ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geological and Geochemical Work - Assessment Report on the Rollie Creek \& Frank Creek Properties, Cariboo Mining District, British Columbia.

TOTAL COST: \$20,813.00

AUTHOR(S): Rein Turna

SIGNATURE(S): "Signed"
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):
STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5595433 (October 15, 2015 to March 11, 2016)

YEAR OF WORK: 2016
PROPERTY NAME: Rollie Creek \& Frank Creek
CLAIM NAME(S) (on which work was done) 1038886 and 1038887

COMMODITIES SOUGHT: Gold, Silver \& Copper
MINERAL INVENTORY MINFILE NUMBER(S),IF KNOWN: N/K
MINING DIVISION: Cariboo
BCGS: 093A/11, 93A/12, 93A/13 \& 93A/14
LATITUDE $52.74^{\circ} \mathbf{N}$
LONGITUDE $\mathbf{1 2 1 . 4 5}{ }^{\circ} \mathbf{~ W}$
UTM Zone NAD 83 EASTING 604800 NORTHING 5844500
OWNER(S): Barker Minerals Ltd.
MAILING ADDRESS: 8384 Toombs Drive Prince George BC, V2K 5A3
OPERATOR(S) [who paid for the work]: Barker Minerals Ltd. MAILING ADDRESS: 8384 Toombs Drive Prince George BC, V2K 5A3

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude do not use abbreviations or codes)
Upper Triassic, Lower Jurrassic, Andesitic Volcanics, Gold, Silver \& Copper

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS

GEOLOGICAL \& GEOCHEMICAL

ASSESSMENT REPORT

on the

ROLLIE CREEK \& FRANK CREEK PROPERTIES

Cariboo Mining Division, British Columbia

The geographic coordinates of the Rollie property are: 52.74° North Latitude and 121.45° West Longitude or 604800 E and 5844500 N UTM coordinates (NAD 83)

The relevant maps are:
N.T.S. Map No. 93A/11, 93A/12, 93A/13 and 93A/14.

for
Barker Minerals Ltd. 8384 Toombs Drive
Prince George, B.C.
V2K 5A3

Prepared by:
Rein Turna

July 20, 2016

Figure No. 1 Satellite image of Two Mile Creek in Rollie Area. The large lake is Cariboo Lake. The small dark lake is Two Mile Lake. Two Mile Creek, represented by the blue line, flows south out of the lake, then eastward to Cariboo Lake. The Rollie work area in this report is labelled "Stinger Sulphides in OC" in the lower portion of the creek. Red colours overlain on this image represent $1^{\text {st }}$ derivative magnetic high anomalies from the Geological Survey of Canada airborne geophysical survey of 2009. The central portion of Two Mile Creek has a mag high anomaly within a wider mag low area. The mag high on the creek is associated with pyrrhotite occurrences within an area of altered and sulphide mineralized outcrop. A discussion of the $B C$ and Federal governments' airborne geophysical surveys over this area, done in 2009, can be found in Assessment Reports 31389 and 35468by Turna, R.

1.0 SUMMARY

Work performed in 2016 on Barker Minerals Ltd.'s Rollie property consisted mainly of rock sampling in the lower portion of Two Mile Creek. There, a flash flood in 2015 exposed new outcrops containing massive sulphide mineralization. 129 geochemical analyses were made of rocks collected in the current program. Detailed maps and geochemical data are presented in Appendix H .

TABLE OF CONTENTS

Page
1.0 SUMMARY i
2.0 INTRODUCTION 1
3.0 PROPERTY DESCRIPTION and LOCATION 1
4.0 MINERAL CLAIMS 2
5.0 PHYSIOGRAPHY and ACCESSIBILITY 3
6.0 HISTORY 5
6.1 History of Work Done on the Rollie Creek Property 5
6.1.1 Work done on the Peacock Showing 5
6.1.2 Work done in 2014 6
6.1.3 Work done in 2015-2016 6
7.0 GEOLOGY 8
7.1 Regional Geology 8
Quesnel Terrane 11
Slide Mountain Terrane 12
Barkerville Terrane 12
Cariboo Terrane 13
Glaciation and Glacial Deposits 13
7.2 Local Geology at Unlikely-Rollie Area, Southern Cariboo Lake 14
7.2.1 The Unlikely Showing (Minfile No. 093A 163) 14
8.0 EXPLORATION PROGRAM - 2016 15
8.1 Sampling Method and Approach 15
8.2 Economic Targets and Work Done 15
8.3 Rollie Area (Two Mile Creek, lower portion) 16
8.4 Frank Area 16
9.0 CONCLUSIONS 16
10.0 RECOMMENDATIONS 16
LIST of FIGURES
Figure No. 1 Satellite image of Two Mile Creek iPage
Figure No. 2 Main Property location in British Columbia 2
Figure No. 3 Barker Minerals Ltd. Mineral Claims after pg. 2
Figure No. 4 Access Roads from Likely to several of Barker Minerals' properties 4
Figure No. 5 Terrane Map of Southern British Columbia 8
Figure No. 6 Terrane Map of Cariboo Lake - Wells Area 9
Figure No. 7 Geology of Wells-Cariboo Lake area 10
Figure No. 8 Schematic Regional Structural Section 11Figure No. 9 Frank and Rollie Creek Property - Keymap for Work Areas
Figure No. 10 Rollie Area (Two Mile Creek)_ in Appendix H

Figure No. 11 Rollie Area Detail 1 - Rock Sample Numbers and Zn, Cu, Pb Geochemistry in Appendix H
Figure No. 12 Frank Area - Rock Sample Numbers and Zn, Cu Geochemistry
in Appendix H

LIST of TABLES

Table No. 1 Sample Coordinates and Descriptions in Appendix G
Table No. 2 Rollie Area (Two Mile Creek) - XRF Sampling Results after Fig. No. 11
Table No. 3 Two Mile Creek - XRF Sampling Results after Fig. No. 12

LIST of APPENDICES

Appendix A Glossary of Technical Terms and Abbreviations
Appendix B Barker Minerals Ltd. Mineral Claims Details
Appendix C Analytical Methods
Appendix D References
Appendix E Statements of Qualifications
Appendix F Statement of Expenditures
Appendix G Samples Descriptions and Coordinates
Appendix H Rollie Creek Property Maps and XRF Data Table

2.0 INTRODUCTION

This report describes assessment work performed in 2016 on Barker Minerals Ltd.'s Rollie property. The work was concentrated in the area of tenure nos. 1038886 and 1038887. Rock samples were analyzed by X-ray fluorescence (XRF) for multiple elements. The purpose was to add geochemical information to the existing database and to identify potential mineralized lithologic horizons in an on-going mineral exploration program.

Definitions of technical terms used in this report are provided in Appendix A, Glossary of Technical Terms and Abbreviations. Chemical abbreviations are used for the elements discussed. The elements and abbreviations are:

Ag	Silver	Cd	Cadmium	K	Potassium
As	Arsenic	Co	Cobalt	Pb	Lead
Au	Gold	Cr	Chromium	Sb	Antimony
Ba	Barium	Cu	Copper	Sn	Tin
Bi	Bismuth	Fe	Iron	Zn	Zinc

3.0 PROPERTY DESCRIPTION and LOCATION

The Rollie property consists of contiguous claims listed in Appendix B - Barker Minerals Ltd. Mineral Claims Details. The property's location in British Columbia is indicated in Figure No. 2 - Two Mile Creek Property Location in British Columbia, and the mineral claims are outlined in Figure No. 3 - Barker Minerals Ltd. Mineral Claims. The mineral claims comprising the property are located generally in the area between Quesnel and Cariboo Lakes of the Cariboo Mining Division in British Columbia and are 100\% owned by Barker Minerals Ltd. of Prince George, B.C. The property is approximately 15 km northeast of the settlement of Likely and 80 km northeast the City of Williams Lake. The City of Prince George is 155 km to the north.

The geographic coordinates of the Rollie property are: 52.74° North Latitude and 121.45° West Longitude or 604800 E and 5844500 N UTM coordinates (NAD 83).
The relevant maps are:
N.T.S. Map No. 93A/11, 93A/12, 93A/13 and 93A/14.

Figure No. 2 Barker Minerals Ltd. Rollie Creek \& Frank Creek Property location in British Columbia.

4.0 MINERAL CLAIMS

Details about the mineral claims are provided in Appendix B - Barker Minerals Ltd. Mineral Claims Details. Fig. No. 3 on the next page illustrates the configuration of the mineral claims relevant to this report.

5.0 PHYSIOGRAPHY and ACCESSIBILITY

The following description in italics, is after McKinley, 2004:
The property is situated in the central part of the Quesnel Highland between the eastern edge of the Interior Plateau and the western foothills of the Columbia Mountains. This area contains rounded mountains that are transitional between the rolling plateaus to the west and the rugged Cariboo Mountains to the east. Pleistocene and Recent ice sheets flowed away from the high mountains to the east over these plateaus and down to the southwest (Cariboo River), west (Little River) and northeast (Quesnel Lake), carving U-shaped valleys. The elevation ranges from 700-1650 m.

Precipitation in the region is heavy, as rain in the summer and snow in the winter. Drainage is to the west via the Cariboo, Little and Quesnel Rivers to the Fraser River. Quesnel Lake, the main scenic and topographic feature in the region, is a deep, long, forked, glacier-carved lake with an outlet at 725 m elevation. Vegetation is old-growth spruce, fir, pine, hemlock and cedar forest in all but the alpine regions of the higher mountains (mainly above 1400 m elevation).

Access to the Rollie property is via gravel logging roads bearing northeast from Likely. Figure No. 4 shows access roads from Likely to Barker's mineral properties.

Figure No. 4 Access roads from Likely to several of Barker Minerals' properties.

6.0 HISTORY

Frank Creek has an extensive work history spanning two decades. The most detailed summary of this work is provided in Assessment Report 35157 by Turna, R.

6.1 History of Work Done in area of the Rollie property

6.1.1 Work done on the Peacock Showing (Minfile No. 093A 133) on Rollie).

For work done in 1926 and 1933 the relevant reports are the Minister of Mines Annual Reports (MMAR) for 1926, pg A178 and 1933, pg A138.

