REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 34937, 34339, 33874, 32855, 29479, 28728,

28201, 27624, 23740, 20518, 17899, 16456, 10221, 10220, 07677, 06936, 06863, 06543, 06498

Ministry of Energy and Mines BC Geological Survey	Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: Diamond Drilling, Geophysics,	, Mapping, Rock Sampling TOTAL COST : 591,265.99
AUTHOR(S): M. Seabrook, D.L. Pighin	SIGNATURE(S):
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-5-758	YEAR OF WORK: 2016
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5619102 / 2016-Sep-19
PROPERTY NAME: Vine, Zinger, Eddy	
CLAIM NAME(S) (on which the work was done): 506144, 506145, 506	146, 506147, 506156, 938675, 506148, 506091, 506092, 506089
506090, 505883, 505884, 380413, 506173, 380411, 506174, 50	06176, 380412, 506175, 938676, 544570, 544571, 544572,
COMMODITIES SOUGHT: Lead, Zinc, Silver, Gold	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 082GSW050	
MINING DIVISION: Fort Steele	NTS/BCGS: 082G/5
LATITUDE: <u>49</u> ° <u>25</u> ' <u>18N</u> " LONGITUDE: <u>-115</u>	• <u>49</u> <u>'40W</u> " (at centre of work)
OWNER(S):	
1) FJA Resources Inc.	_ 2)
MAILING ADDRESS: 5600 - 100 King Street West	
Toronto, Ontario, M5X 1C9	
OPERATOR(S) [who paid for the work]: 1) PJX Resources Inc.	2)

MAILING ADDRESS:

5600 - 100 King Street West

Toronto, Ontario, M5X 1C9

PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude): Aldridge, Purcell Supergroup, SEDEX, Proterozoic, Moyie Fault, Quartzite, Granofels, Strataform, Lead, Zinc, Galena, Sphalerite

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)	
GEOLOGICAL (scale, area)				
Ground, mapping 672ha		544570, 544571, 544572, and others	11,680.00	
Photo interpretation			_	
GEOPHYSICAL (line-kilometres)				
Ground		E06001 E06175 and others	nort of total	
Magnetic 243 stations and		500091, 500175 and others	part of total	
Electromagnetic 7 Sourial	igs		part or total	
Induced Polarization				
Seismic			total 94 605 90	
Other <u>oo gravity stations</u>			10121 04,005.09	
GEOCHEMICAL (number of samples analysed for) Soil				
Silt				
Rock 32 samples		544570, 544571, 544572, and others	960.00	
Other 82 core samples			2,050.00	
DRILLING (total metres; number of holes, size)				
Core 2,262.91m		506147, 506174 and others	432,468.65	
Non-core				
RELATED TECHNICAL				
Sampling/assaying				
Petrographic				
Mineralographic				
Metallurgic				
PROSPECTING (scale, area)				
PREPARATORY / PHYSICAL				
Line/grid (kilometres)				
Topographic/Photogrammetric (scale, area)				
Legal surveys (scale, area)				
Road, local access (kilometres)/t	rail			
Trench (metres)				
Underground dev. (metres)				
Other				
		TOTAL COST:	531,764.54	

Diamond Drilling and Geophysics on the Vine Property

and

Geological Mapping and Chip Sampling on the Zinger and Eddy Properties Southeastern British Columbia

Mineral Tenure: 380410 *et al*.

NTS map sheet 082G 1:20,000 trim map sheets 082G031, 082G032, 082G041, 082G042, Centered at UTM NAD83, 585000E, 5475000N -115°49"40"W, 49°25'18"N

Fort Steele Mining Division

By

Michael Seabrook, P.Geo., BSc. 6028 Lakeview Dr. SW, Calgary, AB, T3E 5S8

And

David L. Pighin, P.Geo. 301-8th Street S, Cranbrook, B.C., V1C 1P2

> Claim owner and operator: PJX Resources Inc. 5600 - 100 King Street West Toronto, Ontario M5X 1C9

> > January 15, 2017

Diamond Drilling and Geophysics on the Vine Property and Geological Mapping and Chip Sampling on the Zinger and Eddy Properties Southeastern British Columbia Mineral Tenure: 380410 *et al.*

Table of Contents

Part 1: Vine property

Introduction	4
Location, Access and Physiography	5
Exploration History	6
Claims	8
Regional Geology	8
Local Geology	10
Diamond Drilling	12
Introduction	12
Overview and Discussion of Drilling Results	14
Sampling of VA15-02 and VA15-04	17
Gravity, Magnetic and Electric Sounding Geophysics	17
Summary and Recommendations	18

Part 2: Zinger and Eddy property

Introduction	19
Location, Access and Physiography	19
Exploration History	19
Claims	23
Regional Geology	24
Local Geology	25
Geological Mapping	27
Chip Sampling	33
Introduction	33
Overview of Chip Sampling Results	33
Summary and Recommendations	34
References	34

Appendices

1.	Statement of Costs	39
2.	Statement of Qualifications (Michael Seabrook)	41
3.	Statement of Qualifications (David L. Pighin)	42
4.	Vine, Zinger and Eddy properties mineral claim list	43
5.	Diamond drill hole logs for VA15-16 to VA16-23	47
6.	Graphic logs for VA15-02 and VA15-04 with sample assay column	119
7.	Sample assay certificates for drill core samples	122
8.	Report on gravity, magnetic and electric sounding by Excel Geophysics Ltd	137
9.	Sample assay certificates for rock and chip samples	182
10.	Foldout Maps	215

List of Figures

1.	Regional map of PJX Resources Inc. Cranbrook properties	4
2.	Location map of the Vine Property with outline of the 2014-2015 drilling area	5
3.	Mineral claim map with outline of the Vine property	7
4.	Geological setting of the Vine property in the central Purcell Mountains	9
5.	Local geology map of the Vine property in the vicinity of the 2015-2016 drilling program.	11
6.	Section for diamond drill holes VA15-16 and VA15-17	12
7.	Diamond drill hole location map for 2015 – 2016 program	13
8.	Section for diamond drill hole VA15-18	14
9.	Section for diamond drill hole VA16-19 and 20	15
10.	Section for diamond drill hole VA16-21	15
11.	Section for diamond drill hole VA16-22	16
12.	Section for diamond drill hole VA16-23	17
13.	Claim outlines of the Zinger and Eddy Properties	23
14.	Geological setting of the Zinger property in the central Purcell Mountains	24
15.	Regional geology map of the Zinger and Eddy properties	26
16.	Zinger property with rock sample locations and occurrence description areas	28
17.	Location of rock samples and gold assays in ppb on the Gar and Leader areas	29
18.	Location of rock samples on the Ryder Creek area of the Eddy Property	32
19.	Chip sample and mapping of 14.5m exposure	33

Photos

1.	Fractures in a fresh cut of granodiorite showing green saussuritization	30
2.	High density fractures with carbonate weathering	30
3.	Coarse quartz, sericite, pyrite Dougdug vein	31
4.	Polymetallic and gold Leader vein	31
5.	Kink fold with high angle axial planer cleavage	31

Part 1: Vine Property

Introduction

In 2015 PJX Resources Inc. conducted exploration on the Vine, Zinger and Eddy properties, concluding the program in September of 2016. The Vine project is a continuation of previous efforts on the Vine property to evaluate geophysical anomalies and investigate geological targets. The Zinger and Eddy sections of this report discusses geological mapping to determine the stage of the exploration targets and devise strategies for select areas and a chip sampling program designed to identify a bedrock source for high concentrations of gold in proximal soil samples.

Vine, Zinger and Eddy properties, southeastern B.C.

Location, Access, and Physiography.

The Vine property is located 12km south by southwest of Cranbrook, due north of Moyie Lake. To access the property from Cranbrook, travel 20.1km south on Highway 3 (Crow's Nest Hwy). Turn left on Hidden Valley Rd. and travel 3km to enter the southern claim boundary. 4x4 is not necessary to access most of the property although several forest service roads and mine access roads are not suitable for two wheel drive vehicles and some of these roads are not drivable in the winter months without plowing.

Figure 2: Location map of the Vine Property with outline of the 2014-2015 drilling area.

The property is within the Purcell Mountain Range west of the Rocky Mountain Trench. Topographic relief throughout the property is low to moderate. The area of the 2015-2016 drilling lies on the hill west of Peavine Cr. and in in the valley bottom. The elevation ranges from 1705m along the southeast slope of the Hidden Valley to 930m at Moyie Lake.

The Hidden Valley is home to several agricultural land owners with livestock grazing land, and in several areas of topographically depressed regions, wetlands are present. The hillsides are highly forested with mostly spruce, pine and fir northern species and lesser larch. Bedrock exposure is sparse and thick glacial gravels cover large areas of the Vine property though excellent access offsets the relative lack of outcrops.

Exploration History

In the late 1970's massive sulphide boulders containing lead, zinc and silver were discovered on a forestry road in the Peavine Cr. drainage. Cominco Ltd. began exploring by airborne electromagnetic and magnetic survey in 1976 and identified anomalies that were believed to be bedrock conductors (Webber, 1977a), in the same year, four soil geochemical survey grids were sampled by Cominco Limited (Batchelor, 1977a,b,c; Webber, 1977b). The Vine Vein (Minfile #082GSW050) was drilled in 1977 from four diamond drill holes (Webber, 1978a) and by 1988 Cominco Ltd. had drilled 11 diamond drill holes and 2 percussion drill holes on the property for a total of 4658m (Webber, 1978b,c, 1979; Pighin, 1981, 1982; Hagen, 1987, 1988).

The vein portion of the Vine property was acquired by Kokanee Exploration Ltd. in 1989 who drilled an additional four holes into the vein (Stephenson, 1990). Before Consolidated Ramrod Gold Corp. acquired Kokanee Exploration a pre-NI43-101 compliant resource evaluation was conducted resulting in 264,000 tons proven at 5.2% Pb, 2.24% Zn, 1.96 oz/t Ag and 0.056oz/t Au. A probable resource calculation was 337,000 tons at 4.22% Pb, 2.51% Zn, 1.16oz/t Ag, and 0.05oz/t Au.

During the exploration of the Vine vein, drilling by Cominco and Kokanee Exploration intersected quartzites down section from the LMC (Lower/Middle Aldridge Contact) which are believed to be correlative with the Footwall Quartzite (FWQ) unit that lie beneath the Sullivan ore body. Kokanee Exploration drilled additional holes in 1990 and discovered a mineralized zone at the base of the FWQ (internal document). Drill hole KV90-41 intersected 3.5m of massive sulphides consisting of mainly pyrrhotite with lesser galena, sphalerite, and chalcopyrite. Sampling of the 3.5m zone indicated grades of 4.34% lead, 2.08% zinc, 42 g/t silver, 0.11 g/t gold and 0.41% copper. Though the footwall contact of the intersection was highly distorted, the upper contact was clearly bedding parallel. The bedded contact suggests that the mineralization at the base of the FWQ is potentially SEDEX in origin.

After acquiring Kokanee Exploration Ltd, Consolidated Ramrod intersected mineralization at the base of the FWQ approximately 200m down dip of the initial discovery by Kokanee. Drill hole KV94-57 intersected massive sulphides at the base of the FWQ; though the zone is thinner than that of KV90-41, and highly distorted by tectonism (Pighin, 1995). No recorded work was conducted between 1995 and 2000 in which time the claims lapsed and were staked by Supergroup Holdings Ltd.

Ruby Red Resources Inc., explored the Vine Property by ground EM surveys (Klewchuck, 2004, 2006a), soil geochemistry sampling (Klewchuck, 2007) and five short diamond drill holes (Klewchuck, 2006b) in an effort to discover cross-cutting mineralized structures on the Vine Vein known as "avenues". The results did not intersect cross-cutting avenues in the drilling, and in 2010 the property was acquired by PJX Resources Inc. from the renamed Ruby Red Resources Inc. now known as Spirit Gold Inc.

In 2011 PJX Resources Inc. began exploring the Vine property by airborne VTEM survey which suggested subsurface conductive bodies were present on the property (Klewchuck, 2012). All historical drill holes were consolidated into a digital database and ground geochemistry

sampling was conducted in the following year (Gallagher, 2012). These efforts were undertaken to explore both the Vine vein as well as the soil geochemical profile over the LMC (Sullivan Horizon) to the northeast of the Vine vein. In 2013, PJX Resources Inc. extended a 1978 drill hole an additional 403m to intersect the base of the Footwall Quartzite some 704m down hole (Anderson, 2013). The hole was successfully located and extended, however a normal fault displaced the prospective horizon off hole.

PJX Resources began a large program of gravity geophysical surveys to detect dense subsurface features (Jones, 2014). Geophysical interpretation of the gravity data suggested a single massive sulphide body at the base of the FWQ to the northeast of the Vine vein. Mineralization intersected, by former operators, approximately 750m below surface at the base of the FWQ lies along the western edge of a gravity anomaly referred to as the Eastern Gravity anomaly (Jones, *op. cit.*). The base of the FWQ is about 300 m stratigraphically below the LMC and was the focus of diamond drilling in 2014 to 2015. 15 holes were drilled in the 2014 – 2015 program that indentified the FWQ, and potential mineralization may be deformed in the hangingwall zone of the Moyie Fault (Seabrook and Pighin, 2016).

Figure 3: Mineral claim map with outlines of the Vine properties

Claims

The Vine property is an amalgamation of three adjoining properties known as the Vine, the Vine Extension, and the Vine East. The combined land package consists of 127mineral tenures, including 15 grandfathered two post claims, covering an area of 10,161ha. All of the mineral tenures on the Vine property are 100% owned and operated by PJX Resources Inc. and is contiguous with the company's adjacent Eddy and West Basin properties to the west and southwest respectively (Figure 1). The land position can be seen in Figure 3 and a complete list of claims for the Vine property can be found in the appendices (Appendix 4).

Regional Geology

The Vine property lies within the Purcell anticlinorium, a generally north plunging structure that is cored by Middle Proterozoic sedimentary and minor volcanic rocks of the Purcell Supergroup and flanked by unconformably overlying Late Proterozoic clastic and carbonate rocks of the Windermere Supergroup (Figure 4). These are generally overlain by either Cambrian or Devonian rocks, part of the North American "miogeoclinal" sequence.

The Purcell Supergroup, and correlative Belt Supergroup in the United States, comprises a syn-rift succession, the Aldridge Formation, and an overlying, generally shallow-water post-rift or rift fill sequence that includes the Creston and Kitchener Formations and younger Purcell rocks (Höy, 1993).

The exposed part of the Aldridge Formation comprises more than 3000 meters of mainly turbidite deposits and numerous, laterally extensive gabbroic sills referred to as the Moyie intrusions. The gabbroic sills are laterally extensive, typically up to several hundred meters thick and can be traced over hundreds of square kilometers. Locally, particularly in areas of growth faulting, they cut across stratigraphy as dykes. Some of the Moyie sills have contact features that suggest intrusion into wet and partially consolidated sediments (Höy, 1993).

The Purcell Supergroup succession is allochthonous, part of the Foreland Thrust and Fold Belt, the most eastern physiographic belt in the Canadian Cordillera (Monger *et al.*, 1982). Structures within the Purcell anticlinorium include east verging thrust faults, northeast trending, right lateral reverse faults, and open to tight folds (Höy, 1993). A complex array of normal faults that trend dominantly northward parallel to the Rocky Mountain trench cut the earlier thrust faults and associated folding.

The northeast-trending structures, including the St. Mary and Moyie faults, are within or parallel to a broad structural zone that cuts the Purcell anticlinorium, crosses the Rocky Mountain trench and extends northeastward across the Foreland thrust belt (Kanasewich, 1968). This zone is marked by a conspicuous change in the structural grain, from northerly north of the zone to northwesterly south of the zone (Figure 4), and by pronounced and fundamental changes in the thickness and facies of sedimentary rocks that range in age from Middle Proterozoic to early Paleozoic (Höy, 1993; Höy *et al.*, 2000).

The zone, referred to as the Kanasewich rift, and in the central part of the Purcell Mountains including the area of the Vine property, the Cranbrook Gold Belt, is also characterized by a variety of mineral deposits and occurrences of varying ages and tenor. These

include the Sullivan and Kootenay King sedex deposits, the St. Eugene and Vine lead-zinc-silver veins, and the placer gold deposits of the Wildhorse, Moyie and Perry Creek drainages. Farther west along this trend, lead-zinc replacement deposits occur in Cambrian carbonates in the southern Kootenay Arc, and gold-copper vein deposits characterize the Rossland camp in Quesnel terrane.

Figure 4: Geological setting of the Vine property in the central Purcell Mountains, southeastern British Columbia; modified from Höy *et al.* (2000).

Local Geology

The Vine property is underlain by clastic and carbonate sedimentary rocks of the Meso Proterozoic Purcell Supergroup. These sedimentary rocks are primarily of the Middle and Lower Aldridge Formation and gabbro intrusions known as Moyie Sills. The stratigraphic section is well understood for Middle and Lower Aldridge Formation rocks across the anticlinorium and excellent stratigraphic controls on the Vine property have been established. The section contains stratigraphic markers of interlayered siltstone that are continuous for kilometers known simply as marker units (Brown *et. al.*, 1993). Several marker units have been identified on the Vine property indicating a relative stratigraphic depth to the Middle and Lower Aldridge Formation contact (LMC) across the property.

The Aldirdge Formation is intruded by syntectonic "Moyie" gabbro sills and dikes ranging from a few meters to several hundred meters in width. Typically, the thicker sills maintain stratigraphic location for kilometers and are named for the stratigraphic marker proximal to the sill such as Sundown or Meadowbrook. On the east side of the Vine property, gabbro sills maintain orientation while sedimentary units of the Aldridge formation are offset indication that faulting has taken place prior to the emplacement of the gabbro intrusive. As evidence suggests that the sills are intruded into partially lithofied sediments (Höy, 1989), it is safe to assume that the faulting is syn-sedimentary. The Middle Aldridge Formation is primarily siltstones, silty quartzites and argillites with dolomitic intervals. Soft sediment deformation is mainly in the form of cross-beds, load casts and rip-up clasts particularly where turbidite disturbance has taken place. Trubidites are present throughout the Middle and Lower Aldridige Formation and represent variation in relief of the paleotopography resulting in underwater flows. Sedimentary units representing intense underwater flows are sometimes referred to as fragmentals, or sedimentary fragmentals, where sub-angular clasts of Aldridge Formation are hosted in a mud matrix. The sedimentary fragmentals are attributed to debris shedding off of paleo-escarpments; the surface expression of growth faults. Many fragmental units have been discovered on the Vine property suggesting that paleotopographic lows were present to capture debris fill material in Lower and Middle Aldridge time.

The Lower Aldridge Formation is predominantly thin bedded argillite and siltstone. A subunit within the Lower Aldridge is comprised of mainly siltstone and lesser quartzite. The subunit is thicker bedded and more massive compared to the rest of the Aldridge Formation with interbeds of argillite and siltstone demonstrating soft sediment deformation features attributed to more proximal turbidites. The subunit is known as the Footwall Quartzite and is located stratigraphically below the LMC at the Sullivan deposit, the Vine property, and a few other locations in the belt.

Mapping on the Vine property over several decades by D. Pighin and others has indicated that stratigraphy is gently warping over north to northeast plunging folds. The folds are cut by several northeast trending extensional faults, some of which are Proterozoic in age and many may be reactivations of Proterozoic faults in later tectonic events. The Vine Vein is a northeast trending structure and vein mineralogy suggests a Proterozoic age (Paiement *et. al.*, 2007). The Moyie fault is a broad right-lateral shear structure with several kilometers of throw. A prevalent northeast trending foliation is present distal to the fault, and within the immediate hanging-wall zone, an intense phyllitic foliation and alteration destroys the original texture of the sedimentary and intrusive rock units.

Figure 5: Local geology map of the Vine property in the vicinity of the 2015-2016 drilling program (geology by D.L. Pighin and A.S. Hagen). (see foldout for legend and details).

The Vine Vein is a complex structure of quartz carbonate veining, metal sulphides and gange minerals. Hosted within the shear structure are mafic intrusive rocks, brecciated fragments of wall rock and massive sulphide minerals; pyrrhotite, sphalerite, galena, arsenopyrite, chalcopyrite, pyrite and locally gold (Anderson, 2013). The Vein is exposed at surface and has been drilled to a depth of about 700m. The Vine Vein structure cuts stratigraphy from below the Footwall Quartzite to well into the Middle Aldridge Formation suggesting that the vein postdates those sedimentary intervals. The vein strikes southeasterly with a dip of about 70° to 80° to the southwest. The strike length of the vein has been defined to extend of 700m by drilling, 2km by trenching, and traced on surface by geological mapping, geophysics, and geochemistry for about 5km.

Thin 1mm to <5cm beds of massive sulphides occur throughout the Middle and Lower Aldridge Formation on the Vine property. The sulphide beds are mainly massive pyrrhotite or pyrite with lesser sphalerite and galena. The sulphide beds typically occur in groups and are electrically conductive within the bed but rarely conductive between beds. The massive sulphide beds are not viable deposits but suggest the presence of a paleo- anoxic sub-basin that allows for the accumulation of sulphides without oxidizing the metal minerals. The aforementioned conditions are just some of the requirements for the deposition of SEDEX mineralization such as the nearby Sullivan Deposit (Minfile #082FNE052). Strataform SEDEX deposits have been found in the Aldridge Formation at stratigraphic intervals other than the Sullivan Horizon at LMC, such as the Kootenay King (Minfile #082GNW009) and the nearby Fors (Minfile #082GSW035). Bedding parallel massive sulphides discovered at the base of the FWQ indicate that the paleo-basin represented by the stratigraphic horizon had suitable conditions for SEDEX deposition.

Diamond Drilling

Introduction

The 2015 - 2016 Vine drilling program began in November, less than two months after the completion of the previous program. The program adds eight drill holes to the eighteen holes drilled in previous years by PJX Resources Inc. and the more than sixty historical drill collars located on the property. The majority of drill holes in the 2015 - 2016 program were designed to test gravity anomalies indicated in previous exploration programs (Jones, 2014) with the exception of VA16-23 which tested a magnetic anomaly to a shallow depth.

Figure 6: Section for diamond drill holes VA15-16 and VA15-17.

The primary drill contractor was FB Drilling Ltd. located in Cranbrook, British Columbia, while Orofino Drilling Services Ltd. was contracted to drill VA16-20. The collars were located with a handheld GPS device prior to drilling and oriented by compass and clinometers during the setup. All of the holes were drilled to NQ diameter and casing driven to bedrock where necessary. For down-hole orientation, a test was conducted periodically with a Reflex down-hole survey tool; the results of the tests are recorded in the logs in Appendix 5. A detailed geological log of the core was created with lithology, structure, alteration, and mineralization carefully noted (Appendix 5). Samples of select intervals were sent to Bureau Veritas Commodities Ltd. in Vancouver for 36 element ICP-MS (Appendix 7). The core is stored at the Vine core storage facility located at 585904E 5472654N.

Drill Hole	Easting	Northing	Elevation	Azimuth	Dip	Length
VA15-16	583920	5473795	1300	230	-46.7	307.16
VA15-17	583920	5473795	1300	55	-60	137.5
VA15-18	584075	5473643	1280	180	-45	335.8
VA15-19	584375	5474353	1290	0	-90	226.5
VA15-20	583901	5474328	1280	0	-90	305.79
VA16-21	586492	5472864	980	357	-55	111.5
VA16-22	585249	5472840	1084	0	-90	809.7
VA16-23	586479	5473705	985	2	-45	28.96

Table 1: Vine diamond drill hole collar locations and orientations

Results of Diamond Drilling

VA15-16 intersected several thin veins hosting sulphide mineralization and bedding parallel layers of pyrite. Towards the end of hole, a series of anastomosing quartz, calcite, and biotite veins ranging in width from 3 to 10cm thick hosted blebs of pyrrhotite and galena.

VA15-17 intersected only weakly disseminated pyrite, pyrrhotite and arsenopyrite with a single 5cm calcite vein, at 104m, hosting blebby arsenopyrite. Disseminated pyrite and pyrrhotite appears to be a regional phenomenon as it hosted in all of the drill holes at various stratigraphic levels.

D VA16-21 D 1000 casing Elevation gabbre phylitic sedime 900 gabbro Ó 100 200 300 400 500 Distance

Figure 10: Section for diamond drill hole VA16-21

In VA15-18, disseminated pyrite and pyrrhotite similar to the two previous holes was intersected. Within the sedimentary fragmental unit, rare massive pyrrhotite clasts were identified along with bands of massive pyrite. The presence of massive sulphides in the fragmental unit has been suggested to be related to SEDEX style mineralization. Proximal and within the Sundown Marker section intersected in VA15-18 (243m to 264m) disseminated sphalerite was present along with bedding parallel laminations, or bands, of pyrrhotite with rare sphalerite. The same Sundown Marker section in hole VA15-19 had weakly disseminated pyrrhotite throughout and rare beds of pyrite and pyrrhotite less than 1cm thick. At the end of VA15-19, minor chalcopyrite occurred with pyrrhotite in a fault hosted quartz vein.

VA15-20 had intervals of disseminated pyrite and pyrrhotite as well as laminations of sulphides. Intersections of altered gabbro hosting trace speckled chalcopyrite. Chalcopyrite was also hosted in quartz veins located down hole from a lamprophyre dike (138m).

Figure 11: Section for diamond drill hole VA16-22

Figure 12: Section for diamond drill hole VA16-23

VA15-22 intersected argillites and silty argillites at the Lower - Middle Aldridge Formation contact with strong similarities to the host rock of the Sullivan ore body. The "Sullivan Mud" interval contained disseminated pyrrhotite from 5% up to 30% within localized bands. The bands are typically 10cm or less and are weakly magnetic. A 1m interval at 539.5m was found to have weakly disseminated sphalerite in association with pyrrhotite. At 645.8m a 15cm quartz calcite vein hosted a suite of sulphide minerals including galena and sphalerite along a gabbro dike contact. The Vine Vein structure was intersected at 678.9m depth and split into two discrete veins. The composition of the veins are similar, consisting of calcite, siderite, and chlorite, however the downhole intersection of the two veins hosted rare galena. The footwall of the structure is marked by a 1.8m fault zone which contains 40 to 50% sulphides by volume. Samples of the footwall fault structure indicated anomalous lead in concentrations of 952.8ppm over 2.8m while the weighted average of a 7.7m intersection of the Vine vein was 4,252.2ppm lead starting at 677.9m depth (Figure 11). Sample intervals are included in the drill logs (Appendix 5) followed by assay certificates (Appendix 7).

Sampling of 2014-2015 diamond drill holes

Two drill holes that intersected encouraging intervals of laminated and disseminated sulphides were sampled to identify concentrations of base metals; lead and zinc in particular. Drill holes VA15-02 and VA15-04 hosted intervals of anomalous lead and zinc with the best single sample in VA15-04 having 185.1ppm lead over 1m (sample 2109192) and in VA15-02 had a zinc concentration of 63.7ppm over 1m in sample 2109163. Sample intervals are plotted in the graphic logs in appendix 6 and a full suite of elemental concentrations can be found in Appendix 7.

Gravity, Magnetic and Electric Sounding Geophysics

Between August 2015, and June 2016, Excel Geophysics Inc. conducted data acquisition in the Eastern Gravity Anomaly area that included an additional 88 gravity stations, 243 magnetometer stations, and 7 electric soundings. The additional gravity data was incorporated into the Vine dataset for inversion modeling in an attempt to estimate location and size of dense

bodies in the subsurface. The results of the gravity modeling and the magnetic data are described in detail in the report included in Appendix 8 by Excel Geophysics Inc.

Summary and Recommendations

The 2016 Vine exploration project was designed to test a variety of geological and geophysical targets identified in previous year's programs. The focus of the 2016 drilling was in and around the Western Gravity Anomaly identified in 2014 (Jones, 2014). The Western Gravity Anomaly is situated proximal to the Vine vein structure and a sedimentary fragmental unit associated with syn-sedimentary faults. Drilling of the Western Gravity Anomaly did not reveal a significantly dense body to explain the anomalous gravity measured. Drilling of the fragmental unit revealed significant clasts of massive sulphide suggesting that a sulphide body predates the syn-sedimentray fault responsible for shedding the massive sulphides from their source, into the fragmental catchment basin.

PJX Resources Inc. is continually and systematically developing and evaluating targets on the Vine property. At the time of writing this report, the project has completed addition drilling to be described in later reports. Exploration drilling to test gravity anomalies is the key component of the project and adapting the geological model of the subsurface, based on drill intersections, is progressing. The complicated geology within the Eastern Gravity Anomaly area poses some difficulties in testing a given stratigraphic horizons over the large area covered by the anomaly. Additional diamond drilling will be necessary to thoroughly examine the target to a satisfactory level.

Part 2 Zinger and Eddy

Introduction

The Zinger property is situated on the divide between Perry and Hellroaring Creeks in the southern Purcell Mountains in southeastern British Columbia. Perry Creek is one of several prolific placer gold streams in the East Kootenays and in the later part of the 19th century saw the rise of the town of Perry along its banks. The town of Perry has long since been abandoned but small scale placer operations have maintained claims on the creek to the present day.

This report describes the results of the continuing efforts to locate an economically viable gold deposit on the Zinger or Eddy properties by PJX Resources Inc. This report describes some occurrences that were investigated by geological mapping and minor sampling, and a chip sampling program on an exposure in the Goldrun Lake area of the Zinger property. Only a single day was spent on the Eddy property and sections of this report do not include descriptions of the Eddy such as History and claims, for brevity. For more detailed descriptions of various aspects of the Eddy property please refer to Seabrook (2013).

Location, Access, and Physiography.

The Zinger property is located 25km due west of Cranbrook and 23km south by southwest of Kimberly (Figure 1). To access the property from Cranbrook, travel 5km northwest on the Kimberly hwy and exit onto Wycliffe Park Rd. After 6.5km turn left onto Old Wycliffe Rd. and then right onto Perry Creek Road. Travel 5.5km to a 'Y' intersection and take the west (right) branch onto an unlabeled forest service road which immediately crosses Perry Creek and parallels the creek. Near the 29km marker is a steep switchback which is the main access to the Heart Lake area of the property. The switchback road ends on ridge that separates Perry Creek from Hellroaring Creek and from there hiking north along the ridge is currently the best access to the Shorty Lakes area. Off-road 4x4 vehicles are recommended for the Perry Creek Rd. and required for the switchback road near the 29km marker. The hike to the Shorty Lakes area is for experienced hikers and can take several hours round trip. Access to the Gold Run Lake area is much easier. Remaining on the Perry Creek road after the 29km marker will take you past Gold Run Lake and onto the ridge.

The property is within the Purcell Mountain Range west of the Rocky Mountain Trench. Topographic relief throughout the property is moderate to high with cliffs developed along some slopes and rocky outcropping in high elevation areas. Elevation ranges from 2500m at the top of Grassy Mountain to 1290m where the northwest property boundary intersects Perry Creek. The The Gold Run and Shorty Lake areas are sparsely covered in alpine forests and meadows providing excellent surface rock exposure but snow cover from October to June limits the available time for geological mapping and sampling.

Exploration History

The gold rush of the 1860s brought thousands of people to the Fort Steele area crowding the gold bearing rivers. To this day, small scale placer operations can be found on the same waterways, including Perry Creek. While gold panning was happening in the creeks, prospectors were searching the surrounding hills and mountains for lode gold and potential sources of the rich placer deposits. The Zinger property was likely explored by prospectors as far back as the mid 1800s although accounts of the work conducted are anecdotal.

The earliest recorded work on the property was in the period between 1915 and 1921 on the Yellow Metal prospect. Ministry of Mines Annual Reports in that period, and extending to 1927, describe several showings of gold and silver in guartz veins on either side of the ridge separating Perry and Hellroaring Creeks. These veins contained grades in chip samples up to 6.5 g/tonne gold and 7g/tonne silver and, within hangingwall gouge along some veins, samples assayed 11g/tonne gold and 10g/tonne silver (Minfile 082FSE065). Minfile location for the Yellow Metal prospect places the workings on the former Hawk 1 claim owned by Trans-Arctic Exploration Ltd in 1986. Workings sampled and reported on in that year were not described as part of the Yellow Metal prospect (Royer, 1985). Also, Brewer (1985) suggested that the Yellow Metal prospect was located on the ridge west of Gold Run Lake on the former CND3 claim. Sampling of the workings on the CND3 claim, by Fort Steele Grubstaking Syndicate, could not reproduce the values documented in Ministry of Mines Annual Reports for the Yellow Metal prospect, and it is likely that the company was mistaken about the location of the prospect. In 2004 an assessment report was submitted with a compilation map which included locations of showings (Soloviev, 2004). The Yellow Metal prospect on that map is plotted east of Gold Run Lake and the Gold Run Showing (082FSE122), while the Minfile location for the Yellow Metal prospect is replaced with a showing called the Hawk (op. cit.). It is the author's opinion that the Hawk and Yellow Metal prospect are one and the same and located on the ridge west of Heart Lake.

In 1981 Gallant Gold Mines Ltd. conducted field work consisting of heavy mineral concentrate sampling and geophysics in an effort to delineate possible gold bearing and conductive zones (Troup, 1981). The claims the work was conducted on stretched along the west slope of Perry Creek in several distinct claim blocks. A heavy mineral concentrate sample taken from Perry Creek to the south of the Shorty Creek confluence assayed >10,000ppb gold. The only other sample south of Shorty Creek was not sufficiently large enough to produce an assay and the remainder of the work in 1981 was conducted north of Shorty Creek. Gallant Gold Mines Ltd. continued to explore Perry Creek for lode gold deposits to the mid 1980s south of Shorty Creek on a property known as the Petra (Butterworth *et a*l, 1984). In 1985 a 25m trench was dug on the Petra claims through rusty green argillites, and two grab samples from the trench assayed 3.4 and 3.7g/tonne gold (Dandy and Troup, 1985). The following year 61m of diamond drilling were conducted over the 1985 trench site and a 1.22m sample from the core just beneath the casing of hole PTR-86-2 had the best result of 0.25g/tonne gold (Hardy, 1986).

As previously mentioned, two companies were operating in the area from Heart Lake to Gold Run Lake in 1985; Fort Steele Grubstaking Syndicate and Trans-Arctic Exploration Ltd. Fort Steele Grubstaking Syndicate conducted prospecting, trenching and soil geochemistry north of Gold Run Creek in an effort to discover gold mineralization in porphyritic sills (Brewer, 1985). A description of a chip sampling program is made but assays of samples are not included. The report does include a map and soil sample assays from a survey along a trail which runs parallel to Gold Run Creek. The survey indicated three anomalies described as having orientations similar to a number of gold bearing prospects, perpendicular to the trend of country rock. Mapping by Trans-Arctic Exploration Ltd. around Heart Lake indicated country rock trending universally north-northeast at about 30° (Royer, 1985). Grab samples recovered while mapping in that year are reported as having assays of 0.8910z/ton gold though assay certificates are not included in the report (*op. cit.*).

By 1987 both the CND claim group and the Hawk claim group were operated by different companies. Partners Oil & Minerals Ltd. developed an exploration program of soil geochemistry sampling and magnetometer and VLF-EM survey north and northeast of Gold Run Lake, extending to the boundary of the CND/Hawk claims (Bishop, 1987). The soil survey indicated two anomalous zones of >100ppb gold labelled "A" and "B" gold zones in the report. The larger of the two zones ("A") is approximately 500m wide and is truncated by the claim boundary just south of the ridge. The zone is aligned with the No. 3 zone on the Hawk#1 claim described in a report by Unique Resources (Burton, 1987). Unique Resources took over operation of the Hawk claim group and conducted geochemical and geophysical surveys in 1986 (Mark, 1986). The No. 3 zone, along the ridge west of Heart Lake, is described as having the best economic potential in the 1987 report (*op. cit.*).

In 1992 and 1993 the former CND claim group was abandoned and staked by Consolidated Ramrod Gold Corp. as the north part of their Blue Robin Property (Klewchuk, 1994). As part of the program in 1993, Consolidated Ramrod Gold Corp. drilled six short holes east of Gold Run Lake for a total of 340.5m (op. cit.). 340m of strike length of a quartz vein zone, underlying the "B" gold zone of the 1987 soil survey (Bishop), was tested and sampled returning a maximum value of 0.53g/tonne gold over 0.8m true width (op. cit.). The claims were let lapse for a second time and staked by Peter Klewchuk who conducted a VLF-EM survey in the drilling area in 1997 (Klewchuk, 1998). The geophysical survey produced a northwest trending anomaly perpendicular to bedding and was speculated as playing a role in the deposition of gold (op. cit.). Additional VLF-EM survey lines were added in 1998 north of the 1997 survey along the ridge which indicated moderate to weak anomalies in the vicinity of gold soil anomalies from historical surveys (Klewchuk, 1999). In 1999 Klewchuk conducted geological mapping and rock grab sampling as well as a small VLF-EM geophysics survey near the ridge to the north of Gold Run Lake (Klewchuk, 2000). Rock sampling indicated a northeast trending zone of multi-gram gold along the ridge. The rock geochemistry trend is not accompanied by a VLF-EM signature; instead, the geophysical survey seemed to indicate northwest trends believed to be "cross-cutting" structures which influence the deposition of gold (op. cit.).

National Gold Corp. optioned the Zinger property, and in 2000 began exploring with soil geochemistry surveys and rock sampling (Klewchuk, 2001). The southern soil grid, to the northwest of Gold Run Lake, indicated widespread anomalous gold (>100ppb) with a small localization on the west end; while the northern Heart Lake grid had fewer anomalous gold samples but suggested a northeast trend (*op. cit.*). In 2002 a large rock sampling program was undertaken to define gold potential in the headwaters of Shorty Creek (Klewchuk, 2003a). Several new gold mineralized zones were discovered in the program and a relationship to bedding-cleavage parallel thin quartz veins, or similar veins developed in east-dipping kink folds, was suggested (*op. cit.*). A second report in that year describes additional work conducted be National Gold Corp. on the Zinger property of prospecting and geological mapping

(Klewchuk, 2003b). The report is an expanded version of the rock geochemistry report describing numerous geological structures and alteration types both related, and unrelated, to gold mineralization (*op. cit.*).

In 2003 a half million dollar exploration program was undertaken by Chapleau Resources Ltd. on the Zinger property (Soloviev, 2004). The program consisted of 1,496 grab and chip samples, 6,356 soil samples and 20 diamond drill holes totalling 3,317.2m. All of the drill holes to the west of Heart Lake, with the exception of Z-03-01, intersected gold mineralization in mostly narrow intervals with Z-03-16 having the best result of 0.484g/tonne gold over 17.5m. The soil geochemistry portion of the program indicated several new zones of potential mineralization along a strike length of several kilometers and additional work was recommended to explore these zones (*op. cit.*). The report included several compilation maps of recent and historical work including a soil sampling compilation map. On the soil map, two grids labelled 'Supergroup 2001, Soil Grid' are located north and east of Gold Run Lake which do not appear to be published in assessment reports. No follow-up work is documented and it was not until 2009, under new ownership, that the Zinger property was further explored (Kraft, 2009). In that year a channel sampling program by Ruby Red Resources Inc., accompanied by outcrop scale geological observations, suggested that fine quartz stockwork veins and supergene hematite alteration are vectors for stronger gold mineralization (*op. cit.*).

In 2011 PJX Resources Inc. began exploration of the Zinger property by sponsoring an Airborne VTEM and Magnetometer survey (Klewchuk, 2012). The B-Field Z component of the VTEM survey did not produce anomalies in the prospective area west of Heart Lake and additional data analysis and interpretation was conducted in 2011 to develop depth targets (Klewchuk and Barlow, 2012). The later time channels were filtered to produce conductivity maps of generally deeper structures which suggested large-scale faulted offsets (*op. cit.*). Also in 2011, PJX Resources Inc. conducted a small soil geochemistry survey and minor rock sampling (Kennedy, 2012). The soil grid produced a number of anomalous zones including a well defined northwest trend which the author suggested may correspond to previously defined structures (*op. cit.*).

The following year PJX Resources Inc. further developed the Zinger property by conducting geological mapping, ground geophysics and diamond drilling (Seabrook and Höy, 2013). The program determined several structural controls for alteration and mineralization and suggested a structural model for gold emplacement. Of the two diamond drill holes that were completed in the 2012 program, ZG13-02 had the best intersection of 0.5g/tonne Au over 22.83m. In 2013, PJX Resources Inc. expanded the focus of the Zinger project to include two areas, the Shorty Lakes area, to the north of the Heart Lake area and the Goldrun Lake area to the south. Geological mapping and sampling in both areas indicated more zones of alteration and mineralization in both expanded areas (Seabrook and Höy, 2014). Soil geochemistry sampling confirmed extremely high concentrations of gold in historic, undocumented, grids in the east Goldrun Lake area.

Vine, Zinger and Eddy properties, southeastern B.C.

Claims

The Zinger property is a consolidation of several adjoining properties formerly owned by Ruby Red Resources now SG Spirit Gold Inc. In 2013 PJX acquired 100% interest in the Zinger and Eddy properties from SG Spirit Gold Inc.. Consisting entirely of mineral tenures, the total land package of the Zinger property is 10,660ha. The approximate east edge of the Zinger property is along Perry Creek and to the east, PJX Resources Inc. is actively exploring the Eddy property. The Eddy was acquired in the same fashion by PJX Resources Inc. who have 100% interest in the property. The Eddy property is adjoined to the Vine property in the east and has a total land package of 10,397ha. Appendix 4 is a list of all mineral tenures and Figure 13 outlines the Zinger and Eddy properties.

Figure 13: Claim outlines of the Zinger and Eddy Properties

Regional Geology

The Zinger property lies within the Purcell anticlinorium, a generally north plunging structure that is cored by Middle Proterozoic sedimentary and minor volcanic rocks of the Purcell Supergroup and flanked by unconformably overlying Late Proterozoic clastic and carbonate rocks of the Windermere Supergroup (Figure 14). These are generally overlain by either Cambrian or Devonian rocks, part of the North American "miogeoclinal" sequence.

The Purcell Supergroup, and correlative Belt Supergroup in the United States, comprises a syn-rift succession, the Aldridge Formation, and an overlying, generally shallow-water post-rift or rift fill sequence that includes the Creston and Kitchener Formations and younger Purcell rocks (Höy, 1993).

The exposed part of the Aldridge Formation comprises more than 3000 meters of mainly turbidite deposits and numerous, laterally extensive gabbroic sills referred to as the Moyie intrusions. The gabbroic sills are laterally extensive, typically up to several hundred meters thick and can be traced over hundreds of square kilometers. Locally, particularly in areas of growth faulting, they cut across stratigraphy as dykes. Some of the Moyie sills have contact features that suggest intrusion into wet and partially consolidated sediments (Höy, 1993).

Figure 14: Geological setting of the Zinger property in the central Purcell Mountains, southeastern British Columbia; modified from Höy et al. (2000).

The Purcell Supergroup succession is allochthonous, part of the Foreland Thrust and Fold Belt, the most eastern physiographic belt in the Canadian Cordillera (Monger *et al.*, 1982). Structures within the Purcell anticlinorium include east verging thrust faults, northeast trending, right lateral reverse faults, and open to tight folds (Höy, 1993). A complex array of normal faults that trend dominantly northward parallel to the Rocky Mountain trench cut the earlier thrust faults and associated folding.

The northeast-trending structures, including the St. Mary and Moyie faults, are within or parallel to a broad structural zone that cuts the Purcell anticlinorium, crosses the Rocky Mountain trench and extends northeastward across the Foreland thrust belt (Kanasewich, 1968). This zone is marked by a conspicuous change in the structural grain, from northerly north of the zone to northwesterly south of the zone (Figure 14), and by pronounced and fundamental changes in the thickness and facies of sedimentary rocks that range in age from Middle Proterozoic to early Paleozoic (Höy, 1993; Höy *et al.*, 2000).

The zone, referred to as the Kanasewich rift, and in the central part of the Purcell Mountains including the area of the Zinger property, the Cranbrook Gold Belt, is also characterized by a variety of mineral deposits and occurrences of varying ages and tenor. These include the Sullivan and Kootenay King sedex deposits, the St. Eugene and Vine lead-zinc-silver veins, and the placer gold deposits of the Wildhorse, Moyie and Perry Creek drainages. Farther west along this trend, lead-zinc replacement deposits occur in Cambrian carbonates in the southern Kootenay Arc, and gold-copper vein deposits characterize the Rossland camp in Quesnel terrane.

Local Geology

The geology of the Zinger property, shown in Figure 15, is taken from compilation maps of Reesor (1997) and Brown *et al.* (2010). The property is in the central part of the Purcell anticlinorium within a structural panel bounded by the Perry Creek fault in the east and an unnamed fault to the west. These faults are north-trending, east-verging thrusts with presumably steep westerly dips; the trend of the faults in areas of steep topography is relatively straight and cross-sections published by Reesor (*op. cit.*) show nearly vertical dips. Several other parallel faults also occur in the immediate area. The displacements on these are not known but based on offsets of mapped units are inferred to have mainly net normal movements.

Property mapping (Figure 14) has recognized several northwest trending faults on the Zinger property. Regional mapping did not identify parallel faults perhaps because displacements on these are small. Farther south in the Moyie Lake area, parallel faults are conspicuous and several of these are the loci for mineralization, including both the Vine vein and the St. Eugene deposit.

Broad open folds and warps characterize much of the deformation in the central part of the anticlinorium. These folds tighten and locally become overturned in the immediate hangingwalls of northeast trending thrusts.

Figure 15: Regional geology map of the Zinger and Eddy properties (after Brown et al., 2010).

The Zinger property is underlain by mainly Creston Formation and overlying Kitchener Formation (Figure 15). The Creston Formation has been subdivided into three members. The Lower Creston comprises mainly pale green, tan weathering massive to laminated argillite, siltstone, and lesser quartz wacke. The Middle Creston, the focus of exploration on the Zinger property, is typically thicker bedded and more arenaceous, comprising light grey, to mauve quartz arenite, wacke and lesser grey siltite and argillite. The upper Creston comprises green siltstone with lesser dark grey to purple argillite and siltstone. It is in gradational contact with the Kitchener Fm, a succession of brown weathering dolomitic siltstone and green argillite.

The property is bounded to the north by the St. Mary fault and to the west by the approximate limits of the Creston Formation. Claims immediately to the east, also underlain by largely Creston and Kitchener Formations are referred to as the Eddy property, also owned by PJX Resources Ltd.

Geological Mapping

A brief period of geological mapping on the Zinger and Eddy property were undertaken to examine known occurrences and new discoveries for exploration potential and requirements for further development. Geological mapping in this program was limited to the structural controls on the mineralization at the occurrence, the visible extent of the mineralization, and the unexposed potential. Five areas were visited in the program; the Shorty Lakes, Gar, Leader, and Goldrun areas of the Zinger property, and the Ryder Creek area of the Eddy property. Brief descriptions of these locations are as follows.

