125 85 2981 120 114 2982 125 85 2991 137 53</lod </lod </lod </lod </lod </lod </lod
	Results over 100 ppm marked in red. BARKER MINERALS LTD.
ts	Rollie Property
ι	Area C
	Kocks, Soils Sample Numbers and
	Cariboo Mining Division BC
) 300	NTS Map: 93A/11 Date: May 10, 2016
	Fig.No. 12

Table No. 4 Rollie Area C - XRF Sampling Results

XRF No.	Fig. No./Area	Туре	Units	Мо	Zr	Sr U	Rb	Th	Pb	Se	As Hg	Au	Zn	W	Cu	Ni	Со	Fe	Mn
2959	Fig. 11 / Rollie C	soil	ppm	< LOD	146	58 < LOD	63	13	16	< LOD	11 < LOD	< LOD	147	< LOD	61	< LOD	< LOD	40411	555
2960	Fig. 11 / Rollie C	soil	ppm	< LOD	143	82 < LOD	85	14	< LOD	< LOD	13 < LOD	< LOD	135	< LOD	< LOD	40	< LOD	59003	498
2961	Fig. 11 / Rollie C	soil	ppm	< LOD	152	60 < LOD	63	6	< LOD	< LOD	16 < LOD	< LOD	91	< LOD	34	< LOD	< LOD	45908	301
2962	Fig. 11 / Rollie C	soil	ppm	< LOD	142	73 < LOD	46	8	10	< LOD	10 < LOD	< LOD	104	< LOD	57	< LOD	< LOD	28927	414
2963	Fig. 11 / Rollie C	soil	ppm	< LOD	160	71 < LOD	57	12	< LOD	< LOD	12 < LOD	< LOD	119	< LOD	41	< LOD	< LOD	41774	510
2964	Fig. 11 / Rollie C	soil	ppm	< LOD	180	87 < LOD	69	6	< LOD	< LOD	7 < LOD	< LOD	75	< LOD	< LOD	< LOD	< LOD	26162	207
2965	Fig. 11 / Rollie C	soil	ppm	6	205	69 < LOD	72	7	< LOD	< LOD	<lod <lod<="" td=""><td>< LOD</td><td>86</td><td>< LOD</td><td>23</td><td>< LOD</td><td>< LOD</td><td>18734</td><td>180</td></lod>	< LOD	86	< LOD	23	< LOD	< LOD	18734	180
2966	Fig. 11 / Rollie C	soil	ppm	< LOD	184	87 < LOD	87	13	16	< LOD	12 < LOD	< LOD	120	< LOD	37	< LOD	< LOD	35059	439
2967	Fig. 11 / Rollie C	soil	ppm	< LOD	228	81 8	60	11	20	< LOD	10 < LOD	< LOD	128	< LOD	27	91	< LOD	52116	522
2968	Fig. 11 / Rollie C	soil	ppm	< LOD	147	93 < LOD	103	7	< LOD	< LOD	<lod <lod<="" td=""><td>< LOD</td><td>131</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>71494</td><td>409</td></lod>	< LOD	131	< LOD	< LOD	< LOD	< LOD	71494	409
2969	Fig. 11 / Rollie C	soil	ppm	< LOD	159	176 < LOD	60	10	< LOD	< LOD	13 < LOD	< LOD	139	< LOD	< LOD	< LOD	< LOD	33951	323
2970	Fig. 11 / Rollie C	soil	ppm	< LOD	169	72 < LOD	95	7	10	< LOD	<lod <lod<="" td=""><td>< LOD</td><td>110</td><td>< LOD</td><td>36</td><td>< LOD</td><td>< LOD</td><td>41411</td><td>300</td></lod>	< LOD	110	< LOD	36	< LOD	< LOD	41411	300
2971	Fig. 11 / Rollie C	soil	ppm	5	152	147 < LOD	86	12	< LOD	< LOD	11 < LOD	< LOD	125	< LOD	< LOD	< LOD	< LOD	41702	765
2972	Fig. 11 / Rollie C	soil	ppm	< LOD	148	103 < LOD	64	15	17	< LOD	18 < LOD	< LOD	118	< LOD	< LOD	< LOD	< LOD	40899	965
2973	Fig. 11 / Rollie C	soil	ppm	< LOD	191	50 < LOD	72	13	13	< LOD	10 < LOD	< LOD	100	< LOD	69	65	< LOD	38196	1360