The Minister of Mines Annual Reports state a 50 foot width of schisted sediments show a 'stockwork' of quartz veins across Duck [Two Mile] Creek where a large number of veins average 1 foot wide, the widest 5 feet. The MMAR reports for 1926 and 1933 state the Peacock claims to be on Duck Creek. Geological Survey of Canada Map 278 (Bowman, 1889), indicates Duck Creek to be that which is now named Two Mile Creek. On the Peacock claims several quartz veins contained galena with silver values. A picked sample of galena contained $40 \% \mathrm{~Pb}, 6 \% \mathrm{Zn}, 29 \mathrm{oz} / \mathrm{Ton} \mathrm{Ag}$ and $0.02 \mathrm{oz} / \mathrm{Ton} \mathrm{Au}$. A rock sample from the enclosing pyritic schisted sedimentary rock assayed 1\% copper. A prominent outcrop of apparently silicified green mica-schist occurred on the property.

Work was done in 1987-1988 for C.E. Carlson on the Duck 1 and Duck 2 claim groups totaling 154 claim units covering the lower portions of Rollie and Asserlind Creek drainages at the southwest end of Cariboo Lake. For work done in the 1980's the relevant reports are Assessment Reports 17254, 17426, 18298, 18794.

In 1987 1,179 soil samples were collected over a $1.5 \mathrm{~km} \times 1.6 \mathrm{~km}$ area and analyzed for precious and base metals. The survey area was approximately 2.5 km north of Rollie (Duck) Creek. The area of the grid was underlain by dark grey and greenish phyllites and siltites in contact with diorite. Anomalous results in the soils were considered to result from abnormally high metal content of a dark grey phyllite formation carrying abundant up to 10$15 \%$ disseminated pyrite. This rock typically had geochem values of 200-300 ppm Cu and $300-350 \mathrm{ppm} \mathrm{Zn}$. This soil survey did not indicate any worthy drill targets. An EM geophysical survey was recommended.

In 1988 a soil survey (127 samples) and a total of 5.48 line km of a VLF-EM geophysical survey and 7 holes ($1,034 \mathrm{~m}$) of drilling were done. The soil samples were collected over a $700 \mathrm{~m} \times 800 \mathrm{~m}$ area approximately 1.2 km south of Rollie Creek and adjacent to the Keithley Creek Road. The soils were analyzed for precious and base metals. No significant anomaly occurred. Further soil sampling was recommended but not done. The geophysical survey, done in the same area as the soil survey, defined a contact zone between granitic gneiss and weakly mineralized or graphitic phyllite. A moderately strong EM anomaly was attributed to a graphitic phyllite unit. Though no trenching or drilling targets were established by the EM survey further rock and soil sampling was recommended.

The drill program tested copper mineralization occurring in dark grey phyllite and siltite as strong disseminations and massive lenses. The drill holes were sparsely located, 3 on the north side of the lower portion of Rollie Creek, 4 holes near Two Mile Creek where the "Peacock" showing is located in the Minfile. The exploration target was a sedimentaryhosted large tonnage Cu-Ag deposit. The drill program did not indicate such a deposit but recommendations were made to continue exploration for fault and vein related mineralization.

6.1.2 Work done in 2014

The relevant report is Assessment Report 35157 by R. Turna.

Soils were sampled by Barker Minerals Ltd. along the Keithley Creek Road along the west shore of Cariboo Lake. Further soils and rocks were collected further west on the 1500 Road and Rollie Branch Road. Approximately 160 soils and 50 rocks were analyzed. A "vms" massive sulphide boulder was discovered on the lower portion of the 1500 Road, 1.0 km north of the "Unlikely" showing.

An intense vertical shear, striking E-W, was mapped at the "Unlikely" outcrop. An E-W topographic lineament, visible in satellite photos, runs from the Unlikely showing to the Frank Creek massive sulphide prospect, 5.0 km eastward.

6.1.3 Work done in 2015-2016

The relevant assessment reports are by Turna, R., 35468 dated July 31, 2015, 35717 dated November 30, 2015, March 15, 2016 and May 15, 2016.

Re. AR 35468, dated July 31, 2015 :
Reconnaissance rock sampling was done in the hills above the Keithley Creek Road on the west side of Cariboo Lake; in Area A (54 rocks), in Area B (160 rocks), in Area C (48 rocks). Numerous rocks had anomalous values in base and pathfinder metals. Sulphide mineralization was observed widespread in outcrops. Rock samples in Areas B6 and B7 had $17.41 \mathrm{ppm}, 27.93 \mathrm{ppm}, 10.38 \mathrm{ppm}$ and 22.00 ppm in gold. Follow- up geological, geochemical and geophysical surveys were recommended.

Re. AR 35717, dated November 30, 2015 :
Reconnaissance soil and rock sampling was done along roads in the Rollie Creek and Two Mile Creek areas; in Area A (52 soils, 132 rocks), in Area B (52 soils, 40 rocks), in Area C (20 soils, 20 rocks). Soil Sample No. 2941 in Area B had 11.15 ppm Au. Numerous rocks and soils had anomalous values in base metals. Sulphide mineralization was observed widespread in outcrops, including massive sulphide mineralization at the "vms boulder", indicating the known Unlikely and Peacock Minfile occurrences were underappreciated. Follow- up geological, geochemical and geophysical surveys were recommended.

Re. AR dated March 15, 2016:

A beaver dam at the head of Two Mile Creek broke in 2015. The resulting flash flood in the creek exposed new outcrop revealing previously unknown semi and massive sulphide mineralization. 49 rock samples from the upper and middle portions of Two Mile Creek were analyzed for multiple metals. 47 soils were sampled along the Rollie-Kangaroo connector road on the west side of Rollie Lake. These rocks and soils had high values in base and pathfinder elements. A structural and genetic link was proposed between the new exposures on Two Mile Creek and the known "Unlikely" semi-massive showing 600 m to the east and the Frank Creek massive sulphide showing on the opposite side of Cariboo Lake. Follow- up geological, geochemical and geophysical surveys were recommended.

Re. AR dated May 15, 2016:
94 rock samples from the middle portion of Two Mile Creek were analyzed for multiple metals. 33 soils on the Rollie bench road were analyzed. New rock exposures, resulting from the previous year's flash flood. The 94 rocks sampled in 2016 had high values in Zn (up to 823 ppm), Cu (up to $7,379 \mathrm{ppm}$), and Pb (up to $10,911 \mathrm{ppm}$) in argillite and quartzose schists. Rock sample 4585 had 12.04 ppm Au in pyritic argillite. The Hall vms showing, a $2 \mathrm{~m} \times 10 \mathrm{~m}$ massive sulphide body consisted of pyrite, pyrrhotite and chalcopyrite with Cu values up to $48,069 \mathrm{ppm}$ in a grab sample. Comprehensive geological, geochemical and geophysical follow up surveys recommended.

7.0 GEOLOGY

7.1 Regional Geology

Figure No. 5 Terrane Map of Southern British Columbia. Barker Minerals' properties are indicated by the red star over the Barkerville subterrane. The brown star to the SE is the Barkerville Gold Mine Ltd.' Goldstream volcanogenic massive sulphide deposit. Map is from Ferri, F. \& Schiarizza, P., 2006.

Figure No. 6 Terrane Map of Cariboo Lake - Wells Area. Several Barker Minerals' properties are indicated by red stars. Map is from Ferri, F. \& Schiarizza, P., 2006.

Figure No. 7 Geology of Wells-Cariboo Lake area. Highlighted on the BCGS map are Barker Minerals' Frank Creek and Unlikely massive sulphide prospects. The Harveys Ridge succession consists of siltstone, quartzite and the Frank Creek volcanics. Map is from Ferri, F. \& Schiarizza, P., 2006.

The geological descriptions below derive mainly from Struik (1988), Panteleyev et al. (1996) and Payne and Perry (2001).

During the mid-Jurassic the North American continental plate collided with a group of island arcs to the west. Regional deformation and metamorphism are related to these events.

Figure No. 8 Schematic regional structural section from southwest to northeast across the four Terranes in Barker Minerals' claims area, showing the relative structural position of the Terranes. The Terrane symbols are BV-Barkerville, C-Cariboo, Sma-Slide Mountain (Antler Formation), SMcSlide Mountain (Crooked amphibolite), QN-Quesnel and NA-North American. (after Struik, 1988).

Quesnel Terrane

The Late Triassic to Early Jurassic Quesnel Terrane...was accreted to the North American continent, in part by subduction and in part by obduction. The Eureka Thrust fault marks the boundary between the Quesnel and Barkerville terranes. The terrane is partly submarine and partly subaerial, consisting of volcanic and volcaniclastic rocks and co-magmatic intrusions, with minor carbonate lenses and related sedimentary rocks.

The principal assemblage in the Quesnel Terrane is the Triassic-Jurassic Nicola Group island arc - marginal basin sequence. The underlying rocks are the Crooked Amphibolite, part of the Slide Mountain assemblage, a mylonitized mafic and ultramafic unit of oceanic marginal basin volcanic and sedimentary rocks. Rocks of Quesnel Terrane and Crooked Amphibolite are structurally coupled and tectonically emplaced by the Eureka Thrust onto the Barkerville Terrane, to the east.

Two lithostratigraphic subdivisions of the Quesnel Terrane consists of: a basal Middle to Late Triassic metasedimentary unit of dominantly black phyllitic rocks, approximately 7 km thick, and an overlying Late Triassic to Early Jurassic volcanic arc assemblage, approximately 9 km thick. The overlying volcanic rocks outline a northwesterly trending belt of subaqueous and subaerial volcanic rocks, deposited along a series of volcanic-intrusive centres that define the Quesnel island arc of predominantly alkalic basalts.

Within...the northern extension of the Quesnel Trough, the term...Takla Group has been applied to rocks identical to the Quesnel belt rocks...Equivalent rocks to the south...are generally referred to as Nicola Group...Baily (1978) pointed out the similarity of the Quesnel volcanic units with both the Nicola Group rocks to the south and the Takla Group rocks to the north... The term Takla leads to ambiguity because in northern British Columbia it has been used for rocks in both Quesnel and Stikine terranes...The usage for the TriassicJurassic volcanic arc and related rocks in Quesnellia currently preferred is Nicola Group. The term Takla Group possibly should be discarded... (Panteleyev et al., (1996).

The Quesnel Trough is a well-mineralized region typical of other Late Triassic to Early Jurassic volcano-plutonic island arcs in the Cordillera. It hosts a wide variety of mineral deposits. The principal recent exploration and economic development targets in the central Quesnel belt are alkalic intrusion-related porphyry copper-gold deposits and gold-bearing propylitic alteration zones formed in volcanic rocks peripheral to some of the intrusions. Other important targets are auriferous quartz veins in the black phyllite metasedimentary succession. The veins in some black phyllite members have potential to be mined as large tonnage, low-grade deposits. Tertiary rocks are mineralized with copper and gold. Antimony-arsenic and mercury mineralization in some apparently low temperature quartzcalcite veins indicated the potential for epithermal deposits. Placer mining for gold, said to occur together with platinum, has been of major historical and economic importance.