The Shorty Lakes is located in the north part of the Zinger property shown in Figure 16. The area was mapped in 2013 by PJX Resources Inc. building from historic work in 2003 (Klewchuck, 2003). The zone of alteration, in which mineralized veins are most abundant, is visible for 230m in strike length, and 100m at its widest. A second zone occurs to the southwest of the main zone. The second alteration and veining zone is smaller and separated by intense quartz chlorite extensional veins. The gold grade of the Shorty Lakes zone is not well understood as it has never been drilled or channel sampled. Grab samples assayed up to 25.6g/tonne gold in the 2013 program and many samples from the area assayed over 1g/tonne (Seabrook, 2014). The north extent of the zone is obscured by the north-most lake and mapping to the north of the lake has not been conducted. The south extent is cut by several southeast trending quartz chlorite zones interspersed with gold bearing quartz-sericite-carbonate zones. The mineralization may extend to the southwest crossing over the ridge dividing Perry and Hellroaring creeks though sampling and mapping in this area is extremely limited.

An attempt to estimate the grade across the main alteration exposure should be undertaken to determine if the grade in grab samples can be reproduced across the width of the zone. Diamond drilling is potentially a good method for the Shorty Lakes area as it has abundant water in the early part of the field season and the depth component of the zones cannot be determined by surface methods. Channel sampling has been successful in the Heart Lake area in indicating the grade potential without the exorbitant drilling expense, though it does not offer any insights into the down dip component of the mineralized zone. Additional mapping and sampling to the north and south-west of the occurrence may identify a more concentrated zone where structural changes take place. In 2013 the Goldrun Lake area was mapped by PJX Resources Inc. where several mineralized alteration zones were observed (Seabrook and Höy, 2014). Compilation work on the Goldrun area demonstrated anomalous gold concentrations from rock samples correlated with mineralized zones and further investigation was necessary to evaluate the stage of exploration for individual zones. A large zone on the ridge separating Perry and Hellroaring Creeks in the Goldrun area demonstrated a series of low angle, east dipping, joints and veins in higher concentration than other locations on the property. The low angle joints and veins are related to minor folds with low angle axial planes. While most of these folds are small in scale, with wave lengths less than 2 to 3 meters and amplitudes 1m in length, a series of outcrops suggested a fold with much greater amplitude lies adjacent to the occurence.

Vine, Zinger and Eddy properties, southeastern B.C.

Figure 16: Zinger property with rock sample locations and occurrence description areas

Some minor sampling was conducted in 2016 on the Goldrun Lake area and additional sampling is necessary to identify key components of mineralization (Figure 16). There are several types and orientations of veins throughout the Zinger property that have gold associated with them. Sampling of individual veins is difficult due to the local overlapping of the vein sets. Several zones in the Goldrun Lake area are good candidates for channel sampling as they expose vein sets individually and in local overlaps which could be samples separately. The Channel

sampling may help to identify a linear trend to gold emplacement when individual structural features and intersections have more accurate determinations of gold content.

Figure 17: Location of rock samples and gold assays in ppb on the Gar and Leader areas.

The Gar is located at the headwaters of Angus Creek, northwest of Grassy Mountain (Figure 17). The mineralization occurs in a granodiorite boulder field that is buried at both ends and has only a few outcrops. The gold mineralization is associated with stacked fractures in high density and fracture parallel quartz veins (Photos 1 and 2). The exposed width of the fractured zone is approximately 49m with fracture density ranging from 5 to 25 fractures per 10cm. Plated along the fractures are fine to medium grained sericite while carbonate and epidote are present as an alteration of the host rock. The overall effect is that the plagioclase matrix is saussuritized in a

halo around the fractures, and in zones of very high density fracturing, the weathered surface appears buff-brown from the high carbonate content. Historical sampling in this area indicated that anomalous gold is present with thin veinlets along the same trend as the sheeted fractures (Kennedy, 2002). Samples taken in 2016 indicated that the fractures themselves can contain anomalous gold with one of the two samples assaying 179.5ppb gold.

The size of boulders and the topographical setting of the zone would make it a difficult trenching operation. With the poor exposure in the area, estimating the width of the zone and the structural controls is problematic. The occurrence may benefit from some localized EM as the fractures have altered some of the feldspars to clay minerals and may conduct marginally better than the surrounding granodiotite. Ultimately diamond drilling is likely the only way to indentify the true width and grade of the Gar zone.

The Leader is located to the northeast of the Gar on the east side of Angus Creek (Figure 17). Two showings are located in the Leader area; one within the stock known as the Dougdug vein and the other proximal to the east contact of the stock but in carbonates known as the Leader. The stock is a granodiorite to quartz monzonite with large phenocrysts of euhedral zoned plagioclase. The Dougdug vein is a 0.5m bull white quartz vein hosting coarse cubic pyrite along the vein margin (Photo 3). A high density foliation fabric and moderate pervasive sericite and carbonate alteration make up a 1 to 3m thick shear zone that hosts the vein that trends to the south. Historical drilling of the vein showed that it contained 3.04g/tonne gold and 394g/tonne silver over 1.27m (Anderson, 2008). The south extension of the Doudug vein has not been tested though anomalous gold and silver concentrations were indicated in a soil survey conducted in the same year (*op. cit.*).

Photos 1 and 2: Fractures in a fresh cut of granodiorite showing green saussuritization *right*. High density fractures with carbonate weathering *left*.

The Leader vein is a polymetallic, gold hosting, quartz carbonate vein within a near mylonitic shear (Photo 4). The vein has several historic workings located along its exposed strike length including a shaft and short drift. The vein is believed to lie along the contact of Middle Creston Formation quartzites and Kitchener silty dolomite that have been metamorphosed to calc-silicates (tremolite and actinolite). The vein is approximately 0.5m to 0.75m thick with massive chalcopyrite, galena, pyrite and sphalerite along the vein margins and blebby in the middle of the vein. Grab samples of the vein assayed 12,813ppb gold (Figure 17).

Photos 3 and 4: Coarse quartz, sericite, pyrite Dougdug vein *left*. Polymetallic and gold Leader vein *right*.

Like the Dougdug vein, the Leader vein trends south and is covered by overburden. A diamond drillhole in 2008, was oriented to intersect the projected trace of the Leader vein (Anderson, 2009). The drillhole is located more than 500m from the exposures of the Leader vein and did not intersect mineralization in the hole (*op. cit.*). The area to the north of the diamond drill hole is accessible by backhoe for trenching and the Leader vein could be uncovered to the south. Geological mapping of the surrounding area should be conducted to determine the structural controls on vein dilation and offsetting structures that may have prevented the vein from being intersected in the 2008 south most diamond drill hole.

Photo 5: Kink fold with high angle axial planer cleavage.

A brief visit to the Ryder Creek area of the Eddy property, located along the properties south boundary, was included in the 2016 program (Figure 18). A series of veins with similarities to the Zinger Zones in the adjacent Zinger property were identified. The features examined are stockwork veins occupying small scale folds that suggest a thrust movement along the vein (Photo 5). The features lie within the hangingwall of the Old Baldy Shear which is up to 200m in width and strikes north-easterly. The shear has been found to host gold mineralization in several locations and the intersection with the Ryder Creek fault, also a gold bearing structure, has been suggested as an excellent target (Klewchuck, personal communication). The oblique intersection of the two fault features is thought to have resulted in a stacking of the Old Baldy fault producing a potential gold hosting width of 400m or more. Further geological mapping of the surrounding area and sampling of the Old Baldy and Ryder Creek faults are necessary to establish a depth target as the surface location of the intersection is known, but a location of potential mineral concentration has not been determined.

Figure 18: Location of rock samples on the Ryder Creek area of the Eddy Property

Chip Sample

Introduction

Soil sampling conducted in 2013 by PJX Resources Inc. confirmed the location of a soil anomaly with gold values >4g/tonne (Seabrook and Höy, 2014). In 2014, the area was investigated and found to have several outcrops with only minor scree cover. In the 2016 chip sampling program, a minor amount of scree was removed from the outcrop along a 14.5m length and chip sampling and geological mapping was conducted along the length of the exposure.

Figure 19: Chip sample and mapping of 14.5m exposure.

Overview of Chip Sampling Results

The exposed area was primarily medium to thin bedded quartzites that are mauve to grey in color and variably silty. Much of the exposure showed strong pervasive sericite and carbonate alteration associated with moderate to high density foliation fabric, sub-parallel to bedding. Veins are typically less than 1cm and are in medium density across the entire width of the exposure but are locally in very high density where approximately 0.5m thick silicification and stockwork zones are developed. Three such zones occur along the sample length and are represented as thick veins in the diagram (Figure 19). A prominent joint set is oriented slope-dip

striking north and dipping 32 to 52° to the east. The joint set is possibly related to low angle features found in higher elevation areas on the Zinger property though they dip more steeply than what is typical.

Over the 14.5m length of the chip sampling, the weighted average grade was 524ppb gold. Interestingly, some of the higher grade intervals in the sample program lie outside of the silicified zones where vein density is less intense. Additionally, the interval in the immediate footwall of the highest density veining (ZN16-04) had the lowest gold grade of all the samples.

Summary and Recommendations

The 2016 Zinger and Eddy exploration program was conducted over an eight day period beginning on September 1st and ending on September 15th. The program included geological investigations of several known occurrences and a chip sampling program along a 14.5m exposure in and around an extremely high gold concentration in soils.

Brief recommendations for the Shorty Lakes, Goldrun Lake, Gar, Leader and Ryder Creek areas are discussed in the geological mapping section of this report. The chip sample area remains a potential target and significant follow-up work should be conducted in this area to determine the source for extremely high concentrations of gold in soil. The exposed chip sample area, though elevated in gold, does not adequately explain the high grades in soils. A more thorough geological mapping program at 1:1000 scale, accompanied by rock sampling, may identify cross-cutting structures that project into the high grade soil area and influence mineralization. Backhoe trenching is likely difficult given the 35 to 40° slope, but if feasible, may be the best method to determine the source of gold in soils. Road access to the immediate west provides a position for diamond drilling of the chip sample zone and may help to determine the linear orientation of higher concentrated gold mineralization.

References

- Anderson, D. (2008): Geochemistry and Diamond Drilling Report, Gar Property; *BC Ministry of Energy and Mines*, Assessment Report 29665, 66 pages.
- Anderson, D. (2009): Geochemistry, Trenching and Diamond Drilling Report for the Gar Property (North); *BC Ministry of Energy and Mines*, Assessment Report 30558, 52 pages.
- Anderson, D. (2013): Diamond Drilling and Geophysical Surveys on the Vine Property; *BC Ministry of Energy and Mines*, Assessment Report 34339, 84 pages.
- Batchelor, E.W. (1977a): Report on Geochemical Survey Grid A, Vine Claim Group, Fort Steele Mining Division, BC; *BC Ministry of Energy and Mines*, Assessment Report 06498B, 18 pages.
- Batchelor, E.W. (1977b): Report on Geochemical Survey Grid B, Vine Claim Group, Fort Steele Mining Division, BC; *BC Ministry of Energy and Mines*, Assessment Report 06498C, 12 pages.
- Batchelor, E.W. (1977c): Report on Grid C Geochemical Survey on Vine 1 Claim, Vine 1, 25, 27 Claim Group, Fort Steele Mining Division, BC; *BC Ministry of Energy and Mines*, Assessment Report 06498D, 16 pages.
- Bishop, S. (1987): Geological/Geochemical/Geophysical Report on the CND Mineral Claims. B.C. Ministry of Energy and Mines, Assessment Report 16656, 79 pages.
- Brewer, L.C. (1985): Exploration Program Report on the CDN Mineral Claims. B.C. Ministry of Energy and Mines, Assessment Report 15284, 25pages.
- Brown, D.A., MacLeod, R.F., Wagner, C.L., Chow, W.: Geology, Grassy Mountain, B.C.; *Geological Survey of Canada*, Open File 6309, scale 1:50,000.
- Brown, D.A., Bradford, J.A., Melville, D.M., Legun, A.S., and Anderson, D. (1993): Geology and Mineral Deposits of Purcell Supergroup in Yahk Map Area, Southeastern British Columbia (82F/1); *British Columbia Geological Survey Branch*, Geological Fieldwork 1993, 24 pages.
- Burton, A. (1987): Prospectus Report on the Hawk Mineral Claim. B.C. Ministry of Energy and Mines, Property File 002615, pages 32-61.
- Butterworth, B.P., Freeze, J.C., Troup, A.G. (1984): Geological, Geochemical and Geophysical Surveys, Report on the Perry Creek Property. B.C. Ministry of Energy and Mines, Assessment Report 13007, 43pages.
- Dandy, L., Troup, A.G. (1985): Geological, Geophysical and Geochemical Surveys, Report on the Perry Creek Property. B.C. Ministry of Energy and Mines, Assessment Report 14212, 75pages.
- Gallagher, C. (2012): 2012 Assessment Report on Diamond Drill Hole Compilation, Soil and Rock Geochemistry, Volume 1 - Report on the Vine Property; *BC Ministry of Energy and Mines*, Assessment Report 33874, 336 pages.
- Hagen, A.S. (1987): Diamond Drilling Report, Vine Property, Vine 54, 56, 58 Claims; BC Ministry of Energy and Mines, Assessment Report 16456, 22 pages.
- Hagen, A.S. (1988): Diamond Drilling Report, Vine Property, Vine 54, 56, 58 Claims; BC Ministry of Energy and Mines, Assessment Report 17899, 25 pages.
- Hardy, J.L. (1986): Geology and Diamond Drilling, Perry Creek Property. B.C. Ministry of Energy and Mines, Assessment Report 15649, 173 pages.
- Höy, T. (1989): The Age, Chemistry, and Tectonic Setting of the of the Middle Proterozoic Moyie Sills, Purcell Supergroup, Southeastern British Columbia. *Canadian Journal of Earth Sciences*, v. 29, pages 2305-2317.
- Höy, T. (1993): Geology of the Purcell Supergroup in the Fernie W-half map area, southeastern B.C.; *B.C. Ministry of Energy and Mines*, Bulletin 84, 157 pages.

- Höy, T., Anderson, D., Turner, R.J.W., and Leitch, C.H.B. (2000): Tectonic, magmatic and metallogenic history of the early synrift phase of the Purcell basin, southeastern British Columbia; in The Geological Environment of the Sullivan Deposit, British Columbia; *Geological Association of Canada*, Special Publication No. 1, pp. 32-60.
- Jones, B. (2014): Technical Assessment Report, Vine, Vine Ext, and West Basin Properties; *BC Ministry of Energy and Mines*, Assessment Report 34937, 78 pages.
- Kanasewich, E.R. (1968): Precambrian rift: genesis of stratabound ore deposits; *Science*, v. 161, pages 1002-1005.
- Kennedy, S. (2012): Soil and Rock Geochemistry Report, Zinger and Eddy Properties. *B.C. Ministry of Energy and Mines*, Assessment Report 32792, 60 pages.
- Kennedy, T. (2002): Assessment Report on Prospecting, Gar Claims. B.C. Ministry of Energy and Mines, Assessment Report 26963, 18 pages.
- Klewchuk, P. (1994): Assessment Report on Road building, Trenching and Diamond Drilling, Blue Robin Property. B.C. Ministry of Energy and Mines, Assessment Report 23398, 59pages.
- Klewchuk, P. (1998): Assessment Report on VLF-EM Geophysics, Zinger Claims. B.C. Ministry of Energy and Mines, Assessment Report 25634, 18pages.
- Klewchuk, P. (1999): Assessment Report on VLF-EM Geophysics, Zinger Claims. B.C. Ministry of Energy and Mines, Assessment Report 26010, 11pages.
- Klewchuk, P. (2000): Assessment Report on Geological Mapping, Rock Geochemistry and VLF-EM Geophysics, Zinger Claims. B.C. Ministry of Energy and Mines, Assessment Report 26216, 31pages.
- Klewchuk, P. (2001): Assessment Report on Soil and Rock Geochemistry, Zinger Claims. *B.C. Ministry of Energy and Mines*, Assessment Report 26589, 29 pages.
- Klewchuk, P. (2003a): Assessment Report on Rock Geochemistry, Zinger Claims. B.C. Ministry of Energy and Mines, Assessment Report 27090, 30 pages.
- Klewchuk, P. (2003b): Part A: Assessment Report on Prospecting, Geological Mapping and Rock Geochemistry, Zinger Claims. B.C. Ministry of Energy and Mines, Assessment Report 27242, pages 1-45, 65-69.
- Klewchuk, P. (2004): Assessment Report on Ground EM Geophysics, Vine Property; *BC Ministry of Energy and Mines*, Assessment Report 27624, 32 pages.
- Klewchuk, P. (2006a): Assessment Report on Ground EM Geophysics, Vine Property; *BC Ministry of Energy and Mines*, Assessment Report 28201, 12 pages.
- Klewchuk, P. (2006b): Assessment Report on Diamond Drilling, Vine Property; *BC Ministry of Energy and Mines*, Assessment Report 28728, 30 pages.

- Klewchuk, P. (2007): Assessment Report on Soil Geochemistry, Vine Property; *BC Ministry of Energy and Mines*, Assessment Report 29479, 16 pages.
- Klewchuk, P. (2012a): Assessment Report on Airborne Geophysics, Vine Claims; *BC Ministry* of Energy and Mines, Assessment Report 32855, 74 pages.
- Klewchuk, P. (2012b): Assessment Report on Airborne Geophysics, Zinger, Eddy and Eddy North Properties (Purcell Block Claims). B.C. Ministry of Energy and Mines, Assessment Report 32924, 158 pages.
- Klewchuk, P. and Barlow, R. (2012): Airborne Geophysics Interpretation and Geology, Zinger and Eddy Claims. *B.C. Ministry of Energy and Mines*, Assessment Report 32843, 28 pages.
- Kraft, J.L. (2009): Assessment Report on Rock Geochemistry from Channel Samples, Zinger Claims. *B.C. Ministry of Energy and Mines*, Assessment Report 31375, 19 pages.
- Mark, D.G. (1987): Geochemical / Geophysical Report on Soil Geochemistry, VLF-EM & Magnetometer Surveys within the Hawk 1 Claim. *B.C. Ministry of Energy and Mines*, Assessment Report 15387, 31 pages.
- Monger, J.W., Price, R.A. and Tempelman-Kluit, D.J. (1982): Tectonic accretion and the origin of two major metamorphic and plutonic welts in the Canadian Cordillera; *Geology*, v. 10, pp. 70-75.
- Paiement, J-P., Beaudoin, G., and Paradis, S. (2007): Geological Setting of Ag-Pb-Zn veins in the Purcell Basin, British Columbia; *Geological Survey of Canada*, Current Research 2007-A4, 10 pages.
- Pighin, D.L. (1981): Percussion Drilling Report, Vine No.37 Claim; *BC Ministry of Energy and Mines*, Assessment Report 10221, 9 pages.
- Pighin, D.L. (1982): Percussion Drilling Report, Vine No.39 Claim; *BC Ministry of Energy and Mines*, Assessment Report 10220, 9 pages.
- Pighin, D.L. (1995): Assessment Report on Diamond Drill Hole KV94-57; *BC Ministry of Energy and Mines*, Assessment Report 23740, 24 pages.
- Reesor, J.E. (compilation): 1996: Geology, Kootenay Lake, British Columbia; *Geological Survey* of Canada, Map 1864A, scale 1:100,000.
- Royer, G.A. (1985): Prospecting Report on the Hawk #1 Claim. B.C. Ministry of Energy and Mines, Assessment Report 14718, 12 pages.
- Seabrook (2013): Diamond Drilling on the Eddy Property; *B.C. Ministry of Energy and Mines*, Assessment Report 33860, 120 pages.
- Seabrook, M.S. and Höy, T. (2013): Diamond Drilling, Geological Mapping, Magnetic and VLF-EM Geophysics, Zinger Property; B.C. Ministry of Energy and Mines, Assessment Report 33853, 172 pages.

- Seabrook, M.S. and Höy, T. (2014): Soil Geochemistry, Geological Mapping, Magnetic and VLF-EM Geophysics, Zinger Property; B.C. Ministry of Energy and Mines, Assessment Report 34730, 140 pages.
- Seabrook, M., and Pighin, D.L. (2016): Drill Hole and Surface Geophysics, Geological Mapping, and Diamond Drilling, Vine Property; *BC Ministry of Energy and Mines*, Assessment Report 35806, 313 pages.
- Soloviev, S. (2004): Assessment Report on Prospecting, Grid Soil Sampling and Diamond Drilling on the Zinger Property. B.C. Ministry of Energy and Mines, Assessment Report 27340 parts A-D, 1,428 pages.
- Stephenson, L. (1990): Report on Four Diamond Drill Holes (KV90-36, 37, 38 and 39), Vine Property; *BC Ministry of Energy and Mines*, Assessment Report 20518, 58 pages.
- Troup, A.G. (1981): Perry Creek Gold Property. *B.C. Ministry of Energy and Mines*, Assessment Report 09850A, 42pages.
- Webber, G.L. (1977a): Report on Geochemical Survey on Vine 3 Claim, Fort Steele Mining Division, BC; *BC Ministry of Energy and Mines*, Assessment Report 06498E, 15 pages.
- Webber, G.L. (1977b): Geochemical Survey Report on the South Vine Grid; *BC Ministry of Energy and Mines*, Assessment Report 06543, 21 pages.
- Webber, G.L. (1978a): Diamond Drilling Report on the Vine No. 1 Claim; *BC Ministry of Energy and Mines*, Assessment Report 06863, 21 pages.
- Webber, G.L. (1978b): Diamond Drilling Report on the Vine No.1 Claim; *BC Ministry of Energy and Mines*, Assessment Report 06863B, 22 pages.
- Webber, G.L. (1978c): Diamond Drilling Report on the Vine No.29 Claim; *BC Ministry of Energy and Mines*, Assessment Report 06936, 16 pages.
- Webber, G.L. (1979): Diamond Drilling Report on the Vine No.17 Claim; *BC Ministry of Energy and Mines*, Assessment Report 07677, 36 pages.

		Units	Rate	Cost
Diamond I	Drillina			
(Contract drilling		flat	\$ 338,630.03
[Drill program geologist	79.5 days	600	\$ 47,700.00
(Cartography	,	flat	\$ 38.00
(Core geotech		flat	\$ 4,828.00
0	Site support		flat	\$ 9,727.42
/	Archeological assessment		flat	\$ 8,020.20
9	Sample Analysis	82 samples	25	\$ 2,050.00
-	Travel	7 flights	850	\$ 5,950.00
	Accomodations	76 days	100	\$ 7,600.00
I	Food	75 days	43	\$ 3,225.00
-	Truck	37.5 days	180	\$ 6,750.00
		Diamond Drill	ing Sub-total	\$ 434,518.65
Geophysic	CS			
(Geophysical data acquisition		flat	\$ 54,095.00
(Geophysical interpretation		flat	\$ 27,910.39
(Geologist	3.5 days	600	\$ 2,100.00
/	Accomodations	3.5 days	100	\$ 350.00
F	Food	3.5 days	43	\$ 150.50
		Geophys	sics Sub-total	\$ 84,605.89
Mapping a	and Chip Sampling			
I	Mapping crew	7 days	850	\$ 5,950.00
I	Prospecting crew	2 days	800	\$ 1,600.00
[Data compilation		flat	\$ 1,750.00
1	Accomodations	7 days	100	\$ 700.00
I	Food	7 days	40	\$ 280.00
-	Truck	8 days	150	\$ 1,200.00
	Samples	32 days	30	\$ 960.00
	Supplies (bags and tags)		flat	\$ 200.00
		Mapping and Chip Samp	ling Subtotal	\$ 12,640.00
Exploratio	n Support			
(Claim management	3 days	100	\$ 300.00
	Storage	9 months	50	\$ 450.00
		Supp	ort Sub-total	\$ 750.00
		Expl	oration Total	\$ 532,514.54
I	Report writing		_	\$ 5,000.00
			Sub-total	\$ 537,514.54
-	10% administration fee		_	\$ 53,751.45
			Total	\$ 591,265.99

Appendix 1: Statement of Costs

Personnel	Start date	End date	# of Days	Rate	Total
Lead professional geologist consultant	31/10/2015	05/07/2016	79.5	600	47700.00
Drill contract crew	15/11/2015	15/06/2016		flat	286451.25
Drill contract crew	01/08/2016	03/09/2016		flat	52178.78
Core geotechnician	15/05/2016	01/06/2016	14	350	4900.00
GIS technician consultant	01/12/2015	07/04/2016	0.2	200	40.00
Archeologist consultant	01/11/2015	30/11/2015	14.5	560	8120.00
Geophysical consultant crew	07/08/2015	18/06/2016		flat	54095.00
Geophysicist consultant	07/08/2015	15/09/2016		flat	27910.39
Geologist	01/09/2016	15/09/2016	7	500	3500.00
Prospector 1	01/09/2016	13/09/2016	6	350	2100.00
Prospector 2	01/09/2016	13/09/2016	2	350	700.00
Prospecting assistant	01/09/2016	03/09/2016	2	250	500.00
				Totals	488195.42

I, Michael Seabrook, P.Geo., BSc. do hereby certify that:

- 1. I am a member of the Association of Professional Engineers and Geoscientists of Alberta (APEGA).
- 2. I attained the degree of Bachelor of Science (BSc.) in geology from the University of Calgary, Calgary, Alberta in 2008.
- 3. I have worked in the geological exploration industry for 10 years as an independent contractor.
- 4. I acted as an exploration geologist for PJX Resources Inc. during this program and have visited the property many times.
- 1. I, and my co-author, D. Pighin, are responsible for the preparation of this report entitled: "Diamond Drilling and Geophysics on the Vine Property and Geological Mapping and Chip Sampling on the Zinger and Eddy Properties, Southeastern British Columbia", dated January 17, 2016.

Dated this 17th Day of January, 2016.

Michael Seabrook, P.Geo.

Vine, Zinger and Eddy properties, southeastern B.C.

I, David L. Pighin, P. Geo. do hereby certify that:

- 2. I am a self employed consulting geologist whose office is at Hidden Valley Road, Cranbrook, BC. Mailing address is 301 8th Street S. Cranbrook BC, V1C 1P2.
- 3. I am a member in good standing of the Association of Professional Engineers and Geoscientists of the province of British Columbia.
- 4. I have been actively involved in mining and exploration geology, primarily in the Province of British Columbia, for the past 50 years.
- 5. I was employed by Cominco Ltd. for 24 years, first as a prospector, then as an exploration technician, and finally as an exploration geologist.
- 6. Since 1989 I have worked for numerous junior exploration companies.
- 7. I have worked as an exploration geologist in BC, the Yukon, the NWT, New Brunswick, in most of the western United States and Mexico.
- 8. I have designed numerous dimond drill programs small and large (>2 million dollars)
- 9. I have planned and managed numerous exploration programs designed to find deposits of base metals, tungsten, molybdenum, gold, diamonds, and rare earth metals.
- 10. I worked on the Vine property in the Purcell Mountains under contract to PJX Resources Ltd. and acted as exploration supervisor during the program discussed in this report.
- 11. I, and my co-author, M. Seabrook, are responsible for the preparation of this report entitled: "Diamond Drilling and Geophysics on the Vine Property and Geological Mapping and Chip Sampling on the Zinger and Eddy Properties, Southeastern British Columbia", dated January 17, 2016.

Dated this 17th Day of January, 2016.

<u>Jaul J. Min</u> David L. Pighin, P.G.

Vine, Zinger and Eddy properties, southeastern B.C.

Appendix 4: Vine, Zinger and Eddy properties mineral claim list

Vine property

Tenure	Tenure Name	Owner	Owner Number	Туре	Issue Date	Good To	Status	Area (ha)
Number	-	Name	-	-	_	Date		
380410	VP 6	PJX	256589 (100%)	Mineral	2000/sep/04	2024/nov/03	GOOD	25
380411	VP 7	PJX	256589 (100%)	Mineral	2000/sep/04	2024/nov/03	GOOD	25
380412	VP 8	PJX	256589 (100%)	Mineral	2000/sep/04	2024/nov/03	GOOD	25
380413	VP 9	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
380414	VP 10	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
380415	VP 11	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/04	GOOD	25
380416	VP 12	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
380417	VP 13	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/04	GOOD	25
380418	VP 14	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
380419	VP 15	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/04	GOOD	25
380420	VP 16	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
380421	VP 17	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
380422	VP 18	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
380423	VP 19	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
380424	VP 20	PJX	256589 (100%)	Mineral	2000/sep/04	2023/nov/03	GOOD	25
832821	VINENW	PJX	256589 (100%)	Mineral	2010/sep/05	2024/nov/04	GOOD	84.0848
938674		PJX	256589 (100%)	Mineral	2011/dec/23	2018/apr/24	GOOD	21.0201
938675		PJX	256589 (100%)	Mineral	2011/dec/23	2018/nov/25	GOOD	147.1078
938676		PJX	256589 (100%)	Mineral	2011/dec/23	2018/apr/24	GOOD	21.0235
1047053		PJX	256589 (100%)	Mineral	2016/oct/02	2017/oct/02	GOOD	63.0605
1032872		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	84.0681
1032873		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	84.0808
1032874		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	126.0777
1032875		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	189.0692
1032877		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	168.11
1032878		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	168.1059
1032879		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	189.0891
1032880		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	126.0184
1032881		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	126.0577
1032882		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	126.0563
1032883		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	126.0344
1032884		PJX	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	84.0218
1032000			250509 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	04.021
1032000			256580 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	84 0008
1032007			250509 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	04.0090
1032800		PIY	256589 (100%)	Mineral	2014/dec/22	2019/dec/22	GOOD	105.0813
505873		PIX	256589 (100%)	Mineral	2014/060/22 2005/feb/04	2019/0ec/22 2018/pov/20	GOOD	103.0803
505880		PIX	256589 (100%)	Mineral	2005/feb/04	2018/nov/20	GOOD	42 052
505881		PIX	256589 (100%)	Mineral	2005/feb/04	2018/nov/20	GOOD	21 026
505882		PJX	256589 (100%)	Mineral	2005/feb/04	2018/nov/20	GOOD	21.020
505883		PIX	256589 (100%)	Mineral	2005/feb/04	2018/nov/20	GOOD	84 093
505884		PIX	256589 (100%)	Mineral	2005/feb/04	2018/nov/20	GOOD	42 046
505885		P.IX	256589 (100%)	Mineral	2005/feb/04	2018/nov/20	GOOD	509 463
505886		P.IX	256589 (100%)	Mineral	2005/feb/04	2018/nov/20	GOOD	42 054
505887		PJX	256589 (100%)	Mineral	2005/feb/04	2018/nov/20	GOOD	42.05
506089		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.041
506090		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	21.02
506091		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/21	GOOD	42.038
506092		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	21.019
506105		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	84.044
506107		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	84.036
506108		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.023
506110		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	84.043
506116		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.024
506117		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	21.012
506118		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.021
506119		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	105.042
506120		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.016
506122		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.011

Vine, Zinger and Eddy properties, southeastern B.C.

PJX Resources Inc.

506123	-	PIX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42 007
506125		PIX	256589 (100%)	Minoral	2005/feb/07	2018/nov/20	GOOD	21.005
506125			256580 (10078)	Mineral	2005/feb/07	2010/1100/20	COOD	21.003
500120		FJA	200009 (100%)	Mineral	2005/1eb/07	2010/1107/20	GOOD	21.004
506127		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.009
506128		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	21.007
506129		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.009
506130		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	21.007
506131		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.009
506132		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	21.007
506133		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	84.019
506134		P.IX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	42 014
506135		PIX	256589 (100%)	Mineral	2005/feb/07	2019/nov/21	GOOD	42 009
506136		PIX	256589 (100%)	Mineral	2005/feb/07	2010/nov/21	GOOD	21.003
506130			256580 (10078)	Mineral	2005/feb/07	2019/1107/20	COOD	42.000
500137		FJA	250509 (100%)	Mineral	2005/1eb/07	2019/1107/21	GOOD	42.009
506138		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	21.007
506139		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/21	GOOD	420.137
506140		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	42.009
506141		PJX	256589 (100%)	Mineral	2005/feb/07	2019/dec/01	GOOD	525.013
506142		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/21	GOOD	21.007
506143		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/21	GOOD	461.962
506144		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	63.04
506145		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	21.014
506146		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	42.031
506147		PIX	256589 (100%)	Mineral	2005/feb/07	2019/nov/21	GOOD	21 015
506148		PIX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	42 038
506150		PIX	256589 (100%)	Minoral	2005/feb/07	2010/nov/20	GOOD	42.000
506155		PIX	256580 (100%)	Mineral	2005/feb/07	2019/1101/20	GOOD	21.023
500155		FJA	250509(100%)	Mineral	2005/feb/07	2019/1107/20	GOOD	21.012
506156		PJX	250569 (100%)	Mineral	2005/1eb/07	2016/1107/21	GOOD	21.015
506157		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/21	GOOD	42.019
506159		PJX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.019
506160		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	21.009
506162		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	21.009
506165		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	84.037
506166		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	42.018
506167		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	21.012
506168		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	21.008
506169		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	42.027
506171		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	42.031
506173		P.IX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	273 198
506174		PIX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.04
506175		PIX	256589 (100%)	Mineral	2005/feb/07	2018/nov/20	GOOD	42.043
506175		DIX	256580 (100%)	Minoral	2005/feb/07	2018/nov/20	GOOD	42.043
506170		FJA	250509(100%)	Mineral	2005/1eb/07	2010/1107/20	GOOD	42.041
506177		PJA	200009 (100%)	Mineral	2005/1eb/07	2019/1100/21	GOOD	03.072
506165		PJX	250589 (100%)	Mineral	2005/Teb/07	2019/100/20	GOOD	396.91
506186		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	20.993
506187		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	20.993
506188		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	20.993
506189		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	20.993
506190		PJX	256589 (100%)	Mineral	2005/feb/07	2019/nov/20	GOOD	41.988
506780		PJX	256589 (100%)	Mineral	2005/feb/11	2019/nov/20	GOOD	84.068
506781		PJX	256589 (100%)	Mineral	2005/feb/11	2019/nov/20	GOOD	21.014
506782		PJX	256589 (100%)	Mineral	2005/feb/11	2019/nov/20	GOOD	21.014
506783		PJX	256589 (100%)	Mineral	2005/feb/11	2019/nov/20	GOOD	21.012
506784		PJX	256589 (100%)	Mineral	2005/feb/11	2019/nov/20	GOOD	63.04
506785		PIX	256589 (100%)	Mineral	2005/feb/11	2019/nov/20	GOOD	21 011
506786		PIX	256589 (100%)	Mineral	2005/feb/11	2019/nov/20	GOOD	42 022
506797		DIV	256580 (100%)	Minoral	2005/fob/11	2010/100/20	GOOD	12.022
070620			256580 (100%)	Minoral	2003/160/11 2012/mor/22	2019/100/20	COOD	105 024
970029		P IV	200009 (100%)	Mineral	2012/IIIdl/23	2010/api/24	COOD	105.031
970649	LUIVIB Z	PJX		Mineral	2012/mar/23	2016/apr/24	GOOD	100.0919
1018945		PJX	206589 (100%)	wineral	2013/apr/29	2018/nov/20	GOOD	105.0288
1046735		PJX	256589 (100%)	Mineral	2011/dec/05	2018/nov/20	GOOD	189.2097
1046737		PJX	256589 (100%)	Mineral	2013/apr/30	2018/nov/20	GOOD	105.0621

Zinger property

Tenure Number	Tenure Name	Owner Name	Owner Number	Туре	Issue Date	Good To Date	Status	Area (ha)
515846		PJX	256589 (100%)	Mineral	2005/jul/02	2018/nov/20	GOOD	335.736
1046745		PJX	256589 (100%)	Mineral	2005/jul/02	2018/nov/20	GOOD	167.8149
515851		PJX	256589 (100%)	Mineral	2005/jul/03	2018/nov/20	GOOD	377.811
515852		PJX	256589 (100%)	Mineral	2005/jul/03	2018/nov/20	GOOD	419.94
1047003		PJX	256589 (100%)	Mineral	2005/jul/03	2017/oct/01	GOOD	83.9756
512231		PJX	256589 (100%)	Mineral	2005/may/08	2018/nov/20	GOOD	41.927
512232		PJX	256589 (100%)	Mineral	2005/may/08	2018/nov/20	GOOD	377.347
544570		PJX	256589 (100%)	Mineral	2006/oct/28	2018/nov/01	GOOD	252.1772
544571		PJX	256589 (100%)	Mineral	2006/oct/28	2018/nov/01	GOOD	294.1299
544572		PJX	256589 (100%)	Mineral	2006/oct/28	2018/nov/01	GOOD	168.1182
544573		PJX	256589 (100%)	Mineral	2006/oct/28	2018/nov/01	GOOD	189.0831
544574		PJX	256589 (100%)	Mineral	2006/oct/28	2018/nov/01	GOOD	315.0391
544575		PJX	256589 (100%)	Mineral	2006/oct/28	2018/nov/20	GOOD	126.0254
544578		PJX	256589 (100%)	Mineral	2006/oct/28	2018/nov/20	GOOD	21.0063
544581		PJX	256589 (100%)	Mineral	2006/oct/28	2018/nov/20	GOOD	21.0167
1016726		PJX	256589 (100%)	Mineral	2013/feb/06	2018/nov/20	GOOD	357.3379
1033986		PJX	256589 (100%)	Mineral	2015/feb/11	2019/feb/11	GOOD	42.0272
1047663		PJX	256589 (100%)	Mineral	2016/nov/06	2017/nov/06	GOOD	251.7606
1047664		PJX	256589 (100%)	Mineral	2016/nov/06	2017/nov/06	GOOD	356.5262
1047665		PJX	256589 (100%)	Mineral	2016/nov/06	2017/nov/06	GOOD	251.6775
1047689		PJX	256589 (100%)	Mineral	2016/nov/07	2017/nov/07	GOOD	104.8029
1047690		PJX	256589 (100%)	Mineral	2016/nov/07	2017/nov/07	GOOD	251.5956
1047691		PJX	256589 (100%)	Mineral	2016/nov/07	2017/nov/07	GOOD	293.6011
1047692		PJX	256589 (100%)	Mineral	2016/nov/07	2017/nov/07	GOOD	167.8938
1047693		PJX	256589 (100%)	Mineral	2016/nov/07	2017/nov/07	GOOD	41.982
1047694		PJX	256589 (100%)	Mineral	2016/nov/07	2017/nov/07	GOOD	524.1527
1047695		PJX	256589 (100%)	Mineral	2016/nov/07	2017/nov/07	GOOD	629.0138
1047696		PJX	256589 (100%)	Mineral	2016/nov/07	2017/nov/07	GOOD	335.3779
1047028	ZING 16-1	PJX	256589 (100%)	Mineral	2016/oct/02	2017/oct/02	GOOD	1323.1756
1047033	ZING 16-2	PJX	256589 (100%)	Mineral	2016/oct/02	2017/oct/02	GOOD	1091.0986
1047036	ZING 16-3	PJX	256589 (100%)	Mineral	2016/oct/02	2017/oct/02	GOOD	1363.4652
1047043	ZING 16-4	PJX	256589 (100%)	Mineral	2016/oct/02	2017/oct/02	GOOD	83.9809

Eddy property

Tenure Number	Tenure Name	Owner Name	Owner Number	Туре	Issue Date	Good To Date	Status	Area (ha)
516291	-	PJX	256589 (100%)	Mineral	2005/iul/07	2018/nov/20	GOOD	189.185
516293		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	273.202
516294		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	210.101
516296		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	210.159
516297		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	399.503
516299		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	546.637
516301		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	210.193
516302		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	42.048
516303		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	63.043
516305		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	483.556
516306		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	42.03
516308		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	21.01
516310		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	63.039
516312		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	126.05
516313		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	63.056
516317		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	483.153
516318		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	42.054
516319		PJX	256589 (100%)	Mineral	2005/jul/07	2018/nov/20	GOOD	273.217
512215		PJX	256589 (100%)	Mineral	2005/may/08	2018/nov/20	GOOD	461.754
512216		PJX	256589 (100%)	Mineral	2005/may/08	2018/nov/20	GOOD	209.955
512217		PJX	256589 (100%)	Mineral	2005/may/08	2018/nov/20	GOOD	230.913
512221		PJX	256589 (100%)	Mineral	2005/may/08	2018/nov/20	GOOD	377.672
562994	WEAVERNW	PJX	256589 (100%)	Mineral	2007/jul/14	2018/nov/20	GOOD	168.1247
840895		PJX	256589 (100%)	Mineral	2010/dec/15	2018/nov/20	GOOD	357.0539

45

Vine, Zinger and Eddy properties, southeastern B.C.

