ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geochemical Work - Assessment Report on the Kangaroo and Frank Creek Properties, Cariboo Mining District, British Columbia.

TOTAL COST: \$48,221.00
AUTHOR(S): Rein Turna
SIGNATURE(S): "Signed"
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):
STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5611042 (May 1 to July 15, 2016),
5622105 (May 15 to October 8, 2016) \& 5632328 (July 15 to December 31, 2016)
YEAR OF WORK: 2016
PROPERTY NAME: Kangaroo and Frank Creek
CLAIM NAME(S) (on which work was done) 1038868 and 1038885

COMMODITIES SOUGHT: Gold, Silver \& Copper
MINERAL INVENTORY MINFILE NUMBER(S) IF KNOWN: N/K
MINING DIVISION: Cariboo
BCGS: 93A/12
LATITUDE $52.69^{\circ} \mathbf{N}$
LONGITUDE - $\mathbf{1 2 1 . 6 5}{ }^{\circ} \mathbf{W}$
UTM Zone NAD 83 EASTING 591250 NORTHING 5839100
OWNER(S): Barker Minerals Ltd.
MAILING ADDRESS: 8384 Toombs Drive Prince George BC, V2K 5A3
OPERATOR(S) [who paid for the work]: Barker Minerals Ltd. MAILING ADDRESS: 8384 Toombs Drive Prince George BC, V2K 5A3

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude do not use abbreviations or codes)
Upper Triassic, Lower Jurrassic, Andesitic Volcanics, Gold, Silver \& Copper

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS

GEOCHEMICAL

ASSESSMENT REPORT

on the

KANGAROO \& FRANK CREEK PROPERTIES

Cariboo Mining Division, British Columbia

The geographic coordinates of the Kangaroo Property are:
52.69° North Latitude and -121.65° West Longitude or
591250 E and 5839100 N UTM coordinates (NAD 83).
The relevant map is: N.T.S. Map No. 93A/12.
Work was concentrated in the area of tenure nos. 1038868 and 1038885.

Prepared by:
Rein Turna

CONTENTS

Page
1.0 Introduction 1
2.0 Property Description and Location 1
3.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography 3
4.0 History 3
4.1 Work Done in 1984 3
4.2 Work Done in 1985 4
4.3 Work Done in 1986 5
4.4 Work Done in 2003 5
4.5 Work Done in 2005 6
4.6 Work Done in 2007 6
5.0 Geological Setting 7
5.1 Regional Geology 7
5.2 Local Geology 14
Lithologies 14
Structure 15
6.0 Deposit Type 15
The Propylite Model 17
7.0 Mineralization, Alteration, Veins 19
8.0 Exploration Program 2016 20
8.1 Sampling Method and Approach 20
8.2 Kangaroo Project, Overlook Road (Areas A, B, C) 20
8.3 Frank Creek Project, Area A 20
9.0 Interpretation and Conclusions 21
10.0 Recommendations 21
Figure No. 1 Barker Minerals Ltd. Main Property Location in BC 1
Figure No. 2 Barker Minerals Ltd. Mineral Claims after pg 2
Figure No. 3 Terrane Map of Southern British Columbia 8
Figure No. 4 Terrane Map of Cariboo Lake - Wells Area 9
Figure No. 5 Geology of Wells-Cariboo Lake Area 10
Figure No. 6 Schematic Regional Structural Section 11
Figure No. 7 Generalized Zoning Model for Au-Enriched Porphyry Cu Systems 16Figure No. 8 Kangaroo Project Keymap
\qquad in Appendix H
Figure No. 9 Kangaroo Project Area A Sample Nos. and Zn, Cu Geochem... in Appendix H
Figure No. 10 Kangaroo Project Area B Sample Nos. and Zn, Cu Geochem... in in Appendix H
Figure No. 11 Kangaroo Project Area C Sample Nos. and Zn, Cu Geochem...in in Appendix H
Figure No. 12 Frank Ck Project Keymap for Area A in Appendix I
Figure No. 13 Frank Ck Project Area A Sample Nos. and Zn, Cu Geochem in Appendix I
TablesPage No.
Table No. 1 - Barker Minerals Main Property Mineral Claim Details 2
Table No. 2 Kangaroo - Frank Creek Sample Coordinates and Descriptions Appendix G
Table No. 3 Kangaroo Area A - XRF Geochemical Results Appendix H
Table No. 4 Kangaroo Area B - XRF Geochemical Results Appendix H
Table No. 5 Kangaroo Area C - XRF Geochemical Results Appendix H
Table No. 6 Frank Creek Area A - XRF Geochemical Results Appendix I

Appendices

Appendix A - Analytical Method
Appendix B - Glossary of Technical Terms and Abbreviations
Appendix C - References
Appendix D - Adjacent Properties
QR Gold Mine
Cariboo Property
Appendix E - Statement of Author's Qualifications
Appendix F - Statement of Expenditures
Appendix G - Rock Sample Coordinates Descriptions
Appendix H - Kangaroo Project XRF Geochemical Maps and Results
Appendix I - Frank Creek Project XRF Geochemical Maps and Results

1.0 INTRODUCTION

The Kangaroo and Frank Creek Projects are located on a group of contiguous mineral claims that may be called the Main Property. The Main Property is $15,384.75$ ha in size. The Kangaroo and Frank Creek Projects are approximately 10 km northwest and northeast, respectively, from the community on Likely and 80 km northeast of the City of Williams Lake.

The major portion of this report is related to work done on the Kangaroo Project. The Frank Creek portion of this report is relatively minor due to the lesser amount of sampling done there in 2016. The mineral prospects on the Kangaroo Project are for Au skarn, intrusionrelated Au pyrrhotite veins, and porphyry $\mathrm{Cu} \pm \mathrm{Mo} \pm A u$. Cross Lake Minerals Ltd.' QR gold mine, an Au skarn deposit, located 8.0 km wsw of the Barker Minerals' Kangaroo Project, is considered the possible model for mineralization explored for on Kangaroo.

The geology of the Kangaroo Project consists of sedimentary and volcanic rocks of the Upper Triassic to Lower Jurassic Nicola Group and associated intrusions, similar to lithologies at the QR mine. The intrusive stock at Kangaroo as mapped is at least approximately $1 \mathrm{~km} \times 1.8 \mathrm{~km}$ on the ground surface, similar in size to the QR stock. More detailed mapping may revise the Kangaroo stock's area upward.

The purpose of this report is to summarize the geologic setting and economic target at Kangaroo and to describe and interpret the rock sampling results from the 2016 geochemical surveys at Kangaroo and Frank Creek. Altogether 277 geochemical analyses were made of the rock samples.

2.0 PROPERTY DESCRIPTION and LOCATION

The Kangaroo Project consists of contiguous claims listed in Table No. 1 - Barker Minerals Ltd. Main Property Mineral Claim Details. The Main Property's location in British Columbia is indicated in Figure No. 1 - Barker Minerals Ltd. Main Property Location in British Columbia, and the mineral claims are outlined in Figure No. 2 - Barker Minerals Ltd. Mineral Claims.

The Main Property is located in the Cariboo Mining Division in British Columbia and is 100\% owned by Barker Minerals Ltd. of Prince George, B.C. The Property is approximately 10 km northwest and northeast of the community of Likely and 80 km northeast the City of Williams Lake. The City of Prince George is 155 km to the north.

The geographic coordinates of the Kangaroo Project are:
52.69° North Latitude and -121.65° West Longitude or
591250 E and 5839100 N UTM coordinates (NAD 83).
The relevant map is: N.T.S. Map No. 93A/12.

Tenure Number	Owner No.	Owner		$\frac{\text { Good To }}{\text { Date }}$	Status	$\frac{\text { Area }}{\text { (ha) }}$
504428	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	215.31
1038860	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	58.73
1038862	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	58.74
1038868	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	2547.09
1038883	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	2561.09
1038884	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	2132.57
1038885	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	1311.38
1038886	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	2780.96
1038887	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	1213.73
1038888	140410	Barker Minerals Ltd.	100\%	2017/FEB/05	Good	2505.15

Total area: 15,384.75 ha
Table No. 1 - Barker Minerals Ltd. Main Property, comprising Kangaroo and Frank Creek, Mineral Claim Details.

Figure No. 1 Barker Minerals Ltd. Main Property location in British Columbia includes the Kangaroo and Frank Creek Projects.

3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY

The closest large centre to the Barker Minerals project areas is Williams Lake located approximately 80 km to the southwest. Williams Lake is an intermediate-sized city and served by Highway 97, the B.C. Railway, a major hydroelectric power grid and a modern airport. By road, Likely is 65 km northeast of 150 Mile House on Highway 97. Access to Barker Minerals exploration areas, including the Kangaroo and Frank Creek Projects, is via gravel logging roads bearing northeast from Likely. The distance from Likely to Kangaroo is approximately 40 km by road.

The Kangaroo Project is situated in the central part of the Quesnel Highland between the eastern edge of the Interior Plateau and the western foothills of the Columbia Mountains. This area contains rounded mountains that are transitional between the rolling plateaus to the west and the rugged Cariboo Mountains to the east. Pleistocene and Recent ice sheets flowed away from the high mountains to the east over these plateau carving U-shaped valleys. The elevation ranges from $750-$ 1150 m .

Precipitation in the region is heavy, as rain in the summer and snow in the winter. Drainage is to the west via the Cariboo, Little and Quesnel Rivers to the Fraser River. Quesnel Lake, the main scenic and topographic feature in the region, is a deep, long, forked, glacier-carved lake with an outlet at 725 m elevation. Vegetation is old-growth spruce, fir, pine, hemlock and cedar forest in all but the alpine regions of the higher mountains. Logging of fir, spruce and pine in the area occurs principally during winters. Snow can limit the work season to approximately May to November, but drilling can be conducted any time during the year if the access road is plowed clear.

4.0 HISTORY

The Frank Creek Project has historically had extensive work on it, including drilling, trenching, soil sampling and geophysical and geological mapping surveys; it would be appropriate to consult the References for an adequate description. Historical work programs done on the Kangaroo Project area between, 1984 and 2007, are briefly described below.

4.1 Work Done in 1984.

The relevant report is Assessment Report 13160 by R.G. Simpson.
Work was done in 1984 for NCN Exploration and Development Corp. on the Tag, Tango and Cave claim groups consisting 95 claim units located between Kangaroo Mountain and Kangaroo Creek, approximately 4.5 km to the east. The economic target was for a bulk disseminated gold deposit.

Geological mapping was done and 303 soil samples were collected over 30.3 line km over a grid approximately $4 \mathrm{~km} \times 5 \mathrm{~km}$ in area. This work was done in follow up to a regional airborne magnetic and VLF-EM geophysical survey done apparently over only the eastern part of the claim groups.

Lithologies consisted of various tuffs and breccia; laminated tuffs and argillite contained disseminated pyrrhotite and pyrite. Less common were massive basaltic flows. The airborne survey detected no significant anomalous magnetism and only 4 minor VLF-EM anomalies. Four of the soils were weakly anomalous in $\mathrm{Au}(40 \mathrm{ppb}$ maximum value) and 9 soils were weakly anomalous in Ag (3.3 ppm maximum value). The results obtained were not considered worthy of further follow up.

4.2 Work Done in 1985.

The relevant report is Assessment Report 13865 by R.M. Durfeld.

Work was done in 1985 for Mt. Calvery Resources Ltd. on the Kangaroo claim group consisting 94 claim units named Jun and Rose. These claims were located on the east and west sides of the lower part of Kangaroo Creek and were the north portion of their large Cariboo-Likely Project.

20 stream silts, 103 soils and 8 rock samples were collected. This work was done in follow up of a regional stream soil sampling program of the previous year. The soils were collected over 6 widely scattered small grids at locations of soil anomalies (Anomalies $1-6$) from their 1984 regional program.

Anomaly 1 was a 1984 soil sample with 450 ppb Au. 39 soils collected here in the 1985 follow up had anomalous Cu , up to 259 ppm , and weakly anomalous Au , up to 40 ppb . This anomalous location was where Barker Minerals would in 2007 map the north boundary of a diorite intrusive (the Kangaroo stock) characterized by an approximately 1,000 m wide zone of low resistivity and high chargeability (Turna and Doyle, 2008). Mapping in 1985 here determined this Anomaly to be underlain by rhyolite and andesite intruded by mafic intrusive rocks.

Anomaly 2 (210 ppb Au in 1984) had only 5 soils collected over it in 1985 of which, the highest Au value was 35 ppb .

Follow up of Anomalies 3 to 6 returned sporadic, isolated, weakly anomalous $\mathrm{Au}, \mathrm{Cu}, \mathrm{Ag}$ or As. Anomaly 3 was explained as a placer concentration. The Au anomalies of the previous year at Anomalies 2,3 and 6 were not reproduced in 1985. Additional sampling was recommended at Anomalies 1, 4 and 5 to better define the anomalous trends of precious and pathfinder elements there.

Westenhiser Creek, flowing into Cariboo River approximately 1.5 km east of Kangaroo Creek, had 400 ppb Au in a stream silt. A narrow discontinuous quartz-sulphide vein sampled (Sample 26035) just upstream of this silt had $6,000 \mathrm{ppb} \mathrm{Au}, 13.5 \mathrm{ppm} \mathrm{Ag}, 18,951$ ppm As, $2,044 \mathrm{ppm} \mathrm{Cu}$. The upper part of this creek (called '69 Creek' in Turna and Doyle, 2008) was sampled at 4 locations by Barker Minerals in 2007. None of these silts were anomalous in Au. Thus it would appear that the location of Sample 26035 in the lower part of the creek is the source of the stream anomaly below. A soil sample collected in 2007 by Barker Minerals, approximately 1.3 km ESE of Sample 26035 was weakly anomalous in gold (35 ppb Au) and strongly anomalous in zinc ($1,950 \mathrm{ppm} \mathrm{Zn}$). Rocks here were very rusty siltstone adjacent to diorite; a rock sample here had 16 ppb Au and 274 ppm Zn . (Turna and Doyle, 2008, Fig. No. 46).

Additional prospecting was recommended in 1985 to expand the potential of this mineralized structure.

4.3 Work Done in 1986.

The relevant report is Assessment Report 15716 by A.J. Schmidt.

Work was done in 1986 for Mt. Calvery Resources Ltd. on the Rose, Spanish and Jun claim groups of their Cariboo-Likely Project consisting of 520 claim units.

Follow up work was done on Westenhiser Creek where in the previous year, rock Sample 26035 had gold ($6,000 \mathrm{ppb} \mathrm{Au}$). 104 soil samples were collected. Of these, 10 soils had 30 ppb Au or higher; 3 soils had Au values above 100 ppb, up to 180 ppb. Several anomalous soils were clustered on the eastern slope of the creek 150 m from the gold-bearing vein. The quartz-pyrite vein system was chip sampled; the best result was $1,140 \mathrm{ppb}$ Au over 1.0 m . The occurrence was described as a mineralized shear zone, about 10 m wide, striking 100° and dipping vertically. Within the shear 3 quartz-pyrite veins, between 40 and 80 cm in width occurred with several $5-10 \mathrm{~cm}$ wide veins. The enclosing rocks were silicified argillites/siltstones. The gold values here were not considered significant and further follow up was not recommended. (Schmidt, 1986, pp 6,7).

4.4 Work Done in 2003

McKinley (2004) reports that:
[Barker Minerals] initiated a small reconnaissance exploration program on their Kangaroo Creek Project in November 2003. The goals of this work were to confirm the geological setting of the area and compare this with observations of previous workers and to assess if the geophysical anomalies identified on the Cross Lake [Cariboo] claims to the west trend onto the Barker Minerals claims.

A small IP and magnetic geophysical survey was conducted in November 2003 on the westernmost portion of Barker claim PG 9 by Peter E. Walcott \& Associates of Vancouver,
B.C. Three parallel lines spaced 100 metres apart and totalling about 5500 metres in length were surveyed ...Two main IP chargeability anomalies were identified, both of which appear to increase in intensity to the east. The larger northernmost anomaly corresponds to a resistivity low and is along strike from the large Cu-Mo-Au soil geochemical anomaly identified by Cross Lake. The southern anomaly appears to be along strike of Cross Lake's anomalous Au-Cu-As-Sb geochemical trend as well as the ground that hosts the historical gold-mineralized interval [5.26 g/t Au over 8.5 m] intersected by Corona in 1989 in drill hole C89-6. The zones having high resistivity with coincidental magnetic highs likely represent the intrusive rocks identified in outcrop nearby.

4.5 Work Done in 2005

Barker Minerals did reconnaissance soil sampling and magnetometer surveys adjacent to an intrusive body, later the area of the 2007 work program. 473 soil samples were collected on 6 lines at various orientations labelled KTL1 to KTL6 and on the 3 lines labelled KL0, KL1 and KL2 on which the 2003 IP survey was done. This work was not included in the Assessment of Barkers Minerals' group of claims, however results from the 2005 soil sampling are discussed with the 2007 sampling in this report (see also Sections 8.6 and 12.2).