Slide Mountain Terrane

Rocks of the Devonian to Late Triassic Slide Mountain Terrane were partly obducted, partly subducted during collision of an oceanic plate with the continent. Small slices of mainly mafic volcanic rocks and ultramafic rocks of the Slide Mountain Terrane occur in and parallel to the Eureka thrust. Minor lithologies include chert, meta-siltstone and argillite.

The Crooked Amphibolite, considered to likely be a part of the Slide Mountain Terrane, includes three major constituent rock types: greenstone, metagabbro and meta-ultramafite. North of Quesnel Lake, the map units consist of mafic metavolcanics, amphibolite, chlorite schist, serpentinite, ultramafic rocks and pillow lavas. Chemical analyses indicate subalkaline tholeiitic compositions of basalts formed on the ocean floor. If the Crooked Amphibolite is a sheared and metamorphosed equivalent of the Antler Formation and is part of the Slide Mountain Terrane, it is separated from the underlying Barkerville Terrane by the Eureka Thrust, a wide zone of mylonitization. The Crooked amphibolite and the overlying rocks of Quesnel Terrane are structurally coupled and emplaced tectonically onto Barkerville Terrane.

Barkerville Terrane

The Barkerville Terrane is made up of the Snowshoe Group and Quesnel Lake gneiss. The Snowshoe Group rocks are Upper Proterozoic to Upper Devonian metasediments, considered correlative in age with the Eagle Bay Formation in the Kootenay Terrane to the south. The Snowshoe Group rocks are dominated by varieties of grit, quartzite, pelite,
limestone and volcaniclastic rocks. The stratigraphic sequence is not well understood. The region was deformed by intense, complex, in part isoclinal folding and overturning. Locally, strong shear deformation produced mylonitic textures. The Quesnel Lake Gneiss is a Devonian to Mississippian intrusive unit varying in composition from diorite to granite to syenite. It is generally coarse grained, leucocratic, often with megacrysts of potassium feldspar. The main body of gneiss is 30 km long by 3 km wide and is elongated parallel to the eastern border of the Intermontane belt. Its contacts are in part concordant with, and in part perpendicular to, metamorphic layering.

The contact between the Barkerville Terrane and Cariboo Terrane to the east is the Pleasant Valley Thrust. The Barkerville and Cariboo Terranes were juxtaposed prior to emplacement of the Slide Mountain Terrane which was thrust over both of them. The northeastern third of the Barkerville Terrane is the main zone of economic interest in the Cariboo district. Struik described it as "gold-enriched", because it contains the historic Wells and Barkerville gold mines and the Cariboo Hudson deposit, approximately 40 km and 20 km northwest of the project area, respectively.

Cariboo Terrane

The northeastern part of Barker Minerals' 'Peripheral' claim group is underlain by Precambrian to Permo-Triassic marine peri-cratonic sedimentary strata of the Cariboo terrane. The Cariboo Terrane consists mainly of limestone and dolomite with lesser siliceous, clastic, sedimentary rocks and argillite. Some geologists believe that the Cariboo Terrane is a shallow, near-shore facies and the Barkerville is a deeper, offshore facies of the same erosion-deposition system. No rifting is suspected between the Cariboo Terrane and the North American continent, in contrast to that between the Barkerville Terrane and the North American continent. Lithologies within the Cariboo Terrane correlate well with parts of the Classier Platform and Selwyn Basin of Yukon and northern British Columbia.

The Cariboo and Barkerville Terranes are separated by the regional Pleasant Valley Thrust fault, which dips moderately to steeply northeast. Struik (1988) states the Cariboo block was thrust from the east over the Barkerville block along a strike length of over 100 km . The Cariboo Terrane was cut by the Jurassic-Cretaceous Little River stock, a medium-grained granodiorite grading to quartz monzonite. Some of the carbonate layers in the lowest part of the Cariboo terrane (or upper part of the Barkerville Terrane) are enriched in zinc and lead. Since the 1970's, preliminary exploration on stratiform $\mathrm{Zn}-\mathrm{Pb}$ targets has been conducted in this area.

Glaciation and glacial deposits

The last glacial stage that affected the Quesnel Highland, the Fraser glaciation, began 30,000 years ago. Much of this ice had melted by 10,000 years ago, but small remnants are preserved high in the alpine areas of the Cariboo Mountains. At lower elevations, glaciers of this age scoured the debris left by preceding ice advances, almost completely destroying them, leaving a chaotic assemblage of unsorted till, moraine and drift, with lenses of gravel and sand that had been roughly sorted by melt water and rivers, leaving behind beds of silt and clay that were stratified by settlement in ice-dammed lakes. In the Cariboo area, the
debris covers bedrock in valleys below $1,700 \mathrm{~m}$, leaving typical glacial features such as U shaped valleys, ice-sculpted drumlins, moraine terraces and glacier and river benches. On the Barker Minerals properties, glacial deposits range from one to a few tens of metres thick. Some glacial till deposits are overlain by well-bedded glaciolacustrine clay and silt deposits up to a few tens of metres thick.

In much of the Cariboo district, a layer of distinctive, hard, compact, semi-rigid blue clay sits either on or slightly above bedrock and acts as "false" bedrock. It was formed from glacial drift left behind by the last ice advance prior to the Fraser glaciation and was compacted by the weight of the Fraser stage ice. In the placer-gold areas of the Cariboo, large amounts of gold were recovered from gravel resting on this clay. In places the clay layer was penetrated by the placer miners to reach richer "pay streaks" on true bedrock below.

7.2 Local Geology at Unlikely - Rollie Area, Southern Cariboo Lake

The Unlikely prospect is a volcanogenic massive sulphide prospect, similar to the Frank Creek prospect on the opposite side of Cariboo Lake. The geology (Figure No. 7) for WellsCariboo Lake area shows the location of the Unlikely and Frank Creek massive prospects.

7.2.1 The Unlikely Showing, (Minfile No. 093A 163)

For relevant reports see F. Ferri, $(2002,2003)$.

The "Unlikely" Cu-bearing semi massive sulphide occurrence was discovered in 2001. It is located along the Keithley Creek Road, approximately 2 kilometres southwest of the community of Keithley Creek on the west side of Cariboo Lake.

Mineralogy, overall characteristics and association with mafic metavolcanics suggest this a stratiform massive sulphide mineralization similar to that at Frank Creek (5.0 km to the east). The showing is up to 1.5 m thick and can be traced for approximately 10 to 15 m . The mineralized zone is highly siliceous and appears to be silicified Harveys Ridge lithologies. Green-mica bearing, ankerite altered and silicified horizons up to several metres thick occur above the showing. Chemical analyses suggest these are highly altered mafic volcanic sequences originally of alkaline composition (Minfile No. 093A 163).

The stratiform nature, lithologic association and mineralogy are similar to that at Frank Creek, 5 km to the east. Sulphides consist of disseminated pyrite, pyrrhotite and chalcopyrite. Sulphide mineralization is variable from about 10 to 50%. The main sulphide body is about 2 metres wide by 10 metres long. The strike of the sulphide horizon is parallel with overall bedding. The mineralized zone appears to be silicified and there are quartz veins nearby. The sulphides also form discontinuous lenses parallel to the bedding.

Little attention has been paid to the Unlikely showing t during the course of work in previous years at Frank Creek to the east. A re-examination of Unlikely in 2014 outlined two mineralized horizons similar in nature to that found at Frank Creek, 3 metres apart, in
addition to the known main sulphide body. They run parallel to each other and are approximately 150 cm to 350 cm in thickness. One layer is exposed over a strike length of 4 metres; the second layer is exposed over 3 metres. Both horizons have sulphides comprised of pyrite with minor chalcopyrite and are open in both directions along strike, and at depth.

Host rocks are dark grey to black phyllites and siltstones. Relatively massive, blocky Fe carbonate-altered horizons of volcanic rock occur above the showing. Bedding is locally intensely folded adjacent to an east-west shear in the outcrop. This tight folding may be related to drag within a shear zone that has had significant movement as it contrasts sharply with the overall much more gentle folding in the outcrops around.

8.0 EXPLORATION PROGRAM, 2016

8.1 Sampling Method and Approach

Rock samples were analyzed for multiple elements using the Niton XL3t handheld X-ray fluorescence analyzer from Thermo Scientific Inc. Further information on this instrument is at the Niton website http://www.niton.com/en/niton-analyzers-products/x|3/x|3t. An overview of sample analysis using energy dispersive X-ray fluorescence (EDXRF), adapted from the Niton website, is in Appendix C.

Most rock analyses were done at Barker Minerals' field office in Likely. Coordinates were collected at all sample locations. The coordinates are provided in Table No. 1. The rocks were analyzed in a manner to determine both their "high grade" and "low grade" values at each site, in order to minimize a "nugget" effect and to determine background values. The XRF analysis method does not replace laboratory assay. It detects the presence or absence of multiple elements in prospecting and, up to a certain point, the intensity of mineralization and correlation among elements in a specimen. The XRF is very useful in analysis for base economic and pathfinder metals though Au needs to be in relatively high grade in order to be detected by the XRF. Altogether 129 geochemical analyses were made of rocks.

8.2 Economic Targets and Work Done

Rock sampling was done over outcrops, many newly exposed by a recent major flood on Two Mile Creek. The economic target is volcanogenic massive sulphide and gold-bearing quartz veins.

Two Mile Creek was swept by a flash flood in July, 2015 when a beaver dam in the creek's head waters burst. The flood scoured the entire creek down from Two Mile Lake down and exposed new mineralized outcrops and temporarily blocked the Keithley Creek Road at the Cariboo Lake shore.

8.3 Rollie Area (Two Mile Creek, lower portion)

One hundred and five rock samples were collected from outcrop, exposed by the flash flood in 2015. Semi and massive sulphide mineralization occur in the outcrop, consisting mainly of pyrite, pyrrhotite and chalcopyrite was identified. Zn (up to 510 ppm), Cu (up to 21,122 ppm), and Pb (up to $1,767 \mathrm{ppm}$) anomalies occurred in quartz and mica schists and argillites and siltstones.

8.4 Frank Area

Twenty four rock samples were collected from outcrops. The sampling targets were quartz veins in argillite. Pyrite occurred in most of the rocks sampled. The best results were for Zn (up to 779 ppm) and Cu (up to $1,397 \mathrm{ppm}$).

9.0 CONCLUSIONS

The Zn, Cu and Pb results in rocks in this small work program provide encouragement for further sampling, particularly at Two Mile Creek in the Rollie Area.