840896	-	PJX	256589 (100%)	Mineral	2010/dec/15	2018/nov/20	GOOD	42.0116
833433		PJX	256589 (100%)	Mineral	2010/sep/13	2018/nov/20	GOOD	440.9692
833435	JK2	PJX	256589 (100%)	Mineral	2010/sep/13	2018/nov/20	GOOD	419.9727
833436	JK3	PJX	256589 (100%)	Mineral	2010/sep/13	2018/nov/20	GOOD	378.136
833437	JK4	PJX	256589 (100%)	Mineral	2010/sep/13	2018/nov/20	GOOD	63.0166
936202		PJX	256589 (100%)	Mineral	2011/dec/05	2018/nov/20	GOOD	210.1702
896135		PJX	256589 (100%)	Mineral	2011/sep/06	2018/nov/20	GOOD	83.9941
1032233		PJX	256589 (100%)	Mineral	2014/nov/16	2019/nov/16	GOOD	21.0345
1032242		PJX	256589 (100%)	Mineral	2014/nov/16	2019/nov/16	GOOD	21.0361
1032255		PJX	256589 (100%)	Mineral	2014/nov/17	2019/nov/17	GOOD	42.0153
1032256		PJX	256589 (100%)	Mineral	2014/nov/17	2019/nov/17	GOOD	21.005
1032258		PJX	256589 (100%)	Mineral	2014/nov/17	2019/nov/17	GOOD	105.1607
1032260		PJX	256589 (100%)	Mineral	2014/nov/17	2019/nov/17	GOOD	63.0847
1035687		PJX	256589 (100%)	Mineral	2015/apr/26	2019/apr/26	GOOD	83.9456
1035688		PJX	256589 (100%)	Mineral	2015/apr/26	2019/apr/26	GOOD	41.9679
1047039	ED 16-1	PJX	256589 (100%)	Mineral	2016/oct/02	2017/oct/02	GOOD	503.534
1047040	ED 16-2	PJX	256589 (100%)	Mineral	2016/oct/02	2017/oct/02	GOOD	168.1827
1047052		PJX	256589 (100%)	Mineral	2016/oct/02	2017/oct/02	GOOD	41.999
1046830		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	63.0624
1046831		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	168.2343
1046832		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	209.9548
1046834		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	398.8044
1046835		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	629.4451
1046836		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	21.0069
1046837		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	126.0596
1046838		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	42.0468
1046839		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	293.6781
1046840		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	42.0245
1046841		PJX	256589 (100%)	Mineral	2016/sep/21	2017/sep/21	GOOD	104.9424

Appendix 5: Diamond drill hole logs for VA15-16 to VA16-23

	\bigcirc						
Drill Hole Record:				Page	# / of		
PROPERTY: VINE PROPERTY	HORI. COMP: 210.65	5	НОГ	HOIEH. VP 15-16			
LOCATION: TOP OF PEAKINE MTN	VERT. COMP: 223.54	4	1101	Lπ. <u>x///)</u>	7 11 41		
COMMENCED: 1/00 9, 2015 COMPLETED: Nov. 12, 2019	CORR. DIP: -46.70	LEN	GTH: <u>30</u>	1.16 Me	etets.		
COORDS: Long. Lat.	TRUE BEARING:		DRILL CONT	RACTOR: F&B.	Dulleas		
COORDS: UTM (E) 583920 (N) 5473795 (EL)	% RECOVERY:		CORE SIZE:	NQ	7		
COORDS: Grid (E) (N) (EL)	LOGGED DATE: Nov. 201	15	CASING:	2.74			
ELEVATION: 1300 applex. COLLAR Dip: -45° Azi: 230°	LOGGED BY: D.L. PIGH	HN	CORE STOR	AGE: Vine PA	PERTY		
OBJECTIVE:							
SURVEYS: Depth: Dip: Azi:	TYPE:		Additional	Depth:	Dip:	Azi:	
From To LITHOLOGY: Grabbro 9.0 Sell or Dyke ?, Contacts	- Baddly gracened -	up.	Surveys:	2 20.20.0	-45.8	234.8°	
2.74-9.0	/ /	l		204.0	-47.7	237.1°	
			-	307.0	- 47.5	240.0	
COLOR: Derk green							
PRIMARY STRUCTURE: TExture: Med. Itln: equicristalline						-	
TECTONIC STRUCTURE: Sectles thin zones of gouges motor	is breecia goves	, Con	locts deay	irregela	/ .		
GENERAL ALTERATION: Gen weakly temonitie 1	Surface weather	erep :					
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From	То	Length				
						2	
ADDITIONAL OBSERVATIONS:							

Metric ____ Imperial____

rill Hole Record:	10							P2-1#	Zof
$\frac{1}{0 - 16.0}$	Hygell te interbe	dded Calcoreous	Argell	le_			HOLE #:	VAISO	6
COLOR: da PRIMARY STRI Beddwice	JCTURE: Thick Bedded	but finely pore	Vel Ja	nineter	6,				
TECTONIC STR	UCTURE: NIL	<u>+0 / Ce - 145</u>							
GENERAL ALTE	RATION: Strongly Cart			Л. (
	Anon Strongy Can	monzeej Sericitizo	d & Diot	tizod.				1	
MINERALIZATIO	N& ASSOCIATED ALTERATIONS, HOS diss. Species of Py	TSTRUCTURE:	SAMPLE #	From	То	Length _]		
						v	······	······································	
IONAL OBSERVATIONS:		2							·

Drill Hole Reco	ord:	\bigcirc			
From To	LITHOLOGY: Mainly Hygellite and Selly Hycelly	Po			Page # > of
16.0-21.3	MEADOW BROOK MARKER 16.0 to 19.0. Metch	to Sat. 1	1. Spen. 27	HOLE #: <u>///</u>	15-16
)7====		
	COLOR: Banded Lite and Dark grey				
	PRIMARY STRUCTURE: Med. to Thin bedded, Beddene Sh	arp & flat.			
		(
	TECTONIC STRUCTURE:				
	NUL ;				

	GENERAL ALTERATION: Regional fine Service tischion & Bo	otitisation.	Localde. Pa	leavenne	
			and the	active bas 1	
				alem and an	
	MINERALIZATION & ASSOCIATED ALTERATIONS WERE	1			
	White Associated Alterations, HOST STRUCTURE:	SAMPLE # From	To Le	ength	
		·			
		-			
		·			P.
-					
					Ť.
					7
		······································			
DDITIONAL OBSER	VATIONS:				

Drill Hole Reco	ord:		
From To	LITHOLOGY: Gabbro, Contacts are rubbly, D	ike? Sill?	HOLF #: UAIS - 16
41.2 20.0		e :	
	COLOR: Davic green.		
	PRIMARY STRUCTURE: Dquicaystalline med. grained,		
	TECTONIC STRUCTURE:		
	GENERAL ALTERATION:		
	MINERALIZATION & ASSOCIATED ALTERATIONS HOST STRUCTURE		
	ALL	SAMPLE # From To Length	
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
			/*/*/*/*/*
DDITIONAL OBSER	RVATIONS:		

Interiory, Mainly Jaumparhille with inroyally hand & Class & HOLE #. Interiory, Mainly allow & Solumber Pace Carles of Chargershipse Cake #100 42°, HOLE #. 1288-920 Stall agains to be forethe to Bookstop; Stall agains to be forethe to Bookstop; course: Markersmither, Hole with Unlike socks; emmany sectors: Note of the social of the Bookstop; course: Markersmither, Hole with Unlike socks; emmany sectors: Note of the social of the Bookstop; emmany sectors: Stall agains;	Drill Hole Recor	d:			Dow the of
PRIMARY STRUCTURE: MOSSINE, DO Beddine, Some Sederinel Clocks in sele Biolote - Series, Otherate motore, Sederice & Stew no pointer structure Such as below, etc. HECTONIC STRUCTURE: Allert Sebs. appear to have been Steven Streechared pre-tomprophyre. Biodecia the set of the second structure for the second structure of the second structur	From To 28-8 - 42,9	LITHOLOGY: Mainly Samprophyre with irregular highly altered Sedenews, Base Contact of Ja and appears to be porceled to Beddeilo COLOR: Mottled Block with where specks.	Bands & Clasts uprophyne cub	¥ HOLE #:	V17-15-16
TECTONICSTRUCTURE: CONTRACT Sets. applest to have been Stemp Structured pre-tamprophyse. Selection and Incident State production of the land Scherifett, Richtheid and Cocally Carlowetropic Carlowetropic and Scherifett, Biotcheid and Cocally Carlowetropic and Scherifett, Biotcheid and Cocally Carlowetropic and Scherifett, Biotcheid and Cocally Carlowetropic and Called Angeletics Selection of the select and Scherifett, Biotcheid and Cocally Carlowetropic and Called Angeletics Selection of the select and Scherifett, Biotcheid and Cocally Carlowetropic and Called Angeletics Selection of the select and Scherifett, Biotcheid and Cocally Carlowetropic and Called Angeletics Selection of the select and Scherifettics and Scherifett		Mary STRUCTURE: Massive, No Bedding, Some motait, Sedments Skow no primary 5	Sedurient Closts thecture such	as beblug e le.	e - Sericle, Cerbonate
GENERAL ALTERATION: Set & are gan Strongly seriestic, and Schoufas, Bistchijed and Coalle, Corthurchizgid Calacite replaces Selicite HS. Which are about focalle, O 38.6. Smeel encounder patch & Epidate. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLEN B.S. & Westly diss. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLEN B.S. & Westly diss. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLEN B.S. & Westly diss. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLEN B.S. & Westly diss. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLEN B.S. & Westly diss. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLEN B.S. & Westly diss. MINERALIZATION & ASSOCIATED ALTERATIONS;		ECTONIC STRUCTURE: Allevel Sebs. appear to h	aue been Sleen	np Streetured	pre-Lamprophyre.
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length		ENERAL ALTERATION: Seibs ave gen strangly series Colcite replaces Selevite etts. Which an Datch of Epidote. Tale Very irregelad potchs an	tie, and Schoele abund. Tocally & Veenlets occur	et, Biotilized and , @ 38.6, Sm Through -out Th	Locally Carbonatizo's reel irrequelor e Tamprophyre.
Delitional observations:	N	INERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From	To length	
		2_38.4, weckly diss. Avsenopynite + pyrthotile	s assoc with e	pidot	
					is <u></u>
DDITIONAL OBSERVATIONS:					
	DDITIONAL OBSERV	ATIONS:			

rom To								
	LITHOLOGY: Colorrocles S. D. J. Arrow PA		n /		T	Page # O of		
19-69.4	and colongood Sallet And 121 1	bedded sel	PStone,	0	HOLE #: <u> A - 1</u>	15-16		
	Patchs & theinlites bilits bilits bilit board of any story as inequilar							
	COLOR: Grey mottled and Strenked Black	Olle		112 -	12.			
	PRIMARY STRUCTURE: Sedments Consist marily of Site	La sigl	Auron A.	h at am	MA R	01 1		
	distorted due to Salt Sad de Prenation ? 10 Barts and hand in the argellite, Bedding plans are							
	of this interval is Lamprophyre, and scatte	red the variable	a en par	Salis	e clasts p	ble about.	25%	
	Bedoing to C/A @ 42.0= 45°, @ 53:0= 55°, @ 64.0= 3	22. @ 67.6 =	10°	JECHON	-			
	TECTONIC STRUCTURE: 66.0 to 66.4 Shear 3 one cuts C/A@	500	()				an tara da secondo de la compañía d	
						1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		
						1		
	R				nandelin den filt de rigenet de angelen en de anterior de ser en de anterior de ser en de anterior de ser en d			
	GENERAL ALTERATION: Keguinel, auerprintad, by Lale Bustitesation & adailiaction, Potcher Scheric Righting Mailes							
	in Selfstone bads. Take calcite Verilets and blabs scottered through - wat the Section							
	MINERALIZATION & ASSOCIATED ALTERATIONS LIGET ATTAINED							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Fore diss. Pyrrhotite of 6000 to 60.2 Particle	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: fare diss. Pyrrhotite at 60.0 to 60.3 Rubbly Cimonific Quartzu.	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: fare diss. Pyrrhotite at 60.0 to 60.3 Rubbly Cimonific Queentgu	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Fare diss. Pyrrhotite at 60.0 to 60.3 Rubbly (imonific Queentgue	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: fore diss. Pyrrhotite at 60.0 to 60.3 Rubbly (imonific Queentgue	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: fore diss. Pyrrhotite at 60.0 to 60.3 Rubbly (imonific Quartz)	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Jarc diss. Pytrhotite A 60.0 to 60.3 Rubbly Cimonific Queentgu	SAMPLE # Fro	m To					
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Fare diss. Pyrrhotite A 60.0 to 60.3 Rubbly (imonific Queentgue	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: fore diss. Pyrrhotite at 60.0 to 60.3 Rubbly (imonific Queentgue	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: fore diss. Pyrrhotite of 60.0 to 60.3 Rubbly (imonific Quartz)	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: fare diss. Pyrrhotite at 60.0 to 60.3 Rubbly limonific Dreartzy	SAMPLE # Fro	m To	Length				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: fare diss. Pytrhotite at 60.0 to 60.3 Rubbly Cimonific Dready	SAMPLE # Fro	m To	Length				

Drill Hole Record:	MIBIC to Garly Page # 7 of
69.4 - 116.6 and Silly Argillite, Slump unit	the Calcarcans Argillule. HOLE #: VA-15-16
COLOR: Grey and dorkgrey	
PRIMARY STRUCTURE: Med to Thin Bedded Locally a Hygellite & Siltstone Clasts, Bedding	is distinct and locally flat, However, 20 3/0 5/
This section is Strongly deformed by Saft @ 91.0=41°, @ 104.4 = 45° 110.0 to 121.0 Massiv	Sel. deformation 1 Bedduig to CH @ 11.8 = 39° @ 77.5 2 45° e Sellstore Beds.
Veins which cuts C/A at 38°, Breccia Zone	Zone cats C/H@ 45°, Reets 2 Small Messive Sulphede is parallel to Beddenn, @ 25,3 SCM thick Bread 3018
aut CIAO 40°, C 105.0 Toem Iluck Shear 30	ne Culs CHR 45° parallel to Bedders
GENERAL ALTERATION: Regional Biblitization, Sericitization afler Selenite are abundant Locally. Massue with potchos of Late Corbonatization	in & Silice fication, Selenite Casts, and calcute Silklone units are intensely sericitized and Selicified.
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From To Longth
@ 74.6, 1 cm thick Qtz Pynito Veen Cals C/	
@ 97.4 2-1cm Huick Massive Pyrite Vien cue @ 99.0. Otz Vein - with Minus Pyrite Culi C/A	1 C/4 @ 38°, Coarsely Alto Bistike Saluages occur on Veen Contack 240
ADDITIONAL OBSERVATIONS:	

Drill Hole Reco	rd:
From To	LITHOLOGY: Calcargous Silly Avgellile interbedded with Argellite HOLE #: 1/A/S-16
16.6-145.6	and Silty Hygillite.
	COLOR: Finly Caminated Black coloroous & sulty Avsillete, interpeter and P. I.t. M. M. A.
	PRIMARY STRUCTURE: Medi to then and Very thin Bedded, Beddena is flat & Sharp, Suffe Availity +
	Calcareous Silty Argullite beds are distinctly finely parallel laminated, Argullite bed gere show up
	Bedown to CIAR 1370-42° @ 1441- 40°
	TECTONIC STRUCTURE: NIL
	GENERAL ALTERATION: Regional Biotetischian & Soziaitischia Carbinda and have all
	Lote calcite xtls after Selenite are abundant in Some Argellite bedr.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:
	This I ame tAmm thich bedding parallel layers of Pyrite rave but scattered through and
	This interval, Pyrite + pyrchotite is Commonly weekly diss. through out the all the Seds,
	in This interval
CONTONAL OBSER	ATIONS:

Drill Hole Reco	ord:							
From To 143.6-181.6	LITHOLOGY: Siltstone minor interbedded This Interval is 20% Seltstone,	Argillete	HOLE #: VA 15-16					
	COLOR: Gon Grey to dark grey (wet) Sillston PRIMARY STRUCTURE: Med., Huck to Very thick B Gen. Jene graine & these are turbitite be have sharp-flet belding and are Commonle TECTONIC STRUCTURE: NIL.	edded Sellstones de mainly with of feicely parallel	grey to Bleck units, with indistanct Wany Bedding, E pelitic Bedtops; Akgillite interbeds I Tamineted.					
	GENERAL ALTERATION: Mainly Regional, Sericite - Biotite and Silicification, mainly in Siltatone Bads, Some beds have weathy calcareous patches, hate calcite replaceing Solenite etts can be abundant in Some of the Siltstone & Argillite bebs, Late Books of chlonike? also maybe filling Selenete casts.							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rare weak patches & Diss. Pyrete + Pyret From 162.6 + 0 170.8 Quartz with Coorsely ×	SAMPLE# From hotete occur mi ctlin. Museovite & Bio	m To Length Selfstore beds & Augellele beds otite Saluages host minor pyrite, cut GHE 22°.					
JUITIONAL OBSER	IVATIONS:							

rill Hole Reco	Paus # /0 of
From To	LITHOLOGY: Silty Argillite, and Calcareous Silty Argellite. Minor Selfstone HOLE #: MA 15-16
8.6 - 192.0	90% of interval is silty Higgielde, and Calcareous Argelite. 11022 #. 1113-16
	COLOR: Dark Braunist area of S
	PRIMARY STRUCTURE: Med. to this on by Mary this for the B (1- De
	Sulty Availlite beds, are gen. Very Sindy parallel Tanning led
	Perdence to CIA @ 190= 40°
	TECTONIC STRUCTURE: NIL.
	GENERAL ALTERATION: Regimal Biotitization + Sericitization, with Jole? Carbonatization
	, j j j j j j j j j j j j j j j j j j j
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:
	Some Very this I to 2 men wispy Pyrite & Pyrchafite Caners pavallal I hall
	Pytthotite + pyrite is very weaply dis- mainly in selly to Calcarages Averal to Bat
TIONAL OBSER	VATIONS:

ill Hole Reco	rd: Page #// of							
rom To 2.0 - 228.0	LITHOLOGY: Sultstone, minor interbedded Hygellite & Sulty Tryellite HOLE #: VA15-16 Interval is 20% Siltstone							
	COLOR: Grey to Dort. Ofor							
	PRIMARY STRUCTURE: Thick to Very Twick balled Belden Belde							
	on Amillite beds. Selfstone Beds ave red. ganind Since beds are and I abielor							
	Beds with E+D Bed Tops, Beddung to GAO 210.0 = 420							
	TECTONIC STRUCTURE: Af 223.0 to 223.2 Breccia Zone Cufe CIMP So head the Color to							
	The way offer to medice Dy Alecte							
	Specks & Lala Continuetoria							
	1 Cornster Sollar							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length							
	201. oto 202. 2 Quarte Vien with Biotite Salvages along contacts, lost rare synite and cats C/A 50							
	210 to 216's quartiz cut C/A@ 22°, hosts abundant printe and Timonete.							
-								

Drill Hole Reco	rd:	
From To	LITHOLOGY: Calcorpous Silfs Availlete interfalled a plan Anna Al	Page #/Z of
228.0 - 321	and rarely Arguilite. Interpel sich Calesans Starty Hogelite	HOLE #: <u>V/7/5-/6</u>
END	GUNTY MARKER Matched From 281,8 to 294.8 But Scattered this Markey to lack +	Latte DIER Y
	COLOR: Band Lite grey AND Dark grey	of 241.55. Port of Crinit/ Notice Stol
OF	PRIMARY STRUCTURE: Gen. Med to This and Very this bedded Bedding Dura and	An Orstal
	and Calcareous Arg. Reds are finishe porable lowingtel lite areas Ciple Man	horp and Aloty Selly Hugelite
Hole.	Massure Med to Coarse abained, weakly colorenes from 242 52, 2012	takes Twe Structure-Jest
	Beckenc to CA @ 230.0= 41°, @ 259.9 = 45° to CIA, @ 273.7 - 47° to CIA @ 302 0	100 From 281.34 to 289.7
	TECTONIC STRUCTURE: 246.5 +0 246.8 Braccia Zime Cals CAR #20 Javallet to Ball:	EYS TO CIDA.
	Clads in calcite motrie, From 266.4 to 266.7. Breccia zone auf- alu a 100	e) consists mainly of lamprophre
	this widely scattered calcite Veenlets from 266.0 to 273.7 and Clip are all	at and I Delheup
	is is the the the	or to Dedouse
	GENERAL ALTERATION: Regional Beatitization of serie it pation, with tata? adailing	Vin Maters Dant A
	beds, are intensely silicified & Sericific. this appears to be tale affectation	non massive greatizete
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length	
	Pyrite & Pyrthotile occur Through out this interval as	weak disservice tions
	The sedements and as rore 2 mm to 4 mm beddeing parellel lay	as overall secontida Conte f
	dess Then 0.5% by Volume.	
	770 0 / 2020	
	19:9 to 280.4 anastomosing Quartz - calcite - Biotite host Blebs of Rywholk	e + Chalena, 3to Acm theat
	t 200 the longles of 10 0 2001	
0	En 287.3, 4CM Thick Calcute - Quartz -Biotile Vein host Blabs & Mossing	2 Pyrtholite + rave galena.
	ait also to 305.5 Quartz Vein host abundant Pypthotte anastom	serve vein 5cm to 10 cm Thick?
	cut CIT at longles of 63°, 15°+10°	
ADDITIONAL OBSER	/ATIONS:	

ROPERTY: 1/INF PROPERTY	HORL COMP.	7/		1/1/1E	17	
OCATION: JUP OF PERVINE NOTAL	VERT COMP: 1/9	17	HOLE#	: VA12-	-11	
OMMENCED: NOV. 14, 2015 COMPLETED:	CORR. DIP:	01	LENGT	H:_/37	7,5	1
OORDS: Long. Lat.	TRUE BEARING:		DRILL CONTRACT	TOR: FAR	DOITTIN	G
OORDS: UTM (E) 583920 (N) 5473795 (EL)	% RECOVERY:		CORE SIZE:	ND	UNICLIN	
OORDS: Grid (E) (N) (EL)	LOGGED DATE:		CASING: 3	.0		
LEVATION: / 300 Maprox, COLLAR Dip: -60 Azi: 055	LOGGED BY: D. L. I-	ighin	CORE STORAGE:	VINE PRO	OPERTY	
BJECTIVE:		0				
URVEYS: Depth: Dip: Azi:	TYPE:		Additional	Depth:	Dip:	Azi:
From To LITHOLOGY: Pine Selly Hraelhte interbedde	er Selfstone		Surveys:	21010	-61	59.6°
. O. to 24.3 MEADOUY BROOK MARKER ZONK. 3.0 to 24.3				40.7	-60.8	55.7
1010 of interval is more Bed Litelogy	and the second					
Bobling to CIAD 14.0 = 60°	e is shorp and flat	Sill Sima	feire to me	6. queing	/; 	
TECTONIC STRUCTURE: Colcite Lead fracture Cut C/A@ 2 GENERAL ALTERATION: Regional - Serieitization & Bio	28 + 31° titizate, late Linou	Te altenstic	in due to See	face a	Decther	e p
GENERAL ALTERATION & ASSOCIATED ALTERATIONS HOST STRUCTURE:	28 + 310 Litizate late Linou	Te alterestic	in due to See	Lace u	Vecther/a	et p
GENERAL ALTERATION: Regional - Serieitization & Bio	28 + 31° Litizate, late Linou SAMPLE # From	To Le	ngth	face u	Decther	
GENERAL ALTERATION: Regional - Seriaitization + Bio MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: M.	28 + 310 Litizate late Linou SAMPLE # From	Te albenstic	ngth	face u	Vectles/a	et p /
GENERAL ALTERATION: Regional - Sencitization & Bio MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: MUL.	SAMPLE # From	To Le	ngth	face u	Decther	ex.p
GENERAL ALTERATION: Regional - Serieitization + Bio	28 + 310 SAMPLE # From SAMPLE # From	To Le	ngth	face a	Vectleya	~~p
GENERAL ALTERATION: Regional - Sencitization + Bio MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: M.L.	SAMPLE # From	To Le	ngth	face u	Vectleva	
GENERAL ALTERATION: Regional - Semailization + Bio	SAMPLE # From	To Le	ngth	face a	Dectleya	

20.3

Metric ____ Imperial___

ch

From To	LITHOLOGY: STREAM							rage # 2	2 of	
3-32.0	interesting autoritie					HOLE	#: <u>VAIS</u>	5-17		
-							na in an			
	COLOR: Lite grey			CT Golden Angereich ausgew						
	PRIMARY STRUCTURE: Thick to Very Thick bedded	, Debbeing i	s ind	istinct.	Flerro 1	to make	Quaring	ſ		
		/		/			Journe	<u></u>		
	TECTONIC STRUCTURE: Franking 1									n maar an
	TECTORIC STRUCTURE: Proclanes as before									
	9									

	GENERAL ALTERATION: Reginal Straight Samilial	I in a Re	('i. 1)							
	Though Street Res and	unchely / 101	tetipod.		1					
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length		1		1	
					Jan					<u> </u>
	•				-					
		-		Amatol						
		-					- · · -		-	
							•	-		-
)
						-	-		-	
					Name of Concession, Name o		-	-		
		and the second			Magna 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010 - 2010	· · · · · · · · · · · · · · · · · · ·	-	-	-	<u></u>
							-	-		1
							- Longing - John Contraction	-	·	

rom To	
100	LITHOLOGY: Calcareous Argellite interpeddet Argelliter and Sillstone de HOLE #: VA15-17
0-45.3	interval is 50% calcareous Argeliste.
	COLOB: Calanning Am 1.11 Pt 11 11 11
	PRIMARY STRUCTURE: Mail I St. P. 11 1 and grey, Hrgillite is Jead gives, Selfstone Brownigh Sper
	Calcoreous Silty Hrapple Bade are tunically then Beddad, Deddeire Pleus are sharp and flat.
	grain and messive - Bedderr @ 42.0 - 550
	TECTONIC STRUCTURE: @ 39.2 - 5 cm thick gouge filled Shear - cuts C/A @ 23°.
-	
(GENERAL ALTERATION: Regimel Bightizetic and Sovia Listication Carton at the
	and severy and severy arriver arriver en seds, probably premery
Sec.	
	Repite + organizations, Host structure: SAMPLE # From To Length
4	widely sectled inequilar have Deine Direction of this enterval.
	The same product how your fine grained thate.
· · ·	

Drill Hole Rec	cord:			
From To	LITHOLOGY: HAGEN FAULT			rage # 4 of
<u>43.3 - 56.0</u>	Consists of a clast supported Breccie	with a Semi Lit.	horfieb HOLE #:	/ H I > - 1 /
	Calcarones gueese matrix		1	
	COLOR: MEttlet Black lite grey and to	Brownush greef.		
	PANNARY STRUCTURE: Westroyed by Tectonic Sum			
	TECTONIC STRUCTURE: Hagen Fault cuts C/A Ma	ink of 60°. Fault (Preside of the breeze	7
	Competent Seds from 49.7 to 53.0. Bedd	bung on these Seds, is	66° to CA. Cretact m	Evel El de C
	and free turing & Shearing is rave in emedia	tely adjacent Sedime	uls.	Dreep
	Colarto Se	mi - Jithofild by Ca	late, clasts in part i	are replaced bil
	Calcule	V		/ /
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From	To Length	
	Pyrite and Lessor Arsenopyrite is	diss. Through - out	matrix of the ball i	Rvennië
	Karely more Then 3º lo est. By Volo	eme.	0 1	
			·	······································
		······································		
		······································		
DDITIONAL OBSEI	RVATIONS:		ana ana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana amin'ny fanisana a	an a

Drill Hole Record:		Para # 5 of
From To LITHOLOGY: Selfstone minor interbeds of S. 56.0-80.0 Interval is 80% Selfstone	illy Avgelle.	HOLE #: <u>VA 15-17</u>
COLOR: Life greg to Brawnish Grey. PRIMARY STRUCTURE: Mainly Huck to Very thick bedd plans are wavy. Some Self Sid. deformation pre beds have shorp flat Beddeup plans Bedduce to Very-Very thick Selfstone Bed from 64.0 to 66.6 - TECTONIC STRUCTURE: 75.0 to 77.0 Quartz-Biotite Veins Vein thickness Ronge from Sem to 20 cm GENERAL ALTERATION: Regional. Screeitizetion, Biotitize	Bed varely und Bedded, 9 esent in Beds, Some Rik- Closs of C/AC 60.0= 60°, @ 80.3=60° s scul C/A mainly citi 95' randy etion, & Sulicification	Abing "en indistinct. But where distinct Is too, Silty Argullite - Hugillite "Ad"
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Pyrete + pyrrhotite weakly dess. in most of	SAMPLE # From To Lengt Sedencenty Beds	h
DITIONAL OBSERVATIONS:		

Drill Hole Rec	ord: 0 93.2 Rebburg 058/cM
From To	LITHOLOGY: Mainly Silty Argillite Jesson Argellite, Nore Selfone
81.0 - 124.0	Seds, en this enterval are 20% Argillet & Silly Augillite HOLE #: VM 13-11
	SUNDOWN MARKER BED 103.4 to 124.0, Altered Gabbro Sill 106.8 to 116.2.
	COLOR: (gen panded lite grey and dark grey, rorely Brawnish grey.
	PRIVIARY STRUCTURE: Mainly Fush to Very Then booked, Some med Bers
	Bedena to C/A @ 103.6 = 55° @ 116.7 - 68° 118 5- 572 @ 172.2 - 70° 1. P/n
	TECTONIC STRUCTURE: NIL.
	General alteration: Crabbro Sill altered to Biotite & Calcule, with fresh gabbro forming the
	contre of the sell.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length
	@ 104.6 Beccure parellel calcite Vein som thick host abund Arsenopynite
and the second secon	
-	
DDITIONAL OBSE	RVATIONS:

Drill Hole Reco	rd:						
From To	LITHOLOGY: Sulfstone, rave Argillite Bed tops				rage # / OT		
124.0-137.5	faterval is 25% Selfstone.			$- \left[HOLE \# : \frac{\sqrt{14}}{5} \right]$	-11		
	136.27. to 137.5 Biotitic angelleceous guarteric	Lune store					
END	COLOR: grey to Jule grey.						
	PRIMARY STRUCTURE: Med. to thick beddee, vere thin b	eds, Beddeng	· is endistinc	t and Very R.	2~2		
DE	,	/		1	5/1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
01	Bha I Cho 1-2 - 718						
	$\frac{1}{12} \frac{1}{12} \frac$	<u> </u>	1				
HOLE	Therefore Structure: (121.5, 20cm Tuck Gaartz Cel	cite Veen	Cuts CHA @	400			
	GENERAL ALTERATION: Logional interse Bratitization of Calicilia and Since						
	requires animal more + secretication and servicitization.						
				9 - Marine Marine Marine Carlos and			
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From	To Length				
		1 					
			-				
	· · · · · · · · · · · · · · · · · · ·						
	3						
		·	-				
	WATIONE						
DOTIONAL OBSER	VATIONS:						

	0			\bigcirc			fault 2	4°6 C/4	4	
2 Drill Hote Pa	angreti	interest of					-	Davio		
DROPERTY-	TINE			HORI COMP	37.44			LINIS 1	2	alen haven biller schem in den schellen bewerden.
LOCATION:	TOP OF PER	AVINE MTRI.		VERT. COMP: 2	27.44			VIFID=1	0	Alexandra (Alexandra), Alexandra
COMMENCED:	100 15,2015	COMPLETED: NOV. 18. 201	5	CORR. DIP:			LENGT	H: 335	8 M.	MILTON & BLOCK & BANK & BA
COORDS: Long.	ana an	Lat.		TRUE BEARING:	<u>. 1975</u>	n a general de la canta de	DRILL CONTRAC	TOR: FYB	Dull	enco
COORDS: UTM (E)	584075	(N) 5473643 (EL)		% RECOVERY:			CORE SIZE:	VQ	n Anna a she a she a she a she an a she an a she an a she a sh	/
COORDS: Grid (E)		(N) (EL)		LOGGED DATE:	NOU. 2015		CASING: 13			
ELEVATION: 1280	PAProk.	COLLAR Dip: - 45	Azi: -1803	logged by: <i>D.</i>	Li Piskin -	territados entra a descritados a destados	CORE STORAGE	Vine 12	oputy.	alikule ny dia kan di Washadhari kangan ang kan ang kana
OBJECTIVE:		er benan skan skan sken skan skan skan skan skan skan skan ska	Da pera bakan kakan kumun dakina dan kakan makina makina makina dakan da bara da kara dakina dakina dakina daki	1944-9646-1946-1946-1940-1940-1940-1940-1440-1440-1440-1440		an da an	abela laborera kozalaken sakon antosa era da sera da s	Neve i March V Anno 6 Alexe i Alexe de March March 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990		Nacional Administrative Sector Sector Sector
SURVEYS: Depth:		DIp:	Avz):	TYPE	da dara kenda da aka kan dabar nakar kadar kendara baharan dara maka dapat kan der	en der eindezen bestelnen der eine gedarten bezeiten der	Additional	Depth:	Dip:	A.zi:
From To	LITHOLOGY: HLDR	UDGE TRAGMENTAL,	Base Conlact.	is a fault	n. 1999 - June - Maria Maria Maria (1997) - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999		Surveys:	40.0	-45.7	180.8
1.5 - 26:4	Fragmental	from 1.5 to 20.6		*				140.0	-47.7	186.7
		annormality and an	nta da cana de cana de cana da	a a Alara ny kanana kanana kanana kanana kanana kanana kanana kana kana ka	n An Marco and an dia Parana di Barra and Anna an Anna	n an	NATIO DA GALINS SANDIS DA DIVERSI SANDIS DA GALINS AMAN NA MANINA MANINA MANINA MANINA MANINA MANINA MANINA MAN	240.0	-49.1	183.5
*****	COLOR: Mothed	and the Jecup Conde Sterk	. Gulley		umamamamamamama fannama			3.35.6	-48.6	185.0
	PRIMARY STRUCTURE:	Massure Fragmental	from Collor to f	sult at 20.9 n	elegs The	traquen	al as cl	ost Supp	orted,	
	TECTONIC STRUCTURE: and crushed	Fault Zone 2016 - 2 -grocend up Seden	26.4, cuts Cf rents.	A @ 24°;	Consists of	' abunda	ut Soft	fault g	Vauzes	
	GENERAL ALTERATION But Jocally Limon ite i	The Matrix es Strongly the matrix is straigly abundant in all f	Le Bistitizge by Silicified a S. Ametures due	relatively micitized to Surface	Closis ave o Weathere	Jun Basi gen al	lite with Fered to	Alenov feire est	Serecto Rite Serie	aite_
	MINERALIZATION & AS	SOCIATED ALTERATIONS, HOST STRUCT	TURE:	SAMPLE®	Prom To	Length				
	Pyréte + Pyri	hotite weekly to me	oberetely diss. T	threef oce	A fraquen	fel Met	MK			
(@ 8.3 approx	3+2 cm massive Su	ephibe clast	Consisterio	mainly p	yprhotit	e + Pype	te	nan make a dan sa kana kana kana kana kana kana kana	
				/						
									una 1.000 alter december alter a	
	- pilad capitad o store a seland a nation o castan da statica a nationa casta na casta na selanda sera te		an daya kuta kana kana kana kana kana kana kana ka				101/1021/1021/1021/1021/1021/1021/1021/	North Rear House Have a Marco and a Strategy Have a Marco and a second	the commences and	
	ADDITIONAL OBSERVA	TIONS:								
a sector process and a sector of the sector										
				9				~		

alⁱⁿ

To	UTHOLOGY: Colompus Biotitic Arguille		•			HOLF #	· VIA15	5-18		
-3/10	Innologii Clacatedas provinci per			¥.			**************************************			
-)										
	COLOR: Gren Black									
	PRIMARY STRUCTURE: Thin Bedded Core is Baddley	Broka up.								
ti alentenendi	Bedfore to Core lAKis = 50°	/								
	record is showing the									
				0	an fan an a					
e:	TECTONIC STRUCTURE: Baddly Broten shared Cove due	e to adja	cent 7	1 bul	t.					
			L							
	1				a an i an			and an experimental state of the		
						ويكافرونه التوري مرجعي				
	GENERAL ALTERATION: Sets, are actived to mainly	Beotite in	a cál	leaveou	is me	effix				
			<u></u>							
			reaction of the local data and the							
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length					
s.	Do Men.								<u></u>	
					·		• •••••		·	
								-	-	
							a) anna 1	'		
			-					- '	. <u></u>	
					universite provide subscriptions in	ayun dalam ya Malaka ya Angenya	-			· ·
								-		
			-		personal statements ,					
					·		• •••••••			
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-						
			· · · · · · · · · · · · · · · · · · ·					2		
			· · · · · · · · · · · · · · · · · · ·	-			·			·
			· · · · · · · · · · · · · · · · · · ·							·
							·			;
										· · · · · · · · · · · · · · · · · · ·

and the second se	ord:			·	
om To	LITHOLOGY: Sillstone Kare interbeds & Argillite		HOLE #:	VA15-18	
31.0-53.0	Antendal es 90 % Silt Store 7				
	FRAGMENTAL UNIT. 43.3 to 47.3				
	COLOR: Gen. Grey.				4
	PRIMARY STRUCTURE: Mall one massive selfstone emit, un	d a fi	ragmental Uni	it developed	everte in
	The Selfstone unit; The Fragmental is Matrix supported, clasts	ave gen.	rounded, re	nge en Size	e from
11	3 cm to 5 cm; motait is ger Sillstone.		ananang manang manan		
	Beddein to CIA@ 34:55				
*	TECTONIC STRUCTURE: 5 Cm thick Breccia Zone @ 38.0 Cut C/A @ 45	0			
	GENERAL ALTERATION: Matrix & fragmental is strongly biotific + Se	récitic.			
					i
				a a successive statement of the second s	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From	То	Length		_ <u></u>
e. g	Division of the second and address			·	
-	Mule + Myrchotile weakly ciss Through our maine			Annalisation and an annalisation of the second s	
	@ 46.0 one Mossive Sulphile clast, main Pyrchotite	3×2cm	in size		·
	@ 46.0 one Mossive Sulphile clast, main Pyrcholite, @ 53.0 one 1 cm thick Band of Messive pyrite	3×2cm	un sizo		
	@ 46.0 one Mossive Sulphile clast, main Pyrrholite, @ 53.0 one 1 cm thick Band of Messive pyrite	3×2cm	mi size		
	@ 46.0 one Mossive Sulphile clast, main Pyrcholite, @ 53.0 one I cm thick Band of Messive pyrche	3×2cm	en size	· · · · · · · · · · · · · · · · · · ·	
	@ 46.0 one Mossive Sulphile clast, main Pyrcholite, @ 53.0 one I cm thick Band of Messive pyrche	3×2cm	un sizo		
	@ 46.0 one Mossive Sulphibe clast, main Pyrholite, @ 53.0 one 1 cm thick Band of Messive pyrke	3×2cm	un size		
	@ 46.0 one Mossive Sulphibe clast, main Pyrcholite, @ 53.0 one I cm thick Band of Messive pyrche	3×2cm	un sizo		
	@ 46.0 one Mossive Sulphibe clast, main Pyrrholite, @ 53.0 one 1 cm thick Band of Messive pyrite	3×2cm	un sizo		
	© 16.0 one Mossive Sulphibe clast, main Pyrcholite © 53.0 one i cm thick Band of Messeire pyrite	3×2cm	un dizio		
	Phile + Pyrrhotite Weakly Uss Turbier our maint @ 46.0 one Mossive Sulphile clast, main Pyrrhotite @ 53.0 one icm thick Band of Messive pyrite	3×2cm	<u>mi size</u>		
	Mule + Myrmotile Weakly Wiss Turbiers our maint @ 46.0 one Mossive Sulphibe clast, main Pyrcholite @ 53.0 one I cm thick Band of Messive pyrite	3×2cm	<u></u>		
	Muie + Mynhotche Weakly Uss Hurdreen our Marsue @ 460 one Mossure Sulphide clast, main Pyrhotite, @ 53.0 one I cm thick Band of Messeire pyrite	3×2cm	<u><u> </u></u>		
	Mule & Pyrhotite Weatly Uss Hubberg out maint @ 46.0 one Mossive Sulphibe clast, main Pyrhotite, @ 53.0 one I cm thick Band of Messive pyrite	3×2cm	<u><u> </u></u>		

. .

Drill Hole Reco	cord:	Page # 4 of
From To 53.0 - 93.1	LITHOLOGY: Mainly Silky Calcoreous Argellete, & Selky 1 Minor interbeds of Silkstone, 85% of intervel is (Argellite and Selty Argellite	Angillite HOLE #: 1/A15-18
	COLOR: Gen. Banded Grey and Dark grey, Calcareous be PRIMARY STRUCTURE: Med. Thin, and Very Thin bedded, Beding plan Calcareous silfy argillite are typically finely porallel lamin	to gen Speckled whete. sare sharpand flat: Selly Argelle and ded
	Bedding to C/A@ 61.9, @ 71.3 = 55°, @ 90.4 TECTONICSTRUCTURE: MIL	
	GENERAL ALTERATION: Cremevolly Stringly Proteitic Calcoreous Self developed Throad - out this intental	ly Argillete and Silty Argellelo
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # St 80.0 colecte Vecin cuts C/H at & host Pynte along its F.W., at 84.0 1 Cm Huck Bedding parallel Band of Massive Pyn C 89.4 1 to 2 cm Huck irregular Band of Massive Pyn 3.87.2, 3 cm Huck calcute - Geartz - pynite Vein Cut Core H	From To Length Some Nice coleite xtls in Centre, ite whotite 1x15 @ 45° and cats Bacheriq @
Drill Hole Reco	ord: Page # 5 of	
-------------------------	---	
From To 93.1 - 100.0	LITHOLOGY: FRAGMENTAL-UNIT; Consists of Sulfstone clasts in a HOLE #: VA15-18 Biotite, Calcite - Otz. Sand Mothix:	
	COLOR: Lite grey to grey closts in White speckled Black Mattix. PRIMARY STRUCTURE: Massibe clost supported Fragmendal Unit, closts are gen rounded, range in size from 2mm to somm Motoix is Composed of Calcorcoas selfstone, closts show a crude crude crutotion C/A of 50°	
	TECTONIC STRUCTURE: Late Calcute filled frocture cut Fragmental unit a angles of 49° & 13° to C/A	
/	GENERAL ALTERATION: Sultstone closts show only regional alteration, Matrix is strongly altered by Tote Coarsely with Biotite and calcule	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length	
ADDITIONAL OB		

Drill Hole Reco	rd:		Page # 6 of
From To	LITHOLOGY: Sillstone rare Silly calcoreous Avg	ellete interbede	HOLE # 1/2/5-18
100.0-108.4	95% of intervil is Setstones		
	COLOR: grey to dary grey		
	PRIMARY STRUCTURE: Med. to thick hedded, Bed	Sur endistaict, gen. fin	e grained.
	QUALE RILL LAR		
	(2) TOTIS Debburg to CTA = 48		
	TECTONIC STRUCTURE: 105.0 to 104.2 For 14 24 Min of 18		
	103.0 +5106.2 Pault Cut 1415@ 50"	Consists of lose Brecciated Ser	s & farelt garest.
	GENERAL ALTERATION: Regional Rictization, Spreitizetion		
<u>_</u>			
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Printe + Pyrrhotite. 100:9 to 101:0 Broken Pullhe Boursen Otto	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Printe + Pyrrhotile. 100:4 to 101.0 Broken Rubble Berren Qtz v	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Printe + Pyrrhotite. 100:4 to 101.0 Broken Rubble Berren Qtz v	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Printe + Pyrokotite. 100:4 to 101.0 Broken Rubble Berren Qtz v	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Printe + Pyrrhotite. 100:4 to 101.0 Broken Rubble Borren Qtz u	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Printe + Pyrrhotile. 100:4 to 101.0 Broken Rubble Borren Qtz u	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Prule + Pyrrhotile. 100:4 to 101.0 Broken Rubble Borren Qtz u	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Printe + Pyrokotike. 100:4 to 101:0 Broken Rubble Berrin Qtz v	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Printe + Pyrokotite. 100:4 to 101.0 Broken Rubble Borren Qtz u	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore dess Prole + Pyrrhotile. 100:4 to 101.0 Broken Rubble Berren Qtz v	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore dess Dynde + Pyrokotile. 100:4 to 101.0 Broken Rubble Borren Qtzu	SAMPLE # From To Length	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Prute + Pyrrhotite. 100:4 to 101:0 Broken Rubble Borren Qtz v	SAMPLE # From To Length	
ADDITIONAL OBSE	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Rore diss Prule + Pyrrhotile. 100:4 to 101:0 Broken Rubble Borren Qt3 v	SAMPLE # From To Length	

	age # of
From To	LITHOLOGY: Carcarcars Silty Availite interpedded Silty Availlate & lesser Availlate HOLE #: VAIS 18
08.4-149.1	Interval is 45% Calcareous Settly avgellile, 45% Silty Higellife More #. 115-10
-	143.0 to 144.5 thin Aldridge MARKER Bods CHINTY? Not MATCHED!
	COLOR: Grey Bandod Brownish grey.
	PRIMARY STRUCTURE: Jen this to Very then bedded. Bedderic is sharp and gen lifet.
) and a charge and for four for the
	Become to C/A @ 121.0 = 64°, @ 135.0 = 60° to C/A, @ 147.5 = 58° to C/A.
	TECTONIC STRUCTURE: 113.5 to 117.7, Fault Zone Cuts C/A@ 38°, Consists of Breccipted Sala health hea
	calcute and Locally By Inleuse Serecitisching, Fault Breccie 133.4 to 124.3 cate cla@ 14° buch brand
- 21	is healed by calcite. From 123.4 to 133.4. Barren inequalar calcite Veinlots are abundant.
	GENERAL ALTERATION: Regional Reduck Block Biotile with Serecito in Lenny Beds, and Biotela and Serecito in Self Bada
	Argellite, This like grey Argellite beds host scattered Selevito casts and Calarte felled selevite casts and
	full of late biss. Condicinte? quains
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length bern Pyrite Minerelization marks the Bess of the facel from 113.5 to 117.7 @ 121.0 Quartz-pyrite View 2cm theck cut c/A 30°
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: <u>bern Pyrite Minerelization morks the Bese of the facel from 113.5 to117.7</u> O 121.0 Quartz-pyrite View 2cm thete cut C/A 30° Thin Bedding parellel layer of diss. Pyrite + Mossive Pyrite are widely sentloved through out
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: <u>bern Pyrite Minerelization marks the Bess of the facelt from 113.55 to 117.7</u> <u>O 121.0</u> Quartz-pyrite View 2cm thick cut C/A 30° Thin Bedding Parellel layer of diss. Pyrite + Mossive Pyrite are widely seathered through out This interval, they range in thickness from I mm to 10 MM.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: <u>bern Pyrite Minerelization morks the Bess of the facel from 113.5 to117.7</u> <u>O 121.0</u> Quartz-pyrite Vein 2cm thick cut C/A 30° This Bebbing Parellel layer of diss. Pyrite + Mossive Pyrite are widely Seathered Through-out This interval, they range in thickness from Imm to 101111.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: <u>bern Pyrite Minerelization morks the Bess of the facel from 113.55 to 117.7</u> © 121.0 Quartz-pyrite View 20m theck out C/A 30° Thin Bedding Parellel layer of diss. Pyrite + Mossive Pyrite are widely Seathered Through-out This interval, they range in thicknoss from 1 mm to 10 mm.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: berm Pyrite Mineralization marks the Bess of the facel from 113.5 + 6117-7 © 121.0 Quartz-pyrite View 2cm theele cut C/A 30° Thin Bedding parellel layer of diss. Pyrite + Mossive Pyrite are widely Seathered Through-aut This interval, they range in thickness from Irmm to 101111.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: bcm Pyrite Minerelization morks the Bess of the facel from 113:5 to 117.7 © 121.0 Quartz-pyrite Ven 2cm theils cut c/A 30° Thin Bedding parellel layer of diss. Pyrite + Mossive Pyrite are widely seathered Through-out This interval, they range in thickness from 1 mm to 10 MM.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: bern Pyrite Mineralization marks the Bess of the facel from 113.55 to 117.7 © 121.0 Quartz-pyrite year 2cm theils cut c/A 30° This Bedderia parellel layer of diss. Pyrite + Mossive Pyrite are widely seathered Through-auto Thus interval, they range in thickness from Irmm to 101111.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: bcm Pyrite Minerelization morts the Bess of the facel from 113.55 to 117.7 @ 121.0 Quartz-pyrite Uni 2cm theck cut C/A 30° Thin Bedding parellel layer of diss. Pyrite + Mossive Pyrite are widely scattered Through-aut Thus interval, they range in thickness from 1mm to 101/11.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: bern Pyrite Minerelization, morks the Bes. of the facel from 113.5 to117.7 © 121.0 Quarty-pyrite View 2cm thete cut c/A 30° Thin Bedbing Parellel layer of diss. Pyrite + Mossure Pyrite are widely Seathered Through-out Thus interval, they range in thickness from I mm to 10 MM.
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length

	ord:	Page # & of
From To 49.1-159.3	LITHOLOGY: Massuil Slump Structured Substone	HOLE #: VA15 -18
	COLOR: Shabes of grey, dork greg & Black. PRIMARY STRUCTURE: // Generally a fine grain Soft Sebiment deto	semed unit.
	TECTONIC STRUCTURE: N	
	GENERAL ALTERATION: Strongly Bistitic through-out, Local Zonos of with	2450 Silication
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Pyrite + Pyrrhotite is weakly diss. Through - out, with loca heavy diss. Pyrite & Pyrrhotite.	Length

波.