The southern portions of Lines labelled KL0, KL1 and KL2 were strongly anomalous in Au, As and multi-element pathfinders. Drill hole K07-5 tested this area in 2007. Scattered anomalous Au (up to $3,320 \mathrm{ppb}$ over 1.50 m) and chalcopyrite mineralization occurred over almost the entire hole (261 m). Multi-element anomalies, including Au, also occurred on reconnaissance lines farther east, on the south side of the intrusive body. Drill holes K07-6 and 7 targeted this area in 2007. The magnetometer survey was done along approximately 2.0 km on the main road crossing the area. The middle third of the road traverse was determined to be anomalously magnetic. In 2007 this zone was targeted by drill holes K078 and 9.

4.6 Work Done in 2007

Drilling and geophysical work are described in Assessment Report 29740 byTurna and Doyle, (2008). A soil survey was done after the assessment period and results were not included in the assessment report. These soil survey results are provided in this report (Section 12.2).

The diamond drilling program was done on the Kangaroo property to follow up high chargeability and low resistivity anomalies from the IP survey done in 2003, and anomalous soils collected in 2005. Nine holes 2,008 (metres) were drilled. 915 core samples were collected, 57 rock samples, 46 soils and 21 stream sediment samples were collected. Geological mapping was done over approximately 2.5 square kilometres in the general area of the drilling. 40 km (nominal length) of grid lines were established on the property. Stations were placed every 25 metres on the grid lines. Quantec Geoscience Inc. did a
pole-dipole induced polarization (IP) survey over 32.0 km on this grid and a Titan-24 IP survey over 8.0 km . Approximately 605 soil sample were collected over the western half (Lines KL0 to KL11) of this grid during the winter before being suspended due to weather.

Soils over the Kangaroo stock and the adjacent alteration aureole in sedimentary rocks are anomalous in $\mathrm{Au}, \mathrm{Cu}, \mathrm{Mo}$ and other elements. The area of the Au soil anomaly over the soil survey is approximately $1 \mathrm{~km} \times 2 \mathrm{~km}$ and remains open to the east and south. The eastern portion of the soil survey should be completed before a comprehensive interpretation is made.

The IP survey determined a low resistivity anomaly extends approximately $1,000 \mathrm{~m}$ from the north side of the stock, and a high chargeability zone associated with the intrusive extends for approximately 500 m north from the intrusive. Zones of high chargeability and low resistivity occur on the north and south sides of the intrusive. Generally the north side anomalies are the more intense and extensive.

In the drilling program, spotty high Au values (up to $15,700 \mathrm{ppb}$ Au over 1.51 m in hole K07-1) occurred in several holes.

5.0 GEOLOGICAL SETTING

5.1 Regional Geology

The geological descriptions in this Section derive mainly from Struik (1988), Panteleyev et al. (1996) and Payne and Perry (2001); these authors are quoted extensively.

The western Canadian Cordillera is made up of a number of terranes representing crustal blocks of fundamentally contrasting histories. The terranes are commonly bounded by faults and trench complexes or collisional suture zones.

The fundamental geologic components that make up the terranes are referred to as 'tectonic assemblages'. The assemblages represent rocks deposited in specific tectonic settings during certain periods of time and, therefore, are commonly bounded by unconformities or faults. They represent distinctive successions of stratified rocks and other characteristic lithologies, mainly coeval metamorphic, plutonic and ultramafic rocks. The assemblages are categorized in terms of their predominant depositional setting or position relative to the orogen, for example, island arc, back arc, ocean basin or continent-margin foredeep clastic wedge or passive-margin sediment, and so forth. Tectonic assemblages are commonly named after their principal constituent formation, group or region in which the assemblage is best described. During the mid-Jurassic the North American continental plate collided with a group of island arcs to the west.

Figure No. 3 Terrane Map of Southern British Columbia. Barker Minerals' properties are indicated by the red star over the Barkerville subterrane. The brown star to the SE is the Barkerville Gold Mine Ltd.' Goldstream volcanogenic massive sulphide deposit. Map is from Ferri, F. \& Schiarizza, P., 2006.

Figure No. 4 Terrane Map of Cariboo Lake - Wells Area. Several Barker Minerals' properties are indicated by red stars. Map is from Ferri, F. \& Schiarizza, P., 2006.

Figure No. 5 Geology of Wells-Cariboo Lake Area. Highlighted on the BCGS map are Barker Minerals' Frank Creek and Unlikely massive sulphide prospects and the Kangaroo Project. The Harveys Ridge succession consists of siltstone, quartzite and the Frank Creek volcanics. Map is from Ferri, F. \& Schiarizza, P., 2006

The geological descriptions below derive mainly from Struik (1988), Panteleyev et al. (1996) and Payne and Perry (2001).

During the mid-Jurassic the North American continental plate collided with a group of island arcs to the west. Regional deformation and metamorphism are related to these events.

Figure No. 6 Schematic regional structural section from southwest to northeast across the four Terranes in Barker Minerals' claims area, showing the relative structural position of the Terranes. The Terrane symbols are BV-Barkerville, C-Cariboo, Sma-Slide Mountain (Antler Formation), SMc-Slide Mountain (Crooked amphibolite), QN-Quesnel and NA-North American. (after Struik, 1988).

Quesnel Terrane

The Late Triassic to Early Jurassic Quesnel Terrane...was accreted to the North American continent, in part by subduction and in part by obduction. The Eureka Thrust fault marks the boundary between the Quesnel and Barkerville terranes. The terrane is partly submarine and partly subaerial, consisting of volcanic and volcaniclastic rocks and co-magmatic intrusions, with minor carbonate lenses and related sedimentary rocks.

The principal assemblage in the Quesnel Terrane is the Triassic-Jurassic Nicola Group island arc - marginal basin sequence. The underlying rocks are the Crooked Amphibolite, part of the Slide Mountain assemblage, a mylonitized mafic and ultramafic unit of oceanic marginal basin volcanic and sedimentary rocks. Rocks of Quesnel Terrane and Crooked Amphibolite are structurally coupled and tectonically emplaced by the Eureka Thrust onto the Barkerville Terrane, to the east.

Two lithostratigraphic subdivisions of the Quesnel Terrane consists of: a basal Middle to Late Triassic metasedimentary unit of dominantly black phyllitic rocks, approximately 7 km
thick, and an overlying Late Triassic to Early Jurassic volcanic arc assemblage, approximately 9 km thick. The overlying volcanic rocks outline a northwesterly trending belt of subaqueous and subaerial volcanic rocks, deposited along a series of volcanic-intrusive centres that define the Quesnel island arc of predominantly alkalic basalts.

Within...the northern extension of the Quesnel Trough, the term...Takla Group has been applied to rocks identical to the Quesnel belt rocks...Equivalent rocks to the south...are generally referred to as Nicola Group...Baily (1978) pointed out the similarity of the Quesnel volcanic units with both the Nicola Group rocks to the south and the Takla Group rocks to the north...The term Takla leads to ambiguity because in northern British Columbia it has been used for rocks in both Quesnel and Stikine terranes...The usage for the TriassicJurassic volcanic arc and related rocks in Quesnellia currently preferred is Nicola Group. The term Takla Group possibly should be discarded... (Panteleyev et al., (1996).

The Quesnel Trough is a well-mineralized region typical of other Late Triassic to Early Jurassic volcano-plutonic island arcs in the Cordillera. It hosts a wide variety of mineral deposits. The principal recent exploration and economic development targets in the central Quesnel belt are alkalic intrusion-related porphyry copper-gold deposits and gold-bearing propylitic alteration zones formed in volcanic rocks peripheral to some of the intrusions. Other important targets are auriferous quartz veins in the black phyllite metasedimentary succession. The veins in some black phyllite members have potential to be mined as large tonnage, low-grade deposits. Tertiary rocks are mineralized with copper and gold. Antimony-arsenic and mercury mineralization in some apparently low temperature quartzcalcite veins indicated the potential for epithermal deposits. Placer mining for gold, said to occur together with platinum, has been of major historical and economic importance.

Slide Mountain Terrane

Rocks of the Devonian to Late Triassic Slide Mountain Terrane were partly obducted, partly subducted during collision of an oceanic plate with the continent. Small slices of mainly mafic volcanic rocks and ultramafic rocks of the Slide Mountain Terrane occur in and parallel to the Eureka thrust. Minor lithologies include chert, meta-siltstone and argillite.

The Crooked Amphibolite, considered to likely be a part of the Slide Mountain Terrane, includes three major constituent rock types: greenstone, metagabbro and meta-ultramafite. North of Quesnel Lake, the map units consist of mafic metavolcanics, amphibolite, chlorite schist, serpentinite, ultramafic rocks and pillow lavas. Chemical analyses indicate subalkaline tholeiitic compositions of basalts formed on the ocean floor. If the Crooked Amphibolite is a sheared and metamorphosed equivalent of the Antler Formation and is part of the Slide Mountain Terrane, it is separated from the underlying Barkerville Terrane by the Eureka Thrust, a wide zone of mylonitization. The Crooked amphibolite and the overlying rocks of Quesnel Terrane are structurally coupled and emplaced tectonically onto Barkerville Terrane.

Barkerville Terrane

The Barkerville Terrane is made up of the Snowshoe Group and Quesnel Lake gneiss. The Snowshoe Group rocks are Upper Proterozoic to Upper Devonian metasediments, considered correlative in age with the Eagle Bay Formation in the Kootenay Terrane to the south. The Snowshoe Group rocks are dominated by varieties of grit, quartzite, pelite, limestone and volcaniclastic rocks. The stratigraphic sequence is not well understood. The region was deformed by intense, complex, in part isoclinal folding and overturning. Locally, strong shear deformation produced mylonitic textures. The Quesnel Lake Gneiss is a Devonian to Mississippian intrusive unit varying in composition from diorite to granite to syenite. It is generally coarse grained, leucocratic, often with megacrysts of potassium feldspar. The main body of gneiss is 30 km long by 3 km wide and is elongated parallel to the eastern border of the Intermontane belt. Its contacts are in part concordant with, and in part perpendicular to, metamorphic layering.

The contact between the Barkerville Terrane and Cariboo Terrane to the east is the Pleasant Valley Thrust. The Barkerville and Cariboo Terranes were juxtaposed prior to emplacement of the Slide Mountain Terrane which was thrust over both of them. The northeastern third of the Barkerville Terrane is the main zone of economic interest in the Cariboo district. Struik described it as "gold-enriched", because it contains the historic Wells and Barkerville gold mines and the Cariboo Hudson deposit, approximately 40 km and 20 km northwest of the project area, respectively.

Cariboo Terrane

The northeastern part of Barker Minerals' 'Peripheral' claim group is underlain by Precambrian to Permo-Triassic marine peri-cratonic sedimentary strata of the Cariboo terrane. The Cariboo Terrane consists mainly of limestone and dolomite with lesser siliceous, clastic, sedimentary rocks and argillite. Some geologists believe that the Cariboo Terrane is a shallow, near-shore facies and the Barkerville is a deeper, offshore facies of the same erosion-deposition system. No rifting is suspected between the Cariboo Terrane and the North American continent, in contrast to that between the Barkerville Terrane and the North American continent. Lithologies within the Cariboo Terrane correlate well with parts of the Classier Platform and Selwyn Basin of Yukon and northern British Columbia.

The Cariboo and Barkerville Terranes are separated by the regional Pleasant Valley Thrust fault, which dips moderately to steeply northeast. Struik (1988) states the Cariboo block was thrust from the east over the Barkerville block along a strike length of over 100 km . The Cariboo Terrane was cut by the Jurassic-Cretaceous Little River stock, a medium-grained granodiorite grading to quartz monzonite. Some of the carbonate layers in the lowest part of the Cariboo terrane (or upper part of the Barkerville Terrane) are enriched in zinc and lead. Since the 1970's, preliminary exploration on stratiform $\mathrm{Zn}-\mathrm{Pb}$ targets has been conducted in this area.

Glaciation and glacial deposits

The last glacial stage that affected the Quesnel Highland, the Fraser glaciation, began 30,000 years ago. Much of this ice had melted by 10,000 years ago, but small remnants are preserved high in the alpine areas of the Cariboo Mountains. At lower elevations, glaciers of this age scoured the debris left by preceding ice advances, almost completely destroying them, leaving a chaotic assemblage of unsorted till, moraine and drift, with lenses of gravel and sand that had been roughly sorted by melt water and rivers, leaving behind beds of silt and clay that were stratified by settlement in ice-dammed lakes. In the Cariboo area, the debris covers bedrock in valleys below $1,700 \mathrm{~m}$, leaving typical glacial features such as Ushaped valleys, ice-sculpted drumlins, moraine terraces and glacier and river benches. On the Barker Minerals properties, glacial deposits range from one to a few tens of metres thick. Some glacial till deposits are overlain by well-bedded glaciolacustrine clay and silt deposits up to a few tens of metres thick.

In much of the Cariboo district, a layer of distinctive, hard, compact, semi-rigid blue clay sits either on or slightly above bedrock and acts as "false" bedrock. It was formed from glacial drift left behind by the last ice advance prior to the Fraser glaciation and was compacted by the weight of the Fraser stage ice. In the placer-gold areas of the Cariboo, large amounts of gold were recovered from gravel resting on this clay. In places the clay layer was penetrated by the placer miners to reach richer "pay streaks" on true bedrock below.

5.2 Local Geology

The geology on the Kangaroo Property consists of basalt and siltstones intruded by a multimodal intrusive stock, consisting of gabbro, diorite and monzodiorite, lithologies similar to that at the QR gold mine, 8.0 km WSW of the Kangaroo Property. The stock at Kangaroo $(1.0 \mathrm{~km} \times 1.8 \mathrm{~km}$) is similar in size to the QR stock ($1.0 \mathrm{~km} \times 1.5 \mathrm{~km}$) at the QR mine; both stocks' long dimension is in the E-W direction.

The diorite intrusive at Kangaroo has an elongate shape whose northern boundary grid coordinates occur at approximately 1400 N . The southern boundary grid coordinates varies between approximately 600 N and 1300 N as the intrusive appears to thin toward the NE.

Lithologies

The most common rock type encountered in the drill holes was fine grained siltstone and andesite. Colour varies from light to dark grey, relatively rare graphitic versions are blackish. Fine bedding occurs commonly, with relatively uncommon fine sandstone interbeds. The siltstones are locally intensely fractured, weakly welded back together with chlorite. No significant graded bedding was observed. Andesitic volcaniclastics are often interbedded with the siltstones. These are mainly distinguished by a coarser texture and a somewhat lighter and greenish grey colour due to higher chlorite content.

The basalts are locally brecciated and sometimes amygdaloidal and are considered to be lavas or otherwise extrusives. Some of the basalts are difficult to characterize, some may be dikes and fine grained chilled intrusive rock.

The intrusive body consists mainly of diorite or porphyritic gabbro. These are medium to fairly coarse grained in the case of the porphyritic rocks. Colour varies from light to dark grey, some of the coarser gabbro are rather leucocratic or light coloured. The larger phenocrysts are augite, sometimes up to approximately 10 mm . Monzodiorite contained pink coloured monzonite xenoliths.

Structure

Siltstones adjacent to the intrusive stock have bedding that strike NW, N and NE and steep dips eastward or westward. These attitudes suggest the presence of a syncline who's NWSE to N-S axis occurs in the vicinity of east end of the intrusive.

The manner in which the diorite and gabbro occur suggests these may be, in part, sills.

6.0 DEPOSIT TYPE

Frank Creek is a volcanogenic massive sulphide prospect. The Kangaroo Project is related to intrusion-related gold. Skarn and vein-type chalcopyrite and Au mineralization at Kangaroo occur preferentially in calcareous basalts but also in calcareous and silicified siltstones and in veinlets in the dioritic porphyry. Anomalous Au , with Cu, Mo and As , in soils sampled in 2007 occur over the intrusive body and a certain distance into the intruded siltstones and basalts. Possible Au deposit forms at Kangaroo can be proximal, intermediate and distal to the mineralizing intrusion similar to that shown in Figure No. 6 below.

Figure No. 7 Generalized Zoning Model for Au-Enriched Porphyry Cu Systems. (modified from Sinclair (2004) after Jones, (1992)).