10.0 RECOMMENDATIONS

More extensive and intensive geochemical sampling in the Unlikely-Two Mile Creek area is required to follow up this massive sulphide and gold prospect. Comprehensive geological mapping and geophysical surveys are also warranted. Frank Creek has an extensive work history and previous recommendations for continued follow-up stand.

APPENDIX A

Glossary of Technical Terms and Abbreviations

Glossary of Technical Terms and Abbreviations

Anomalous Chemical and mineralogical changes and higher than typical background values in elements in a rock resulting from reaction with hydrothermal fluids or increase in pressure or temperature.

Anomaly The geographical area corresponding to anomalous geochemical or geophysical values.

Argentiferous Containing silver.

Background	The typical concentration of an eleme generally referring to values below so designated as anomalous.
BBE	Black Bear East property.
BCGS	British Columbia Geological Survey.

B.C. MEMPR British Columbia Ministry of energy Mines and Petroleum Resources.
cm Centimetre.

Cratonic	Pertaining to a craton, an old part of the continental crust, generally making up the interior portion of a continent such as North America.
DCIP	An electrical method which uses the injection of current and the measurement of voltage and its rate of decay to determine the subsurface resistivity and chargeability.
DDH	Diamond drill hole.
eg.	exemp/İ grātiā (for the sake of example).
EM	Electromagnetic.
E-W	East-West.
Float	Loose rocks or boulders; the location of the bedrock source is not known.
GBC	Geoscience BC.
GSC	Geological Survey of Canada.

Grab sample	A sample of a single rock or selected rock chips collected from within a restricted area of interest.
g / t	Grams per tonne (metric tonne).
	$34.29 \mathrm{~g} / \mathrm{t}$ (metric tonnes) $=1.00 \mathrm{oz} / \mathrm{T}$ (short tons).
Ha	Hectare - an area totalling 10,000 square metres, e.g., an area 100 metres by 100 metres.
HLEM	Horizontal loop electromagnetic.
IP	Induced polarization.
km	Kilometre.
lb .	Pound.
Leucocratic	Light-coloured.
m	Metre.
Max-Min	An HLEM technique to test for resistivity and conductivity of rocks.
MT	Magnetotelluric. A electrical method that uses natural variations in the Earth's magnetic field to induce electric current in the ground to determine the subsurface resistivity.
my	Million years.
NE-SW	Northeast-Southwest.
NNW-SSE	North northwest - South southeast.
NW	Northwest.
NW-SE	Northwest - Southeast.
N-S	North-South.
OF	Open File.
oz.	Ounce.
oz/T	ounces per ton (Imperial measurement).

$34.29 \mathrm{~g} / \mathrm{t}$ (metric tonnes) $=1.00 \mathrm{oz} / \mathrm{T}$ (short tons).

oz/st	ounces per short ton (Imperial measurement, same as oz/T). $34.29 \mathrm{~g} / \mathrm{t}$ (metric tonnes) $=1.00 \mathrm{oz} / \mathrm{st}$ (short tons).
ppb	Parts per billion.
ppm	Parts per million (1 ppm = 1,000 ppb = 1 g/t).
Protolith	The original rock before it was metamorphosed.
QUEST	Quesnellia Exploration Strategy, a BCGS geophysical survey.
Sedex	Sedimentary-exhalative mineral deposit type.
SE	Southeast.
TEM or TDEM Time Domain EM.	
Tensor-magnetotelluric \quad See MT.	

Tholeiitic A type of basalt. The most common volcanic rocks on Earth, produced by submarine volcanism at mid-ocean ridges and make up much of the ocean crust. Chemically, these basalts have been described as subalkaline, that is, they contain less $\left(\mathrm{Na}_{2} \mathrm{O}\right.$ plus $\left.\mathrm{K}_{2} \mathrm{O}\right)$ at similar SiO_{2} than alkali basalt.

TRIM Terrain Resource Information Management, series of 1:20,000 scale maps.
VLF Very low frequency.
VLF-EM Very low frequency electromagnetic.
VMS Volcanic-related massive sulphide.

XRF X-ray florescence.

APPENDIX B

Barker Minerals Ltd. - Mineral Claim Details

| Title
 Number | Claim
 Name | Owner | Title
 Type | Title Sub
 Type | Map
 Number | | Good To
 Issue Date | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Status Area (ha)

APPENDIX C

Analytical Methods

Overview of sample analysis using energy dispersive X-ray fluorescenc using the Thermo Scientific Niton XL3t handheld XRF analyzer

Thermo Scientific portable energy-dispersive x-ray fluorescence (EDXRF) analyzers, commonly known as XRF analyzers, can quickly and nondestructively determine the elemental composition of metal and precious metal samples of rocks, ore and soil.

Up to 40 elements may be analyzed simultaneously by measuring the characterisitic fluorescence x -rays emitted by a sample. XRF analyzers can quantify elements ranging from magnesium (Mg - element 12) through uranium (U - element 92) and measure x-ray energies from 1.25 keV up to 85 keV in the case of Pb K-shell fluorescent x-rays excited with a ${ }^{109} \mathrm{Cd}$ isotope. These instruments also measure the elastic (Raleigh) and inelastic (Compton) scatter x-rays emitted by the sample during each measurement to determine, among other things, the approximate density and percentage of the light elements in the sample.

Elemental Analysis - A Unique Set of Fingerprints

How does XRF work? Each of the elements present in a sample produces a unique set of characteristic x-rays that is a "fingerprint" for that specific element. XRF analyzers determine the chemistry of a sample by measuring the spectrum of the characteristic x-ray emitted by the different elements in the sample when it is illuminated by x-rays. These x-rays are emitted either from a miniaturized x-ray tube, or from a small, sealed capsule of radioactive material.

1. A fluorescent x-ray is created when an x-ray of sufficient energy strikes an atom in the sample, dislodging an electron from one of the atom's inner orbital shells.
2. The atom regains stability, filling the vacancy left in the inner orbital shell with an electron from one of the atom's higher energy orbital shells.
3. The electron drops to the lower energy state by releasing a fluorescent x-ray, and the energy of this x-ray is equal to the specific difference in energy between two quantum states of the electron.

Atom emits characteristic X -rays when illuminated by x -rays from a primary source.

When a sample is measured using XRF, each element present in the sample emits its own unique fluorescent x-ray energy spectrum. By simultaneously measuring the fluorescent x-rays emitted by the different elements in the sample, the Thermo Scientific portable XRF analyzers can rapidly determine those elements present in the sample and their relative concentrations - in other words, the elemental chemistry of the sample.

Overview of the Thermo Scientific Niton XL3t handheld XRF analyzer.

APPENDIX D

REFERENCES

REFERENCES

All Assessment Reports listed below are available for free download at the Ministry of Energy, Mines and Petroleum Resources' website for the Assessment Report Indexing System (ARIS).
http://www.em.gov.bc.ca/Mining/Geolsurv/Aris/default.htm
Bailey, D.G., Geology of the Central Quesnel Belt, British Columbia (Parts of NTS 93A, 93B, 93G and 93H), BC Geological Survey Branch, Open File 1990-31.

Ballantyne, S.B., Hornbrook, E.W.H., Johnson, W.M., National Geochemical Reconnaissance, Quesnel Lake, British Columbia, NTS 093A, GSC Open File 776, 1981. (Alternately, BC MEMPR Open File BC RGS-5).

Barker, G.E. and Bysouth, G.D., March 29, 1988, Geochemical Soil survey Report on the Duck 1 Claim Group, March 29, 1988, (Assessment Report 17254).

Barker, G.E. and Bysouth, G.D., VLF - EM16 Electromagnetic Survey on the Duck 2 Claim Group, May 13 1988. (Assessment Report 17426).

Barker, G.E. and Bysouth, G.D., Diamond Drill Report on the Duck 1 Claim Group. January 20, 1989. (Assessment Report 18298).

Barker, G.E., Geochemical Soil Survey on the Duck 2 Claim Group, April 10, 1989. (Assessment Report 18794).

Barnett, C.T and Kowalczyk, P.L. Airborne Electromagnetics and Airborne Gravity in the QUEST Project Area, Williams Lake to MacKenzie, British Columbia (parts of NTS 093A,B,G,H,J,K,N,O; 094C,D), Geoscience BC Report 2008-1.

Bowman, A., Report on the Geology of the Mining District of Cariboo, British Columbia, in Geological and Natural History Survey of Canada Reports and Maps of Investigations and Surveys, 1887-1888; Selwyn, A R C; Geological Survey of Canada, Annual Report vol. 3, pt. 1, 1889; pages 1C-49C 5 sheets, including a Map of the Cariboo Mining District, GSC Map 278, (1889).

Brown, A.S., Geology of the Cariboo River Area, British Columbia, BC Department of Mines and Petroleum Resources, Bulletin No. 47, 1963.

Ferri, F., Geology of the Frank Creek - Cariboo Lake Area, Central British Columbia, (93A/11, 14), B.C. Ministry of Energy and Mines, Open File 2001-11, 1:25,000 scale map.

Ferri, F., Geological Setting of the Frank Creek Massive Sulphide Occurrence near Cariboo Lake, EastCentral British Columbia (93A/11, 14), in Geological Fieldwork 2000, B.C. Ministry of Energy and Mines, Paper 2001-1.

Ferri, F., Hőy, T., and Friedman, R.M., Description, U-Pb Age and Tectonic Setting of the Quesnel Lake Gneiss, East-Central British Columbia, in Geological Fieldwork 1998, B.C. Ministry of Energy and Mines, Paper 1999-1.

Ferri, F., and O'Brien, B.H., Preliminary Geology of the Cariboo Lake Area, Central British Columbia (093A/11, 12, 13 and 14), in Geological Fieldwork 2001, B.C. Ministry of Energy and Mines, Paper 2002-1.

Ferri, F., and O'Brien, B.H., Geology of the Cariboo Lake Area, Central British Columbia (093A/11, 12, 13 and 14), B.C. Ministry of Energy and Mines, Open File 2003-1.

Ferri, F., and O'Brien, B.H., Geology and Massive Sulphide Potential of the Barkerville Terrane, Cariboo Lake Area, British Columbia, BC Geological Survey Branch, Cordillerran Roundup Poster No. 8, Information Circular 2002-3. http://www.empr.gov.bc.ca/DL/GSBPubs/InfoCirc/IC2002-3/08-Ferri Barkerville.pdf

Ferri, F. \& Schiarizza, P., Re-interpretation of the Snowshoe Group stratigraphy across a south-west verging nappe structure and its implications for regional correlations within the Kootenay terrane in Geological Association of Canada GAC Special Paper 45, 2006.

