| BRITISH<br>COLUMBIA<br>The Best Place on Earth                                                                                                                                                                |                              |                                     | Real COLOR                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|---------------------------------------------|
| <b>Ministry of Energy, Mines &amp; Petroleum Resources</b><br>Mining & Minerals Division<br>BC Geological Survey                                                                                              |                              |                                     | Assessment Report<br>Title Page and Summary |
| TYPE OF REPORT [type of survey(s)]: Geological & Geochemical                                                                                                                                                  |                              | TOTAL COST:                         | \$7621.00                                   |
| AUTHOR(S): A.Carpenter                                                                                                                                                                                        | SIGNATUR                     | E(S):                               |                                             |
| NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):                                                                                                                                                                      |                              |                                     | YEAR OF WORK: 2016                          |
| STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):                                                                                                                                                    |                              |                                     |                                             |
| 5628237 2016/DEC/05                                                                                                                                                                                           |                              |                                     |                                             |
| PROPERTY NAME: Galore Creek                                                                                                                                                                                   |                              |                                     |                                             |
| CLAIM NAME(S) (on which the work was done):                                                                                                                                                                   |                              |                                     |                                             |
| 516165                                                                                                                                                                                                        |                              |                                     |                                             |
| MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:<br>MINING DIVISION: Liard Mining Division<br>LATITUDE: 57 ° 07 '08 " LONGITUDE: 131<br>OWNER(S):<br>1) Galore Creek Mining Corporation<br><br>MAILING ADDRESS: | NTS/BCGS: 10<br>27 '58<br>2) | 4G/3 104G/4<br>" (at centre of work | <)<br>                                      |
| Suite 3300, 550 Burrard Street, Vancouver, BC, V6C 0B3 OPERATOR(S) [who paid for the work]: 1) Galore Creek Mining Corporation                                                                                | 2)                           |                                     |                                             |
| MAILING ADDRESS:<br>Suite 3300, 550 Burrard Street, Vancouver, BC, V6C 0B3                                                                                                                                    |                              |                                     |                                             |
| PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure<br>Porphyry, Alkalic, Alkali Syenites, Late Triassic, Stuhini Group,                                                                       | alteration, mineraliza       | tion, size and attitude):           |                                             |
| Stikine Terrane, Galore CreekProperty, Saddle zone, copper-g                                                                                                                                                  | old-silver mineraliz         | ation, volcanics, basa              | lt, syenite.                                |
|                                                                                                                                                                                                               |                              |                                     |                                             |
| REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT F                                                                                                                                                       | EPORT NUMBERS:               |                                     |                                             |

2016 (AR35835), 2015 (AR34980) 2010 (AR 32119), 1990 (AR 20558A)

TISH COLUM

| TYPE OF WORK IN<br>THIS REPORT                    | EXTENT OF WORK<br>(IN METRIC UNITS) | ON WHICH CLAIMS | PROJECT COSTS<br>APPORTIONED<br>(incl. support) |
|---------------------------------------------------|-------------------------------------|-----------------|-------------------------------------------------|
| GEOLOGICAL (scale, area)                          |                                     |                 |                                                 |
| Ground, mapping                                   |                                     |                 |                                                 |
| Photo interpretation                              |                                     |                 |                                                 |
| GEOPHYSICAL (line-kilometres)                     |                                     |                 |                                                 |
| Ground                                            |                                     |                 |                                                 |
|                                                   |                                     | -               |                                                 |
|                                                   |                                     |                 |                                                 |
| Induced Polarization                              |                                     |                 |                                                 |
| Radiometric                                       |                                     |                 |                                                 |
| Seismic                                           |                                     |                 |                                                 |
| Other                                             |                                     |                 |                                                 |
| Airborne                                          |                                     |                 |                                                 |
| GEOCHEMICAL<br>(number of samples analysed for)   |                                     |                 |                                                 |
|                                                   |                                     | -               |                                                 |
| Silt                                              |                                     | -               |                                                 |
| Rock 7 ICP-MS                                     |                                     |                 |                                                 |
| Other                                             |                                     |                 |                                                 |
| DRILLING<br>(total metres; number of holes, size) |                                     |                 |                                                 |
| Core                                              |                                     | -               |                                                 |
| Non-core                                          |                                     |                 |                                                 |
| RELATED TECHNICAL                                 |                                     |                 |                                                 |
| Sampling/assaying                                 |                                     |                 |                                                 |
| Petrographic 2 Thin section                       | n and analysis                      |                 |                                                 |
| Mineralographic                                   |                                     |                 |                                                 |
| <b></b>                                           |                                     |                 |                                                 |
| PROSPECTING (scale, area)                         |                                     |                 |                                                 |
| PREPARATORY / PHYSICAL                            |                                     |                 |                                                 |
| Line/grid (kilometres)                            |                                     |                 |                                                 |
| Topographic/Photogrammetric<br>(scale, area)      |                                     |                 |                                                 |
| Legal surveys (scale, area)                       |                                     |                 |                                                 |
| Road, local access (kilometres)/t                 |                                     |                 |                                                 |
| Trench (metres)                                   |                                     |                 |                                                 |
| Underground dev. (metres)                         |                                     |                 |                                                 |
| Other                                             |                                     |                 |                                                 |
|                                                   |                                     | TOTAL COST:     | \$7621.00                                       |
|                                                   |                                     |                 |                                                 |

Galore Creek Mining Corporation Suite 3300, 550 Burrard Street Vancouver, BC V6C 0B3 Tel +1 (604) 699-4572 Toll-free 1-877-717-GCMC (4262)



BC Geological Survey Assessment Report 36427

# 2016 GEOLOGICAL & GEOCHEMICAL ASSESSMENT REPORT ON THE GALORE CREEK PROPERTY

Event Number: 5628237 Claims Worked On: 516165

Located in the Galore Creek Area Liard Mining Division British Columbia, Canada

NTS Map Sheet 104G/3 and 104G/4 BCGS Map Sheet 104G.013 57° 07' 08" North Latitude 131° 27' 58" West Longitude

Owned & Operated by Galore Creek Mining Corporation Suite 3300, 550 Burrard Street Vancouver, B.C. V6C 0B3

Prepared by

Alicia Carpenter, B.Sc.

Galore Creek Mining Corporation Suite 3300, 550 Burrard Street Vancouver, B.C. V6C 0B3

December, 2016



# TABLE OF CONTENTS

| 1.0 | INTR | ODUCTION                                    | 4  |
|-----|------|---------------------------------------------|----|
| 2.0 | LOC  | ATION, ACCESS & PHYSIOGRAPHY                | 7  |
| 3.0 | EXPL | ORATION HISTORY                             | 8  |
|     | 3.1  | SPECTRUMGOLD/NOVAGOLD EXPLORATION           | 9  |
|     | 3.2  | GALORE CREEK MINING CORPORATION EXPLORATION |    |
| 4.0 | LAN  | D TENURE AND CLAIM STATUS                   | 12 |
| 5.0 | 2016 | SUMMARY OF WORK                             | 23 |
| 6.0 | GEO  | LOGY                                        | 24 |
|     | 6.1  | REGIONAL GEOLOGY                            | 24 |
|     | 6.2  | PROPERTY GEOLOGY                            |    |
|     | 6.3  | GALORE CREEK LITHOLOGIC DESCRIPTIONS        |    |
| 7.0 | GEO  | CHEMICAL SAMPLING AND PETROGRAPHIC ANALYSIS | 31 |
|     | 7.1  | INTRODUCTION                                |    |
|     | 7.2  | SUMMARY OF GEOCHEMICAL RESULTS              |    |
|     | 7.3  | PETROGRAPHIC WORK                           |    |
| 8.0 | DISC | USSION AND CONCLUSIONS                      | 40 |

Galore Creek Mining Corporation 2016 Geochemical and Geological Assessment Report on the Galore Creek Property December, 2016



## APPENDICES

| APPENDIX I   | References                                 |
|--------------|--------------------------------------------|
| APPENDIX II  | Statement of Expenditures                  |
| APPENDIX III | Statement of Qualification                 |
| APPENDIX IV  | Assay Certificates (Attached Digitally)    |
| APPENDIX V   | Analytical Procedures (Attached Digitally) |
| APPENDIX VI  | Petrographic Report                        |

## LIST OF TABLES

## Page

| Table 1 | Galore Creek Property Claims                                               | 12 |
|---------|----------------------------------------------------------------------------|----|
| Table 2 | Grace Property Claims                                                      | 13 |
| Table 3 | Galore Creek Property Mineral Claims                                       | 14 |
| Table 4 | Application of 2016 Assessment work – Galore Creek Property Mineral Claims | 20 |
| Table 5 | 2016 Galore Creek Geochemical Sample Locations                             | 32 |
| Table 6 | 2016 Galore Creek Claims Sampling and Results                              | 34 |

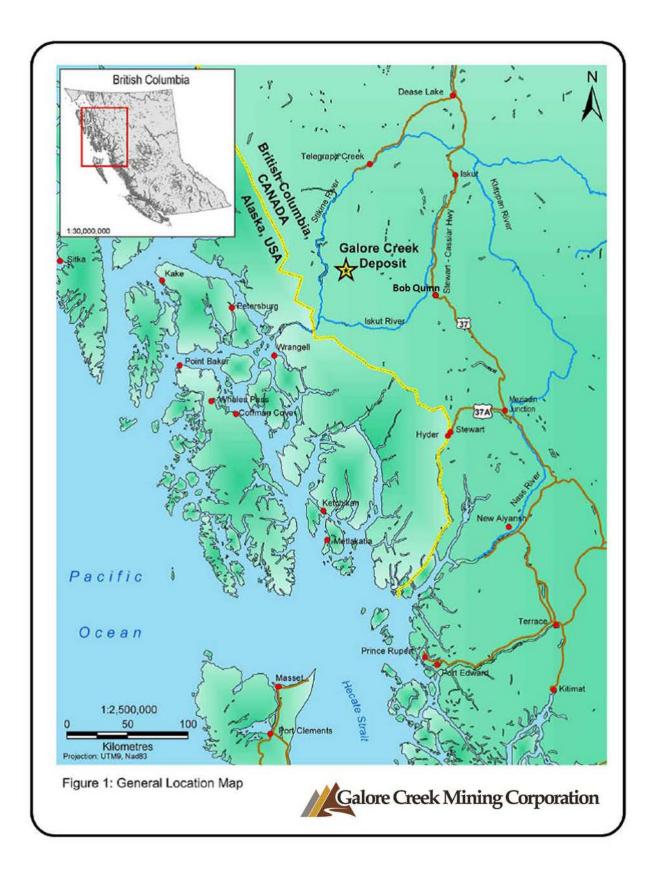
## LIST OF FIGURES

### Page

| Figure 1 | General Location Map                                      | 6  |
|----------|-----------------------------------------------------------|----|
| Figure 2 | Galore Creek Property Claim Map                           | 21 |
| Figure 3 | 2016 Geochemical Sample Location Map                      | 22 |
| Figure 4 | Geological Map of the Copper Canyon and Galore Creek Area | 27 |
| Figure 5 | Outcrop of ICP Sample location 2016SA0903                 | 36 |
| Figure 6 | Photomicrograph of sample 2016SA0907                      | 38 |
| Figure 7 | Photomicrograph of sample 2016SA0908                      | 39 |
|          |                                                           |    |



## 1.0 INTRODUCTION


The Galore Creek Property (Figure 1) is located within the historic Stikine Gold Belt of northwestern British Columbia, approximately 75 kilometres northwest of Barrick Gold's decommissioned Eskay Creek mine. The property consists of 295 contiguous mineral claims, totaling 137,776.94 hectares registered in the name of Galore Creek Mining Corporation.

Galore Creek is characterized as an alkaline porphyry-style copper-gold-silver deposit. It consists of a number of mineralized zones including the Central Zone, comprised of Central–North (includes the Legacy Zone), Central-South and Bountiful, the Southwest Zone, the Junction and North Junction Zones, the Middle Creek Zone, and the West Fork Zone. The Galore Creek property is host to 6.8B pounds of Proven and Probable reserves grading 0.6% copper, 5.45 Moz. at 0.32 g/t gold and 102.0 Moz. at 6.0 g/t silver. Inclusive of Proven and Probable reserves Galore Creek is host to 8.9B pounds of Measured and Indicated resources grading 0.50% copper, 8.0 Moz. at 0.3 g/t gold and 136.0 Moz. at 5.2 g/t silver, as well as 346.6M tonnes of Inferred resources grading 0.42% copper, 0.24 g/t gold and 4.28 g/t silver. Mineral reserves and resources were estimated using an NSR cut-off grade of \$10.08/t milled, and Mineral Reserves are reported using commodity prices of US\$4.44/lb copper, US\$1,613/oz gold, and US\$40.34/oz silver (effective July 27, 2011) (AMEC, 2011).

In July 2003, SpectrumGold Inc. (now NovaGold Canada Inc.) entered into an option agreement to acquire a 100% interest in the Galore Creek property from Stikine Copper Limited. NovaGold carried out exploration programs on the property in years 2003 through 2007, and additional claims have been staked for the project. NovaGold Canada Inc. is a subsidiary wholly owned by NovaGold Resources Inc. On May 1, 2007, NovaGold and Teck Cominco Limited (Teck Cominco) announced the formation of a 50-50 partnership to develop the Galore Creek Mine. The Galore Creek Partnership was finalized on August 1, 2007 and the jointly controlled operating company, Galore Creek Mining Corporation (GCMC) was created to direct all aspects of project construction and operation. Galore Creek claims were subsequently transferred to GCMC in October 2007. In November 2007, NovaGold and Barrick Gold Corporation (Barrick) reached an agreement and announced that the Grace Property claims would be sold 100% to the Galore Creek Partnership. On December 3, 2007, all the Grace claims were transferred to GCMC. During March 2008, Galore Creek Mining Corporation acquired additional mineral claims in the Scud River area, Stikine River area and north of West More Creek. These claims are contiguous with the Galore Creek Property.



This report covers work completed on portions of the Galore Creek Property on August 6<sup>th</sup> 2016. The work at Galore Creek was conducted entirely within the boundaries of mineral claim 516165.





# 2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The Galore Creek property (Figure 1) is located within the Liard Mining Division of northwestern British Columbia, approximately 70 kilometres west of the Bob Quinn airstrip and 90 kilometres northeast of Wrangell, Alaska. The property is situated at the headwaters of Galore Creek, a tributary of the Scud River, which in turn flows into the Stikine River. The property lies at latitude 57°07′08″N and longitude 131°27′58″W, on NTS map sheets 104G/03 and 104G/04.

The town of Smithers, located 370 kilometres to the southeast, is the nearest major supply centre. An existing forest service road, and an access road built by GCMC provides access to the Chi'yone camp (km 36). During the 2016 program personnel, supplies, and equipment were staged from Bell II Lodge to the southeast with access to the GCMC claims by helicopter.

Galore Creek is located in the humid continental climate zone of coastal BC. Summers are generally cool, and winters cold, with substantial snowfall. Property temperatures range from 20°C in the summer to well below -20°C in the winter. Annual precipitation is 76 centimetres with the majority (70%) falling as snow between September and February.

Physiographically, the Stikine-Iskut area is characterized by rugged mountains with elevations ranging between 500 to 2080 metres above sea level, active alpine glaciation and deep U-shaped valleys. Relief on the property varies from moderate to extreme. The tree line, located at an elevation of 1100 metres, divides forests of Balsam Fir, Sitka Spruce, Alder, Willow, Devils Club and Cedar from sparse grasses and brush above.



## **3.0 EXPLORATION HISTORY**

Mineralization was first discovered in the upper Galore Creek valley in 1955 by M. Monson and W. Buchholz while prospecting for a subsidiary of Hudson Bay. Staking and sampling were completed in the area in 1955. Work in 1956 included mapping, trenching and diamond drilling. No further work was undertaken and most of the claims were allowed to expire.

In 1959, reconnaissance stream sediment surveys were carried out by Kennco Explorations (Western) Limited (the Canadian subsidiary of Kennecott Copper, now Rio Tinto Ltd.) in the Stikine River area. Results prompted Kennco to stake mineral claims around the remaining 16 Hudson Bay claims the following year. Four of the original claims were subsequently optioned by Consolidated Mining and Smelting Company of Canada Limited (Cominco) from W. Buchholz. Late in 1962, the three companies agreed to participate jointly in future exploration work. As a result, Stikine Copper Limited was incorporated in 1963, on the basis of the following interests: Kennco Explorations (Western) Limited (59%), Hudson Bay Mining and Smelting Company Limited (34%), and Consolidated Mining and Smelting Company of Canada Limited (5%).

Work conducted since discovery in 1955 outlined a significant copper-gold-silver mineralized zone in the Central Zone and identified several satellite mineralized zones, most importantly the Southwest, North Junction and Junction Zones. This work has included soil sampling, pole-dipole resistivity/induced polarization (IP), magnetics, electromagnetics (EM), radiometrics, very low frequency (VLF) and audio frequency magnetics (AFMAG) airborne geophysical surveys.

From 1960 to 1968, the property was operated by Kennco Exploration. Exploration work during this period included 53,164 metres of diamond drilling in 235 holes and 807 metres of underground development work in two adits. The Central Zone was the focus of most of this work. During the same period, a road was constructed from an airstrip at the confluence of the Stikine and Scud rivers along the Scud River and up Galore Creek to what was then an exploration camp.

No work was done between 1968 and 1972. In 1972, Hudson Bay became operator and in 1972 and 1973 an additional 25,352 metres of diamond drilling was completed in 111 holes. This work concentrated on the mineralization in the Central and North Junction Zones. A further 5,310 metres of diamond drilling was completed in 24 holes in 1976.



In 1989, Mingold Resources Inc. (an affiliated company of Hudson Bay) operated the property in order to investigate its gold potential. In 1990, Mingold completed 1,225 metres of diamond drilling in 18 holes.

Kennecott resumed as operator of the project in 1991 and completed 13,830 metres of diamond drilling in 49 holes. An airborne geophysics survey and over 90 line kilometres of IP survey were also completed. At the end of this initial exploration phase, a total of twelve prospects and deposits had been identified: Central, Junction, North Junction, West Rim, Butte, Southwest, Saddle, West Fork, South Butte, South 110, Middle Creek and North Rim.

# 3.1 SpectrumGold/NovaGold Exploration

In August 2003, SpectrumGold Inc. (now NovaGold Canada Inc.) entered into an option agreement to acquire a 100% interest in the Galore Creek property from Stikine Copper Limited, a company owned by QIT-FER et Titane Inc. (a wholly-owned subsidiary of Rio Tinto Ltd.) and Hudson Bay. In 2003, SpectrumGold carried out a 10 hole, 2,950 metre diamond drill program on the property. The work program was directed toward confirming grades of copper and gold mineralization defined by previous drilling in the Central and Southwest Zones.

In 2004, NovaGold Canada Inc. (NovaGold) carried out a 79 hole, 25,976 metre diamond drill program to upgrade and expand the existing resource, and to test several peripheral mineral occurrences and nearby properties. Extensive geophysical surveys were conducted to assist the exploratory drilling. The results of the 2004 drilling program provided the basis for geological modeling, resource estimation, preliminary mine planning and economic evaluation at Preliminary Assessment (PA) level.

In 2005, NovaGold completed a 260 hole, 63,190 metre diamond drill program on the Galore Creek property. The aim of the 2005 exploration program was to test for extensions of known mineralization and to explore for new targets within the Galore Creek valley. Additional drilling was utilized for engineering and environmental testing. Mapping focused on defining drill targets, major structures, and alteration assemblages. The geophysical program included a wide-spaced Vector IP reconnaissance program and IP surveys, conducted both south of the Central Zone and along the East Fork of Galore Creek.

In 2006, NovaGold completed 33,575 metres of diamond drilling in 57 holes. The 2006 drilling tested new exploration targets based on geophysical anomalies and new geological interpretations. The goal of the program was to upgrade the resource estimation categories.



In 2007, NovaGold completed 17 holes, totalling 4,547 metres on the Galore Creek property for the Galore Creek Mining Corporation (GCMC). Drilling focussed on the Southwest Zone, Central Replacement Zone, Butte Zone and reconnaissance targets.

# **3.2** Galore Creek Mining Corporation Exploration

In 2008, Galore Creek Mining Corporation (GCMC) completed nine diamond drill holes totalling 2,049.58 metres. The main objectives of the drill program were to obtain ABA (Acid Base Accounting) data in the Central, Southwest, North Junction and Junction pits, to confirm legacy grades in the Junction pit, and to collect metallurgical data in the Central pit.

In 2010, GCMC conducted a site investigation program of nine exploration diamond drill holes totalling 2,803.33 metres and four geotechnical boreholes totalling 240.70 metres. The main objectives of the exploration drilling were to obtain metallurgical and resource in-fill data in the Central deposit. A geotechnical borehole was drilled in an area under consideration for construction of a water-retaining dam. Three geotechnical boreholes were drilled in the Galore Valley to install standpipes to monitor drawdown associated with pump testing of nearby, previously installed, pump wells.

In 2011, GCMC's site investigation included a drilling program consisting of eighteen (18) exploration drill holes totalling 9,953.22 metres, and sixteen (16) geotechnical boreholes totalling 5,887.30 metres. The main objectives of the exploration drill program were to upgrade and possibly extend mineralization within the Central South and Bountiful zones. The SRK geotechnical site investigation program was undertaken to enable Feasibility-level design of the proposed open pits at Galore Creek.

In 2012, the GCMC site investigation included a diamond drilling program consisting of fortyseven (47) exploration drill holes totalling 23,369.2 metres, nine (9) geotechnical boreholes totalling 3,296.1 metres, six (6) hydrogeological holes totalling 835.0 metres, and sixteen (16) overburden-geotechnical holes totalling 589.5 metres. The main objective of the exploration drill program was to upgrade Inferred resources to Measured and Indicated classification. Exploration drilling successfully encountered copper mineralization.

In 2013, GCMC's site investigation included a diamond drilling program consisting of twentytwo (22) exploration drill holes totalling 11,649 metres. The main objective of the drill program was to upgrade the Legacy Zone to an inferred classification, and explore the continuity and extents of this mineralized zone.



In 2014, GCMC's site investigation included a geochemical sampling program consisting of fourteen (14) rock samples taken from outcrop for lithogeochemical sampling. The main objective of the geochemical sampling program was to characterize the intrusive, volcanic, and sedimentary rock types to the northeast of the Galore Creek valley.

In 2015, GCMC the exploration program focused on the Saddle Zone, located to the southeast of the Bountiful deposit. Nine (9) ICP samples and one lithogeochem sample were collected. This sampling program highlighted an area of anomalous copper, silver and gold values at the southern end of the Saddle zone, with significant gold grades in an area newly exposed by retreating glacial ice.



## 4.0 LAND TENURE AND CLAIM STATUS

In July 2003, SpectrumGold Inc. (now NovaGold Canada Inc.) entered into an option agreement to acquire a 100% interest in the Galore Creek property from Stikine Copper Limited, a company owned by QIT-FER et Titane Inc. and Hudson Bay Mining and Smelting Co. Limited.

The original Galore Creek property consisted of 292 two-post claims, of which 39 were fractions, all held in the name of Stikine Copper Limited. In July 2005, NovaGold converted the 292 claims into six cell claims to hold an area of 5,111 hectares and the claims are listed below in Table 1.

On March 28, 2007, NovaGold exercised the Stikine Copper Limited option and acquired 100% in the property as of June 1, 2007.

| Tenure No. | Name                   | Owner                                                | Area (ha.) |
|------------|------------------------|------------------------------------------------------|------------|
| 516158     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373)  | 772.237    |
| 516165     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373)  | 667.543    |
| 516177     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373)  | 175.777    |
| 516178     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373)  | 457.053    |
| 516179     | Cell Claim             | Galore Creek Mining Corporation (Client No. 211373). | 1,317.270  |
| 516459     | GALORE 1 CELL<br>CLAIM | Galore Creek Mining Corporation (Client No. 211373)  | 1,721.252  |
| Totals:    | 6 claims               |                                                      | 5,111.132  |

## **Table 1 - Galore Creek Property Claims**

Since the initial option agreement on the Galore Creek claims in 2003, NovaGold has acquired significant ground in the area through staking as well as purchase of mineral claims from other parties. All the claims are listed in Table 3.

On August 1, 2007, the Galore Creek Partnership (Teck Cominco Limited and NovaGold Canada Inc. 50/50) was established to develop the Galore Creek mine; the Partnership created the jointly controlled operating company called the Galore Creek Mining Corporation (GCMC). In



October 2007, all Galore Creek Property claims held by NovaGold Canada Inc. were transferred to the Galore Creek Mining Corporation.

In November 2007, NovaGold and Barrick Gold Corporation (Barrick) reached an agreement and announced the Grace property claims would be sold 100% to the Galore Creek Partnership. On December 3, 2007, all the Grace claims were transferred to Galore Creek Mining Corporation and Table 2 lists the Grace property mineral claims. These claims are now part of the Galore Creek Property and are listed in Table 3.

| Tenure No. | Name       | Owner                                               | Area (ha.) |
|------------|------------|-----------------------------------------------------|------------|
| 404921     | Grace 4    | Galore Creek Mining Corporation (Client No. 211373) | 500        |
| 404922     | Grace 5    | Galore Creek Mining Corporation (Client No. 211373) | 500        |
| 516161     | Cell Claim | Galore Creek Mining Corporation (Client No. 211373) | 543.835    |
| 516163     | Cell Claim | Galore Creek Mining Corporation (Client No. 211373) | 1244.967   |
| 517480     | Cell Claim | Galore Creek Mining Corporation (Client No. 211373) | 52.637     |
| Totals:    | 5 claims   |                                                     | 2,841.44   |

# Table 2 – Grace Property Claims

Between March 2008 and December, 2015, Galore Creek Mining Corporation acquired additional mineral claims in the Scud River area, Stikine River area and West More area. These claims are contiguous with the Galore Creek Property claims and are listed in Table 3.