Drill Hole Reco	rd:		Page # 9 of
From To	LITHOLOGY: (tableo Sil		HOLE #: VA15-18
159.5-166.7	upper Contact cut CIAS6° Lawer Contact is n	narked by this shear	
	That Cut O/A @ 33.º	/	
	COLOR: GREEN		
	PRIMARY STRUCTURE: TEXTORE, med. lowerystalline -		
	TECTONIC STRUCTURE: gabbro cat by numerous Small	Ribbon Strechure Calcute Va	ens gen at 69° to alla
	GENERAL ALTERATION: Potchs of intense Biotitization,	Gabbro is gen. Very calcore	2005
	MINEDALIZATION & ASSOCIATED ALTERATIONS HOST STRUCTURE	SAMPLE # From To Longth	
		SAMIFLE # FIOIN 10 Length	
		x	
			·
			·
			·
			· · · · · · · · · · · · · · · · · · ·
ADDITIONAL OBS	ERVATIONS:		

Drill Hole Record:	of
From To LITHOLOGY: Siltstone, minor interbedded Silty Argellile & argillit interbed HOLE #: VA15-18 166.7 to 243.15 This interval is 90% Siltstone	
COLOR: (tray to dite Gray Selfstine, Some dork grey Argichitos PRIMARY STRUCTURE: (ten. thick to Very thick to Bodded, with Some Selfstons Bods over 2m three Most & these Sediments are graded fineing sepwords Turkites, Socm to Socm Zone of Soft do peccer through out this sequence. Rib-colosis common through-out. Behking to OAR 177.0=65°, @ 2015 = 70° to CA, @ 214.0 = 68° to CA, @ 239.0 = 65° to CA. TECTONIC STRUCTURE: 5 em thick Sheer Jone @ 185.3 Cut CA & 12° 2010 to 207.6 Fault Zone cut CA @ 17°, Consists of CRAckle Breecisted Sets. Head by Semi-Tex fault gauge GENERAL ALTERATION: Required Biotitization & Seriectization, with abundant Tate Small inequality come Scotted Through this intersal, These Concretions centist of Ryrrholde, Parite & Biofele.	E. Bruatici
Pyreholite and Pyrete, accurs in the Cacereticity discribed, above, But also occurs as we dissemination through-out this interval.	
ADDITIONAL OBSERVATIONS:	

Drill Hole Reco	rd:		Page # // of
From To	LITHOLOGY: Interval 95% Argellile + Selly Arg	ellete	HOLE #: VA15-18
243.15-2640	SUNDOWN MARKER BED 249.7-263.0		
	"Note" Within The Sundawn marker a	bed of Massive Selly Arzillete &	Van 2550 to 256.0.
	COLOR: Banded thinky and broedly Lite gray and	Dark gracy.	
	PRIMARY STRUCTURE: Then to Very thin Bedded, Bedder	g is Sharp and tabular	
	Bedence to C/AQ 247.5=69°,		
	TECTONIC STRUCTURE: viegular celeite Veinlets cut Cor	e Axis Roughly at 25°	
	/	0 /	
	GENERAL ALTERATION: Regional Biotifization & Sencitizan	ion	
		•	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From To Length	
	Myrrhohte & Pynete occurs through-out the interve	In scattered diss patches +	Ballos
	and as very have poper their bedoing povallel diss.	Bands	
			· · · · · · · · · · · · · · · · · · ·
	244.2 poper Alin Bedding parallel colorte lager	hust Rave specks & Spheler	et.
·	24 9.2 , Their ICM Zone of dess pyrite with some wee	k dess sphaleret-	
	C 252 Spharte Occurs in 2mm fuck Bedeing	Perellel Band & Dyphotite	
	25128, Massure Monorthe Ded ICM Tuck	Le la la Parlace la	
	255.0 - 256.0 Massile Sury Hughuite The Nost	B III D GOTTERED I MM SU	ze Serierte - Sphelerite Noduels
	Ce 235:93 A cm fuice band of Checke preceite poration	to Decrolag hosts munor Pyrtud	ele + Sphalente
-			
		T. I	
ADDITIONAL ODS			

Drill Hole Reco	rd:		Page # 17 of
From To	LITHOLOGY: Sillstone, with minor intercal	ated sequences of	HOLE #: 1/A/5-18
264.0- 319.5	Argellite + Selfy Argellete, This interval is	20% Sillstone.	
	El Altan Elka		
	COLOR: Thoses of they + Judit Green	1 a 1 ll ad all -	S. P. I. A. I. I.
	PRIMARY STRUCTURE: Med. to twee and very thick perdes,	ome scattered short seame	ences of This to Jerry this badded.
	Treating as moustainer in surside sies, there	s for-sworp en Then bedo	ed argellite - Selly Argellite
	Become to c/A@ 296.0 = 73°, @ 3/4-0 = 70°.	grance, some neos area	Traded Jonens - cep
	TECTONIC STRUCTURE: @ 286.75 Borven Qtz. Vein cats	A @ 230, @ 278.5 thin	gauge heal Breenin Zone
	Cut C/A 120		
	/		
	Dia Data da da		
	GENERAL ALTERATION: Regional Biotization - Sericitization is	for the subst part over pre	inted by intense late Salicification
	A Servicitization, and spatted by post, Selicification	a by 4mm to 10mm Sphere	5 & Block Bistete.
	nare cargo concretions occur perween 291.4 + 515	S, Concretion are formed	By an outed few of alls Als chion
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From To Length	iss Pyrroreto.
	@ 295.5 this Junse of Calcute host, Pyrtholite a	nd Sphalerete .	
	-D	·	
ADDITIONAL OBS	ERVATIONS:		

Drill Hole Reco	rd: a la l			Page # 13 of
From To	LITHOLOGY: GEBBro Sell.		HOLE #:	115-18
319.5-335.82				
END	COLOR: Dark green Speckled White PRIMARY STRUCTURE: TEXTURE: Meb. to Coarsely	Xth, equicrystalle	ne	
OF	TECTONIC STRUCTURE:			
HUE				
	GENERAL ALTERATION: One Meter of the upper Carlo	et altered Comp	letly to Biofite and	diss. Colcite
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # From	To Length]
		· · · · · · · · · · · · · · · · · · ·		
			······································	
				· · · · · · · · · · · · · · · · · · ·
· · · ·				
ADDITIONAL OBS	I ERVATIONS:			

Il Hole Record:			Page # / of	
PERTY: VINE	HORI. COMP:	HOLE# VA	115-19	WERE PROPERTY.
ATION: TOP OF PEAVINE MATN.	VERT. COMP: 226.5		00/211	
MENCED: NOV. 19, 2015 COMPLETED: NOV 21, 2015	corr. dip: -90	LENGIH:	226.5 Meters	
RDS: Long. Lat.	TRUE BEARING:	DRILL CONTRACTOR:	4B Prelleirg	5
RDS: UTM (E) 583.901 (N) 5474328 (EL)	% RECOVERY:	CORE SIZE: NO	J	
DS: Grid (E) (N) (EL)	LOGGED DATE: NOV. 2015	CASING: 3.65	<u>A</u>	
TION: 1220 APPROX. COLLAR Dip: - 90 Azi: -	LOGGED BY: D.L. Pighin	CORESTORAGE: Vini	e Property	
TTRE: Testing Gravity anomaly.	<u></u>			
EYS: Depth: A Dip Azi:	TYPE)	Additional De	epth: Dip: Azi:	
To LITHOLOGY: Calcareous Silty Aveillete in	forbed of Avgillete.	Surveys:		-
-9.1 5 Interibl 50% calcoredues selly flo	millete			-
			ana a she a sha a she	
PRIMARY STRUCTURE: This to Very This Beddon are very finely porcelled laminched. Bedding to C/ME 6.5 m. = 67	b. J. Shorp - flat Bedding	f Calcorences sell	ly Mogullor	
PRIMARY STRUCTURE: This to Very this Beddon are very finely porallel laminched. Bedding to C/A& 6.5 m. = 67 TECTONIC STRUCTURE: N.C.	Shorp - Jar Beddeir	f Calcoreaces sell	by Magullar	
PRIMARY STRUCTURE: This to Very this Beddon are very finely percellel laminiched. Bedding to C/M& 6.5 m. = 67 TECTONIC STRUCTURE: N.C. GENERAL ALTERATION: Regional Bistitization & Searce an filled by Calcute	Shorp - flet Beddier Stigolom:, argulide Beb host of	f Calcorecces sel	by Mag Il Sar costs j Same	
PRIMARY STRUCTURE: Their to Very their Beddon are very flowly flowly flow beddon Bedding to C/H& 6.8 m. = 67 TECTONIC STRUCTURE: MC. GENERAL ALTERATION: Regimel Bestitizetein & Searce are filled by Calcute. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE # Srom To	<u>Calcovences sele</u> <u>buildent Selevile</u> .ength	by Mag Ul Sar constraints and a second seco	
PRIMARY STRUCTURE: This to Very this Beddon are very finely parallel laminched. Bedding to appendix 6.5 m. = 67 TECTONIC STRUCTURE: N.C. GENERAL ALTERATION: Regional Brothypeleon & Speice an filled by Calcite Mineralization & Associated Alterations, Host Structure: N.C.	Sharp-Jet Bredding Sharp-Jet Bredding Sample Beb Lost of SAMPLE # From To I	<u>f</u> Calcovences sele burdant Selavite	by Mag Ul Sar Costs J Same	
PRIMARY STRUCTURE: Their to Very thin Beddon are very finely familiel laminoded. Bedding to C/H& 6.8 m. = 67 TECTONIC STRUCTURE: MC. GENERAL ALTERATION: Regional Biotetrizeleon & Searce are filled by Calcute. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: NUL.	Shorp - flet Bredding Aizelion:, Argulde Beb host of SAMPLE: From To	<u>Calcovences sele</u> <u>burdent Selevile</u> .ensth	by Mag Ul Sar constraints and a second seco	
PRIMARY STRUCTURE: This to Very this Beddon PRIMARY STRUCTURE: This to Very this Beddon are very flowly familied laminicated. Bedding to C/ME 6.8 m. = 67 TECTONIC STRUCTURE: N.C. GENERAL ALTERATION: Regional Bistitization of Searce are filled by Calcute . MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: NUL.	Sharp - flet Breddiir Sharp - flet Breddiir Siger - flet Breddiir Siger - flet Breddiir Siger - flet Breddiir Breddiir Samples & From To I	<u>Calcovences sele</u> <u>bendant Selavite</u>	by Mag Ill Sar 2 Cost 5 J Same	
PRIMARY STRUCTURE: This to Very this Beddon PRIMARY STRUCTURE: This to Very this Beddon Pre very flowly familied lamcinched. Bedding to C/M& 6.5 m. = 67 TECTONIC STRUCTURE: N.C. GENERAL ALTERATION: Regional Brotitizetion & Scale are filled by Calaste	Sharp-Jet Breddiir Sharp-Jet Breddiir Sample Beb Liost of SAMPLE # From To I	<u>Calcovences sele</u> burdant Selanita	by Mag Ul Sar Costs J Same	
PRIMARY STRUCTURE: This to Vierg this Beddae are very flowly forcelled lancincled. Bedding to C/H& 6.5 m. = 67 TECTONIC STRUCTURE: N.C. GENERAL ALTERATION: Regional Brotitizeleon & Scorer an filled by Calcute. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: NUL.	Shorp - flet Bredding Shorp - flet Bredding Aizolom:, Argulde Beb host of SAMPLE: From To I	<u>Calcovences sele</u> <u>buildent Selevile</u> .ength	en e	
PRIMARY STRUCTURE: Thin to Very thin Beddoc are very finely parallel laminiched. Bedding to C/ME 6.5 m. = 67 TECTONIC STRUCTURE: MC. GENERAL ALTERATION: Required Ristitization of Scarcin are filled by Calcute. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: NUL.	Storp-flet Breddierf Storp-flet Breddierf	<u>Calcovences sele</u> <u>bundant Selavite</u>	by Mag all Sar Cost 5 J Same	

Metric Imperial

12 /11 · 33

Wh

1

Drill Hole Reco	ord:
From To	LITHOLOGY: 90% Sellstone with minor interpets of distorted Selly Availity 11015 4. VA15-10
9.1- 34.6	and argetlite HULE #: VITIS-19
	COLOR: Gen Crrey with streaks & file green.
	PRIMARY STRUCTURE: Siltstone Bebs, are thick to Very Thick Babbad, Bebleng is indistinct, Rip-up closts
	are widely Scattered through out, were Becking is visable it is wavey to highly distorted, beds are med to
	Coarse grain, and locally graded finners reputerds, argulite Bed tops are gen, distorted by Soft Set.
	rectance structure. Dia 14 4
	TECTONICSTRUCTURE: 972-BIOFITE VRIMS @ 34.0 \$38.2 Cut CA @ 15°\$13°
	GENERAL ALTERATION: Car Parial 4.64.71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Small Barke & Chlowitz and valakingly should be 200 martine fire hosting fine tele green Serectization
	There are reconvery uneverent in selly Highlice & Hogelike Bobs
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length
	Qtz-Biot de Veins @ 340 838.2 are approx 10cm theck host soptempt Ballo & Magnum Day I.I.I.
	Very Coorgely Alm Biotite forms Saluages along Veen Confeeds
ADDITIONAL OBSE	RVATIONS:

Drill Hole Reco	rd:	Care #3 of	
From To	LITHOLOGY: Silly Augellite interpedied Augellite.	$\frac{1}{1015 + 1/8} = \frac{1}{1015} = \frac{1}{1015}$	
54.6 - 65.7	interval is 35% Silly Augulte	HULE #: VH15-19	
	57.9 to 65.7 SUNDOWN MARKER BED		
-	COLOR: When grey Argellite and dark groy Selly Hreillete		naview grade, two wy casilita
	PRIMARY STRUCTURE: Thin to Very thin Bedded Beddene is sherp + flat.		an a
	Sundown Morker Bed Contains 1 to Scm Thick Zones of intense saft Sedement	alamation.	
	211. 1 2 0 1 2 1 2	0	
-	people to come ($@ 65-7 = 70$		
	TECTONIC STRUCTURE: NLL.		×.
	GENERAL ALTERATION:		and a second
			-
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length		Nan ann ann an ann an ann an ann an ann an a
	Sem Beds of Pyrrhotite and Pyrete rarely gen Jess then I cm are scattered	Threech - met this	
	interval-	- Joan Jues	
	@ 52.8 a 3 mm Thick Veinlet. of calcite & Pynike Cartain a few specks of	Sphelereto cuts C/A @ \$40	
		and the second s	
	Reak and finely Disseminated pyrchotete occurs through - act It	Le Sundace, Merker	
	Bed Weak and finely Disseminated pyrchotete occurs through - out It	Le Sundace Merter	
	Bed. Bed.	Le Sundoeun Merker	
	Bed Bed and finely Disseminated pyrchotete occurs through out It	Le Sundaen Merker	
	Bed. Bed. and finely Disseminated pyrchotete occurs through out It	Ce Sundacey Merter	
	Bed. Bed. and finely Disseminated pyrchotete occurs through out It	Ce Scendoce Merker	
	Bed Weak and finely Disseminated pyrchotete occurs through out It	Ce Sendoer, Merker	
	Bed and finely Dissemiliated pyrchotete occurs through out Il	Ce Sundoer Merker	
	Bed and finely Disseminated pyrchotite occurs through -aet Il	Ce Scendoce Merker	
DDITIONAL OBSEF	Vations:	Ce Seendoeen Merker	

Drill Hole Reco	ord:		Corre # 1 at i
From To	LITHOLOGY: 80% Selfstene with Lessor interp	added Silly Availle	
65.7- 92.6			HOLE #:
	COLOR: Jen. Jute grey with Patchs and Bands	of green, Black and W.	lite alleration.
	PRIMARY STRUCTURE: Med. to Theck and Vory thick	Dilktores, Seltstone Bedde	ing plans are indistinct to
	waity, gen fine to med grain, argellete	interbelds are Commonly	ig destarted by Soft sedement
	Better I MA & LOL = 74° D D = 100.	/	
	TECTONIC STRUCTURE: Rove / Cum think Ota - Bistite Bunch the	have a philling	12.212
	for the the fig protile ryphotice	Veens cut C/A @ 12 and	21 to C/A.
	GENERAL ALTERATION: Regional to 74.0, 74.0 -74.4	Interse tale Selicification =	+ chlovitization 10.4
	to Gabbro Contact @ 926 Very intense fale	Silicification & Sociectization	3 Selfstare Bels,
	Selfy Higellite beds are totally altered to u	there Servicele, Joke coorsely	Itlm. Block Bistete Louns
	Minierador Venlets and lorge integelor potchs, ET.S +	088.5 Spotfed Hornfels Consisting of s	small rounded selected nodeels en
	Rove dise Buste + Preschalter	SAMPLE # From To Length	a Sericite motali
	ans quit 1970 hopete		
		-	
			i i
	(
	/		
		· · · · · · · · · · · · · · · · · · ·	
ADDITIONAL OBSER	VATIONS:	на на применение на примене	The second se

the et 5 of Drill Hole Record HOLE #: 1415-19 LITHOLOGY: Crappto Sell Confect cut C/A@ 10° From To 92.6-195 Green Speckled white COLOR PRIMARY STRUCTURE: TEXTURE COORsely Alu, equicrystalline TECTONIC STRUCTURE: Calecte Veinlets varely more thin 10 cm thick scottered Through - aret the Jabbio These Vein Out C/A@ angles of 15°, 20° +37° GENERAL ALTERATION: NIL SAMPLE# AIMERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE Length 121.0 to 123.5 anestomosing calcite Vien ciels core @ angles of 12° + 10°, host Traces of Melichite dang its H.w. ADDITIONAL OBSERVATIONS:

Drill Hole Reco	rd:	Page # 6 of
From To	LITHOLOGY: Selly Argellite, interboddod Jessar Selfstand	HOLE #: VA15-19
195.0-226.5	interval is 55%. Selly Arcallete.	
ENI	COLOR: Mainly Jete gray, Bandle Oak grey	
0E	PRIMARY STRUCTURE: Med to Them Beddeb, reve thick Sellst	are Bedsy Dedding is gen indistinct, but Jocally
01-	lan De acstinct) in some take Thin folly Then pedace	Jequences,
	Rebence to CIAO 10014 = 68°. @ 215.0 =74°	
HOLE	TECTONIC STRUCTURE: Fault Zone from 204-6 to 213.0 cats ()	1/2 29° good Contects - Fault
	Consists of Schementory closis in a semi - Tithofide goues	ge matre i
	0	
	GENERAL ALTERATION: Roquine Diotetization + Sere cetization	
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE #	From To Length
	211.8 to 212.5 Cheshed Quartz Vein in fault zone 1	lost menor chalcopyrites Pytthetite
ADDITIONAL OBS	ERVATIONS:	

No Planscon / Providence		~		,				
Drill Hole Record:						Page	# / of	Anishing and a start and a
PROPERTY: VINE	HORI. COMP:					#: VA 15.	- 20	
LOCATION: TUP OF PEAVINE MITH	VERT. COMP:	<u> 305 • 7.</u>	<u> </u>			r_{1} $2N$	70 111	
COMMENCED: Nov. 22, 2015 COMPLETED: NO4-25, 2015	CORR. DIP:				LENG	IH: <u>303</u>	19 Mete	<u>13</u>
COORDS: Long. Lat.	TRUE BEARING:		·	D	RILL CONTRA	CTOR: F4B .	Prellena	
COORDS: UTM (E) 583901 (N) 5474328 (EL)	% RECOVERY:			C	ORE SIZE:	NQ		1
COORDS: Grid (E) (N) (EL)	LOGGED DATE:	Nov. 201	5	C/	ASING:	1.57-left	en Hol	e.
ELEVATION: APPROL 1280.0 M. COLLAR Dip: - 90° Azi: -	LOGGED BY:	R.L.Pis	hir	C	ORE STORAGI	VINE PR	OPERTY	
OBJECTIVE: TESTINE CIRAVITY PHOM.		. 0						· -
SURVEYS: Depth: Dip: Azi:	TYPE:				Additional	Depth:	Dip:	Azi:
From To LITHOLOGY: Mainly Setty Availite, & Calcoreous Set	ly Augili	ite, on	£		Surveys:	14.8 M	-89.4	190°
4.57 - 34.0 This inter of to to calcoranas selfy Augellite, with	the one mi	issure	Coarse	grainel		100.0	-89.0	173.7°
Calcoreous Opertzite Bad GINTY MARKER Some From 19	10 to 15:0	y to ize e		/		200.0	· -89.1	174.80
COLOR: Shates of grey, the grey and Brownish	9124 (1)	ry Col	cr51					
PRIMARY STRUCTURE: Mainly flein to day Thin Bedded	Silly + Co	elcarec	us Au	allite be	ch are	1-miell	. Norse	AMERIKA METALAHAN DATA METALAH
Junely Pavallel Samineted. Confacts ave flat + show	D. Note:	The C	alcorde	ces Quent	5. to the	20 Consis	to of	. /
Desare mature unsorted querts Sand in	aloito -	Biblit	e Mel	net.) =		8	·····
Beddenca to C/14 (0, 10.5 = 840	. The man and a second seco	· · ·		- 2017				
TECTONIC STRUCTURE: 24.4 to 34.0 Fault Zone Cuts CHA b	fuen 33	0 + 26°	The le	rult Car	sists 1	Nellouise	Bistite	e
a Sosicitic Solements harled by Calcite and time	with Serie	lo u	it.	Some So	IF any	an is ne	Sout.	
	a har a start a			0	07	, 		
				T / * - / * 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		1999 - Carlon Martine, and a state of the second		
GENERAL ALTERATION: Seles den Kerenel Protetisation 8.	Succi fizar	1001 .	an din Suran di Kangaran (Kangaran)	<u>ار می بود میں اور اور اور اور اور اور اور اور اور اور</u>	in al ti-sin shirtenina kinin aja	anime and in the product over a product with the second of the second of the second of the second of the second	in de lande en den mensken sjone op generalijene ontweer wie generalijene.	n de la companya de l
Fault Zare is Strongly allered to Bistile	Servicita	9.00	Carle .	`		******	le an 24-and le de deux de ante ndau de deux de la constant de la constant de la constant de la constant de la const	
	/ <u></u>	······································				4.8.88444,414.619,84.64447 - Hypersonia & London Color Color (Ch		
				**************************************		***************************************	******	
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length			in an a star a fan af an fan star fan fan star fan fan star fan fan star fan star fan star fan star fan star f	
weakly diss. Pyrchatite throad out in tor val.			a linka ni menantik kerdet koldu segre akt	1				in the second in the second
with Pore savar this sworth the lawing swalled								
To beddie	1		- 1 1 					
Weak Praite Min. in dice. Thready -met the				1				
About Fauld Zone	1.			<u> </u>				
Contraction of the second seco	1			†				
ADDITIONAL OBSERVATIONS:			46440-02047485104-01446-0444-04		navana anna anna an Inan			

M. Mullim

** ...

Metric²_____ Imperial_____

Drill Hole Record: Page#2 of Argelito minu Calcaroous Aveillete То LITHOLOGY: From HOLE #: VA15-20 34.0-63.8 scattered through the interital. Minor Aun. Argillto inte COLOR: dart and gray and Bedding Jory Thein Selly Brgellite is PRIMARY STRUCTURE: finely Barallo Avgillite gen. shaw aminata Stricture. no Be being to C/A @ 49.93 = 80. @, 55.5=80 Secs are crockle Brecciated, healed by calcule and Pyrite TECTONIC STRUCTURE: 34.0 40 75.8 Littology Cout 44.7 to 46.7 Samprophyre Sell, mainly Biotite, Calcule & Serecite. altered gappro Sell, mainly Bistite, Activalite, Colein are vore q to 63.8 56.6 Generally Regional Biotitization & Sericitization, 5cm thick zones of cale-Sericite **GENERAL ALTERATION:** mark The Tomprojskyre Confects. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # То Length From This interval as weak dissaminofions Pyrhotite & Mute occur Through lamina. naballel rare paper this to beddung halcopyrite occar in altered gabbro sill above discribed. rarc Specks . Ever Arm ADDITIONAL OBSERVATIONS: BR

Drill Hole Record: Page # 3 of Sillstone, mind wherhedded 83% Silly Angellete HOLE #: VA15-20 То LITHOLOGY: From 63.8 - 115, 3 Shedes COLOR: grey and apey, Yarely que thick and Bedlo PRIMARY STRUCTURE: with Some, 1.0 M te and argillite ∇ is usury and some what indistant earcos Slum texture's :occur this interval ... Some throw out Inc to C/H@ 12.0 = 20° @ 83.6 1 75°, @ 707.8 = 74° This gours filled shoor zone cuts C/H @ 440 TECTONIC STRUCTURE: 🗇 77.5 @ 102.3-10 cm thick, Bedding perallel gauge felled Breccia Zone cuts Breccia Zone Cats C/A.O. 16° Auch gauce alles 115.5 16Cm **GENERAL ALTERATION: MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:** SAMPLE # From То Length Messive Pyrhotite - Punito Vein Cuts C/A@ 230 71.2 at interest as week disseminations and as small occur through -out This Small 2×2cm Linses 5 ADDITIONAL OBSERVATIONS:

ж.

Drill Hole Record: age # 4 of То Mina Argellite Bada From LITHOLOGY: HOLE #: VA 15-20 115.3-127.6 119.10 to 127.6 SUNDOWN BED ! MARKER Bandod Gray . COLOR: Lite. TRAL PRIMARY STRUCTURE: Beddeing Main Hun Very Hun to Shorp + Beckeng to C/14 @ 117.0 = 80°. 115.47 to 115.8 Beddeng povallel Breccia Zone gen healed by Sericite & Some Calache **TECTONIC STRUCTURE:** ٠. ie. **GENERAL ALTERATION:** Legimal. MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length 119.0 to 120.2 Bodding they are Conductive (tested) layers Range in Thick noss this Pyrrhotile Layers parcellel between 2m 93mm at 122.6 5 Pyrrhotite Layers in 5 cm of cove, tested Conductive at 127:5 Lonly 5mm thick Layer of massure Pyrotistele, tested Cardiochice .. . × 4 N S ADDITIONAL OBSERVATIONS:

Drill Hole Record: Page # 5 of LITHOLOGY: Selfstone, intervel is loto Selfstone, vore Selfy Avrillete interbal. HOLE #: VA15-20 From То 127.6 - 144.7 Lamprophype Dyke 129.3 to 130.0 cuts C/4@ 50° Grey to like grey COLOR: PRIMARY STRUCTURE: Med. to thick Beddec. Beddeing is distinct and gen- wany Some loved Costs on Beddere, and some Saft Set. deformation Beddenic to (1H@ 131.0 = 78 TECTONIC STRUCTURE: NIL. Regional Late intense alforation from 14/15 to Gobbro Contact @ 144.7, her a GENERAL ALTERATION: infense white "serieitischion, aut but Lete Coarse Biotete and Calente texture Consisting of Silve fication overprinted by Biofite Votels and Calarte af 144.2 a 10 cm ines MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length @ 138.0 Very inregular Otz Vien Cats at all angles has Pyrobutile, Chalcopyrule & Arsenopyrule I Cm theat @ 1390 Atz Vein 3 cm thuck cuts C/A @ 140, Rost pyrrhot te, & chalcopynte -14 ADDITIONAL OBSERVATIONS:

						***************************************	,	*****			
	DIOR: Mainly dork Green Speckled PRIMARY STRUCTURE: TEXTURE: Equicrystalle	whete ine, finely	Alu. n	eor Cont	cets t	to very	Cocusel	y gett	e in t	he Cen	loc
المراجع من المراجع من المراجع من المراجع من ال	TECTONIC STRUCTURE: Numerous Small Borren	Calecte	Vein r	are n	core J.	fun 1 C.	u the	che 000	wer for	om the	Set
	10 1 0, 2/3·6 TO 210	<u>s marten</u>	Carren				<u> </u>	74 5			
	GENERAL ALTERATION:	ana ya ku da mu da mu da nya tiyan karana kina a da ma da ma da mu da mu	na na manga dang kang kang kang kang kang kang kang k								
						*****	****				
	MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	<u> </u>	SAMPLE#	From	10	Length					
					<u>,,</u>						
		, , , , , , , , , , , , , , , , , , ,									
· · · · · · · · · · · · · · · · · · ·											
		<u></u>									
	· · ·										

Drill Hole Record: Page # 7 of LITHOLOGY: 35% Siltstone minor interbeds of Silty Mogellile & Hogellike То HOLE #: 1/415-20 From 246.0 -305.19 COLOR: Shades of Lite grey and grey END to that and Very Thick Badded beding plans are maily indistance, PRIMARY STRUCTURE: Med. ÖF Soft deformation (ie) lord Costane, Some Bally Pellan CIA@ 261.62 = 88°, @ 279=85, @ 305.0=87° Beddens to Hole **TECTONIC STRUCTURE:** Regional Bioketization, interese Selicification and Sevicitization of Seltstone Beds. GENERAL ALTERATION: That are in Port spoted by Belbs of take calcute, approx Sillstone Babs are also and to Very Lering MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length Rave Liss. Pyrtholite in uds. **ADDITIONAL OBSERVATIONS:**

			:					
	\bigcirc					\bigcirc	,	*
Drill Hole Record:						Page	I of	
PROPERTY: Vine property	HORI. COMP:	64.58	•		HOIF#	· 1/12-16-	-21	
LOCATION: Hogg creek	VERT. COMP:	90.88	?					
COMMENCED: March 4, 2016 COMPLETED: March 7, 2016	CORR. DIP:	-54.60			LENGI	H: <u>///ˈ</u> S		
COORDS: Long. Lat.	TRUE BEARING	: 3570		. D	RILL CONTRACT	OR: ONOFIN	10 DRILL	iNG
COORDS: UTM (E) 586492 (N) 5472 864 (EL)	% RECOVERY:			C	ORE SIZE:	H.Q		
COORDS: Grid (E) (N) (EL)	LOGGED DATE	March	2016	C	ASING: Left	in Hole	17.0M.	
ELEVATION: 080 CODTOR. COLLAR Dip: -55.° Azi: 357°	LOGGED BY:	D.L. Pahi	n N	С	ORE STORAGE:	Virie Pro	perty	
OBJECTIVE:		0	a kala je danje positi je da na stali je positi je positi je da na stali je da na stali je da na stali je da n					
SURVEYS: Depth: Dip: Azi:	TYPE:				Additional	Depth:	Dip:	Azi:
From To LITHOLOGY: alterad Galbro.					Surveys:	117.4	- 54.6	3570
17.0 to 111.5 74.2 to 76.3 Phyllite after Sebements.						,		
	and a second state of the state of the second state of the second state of the second state of the second state		en ilien iste mediciele hereniki siteteki		an an the section of the section and an a section of the section as the	na di ka kulan kulan sukan katar katan kata kata kata kata	la tala se de la companya de la comp	
COLDA: Dark green, Locally Speckled white.							والمراقبة والمراجع المتراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	
PRIMARY STRUCTURE: TEXTURE, altered Crappro has	a phyllit	ic n	ylout	ic terre	ure, M	e mylon	ite is	
formed by eliptical and rounded grains of a	record & lo	cally	Elmen	te, in	manly	Sine Seri	iche	
matrix	ر ب			<i>,</i>				
TECTONIC STRUCTURE: is mainly phyllitic cleanage	, cut by c	2 num	her of	Small 1	Breecià 2	Zoros.		
Duillitic alongal, at 26.5 = 10°, @ 44.5 = 20°, @	59.5= 150, 0	72.7=	2°. @	74.3= 10°, (@93.5=3 8	@ 111.0= 5	o to CA	-
Fault consists of Saft gauce from 23, 14 to 23.8 cuts l	CIA@ 65° cut	plan of	Inliction	@ 60°. (to Breach	à Zanes K	realed by	<u>an an le anna airte innta innta an le anna an le fan ta anna an</u>
Black chlorite, accur at 36.0 to 37.4 cut C/A @ 16°, 7.6.3	40 17.0 Brecc	ig zone"	cut C/M	at 7:89.	5+0 89.3	Breecić Zo	ne aut C/	2 @ 5 2°
GENERAL ALTERATION: from 98.3 to 100.4 Breccie zune caf	C/40 10°.	n de fan de f	enderterterterte einer er synakelte	J	ngan sing men dalaman sekaran kanan ang din kapanan kaspan ng kan	a printing on any our regiment of the balance to place being a place	n de la faite in décembre de la faite d	k acus verenza kacus en
GEN Auteration; Gabbro is totally alleved to Ser	icite with	remina	ut Q	earts + 1	allesar e	Train & Los	muia	· · · · · · · · · · · · · · · · · · ·
a maloritic texture.	ainte a d'anna ann an Thinn an Thing bail ait an ann an dar ann 1466	Lania and Lan Mort, Londow Ton		50		0		maanin utan utahi asa sada sa mu sa sa sa sa sa
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	To	Length		na pieten a serie a ser Na serie a serie		
Vare dies. Punite in Breccia Structures.		a na sa n	NANGER I VERS AN AND AND AND AND AND AND AND AND AND				an a succession of the supervised south to be a supervised of the supervised south to be a supervised south to	
					1			
		च् ^र े व	(,					· ·
								-
			*****	[1		
ADDITIONAL OBSERVATIONS:			in an		a ta ta da fan an fan skin en fallan fan skin die s			n ol taley an a tradition taley a taley

• • • •

	63									Ň
5	020		\bigcirc					\bigcirc		
Puill Wala Dramate	7					-		•	AF LE	
				10	21		an a	Page :	+ / or	
PROPERTY: V/NE	MAT3		HORI. COMP:	20	126	******	Hole#	: <u>AV 16 -</u>	-22	
LOCATION: Placine	INITA Maine	201	VERT. COMP:	80	7.20		LENGT	H: -BO	2.7	
LOMMENCED: May. 4, 2	010 COMPLETED: Milling 31	246		n minutes del Adresse de La Angela mandre a.				ran CAR	1 11 .	ana ang atao atao atao atao atao atao atao ata
COORDS: Long.				J.		U			sellen	9
COURDS: UTIM (E) 503 CF 2	<u>e (N) 54 / 2040</u>	(EL) (2)8,4.0 Merers	% RECOVERY:	May	016	· (1 Contraction	<u>rc</u>	· · · · · · · · · · · · · · · · · · ·
		(EL)		DI P	d.	C	ASING:	13 mere	, , , , , , , , , , , , , , , , , , ,	1
1.12. VATION: 1084.	с <i>л.</i> с.ан. 1913. – У О	F121.		shirty	men		UNC STUMAGE:	Vene 1	Repert	Z
ur de la companya de La companya de la comp		Schlader beite dem ander send were bester versichter ein send son eine sender son eine sender son auf son eine Phane in a	2004 EX (Laith Constant States Saint Land Labor	i fi anti la fra de là State da Ballance e Pr -	an den de la suite de la company de la co	Additional	n na station and the state	Picture -	A min
	Salal Start I	D Elli Marchill			J C	Fal	AUGUIDUIDU		ир:	ALE
$\frac{10}{127} 1000000000000000000000000000000000000$	Siltstore intereste	E SULT FRANCE	- interval		10 310	Asime	Surveys:			
$\frac{1}{2} - \frac{1}{2} $	MATH, MORROY Ded upp	Seg. from 11.0 to	72.7	, pee y	egs'fr	an	2/	6-10-1	Canatal I	A
26 TO 21	4. HAR VIAIIIER BEE SEGMENTS	10 P 1 (1A	The Tare	Thin MET	<u>ter seg</u>	ments, 1/	XSe Utiq.	<u>@</u>	Macaex	<u></u>
DDINADV CTI	ucture Mar (2) At (vallel Bandok Lite	greg & pai	17 grey	- al			A (c		nit Lindi i Sakanin i Shi i kasi da angangangang
PRIVIART ST	ROCTORE: THERE FO THEN DES	12: - 19° Q	Deducay	1200cm	ig pra	ms are	alstine	F and y	an li	· · ·
and a contract of the second s	- pedonic to GAT C		6.0=15	4270 0	TUIS	interne	C is m	redicem T	o Thick	~
REON	<u> </u>		ng da daga di kapatan kanana kana	· ·		9				
TECTONUCCT	DICTION 277 / DAF	Bark Parkille Data Ma	Equilt Que		(- (1 ha have	the states		La lhana	7
Rectonic St	RUCIURE: 3/1/ F= 39.3	sroken hasbig care, no	Faur Joa	ye, w	lac tw	ionly scot	tered su	er plens	SCOMERE	<u>e</u>
florn 63	-3 to 00.0		-		2 7					
							2 			****
	EDATION OFICE P		2.1. 0 1	·····		<u>с у</u>		1	aliter industry family and the series and the	an kini ali sugi ti tabir tasu, ali suni dan tasu
GENERALAL	TERATION: Sutstone De	as are strongly s	excipiad	with	abund.	Serie Te	+ 12101	Ne.	14°	
This is	regimes alleration									=
8.4FKCP3.4FT78.	ПРАКО АССТАТСТАТСТАТИМА БИТ	re Carbo service (202).	CANADEC 4	Ciencia I	nanananananan To	Louastla		-	-	
	enses acosocios contra contra periorita de la contra periorita de la contra de la c	e lan a son sait sa t-bhailith Eal	SMULLE N	rr0(i)		1 120 B(U) -				
	alse grindite	at Chan								
34,17	<u>0 33.7, 13000 (712: 1000</u>	Cars 7/14 C 20			Mantian - man da stan - mar - m	┨				
						+				
					****	╉				
			·····			<u> </u>		· .		
	Depune by new trader and prevention and equation large when the large and the large at the large and the second and reaction to the	n se ver til blisse kan være andere ander andere kan en verken en kan en kan en kan en kan en kan se se se se s I se verken se				L	CARGE CONTRACTOR OF THE OWNER CONTRACTOR OF THE OWNER OF THE OWNER CONTRACTOR OF			
ADDITIONAL	OBSERVATIONS:									

Metric ____ Imperial_

man

Drill Hole Record: Page # 2 of selfstone dessur interped do b. Silly waillite + From To LITHOLOGY: Mandy HOLE #: AV 16-22 de of this interval 12:7 - 10910 Avgulite Date & File grey COLOR: Yen, gree bandes their Mainly rorely Jery T PRIMARY STRUCTURE: the a Argellite, 23 % of this interval thin to very Then bedde Berlow. Plans are short lat varely ways, Argellile, Silly Argellile s are commonly 1. de handetion, Redding to CIA@ 10910=7 Zone Cuts C/H 31°, Consists Breecietan TECTONIC STRUCTURE: 205.0 to 105.3 Sels. metrix GENERAL ALTERATION: Required, mainly Brotitization, Sererilization + Selicitization 82.0-87.0 Sectiments Selbstones & Avgelleles are fining to Strongly Ting widely seatlered through -oat relate affer selencte XHS MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length 10 2 at. 27.5 Juin Bull Quartz - Bestite Vein cats C/14 Very weakly dess. Dyrohotite & pyrite bis: through most of these ADDITIONAL OBSERVATIONS:

Drill Hole Record:	\bigcirc					
From To LITHOLOGY: Sillstone interbed by	Selly Argillete is 75% Selfstore			HOLE	#:/A = 16	-22
COLOR: Gen Lite grey, Locally PRIMARY STRUCTURE: Gen, meb to the Beddad intervals, Bedding pla thin to very their Bedded 131.5 Bedding & 140.5= 80° to C/H TECTONIC STRUCTURE: 144.2 to 145.2 to At 145.5 thin gauge felled 5 GENERAL ALTERATION: Regional type	Banded det grey & in Bedded, with Som ms are Shorp and gen 5 to 1353, & 1405 to 141.5 this interval is 15% this interval is 15% this Sheor run Povellet Sheor, Cut C/A perollet Sebs are Sericitic 7	Brownish 9 e thick be flet; Som o Thin to to C/A to Bed be Beotitic,	vey bs, wet re thin ? very + rig with	k Some zones of him Bedbe Some	thin to Very Soft Sed. & L Lilbstone Be	Aun eformo te car bs
intensely Silicificate. Selen widely sectleret through-out	ute closts filled by C Section Locally Sel	Scortz and Istine be	locally ds are	by calo weakly	ite are Calcareous	?
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST ST	RUCTURE: SAMPL	E# From	To Le	ngth		
	······································		:			
	· · · · · · · · · · · · · · · · · · ·					

÷ . .

Drill Hole Record: age # 4 of LITHOLOGY: Silfstone inter Selly Hugellite From То Availlate + HOLE #: VA-16-22 This intervel as 67.0% Silfstone 147.7- 191.5 COLOR: (Fen Bando to grey. grey and Locally dork que PRIMARY STRUCTURE: Mainly med. HO Huck lucal Sequences, their to Ver Arguelite - Selfy Arsellate. in: 162.2 to 167.5. Selfstone Beddens Elly Cannon Ball & Pellow, Blame Structure Beses r. Avgellet. - Secty Hug. a plans, These Sebe Jan are commonly linely serellel laminated. Bedding to CIAS 165.0 = 76° 29% of this interval this to very this is TECTONIC STRUCTURE: NIL. Kegcongl GENERAL ALTERATION: In gen Seds are all Selinitial in Sisa Selfstone + Aug. beds are weakly to locally strongly adareous, Quart, gor Calacti Fram 174. to 188.0 after wide Sectered Through-out thes Selente xf(s are MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length Pyrrhulite Very weekly bers in Seds most of the From 162,2 to 167,5 Argelike - silty Hug. held host from 3. % to 5% diss. Pyrahateto interval is weatly Magnetic through - out ADDITIONAL OBSERVATIONS:

Hole Record:	Orregular.	rage # 5 of
om To LITHOLOGY: Silty Hugellite inter	bedded Selfstone	HOLE #: VA-16-22
5-2046 intervel is 569	6 Silfstone	
DEIMARDY STOLICTURE (1)	Brown, verely Derk grey	
PRIVARY STRUCTURE: Mainly McE, to Fle	un + Very their Bedded, Beckenp is a	listenct, and tobuler in Silly Mrg.
sequences, and indestinet & we	ut q in selfstone sequences, que fine q.	rain sets, Some Sulfstane beds
Becking to C/A@ 203.5= 75°	Superas.	lis B. I
TECTONIC STRUCTURE: 192,6 40 193.2	Fault Tang Cuts Cla 50° Curt	le i d'Ail
Seds., Some	, cars the st consists of	Seme - Cuthofille guige + Breceiètet
GENERAL ALTERATION: Regrand : Serecity	schon, Scheificetion Juin Bistilization	, vare weath, Calagoons
Selfstore Beds.		
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR	RUCTURE: SAMPLE # From To	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare weakly fiss. Pyro	RUCTURE: SAMPLE # From To	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weakly fiss. Pyro & Rave flui inregular	RUCTURE: SAMPLE # From To hotele. Quarte-pyrrholite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare weakly fiss. Pyro & Rave fluir inregular	RUCTURE: SAMPLE # From To hotele. Quartz-pyrrihotite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly fise. Pyro V Rave fluin inregular	RUCTURE: SAMPLE # From To hotele. Quartz-pyrrihotite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly fise. Pyro V Rave fluin inregular	RUCTURE: SAMPLE # From To	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly fiss. Pyro V Rave fluit inregular	RUCTURE: SAMPLE # From To totele. Quartz-pyrriholite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly Jess. Pyrr V Rave flui inregular	RUCTURE: SAMPLE # From To hotele. Ouortz-pyrrholite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly Jis's. Pyrr V Rave fluir inregular	RUCTURE: SAMPLE # From To hotele. Quartz-pyrrhotite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Nave Weokly fiss. Pyro N Rave flui inregular	RUCTURE: SAMPLE # From To totele. Quartz-pyrrhotite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly Jiss. Pyro V Rave fluit inregular	RUCTURE: SAMPLE # From To totele. Quartz-pyrriholite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly Jess. Pyrr V Rave fluit inregular	RUCTURE: SAMPLE # From To hotele. Oucotz-pyrcholite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly fiss. Pyre V Rave fluit inregular	RUCTURE: SAMPLE # From To hotile. Quartz-pyrcholite Veinlets	Length
MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STR Vare Weokly Jis's. Pyre V Rave This integrilor V	RUCTURE: SAMPLE # From To hotile. Quartz-pyrchotile Veinlets	Length

 $\sim -$

.

	IGY: S. Plat) 7			· · · · · · · · · · · · · · · · · · ·		Fage # 6	of	
6-2214	Suct Stone	in 76 % Silkhow	ty Hogelik	e.			HOLE #	t: <u>VA</u>	6-22	-	
	/						L				
COLOR:	Shades of lite 9	ver, grey & lessor a	dork grey	1	· · · · · · · · · · · · · · · · · · ·	0					
	1 STRUCTURE: Mainly	Med to Hun Red	led with	Some V	levy J	then B	edded	1 Au	c. Sec	uence	8
	some vanges f	from shorp & flat	to wavey	and end	istinct				0		
Bedd	my to CIA@ 221.	0= 71° , 2106 1 +	this internal	is the	+ 1/ana	, this	1 (()	,			
TECTONI	CSTRUCTURE: Scetture	& then 2 to 5 cm Th	thick sheer	Zones Cu	t Cl	t at 50	Dedded Can s	i st ot			
lose.	Brecciated Seds.	(Ruhble)					1	and the second	Jauge	F	
									· · · · · · · · · · · · · · · · · · ·		
GENERAL							-				
ULIVERAL	ALTERATION: Regeon	nel cs previously	discribed-	······				·····			
		······································				······					
		А. Х							•		
		4. 	·····								
MINERAL	IZATION & ASSOCIATED ALTERA	TIONS, HOST STRUCTURE:	SAN	IPLE # From	То	Length				1	
MINERAL <i>Tore</i>	IZATION & ASSOCIATED ALTERA Weakly desc.	TIONS, HOST STRUCTURE: Pyra hotele	SAN	IPLE # From	То	Length		l	I	ļ	
MINERAL <i>Tore</i>	IZATION & ASSOCIATED ALTERA Weakly desc.	TIONS, HOST STRUCTURE: Pyra hotele	SAN	IPLE # From	To	Length				<u> </u>	
MINERAL <i>Tore</i>	IZATION & ASSOCIATED ALTERA Weakly desc.	TIONS, HOST STRUCTURE: Pyra hotele	SAN	IPLE # From	To	Length	· · · · · · · · · · · · · · · · · · ·			J	
MINERAL	IZATION & ASSOCIATED ALTERA Weakly desc.	TIONS, HOST STRUCTURE:	SAN	IPLE # From	To	Length					
MINERAL / Org	IZATION & ASSOCIATED ALTERA weakly desc.	TIONS, HOST STRUCTURE: Pyrochotile	SAN	IPLE # From	To	Length					
MINERAL <i>TOre</i>	IZATION & ASSOCIATED ALTERA Weakly dcsc.	TIONS, HOST STRUCTURE: Pyraholite	SAN	IPLE # From	To	Length					
MINERAL / Dre	IZATION & ASSOCIATED ALTERA Weakly desc.	TIONS, HOST STRUCTURE: Pyra hotele	SAN	IPLE # From	To	Length					
MINERAL /////	IZATION & ASSOCIATED ALTERA Weakly Cosc.	TIONS, HOST STRUCTURE: Pyra hotele	SAN	IPLE # From	To	Length					
MINERAL /////	IZATION & ASSOCIATED ALTERA Weakly Ccsc.	TIONS, HOST STRUCTURE:	SAN	IPLE # From		Length					
	IZATION & ASSOCIATED ALTERA Weakly C.sc.	TIONS, HOST STRUCTURE:	SAN	IPLE # From							
MINERAL	IZATION & ASSOCIATED ALTERA weakly disc.	TIONS, HOST STRUCTURE:	SAN	IPLE # From							

Drill Hole Record: age # 7 of Mainly Seltstone, with minor Selty Augellet-From То LITHOLOGY: HOLE #: VA16-22 221.4-241.6 \mathcal{Q} Selfstone 000/ COLOR: Shades dite grey & grey. PRIMARY STRUCTURE: Many Med- to thick & Very thick Bed. Beddene es mauile wavey and indistant Some become plans deformed by Soft Sed. Structure lance Pillow Interval of 3. 4 % this to very this peddad TECTONIC STRUCTURE: 227.8 to 228.5 Fault Zone, cut C/A @ 80°, Consists of finaly Breccisted Seds in Sift gauge matrick Barren OFZ- muior calcole @ 236.2 cut c/A @ 200 Vients 30 cm the GENERAL ALTERATION: Regional Siltstone Bads are strongly Selicified & Sericitized MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length rare diss. pyrholite ADDITIONAL OBSERVATIONS:

	ora:		DI.	· · ·							rage #	8 of	
.6 -275',	LITHOLOGY: Sulty	Highlike	Rhythmica 97% Selst	lly en	terhedded	Sil	tstore	۵	HOLE	#:_ \/ A	16-22		
	/ ;		A										
· · ·	COLOR: Shades a	grey; I	te grey and	Maer	e grey.			-					<u> </u>
*****	PRIMARY STRUCTURE:	mainly.	med, to thin	, & Ver	1 thin	"bedde	d, 5	illy A.	9. hed	5 have	Shorp	o-flat	4
	Stat Plans,	and are 'Con	nmonly finiely	porallel	Ferrina	hed -	Silfsfe	one R.	<u>eddeap</u>	is en	idestru	iet,	
	Badding to all	fine grain	ed. Im	terval i	1 42150	a the	n to b	Very -	then	Bedd	ed.	, 	
<u></u>	TECTONIC STRUCTURE: 74	1 7.6 to 200	Red 7	<u> </u>				cal a	7				·
	267.5 to 269.1	Brancia	Structure 20 Me	the cit	to Then	Sheer s		to C	119.	~		/	
	in a calcite M	lotnix Closta	are repiss	unding	e carge	Ince .	s co	unsists	Clast	s ceppo	orted l	recen	e
				and are			nochol	<i></i>					
	GENERAL ALTERATION:	equinal as	previously c	discribed	(Some	- Lui	1 Ben		Price	. 1.			
			1 1		· · · · · · · · · · · · · · · · · · ·	1	<i></i>	<u>s ~u</u>	Thes .	enter o	lef		
								the second s					
			·							· ·			
	MINERALIZATION & ASSOCIA	TED ALTERATIONS, H	IOST STRUCTURE:	***	SAMPLE #	From	То	Length]				
	MINERALIZATION & ASSOCIA rare biss. Pyrr	TED ALTERATIONS, F holde	IOST STRUCTURE:		SAMPLE #	From	То	Length					
	MINERALIZATION & ASSOCIA rare biss. Pyrr	TED ALTERATIONS, F hot Se	IOST STRUCTURE:		SAMPLE #	From	То	Length	<u> </u>				
	MINERALIZATION & ASSOCIA Vare biss. Pyrr	TED ALTERATIONS, F holde	IOST STRUCTURE:		SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA vare biss. Pyri	TED ALTERATIONS, F hot de	IOST STRUCTURE:		SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA rare biss. Pyrr	TED ALTERATIONS, H	IOST STRUCTURE:		SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA rare bisc. Pyrr	TED ALTERATIONS, H	IOST STRUCTURE:		SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA rare bise. Pyrr	TED ALTERATIONS, H	IOST STRUCTURE:		SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA rare biss. Pyrr	TED ALTERATIONS, H	IOST STRUCTURE:		SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA rare biss. Pyrr	TED ALTERATIONS, H			SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA rare besc. Pyrr	TED ALTERATIONS, H	IOST STRUCTURE:		SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA rare bise. Pyrr	TED ALTERATIONS, H			SAMPLE #	From	To	Length					
	MINERALIZATION & ASSOCIA rare bise. Pyrr	TED ALTERATIONS, H			SAMPLE #	From 7	To	Length					

...