Geological Survey of Canada, Likely Survey, 2009. An airborne geophysical survey in 2008-2009 covering a $30 \mathrm{~km} \times 150 \mathrm{~km}$ area oriented NW-SE between the latitudes of Quesnel and Williams Lake. A series of 1:50,000 scale magnetic and gamma-ray spectrometric maps, published as GSC Open Files 6157 to 6166.

Geological Survey of Canada, Cariboo Lake Survey, 2009. A detailed airborne geophysical survey over the central portion of the Likely survey. The flight lines were 200 m apart and oriented NE-SW as before. A series of 1:20,000 scale magnetic and electromagnetic maps published as GSC Open Files 6232 to 6252.

Hőy, T. and Ferri, F., Stratabound Base Metal Deposits of the Barkerville Subterrane, Central British Columbia (093A/NW), , in Geological Fieldwork 1997, B.C. Ministry of Energy and Mines, Paper 1998-1.

Lane, B. and MacDonald K., Volcanogenic Massive Sulphide Potential in the Slide Mountain and Barkerville Terranes, Cariboo Mountains, in BC Mines Branch, Exploration and Mining in British Columbia - 1999, pp 65-77.

Levson, V.M. and Giles, T.R., Geology of Tertiary and Quaternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A, B, G, H), BC Geological Survey Branch, Bulletin 89.

Logan, J.M. and Moynihan, D.P., Geology and Mineral Occurrences in the Quesnel River Map Area, central British Columbia (NTS 093B/16), in Geological Fieldwork 2008, B.C. Ministry of Energy and Mines, Paper 2009-1.

Logan, J.M. et. al., Bedrock Geology of the QUEST Map Area, central British Columbia, BCGS Map 20101, GBC Report 2010-5, GSC Open File 6476.

McKinley, S. D., (2004), Technical Report on the Cariboo Properties of Barker Minerals Ltd. (Including The Frank Creek and Sellers Creek Road Massive Sulphide Projects, the Ace Massive Sulphide and Vein Gold Project, the Kangaroo Copper-Gold Project, the Rollie Creek Project and the Quesnel Platinum Project), July 19, 2004. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA), (and as Appendix VI in Assessment Report 27655 by Doyle, L.E. and Appendix I in Assessment Report 28248 by Doyle, L.E.).

Payne, J.G. and Perry, B.J., Qualification Report on Exploration of the Barker Minerals Ltd. Property, including the Frank Creek, Ace and Sellers Creek Road VMS Projects and the Quesnel Platinum Project, October 25, 2001. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA).

Perry, B.J., Report on Exploration of the Barker Minerals Ltd. Property, including the Frank Creek and Sellars Creek Road VMS Projects, the Ace VMS and Vein Gold Project and the Quesnel Platinum Project; Cariboo Mining Division, British Columbia, Canada - NTS 93A and 93 B, October 21, 2002. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA), (and as Appendix 5 in Assessment Report 27125 by Doyle, L.E.).

QUEST Survey: regarding numerous reports and maps see www.geosciencebc.com/s/Quest.asp.

Schiarizza, P., Bedrock Geology and Lode Gold Occurrences, Cariboo
Lake to Wells, British Columbia (Parts of NTS 93A/13, 14; 93H/3,4), BC Ministry of Energy, Mines, and Petroleum Resources, Open File 2004-12.

Schiarizza, P. and Ferri, F., Barkerville Terrane, Cariboo Lake to Wells: A New Look at Stratigraphy, Structure and Regional Correlations of the Snowshoe Group, in Geological Fieldwork 2002, B.C. MEMPR, Paper 2003-1.

Struik, L.C., Bedrock Geology of Quesnel Lake (93A10) and Part of Mitchell Lake (93A15) Map Areas, Central British Columbia, GSC Open file 962, 1983.

Struik, L.C., Structural Geology of the Cariboo Gold Mining District, East Central British Columbia, GSC Memoir 421, 1988.

Turna, R., Technical Report on Frank Creek Property, SCR and Peacock (Rollie Creek) Prospects, Cariboo Lake Area, Cariboo Mining Division, British Columbia, May 29, 2008. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA).

Turna, R. Geological, Geochemical, Prospecting and Physical Work Assessment Report on the Frank Creek, Black Bear East and Peripheral Properties. February 18, 2015, Amended September 7, 2015. (Assessment Report 35157).

Turna, R., Geological, Geochemical, Prospecting and Physical Work Assessment Report on the Frank Creek, Black Bear East and Peripheral Properties. February 18, 2015, Amended September 7, 2015. (Assessment Report 35157).

Turna, R., Geochemical Assessment Report on the Ace, Mag and Rollie Creek Properties, July. 31, 2015 Amended Dec. 5, 19, 2015 (Assessment Report 35468).

Turna, R., Geological and Geochemical Work Assessment Report on the Ace, Frank Creek, Rollie \& Black Bear East Properties, November 30, 2015, Amended April 12, 2016 (Assessment Report 35717).

Turna, R., Geochemical Assessment Report on the Main Group comprised of the Two Mile Creek, Ace, Black Bear East and Peripheral Properties, March 15, 2016.

Turna, R., Geochemical Assessment Report on the Rollie Property, Assessment Report dated May 15, 2016.

Additional References:

Barker Minerals Ltd. website http://www.barkerminerals.com/s/Background.asp
BC Ministry of Energy Mines and Petroleum Resources, Mineral Deposit Models:

Deposit Type G06 - Noranda/Kuroko Massive Sulphide Cu-Pb-Zn
Deposit Type I01-Au-quartz veins

BC Ministry of Energy Mines and Petroleum Resources, Minfile Mineral Inventory:

Minfile No. 093A 163 (Unlikely)
http://minfile.gov.bc.ca/report.aspx?f=PDF\&r=Minfile Detail.rpt\&minfilno=093A++163

APPENDIX E

STATEMENT of AUTHOR'S QUALIFICATIONS

Statement of Author's Qualifications

I, Rein Turna, of the City of West Vancouver, British Columbia, hereby certify that:

1. I am Vice President of Exploration of Barker Minerals Ltd.
2. I am a graduate of the University of British Columbia with a B.Sc. in Geological Sciences granted in 1975.
3. I am a registered member of the Professional Engineers and Geoscientists of British Columbia.
4. I have worked as a geologist in British Columbia, Saskatchewan, Ontario, Yukon and Northwest Territories in Canada since 1975.
5. I carried out or supervised work described in this report.
R. Turna, P.Geo.

July 20, 2016

APPENDIX F

STATEMENT of EXPENDITURES

Barker Minerals Ltd.

Work was completed between October 15, 2015 and March 11, 2016
Work was done on claim \#'s 1038886 \& 1038887
Event \# 5595433
Rollie Creek - Frank Creek Properties - Geological - Office
Louis Doyle
Planning, managing \& interpretation
Room \& board

1	$\$ 600.00$	$\$$	600.00
1	$\$ 150.00$	$\$$	150.00
5	$\$ 600.00$	$\$$	$3,000.00$
5	$\$ 150.00$	$\$$	750.00
1	$\$ 350.00$	$\$$	350.00
1	$\$ 150.00$	$\$$	150.00
		$\$$	$\mathbf{5 , 0 0 0 . 0 0}$

Rollie Creek - Frank Creek Properties - Geochemical - Field

Louis Doyle

Rock sample collections
(C Rd. - 8400 Rd. target)
Rock sample collections (2 Mile)
Room \& board
Vehicle \& gas
Brian Hall
Rock sample collections
(C Rd. - 8400 Rd. target)
Rock sample collections (2 Mile)
Room \& board
Louis Doyle
Rock sample preparation \& descriptions
Rock sample preparation \& descriptions
Room \& board

Date	Days	Rate	Sub-total	
March 3, 2016	1	$\$ 600.00$	$\$$	600.00
March 4, 2016	1	$\$ 600.00$	$\$$	600.00
March 5, 2016	1	$\$ 600.00$	$\$$	600.00
March 6, 2016	1	$\$ 600.00$	$\$$	600.00
March 7, 2016	1	$\$ 600.00$	$\$$	600.00
	5	$\$ 150.00$	$\$$	750.00
	5	$\$ 150.00$	$\$$	750.00
	1	$\$ 500.00$	$\$$	500.00
	1	$\$ 500.00$	$\$$	500.00
	1	$\$ 500.00$	$\$$	500.00
March 3, 2016 4, 2016	1	$\$ 500.00$	$\$$	500.00
March 5, 2016	1	$\$ 500.00$	$\$$	500.00
March 6, 2016	5	$\$ 150.00$	$\$$	750.00
March 7, 2016				
	1	$\$ 600.00$	$\$$	600.00
	1	$\$ 600.00$	$\$$	600.00
March 8, 2016	2	$\$ 150.00$	$\$$	300.00

Barker Minerals Ltd.

Work was completed between September 28 and November 23, 2015
Work was done on claim \# 1038887
Event \# 5579853
Rollie Creek - Frank Creek Properties - Geochemical - Field (continued)
Brian Hall - XRF operator
XRF analysis

March 8, 2016	1	$\$ 500.00$	$\$$	500.00
March 9, 2016	1	$\$ 500.00$	$\$$	500.00
	2	$\$ 150.00$	$\$$	300.00
	7	$\$ 200.00$	$\$$	$1,400.00$
		Sub-total	$\$$	$\mathbf{1 1 , 9 5 0 . 0 0}$

Rollie Creek - Frank Creek Properties - Travel to/from
Louis Doyle

Travel from	1	$\$ 600.00$	$\$$	600.00
Room \& board	1	$\$ 150.00$	$\$$	150.00
Vehicle \& gas	1	$\$ 150.00$	$\$$	150.00
Brian Hall				
Travel from	1	$\$ 500.00$	$\$$	500.00
Room \& board	1	$\$ 150.00$	$\$$	150.00
Vehicle \& gas	1	$\$ 150.00$	$\$$	150.00
		Sub-total	$\$$	$\mathbf{1 , 7 0 0 . 0 0}$

Rollie Creek - Frank Creek Properties - Misc. expenditures
Safety equipment (MTC), exploration supplies \& equipment, communication devices \& quad
Exploration supplies \& equipment
MTC rental
7 \$ 250.00 \$ $1,750.00$
Communication devices

Rollie Creek - Frank Creek Properties Expenditure Summary

Geological Sub-total	$\$$	$5,000.00$
Geochemical Sub-total	$\$$	$11,950.00$
Travel to/from Sub-total	$\$$	$1,700.00$
Misc. Expenditures Sub-total	$\$$	$2,163.00$