The QR gold mine, 8.0 km WSW of the Kangaroo Property, is considered by the BCGS as a type example of an Au skarn (BCGS deposit type K04). At the QR mine Au mineralization occurs mainly stratabound in basalt adjacent to overlying sediments and near the alteration front a certain distance from a diorite intrusive. The QR example is considered to be the most likely model for Kangaroo. Intrusion-related Au pyrrhotite veins, (BCGS deposit type 102), is also in consideration at Kangaroo due to the very common occurrence of pyrrhotite, disseminated and veined in most rock types, and massive in hornfelsic skarn. The occurrence of anomalous Au in veinlets in the intrusive and in soils over it, and anomalous Cu and Mo in soils over and adjacent to the intrusive suggest the possibility of a porphyry $\mathrm{Cu} \pm \mathrm{Mo} \pm \mathrm{Au}$ (BCGS deposit type LO4) related model. The British Columbia Geological Survey deposit types under consideration at Kangaroo are discussed in detail in Appendix A - B.C. Geological Survey Deposit Types.

A 'propylite model' was proposed by Panteleyev et al (1996, pg 80-83) in their discussion of the QR deposit. They considered the unusual aspects of the style of mineralization in the propylite model sets it apart from other gold skarns and deserve to be identified as a deposit type that is distinct from the gold skarn model. Their description of the Propylite Model had the QR Deposit specifically in mind; it is quoted in italics below.

The Propylite Model

Rock Types: Epidote and pyrite-rich auriferous propylitic alteration (epidote-chlorite-tremolite-calcite and rare garnet), with minor other sulphide minerals, occurs as lithologically controlled, conformable replacement zones within a thermal aureole adjacent to an intrusive body. Host rocks are hornfels and epidote-rich propylite derived from mafic volcanics, commonly with alkalic (shoshonitic) compositions, mafic tuffs and volcanic sandstones and calcareous mudstone. Intrusions are generally small, zoned stocks with diorite to syenite compositions. Their age is similar to, or slightly younger than, their host rock alkalic volcanics. Feldspathic hornblende porphyry dikes and sills are common. The stocks exhibit little alteration but have a weakly developed porphyry copper-style mineralization. Related dikes and sills in the mineralized zones external to the stock may be more extensively hydrothermally altered than the main intrusion.

Mineralization and Alteration: Propylitic zones with auriferous pyrite occur within the propylitic alteration aureole. The better grades are generally at the outer periphery of the propylitic alteration zone, commonly at lithologic unit or bedding contacts. Tabular, conformable mantos may form in permeable beds and units, commonly along the contact between hornfels or other less permeable rocks and the propylitic fragmental volcanic rocks. Faults or other, older structural features may be mineralized and form ore zones that are transgressive to strata.

Pervasive propylitic alteration of the matrix and clast rims of fragmental volcanic rocks is characterized by disseminated grains or intergrowths of epidote with chlorite, calcite, tremolite, quartz, albitic plagioclase, clinozoisite and rare andradite garnet. Calcite is abundant peripheral to the propylitic alteration zone and in the mudstone beds. Fracture controlled quartz-sericite-pyrite zones may occur in subordinate amounts.

Granular pyrite-epidote-calcite aggregates replace the matrix of the volcaniclastic rocks and clast rims. Locally pods and lenses contain up to 80% pyrite and other rare sulphide grains. Pyrite also occurs as fracture coatings, seams and veinlets with calcite and epidote. It is the predominant sulphide mineral; the ore mineral is gold. Subordinate minerals are chalcopyrite, pyrrhotite, sphalerite and marcasite with minor galena, and arsenopyrite. Magnetite may be present as a constituent in some sulphide-rich bands. Gangue minerals in addition to the abundant epidote, chlorite and calcite are tremolite, quartz, clinozoisite and rare andradite garnet. Permeability in the volcaniclastic rock is a fundamental ore control; secondary controls are tectonic breccias, faults and fracture zones that provide additional fluid flow paths. Chemically reactive hostrocks containing calcite, sulphide minerals or devitrified glass may cause ore deposition by chemically buffering the hydrothermal solutions.

Origin: The QR deposit is related to a small, relatively "dry-looking", zoned alkalic stock. Fox $(1989,1991)$ has described the deposit as a "failed" porphyry system. He suggests that the gold is transported by a magmatic-source low density, low-salinity fluid rich in CO_{2}. The
writers consider the deposit to be a product of a small geothermal cell with an evolving hydrothermal fluid. A magmatically derived fluid interacted with meteoric water and the mixture evolved, probably through fluid wallrock interaction with the chemically reactive calcareous siltstones. Melling et al. (1990) provide isotopic data that are consistent with older porphyry copper magmatic systems but some modification in carbon by wallrock interaction is indicated. The early alteration is associated with calcite (note the zeolite mineral wairakite should form in this environment but has not been recognized), then the CO_{2}-depleted fluid reacts with the basalts to form propylite - mainly epidote, pyrite, chlorite and (?) tremolite with rare andradite garnet. This is not a retrogressively altered skarn because maximum temperatures of mineralization appear to be in the order of 200 to $300^{\circ} \mathrm{C}$. This low temperature produces prograde propylite mineral assemblages without any substantial amount of calc-silicate and silicate minerals typical of gold skarns such as garnet, pyroxene, wollastonite, vesuvianite, axinite, potassium-feldspar and biotite.

Exploration Guides: A distinctly anomalous geochemical signature of gold, arsenic, silver and copper are typically associated with the ore. Pathfinder elements in the hydrothermally altered rocks include zinc, molybdenum, vanadium, antimony and possibly lead, cadmium, bismuth, cobalt, magnesium and iron (Fox et al., 1987). Glacial till, soil and vegetation exploration geochemistry have been used effectively in this region of extensive glacial dispersion. Magnetic surveys have been effective exploration tools. Aeromagnetic highs can be used to detect the presence of intrusions, mainly the magnetite-rich dioritic stocks with which the propylitic alteration is associated. Some of the porphyry copper mineralization contains abundant hydrothermally derived magnetite.

Genetically affiliated mineralization may be manifest as intrusion-related auriferous vein, replacement and pyrite-sericite stockworks, manto and skarn deposits and porphyry coppergold or porphyry gold deposits, all in propylitic settings. Other deposits with similarities to the QR deposit are the 66 zone at the Milligan porphyry copper-gold deposit in British Columbia, and elsewhere the mantos such as Candelaria and Punta del Cobre, Chile.

Discussion: The QR deposit (and propylite gold deposits in general) appear to be related to mineralization by a (relatively) small volume of 'ponded hydrothermal fluid' related to emplacement of a small alkalic stock. There has been considerable interaction with ('buffering' by) the basaltic country rock to form abundant epidote and pyrite but no substantial amount of skarn. The hydrothermal system exemplifies a lithologically and structurally controlled mineralizing process in which adjacent permeable and impermeable lithologies form a fluid trap against a small, mineralizing intrusion. The West Zone, on the other hand, is largely a structural trap and forms a discrete copper-rich zone.

This type of propylitic alteration can be considered to be a subtype of skarn mineralization a prograde, low-temperature, auriferous epidote skarn. Unusual aspects that set the propylite model apart from other auriferous skarns are (G.E. Ray, personal communication, 1994): the association with alkalic rocks; the large amount of epidote with lack of pyroxene
and only trace of garnet; mineralization with pyrite, lesser magnetite and rare pyrrhotite suggesting an oxidized ore fluid; the high gold to silver ratio and overall low copper content.

This style of mineralization deserves to be identified as a deposit type that is distinct from the gold skarn model largely because it represents a new exploration opportunity. The mineralization has an unspectacular appearance in outcrop and generally has not been highly regarded as an exploration prospect. Many pyritic propylite occurrences, especially those in porphyry copper districts, might have been excluded from further investigation of their gold content.

7.0 MINERALIZATION, ALTERATION, VEINS

Mineralization

At Kangaroo Property, pyrite and pyrrhotite occur disseminated in all rocks and in blebs and irregular narrow sulphide veins in the siltstones and basalt and in the intrusive rocks. The siltstones are usually rusty with reddish and yellowish brown gossan. Some fine sandy layers in the siltstones appear to be preferentially mineralized with sulphides 'stratabound' on a small scale. Massive pyrrhotite with chalcopyrite and pyrite occur in dark hornfelsic rock near intrusive contacts. Generally sulphides are greater near intrusive contacts, more abundant in the intruded rather than the intrusive rocks. Pyrrhotite is responsible for the magnetic quality of rocks commonly observed in core and outcrop. Magnetite is relatively rare.

Abstract

Alteration Pervasive calcite occurs very commonly in the basalts, and in the siltstones and volcaniclastics. Occasionally diorite reacts with acid, this was mainly due to the presence of fine calcite veinlets. Pervasive sericite occurs commonly in the intruded rocks, more intensely in gougy zones. Chlorite alteration is common, usually concentrated in chloritic fractures in the siltstones. Epidote is patchily common but rarely more than in trace amounts. The siltstones are generally primarily siliceous. Secondary pervasive silica alteration occurs locally and can be confused with the primarily silica in siltstones. Dark hornfelsic rock occurs with massive pyrrhotite occurs locally.

Veins

Calcite veins predominate over quartz veins in the intrusive and intruded rocks. Blebby pyrrhotite and pyrite occur with the veins, mainly at selvages. These sulphides and chalcopyrite also occur in narrow sulphide veins and irregularly disseminated in the siltstones and basalts.

8.0 EXPLORATION PROGRAM, 2016

8.1 Sampling Method and Approach

Rock samples were analyzed for multiple elements using the Niton XL3t handheld X-ray fluorescence analyzer from Thermo Scientific Inc. Further information on this instrument is at the Niton website http://www.niton.com/en/niton-analyzers-products/x|3/x|3t. An overview of sample analysis using energy dispersive X-ray fluorescence (EDXRF), adapted from the Niton website, is in Appendix A.

Most rock analyses were done at Barker Minerals' field office in Likely. Coordinates were collected at all sample locations. The coordinates are provided in Table No. 1. The rocks were analyzed in a manner to determine both their "high grade" and "low grade" values at each site, in order to minimize a "nugget" effect and to determine background values. The XRF analysis method does not replace laboratory assay. It detects the presence or absence of multiple elements in prospecting and, up to a certain point, the intensity of mineralization and correlation among elements in a specimen. The XRF is very useful in analysis for base economic and pathfinder metals though Au needs to be in relatively high grade in order to be detected by the XRF.

8.2 Kangaroo Project

Overlook Road (Areas A, B, C)

Altogether 141 geochemical analyses were made of rocks in the Overlook Road area. The samples were collected from outcrops and float. Zn (up to 195 ppm) and Cu (up to 1,030 ppm) anomalies occurred in argillites and siltstones. Several very high results were got for gold in quartz. In Area A, 11.53 ppm and 12.61 ppm Au occurred. In Area B, 12.14 ppm and 12.18 ppm Au occurred. In Area C, 9.82 ppm, 10.84 ppm and 10.95 Au occurred. The high gold results often were accompanied by high values of zinc or copper.

8.3 Frank Creek Project

Area A

Area A is located astride the 8400 Road below the level of the C Road branch. Altogether 136 geochemical analyses were made of rocks. The samples were collected from outcrops and float. Zn (up to 956 ppm), Cu (up to 855 ppm), and Pb (up to 458 ppm) anomalies occurred in argillites and siltstones. Thirteen analyses were highly anomalous in gold, ranging from 9.79 ppm to 501.2 ppm Au. These high gold results occurred in a $200 \mathrm{~m} \times 600$ m northeast-southwest area in quartz and altered argillites. The high gold results usually were accompanied by high values of zinc or copper and, less reliably, with molybdenum, arsenic or lead.

9.0 INTERPRETATION and CONCLUSIONS

The geology of the Kangaroo Project consists of sedimentary and volcanic rocks of the Upper Triassic to Lower Jurassic Nicola Group and associated intrusions, similar to lithologies at Cross Lake Minerals' QR mine, considered an Au skarn deposit. The QR gold mine, located 8.0 km WSW of the Barker Minerals' Kangaroo Project, is considered the possible model for mineralization explored for on the Kangaroo Project.

The widespread occurrence of highly anomalous gold values in rocks, in the Kangaroo and Frank Creek project areas accompanied by anomalous base metals require further prospecting and sampling.

10.0 RECOMMENDATIONS

More extensive and intensive prospecting and rock and soil sampling are required in the Kangaroo and Frank Creek areas examined in 2016 and outward.

APPENDIX A

Analytical Method

Overview of sample analysis using energy dispersive X-ray fluorescenc using the Thermo Scientific Niton XL3t handheld XRF analyzer

Thermo Scientific portable energy-dispersive x-ray fluorescence (EDXRF) analyzers, commonly known as XRF analyzers, can quickly and nondestructively determine the elemental composition of metal and precious metal samples of rocks, ore and soil.

Up to 40 elements may be analyzed simultaneously by measuring the characterisitic fluorescence x -rays emitted by a sample. XRF analyzers can quantify elements ranging from magnesium (Mg - element 12) through uranium (U - element 92) and measure x-ray energies from 1.25 keV up to 85 keV in the case of Pb K-shell fluorescent x-rays excited with a ${ }^{109} \mathrm{Cd}$ isotope. These instruments also measure the elastic (Raleigh) and inelastic (Compton) scatter x-rays emitted by the sample during each measurement to determine, among other things, the approximate density and percentage of the light elements in the sample.

Elemental Analysis - A Unique Set of Fingerprints

How does XRF work? Each of the elements present in a sample produces a unique set of characteristic x-rays that is a "fingerprint" for that specific element. XRF analyzers determine the chemistry of a sample by measuring the spectrum of the characteristic x-ray emitted by the different elements in the sample when it is illuminated by x-rays. These x-rays are emitted either from a miniaturized x-ray tube, or from a small, sealed capsule of radioactive material.

1. A fluorescent x-ray is created when an x-ray of sufficient energy strikes an atom in the sample, dislodging an electron from one of the atom's inner orbital shells.
2. The atom regains stability, filling the vacancy left in the inner orbital shell with an electron from one of the atom's higher energy orbital shells.
3. The electron drops to the lower energy state by releasing a fluorescent x-ray, and the energy of this x-ray is equal to the specific difference in energy between two quantum states of the electron.

Atom emits characteristic X -rays when illuminated by x -rays from a primary source.

When a sample is measured using XRF, each element present in the sample emits its own unique fluorescent x-ray energy spectrum. By simultaneously measuring the fluorescent x-rays emitted by the different elements in the sample, the Thermo Scientific portable XRF analyzers can rapidly determine those elements present in the sample and their relative concentrations - in other words, the elemental chemistry of the sample.

Overview of the Thermo Scientific Niton XL3t handheld XRF analyzer.

APPENDIX B

Glossary of Technical Terms and Abbreviations

Glossary of Technical Terms and Abbreviations

Ag	Silver.
Anomalous	Chemical and mineralogical changes and higher than typical background values in elements in a rock resulting from reaction with hydrothermal fluids or increase in pressure or temperature.
Anomaly	The geographical area corresponding to anomalous geochemical or geophysical values.
Argentiferous	Containing silver.
As	Arsenic.
Au	Gold.
Background	The typical concentration of an element or geophysical response in an area, generally referring to values below some threshold level, above which values are designated as anomalous.
BCGS	British Columbia Geological Survey
Cd	Cadmium.
cm	Centimetre
Cu	Copper.
DCIP	An electrical method which uses the injection of current and the measurement of voltage and its rate of decay to determine the subsurface resistivity and chargeability.
DDH	Diamond drill hole.
EM	Electromagnetic.
Float	Loose rocks or boulders; the location of the bedrock source is not known.
Grab sample	A sample of a single rock or selected rock chips collected from within a restricted area of interest.
g/t	Grams per tonne (metric tonne).
	$34.29 \mathrm{~g} / \mathrm{t}$ (metric tonnes) $=1.00 \mathrm{oz} / \mathrm{T}$ (short tons)
Ha	Hectare - an area totalling 10,000 square metres, e.g., an area 100 metres by 100 metres.
HLEM	Horizontal loop electromagnetic.
Intrusive	A magmatic rock that cuts into and alters older rocks and may be the source of minerals deposited into the rocks intruded, creating skarn or porphyry type mineral deposits.
IP	Induced polarization.
km	Kilometre.
Mag/vlf	Magnetic and VLF-EM geophysical surveys.
Max-min	An HLEM technique to test for resistivity and conductivity of rocks.
Mo	Molybdenum.
MT	Magnetotelluric. A electrical method that uses natural variations in the Earth's magnetic field to induce electric current in the ground to determine the subsurface resistivity.
NW-SE	Northwest - southeast.