-



## Table 3 - Galore Creek Property Mineral Claims, Liard Mining Division, BC

## **Owner: Galore Creek Mining Corporation - Client No. 211373**

| Tenure<br>No. | Claim Name | Owner         | Tenure Type   | Issue Date  | Good To Date | Area (ha) |
|---------------|------------|---------------|---------------|-------------|--------------|-----------|
| 404921        | GRACE 4    | 211373 (100%) | Mineral Claim | 2003/sep/07 | 2024/dec/01  | 500       |
| 404922        | GRACE 5    | 211373 (100%) | Mineral Claim | 2003/sep/07 | 2024/dec/01  | 500       |
| 408613        | VIA 32     | 211373 (100%) | Mineral Claim | 2004/feb/29 | 2024/dec/01  | 450       |
| 410802        | J3         | 211373 (100%) | Mineral Claim | 2004/may/26 | 2024/dec/01  | 300       |
| 410810        | CONTACT 5  | 211373 (100%) | Mineral Claim | 2004/may/26 | 2024/dec/01  | 200       |
| 410812        | CONTACT 7  | 211373 (100%) | Mineral Claim | 2004/may/26 | 2024/dec/01  | 450       |
| 412228        | GL 16      | 211373 (100%) | Mineral Claim | 2004/jul/04 | 2024/dec/01  | 500       |
| 412241        | GL 29      | 211373 (100%) | Mineral Claim | 2004/jul/06 | 2024/dec/01  | 500       |
| 501126        | SPC11      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 368.042   |
| 501150        | SPC01      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.094   |
| 501166        | SPC02      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.096   |
| 501212        | SPC03      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.848   |
| 501276        | SPC04      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.851   |
| 501341        | SPC06      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 315.279   |
| 501401        | SPC07      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 210.367   |
| 501428        | SPC05      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 315.486   |
| 501454        | SPC09      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.097   |
| 501496        | SPC10      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.858   |
| 501524        | SPC12      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 367.917   |
| 501560        | SPC13      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 367.793   |
| 501583        | SPC14      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.171   |
| 501603        | SPC15      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.137   |
| 501634        | SPC16      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 280.043   |
| 501660        | SPC17      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.095   |
| 501669        | SPC18      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 437.659   |
| 501685        | SPC20      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 419.889   |
| 501726        | SPC19      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 437.421   |
| 501738        | SPC21      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 420.221   |
| 501755        | SPC22      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 385.557   |
| 501775        | SPC23      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.899   |
| 501787        | SPC24      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 437.661   |
| 501798        | SPC25      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.67    |
| 501815        | SPC26      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.408   |
| 501829        | SPC27      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 210.068   |
| 501839        | SPC29      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.001   |
| 501857        | SPC28      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.672   |
| 501865        | SPC30      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 438.002   |
| 501882        | SPC31      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.291   |
| 501891        | SPC32      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 420.136   |
| 501905        | SPC08      | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/dec/01  | 210.366   |
| 501931        | PORC01     | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 405.39    |
| 501965        | PORC02     | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 440.514   |
| 501999        | PORC03     | 211373 (100%) | Mineral Claim | 2005/jan/12 | 2024/jan/12  | 105.708   |



| 509232 | tunnel              | 211373 (100%)  | Mineral Claim | 2005/mar/18                | 2024/dec/01  | 333.757  |
|--------|---------------------|----------------|---------------|----------------------------|--------------|----------|
| 509234 | porc 04             | 211373 (100%)  | Mineral Claim | 2005/mar/18                | 2024/mar/18  | 440.357  |
| 509235 | porc 05             | 211373 (100%)  | Mineral Claim | 2005/mar/18                | 2024/mar/18  | 405.158  |
| 509250 | porc 06             | 211373 (100%)  | Mineral Claim | 2005/mar/18                | 2024/mar/18  | 123.308  |
| 509253 | sphaler 01          | 211373 (100%)  | Mineral Claim | 2005/mar/18                | 2024/mar/18  | 422.571  |
| 509259 | sphaler 02          | 211373 (100%)  | Mineral Claim | 2005/mar/18                | 2024/mar/18  | 211.356  |
| 509261 | ng 01               | 211373 (100%)  | Mineral Claim | 2005/mar/18                | 2024/mar/18  | 420.826  |
| 509262 | ng 02               | 211373 (100%)  | Mineral Claim | 2005/mar/18                | 2024/mar/18  | 105.208  |
| 509893 | NR 3                | 211373 (100%)  | Mineral Claim | 2005/mar/30                | 2024/dec/01  | 70.379   |
| 511868 | SPHCR 01            | 211373 (100%)  | Mineral Claim | 2005/apr/30                | 2024/apr/30  | 405.262  |
| 511869 | SPHCR02             | 211373 (100%)  | Mineral Claim | 2005/apr/30                | 2024/apr/30  | 422.876  |
| 511870 | SPHCR03             | 211373 (100%)  | Mineral Claim | 2005/apr/30                | 2024/apr/30  | 422.878  |
| 512425 |                     | 211373 (100%)  | Mineral Claim | 2005/may/11                | 2024/dec/01  | 700.818  |
| 512426 |                     | 211373 (100%)  | Mineral Claim | 2005/may/11                | 2024/dec/01  | 473.235  |
| 512478 | CONT 1              | 211373 (100%)  | Mineral Claim | 2005/may/12                | 2024/may/26  | 770.372  |
| 516158 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/06                | 2024/dec/01  | 772.237  |
| 516161 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/06                | 2024/dec/01  | 543.835  |
| 516163 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/06                | 2024/dec/01  | 1244.967 |
| 516165 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/06                | 2024/dec/01  | 667.543  |
| 516177 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/06                | 2024/dec/01  | 175.777  |
| 516178 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/06                | 2024/dec/01  | 457.053  |
| 516179 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/06                | 2024/dec/01  | 1317.27  |
| 516235 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/07                | 2024/dec/01  | 1161.63  |
| 516271 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/07                | 2024/dec/01  | 315.411  |
| 516275 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/07                | 2024/dec/01  | 1407.331 |
| 516284 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/07                | 2024/dec/01  | 947.189  |
| 516285 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/07                | 2024/dec/01  | 614.229  |
| 516286 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/07                | 2024/dec/01  | 912.089  |
| 516327 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 999.585  |
| 516335 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 1354.185 |
| 516340 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 1195.156 |
| 516342 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 1107.372 |
| 516345 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 949.18   |
| 516359 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 789.736  |
| 516367 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 1052.596 |
| 516377 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 1143.352 |
| 516433 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 1318.728 |
| 516441 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 1390.457 |
| 516443 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 880.157  |
| 516445 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 985.011  |
| 516448 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 862.311  |
| 516452 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 879.374  |
| 516458 |                     | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 949.726  |
| 516459 | GALORE 1 CELL CLAIM | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 1721.252 |
| 516463 | NR 4                | 211373 (100%)  | Mineral Claim | 2005/jul/08                | 2024/dec/01  | 140.84   |
| 516474 | SPHCR 04            | 211373 (100%)  | Mineral Claim | 2005/jul/08<br>2005/jul/08 | 2024/jul/08  | 422.996  |
| 010111 |                     | _ 1010 (10070) |               | 2000/jui/00                | 202-7/10//00 | 722.000  |



| 516475 | SPHCR 05 | 211373 (100%) | Mineral Claim | 2005/jul/08 | 2024/jul/08 | 422.996  |
|--------|----------|---------------|---------------|-------------|-------------|----------|
| 516496 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1299.197 |
| 516498 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1105.922 |
| 516500 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1527.806 |
| 516503 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1178.494 |
| 516505 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1126.672 |
| 516508 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1020.993 |
| 516509 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 1039.113 |
| 516511 |          | 211373 (100%) | Mineral Claim | 2005/jul/09 | 2024/dec/01 | 968.695  |
| 516674 |          | 211373 (100%) | Mineral Claim | 2005/jul/11 | 2024/dec/01 | 157.819  |
| 516691 |          | 211373 (100%) | Mineral Claim | 2005/jul/11 | 2024/dec/01 | 563.2    |
| 517480 | GRACE G  | 211373 (100%) | Mineral Claim | 2005/jul/12 | 2024/jul/12 | 52.637   |
| 522318 | CONT 2   | 211373 (100%) | Mineral Claim | 2005/nov/15 | 2024/dec/01 | 386.718  |
| 522319 | CONT 3   | 211373 (100%) | Mineral Claim | 2005/nov/15 | 2024/dec/01 | 245.815  |
| 556327 |          | 211373 (100%) | Mineral Claim | 2007/apr/13 | 2024/dec/01 | 387.2667 |
| 556330 |          | 211373 (100%) | Mineral Claim | 2007/apr/13 | 2024/dec/01 | 281.5297 |
| 556331 |          | 211373 (100%) | Mineral Claim | 2007/apr/13 | 2024/dec/01 | 140.7942 |
| 556334 |          | 211373 (100%) | Mineral Claim | 2007/apr/13 | 2024/dec/01 | 211.1915 |
| 579405 | SCU 1    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.2202 |
| 579406 | SCUD 1   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9753 |
| 579407 | SCUD 2   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 122.4604 |
| 579408 | SCU 2    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.2223 |
| 579409 | SCUD 3   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 349.8247 |
| 579410 | SCU 3    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9756 |
| 579411 | SCUD 4   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9061 |
| 579412 | SCUD 5   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 349.7099 |
| 579413 | SCU 3    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.0939 |
| 579414 | SCUD 6   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 157.3518 |
| 579416 | SCU 4    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 401.6306 |
| 579417 | SCUD 7   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9056 |
| 579418 | SCU 5    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9768 |
| 579420 | SCUD 8   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.6281 |
| 579421 | SCU 6    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9789 |
| 579423 | SCUD 9   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.1346 |
| 579424 | SCU 7    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9808 |
| 579426 | SCU 8    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.9835 |
| 579428 | SCUD 10  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 244.6974 |
| 579429 | SCU 9    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.2886 |
| 579431 | SCUD 11  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 366.949  |
| 579432 | SCU 10   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.2913 |
| 579434 | SCU 11   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.3084 |
| 579435 | SCUD 12  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 209.7657 |
| 579436 | SCU 12   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 436.7655 |
| 579437 | SCUD 13  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.4795 |
| 579439 | SCU 13   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.0121 |
| 579441 | SCU 14   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.2245 |
|        |          | - (           |               |             |             | •        |



| 579443 | SCU 15   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.2253 |
|--------|----------|---------------|---------------|-------------|-------------|----------|
| 579454 | RDL 1    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.8799 |
| 579456 | RDL 2    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 439.4831 |
| 579457 | LIN 1    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.6811 |
| 579458 | RDL 3    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 439.34   |
| 579459 | LIN 2    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.7224 |
| 579461 | RDL 4    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.6429 |
| 579462 | LIN 3    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 298.7028 |
| 579463 | RDL 5    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.6515 |
| 579467 | RDL 6    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.5126 |
| 579469 | RDL 7    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.512  |
| 579470 | LIN 6    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 333.6831 |
| 579472 | LIN 7    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 438.8378 |
| 579473 | RDL 8    | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.5266 |
| 579479 | LIN 10   | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/dec/01 | 421.016  |
| 579517 | SCUD S1  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.3757 |
| 579519 | SCUD S2  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.114  |
| 579521 | SCUD S3  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 350.0739 |
| 579523 | SCUD S4  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.2729 |
| 579526 | SCUD S5  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.2704 |
| 579528 | SCUD S6  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.7174 |
| 579530 | SCUD S7  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.7149 |
| 579532 | SCUD S8  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9041 |
| 579535 | SCUD S9  | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.0905 |
| 579537 | SCUD S10 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 350.2287 |
| 579541 | SCUD S11 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 385.4026 |
| 579542 | SCUD S12 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.4623 |
| 579544 | SCUD S13 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 419.9021 |
| 579545 | SCUD S14 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.0891 |
| 579547 | SCUD S15 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.4696 |
| 579548 | SCUD S16 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.4701 |
| 579549 | SCUD S17 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.4678 |
| 579550 | SCUD S18 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.4649 |
| 579551 | SCUD S19 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.2738 |
| 579552 | SCUD S20 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.7128 |
| 579553 | SCUD S21 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.7161 |
| 579554 | SCUD S22 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.7156 |
| 579556 | SCUD S22 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.7135 |
| 579557 | SCUD S23 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.4638 |
| 579558 | SCUD S24 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 420.4437 |
| 579559 | SCUD S25 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.964  |
| 579560 | SCUD S26 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.9651 |
| 579561 | SCUD S27 | 211373 (100%) | Mineral Claim | 2008/mar/28 | 2024/mar/28 | 437.9638 |
| 585412 | RDL 21   | 211373 (100%) | Mineral Claim | 2008/may/29 | 2024/dec/01 | 35.1912  |
| 662956 | RLS 1    | 211373 (100%) | Mineral Claim | 2009/oct/31 | 2024/dec/01 | 70.3864  |
| 662967 | RLS 2    | 211373 (100%) | Mineral Claim | 2009/oct/31 | 2024/dec/01 | 70.3828  |
|        |          |               |               |             |             |          |



| 662975 | R 1       | 211373 (100%) | Mineral Claim | 2009/oct/31 | 2024/dec/01 | 87.9738  |
|--------|-----------|---------------|---------------|-------------|-------------|----------|
| 662982 | RLS 3     | 211373 (100%) | Mineral Claim | 2009/oct/31 | 2024/dec/01 | 105.567  |
| 975932 | HURON 001 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.5231 |
| 975933 | HURON 002 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.8049 |
| 975952 | HURON 003 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.5775 |
| 975953 | HURON 004 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 385.5836 |
| 975954 | HURON 005 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.9536 |
| 975955 | HURON 006 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.723  |
| 975956 | HURON 007 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 402.9514 |
| 975957 | JAY001    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 403.5812 |
| 975972 | HURON 008 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.7656 |
| 975993 | JAY002    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 421.4118 |
| 975994 | HURON 009 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.3235 |
| 975995 | JAY003    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 386.3496 |
| 975996 | HURON 010 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.4012 |
| 975997 | HURON 011 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.573  |
| 975998 | JAY004    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.8367 |
| 975999 | HURON 012 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.5844 |
| 976000 | JAY005    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 421.029  |
| 976002 | HURON 013 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.3275 |
| 976003 | JAY006    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 421.1768 |
| 976004 | HURON 014 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.7743 |
| 976005 | JAY007    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.9156 |
| 976006 | HURON 015 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.9419 |
| 976007 | HURON 016 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.7952 |
| 976008 | JAY008    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.9761 |
| 976012 | JAY009    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.6893 |
| 976032 | HURON 017 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.4339 |
| 976052 | HURON 018 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.4854 |
| 976053 | JAY010    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.6839 |
| 976054 | HURON 019 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.0853 |
| 976055 | HURON 020 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.0788 |
| 976056 | NAVO 001  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.795  |
| 976057 | JAY011    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.5354 |
| 976060 | JAY012    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.7231 |
| 976061 | NAVO 002  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.0959 |
| 976062 | JAY013    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.6981 |
| 976064 | JAY014    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 421.3459 |
| 976065 | JAY0015   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.8828 |
| 976066 | HURON 024 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.5249 |
| 976067 | JAY16     | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 316.0291 |
| 976068 | NAVO 003  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.4241 |
| 976070 | JAY017    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 420.881  |
| 976072 | JAY018    | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 438.3879 |
| 976092 | HURON 027 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.007  |
| 976112 | NAVO 005  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.8963 |
|        |           |               |               |             |             |          |

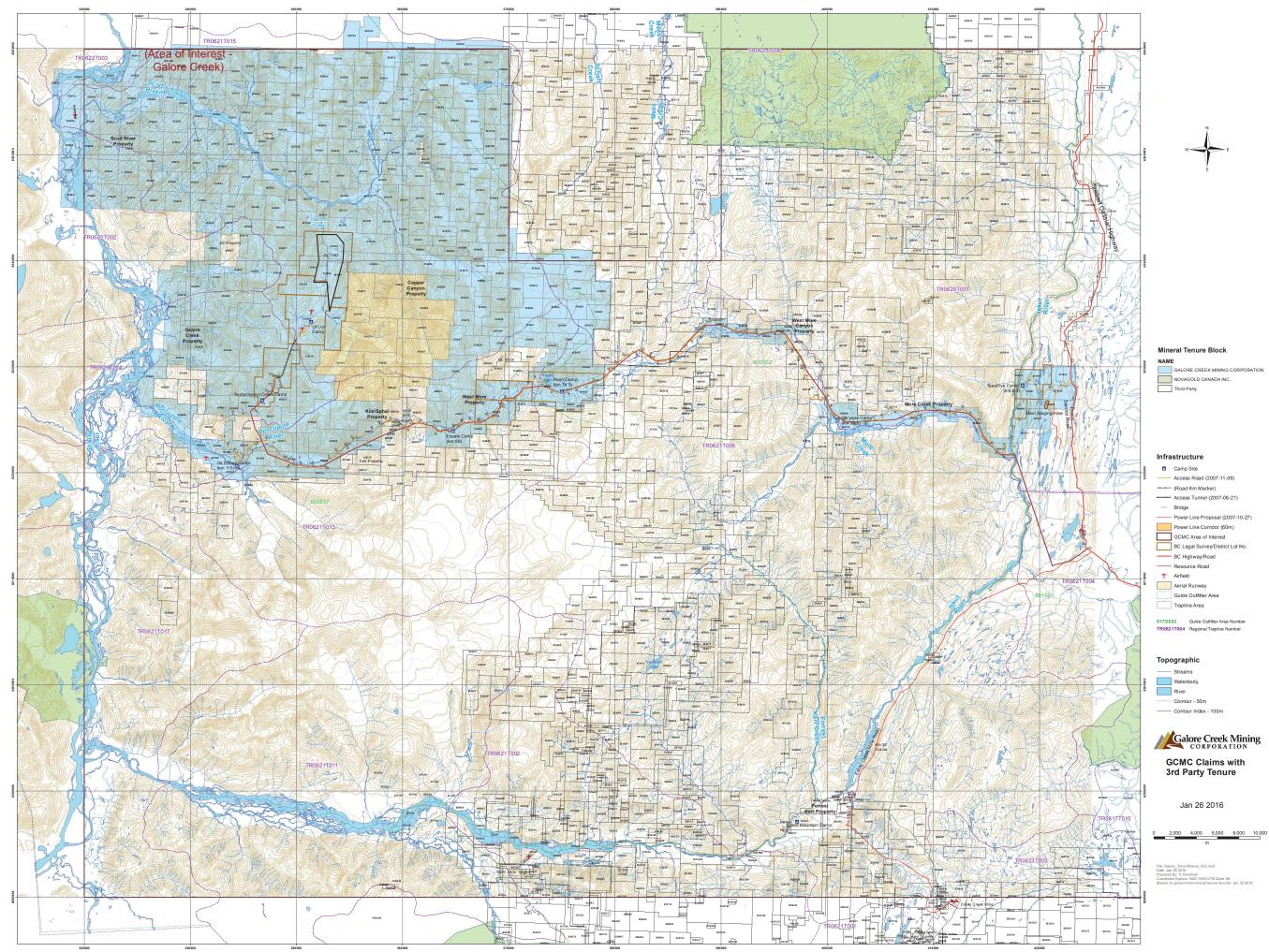


| 976152 | HURON 028 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.4041 |
|--------|-----------|---------------|---------------|-------------|-------------|----------|
| 976153 | NAVO 006  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 349.2964 |
| 976154 | HURON 029 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.7264 |
| 976156 | HURON 030 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.6758 |
| 976157 | NAVO 007  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.607  |
| 976159 | NAVO 008  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.8969 |
| 976161 | NAVO 009  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.141  |
| 976163 | NAVO 010  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.8991 |
| 976172 | NAVO 011  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.1368 |
| 976173 | HURON 031 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.2289 |
| 976174 | NAVO 012  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.1327 |
| 976175 | HURON 032 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.0418 |
| 976176 | NAVO 013  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.1266 |
| 976177 | HURON 033 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 349.1978 |
| 976179 | HURON 034 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 261.8845 |
| 976180 | NAVO 14   | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.8991 |
| 976212 | NAVO 015  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.0713 |
| 976232 | HURON 035 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.3596 |
| 976234 | HURON 036 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.2952 |
| 976236 | NAVO 016  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 314.2504 |
| 976239 | NAVO 017  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.6337 |
| 976252 | NAVO 018  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 349.3086 |
| 976412 | HURON 050 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 349.9337 |
| 976452 | HURON 051 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 349.926  |
| 976456 | HURON 052 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.2404 |
| 976459 | HURON 053 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 349.9377 |
| 976461 | HURON 054 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 349.9392 |
| 976463 | HURON 055 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 419.7249 |
| 976467 | HURON 056 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.022  |
| 976469 | HURON 057 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.0772 |
| 976472 | HURON 058 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.1779 |
| 976532 | HURON 059 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.1838 |
| 976554 | HURON 060 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 437.1827 |
| 976556 | HURON 061 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.942  |
| 976558 | HURON 062 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.9441 |
| 976560 | NAVO 029  | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 349.3167 |
| 976561 | HURON 063 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.9394 |
| 976572 | HURON 064 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.7731 |
| 976593 | HURON 065 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.526  |
| 976612 | HURON 066 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.8678 |
| 976632 | HURON 067 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.9275 |
| 976653 | HURON 068 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.6217 |
| 976656 | HURON 069 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 418.8978 |
| 976657 | HURON 070 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.6796 |
| 976672 | HURON 071 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.4646 |
| 976675 | HURON_072 | 211373 (100%) | Mineral Claim | 2012/apr/02 | 2024/apr/02 | 436.6764 |
|        |           |               |               |             |             |          |



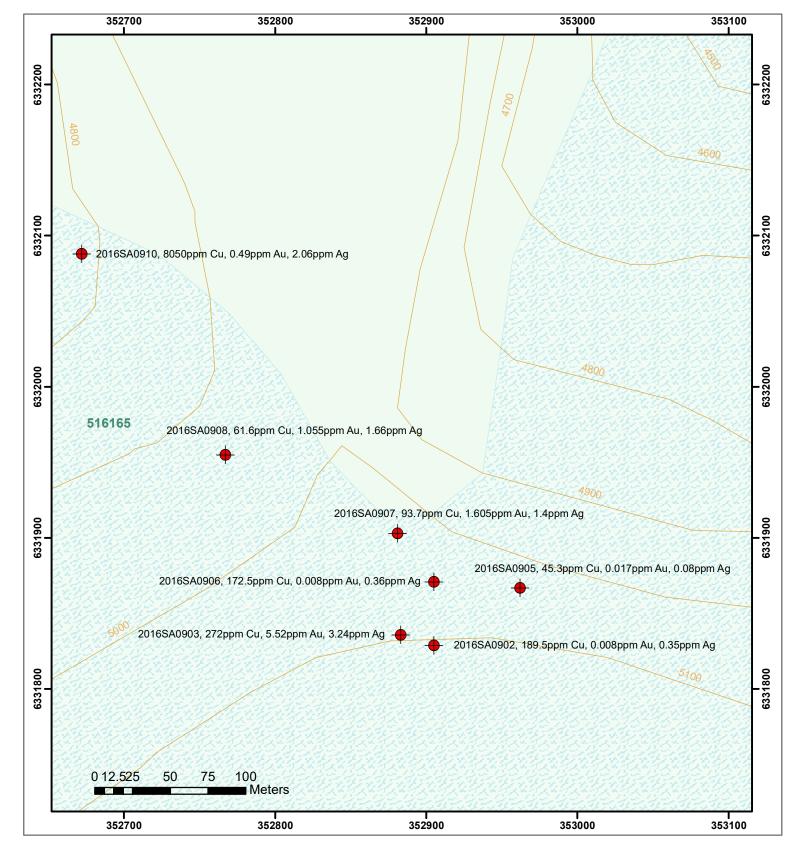
| Mineral Claims |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hectares:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 137,776.940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPC 42         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2015/dec/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2018/dec/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 263.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SPC 41         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2015/dec/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2018/dec/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 315.6024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SPC 40         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2015/feb/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2018/dec/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SPC 39         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2014/dec/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2018/dec/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 701.1912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HUR 1          | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2014/feb/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2019/apr/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HUR            | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2014/feb/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2020/dec/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.4446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SPC 38         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/aug/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2019/dec/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 419.9081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SPC 37         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/aug/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2019/dec/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1154.5208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SPC 36         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/may/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/may/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 281.0559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SPC 35         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/may/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/may/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87.858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SPC 34         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/apr/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/apr/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 175.2671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SPC 33         | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/apr/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/apr/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104.9952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON201303    | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/mar/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/mar/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.8589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON201302    | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/mar/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/mar/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104.9935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON201301    | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/mar/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/mar/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.3895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MAC            | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2013/jan/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/jan/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 771.4353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON_081      | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 418.7768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON_080      | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 418.7387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON_079      | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436.4558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON_075      | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436.4147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON_074      | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436.6657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HURON_073      | 211373 (100%)                                                                                                                                                                                                                 | Mineral Claim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2012/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2024/apr/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436.6678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | HURON_074<br>HURON_075<br>HURON_079<br>HURON_080<br>HURON_081<br>MAC<br>HURON201301<br>HURON201303<br>SPC 33<br>SPC 34<br>SPC 35<br>SPC 36<br>SPC 37<br>SPC 38<br>HUR<br>HUR<br>HUR 1<br>SPC 39<br>SPC 40<br>SPC 41<br>SPC 42 | HURON_074         211373 (100%)           HURON_075         211373 (100%)           HURON_075         211373 (100%)           HURON_079         211373 (100%)           HURON_080         211373 (100%)           HURON_080         211373 (100%)           HURON_081         211373 (100%)           HURON_081         211373 (100%)           MAC         211373 (100%)           HURON201301         211373 (100%)           HURON201302         211373 (100%)           HURON201303         211373 (100%)           SPC 33         211373 (100%)           SPC 34         211373 (100%)           SPC 35         211373 (100%)           SPC 36         211373 (100%)           SPC 37         211373 (100%)           SPC 38         211373 (100%)           HUR         211373 (100%)           HUR         211373 (100%)           HUR         211373 (100%)           SPC 39         211373 (100%)           SPC 40         211373 (100%)           SPC 41         211373 (100%)           SPC 41         211373 (100%)           SPC 42         211373 (100%) | HURON_074         211373 (100%)         Mineral Claim           HURON_075         211373 (100%)         Mineral Claim           HURON_079         211373 (100%)         Mineral Claim           HURON_080         211373 (100%)         Mineral Claim           HURON_081         211373 (100%)         Mineral Claim           HURON_081         211373 (100%)         Mineral Claim           HURON201301         211373 (100%)         Mineral Claim           HURON201302         211373 (100%)         Mineral Claim           HURON201303         211373 (100%)         Mineral Claim           HURON201303         211373 (100%)         Mineral Claim           SPC 33         211373 (100%)         Mineral Claim           SPC 34         211373 (100%)         Mineral Claim           SPC 35         211373 (100%)         Mineral Claim           SPC 36         211373 (100%)         Mineral Claim           SPC 37         211373 (100%)         Mineral Claim           HUR         211373 (100%)         Mineral Claim           HUR         211373 (100%)         Mineral Claim           SPC 38         211373 (100%)         Mineral Claim           HUR         211373 (100%)         Mineral Claim <td< td=""><td>HURON_074211373 (100%)Mineral Claim2012/apr/02HURON_075211373 (100%)Mineral Claim2012/apr/02HURON_079211373 (100%)Mineral Claim2012/apr/02HURON_080211373 (100%)Mineral Claim2012/apr/02HURON_081211373 (100%)Mineral Claim2012/apr/02HURON_081211373 (100%)Mineral Claim2012/apr/02MAC211373 (100%)Mineral Claim2013/apr/02MAC211373 (100%)Mineral Claim2013/mar/14HURON201301211373 (100%)Mineral Claim2013/mar/14HURON201302211373 (100%)Mineral Claim2013/mar/14HURON201303211373 (100%)Mineral Claim2013/mar/14SPC 33211373 (100%)Mineral Claim2013/apr/03SPC 34211373 (100%)Mineral Claim2013/apr/23SPC 35211373 (100%)Mineral Claim2013/aug/24SPC 37211373 (100%)Mineral Claim2013/aug/22SPC 38211373 (100%)Mineral Claim2013/aug/23HUR211373 (100%)Mineral Claim2013/aug/23HUR211373 (100%)Mineral Claim2014/feb/08HUR 1211373 (100%)Mineral Claim2014/feb/14SPC 39211373 (100%)Mineral Claim2014/feb/14SPC 40211373 (100%)Mineral Claim2015/feb/15SPC 41211373 (100%)Mineral Claim2015/feb/15</td><td>HURON_074       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_075       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_079       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_080       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_080       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_081       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         MAC       211373 (100%)       Mineral Claim       2013/mar/14       2024/apr/02         MAC       211373 (100%)       Mineral Claim       2013/mar/14       2024/mar/14         HURON201301       211373 (100%)       Mineral Claim       2013/mar/14       2024/mar/14         HURON201303       211373 (100%)       Mineral Claim       2013/mar/14       2024/mar/03         SPC 33       211373 (100%)       Mineral Claim       2013/mar/14       2024/mar/03         SPC 34       211373 (100%)       Mineral Claim       2013/mar/23       2024/apr/03         SPC 35       211373 (100%)       Mineral Claim       2013/may/24       2024/may/24         SPC</td></td<> | HURON_074211373 (100%)Mineral Claim2012/apr/02HURON_075211373 (100%)Mineral Claim2012/apr/02HURON_079211373 (100%)Mineral Claim2012/apr/02HURON_080211373 (100%)Mineral Claim2012/apr/02HURON_081211373 (100%)Mineral Claim2012/apr/02HURON_081211373 (100%)Mineral Claim2012/apr/02MAC211373 (100%)Mineral Claim2013/apr/02MAC211373 (100%)Mineral Claim2013/mar/14HURON201301211373 (100%)Mineral Claim2013/mar/14HURON201302211373 (100%)Mineral Claim2013/mar/14HURON201303211373 (100%)Mineral Claim2013/mar/14SPC 33211373 (100%)Mineral Claim2013/apr/03SPC 34211373 (100%)Mineral Claim2013/apr/23SPC 35211373 (100%)Mineral Claim2013/aug/24SPC 37211373 (100%)Mineral Claim2013/aug/22SPC 38211373 (100%)Mineral Claim2013/aug/23HUR211373 (100%)Mineral Claim2013/aug/23HUR211373 (100%)Mineral Claim2014/feb/08HUR 1211373 (100%)Mineral Claim2014/feb/14SPC 39211373 (100%)Mineral Claim2014/feb/14SPC 40211373 (100%)Mineral Claim2015/feb/15SPC 41211373 (100%)Mineral Claim2015/feb/15 | HURON_074       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_075       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_079       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_080       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_080       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         HURON_081       211373 (100%)       Mineral Claim       2012/apr/02       2024/apr/02         MAC       211373 (100%)       Mineral Claim       2013/mar/14       2024/apr/02         MAC       211373 (100%)       Mineral Claim       2013/mar/14       2024/mar/14         HURON201301       211373 (100%)       Mineral Claim       2013/mar/14       2024/mar/14         HURON201303       211373 (100%)       Mineral Claim       2013/mar/14       2024/mar/03         SPC 33       211373 (100%)       Mineral Claim       2013/mar/14       2024/mar/03         SPC 34       211373 (100%)       Mineral Claim       2013/mar/23       2024/apr/03         SPC 35       211373 (100%)       Mineral Claim       2013/may/24       2024/may/24         SPC |