APPENDIX G

ROCK SAMPLE DESCRIPTIONS AND COORDINATES

Table No. 1
Sample Coordinates and Descriptions

\longrightarrow| Po = pyrrhotite |
| :--- |
| $\mathrm{Py}=$ pyrite |
| $\mathrm{Cpy}=$ chalcopyrite |
| $\mathrm{Y}, \mathrm{N}=\mathrm{Yes}$, No |

Cpy = chalcopyrite
Y,N = Yes, No

		Rollie - Two Mil	eek 20	ock Samp								
						Magnetic	Colour	Alteration	Minerals	Rock Type	Sample Type	
4627	2 mile-01	Fig. 11 / Rollie	Rock	605326	5844349	Y	Rusty	Y	Po/Py/Cpy	Mica schist	Float	
4628	2 mile-01a	Fig. 11 / Rollie	Rock	605326	5844349	Y	Rusty	Y	Po/Py/Cpy	Mica schist	Float	
4629	2 mile-01b	Fig. 11 / Rollie	Rock	605326	5844349	Y	Rusty	Y	Po/Py/Cpy	Mica schist	Float	
4630	2 mile-02	Fig. 11 / Rollie	Rock	605310	5844350	Y	Rusty	Y	Po/Py/Cpy	Mica schist	Float	
4631	2 mile-02a	Fig. 11 / Rollie	Rock	605310	5844350	Y	Rusty	Y	Po/Py/Cpy	Mica schist	Float	
4632	2 mile-02b	Fig. 11 / Rollie	Rock	605310	5844350	Y	Rusty	Y	Po/Py/Cpy	Mica schist	Float	
4633	2 mile-03	Fig. 11 / Rollie	Rock	605285	5844350	Y	Rusty	Y	Po/Py/Cpy	Quartz schist	Outcrop	
4634	2 mile-03a	Fig. 11 / Rollie	Rock	605285	5844350	Y	Rusty	Y	Po/Py/Cpy	Quartz schist	Outcrop	
4635	2 mile-03b	Fig. 11 / Rollie	Rock	605285	5844350	Y	Rusty	Y	Po/Py/Cpy	Quartz schist	Outcrop	
4636	2 mile-04	Fig. 11 / Rollie	Rock	605271	5844351	Y	Rusty	Y	Po/Py/Cpy	Quartz schist	Outcrop	
4637	2 mile-04a	Fig. 11 / Rollie	Rock	605271	5844351	Y	Rusty	Y	Po/Py/Cpy	Quartz schist	Outcrop	
4638	2 mile-04b	Fig. 11 / Rollie	Rock	605271	5844351	Y	Rusty	Y	Po/Py/Cpy	Quartz schist	Outcrop	
4639	2 mile-05	Fig. 11 / Rollie	Rock	605256	5844347	N	Rusty	N	N	Quartz	Outcrop	
4640	2 mile-05a	Fig. 11 / Rollie	Rock	605256	5844347	N	Rusty	N	N	Quartz	Outcrop	
4641	2 mile-05b	Fig. 11 / Rollie	Rock	605256	5844347	N	Rusty	N	N	Quartz	Outcrop	
4642	2 mile-06	Fig. 11 / Rollie	Rock	605246	5844341	N	Rusty	N	N	Quartz	Outcrop	
4643	2 mile-06a	Fig. 11 / Rollie	Rock	605246	5844341	N	Rusty	N	N	Quartz	Outcrop	
4644	2 mile-06b	Fig. 11 / Rollie	Rock	605246	5844341	N	Rusty	N	Po/Py	Quartz	Outcrop	
4645	2 mile-07	Fig. 11 / Rollie	Rock	605230	5844328	Y	Rusty	N	Po/Py	Argillite	Outcrop	
4646	2 mile-07a	Fig. 11 / Rollie	Rock	605230	5844328	Y	Rusty	N	Po/Py	Argillite	Outcrop	
4647	2 mile-07b	Fig. 11 / Rollie	Rock	605230	5844328	Y	Rusty	N	Po/Py	Argillite	Outcrop	
4648	2 mile-08	Fig. 11 / Rollie	Rock	605213	5844324	Y	Rusty	N	$\mathrm{Po} / \mathrm{Py}$	Argillite	Outcrop	
4649	2 mile-08a	Fig. 11 / Rollie	Rock	605213	5844324	Y	Rusty	N	Po/Py	Argillite	Outcrop	
4650	2 mile-08b	Fig. 11 / Rollie	Rock	605213	5844324	Y	Rusty	N	Po/Py	Argillite	Outcrop	
4651	2 mile-09	Fig. 11 / Rollie	Rock	605196	5844318	Y	Rusty	N	$\mathrm{Po} / \mathrm{Py}$	Argillite	Outcrop	
4652	2 mile-09a	Fig. 11 / Rollie	Rock	605196	5844318	Y	Rusty	N	$\mathrm{Po} / \mathrm{Py}$	Argillite	Outcrop	
4653	2 mile-09b	Fig. 11 / Rollie	Rock	605196	5844318	Y	Rusty	N	Po/Py	Argillite	Outcrop	
4654	2 mile-10	Fig. 11 / Rollie	Rock	605185	5844316	Y	Rusty	Oxidized	$\mathrm{Po} / \mathrm{Py}$	Schist	Outcrop	Rusty shell, blue inside
4655	2 mile-10a	Fig. 11 / Rollie	Rock	605185	5844316	Y	Rusty	Oxidized	Po/Py	Schist	Outcrop	Rusty shell, blue inside
4656	2 mile-10b	Fig. 11 / Rollie	Rock	605185	5844316	Y	Rusty	Oxidized	Po/Py	Schist	Outcrop	Rusty shell, blue inside
4657	2 mile-11	Fig. 11 / Rollie	Rock	605169	5844319	Y	Rusty	Oxidized	$\mathrm{Po} / \mathrm{Py}$	Schist	Outcrop	Rusty shell, blue inside
4658	2 mile-11a	Fig. 11 / Rollie	Rock	605169	5844319	Y	Rusty	Oxidized	Po/Py	Schist	Outcrop	Rusty shell, blue inside
4659	2 mile-11b	Fig. 11 / Rollie	Rock	605169	5844319	Y	Rusty	Oxidized	Po/Py	Schist	Outcrop	Rusty shell, blue inside
4660	2 mile-12	Fig. 11 / Rollie	Rock	605158	5844315	Y	Black	N	$\mathrm{Po} / \mathrm{Py}$	Argillite schist	Outcrop	
4661	2 mile-12a	Fig. 11 / Rollie	Rock	605158	5844315	Y	Black	N	Po/Py	Argillite schist	Outcrop	
4662	2 mile-12b	Fig. 11 / Rollie	Rock	605158	5844315	Y	Black	N	Po/Py	Argillite schist	Outcrop	
4663	2 mile-13	Fig. 11 / Rollie	Rock	605158	5844315	Y	Black	N	Po/Py	Argillite schist	Outcrop	
4664	2 mile-13a	Fig. 11 / Rollie	Rock	605158	5844315	Y	Black	N	$\mathrm{Po} / \mathrm{Py}$	Argillite schist	Outcrop	

Table No. 1
Sample Coordinates and Descriptions

XRF No.	Sample No.	Fig. No. / Area	Type	Easting	Northing	Sample	criptions					Comment
4665	2 mile-13a	Fig. 11 / Rollie	Rock	605158	5844315	Y	Black	N	Po/Py	Argillite schist	Outcrop	
4666	2 mile-14	Fig. 11 / Rollie	Rock	605113	5844304	Y	Black	N	$\mathrm{Po} / \mathrm{Py}$	Argillite schist	Outcrop	
4667	2 mile-14a	Fig. 11 / Rollie	Rock	605113	5844304	Y	Black	N	Po/Py	Argillite schist	Outcrop	
4668	2 mile-14b	Fig. 11 / Rollie	Rock	605113	5844304	Y	Black	N	Po/Py	Argillite schist	Outcrop	
4669	2 mile-15	Fig. 11 / Rollie	Rock	605106	5844299	N	Grey	N	N	Quartz schist	Outcrop	
4670	2 mile-15a	Fig. 11 / Rollie	Rock	605106	5844299	N	Grey	N	N	Quartz schist	Outcrop	
4671	2 mile-15b	Fig. 11 / Rollie	Rock	605106	5844299	N	Grey	N	N	Quartz schist	Outcrop	
4672	2 mile-16	Fig. 11 / Rollie	Rock	605095	5844293	N	Grey	N	N	Quartz schist	Outcrop	
4673	2 mile-16a	Fig. 11 / Rollie	Rock	605095	5844293	N	Grey	N	N	Quartz schist	Outcrop	
4674	2 mile-16b	Fig. 11 / Rollie	Rock	605095	5844293	N	Grey	N	N	Quartz schist	Outcrop	
4675	2 mile-17	Fig. 11 / Rollie	Rock	605082	5844303	N	Blue/green	N	N	Green mica	Float	
4676	2 mile-17a	Fig. 11 / Rollie	Rock	605082	5844303	N	Blue/green	N	N	Green mica	Float	
4677	2 mile-17b	Fig. 11 / Rollie	Rock	605082	5844303	N	Blue/green	N	N	Green mica	Float	
4678	2 mile-18	Fig. 11 / Rollie	Rock	605073	5844297	Y	Brown	N	Po	Mica schist	Float	
4679	2 mile-18a	Fig. 11 / Rollie	Rock	605073	5844297	Y	Brown	N	Po	Mica schist	Float	
4680	2 mile-18b	Fig. 11 / Rollie	Rock	605073	5844297	Y	Brown	N	Po	Mica schist	Float	
4681	2 mile-19	Fig. 11 / Rollie	Rock	605081	5844290	Y	Brown	Oxidized	Po	Mica schist	Float	
4682	2 mile-19a	Fig. 11 / Rollie	Rock	605081	5844290	Y	Brown	Oxidized	Po	Mica schist	Float	
4683	2 mile-19b	Fig. 11 / Rollie	Rock	605081	5844290	Y	Brown	Oxidized	Po	Mica schist	Float	
4684	2 mile-20	Fig. 11 / Rollie	Rock	605072	5844283	N	Brown	Oxidized	Py	Argillite schist	Outcrop	
4685	2 mile-20a	Fig. 11 / Rollie	Rock	605072	5844283	N	Brown	Oxidized	Py	Argillite schist	Outcrop	
4686	2 mile-20b	Fig. 11 / Rollie	Rock	605072	5844283	N	Brown	Oxidized	Py	Argillite schist	Outcrop	
4687	2 mile-21	Fig. 11 / Rollie	Rock	605063	5844277	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4688	2 mile-21a	Fig. 11 / Rollie	Rock	605063	5844277	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4689	2 mile-21b	Fig. 11 / Rollie	Rock	605063	5844277	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4690	2 mile-22	Fig. 11 / Rollie	Rock	605052	5844267	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4691	2 mile-22a	Fig. 11 / Rollie	Rock	605052	5844267	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4692	2 mile-22b	Fig. 11 / Rollie	Rock	605052	5844267	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4693	2 mile-23	Fig. 11 / Rollie	Rock	605017	5844276	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4694	2 mile-23a	Fig. 11 / Rollie	Rock	605017	5844276	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4695	2 mile-23b	Fig. 11 / Rollie	Rock	605017	5844276	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4696	2 mile-24	Fig. 11 / Rollie	Rock	605011	5844286	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4697	2 mile-24a	Fig. 11 / Rollie	Rock	605011	5844286	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4698	2 mile-24b	Fig. 11 / Rollie	Rock	605011	5844286	N	Greenish	Surface ox	Py	Schist, QV	Outcrop	
4699	2 mile-25	Fig. 11 / Rollie	Rock	604969	5844314	Y	Black	N	Po/Py	Black argillite	Outcrop	Falls
4700	2 mile-25a	Fig. 11 / Rollie	Rock	604969	5844314	Y	Black	N	Po/Py	Black argillite	Outcrop	Falls
4701	2 mile-25b	Fig. 11 / Rollie	Rock	604969	5844314	Y	Black	N	Po/Py	Black argillite	Outcrop	Falls
4702	2 mile-26	Fig. 11 / Rollie	Rock	604975	5844313	Y	Black	N	Po/Py	Black argillite	Outcrop	Falls
4703	2 mile-26a	Fig. 11 / Rollie	Rock	604975	5844313	Y	Black	N	Po/Py	Black argillite	Outcrop	Falls
4704	2 mile-26b	Fig. 11 / Rollie	Rock	604975	5844313	Y	Black	N	Po/Py	Black argillite	Outcrop	Falls
4705	2 mile-27	Fig. 11 / Rollie	Rock	605030	5844250	Y	Blue	N	Po/Py/Cpy	Schist	Outcrop	Blue schist with quartz veins (1st log jam)
4706	2 mile-27a	Fig. 11 / Rollie	Rock	605030	5844250	Y	Blue	N	Po/Py/Cpy	Schist	Outcrop	Blue schist with quartz veins (1st log jam)
4723	2 mile-27b	Fig. 11 / Rollie	Rock	605030	5844250	Y	Blue	N	Po/Py/Cpy	Schist	Outcrop	Blue schist with quartz veins (1st log jam)
4707	2 mile-28	Fig. 11 / Rollie	Rock	605016	5844253	Y	Blue	N	Po/Py/Cpy	Schist	Outcrop	Blue schist with quartz veins (1st log jam)
4708	2 mile-28a	Fig. 11 / Rollie	Rock	605016	5844253	Y	Blue	N	$\mathrm{Po} / \mathrm{Py} / \mathrm{Cpy}$	Schist	Outcrop	Blue schist with quartz veins (1st log jam)
4709	2 mile-28b	Fig. 11 / Rollie	Rock	605016	5844253	Y	White	N	Po/Py	Quartz schist	Outcrop	Falls