Orogen	The physical manifestations of the process of mountain building. Orogens are usually long, thin, arcuate tracts of rock that have a pronounced linear structure resulting in terranes.
oz/T	ounces per ton (Imperial measurement).
	$34.29 \mathrm{~g} / \mathrm{t}$ (metric tonnes) $=1.00 \mathrm{oz} / \mathrm{T}$ (short tons)
oz/st	ounces per short ton (Imperial measurement, same as oz
	$34.29 \mathrm{~g} / \mathrm{t}$ (metric tonnes) $=1.00 \mathrm{oz} / \mathrm{st}$ (short tons)
Pathfinder	Elements that occur in anomalous amounts together with the economic element being explored for.
PGE	Platinum group elements: platinum, palladium, osmium, iridium, rhodium, ruthenium.
Pb	Lead.
Porphyry	A deposit where primarily Cu-bearing minerals occur in disseminated grains or veinlets through a large volume of rock within or in close association with intrusive igneous rocks. Au and Mo are also important products of porphyry deposits.
ppb	Parts per billion.
ppm	Parts per million ($1 \mathrm{ppm}=1,000 \mathrm{ppb}=1 \mathrm{~g} / \mathrm{t}$)
Protolith	The original rock before it was metamorphosed.
Pt	Platinum.
Skarn	Forms by chemical metasomatism of rocks in the contact zone of intrusive rocks with rocks often containing carbonate minerals. Skarns in the igneous environment are associated with hornfels and wider zones of calc-silicate rocks. Skarns are often hosts for copper, lead, zinc, iron, gold, molybdenum, tin, and tungsten ore deposits.
Sb	Antimony.
Takla Group	Takla Group has been applied to rocks identical to the Quesnel belt rocks...Equivalent rocks to the south...are generally referred to as Nicola Group... The term Takla leads to ambiguity because in northern British Columbia it has been used for rocks in both Quesnel and Stikine terranes...The usage for the Triassic-Jurassic volcanic arc and related rocks in Quesnellia currently preferred is Nicola Group. The term Takla Group possibly should be discarded... (Panteleyev et al., (1996).
Terrain	An arbitrarily defined geographic location.
Terrane	A major crustal block with a particular geologic history. (See Section 9.0 for more).
VLF-EM	Very low frequency electromagnetic.
XRF	X-ray fluorescence.
Zn	Zinc

APPENDIX C

References

REFERENCES

BC Ministry of Energy Mines and Petroleum Resources, Mineral Deposit Models:
Deposit Type K04-Au Skarns
Deposit Type I02 - Intrusion-Related au Pyrrhotite Veins
Deposit Type L04 - Intrusion Related $\mathrm{Cu} \pm \mathrm{Mo} \pm \mathrm{Au}$
Deposit Type M05 - Alaskan-Type PGE
Deposit Type ‘Propylite’ Model (see Panteleyev at al., 1996)
BC Ministry of Energy Mines and Petroleum Resources, Minfile Mineral Inventory:
Minfile No. 093A 085 (Maud Creek Placer)
http://minfile.gov.bc.ca/Summary.aspx?minfilno=093A\ \ 085
BC Ministry of Energy Mines and Petroleum Resources, Minfile Mineral Inventory:
Minfile No. 093A 119 (Maud)
http://minfile.gov.bc.ca/Summary.aspx?minfilno=093A\ \ 119
BC Ministry of Energy Mines and Petroleum Resources, Minfile Mineral Inventory:
Minfile No. 093A 121 (QR) http://minfile.gov.bc.ca/Summary.aspx?minfilno=093A++121
BC Ministry of Energy Mines and Petroleum Resources, Minfile Mineral Inventory: Minfile No. 093B 025 (Lynda) http://minfile.gov.bc.ca/Summary.aspx?minfilno=093B++025

Geoscience BC Quest Project - Quesnellia Exploration Strategy http://www.geosciencebc.com/s/Quest.asp

All Assessment Reports listed below are available for free download from the BC Geological Survey (BCGS) Assessment Report Indexing System (ARIS) at the Ministry of Energy, Mines and Petroleum Resources' website http://www.em.gov.bc.ca/Mining/Geolsurv/Aris/default.htm .

Bailey, D.G., Geology of the Central Quesnel Belt, British Columbia (Parts of NTS 93A, 93B, 93G and 93H), BC Geological Survey Branch, Open File 1990-31.

Ballantyne, S.B., Hornbrook, E.W.H., Johnson, W.M., National Geochemical Reconnaissance, Quesnel Lake, British Columbia, NTS 093A, GSC Open File 776, 1981. (Alternately, BC MEMPR Open File BC RGS-5).

Bloodgood, M.A., Geology of the Eureka Peak and Spanish Lake Map Area (093A), BC Geological Survey Branch, Paper 1990-3, 1990.

Bowman, A., Report on the Geology of the Mining District of Cariboo, British Columbia, in Geological and Natural History Survey of Canada Reports and Maps of Investigations and Surveys, 1887-1888; Selwyn, A R C; Geological Survey of Canada, Annual Report vol. 3, pt. 1, 1889; pages 1C-49C 5 sheets, including a Map of the Cariboo Mining District, GSC Map 278, (1889).

Brown, A.S., Geology of the Cariboo River Area, British Columbia, BC Department of Mines and Petroleum Resources, Bulletin No. 47, 1963.

Church, C., Technical Report on the Cariboo Property, October 12, 2003, Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA).

Doyle, L.E., Prospecting, Geochemical, Geophysical, Geological, Trenching and Diamond Drilling of the Ace, Frank Creek, SCR and Peripheral Properties, March 28, 2003. (Assessment Report 27125 - includes as Appendixes: Perry, P.J., 2002, Walcott, P.E. \& Assoc. Ltd., 2002b, Wild, C.J., 2002b).

Doyle, L.E., (2005a), Prospecting, Geochemical, Geophysical, Geological, Trenching and Diamond Drilling of the Ace, Frank Creek, SCR, Massive Sulphide Projects and Peripheral Properties, February 15, 2005. (Assessment Report 27655 - includes as Appendix: McKinley, S.D., 2004).

Doyle, L.E., (2005b), Geochemical, Geophysical, Geological, Trenching and Diamond Drilling of the Ace, Frank Creek, SCR, Kangaroo Projects and Peripheral Properties, August 26, 2005. (Assessment Report 28248 - includes as Appendix: McKinley, S.D., 2004).

Fox, P.E., and Cameron, R.S., Geology of the QR Gold Deposit, Quesnel River Area, British Columbia; in Porphyry Deposits of the Northwest Cordillera of North America, (editor) T.G. Schroeter, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, Paper 66, pages 829-837, 1995.

Fox, P.E., Diamond Drill Program on the Maud 1-7 Mineral Claims, Quesnel River Area, June 30, 1982. (Assessment Report 10527).

Fox, P.E., Fox, P.E., Diamond Drill Program on the Maud 1-7 Mineral Claims, Maud Lake Area, June 30, 1988. (Assessment Report 17598).

Gillstrom, G.G., Revised Technical Report on QR Property, November 18, 2003, Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA).

Hallof, P.G., (1963), Report on the Induced Polarization and Resistivity Survey on the Dorothy Claim Group, Hogem Area, Ominica Mining Division (Assessment Report 513).

Jones, B.K., Application of Metal Zoning to Gold Exploration in Porphyry Copper Systems, Journal of Geochemical Exploration, v. 43, p. 127-155, 1992.

Kalhert, B.H., Geochemical Report Gravelle Claims, June 3, 1988. (Assessment Report 17484).

Levson, V.M. and Giles, T.R., Geology of Tertiary and Quaternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A, B, G, H), BC Geological Survey Branch, Bulletin 89.
Levson, V.M., Mate, D.J. and Ferbey, T., Platinum-Group-Element (PGE) Placer Deposits in British Columbia: Characterization and Implications for PGE Potential, Geological Fieldwork 2001, BCGS Paper 2002-1.

Logan, J.M., Bath, A., Mihalynuk, M.G., Rees, C.J., Ulrich, T.D., Friedman, R., (2007), Regional Geology of the Mount Polley Area, Central British Columbia, Geoscience Map 2007-1, Ministry of Energy, Mines and Petroleum Resources in cooperation with Imperial Metals Corp. and University of British Columbia,

Logan, J.M. and Moynihan, D.P., (2009), Geology and Mineral Occurrences of the Quesnel River Map Area, Central British Columbia, (NTS 093B/16), Geological Fieldwork 2008, BCGS Paper 2009-1.

Martinez, E., Frantti, B.G., (2007), Geophysical Survey Logistics Report Regarding the Titan-24 Tensor-Magnetotelluric and DC Resistivity \& Induced Polarization Surveys over Kangaroo Project, near Likely, Central BC. Quantec Geoscience Ltd. Unpublished Barker Minerals Ltd. Report.

Martinez, E., Legault, J.M., (2008), Geophysical Survey Interpretation Report Regarding the Titan-24 Tensor-Magnetotelluric, DC Resistivity and Induced Polarization Survey over Kangaroo Project, near Likely, BC. Quantec Geoscience Ltd. (as Appendix H in Assessment Report 29740 by R. Turna \& L.E. Doyle).

McKinley, S. D., (2004), Technical Report on the Cariboo Properties of Barker Minerals Ltd. (Including The Frank Creek and Sellers Creek Road Massive Sulphide Projects, the Ace Massive Sulphide and Vein Gold Project, the Kangaroo Copper-Gold Project, the Rollie Creek Project and the Quesnel Platinum Project), July 19, 2004. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA), (and as Appendix VI in Assessment Report 27655 by Doyle, L.E. and Appendix I in Assessment Report 28248 by Doyle, L.E.).

Northern Miner, The, Vol. 93, No. 45, Dec 31, 2007 - Jan 6, 2008.
Panteleyev, A., Bailey, D.G., Bloodgood, M.A. and Hancock K.D., (1996), Geology and Mineral Deposits of the Quesnel River - Horsefly Map Area, Central Quesnel Trough, British Columbia, NTS Mapsheets 93A/5, 6, 7, 11, 12, 13; 93B/9, 16; 93G/1; 93H4, BC Geological Survey Branch Bulletin 97.

Payne, J.G., Preliminary Lithological Report on the Frank Creek VMS Prospect - and the Line cutting and Grid Preparation on the Black Bear, Sellers, Upper Grain, and Tasse Prospects, August 1999. (Assessment Report 26003).

Payne, J.G., Geology, Geochemistry and Geophysics of the Frank Creek, Ace, and Sellers Creek Road, and Quesnel Platinum Properties, February 2001. (Assessment Report 26504).

Payne, J.G. and Perry, B.J., Qualification Report on the Barker Minerals Ltd. Property, including the Frank Creek, Ace and Sellars Creek Road VMS Projects and the Quesnel Platinum Project; Cariboo Mining Division, British Columbia, Canada, NTS 93 A and 93 B, October 25 2001. Unpublished Barker Minerals Ltd. Report.

Perry, B.J., Report on Exploration of the Barker Minerals Ltd. Property, including the Frank Creek and Sellars Creek Road VMS Projects, the Ace VMS and Vein Gold Project and the Quesnel Platinum Project; Cariboo Mining Division, British Columbia, Canada - NTS 93A and 93 B, October 21, 2002. Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA), (and as Appendix 5 in Assessment Report 27125 by Doyle, L.E.).

Philp, R.D.H., Geochemical and dip Needle Surveys on the MAG Group, April 1, 1969. (Assessment Report 1824).

Rublee, V.J., Occurrence and Distribution of Platinum Group Elements in British Columbia,
Ministry of Energy Mines and Petroleum Resources, Open File 1986-7, 1986.
Schiarizza, P., Bedrock Geology and Lode Gold Occurrences, Cariboo to Wells, British Columbia, BCGS Open File 2004-12.

Sheldrake, R.F., Report on a Helicopter EM and Magnetometer Survey on Three Projects in the Quesnel River Area, May 25, 1981. (Assessment Report 9449).

Sheldrake, R.F., Report on a Helicopter EM and Magnetometer Survey on Three Projects in the Quesnel River Area, May 25, 1981. (Assessment Report 9956).

Simpson, R.G., Update on Resources, QR Project, December 15, 2005, Report filed with System for Electronic Document Analysis and Retrieval (SEDAR) under authority of Canadian Securities Administrators (CSA).

Sinclair, W.D., (2004), Porphyry Deposits, Geological Survey of Canada website:
Mineral Deposits of Canada, http://gsc.nrcan.gc.ca/mindep/synth dep/porph/index e.php.

Struik, L.C., Bedrock Geology of Spanish Lake (93A11) and Parts of Adjoining Map Areas, British Columbia, GSC Open File 920, 1983.

Struik, L.C., Bedrock Geology of Quesnel Lake (93A10) and Part of Mitchell Lake (93A15) Map Areas, Central British Columbia, GSC Open file 962, 1983.

Struik, L.C., Structural Geology of the Cariboo Gold Mining District, East Central British Columbia, GSC Memoir 421, 1988.

Turna, R. and Doyle, L.E., Geological, Geochemical, Geophysical, Trenching, Drilling Assessment Report on the Frank Creek, Kangaroo, MAG and Peripheral Properties, February 25, 2008. (Assessment Report 29740).

Turna, R., Drilling and Geological Assessment Report on the Frank Creek, Black Bear, Gerimi and Peripheral Properties, February 10, 2009. (Assessment Report \# not assigned at this writing).

Warne, G.R.J., (2008a), Geophysical Survey Logistics Report Regarding the IP/Resistivity Surveys at the Kangaroo Property, Caribou Region, British Columbia. Quantec Geoscience Ltd. Unpublished Barker Minerals Ltd. Report.

Warne, G.R.J., (2008b), Geophysical Survey Logistics Report Regarding the IP/Resistivity Surveys at the MAG Property, Caribou Region, British Columbia. Quantec Geoscience Ltd.
(as Appendix J in Assessment Report 29740 by R. Turna \& L.E. Doyle).
Warne, G.R.J., (2009), Geophysical Survey Interpretation Report Regarding 2D Inversion Modeling of the IP/Resistivity Survey Results over the Kangaroo Property, Caribou Region, British Columbia. Quantec Geoscience Ltd. Unpublished Barker Minerals Ltd. Report.

APPENDIX D

Adjacent Properties

QR Gold Mine
Cariboo Property

ADJACENT PROPERTIES

QR Gold Mine

The following information on QR Mine is mainly from Gillstrom (2003) and Simpson (2005). Some additional information is added from Minfile 093A 121 and Mineral Deposit Type K04 (Au skarns) of the BC Geological Survey.

The QR gold mine is located 8.0 km WSW of the Barker Minerals' Kangaroo Property. The deposit was first staked in 1975 by Dome Exploration and Newconex Exploration during a regional reconnaissance program. The property has been continuously drilled by various owners since 1981. In 1992 the property was acquired by CMP Resources. The following year Kinross Gold Corp. was formed from CMP and two other companies. In 1995 mining of the Main Zone started; a 5 year mine life was projected. In 1998 mining was suspended due to low gold prices. Kinross reported processing 1.06 million tonnes averaging $4.1 \mathrm{~g} / \mathrm{t}$ gold, with 118,004 ounces of gold produced. In 2004 Cross Lake Minerals Ltd. acquired 100\% interest in the property. In 2005 N143-101 compliant updated resource estimates for three of the five known zones of the QR deposit were summarized (below):

Table No. 3 QR Deposit Resource Summary
Measured Resources

	Cutoff					
Zone	g/t Au Tonnes	Au g/t oz Au				
Midwest	3.0	11,465	5.67	2,089		

Indicated Resources

Cutoff
Zone g/t Au Tonnes Au g/t oz Au

Northwest	1.6	122,417	3.58	14,078

West	1.6	355,907	5.07	58,037

Midwest	3.0	180,712	5.54	32,164

Combined Measured and Indicated Resources

	Cutoff				
Zone	g/t Au Tonnes			Au g/t oz Au	
Northwest	1.6	122,417	3.58	14,078	
West	1.6	355,907	5.07	58,037	
Midwest	3.0	192,176	5.54	34,255	

The North Zone was considered to have potential to host significant tonnage and further drilling was recommended.

Cross Lake started up full operations and poured their first gold on November 24, 2007. The QR mill is rated to operate at 900 tonnes per day. In June, 2007 BC Hydro began construction of a now-complete, $\$ 2.1$ million power line to the mine which considerably reduced operating
costs compared to the Kinross days. (The Northern Miner, Vol. 93, No. 45, Dec 31, 2007 - Jan $6,2008)$.

In 2008 Cross Lake Minerals made the decision to temporarily shut the operation in January, 2009 to allow management of Cross Lake Minerals to review the economics and reserves of the operation.

Regional Geology

The QR property lies within the Quesnel Trough, a northwesterly trending island arc assemblage comprised of volcanic and marine sedimentary units of late Triassic to early Jurassic age, including the Takla Group in the QR area. The Takla Group is cut by late Triassic to Early Jurassic intrusions at regularly spaced intervals forming a linear belt within the Quesnel Trough. A number of these intrusions are zoned, including the QR stock, and are known to host alkaline suite Cu and $\mathrm{Cu}-\mathrm{Au}$ deposits including the Mt. Polley Mine 15 km to the southeast.