Drill Hole Record: rage # 9 of From То LITHOLOGY: listone Mainly Avgillite - Avgillite HOLE #: VA16-22 seaffired Sill 275.5-309.6 unts Consists Q, 77.5 interval love COLOR: Suchas of like grey agrey PRIMARY STRUCTURE mainly tin Some herded Some Auck an Ver Ledee b Sharp & flat in Argickte - Selly Beldenc Sequence Arg. bers. S. Bedding gen Endistig & Bodde 40. 281.02 interval this 17.5% ousists their Badded sequences to Vere TECTONIC STRUCTURE: NUL Requirel; as previously GENERAL ALTERATION: Some Selfstone keds & Some Argellite Bad discribel to Strongly Colcoreous. weakly MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length Rare Pyrhotite. diss. **ADDITIONAL OBSERVATIONS:** ÷., .

Drill Hole Rec	cord:			\bigcirc				a # //) of	
From To	LITHOLOGY: Sillston	e interkedded	Silly Augul	de & Argellite			+ \// // - 20		
309:6-340	1.4	/					#: <u>VA 16-22</u>	·	
	This inter	Jal is 14.0%	Siltstones						
	COLOR: Shoces of Ute	grey, lite brow	much grey on	& lessor grey.					
	PRIMARY STRUCTURE! Mai	mly med. to this	& very Thin B.	edded, Octh Son	ne Scett	ered this	+ Bods		
	Bedoing in Argilite	- Selfy Avgellite	15 Sharp 9 flo	ly in siltstone	Bets bad	being is we	uy + indista	us A	<u></u>
		, ,	P						
· · · · · · · · · · · · · · · · · · ·	Decling to CIAG	334.1=730 7	his interval	1 18% thin to	Very the	Bedded		*i+	<u></u>
	TECTONIC STRUCTURE: Ca	leite filled 5 mm	+ Jess thick for	cture are sa	b sarallel	to C/H.	or atos	to CIA.	<u> </u>
	Those Arectures are	widely scottored	Hivough -out	this interva	l'@ 322.	5 5 cm + hie	k gauge Zo	ie cuts C	1A@10°
	<u>@ 10 cm thick Saft gave</u>	go Zone Cuts C/AC	<u>2 50°, </u>				0 /		
		. 1							
	GENERAL ALTERATION: Kegiu	nal' Sericitizat	400 , Lessor B.	stilization of Sei	hcificate	in mainly	& Sellst	me Bab.	5
	Some weakly to	Strongly Colcareod	s beds, Colo	te and or Que	arts afte	~ Selente	Betts. are	willy	<u> </u>
	Scattered Hurough	-out this ento	Ngl .	-					
· ·	MINERALIZATION & ASSOCIATED A	LTERATIONS, HOST STRUCTUR	E:	SAMPLE # From	To	ngth		1	
	rare tension create	Veenlels 10mm to 3	nom theck has	+ Quarta + Dy					-
·			**************************************		<u> </u>		· .		
				· · · · ·					····· \
				3				· · · · · · · · · · · · · · · · · · ·	
				·		· · · · · · · · · · · · · · · · · · ·	·		
							······································		
				······					5
·		· .		·····		· · · · · · · · · · · · · · · · · · ·	nen herendensen sinderen Versteren in	·······	
<u> </u>		······································		······································					
\$							· · · · · · · · · · · · · · · · · · ·	·····	
·····			P		·····			· · · · · · · · · · · · · · · · · · ·	2
	· · · · · · · · · · · · · · · · · · ·			······				· · · · · · · · · · · · · · · · · · ·	
								· · · · · · · · · · · · · · · · · · ·	
COTIONAL OBSE	ERVATIONS:								
-									

• :

.

-

Drill Hole Record: age # // of LITHOLOGY: Sillstone Lesson intertrached From То Selly Hogellin - Hogellebe. HOLE #: VA 16-22 3404 - 370 TOP FRINCE MARK Seq. @ 353,9 Base of FRINCE M. @. 357.2 80.5% & this interval Selfstone Shades of Crocy and COLOR: Tile grey Pinkish Brown petches sectared through PRIMARY STRUCTURE: Mainly Some this to very this Bedderf Seguence Belling plans are gon lat beddene in argelit distinc ocals Sociences Bedding to C/A@ 351.2 = Seamencesa 42.70% this interval to Vern Tun TECTONIC STRUCTURE: gen . Very crockle KACOO Weckly racture by Calcite. Regional Sericitization, Riotitization, & Selicification, Some Selfstone beds are weakly GENERAL ALTERATION: and Locally Pinkish Brown Juie Biotite Alterction Calcarcous Some Kale 38412 357.2 27:0 MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length Scin thick Quartz Vein cuts C/4 @ 142 and Qut baddens at 90 341.0 O, hosts abundant Pyrrhotite, & Pyrete, rare Chelcopynite, Calcite Vein & course Biotete. ٩. ADDITIONAL OBSERVATIONS:

Drill Hole Record: $age # / Z_{of}$ Selfy Argellite + Awillits. LITHOLOGY: inforbedal From То HOLE #: VA 16-22 370-0 - 4/2,6 VAL MARKER BED @ 384.2 is 83% Sillstone This Interval COLOR: grey. Gvey and Farely lite brownest area Mainly PRIMARY STRUCTURE: with vare very this Beds of Salty Augellite & Augel Very Huck and thick Bedded Selfstone rare Bedding ans are gen indistanct, Availlate-Sul beds are gan. flet + sherp. ita Bebling @ 401.0 = 70° Inteddel is 13,4% then to Very his Sodle TECTONIC STRUCTURE: 10 389.0 cuts C/AG Theor Zono nui GENERAL ALTERATION: Gen. Kecconal, with selfstone beds commonly Silicified + Sericite, Calcute wedely Seathered through -out Intebel after Selenite Hts Small Biotile - Colecte Concretions accur in Silicified Selfstone Bels from 370.5 to 378.5, Seds strongly coleareous from 39600 to 399.0 @ 402.3, 4cm thick Qtr. - Celeite Vin, has a saluary doug Contacts, of garmet & Brotite. @ 407.0, 10 cm thick Bistite allike Zone **MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:** SAMPLE # CHO So From То cut Length Rare Bands Diss. pypholite can occur through -oa +hin nterval. @ 402.3, Showe cuts C/A 16° lost diss pyrr discusso 2. ADDITIONAL OBSERVATIONS:

Drill Hole Record: rage #13 of То From LITHOLOGY: Mainly store Lessa unterbods of Se Angellete HOLE #: VA16-22 412.6- 440.9 minor Anterval is sole Selfstore COLOR: ~~ Srey, Grey Broundsh an 9 may PRIMARY STRUCTURE: Mainly Sequences 9 1seth 100+fere Shin to Very tore plans ave in Availlecoves Daues Beddenic t. CIA an @ 437.6 = 75° Sticin Interval is 11-7 % This to very this Badd ing to C/A @ 43/17 = 72° TECTONIC STRUCTURE: 440.8 to 442.0 Fault Zone Consists. Crushe ments 1 Confac astroyed by Brilling Selfstone Bebs are gen. Silicified, and Sericitard GENERAL ALTERATION: Kegeone (vaillite + are main ine sericite, and Some Brotite, rari Qaimo **MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:** SAMPLE # From To Length Some diss. + or Pyrete weakly Pyrrkster sective through rand interval. ADDITIONAL OBSERVATIONS:
Drill Hole Record: age # (4 of)iltstone, minor Argellite and silty Argellite enterbeds Mainly LITHOLOGY: From To HOLE #: VA16-22 440.8-467.2 Interval 76.6%. Sultstone -COLOR: Shades of grey, Tele arey, Verely derk grey PRIMARY STRUCTURE: mainly med. to thick Bedded, menos this to deay their Bodde Selfstore Beddenr endistinct and vore, Arguelaceaus Beds Sharn and becour a Beddenic to C/A @ 444.0 = 670 @ 461.º= 62°. - 2.8 % thin to Very Thin pedda TECTONIC STRUCTURE: 452.7 to 453.0' Fault Zone, cuts C/H @ 450 453.0 +0 457. scattered gouse filled Shear Zones cut C/H@ 20" Regional GENERAL ALTERATION: as previously discribed, calcula and Oto after Selenet xele. Pink Sich hedred garnets are rore bet most abundant @ 961.2. occur Jol **MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:** SAMPLE # From То Length Weatly diss Pyrkotite + Pyrite withely scattered Section. Through-out م " This 6mm flick Tension Veins Jost Near Massile Perkotite, + Pyrite in Calacte Near 442 6 Some Small massive Pyrite, Linses 1 cm + 2 cm occur near 195.9 ã. **法 ADDITIONAL OBSERVATIONS:**

Drill Hole Record: age # 15_{of} Seltstone, minur unterbedde LITHOLOGY: alter From To silhte. HOLE #: VA16-22 467.2-491.0 18 82% Siltstane Shedes ang COLOR: PRIMARY STRUCTURE: Mouriles with Some other to very to bedded Sequence S. Same Thim . defumation scottered through - out an Interval thin to very thin Bedde Beddeng to C/A@ 490.0 = 70 TECTONIC STRUCTURE: 473.5 +0 475.4 Fault Zone, Consists of Semi - Lithol Breccia and Solt gauge we Breccicted Seds., Fault Cuts C/A at 47° Eung to CIA@ 400.0= 70° GENERAL ALTERATION: 468,9 to 473.5 Regional Act. Strongly overprinted by late Albertization associated with Coarse etter Block Beotite, and Seriete, in This interval Calcute after Selenite Atts are abunbant and relatively farge, 475, 4 to 1913, Small Subhedval sent garnels ave Common MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length to 469.4 white Bull George Jein cut CIA @ 468.9 Hosts scattered Small Hes- of Clinozousite Rare wispy petchs swall diss \cup **ADDITIONAL OBSERVATIONS:**

	ord:					of									
From To	LITHOLOGY: Self store enterbedded Se	Il Houlhte	· · · · · · · · · · · · · · · · · · ·	HOLE	H. 1/1/6 -	22									
191.0-517.0	4 Attis interval is 47.9%				+. <u>////0-2</u>										
······································	NOIE The Section from Hiawold	ha marker to Sull	van Time (masts of 68%	Siltstore.										
······	COLOR: Generally Layerer Succes of 9	rey B		0											
	PRIMARY STRUCTURE: Mainly met to their &	+ Devy Thin bedde	Selly Argel	lite, with	lesso med. +	& theek									
	pedder Seltatone, Belding is gen.	Sharp & Tobulor, a	"ith Some	scotleved the	in Bande of	Soft									
	Securing deformation, 491.0 to 496.6 is +	this to very this bedded	Sulty Argell	ite, finely parce	lel Tominated in	~ port.									
	This interval is 21.69 % Thin to Ver	y thin Bedder Note: 2	2.7 % of Sec	tion from Itia	to Sallivan is	him to V- thinkell									
	TECTONIC STRUCTURE: /hm colecte healed B	reccià Zones Sub-pe	wellet to C	Have with	by Scottered										
	Through out This interval Otz - Ca	ecter Scotleved 7	hrough inte	roll Quert:	- Calcite - Ch	loute									
	Billin That are Subporallel to C/1	t and are also 20"	to CIA		2										
	reading to CIAC 496.0 = 72° and C	517.0 = 65				<i>~</i>									
	GENERAL ALTERATION: Regional Bistitization J	Sericitization and S	ilici Picetion	y over printe.	6 by scottere	e in									
	Subhedral Pink gornets				0	,									
	- suo pud ral runk gornets														
	Role die During Lize d' Di	SAMPLE #	From To	Length	<u> </u>]										
· · · · · · · · · · · · · · · · · · ·	nure alss. FAFFMORULE FYRIFE.			· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·									
······································			······································	· .	· · · · · · · · · · · · · · · · · · ·										
······································		·			•	· · · · · · · · · · · · · · · · · · ·									
				-	· · · · · · · · · · · · · · · · · · ·	· ·									
				-											
<u> </u>					· · · · · · · · · · · · · · · · · · ·										
					· · · · · · · · · · · · · · · · · · ·										
				 											

347.0 Biotizat Drill Hole Record: age #/7 of with rave o То LITHOLOGY: Mainly Hrailite From HOLE #: VA 16-517.4-542:7 Silts the SILLIVAN TIME avey weally grey. COLOR: an lite aminato derk Fluin Bod Gen inely perallel thing to Very Bedden PRIMARY STRUCTURE: Gen. Very entenele are gen shorp & tobular Bedding @ 539.5 = 65° **TECTONIC STRUCTURE:** NIL line Sericite and Brotite. Bedded are altered to GENERAL ALTERATION: Keginal with vare Patches albehistion. of Late Brown Biotitization, rorely Small wisky Patches at MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length Sulligu Pyrohotite enter lal , the diss pyroliotete aen diss. Throw Parchete 5 % chu Vol. and parallo DISS 10 (ocolly Louns um over reaveryly diss Bands 30 old by Vol. up-to ol 10 cm. This interval weather Magnel to Heavy diss Pyrohofite Zones. Strongle Locally. mar <39.5° Weakly diss. Spheler associate 40 Durthoto di55. Chlonte Salucres, are 1 cm thick Massive C/4 20; and are Cut - abundant and widely Scottered from 535. 6 to 542.0. Quartz, Calcite, muscovite, Pyrite + pyrrhotite + 4 cm Kurte cuts 521.2 to 523.0 . - ÷ **ADDITIONAL OBSERVATIONS:**

Drill Hole Record: # 18 of LITHOLOGY: LOWER ALDRIDGE FM: Mainly Highly Altered Silty Hugelicke HOLE #: 1/A16-22 From To NOTE IT. W. OF VINE VEIN STRICTURE @ 644.4. It.W. is formed 542.7-645.8 By a Brecciated. discordent Fragment from 644.6 to 643:8= 24.04 of Gebbro UYKe. COLOR: Gen. Crey, Band by Dark maroonesh grey, aver printed by erregelar petch & streats of like Brown & lete green PRIMARY STRUCTURE: Mainly med. to this + Very this Bedded, Bedding is tabular an Redound to C/A @ 557.0 = 75°, @ 577.8 = 72° to C/A, @ 596.7 = 74, @ 6280 = 79 TECTONICSTRUCTURE: 539.0 to 560.0 Creckle Breecie Zone, roughly @ 15° to CIA, hecked mainly By Colorte & Lesson Quertz, 563.0 to 563.5 Crackle Breccie Zone, as above, @ 568.9, fault zones 30 cm thick cut ClAQ, 20°, Consists & Breccia seds. in a colcite + soft source mattix, 607.0' 10cm thick Breccia-gause Zone cuts C/H@ 53°, @ 608.5 Brecis 10 cm thick alt Cla@ 15°, and @ 610, Breecia Zove 10cm thick ants Clare 20° GENERAL ALTERATION: Regional Bestitisation & Sericitization, as Strondy cover printed minor albitisction. followed by lite green Scientic - Silicification, like brown - Sericitization, introduced along very irregular hairline fractures over prints all other alteration Types, this type of Alteration becomes more interess from 594.0 to and albetization is more abundant. MINERALIZATION & ASSOCIATED ALTERATIONS. HOST STRUCTURE: SAMPLE # From То Length Pyrokotito is diss. mainly silty Argulite beds that have not been altered ha Lote Alteration, These Bedded Pyrhotete rances from 2% to 5% by Valume. 556.0 to 557.0 weakly crockle Brecciated Scherified Seder Mosts pyrrhetite + rare Sphelento in quartz Avectures. let 559.7 Zone 30 cm thick, at C/4 @ 30°, developed in silicified sets hosts pyrsholete and minor Hrsenopynite 594.5 +0 595.2 + from 603.0 + 603.3 Quastomosing quarts- chlorite Vins livst abundant byrite, and some relas cocele these Viers on the it. w. cut C/A @ 25° \$ 15° but Bend pavallel to C/A, intense albitization is associated with these Veins. 3630.0 Mossure Pyrivholite vein Icm thick cuts C/A @ 28°, 6 @645.8, 15 cm thick Calcute - Qtz.-Pyrrhotite, Arsenopyrite, galance and Sphalerite Vein deposite. along Gabbro dyke Contact @ 26° to CIA **ADDITIONAL OBSERVATIONS:**

667. **Drill Hole Record:** ge # / 9 of GABBRO DYKE AND Sulphice LITHOLOGY: From То -VEIN HOLE #: VA16-22 645.9 - 730.6 694.3 to 703.0 Altered Lawer Aldridge Seds. Beddein to C/H@ 698.0= 66° F.W. Confact is sheared with Some fault glouge. CAREEN COLOR: TExture: Finely Alm to 663.4, Becomes coarsely Allen an PRIMARY STRUCTURE: n. to-warb ten tool with TECTONIC STRUCTURE: 703,0 to 104.8 Fault Zone cuts C/A C 22°, Consists & Competent Breecicled Quantz, Black warys chlorite and spund. Sulphides (See Below) GENERAL ALTERATION: MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From To Length 678.9 to 679: 9 - Vein cuts CLA@ 43°. Consists Calcite, Sitevite, Black Chlorite and abund. Pyrate. 682.4 to 683.6 - Vein cuts C/A @ 29; Consists mainly of Quertz- Massive Pyrokolite & pyrite, with abundant Arsenopyrite, vare galana, minor Calcute, Siderite and Black Chlorite form port of the gangae 683.6 +0 684.6 Quarte Vein Sub-porallel to cove Mxis, hosts abunda and Brsenorsquite 703.0 to 704.8 Fault Zone hosts abund. Quartz, Mossive black chlorite: with 40 fo 50 Pyrite, Pyrhotite & Arsonopyrite. Zone cut C/A @ 22° to the 3 Massure Albite minor Quarte vein cuts c/4@ 23°, lost 5% Arseno pyrete ~ 125.3 to 726.4 Quarte Jein, cets c/A@ 30° hosts from 30% to to to to the purhotite, rare Chalcopyrite and rove Alsono, synte, Black waxy chlorite is also abundant in these 1.54 **ADDITIONAL OBSERVATIONS:**

Drill Hole Record:)ge # 20 of Altered Lower Aloritre Sidey Argelike. LITHOLOGY: Hequely From To HOLE #: VA16-22 730.6 - 750.b COLOR: Vork maronish grey Mattled by Brown and White alteration. PRIMARY STRUCTURE: Med. to this bedbed and Very this Bedbod, Bedbing and other Primary Sedimentry Structures gen. destarted by Alteration. Redding to Core Atis (CH) @ 145,1 = 63. TECTONIC STRUCTURE: The whole interval from 130.6 to 750.6 is creekled Breecieted and healed by Colcite - 730.6 to 736.58 Fault cut CIAD. 57°, Congisted Breccieted Sebs. in soft gauge metric GENERAL ALTERATION: Regional albertion, moinly line Bistitization and suliciplication, that is or the most port mottled by Take fine lite brown Bistetization, and Jesson alligetion lillad crachle Breccia Calcit & Post date's everything . **MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:** SAMPLE # From То Length Very Rove diss. Myrite ADDITIONAL OBSERVATIONS:

								بر #) ge #	210f	
$\frac{1}{\sqrt{224}}$	THOLOGY: Fault Dreccia					HOLE	#· VA	16-2	2	
6-1/4.6										
	Somple 20	90A4								
	DLOR:									
PR	RIMARY STRUCTURE:									
					·····					· <u>····································</u>
										· · · ·
	CTONIC STRUCTURE. For Rel R. C. 1 al in a									
16	COUNCIENCE / Well Conststs of Sharply angular	Class in	c a s	emi - Le	<u>Alofica</u>	6 gaul	3 re	otric,	Metrix	is
/	Jon weary Calcoreous, with Rare Pyrte Compet	ent fai	<u>ilt Bri</u>	<u>eccià f</u>	vom 15	6.6 to	1146	/		
	The to Terz Strand Course filled Sheer plans car 4	4 @ 52°+50	s, Kem	unent	Bebbenie	01640) = <i>67</i> ,			
	NEPALALTERATION, SIL C. R.	S. Pare	of tau	elt 2m	<u>e (2) 78</u>	34.3 10	mark	ed by	40 Cm	1
	af zoage & preccieted Sohem on t	s that	Cet 9	AC	<u>63°-</u>	Kenind	ant B	edlen (60° @.	778.0
								/		
MI	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE		Freeze			T		/		
MI	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:	SAMPLE #	From	То	Length]			
MI /	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Fare dess Pyrite in Jauge metrik.	SAMPLE #	From	То	Length					
MI /	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Vare dess Pyrite in Jauge metrik.	SAMPLE #	From	То	Length	I				
MI /	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Fare diss Pyrite in gauge metrik.	SAMPLE #	From	To	Length	I				
MI /	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Vare diss Pyrite in gauge metoix.	SAMPLE #	From		Length					
MI /	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Vare dess Pyrite in Jauge metrik.	SAMPLE #	From		Length					
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Fare diss Pyrite in Jauge meterik.	SAMPLE #	From		Length					
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Fare dess Pyrite in Jauge metrik.	SAMPLE #	From		Length					
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Vare dess Myrite in Jauge metrik.	SAMPLE #	From		Length					
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Vare des Pyrite in gauge metoir.	SAMPLE #	From		Length					
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: "are diss Pyrite in gauge metoix.	SAMPLE #	From		Length					
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Vare des Pyrite in Jauge metrix.	SAMPLE #	From	To						
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: (are dess Pyrite in Jouge methic.)	SAMPLE #	From		Length					
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Tare des fyrite in Jauge metorix.	SAMPLE #	From							
	NERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: Tare dess Pyrite in Jauge metoix.	SAMPLE #	From							

Drill Hole Record: Orge # 22.0f VA 16-22 LITHOLOGY: Lawer Ald type Sets from 774.8 to 780.6 Self fore Poss. Footwall Quartzite cent. From To HOLE #: 1/4/6-22 774.6-800.6 Lite grey COLOR: Silt stone Sibs are their Beddod, But bedding is undistinct due to PRIMARY STRUCTURE: faulting and Braccistad Through and this interval. Bebbene @ 792.0: 53? TECTONIC STRUCTURE: 183.7 to 784.0 Fault Zone cut C/A at 31°, Consists J Soft fault gauge & Breccialed Sebs (2109045) 785.3 to 787.6 Fault Zone Cats C/A@ 37°. Consists of Soft fault gauge & Brecciated Seds 189.4 to 79/10 Fault Zone cuts C/112 400 197.2 to 197.8 Fault Zone Cats C/H @ 46° GENERAL ALTERATION: Regional, with Some Lake Brown Biotitization, **MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE:** SAMPLE # From То Length rare diss. Pyrite and or Pyrobetete ADDITIONAL OBSERVATIONS:

Drill Hole Record:) age # 23 of То LITHOLOGY: Kowey Alareban type Selly Augellete. From eds-Man HOLE #: VA 16-22 800.6-809.7 E.O.H. & grey, fite grey, with Some life Brown Mattheir Shedes COLOR: then to very This Bedded, Bedding is gen indistant due to foultuing & PRIMARY STRUCTURE: Preciation Bedering at 802.0 = 67° TECTONIC STRUCTURE: 800,6 to BOLG, 4 Fault Zones, Ceels C/A at 52°? Legional, Mottled by John Brown Bicktlackion **GENERAL ALTERATION:** MINERALIZATION & ASSOCIATED ALTERATIONS, HOST STRUCTURE: SAMPLE # From То Length Lare diss. grite. **ADDITIONAL OBSERVATIONS:**

HOLE NO. VA 16-22

From To							Pag	e‡of	
······································	COMMENTS								
		SAMPLE	# Width	C/2					
511.3-618.9	- Crabbro -	210907	9 1.0						
618.9-619.9	Colcite, Sidente, Black Chlorite & abund. Pypite	03	1.0	 				+	
79.9-681.15	Ctabhro	021	1.25	!				+	
081.15-682.4	Acobbec	03:	1.20	<u> </u>				+	
82.4-6836	Quartz, Mossive Pyprhotite & Pyrite abund Arsenopyrite, vare galing		1.2	┼──┼					
	Minor Calcula, Siderite & Block Chlorite	132	10	<u>,</u>					
8316-68416	Q FZ. Jein Supporallel to C/14 hosts abund, Byrite, Some Chalopprite & Avsenovrante -	020	1.0					+	
84.6-685.6	Crabbro	()35	1/0	┠───╁				+	
62.0-764.8	Fault Zone, shund. Otz., massive Black Chlande, with 40° tossof Due to.	13/	2.0	┠──╂					
	Pyrmotite & Arsenopynte		2.0						+
04.8-705.8	Gobbro -	027				- 			
18-3-719.3	Ctabbro -	630	(10					+	
9.3-720.3	Massive alberte, with host 5% by Voc Ausanorea te	0.8	1.0						
20.3-721.3	Grobbro	059	(10					<u> </u>	
24.3-725.3	Gabbro	670	10						
25.3-726.4	Qt3 Vin As % Pyr lotite, ren Chalos Durate & Arsonancia	041	$\frac{10}{1}$					<u> </u>	
26.4-727.4	Crebbro	042	(1)			_			
752.5	Grap Fault Breccia, with diss. Descile	643	1.0			_			
774.0	Grab u u u u	OVE						ļ!	<u> </u>
		045				_		<u> </u>	ļ
!		+			<u> </u>		<u> </u>	└───┘	ļ
!									ļ
1									
							- 		
i		+							
		╉╼╍╍╌┥					<u> </u>	<u> </u>	
í		╉╼╼╼┥							
		┨────┤							
		I		1		1	1	. f	

	\bigcirc	63	o			O		
Drill Hole Record:							Page # / of	
PROPERTY: VINE PROPERTY		HORI. COMP:	20.43		HOLE	#· \//	16-23	a de la mar de la mande de la facto de la demanda de la demanda de la demanda de la de la demanda de la de la d
LOCATION: EAST of Practine Coll.		VERT. COMP:	0.43			$\frac{\pi}{2} \sqrt{2}$	$\frac{10}{10}$ $\frac{10}{10}$	
COMMENCED: June B. 2016 COMPLETED; June 8, 201	16	CORR. DIP:			LENG	IH:	0.26	i i dana ka iku laina dalah pada pada kati kati kati kati kati kati kati kat
COORDS: Long. Lat.		TRUE BEARING:		D	RILL CONTRA	ACTOR: FA	eper Billy	F4B.
COORDS: UTM (E) 386479 (N) 5473705'N (EL)		% RECOVERY:	2	C	ORE SIZE:	NQ	/	
COORDS: Grid (E) (N) (EL)		LOGGED DATE:	une 2016	C	ASING:	3,00		
ELEVATION: 985.0 COLLAR Dip: - 95	Azi: UU2 °	LOGGED BY: D	1.L. Piskin	C	ORE STORAG	E: VINE	PROPERTY	Li nije na like ta kana sa kana ka
OBJECTIVE: TEST Mag. ANOINALY	na antaran mana mang mang mang mang mang mang ma	na ara ina kalime se sing sakara ka Darangan kalim kalim kalim sa sing sakara si kan da	0	in ben staatistiker toeronist het soutt	ion lu let stage sole tradicite Stit Associa	NAN SANG MANANA MAN		
SURVEYS: Depth: /* Dip:	Azi:	TYPE:	an sun susses provident og Landert og Skrivet sen skrivet som størte og skrivet som skrivet som skrivet som sk	in the second	Additional	Dej	oth: Dip:	Azi:
From To LITHOLOGY: Meta Sillstone.					Surveys:			
300-28.96								18-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	an a	SENTIORE ANNALE RENORDER FOR AN EXPERIMENTALISM AND	n 11. az del mante en alterna en alterna en alterna del	a finan markata parta ya kana kata kata ya kat		Alexandra and a same and a second as inter-	an persekan angar paken sedar tarihi sebat di kerangan di kerangkan di kerangkan di kerangkan di kerangkan di k	Lanandiki utur bahi likuti kini ukuturin katuminten dara k
E.O.H. COLOR: Lite grey, Speckleb whete	, and Silvery							n segura se a companya se se su su se se su su se se su
PRIMARY STRUCTURE: Met. to theck Back	es, rere thin be	65. Redderig	plans are	rare !	Jut bos	freet	L	
due to alteration	· · · ·	/ -/				innina clineana clineana ann		
Bedding to C/A at 8.7 = 18°, @ 11.0:	: 8; 2 15.4 = 25°	@ 26.0 = 1	3 0	ter a taken telent intera alara tahun tahun tahun t	1971 LED 7 Miles Colo 7 Mars 1 (1971 1 1019) 1		identi läiteteen kaina kiide feitideteen kaini käes täät	
	nang namara kanang malan panang malan panang malang malang malang malang malang malang malang malang malang mal	n gandat manay manayan da ka gandar namaya namaya ana ka sa ini ang	an dial managina ang kang kang kang kang kang kang kan	Kan landa latan galar kulun lahar kana lahar k	NA MANANG MA	Na international de la la companya de la companya d	an ay faddal at 0.01 at 10.00 at 10.000 a	() för sta
TECTONIC STRUCTURE: Cleanage to Core	74°,							
	/	******						
	·				dan sa kalan k	1999 - Marine Marine, and Marine a	4	
						<u> </u>		Alanna anna anna anna anna anna anna ann
GENERAL ALTERATION: 80 70 Of the rock	in this have is	intersely	<u>Selicifies</u>	, with	<u>apren dan</u>	A auss	emenete 6	
Muscovite, and widdly scottere	d specks of Cala	ite, Soft! 1	heds are go	m. Seric	Me, 1	oith.	un bely	Scattered
Muscoute Als.	······································	/		, 		*****	•	• • • • • • • • • • • • • • • • • • •
	rainn an a				t inn an far fan in fan in fan in fan fan fan fan fan fan fan fan fan fa	i basiarian poleteni per periori antico sintari		nan manana matangkan da kan dari ka dan kan kan kan kan kan kan kan kan kan k
MINERALIZATION & ASSOCIATED ALTERATIONS, MOST STRO		SAMPLE #	rom io	Length				
Very weakly time graine & Pyrotio	tite + Marte 9	e Ocss. +	average - our	·				
120 to 13.0 Pyrite is relatively	abundant, is occu	ers as cu	hedre etts	Ciss 1	in Met	e - Scher	icuts.	
and in this 3 min thick Weggy all	unless mer cut (V 14 41 62"						
	******					/		
	n der seinen seinen dem seine seinen sich ein seine kallen sie eine seine seine seine staten sich dem beim der					un den lokasen kisterander i		
ADDITIONAL OBSERVATIONS:					*			

Metric Imperial

ly

Appendix 6: Graphic logs for VA15-02 and VA15-04 with sample assay column

				Conductive	
900		generally intensely sericitized and over printed by zones of intense silicification crackle breccia fractures are commonly healed sericite, dolomite and calcite	Rare weak diss pyrite generally hosted in altered quartzite.		
_	the fault zone consists of intensly brecciated and gouge filled quartzite to 916		Pyrite occurs as weak diss in hangingwall brecciated quartzite and weak diss pyrite and rare chalcopyrite occur in brecciated black argillite limestone.		
	devonian black argillaceous limestone and calcareous black argillite.	weakly sericitic	Weakly finely disseminated pyrite and locally chalcopyrite scattered throughout this unit less than 0.05% sulphide.		
950	karst type brecciated arenaceous dolomite and limestone. Karst holes are filled by green arenaceous argillite.	the arenaceous argillite that fills the vugs is altered mainly to fine crystalline sericite	Fine crystalline pyrite occurs widely scattered throughout this unit.		2109170
0.9 601	Deavine conglomerate, argillite clasts in a fine altered siltstone matrix	strongly sericitic throughout overprinted by patches of strong silicification			2109172 2109173
_					

		 			sediments are totally altered to sericite with dark green chlorite lining fractures	layers. Also occurs as tiny specks adjacent to blebs of pyrrhotite. Pyrrhotite and pyrite	suprides			
		phyllite zone after sediments which are totally recrystallized to sericite, chlorite and lesser quartz albite.	Totally recrystallized to sericite, chlorite and lesser quartz albite.			is relatively abundant as scattered diss, blebs and veinlets, rarely more than 1%/ sulphides by vol./ Pyrrhotite, pyrite and chalcopyrite occur throughout as	scattered thin wispy layers of weak diss sphalerite no sphalerite			
	_	phyllitic gabbro, basal contact is sharp	gabbro has been totally			fine disseminations, in thin irregular veinlets, and along cleavage planes.				
600			altered to sericite, chlorite, and calcite with reminant graines of feldspar and minor quartz			very weakly diss throughout phyllitic gabbro less than 0.5% by vol. Euhedral pyrite occurs locally in small patches, some diss ilmenite is present as well.				
	_	phyllite after sediments	Rock is totally altered to sericite, chlorite, minor albite and rare quartz. Planes of foliation are typically lines by dark green to black waxy chlorite	-	albite and chlorite parallel to foliation	Pyrrhotite, pyrite and lesser chalcopyrite as weak disseminations, irregular veinlets and blebs form <0.5% by vol.				
		phyllitic gabbro upper and lower contacts are	nearly totally altered to		phyllitic albitization	Fine pyrrhotite and rare				
	_	sharp and parallel to foliation	sericite and chlorite with some remnant grains of quartz and feldspar. Abundant wispy-lensey irregular thin veinlets and patches of late calcite			chalcopyrite is weakly disseminated throughout, locally pyrite is abundant.				
	_	phyllite after sediments is mainly composed of sericite and chlorite with rare thin bands of albite	silicification			Fine diss sulphides throughout mainly pyrrhotite, pyrite and lesser chalcopyrite <0.5% by vol.				
	_	pyllitic gabbro with upper and lower contacts distinct and parallel to foliation.	sericite and chlorite with rounded remnant grains of quartz feldspar. Albite in thin irregular to boudinaged veins and scattered boudins, late calcite veinlets, partches		bands of nearly massive epidote	Pyrrhotite and pyrite with minor chalcopyrite disseminated throughout.	abundant pyrite 1-5% by vol. Associated with albite and epidote 2cm thick veins of massive pyrthotike and pyrite bysted			
		phyllite after sediments	as previously described			Diss pyrrhotite and pyrite with rare chalcopyrite as previously described.	by veins of albite			
700		intense crackle breccia with mylonitization and hydrothermal alteration.	Siltstone is intensly silicified and sericitized. Brecciation appears to be post alteration and is healed by thin veinlets composed of quartz, dolomite and calcite. Crackle breccia consists of silicification and sericitization continues to		mylonitized siltstone matrix is totally altered to silvery sericite zone of strong albite banding mylonitized siltstone matrix is totally altered to canary yellow sericite and chlorite	Pyrite and lesser chalcopyrite in generally finely disseminated throughout the silicified and brecciated siltstone. It occurs also as widely scattered irregular veinlets (see 716m).	pyrite is most abundant in the sericite matrix of mylonite	2109153 2109154 2109174		
			be very strong at least to 873m. Silicification appears to be post sericitization , some 1 to 2m gaps in the late intense silicification, the early sericitization is gen light yellow.					2109175 2109176 2109176 2109178 2109179 2109180 2109180		
							sulphide content is less than above 750m rare specks of galena and sphalerite	2109181 2109182 2109183 2109184 2109185 2109186 2109186 2109188 2109188 2109189 2109190 2109190		
	_						widely scattered specks of galena and resinous sphalerite, associated with <u>late yellow sericitization.</u> rare specks of galena and sphalerite	2109192 2109193 2109193 2109194 2109195 2109196 2109197 2109198 2109199 2109200		
800							blebs of resinous sphalerite blebs of resinous sphalerite blebs of resinous sphalerite			
							albite veins cut core axis at 54, host has traces of galena and sphalerite.			

Appendix 7: Sample assay certificates for drill core samples

MINERAL LABORATORIES Canada

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Procedure

PRP70-250

Code

AQ250

DRPLP

DRRJT

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Code Description

Submitted By: John Keating

Crush, split and pulverize 250 g rock to 200 mesh

Warehouse handling / disposition of pulps

Warehouse handling / Disposition of reject

1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis

VAN15002112.1

Test

0.5

Wgt (g)

Report

Status

Completed

Lab

VAN

VAN

VAN

VAN

Project:	None Given
Shipment ID:	
P.O. Number	
Number of Samples:	76

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

PJX Resources Inc. Invoice To: 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA

CC:

Linda Brennan Dave L.Pighin

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

ADDITIONAL COMMENTS

Number of

Samples

65

65

65

65

Client:

PJX Resources Inc. 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA

Receiving Lab: Canada-Vancouver Received: September 24, 2015 Report Date: September 15, 2015 Page: 1 of 4

Client: **PJX Resources Inc.** 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada None Given Report Date: September 15, 2015 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 2 of 4 Part: 1 of 2 Page: CERTIFICATE OF ANALYSIS VAN15002112.1 Method WGHT AQ250 Analyte Wgt Мо Cu Pb Zn Ni Co Mn As U Au Th Sr Cd Bi v Са Ag Fe Sb Unit % kg ppm ppm ppm ppm ppb ppm ppm ppm % ppm ppm ppb ppm ppm ppm ppm ppm ppm

	MDL	0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
2109151	Drill Core	L.N.R.																			
2109152	Drill Core	L.N.R.																			
2109153	Drill Core	L.N.R.																			
2109154	Drill Core	L.N.R.																			
2109155	Drill Core	L.N.R.																			
2109156	Drill Core	L.N.R.																			
2109157	Drill Core	L.N.R.																			
2109158	Drill Core	L.N.R.																			
2109159	Drill Core	L.N.R.																			
2109160	Drill Core	L.N.R.																			
2109161	Drill Core	1.68	0.21	1.63	2.96	13.0	174	9.2	19.4	337	1.54	13.6	0.6	0.3	6.5	34.7	0.02	0.16	0.20	9	1.62
2109162	Drill Core	1.69	0.44	2.85	1.49	50.2	23	20.7	38.6	480	4.50	26.4	0.5	1.0	4.0	52.4	0.05	0.38	0.47	35	2.18
2109163	Drill Core	3.14	0.42	164.92	24.61	63.7	395	75.4	79.5	296	4.63	76.5	0.5	10.7	4.5	24.1	0.26	0.65	2.93	18	0.95
2109164	Drill Core	1.42	0.32	183.97	12.58	38.4	547	12.7	18.3	215	2.54	15.3	0.8	0.3	5.8	18.9	0.14	0.20	0.26	14	0.68
2109165	Drill Core	0.98	0.32	278.22	13.93	17.1	759	7.5	4.3	174	1.82	7.3	0.8	0.7	7.0	11.8	0.03	0.22	0.10	6	0.38
2109166	Drill Core	2.47	0.39	398.28	2.94	18.7	739	7.8	5.0	166	2.20	8.1	1.1	0.4	9.3	10.8	0.04	0.62	0.03	8	0.31
2109167	Drill Core	2.00	0.21	48.49	5.48	15.2	161	4.7	2.5	142	1.59	4.0	0.8	0.4	6.9	9.8	0.03	0.08	0.09	4	0.30
2109168	Drill Core	2.28	0.25	38.18	5.27	13.2	58	5.1	2.6	133	1.51	4.0	0.8	0.6	9.4	11.2	0.03	0.08	0.05	5	0.31
2109169	Drill Core	2.73	0.25	140.18	5.45	16.1	250	5.4	3.4	163	1.61	6.4	0.8	0.4	5.7	9.5	0.06	0.09	0.05	4	0.28
2109170	Drill Core	1.84	0.07	5.43	1.58	12.7	4	20.9	4.0	67	2.16	0.6	0.3	<0.2	9.1	9.2	<0.01	0.79	0.03	21	0.31
2109171	Drill Core	2.08	0.11	1.03	0.90	3.8	4	7.0	3.0	402	1.55	<0.1	0.1	<0.2	2.8	38.5	<0.01	0.17	<0.02	11	8.48
2109172	Drill Core	2.17	0.14	0.97	0.92	3.2	3	6.4	3.3	412	1.44	<0.1	0.1	0.4	2.7	41.4	<0.01	0.15	<0.02	10	9.42
2109173	Drill Core	2.49	0.07	2.14	0.89	4.4	<2	7.0	3.1	342	1.29	1.0	0.1	<0.2	3.3	41.0	<0.01	0.11	0.02	11	7.51
2109174	Drill Core	1.59	0.34	1.29	1.58	24.1	7	12.1	3.5	258	2.59	2.1	0.8	<0.2	6.5	18.2	<0.01	0.10	0.03	21	1.95
2109175	Drill Core	2.43	4.65	2.64	3.64	26.5	31	23.1	5.2	289	3.05	16.5	1.2	0.7	8.5	16.8	0.01	0.07	0.14	12	0.58
2109176	Drill Core	1.97	0.33	2.01	2.19	21.6	21	20.7	4.8	237	2.66	18.2	0.8	0.5	8.4	14.9	<0.01	0.07	0.10	10	0.49
2109177	Drill Core	3.51	0.25	5.59	10.92	17.4	161	52.6	14.1	243	2.52	30.0	0.8	3.5	7.9	14.7	0.01	0.14	0.74	8	0.45
2109178	Drill Core	1.86	0.29	3.18	10.34	25.5	80	13.1	6.2	215	1.93	7.0	0.9	0.6	10.3	15.8	0.08	0.10	0.28	6	0.46
2109179	Drill Core	2.03	0.26	5.05	13.99	32.7	71	13.5	18.4	265	1.90	16.3	0.9	0.5	8.3	20.5	0.16	0.10	0.16	6	0.80
2109180	Drill Core	3.17	0.32	9.98	6.29	19.4	60	21.6	22.7	248	2.44	17.6	1.5	<0.2	13.7	15.2	<0.01	0.19	0.22	12	0.43

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Client: **PJX Resources Inc.** 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada None Given Report Date: September 15, 2015 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Page: 2 of 4 Part: 2 of 2 CERTIFICATE OF ANALYSIS VAN15002112.1 Method AQ250 Analyte Ρ Cr Mg Ва Ti в AI Na κ w Sc ТΙ s Hg Se Ga La Те

	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm
	MDL	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1
2109151	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109152	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109153	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109154	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109155	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109156	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109157	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109158	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109159	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109160	Drill Core	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.	L.N.R.
2109161	Drill Core	0.067	16.9	5.3	0.59	5.3	0.002	<20	0.17	0.090	0.01	<0.1	5.5	<0.02	0.07	<5	0.2	0.04	1.0
2109162	Drill Core	0.198	16.3	31.9	1.72	11.8	0.003	<20	0.56	0.136	0.04	<0.1	11.4	<0.02	0.23	<5	<0.1	0.06	2.6
2109163	Drill Core	0.061	6.6	9.6	1.21	9.3	0.001	<20	0.40	0.097	0.03	<0.1	6.1	<0.02	1.65	6	0.5	0.30	1.8
2109164	Drill Core	0.056	12.4	5.4	0.77	7.2	0.001	<20	0.30	0.109	0.03	<0.1	4.8	<0.02	0.13	<5	<0.1	<0.02	1.5
2109165	Drill Core	0.016	12.0	5.5	0.53	12.3	<0.001	<20	0.21	0.090	0.04	<0.1	3.0	<0.02	0.06	9	0.3	<0.02	0.9
2109166	Drill Core	0.016	17.6	6.9	0.61	15.5	<0.001	<20	0.27	0.087	0.06	<0.1	3.5	<0.02	0.05	13	0.2	<0.02	1.3
2109167	Drill Core	0.012	14.6	5.0	0.45	5.6	<0.001	<20	0.15	0.087	0.02	<0.1	2.4	<0.02	<0.02	5	<0.1	0.04	0.6
2109168	Drill Core	0.015	26.0	5.3	0.41	11.0	<0.001	<20	0.21	0.087	0.05	<0.1	2.7	<0.02	<0.02	<5	<0.1	<0.02	1.0
2109169	Drill Core	0.010	10.7	4.3	0.40	7.3	<0.001	<20	0.15	0.068	0.03	<0.1	2.1	<0.02	0.02	<5	<0.1	<0.02	0.6
2109170	Drill Core	0.038	41.1	26.7	0.94	37.7	0.017	<20	1.47	0.008	0.90	<0.1	4.6	0.16	<0.02	<5	<0.1	0.04	4.7
2109171	Drill Core	0.006	13.7	10.0	5.35	16.1	0.004	<20	0.47	0.013	0.23	<0.1	3.1	0.03	<0.02	<5	0.3	0.05	1.6
2109172	Drill Core	0.004	11.3	10.7	6.02	14.6	0.003	<20	0.46	0.009	0.22	<0.1	3.0	0.03	<0.02	<5	<0.1	0.09	1.5
2109173	Drill Core	0.012	12.9	8.9	5.01	18.0	0.003	<20	0.61	0.012	0.25	<0.1	2.0	0.03	<0.02	<5	<0.1	0.03	1.7
2109174	Drill Core	0.031	19.5	17.0	1.88	7.2	0.002	<20	0.73	0.077	0.10	<0.1	5.4	<0.02	<0.02	<5	<0.1	<0.02	4.5
2109175	Drill Core	0.034	14.2	8.5	1.02	17.0	<0.001	<20	0.41	0.101	0.08	<0.1	5.1	<0.02	0.09	<5	<0.1	0.06	1.9
2109176	Drill Core	0.019	12.9	6.9	0.82	14.2	<0.001	<20	0.35	0.081	0.07	<0.1	4.5	<0.02	0.10	<5	<0.1	<0.02	1.7
2109177	Drill Core	0.014	11.5	7.3	0.64	13.5	<0.001	<20	0.27	0.081	0.06	<0.1	3.6	<0.02	0.50	<5	0.3	0.09	1.3
2109178	Drill Core	0.019	15.3	6.5	0.51	23.5	<0.001	<20	0.32	0.085	0.09	<0.1	3.3	<0.02	0.21	<5	<0.1	<0.02	1.4
2109179	Drill Core	0.023	12.2	6.2	0.60	12.5	< 0.001	<20	0.20	0.077	0.05	<0.1	3.4	<0.02	0.09	<5	0.2	<0.02	0.9
2109180	Drill Core	0.024	15.6	8.9	0.69	53.4	0.001	<20	0.56	0.062	0.19	<0.1	3.9	0.03	0.22	<5	<0.1	<0.02	2.8