This report covers rock petrographic and geochemical sampling on the Galore Creek Property on August 6<sup>th</sup> 2016. The sampling work at Galore Creek includes seven (7) rock samples taken for geochemical analysis, and two (2) samples taken for petrographic analyses within mineral claim 516165 (Figure 3) and applied to selected and contiguous claims held by the Galore Creek Mining Corporation. Under Event Number 5628237, assessment work was applied to four mineral claims (SPC 39, SPC 40, SPC 41 and SPC 42) listed in Table 4. The claim expiry dates will be advanced to Dec 30, 2018, subject to government approval.


## Table 4 - Application of 2016 Assessment Work - Galore Creek Property Mineral Claims

## **Owner: Galore Creek Mining Corporation - Client No. 211373**

Event No. 5628237 - December 05, 2016


| Tenure No. | Claim Name | Owner         | Tenure Type   | Issue Date  | Good To Date | Area (ha) |
|------------|------------|---------------|---------------|-------------|--------------|-----------|
| 1032810    | SPC 39     | 211373 (100%) | Mineral Claim | 2014/dec/18 | 2018/dec/30  | 701.1912  |
| 1034110    | SPC 40     | 211373 (100%) | Mineral Claim | 2015/feb/15 | 2018/dec/30  | 52.612    |
| 1040495    | SPC 41     | 211373 (100%) | Mineral Claim | 2015/dec/12 | 2018/dec/30  | 315.6024  |
| 1040566    | SPC 42     | 211373 (100%) | Mineral Claim | 2015/dec/16 | 2018/dec/30  | 263.0019  |
|            |            |               |               |             |              |           |

Hectares 1,332.41



| ۸        | Camp Site                        |
|----------|----------------------------------|
|          | Access Road (2007-11-09)         |
|          | (Road Km Marker)                 |
|          | Access Tunnel (2007-06-21)       |
| $\asymp$ | Bridge                           |
|          | Power Line Proposal (2007-10-27) |
|          | Power Line Corridor (60m)        |
|          | GCMC Area of Interest            |
|          | BC Legal Survey/District Lot No. |
|          | BC Highway/Road                  |
|          | Resource Road                    |
| ÷        | Airfield                         |
|          | Aerial Runway                    |
|          | Guide Outfitter Area             |
|          | Trapline Area                    |
| 61760    | 02 Guide Outfitter Area Number   |

| repegrapine          |
|----------------------|
| Streams              |
| Waterbody            |
| River                |
| Contour - 50m        |
| Contour Index - 100m |
|                      |



# LEGEND

Figure 3. 2016 Geochemical Sample Location Map



2016 geochemical samples



— River, Stream

— Contour ft.



Ice Fields

**GCMC** Mineral Tenure



Scale 1:2,500 Datum: Nad83, UTM Zone 9 Date: 12/07/2016 Drawn by: A. Carpenter



## 5.0 2016 SUMMARY OF WORK

The 2016 Galore Creek Mining Corporation field geochemical sampling program consisted of one days of work conducted on August 6<sup>th</sup>, 2016 at a cost of \$7,621. The purpose of the field work was to follow up on anomalous base and precious metal values discovered at the Saddle zone during the 2015 field season, where samples returned elevated copper, gold, and silver values. One 2015 sample, taken directly beside retreating glacial ice at the southern end of claim 516165, returned a gold value of 4.63 ppm Au. During the 2016 field program, nine rock samples were collected for geochemical and petrographic analysis from claim 516165 (Figure 3) to follow up on the 2015 results and to further explore the area. This report discusses the work completed during this period. Details of the reported assessment work expenditures can be found in Appendix II.

On December 5, 2016, under Event Number 5628237, geological and geochemical work, and PAC funds totalling \$10,668.64 were filed on Galore Creek claims SPC 39, SPC 40, SPC 41, and SPC 42. (Table 4). The claim expiry dates will be advanced to Dec 30, 2018, upon government approval of this assessment report.

Helicopter support for the project was provided by Lakelse Air, of Terrace, BC. The following helicopter was supplied under charter arrangement or sublease: one 206L Long ranger.



## 6.0 GEOLOGY

## 6.1 Regional Geology

The following description of the regional geology is an excerpt from Simpson (2003). It has been divided into three parts: stratigraphy, intrusives, and structure.

The Galore Creek deposits lie in Stikinia Terrane, an accreted package of Mesozoic volcanic and sedimentary rocks intruded by Cretaceous to Eocene plutonic and volcanic rocks. The eastern boundary of the Coast Plutonic complex lies about 7 kilometres to the west of the claims. The property lies within a regional transcurrent structure known as the Stikine Arch.

## Stratigraphy

Stikine Terrane at this latitude can be grouped into four tectonostratigraphic successions. The first, and most important one in this area, is a Late Paleozoic to Middle Jurassic island arc suite represented by the Stikine assemblage of Monger (1970), the Stuhini Group (Kerr, 1948) and Hazelton Group equivalent rocks. The other successions are; Middle Jurassic to early Late Cretaceous successor-basin sediments of the Bowser Lake Group (Tipper and Richards, 1976); Late Cretaceous to Tertiary transtensional continental volcanic-arc assemblages of the Sloko Group (Aiken, 1959); and Late Tertiary to Recent post-orogenic plateau basalt bimodal volcanic rocks of the Edziza and Spectrum ranges.

The oldest stratigraphy in the area is known as the Stikine assemblage and comprises Permian and older argillites, mafic to felsic flows and tuffs. These rocks grade upward into two distinctive Mississippian limestone members separated by intercalated volcanics and clastic sediments. The topmost stratigraphy consists of two regionally extensive Permian carbonate units which suggest a stable continental shelf depositional environment.

The Middle to Upper Triassic Stuhini Group unconformably overlies the Stikine assemblage. Stuhini Group rocks comprise a variety of flows, tuffs, volcanic breccia and sediments, and are important host rocks to the alkaline-intrusive related gold-silver-copper mineralization at Galore Creek. They define a volcanic edifice centered on Galore Creek and represent an emergent Upper Triassic island arc characterized by



shoshonitic and leucitic volcanics (de Rosen-Spence, 1985), distal volcaniclastics and sedimentary turbidites. The succession at Galore Creek was divided by Panteleyev (1975) into a submarine basalt and andesite lower unit overlain by more differentiated, partly subaerial alkali-enriched flows and pyroclastic rocks.

## Intrusives

Three intrusive episodes have been recognized in the region. The earliest and most important is the Middle Triassic to Middle Jurassic Hickman plutonic suite that is coeval with Upper Triassic Stuhini Group volcanic flows. The Mount Hickman batholith comprises three plutons known as Hickman, Yehinko and Nightout. The latter two are exposed north of the map area. The Schaft Creek porphyry copper deposit is associated with the Hickman stock, and is located 39 km northeast of Galore Creek. This stock is crudely zoned with a pyroxene diorite core and biotite granodiorite margins. Alkali syenites of the Galore complex like those found at the nearby Copper Canyon deposit and the pyroxene diorite bodies of the zoned Hickman pluton have been interpreted as differentiated end members of the Stuhini volcanic-Hickman plutonic suite, by Souther (1972) and Barr (1966). The alkali syenites are associated with important copper-goldsilver mineralization at Galore Creek and at Copper Canyon. These rocks are believed to be at least as old as Early Jurassic in age, based on K-Ar dating of hydrothermal biotite in the syenites intruding the sequences (Allen, 1966). An Ar-Ar age of 212 Ma (Logan et al., 1989) in syenite may give the time of crystallization of the intrusive rocks at Copper Canyon, to the east of Galore Creek. More recent U-Pb dates of Galore Creek syenites have given ages ranging from 205-210 Ma (Mortensen, 1995).

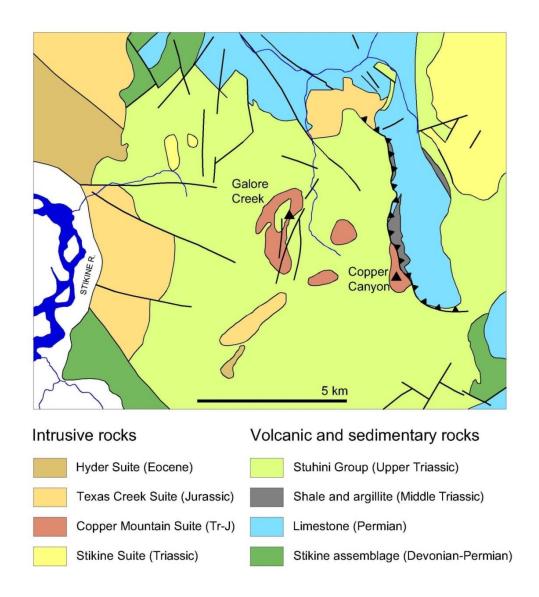
Coast Range intrusions comprise the large plutonic mass west of the map area. Three texturally and compositionally distinct intrusive phases were mapped by previous workers. From inferred oldest to youngest, they are potassium feldspar megacrystic granite to monzonite; biotite hornblende diorite to granodiorite; and biotite granite. Small tertiary intrusive stocks and dikes are structurally controlled in their distribution. At Galore Creek young post-mineral basalt and felsite dikes are abundant as a dike swarm in the northwest part of the property. Elsewhere, Tertiary intrusions may be important in their association with small gold occurrences.



## Structure

The regional geology has been affected by polyphase deformation and four main sets of faults. The oldest phase of folding is pre-Permian to post-Mississippian and affected the Paleozoic rocks between Round Lake and Sphaler Creek. This deformation is characterized by bedding plane parallel foliation in sediments and fragment flattening in volcaniclastics. Pre-Late Triassic folding is characterized by large, upright, tight to open folds with north to northwest trend of axial plane traces and westerly fold vergence. Metamorphism accompanying the first two phases of deformation reached greenschist facies. The third phase of folding is manifested as generally upright chevron folds with fold axes pointed west-northwesterly.

The oldest and longest-lived fault structures in the area have a north strike and subvertical dip. The best example occurs on the west flank of the Hickman batholith, where a major fault juxtaposes Permian limestone with a narrow belt of Stuhini Group volcanics. The second important fault type occurs at Copper Canyon as a west directed thrust fault with a north strike and east dip of 30 to 50 degrees. It juxtaposes overturned Permian limestone and Middle Triassic shale with Stuhini volcanics below. Early to Middle Jurassic syenite intrusions occupy this contact. A third important set of faults with north-west strike mark the boundary between Upper Triassic and Paleozoic rocks between Scud River and Jack Wilson Creek. The youngest faults have a northeast strike direction and are of great local importance. At Galore Creek, some of these faults show considerable post-mineral movement of up to 200 metres while others appear to control the emplacement of mineralized intrusive phases and breccia bodies.


# 6.2 Property Geology

The Galore Creek intrusive-volcanic complex is composed of multiple intrusions emplaced into volcanic and sedimentary rocks of similar composition. Country rocks to the syenite intrusions are volcanic flows and volcaniclastic sediments, with subordinate greywacke, siltstone and local conglomerate (Enns et al., 1995). Augite-bearing volcanic flows and tuffs underlie and are interbedded with the pseudoleucite-bearing and orthoclase-bearing flows, tuffaceous and fragmental units, which are prominent in the south and southwest parts of the complex (Enns et al., 1995). Multiple alkali syenite intrusive phases occur in the complex and are divided into the pre- to syn-mineralization intrusives (i1 to i4), syn- to post-mineralization intrusives (i5 to i9) and post-mineralization intrusives (i10 to i12). The complex is centered in the west fork of



Galore Creek and is approximately 5 kilometres in length and 2 kilometres in width. To date, twelve copper-gold-silver mineralized zones have been identified on the property. Most zones, including the Central, North Junction, Junction, Middle Creek, West Rim, Butte and South 110, occur in highly altered volcanic rocks and to a lesser degree in syenite intrusions. The Southwest, Opulent, and Saddle zones are hosted by breccias and the North Rim and West Fork zones occur within syenite intrusions.

**Figure 4: Geological map of the Copper Canyon and Galore Creek area** (adapted from Enns et al., 1995, and Logan and Koyanagi, 1994, by Twelker, 2007).





## 6.3 Galore Creek Lithologic Descriptions

The following section is summarized from Workman (2011) to describe Galore Creek deposit lithologies encountered during the 2016 geochemical sampling program:

## **VOLCANIC ROCKS**

## (V1) AUGITE-BEARING VOLCANICS:

Augite-bearing flows contain porphyritic and, infrequently, amygdaloidal textures. Augite phenocrysts vary in size from 2-5 mm and are generally euhedral to subhedral, stubby and dark green to black. They comprise up to 30% of the rock and are supported in a medium to dark green, aphanitic groundmass. The augite phenocrysts are usually altered to biotite, epidote and chlorite. Locally, strong garnet-biotite-orthoclase alteration is also observed. Interbedded with the augite bearing flows are augitebearing volcaniclastics in the form of fine and coarse lapilli tuffs, tuff breccias and flow breccias, containing subangular to subrounded fragments of augite porphyry. These volcaniclastics are generally matrix supported.

## (V2) PSEUDOLEUCITE-BEARING VOLCANICS:

The original textures are often obliterated by intense orthoclase and sericite alteration. Copper/gold mineralization appears to occur preferentially in these rocks. In unaltered areas, euhedral and broken pseudoleucite phenocrysts up to 1.5 cm occur within a bluish grey to salmon pink groundmass. These phenocrysts often exhibit orthoclasesericite altered cores. Rims are sometimes altered to sericite, magnetite and chlorite.

## (V3) ORTHOCLASE-BEARING VOLCANICS:

Orthoclase-bearing volcanics are predominantly fine to coarse crystal lithic tuffs, with possible subordinate flows. They are often strongly mineralized with disseminated bornite, chalcopyrite and gold. They appear to be cogenetic and coeval with dark syenite porphyry intrusives, which may be their subvolcanic equivalents. The crystal fragments in the tuffs are broken orthoclase shards up to 7 mm across and are supported by a highly altered biotite-orthoclase +/- garnet-anhydrite matrix. Rare bedding is preserved locally.



# **UNDIFFERENTIATED VOLCANICS (V4, V5, V6)**

In some areas, intense alteration has obliterated original textures resulting in the more vague classification of "undifferentiated volcanics". Such rocks have been classified on the basis of colour and association.

## (V4) MAFIC VOLCANICS:

Mafic volcanic rocks (V4) are dark green, chloritic flows and tuffs, common in the north part of the Central Zone. These are interbedded, and may in part be correlated with, unit V1 (augite-bearing volcanics). Porphyritic and amygdaloidal flow textures have been preserved locally and volcanic clasts are sometimes preserved in pyroclastic rocks.

## (V5) INTERMEDIATE VOLCANICS:

Intermediate volcanic rocks (V5) are very common in the Central Zone. These rocks are medium greenish grey volcaniclastics and flows, and may be aphyric equivalents of the pseudoleucite bearing volcanic units. Included in this unit are possible trachy-andesites containing subrounded orthoclase phyric fragments. Aphanitic volcanic clasts up to 3 cm across have also been observed within a fine grained to aphanitic matrix. Secondary biotite occurs both as a spotted to patchy alteration and as coarse aggregates and veins.

## (V6) FELSIC VOLCANICS:

Intense orthoclase flooding has resulted in pale grey, felsic volcanic rocks (V6) which are fine to medium grained volcaniclastics and flows. V6 rocks are present in the north and central part of the Central Zone, often interbedded with pseudoleucite volcanic rocks which may be their equivalent.

## **INTRUSIVE ROCKS**

## (i6/i8) EQUIGRANULAR AND PORPHYRITIC SYENITES:

This closely related family of syenites occur as tabular and irregular, anastomosing, steep dikes. They are distinguished primarily on matrix and phenocryst size differences.

Fine grained syenite (i6) is a medium green-grey, equigranular, fine grained intergrowth of orthoclase, altered hornblende and epidote.



Fine grained syenite porphyry (i7) is greenish grey, and composed of 2-5%, 2-10 millimetre, subhedral, tabular, and equant orthoclase phenocrysts set in a greenish, often epidote rich, fine grained groundmass of orthoclase, altered hornblende, and epidote. The rock is locally crystal poor, and texturally equivalent to i6 and i8.

Medium grained syenite (i8) is a medium green to grey, equigranular intergrowth of orthoclase, altered hornblende, epidote, and rare 2-5 millimetre orthoclase phenocrysts.



# 7.0 GEOCHEMICAL SAMPLING AND PETROGRAPHIC ANALYSIS

## 7.1 Introduction

The 2016 geochemical sampling program at Galore Creek was carried out on August 6<sup>th</sup>, 2016. The sampling program consisted of seven (7) rock outcrop samples taken for ICP-MS and two (2) samples collected for petrographic analysis within the Saddle Zone. The Saddle Zone is located on a ridge overlooking the west fork of the Galore Creek valley, approximately 2.5km to the southeast of Galore Creek's main Central Zone deposit, and on the ridge east of the Bountiful deposit. The southern extent of the Saddle zone is marked by glacial ice.

The following description of the Saddle zone is excerpted from Yarrow & Taylor (1990):

The Saddle Zone occurs above treeline on a steep west facing slope near the southeast corner of the property. The zone is comprised of a magnetite cemented intrusive fragment breccia containing varying amounts of chalcopyrite, malachite and bornite with associated gold values. In plan it has a rough oval shape with approximate dimensions of 110 meters by 60 meters. Actual breccia-country rock contacts are obscured by rock scree and rubble.

In 2015, nine (9) ICP-MS and one lithogeochem sample were collected over two days by GCMC. These samples identified anomalous copper, silver and gold values to the south of the magnetite-breccia zone identified in Mingold's 1990 report. One sample at the southern edge of claim 516165 return a gold value of 4.63ppm Au in a strongly k-feldspar altered, pyritic syenite. Alteration is strongly texturally destructive, and the rock type was identified as intrusive through petrographic work (See Section 7.3 and Appendix VI). The southern extent of the alteration is under glacier cover, and more will continue to be exposed in the future due to the southward retreat of the glacier. The alteration style and precious metal content indicate the potential for previously unidentified porphyry or epithermal style mineralization in the southern Saddle zone.

The main objectives of the sampling program were to define the extents of gold mineralization and favourably altered rock identified during the 2015 program, to characterize the alteration style and history of the newly identified mineralization, and to follow the contact between the host rock syenite and the i8 unit. The i8 unit is a medium grained, equigranular syenite which post-dates mineralization in the Central zone of the Galore Creek deposit.



Seven rock outcrop or sub-crop samples were collected during the 2016 sampling program by geologists Alicia Carpenter and Sarah Henderson. All of the samples were collected for ICP multi-element analysis, and two samples identified as having favourable alteration styles were collected for petrographic analysis.

At each ICP sample location, approximately 1 kg of rock was chipped using a hammer and collected for assay. ICP samples were taken from outcrops suspected to have anomalous base or precious metal content, and if significant changes in alteration was observed. A waypoint was taken at each sample location using a handheld GPS, and all samples were given field descriptions of lithology, alteration and mineralization where present. Samples were bagged in poly sample bags, zap strapped, and flown to Bell II Lodge, where they were stored in a secure location until shipment.

Samples were shipped to ALS Minerals Laboratories in North Vancouver for preparation and analysis. Sample preparation consisted of typical drying, crushing, splitting, and pulverizing (Prep Code PREP-31). The eight ICP samples were assayed by aqua regia digestion using a 51-element ICP-MS and ICP-AES analytical package at ALS (ME-MS41). Gold assays were performed by fire assay with an atomic absorption finish (Au-AA23). Standards and Blanks were inserted into the sample batch to maintain geochemical quality control. Please see Appendix V for details of ALS analytical and QA/QC procedures.

The petrographic samples were shipped to Vancouver Petrographics Ltd. in Langley B.C, where polished thin sections were prepared, with the offcuts stained to identify the presence of K-feldspar. The prepared sections and offcuts were shipped to Blue Metal Resources Inc. in Squamish BC, for thin section analysis.

Locations and types of all samples collected during the 2016 field program can be found in Table 5 below.

| WPT # | UTM_E* | UTM_N*  | Elevation | Sample Type(s)     | Sample #   | Claim # |
|-------|--------|---------|-----------|--------------------|------------|---------|
| 902   | 352905 | 6331829 | 1568      | ICP                | 2016SA0902 | 516165  |
| 903   | 352883 | 6331836 | 1571      | ICP (5m chip)      | 2016SA0903 | 516165  |
| 905   | 352962 | 6331867 | 1543      | ICP                | 2016SA0905 | 516165  |
| 906   | 352905 | 6331871 | 1545      | ICP                | 2016SA0906 | 516165  |
| 907   | 352881 | 6331903 | 1553      | ICP + Petrographic | 2016SA0907 | 516165  |

# Table 5: 2016 Galore Creek Geochemical and Geological Sample Locations



| WPT # | UTM_E* | UTM_N*  | Elevation | Sample Type(s)     | Sample #   | Claim # |
|-------|--------|---------|-----------|--------------------|------------|---------|
| 908   | 352767 | 6331955 | 1528      | ICP + Petrographic | 2016SA0908 | 516165  |
| 910   | 352672 | 6332088 | 1482      | ICP                | 2016SA0910 | 516165  |

\*UTM NAD 83, Zone 9

## 7.2 Summary of Geochemical Results

The following section describes the lithology, alteration and mineralization present for each sample taken, as well as the geochemical results of the rock samples taken on the GCMC claims (from Table 5). ALS assay certificates are located in Appendix IV. A map of the locations of the geochemical samples can be found in Figure 3.

The seven samples taken represent the three main lithology and alteration types: Three samples were collected from the main zone of interest, a resistant ridge of intensely k-spar altered syenite-monzonite containing 5-20% disseminated pyrite, three samples were collected from chlorite-sericite-calcite altered mafic volcanic fragmental rocks located to the east of the syenite, and one sample was collected from the copper rich contact between the syenite to the east, and i8 to the west.

# 7.2.1 ICP Sampling

Sample descriptions, and copper, gold, and silver assay results from the seven samples collected are presented below in Table 6.