Local and Property Geology

The QR property is underlain by a south-dipping sequence of alkali basalts, calcareous tuffite and calcareous mudstone of the Takla Group. The alkali basalt unit is comprised of massive flows, monolithic breccia and minor wacke, sanstone and pillow breccia and flows.

The basalt unit grades upward into a basaltic tuff and pyritic tuffite. This unit locally forms a massive carbonate rock in the Main Zone footwall. Pyrite forms up to 10% of the matrix and 5$20 \%$ of the total unit. Where altered and skarned, the tuffite unit is the primary host to all the Au deposits on the property with the exception of the Northwest Zone.

The tuffite is overlain by a sequence of calcareous mudstone, black argillite and tuff. Near the QR deposit this unit is predominantly volcaniclastic with hornfels developed near the intrusion. This unit contains up to 10% disseminated pyrite.

The Takla Group sequence is intruded by the QR stock. It is mainly monzonitic in composition with a dioritic margin. The stock measures $1 \mathrm{~km} \mathrm{~N}-\mathrm{S}$ and 1.5 km E-W.

Deposit Type

The QR deposit is considered a porphyry-related propylite gold skarn, with the majority of the gold associated with sulphide mineralization in an epidote rich propylitic alteration halo around the QR stock.

Mineralization

Mineralization has a strong spatial relationship to both the siltstone-volcanic contact and the alteration front. The ore grade mineralization generally occurs within 50 m of the epidote alteration front and 150 to 300 m from the contact with the intrusive rocks.
Sulphide mineralization varies from 1% to 15% and consists of pyrite and pyrrhotite with minor amounts of chalcopyrite, galena and sphalerite. The gold mineralization and propylitic alteration generally occur in and along the contact between the lower calcareous basalt and upper mudstones and argillites except at the Northwest Zone where the mineralization occurs within
the siltstone/argilite unit and between several prominent dikes. Faulting has displaced the mineralization into five known zones.

The Main Zone is pod-shaped, 280 m long and extends 100 m below the surface where it is truncated by a fault. The mineralization in this zone is a green to grey propylitically altered carbonate and pyrite rich rocks, with minor pyrrhotite and rare chalcopyrite.

The Midwest Zone strikes at 110° and dips steeply south. Propylitic mineralization follows the basalt/siltstone contact. Most of the surface mining by Kinross came from the Main and Midwest Zones.

The Northwest Zone occurs within the siltstones and argillites. This flat lying zone strikes 110° and is approximately 350 m long, 50 to 75 m wide and is from 10 to 15 m thick.

The West Zone follows the basalt/siltstone contact for 450 m . It is approximately 60 m wide and 5 to 15 m thick. The mineralization consists of green to black/green propylite, with $5-15 \%$ pyrite. As in the other zones, the amount of pyrite is a general indication of gold grade. Coarse gold, up to 1 mm in diameter, has been observed in drill core from the West Zone.

The North Zone is an extensive area of propylitically altered basalt lying below the Main Zone. The North Zone is the largest zone of Au mineralization on the property with a drill indicated strike length of at least 1 km . The North Zone and the small East Zone have grade comparable to the other Zones but the mineralization is too deep to be of economic interest at present.

The Main, North, Midwest and Northwest deposit zones occur on the north side of the QR stock; the West zone is on the west side of the stock.

Cariboo Property

The exploration of Cross Lake Minerals' Cariboo property is documented in the publicly available BCGS Assessment Reports (Nos. 10650, 11556, 12512, 13881, 16018, 19324, 19597, 26933, 27418) and the Technical Report by Church, (2003).

Cross Lake Minerals' Cariboo property (149 cells or units, 3,179 hectares) is located approximately 2 km east of their QR gold mine and is adjacent to the west side of Barker Minerals' Kangaroo Property. The Cariboo property was staked in 1981 to cover an As anomaly on a west flowing tributary of Maude Creek. From 1982 to 2003 Geological mapping, soil and geophysical surveys, trenching and drilling have been done on the property.

In 1985 and '86 IP geophysical surveys located several chargeability anomalies, including a large area of high chargeability on the East Grid. Soils on the East Grid had several E-W trending gold anomalies with values up to 525 ppb. Soil sampling in 1989 extended eastward a gold anomaly that was targeted by drill hole C-89-6 that year.

Ten drill holes ($1,751 \mathrm{~m}$) were done in 1989 and 7 holes (1,421 m) in 2003. In the 1989 drilling, hole C-89-6 had $5.26 \mathrm{~g} / \mathrm{t}$ Au over 8.5 m , among several anomalous gold intervals, in a wide zone of silica alteration. This hole is located approximately 400 m west of Barker Minerals' claim boundary.

In the 2003 drilling, anomalous Au occurred in 2 holes:
C-03-12: $3.17 \mathrm{~g} / \mathrm{t}$ over 2.12 m
C-03-13: $2.03 \mathrm{~g} / \mathrm{t}$ over 2.69 m
C-03-13: $1.71 \mathrm{~g} / \mathrm{t}$ over 2.83 m
anomalous Cu and Mo in 3 holes:
C-03-15: 0.06\% Cu and 0.02\% Mo over 58.86 m .
C-03-16: 0.05\% Cu and 0.02\% Mo over 20.46 m.
C-03-17: 0.067\% Cu and 0.03\% Mo over 27.2 m.
Trenching in 2002 exposed volcanic tuff with the best Au intersection having $2.24 \mathrm{~g} / \mathrm{t}$ over 3.0 m .

Au mineralization occurred in silicified and carbonatized shear zones in a tuff unit. Elevated Au values appeared directly related to the presence of arsenopyrite, mineralization observed in core.

Two main northwest-southeast trending [soil] geochemical anomalies were identified. The southern anomaly contains elevated values of $\mathrm{Au}, \mathrm{Cu}, \mathrm{Sb}$, and As and covers the area drilled by DDH C-89-6 that contained elevated Au values. The narrower northern anomaly has a signature of elevated $A u, C u$, and Mo values and overlies a strong IP chargeability high and magnetic high. The geochemical anomalies are generally most intense in the eastern part of the survey area and decrease to the west possibly reflecting the effects of glacial transport and dispersion. This zone of broadly coincident geochemical and geophysical anomalies trends all the way to the eastern boundary of the surveys which roughly coincides with the Cross LakeBarker Minerals claim boundary. (McKinley, 2004, pg. 45-46).
(Figure Nos. 18-21 below show DDH C-89-6 location relative to geochemical and geophysical anomalies on Cross Lake's Cariboo property which may trend onto Barker Minerals' Kangaroo property, adjacent to the east.)

Figure No. 18 Cariboo Property - Au in Soils (after Curch, 2003)

Figure No. 20 Cariboo Property - Mo in Soils (after Curch, 2003)

Figure No. 19 Cariboo Property - As in Soils (after Curch, 2003)

Figure No. 21 Cariboo Property - Chargeability (after Curch, 2003)

APPENDIX E

STATEMENT of AUTHOR'S QUALIFICATIONS

Statement of Author's Qualifications

I, Rein Turna, of the City of West Vancouver, British Columbia, hereby certify that:

1. I am Vice President of Exploration of Barker Minerals Ltd.
2. I am a graduate of the University of British Columbia with a B.Sc. in Geological Sciences granted in 1975.
3. I am a registered member of the Professional Engineers and Geoscientists of British Columbia.
4. I have worked as a geologist in British Columbia, Saskatchewan, Ontario, Yukon and Northwest Territories in Canada since 1975.
5. I carried out or supervised work described in this report.
R. Turna, P.Geo.

December 20, 2016

APPENDIX F

STATEMENT of EXPENDITURES

Barker Minerals Ltd.

Work was completed between May 1 and July 15, 2016
Work was done on claim \#'s 1038868 \& 1038885

Event \# 5611042

Kangaroo - Frank Creek Properties - Geochemical - Field

	Date	Days	Rate		Sub-total
Louis Doyle					
Rock sample collections	May 7, 2016	1	\$ 600.00	\$	600.00
Rock sample collections	May 8, 2016	1	\$ 600.00	\$	600.00
Rock sample collections	May 9, 2016	1	\$ 600.00	\$	600.00
Rock sample collections	May 10, 2016	1	\$ 600.00	\$	600.00
Room \& board		4	\$ 150.00	\$	600.00
Vehicle \& gas		4	\$ 150.00	\$	600.00
Brian Hall					
Rock sample collections	May 7, 2016	1	\$ 500.00	\$	500.00
Rock sample collections	May 8, 2016	1	\$ 500.00	\$	500.00
Rock sample collections	May 9, 2016	1	\$ 500.00	\$	500.00
Rock sample collections	May 10, 2016	1	\$ 500.00	\$	500.00
Room \& board		4	\$ 150.00	\$	600.00
Louis Doyle					
Rock sample preparation \& descriptions	May 11, 2016	1	\$ 600.00	\$	600.00
Rock sample preparation \& descriptions	May 12, 2016	1	\$ 600.00	\$	600.00
Room \& board		2	\$ 150.00	\$	300.00
Brian Hall - XRF operator					
XRF analysis	May 22, 2016	1	\$ 500.00	\$	500.00
XRF analysis	May 23, 2016	1	\$ 500.00	\$	500.00
XRF analysis	May 24, 2016	1	\$ 500.00	\$	500.00
XRF analysis	May 25, 2016	1	\$ 500.00	\$	500.00
Room \& board		4	\$ 150.00	\$	600.00
XRF Rental		8	\$ 200.00	\$	1,600.00
				\$	11,900.00
Kangaroo - Frank Creek Properties - Travel to/from					
Louis Doyle					
Travel to/from	May 13, 2016	1	\$ 600.00	\$	600.00
Room \& board		1	\$ 150.00	\$	150.00
Vehicle \& gas		1	\$ 150.00	\$	150.00

Barker Minerals Ltd.

Work was completed between May 1 and July 15, 2016

Work was done on claim \#'s 1038868 \& 1038885

Event \# 5611042
Kangaroo - Frank Creek Properties -Travel to/from (continued)
Brian Hall
Travel to/from
Room \& board
Vehicle \& gas

May 13, 2016	1	$\$ 500.00$	$\$$	500.00
	1	$\$ 150.00$	$\$$	150.00
	1	$\$ 150.00$	$\$$	150.00
	Sub-total	$\$$	$\mathbf{1 , 7 0 0 . 0 0}$	

Kangaroo - Frank Creek Properties - Misc. expenditures
Safety equipment (MTC), exploration supplies \& equipment, communication devices \& quad
Exploration supplies \& equipment
MTC rental
8 \$ 150.00 \$
Communication devices

Hand held radios	7	$\$$	7.00	$\$$	49.00
Satelite phones	7	$\$$	12.00	$\$$	84.00
Spot emergency locators	7	$\$$	5.00	$\$$	35.00
		Sub-total			
	$\$$	$\mathbf{1 , 6 8 8 . 0 0}$			

Kangaroo - Frank Creek Properties Expenditure Summary

Geochemical Sub-total	$\$$	$11,900.00$
Travel to/from Sub-total	$\$$	$1,700.00$
Misc. Expenditures Sub-total	$\$$	$1,688.00$
		$15,288.00$

Barker Minerals Ltd.

Work was completed between May 15 and October 8, 2016
Work was done on claim \#'s 1038868 \& 1038885

Event \# 5622105

Kangaroo - Frank Creek Properties - Office

Rein Turna - Geologist

Report writing, maps and managing	4	$\$ 600.00$	$\$$	$2,400.00$
Room \& board	4	$\$ 150.00$	$\$$	600.00
Louis Doyle				
Planning and managing	1	$\$ 600.00$	$\$$	600.00
Room \& board	1	$\$ 150.00$	$\$$	150.00
			$\$$	$\mathbf{3 , 7 5 0 . 0 0}$

Kangaroo - Frank Creek Properties - Geochemical - Field

Louis Doyle

Rock sample collections
Room \& board
Vehicle \& gas

Brian Hall

Rock sample collections
Room \& board

Louis Doyle

Rock sample preparation \& descriptions
Rock sample preparation \& descriptions
XRF assistant
Room \& board

Days Rate
Sub-total

| July 5, 2016 | 1 | $\$ 600.00$ | $\$$ | 600.00 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| July 6, 2016 | 1 | $\$ 600.00$ | $\$$ | 600.00 |
| July 7, 2016 | 1 | $\$ 600.00$ | $\$$ | 600.00 |
| July 8, 2016 | 1 | $\$ 600.00$ | $\$$ | 600.00 |
| July 9, 2016 | 1 | $\$ 600.00$ | $\$$ | 600.00 |
| July 10, 2016 | 1 | $\$ 600.00$ | $\$$ | 600.00 |
| | 6 | $\$ 150.00$ | $\$$ | 900.00 |
| | 6 | $\$ 150.00$ | $\$$ | 900.00 |

July 5, 2016	1	$\$ 500.00$	$\$$	500.00
July 6, 2016	1	$\$ 500.00$	$\$$	500.00
July 7, 2016	1	$\$ 500.00$	$\$$	500.00
July 8, 2016	1	$\$ 500.00$	$\$$	500.00
July 9, 2016	1	$\$ 500.00$	$\$$	500.00
July 10, 2016	1	$\$ 500.00$	$\$$	500.00
	6	$\$ 150.00$	$\$$	900.00

July 11, 2016	1	$\$ 600.00$	$\$$	600.00
July 12, 2016	1	$\$ 600.00$	$\$$	600.00
July 13, 2016	1	$\$ 600.00$	$\$$	600.00
	3	$\$ 150.00$	$\$$	450.00

Barker Minerals Ltd.

Work was completed between May 15 and October 8, 2016
Work was done on claim \#'s 1038868 \& 1038885
Event \# 5622105
Kangaroo - Frank Creek Properties - Geochemical - Field - (continued)
Date Days Rate Sub-total

Brian Hall - XRF operator	
XRF analysis	July 11, 20
XRF analysis	July 12, 20
XRF analysis	July 13, 20
Room \& board	
XRF Rental	
Kangaroo - Frank Creek Properties - Travel tolfrom	

Louis Doyle

Travel to/from
Travel to/from
Room \& board
Vehicle \& gas
Brian Hall
Travel to/from
Travel to/from
Room \& board
Vehicle \& gas

July 4, 2016	1	$\$ 600.00$	$\$$	600.00
July 15, 2016	1	$\$ 600.00$	$\$$	600.00
	2	$\$ 150.00$	$\$$	300.00
	2	$\$ 150.00$	$\$$	300.00
July 4, 2016	1	$\$ 500.00$	$\$$	500.00
July 15, 2016	1	$\$ 500.00$	$\$$	500.00
	2	$\$ 150.00$	$\$$	300.00
	2	$\$ 150.00$	$\$$	300.00
		Sub-total	$\$$	$\mathbf{3 , 4 0 0 . 0 0}$

Kangaroo - Frank Creek Properties - Misc. expenditures
Safety equipment (MTC), exploration supplies \& equipment, communication devices \& quad

Exploration supplies \& equipment			$\$$	465.00	
MTC rental	9	$\$ 150.00$	$\$$	$1,350.00$	
Communication devices					
Hand held radios	7	$\$$	7.00	$\$$	49.00
Satelite phones	7	$\$ 12.00$	$\$$	84.00	
Spot emergency locators	7	$\$$	5.00	$\$$	35.00
		Sub-total	$\$$	$\mathbf{1 , 9 8 3 . 0 0}$	

Kangaroo - Frank Creek Properties Expenditure Summary

Office Sub-total	$\$$	$3,750.00$
Geochemical Sub-total	$\$$	$15,300.00$
Travel to/from Sub-total	$\$$	$3,400.00$
Misc. Expenditures Sub-total	$\$$	$1,983.00$
Kangaroo - Frank Creek Properties - Expenditure Total	$\$ 1$	$24,433.00$

Barker Minerals Ltd.