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Client: PJX Resources Inc. 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA BUREAU MINERAL LABORATORIES www.bureauveritas.com/um Project: None Given VERITAS Canada Report Date: September 15, 2015 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 3 of 4 Part: 1 of 2 Page: CERTIFICATE OF ANALYSIS VAN15002112.1 Method WGHT AQ250 Analyte Wgt Мо Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi ν Ca Unit % kg ppm ppm ppm ppm ppb ppm ppm ppm % ppm ppm ppb ppm ppm ppm ppm ppm ppm MDL 0.01 2 0.01 0.01 0.02 0.02 2 0.01 0.01 0.01 0.1 0.1 0.1 1 0.1 0.1 0.2 0.1 0.5 0.0 2109181 Drill Core 1.85 0.31 4.11 7.20 18.5 40 16.2 21.2 263 2.16 13.8 1.4 <0.2 13.1 16.1 < 0.01 0.08 0.11 11 0.59 2109182 Drill Core 2.21 0.34 1.93 38.00 27.3 57 15.3 11.1 302 2.34 12.9 14.1 20.2 0.06 0.07 0.11 9 0.76 1.6 0.4 2109183 Drill Core 2.26 0.32 3.94 55.33 22.9 100 17.9 4.9 297 2.42 13.5 1.2 10.1 22.8 0.07 0.16 0.15 7 0.91 0.4 2109184 Drill Core 1.62 0.40 12.48 99.36 19.9 236 18.1 8.6 308 2.38 26.0 1.3 0.6 13.6 31.8 0.06 0.12 0.28 8 1.1

11.8

10.9

17.0

17.6

8.6

7.2

6.3

9.0

6.9

5.2

7.7

6.1

6.2

5.6

14.3

11.6

5.3

4.5

7.4

5.7

6.8

8.3

9.5

13.2

11.3

10.0

88

19

61

62

129

85

48

298

41

34

92

72

98

131

323

190

14

12

5

5

24

23

9

5

7

4

3.0

4.8

11.0

8.3

4.2

3.4

3.5

5.9

4.3

3.9

6.0

6.7

5.8

4.6

14.0

8.4

3.9

3.0

2.9

1.9

4.5

5.6

5.6

7.4

6.7

6.1

2.57

2.28

3.18

2.26

1.37

1.38

1.47

1.57

1.23

1.03

1.17

1.27

1.32

1.70

2.25

2.15

1.38

1.40

1.55

1.33

1.60

1.35

1.38

1.62

1.64

1.44

349

267

325

254

207

199

249

221

182

185

160

196

249

339

330

366

415

409

178

48

665

707

396

473

615

542

10.9

6.8

11.4

14.6

9.1

7.9

8.1

11.3

7.0

4.4

9.7

4.3

3.4

4.2

24.8

13.7

5.7

3.3

2.9

1.0

<0.1

0.2

0.2

0.3

0.4

0.3

1.2

1.1

1.3

1.3

1.0

1.2

1.0

1.2

0.9

1.0

2.1

0.9

0.9

0.9

0.7

1.5

0.1

0.2

0.2

0.1

0.3

0.3

0.4

0.4

0.3

0.3

<0.2

0.2

<0.2

<0.2

<0.2

0.7

0.6

< 0.2

<0.2

<0.2

<0.2

1.4

1.5

0.6

3.2

1.3

<0.2

0.5

<0.2

< 0.2

< 0.2

0.4

<0.2

<0.2

0.6

< 0.2

11.9

11.3

11.5

8.7

9.7

11.8

9.5

9.4

7.6

7.0

7.9

7.1

5.8

6.1

4.8

8.8

2.8

2.6

3.4

2.7

3.3

3.1

3.9

4.7

4.2

4.6

37.4

21.7

20.5

16.4

19.6

18.0

21.4

17.3

18.1

20.2

18.0

21.6

25.6

32.3

31.1

28.6

34.7

35.7

14.6

4.1

39.3

40.6

57.2

33.0

38.3

34.0

0.17

0.07

0.13

0.12

0.24

0.22

0.05

< 0.01

0.03

0.02

0.29

0.14

0.18

0.02

0.04

0.48

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

0.02

0.01

0.02

0.11

0.06

0.07

0.22

0.10

0.07

0.06

0.16

0.06

0.09

0.12

0.08

0.04

0.05

0.08

0.11

0.25

0.23

0.27

0.18

0.28

0.21

0.34

0.38

0.32

0.29

0.02

0.02

0.12

0.13

0.30

0.19

0.09

0.31

0.06

0.09

0.20

0.18

0.15

0.30

0.76

0.43

0.07

0.03

0.03

0.02

0.13

0.06

0.18

0.12

0.09

0.07

8

7

10

8

4

4

3

3

3

4

4

4

3

4

5

6

4

5

8

5

6

5

6

5

6

8

1.43

0.81

0.71

0.6

0.69

0.57

0.86

0.57

0.68

0.81

0.62

0.86

1.15

1.32

1.25

1.26

6.29

5.34

1.85

0.09

6.10

5.88

2.64

3.53

5.16

5.01

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

29.6

22.9

42.5

29.1

36.2

31.7

13.7

10.1

6.9

5.8

41.2

22.7

29.7

13.9

12.9

67.0

4.8

4.2

6.4

4.6

11.8

13.0

16.0

22.9

18.8

17.8

2.96

2.04

2.67

2.14

1.83

2.31

2.58

2.40

2.08

1.53

2.16

2.70

1.88

2.40

2.58

3.99

1.77

2.26

2.55

3.57

1.74

2.11

1.76

2.69

2.36

1.95

0.36

0.38

0.47

0.82

0.42

0.38

0.35

0.26

0.31

0.23

0.22

0.28

0.23

0.21

0.21

2.64

0.05

0.07

0.05

0.12

0.04

0.04

0.07

0.07

0.07

0.05

1.40

2.01

2.58

6.25

9.23

8.29

6.11

2.76

2.17

2.35

6.93

6.14

3.08

1.92

5.86

13.65

0.81

1.07

0.93

3.07

6.25

0.71

39.67

2.08

1.93

2.03

57.63

5.82

35.28

8.67

17.09

27.71

22.53

185.10

13.52

12.11

32.22

25.96

15.70

40.49

79.25

36.51

1.62

1.78

1.48

1.57

1.36

0.98

1.23

1.11

1.04

0.87

Drill Core

2109185

2109186

2109187

2109188

2109189

2109190

2109191

2109192

2109193

2109194

2109195

2109196

2109197

2109198

2109199

2109200

2109001

2109002

2109003

2109004

2109005

2109006

2109007

2109008

2109009

Client: **PJX Resources Inc.** 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada None Given Report Date: September 15, 2015 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA 3 of 4 Part: 2 of 2 Page: CERTIFICATE OF ANALYSIS VAN15002112.1 Method AQ250 Analyte Ρ Cr Mg Ва Ti в AI Na κ w Sc ΤI s Hg Se Ga La Те Unit % % % % % % ppm ppm ppm % ppm ppm ppm ppm ppb ppm ppm ppm MDL 20 5 0.001 0.5 0.5 0.01 0.5 0.001 0.01 0.001 0.01 0.1 0.1 0.02 0.02 0.1 0.02 0.1

2109181	Drill Core	0.030	14.1	9.8	0.64	51.6	<0.001	<20	0.47	0.072	0.17	<0.1	3.8	0.03	0.09	8	0.2	<0.02	2.2
2109182	Drill Core	0.028	12.0	8.0	0.69	21.8	<0.001	<20	0.30	0.103	0.09	<0.1	4.2	<0.02	0.07	<5	<0.1	0.05	1.5
2109183	Drill Core	0.024	9.7	6.3	0.72	20.0	<0.001	<20	0.25	0.078	0.09	<0.1	3.5	<0.02	0.12	<5	<0.1	0.05	0.9
2109184	Drill Core	0.031	13.6	7.4	0.74	32.6	<0.001	<20	0.32	0.096	0.14	<0.1	5.1	0.03	0.08	<5	<0.1	0.04	1.2
2109185	Drill Core	0.025	14.3	7.0	0.88	18.1	<0.001	<20	0.21	0.101	0.08	<0.1	4.4	<0.02	<0.02	<5	<0.1	<0.02	0.8
2109186	Drill Core	0.025	24.3	6.3	0.74	17.5	<0.001	<20	0.22	0.088	0.08	<0.1	4.5	<0.02	<0.02	<5	0.1	0.06	1.1
2109187	Drill Core	0.030	18.2	7.0	0.98	30.9	<0.001	<20	0.48	0.072	0.13	<0.1	4.8	0.02	0.06	8	<0.1	0.04	2.1
2109188	Drill Core	0.020	12.5	7.0	0.65	24.7	<0.001	<20	0.35	0.067	0.11	<0.1	3.5	<0.02	0.11	<5	<0.1	0.04	1.7
2109189	Drill Core	0.017	13.9	3.9	0.36	28.7	<0.001	<20	0.24	0.059	0.12	<0.1	2.1	0.02	0.11	<5	<0.1	0.04	1.0
2109190	Drill Core	0.016	13.0	3.9	0.37	38.1	<0.001	<20	0.34	0.058	0.16	<0.1	2.2	0.03	0.09	10	<0.1	<0.02	1.1
2109191	Drill Core	0.014	15.8	4.6	0.36	27.5	<0.001	<20	0.18	0.057	0.09	<0.1	2.7	<0.02	0.10	6	0.2	<0.02	0.9
2109192	Drill Core	0.017	8.5	3.8	0.37	39.0	<0.001	<20	0.29	0.049	0.15	<0.1	2.0	<0.02	0.13	<5	<0.1	0.05	0.8
2109193	Drill Core	0.011	9.5	3.6	0.32	23.9	<0.001	<20	0.22	0.050	0.09	<0.1	2.0	0.02	0.08	7	<0.1	0.06	0.7
2109194	Drill Core	0.013	8.3	3.1	0.31	22.1	0.001	<20	0.19	0.053	0.05	<0.1	2.3	<0.02	0.10	<5	<0.1	0.02	0.3
2109195	Drill Core	0.013	6.5	3.5	0.29	19.7	<0.001	<20	0.19	0.051	0.08	<0.1	2.0	<0.02	0.22	<5	<0.1	0.04	0.4
2109196	Drill Core	0.012	6.5	3.5	0.35	13.4	<0.001	<20	0.17	0.056	0.06	<0.1	2.5	<0.02	0.25	<5	<0.1	0.04	0.2
2109197	Drill Core	0.012	6.2	4.2	0.39	16.8	<0.001	<20	0.16	0.054	0.06	<0.1	3.1	<0.02	0.17	<5	<0.1	<0.02	0.3
2109198	Drill Core	0.012	5.9	3.0	0.52	15.6	<0.001	<20	0.15	0.048	0.05	<0.1	2.6	<0.02	0.15	<5	<0.1	<0.02	0.3
2109199	Drill Core	0.012	3.5	2.7	0.53	18.2	<0.001	<20	0.15	0.038	0.05	<0.1	2.3	<0.02	0.62	<5	<0.1	<0.02	0.4
2109200	Drill Core	0.023	10.3	3.9	0.60	35.6	<0.001	<20	0.27	0.054	0.13	<0.1	2.5	0.02	0.23	<5	0.2	0.02	0.7
2109001	Drill Core	0.019	15.1	5.2	3.58	20.9	0.001	<20	0.20	0.007	0.21	<0.1	3.3	0.02	<0.02	<5	<0.1	0.02	0.6
2109002	Drill Core	0.021	13.5	5.5	2.97	18.7	0.001	<20	0.26	0.007	0.20	<0.1	3.6	<0.02	<0.02	<5	<0.1	<0.02	0.5
2109003	Drill Core	0.025	19.6	10.4	1.26	26.8	0.002	<20	0.60	0.006	0.25	<0.1	3.4	0.03	<0.02	10	<0.1	0.03	1.7
2109004	Drill Core	0.015	13.0	6.8	0.35	26.1	0.001	<20	0.36	0.005	0.21	<0.1	1.6	0.02	0.04	<5	<0.1	<0.02	1.1
2109005	Drill Core	0.051	22.3	3.9	3.39	166.2	0.007	<20	0.55	0.004	0.34	<0.1	3.8	0.07	<0.02	10	<0.1	0.05	1.0
2109006	Drill Core	0.038	17.6	4.6	3.34	159.5	0.005	<20	0.57	0.003	0.30	<0.1	3.2	0.05	<0.02	<5	<0.1	0.05	1.3
2109007	Drill Core	0.036	21.8	6.9	1.77	1662.3	0.008	<20	0.74	0.004	0.40	<0.1	2.7	0.07	0.04	<5	<0.1	0.03	1.5
2109008	Drill Core	0.040	30.6	8.8	2.58	168.8	0.008	<20	0.99	0.004	0.47	<0.1	2.9	0.08	<0.02	<5	<0.1	<0.02	2.2
2109009	Drill Core	0.038	25.7	9.4	3.33	113.2	0.006	<20	0.83	0.004	0.39	<0.1	2.9	0.06	<0.02	<5	<0.1	0.05	1.6
2109010	Drill Core	0.038	30.7	7.0	3.16	137.1	0.005	<20	0.77	0.003	0.38	<0.1	3.1	0.06	<0.02	<5	<0.1	<0.02	1.6

PHONE (604) 253-3158

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Client: PJX Resources Inc. 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: None Given VERITAS Canada Report Date: September 15, 2015 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Page: 4 of 4 Part: 1 of 2 CERTIFICATE OF ANALYSIS VAN15002112.1 Method WGHT AQ250 Analyte Mn Sr Wgt Мо Cu Pb Zn Ag Ni Co Fe As U Au Th Cd Sb Bi ν Ca Unit % kg ppm ppm ppm ppm ppb ppm ppm ppm % ppm ppm ppb ppm ppm ppm ppm ppm ppm MDL 0.01 0.01 0.01 0.1 2 0.1 0.01 0.1 0.5 0.01 0.02 0.02 2 0.01 0.01 0.1 1 0.1 0.2 0.1 2109011 Drill Core 2.49 0.05 2.03 0.80 17.8 36 10.6 6.0 413 1.07 0.2 0.3 0.4 3.3 23.5 < 0.01 0.24 0.08 8 4.94 2109012 Drill Core 2.33 0.03 12.47 1.10 15.3 11 7.2 4.2 591 1.08 < 0.1 0.2 < 0.2 3.0 28.2 0.01 0.19 0.09 7 6.43 2109013 Drill Core 0.87 0.11 3.71 0.88 24.0 8 10.0 4.5 551 1.38 1.1 0.2 0.7 3.2 25.8 < 0.01 0.19 0.07 6 5.13

Drill Core

2.25

2.34

2.37

3.29

2.74

2.23

2.06

2.80

2.20

2.50

2.41

3.33

L.N.R.

0.80

0.03

0.04

5.34

0.14

1.06

0.57

0.19

0.11

0.19

0.32

L.N.R.

< 0.01

9.93

11.06

22.10

16.35

71.38

14.71

223.09

24.53

6.09

6.15

3.48

3.03

L.N.R.

0.94

0.72

0.67

0.81

2.08

0.99

4.31

3.20

1.26

2.34

4.02

3.73

L.N.R.

39.0

51.4

49.9

47.8

15.4

28.6

22.1

23.5

19.7

14.7

12.5

21.1

L.N.R.

15

11

10

9

51

13

42

27

10

8

3

9

L.N.R.

8.4

11.9

11.9

11.2

8.4

10.9

7.9

8.3

6.6

7.5

7.0

9.6

L.N.R.

7.7

6.7

6.4

7.4

10.4

4.4

7.9

5.8

5.8

3.6

6.1

6.0

L.N.R.

791

547

454

486

491

350

658

605

639

606

585

737

L.N.R.

1.47

1.72

1.68

1.64

1.10

1.58

1.44

1.34

1.45

1.25

1.13

1.67

L.N.R.

< 0.1

<0.1

<0.1

<0.1

2.7

2.1

7.6

5.7

0.9

0.3

1.0

0.4

L.N.R.

0.3

0.2

0.2

0.2

0.3

0.3

0.5

0.9

0.1

0.2

0.2

0.2

L.N.R.

0.3

<0.2

<0.2

<0.2

2.2

1.9

<0.2

< 0.2

< 0.2

<0.2

<0.2

<0.2

L.N.R.

2.7

3.4

3.4

3.4

2.7

3.5

2.0

2.9

2.1

2.2

1.8

2.7

L.N.R.

57.2

35.1

34.2

32.2

24.3

13.8

29.3

27.2

28.0

30.0

32.2

38.6

L.N.R.

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

L.N.R.

0.11

0.12

0.13

0.14

1.04

0.36

0.39

0.45

0.15

0.15

0.25

0.21

L.N.R.

0.47

< 0.02

< 0.02

0.02

0.91

0.20

1.22

0.50

0.11

0.12

0.20

0.21

L.N.R.

8

11

9

9

7

10

8

8

7

6

5

6

L.N.R.

7.17

4.22

3.12

4.53

9.29

4.78

9.40

9.01

9.77

9.69

9.73

8.20

L.N.R

2109014

2109015

2109016

2109017

2109018

2109019

2109020

2109021

2109022

2109023

2109024

2109025

												Clier	nt:	PJ) 5600 Toro	K Res - 100 Ki nto ON N	OURCES ng Street N5X 1C9 (s Inc. West CANADA				
B U R E A U VE R I T A S	MINERAL LABORATOR Canada	IES		www	.bureau	uveritas	s.com/ı	um				Projec	ct:	None	e Given						
Bureau Veritas	Commodities Canada Lto	d.										Repor	rt Date:	Sept	ember 18	5, 2015					
9050 Shaughne PHONE (604) 2	essy St Vancouver BC V 253-3158	CANAE	A								Page:		4 of 4	4				Part:	2 of 2		
CERTIF	ICATE OF AN	IALY	′SIS													VA	N15	5002	2112.1		
	Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250		
	Analyte	Р	La	Cr	Mg	Ва	Ti	В	AI	Na	к	w	Sc	ті	S	Hg	Se	Те	Ga		
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm		

20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

L.N.R.

0.01

0.76

0.72

0.94

1.26

1.50

1.45

1.49

0.77

1.26

0.94

0.98

0.88

0.65

0.62

0.81

L.N.R.

0.001

0.004

0.005

0.004

0.007

0.004

0.003

0.004

0.012

0.005

0.008

0.008

0.006

0.009

0.006

0.004

L.N.R.

0.01

0.34

0.30

0.27

0.25

0.32

0.29

0.32

0.23

0.27

0.16

0.24

0.21

0.29

0.25

0.28

L.N.R.

0.1

< 0.1

<0.1

< 0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

L.N.R. L.N.R.

0.02

0.06

0.05

0.05

0.04

0.05

0.04

0.04

0.07

0.04

0.08

0.07

0.04

0.06

0.07

0.07

L.N.R.

0.1

3.3

2.7

2.7

3.7

4.3

3.4

3.5

2.3

3.0

3.1

3.1

3.3

3.0

2.7

3.4

0.02

< 0.02

< 0.02

< 0.02

0.03

<0.02

0.02

<0.02

0.17

< 0.02

0.08

0.02

0.07

0.06

0.09

0.06

L.N.R. L.N.R.

5

<5

<5

15

<5

<5

<5

5

54

<5

19

13

9

<5

6

<5

0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.1

L.N.R.

0.02

0.05

0.05

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

0.04

< 0.02

< 0.02

0.04

0.04

< 0.02

L.N.R.

0.1

1.5

1.4

1.9 2.8

4.1

3.3

3.9

1.7

3.3

2.2

2.4

1.1

1.2

L.N.R.

MDL

Drill Core

2109011

2109012

2109013

2109014

2109015

2109016

2109017

2109018

2109019

2109020

2109021

2109022

2109023

2109024

2109025

2109026

0.001

0.034

0.029

0.034

0.037

0.039

0.036

0.035

0.024

0.031

0.027

0.033

0.035

0.032

0.035

0.032

L.N.R.

0.5

5.8

5.4

7.4

10.7

12.5

13.6

13.6

6.4

11.8

8.8

8.3

6.3

4.9

4.8

5.4

L.N.R.

0.5

18.8

18.6

18.9

14.3

19.6

15.9

17.9

11.2

21.0

10.0

13.6

11.3

11.2

9.0

11.9

L.N.R.

0.01

3.13

3.94

3.52

5.11

3.85

3.29

4.06

6.03

3.90

6.18

6.02

6.15

5.64

5.78

4.80

L.N.R.

0.5

68.5

44.5

65.5

475.1

221.8

680.2

207.9

22.2

25.0

143.0

21.5

22.3

43.6

381.9

85.0

L.N.R.

0.001

0.003

0.003

0.003

0.003

0.004

0.004

0.004

0.002

0.003

0.002

0.002

0.002

0.002

0.002

0.003

L.N.R.

Client: PJX Resources Inc. 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada None Given Report Date: September 15, 2015 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 1 of 1 1 of 2 Page: Part: QUALITY CONTROL REPORT VAN15002112.1 Method WGHT AQ250 Analvte Wgt Мо Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi ٧ Ca Unit % kg ppm ppm ppm ppm ppb ppm ppm ppm % ppm ppm ppb ppm ppm ppm ppm ppm ppm MDL 0.01 0.01 0.01 0.01 0.1 2 0.1 0.1 0.01 0.1 0.1 0.2 0.1 0.5 0.01 0.02 0.02 2 0.01 1 **Pulp Duplicates** 2109181 Drill Core 1.85 0.31 4.11 7.20 18.5 21.2 263 13.8 <0.2 13.1 16.1 < 0.01 0.08 0.11 11 0.59 40 16.2 2.16 1.4 REP 2109181 QC 0.34 3.71 6.79 17.8 33 16.2 20.2 251 2.11 13.2 1.3 < 0.2 12.4 15.7 < 0.01 0.08 0.12 11 0.58 Drill Core 2109016 2.37 0.03 22.10 0.67 49.9 10 6.4 454 1.68 <0.1 0.2 3.4 34.2 < 0.02 9 3.12 11.9 < 0.2 < 0.01 0.13 REP 2109016 QC 0.02 21.93 0.74 47.6 11 12.1 6.4 434 1.66 < 0.1 0.2 0.4 3.3 35.1 < 0.01 0.14 < 0.02 9 3.07 Core Reject Duplicates 2109175 Drill Core 2.43 4.65 2.64 3.64 26.5 31 23.1 5.2 289 3.05 16.5 1.2 0.7 8.5 16.8 0.01 0.07 0.14 12 0.58

QC

QC

Drill Core

Standard

Standard

Standard

Standard

Standard

Standard

Blank

Blank

Blank

Prep Blank

Prep Blank

4.91

0.07

0.06

14.11

13.43

14.51

1.47

1.73

1.63

1.6

14.69

< 0.01

< 0.01

< 0.01

0.69

0.67

2.36

2.38

1.93

1.80

150.24

148.76

164.94

686.78

697.94

736.61

154.61

709

< 0.01

< 0.01

0.05

2.70

2.85

5.49

1.04

1.12

147.45

148.60

156.30

12.40

15.06

15.31

150.55

14.3

<0.01

0.01

0.02

1.29

2.12

29.6

18.8

19.1

346.3

369.1

391.7

33.3

33.2

36.2

370

31.4

<0.1

<0.1

< 0.1

35.8

39.5

26

7

15

1690

1996

2043

240

270

290

260

<2

<2

3

6

7

2020

25.7

11.3

11.0

71.0

73.8

77.3

394.4

400.9

416.3

74.6

381

< 0.1

0.2

< 0.1

0.8

1.3

5.6

6.7

6.9

12.1

12.6

13.3

47.9

50.8

55.5

12.9

<0.1

<0.1

< 0.1

3.9

4.0

52

284

615

641

840

905

928

401

442

428

875

400

<1

<1

<1

501

515

3.05

1.64

1.64

2.71

2.68

2.76

21.47

21.28

23.73

2.7188

23.51

< 0.01

< 0.01

< 0.01

1.80

1.88

18.1

0.4

0.5

44.7

44.2

46.2

10.6

9.3

11.5

43.7

10.3

0.4

<0.1

< 0.1

< 0.1

<0.1

1.3

0.3

0.4

2.4

2.4

2.6

1.5

2.0

2.0

2.59

1.73

<0.1

< 0.1

< 0.1

0.5

0.5

< 0.2

0.6

<0.2

103.8

129.5

75.5

44.9

53.9

50.4

91.9

53

<0.2

<0.2

< 0.2

< 0.2

<0.2

8.4

4.2

4.3

7.1

6.6

7.5

8.6

10.9

11.2

7.5

10.7

<0.1

<0.1

< 0.1

2.6

2.4

16.2

38.3

40.7

62.8

61.1

75.4

3.3

3.5

4.2

67.1

3.5

<0.5

<0.5

< 0.5

36.7

39.2

< 0.01

0.01

< 0.01

2.38

2.36

2.55

0.04

0.01

2.49

0.03

< 0.01

< 0.01

< 0.01

0.04

0.06

< 0.01

0.08

0.32

0.34

8.41

8.56

9.58

0.39

0.39

0.35

8.23

0.32

< 0.02

< 0.02

< 0.02

0.03

< 0.02

0.19

0.09

0.09

11.93

12.17

13.20

0.23

0.27

0.31

11.65

0.26

< 0.02

< 0.02

< 0.02

0.02

0.02

12

6

6

42

42

44

313

344

327

43 1.0625

303

<2

<2

<2

23

23

0.59

5.16

5.28

1.05

1.02

1.08

0.03

0.04

0.04

0.036

< 0.01

< 0.01

< 0.01

0.60

0.62

DUP 2109175

DUP 2109009

STD DS10

STD DS10

BLK

BI K

BLK

Prep Wash ROCK-VAN

ROCK-VAN

Reference Materials STD DS10

STD OREAS45EA

STD OREAS45EA

STD OREAS45EA

STD DS10 Expected

STD OREAS45EA Expected

Client: **PJX Resources Inc.** 5600 - 100 King Street West Toronto ON M5X 1C9 CANADA **BUREAU** MINERAL LABORATORIES www.bureauveritas.com/um Project: VERITAS Canada None Given Report Date: September 15, 2015 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 Page: 1 of 1 Part: 2 of 2 QUALITY CONTROL REPORT VAN15002112.1 Method A0250 A0250

	Anabata	7.02.00	AQLOU	AGEOU	AQLOU	AQLOU		70200	AQ200	AQLOU	AQLOU	AQLOU	AQLOU	702200	7.022.00	AGLOU	AQLOU	AQ200	
	Analyte	Р (La	Cr	Mg	ва	11	в	AI	Na	ĸ	vv	SC		S	Hg	Se	Ie	Ga
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ррб	ppm	ppm	ppm
	MDL	0.001	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.1	0.1	0.02	0.02	5	0.1	0.02	0.1
Pulp Duplicates																			
2109181	Drill Core	0.030	14.1	9.8	0.64	51.6	<0.001	<20	0.47	0.072	0.17	<0.1	3.8	0.03	0.09	8	0.2	<0.02	2.2
REP 2109181	QC	0.030	14.0	9.4	0.63	51.1	<0.001	<20	0.48	0.071	0.17	<0.1	3.7	0.03	0.09	<5	<0.1	0.03	2.3
2109016	Drill Core	0.036	15.9	13.6	3.29	680.2	0.004	<20	1.45	0.003	0.29	<0.1	3.4	0.04	0.02	<5	<0.1	<0.02	3.3
REP 2109016	QC	0.034	15.8	13.2	3.21	666.0	0.004	<20	1.39	0.003	0.28	<0.1	3.3	0.05	0.02	10	<0.1	<0.02	3.6
Core Reject Duplicates																			
2109175	Drill Core	0.034	14.2	8.5	1.02	17.0	<0.001	<20	0.41	0.101	0.08	<0.1	5.1	<0.02	0.09	<5	<0.1	0.06	1.9
DUP 2109175	QC	0.034	13.5	8.5	1.00	17.7	<0.001	<20	0.39	0.104	0.08	<0.1	5.2	<0.02	0.09	<5	<0.1	0.03	2.1
2109009	Drill Core	0.038	25.7	9.4	3.33	113.2	0.006	<20	0.83	0.004	0.39	<0.1	2.9	0.06	<0.02	<5	<0.1	0.05	1.6
DUP 2109009	QC	0.038	26.8	9.3	3.37	113.0	0.006	<20	0.81	0.004	0.38	<0.1	2.9	0.06	<0.02	<5	<0.1	0.08	1.7
Reference Materials																			
STD DS10	Standard	0.069	16.0	51.1	0.75	377.0	0.072	<20	0.99	0.062	0.32	3.0	2.7	4.88	0.29	263	2.3	4.99	4.4
STD DS10	Standard	0.070	14.8	50.8	0.75	387.1	0.068	<20	0.96	0.058	0.32	3.3	3.1	4.98	0.27	291	2.3	4.27	4.0
STD DS10	Standard	0.078	17.9	54.9	0.78	436.5	0.084	<20	1.03	0.070	0.34	3.0	2.9	5.32	0.30	346	2.4	4.94	4.5
STD OREAS45EA	Standard	0.029	6.4	773.9	0.10	124.4	0.094	<20	3.15	0.019	0.05	<0.1	74.0	0.05	0.04	12	1.5	0.14	12.0
STD OREAS45EA	Standard	0.028	6.8	851.9	0.10	140.1	0.094	<20	3.20	0.014	0.05	<0.1	76.7	0.07	0.03	9	0.7	0.11	11.8
STD OREAS45EA	Standard	0.031	7.7	847.1	0.10	151.7	0.106	<20	3.47	0.028	0.06	<0.1	80.2	0.06	0.04	15	1.0	0.13	13.4
STD DS10 Expected		0.073	17.5	54.6	0.775	412	0.0817		1.0259	0.067	0.338	3.32	2.8	5.1	0.29	300	2.3	5.01	4.3
STD OREAS45EA Expected		0.029	7.06	849	0.095	148	0.0984		3.13	0.02	0.053		78	0.072	0.036	10	0.78	0.07	12.4
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	<5	<0.1	<0.02	<0.1
Prep Wash																			
ROCK-VAN	Prep Blank	0.040	6.1	2.7	0.48	77.9	0.082	<20	0.93	0.089	0.09	<0.1	3.5	<0.02	<0.02	<5	<0.1	<0.02	3.9
ROCK-VAN	Prep Blank	0.038	5.8	3.9	0.48	82.1	0.084	<20	1.02	0.107	0.11	0.1	3.3	<0.02	0.03	<5	<0.1	0.06	4.0

MINERAL LABORATORIES Canada

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Number of Samples:	17
P.O. Number	
Shipment ID:	
Project:	VINE

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

AQ201 DRPLP

DRRJT Ship AQ374

Submitted By: Linda Brennan & John Keating Receiving Lab: Canada-Vancouver Received: October 20, 2016 Report Date: December 14, 2016

1 of 2

VAN16002017.2

Test

Wgt (g)

Report

Status

Lab

VAN

Number of Procedure Code Description Code Samples BAT01 1 Batch charge of <20 samples PRP70-2

250	17	Crush, split and pulverize 250 g rock to 200 mesh			VAN
	17	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN
	17	Warehouse handling / disposition of pulps			VAN
	17	Warehouse handling / Disposition of reject			VAN
	1	Shipping charges for collect packages			VAN
	1	1:1:1 Aqua Regia digestion ICP-ES analysis	0.4	Completed	VAN

ADDITIONAL COMMENTS

Version 2 : AQ374-Pb As included.

PJX Resources Inc. Invoice To: 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

CC:

Dave L.Pighin

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client:

Page:

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

Client: PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VINE VERITAS Canada Report Date: December 14, 2016 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 2 of 2 Part: 1 of 2 Page: CERTIFICATE OF ANALYSIS VAN16002017.2 Method WGHT AQ201 Analyte Wgt Мо Cu Pb Zn Ag Ni Co Mn Fe As Au Th Sr Cd Sb Bi ν Ca Ρ Unit % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppb ppm ppm ppm ppm ppm ppm % MDL 0.01 0.1 0.1 0.01 0.5 0.5 0.1 0.1 2 0.01 0.001 0.1 1 0.1 0.1 0.1 1 0.1 1 0.1 2109029 Drill Core 2.10 0.3 6.4 27.5 102 <0.1 54.9 34.1 1133 6.51 127.9 1.7 0.9 84 0.7 21.3 <0.1 115 7.34 0.033 9.22 2109030 Drill Core 2.40 0.4 559.6 2733.6 179 4.7 59.8 27.7 1018 1826.6 244.5 0.5 89 4.0 320.8 4.3 46 9.26 0.019 2109031 Drill Core 3.76 0.3 15.5 41.6 134 < 0.1 44.9 34.4 705 3.19 214.4 0.8 0.7 32 0.7 3.3 < 0.1 81 1.99 0.035

0.032

0.00

0.033

0.034

0.020

0.036

0.037

0.006

0.038

0.049

0.002

0.015

0.037

0.048

5.42

5.72

1.82

1.25

1.32

1.79

1.45

2.50

1.93

1.32

1.28

1.16

0.72

0.44

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

2.92

3.62

2.12

2.37

5.38

3.18

2.47

2.53

2.68

1.86

2.80

2.33

0.91

0.80

0.3

0.3

0.3

0.6

0.3

0.2

0.2

0.5

0.5

0.3

0.2

1.2

0.7

59.8

0.2 1314.5 >10000

173.6

152.1

20.3

42.4

88.2

380.2

58.8

42.3

6.1

4.6

1029.2

2555.1

196.9

2658.8

5447.2

952.8

41.0

37.1

59.7

59.0

40.8

855.7

31.6

11.1

9.7

292

122

116

518

281

116

104

26

139

132

536

92

68

91

0.3

18.5

2.7

4.5

2.7

< 0.1

< 0.1

0.2

0.2

2.5

< 0.1

< 0.1

< 0.1

< 0.1

47.4

179.0

14.0

21.3

69.7

42.0

36.9

19.0

54.0

22.1

106.2

17.4

19.1

18.3

23.6

129.6

7.9

8.9

82.2

29.9

25.1

101.9

30.3

7.8

6.8

6.9

9.0

115.6

1157

762

413

1560

459

946

517

227

553

624

279

558

406

709

6.23

3.72

10.21

11.60

3.98

2.56

2.01

3.81

3.60

16.39

2.28

2.75

4.25

20.80 >10000

134.7

538.9

3139.3

96.1

44.0

47.5

7.0

9.2

4.2

5.0

8834.5

2653.9

3.8

3.1

1569.6

2694.3

30.7

7.2

0.7

< 0.5

7.2

2.5

724.5

< 0.5

< 0.5

< 0.5

976.0

0.9

<0.1

1.0

0.5

3.7

0.7

0.6

< 0.1

0.6

8.2

0.5

4.0

9.8

9.1

48

166

19

10

37

36

38

25

38

89

20

44

12

18

3.7

3.8

1.7

5.6

3.7

< 0.1

0.1

< 0.1

0.3

<0.1

6.5

<0.1

< 0.1

< 0.1

23.5

271.1

13.5

7.7

49.0

0.9

0.6

59.9

2.3

0.9

27.0

0.7

0.2

0.3

0.2

18.4

2.8

3.6

3.4

< 0.1

<0.1

0.6

< 0.1

<0.1

4.7

<0.1

< 0.1

< 0.1

101

9

75

209

16

116

70

26

71

106

9

46

41

44

Drill Core

2109032

2109033

2109034

2109035

2109036

2109037

2109038

2109039

2109040

2109041

2109042

2109043

2109044

Client: **PJX Resources Inc.** 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada VINE Report Date: December 14, 2016 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 Page: 2 of 2 Part: 2 of 2 CERTIFICATE OF ANALYSIS VAN16002017.2 Method AQ201 AQ374 AQ374 ∆nalvte 1.0 ۸ ۱ ۱۸/ Цa **~**-Ma D. **T**: Р Ma v 6. τı c **C**-6. То Dh

	Analyte	La	Cr	wig	ва		в	AI	Na	ĸ	vv	нg	SC		5	Ga	36	Ie	60	AS
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.01	0.01
2109029	Drill Core	3	99	1.44	13	0.055	<1	2.29	0.026	0.19	0.1	<0.01	17.7	<0.1	0.10	6	<0.5	<0.2		
2109030	Drill Core	2	38	0.46	17	0.003	1	1.21	0.021	0.17	<0.1	0.02	11.7	<0.1	3.29	3	0.7	<0.2		
2109031	Drill Core	2	68	1.36	11	0.115	<1	1.67	0.063	0.15	0.1	<0.01	8.1	<0.1	0.11	4	<0.5	<0.2		
2109032	Drill Core	3	85	1.54	18	0.065	<1	2.37	0.032	0.24	0.1	0.01	15.6	0.1	0.43	4	<0.5	<0.2		
2109033	Drill Core	2	6	0.31	7	<0.001	<1	0.13	0.008	0.02	<0.1	0.01	1.9	<0.1	8.39	<1	2.2	0.6	1.55	1.45
2109034	Drill Core	3	63	0.59	51	0.061	<1	1.09	0.045	0.22	1.1	<0.01	4.3	<0.1	1.55	3	<0.5	<0.2		
2109035	Drill Core	2	161	3.34	17	0.181	<1	4.30	0.019	0.17	0.5	0.02	9.7	0.1	1.74	12	<0.5	<0.2		
2109036	Drill Core	7	15	0.65	15	0.037	<1	1.24	0.030	0.21	0.1	0.07	2.0	0.3	8.13	14	0.8	<0.2		
2109037	Drill Core	2	75	1.78	16	0.135	<1	2.39	0.102	0.17	0.2	0.02	11.3	0.1	0.21	5	<0.5	<0.2		
2109038	Drill Core	2	60	0.99	12	0.128	<1	1.93	0.174	0.14	0.2	<0.01	6.6	<0.1	0.16	5	<0.5	<0.2		
2109039	Drill Core	<1	15	0.21	4	0.019	<1	0.60	0.047	0.03	0.6	0.02	2.1	<0.1	1.20	1	0.8	<0.2		
2109040	Drill Core	2	60	1.01	11	0.158	<1	1.98	0.123	0.17	0.4	0.04	7.9	0.1	1.58	4	0.7	<0.2		
2109041	Drill Core	15	58	1.39	177	0.172	<1	3.72	0.228	1.45	0.2	0.01	9.3	0.6	0.32	9	<0.5	<0.2		
2109042	Drill Core	1	8	0.17	12	0.014	<1	0.57	0.028	0.07	0.1	0.04	1.2	0.1	8.31	6	2.4	<0.2		
2109043	Drill Core	8	45	0.87	95	0.126	<1	2.19	0.064	0.69	0.2	<0.01	3.8	0.2	0.09	5	<0.5	<0.2		
2109044	Drill Core	22	36	0.95	136	0.187	<1	1.78	0.074	1.38	0.2	0.01	6.2	0.8	0.07	7	<0.5	<0.2		
2109045	Drill Core	27	36	1.32	147	0.181	<1	2.48	0.061	1.20	0.2	0.01	5.6	0.6	0.09	11	<0.5	<0.2		

Client: PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada VINE Report Date: December 14, 2016 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 1 of 1 Part: 1 of 2 Page: QUALITY CONTROL REPORT VAN16002017.2 Method WGHT AQ201 Analyte Mn Sr Cd Sb Wgt Мо Cu Pb Zn Ag Ni Co Fe As Au Th Bi ν Са Unit % % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppb ppm ppm ppm ppm ppm ppm MDL 0.01 0.1 0.1 0.1 1 0.1 0.1 0.1 1 0.01 0.5 0.5 0.1 1 0.1 0.1 0.1 2 0.01 0.001 **Pulp Duplicates** 2109031 Drill Core 3.76 0.3 15.5 41.6 134 <0.1 44.9 34.4 705 3.19 214.4 0.8 0.7 32 0.7 3.3 <0.1 81 1.99 0.035 REP 2109031 QC 0.4 14.5 40.5 132 <0.1 45.5 34.4 677 3.06 209.1 0.8 0.6 32 0.7 3.0 < 0.1 79 1.95 0.035 **Reference Materials** STD DS10 Standard 14.4 144.1 147.2 354 1.7 71.8 12.3 894 2.75 44.0 81.6 7.2 67 2.2 9.8 12.4 43 1.04 0.074 STD GC-7 Standard STD OREAS133B Standard STD OXC129 Standard 1.2 24.6 7.4 38 <0.1 72.0 19.3 401 2.82 1.0 199.9 1.8 174 < 0.1 <0.1 <0.1 51 0.64 0.091 STD DS10 Expected 15.1 154.61 150.55 370 2.02 74.6 12.9 875 2.7188 46.2 91.9 7.5 67.1 2.62 9 11.65 43 1.0625 0.0765 STD OXC129 Expected 1.3 28 6.3 42.9 79.5 20.3 421 3.065 0.6 195 1.9 51 0.665 0.102 STD GC-7 Expected STD OREAS133B Expected BLK Blank <0.1 < 0.1 < 0.1 <1 < 0.1 < 0.1 < 0.1 <1 < 0.01 < 0.5 <0.5 < 0.1 <1 < 0.1 < 0.1 <0.1 <2 <0.01 <0.001 BLK Blank Prep Wash ROCK-VAN Prep Blank 1.0 15.6 17.7 38 < 0.1 1.5 3.6 519 1.78 1.5 0.8 2.2 18 < 0.1 < 0.1 < 0.1 22 0.57 0.040

ROCK-VAN

Prep Blank

1.0

12.3

13.6

36

<0.1

1.1

3.3

471

1.60

1.3

<0.5

2.0

16

<0.1

<0.1

<0.1

20

0.54

0.037

Client: **PJX Resources Inc.** 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada VINE Report Date: December 14, 2016 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 Page: 1 of 1 Part: 2 of 2 QUALITY CONTROL REPORT VAN16002017.2 Method AQ201 AQ374 AQ374 Analyte 1 2 Ra ті в ۸ı Na w Нα Sc тι s Ga Pb Δs Cr Ma v Se Те

	Analyte	La		wig	Da		Б	AI	INd	n	vv	нy	30		3	Ga	36	re	FD	A9
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.01	0.01
Pulp Duplicates																				
2109031	Drill Core	2	68	1.36	11	0.115	<1	1.67	0.063	0.15	0.1	<0.01	8.1	<0.1	0.11	4	<0.5	<0.2		
REP 2109031	QC	2	69	1.31	11	0.119	<1	1.60	0.061	0.15	0.2	<0.01	7.9	<0.1	0.11	4	<0.5	<0.2		
Reference Materials																				
STD DS10	Standard	17	56	0.76	346	0.075	4	1.01	0.066	0.32	3.3	0.28	2.9	5.2	0.28	5	1.4	5.2		
STD GC-7	Standard																		9.82	0.16
STD OREAS133B	Standard																		5.11	0.01
STD OXC129	Standard	12	50	1.48	46	0.369	<1	1.47	0.557	0.35	<0.1	<0.01	0.7	<0.1	<0.05	5	<0.5	<0.2		
STD DS10 Expected		17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	0.3	3	5.1	0.29	4.5	2.3	5.01		
STD OXC129 Expected		13	52	1.545	50	0.4	1	1.58	0.6	0.37			1.1			5.6				
STD GC-7 Expected																			10.44	0.16
STD OREAS133B Expected																			5.07	0.0144
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2		
BLK	Blank																		<0.01	<0.01
Prep Wash																				
ROCK-VAN	Prep Blank	6	4	0.41	50	0.067	<1	0.81	0.089	0.09	0.1	<0.01	2.5	<0.1	<0.05	4	<0.5	<0.2		
ROCK-VAN	Prep Blank	5	3	0.39	44	0.056	<1	0.72	0.072	0.08	<0.1	<0.01	2.3	<0.1	<0.05	3	<0.5	<0.2		

Appendix 8: Report on gravity, magnetic and electric sounding by Excel Geophysics Ltd.

VINE 2015-2016 GRAVITY, MAGNETIC, & EM SURVEY FIELD OPERATIONS & INTERPRETATION REPORT

CRANBROOK, BRITISH COLUMBIA, CANADA

Centered Near

Latitude 49° 26' N, Longitude 115° 51' W

Survey Period

August 7-10, 2015 September 2-11, 2015 April 15-22, 2016 June 16, 2016

Submitted By

EXCEL GEOPHYSICS INC.

Box 5056 302 Centre Street S High River, Alberta, Canada T1V 1M3

Prepared For

PJX RESOURCES INC.

5600 – 100 King Street West Toronto, Ontario, Canada M5X 1C9

Date: December 13, 2016

CONTENTS

INTRODUCTION	1
SAFETY	3
GRAVITY SURVEY	4
GRAVITY SURVEY PARAMETERS	. 4
GRAVITY SURVEY PROCEDURE	. 4
GRAVITY BASE STATIONS	. 5
GPS CONTROL BASES	. 6
GPS SURVEY PROCEDURE AND PROCESSING	. 7
GRAVITY DATA REDUCTION	. 8
SURFACE GEOLOGY COMPILATION	. 9
DATA QUALITY	11
GRAVITY INTERPRETATION AND MODELLING	11
BOUGUER GRAVITY MAP	12
REGIONAL GRAVITY MAPS	12
SHALLOW RESIDUAL GRAVITY	16
VINE "A" ANOMALY	16
2 ¹ / ₂ D GRAVITY MODELLING	20
MAGNETIC DATA	28
MAGNETIC SURVEY PARAMETERS	28
MAGNETIC SURVEY PROCEDURE	28
MAGNETIC DATA REDUCTION	28
MAGNETIC DATA RESULTS	29
ELECTRICAL SOUNDINGS	33
MAGNETIC SUSCEPTIBILITY MEASUREMENTS	34
APPENDIX A - UTM Zone 11 Coordinate System Parameters	35
APPENDIX B - Data Listing Format	36
APPENDIX C – DAILY WORK LOG	38

ii

FIGURES

Figure 1. Location of <i>PJX</i> Vine Claims	1
Figure 2. Vine Gravity Program	2
Figure 3. Vine Ground Magnetic and Electric Sounding Locations	3
Figure 4. Typical Gravity Station Setup	5
Figure 5. CGSN Gravity Base 9025-1980. Cranbrook. BC	6
Figure 6. CSRS GPS Pillar 89HP3C. Fort Steele, BC	7
Figure 7. Operator Taking a Gravity Reading at a Field GPS Base Station	8
Figure 8. Surface Geology Map	. 10
Figure 9. Surface Geology Legend	. 11
Figure 10. Variable Density Bouguer Gravity	. 12
Figure 11. 10 km Regional Gravity	. 14
Figure 12. 5 km Regional Gravity	. 14
Figure 13. 2.2 km Regional Gravity	. 15
Figure 14. 1.2 km Regional Gravity	. 15
Figure 15. 1.2 km Residual Gravity	. 16
Figure 16. Detailed Surface Geology over the Vine A anomaly	. 17
Figure 17. 1.2 km Equivalent Mass Map – Vine A Area	. 18
Figure 18. 1.2 km Residual Gravity Map - Vine A area	. 19
Figure 19. 1.2 km Equivalent Mass 1st Horizontal Derivative	. 20
Figure 20. 1.6 km Residual Gravity and model profile locations.	. 21
Figure 21. WW' 2 ¹ / ₂ D Gravity Model	. 22
Figure 22. UU' 2 ¹ / ₂ D Gravity Model	. 23
Figure 23. JJ' 2 ¹ / ₂ D Gravity Model	. 24
Figure 24. 200 m Residual Gravity and QQ' profile location	. 25
Figure 25. QQ' 2 ¹ / ₂ D Gravity Model	. 26
Figure 26. Valentine Vein 2 ¹ / ₂ D Gravity Model	. 27
Figure 27. Total Magnetic Intensity Map	. 30
Figure 28. Total Magnetic Intensity Map, focused on Anomaly A	. 31
Figure 29. Magnetic Inversion, lines 586500 and 586510	. 32
Figure 30. Wenner Array. The parameter a is varied to investigate rock resistivity	
variations with depth	. 33
Figure 31. Apparent Resistivity Curves, September 2015	. 33

TABLES

Table 1.	Gravity Survey Parameters	4
Table 2.	Project Personnel	4
Table 3.	PJX Gravity Bases (NAD83/WGS84, UTM Zone 11)	6
Table 4.	GPS Bases	7
Table 5.	Gravity Correction Formulae	9
Table 6.	Magnetic Survey Parameters	. 28
Table 7.	UTM Zone 11 Mapping Parameters	. 35
Table 8.	Daily Work Log	. 38
Excel Ge	ophysics Inc.	iii

PJX Resources Vine 2015-2016 Geophysical Survey Field Operations & Interpretation Report.docx

ATTACHMENTS

Final Report

1. PJX Resources Vine 2015-16 Geophysical Field Operations and Interpretation Report.pdf

Digital Data (Data listings in Microsoft Excel spreadsheet)

- 1. PJX Resources Vine 2015-16 Gravity Survey Observed Gravity Data.xls
- 2. PJX Resources Vine 2015-16 Gravity Survey Bouguer Gravity Data.xls

Images (full size maps in .jpg format)

- 1. BouguerGravity.jpg
- 2. TotalMagneticIntensity.jpg

INTRODUCTION

The following report describes the field operations and modelling results for land gravity, magnetic and electric sounding surveys conducted by *Excel Geophysics Inc. (Excel)* for *PJX Resources (PJX)* in 2015 and 2016 near Cranbrook, British Columbia. The survey area was located approximately 20 km south of Cranbrook, British Columbia. Figure 1 shows the location of the project.