Four of the seven samples collected during the 2016 field program returned significant gold values (2016SA0903, 907, 908, and 910). Samples 903, 907, and 908 are along a 200m trend of intensely k-feldspar altered syenite to monzonite containing 10-20% fine grained disseminated and vein hosted pyrite, with traces of chalcopyrite and galena disseminated and along fractures. These rocks form an oxidized, resistant ridge trending N-NW. Au assay values associated with this alteration range from 1.055ppm to 5.52ppm Au. The highest value of 5.52ppm Au was obtained from a 5m chip sample, 5m west of a brecciated, pyrite rich shear contact with volcanic rocks lying to the east. The chip sample (2016SA0903) was collected at the location of a 4.63ppm Au sample (2015) to see if gold grades from the 2015 program were repeatable using different sample methods.



The last anomalous Au value of 0.49ppm Au from sample 910 is associated with a sharp contact between the i8 unit, a medium grained equigranular syenite to the west, and the zone of pyritized, strongly k-feldspar syenite to the east. The i8 unit contains magnetite disseminated, in pods, and in veins 0.2-3cm thick. Magnetite-pyrite-chalcopyrite-malachite veins, with epidote alteration selvages, are spatially associated with the contact. Sample 910 contains the highest Cu grades, at 0.80% Cu due to the presence of chalcopyrite and pyrite in the veins.

Within the K-feldspar altered syenite samples (2016SA0903, 907, and 908) Cu values are slightly anomalous, ranging from 62-190ppm Cu and appear to be proportional to the gold grade. Trace chalcopyrite was observed within two of these samples. Chlorite-sericite-calcite altered volcanics define the eastern extent of sampling and two samples (2016SA0902, 906) returned elevated Cu values.

Six of the seven samples collected returned anomalous silver values, (2016SA0902, 903, 906, 907, 908, and 910). In the altered syenite these grades are directly proportional to the Au values, and sample 907 contained trace disseminated galena and tetrahedrite visible in thin section (see Appendix VI). Sample 2016SA0908 located along the contact between the mineralized syenite to the east, and equigranular syenite to the west, yielded an anomalous Ag value of 2.06ppm. Electrum was found during petrographic analysis of sample 2016SA0908 (see Appendix VI).

Anomalous gold assays returned from the strongly k-feldspar altered syenite in samples 2016SA0903, 907, and 908, also display anomalous arsenic values in the range of 100-200pm, and are related to increased pyrite concentrations in the host rock, and the presence of tennanite (Appendix VI). This suggests that the elevated gold is also associated with pyrite.

| UTM_E* | UTM_N*  | Sample #   | Description                                      |       | Cu    | Ag   |
|--------|---------|------------|--------------------------------------------------|-------|-------|------|
|        |         |            |                                                  | ppm   | ppm   | ppm  |
| 352905 | 6331829 | 2016SA0902 | ICP-GRAB Chl, ser altered outcrop, texturally    | 0.008 | 189.5 | 0.35 |
|        |         |            | destroyed (possibly Stuhini volcanic?).          |       |       |      |
|        |         |            | Moderate carbonate alt. Very magnetic. ~1%       |       |       |      |
|        |         |            | pyrite disseminated, +/- minor cpy.              |       |       |      |
| 352883 | 6331836 | 2016SA0903 | ICP-5m CHIP Same weathered + altered             | 5.52  | 272   | 3.24 |
|        |         |            | (pyritized) outcrop as 2015SA0853a. 5m chip      |       |       |      |
|        |         |            | sample taken for representation of               |       |       |      |
|        |         |            | mineralization. Alteration (kspar flooding? +    |       |       |      |
|        |         |            | carb + py + qtz?). ~10-20% disseminated, fine to |       |       |      |
|        |         |            | medium grained py. Some cpy visible on           |       |       |      |
|        |         |            | fractures (trace – weak).                        |       |       |      |

Table 6: 2016 Galore Creek Claims Sampling and Results



| UTM_E* | UTM_N*  | Sample #   | Description                                          | Au    | Cu    | Ag   |
|--------|---------|------------|------------------------------------------------------|-------|-------|------|
|        |         |            |                                                      | ppm   | ppm   | ppm  |
| 352962 | 6331867 | 2016SA0905 | ICP-GRAB Outcrop east of the Saddle zone             | 0.017 | 45.3  | 0.08 |
|        |         |            | ridge. Carbonate altered, grey-green volcanic        |       |       |      |
|        |         |            | with lapilli. Weakly mag altered (weaker than        |       |       |      |
|        |         |            | previous outcrops). Little to no pyrite or cpy       |       |       |      |
|        |         |            | mineralization. Much of the area around this         |       |       |      |
|        |         |            | outcrop is covered by glacial till - o/c is at the   |       |       |      |
|        |         |            | toe of a retreating glacier. Photo 0537 taken of     |       |       |      |
|        |         |            | outcrop.                                             |       |       |      |
| 352905 | 6331871 | 2016SA0906 | ICP-GRAB Foliated, weakly sheared unit. Same         | 0.008 | 172.5 | 0.36 |
|        |         |            | as the other altered grey-green, volcanic in the     |       |       |      |
|        |         |            | area. Stuhini volcanic                               |       |       |      |
| 352881 | 6331903 | 2016SA0907 | ICP-GRAB Light-grey, silicified (?) unit (identified | 1.605 | 93.7  | 1.4  |
|        |         |            | by petrographic work as syenite, Appendix VI).       |       |       |      |
|        |         |            | ~10% disseminated + blebby pyrite. Rarer             |       |       |      |
|        |         |            | disseminated cpy (<1%). Rare, disseminated,          |       |       |      |
|        |         |            | silver metallic mineral (galena?). Outcrop is a      |       |       |      |
|        |         |            | resistant, oxidized ridge amongst much glacial       |       |       |      |
|        |         |            | till. Sample taken for ICP assaying, and for         |       |       |      |
|        |         |            | petrographic analysis (is silica present in the      |       |       |      |
|        |         |            | groundmass?)                                         |       |       |      |
| 352767 | 6331955 | 2016SA0908 | ICP-GRAB Light-grey green, altered unit with         | 1.055 | 61.6  | 1.66 |
|        |         |            | 0.2-0.5cm kspar shards/crystals. (Petrography        |       |       |      |
|        |         |            | identified unit as monzonite porphyry. Appendix      |       |       |      |
|        |         |            | VI). Outcrop looks bleached (by kspar or qtz?).      |       |       |      |
|        |         |            | Same unit as seen as WPT 907. 1-5% fine-             |       |       |      |
|        |         |            | grained pyrite and rarer disseminated cpy. Qtz       |       |       |      |
|        |         |            | (?)+carb veins in o/c with malachite, azurite        |       |       |      |
|        |         |            | and chalcopyrite. Petrographic sample taken.         |       |       |      |
| 352672 | 6332088 | 2016SA0910 | ICP-GRAB Contact between pyrite-rich, light-         | 0.49  | 8050  | 2.06 |
|        |         |            | grey, orthoclase phyric, qtz-kspar-ser-py altered    |       |       |      |
|        |         |            | unit with Qtz + Py +/- cpy +/- mal veins, and        |       |       |      |
|        |         |            | mod-strongly epidote altered i8 (equigranular        |       |       |      |
|        |         |            | syenite) unit. Moderate to strong magnetite in       |       |       |      |
|        |         |            | i8 unit occurs disseminated, in pods, and in         |       |       |      |
|        |         |            | veins 0.2-3cm thick. In i8 syenite mag +/- py +/-    |       |       |      |
|        |         |            | malachite veins with epidote selvages. The           |       |       |      |
|        |         |            | volcanic unit is very oxidized, the contact          |       |       |      |
|        |         |            | between the volcanic and the syenite is sharp        |       |       |      |
|        |         |            | and units are clearly distinguishable by colour.     |       |       |      |

\*UTM NAD 83, Zone 9





Figure 5: Chip sample location 2016SA903. Strongly oxidized and altered syenite with 10-15% fine grained disseminate pyrite. ICP assay returned significant values. 5.52ppm Au, 272ppm Cu, and 3.24Ag. Follow up location for 2015 sample.

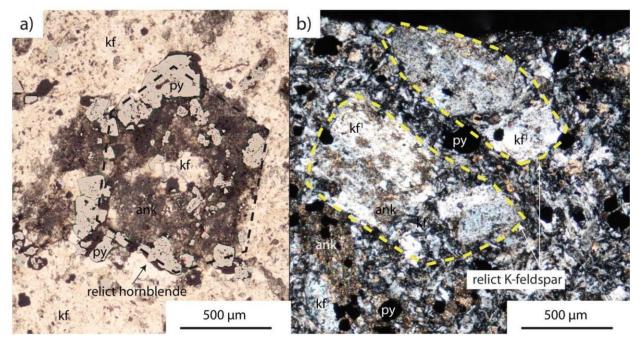


### 7.3 Petrographic Work

Two samples, 2016SA0907, and 2016SA908, were collected for petrographic analysis to support geological interpretation completed during the field program. Both samples were collected from strongly altered, pyrite rich, resistant syenite to monzonite intrusive rocks. Locations of these samples can be viewed in Figure 3. Hand samples of representative rock types were shipped to Vancouver Petrographics in Langley, B.C., where polished thin sections were prepared, then samples were shipped to Blue Metal Resources, in Squamish, BC where petrographic descriptions were completed. Petrographic descriptions excerpted from Febbo's (2016) report are below:

**Summary:** Samples are medium-grained syenite to monzonite porphyry intrusions overprinted by an intense potassic-carbonate alteration related to the introduction of chalcopyrite, sphalerite, tetrahedrite tennantite, and electrum.

**Sample 2016SA0907:** The sample is of a medium-grained, syenite porphyry that cut an earlier K-feldspar-bearing porphyry and hydrothermal silica. Pyrite-sphalerite-chalcopyrite-tetrahedrite/tennantite mineralization is introduced as part of a multiphase ,porphyry-type potassic-carbonate alteration assemblage of ankerite-K-feldspar and lesser quartz-rutile-garnet sericite-albite-apatite-leucoxene-magnetite-rutile.

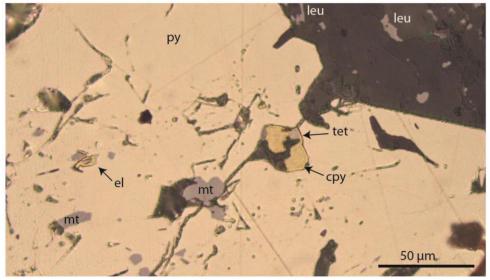

**Sample 2016SA0908:** The sample is of a medium-grained, synmineral monzonite porphyry. The monzonite intrusion cuts early hydrothermal chalcedonic quartz-barite-pyrite and K-feldspar bearing porphyry. The resultant intrusion breccia is overprinted by intense potassic-carbonate alteration that introduces pyrite-chalcopyrite-electrum-tetrahedrite/tennantite mineralization. Main stage potassic-carbonate alteration comprises abundant K-feldspar-ankerite and lesser quartz-magnetite-albite-leucoxene-rutile-titanite. A late stage alteration of anhydrite-quartz sericite/muscovite overprints the potassic-carbonate.

Febbo's work (2016) identified a long lived, multi stage hydrothermal system. Three distinct events were observed and are summarized below:

1) Early stage Qtz-Barite-Pyrite is observed as xenoliths in both samples 907, and 908. This is interpreted as high level epithermal alteration (Thompson and Thompson, 2011).



- 2) "The main alteration stage is a complex, multi-episodic alteration that introduces abundant Kfeldspar and ankerite with lesser magnetite, garnet, quartz, albite, apatite, rutile and titanite. Mineralization associated with the main alteration includes chalcopyrite, sphalerite, tetrahedrite/tennantite, and electrum that overprints the syenite and monzonite intrusions. Micko (2010) distinguishes up to five potassic and calc-potassic alteration types for the Central zone that are analogous both in mineralogy and complexity to the alteration described here." All three vein stages observed in samples 907 and 908 were associated with pervasive calc-potassic alteration.
- 3) Late stage ankerite-anhydrite-sericite-pyrite, observed overprinting magneite. Interpreted as later, lower temperature event similar to the sericite-anhydritecarbonate zone observed in the Central Zone of the Galore Creek Deposit, and described by Micko (2010).




**Figure 6.** Photomicrograph of sample 2016SA0907. a) Relict hornblende defines a faint 6-sided geometry and is completely altered to K-feldspar (kf), pyrite (py) and cal (cal); groundmass is altered to K-feldspar (kf), plane polarized and reflected light. b) Two relict K-feldspar (kf1) phenocrysts are rectangular-shaped, partially replaced to ankerite (ank) and recrystallized K-feldspar (kf2); groundmass is replaced to pyrite (py), K-feldspar (kf1), and ankerite (ank); cross polarized light. (Febbo, 2010)

Both petrographic samples 907 and 908 returned anomalous gold and silver values (1.605ppm Au, 1.4ppm Ag and 1.055ppm Au, 1.66ppm Ag respectively). Pyrite was observed to contain abundant inclusions of chalcopyrite-magnetite and growth of rutile on rims, and is spatially associated with ankerite-rich alteration domains. The petrographic report adds evidence for the



association of gold with pyrite alteration events by the presence of electrum inclusions in pyrite grains in sample 908. Silver grades are related to the presence of electrum and tetrahedrite/tennatite inclusions in pyrite, and in sample 907, tetrahedrite was observed along the vein margins of a quartz, K-feldspar, ankerite, garnet, and pyrite vein.



**Figure 7.** Microphotograph of sample 2016SA0908. Pale grey leucoxene grains (leu) are disseminated in the margin of pyrite grain (py) that is host to magnetite (mt) inclusions, chalcopyrite (cpy)-tetrahedrite/tennantite (tet) inclusion, and one potential electrum (el) inclusion characterized by higher reflectivity than chalcopyrite, reflected light. (Febbo, 2010)

Febbo (2016) states that "mineral textures, alteration assemblages, and high Au:Cu ratios indicate the surface exposures reflect the upper reaches of the porphyry system. The disseminated nature of mineralization, the multi-episodic metasomatism, and the presence of a synmineral porphyry lead to the conclusion that the zone has significant potential in terms of size and economics"



### 8.0 DISCUSSION AND CONCLUSIONS

During the 2016 field season, a total of seven rock samples were collected on the main GCMC claim package, to the southeast and east of the main Galore Creek deposit, for ICP-MS and petrographic analysis.

The purpose of the field work was to follow up on anomalous ICP sampling results from the 2015 field program. Sample 2015SA0853a returned a gold value of 4.63pm Au at the south end of claim 516165 where glacial retreat has recently uncovered new ground. Sampling and prospecting on the ridge directly east of the Bountiful zone was completed in 2016 to assess the extent of mineralization, understand the relationship between the mineralized host rock to its surrounding lithologies, and to gain an understanding of the alteration history in the area.

Three samples with anomalous gold values were collected from a K-feldspar-ankerite altered syenite with 5-20% secondary pyrite. Sample 2016SA0903 is a chip sample collected from the same outcrop as sample 2015SA0853a and returned a similar gold value of 5.52ppm Au. The other two samples also returned significant gold grades. Assay results from the 2016 program indicate the arsenic and silver can be used as an indicator for the presence of significant gold. The petrographic study completed by Febbo (2016) on these latter two samples display an alkalic porphyry style potassic-carbonate assemblage of ankerite-k-feldspar with associated pyrite-chalcopyrite-sphalerite-tetrahedrite and electrum. Although similar to alteration assemblages located in the main zone of the Galore Creek deposit (Micko, 2010), a notable difference is the presence of secondary quartz introduced as veins and intergrown with pyrite associated with potassic-carbonate alteration and the presence of ankerite rather than calcite as the dominant carbonate mineral.

A single high grade copper sample was collected at the contact between the previously mentioned altered syenite, and a later medium grained, equigranular syenite (i8), with sample 910 containing 0.8% Cu. Copper mineralization is spatially associated with the contact and is hosted by quartz-magnetite-pyrite-chalcopyrite veins with epidote alteration selvages. This mineralization style may be related to the magnetite chalcopyrite breccia which was the target of exploration in the Saddle zone in 1990 by Mingold (Yarrow & Taylor, 1990).

Three samples collected from mafic volcanic rocks to the East of the other samples yielded elevated Cu results, but do not appear to host significant mineralization on surface.



Future work should also focus on mapping the extent of the gold-hosting syenite-monzonite porphyritic rocks, and its contacts with both the i8 unit and the mafic volcanics in the area. The i8 contact should be further explored in order to assess its relationship to the mineralized breccia bodies in the Saddle zone reported by Mingold, as well as following up on magnetic anomalies indicated by Yarrow & Taylor (1990) to the northeast of the current study area. A comparison of the alteration assemblages observed in samples collected should be made with analogous deposits, in order to better understand how the area is related to the known porphyry deposits in the area.



## **APPENDIX I**

### REFERENCES



### References

Aiken, J.D. (1959); Atlin Map-area, British Columbia, *Geological Survey of Canada*, Memoir 307, 89 Pages.

Allen, D.G. (1966); Mineralogy of Stikine Copper's Galore Creek Deposits, Unpublished MSc Thesis UBC, 38 Pages.

AMEC (2011); Galore Creek Project British Columbia NI 43-101 Technical Report on Pre-Feasibility Study, prepared by Gill, R., Kulla, G., Wortman, G., Melnyk, J., and Rogers, D.

Barr, D.A. (1966); The Galore Creek Copper Deposits, CIM Bulletin, Vol.59, Pages 841-853.

De Rosen Spence, A. (1985); Shoshonites and Associated Rock of Central British Columbia, *B.C. Ministry of Mines and Petroleum Resources*, Geological Fieldwork 1984, Paper 1985-1, Pages 426-442.

Enns, S.G., Thompson, J.F.H, Stanley, C.R. and Yarrow, E.W (1995); The Galore Creek porphyry copper-gold deposits, Northwestern British Columbia, in *'Porphyry Copper Deposits of the Northern Cordillera'*. ed. by Schroeter, T., Canadian Institute of Mining and Metallurgy Special Volume 46, Paper No. 46, Pages 630-644.

Febbo, G. (2016); Petrography Report 1610A, Report produced for the Galore Creek Mining Corporation, 14 pages.

Henderson, S. (2016); 2015 Geochemical Report on the Galore Creek Property. (AR 35835)

Henderson, S. (2014); 2014 Geochemical Report on the Galore Creek Property. (AR 34980)

Kerr, F.A. (1948); Lower Stikine and Western Iskut River Areas, B.C.; *Geological Survey of Canada*, Memoir 246.

Logan, J.M., Victor, M., Koyanagi and Rhys (1989); Geology and Mineral Occurrences of The Galore Creek Area, NTS 104G/03 and 04, *Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources*, Mineral Resources Division, Geological Survey Branch, Open File 1989-8 (2 sheets).

Micko, J. (2010). The geology and genesis of the Central zone alkali copper –gold porphyry deposit, Galore Creek district, northwestern British Columbia, Canada. Unpublished PhD thesis, the University of British Columbia, 359 p.

Monger, J.W.H. (1970); Upper Palaeozoic Rocks of Western Cordillera and Their Bearing on Cordillera Evolution. *Canadian Journal of Earth Sciences*, Vol. 14, Pages 1832-1859.



Mortensen, J.K., Ghosh, D. and Ferri, F. (1995); U-Pb age constraints of intrusive rocks associated with copper-gold porphyry deposits in the Canadian Cordillera in *Porphyry Copper (* $\pm$ *Au*) *Deposits of the Alkalic Suite – Paper 46*, CIM Special Volume 46, Pages 142-158.

Panteleyev, A. (1975); Galore Creek Map-Area, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1974, Paper 1976-1, pages 79-81.

Pearce, J.A. (1996); In Wyman, D.A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, *Geological Association of Canada*, Short Course Notes 12, Pages 71-113

Simpson, R.G. (2003); Independent Technical Report for the Galore Creek Property, A report prepared for SpectrumGold Inc.

Souther, J.G. (1972); Telegraph Creek Map Area, British Columbia, *Geological Survey of Canada*, Paper 71-44, 38 Pages.

Tipper, H.W., Richards, T.A. (1976); Jurassic Stratigraphy and History of North-Central British Columbia, *Geological Survey of Canada*, Bulletin 270, 73 Pages.

Thompson, A.J.B., and Thompson, J.F.H. (2011). Atlas of alteration: a field guide to hydrothermal alteration minerals, third printing. In: Geological Association of Canada – Mineral DepositsDivision, 119p.

Twelker, E. (2007); A Breccia-centered Ore and Alteration Model for the Copper Canyon Alkalic Cu-Au Porphyry Deposit, British Columbia, Unpublished MSc Thesis, University of Alaska Fairbanks, 139 Pages.

Workman, Erin (2011); 2010 Diamond Drilling Assessment Report on the Galore Creek Property (AR 32119).

Yarrow, E.W., & Taylor, K.J. (1990); Report on Soil, Rock Geochemical Sampling, VLF-EM, Magnetometer and Diamond Drill Surveys on the Galore Creek Group I, II & III Claims (AR 20558A).



## APPENDIX II

## STATEMENT OF EXPENDITURES



# Statement of Expenditures

| Galore Creek Geochemical Sampling program                                    |             |
|------------------------------------------------------------------------------|-------------|
| Period of Field Work: August 6, 2016                                         |             |
| Work Performed on Claims: 516165                                             |             |
|                                                                              |             |
| Indirect Sampling Costs:                                                     |             |
| Helicopter Support – Lake Else Air Ltd                                       |             |
| Long Ranger (\$1,150/hr)                                                     | \$2645      |
| Helicopter Fuel (variable by location)                                       | \$568       |
|                                                                              |             |
| Lodging costs (Bell II):                                                     |             |
| Camp accommodation rate per day: \$198 (2 crew*1 day)                        | \$396       |
| Sample Assaying and Freight Costs:                                           |             |
| ALS Minerals Lab (7 samples)                                                 | \$557.02    |
| Shipping (Bandstra)                                                          | \$100       |
| Petrographic sections and report                                             | \$500       |
| Geochemical Sampling and Report Preparation Costs:                           |             |
| Geologists Sarah Henderson and Alicia Carpenter (Aug 6 <sup>th</sup> , 2016) | \$1258.00   |
| Report preparation (GCMC)                                                    | \$1,674     |
| Subtotal:                                                                    | \$7,621.00  |
| TOTAL WORK AVAILABLE FOR ASSESSMENT CREDIT:                                  | \$7,621.00  |
| FUNDS DEBITED FROM PAC (211373)                                              | \$3,047.64  |
| Total Assessment Work Applied to Mineral Claims:                             | \$10,668.64 |
| Event Number: 5628237                                                        | ,           |



## **APPENDIX III**

## STATEMENT OF QUALIFICATION



I, Alicia N. Carpenter, do hereby certify that:

1. I am a geologist in the minerals exploration industry employed by:

Galore Creek Mining Corporation 3300-550 Burrard Street Vancouver, BC, V6C 0B3

- 2. I graduated from the University of British Columbia, Vancouver, British Columbia, with a Bachelor of Science degree in Earth and Ocean Science in 2007.
- 3. I am a member in good standing of the Association of Professional Engineers and Geologists of British Columbia.
- 4. I have practiced my profession with exploration companies in British Columbia and Nunavut, Canada for eight years.
- 5. I am the author of the '2016 Geological and Geochemical Assessment Report on the Galore Creek Property', dated December, 2016.
- 6. The Assessment Report is based on mapping and sampling conducted by the author and Sarah L. Henderson of the Galore Creek Mining Corporation, historical reports, and from information available from public files.
- 7. I have no interest in the property herein.

Dated at Revelstoke, British Columbia, Canada this 17<sup>th</sup> day of December, 2016.

Alicia N. Carpenter

Galore Creek Mining Corporation 2016 Geochemical and Geological Assessment Report on the Galore Creek Property December, 2016



## **APPENDIX IV**

ASSAY CERTIFICATES (Attached Digitally)



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

## CERTIFICATE VA16134089

Project: Galore Creek

P.O. No.: 13053

This report is for 9 Rock samples submitted to our lab in Vancouver, BC, Canada on 12-AUG-2016.

The following have access to data associated with this certificate:

ALS Canada Ltd.