Work was completed between July 15 and December 31, 2016
Work was done on claim \#'s 1038868 \& 1038885
Event \# 5632328

Kangaroo - Frank Creek Properties - Office				
Rein Turna-Geologist				
Report writing, maps and managing	7	\$ 600.00	\$	4,200.00
Room \& board	7	\$ 150.00	\$	1,050.00
Louis Doyle				
Managing \& interpretation	3	\$ 600.00	\$	1,800.00
Room \& board	3	\$ 150.00	\$	450.00
Colleen Doyle				
Report compilation \& filing	2	\$ 350.00	\$	700.00
Room \& board	2	\$ 150.00	\$	300.00
			\$	8,500.00
Kangaroo - Frank Creek Properties Expenditure Summary				
	Offi	Sub-total	\$	8,500.00
Kangaroo - Frank Creek Properties - Exp	xpen	ture Total	\$	8,500.00

APPENDIX G

Rock Sample Descriptions and Coordinates

Table No. 2
Sample Coordinates and Descriptions

XRF No. Sample No. Fig. No. / Area Easting Northing Type Sample Descrir

$$
\begin{array}{ll}
\text { OC or FL } & \text { Po }=\text { pyrrhotite } \\
& P y=\text { pyrite } \\
& C p y=\text { chalcopyrite } \\
& Y, N=\text { Yes, No }
\end{array}
$$

Kangaroo Over Look Rd - 2016 Rock Sampling
kang cr o(look 1 kang cr o(look 1a kang cr o(look 1b kang cr o(look 2 kang cr o(look 2a kang cr o(look 2b kang cr o(look 3 kang cr o(look 3a kang cr o(look 3b kang cr o(look 4 kang cr o(look 4a kang cr o(look 4b kang cr o(look 5 kang cr o(look 5a kang cr o(look 5b kang cr o(look 6 kang cr o(look 6a kang cr o(look 6b kang cr o(look 7 kang cr o(look 7a kang cr o(look 7b kang cr o(look 8 kang cr o(look 8a kang cr o(look 8b kang cro(look 9 kang cr o(look 9a kang cr o(look 9b kang cr o(look 10 kang cr o(look 10a kang cr o(look 10b kang cr ov(l 11 kang cr ov(l 11a kang cr ov(l 11b kang cr ov(l) 12 kang cr ov(l 12a

Fig. 9 / Area A
Fig. 9 / Area A
Fig. 9 / Area A

592586	5838048	FL	Y	Rusty	PO, PY	Rock Type
592587	5838047	FL	Y	Rusty	PO, PY	Sandstone
592588	5838046	FL	Y	Rusty	PO, PY	Sandstone
592550	5838026	FL	Y	Rusty	PO, PY	Sandstone
592551	5838025	FL	Y	Rusty	PO, PY	Sandstone
592552	5838024	FL	Y	Rusty	PO, PY	Sandstone
592550	5838026	FL	N	Bluish	PY	Siltstone
592551	5838025	FL	N	Bluish	PY	Siltstone
592552	5838024	FL	N	Bluish	PY	Siltstone
592550	5838026	FL	N	Bluish	PY	Siltstone
592551	5838025	FL	N	Bluish	PY	Siltstone
592552	5838024	FL	N	Bluish	PY	Siltstone
592560	5838074	FL	N	Bluish	PY	Siltstone
592561	5838073	FL	N	Bluish	PY	Siltstone
592562	5838072	FL	N	Bluish	PY	Siltstone
592538	5838095	FL	N	Black	PY	Shale/siltstone
592539	5838094	FL	N	Black	PY	Shale/siltstone
592540	5838093	FL	N	Black	PY	Shale/siltstone
592552	5838106	FL	N	Black	PY	Shale/siltstone
592553	5838105	FL	N	Black	PY	Shale/siltstone
592554	5838104	FL	N	Black	PY	Shale/siltstone
592499	5838138	FL	Y	Rusty	PO, PY	Sandstone
592500	5838137	FL	Y	Rusty	PO, PY	Sandstone
592501	5838136	FL	Y	Rusty	PO, PY	Sandstone
592483	5838132	FL	Y	Rusty	PO, PY	Sandstone
592484	5838131	FL	Y	Rusty	PO, PY	Sandstone
592485	5838130	FL	Y	Rusty	PO, PY	Sandstone
592466	5838137	FL	N	Black	PY	Shale/siltstone
592467	5838136	FL	N	Black	PY	Shale/siltstone
592468	5838135	FL	N	Black	PY	Shale/siltstone
592452	5838123	FL	Y	Rusty	PO, PY	Sandstone
592453	5838122	FL	Y	Rusty	PO, PY	Sandstone
592454	5838121	FL	Y	Rusty	PO, PY	Sandstone
592445	5838150	FL	Y	Rusty	PO, PY	Sandstone
592446	5838149	FL	Y	Rusty	PO, PY	Sandstone

Table No. 2
Sample Coordinates and Descriptions

XRF No.	Sample No.	Fig. No. / Area	Easting	Northing Type	Sam	scrir		
457	kang cr ov(l 12b	Fig. 9 / Area A	592447	5838148 FL	Y	Rusty	PO, PY	Sandstone
458	kang cr ov(l 13	Fig. 9 / Area A	592453	5838165 FL	N	Black	PY	Shale/siltstone
459	kang cr ov(l 13a	Fig. 9 / Area A	592454	5838164 FL	N	Black	PY	Shale/siltstone
460	kang cr ov(l 13b	Fig. 9 / Area A	592455	5838163 FL	N	Black	PY	Shale/siltstone
461	kang cr ov(l 14	Fig. 10 / Area B	592438	5838180 SUB/OC	N	Green	PY	Andesitic volcaniclastics
462	kang cr ov(l 14a	Fig. 10 / Area B	592439	5838179 SUB/OC	N	Green	PY	Andesitic volcaniclastics
463	kang cr ov(l 14b	Fig. 10 / Area B	592440	5838178 SUB/OC	N	Green	PY	Andesitic volcaniclastics
464	kang cr ov(l 15	Fig. 10 / Area B	592405	5838193 SUB/OC	N	Green	PY	Andesitic volcaniclastics
465	kang cr ov(l 15a	Fig. 10 / Area B	592406	5838192 SUB/OC	N	Green	PY	Andesitic volcaniclastics
466	kang cr ov(l 15b	Fig. 10 / Area B	592407	5838191 SUB/OC	N	Green	PY	Andesitic volcaniclastics
467	kang cr ov(l 16	Fig. 10 / Area B	592411	5838240 SUB/OC	N	Green	PY	Andesitic volcaniclastics
468	kang cr ov(l 16a	Fig. 10 / Area B	592412	5838239 SUB/OC	N	Green	PY	Andesitic volcaniclastics
469	kang cr ov(l 16b	Fig. 10 / Area B	592413	5838238 SUB/OC	N	Green	PY	Andesitic volcaniclastics
470	kang cr ov(l 16b	Fig. 10 / Area B	592414	5838237 SUB/OC	N	Green	PY	Andesitic volcaniclastics
471	kang cr ov(l 17a	Fig. 10 / Area B	592397	5838249 SUB/OC	N	Green	PY	Andesitic volcaniclastics
472	kang cr ov(l 17b	Fig. 10 / Area B	592398	5838248 SUB/OC	N	Green	PY	Andesitic volcaniclastics
473	kang cr ov(l 18	Fig. 10 / Area B	592384	5838256 SUB/OC	N	Green	PY	Andesitic volcaniclastics
474	kang cr ov(l 18a	Fig. 10 / Area B	592385	5838255 SUB/OC	N	Green	PY	Andesitic volcaniclastics
475	kang cr ov(l 18b	Fig. 10 / Area B	592386	5838254 SUB/OC	N	Green	PY	Andesitic volcaniclastics
476	kang cr ov(l 19	Fig. 10 / Area B	592375	5838258 SUB/OC	N	Green	PY	Andesitic volcaniclastics
477	kang cr ov(l 19a	Fig. 10 / Area B	592376	5838257 SUB/OC	N	Green	PY	Andesitic volcaniclastics
478	kang cr ov(l 19b	Fig. 10 / Area B	592377	5838256 SUB/OC	N	Green	PY	Andesitic volcaniclastics
479	kang cr ov(l 20	Fig. 10 / Area B	592377	5838273 SUB/OC	N	Green	PY	Andesitic volcaniclastics
480	kang cr ov(l 20a	Fig. 10 / Area B	592378	5838272 SUB/OC	N	Green	PY	Andesitic volcaniclastics
481	kang cr ov(l 20b	Fig. 10 / Area B	592379	5838271 SUB/OC	N	Green	PY	Andesitic volcaniclastics
482	kang cr ov(l 21	Fig. 10 / Area B	592386	5838267 SUB/OC	N	Green	PY	Andesitic volcaniclastics
483	kang cr ov(l 21a	Fig. 10 / Area B	592387	5838266 SUB/OC	N	Green	PY	Andesitic volcaniclastics
484	kang cr ov(l 21b	Fig. 10 / Area B	592388	5838265 SUB/OC	N	Green	PY	Andesitic volcaniclastics
485	kang cr ov(l 22	Fig. 10 / Area B	592398	5838267 SUB/OC	N	Black	PY	Shale/siltstone
486	kang cr ov(l 22a	Fig. 10 / Area B	592399	5838266 SUB/OC	N	Black	PY	Shale/siltstone
487	kang cr ov(l 22 b	Fig. 10 / Area B	592400	5838265 SUB/OC	N	Black	PY	Shale/siltstone
488	kang cr ov(l 23	Fig. 10 / Area B	592410	5838266 SUB/OC	N	Black	PY	Shale/siltstone
489	kang cr ov(l 23a	Fig. 10 / Area B	592411	5838265 SUB/OC	N	Black	PY	Shale/siltstone
490	kang cr ov(l 23b	Fig. 10 / Area B	592412	5838264 SUB/OC	N	Black	PY	Shale/siltstone
491	kang cr ov(l 24	Fig. 10 / Area B	592412	5838273 SUB/OC	N	Black	PY	Shale/siltstone
492	kang cr ov(l 24a	Fig. 10 / Area B	592413	5838272 SUB/OC	N	Black	PY	Shale/siltstone
493	kang cr ov(l 24 b	Fig. 10 / Area B	592414	5838271 SUB/OC	N	Black	PY	Shale/siltstone
494	kang cr ov(l) 25	Fig. 10 / Area B	592426	5838274 SUB/OC	N	Black	PY	Shale/siltstone
495	kang cr ov(l 25a	Fig. 10 / Area B	592427	5838273 SUB/OC	N	Black	PY	Shale/siltstone
496	kang cr ov(l 25b	Fig. 10 / Area B	592428	5838272 SUB/OC	N	Black	PY	Shale/siltstone
497	kang cr ov(l 26	Fig. 10 / Area B	592421	5838279 SUB/OC	N	Black	PY	Shale/siltstone
498	kang cr ov(l 26a	Fig. 10 / Area B	592422	5838278 SUB/OC	N	Black	PY	Shale/siltstone
499	kang cr ov(l 26b	Fig. 10 / Area B	592423	5838277 SUB/OC	N	Black	PY	Shale/siltstone
500	kang cr ov(l 27	Fig. 10 / Area B	592411	5838282 SUB/OC	N	Black	PY	Shale/siltstone
501	kang cr ov(l 27 a	Fig. 10 / Area B	592412	5838281 SUB/OC	N	Black	PY	Shale/siltstone
502	kang cr ov(l 27b	Fig. 10 / Area B	592413	5838280 SUB/OC	N	Black	PY	Shale/siltstone

Table No. 2
Sample Coordinates and Descriptions

XRF No
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

Sample No. Fig. No. / Area kang cr ov(l) 28 kang cr ov(l 28a kang cr ov(l 28b kangcr o(l 29 kangcr o(l 29a kangcr o(l 29b kangcr o(l 30 kangcr o(l 30a kangcr o(l 30b kangcr o(l 31 kangcr o(l 31a kangcr o(l 31b kangcr o(l 32 kangcr o(132a kangcr o(l 32b kangcr o(l 33 kangcr o(l 33a kangcr o(I 33b kangcr o(l 34 kangcr o(l 34a kangcr o(l 34b kangcr o(l 35 kangcr o(1 35a kangcr o(l 35b kangcr o(l 36 kangcr o(l 36a kangcr o(l 36b kangcr o(l 37 kangcr o(l 37a kangcr o(l 37b kangcr o(l 38 kangcr o(l 38a kangcr o(l 38b kangcr o(l 39 kangcr o(l 39a kangcr o(I 39b kangcr o(l 40 kangcr o(1 40a kangcr o(l 40b kangcr o(l 41 kangcr o(l 41a kangcr o(l 41b kangcr o(l 42 kangcr o(1 42a kangcr o(l 42b kangcr o(l 43

Fig. 10 / Area B
Fig. 10 / Area B Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 10 / Area B
Fig. 11 / Area C

Easting Northing Type Sample Descrir
5923935838284 SUB/OC N Black
5923945838283 SUB/OC N Black 5923955838282 SUB/OC N Black 5924005838291 SUB/OC N Green 5924015838290 SUB/OC N Green 5924025838289 SUB/OC N Green 5923825838290 SUB/OC N Green 5923835838289 SUB/OC N Green 5923845838288 SUB/OC N Green 5923665838285 SUB/OC N Green 5923675838284 SUB/OC N Green 5923685838283 SUB/OC N Green 5924045838296 SUB/OC N Green 5924055838295 SUB/OC N Green 5924065838294 SUB/OC N Green 5924115838299 SUB/OC N Green 5924125838298 SUB/OC N Green 5924135838297 SUB/OC N Green 5923965838269 SUB/OC N Green 5923975838268 SUB/OC N Green 5923985838267 SUB/OC N Green 5924165838347 SUB/OC N Green 5924175838346 SUB/OC N Green 5924185838345 SUB/OC N Green 5924015838353 FL Y Rusty 5924025838352 FL Y Rusty 5924035838351 FL Y Rusty $\begin{array}{llll}592303 & 5838363 & \text { FL } & Y \\ \text { Rusty }\end{array}$ 5923045838362 FL Y Rusty 5923055838361 FL Y Rusty $\begin{array}{llll}592309 & 5838407 & \text { FL } & \text { Y Rusty }\end{array}$ 5923105838406 FL Y Rusty 5923115838405 FL Y Rusty 5924245838402 FL Y Rusty 5924255838401 FL Y Rusty 5924265838400 FL Y Rusty 5924185838412 SUB/OC N Green 5924195838411 SUB/OC N Green 5924205838410 SUB/OC N Green 5924295838451 SUB/OC N Green 5924305838450 SUB/OC N Green 5924315838449 SUB/OC N Green 5924235838476 SUB/OC N Green 5924245838475 SUB/OC N Green 5924255838474 SUB/OC N Green 5924055838469 SUB/OC N Green

PY	Shale/siltstone
PY	Shale/siltstone
PY	Shale/siltstone
PY	Andesitic volcaniclastics
PO, PY	Sandstone
PO	Andesitic volcaniclastics
PY	Andesitic volcaniclastics
PO, PY	Sandstone
PO, PY	Sandstone
PO, PY	Sandstone
PY	Andesitic volcaniclastics
Andesitic volcaniclastics	
PY	

Table No. 2
Sample Coordinates and Descriptions

XRF No.	Sample No.	Fig. No. / Area	Easting	Northing Type		Descrir		
549	kangcr o(1 43a	Fig. 11 / Area C	592406	5838468 SUB/OC	N	Green	PY	Andesitic volcaniclastics
550	kangcr o(l 43b	Fig. 11 / Area C	592407	5838467 SUB/OC	N	Green	PY	Andesitic volcaniclastics
551	kangcr o(l 44	Fig. 11 / Area C	592370	5838485 SUB/OC	N	Green	PY	Andesitic volcaniclastics
552	kangcr o(1 44a	Fig. 11 / Area C	592371	5838484 SUB/OC	N	Green	PY	Andesitic volcaniclastics
553	kangcr o(l 44b	Fig. 11 / Area C	592372	5838483 SUB/OC	N	Green	PY	Andesitic volcaniclastics
554	kangcr o(l 45	Fig. 11 / Area C	592402	5838496 SUB/OC	N	Black	PY	Shale/siltstone
555	kangcr o(l 45a	Fig. 11 / Area C	592403	5838495 SUB/OC	N	Black	PY	Shale/siltstone
556	kangcr o(l 45b	Fig. 11 / Area C	592404	5838494 SUB/OC	N	Black	PY	Shale/siltstone
557	kangcr o(l 46	Fig. 11 / Area C	592443	5838504 SUB/OC	N	Black	PY	Shale/siltstone
558	kangcr o(1 46a	Fig. 11 / Area C	592444	5838503 SUB/OC	N	Black	PY	Shale/siltstone
559	kangcr o(l 46b	Fig. 11 / Area C	592445	5838502 SUB/OC	N	Black	PY	Shale/siltstone
560	kangcr o(l 47	Fig. 11 / Area C	592475	5838533 SUB/OC	N	Black	PY	Shale/siltstone
561	kangcr o(1 47a	Fig. 11 / Area C	592476	5838532 SUB/OC	N	Black	PY	Shale/siltstone
562	kangcr o(l 47b	Fig. 11 / Area C	592477	5838531 SUB/OC	N	Black	PY	Shale/siltstone