Table No. 1
Sample Coordinates and Descriptions

XRF No.	Sample No.	Fig. No. / Area	Type	Easting	Northing	Sample De	criptions					Comment
4710	2 mile-29	Fig. 11 / Rollie	Rock	604984	5844302	Y	White	N	Po/Py	Quartz schist	Outcrop	Falls
4711	2 mile-29a	Fig. 11 / Rollie	Rock	604984	5844302	Y	White	N	Po/Py	Quartz schist	Outcrop	Falls
4712	2 mile-29b	Fig. 11 / Rollie	Rock	604984	5844302	Y	White	N	$\mathrm{Po} / \mathrm{Py}$	Quartz schist	Outcrop	Falls
4713	2 mile-30	Fig. 11 / Rollie	Rock	604956	5844320	Y	White	N	Po/Py	Quartz schist	Outcrop	Falls
4714	2 mile-30a	Fig. 11 / Rollie	Rock	604956	5844320	Y	White	N	Po/Py	Quartz schist	Outcrop	Falls
4715	2 mile-30b	Fig. 11 / Rollie	Rock	604956	5844320	Y	White	N	Po/Py	Quartz schist	Outcrop	Falls
4716	2 mile-31	Fig. 11 / Rollie	Rock	604987	5844318	Y	Black	N	Po/Py	Argillite schist	Outcrop	Falls
4717	2 mile-31a	Fig. 11 / Rollie	Rock	604987	5844318	Y	Black	N	Po/Py	Argillite schist	Outcrop	Falls
4718	2 mile-31b	Fig. 11 / Rollie	Rock	604987	5844318	Y	Black	N	Po/Py	Argillite schist	Outcrop	Falls
4719	2 mile-32	Fig. 11 / Rollie	Rock	604980	5844326	N	Rusty brown	N	Po/Py	Quartz vein	Outcrop	Quartz vein at falls
4720	2 mile-32a	Fig. 11 / Rollie	Rock	604980	5844326	N	Rusty brown	N	Po/Py	Quartz vein	Outcrop	Quartz vein at falls
4721	2 mile-32b	Fig. 11 / Rollie	Rock	604980	5844326	N	Rusty brown	N	Po/Py	Quartz vein	Outcrop	Quartz vein at falls
4722	2 mile-33	Fig. 11 / Rollie	Rock	604949	5844325	N	Bluish	Sericite	Po/Py	Quartz vein	Outcrop	Falls
4724	2 mile-33a	Fig. 11 / Rollie	Rock	604949	5844325	N	Bluish	Sericite	Po/Py	Quartz vein	Outcrop	Falls
4725	2 mile-33b	Fig. 11 / Rollie	Rock	604949	5844325	N	Bluish	Sericite	Po/Py	Quartz vein	Outcrop	Falls
4726	2 mile-34	Fig. 11 / Rollie	Rock	604996	5844296	N	White	Sericite	N	Siltstone	Outcrop	Below falls
4727	2 mile-34a	Fig. 11 / Rollie	Rock	604996	5844296	N	White	Sericite	N	Siltstone	Outcrop	Below falls
4728	2 mile-34b	Fig. 11 / Rollie	Rock	604996	5844296	N	White	Sericite	N	Siltstone	Outcrop	Below falls
4729	2 mile-35	Fig. 11 / Rollie	Rock	605006	5844305	N	White	Sericite	N	Siltstone	Outcrop	Below falls
4730	2 mile-35a	Fig. 11 / Rollie	Rock	605006	5844305	N	White	Sericite	N	Siltstone	Outcrop	Below falls
4731	2 mile-35b	Fig. 11 / Rollie	Rock	605006	5844305	N	White	Sericite	N	Siltstone	Outcrop	Below falls
Frank Creek 2016 Rock Sampling												
						Magnetic	Colour	Alteration	Minerals	Rock Type	Sample Type	
4732	C84-01	Fig. 12 / Frank	Rock	607404	5844587	N	Bluish	N	N	Bluish quartz	Outcrop	Similar to quartzite
4733	C84-01a	Fig. 12 / Frank	Rock	607404	5844587	N	Bluish	N	N	Bluish quartz	Outcrop	Similar to quartzite
4734	C84-01b	Fig. 12 / Frank	Rock	607404	5844587	N	Bluish	N	N	Bluish quartz	Outcrop	Similar to quartzite
4735	C84-02	Fig. 12 / Frank	Rock	607424	5844561	N	Bluish	N	N	Bluish quartz	Outcrop	Similar to quartzite
4736	C84-02a	Fig. 12 / Frank	Rock	607424	5844561	N	Bluish	N	N	Bluish quartz	Outcrop	Similar to quartzite
4737	C84-02b	Fig. 12 / Frank	Rock	607424	5844561	N	Bluish	N	N	Bluish quartz	Outcrop	Similar to quartzite
4738	C84-03	Fig. 12 / Frank	Rock	607442	5844543	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4739	C84-03a	Fig. 12 / Frank	Rock	607442	5844543	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4740	C84-03b	Fig. 12 / Frank	Rock	607442	5844543	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4741	C84-04	Fig. 12 / Frank	Rock	607463	5844532	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4742	C84-04a	Fig. 12 / Frank	Rock	607463	5844532	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4743	C84-04b	Fig. 12 / Frank	Rock	607463	5844532	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4744	C84-05	Fig. 12 / Frank	Rock	607481	5844515	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4745	C84-05a	Fig. 12 / Frank	Rock	607481	5844515	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4746	C84-05b	Fig. 12 / Frank	Rock	607481	5844515	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4747	C84-06	Fig. 12 / Frank	Rock	607501	5844487	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4748	C84-06a	Fig. 12 / Frank	Rock	607501	5844487	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4749	C84-06b	Fig. 12 / Frank	Rock	607501	5844487	N	Grey	N	Py	Argillite	Outcrop	Similar to quartzite
4750	C84-07	Fig. 12 / Frank	Rock	607517	5844454	N	Blue/grey	N	Py	Quartz vein	Outcrop	Quartz vein in argillite, higher in creek
4751	C84-07a	Fig. 12 / Frank	Rock	607517	5844454	N	Blue/grey	N	Py	Quartz vein	Outcrop	Quartz vein in argillite, higher in creek
4752	C84-07b	Fig. 12 / Frank	Rock	607517	5844454	N	Blue/grey	N	Py	Quartz vein	Outcrop	Quartz vein in argillite, higher in creek

XRF No.	Sample No.	Fig. No. / Area	Type	Easting	Northing	Sample	iptions					Comment
4753	C84-08	Fig. 12 / Frank	Rock	607530	5844431	N	Blue/grey	N	Py	Quartz vein	Outcrop	Quartz vein in argillite, higher in creek
4754	C84-08a	Fig. 12 / Frank	Rock	607530	5844431	N	Blue/grey	N	Py	Quartz vein	Outcrop	Quartz vein in argillite, higher in creek
4755	C84-08b	Fig. 12 / Frank	Rock	607530	5844431	N	Blue/grey	N	Py	Quartz vein	Outcrop	Quartz vein in argillite, higher in creek