SARAH HENDERSON

|          | SAMPLE PREPARATION             |
|----------|--------------------------------|
| ALS CODE | DESCRIPTION                    |
| WEI- 21  | Received Sample Weight         |
| LOG- 22  | Sample login - Rcd w/o BarCode |
| CRU- QC  | Crushing QC Test               |
| PUL- QC  | Pulverizing QC Test            |
| CRU- 31  | Fine crushing - 70% < 2mm      |
| SPL- 21  | Split sample - riffle splitter |
| PUL- 31  | Pulverize split to 85% < 75 um |
| LOG-24   | Pulp Login - Rcd w/o Barcode   |

|          | ANALYTICAL PROCEDURES          |     |
|----------|--------------------------------|-----|
| ALS CODE | DESCRIPTION                    |     |
| ME- MS41 | Ultra Trace Aqua Regia ICP- MS |     |
| Au- AA23 | Au 30g FA- AA finish           | AAS |

To: GALORE CREEK MINING CORPORATION ATTN: SARAH HENDERSON SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| Sample Description | Method<br>Analyte<br>Units<br>LOR | WEI- 21<br>Recvd Wt.<br>kg<br>0.02 | Au- AA23<br>Au<br>ppm<br>0.005 | ME- MS41<br>Ag<br>ppm<br>0.01 | ME- MS41<br>Al<br>%<br>0.01 | ME- MS41<br>As<br>ppm<br>0.1 | ME- MS41<br>Au<br>ppm<br>0.2 | ME- MS41<br>B<br>ppm<br>10 | ME- MS41<br>Ba<br>ppm<br>10 | ME- MS41<br>Be<br>ppm<br>0.05 | ME- MS41<br>Bi<br>ppm<br>0.01 | ME- MS41<br>Ca<br>%<br>0.01 | ME- MS41<br>Cd<br>ppm<br>0.01 | ME- MS41<br>Ce<br>ppm<br>0.02 | ME- MS41<br>Co<br>ppm<br>0.1 | ME- MS41<br>Cr<br>ppm<br>1 |
|--------------------|-----------------------------------|------------------------------------|--------------------------------|-------------------------------|-----------------------------|------------------------------|------------------------------|----------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------|
| 2016SA0902         |                                   | 2.80                               | 0.008                          | 0.35                          | 2.24                        | 8.5                          | <0.2                         | <10                        | 300                         | 1.33                          | 0.04                          | 5.37                        | 0.76                          | 19.25                         | 27.1                         | 18                         |
| 2016SA0903         |                                   | 1.16                               | 5.52                           | 3.24                          | 0.51                        | 104.0                        | 6.1                          | <10                        | 20                          | 0.71                          | 0.47                          | 0.98                        | 4.38                          | 14.10                         | 32.1                         | 6                          |
| 2016SA0904         |                                   | 1.16                               | 0.016                          | 0.01                          | 0.06                        | <0.1                         | <0.2                         | <10                        | 10                          | < 0.05                        | 0.01                          | >25.0                       | 0.02                          | 0.24                          | 0.5                          | <1                         |
| 2016SA0905         |                                   | 1.72                               | 0.017                          | 0.08                          | 1.45                        | 4.9                          | <0.2                         | <10                        | 330                         | 1.08                          | 0.03                          | 5.46                        | 0.21                          | 21.8                          | 19.6                         | 10                         |
| 2016SA0906         |                                   | 1.74                               | 0.008                          | 0.36                          | 2.57                        | 21.5                         | <0.2                         | <10                        | 140                         | 1.12                          | 0.58                          | 0.33                        | 0.11                          | 16.65                         | 13.3                         | 21                         |
| 2016SA0907         |                                   | 2.68                               | 1.605                          | 1.40                          | 0.33                        | 240                          | 1.3                          | <10                        | 40                          | 0.37                          | 0.05                          | 3.90                        | 15.75                         | 12.40                         | 22.5                         | 6                          |
| 2016SA0908         |                                   | 2.88                               | 1.055                          | 1.66                          | 0.30                        | 190.5                        | 0.9                          | <10                        | 30                          | 0.36                          | 0.02                          | 3.89                        | 0.67                          | 13.35                         | 21.8                         | 5                          |
| 2016SA0909         |                                   | 0.88                               | 0.175                          | 0.29                          | 0.66                        | 6.6                          | 0.2                          | 10                         | 270                         | 1.25                          | 0.01                          | 4.78                        | 0.49                          | 20.8                          | 19.9                         | 1                          |
| 2016SA0910         |                                   | 0.14                               | 0.490                          | 2.06                          | 1.91                        | 23.3                         | 0.4                          | <10                        | 270                         | 0.45                          | 5.17                          | 1.11                        | 0.16                          | 51.7                          | 19.4                         | 77                         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS41<br>Cs<br>ppm<br>0.05 | ME- MS41<br>Cu<br>ppm<br>0.2 | ME- MS41<br>Fe<br>%<br>0.01 | ME- MS41<br>Ga<br>ppm<br>0.05 | ME- MS41<br>Ge<br>ppm<br>0.05 | ME- MS41<br>Hf<br>ppm<br>0.02 | ME- MS41<br>Hg<br>ppm<br>0.01 | ME- MS41<br>In<br>ppm<br>0.005 | ME- MS41<br>K<br>%<br>0.01 | ME- MS41<br>La<br>ppm<br>0.2 | ME- MS41<br>Li<br>ppm<br>0.1 | ME- MS41<br>Mg<br>%<br>0.01 | ME- MS41<br>Mn<br>ppm<br>5 | ME- MS41<br>Mo<br>ppm<br>0.05 | ME- MS41<br>Na<br>%<br>0.01 |
|--------------------|-----------------------------------|-------------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|
| 2016SA0902         |                                   | 0.94                          | 189.5                        | 7.20                        | 12.15                         | 0.15                          | 0.05                          | <0.01                         | 0.040                          | 0.30                       | 9.5                          | 17.0                         | 2.67                        | 2860                       | 1.41                          | 0.02                        |
| 2016SA0903         |                                   | 0.46                          | 272                          | 6.76                        | 2.52                          | 0.05                          | 0.06                          | 0.22                          | 0.055                          | 0.42                       | 6.6                          | 6.3                          | 0.24                        | 4350                       | 9.18                          | 0.02                        |
| 2016SA0904         |                                   | < 0.05                        | 3.2                          | 0.08                        | 0.09                          | <0.05                         | < 0.02                        | <0.01                         | <0.005                         | <0.01                      | <0.2                         | 0.4                          | 1.80                        | 39                         | 0.23                          | 0.01                        |
| 2016SA0905         |                                   | 0.62                          | 45.3                         | 5.25                        | 7.39                          | 0.05                          | 0.04                          | <0.01                         | 0.041                          | 0.25                       | 12.4                         | 18.6                         | 1.84                        | 2630                       | 0.49                          | 0.03                        |
| 2016SA0906         |                                   | 1.05                          | 172.5                        | 7.93                        | 14.10                         | 0.14                          | 0.13                          | 0.01                          | 0.047                          | 0.32                       | 8.6                          | 22.4                         | 2.72                        | 665                        | 2.60                          | 0.02                        |
| 2016SA0907         |                                   | 0.23                          | 93.7                         | 4.61                        | 2.40                          | <0.05                         | 0.03                          | 0.56                          | 0.059                          | 0.32                       | 6.3                          | 2.3                          | 1.20                        | 5240                       | 2.79                          | 0.01                        |
| 2016SA0908         |                                   | 0.22                          | 61.6                         | 5.54                        | 2.21                          | <0.05                         | 0.07                          | 0.07                          | 0.029                          | 0.32                       | 7.2                          | 2.7                          | 1.33                        | 4290                       | 9.12                          | 0.01                        |
| 2016SA0909         |                                   | 0.78                          | 129.5                        | 4.57                        | 1.45                          | 0.05                          | <0.02                         | 0.02                          | 0.060                          | 0.52                       | 10.9                         | 1.1                          | 1.42                        | 1500                       | 0.37                          | 0.02                        |
| 2016SA0910         |                                   | 8.17                          | 8050                         | 5.08                        | 8.30                          | 0.16                          | 0.38                          | 0.03                          | 0.567                          | 0.95                       | 25.9                         | 29.7                         | 1.20                        | 381                        | 215                           | 0.14                        |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS41<br>Nb<br>ppm<br>0.05 | ME- MS41<br>Ni<br>ppm<br>0.2 | ME- MS41<br>P<br>ppm<br>10 | ME- MS41<br>Pb<br>ppm<br>0.2 | ME- MS41<br>Rb<br>ppm<br>0.1 | ME- MS41<br>Re<br>ppm<br>0.001 | ME- MS41<br>S<br>%<br>0.01 | ME- MS41<br>Sb<br>ppm<br>0.05 | ME- MS41<br>Sc<br>ppm<br>0.1 | ME- MS41<br>Se<br>ppm<br>0.2 | ME- MS41<br>Sn<br>ppm<br>0.2 | ME- MS41<br>Sr<br>ppm<br>0.2 | ME- MS41<br>Ta<br>ppm<br>0.01 | ME- MS41<br>Te<br>ppm<br>0.01 | ME- MS41<br>Th<br>ppm<br>0.2 |
|--------------------|-----------------------------------|-------------------------------|------------------------------|----------------------------|------------------------------|------------------------------|--------------------------------|----------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|
| 2016SA0902         |                                   | 0.05                          | 14.0                         | 2460                       | 12.5                         | 22.9                         | <0.001                         | 0.13                       | 0.53                          | 29.0                         | 0.8                          | 0.3                          | 238                          | <0.01                         | 0.08                          | 0.9                          |
| 2016SA0903         |                                   | 0.07                          | 14.2                         | 2590                       | 233                          | 21.9                         | 0.004                          | 3.18                       | 3.72                          | 23.2                         | 5.7                          | 0.2                          | 89.6                         | <0.01                         | 0.38                          | 0.7                          |
| 2016SA0904         |                                   | <0.05                         | 0.3                          | 50                         | 1.1                          | 0.2                          | 0.001                          | 0.11                       | < 0.05                        | 0.3                          | 0.2                          | <0.2                         | 5090                         | <0.01                         | 0.02                          | <0.2                         |
| 2016SA0905         |                                   | <0.05                         | 10.3                         | 2310                       | 5.9                          | 18.1                         | <0.001                         | 0.04                       | 0.56                          | 17.1                         | 0.7                          | 0.2                          | 229                          | <0.01                         | <0.01                         | 1.1                          |
| 2016SA0906         |                                   | 0.17                          | 11.7                         | 2460                       | 51.3                         | 22.2                         | 0.003                          | 1.66                       | 0.44                          | 29.8                         | 4.0                          | 0.4                          | 55.2                         | <0.01                         | 0.49                          | 0.9                          |
| 2016SA0907         |                                   | 0.06                          | 11.7                         | 1990                       | 115.0                        | 13.4                         | <0.001                         | 3.61                       | 3.80                          | 18.4                         | 0.9                          | <0.2                         | 139.5                        | <0.01                         | 0.32                          | 1.0                          |
| 2016SA0908         |                                   | 0.06                          | 9.4                          | 2110                       | 40.7                         | 14.5                         | <0.001                         | 4.96                       | 5.28                          | 16.6                         | 1.2                          | <0.2                         | 125.5                        | <0.01                         | 0.41                          | 0.8                          |
| 2016SA0909         |                                   | <0.05                         | 3.2                          | 1970                       | 20.0                         | 19.4                         | 0.001                          | 0.03                       | 3.76                          | 12.7                         | 0.8                          | <0.2                         | 234                          | <0.01                         | 0.01                          | 0.9                          |
| 2016SA0910         |                                   | 1.17                          | 34.7                         | 990                        | 19.1                         | 104.5                        | 0.003                          | 0.98                       | 1.04                          | 7.4                          | 8.7                          | 9.8                          | 64.1                         | <0.01                         | 0.14                          | 15.0                         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS41<br>Ti<br>%<br>0.005 | ME- MS41<br>Tl<br>ppm<br>0.02 | ME- MS41<br>U<br>ppm<br>0.05 | ME- MS41<br>V<br>ppm<br>1 | ME- MS41<br>W<br>ppm<br>0.05 | ME- MS41<br>Y<br>ppm<br>0.05 | ME- MS41<br>Zn<br>ppm<br>2 | ME- MS41<br>Zr<br>ppm<br>0.5 |
|--------------------|-----------------------------------|------------------------------|-------------------------------|------------------------------|---------------------------|------------------------------|------------------------------|----------------------------|------------------------------|
| 2016SA0902         |                                   | 0.045                        | 0.28                          | 0.28                         | 337                       | 0.37                         | 9.06                         | 274                        | 1.8                          |
| 2016SA0903         |                                   | 0.016                        | 0.42                          | 0.35                         | 99                        | 0.91                         | 8.74                         | 391                        | 1.9                          |
| 2016SA0904         |                                   | <0.005                       | <0.02                         | 1.44                         | 2                         | <0.05                        | 0.30                         | 2                          | <0.5                         |
| 2016SA0905         |                                   | 0.019                        | 0.13                          | 0.52                         | 180                       | 0.27                         | 12.50                        | 123                        | 1.4                          |
| 2016SA0906         |                                   | 0.110                        | 0.26                          | 0.41                         | 344                       | 0.37                         | 8.23                         | 185                        | 2.7                          |
| 2016SA0907         |                                   | <0.005                       | 0.27                          | 0.33                         | 62                        | 0.95                         | 8.18                         | 1050                       | 1.4                          |
| 2016SA0908         |                                   | <0.005                       | 0.52                          | 0.72                         | 100                       | 1.61                         | 9.05                         | 155                        | 2.5                          |
| 2016SA0909         |                                   | <0.005                       | 0.08                          | 0.32                         | 54                        | 0.95                         | 11.25                        | 119                        | <0.5                         |
| 2016SA0910         |                                   | 0.315                        | 0.59                          | 3.92                         | 112                       | 1.96                         | 15.20                        | 124                        | 10.2                         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

|                    |                                       | CERTIFICATE CON                                                                                                | IMENTS                                                        |                    |  |  |  |  |  |  |  |  |  |
|--------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| Applies to Method: | Gold determinations by th<br>ME- MS41 |                                                                                                                | <b>TICAL COMMENTS</b> to the small sample weight used (0.5g). |                    |  |  |  |  |  |  |  |  |  |
|                    |                                       | LABORATORY ADDRESSES<br>Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. |                                                               |                    |  |  |  |  |  |  |  |  |  |
| Applies to Method: | Au- AA23<br>LOG- 24<br>SPL- 21        | CRU- 31<br>ME- MS41<br>WEI- 21                                                                                 | CRU- QC<br>PUL- 31                                            | LOG- 22<br>PUL- QC |  |  |  |  |  |  |  |  |  |
|                    |                                       |                                                                                                                |                                                               |                    |  |  |  |  |  |  |  |  |  |
|                    |                                       |                                                                                                                |                                                               |                    |  |  |  |  |  |  |  |  |  |
|                    |                                       |                                                                                                                |                                                               |                    |  |  |  |  |  |  |  |  |  |
|                    |                                       |                                                                                                                |                                                               |                    |  |  |  |  |  |  |  |  |  |
|                    |                                       |                                                                                                                |                                                               |                    |  |  |  |  |  |  |  |  |  |
|                    |                                       |                                                                                                                |                                                               |                    |  |  |  |  |  |  |  |  |  |
|                    |                                       |                                                                                                                |                                                               |                    |  |  |  |  |  |  |  |  |  |



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

QC CERTIFICATE VA16134089

Project: Galore Creek

P.O. No.: 13053

This report is for 9 Rock samples submitted to our lab in Vancouver, BC, Canada on 12-AUG-2016.

The following have access to data associated with this certificate:

ALS Canada Ltd.

SARAH HENDERSON

|          | SAMPLE PREPARATION             |
|----------|--------------------------------|
| ALS CODE | DESCRIPTION                    |
| WEI- 21  | Received Sample Weight         |
| LOG- 22  | Sample login - Rcd w/o BarCode |
| CRU- QC  | Crushing QC Test               |
| PUL- QC  | Pulverizing QC Test            |
| CRU- 31  | Fine crushing - 70% < 2mm      |
| SPL- 21  | Split sample - riffle splitter |
| PUL- 31  | Pulverize split to 85% < 75 um |
| LOG- 24  | Pulp Login - Rcd w/o Barcode   |

|                      | ANALYTICAL PROCEDURES                                  |     |
|----------------------|--------------------------------------------------------|-----|
| ALS CODE             | DESCRIPTION                                            |     |
| ME- MS41<br>Au- AA23 | Ultra Trace Aqua Regia ICP- MS<br>Au 30g FA- AA finish | AAS |

To: GALORE CREEK MINING CORPORATION ATTN: SARAH HENDERSON SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| Method<br>Analyte<br>Units<br>LOR                                                                                                                                                                                                                                                         | Au- AA23<br>Au<br>ppm<br>0.005            | ME- MS41<br>Ag<br>ppm<br>0.01                                                                  | ME- MS41<br>Al<br>%<br>0.01                                                                  | ME- MS41<br>As<br>ppm<br>0.1                                                                 | ME- MS41<br>Au<br>ppm<br>0.2                                                                           | ME- MS41<br>B<br>ppm<br>10                                                         | ME- MS41<br>Ba<br>ppm<br>10                                                  | ME- MS41<br>Be<br>ppm<br>0.05                                                  | ME- MS41<br>Bi<br>ppm<br>0.01                                                                                                 | ME- MS41<br>Ca<br>%<br>0.01                                                                                                                                | ME- MS41<br>Cd<br>ppm<br>0.01                                                                                          | ME- MS41<br>Ce<br>ppm<br>0.02                                                                | ME- MS41<br>Co<br>ppm<br>0.1                                                                          | ME- MS41<br>Cr<br>ppm<br>1                                            | ME- MS41<br>Cs<br>ppm<br>0.05                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                           |                                           |                                                                                                |                                                                                              |                                                                                              |                                                                                                        | STAN                                                                               | DARDS                                                                        |                                                                                |                                                                                                                               |                                                                                                                                                            |                                                                                                                        |                                                                                              |                                                                                                       |                                                                       |                                                                                                                                                          |
| MRGeo08<br>Target Range - Lower Bound<br>OGGeo08<br>Target Range - Lower Bound<br>Upper Bound<br>OREAS 503b<br>Target Range - Lower Bound<br>Upper Bound<br>OREAS 905<br>Target Range - Lower Bound<br>Upper Bound<br>OREAS 920<br>Target Range - Lower Bound<br>Upper Bound<br>OREAS 920 | 0.706<br>0.648<br>0.742<br>2.23           | 4.21<br>4.00<br>4.92<br>19.15<br>18.15<br>22.2<br>0.50<br>0.45<br>0.58<br>0.09<br>0.07<br>0.12 | 2.60<br>2.44<br>3.00<br>2.24<br>2.05<br>2.53<br>0.82<br>0.73<br>0.91<br>2.49<br>2.18<br>2.68 | 31.7<br>29.6<br>36.4<br>121.5<br>107.0<br>131.0<br>33.1<br>28.4<br>35.0<br>5.0<br>3.8<br>4.9 | <0.2<br><0.2<br>0.4<br><0.2<br><0.2<br>0.4<br>0.4<br><0.2<br>0.8<br><0.2<br>0.8<br><0.2<br><0.2<br>0.4 | <10<br><10<br>20<br><10<br>30<br><10<br><10<br>20<br><10<br><10<br>20<br><10<br>20 | 430<br>370<br>530<br>90<br>60<br>110<br>240<br>200<br>300<br>80<br>50<br>110 | $\begin{array}{c} 0.73 \\ 0.67 \\ 0.95 \\ 0.81 \\ 0.61 \\ 0.89 \\ \end{array}$ | $\begin{array}{c} 0.66\\ 0.60\\ 0.76\\ 10.80\\ 9.44\\ 11.55\\ \hline\\ 5.84\\ 5.16\\ 6.32\\ 1.58\\ 0.60\\ 0.76\\ \end{array}$ | $\begin{array}{c} 1.08 \\ 1.00 \\ 1.24 \\ 0.91 \\ 0.82 \\ 1.02 \\ \end{array}$ $\begin{array}{c} 0.35 \\ 0.29 \\ 0.38 \\ 0.35 \\ 0.28 \\ 0.37 \end{array}$ | 2.08<br>2.01<br>2.47<br>19.50<br>16.75<br>20.5<br>0.38<br>0.30<br>0.38<br>0.30<br>0.38<br>0.30<br>0.07<br>0.04<br>0.09 | 69.4<br>66.2<br>81.0<br>61.7<br>56.7<br>69.3<br>79.5<br>72.0<br>88.0<br>73.6<br>64.8<br>79.2 | 18.6<br>17.0<br>21.0<br>98.0<br>87.2<br>107.0<br>13.9<br>12.4<br>15.4<br>15.4<br>16.0<br>13.4<br>16.6 | 89<br>81<br>102<br>80<br>75<br>93<br>17<br>15<br>20<br>43<br>37<br>48 | $ \begin{array}{c} 10.10\\ 9.40\\ 11.60\\ 9.51\\ 8.68\\ 10.70\\ \end{array} $ $ \begin{array}{c} 1.23\\ 1.14\\ 1.50\\ 1.99\\ 1.84\\ 2.36\\ \end{array} $ |
| Target Range - Lower Bound<br>Upper Bound<br>BLANK<br>Target Range - Lower Bound                                                                                                                                                                                                          | 2.03<br>2.30<br><0.005<br><0.005<br>0.010 |                                                                                                |                                                                                              |                                                                                              |                                                                                                        | BLA                                                                                | ANKS                                                                         |                                                                                |                                                                                                                               |                                                                                                                                                            |                                                                                                                        |                                                                                              |                                                                                                       |                                                                       |                                                                                                                                                          |
| Upper Bound<br>BLANK<br>BLANK<br>Target Range - Lower Bound<br>Upper Bound                                                                                                                                                                                                                | 0.010                                     | <0.01<br><0.01<br><0.01<br>0.02                                                                | <0.01<br><0.01<br><0.01<br>0.02                                                              | <0.1<br><0.1<br><0.1<br>0.2                                                                  | <0.2<br><0.2<br><0.2<br>0.4                                                                            | <10<br><10<br><10<br>20                                                            | <10<br><10<br><10<br>20                                                      | <0.05<br><0.05<br><0.05<br>0.10                                                | <0.01<br><0.01<br><0.01<br>0.02                                                                                               | <0.01<br><0.01<br><0.01<br>0.02                                                                                                                            | <0.01<br><0.01<br><0.01<br>0.02                                                                                        | <0.02<br><0.02<br><0.02<br>0.04                                                              | <0.1<br><0.1<br><0.1<br>0.2                                                                           | <1<br><1<br>2                                                         | <0.05<br><0.05<br><0.05<br>0.10                                                                                                                          |



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

|                              | Method                 | ME- MS41    | ME- MS41       | ME- MS41       | ME- MS41       | ME- MS41       | ME- MS41       | ME- MS41         | ME- MS41       | ME- MS41     | ME- MS41    | ME- MS41       | ME- MS41 | ME- MS41       | ME- MS41       | ME- MS41       |
|------------------------------|------------------------|-------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|--------------|-------------|----------------|----------|----------------|----------------|----------------|
|                              | Analyte                | Cu          | Fe             | Ga             | Ge             | Hf             | Hg             | In               | К              | La           | Li          | Mg             | Mn       | Мо             | Na             | Nb             |
| Sample Descriptio            | Units                  | ppm         | %              | ppm            | ppm            | ppm            | ppm            | ppm              | %              | ppm          | ppm         | %              | ppm      | ppm            | %              | ppm            |
| Sample Descriptio            | <sup>n</sup> LOR       | 0.2         | 0.01           | 0.05           | 0.05           | 0.02           | 0.01           | 0.005            | 0.01           | 0.2          | 0.1         | 0.01           | 5        | 0.05           | 0.01           | 0.05           |
|                              |                        |             |                |                |                |                | STAN           | DARDS            |                |              |             |                |          |                |                |                |
| MRGeo08                      |                        | 629         | 3.53           | 9.16           | 0.13           | 0.70           | 0.05           | 0.150            | 1.28           | 34.3         | 30.1        | 1.13           | 415      | 13.55          | 0.33           | 0.83           |
| Target Range - Lov           | ver Bound              | 587         | 3.33           | 8.73           | 0.13           | 0.70           | 0.03           | 0.130            | 1.12           | 33.2         | 29.6        | 1.03           | 378      | 13.10          | 0.30           | 0.79           |
|                              | per Bound              | 675         | 3.96           | 10.80          | 0.29           | 0.83           | 0.10           | 0.179            | 1.40           | 41.0         | 36.4        | 1.29           | 473      | 16.10          | 0.39           | 1.09           |
| OGGeo08                      |                        | 8840        | 5.15           | 8.60           | 0.16           | 0.77           | 0.45           | 1.470            | 1.09           | 30.5         | 31.5        | 0.95           | 394      | 861            | 0.29           | 0.90           |
| Target Range - Lov           | ver Bound              | 7800        | 4.51           | 8.05           | 0.21           | 0.72           | 0.41           | 1.335            | 0.94           | 27.7         | 29.8        | 0.84           | 350      | 811            | 0.26           | 0.97           |
|                              | per Bound              | 8980        | 5.53           | 9.95           | 0.45           | 0.92           | 0.57           | 1.645            | 1.18           | 34.3         | 36.6        | 1.05           | 438      | 991            | 0.34           | 1.29           |
| OREAS 503b                   |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
| Target Range - Lov           | ver Bound<br>Der Bound |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
| OREAS 905                    | Jer Bound              | 1590        | 3.48           | 6.32           | 0.09           | 1.12           | 0.01           | 0.591            | 0.32           | 40.2         | 4.6         | 0.15           | 349      | 3.03           | 0.10           | 0.24           |
| Target Range - Lov           | ver Bound              | 1450        | 3.14           | 5.74           | < 0.05         | 1.08           | <0.01          | 0.517            | 0.28           | 35.6         | 4.3         | 0.13           | 310      | 2.65           | 0.07           | 0.19           |
| Upp                          | per Bound              | 1670        | 3.86           | 7.12           | 0.10           | 1.36           | 0.02           | 0.643            | 0.36           | 44.0         | 5.5         | 0.19           | 390      | 3.35           | 0.12           | 0.43           |
| OREAS 920                    |                        | 113.0       | 3.72           | 6.88           | 0.08           | 0.56           | <0.01          | 0.031            | 0.42           | 37.5         | 23.1        | 1.10           | 535      | 0.39           | 0.02           | 0.33           |
| Target Range - Lov           |                        | 102.0       | 3.26           | 6.12           | < 0.05         | 0.53           | < 0.01         | 0.019            | 0.39           | 33.3         | 19.0        | 0.98           | 472      | 0.29           | < 0.01         | 0.31           |
|                              | per Bound              | 118.0       | 4.00           | 7.60           | 0.10           | 0.69           | 0.02           | 0.043            | 0.50           | 41.1         | 23.4        | 1.22           | 588      | 0.53           | 0.02           | 0.55           |
| OxJ111<br>Target Range - Lov | vor Pound              |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              | per Bound              |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                | BL             | ANKS             |                |              |             |                |          |                |                |                |
| BLANK                        |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
| Target Range - Lov           |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              | per Bound              | .0.0        | <0.01          | -0.05          | <0.05          | .0.02          | -0.01          | -0.005           | -0.01          | <0.2         | <0.1        | -0.01          | <5       | -0.0E          | -0.01          | -0.05          |
| BLANK<br>BLANK               |                        | <0.2<br>0.3 | <0.01<br><0.01 | <0.05<br><0.05 | <0.05<br><0.05 | <0.02<br><0.02 | <0.01<br><0.01 | <0.005<br><0.005 | <0.01<br><0.01 | <0.2<br><0.2 | <0.1<br>0.1 | <0.01<br><0.01 | <5<br><5 | <0.05<br><0.05 | <0.01<br><0.01 | <0.05<br><0.05 |
| Target Range - Lov           | ver Bound              | <0.2        | < 0.01         | < 0.05         | < 0.05         | < 0.02         | <0.01          | < 0.005          | < 0.01         | <0.2         | <0.1        | < 0.01         | <5       | < 0.05         | <0.01          | < 0.05         |
|                              | per Bound              | 0.4         | 0.02           | 0.10           | 0.10           | 0.04           | 0.02           | 0.010            | 0.02           | 0.4          | 0.2         | 0.02           | 10       | 0.10           | 0.02           | 0.10           |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |
|                              |                        |             |                |                |                |                |                |                  |                |              |             |                |          |                |                |                |