Geophysical data acquisition occurred over several sessions. The dates and specific data acquired are detailed in the Work Log in Appendix C (Table 8). A total of 88 gravity stations, 11.4 km of walking magnetic data, 243 individual magnetic stations, 7 electric soundings were collected on the Vine property between August 8th, 2015 and June 16th, 2016. The purpose of this data acquisition was to provide detail over features identified in previous surveys. Figures 2 and 3 show the location of the geophysical datasets within the Vine property.

A series of gravity models were developed through the course of this investigation. The primary purpose of the modelling project was to test new geologic models against the existing gravity and magnetic data. This was an iterative process. The important milestones in the modelling and interpretation are reviewed.

Excel Geophysics Inc. PJX Resources Vine 2015-2016 Geophysical Survey Field Operations & Interpretation Report.docx

Figure 2. Vine Gravity Program

2

Figure 3. Vine Ground Magnetic and Electric Sounding Locations

SAFETY

Each *Excel* crew member held valid safety certificates in Emergency First Aid, H₂S Awareness, Wildlife Awareness, and WHMIS. An emergency response plan containing contact numbers and emergency procedures was distributed and explained to all field staff. Safety meetings were held by the field staff on a regular basis to identify any safety hazards. There were no injuries or incidents during this survey. Excel ensured that each member of the crew was equipped with appropriate outdoor wear, two-way radios, cell phones and emergency first-aid kits.

GRAVITY SURVEY

GRAVITY SURVEY PARAMETERS

The following two tables outline the main details of the gravity survey as well as the people involved with this project.

Table 1. Gravity Survey Parameters

Gravity Survey Parameters	
General Survey Location	South of Cranbrook, BC Latitude: 49° 26' N Longitude: 115° 51' W
Survey Duration	August 8-9, 2015, September 2-3 and 6-9, 2015, April 19-22 and June 16, 2016
Gravity Station Spacing	Infill Stations (east), 10 to 50 m West and South Stations, 100 to 150 m
Gravity Stations Acquired	Total: 88 Stations (2015: 58, 2016: 30)
Terrain Corrections	Inner (0 to 50 m) Outer (50 m to 25 km)
Methods of Transportation	Truck, ATV, and Foot
Land Gravity Meters Used	LaCoste and Romberg G-645 & G-353

Table 2. Project Personnel

Project Personnel		
Excel President	Brian Jones	
Geophysical	Sheldon Kasper	Sergei Regushevskii
Field Crew	Ted Sanders	
Data Processors	Nicole Trenholm	Sheldon Kasper

GRAVITY SURVEY PROCEDURE

The survey crew consisted of two *Excel* geophysical operators. *Excel* had a supervisor on site for the duration of the project to coordinate all aspects of the operation including data quality control, client communications, staffing, environmental compliance and

Excel Geophysics Inc. PJX Resources Vine 2015-2016 Geophysical Survey Field Operations & Interpretation Report.docx adherence to safety guidelines. Survey operations were based out of the Nomad Motel, located in Cranbrook, BC.

Trucks were used to transport the crew and equipment to and from the survey area. Two LaCoste and Romberg G-series land gravity meters were used for this survey. The project was surveyed mostly by foot. Infill stations on the east side were laid out at 10 to 50 metre spacing. On the south and west sides, gravity stations were laid out at 100 to 150 metre spacing. Terrain corrections for zones B and C (2 to 50 m) were recorded at each station using inclinometers. On average, a gravity reading was obtained every fifteen minutes.

A Garmin GPS navigation system equipped with a pre-programmed set of station coordinates was used for navigation to each gravity station. The precise location of the gravity meter at each station was determined using geodetic grade dual frequency Leica GPS receivers. This aspect of the survey is described in detail under GPS survey procedure and processing. Figure 4 shows a typical gravity station setup in the field.

Figure 4. Typical Gravity Station Setup

GRAVITY BASE STATIONS

The gravity survey was tied to the Canadian Gravity Standardization Network (CGSN) gravity base 9025-1980 located at the Cranbrook Post Office under the benchmark on the NE corner of the building. The CGSN 9025-1980 gravity base is shown in Figure 5.

Excel Geophysics Inc. PJX Resources Vine 2015-2016 Geophysical Survey Field Operations & Interpretation Report.docx

Figure 5. CGSN Gravity Base 9025-1980, Cranbrook, BC

Field base 0 10241 was previously established by *Excel* at GPS base 10241 on the Vine property. This base was used as the main base for the 2015 and 2016 gravity survey operations. A gravity reading was taken at this gravity base at the beginning and end of each day to determine meter drift. Table 3 shows the coordinates and gravity values for the main gravity bases used for this gravity survey.

Table 3.	PJX Gravity	Bases	(NAD83/WGS8	34, UTM Zone 11)
			(, , , , ,

Base Name	Latitude	Longitude	Observed Gravity (mGal)
CGSN Base 9025-1980	49° 30' 24" N	115° 45' 41" W	980699.790
Excel Gravity Base 455 10241	49° 24' 2" N	115° 48' 59" W	980683.86

GPS CONTROL BASES

Precise elevation data is required for processing gravity data, therefore high quality differential GPS data is recorded at each gravity station. *Excel* previously established GPS base 455 10241 as a GPS control base on the Vine property. This GPS control base was tied to the Canadian Base Network (CBN) using a pillar located along highway 93-95 (Figure 6), 3.8 km SW of the junction with the road to Fort Steele Heritage Park (CSRS 89HP3C Pier 3). Coordinates for each of the control bases can be found in Table 4.

Figure 6. CSRS GPS Pillar 89HP3C, Fort Steele, BC

Table 4. GPS Bases

Base Name	NAD 83 Latitude	NAD 83 Longitude	Ellipsoidal Elevation (m)	Orthometric Elevation (m)
CSRS 89HP3C	49° 36' 0.8386" N	115° 40' 10.0454" W	809.260	823.874
455 10241	49° 24' 1.5273" N	115° 48 59.3749" W	937.843	951.892

GPS SURVEY PROCEDURE AND PROCESSING

Real time kinetic GPS was used on this survey. The GPS base previously established by *Excel* personnel within the survey area (455 10241) was used as the RTK control base for the gravity survey. The coordinates for the GPS base is shown in Table 4. Figure 9 shows an example of a GPS field base set up in the survey area.

Excel personnel conducting the gravity survey were responsible for recording GPS readings at each gravity station. Leica VIVA series GPS units running in RTK mode or running in post-processing mode were used for the duration of the survey because of their accuracy, reliability, fast satellite acquisition, ease of operation and small size.

GPS data were processed each evening using Leica Geosystems post-processing software. Station locations were downloaded from each Leica controller and checked for position and height quality. A position quality threshold was set in each controller. While running in RTK mode, the unit would not automatically record a position until those cutoffs were met (<3 cm horizontal and <2.5 cm vertical). GPS data acquisition time ranged from less than a minute to up to 30 minutes depending on the position of the satellites and the clarity of the radio signal from the base station.

Figure 7. Operator Taking a Gravity Reading at a Field GPS Base Station

GRAVITY DATA REDUCTION

The LaCoste and Romberg land gravity meter (G-series) is operated manually and is capable of reliable and repeatable gravity readings to an accuracy of better than 0.01 mGal by experienced operators. The operator must ensure that the meter is operated at the recommended regulated temperature and is level during the reading.

The station id, date, time, dial reading and instrument height are recorded in a field notebook at each land gravity station. A gravity base is measured at the beginning and end of each day to correctly account for meter drift. Each evening the field data are entered into a computer and corrected for sun/moon tidal effects, instrument height, and instrument drift to obtain the observed gravity. Refer to the *Observed Gravity Data Listing* (PJX Resources Vine 2015-16 – Observed Gravity Data.xls) for the raw data, observed gravity and intermediate reduction values for each day.

After the GPS coordinates and elevations are processed and merged with the observed gravity for each station, intermediate corrections are applied to the observed gravity to yield final Bouguer anomaly values. See Table 5 for the formulae used to determine the intermediate corrections and Bouguer gravity values. The Bouguer gravity has been calculated using variable density Bouguer and terrain corrections. The near surface

correction model was developed using the digital elevations and surface geology maps. This model was used to calculate both the terrain corrections and Bouguer correction for each station. Refer to the *Variable Density Bouguer Gravity Data Listings* (PJX Resources Vine 2015-16 – Bouguer Gravity Data.xls) for the intermediate corrections, station densities and final variable density Bouguer gravity values.

A Bouguer gravity map was created using all data acquired by Excel as well as available GSC and ARIS data. For details on the GSC and ARIS data please refer to the previous *Technical Report, West Basin Property* dated June 18, 2013.

Gravity Corrections	Description	
Latitude Correction	International Association of Geodesy, World Geodetic System 1984. = 978032.67714 $\times \left(\frac{1 + (0.00193185138639 \times sin^2(latitude))}{\sqrt{1 - (0.00669437999013 \times sin^2(latitude))}}\right)$	
Free Air Correction	$= (h - datum) \times 0.3086 \frac{mGal}{m}$	
Bouguer Correction	Calculated using near surface mass model with variable density.	
Terrain	B and C Zone (2 to 50 m) field observations with variable density.	
Corrections	Outer terrain corrections (50 m to 25 km) calculated using near surface mass model with variable density.	
Final Bouguer Values	= Observed Gravity – Latitude Correction + Free Air Correction + Bouguer Correction + Inner Terrain Correction + Outer Terrain Correction	

Table 5. Gravity Correction Formulae

SURFACE GEOLOGY COMPILATION

Several sources of surface geology were used to provide a detailed representation for the area. The following list of maps was used to create the surface geology map for the greater data processing area.

Vine A Area – Personal communication, David Pighin, Fall 2015

Maps from GSC:

Open File 6478 - Purcell Basin Interactive Maps, British Columbia, J.M.R. Joseph, D. Brown, R. MacLeod, C. Wagner, W. Chow, and M. Thomas, 2011.

Maps from the BC Ministry of Energy and Mines:

Geoscience Map 1998-3 - Geological Compilation of Grassy Mountain (East Half) and Moyie Lake (West Half) Map Areas, Southeastern British Columbia (82F/8E, 82G/5W), D.A. Brown, 1998.

Geoscience Map 2004-1 - Geology of the St. Mary Map Sheet (NTS82F/09), T. Höy and W. Jackaman, 2004.

Preliminary Map No. 54 - Geology of the Cranbrook Sheet and Sullivan Mine Area), T. Höy and M.E. McMechan, 1984.

Geofile 2005-4 - Digital Geology Map of British Columbia: Tile NM11 Southeast B.C., Version 1.0 2005, N.W.D. Massey, D.G. MacIntyre, P.J. Desjardins, and R.T. Cooney, 2005.

Figure 8 shows the surface geology in the immediate project area. Density values were assigned to each rock unit based on the rock unit description (Figure 9). Previous studies in the area were considered in determining optimum densities.

Figure 8. Surface Geology Map

	SURFACE GEOLOGY				
Vine A A Dave Pigl	Vine A Area: Dave Pighin, personal communication, Fall 2015.				
Maps fro Open File	om GSC: 6478 - Pure W.	cell Basin Interact Chow, and M. Th	ive Maps, British Columbia, J.M.F omas, 2011.	R. Joseph, D. Brown, R. MacLeod, C. Wagner,	
Maps fro Geoscien	om the BC ce Map 199	Ministry of Ener 8-3 - Geological C Southeaster	rgy and Mines: compilation of Grassy Mountain (l n British Columbia (82F/8E, 82G	East Half) and Moyie Lake (West Half) Map Areas, /5W), D.A. Brown, 1998.	
Densitie	<u>s</u>				
2.90		mPrDM	Moyie Plutonic Suite	(Gabbro)	
2.70		mPrPNS	Purcell Supergroup	Nicol Creek, Sheppard, Gateway,	
2.73		mPrPN	Purcell Supergroup	Nicol Creek Formation	
2.70		mPrPV	Purcell Supergroup	Van Creek Formation	
2.74		mPrPK	Purcell Supergroup	Kitchener Formation	
2.74		mPrPA2	Purcell Supergroup	Middle Aldridge Formation	
2.72		mPrPA1	Purcell Supergroup	Lower Aldridge Formation	
2.65		Phyllite	mainly sericite, chlor	rite, aloite and quartz	
2.65		MFZ	Moyie Fault Zone - al A	tered and tectonized Idridge Sediments	

Figure 9. Surface Geology Legend

DATA QUALITY

Gravity measurements were of excellent quality. Verification gravity readings (repeat observations) were better than ± 0.02 mGal. Relative station elevations were estimated to be better than 2 cm, and horizontal locations were estimated to be better than 5 cm. A critical examination of the residual gravity maps reveals that the final survey values are clearly within a total error envelope of better than ± 0.05 mGal.

GRAVITY INTERPRETATION AND MODELLING

The interpretation presented in this report incorporates all gravity data acquired or reprocessed for *PJX* to September 2016. Some products have interpreter bias, while others like the 3D Equivalent Mass Models (EQM) are based solely on potential field mathematical properties with minimal interpreter influence. Residual EQM maps were generated for the gravity data at appropriate depth slices.

The gravity surveys conducted in 2015 and 2016 had two purposes. On the west and south side of existing detailed gravity surveys, gravity stations were acquired at a spacing of 100 to 150 metres to add gradient information to the edge of the dataset or fill between existing, widely spaced data lines. On the east side of the existing detailed gravity

surveys, gravity stations were acquired at a spacing of 10 to 25 metres to provide detailed information about shallower anomalies, and to prevent aliasing of near surface anomalies into the gravity response from deeper targets.

BOUGUER GRAVITY MAP

The Variable Density Bouguer Gravity map is shown in Figure 12. The Vine property is characterized by a significant gravity high. To the east, the Moyie fault cuts from northeast to southwest along the edge of the data.

Figure 10. Variable Density Bouguer Gravity

REGIONAL GRAVITY MAPS

The main priority of this project was to understand recent drilling results in the Vine area and update the gravity modelling to incorporate the latest information from the geophysical surveys (gravity and magnetic) and geological surveys (drill results and ground survey). *Excel* uses proprietary software for all of our processing streams. This software has been developed over many decades and is continuously being upgraded and modified.

One of the most useful procedures in understanding the implications of the gravity signature is to separate the gravity signal into the response from different depths. The shape (or spectral property) of a gravity anomaly is depth dependent, which allows the Bouguer gravity map to be separated into a series of maps relating to the anomaly sources

at varying depths. The change in the shape of gravity anomalies with changes in source depth is simply the result of geometric factors in the formulae for gravity, and is hence reliable and predictable. Numerous procedures have been developed over the past century to accomplish this separation. In this case, equivalent mass modeling (EQM) was used to filter the maps into depth components.

Equivalent mass modeling is computationally intensive; this method provides a focused result, with detailed mass distribution maps that are very reliable for mass edge definition. In equivalent mass modelling, as much of the gravity signal as possible is first placed in the deepest gravity map (called the regional map). Whatever gravity signal is left over (the residual) must be due to shallower sources. This process can continue to as shallow a depth as the data spacing permits.

EQM modelling is similar in philosophy to seismic deconvolution, where the predictable aspects of the geophysical signal are removed and the earth model is brought into focus. For instance, the geometric spreading and the resulting interference patterns are eliminated when the gravity data are focused onto an equivalent mass layer.

The equivalent mass modelling procedure is primarily based on mathematical properties of the gravity field, and is hence relatively free of geologic assumptions and interpreter bias. The procedure tends to place mass anomalies deeper than they actually are; no absolute depths should be interpreted from these results. However, relative depths and horizontal locations are very precise, and can be used to guide further interpretations that include more geological constraints.

Figures 11, 12, 13 and 14 show the regional gravity signatures that have been successively taken out of the Bouguer gravity data. The 10 km (Figure 11) and 5.1 km (Figure 12) gravity signatures are deep and regional and are only shown for project completeness. No attempt has been made to interpret the regional significance of these maps, as the deep regional gravity needs to be viewed in a larger regional context. At 2.2 km (Figure 13), we begin to see a broad gravity high centered under the Vine claims, and at 1.2 km (Figure 14) the anomalous mass under the Vine claims has become more focused. The gravity stations which were added to the west and south edges of the existing detailed gravity data have helped to define the gradients on the edge of the gravity anomaly. The anomaly on the 1.2 km Regional Gravity map may be a deep component to the anomaly, or be of significance when the source of the shallower anomalies is discovered. The following sections focus on equivalent mass modelling and 2½D modelling of the shallower anomalies of exploration interest.

Figure 11. 10 km Regional Gravity

Figure 12. 5 km Regional Gravity

Figure 13. 2.2 km Regional Gravity

Figure 14. 1.2 km Regional Gravity

SHALLOW RESIDUAL GRAVITY

When the series of regional gravity maps presented above is removed from the Bouguer Gravity map, the result is the 1.2 km Residual Gravity map (Figure 15). The 1.2 km Residual Gravity map highlights shallower gravity anomalies which may be of exploration interest. Several positive (red) gravity anomalies can be seen on this map. The focus of the gravity modelling and interpretation has been the "A" anomaly on the east side.

Figure 15. 1.2 km Residual Gravity

VINE "A" ANOMALY

On the east side of the detail gravity data, a confined gravity high can be seen (Figure 15). This gravity feature has been the focus of the equivalent mass modelling process and the 2½D modelling efforts. A detailed surface geology map of the area is shown in Figure 16.

Figures 17 and 18 show the 1.2 km Equivalent Mass Map and the 1.2 km Residual Gravity Map focused on the Vine A gravity anomaly. Equivalent mass filtering is an excellent tool for focusing a gravity field to the horizontal location of the mass, but does a poor job of determining depth when the source is a vertically oriented body. The 1.2 km Equivalent Mass Map should not be used as an indication of depth, but as a map which provides a focused look at the horizontal location of the masses which make up the longer wavelength of the gravity field.

Excel Geophysics Inc. PJX Resources Vine 2015-2016 Geophysical Survey Field Operations & Interpretation Report.docx

Figure 16. Detailed Surface Geology over the Vine A anomaly (personal correspondence, Dave Pighin).

Figure 17. 1.2 km Equivalent Mass Map – Vine A Area

These maps are dominated by the central gravity high, which drilling has shown to be primarily caused by a 400 m thick layer of gabbro within what is likely a third order basin. If we take our focus off the centre mass for a moment, several nodules can be seen in both the 1.2 km Equivalent Mass and the 1.2 km Residual Gravity map, protruding from the sides of the central mass. These could be signs of high density, vertically emplaced material around the margins of the gabbro. They are masked by the gravity high from the extensive gabbro and will not be easily modelled with 3D techniques.

Figure 18. 1.2 km Residual Gravity Map - Vine A area

In all of our efforts to create 2¹/₂D models of this feature, we have always found that on the western edge of the anomaly, the gabbro must be modelled as ending in an abrupt, near vertical edge. The 1st Horizontal Derivative of the 1.2 km Equivalent Mass emphasises this point. First horizontal derivatives are used to highlight abrupt changes and discontinuities in a map. Figure 19 shows the 1st Horizontal Derivative of the 1.2 km Equivalent Mass with the surface geology from Figure 16 as a transparent overlay. The edge of the gabbro on the western side is seen as the strong horizontal gradient in white which lines up well with the surface location for the western edge of the gabbro (green overlay). The northern, eastern and southern margins are complicated by faulting and overlying Aldridge rocks, but the grey to red coloured gradients to the east may be marking the eastern margin of the gabbro.

Figure 19. 1.2 km Equivalent Mass 1st Horizontal Derivative

2¹/₂D GRAVITY MODELLING

The 2½D gravity modelling was an iterative process which extended intermittently through the time period of this report. Throughout the process, additional geophysical and geological data were being added to improve the overall understanding of the Vine A area. The models presented in this report represent the geological picture at the time of their development. Some have been updated more recently than others.

The first set of gravity models were created prior to additional data collection. A 1.6 km Residual Gravity map was used to provide the model profiles. Figure 20 shows the location of the 2¹/₂D gravity model profiles.

Figure 20. 1.6 km Residual Gravity and model profile locations.

Models WW', UU' and JJ' were developed simultaneously to create a cohesive interpretation (Figures 21 to 23). On each of the profiles, the horizontal extent of the high density material and the boundaries of the basin were well constrained by the gravity data. The modelling process provided constraints for the potential geologic models. In particular, the gabbro sill could not be extended to the west and north as far as the original geologic models indicated.

Figure 21. WW' 2¹/₂D Gravity Model

Figure 22. UU' 2¹/₂D Gravity Model

Figure 23. JJ' 2¹/₂D Gravity Model

These models could be refined further. The depth at which the sulphides have been placed corresponds to the expected depth of the base of the footwall quartzite beneath the gabbro sill. Given the proximity of the Moyie Fault, any sulphides found at that depth would be significantly deformed from the presented pictures. Gravity modelling is unable to determine the shape of such a deposit at that depth.

Following the deep investigations, infill gravity data was added to the Vine A anomaly area and shallower gravity highs were investigated. Figure 24 shows the 200 m Residual Gravity map and the location of model QQ' through a shallow gravity high.

Figure 24. 200 m Residual Gravity and QQ' profile location.

Figure 25. QQ' 2¹/₂D Gravity Model

Further drilling did not reveal the source of the shallow gravity features.

Finally, in an attempt to understand the potential gravity signature created by a zone that contains both massive sulphides and high density gabbro, the Valentine Vein was modelled. The Valentine Vein is located to the southwest of the Vine A feature. Three parallel massive sulphide (galena, sphalerite, pyrrhotite, and pyrite) veins occur over a 45 metre true width section, along with gabbro, in the Vine shear. The veins are 10 m, 7 m and 6 m true width. They strike 320° and dip about -70° to the southwest. The thick part of the vein system is estimated to have at least 100 m strike length and a dip length of 100 m. The veins narrow toward surface. Figure 26 shows a gravity model of the

Valentine Vein based on a cross-section through the structure. The Valentine Vein has not been investigated with a detailed gravity survey to date.

Figure 26. Valentine Vein 2¹/₂D Gravity Model

The gravity response from the gabbro and the sulphides was separated out in an effort to understand how they contributed to the overall theoretical gravity response.

MAGNETIC DATA

MAGNETIC SURVEY PARAMETERS

The following table outlines the main details of the magnetic survey.

Magnetic Survey Parameters	
General Survey Locations	South of Cranbrook, BC Latitude: 49° 26' N Longitude: 115° 51' W
Survey Duration	April 16 to 18, 2016
Line Spacing	 second readings on 300 m long lines spaced ~5 to 20 m apart metre stations on three parallel lines
Data Acquired	11.4 km of walking magnetic data 243 individual magnetic stations
Magnetometers Used	2 Magnetometers - GSM-19W serial #'s 7082452 and 7102520

Table 6.	Magnetic	Survey	Parameters
----------	----------	--------	------------

MAGNETIC SURVEY PROCEDURE

Two GSM-19 walking magnetometers were used to conduct the magnetic portion of the survey. The roving magnetometer, which was carried using a backpack, continuously recorded data at 1.0 second intervals while the operator walked along accessible roads, trails and through the woods. A GPS antenna provided time, x/y position and elevation with each magnetic reading. A second magnetometer was set up as a magnetic base station. During data collection, the magnetometer base continuously collected magnetic data to record the diurnal variations in the magnetic field. All data was downloaded to a laptop computer at the end of each day.

MAGNETIC DATA REDUCTION

A magnetic reading was recorded every 1.0 second during data collection. Magnetic base stations recorded diurnal variations of the magnetic field simultaneously with the walking magnetometer unit. An empirical model decomposition filter was used to remove any local variations in the diurnal. The diurnal was removed from the rover magnetic data to account for variations in the background magnetic field.

A power line runs through parts of the project area, and a number of culverts were identified on the roads and trails through the area. The magnetic data was edited to remove cultural noise, gridded, and filtered to investigate the anomalous magnetic features over *PJX*'s Vine claims.

MAGNETIC DATA RESULTS

The purpose of the 2016 land magnetic survey was to detail one of the high amplitude, high frequency magnetic anomalies which surround the main gravity mass on the Vine property. The 2016 magnetic data were combined with previous magnetic work in the area. The results of the land magnetic survey are shown as a Total Magnetic Field map in Figure 27.

30

The background magnetic field for the area is quite uniform. Within this uniform field, several intense magnetic anomalies have been identified. One of these was chosen to cover in detail. Figure 28 shows the detailed total magnetic intensity map over this feature. The peak to peak magnitude of the anomaly is more than 2500 nT.

Figure 28. Total Magnetic Intensity Map, focused on Anomaly A

A magnetic inversion was run on two lines crossing the feature from south to north (Figure 29). This is one possible solution to the source of the magnetic anomaly.

Figure 29. Magnetic Inversion, lines 586500 and 586510 with electric sounding results.

ELECTRICAL SOUNDINGS

In September 2015, two electrical soundings were run near the recent drilling on the Vine A gravity anomaly. The purpose of these profiles was to determine if a resistivity survey would provide useful information in identifying the source of the near surface gravity anomalies. A Wenner array with an AC frequency of 128 Hz was used (Figure 30). Figure 31 shows the sounding curves as a plot of the electrode spacing (a) versus apparent resistivity. The resistivity of the host rock (Aldridge) can be estimated to be approximately 7000 to 9000 Ohm*m (a<10 m) and the Gabbro sill can be estimated to be approximately 10000 to 20000 Ohm*m. A conductive layer appears to lie at a depth of 15 to 25 metres.

Figure 30. Wenner Array. The parameter **a** is varied to investigate rock resistivity variations with depth

Figure 31. Apparent Resistivity Location and Curves, September 2015

In April and June 2016, five electrical soundings were run near the intense magnetic anomaly which was detailed at the same time. The sounding locations can be seen on Figure 28. The results are presented in Figure 32 as apparent resistivity curves.

Vine 2015-2016 Geophysical Field Operations & Interpretation Report

The electric sounding results show a clear difference between the soundings collected off of the magnetic anomaly (6490 and 6500.2) and those collected near the magnetic anomaly. Soundings 6500, 6510 and 6520 show a conductive (lower resistivity) zone.

MAGNETIC SUSCEPTIBILITY MEASUREMENTS

In April 2016, several magnetic susceptibility measurements were recorded on a several core samples from drill results on the Vine claims. Figure 33 shows a histogram of the results, with the samples separated into core samples with no signs of mineralization (barren core) versus samples with signs of mineralization.

Figure 33. Magnetic Susceptibility measurements, Vine area core

APPENDIX A - UTM Zone 11 Coordinate System Parameters

The coordinate system used for mapping purposes is UTM Zone 11 (WGS84). Parameters for the coordinate system are shown in Table 8.

Project Mapping System		
Datum	WGS 84	
Ellipsoid	WGS 84	
Latitude of Origin	Equator, 0°	
Central Meridian	117° W	
Grid Projection	UTM Zone 11	
Scale Factor	0.9996	
False Easting	500,000.0 m	
False Northing	0.0 m	

Table 7.	UTM Zone	11	Mapping	Parameters
----------	----------	----	---------	------------

Ellipsoids:	WGS 84
Semi-major axis	6,378,137.0 m
Semi-minor axis	6,356,752.3 m

APPENDIX B - Data Listing Format

Observed Gravity Data

The *Observed Gravity Data Listing* (PJX Resources Vine 2015-16 Gravity Survey – Observed Gravity Data.xls) contains a listing of all gravity data collected by the crew during the survey period. The data is presented in chronological order.

The LaCoste and Romberg G-series land gravity meter uses a zero length spring supporting a mass on a beam as is standard in all modern gravity meters. While the meter is level, a counter dial is turned to adjust the position of the beam until the force of gravity is balanced by the mechanical force of the zero length spring. A calibration table is used to convert the counter reading value to a value in mGal. While the zero length spring system may drift during a day, this drift can be accurately identified and corrected by reoccupying a known gravity station one or more times during the day.

Each gravity loop is separated by a blank row. The primary gravity base is always assigned a line number of 0 to distinguish it from other readings, and can be seen at the start and end of each gravity loop. The date, time, Greenwich Mean offset, and project location (latitude and longitude) are used to compute the sun/moon gravity tide correction.

The relative gravity is computed by summing all of the terms:

Relative Gravity =	calibrated counter reading + instrument height
	correction + tide correction - drift correction

Observed Gravity = relative station gravity - relative base gravity + base absolute gravity

Gravity base values can be seen in Table 3.

Bouguer Gravity Data

The Variable Density Bouguer Gravity Data Listing (PJX Resources Vine 2015-16 Gravity Survey – Bouguer Gravity Data.xls) displays the observed gravity and coordinate data with intermediate corrections and variable density Bouguer gravity values. Latitude and longitude values are given as well as UTM Zone 11 coordinates in WGS84. The elevations shown are orthometric height above mean sea level, calculated using the Canada HT2.0 geoid model. The intermediate corrections include the latitude, free air, variable density Bouguer and terrain corrections. The final Bouguer gravity is computed as follows:

Bouguer Anomaly (*Variable Density***)** = observed gravity - latitude corr. + free air corr. + Bouguer corr. + (inner terrain corr. + outer terrain corr.)

The Bouguer listing provides the rock density at each station location based on the surface geology. The Bouguer correction and outer terrain corrections were calculated using a near surface model developed by merging information from the digital elevation and surface geology compilations. The average elevation of the surveyed stations in this project was approximately 1080 metres. Based on this value, an elevation datum of 1100 metres was previously chosen (2014) to minimize the effect of the variable density Bouguer correction. However, the east side of the project area has been the primary exploration focus and the average elevation in that area is approximately 950 m. The data was reprocessed in December 2015 at a datum of 950 m to minimize the corrections on the east side of the project area.

Outer terrain corrections were also calculated using the near surface mass model. The inner terrain corrections applied at each gravity station were calculated at the station density. The results are displayed in the listings.
APPENDIX C – DAILY WORK LOG

 Table 8. Daily Work Log

Date	Work Description	Equipment Used
Aug 7, 2015	Mobilized from High River, AB to Cranbrook, BC.	1 4x4 pick-up truck
Aug 8, 2015	Acquired 9 Gravity Stations. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 ATVs Gravity Meter G-645 4 Leica GPS 1 Handheld Garmin
Aug 9, 2015	Acquired 6 Gravity stations. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 ATVs Gravity Meter G-645 4 Leica GPS 1 Handheld Garmin
Aug 10, 2015	Demobilized from Cranbrook, BC to High River, AB	1 4x4 pick-up truck
Sept 2, 2015	Mobilized from High River, AB to Cranbrook, BC. Acquired 2 Gravity Stations. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 ATVs Gravity Meter G-353 4 Leica GPS 1 Handheld Garmin
Sept 3, 2015	Acquired 6 Gravity Stations. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 ATVs Gravity Meter G-353 4 Leica GPS 1 Handheld Garmin
Sep 4, 2015	Demobilized from Cranbrook, BC to High River, AB.	1 4x4 pick-up truck
Sep 6, 2015	Mobilized from High River, AB to Cranbrook, BC. Acquired 4 Gravity Stations. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 ATVs Gravity Meter G-353 4 Leica GPS 1 Handheld Garmin
Sep 7, 2015	Acquired 12 Gravity Stations. Operated with 1 crew. Preliminary processing of field data in field office.	 1 4x4 pick-up truck 2 ATVs Gravity Meter G-353 4 Leica GPS 1 Handheld Garmin
Sept 8, 2015	Acquired 14 Gravity Stations. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 ATVs Gravity Meter G-353 4 Leica GPS 1 Handheld Garmin

Date	Work Description	Equipment Used
Sep 9, 2015	Acquired 5 Gravity Stations. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 ATVs Gravity Meter G-353 4 Leica GPS 1 Handheld Garmin
Sep 10, 2015	Acquired Resistivity data. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 ATVs 1 Resistivity meter 1 Handheld Garmin
Sept 11, 2015	Demobilized from Cranbrook, BC to High River, AB.	1 4x4 pick-up truck
April 15, 2016	Mobilized to Cranbrook, BC.	1 4x4 pick-up truck
April 16, 2016	Acquired Magnetic Data 4 km walking mode. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 GSM – 19W Magnetometers 1 Handheld Garmin
April 17, 2016	Acquired Magnetic Data 6.1 km walking mode. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 GSM – 19W Magnetometers 1 Handheld Garmin
April 18, 2016	Acquired Magnetic Data 243 points. Operated with 1 crew. Acquired 2 electric sounding points. Preliminary processing of field data in field office.	1 4x4 pick-up truck 2 GSM – 19W Magnetometers Electric station Nicety ST2306 2 Leica GPS 1 Handheld Garmin
April 19, 2016	Acquired 6 Gravity Stations. Performed Susceptibility testing 85 samples. Operated with 1 crew.	1 4x4 pick-up truck Gravity Meter G-645 Susceptibility meter Exploranium KT-5 2 Leica GPS 1 Handheld Garmin
April 20, 2016	Acquired 10 Gravity Stations. Operated with 1 crew. Preliminary processing of field data in field office.	1 4x4 pick-up truck Gravity Meter G-645 2 Leica GPS 1 Handheld Garmin
April 21, 2016	Gravity meter G-645 had operational issues in the field. Operated with 1 crew. Equipment maintenance.	1 4x4 pick-up truck Gravity Meter G-645 2 Leica GPS 1 Handheld Garmin
April 22, 2016	Acquired 14 Gravity Stations. Demobilized from Cranbrook, BC to High River, AB.	1 4x4 pick-up truck Gravity Meter G-353 2 Leica GPS 1 Handheld Garmin

Date	Work Description	Equipment Used
June 16,	Acquired 1.3 km walking Magnetic Data.	1 4x4 pick-up truck
2016	Operated with 1 crew. Preliminary	2 GSM – 19W Magnetometers
	processing of field data in field office.	1 Handheld Garmin

Appendix 9: Sample assay certificates for rock and chip samples

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Report Date: October 20, 2016 Page: 1 of 2

VAN16001817.1

ZINGER Project: Shipment ID: P.O. Number Number of Samples: 5

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

PJX Resources Inc. Invoice To: 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

CC:

Linda Brennan Michael Seabrook Sean Kennedy

JEFFREY CANNON Geochemistry Denartment Super

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-250	5	Crush, split and pulverize 250 g rock to 200 mesh			VAN
AQ201	5	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN

ADDITIONAL COMMENTS

Client:

Submitted By:

Receiving Lab:

Received:

PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

John Keating

Canada-Vancouver

September 28, 2016

												Clie	nt:	PJ 5600 Toro	K Res - 100 Ki nto Ontai	OUICE ing Street rio M5X 1	s Inc. t West 1C9 Cana	ida			
B U R E A U V E R I T A S	MINERAL LABORATOR Canada	IES		www	.burea	uverita	s.com	/um				Proje	ct:	ZING	ER						
Bureau Veritas	Commodities Canada Lte	d.										Repo	rt Date:	Octo	ber 20, 2	2016					
9050 Shaughn	essy St Vancouver Britisl	h Colum	bia V6F	9 6E5 C	Canada																
PHONE (604)	253-3158											Page	:	2 of 2	2				Pa	irt:	1 of 2
CERTIF	ICATE OF AN	IALY	′SIS													VA	AN16	6001	817	.1	
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	I AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ20 ⁻	1 AQ201

	Analyte	Wat	Мо	Cu	Pb	Zn	Αα	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
LD16-01	Rock	0.61	0.7	7.6	138.8	9	0.2	1.5	0.7	115	0.44	0.6	23.3	3.1	8	<0.1	0.2	1.5	<2	0.04	0.014
LD16-02	Rock	0.72	0.6	17.9	11.8	58	0.2	2.4	7.2	674	1.28	1.8	79.6	6.9	35	2.4	1.1	<0.1	7	0.16	0.064
LD16-03	Rock	0.87	1.9	812.1	>10000	886	22.1	2.8	2.1	1556	1.67	63.9 1	2813.3	1.1	14	15.3	47.9	0.3	3	0.03	0.010
LD16-04	Rock	0.85	27.6	1525.9	>10000	928	9.5	1.3	1.0	125	1.88	24.7	8189.3	1.7	18	3.8	93.9	0.2	<2	0.03	0.010
LD16-05	Rock	0.99	39.6	>10000	>10000	1373	>100	2.4	0.9	74	1.97	62.1 1	1132.2	0.7	40	7.9	350.8	0.2	<2	0.04	0.006

			Client:	PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada		
BUREAU VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project: Report Date:	ZINGER		
Bureau Veritas	Commodities Canada Ltd.		Report Date.	October 20, 2016		
9050 Shaughn	essy St Vancouver British Columbia V6	^D 6E5 Canada				
PHONE (604)	253-3158		Page:	2 of 2	Part:	2 of 2
CERTIF	ICATE OF ANALYSIS			VAN160018	817.1	

		Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
		Analyte	La	Cr	Mg	Ва	Ti	В	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Те
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
LD16-01	Rock		5	4	0.02	33	0.001	2	0.15	0.023	0.11	47.2	0.01	0.2	<0.1	<0.05	<1	<0.5	<0.2
LD16-02	Rock		21	4	0.05	145	0.002	3	0.31	0.021	0.18	12.0	0.03	0.9	<0.1	<0.05	1	<0.5	<0.2
LD16-03	Rock		6	5	0.02	345	<0.001	<1	0.06	0.003	0.04	18.2	1.66	0.6	0.2	0.19	<1	<0.5	10.9
LD16-04	Rock		15	4	0.03	358	0.001	1	0.09	0.003	0.05	>100	2.05	0.7	0.2	<0.05	<1	<0.5	2.2
LD16-05	Rock		2	4	0.06	301	<0.001	<1	0.04	0.002	0.01	>100	12.01	0.5	0.2	0.08	<1	<0.5	1.4

												Client	t:	PJX 5600 - Toront	Reso 100 King to Ontario	UTCES g Street V o M5X 1C	Inc. Vest 9 Canada	a			
B U R E A U V E R I T A S	MINERAL LABORATORI Canada	ES		www.	bureau	veritas	.com/u	ım				Project Report	: Date:	ZINGE	ER ar 20, 20	16					
Bureau Veritas	Commodities Canada Lto	d.												OCIODE	51 20, 20	10					
9050 Shaughne PHONE (604) 2	essy St Vancouver British 253-3158	n Colum	bia V6F	9 6E5 C	Canada							Page:		1 of 1					Part	: 1 of	2
QUALIT	Y CONTROL	REP	OR	Г												VA	N16	001	817.	1	
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
																			•		0 0 0 4

	Unit	кg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppp	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Pulp Duplicates																					
LD16-05	Rock	0.99	39.6	>10000	>10000	1373	>100	2.4	0.9	74	1.97	62.1 1	1132.2	0.7	40	7.9	350.8	0.2	<2	0.04	0.006
REP LD16-05	QC		38.3	>10000	>10000	1372	>100	2.6	0.9	77	1.97	58.6	9566.4	0.7	38	7.3	331.1	0.2	<2	0.04	0.008
Reference Materials																					
STD DS10	Standard		13.8	152.9	146.3	347	1.8	73.8	12.6	904	2.77	45.1	71.3	7.6	66	2.6	8.6	12.0	44	1.06	0.077
STD OXC129	Standard		1.4	31.4	6.1	41	<0.1	82.0	21.8	437	3.13	<0.5	199.6	1.9	185	<0.1	<0.1	<0.1	54	0.66	0.109
STD DS10 Expected			15.1	154.61	150.55	370	2.02	74.6	12.9	875	2.7188	46.2	91.9	7.5	67.1	2.62	9	11.65	43	1.0625	0.0765
STD OXC129 Expected			1.3	28	6.3	42.9		79.5	20.3	421	3.065	0.6	195	1.9					51	0.665	0.102
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001
Prep Wash																					
ROCK-VAN	Prep Blank		0.6	3.8	2.8	37	<0.1	1.6	4.1	455	1.90	1.3	<0.5	2.5	37	<0.1	<0.1	<0.1	24	0.63	0.047

			Client:	PJX Resources Inc 5600 - 100 King Street West Toronto Ontario M5X 1C9 Car	¦₌ nada	
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada s Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	ZINGER October 20, 2016		
9050 Shaughr PHONE (604)	essy St Vancouver British Columbia 253-3158	V6P 6E5 Canada	Page:	1 of 1	Part:	2 of 2
QUALI	TY CONTROL REPO	RT		VAN1	6001817.1	

	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Pulp Duplicates																		
LD16-05	Rock	2	4	0.06	301	<0.001	<1	0.04	0.002	0.01	>100	12.01	0.5	0.2	0.08	<1	<0.5	1.4
REP LD16-05	QC	2	4	0.06	282	<0.001	<1	0.04	0.002	0.01	>100	11.65	0.4	0.1	0.08	<1	<0.5	1.3
Reference Materials																		
STD DS10	Standard	18	55	0.77	346	0.080	8	1.04	0.070	0.33	3.4	0.27	3.1	4.8	0.29	4	2.3	4.6
STD OXC129	Standard	14	53	1.59	53	0.405	<1	1.53	0.586	0.36	0.4	0.01	0.6	<0.1	<0.05	5	<0.5	<0.2
STD DS10 Expected		17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	0.3	3	5.1	0.29	4.5	2.3	5.01
STD OXC129 Expected		13	52	1.545	50	0.4	1	1.58	0.6	0.37			1.1			5.6		
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	0.2	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																		
ROCK-VAN	Prep Blank	6	4	0.42	84	0.092	1	0.97	0.089	0.09	0.2	<0.01	2.7	<0.1	<0.05	4	<0.5	<0.2

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Procedure

PRP70-250

Code

BAT01

AQ201

DRPLP

DRRJT

Re Re Pa

Crush, split and pulverize 250 g rock to 200 mesh

1:1:1 Aqua Regia digestion ICP-MS analysis

Warehouse handling / disposition of pulps

Warehouse handling / Disposition of reject

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Code Description

Batch charge of <20 samples

Number of

Samples

1

15

15

15

15

ADDITIONAL COMMENTS

VAN16002619.1

Test

15

Wgt (g)

Report

Status

Completed

Lab

VAN

VAN

VAN

VAN

VAN

ZINGER Project: Shipment ID: P.O. Number Number of Samples: 15

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

PJX Resources Inc. Invoice To: 5600 - 100 King Street West Toronto Ontario M5X 1C9

Canada

CC:

JEFFREY CANNON Geochemistry Denartment Suna

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client: PJX Resources Inc.