Frank Ck-2016 Rock Sampling
Easting Northing Type Sample Descrir

fcc 8405-01	Fig. 13 / Area A
fcc $8405-01 \mathrm{a}$	Fig. 13 / Area A
fcc $8405-01 \mathrm{~b}$	Fig. 13 / Area A
fcc 8405-02	Fig. 13 / Area A
fcc 8405-02a	Fig. 13 / Area A
fcc $8405-02 \mathrm{~b}$	Fig. 13 / Area A
fcc 8405-03	Fig. 13 / Area A
fcc 8405-03a	Fig. 13 / Area A
fcc $8405-03 \mathrm{~b}$	Fig. 13 / Area A
fcc 8405-04	Fig. 13 / Area A
fcc 8405-04a	Fig. 13 / Area A
fcc $8405-04 \mathrm{~b}$	Fig. 13 / Area A
fcc 8405-05	Fig. 13 / Area A
fcc 8405-05a	Fig. 13 / Area A
fcc $8405-05 \mathrm{~b}$	Fig. 13 / Area A
fcc 8405-06	Fig. 13 / Area A
fcc 8405-06a	Fig. 13 / Area A
fcc $8405-06 \mathrm{~b}$	Fig. 13 / Area A
fcc 8405-07	Fig. 13 / Area A
fcc 8405-07a	Fig. 13 / Area A
fcc $8405-07 \mathrm{~b}$	Fig. 13 / Area A
fcc 8405-08	Fig. 13 / Area A
fcc 8405-08a	Fig. 13 / Area A
fcc $8405-08 \mathrm{~b}$	Fig. 13 / Area A
fcc 8405-09	Fig. 13 / Area A
fcc 8405-09a	Fig. 13 / Area A
fcc $8405-09 \mathrm{~b}$	Fig. 13 / Area A

607494	5844713	FL	N	Black	py	Siltstone
607495	5844712	FL	N	Black	py	Siltstone
607496	5844711	FL	N	Black	py	Siltstone
607517	5844704	FL	N	Black	py	Siltstone
607518	5844703	FL	N	Black	py	Siltstone
607519	5844702	FL	N	Black	py	Siltstone
607518	5844691	FL	N	Black	py	Siltstone
607519	5844690	FL	N	Black	py	Siltstone
607520	5844689	FL	N	Black	py	Siltstone
607508	5844678	FL	N	Black	py	Siltstone
607509	5844677	FL	N	Black	py	Siltstone
607510	5844676	FL	N	Black	py	Siltstone
607508	5844673	FL	N	Black	py	Siltstone
607509	5844672	FL	N	Black	py	Siltstone
607510	5844671	FL	N	Black	py	Siltstone
607498	5844690	FL	N	Black	Minor py	Arg
607499	5844689	FL	N	Black	Minor py	Arg
607500	5844688	FL	N	Black	Minor py	Arg
607484	5844694	FL	N	Black	Minor py	Arg
607485	5844693	FL	N	Black	Minor py	Arg
607486	5844692	FL	N	Black	Minor py	Arg
607472	5844688	FL	N	Black	Minor py	Arg
607473	5844687	FL	N	Black	Minor py	Arg
607474	5844686	FL	N	Black	Minor py	Arg
607476	5844709	FL	N	Black	Minor py	Arg
607477	5844708	FL	N	Black	Minor py	Arg
607478	5844707	FL	N	Black	Minor py	Arg

Table No. 2
Sample Coordinates and Descriptions

XRF No.	Sample No.	Fig. No. / Area	Easting	Northing	Type	Sam	Descri		
313	fcc 8405-10	Fig. 13 / Area A	607451	5844683	FL	N	Black	Minor py	Arg
314	fcc 8405-10a	Fig. 13 / Area A	607452	5844682	FL	N	Black	Minor py	Arg
315	fcc $8405-10 \mathrm{~b}$	Fig. 13 / Area A	607453	5844681	FL	N	Black	Minor py	Arg
316	fcc 8405-11	Fig. 13 / Area A	607430	5844597	FL	N	Black	Minor py	Arg
317	fcc $8405-11 \mathrm{a}$	Fig. 13 / Area A	607431	5844596	FL	N	Black	Minor py	Arg
318	fcc $8405-11 \mathrm{~b}$	Fig. 13 / Area A	607432	5844595	FL	N	Black	Minor py	Arg
319	fcc 8405-12	Fig. 13 / Area A	607436	5844582	FL	N	Black	PY	Siltstone
320	fcc 8405-12a	Fig. 13 / Area A	607437	5844581	FL	N	Black	PY	Siltstone
321	fcc $8405-12 \mathrm{~b}$	Fig. 13 / Area A	607438	5844580	FL	N	Black	PY	Siltstone
322	fcc 8405-13	Fig. 13 / Area A	607429	5844574	FL	N	Black	PY	Siltstone
323	fcc 8405-13a	Fig. 13 / Area A	607430	5844573	FL	N	Black	PY	Siltstone
324	fcc $8405-13 \mathrm{~b}$	Fig. 13 / Area A	607431	5844572	FL	N	Black	PY	Siltstone
325	fcc 8405-14	Fig. 13 / Area A	607420	5844568	FL	N	Black	PY	Siltstone
326	fcc 8405-14a	Fig. 13 / Area A	607421	5844567	FL	N	Black	PY	Siltstone
327	fcc $8405-14 \mathrm{~b}$	Fig. 13 / Area A	607422	5844566	FL	N	Black	PY	Siltstone
328	fcc 8405-15	Fig. 13 / Area A	607421	5844559	FL	N	Black	PY	Siltstone
329	fcc 8405-15a	Fig. 13 / Area A	607422	5844558	FL	N	Black	PY	Siltstone
330	fcc 8405-15b	Fig. 13 / Area A	607423	5844557	FL	N	Black	PY	Siltstone
331	fcc 8405-16	Fig. 13 / Area A	607403	5844559	FL	N	Black	PY	Siltstone
332	fcc 8405-16a	Fig. 13 / Area A	607404	5844558	FL	N	Black	PY	Siltstone
333	fcc $8405-16 \mathrm{~b}$	Fig. 13 / Area A	607405	5844557	FL	N	Black	PY	Siltstone
334	fcc 8405-17	Fig. 13 / Area A	607388	5844556	FL	N	Black	PY	Siltstone
335	fcc 8405-17a	Fig. 13 / Area A	607389	5844555	FL	N	Black	PY	Siltstone
336	fcc $8405-17 \mathrm{~b}$	Fig. 13 / Area A	607390	5844554	FL	N	Black	PY	Siltstone
337	fcc 8405-18	Fig. 13 / Area A	607386	5844571	FL	N	Black	PY	Siltstone
338	fcc 8405-18a	Fig. 13 / Area A	607387	5844570	FL	N	Black	PY	Siltstone
339	fcc $8405-18 \mathrm{~b}$	Fig. 13 / Area A	607388	5844569	FL	N	Black	PY	Siltstone
340	fcc 8405-19	Fig. 13 / Area A	607352	5844663	FL	N	Black	PY	Siltstone
341	fcc 8405-19a	Fig. 13 / Area A	607353	5844662	FL	N	Black	PY	Siltstone
342	fcc $8405-19 \mathrm{~b}$	Fig. 13 / Area A	607354	5844661	FL	N	Black	PY	Siltstone
343	fcc 8405-20	Fig. 13 / Area A	607338	5844678	FL	N	Black	PY	Siltstone
344	fcc 8405-20a	Fig. 13 / Area A	607339	5844677	FL	N	Black	PY	Siltstone
345	fcc $8405-20 \mathrm{~b}$	Fig. 13 / Area A	607340	5844676	FL	N	Black	PY	Siltstone
346	fcc 8405-21	Fig. 13 / Area A	607315	5844682	FL	N	Black	Minor PY	Arg
347	fcc $8405-21$ a	Fig. 13 / Area A	607316	5844681	FL	N	Black	Minor PY	Arg
348	fcc $8405-21 \mathrm{~b}$	Fig. 13 / Area A	607317	5844680	FL	N	Black	Minor PY	Arg
349	fcc 8405-22	Fig. 13 / Area A	607287	5844706	FL	N	Black	Minor PY	Arg
350	fcc 8405-22a	Fig. 13 / Area A	607288	5844705	FL	N	Black	Minor PY	Arg
351	fcc $8405-22 \mathrm{~b}$	Fig. 13 / Area A	607289	5844704	FL	N	Black	Minor PY	Arg
352	fcc 8405-23	Fig. 13 / Area A	607265	5844731	FL	N	Black	Minor PY	Arg
353	fcc 8405-23a	Fig. 13 / Area A	607266	5844730	FL	N	Black	Minor PY	Arg
354	fcc 8405-23b	Fig. 13 / Area A	607267	5844729	FL	N	Black	Minor PY	Arg
355	fcc 8405-24	Fig. 13 / Area A	607327	5844734	FL	N	Black	Minor PY	Arg
356	fcc 8405-24a	Fig. 13 / Area A	607328	5844733	FL	N	Black	Minor PY	Arg
357	fcc $8405-24 \mathrm{~b}$	Fig. 13 / Area A	607329	5844732	FL	N	Black	Minor PY	Arg
358	fcc 8405-25	Fig. 13 / Area A	607359	5844715	FL	N	White		QV

Table No. 2
Sample Coordinates and Descriptions

XRF No.	Sample No.	Fig. No. / Area	Easting	Northing	Type	Sam	Descrir		
359	fcc 8405-25a	Fig. 13 / Area A	607360	5844714	FL	N	White		QV
360	fcc 8405-25b	Fig. 13 / Area A	607361	5844713	FL	N	White		QV
361	fcc 8405-26	Fig. 13 / Area A	607238	5844432	FL	N	White		QV
362	fcc $8405-26 \mathrm{a}$	Fig. 13 / Area A	607239	5844431	FL	N	White		QV
363	fcc $8405-26 \mathrm{~b}$	Fig. 13 / Area A	607240	5844430	FL	N	White		QV
364	fcc 8405-27	Fig. 13 / Area A	607254	5844418	FL	N	White		QV
365	fcc $8405-27 \mathrm{a}$	Fig. 13 / Area A	607255	5844417	FL	N	White		QV
366	fcc $8405-27 \mathrm{~b}$	Fig. 13 / Area A	607256	5844416	FL	N	White		QV
367	fcc 8405-28	Fig. 13 / Area A	607269	5844405	FL	N	White		QV
368	fcc $8405-28 \mathrm{a}$	Fig. 13 / Area A	607270	5844404	FL	N	White		QV
369	fcc $8405-28 \mathrm{~b}$	Fig. 13 / Area A	607271	5844403	FL	N	White		QV
370	fcc 8405-29	Fig. 13 / Area A	607292	5844409	FL	N	Black	Minor py	Arg
371	fcc 8405-29a	Fig. 13 / Area A	607293	5844408	FL	N	Black	Minor py	Arg
372	fcc 8405-29b	Fig. 13 / Area A	607294	5844407	FL	N	Black	Minor py	Arg
373	fcc 8405-30	Fig. 13 / Area A	607300	5844385	FL	N	Black	Minor py	Arg
374	fcc $8405-30 \mathrm{a}$	Fig. 13 / Area A	607301	5844384	FL	N	Black	Minor py	Arg
375	fcc $8405-30 \mathrm{~b}$	Fig. 13 / Area A	607302	5844383	FL	N	Black	Minor py	Arg
376	fcc 8405-31	Fig. 13 / Area A	607319	5844357	FL	N	Black	Minor py	Arg
377	fcc $8405-31 \mathrm{a}$	Fig. 13 / Area A	607320	5844356	FL	N	Black	Minor py	Arg
378	fcc $8405-31 \mathrm{~b}$	Fig. 13 / Area A	607321	5844355	FL	N	Black	Minor py	Arg
379	fcc 8405-32	Fig. 13 / Area A	607336	5844338	FL	N	White		QV
380	fcc 8405-32a	Fig. 13 / Area A	607337	5844337	FL	N	White		QV
381	fcc 8405-32b	Fig. 13 / Area A	607338	5844336	FL	N	White		QV
382	fcc $8405-32 \mathrm{~b}$	Fig. 13 / Area A	607339	5844335	FL	N	White		QV
383	fcc 8405-33	Fig. 13 / Area A	607357	5844320	FL	N	Grey	Minor py	Arg
384	fcc $8405-33 \mathrm{a}$	Fig. 13 / Area A	607358	5844319	FL	N	Grey	Minor py	Arg
385	fcc 8405-33b	Fig. 13 / Area A	607359	5844318	FL	N	Grey	Minor py	Arg
386	fcc 8405-34	Fig. 13 / Area A	607314	5844292	FL	N	Grey	Minor py	Arg
387	fcc $8405-34 \mathrm{a}$	Fig. 13 / Area A	607315	5844291	FL	N	Grey	Minor py	Arg
388	fcc $8405-34 \mathrm{~b}$	Fig. 13 / Area A	607316	5844290	FL	N	Grey	Minor py	Arg
389	fcc 8405-35	Fig. 13 / Area A	607251	5844297	FL	N	Grey	Minor py	Arg
390	fcc 8405-35a	Fig. 13 / Area A	607252	5844296	FL	N	Grey	Minor py	Arg
391	fcc 8405-35b	Fig. 13 / Area A	607253	5844295	FL	N	Grey	Minor py	Arg
392	fcc 8405-36	Fig. 13 / Area A	607198	5844298	FL	N	Black	PY	Siltstone
393	fcc $8405-36 \mathrm{a}$	Fig. 13 / Area A	607199	5844297	FL	N	Black	PY	Siltstone
394	fcc $8405-36 \mathrm{~b}$	Fig. 13 / Area A	607200	5844296	FL	N	Black	PY	Siltstone
395	fcc 8405-37	Fig. 13 / Area A	607159	5844303	FL	N	Black	PY	Siltstone
396	fcc $8405-37 \mathrm{a}$	Fig. 13 / Area A	607160	5844302	FL	N	Black	PY	Siltstone
397	fcc $8405-37 \mathrm{~b}$	Fig. 13 / Area A	607161	5844301	FL	N	Black	PY	Siltstone
398	fcc 8405-38	Fig. 13 / Area A	607142	5844319	FL	N	Black	Minor py	Arg
399	fcc $8405-38 \mathrm{a}$	Fig. 13 / Area A	607143	5844318	FL	N	Black	Minor py	Arg
400	fcc $8405-38 \mathrm{~b}$	Fig. 13 / Area A	607144	5844317	FL	N	Black	Minor py	Arg
401	fcc 8405-39	Fig. 13 / Area A	607147	5844367	FL	N	Black	Minor py	Arg
402	fcc $8405-39 \mathrm{a}$	Fig. 13 / Area A	607148	5844366	FL	N	Black	Minor py	Arg
403	fcc $8405-39 \mathrm{~b}$	Fig. 13 / Area A	607149	5844365	FL	N	Black	Minor py	Arg
404	fcc 8405-40	Fig. 13 / Area A	607124	5844462	FL	N	Black	Minor py	Arg

Table No. 2
Sample Coordinates and Descriptions

XRF No.	Sample No.	Fig. No. / Area	Easting	Northing	Type	Samp	Descrir		
405	fcc $8405-40 \mathrm{a}$	Fig. 13 / Area A	607125	5844461	FL	N	Black	Minor py	Arg
406	fcc $8405-40 \mathrm{~b}$	Fig. 13 / Area A	607126	5844460	FL	N	Black	Minor py	Arg
407	fcc 8405-41	Fig. 13 / Area A	607104	5844499	FL	N	Black	Minor py	Arg
408	fcc $8405-41 \mathrm{a}$	Fig. 13 / Area A	607105	5844498	FL	N	Black	Minor py	Arg
409	fcc $8405-41 \mathrm{~b}$	Fig. 13 / Area A	607106	5844497	FL	N	Black	Minor py	Arg
410	fcc $8405-42$	Fig. 13 / Area A	607115	5844519	FL	N	Black	Minor py	Arg
411	fcc $8405-42 \mathrm{a}$	Fig. 13 / Area A	607116	5844518	FL	N	Black	Minor py	Arg
412	fcc $8405-42 \mathrm{~b}$	Fig. 13 / Area A	607117	5844517	FL	N	Black	Minor py	Arg
413	fcc $8405-43$	Fig. 13 / Area A	607122	5844543	FL	N	Black	Minor py	Arg
414	fcc 8405-43a	Fig. 13 / Area A	607123	5844542	FL	N	Black	Minor py	Arg
415	fcc $8405-43 \mathrm{~b}$	Fig. 13 / Area A	607124	5844541	FL	N	Black	Minor py	Arg
416	fcc 8405-44	Fig. 13 / Area A	607108	5844600	FL	N	Black	Minor py	Arg
417	fcc $8405-44 \mathrm{a}$	Fig. 13 / Area A	607109	5844599	FL	N	Black	Minor py	Arg
418	fcc $8405-44 \mathrm{~b}$	Fig. 13 / Area A	607110	5844598	FL	N	Black	Minor py	Arg
419	fcc $8405-45$ fines	Fig. 13 / Area A	607098	5844662	Silt	N			Silt sample
420	fcc $8405-45$ fines a	Fig. 13 / Area A	607099	5844661	Silt	N			Silt sample
421	fcc $8405-45$ fines b	Fig. 13 / Area A	607100	5844660	Silt	N			Silt sample