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| r                              |                          | 1            |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
|--------------------------------|--------------------------|--------------|-------------|--------------|----------------|------------------|----------------|----------------|--------------|--------------|--------------|--------------|----------------|----------------|--------------|------------------|
|                                | Method                   | ME- MS41     | ME- MS41    | ME- MS41     | ME- MS41       | ME- MS41         | ME- MS41       | ME- MS41       | ME- MS41     | ME- MS41     | ME- MS41     | ME- MS41     | ME- MS41       | ME- MS41       | ME- MS41     | ME- MS41         |
|                                | Analyte                  | Ni           | Р           | Pb           | Rb             | Re               | S              | Sb             | Sc           | Se           | Sn           | Sr           | Та             | Te             | Th           | Ti               |
| Sample Descript                | Units                    | ppm          | ppm         | ppm          | ppm            | ppm              | %              | ppm            | ppm          | ppm          | ppm          | ppm          | ppm            | ppm            | ppm          | %                |
| Sample Descript                | LOR                      | 0.2          | 10          | 0.2          | 0.1            | 0.001            | 0.01           | 0.05           | 0.1          | 0.2          | 0.2          | 0.2          | 0.01           | 0.01           | 0.2          | 0.005            |
|                                |                          |              |             |              |                |                  | STAN           | IDARDS         |              |              |              |              |                |                |              |                  |
| MRGeo08                        |                          | 690          | 1000        | 1055         | 137.0          | 0.008            | 0.30           | 2.87           | 7.0          | 1.4          | 3.3          | 75.2         | 0.01           | 0.03           | 20.3         | 0.373            |
| Target Range - Lo              |                          | 622          | 900         | 959          | 132.0          | 0.006            | 0.27           | 2.80           | 6.7          | 0.9          | 2.8          | 72.1         | < 0.01         | < 0.01         | 19.1         | 0.338            |
| U<br>OGGeo08                   | pper Bound               | 760<br>8930  | 1130<br>810 | 1175<br>7200 | 162.0<br>123.5 | 0.010            | 0.35<br>2.77   | 3.90<br>17.70  | 8.4<br>6.7   | 1.9<br>11.6  | 4.0<br>13.1  | 88.5<br>65.4 | 0.03<br>0.01   | 0.04<br>0.16   | 23.7<br>17.3 | 0.424 0.315      |
| Target Range - Lo              | ower Bound               | 7760         | 700         | 6520         | 109.5          | 1.295            | 2.51           | 17.70          | 6.0          | 9.7          | 12.0         | 59.6         | < 0.01         | 0.14           | 15.6         | 0.279            |
|                                | pper Bound               | 9480         | 880         | 7970         | 134.5          | 1.585            | 3.09           | 24.1           | 7.6          | 12.3         | 15.1         | 73.2         | 0.03           | 0.20           | 19.6         | 0.353            |
| OREAS 503b                     | <b>a</b> 1               |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
| Target Range - Lo              | ower Bound<br>pper Bound |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
| OREAS 905                      | pper bound               | 8.8          | 250         | 16.3         | 18.8           | <0.001           | 0.07           | 0.92           | 1.8          | 2.5          | 1.3          | 12.8         | <0.01          | 0.06           | 8.8          | 0.020            |
| Target Range - Lo              |                          | 7.8          |             | 15.2         | 17.3           | <0.001           | 0.04           | 0.90           | 1.6          | 1.8          | 0.8          | 10.9         | <0.01          | 0.04           | 7.8          | 0.008            |
|                                | pper Bound               | 10.0         |             | 19.0         | 21.3           | 0.002            | 0.09           | 1.34           | 2.2          | 2.8          | 1.7          | 13.7         | 0.02           | 0.09           | 10.0         | 0.030            |
| OREAS 920<br>Target Range - Lo | ower Pound               | 41.2<br>34.4 | 740         | 22.2<br>19.2 | 25.2<br>22.2   | <0.001<br><0.001 | 0.04<br><0.01  | 0.55<br>0.45   | 2.9<br>2.5   | 1.0<br>0.4   | 1.1<br>0.7   | 18.8<br>15.0 | 0.01<br><0.01  | 0.02<br><0.01  | 16.2<br>13.6 | 0.128 0.106      |
|                                | pper Bound               | 42.4         |             | 23.9         | 27.4           | 0.002            | 0.05           | 0.43           | 3.3          | 1.3          | 1.7          | 18.8         | 0.02           | 0.02           | 17.0         | 0.140            |
| OxJ111                         |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
| Target Range - Lo<br>U         | ower Bound<br>pper Bound |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
|                                |                          |              |             |              |                |                  | BL             | ANKS           |              |              |              |              |                |                |              |                  |
| BLANK                          |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
| Target Range - Lo<br>U         | ower Bound<br>pper Bound |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
| BLANK                          |                          | <0.2         | <10         | <0.2         | <0.1           | <0.001           | 0.01           | <0.05          | <0.1         | <0.2         | <0.2         | <0.2         | <0.01          | <0.01          | <0.2         | <0.005           |
| BLANK<br>Target Range - Lo     | ower Downd               | <0.2<br><0.2 | <10<br><10  | <0.2<br><0.2 | <0.1<br><0.1   | <0.001<br><0.001 | <0.01<br><0.01 | <0.05<br><0.05 | <0.1<br><0.1 | <0.2<br><0.2 | <0.2<br><0.2 | <0.2<br><0.2 | <0.01<br><0.01 | <0.01<br><0.01 | <0.2<br><0.2 | <0.005<br><0.005 |
|                                | pper Bound               | <0.2<br>0.4  | 20          | <0.2<br>0.4  | 0.2            | 0.001            | 0.02           | 0.10           | 0.2          | <0.2<br>0.4  | <0.2<br>0.4  | <0.2<br>0.4  | 0.02           | 0.02           | 0.2          | 0.005            |
|                                |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
|                                |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
|                                |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
|                                |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
|                                |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
|                                |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |
|                                |                          |              |             |              |                |                  |                |                |              |              |              |              |                |                |              |                  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| 1                                 | Method               | ME- MS41<br>Tl | ME- MS41<br>U | ME- MS41<br>V | ME- MS41<br>W | ME- MS41<br>Y | ME- MS41<br>Zn | ME- MS41<br>Zr |
|-----------------------------------|----------------------|----------------|---------------|---------------|---------------|---------------|----------------|----------------|
|                                   | Analyte<br>Units     | ppm            | ppm           | v<br>ppm      | ppm           | ppm           | ppm            | ppm            |
| Sample Description                | <sup>1</sup> LOR     | 0.02           | 0.05          | 1             | 0.05          | 0.05          | 2              | 0.5            |
|                                   |                      |                |               |               |               |               | STAN           | DARDS          |
| MRGeo08                           |                      | 0.78           | 5.19          | 98            | 2.53          | 18.55         | 778            | 20.8           |
| Target Range - Lowe               |                      | 0.64           | 4.93          | 90            | 2.44          | 17.50         | 708            | 18.1           |
| Uppe<br>OGGeo08                   | er Bound             | 0.92<br>1.49   | 6.13<br>4.95  | 112<br>79     | 3.42<br>2.82  | 21.5<br>16.90 | 870<br>7160    | 25.7<br>22.8   |
| Target Range - Lowe               | er Bound             | 1.49           | 4.95          | 79            | 2.58          | 15.35         | 6500           | 19.5           |
| Uppe                              | er Bound             | 1.58           | 5.55          | 88            | 3.60          | 18.85         | 7950           | 27.5           |
| OREAS 503b<br>Target Range - Lowe | or Pound             |                |               |               |               |               |                |                |
|                                   | er Bound<br>er Bound |                |               |               |               |               |                |                |
| OREAS 905                         |                      | 0.11           | 2.26          | 6             | 0.50          | 7.27          | 65             | 42.4           |
| Target Range - Lowe               |                      | 0.06           | 2.08          | 4             | 0.44          | 6.32          | 58             | 39.9           |
| OREAS 920                         | er Bound             | 0.16<br>0.15   | 2.66<br>2.16  | 8<br>25       | 0.76<br>0.44  | 7.84<br>18.45 | 76<br>108      | 55.1<br>21.5   |
| Target Range - Lowe               |                      | 0.07           | 1.89          | 23            | <0.05         | 16.85         | 93             | 17.6           |
|                                   | er Bound             | 0.18           | 2.42          | 30            | 0.10          | 20.7          | 119            | 25.0           |
| OxJ111<br>Target Range - Lowe     | er Bound             |                |               |               |               |               |                |                |
|                                   | er Bound             |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               | DI A           | ANKS           |
|                                   |                      |                |               |               |               |               | DL/            |                |
| BLANK<br>Target Range - Lowe      | ar Dound             |                |               |               |               |               |                |                |
|                                   | er Bound<br>er Bound |                |               |               |               |               |                |                |
| BLANK                             |                      | <0.02          | <0.05         | <1            | <0.05         | <0.05         | <2             | <0.5           |
| BLANK                             |                      | < 0.02         | < 0.05        | <1            | < 0.05        | < 0.05        | <2             | < 0.5          |
| Target Range - Lowe               | er Bound<br>er Bound | <0.02<br>0.04  | <0.05<br>0.10 | <1<br>2       | <0.05<br>0.10 | <0.05<br>0.10 | <2<br>4        | <0.5<br>1.0    |
|                                   | er bound             |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |
|                                   |                      |                |               |               |               |               |                |                |



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| alyte<br>Inits<br>_OR | Au- AA23<br>Au<br>ppm<br>0.005                                 | ME- MS41<br>Ag<br>ppm<br>0.01                                                                                                                                                                                                                                                                                                         | ME- MS41<br>Al<br>%<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ME- MS41<br>As<br>ppm<br>0.1                                                                                                                                                                                                                                                                 | ME- MS41<br>Au<br>ppm<br>0.2                                                                                                                                                                                                                                    | ME- MS41<br>B<br>ppm<br>10                                                            | ME- MS41<br>Ba<br>ppm<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ME- MS41<br>Be<br>ppm<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ME- MS41<br>Bi<br>ppm<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME- MS41<br>Ca<br>%<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME- MS41<br>Cd<br>ppm<br>0.01                                                                                                                                                                                                                                                                                                                                                      | ME- MS41<br>Ce<br>ppm<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ME- MS41<br>Co<br>ppm<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ME- MS41<br>Cr<br>ppm<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ME- MS41<br>Cs<br>ppm<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nd<br>nd              | 0.145<br>0.144<br>0.132<br>0.157                               |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | DUPL                                                                                  | ICATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nd<br>nd              | <0.005<br><0.005<br><0.005<br>0.010                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nd<br>nd              |                                                                | 0.11<br>0.13<br>0.10<br>0.14                                                                                                                                                                                                                                                                                                          | 0.97<br>1.06<br>0.95<br>1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.0<br>117.0<br>107.5<br>119.5                                                                                                                                                                                                                                                             | <0.2<br><0.2<br><0.2<br>0.4                                                                                                                                                                                                                                     | <10<br><10<br><10<br>20                                                               | 740<br>850<br>730<br>860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.25<br>1.30<br>1.16<br>1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.27<br>1.36<br>1.24<br>1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.01<br>0.01<br><0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03<br>0.02<br><0.01<br>0.04                                                                                                                                                                                                                                                                                                                                                      | 3.34<br>3.81<br>3.38<br>3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.9<br>11.6<br>10.6<br>11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16<br>17<br>15<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.01<br>1.14<br>0.97<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nd<br>nd              | 0.009<br>0.007<br><0.005<br>0.010                              |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nd<br>nd              |                                                                | 0.05<br>0.05<br>0.04<br>0.06                                                                                                                                                                                                                                                                                                          | 1.22<br>1.27<br>1.17<br>1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1<br><0.1<br><0.1<br>0.2                                                                                                                                                                                                                                                                   | <0.2<br><0.2<br><0.2<br>0.4                                                                                                                                                                                                                                     | <10<br><10<br><10<br>20                                                               | 80<br>80<br>60<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.03<br>1.87<br>1.80<br>2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02<br>0.02<br><0.01<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02<br>0.02<br><0.01<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01<br>0.01<br><0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                      | 26.9<br>25.9<br>25.1<br>27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9<br>1.0<br>0.8<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44<br>46<br>42<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.31<br>0.31<br>0.24<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                                                                |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                                |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                                |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | OR<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd<br>nd | OR         0.005           0.145         0.144           0.132         0.157           ad         0.157           <0.005         <0.005           ad         0.010           ad         0.005           ad         0.005           ad         0.005           ad         0.005           ad         0.005           ad         0.0010 | OR         0.005         0.01           0.145         0.144           0.132         0.157           nd         0.157           <0.005         <0.005           <0.005         <0.005           <0.005         <0.011           0.10         0.11           nd         0.009           0.007         <0.005           nd         0.0010           0.0009         0.007           0.005         0.010           nd         0.005           nd         0.005           0.005         0.005 | OR $0.005$ $0.01$ $0.01$ 0.145 $0.144$ $0.132$ $0.11$ $0.97$ nd $0.157$ $0.005$ $0.005$ $0.005$ nd $0.005$ $0.005$ $0.005$ $0.005$ nd $0.005$ $0.11$ $0.97$ nd $0.005$ $0.13$ $1.06$ nd $0.009$ $0.14$ $1.08$ 0.009 $0.007$ $0.010$ $0.955$ nd $0.005$ $1.22$ $0.05$ $1.27$ nd $0.04$ $1.17$ | OR $0.005$ $0.01$ $0.01$ $0.1$ 0.145 $0.144$ $0.132$ $0.1$ $0.1$ nd $0.132$ $0.157$ $ -$ ad $0.157$ $  -$ ad $0.005$ $<0.005$ $ -$ ad $0.005$ $  -$ ad $0.005$ $  -$ ad $0.005$ $  -$ ad $0.009$ $0.007$ $ -$ ad $0.005$ $1.22$ $0.1$ ad $0.005$ $1.27$ $< 0.1$ | OR $0.005$ $0.01$ $0.1$ $0.2$ 0.145 $0.144$ $0.132$ $0.1$ $0.2$ ad $0.132$ $0.157$ $$ | OR         0.005         0.01         0.01         0.1         0.2         10           0.145         0.144         0.132         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | OR         0.005         0.01         0.01         0.1         0.2         10         10           DUPLICATES         0.145         0.144         0.132         0.157         0.145         0.157         0.157         0.157         0.11         0.07         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.01         0.02         <10         740         850           nd         0.010         0.95         107.5         <0.2         <10         730         860           nd         0.009         0.014         1.08         119.5         0.4         20         860           nd         0.005         1.22         0.1         <0.2         <10         730         860           nd         0.005         1.22         0.1         <0.2         <10         860         860         860         860         860         860         860         860         860         860         860         860         860         860         860         860         860         860         860         860 <th>OR         0.005         0.01         0.1         0.2         10         10         0.05           DUPLICATES         DUPLICATES           0.145         0.144         0.132         0.144         0.132         0.144         0.132         0.145         0.144         0.132         0.05         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         1.25         0.11         0.97         110.0         &lt;0.2         &lt;10         740         1.25         1.30           nd         0.010         0.95         107.5         &lt;0.2</th> <10 | OR         0.005         0.01         0.1         0.2         10         10         0.05           DUPLICATES         DUPLICATES           0.145         0.144         0.132         0.144         0.132         0.144         0.132         0.145         0.144         0.132         0.05         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         0.005         1.25         0.11         0.97         110.0         <0.2         <10         740         1.25         1.30           nd         0.010         0.95         107.5         <0.2 | OR         0.005         0.01         0.1         0.2         10         10         0.05         0.01           0.145         0.144         0.132         0         0.05         0.01         0.05         0.01           nd         0.132         0         0.05         0.01         0.01         0.1         0.2         10         10         0.05         0.01           nd         0.132         0         0.157         0         0         0         0.05         0.01         0.00           nd         0.157         0.005         0.01         0.097         110.0         <0.2 | OR         0.005         0.01         0.01         0.1         0.2         10         10         0.05         0.01         0.01           DUPLICATES         0.145         0.145         0.143         0.132         0.132         0.132         0.132         0.1357         0.145         0.145         0.145         0.145         0.11         0.97         110.0         <0.2 | OR         0.005         0.01         0.01         0.1         0.2         10         10         0.05         0.01         0.01         0.01           0.145         0.145         0.144         0.132         0.157         0.05         0.01         0.01         0.01           1d         0.132         0.157         0.05         0.01         0.01         0.01         0.01           1d         0.157         0.05         0.01         0.07         110.0         <0.2 | OR         0.00         0.01         0.01         0.1         0.2         10         10         0.05         0.01         0.01         0.01         0.02           DUPLICATES         DUPLICATES         0.145         0.144         0.132         0.144         0.132         0.157         0.01         0.01         0.01         0.02           c         c0.005         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c <thc< th=""> <thc< th=""> <thc< th=""> <!--</th--><th>OR         0.005         0.01         0.01         0.1         0.2         10         10         0.05         0.01         0.01         0.02         0.1           OR         0.005         0.01         0.01         0.1         0.1         0.2         0.1           OL45         0.145         0.144         0.132         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</th><th>OR         0.005         0.01         0.01         0.1         0.2         10         10         0.05         0.01         0.01         0.02         0.1         1           0.145         0.144         0.132         0.145         0.144         0.132         0.145         0.144         0.132         0.145         0.144         0.132         0.01         0.01         0.03         3.34         10.9         16           0.005         -0.005         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</th></thc<></thc<></thc<> | OR         0.005         0.01         0.01         0.1         0.2         10         10         0.05         0.01         0.01         0.02         0.1           OR         0.005         0.01         0.01         0.1         0.1         0.2         0.1           OL45         0.145         0.144         0.132         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | OR         0.005         0.01         0.01         0.1         0.2         10         10         0.05         0.01         0.01         0.02         0.1         1           0.145         0.144         0.132         0.145         0.144         0.132         0.145         0.144         0.132         0.145         0.144         0.132         0.01         0.01         0.03         3.34         10.9         16           0.005         -0.005         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| Ana<br>Ur                                                  | thod<br>alyte<br>nits<br>OR | ME- MS41<br>Cu<br>ppm<br>0.2 | ME- MS41<br>Fe<br>%<br>0.01  | ME- MS41<br>Ga<br>ppm<br>0.05 | ME- MS41<br>Ge<br>ppm<br>0.05 | ME- MS41<br>Hf<br>ppm<br>0.02 | ME- MS41<br>Hg<br>ppm<br>0.01   | ME- MS41<br>In<br>ppm<br>0.005   | ME- MS41<br>K<br>%<br>0.01   | ME- MS41<br>La<br>ppm<br>0.2 | ME- MS41<br>Li<br>ppm<br>0.1 | ME- MS41<br>Mg<br>%<br>0.01   | ME- MS41<br>Mn<br>ppm<br>5 | ME- MS41<br>Mo<br>ppm<br>0.05    | ME- MS41<br>Na<br>%<br>0.01   | ME- MS41<br>Nb<br>ppm<br>0.05   |
|------------------------------------------------------------|-----------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|----------------------------|----------------------------------|-------------------------------|---------------------------------|
| ORIGINAL<br>DUP<br>Target Range - Lower Boun<br>Upper Boun |                             |                              |                              |                               |                               |                               | DUPL                            | ICATES                           |                              |                              |                              |                               |                            |                                  |                               |                                 |
| ORIGINAL<br>DUP<br>Target Range - Lower Boun<br>Upper Boun |                             |                              |                              |                               |                               |                               |                                 |                                  |                              |                              |                              |                               |                            |                                  |                               |                                 |
| ORIGINAL<br>DUP<br>Target Range - Lower Boun<br>Upper Boun |                             | 244<br>256<br>241<br>259     | 22.4<br>23.8<br>21.9<br>24.3 | 6.48<br>7.06<br>6.38<br>7.16  | 0.07<br>0.08<br><0.05<br>0.10 | 0.04<br>0.04<br><0.02<br>0.06 | 0.04<br>0.04<br>0.03<br>0.05    | 0.355<br>0.388<br>0.348<br>0.395 | 0.14<br>0.15<br>0.13<br>0.16 | 1.3<br>1.5<br>1.1<br>1.7     | 9.4<br>9.9<br>9.1<br>10.2    | 0.01<br>0.01<br><0.01<br>0.02 | 359<br>378<br>345<br>392   | 15.20<br>16.50<br>15.00<br>16.70 | 0.05<br>0.05<br>0.04<br>0.06  | <0.05<br><0.05<br><0.05<br>0.10 |
| ORIGINAL<br>DUP<br>Target Range - Lower Boun<br>Upper Boun |                             |                              |                              |                               |                               |                               |                                 |                                  |                              |                              |                              |                               |                            |                                  |                               |                                 |
| ORIGINAL<br>DUP<br>Target Range - Lower Boun<br>Upper Boun |                             | 18.2<br>17.7<br>17.1<br>18.8 | 2.90<br>3.03<br>2.81<br>3.12 | 6.53<br>6.55<br>6.16<br>6.92  | 0.07<br>0.06<br><0.05<br>0.10 | 0.07<br>0.07<br>0.05<br>0.09  | <0.01<br><0.01<br><0.01<br>0.02 | 0.020<br>0.023<br>0.015<br>0.028 | 0.49<br>0.51<br>0.47<br>0.54 | 13.0<br>12.7<br>12.0<br>13.7 | 13.9<br>12.9<br>12.6<br>14.2 | 0.50<br>0.52<br>0.47<br>0.55  | 71<br>75<br>64<br>82       | 0.87<br>0.82<br>0.75<br>0.94     | 0.02<br>0.02<br><0.01<br>0.03 | 0.51<br>0.49<br>0.43<br>0.58    |
|                                                            |                             |                              |                              |                               |                               |                               |                                 |                                  |                              |                              |                              |                               |                            |                                  |                               |                                 |
|                                                            |                             |                              |                              |                               |                               |                               |                                 |                                  |                              |                              |                              |                               |                            |                                  |                               |                                 |
|                                                            |                             |                              |                              |                               |                               |                               |                                 |                                  |                              |                              |                              |                               |                            |                                  |                               |                                 |



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| lethod<br>.nalyte<br>Units<br>LOR | ME- MS41<br>Ni<br>ppm<br>0.2                                | ME- MS41<br>P<br>ppm<br>10                                                                                                                                      | ME- MS41<br>Pb<br>ppm<br>0.2 | ME- MS41<br>Rb<br>ppm<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                              | ME- MS41<br>Re<br>ppm<br>0.001                                                                                                                                              | ME- MS41<br>S<br>%<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ME- MS41<br>Sb<br>ppm<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ME- MS41<br>Sc<br>ppm<br>0.1                                                                                                                                                                          | ME- MS41<br>Se<br>ppm<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ME- MS41<br>Sn<br>ppm<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ME- MS41<br>Sr<br>ppm<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ME- MS41<br>Ta<br>ppm<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ME- MS41<br>Te<br>ppm<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME- MS41<br>Th<br>ppm<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ME- MS41<br>Ti<br>%<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| und<br>und                        |                                                             |                                                                                                                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             | DUPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ICATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| und<br>und                        |                                                             |                                                                                                                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| und<br>und                        | 26.8<br>28.9<br>26.3<br>29.4                                | 1520<br>1610<br>1480<br>1650                                                                                                                                    | 777<br>829<br>763<br>843     | 7.0<br>8.3<br>7.2<br>8.1                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.001<br><0.001<br><0.001<br>0.002                                                                                                                                         | 0.24<br>0.26<br>0.23<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.71<br>8.36<br>7.84<br>9.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.8<br>12.8<br>11.6<br>13.0                                                                                                                                                                          | 6.1<br>6.3<br>5.7<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.3<br>4.7<br>4.1<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.2<br>23.1<br>20.4<br>22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.01<br><0.01<br><0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.76<br>0.76<br>0.71<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6<br>1.7<br>1.4<br>1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.005<br><0.005<br><0.005<br>0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| und<br>und                        |                                                             |                                                                                                                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| und<br>und                        | 1.5<br>1.4<br>1.2<br>1.7                                    | 20<br>20<br><10<br>30                                                                                                                                           | 3.5<br>3.5<br>3.1<br>3.9     | 51.3<br>50.9<br>48.4<br>53.8                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.001<br><0.001<br><0.001<br>0.002                                                                                                                                         | 0.07<br>0.07<br>0.06<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.05<br><0.05<br><0.05<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1<br>3.2<br>2.9<br>3.4                                                                                                                                                                              | 0.2<br>0.2<br><0.2<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.2<br><0.2<br><0.2<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5<br>1.9<br>1.4<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.01<br><0.01<br><0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01<br>0.01<br><0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.9<br>25.7<br>24.3<br>27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.166<br>0.169<br>0.154<br>0.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                   |                                                             |                                                                                                                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   |                                                             |                                                                                                                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   |                                                             |                                                                                                                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | Ind<br>Ind<br>Ind<br>Ind<br>Ind<br>Ind<br>Ind<br>Ind<br>Ind | Induction     Ni       Inits     ppm       LOR     0.2   and       and     26.8       and     26.3       and     29.4   and       and     1.5       and     1.4 | NiPnalyteNiPppmppmppm0.21010 | Ni         P         Pb           ppm         ppm         ppm           0.2         10         0.2           and         0.2         10         0.2           and         26.8         1520         777           28.9         1610         829           and         26.3         1480         763           and         29.4         1650         843           and         1.5         20         3.5           and         1.4         20         3.5 | Ni         P         Pb         Rb           ppm         ppm         ppm         0.2         0.1           und         0.2         10         0.2         0.1           und | Ni         P         Pb         Rb         Re           ppm         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.002         0.001         0.002         0.001         0.002         0.001         0.002         0.001         0.002         0.002         0.002         0.002         0.001         0.002         0.001         0.002         0.001         0.002         0.001         0.002         0.001         0.002         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001 | Ni         P         Pb         Rb         Re         S           ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.02         0.24         0.01         0.24         0.26         0.01         0.24         0.26         0.27         0.27         0.27         0.27         0.23         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.27         0.23< | Ni         P         Pb         Rb         Re         S         Sb           Joits<br>LOR         0.2         10         0.2         0.1         0.001         0.01         0.05           Ind<br>ind | Ni         P         Pb         Rb         Re         S         Sb         Sc           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1           Jnd         0.2         0.1         0.2         0.1         0.001         0.01         0.05         0.1           Jnd         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1           Jnd | Vito         P         Pb         Rb         Re         S         Sb         Sc         Se           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2           Jnits         DUPLICATES         DUPLICATES         Juits         And         And | Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2           Ind         DUPLICATES         Ind         Se         Se <th>Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn         Sr           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2         0.2           Ind         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2         0.2           Ind         0.2         10         0.2         0.1         0.001         0.05         0.1         0.2         0.2         0.2           Ind         0.1         0.2         0.1         0.001         0.24         8.71         11.8         6.1         4.3         20.2           Ind         26.3         1520         777         7.0         &lt;0.001         0.26         8.36         12.8         6.3         4.7         23.1           Ind         26.3         1450         843         8.1         0.002         0.27         9.23         13.0         6.7         4.9         22.9           Ind         1.5         20         3.5         51.3         &lt;0.001         0.07         &lt;0.05</th> <th>Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn         Sr         Ta           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2         0.2         0.2         0.2         0.01         0.01         0.05         0.1         0.2         0.2         0.2         0.2         0.01         0.01         0.05         0.1         0.2         0.2         0.2         0.01         0.01         0.05         0.1         0.2         0.2         0.2         0.01         0.01           Ind         0.2         10         0.2         0.1         0.01         0.05         0.1         0.2         0.2         0.2         0.01           Ind         0.2         10         0.2         0.01         0.24         8.71         11.8         6.1         4.3         20.2         &lt;0.01           Ind         26.8         1520         777         7.0         &lt;0.001         0.26         8.36         12.8         6.3         4.7         23.1         &lt;0.01           Ind         26.3         1480         763</th> <th>Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn         Sr         Ta         Te           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2         0.2         0.01         0.01         0.01         0.05         0.1         0.2         0.2         0.2         0.01         0.01         0.01           Ind<br/>ind         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         <thz< th=""> <thz< th=""> <thz< th=""></thz<></thz<></thz<></th> <th>Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn         Sr         Ta         Te         Th           Jhits         0.2         10         0.2         0.1         0.001         0.01         0.2         0.2         0.2         0.2         0.01         0.01         0.2           Ind         0.2         0.1         0.001         0.01         0.02         0.1         0.2         0.2         0.2         0.01         0.01         0.2           Ind         0.2         0.1         0.001         0.24         8.71         11.8         6.1         4.3         20.2         &lt;0.01         0.76         1.6           ind         10         26.8         1520         777         7.0         &lt;0.01         0.24         8.71         11.8         6.1         4.3         20.2         &lt;0.01         0.76         1.6           28.9         1610         829         8.3         &lt;0.001         0.26         8.36         12.8         6.3         4.7         23.1         &lt;0.01         0.76         1.7           ind         1650         843         8.1         0.002         0.27</th> | Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn         Sr           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2         0.2           Ind         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2         0.2           Ind         0.2         10         0.2         0.1         0.001         0.05         0.1         0.2         0.2         0.2           Ind         0.1         0.2         0.1         0.001         0.24         8.71         11.8         6.1         4.3         20.2           Ind         26.3         1520         777         7.0         <0.001         0.26         8.36         12.8         6.3         4.7         23.1           Ind         26.3         1450         843         8.1         0.002         0.27         9.23         13.0         6.7         4.9         22.9           Ind         1.5         20         3.5         51.3         <0.001         0.07         <0.05 | Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn         Sr         Ta           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2         0.2         0.2         0.2         0.01         0.01         0.05         0.1         0.2         0.2         0.2         0.2         0.01         0.01         0.05         0.1         0.2         0.2         0.2         0.01         0.01         0.05         0.1         0.2         0.2         0.2         0.01         0.01           Ind         0.2         10         0.2         0.1         0.01         0.05         0.1         0.2         0.2         0.2         0.01           Ind         0.2         10         0.2         0.01         0.24         8.71         11.8         6.1         4.3         20.2         <0.01           Ind         26.8         1520         777         7.0         <0.001         0.26         8.36         12.8         6.3         4.7         23.1         <0.01           Ind         26.3         1480         763 | Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn         Sr         Ta         Te           Jnits         0.2         10         0.2         0.1         0.001         0.01         0.05         0.1         0.2         0.2         0.2         0.01         0.01         0.01         0.05         0.1         0.2         0.2         0.2         0.01         0.01         0.01           Ind<br>ind         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z <thz< th=""> <thz< th=""> <thz< th=""></thz<></thz<></thz<> | Ni         P         Pb         Rb         Re         S         Sb         Sc         Se         Sn         Sr         Ta         Te         Th           Jhits         0.2         10         0.2         0.1         0.001         0.01         0.2         0.2         0.2         0.2         0.01         0.01         0.2           Ind         0.2         0.1         0.001         0.01         0.02         0.1         0.2         0.2         0.2         0.01         0.01         0.2           Ind         0.2         0.1         0.001         0.24         8.71         11.8         6.1         4.3         20.2         <0.01         0.76         1.6           ind         10         26.8         1520         777         7.0         <0.01         0.24         8.71         11.8         6.1         4.3         20.2         <0.01         0.76         1.6           28.9         1610         829         8.3         <0.001         0.26         8.36         12.8         6.3         4.7         23.1         <0.01         0.76         1.7           ind         1650         843         8.1         0.002         0.27 |