> 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

Submitted By:	Email Distribution List - Soil & Rock
Receiving Lab:	Canada-Vancouver
Received:	December 23, 2016
Report Date:	January 13, 2017
Page:	1 of 2

												Clie	nt:	PJX 5600 Toro	X Res - 100 Kin nto Ontar	OUTCE: ng Street rio M5X 1	s Inc. West C9 Cana	da			
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www	.burea	uverita	s.com/ı	um				Proje	ct:	ZING	BER						
Bureau Veritas	s Commodities Canada Lt	d.										Repo	rt Date:	Janu	ary 13, 2	017					
9050 Shaughn PHONE (604)	nessy St Vancouver Britisl 253-3158	h Colum	ıbia V6F	P 6E5 C	Canada							Page:	:	2 of 2	2				Pa	rt: 1	of 2
CERTIF	FICATE OF AN	JALY	′SIS													VA	AN16	6002	2619	.1	
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001

TKX 110

TKX 111

TKX 112

TKX 113

TKX 114

TKX 115

TKX 116

TKX 117

TKX 118

TKX 119

TKX 120

TKX 121

TKX 122

TKX 123

TKX 124

Rock

0.80

1.13

0.73

0.55

0.55

0.82

1.46

0.84

0.60

0.89

0.91

1.34

1.09

0.76

1.23

2.2

0.1

2.1

0.4

0.3

0.3

0.3

1.8

0.2

<0.1

0.6

0.4

0.8

0.2

1.2

17.5

1.2

2.0

5.8

2.9

3.6

5.1

7.7

1.2

1.5

1.7

1.2

2.8

1.8

1.0

3.0

5.4

15.7

11.7

47.5

15.9

6.1

40.0

56.2

1.7

59.4

8.5

33.4

11.6

37.2

4

3

2

4

3

2

2

8

6

4

7

1

3

5

2

<0.1

<0.1

< 0.1

0.6

0.4

0.2

0.2

0.2

0.3

0.1

0.2

0.2

<0.1

<0.1

<0.1

6.1

2.6

1.2

2.0

4.6

0.7

0.7

1.1

0.7

1.0

1.8

0.6

1.3

1.6

0.6

13.5

7.0

0.6

1.5

5.1

0.5

0.4

2.6

0.2

0.4

1.2

0.3

0.9

1.6

0.4

38

35

27

40

55

22

24

21

85

46

16

18

65

20

1217

1.32

0.69

0.64

1.54

1.05

0.77

0.43

0.76

0.64

0.26

1.52

0.56

0.69

0.82

0.95

6.6

0.8

7.8

3.0

3.3

2.4

3.6

2.0

0.7

2.2

2.2

2.5

6.2

2.0

2.8 2066.7

3.6

1.4

92.6

457.6

663.5

980.8

12.1

4.9

89.3

275.5

47.7

149.7

213.2

507.8

2.9

1.2

5.3

4.0

4.0

6.5

6.5

3.6

2.9

7.6

4.2

6.7

10.4

3.8

11.4

<1

2

2

9

3

6

1

7

3

3

6

3

2

6

<1

< 0.1

<0.1

< 0.1

< 0.1

<0.1

<0.1

<0.1

0.2

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

1.2

<0.1

<0.1

0.2

0.1

0.2

<0.1

0.2

<0.1

<0.1

0.1

<0.1

<0.1

<0.1

<0.1

1.6

0.1

0.3

0.7

0.8

0.1

0.3

0.3

0.4

<0.1

0.5

0.3

0.9

0.2

0.8

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

2

<2

<0.01

<0.01

< 0.01

<0.01

<0.01

<0.01

<0.01

< 0.01

0.10

<0.01

<0.01

<0.01

<0.01

0.02

<2 <0.01

0.010

0.011

0.005 0.016

0.011

0.009

0.007

0.006

0.006

0.039

0.022

0.006

0.007

0.020

0.007

			Client:	PJX Resources 5600 - 100 King Street W Toronto Ontario M5X 1C	Inc. Vest 9 Canada	
B U R E A U VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	ZINGER		
Bureau Veritas	Commodities Canada Ltd.		Report Date:	January 13, 2017		
9050 Shaughn	essy St Vancouver British Colu	umbia V6P 6E5 Canada				
PHONE (604)	253-3158		Page:	2 of 2	Part:	2 of 2
CERTIF	ICATE OF ANAL	YSIS		VA	N16002619.1	

		Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
		Analyte	La	Cr	Mg	Ва	Ті	в	AI	Na	к	w	Hg	Sc	ті	S	Ga	Se	Те
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
TKX 110	Rock		12	4	0.02	14	<0.001	1	0.20	0.006	0.15	<0.1	<0.01	0.7	<0.1	<0.05	<1	<0.5	<0.2
TKX 111	Rock		8	5	<0.01	20	<0.001	<1	0.21	0.015	0.17	<0.1	<0.01	0.4	<0.1	<0.05	<1	<0.5	<0.2
TKX 112	Rock		21	5	0.01	83	<0.001	1	0.22	0.021	0.18	0.2	<0.01	0.5	<0.1	<0.05	<1	<0.5	<0.2
TKX 113	Rock		12	3	0.02	336	0.001	<1	0.31	0.010	0.26	0.3	<0.01	0.8	<0.1	0.11	<1	<0.5	<0.2
TKX 114	Rock		11	4	0.02	122	<0.001	2	0.23	0.003	0.20	0.2	<0.01	0.5	<0.1	<0.05	<1	<0.5	<0.2
TKX 115	Rock		22	3	0.01	322	<0.001	<1	0.27	0.004	0.22	0.3	<0.01	0.4	<0.1	<0.05	<1	<0.5	<0.2
TKX 116	Rock		21	3	0.01	92	<0.001	<1	0.22	0.017	0.17	0.2	<0.01	0.4	<0.1	<0.05	<1	<0.5	<0.2
TKX 117	Rock		15	4	0.01	453	<0.001	1	0.17	0.002	0.14	0.2	<0.01	0.7	<0.1	<0.05	<1	<0.5	<0.2
TKX 118	Rock		15	3	0.01	71	<0.001	<1	0.26	0.013	0.24	0.2	<0.01	0.4	<0.1	0.07	<1	<0.5	<0.2
TKX 119	Rock		7	5	0.03	37	<0.001	1	0.22	0.004	0.17	<0.1	<0.01	0.5	<0.1	<0.05	<1	<0.5	<0.2
TKX 120	Rock		29	4	0.02	606	0.002	<1	0.32	0.021	0.24	0.2	<0.01	1.0	<0.1	<0.05	<1	<0.5	<0.2
TKX 121	Rock		24	3	<0.01	40	<0.001	<1	0.20	0.022	0.16	0.2	<0.01	0.5	<0.1	<0.05	<1	<0.5	<0.2
TKX 122	Rock		33	3	0.02	214	<0.001	<1	0.25	0.006	0.23	0.3	<0.01	0.4	<0.1	<0.05	<1	<0.5	<0.2
TKX 123	Rock		36	4	0.03	77	0.002	<1	0.41	0.007	0.34	0.2	<0.01	1.0	<0.1	<0.05	<1	<0.5	<0.2
TKX 124	Rock		28	3	0.01	408	<0.001	1	0.26	0.007	0.22	0.2	<0.01	0.4	<0.1	0.05	<1	<0.5	<0.2

Client: PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada BUREAU MINERAL LABORATORIES www.bureauveritas.com/um Project: VERITAS Canada ZINGER Report Date: January 13, 2017 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 1 of 1 Part: 1 of 2 Page: QUALITY CONTROL REPORT VAN16002619.1 Method WGHT AQ201 Analyte Ni Mn Th Sr Cd Sb Wgt Мо Cu Pb Zn Ag Co Fe As Au Bi ν Са Unit % % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppb ppm ppm ppm ppm ppm ppm MDL 0.01 0.1 0.1 0.1 1 0.1 0.1 0.1 1 0.01 0.5 0.5 0.1 1 0.1 0.1 0.1 2 0.01 0.001 Pulp Duplicates

1.6

1.6

13.5

13.6

13.7

19.7

12.9

20.3

< 0.1

3.7

3.8

1.6

1.4

6.1

6.3

77.9

74.8

74.6

79.5

<0.1

1.2

0.7

65

63

38

39

940

424

875

421

<1

503

529

0.82

0.80

1.32

1.35

2.91

3.13

2.7188

3.065

< 0.01

1.86

1.88

6.2

5.3

6.6

6.4

47.6

0.8

46.2

0.6

<0.5

1.1

1.5

149.7

231.5

3.6

3.7

81.4

188.6

91.9

195

<0.5

1.6

<0.5

10.4

10.0

2.9

3.0

8.1

1.7

7.5

1.9

<0.1

2.4

2.3

2

2

<1

<1

73

186

67.1

<1

22

21

<0.1

< 0.1

<0.1

<0.1

2.9

<0.1

2.62

< 0.1

< 0.1

<0.1

<0.1

<0.1

1.2

1.2

9.9

<0.1

<0.1

< 0.1

<0.1

9

0.2

0.3

1.6

1.6

13.8

<0.1

< 0.1

< 0.1

< 0.1

11.65

2

3

<2

<2

47

55

43

51

<2

25

25

0.02

0.02

< 0.01

< 0.01

1.12

0.69

1.0625

0.665

< 0.01

0.67

0.67

0.020

0.021

0.010

0.012

0.079

0.104

0.0765

0.102

< 0.001

0.040

0.039

Rock

QC

Rock

Standard

Standard

Blank

Prep Blank

Prep Blank

QC

0.76

0.80

0.2

0.1

2.2

2.1

15.0

1.4

15.1

1.3

<0.1

1.0

1.4

1.8

1.6

17.5

18.6

160.7

26.3

28

< 0.1

4.1

7.5

154.61

11.6

11.3

3.0

3.2

159.2

150.55

6.0

6.3

2.3

1.6

< 0.1

5

5

4

4

389

42

370

42.9

<1

35

37

<0.1

<0.1

<0.1

<0.1

1.9

<0.1

2.02

<0.1

< 0.1

<0.1

TKX 123

REP TKX 123

DUP TKX 110

STD OXC129

BLK

Prep Wash ROCK-VAN

ROCK-VAN

Core Reject Duplicates

Reference Materials STD DS10

STD DS10 Expected

STD OXC129 Expected

			Client:	PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada		
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	ZINGER January 13, 2017		
9050 Shaughn PHONE (604)	essy St Vancouver British Columbia V6l 253-3158	^D 6E5 Canada	Page:	1 of 1	Part:	2 of 2
QUALIT	Y CONTROL REPOR	Т		VAN1600	2619.1	

	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	ті	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Pulp Duplicates																		
TKX 123	Rock	36	4	0.03	77	0.002	<1	0.41	0.007	0.34	0.2	<0.01	1.0	<0.1	<0.05	<1	<0.5	<0.2
REP TKX 123	QC	35	3	0.03	73	0.002	<1	0.40	0.006	0.33	0.2	<0.01	0.8	<0.1	<0.05	<1	<0.5	<0.2
Core Reject Duplicates																		
TKX 110	Rock	12	4	0.02	14	<0.001	1	0.20	0.006	0.15	<0.1	<0.01	0.7	<0.1	<0.05	<1	<0.5	<0.2
DUP TKX 110	QC	13	4	0.02	15	<0.001	1	0.20	0.006	0.15	<0.1	<0.01	0.8	<0.1	<0.05	<1	<0.5	<0.2
Reference Materials																		
STD DS10	Standard	19	60	0.83	375	0.082	8	1.14	0.064	0.36	3.4	0.29	3.1	5.5	0.31	4	2.8	5.4
STD OXC129	Standard	12	51	1.61	48	0.394	<1	1.67	0.635	0.41	<0.1	<0.01	0.8	<0.1	<0.05	5	<0.5	<0.2
STD DS10 Expected		17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	0.3	3	5.1	0.29	4.5	2.3	5.01
STD OXC129 Expected		13	52	1.545	50	0.4	1	1.58	0.6	0.37			1.1			5.6		
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																		
ROCK-VAN	Prep Blank	6	4	0.43	72	0.077	2	1.11	0.223	0.19	0.2	<0.01	3.9	<0.1	<0.05	4	<0.5	<0.2
ROCK-VAN	Prep Blank	6	3	0.45	59	0.071	3	1.04	0.175	0.15	0.1	<0.01	3.1	<0.1	<0.05	4	<0.5	<0.2

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Receiving Lab: Received: September 15, 2016 Report Date: September 22, 2016 Page:

VAN16001639.1

ZINGER Project: Shipment ID: P.O. Number Number of Samples: 3

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

PJX Resources Inc. Invoice To: Canada

CC:

5600 - 100 King Street West Toronto Ontario M5X 1C9

MARCUSTAL

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-250	3	Crush, split and pulverize 250 g rock to 200 mesh			VAN
AQ201	3	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN
DRPLP	3	Warehouse handling / disposition of pulps			VAN
DRRJT	3	Warehouse handling / Disposition of reject			VAN

ADDITIONAL COMMENTS

Client: **PJX Resources Inc.**

Submitted By:

5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

Email Distribution List - Soil & Rock

Canada-Vancouver 1 of 2

												Clie	nt:	PJ 5600 Toro	K Res - 100 Ki nto Onta	OUICE ng Street rio M5X 1	s Inc. t West 1C9 Cana	ada			
B U R E A U V E R I T A S	MINERAL LABORATOR Canada	IES		www	.bureau	uverita	s.com/ı	um				Proje	ct:	ZING	ER						
Bureau Veritas	Commodities Canada Lto	d.										Repo	rt Date:	Sept	ember 22	2, 2016					
9050 Shaughn PHONE (604) 2	essy St Vancouver Britisl 253-3158	n Colum	nbia V6	P 6E5 (Canada							Page	:	2 of 2	2				Pa	ırt: 1	of 2
CERTIF	ICATE OF AN	IALY	′SIS													VA	AN16	6001	639	.1	
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001

6.2

8.8 866.7

9.5 283.3

7.2

4.1

8.2

6

5

2

0.4

<0.1

<0.1

<2 <0.01

<2 <0.01

0.02

<2

<0.1

<0.1

0.2

8.0

0.3

0.1

0.008

0.007

0.018

2.4

1.2

1.1

1.7

0.9

0.8

41

36

29

1.12

0.81

0.73

19.3

5.9

4.5

0.3

0.5

0.2

0.91

0.77

1.10

32.8

30.6

4.3

67

11

5

0.3

0.2

0.1

SKX16-92

SKX16-93

SKX16-94

Rock

Rock

Rock

			Client:	PJX Resources Ind 5600 - 100 King Street West Toronto Ontario M5X 1C9 Ca	C. Innada	
B U R E A U V E R I T A S	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	ZINGER		
Bureau Veritas	Commodities Canada Ltd.		Report Date:	September 22, 2016		
9050 Shaughn	essy St Vancouver British Colu	imbia V6P 6E5 Canada				
PHONE (604)	253-3158		Page:	2 of 2	Part:	2 of 2
CERTIF	ICATE OF ANAL	YSIS		VAN	16001639.1	

	Me	thod 🖌	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Ana	alyte	La	Cr	Mg	Ва	Ti	в	AI	Na	κ	w	Hg	Sc	ті	S	Ga	Se	Те
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
SKX16-92	Rock		20	4	0.01	23	<0.001	1	0.20	0.027	0.07	0.2	<0.01	0.8	<0.1	<0.05	<1	<0.5	<0.2
SKX16-93	Rock		18	5	0.01	30	<0.001	1	0.24	0.013	0.15	0.2	<0.01	0.5	<0.1	<0.05	<1	<0.5	<0.2
SKX16-94	Rock		25	3	0.02	45	0.001	1	0.31	0.006	0.25	0.3	<0.01	0.7	<0.1	<0.05	<1	<0.5	<0.2

												Clien	:	PJX 5600 - Toron	Reso - 100 King to Ontario	g Street V M5X 1C	Inc. Vest 9 Canad	а			
BUREAU VERITAS	IINERAL LABORATORI Canada	ES		www	.bureau	veritas	.com/u	m				Project	:	ZING	ĒR						
Bureau Veritas C	ı Veritas Commodities Canada Ltd. Shauqhnessy St. Vancouver British Columbia V6P 6E5 Canada															2016					
9050 Shaughnes PHONE (604) 25	Paughnessy St Vancouver British Columbia V6P 6E5 Canada E (604) 253-3158																		Part	:: 1 of	2
QUALITY	(604) 253-3158 Pre															VA	N16	001	639.	1	
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Reference Materia	ls																				
STD DS10	Standard		13.5	167.0	150.0	375	1.8	75.4	12.8	888	2.83	46.1	97.6	7.9	66	2.7	8.6	12.7	42	1.07	0.074
STD OXC129	Standard		1.3	32.1	7.2	46	<0.1	83.6	21.0	422	3.15	0.6	190.7	2.2	198	<0.1	<0.1	<0.1	51	0.65	0.103

20.3

<0.1

3.8

875 2.7188

3.065

<0.01

1.82

421

469

<1

46.2

0.6

<0.5

1.3

91.9

195

<0.5

<0.5

74.6

79.5

<0.1

0.9

67.1

<1

22

2.62

<0.1

<0.1

9 11.65

<0.1

<0.1

<0.1

<0.1

7.5

1.9

<0.1

2.2

43 1.0625 0.0765

0.102

0.040

<0.001

0.665

<0.01

0.58

51

<2

23

15.1 154.61 150.55

<0.1

3.3

28

6.3

1.2

<0.1

1.3

<0.1

0.9

STD DS10 Expected

BLK

Prep Wash ROCK-VAN

STD OXC129 Expected

Blank

Prep Blank

370

42.9

<1

32

2.02

<0.1

<0.1

ALL			Client:	PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada	а	
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada s Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	ZINGER September 22, 2016		
9050 Shaughn PHONE (604)	nessy St Vancouver British Columbia 253-3158	a V6P 6E5 Canada	Page:	1 of 1	Part:	2 of 2
QUALI	TY CONTROL REPO)RT		VAN16	001639.1	

	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	ті	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Reference Materials																		
STD DS10	Standard	19	57	0.78	374	0.079	7	1.06	0.068	0.33	3.2	0.28	3.1	5.4	0.27	4	2.7	4.9
STD OXC129	Standard	15	55	1.56	57	0.413	1	1.57	0.599	0.36	<0.1	<0.01	1.0	<0.1	<0.05	6	<0.5	<0.2
STD DS10 Expected		17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	0.3	3	5.1	0.29	4.5	2.3	5.01
STD OXC129 Expected		13	52	1.545	50	0.4	1	1.58	0.6	0.37			1.1			5.6		
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																		
ROCK-VAN	Prep Blank	6	4	0.44	76	0.079	2	0.95	0.124	0.10	0.1	<0.01	3.1	<0.1	<0.05	4	<0.5	<0.2

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Procedure

PRP70-250

Code

AQ201

DRPLP

DRRJT

Crush, split and pulverize 250 g rock to 200 mesh

1:1:1 Aqua Regia digestion ICP-MS analysis

Warehouse handling / disposition of pulps

Warehouse handling / Disposition of reject

VAN16001640.1

Test

15

Wgt (g)

Report

Status

Completed

Lab

VAN

VAN

VAN

VAN

GAR Project: Shipment ID: P.O. Number Number of Samples: 5

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

PJX Resources Inc. Invoice To: 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

CC:

MARCUS LAU

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client: PJX Resources Inc.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Code Description

5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

Submitted By:	Email Distribution List - Soil & Rock
Receiving Lab:	Canada-Vancouver
Received:	September 15, 2016
Report Date:	September 22, 2016
Page:	1 of 2

ADDITIONAL COMMENTS

Number of

Samples

3

3

3

3

												Clier	nt:	PJ) 5600 Toror	CRES - 100 Kin nto Ontar	OURCES ng Street rio M5X 1	s Inc. West C9 Cana	da			
BUREAU VERITAS	UREAU MINERAL LABORATORIES Canada Jreau Veritas Commodities Canada Ltd.					uverita	s.com/	um				Projec	ct:	GAR							
Bureau Veritas	ERITAS Canada Ireau Veritas Commodities Canada Ltd.											Repor	rt Date:	Septe	ember 22	2, 2016					
9050 Shaughn	essy St Vancouver British	o Columi	bia V6F	9 6E5 C	Canada																
PHONE (604) 2	253-3158											Page:		2 of 2	2				Part:	1 of 2	2
CERTIF	ICATE OF AN	ALY	SIS													VA	N16	6001	640.1		
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201 AQ	201 AC	2201

	An	nalyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
		Unit	kg	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
		MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
SKX16-89	Rock		L.N.R.																			
SKX16-79	Rock		2.24	<0.1	15.1	13.4	18	<0.1	0.9	2.5	1273	1.00	<0.5	0.6	6.1	107	0.1	0.2	<0.1	5	2.12	0.083
SKX16-90	Rock		L.N.R.																			
SKX16-80	Rock		1.40	0.2	16.8	157.5	28	0.1	1.0	2.8	2089	1.03	<0.5	69.5	6.4	34	0.5	0.1	0.1	3	1.90	0.073
SKX16-91	Rock		1.55	0.5	11.2	250.0	174	0.2	1.0	2.9	781	1.22	0.5	179.5	7.0	9	2.2	0.2	0.6	3	0.12	0.066

			Client:	PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada		
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project: Report Date:	GAR September 22, 2016		
9050 Shaughn PHONE (604)	essy St Vancouver British Colu 253-3158	umbia V6P 6E5 Canada	Page:	2 of 2	Part:	2 of 2
CFRTIF	FICATE OF ANAL	YSIS		VAN16(01640 1	

	Method	AQ201																
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	ті	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
SKX16-89 Rd	ock	L.N.R.																
SKX16-79 Rc	ock	19	3	0.05	756	0.002	3	0.42	0.026	0.31	0.2	<0.01	1.1	<0.1	<0.05	1	<0.5	<0.2
SKX16-90 Rc	ock	L.N.R.																
SKX16-80 Rc	ock	18	3	0.03	1878	0.002	4	0.48	0.009	0.39	0.4	<0.01	1.3	0.2	0.05	1	<0.5	<0.2
SKX16-91 Rd	ock	22	3	0.02	297	0.002	3	0.40	0.006	0.30	0.4	<0.01	0.6	<0.1	<0.05	<1	<0.5	0.2

AU VERTAG												Clien	t:	PJX 5600 - Toron	100 King to Ontario	g Street V M5X 1C	Inc. Vest 29 Canada	а			
BUREAU VERITAS	MINERAL LABORATORI Canada	ES		www	.bureau	veritas	.com/u	m				Project	:	GAR							
Bureau Veritas	Commodities Canada Lto	Report	Date:	Septe	mber 22,	2016															
9050 Shaughne PHONE (604) 2	Veritas Commodities Canada Ltd. aughnessy St. Vancouver British Columbia V6P 6E5 Canada (604) 253-3158																		Part	: 1 of	2
QUALIT	Y CONTROL					VA	N16	001	640.	1											
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Reference Mate	rials																				
STD DS10	Standard		13.5	167.0	150.0	375	1.8	75.4	12.8	888	2.83	46.1	97.6	7.9	66	2.7	8.6	12.7	42	1.07	0.074
STD OXC129	Standard		1.3	32.1	7.2	46	<0.1	83.6	21.0	422	3.15	0.6	190.7	2.2	198	<0.1	<0.1	<0.1	51	0.65	0.103

43 1.0625 0.0765

0.102

0.039

<0.001

0.665

<0.01

0.66

51

<2

23

370

42.9

<1

33

2.02

<0.1

<0.1

74.6

79.5

<0.1

0.8

12.9

20.3

<0.1

3.6

875 2.7188

3.065

<0.01

1.87

421

<1

493

46.2

0.6

<0.5

1.5

91.9

195

<0.5

<0.5

7.5

1.9

<0.1

2.3

67.1

<1

52

2.62

<0.1

<0.1

9 11.65

<0.1

<0.1

<0.1

<0.1

15.1 154.61 150.55

<0.1

7.4

28

6.3

2.2

<0.1

1.3

<0.1

2.3

STD DS10 Expected

BLK

Prep Wash ROCK-VAN

STD OXC129 Expected

Blank

Prep Blank

			Client:	PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada	а	
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada s Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	GAR September 22, 2016		
9050 Shaughr PHONE (604)	nessy St Vancouver British Columbia 253-3158	V6P 6E5 Canada	Page:	1 of 1	Part:	2 of 2
QUALI	FY CONTROL REPO	RT		VAN16	001640.1	

	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	La	Cr	Mg	Ва	Ti	В	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Reference Materials																		
STD DS10	Standard	19	57	0.78	374	0.079	7	1.06	0.068	0.33	3.2	0.28	3.1	5.4	0.27	4	2.7	4.9
STD OXC129	Standard	15	55	1.56	57	0.413	1	1.57	0.599	0.36	<0.1	<0.01	1.0	<0.1	<0.05	6	<0.5	<0.2
STD DS10 Expected		17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	0.3	3	5.1	0.29	4.5	2.3	5.01
STD OXC129 Expected		13	52	1.545	50	0.4	1	1.58	0.6	0.37			1.1			5.6		
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																		
ROCK-VAN	Prep Blank	7	4	0.44	111	0.084	2	1.00	0.120	0.11	0.2	<0.01	3.3	<0.1	<0.05	4	<0.5	<0.2

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

R P

VAN16001641.1

EDDY Project: Shipment ID: P.O. Number Number of Samples: 6

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

PJX Resources Inc. Invoice To: 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

CC:

MARCUSTAL

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Toronto Ontario M5X 1C9 Canada

5600 - 100 King Street West

Submitted By:	Email Distribution List - Soil & Rock
Receiving Lab:	Canada-Vancouver
Received:	September 15, 2016
Report Date:	September 22, 2016
Page:	1 of 2

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-250	6	Crush, split and pulverize 250 g rock to 200 mesh			VAN
AQ201	6	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN
DRPLP	6	Warehouse handling / disposition of pulps			VAN
DRRJT	6	Warehouse handling / Disposition of reject			VAN

ADDITIONAL COMMENTS

Client: **PJX Resources Inc.**

												Clie	nt:	PJ) 5600 Toroi	K Res - 100 Ki nto Ontai	OURCE ng Street rio M5X 1	s Inc. West IC9 Cana	ada			
B U R E A U VERITAS	MINERAL LABORATORI Canada	ES		www	.burea	uverita	s.com/	/um				Proje	ct:	EDD'	Y						
Bureau Veritas	Commodities Canada Ltd	l.										Repo	rt Date:	Septe	ember 22	2, 2016					
9050 Shaughn	essy St Vancouver British	n Columb	bia V6F	P 6E5 (Canada																
PHONE (604)	253-3158											Page	:	2 of 2	2				Part:	1 c	of 2
CERTIF	ICATE OF AN	ALY	SIS													VA	AN16	6001	641.1		
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201 AQ	201	AQ201

		-																			
	Analy	e Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Un	it kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MD	L 0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
SKX16-73	Rock	0.82	0.2	4.3	4.5	4	<0.1	0.6	0.5	83	2.10	3.0	10.2	5.4	3	<0.1	0.1	2.5	3	<0.01	0.016
SKX16-74	Rock	0.56	0.5	12.9	4.2	15	<0.1	7.9	7.4	94	1.54	11.7	13.5	8.9	2	<0.1	<0.1	0.9	6	<0.01	0.012
SKX16-75	Rock	0.53	0.4	2.0	3.1	48	<0.1	61.1	23.9	485	2.98	1.7	<0.5	13.4	3	<0.1	<0.1	0.1	18	0.02	0.025
SKX16-76	Rock	0.80	0.1	22.1	2.5	7	<0.1	5.8	2.0	71	2.86	24.4	1.9	6.5	1	<0.1	<0.1	0.5	3	<0.01	0.011
SKX16-77	Rock	0.83	0.4	53.0	4.4	12	<0.1	6.9	18.5	162	2.18	2.5	5.9	9.4	1	<0.1	<0.1	0.6	4	<0.01	0.015
SKX16-78	Rock	0.57	0.3	95.6	4.6	17	<0.1	9.2	15.3	61	3.42	4.1	1078.8	8.9	13	<0.1	0.1	1.1	4	0.06	0.048

			Client:	PJX Resources In 5600 - 100 King Street West Toronto Ontario M5X 1C9 Ca	C. anada	
BUREAU VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	EDDY		
Bureau Veritas	Commodities Canada Ltd.		Report Date:	September 22, 2016		
9050 Shaughn	essy St Vancouver British Colu	umbia V6P 6E5 Canada				
PHONE (604)	253-3158		Page:	2 of 2	Part:	2 of 2
CERTIF	ICATE OF ANAL	YSIS		VAN	16001641.1	

	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	κ	w	Hg	Sc	ті	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
SKX16-73	Rock	23	5	<0.01	15	<0.001	<1	0.18	0.089	0.04	<0.1	<0.01	1.0	<0.1	<0.05	<1	<0.5	<0.2
SKX16-74	Rock	21	9	0.27	30	0.001	<1	0.68	0.053	0.11	<0.1	<0.01	1.4	<0.1	<0.05	2	<0.5	0.4
SKX16-75	Rock	112	17	2.32	30	0.002	1	2.28	0.004	0.08	<0.1	<0.01	2.9	<0.1	<0.05	6	<0.5	<0.2
SKX16-76	Rock	33	5	0.09	30	<0.001	<1	0.43	0.017	0.15	<0.1	<0.01	1.3	<0.1	<0.05	2	<0.5	<0.2
SKX16-77	Rock	18	6	0.05	14	0.001	<1	0.29	0.063	0.03	<0.1	<0.01	2.9	<0.1	<0.05	<1	<0.5	<0.2
SKX16-78	Rock	21	5	0.07	43	0.001	<1	0.57	0.068	0.15	0.1	0.03	1.3	<0.1	0.09	1	<0.5	2.3

												Client	::	PJX 5600 - Toron	A Reso - 100 King to Ontario	g Street V M5X 10	Inc. Vest C9 Canad	а			
BUREAU VERITAS	MINERAL LABORATOR Canada	ES		www.	bureau	veritas	.com/u	m				Project	:	EDDY	,						
Bureau Veritas	Commodities Canada Lte	d.										Report	Date:	Septe	mber 22,	2016					
9050 Shaughne PHONE (604) 2	essy St Vancouver Britis 253-3158	n Colum	bia V6F	P 6E5 C	Canada							Page:		1 of 1					Part	:: 1 o	2
QUALIT	Y CONTROL	REP	OR	Т												VA	N16	001	641.	1	
	Method	WGHT	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001
Reference Mate	rials																				
STD DS10	Standard		13.5	167.0	150.0	375	1.8	75.4	12.8	888	2.83	46.1	97.6	7.9	66	2.7	8.6	12.7	42	1.07	0.074
STD OXC129	Standard		1.3	32.1	7.2	46	<0.1	83.6	21.0	422	3.15	0.6	190.7	2.2	198	<0.1	<0.1	<0.1	51	0.65	0.103
STD DS10 Expe	ected		15.1	154.61	150.55	370	2.02	74.6	12.9	875	2.7188	46.2	91.9	7.5	67.1	2.62	9	11.65	43	1.0625	0.0765

<0.1

0.9

<0.1

<0.1

20.3

<0.1

3.9

421

520

<1

3.065

<0.01

1.89

0.6

<0.5

1.0

195

<0.5

<0.5

1.9

<0.1

2.2

<0.1

<0.1

<1

22

<0.1

<0.1

<0.1

<0.1

51

<2

23

0.665

0.63

<0.01 <0.001

0.102

0.040

28

<0.1

4.0

6.3

1.6

<0.1

42.9

<1

32

1.3

<0.1

0.9

STD OXC129 Expected

Blank

Prep Blank

BLK

Prep Wash ROCK-VAN

			Client:	PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada		
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	EDDY September 22, 2016		
9050 Shaughn PHONE (604)	essy St Vancouver British Columbia V6 253-3158	P 6E5 Canada	Page:	1 of 1	Part:	2 of 2
QUALIT	Y CONTROL REPOR	Т		VAN160	01641.1	

	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	La	Cr	Mg	Ва	Ti	В	AI	Na	к	w	Hg	Sc	ТΙ	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Reference Materials																		
STD DS10	Standard	19	57	0.78	374	0.079	7	1.06	0.068	0.33	3.2	0.28	3.1	5.4	0.27	4	2.7	4.9
STD OXC129	Standard	15	55	1.56	57	0.413	1	1.57	0.599	0.36	<0.1	<0.01	1.0	<0.1	<0.05	6	<0.5	<0.2
STD DS10 Expected		17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	0.3	3	5.1	0.29	4.5	2.3	5.01
STD OXC129 Expected		13	52	1.545	50	0.4	1	1.58	0.6	0.37			1.1			5.6		
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																		
ROCK-VAN	Prep Blank	7	4	0.46	63	0.081	2	0.92	0.095	0.09	0.1	<0.01	3.3	<0.1	<0.05	4	<0.5	<0.2

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project:	ZINGER
Shipment ID:	
P.O. Number	
Number of Samples:	14

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

PJX Resources Inc. Invoice To: 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada

CC:

Linda Brennan Michael Seabrook Sean Kennedy

PJX Resources Inc. 5600 - 100 King Street West

Toronto Ontario M5X 1C9 Canada

Submitted By:	John Keating
Receiving Lab:	Canada-Vancouver
Received:	September 28, 2016
Report Date:	November 29, 2016
Page:	1 of 2

VAN16001816.1

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-1KG	14	Crush, split and pulverize 1kg of sample to 200 mesh			VAN
FS631	14	Metallic Sieve 1 kg to 150 mesh			VAN
Split +150 mesh	14	Analysis sample split/packet			VAN
Split -150 mesh	14	Analysis sample split/packet			VAN
FS631	14	Metallics Fire Assay for Au	30	Completed	VAN
AQ201	14	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

www.bureauveritas.com/um

Client:

										Clier	nt:	PJX 5600 Toro	K Res - 100 Ki nto Onta	OUTCE ng Street rio M5X 1	s Inc. West C9 Cana	ida				
BUREAUMINERAL LABORATORVERITASCanada	IES		www	.bureau	veritas	s.com/ı	um				Projec	ct:	ZING	BER						
Bureau Veritas Commodities Canada Lt	d.										Repo	rt Date:	Nove	ember 29	, 2016					
9050 Shaughnessy St Vancouver Britis PHONE (604) 253-3158	h Colum	ibia V6F	P 6E5 (Canada							Page:	:	2 of 2	2				Pa	rt: 1	of 3
CERTIFICATE OF AN	IALY	′SIS													VA	AN16	6001	1816	.1	
Method	WGHT/	150 1kg	FA430	FS600	FS600	FS600	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
Analyte	Wgt	TotWt	-Au	TotAu	+Au	+Wt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd
Unit	kg	g	gm/t	gm/t	gm/t	g	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm
MDL	0.01	1	0.005	0.01	0.17	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1

ZN16-01

ZN16-02

ZN16-03

ZN16-04

ZN16-05

ZN16-06

ZN16-07

ZN16-08

ZN16-09

ZN16-10

ZN16-11

ZN16-12

ZN16-13

ZN16-14

Rock

2.43

3.23

3.80

1.99

4.53

3.93

1.23

1.44

1.44

1.35

1.78

1.21

1.15

5.64

989

935

952

956

936

947

941

945

978

879

903

933

900

908

0.343

0.380

0.316

0.180

0.559

0.390

0.252

0.481

0.511

0.642

0.549

1.216

0.671

0.539

0.34

0.38

0.32

0.18

0.56

0.42

0.25

0.48

0.51

0.64

0.55

1.21

0.69

0.54

0.40

0.36

0.43

0.30

0.51

1.35

0.26

0.53

0.62

0.71

0.49

1.07

1.20

0.51

27.48

28.16

25.77

30.32

29.57

26.59

22.88

24.64

24.26

21.27

24.28

28.07

24.90

29.59

0.3

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.2

0.5

0.5

0.4

0.5

0.4

4.8

3.6

6.3

4.2

5.9

3.2

4.0

3.3

3.4

3.3

3.4

3.4

2.6

5.2

9.6

3.5

4.9

4.6

5.9

6.9

2.9

13.9

7.4

10.1

8.1

19.5

8.2

6.6

22

10

10

13

9

5

9

5

8

8

6

7

6

21

<0.1

<0.1

0.1

<0.1

0.2

0.2

0.2

0.1

0.2

0.1

0.2

0.2

0.1

<0.1

10.2

7.6

6.4

5.9

4.3

2.8

6.5

2.9

5.6

4.2

4.4

3.8

2.3

7.1

6.4

5.5

4.6

4.7

3.0

1.6

5.0

2.0

4.7

2.6

3.2

2.9

1.3

5.9

380

454

346

241

193

104

131

83

217

127

146

199

67

329

1.46

1.15

1.17

1.06

1.23

0.91

1.12

1.09

1.19

1.57

1.30

1.54

0.95

1.52

10.1

15.2

19.9

7.2

13.6

8.8

9.0

9.5

10.0

11.1

21.1

8.8

12.4

271.9

293.7

321.5

169.0

583.7

443.7

294.2

488.5

620.8

845.2

548.5

1048.3

507.4

21.7 1117.5

8.3

8.5

7.0

9.9

8.0

7.3

7.7

6.3

8.1

5.0

6.9

6.9

5.5

9.4

3

2

2

2

4

5

3

4

5

5

7

7

4

6

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

												Clier	nt:	PJ) 5600 Torot	K Res - 100 Kin nto Ontar	OUTCE: ng Street rio M5X 1	s Inc. West C9 Cana	da			
BUREAU VERITAS	MINERAL LABORATOR Canada	ES		www	.bureau	verita	s.com/	um				Projec	ct:	ZING	ER						
3ureau Veritas	Commodities Canada Lto	d.										Repoi	rt Date:	Nove	mber 29	, 2016					
9050 Shaughn PHONE (604) 2	essy St Vancouver British 253-3158	n Colum	ibia V6F	P 6E5 C	Canada							Page:	:	2 of 2	2				Pa	ırt: 2	of 3
CERTIF	ICATE OF AN	IALY	′SIS													VA	N16	5001	816	.1	
	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	ТΙ	S	Ga
	Unit	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm

	MDL	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1
ZN16-01	Rock	<0.1	0.2	4	0.02	0.027	31	5	0.08	74	0.002	2	0.62	0.019	0.34	0.3	<0.01	1.2	<0.1	<0.05	1
ZN16-02	Rock	<0.1	0.1	3	<0.01	0.018	35	4	0.03	60	0.001	2	0.44	0.008	0.29	0.3	<0.01	1.0	<0.1	<0.05	<1
ZN16-03	Rock	<0.1	0.1	3	<0.01	0.015	29	4	0.04	73	0.002	2	0.56	0.012	0.35	0.3	<0.01	1.1	<0.1	<0.05	1
ZN16-04	Rock	0.1	0.1	3	0.03	0.025	24	5	0.04	69	0.002	1	0.54	0.007	0.34	0.2	<0.01	1.3	<0.1	<0.05	1
ZN16-05	Rock	<0.1	0.2	4	<0.01	0.019	31	4	0.04	76	0.002	1	0.58	0.011	0.37	0.3	<0.01	1.1	<0.1	<0.05	1
ZN16-06	Rock	<0.1	0.2	4	<0.01	0.014	30	5	0.04	75	0.002	1	0.68	0.012	0.43	0.4	<0.01	1.1	0.1	<0.05	2
ZN16-07	Rock	<0.1	0.1	3	<0.01	0.013	25	4	0.03	49	0.002	1	0.51	0.015	0.30	0.3	<0.01	0.9	<0.1	<0.05	<1
ZN16-08	Rock	<0.1	0.3	3	<0.01	0.015	36	3	0.03	52	0.001	<1	0.47	0.007	0.31	0.4	<0.01	0.7	<0.1	<0.05	1
ZN16-09	Rock	<0.1	0.3	3	<0.01	0.019	36	4	0.04	67	0.002	1	0.50	0.008	0.31	0.3	<0.01	1.0	<0.1	<0.05	1
ZN16-10	Rock	0.1	0.2	3	<0.01	0.019	23	4	0.03	49	0.002	1	0.48	0.007	0.31	0.3	<0.01	0.8	<0.1	<0.05	1
ZN16-11	Rock	<0.1	0.2	4	0.02	0.022	29	5	0.03	59	0.002	1	0.54	0.007	0.35	0.3	<0.01	0.9	<0.1	<0.05	1
ZN16-12	Rock	0.1	0.3	4	<0.01	0.020	32	5	0.04	74	0.002	1	0.60	0.007	0.37	0.4	<0.01	1.0	<0.1	<0.05	1
ZN16-13	Rock	<0.1	0.2	3	<0.01	0.011	24	4	0.03	48	0.001	1	0.44	0.008	0.29	0.3	<0.01	0.6	<0.1	<0.05	<1
ZN16-14	Rock	<0.1	0.3	5	0.01	0.029	36	4	0.05	98	0.003	2	0.74	0.019	0.43	0.3	<0.01	1.3	<0.1	<0.05	2

			Client:	PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Cana	ada	
B U R E A U V E R I T A S	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	ZINGER		
Bureau Veritas	Commodities Canada Ltd.		Report Date:	November 29, 2016		
9050 Shaughn	essy St Vancouver British Colu	umbia V6P 6E5 Canada				
PHONE (604)	253-3158		Page:	2 of 2	Part:	3 of 3
CERTIF	ICATE OF ANAL	YSIS		VAN16	6001816.1	

	Metho	bd	AQ201	AQ201
	Analy	te	Se	Те
	Un	it	ppm	ppm
	MD	L	0.5	0.2
ZN16-01	Rock		<0.5	<0.2
ZN16-02	Rock		<0.5	<0.2
ZN16-03	Rock		<0.5	<0.2
ZN16-04	Rock		<0.5	<0.2
ZN16-05	Rock		<0.5	<0.2
ZN16-06	Rock		<0.5	<0.2
ZN16-07	Rock		<0.5	<0.2
ZN16-08	Rock		<0.5	<0.2
ZN16-09	Rock		<0.5	<0.2
ZN16-10	Rock		<0.5	<0.2
ZN16-11	Rock		<0.5	<0.2
ZN16-12	Rock		<0.5	<0.2
ZN16-13	Rock		<0.5	<0.2
ZN16-14	Rock		<0.5	<0.2

Client: PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada ZINGER Report Date: November 29, 2016 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 1 of 1 Part: 1 of 3 Page: QUALITY CONTROL REPORT VAN16001816.1 Method WGHT/150 1kg FA430 FS600 FS600 FS600 AQ201 Analyte +Wt Pb Co Wgt TotWt -Au TotAu +Au Мо Cu Zn Ag Ni Mn Fe As Au Th Sr Cd Unit % kg g gm/t gm/t gm/t g ppm ppm ppm ppm ppm ppm ppm ppm ppm ppb ppm ppm ppm MDL 0.01 1 0.005 0.01 0.17 0.01 0.1 0.1 0.1 1 0.1 0.1 0.1 1 0.01 0.5 0.5 0.1 1 0.1 Pulp Duplicates ZN16-04 Rock 1.99 956 0.180 0.18 0.30 30.32 0.2 4.2 4.6 13 <0.1 5.9 4.7 241 1.06 7.2 169.0 9.9 2 <0.1 **REP ZN16-04** QC 0.2 4.2 4.7 13 < 0.1 6.0 4.6 241 1.06 7.5 193.3 9.6 2 <0.1 ZN16-11 Rock 1.78 903 0.549 0.55 0.49 24.28 0.5 3.4 8.1 6 0.1 4.4 3.2 146 1.30 21.1 548.5 6.9 7 <0.1 **REP ZN16-11** QC 0.508 Core Reject Duplicates ZN16-05 Rock 4.53 936 0.559 0.56 0.51 29.57 0.2 5.9 5.9 9 0.2 4.3 3.0 193 1.23 13.6 583.7 8.0 4 <0.1 QC **DUP ZN16-05** 885 0.602 0.61 0.78 23.06 0.4 5.6 5.6 9 0.2 4.5 3.1 195 1.25 12.3 570.2 7.2 4 <0.1 **Reference Materials** STD DS10 Standard 14.5 150.7 139.3 340 1.8 70.6 11.7 850 2.72 44.0 74.7 7.1 64 2.5 Standard STD OXC129 1.3 28.8 6.1 40 <0.1 82.1 20.5 419 3.05 0.6 205.0 1.7 162 <0.1 STD OXD108 Standard 0.405 STD OXI121 Standard 1.824 STD OXN117 Standard 7.441 STD OXP91 Standard 15.10 30.53 STD DS10 Expected 15.1 154.61 150.55 370 2.02 74.6 12.9 875 2.7188 46.2 91.9 7.5 67.1 2.62 STD OXC129 Expected 1.3 28 6.3 42.9 79.5 20.3 421 3.065 0.6 195 1.9 STD OXP91 Expected 14.82 BLK Blank <0.1 <0.1 <0.1 <1 <0.1 <0.1 <0.1 <1 < 0.01 <0.5 <0.5 <0.1 <1 <0.1 BLK Blank <0.17 30.00 BI K Blank < 0.005 BLK Blank < 0.005 Prep Wash ROCK-VAN Prep Blank 599 <0.005 < 0.01 <0.17 30.83 1.0 2.6 1.0 29 <0.1 1.7 3.6 554 2.28 1.3 < 0.5 2.2 19 < 0.1 <0.17 ROCK-VAN Prep Blank 490 < 0.005 < 0.01 26.37 1.0 3.5 1.1 31 <0.1 2.0 3.7 554 2.17 1.3 <0.5 2.2 23 <0.1

ALL												Clien	t:	PJX 5600 Toron	A Reso - 100 King to Ontario	g Street V o M5X 10	Inc. Vest C9 Canad	а			
BUREAU MIN VERITAS Can	ERAL LABORATOR	IES		www	.bureau	veritas	.com/u	m				Projec	t:	ZINGI	ĒR						
												Report	Date:	Nover	nber 29. 3	2016					
Bureau Veritas Con	nmodities Canada Lte	d.																			
9050 Shaughnessy	St Vancouver Britisl	h Colum	ibia V6I	P 6E5 C	Canada																
PHONE (604) 253-3	3158											Page:		1 of 1					Par	t: 2 of	3
		DED		т								-				\//		001	016	1	
QUALIT	CONTROL	REF		L												VA			010.		
	Method	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
	Analyte	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	ті	s	Ga
	Unit	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm
	MDL	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1
Pulp Duplicates																					
ZN16-04	Rock	0.1	0.1	3	0.03	0.025	24	5	0.04	69	0.002	1	0.54	0.007	0.34	0.2	<0.01	1.3	<0.1	<0.05	1
REP ZN16-04	QC	0.1	0.1	3	0.03	0.025	24	4	0.04	68	0.001	<1	0.50	0.007	0.32	0.3	<0.01	1.1	<0.1	<0.05	1
ZN16-11	Rock	<0.1	0.2	4	0.02	0.022	29	5	0.03	59	0.002	1	0.54	0.007	0.35	0.3	<0.01	0.9	<0.1	<0.05	1
REP ZN16-11	QC																				
Core Reject Duplicates																					
ZN16-05	Rock	<0.1	0.2	4	<0.01	0.019	31	4	0.04	76	0.002	1	0.58	0.011	0.37	0.3	<0.01	1.1	<0.1	<0.05	1
DUP ZN16-05	QC	<0.1	0.2	4	<0.01	0.017	30	5	0.04	65	0.002	1	0.55	0.010	0.35	0.4	<0.01	1.0	0.1	<0.05	1
Reference Materials																					
STD DS10	Standard	8.8	11.7	42	1.06	0.074	17	55	0.76	345	0.078	7	1.04	0.070	0.33	3.2	0.36	2.8	4.9	0.28	4
STD OXC129	Standard	<0.1	<0.1	52	0.64	0.094	12	52	1.47	49	0.387	1	1.52	0.580	0.36	<0.1	<0.01	0.4	<0.1	<0.05	5
STD OXD108	Standard																				
STD OXI121	Standard																				
STD OXN117	Standard																				
STD OXP91	Standard																				
STD DS10 Expected		9	11.65	43	1.0625	0.0765	17.5	54.6	0.775	359	0.0817		1.0755	0.067	0.338	3.32	0.3	3	5.1	0.29	4.5
STD OXC129 Expecte	ed			51	0.665	0.102	13	52	1.545	50	0.4	1	1.58	0.6	0.37			1.1			5.6
STD OXP91 Expected	d																				
BLK	Blank	<0.1	<0.1	<2	<0.01	<0.001	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1
BLK	Blank																				
BLK	Blank																				

0.68

0.036

0.036

6

6

0.43

0.46

5

6

76

85

0.073

0.073

3

3

0.99

1.10

0.156

0.186

0.15

0.17

<0.1

<0.1

<0.01

<0.01

2.7

2.7

<0.1

<0.1

<0.05

0.06

BLK

Prep Wash ROCK-VAN

ROCK-VAN

Blank

Prep Blank

Prep Blank

<0.1

<0.1

<0.1

<0.1

22

22

			Client:	PJX Resources Inc. 5600 - 100 King Street West Toronto Ontario M5X 1C9 Canada	I	
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada s Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	ZINGER November 29, 2016		
9050 Shaughr PHONE (604)	nessy St Vancouver British Columbia 253-3158	a V6P 6E5 Canada	Page:	1 of 1	Part:	3 of 3
	TY CONTROL REPO)RT		VAN16	001816.1	

	Method	AQ201	AQ201
	Analyte	Se	Те
	Unit	ppm	ppm
	MDL	0.5	0.2
Pulp Duplicates			
ZN16-04	Rock	<0.5	<0.2
REP ZN16-04	QC	<0.5	<0.2
ZN16-11	Rock	<0.5	<0.2
REP ZN16-11	QC		
Core Reject Duplicates			
ZN16-05	Rock	<0.5	<0.2
DUP ZN16-05	QC	<0.5	<0.2
Reference Materials			
STD DS10	Standard	2.2	5.5
STD OXC129	Standard	<0.5	<0.2
STD OXD108	Standard		
STD OXI121	Standard		
STD OXN117	Standard		
STD OXP91	Standard		
STD DS10 Expected		2.3	5.01
STD OXC129 Expected			
STD OXP91 Expected			
BLK	Blank	<0.5	<0.2
BLK	Blank		
BLK	Blank		
BLK	Blank		
Prep Wash			
ROCK-VAN	Prep Blank	<0.5	<0.2
ROCK-VAN	Prep Blank	<0.5	<0.2
Appendix 10: Foldout Maps

0 4	ר
_	1
Ĉ	5
\overline{C}	2 2

Distance

F'