2974	Fig. 11 / Rollie C	soil	ppm	< LOD	120	59 < LOD	98	15	< LOD	< LOD	9 < LOD	< LOD	109	< LOD	57	< LOD	< LOD	42861	817
2975	Fig. 11 / Rollie C	soil	ppm	5	183	75 < LOD	77	17	18	< LOD	11 < LOD	< LOD	87	< LOD	29	< LOD	< LOD	29857	359
2976	Fig. 11 / Rollie C	soil	ppm	< LOD	131	121 11	89	16	23	< LOD	22 < LOD	< LOD	159	< LOD	61	< LOD	< LOD	45139	694
2977	Fig. 11 / Rollie C	soil	ppm	< LOD	122	133 12	101	12	< LOD	< LOD	14 < LOD	< LOD	134	< LOD	57	< LOD	< LOD	50613	577
2978	Fig. 11 / Rollie C	soil	ppm	< LOD	176	155 < LOD	95	17	43	< LOD	10 < LOD	9.32	159	< LOD	99	188	< LOD	71307	701
2979	Fig. 11 / Rollie C	soil	ppm	< LOD	150	80 < LOD	77	8	< LOD	< LOD	13 < LOD	< LOD	105	< LOD	< LOD	< LOD	< LOD	40161	290
2980	Fig. 11 / Rollie C	soil	ppm	< LOD	130	53 < LOD	75	16	< LOD	< LOD	11 < LOD	< LOD	104	< LOD	80	108	< LOD	41784	662
2981	Fig. 11 / Rollie C	soil	ppm	< LOD	130	98 < LOD	67	14	32	< LOD	9 < LOD	< LOD	179	< LOD	47	< LOD	< LOD	35573	535
2982	Fig. 11 / Rollie C	soil	ppm	< LOD	128	94 < LOD	50	11	14	< LOD	12 < LOD	< LOD	184	< LOD	33	< LOD	< LOD	45154	617
2983	Fig. 11 / Rollie C	soil	ppm	5	122	129 10	83	15	< LOD	< LOD	9 < LOD	< LOD	153	< LOD	< LOD	< LOD	< LOD	40159	487
2984	Fig. 11 / Rollie C	soil	ppm	5	120	80 < LOD	89	19	131	< LOD	16 < LOD	< LOD	183	< LOD	62	56	< LOD	46243	466
2985	Fig. 11 / Rollie C	soil	ppm	< LOD	135	85 < LOD	127	15	29	< LOD	<lod <lod<="" td=""><td>< LOD</td><td>164</td><td>< LOD</td><td>30</td><td>< LOD</td><td>< LOD</td><td>47018</td><td>526</td></lod>	< LOD	164	< LOD	30	< LOD	< LOD	47018	526
2986	Fig. 11 / Rollie C	soil	ppm	5	136	91 < LOD	119	22	71	< LOD	21 < LOD	< LOD	133	< LOD	64	< LOD	< LOD	49358	473
2987	Fig. 11 / Rollie C	soil	ppm	9	124	78 < LOD	80	16	51	< LOD	15 < LOD	< LOD	125	< LOD	85	< LOD	957	42614	318
2988	Fig. 11 / Rollie C	soil	ppm	10	125	106 < LOD	87	13	36	< LOD	<lod <lod<="" td=""><td>< LOD</td><td>120</td><td>< LOD</td><td>114</td><td>54</td><td>1035</td><td>42495</td><td>363</td></lod>	< LOD	120	< LOD	114	54	1035	42495	363
2989	Fig. 11 / Rollie C	soil	ppm	< LOD	182	65 < LOD	103 <	< LOD	< LOD	< LOD	<lod <lod<="" td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>47106</td><td>< LOD</td></lod>	< LOD	47106	< LOD					
2990	Fig. 11 / Rollie C	soil	ppm	< LOD	138	81 < LOD	110	14	27	< LOD	11 < LOD	< LOD	128	< LOD	55	52	< LOD	46502	718
2991	Fig. 11 / Rollie C	soil	ppm	< LOD	107	76 < LOD	96	13	27	< LOD	13 < LOD	< LOD	137	< LOD	53	54	< LOD	45128	600

In all cases <LOD means below level of detection