#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

| Sample Description                               | Method<br>Analyte<br>Units<br>LOR | ME- MS41<br>Tl<br>ppm<br>0.02 | ME- MS41<br>U<br>ppm<br>0.05 | ME- MS41<br>V<br>ppm<br>1 | ME- MS41<br>W<br>ppm<br>0.05    | ME- MS41<br>Y<br>ppm<br>0.05 | ME- MS41<br>Zn<br>ppm<br>2 | ME- MS41<br>Zr<br>ppm<br>0.5 |  |
|--------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|------------------------------|----------------------------|------------------------------|--|
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | Bound<br>Bound                    |                               |                              |                           |                                 |                              | DUPL                       | ICATES                       |  |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper |                                   |                               |                              |                           |                                 |                              |                            |                              |  |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | Bound<br>Bound                    | 0.44<br>0.49<br>0.41<br>0.52  | 1.04<br>1.11<br>0.97<br>1.18 | 60<br>64<br>58<br>66      | <0.05<br><0.05<br><0.05<br>0.10 | 8.23<br>9.02<br>8.14<br>9.11 | 650<br>683<br>631<br>702   | 2.4<br>2.4<br>1.7<br>3.1     |  |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | Bound<br>Bound                    |                               |                              |                           |                                 |                              |                            |                              |  |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | Bound<br>Bound                    | 0.32<br>0.33<br>0.28<br>0.37  | 0.40<br>0.38<br>0.32<br>0.46 | 73<br>75<br>69<br>79      | <0.05<br><0.05<br><0.05<br>0.10 | 1.98<br>2.02<br>1.85<br>2.15 | 45<br>47<br>42<br>50       | 2.2<br>2.2<br>1.5<br>2.9     |  |
|                                                  |                                   |                               |                              |                           |                                 |                              |                            |                              |  |
|                                                  |                                   |                               |                              |                           |                                 |                              |                            |                              |  |
|                                                  |                                   |                               |                              |                           |                                 |                              |                            |                              |  |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

#### To: GALORE CREEK MINING CORPORATION SUITE 3300, 550 BURRARD STREET VANCOUVER BC V6C 0B3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8- SEP- 2016 Account: GALCRE

Project: Galore Creek

|                    |                                      | CERTIFICATE COM                        | MENTS                                                     |                    |
|--------------------|--------------------------------------|----------------------------------------|-----------------------------------------------------------|--------------------|
| Applies to Method: | Gold determinations by 1<br>ME- MS41 |                                        | TICAL COMMENTS<br>to the small sample weight used (0.5g). |                    |
|                    |                                      | LABOR                                  | ATORY ADDRESSES                                           |                    |
|                    |                                      | iver located at 2103 Dollarton Hwy, No |                                                           |                    |
| Applies to Method: | Au- AA23<br>LOG- 24<br>SPL- 21       | CRU- 31<br>ME- MS41<br>WEI- 21         | CRU- QC<br>PUL- 31                                        | LOG- 22<br>PUL- QC |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |
|                    |                                      |                                        |                                                           |                    |



## APPENDIX V

ANALYTICAL PROCEDURES (Attached Digitally)





## Fire Assay Procedure

# <u>Au- AA23 & Au- AA24</u> Fire Assay Fusion, AAS Finish

### Sample Decomposition:

Fire Assay Fusion (FA-FUS01 & FA-FUS02)

### Analytical Method:

### Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven, 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

| Method<br>Code | Element | Symbol | Units | Sample<br>Weight<br>(g) | Lower<br>Limit | Upper<br>Limit | Default<br>Overlimit<br>Method |
|----------------|---------|--------|-------|-------------------------|----------------|----------------|--------------------------------|
| Au-<br>AA23    | Gold    | Au     | ppm   | 30                      | 0.005          | 10.0           | Au-<br>GRA21                   |
| Au-<br>AA24    | Gold    | Au     | ppm   | 50                      | 0.005          | 10.0           | Au-<br>GRA22                   |



RIGHT SOLUTIONS RIGHT PARTNER



Standards Council of Canada Conseil canadien des normes 200-270, rue Albert St. Ottawa, ON (Canada) K1P 6N7

Canadä

Tel.: +1 613 238 3222 Fax.: +1 613 569 7808 E-mail/Courriel : info@scc.ca Internet: http://www.scc.ca

# SCOPE OF ACCREDITATION

ALS Limited ALS MINERALS 2103 Dollarton Hwy North Vancouver, BC V7H 0A7

Accredited Laboratory No. 579 (Conforms with requirements of CAN-P-1579 , CAN-P-4E (ISO/IEC 17025:2005))

| CONTACT:<br>TEL:<br>FAX:<br>EMAIL:<br>URL: | Ms. Erin Miller<br>+1 604 984 0221<br>+1 604 984 0218<br>erin.miller@alsglobal.com<br>www.alsglobal.com |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------|
| CLIENTS SERVED:                            | Mining, Exploration and other interested parties                                                        |
| FIELDS OF TESTING:                         | Chemical/Physical                                                                                       |
| PROGRAM SPECIALTY<br>AREA:                 | Mineral Analysis                                                                                        |
| ISSUED ON:                                 | 2014-12-17                                                                                              |
| VALID TO:                                  | 2017-05-18                                                                                              |

The physical sample preparation involving accredited test method for Minerals Analysis as listed on the Scope of Accreditation may be performed at the ALS Minerals North Vancouver location or at off-site sample preparation laboratories that are monitored regularly for quality control and quality assurance practices:

ALS Minerals - Unit 150 - 2155 Dollarton Hwy, North Vancouver, BC V7H 2B2 Canada
ALS Minerals - 2912 Molitor Street, Terrace, British Columbia V8G 3A4 Canada
ALS Minerals - 3 Coronation Drive, PO Box 1919, Yellowknife, NWT X1A 2P4 Canada
ALS Minerals - 78 Mt. Sima Rd Whitehorse, YK Y1A 0A8 Canada
ALS Minerals - 2953 Shuswap Drive, Kamloops, BC V2H 1S9 Canada
ALS Minerals - Jazmin 1140, e/R, Michel y Amapola, Sector Reforma Colonia San Carlos, Guadalajara, Jalisco 44460 Mexico
ALS Minerals - Avenida de las Industrias No 6500, Col. Zona Industrial Nombre de Dios, Chihuahua, Chihuahua 31156 Mexico

ALS Minerals - Transito Pesado S/n, Bodega 100, 200, 300 y 400, Frente a Central Camionera, Col. Lomas de la Isabelica, Zacatecas, Zacatecas 98099 Mexico

### METALLIC ORES AND PRODUCTS

#### **Mineral Analysis Testing**

### Mineral Assaying

| AA45      | Ag, Cu, Pb and Zn - Determination of Base Metals Using<br>AAS Following an Aqua Regia Digestion                                                                                                                                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA46      | Ag, Cu, Pb, Zn and Mo - Determination of Ores and High<br>Grade Materials Using AAS Following an Aqua Regia<br>Digestion                                                                                                                                                                                                                            |
| AA61      | Ag, Co, Cu, Ni, Pb and Zn - Determination of Base<br>Metals Using AAS Following a Four Acid Digestion                                                                                                                                                                                                                                               |
| AA62      | Ag, Co, Cu, Mo, Ni, Pb and Zn - Determination of Ores<br>and High Grade Materials Using AAS Following a Four<br>Acid Digestion                                                                                                                                                                                                                      |
| Au/Ag-GRA | Determination of Au and Ag by Lead Collection Fire<br>Assay and Gravimetric Finish                                                                                                                                                                                                                                                                  |
| Au-AA     | Determination of Au by Lead Collection Fire Assay and Atomic Absorption Spectrometry                                                                                                                                                                                                                                                                |
| C-IR07    | C - Determination of Total C by Leco Furnace and Infrared Spectroscopy.                                                                                                                                                                                                                                                                             |
| ICP81     | Al, Co, Cu, Fe, Mg, Mn, Ni, Pb, S, and Zn by Sodium<br>Peroxide Fusion and ICP-AES                                                                                                                                                                                                                                                                  |
| ME-ICP06  | SiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , Fe <sub>2</sub> O <sub>3</sub> , CaO, MgO, Na <sub>2</sub> O, K <sub>2</sub> O, Cr <sub>2</sub> O <sub>3</sub> ,<br>TiO <sub>2</sub> , MnO, P <sub>2</sub> O <sub>5</sub> , SrO, BaO, Total - Determination of<br>Major Oxides by Lithium Metaborate/Lithium<br>Tetraborate Fusion and ICP-AES. |
| ME-ICP41  | Multi-Element (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co,<br>Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S,<br>Sb, Sc, Sr, Ti, Tl, U, V, W, Zn) Determination by Aqua<br>Regia Digestion and ICP-AES.                                                                                                                                         |
| ME-ICP41a | Multi-Element (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce,<br>Co, Cr, Cu, Fe, Ga, Hf, Hg, K, La, Li, Mg, Mn, Mo, Na,<br>Nb, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Th, Ti,<br>Tl, U, V, W, Y, Zn) Determination of Low Grade Ores<br>by Aqua Regia Digestion and ICP-AES.                                                                     |
| ME-ICP61  | Multi-Element (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr,<br>Cu, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb,<br>Rb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Ti, Tl, U, V, W, Y,<br>Zn, Zr) Determination by 4-Acid Digestion and ICP-AES                                                                                                              |
| ME-ICP61a | Multi-Element (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co,<br>Cr, Cu, Fe, Ga, Hf, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni,<br>P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V,<br>W, Y, Zn, Zr Determination of Low Grade Ores by                                                                                                                  |

|           | Four-Acid Digestion and ICP-AES.                                                                                                                                                                                                                                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ME-MS41   | Multi-Element (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce,<br>Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg,<br>Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr,<br>Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr) Determination by<br>Aqua Regia Digestion and ICP-AES and ICP-MS.                                                      |
| ME-MS61   | Multi-Element (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co,<br>Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo,<br>Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Si, Sn, Sr, Ta,<br>Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr) Determination by 4<br>Acid Digestion and ICP-AES and ICP-MS.                                                             |
| ME-MS81   | Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb,<br>Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tl, Tm, U, V, W, Y,<br>Yb, Zr Determination of Rare Earth Elements by<br>Lithium Borate Fusion and ICP-MS.                                                                                                                                     |
| ME-XRF06  | SiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , Fe <sub>2</sub> O <sub>3</sub> , CaO, MgO, Na <sub>2</sub> O, K <sub>2</sub> O, Cr <sub>2</sub> O <sub>3</sub> ,<br>TiO <sub>2</sub> , MnO, P <sub>2</sub> O <sub>5</sub> , SrO, BaO, Total Determination of<br>Major Oxides by Lithium Metaborate/Lithium<br>Tetraborate Fusion and XRF. |
| ME-XRF26  | SiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , Fe <sub>2</sub> O <sub>3</sub> , CaO, MgO, Na <sub>2</sub> O, K <sub>2</sub> O, Cr <sub>2</sub> O <sub>3</sub> ,<br>TiO <sub>2</sub> , MnO, P <sub>2</sub> O <sub>5</sub> , SrO, BaO, Total Determination of<br>Major Oxides by Lithium Metaborate/Lithium<br>Tetraborate Fusion and XRF. |
| OA-GRA05  | LOI Loss on Ignition                                                                                                                                                                                                                                                                                                                          |
| OA-GRA05x | LOI Loss on Ignition.                                                                                                                                                                                                                                                                                                                         |
| OA-GRA06  | LOI Loss on Ignition.                                                                                                                                                                                                                                                                                                                         |
| OA-VOL08  | Fizz Rating, NP, MPA, NNP, Ratio (NP:MPA) Acid Base Accounting.                                                                                                                                                                                                                                                                               |
| OG46      | Ag, Cu, Mo, Pb and Zn - Determination of Ores and High<br>Grade Material Using ICP-AES Following an Aqua<br>Regia Digestion                                                                                                                                                                                                                   |
| OG62      | Ag, Cu, Co, Mo, Ni, Pb and Zn-Determination of Ores<br>and High Grade Material Using ICP-AES Following a<br>Four-Acid Digestion                                                                                                                                                                                                               |
| PGM-ICP   | Determination of Au, Pt and Pd by Lead Collection Fire<br>Assay and ICP-AES                                                                                                                                                                                                                                                                   |
| S-IR08    | S Determination of Total S by Leco Furnace and Infrared Spectroscopy.                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                                                                                                                                               |

#### Notes:

CAN-P-1579: Requirements for the Accreditation of Mineral Analysis Testing Laboratories CAN-P-4E (ISO/IEC 17025): General Requirements for the Competence of Testing and Calibration Laboratories (ISO/IEC 17025-2005)

Chantal Guay, ing., P. Eng. Vice President, Accreditation

Standards Council of Canada Accredited Laboratory No. 579

Services

Date: 2014-12-17

Number of Scope Listings: 26 SCC 1003-15/722 Partner File #0 Partner: SCC





## **Geochemical Procedure**

# ME- MS41 Ultra- Trace Level Methods Using ICP- MS and ICP- AES

## Sample Decomposition:

Aqua Regia Digestion (GEO-AR01)

## Analytical Method:

Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

A prepared sample (0.50 g) is digested with aqua regia in a graphite heating block. After cooling, the resulting solution is diluted to with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver and tungsten and diluted accordingly. Samples are then analysed by ICP-MS for the remaining suite of elements. The analytical results are corrected for inter-element spectral interferences.

| Element   | Symbol | Units | Lower Limit | Upper Limit |
|-----------|--------|-------|-------------|-------------|
| Silver    | Ag     | ppm   | 0.01        | 100         |
| Aluminum  | AI     | %     | 0.01        | 25          |
| Arsenic   | As     | ppm   | 0.1         | 10 000      |
| Gold      | Au     | ppm   | 0.2         | 25          |
| Boron     | В      | ppm   | 10          | 10 000      |
| Barium    | Ba     | ppm   | 10          | 10 000      |
| Beryllium | Be     | ppm   | 0.05        | 1 000       |
| Bismuth   | Bi     | ppm   | 0.01        | 10 000      |
| Calcium   | Са     | %     | 0.01        | 25          |
| Cadmium   | Cd     | ppm   | 0.01        | 1 000       |
| Cerium    | Ce     | ppm   | 0.02        | 500         |
| Cobalt    | Со     | ppm   | 0.1         | 10 000      |
| Chromium  | Cr     | ppm   | 1           | 10 000      |

Revision 04.00 Sep 20, 2006

## RIGHT SOLUTIONS RIGHT PARTNER





# **Geochemical Procedure**

| Element    | Symbol | Units | Lower Limit | Upper Limit |
|------------|--------|-------|-------------|-------------|
| Cesium     | Cs     | ppm   | 0.05        | 500         |
| Copper     | Cu     | ppm   | 0.2         | 10 000      |
| Iron       | Fe     | %     | 0.01        | 50          |
| Gallium    | Ga     | ppm   | 0.05        | 10 000      |
| Germanium  | Ge     | ppm   | 0.05        | 500         |
| Hafnium    | Hf     | ppm   | 0.02        | 500         |
| Mercury    | Hg     | ppm   | 0.01        | 10 000      |
| Indium     | In     | ppm   | 0.005       | 500         |
| Potassium  | K      | %     | 0.01        | 10          |
| Lanthanum  | La     | ppm   | 0.2         | 10 000      |
| Lithium    | Li     | ppm   | 0.1         | 10 000      |
| Magnesium  | Mg     | %     | 0.01        | 25          |
| Manganese  | Mn     | ppm   | 5           | 50 000      |
| Molybdenum | Мо     | ppm   | 0.05        | 10 000      |
| Sodium     | Na     | %     | 0.01        | 10          |
| Niobium    | Nb     | ppm   | 0.05        | 500         |
| Nickel     | Ni     | ppm   | 0.2         | 10 000      |
| Phosphorus | Р      | ppm   | 10          | 10 000      |
| Lead       | Pb     | ppm   | 0.2         | 10 000      |
| Rubidium   | Rb     | ppm   | 0.1         | 10 000      |
| Rhenium    | Re     | ppm   | 0.001       | 50          |
| Sulphur    | S      | %     | 0.01        | 10          |
| Antimony   | Sb     | ppm   | 0.05        | 10 000      |
| Scandium   | Sc     | ppm   | 0.1         | 10 000      |
| Selenium   | Se     | ppm   | 0.2         | 1 000       |
| Tin        | Sn     | ppm   | 0.2         | 500         |
| Strontium  | Sr     | ppm   | 0.2         | 10 000      |

Revision 04.00 Sep 20, 2006

## **RIGHT SOLUTIONS** RIGHT PARTNER



# **Geochemical Procedure**

| Element   | Symbol | Units | Lower Limit | Upper Limit |
|-----------|--------|-------|-------------|-------------|
| Tantalum  | Та     | ppm   | 0.01        | 500         |
| Tellurium | Те     | ppm   | 0.01        | 500         |
| Thorium   | Th     | ppm   | 0.2         | 10000       |
| Titanium  | Ti     | %     | 0.005       | 10          |
| Thallium  | TI     | ppm   | 0.02        | 10 000      |
| Uranium   | U      | ppm   | 0.05        | 10 000      |
| Vanadium  | V      | ppm   | 1           | 10 000      |
| Tungsten  | W      | ppm   | 0.05        | 10 000      |
| Yttrium   | Y      | ppm   | 0.05        | 500         |
| Zinc      | Zn     | ppm   | 2           | 10 000      |
| Zirconium | Zr     | ppm   | 0.5         | 500         |

**NOTE**: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.



**RIGHT SOLUTIONS** RIGHT PARTNER

www.alsglobal.com



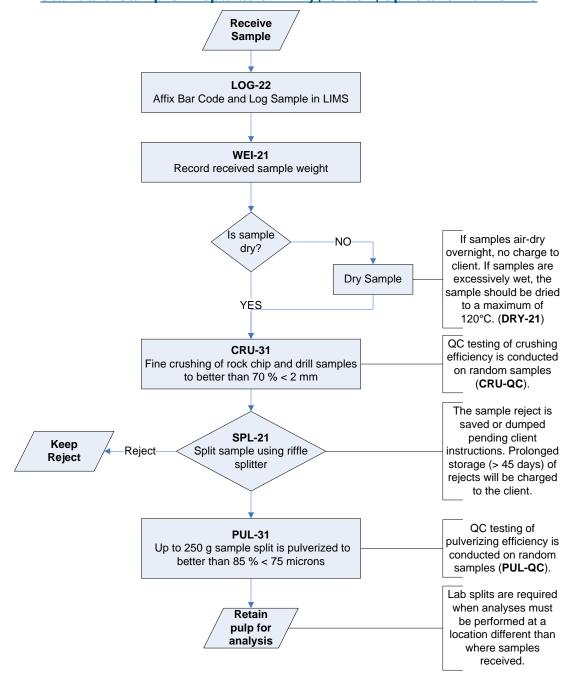
# Sample Preparation Package

# PREP-31 Standard Sample Preparation: Dry, Crush, Split and Pulverize

Sample preparation is the most critical step in the entire laboratory operation. The purpose of preparation is to produce a homogeneous analytical sub-sample that is fully representative of the material submitted to the laboratory.

The sample is logged in the tracking system, weighed, dried and finely crushed to better than 70 % passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen. A split of up to 250 g is taken and pulverized to better than 85 % passing a 75 micron (Tyler 200 mesh, US Std. No. 200) screen. This method is appropriate for rock chip or drill samples.

| Method Code | Description                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------|
| LOG-22      | Sample is logged in tracking system and a bar code label is attached.                             |
| CRU-31      | Fine crushing of rock chip and drill samples to better than 70 % of the sample passing 2 mm.      |
| SPL-21      | Split sample using riffle splitter.                                                               |
| PUL-31      | A sample split of up to 250 g is pulverized to better than 85 % of the sample passing 75 microns. |


Revision 03.03 March 29, 2012



## Sample Preparation Package

Flow Chart -

# <u>Sample Preparation Package - PREP-31</u> Standard Sample Preparation: Dry, Crush, Split and Pulverize



Revision 03.03 March 29, 2012

### RIGHT SOLUTIONS RIGHT PARTNER

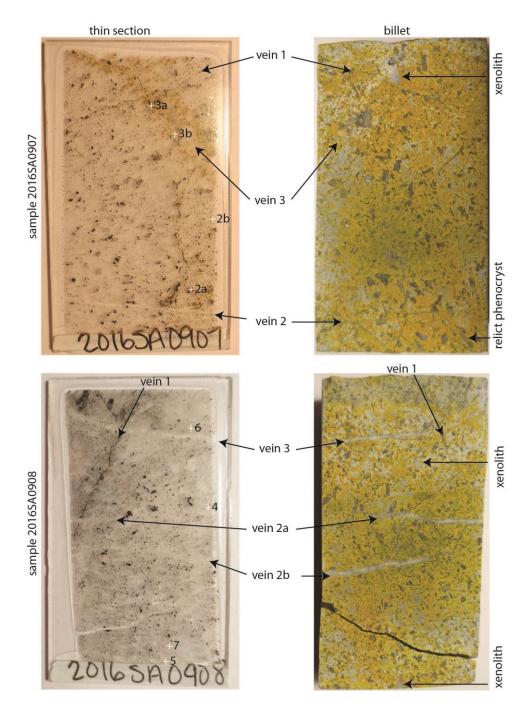


# APPENDIX VI

## PETROGRAPHIC REPORT

Sarah Henderson, Galore Creek Mining Corp., 3300-550 Burrard Street, Vancouver BC, V6C0B3 E-mail: <u>sarah.henderson@gcmc.ca</u> Tel: 604-699-4738

October, 2016


### Samples: 2016SA0907, 2016SA0908

**Summary:** Samples are medium-grained syenite to monzonite porphyry intrusions overprinted by an intense potassic-carbonate alteration related to the introduction of chalcopyrite, sphalerite, tetrahedrite-tennantite, and electrum.

**Sample 2016SA0907:** The sample is of a medium-grained, syenite porphyry that cut an earlier K-feldspar-bearing porphyry and hydrothermal silica. Pyrite-sphalerite-chalcopyrite-tetrahedrite/tennantite mineralization is introduced as part of a multi-phase, porphyry-type potassic-carbonate alteration assemblage of ankerite-K-feldspar and lesser quartz-rutile-garnet-sericite-albite-apatite-leucoxene-magnetite-rutile.

**Sample 2016SA0908:** The sample is of a medium-grained, synmineral monzonite porphyry. The monzonite intrusion cuts early hydrothermal chalcedonic quartz-barite-pyrite and K-feldsparbearing porphyry. The resultant intrusion breccia is overprinted by intense potassic-carbonate alteration that introduces pyrite-chalcopyrite-electrum-tetrahedrite/tennantite mineralization. Main stage potassic-carbonate alteration comprises abundant K-feldspar-ankerite and lesser quartz-magnetite-albite-leucoxene-rutile-titanite. A late stage alteration of anhydrite-quartz-sericite/muscovite overprints the potassic-carbonate.