APPENDIX H

Rollie Creek \& Frank Creek Property Maps and XRF Data Tables

Table No. 2
Rollie Area (Two Mile Creek) - XRF Sampling Results

o.	Sample No.	Fig. No./Area	Type	Units	Mo	Zr	Sr	U	Rb	Th	Pb	Se	As	Hg	Au	Zn	W	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd	Ag	Nb	Y		Bi Cr	Cr	V	Ti
4722	2 mile-33	Fig. 11 / Rollie Area	rock	ppm	<LOD:	<LOD		$5<$ LOD	4	18	<LOD	< LOD :	15	<LOD	< LOD	43	110	211	< LOD :	< LOD	96468	<LOD	< LOD	< LOD	< LOD	< LOD		4		< LOD	LO		< LOD
4724	2 mile-33a	Fig. 11 / Rollie Area	ck	ppm	<LOD:	66		4 <LOD	2	14	< LOD	<LOD :	LOD :	< LOD	< LOD	54	< LOD	< LOD	< LOD	<LOD	39156	< LOD	: < LOD		-	< LOD <	< LOD	LOD	OD				
4725	2 mile-33b	Fig. 11 / Rollie Area	rock	ppm	<LOD	OD:		12		OD	393	22	OD	LOD	< LOD	41	LOD	344	219	LOD	216193	<LOD	:<LOD	< LOD	< LOD	< LOD	LOD		5	$93<$	< LOD	LOD	OD
4726	2 mile-34	Fig. 11 / Rollie Area	rock	ppm	<LOD	78		55 <LOD:		OD	LOD	<LOD		LOD	< LOD	121	LOD	55		LOD	97991	LOD	< LOD	<LOD	< LOD	LOD				< LOD <	< LOD	< LOD	LOD
4727	2 mile-34a	Fig. 11 / Rollie Area	rock	ppm	<LOD:	74		8 < LOD:		LOD	LOD	D		< LOD	D	70	< LOD	33	< LOD :	669	48	LOD	: < LOD		< LOD	OD			OD $<$	< LOD <	< LOD	< LOD	LOD
4728	2 mile-34b	Fig. 11 / Rollie Area	rock	ppm	<LOD	93		< LOD :	OD	LOD	LOD	<LOD		< LOD	< LOD	176	<LOD	< LOD		< LOD	1166	LOD	: < LOD	< LOD	< LOD	LOD		4		< LOD <	< LOD	LOD	< LOD
4729	2 mile-35	Fig. 11 / Rollie Area	rock	ppm	15	22		64 < LOD:	7	26	115	LOD		< LOD	LOD	96	LOD	1603		LOD:	1622	LOD	< LOD	< LOD	< LOD	LOD		1		< LOD	< LO	LO	LOD
4730	2 mile-35a	Fig. 11 / Rollie Area	rock	ppm	10	22		9 < LOD:	6	18	263	<LOD		LOD	LOD	414	LOD	694		LOD	1758	LOD	<	<	< LOD	LOD		8		<	< LOD	< LO	LOD
4731	2 mile-35b	Fig. 11 / Rollie Area	rock	ppm	11	26	46	610		< LOD		< LOD		<	< LOD	373	LOD	471	470	<LOD	1922	D	:<LOD	< LOD	< LOD	< LOD		9		< LOD <	< LOD	< LOD	LOD

In all cases <LOD means below level of detection

Table No. 3
Frank Area - XRF Sampling Results

XRF No.	Sample No.	Fig. No./Area	Type	Units	Mo	Zr	Sr	U	Rb	Th	Pb	Se	As	Hg	Au	Zn	W	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd	Ag	Nb	Y	Bi	Cr	V	Ti
4732	C84-01	Fig. 12 / Frank	rock	ppm	11	78	170	LOD:	26	34	LOD	< LOD		LOD :	<LOD	91	< LOD	98	<LOD	< LOD	67889	< LOD :	43	3	38 LOD	< LOD	23		2 <LOD	< LOD	LOD	LOD
4733	C84-01a	Fig. 12 / Frank	rock	ppm	9	99	128	10	25	22	LOD	< LOD	99	LOD :	<LOD	190	LOD	41	LOD	<LOD	666	LOD :		3 <	- LOD	LOD	28		$2<$ LOD	< LOD	< LOD	LOD.
4734	C84-01b	Fig. 12 / Frank	rock	ppm	12	93	155	OD:	32		LOD	< LOD	200	LOD	< LOD	129	LOD	140	LOD	< LOD	67551	LOD		32	D < LOD	<LOD	26		$2<$	< LOD	< LOD	OD
4735	C84-02	Fig. 12 / Frank	rock	ppm	15	66	176	OD:	22		LOD	< LOD	68	LOD	<LOD	84	< LOD	72	<LOD	<LOD	368	LOD		2 <	D < LOD	LOD	20		$3<$	LOD	< LOD	LOD.
4736	C84-02a	Fig. 12 / Frank	rock	ppm	12	86	135	10	23		LOD	< LOD		LOD	LOD	120	LOD	< LOD	LOD	< LOD	6545	OD		5 < LO	D < LOD	< LOD	31		2 <LOD	< LOD	< LOD	OD
4737	C84-02b	Fig. 12 / Frank	reck	ppm	9	76	175	12	26	20	LOD	< LOD	17	LOD	<LOD	109	<LOD	71	<LOD	< LOD	654	OD	51	51	$1<$ L	LOD			2 <LO	< LOD	<LOD	OD
4738	C84-03	Fig. 12 / Frank	rock	ppm	10	137		OD:	53	37	< LOD	< LOD	15	LOD	< LOD	132	< LOD	410	< LOD	OD	5058	LOD		7 < LO	- LOD	LOD			$3<$ L	LO	LOD	OD
4739	C84-03a	Fig. 12 / Frank	rock	ppm	12	86		OD:	48	26	LOD	< LOD	LOD	LOD	< LOD	102	< LOD	< LOD	<LOD	LOD	1523	LOD :	< LOD	D <	- < Lo	LOD			- L	< LOD	< LOD	OD
4740	C84-03b	Fig. 12 / Frank	rock	ppm	<LOD	45		OD:		D	LOD	< LOD	LOD	LOD	<LOD	115	<LOD	109	LOD	<LOD	19967		< LOD	-	- LO	< LOD			< LOD	< LOD	< LOD	OD
4741	C84-04	Fig. 12 / Frank	rock	ppm	<LOD	88		LOD:	37	LOD:	<LOD	< LOD	13	LOD	<LOD	161	LOD	10	LOD	<LOD	381	LOD	< LOD	<	- LOD	< LOD			$2<$	< LOD	< LOD	OD
4742	C84-04a	Fig. 12 / Frank	rock	ppm	<LOD	70	163	LOD:		LOD:	<LOD :	< LOD	28	LOD	<LOD	271	< LOD	359	<LOD	<LOD	6369	LOD	< LOD	-	D < LOD	< LOD			$2<$ L	LOD	LOD	LOD.
4743	C84-04b	Fig. 12 / Frank	rock	ppm	<LOD	101		OD:	40		LOD	< LOD	LOD	<LOD	<LOD	125	<LOD	57	< LOD	< LOD	3290	LOD:	< LOD	- LO	D < LOD	< LOD			$2<$ Lo	LOD	LOD	LOD.
4744	C84-05	Fig. 12 / Frank	rock	ppm	<LOD:	66	63	OD:	32		LOD	< LOD	37	OD	< LOD	779	LOD	532	OD	< LOD	7106	LOD	<LOD	- LOD	D < LOD	< LOD			D < L	< LOD	< LOD	OD
4745	C84-05a	Fig. 12 / Frank	rock	ppm	<LOD	165	83	14	64		<LOD	< LOD	15	LOD	< LOD	137	LOD	296	LOD	< LOD	5961	LOD	< LOD	D <	- LOD	<LOD	11		$3<$	< LOD	< LOD	< LOD
4746	C84-05b	Fig. 12 / Frank	rock	ppm	<LOD	122		OD:		OD	LOD	< LOD	LOD	LOD	LOD	101	<LOD	392	LOD	<LOD	4457	LOD	<LOD	D <	D < LO	< LOD			$2<$ L	< LOD	< LOD	LOD
4747	C84-06	Fig. 12 / Frank	roc	ppm	<LOD	111		OD:		OD :	<LOD	< LOD		< LOD	<LOD	15	LOD	191	LOD	<LOD	513	<LOD :	< LOD	- LOD	D < LOD	< LOD			$2<$ L	< LOD	LO	LOD
4748	C84-06a	Fig. 12 / Frank	ck	ppm	<LOD	202	24	10	94	16	LOD	< LOD	LOD	< LOD	<LOD	210	< LOD	243	< LOD	< LOD	52465	1410	<LOD	- LO	- LO	< LOD			$5<$	< LOD	< LOD	LOD
4749	C84-06b	Fig. 12 / Frank	rock	ppm	<LOD	89		OD:	34	21		<LOD		LOD	< LOD	184	< LOD	34	< LOD	< LOD	6355	< LOD	< LOD	-	- LOD	< LOD		< L	D < L	< LOD	< LOD	OD
4750	C84-07	Fig. 12 / Frank	rock	ppm	6	18		OD:	4	14	27	42		LOD	<LOD	169	<LOD	1397	< LOD	<LOD	115966	< LOD :	< LOD	-	- LO	< LOD			- LOD	LO	LO	LOD
4751	C84-07a	Fig. 12 / Frank	rock	ppm	<LOD	9		LOD:		<LOD :	< LOD :	< LOD	25		<LOD	53	< LOD	123	< LOD	< LOD	18893		< LOD	- LOD	- LOD	< LOD	< LOD	< L	- < LO	LOD	LOD	LOD
4752	C84-07b	Fig. 12 / Frank	rock	ppm	4	4		< LOD:	LOD:		<LOD :	10	277	<LOD	<LOD	50	<LOD	86	<LOD	< LOD	28815		< LOD	- LOD	- LOD	< LOD		L	- LOD	< LOD	< LOD	LOD
4753	C84-08	Fig. 12 / Frank	rock	ppm	<LOD	70	186	LOD:	18		<LOD :	< LOD		LOD	<LOD	115	<LOD	116	<LOD	<LOD	3464	< LOD	< LOD	-	- LOD	LOD	16		$2<$ LO	< LOD	< LOD	< LOD
4754	C84-08a	Fig. 12 / Frank	rock	ppm	<LOD	77		<LOD		<LOD	<LOD	< LOD		LOD	<LOD		< LOD	61	< LOD	< LOD	45280	<LOD :	< LOD	- LOD	D < LOD	< LOD		<	< LOD	LOD	LO	LOD.
4755	C84-08b	Fig. 12 / Frank	rock	ppm	<LOD:	209	75	10	58	18		< LOD	174	< LOD :	< LOD	253	< LOD	169		< LOD	101917	< LOD :	< LOD	- LO	- LOD	< LOD	48		$3<$ LOD	< LOD	< LOD	LOD

[^0]
[^0]: In all cases <LOD means below level of detection