Gayle E. Febbo E-mail: <u>gayle.febbo@gmail.com</u> Tel: 250-837-1606



**Figure 1.** Photographs of thin sections and billets for samples 2016SA0907 and 2016SA0908 with locations of veins referred to in descriptions and locations of Figures 3-7 on the thin section. Yellow stain on billet is K-feldspar.

| Minerals         | Sample 2016SA0907                                                                | 2016SA0908                             |  |
|------------------|----------------------------------------------------------------------------------|----------------------------------------|--|
| Primary          | <i>Estimated abundance (percentage) prior to alteration and average diameter</i> |                                        |  |
| K-feldspar       | 57%: bimodal 0.4-0.6 mm                                                          | 50%: bimodal 200 μm – 2 mm             |  |
|                  | phenocrysts (20%) and 20-100 µm                                                  | phenocrysts (15%) and 20-100 µm in     |  |
|                  | in groundmass                                                                    | groundmass                             |  |
| Plagioclase      | 29%: bimodal 0.5-2 mm                                                            | 50%: bimodal 0.5-2 mm phenocrysts      |  |
|                  | phenocrysts (10%) and 20-100 µm                                                  | (15%) and 20-100 $\mu$ m in groundmass |  |
|                  | in groundmass                                                                    |                                        |  |
| Hornblende       | 14%: bimodal 0.5- 1 mm                                                           |                                        |  |
|                  | phenocrysts (5%) and 0.5-1 mm in                                                 |                                        |  |
|                  | groundmass                                                                       |                                        |  |
| Secondary        | Estimated abundance (percentage) o                                               |                                        |  |
| Ankerite         | 22%, 1-30 μm                                                                     | 18%, 5-20 μm                           |  |
| K-feldspar       | 18%, 1-30 μm                                                                     | 18%, 50-300 μm                         |  |
| Anhydrite        |                                                                                  | 7%, 1-10 μm                            |  |
| Apatite          | 1%, 1-10 μm                                                                      |                                        |  |
| Rutile           | Tr, 10-50 μm                                                                     | Tr, 10-30 μm                           |  |
| Garnet           | Tr, 100-200 μm                                                                   |                                        |  |
| Sericite         | Tr, 1-5 μm                                                                       | Tr, 1-5 μm                             |  |
| Muscovite        |                                                                                  | Tr, 10-20 μm                           |  |
| Goethite         | Tr, 1-10 μm                                                                      |                                        |  |
| Titanite         |                                                                                  | Tr, 50 μm                              |  |
| Quartz           | Tr, 20-100 μm                                                                    | Tr, 10 μm                              |  |
| Secondary Opaque | Estimated abundance (percentage) of alteration and average diameter              |                                        |  |
| Pyrite           | 10%, 100-300 μm                                                                  | 15%, 100-300 μm                        |  |
| Chalcopyrite     | Tr, 5 μm                                                                         | Tr, 1-5 μm                             |  |
| Sphalerite       | Tr, 10-20 μm                                                                     |                                        |  |
| Magnetite        | Tr, 10-20 μm                                                                     | Tr, 1-5 μm                             |  |
| Leucoxene        | Tr, 10-50 μm                                                                     | Tr, 10-50 μm                           |  |
| Tetrahedrite-    | Tr, 50-100 μm                                                                    | Tr, 5 μm                               |  |
| tennantite       |                                                                                  |                                        |  |
| Electrum         |                                                                                  | Tr, 5 μm                               |  |

**Table 1.** Summary of primary and secondary mineral abundance and average diameter estimates of petrographic samples.

### Sample 2016SA0907: Syenite porphyry, potassic-carbonate alteration

<u>Description</u>: The sample is of a medium-grained, syenite porphyry that cut an earlier K-feldspar-bearing porphyry and hydrothermal silica. Pyrite-sphalerite-chalcopyrite-tetrahedrite/tennantite mineralization is introduced as part of a multi-phase, porphyry-type potassic-carbonate alteration assemblage of ankerite-K-feldspar and lesser quartz-rutile-garnet-sericite-apatite-leucoxene-magnetite-rutile.

### Primary Minerals and clasts:

20% K-feldspar phenocrysts: Grains are rectangular, 0.4-0.6 mm diameter, sub- and euhedral original shapes (Fig. 2b), and are partially altered to ankerite-quartz-sericite-K-feldspar. Local recrystallized domains within the relict phenocryst can be observed (Fig. 2b).

10% Plagioclase phenocrysts: Grains are rectangular, 0.5-2 mm in length, have aspect ratios of 1:3 to 1:5, contain very diffuse boundaries and are completely replaced to calcite-pyrite-K-feldspar-rutile. Relict parting planes parallel the c-axis and are defined by pyrite-ankerite. Grains are interpreted to be plagioclase due to the marked parting planes and the lath-like geometry.

5% Hornblende: Relict phenocryst sites are equant domains that are completely replaced to pyrite and ankerite (Fig. 2a), measure 0.5 - 1 mm, a few are apparently 6-sided (Fig. 2a), and are interpreted to have near euhedral forms prior to hydrothermal alteration. These phenocrysts were likely mafic in composition due to the composition of replacement minerals and are interpreted to be hornblende prior to replacement due to the 6-sided geometry.

Tr Xenoliths and xenocrysts: Lithic fragments are observed in billet only as unstained, very finegrained, homogeneous textured siliceous clasts. They measure up to 0.5 cm, are angular, and have very sharp margins. Two grains of K-feldspar observed in thin section are much less altered than other phenocrysts, have very sharp grain margins, and have embayed boundaries. These grains are interpreted to be xenocrysts.

64% groundmass: Grain size of the groundmass ranges 20-100  $\mu$ m. Groundmass minerals are intensely hydrothermally replaced but are interpreted to be comparable in composition to phenocrysts (ratio of 4:2:1 for K-feldspar:plagioclase:hornblende).

#### Secondary Minerals:

22% Ankerite: 1-30  $\mu$ m grains disseminated throughout with mottled replacement patches measuring 100-200  $\mu$ m; replacement of pyrite-rutile, plagioclase and K-feldspar phenocrysts. Most grains are anhedral with sub- and euhedral grains as isolated disseminations and in veins. Brown pleochroism interpreted to result from Fe content (i.e. ankerite), however some grains may be dolomite.

18% K-feldspar: 50-300 µm grains are subhedral, pervasive replacements of groundmass and selective replacement of plagioclase phenocrysts and selective overgroths of K-feldspar phenocrysts (Fig. 2b). Grains are replaced to ankerite along parting planes and intergrown with ankerite. Pervasive K-feldspar alteration is correlated with all three vein events.

1% Apatite: 1-10  $\mu$ m colourless, high relief disseminations have low 1<sup>st</sup> order interference, can be pebbly-shaped, and are commonly disseminated with secondary K-feldspar.

Tr Rutile: 10-50  $\mu$ m grains are amorphous, intergrown with ankerite, have high relief (plane polarized light), colourless to purple-brown pleochroism and 3<sup>rd</sup> order interference colours. Some grains are nearly opaque. Grey-brown under reflected light (10-20% reflectance) and strong, white internal reflections. Some rutile domains may reflect magnetite replacement.

Tr Garnet: 100-200  $\mu$ m disseminations are colourless (plane polarized light) and isotropic; grains contain abundant fluid inclusions.

Tr Sericite: 1-5 µm lenticular inclusions in K-feldspar.

1% Goethite: 1-10  $\mu$ m amorphous grains are pleochroic brown, brown internal reflections and commonly replace pyrite.

Tr Quartz: 20-100 µm grains are anhedral and distributed about margin of 'Vein 3.'

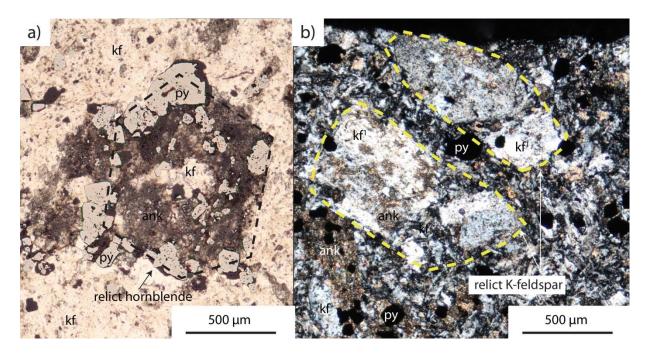
Secondary Opaque Minerals:

10% Pyrite: 100-300  $\mu$ m grains evenly disseminated throughout are blocky, an- and subhedral, contain abundant inclusions of magnetite and sphalerite and growth of rutile on rims (Fig. 3a). Pyrite is spatially associated with ankerite-rich alteration domains.

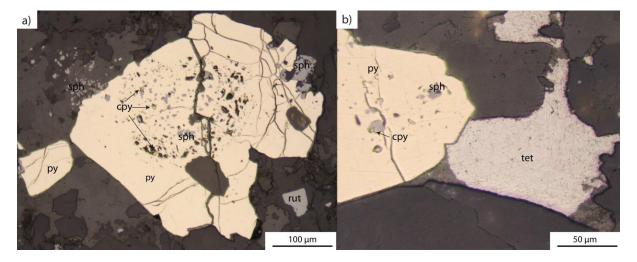
Tr Chalcopyrite: 5  $\mu$ m inclusions in pyrite are yellow and highly reflective and co-precipitate with magnetite and sphalerite (Fig. 3a, b).

Tr Sphalerite: 10-20  $\mu$ m grains occur as inclusions in pyrite, dull grey reflective with yellowbrown internal reflections that distinguish these from magnetite; grains range from opaque to semi-transparent (Fig. 3a, b).

Tr Leucoxene: 10-50  $\mu$ m amorphous, feathery to lath-like fine grains with ankerite, spatially distributed in relict phenocryst sites, common as isolated grains in groundmass. Grains are opaque and reflected colours are paler, whitish grey in comparison to rutile.


Tr Magnetite:  $10-20 \ \mu m$  grain inclusions in pyrite and not as isolated grains. Abundance of rutile and leucoxene in groundmass may indicate the replacement of isolated magnetite grains.

Tr Tetrahedrite-tennantite:  $50-100 \ \mu m$  grains disseminated at margin to Vein 3 is silver-grey, highly reflective, and has high relief.


<u>Vein 1:</u> 0.5 mm wide, diffuse boundaries, subhedral pyrite grains concentrated at margins, intergrown quartz-ankerite; overprints K-feldspar grains in margins to vein; clearly cut by Vein 3 (Fig. 1).

<u>Vein 2:</u> 200-300µm wide vein with diffuse boundaries; contains twinned albite, sub- and euhedral ankerite, subhedral pyrite, anhedral K-feldspar (medial and as alteration halos) and quartz; margins are ankerite-enriched. Euhedral ankerite on margins may indicate early, open-space precipitation. Fluid inclusion trains parallel vein boundary.

<u>Vein 3:</u> 1 mm wide vein has sharp boundaries and contains blocky quartz, K-feldspar (ser dusting on these grains) and ankerite intergrown with fine euhedral garnet and pyrite. Semi-fibrous ankerite and quartz are oriented perpendicular to vein boundary.



**Figure 2.** Photomicrograph of sample 2016SA0907. a) Relict hornblende defines a faint 6-sided geometry and is completely altered to K-feldspar (kf), pyrite (py) and cal (cal); groundmass is altered to K-feldspar (kf), plane polarized and reflected light. b) Two relict K-feldspar (kf<sup>1</sup>) phenocrysts are rectangular-shaped, partially replaced to ankerite (ank) and recrystallized K-feldspar (kf<sup>2</sup>); groundmass is replaced to pyrite (py), K-feldspar (kf), and ankerite (ank); cross polarized light.



**Figure 3.** Reflected light photomicrograph of sample 2016SA0907. a) Pyrite (py) grain contains numerous brittle fractures, inclusions of chalcopyrite (cpy), sphalerite (sph), and is replaced by sphalerite on the upper right margin of grain. Isolated grain of rutile (rut) in groundmass (lower right); reflected light. b) Grain of pyrite (py) contains inclusions of chalcopyrite (cpy) and sphalerite (sph) and shares a grain boundary with tetrahedrite-tennantite (tet); reflected light.

#### Sample 2016SA0908: Monzonite intrusion breccia, potassic-calcic alteration

<u>Description</u>: The sample is of a medium-grained, synmineral monzonite porphyry. The monzonite intrusion cuts early hydrothermal chalcedonic quartz-barite-pyrite and K-feldspar-bearing porphyry. The resultant intrusion breccia is overprinted by intense potassic-carbonate alteration that introduces pyrite-chalcopyrite-electrum-tetrahedrite/tennantite mineralization. Main stage potassic-carbonate alteration comprises abundant K-feldspar-ankerite and lesser quartz-magnetite-albite-leucoxene-rutile-titanite. A late stage alteration of anhydrite-quartz-sericite/muscovite overprints the potassic-carbonate.

### Primary Minerals and clasts:

15% K-feldspar phenocrysts: rectangular to equant, 200  $\mu$ m – 2 mm in diameter, sub- and euhedral shapes, cloudy surfaces, low relief, low 1<sup>st</sup> order birefringence, and rarely twinned. The grains are partially altered to sericite, carbonate, and muscovite.

15% Plagioclase phenocrysts: Grains are rectangular, 0.5-2 mm in length, have aspect ratios of 1:3 to 1:5, define a weak trachytic alignment, contain very diffuse boundaries and are completely replaced to carbonate-pyrite-muscovite (Fig. 4).

5% Xenoliths and xenocrysts: Numerous lithic fragments of hydrothermal material range in size from 0.5 - 2 mm in diameter and are subrounded to irregular and angular. Some clasts are characterized by chalcedonic quartz, some contain aggregates of barite (high relief, low 1<sup>st</sup> order birefringence, orthogonal cleavage and parallel extinction in 010 section), and some clasts contain aggregates of barite overgrown on chalcedony with disseminated pyrite (Fig. 5). Barite and chalcedony are both clearly truncated at the clast boundary and clasts are overprinted by secondary minerals including ankerite, anhydrite and pyrite. K-feldspar crystals with embayed grain boundaries are interpreted to be xenocrysts (Fig. 4).

65% groundmass: Grain size of the groundmass ranges 20-100  $\mu$ m. Groundmass minerals are intensely hydrothermally replaced but are interpreted to be comparable in composition to phenocrysts (ratio of 1:1 K-feldspar:plagioclase).

#### Secondary Minerals:

18% K-feldspar: cryptocrystalline 5-300 µm grains are subhedral, pervasive replacements of groundmass and selective replacement of relict phenocrysts (Fig. 4). Secondary K-feldspar is intergrown with ankerite, pyrite and muscovite in the groundmass and local overgrowths of K-feldspar replace domains of primary K-feldspar phenocrysts. K-feldspar alteration is correlated with all three vein events. Secondary K-feldspar is white in the billet; hematite dusting on grain is absent.

18% Ankerite: 5-20 µm granular masses define abundant as replacements of plagioclase phenocrysts (Fig. 4). Moderate brown pleochroic masses are contemporaneous with K-feldspar alteration. Muscovite, ankerite, and leucoxene define relict cleavage planes in replaced

plagioclase (Fig. 4). Commonly defines riddled inclusions in K-feldspar phenocrysts and replacement domains in K-feldspar.

7% Anhydrite: 1- 10  $\mu$ m amorphous masses (Fig. 6), overgrowths on K-feldspar, intergrown with ankerite, and replacement domains in the groundmass. Grains have moderate relief, are colourless, vivid 2<sup>nd</sup> order interference and are anhedral.

Tr Quartz: 10  $\mu$ m grains are fibrous and define pressure shadows to pyrite with sweeping extinction. Most quartz is associated with anhydrite and ankerite and can be intergrown with pyrite.

Tr Sericite: 1-5 µm lenticular inclusions in K-feldspar.

Tr Muscovite:  $10-20 \ \mu m$  grains replace small domains in plagioclase phenocrysts and replace clasts of barite. Minor pressure shadows to pyrite are defined by muscovite.

Tr Titanite: 50  $\mu$ m dissemination of high relief, pleochroic pale yellow, triangular-shaped to cubic geometry, most are sub- to euhedral, and have 3<sup>rd</sup> order birefringence.

Tr Rutile: 10-30  $\mu$ m grains are amorphous to blocky, define irregular pseudomorphs, intergrown with ankerite, have high relief (plane polarized light), and deep brown pleochroism. Grains have low reflectivity and are dull grey with strong, white internal reflections. Distribution of rutile at margins to some pyrite grains is interpreted to reflect replacement of magnetite.

### Secondary Opaque Minerals:

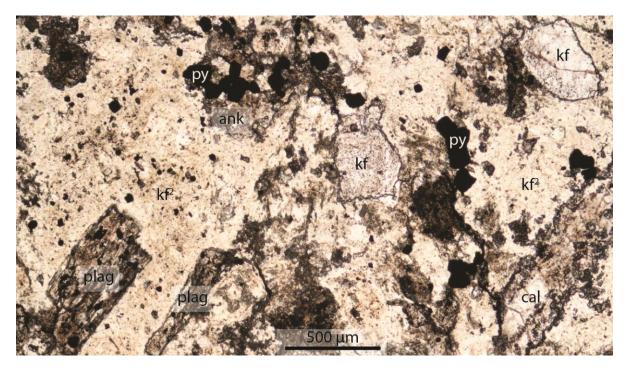
15% Pyrite: 100-300 µm grains evenly disseminated throughout are blocky, an- and subhedral, contain abundant inclusions of chalcopyrite-magnetite and growth of rutile on rims. Pyrite is spatially associated with ankerite-rich alteration domains. Pyrite is mostly associated with Vein 1 and to a lesser extent Veins 2a and 2b (Fig. 6, 7).

Tr Leucoxene: 10-50  $\mu$ m amorphous, feathery to lath-like fine grains with ankerite, spatially distributed in relict phenocryst sites. Grains are opaque and reflected colours are paler, whitishgrey in comparison to rutile (Fig. 7).

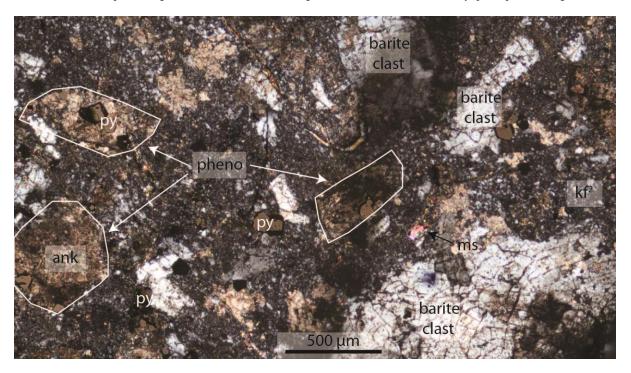
Tr Magnetite:  $1-5 \mu m$  grains are dull grey, intergrown with chalcopyrite grains as pyrite inclusions (Fig. 7). Grains are slightly darker grey than rutile and are distinguished by being opaque. Only magnetite inclusions are preserved; isolated grains are interpreted to be replaced.

Tr Chalcopyrite: 1-5  $\mu$ m inclusions in pyrite grains are highly reflective; some of these fine inclusions could be electrum (Fig. 7).

Tr Electrum: 5  $\mu$ m grain inclusion in pyrite, significantly more reflective and a slightly whiter hue than chalcopyrite (Fig. 7). The sample requires Scanning Electron Microscopy to positively identify electrum.


Tr Tetrahedrite/tennantite: 5  $\mu$ m grain shares inclusion space with chalcopyrite, enclosed by pyrite (Fig. 7).

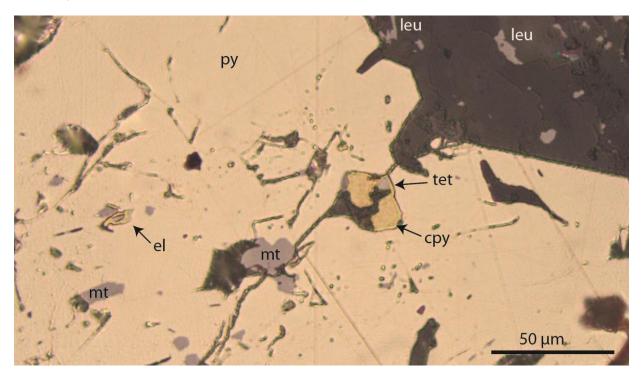
<u>Vein 1:</u> Earliest vein is very diffuse,  $\sim 200 \ \mu m$  wide and defined by pyrite and lesser ankerite, quartz, and K-feldspar. Non-reflective, opaque grains of goethite have yellow-brown internal reflections.


<u>Vein 2a:</u> ~1 mm wide vein of same generation as Vein 2b cuts Vein 1. Both 2a and 2b are associated with a 2 cm wide domain of pervasive potassic alteration, beyond this domain K-feldspar alteration is patchy. Fine anhydrite grains (50  $\mu$ m) are interstitial to coarser ankerite that has clear twin lamellae that are diagonal to the short axis of the cleavage rhombs, grains are also dusty brown in plane polarized light. Minor quartz grains have undulose extinction (~100  $\mu$ m), and minor interstitial K-feldspar grains enclosed by ankerite.

<u>Vein 2b:</u> ~ 1 mm wide vein same generation as Vein 2a. Vein is composed predominantly of ankerite with marked pleochroic twins and blocky grains same diameter as vein width. Minor K-feldspar grains enclosed by ankerite and equant pyrite grains that measure ~100  $\mu$ m.

<u>Vein 3:</u> Third generation vein is 0.5 mm wide with sharp, irregular boundaries. The vein contains blocky ankerite, blocky albite with polysynthetic twins, anhydrite with orthogonal cleavage, and trace apatite at margins of veins. Very minor pyrite grains are in trails orthogonal to vein trend and are interpreted to be incorporated from wall rock (Fig. 6).




**Figure 4.** Microphotograph of sample 2016SA0908. Lath-shaped plagioclase (plag) phenocrysts are completely replaced to pyrite-ankerite-muscovite, K-feldspar (kf) phenocrysts are equant in shape. Secondary K-feldspar (kf<sup>2</sup>), disseminated pyrite (py, and ankerite (ank) replace the groundmass. Vein 2a (lower right) contains ankerite (cal) locally, plane polarized light.



**Figure 5.** Microphotograph of sample 2016SA0908. Barite clasts have irregular boundaries, are altered to K-feldspar  $(kf^2)$  and muscovite (ms); pyrite (py) disseminated throughout. Three domains of pyrite (py) and ankerite (ank) alteration reflect relict phenocrysts of plagioclase grains.



**Figure 6.** Microphotograph of sample 2016SA0908. Vein 3 (left) contains anhydrite (anhy)-ankerite (ank), cuts K-feldspar phenocryst (kf) and secondary K-feldspar in groundmass ( $kf^2$ ). In halo to vein pervasive, fine-grained anhydrite (anhy) replaces the groundmass, partially replaces K-feldspar phenocrysts (kf); pyrite (py) is disseminated throughout; cross polarized and reflected light.



**Figure 7.** Microphotograph of sample 2016SA0908. Pale grey leucoxene grains (leu) are disseminated in the margin of pyrite grain (py) that is host to magnetite (mt) inclusions, chalcopyrite (cpy)-tetrahedrite/tennantite (tet) inclusion, and one potential electrum (el) inclusion characterized by higher reflectivity than chalcopyrite, reflected light.

### Alteration Summary:

Three general stages of alteration are preserved by these samples and are summarized as follows:

1) The earliest stage of alteration in these samples is preserved as xenoliths of hydrothermal material comprised of chalcedonic quartz, barite and disseminated pyrite. This alteration assemblage reflects a high-level, epithermal setting and may have formed as part of a lithocap overlying the porphyry body (Thompson and Thompson, 2011). The presence of K-feldspar xenocrysts in the intrusions may reflect a pre-mineral syenitic porphyry host to the lithocap.

2) The main alteration stage is a complex, multi-episodic alteration that introduces abundant K-feldspar and ankerite with lesser magnetite, garnet, quartz, albite, apatite, rutile and titanite. Mineralization associated with the main alteration includes chalcopyrite, sphalerite, tetrahedrite/tennantite, and electrum that overprints the syenite and monzonite intrusions. Micko (2010) distinguishes up to five potassic and calc-potassic alteration types for the Central zone that are analogous both in mineralogy and complexity to the alteration described here. Apatite, rutile, garnet and titanite are also observed in the Central zone as accessory alteration minerals that comprise the calc-potassic alterations.

A significant difference between this study and Micko's (2010) research is that the carbonate component in this study is part of the ankerite-dolomite solid solution series and not calcite as observed in the Central zone. The presence of short-diagonal twins (Nesse, 1991) and the absence of effervescence favours the ankerite-dolomite interpretation over calcite. The composition is generalized here as ankerite due to the brown pleochroism, however some grains may be dolomitic in composition. The other significant difference is that the primary and secondary K-feldspar in these samples lack hematite dusting, potentially due to recent glacial retreat.

3) Late stage alteration is comprised of ankerite-anhydrite-sericite/muscovite-pyrite that overprints the main potassic alteration. Textural destruction of magnetite and introduction of sericite/muscovite are interpreted to be part of this cooler temperature, late stage alteration. Additional Titanite, rutile, albite and leucoxene are likely associated with this late alteration. Micko's (2010) late stage 'sericite-anhydrite-carbonate' (SAC) alteration of the Central zone is a good analogue for this alteration type.

### Conclusions:

The findings of this research suggest that these samples are part of a long-lived, alkalic porphyry system analogous to the Central zone. Mineral textures, alteration assemblages, and high Au:Cu ratios indicate the surface exposures reflect the upper reaches of the porphyry system. The disseminated nature of mineralization, the multi-episodic metasomatism, and the presence of a synmineral porphyry lead to the conclusion that the zone has significant potential in terms of size and economics. Further surface work and drill testing of the zone is strongly recommended.

### References

Micko, J., 2010. The geology and genesis of the Central zone alkali copper –gold porphyry deposit, Galore Creek district, northwestern British Columbia, Canada. Unpublished PhD thesis, the University of British Columbia, 359 p.

Nesse, W.D, 1991. Introduction to optical mineralogy 2nd ed., Oxford University Press, 335 p.

Thompson, A.J.B., and Thompson, J.F.H., 2011. Atlas of alteration: a field guide to hydrothermal alteration minerals, third printing. In: Geological Association of Canada – Mineral Deposits Division, 119 p.