APPENDIX H

Kangaroo Project

Maps and XRF Geochemical Results

Table No. 3
Kangaroo Area A - XRF Sampling Results

XRF No.	Sample No.	Fig. No./Area	Type	Units	Mo	Zr	Sr	U	Rb	Th	Pb	Se	As	Hg	Au	Zn	W	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd	Ag	Nb	Y	Bi	Cr	V	Ti
422	kang cr oflook 1	Fig. 9 / Kang A	rock	m	434	465	<LOD	< LOD	<LOD	D 909	9 <LOD	< LOD	< LOD	<LOD	< LOD	< LOD	< LOD	<LOD	< LOD	<LOD	< LOD	<LOD	LOD			LOD	LOD		LO	< LOD	LOD	OD
423	kang cr ollook 1a	Fig. 9 / Kang A	rock	ppm	<LOD	52	237	LOD		$8<$ LOD	< LOD	OD	LOD	OD	LOD	95	LOD	153	148	LOD	67994	58	< LOD	LOD	LOD	< LOD	LOD		< LOD	< LOD	LOD	OD
424	kang cr ollook 1b	Fig. 9 / Kang A	rock	ppm	<LOD	25	278	LOD		$2<$ LOD	< LO	OD	LOD	LOD	< LOD	107	< LOD	87	< LO	<LOD	16938	1259	< LOD	LOD	LOD	< LOD	LOD		<LOD	< LOD	LO	OD
425	kang crollook 2	Fig. 9 / Kang A	ro	ppm	< LOD	49	20	LOD		4	$4<$	D	D	< LOD	OD	94	< LOD	95		D	67267	139	< LOD		< LOD	LOD	4		< LOD	< LOD	LOD	OD
426	kang cr ollook 2a	Fig. 9 / Kang A	rock	ppm	<LOD	49	177	< LOD		LOD	< LO	LOD	OD	< LOD	LOD	79	<LOD	46	< LOD	< LOD	75154	LOD	< LO	LO	LOD	< LOD	LOD		LOD	LO	LOD	OD
427	kang cr ollook 2 b	Fig. 9 / Kang A	rock	ppm	< LOD	53	225	7.43		4 < LOD	D	< LOD	LOD	< LOD	< LOD	91	<LOD	303		LOD	74684	926	< LOD	< LOD	< LOD	< LOD	LOD		<LOD	< LOD	< LOD	OD
428	kang cr o(look 3	Fig. 9 / Kang A	rock	ppm	<LOD	54	237	< LOD		4 < LOD	<	D	< LOD	< LOD	< LOD	87	< LOD	71	< LO	LOD	61796	< LOD	< LOD	< LOD	< LOD	LOD	4		< LOD	< LOD	LOD	OD
429	kang cr ollook 3a	Fig. 9/ Kang A	rock	ppm	< LOD	53	223	LOD		$6<$ LOD	D	< LOD	OD	< LOD	LOD	97	<LOD	235	< LO	LOD	78983	526	LO	< LOD	LO	LOD	LOD		<LOD	< LO	LO	OD
430	kang cr ollook 3b	Fig. 9 / Kang A	rock	ppm	<LOD	52	27	LOD		4	4 < LOD	OD	OD	LOD	< LOD	88	< LOD	119		LOD	60802	30	LOD	LO	LOD	LOD	LOD		< LOD	LOD	LO	LOD
431	kang crollook 4	Fig. 9 / Kang A	rock	ppm	<LOD	48	22	LOD		$5<$ LOD	<LOD	OD	OD	< LOD	< LOD	100	< LOD	78		< LOD	57938	145	LO	LOD	LO	LO	LOD		<LO	< LO	LO	LOD
432	kang cr oflook 4a	Fig. 9 / Kang A	rock	ppm	< LOD	38	181	LOD		4	4 < LOD	<LOD		- LOD	< LOD	67	< LOD	98	< LOD	<LOD	52191	18	LO	LOD	LO	LOD	LOD		LOD	LO	LOD	LOD
433	kang cr oflook 4b	Fig. 9 / Kang A	rock	ppm	<LOD	47	18	LOD		7	$7<$ LOD	LOD	OD	LOD	LOD	92	< LOD	103		LOD	63772	13	< LOD	LOD	LOD	LO	LOD		< LOD	< LOD	LOD	LOD
434	kang crollook 5	Fig. 9 / Kang A	rock	ppm	<LOD	35	433	8.39		$7<$ LOD	< LOD	< LOD		7 <LOD	< LOD	98	< LOD	116	< LOD	< LOD	66213	LOD	LO	LOD	LO	LO	LOD		<LO	< LO	< LO	LOD
435	kang cr oflook 5a	Fig. 9 / Kang A	ro	ppm	< LOD	38	419	9.08		9	$9<$ LOD	< LOD		D	< LOD	140	< LOD	104		<LOD	72693	3104	LOD	LOD	LO	LOD	LOD		< LO	LO	LO	LOD
436	kang cr ollook 5b	Fig. 9 / Kang A	ro	ppm	< LOD	34	398	< LOD		$5<$ LOD	< LOD	LOD		3 < LOD	LOD		< LOD	71	< LOD	< LOD	72292	LOD	< LOD	LOD	LO	LOD	OD		< LOD	LO	LOD	LOD
437	kang crollook 6	Fig. 9 / Kang A	ro	pp	< LOD	47	223	< LOD		18 < LOD	< LOD	< LOD	LOD	<LOD	12.61	85	<LOD	101		LOD	66511	1608	< LO	LOD	LO	LOD	LOD		<LOD	LO	< LOD	2746
438	kang cr ollook 6 a	Fig. 9 / Kang A	rock	ppm	< LOD	54	225	LOD		13 < LOD	< LOD	LOD	LOD	< LOD	< LOD		< LOD	80	LOD	LOD	80264	LOD	< LOD	LOD	LO	LOD	4		< LO	< LOD	LOD	LOD
439	kang cr ollook 6 b	Fig. 9 / Kang A	rock	ppm	<LOD	46	258	<LOD		11	$1<$ LOD	< LOD	LOD	LO	LOD	76	< LOD	97	LOD	< LOD	6041	LOD	< LOD	< LOD	< LOD	< LOD	LOD		< LOD	< LOD	LOD	LOD
440	kang cr oflook 7	Fig. 9 / Kang A	rock	ppm	< LOD	41	265	LOD		10 < LOD	< LOD	< LOD	LOD	< LOD	< LOD	86	< LOD	95	LOD	<LOD	5956	<LOD	< LOD	LO	< LO	LOD	3		< LOD	< LOD	LOD	LOD
441	kang cr oflook 7 a	Fig. 9 / Kang A	rock	ppm	< LOD	43	315	LOD		4 <LOD	< LO	OD	LOD	LOD	< LOD		< LOD	98	< LOD	< LOD	55	LOD	LOD	LO	LO	LOD	LOD		< LOD	LO	LOD	LOD
442	kang cr ollook 7b	Fig. 9 / Kang A	rock	ppm	<LOD	49	285	8.07		11	6	< LOD	LOD	OD	< LOD	96	LOD	63		< LOD	66873	1524	< LOD	< LOD	<LO	< LOD	LOD		LOD	< LOD	LOD	OD
443	kang cr oflook 8	Fig. 9 / Kang A	rock	ppm	<LOD	17		LO	D		$4<$ LOD	< LOD	LOD	OD	11.53	77	< LOD	81		LOD	71707	14	LOD	< LOD	< LOD	LOD			<LOD	LOD	LOD	OD
444	kang cr o (look 8 a	Fig. 9 / Kang A	ro	ppm	<LOD	22		< LOD	OD	- LOD	<	LOD	< LOD	< LOD	LOD	130	<LOD	99		<LOD	73562	LOD	LO	LO	LO	LOD			LOD	LOD	LOD	LOD
445	kang cr ollook 8b	Fig. 9 / Kang A	rock	ppm	<LOD	13	178	OD	OD	- LOD	< LOD	LOD	OD	< LOD	<LOD	69	LOD	60	144	342	23265	140	LOD	< LOD	< LOD	LOD	LOD	OD	< LOD	LOD	LOD	OD
446	kang cro(look 9	Fig. 9 / Kang A	rock	ppm	<LOD	51	210	LOD		24	4 < LOD	OD	LOD	< LOD	LOD		< LOD	76	LOD	< LOD	56160	13	LOD	LO	< LOD	LOD	4		<LOD	< LOD	LOD	OD
447	kang cr oflook 9a	Fig. 9 / Kang A	rock	ppm	<LOD	49	205	< LOD		< LOD	< LOD	LOD		3	OD		< LOD	351	LOD	< LOD	67777	7433	< LO	LOD	< LO	LOD	5		LOD	LO	LOD	LOD
448	kang cr ollook 9b	Fig. 9 / Kang A	ro	ppm	< LOD	51	220	<LOD		$3<$ LOD	< LO	LOD	< LOD	< LOD	< LOD		< LOD	181	< LOD	<LOD	73717	<LOD	< LOD	LOD	LOD	LOD	LOD		<LOD	LO	LO	LOD
449	kang cr ollook 10	Fig. 9 / Kang A	rock	ppm	<LOD	47	231	< LOD	< LOD		6 < LOD	< LOD		OD	LOD	94	LOD	272		< LOD	62828	7635	< LOD	< LOD	LOD	LOD	3		< LOD	< LOD	LOD	LOD
450	kang cr ollook 10a	Fig. 9 / Kang A	rock	ppm	<LOD	49	22	D		< LOD	D	< LOD	OD	< LOD	LOD		LOD	72		<LOD	56713	< LOD	LO	< LOD	LOD	LOD	LOD		< LOD	< LOD	LOD	OD
451	kang cr oflook 10b	Fig. 9 / Kang A	rock	ppm	< LOD	48	209	<LOD		$3<$ LOD	< LOD		< LOD	83	< LOD	< LOD	60322	<LOD	< LOD	< LOD	< LOD	< LOD	3		< LOD	< LO	< LOD	LOD				
452	kang cr ov(l 11	Fig. 9 / Kang A	rock	ppm	515	445	162	454.1	LOD	D 1170	< LOD	LOD	< LOD	<LOD	< LOD	< LOD	LOD	<LOD	< LOD	LOD	< LOD	LOD	LOD		< LO	LOD	LOD	LOD				
453	kang cr ov(l 11a	Fig. 9 / Kang A	rock	ppm	7	52		OD		2815	5 <LOD	< LOD		2 < LOD	< LOD		< LOD	49		< LOD	86813	2588	75		< LOD	LOD	7		<LOD	< LOD	< LOD	OD
454	kang cr ov(111b	Fig. 9 / Kang A	rock	ppm	10	40		< LOD		2121	1 < LOD		< LOD	64	< LOD	< LOD	69511	< LOD	47		< LOD	< LOD	9		< LO	< LOD	LO	LOD				
455	kang cr ov(l1 12	Fig. 9 / Kang A	rock	ppm	7	52	468	< LOD		19	$9<$ LOD	< LOD	LOD	< LOD	< LOD		< LOD	151	<LOD	< LOD	60461	<LOD	64		<LOD	< LOD	10		<LO	LO	LO	LOD
456	kang cr ov(1 12a	Fig. 9 / Kang A	rock	ppm	< LOD	74	1019	19.39		6 <LOD	< LOD	LOD	< LOD	< LOD	< LOD		< LOD	79	< LOD	<LOD	60588	< LOD	< LOD	< LOD	< LO	< LOD	< LOD		< LO	< LOD	< LOD	LOD
457	kang cr ov(l 12 b	Fig. 9 / Kang A	rock	ppm	<LOD	46		< LOD		$13<$ LOD	< LOD	<LOD	< LOD	<LOD	< LOD		< LOD	60	< LOD	<LOD	48496	1373	< LOD	LOD	< LOD	< LOD	< LOD		<LOD	LOD	LOD	LOD
458	kang cr ov(113	Fig. 9 / Kang A	rock	ppm	< LOD	9	1196	15.12	< LOD	- LOD	< LOD	49	< LOD	28	< LOD	< LOD	40714	< LOD		< LOD	< LOD	< LOD	LOD									
459	kang cr ov(1 13a	Fig. 9/ Kang A	rock	ppm	<LOD	20	1098	11.45	< LOD	- LOD	< LOD		< LOD	< LOD	< LOD	382	44639	< LOD	< LO	< LO	< LO	LO	LOD		< LOD	< LOD	LOD	LOD				
460	kang cr ov(1 13b	Fig. 9 / Kang A	rock	ppm	< LOD	12	971	9.82	< LOD	- LOD	< LOD		< LOD	<LOD	< LOD	< LOD	50083	3974	< LO	LOD	LO	LOD	LOD	OD	< LO	LO	LO	OD				

In all cases <LOD means below level of detection

Table No. 4

Table No. 4
Kangaroo Area B - XRF Sampling Results

RF No.	Sample No.	g. No./Area	Type	Units	Mo	Zr	Sr	U	Rb	Th	Pb	Se	As	Hg	Au	Zn	W	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd Ag	Nb	Y	Bi	Cr	V	
509	kangcr o(l 30	Fig. 10 / Area B	rock	ppm	<LOD	49	336	OD		LOD	< LOD	< LOD		< LOD	<LOD	62	<LOD	331	< LOD	< LOD	5979	< LOD :		< LOD	LOD < LOD	5		LO	< LOD	LOD	LOD
510	kanger oll 30a	Fig. 10 / Area B	rock	ppm	<LOD	46	334	LOD		<LOD	< LOD	< LOD	< LOD	LO	OD	69	< LOD	127	< LOD	LOD	58	LOD	< LOD	< LOD	LOD < LOD	LOD		< LO	< LOD	LOD	LOD
511	kangcr ofl 30b	Fig. 10 / Area B	rock	ppm	<LOD	41	335	OD	6		< LOD	71	<LOD	40		< LOD	54111	14	< LOD	< LOD	LOD < LOD	LOD		< LO	<	LO	LOD				
512	kangcr o(1 31	Fig. 10 / Area B	rock	ppm	<LOD	38		OD		< LOD	< LOD	OD	18	13.13	OD	52	< LOD	52	OD	<LOD	35112		< LOD	< LOD	< LOD < LOD	LOD		<LOD	LOD	LOD	LOD
513	kanger ol 131a	Fig. 10 / Area B	rock	ppm	<LOD	33	145	LOD	36		LO	LOD		<LOD	OD	57	LOD	25	< LOD	220	35642	10	LO	LOD	LOD < LO	LOD		< LOD			LOD
514	kanger of(31 b	Fig. 10 / Area B	rock	ppm	<LOD	36	223	LOD		< LOD	LOD	< LOD	33	LOD	< LOD	55	<LOD	199	< LOD	<LOD	4496	-0	< LOD	< LOD	< LOD < LOD	LOD		<			LOD
515	kangcr o(1 32	Fig. 10 / Area B	rock	ppm	<LOD	45		LOD		< LOD	< LOD	<LOD	< LOD	< LOD	< LOD	59	OD	125	< LOD	LOD	39077	1878	< LOD	< LOD	< LO	LOD		<LOD	LOD	LO	LOD
516	kangcr ol 132 a	Fig. 10 / Area B	rock	ppm	<LOD	38	182	LOD	OD	OD	< LOD	OD	LOD	LOD	OD	78	OD	59	<LOD	LO	67693	LOD	LOD	LOD	LOD	3		<LOD	LOD	LOD	LOD
517	kangcr ol 132 b	Fig. 10 / Area B	rock	ppm	<LOD	51	182	LOD	3		LOD	LOD	LOD	LOD	OD	89	<LOD	63	< LOD	LOD	81744	163	LOD	LOD	LOD < LOD	5		<LO	LOD	LOD	LOD
518	kangcr o(1 33	Fig. 10 / Area B	rock	ppm	<LOD	42	251	9.64		OD	< LOD	70	OD	< LOD	< LOD	LOD	56	LOD	< LOD	< LOD	LOD < LOD	LOD		< LOD	LOD	< LOD	LOD				
519	kangcr ofl 33a	Fig. 10 / Area B	rock	ppm	<LOD	55	294	LOD	4		< LOD	< LOD	LOD	< LOD	< LOD	91	LOD	40	LO	LO	72434	165	<LOD	< LOD	LOD < LOD	5		<LO	LO	LO	LOD
520	kangcr ol 33 b	Fig. 10 / Area B	rock	ppm	<LOD	44	256	LOD	4		LOD	< LOD	LOD	LOD	OD	110	< LOD	171		LOD	85783	261	LOD	LO	LOD < LO	OD		<LOD	<LOD	<LOD	LOD
521	kangcr o(1 34	Fig. 10 / Area B	rock	ppm	<LOD	44	115	D	23		< LOD	D	10	10.88	OD	92	LOD	96		<LOD	68516	275	<LOD	LO	LOD < LOD	LOD		< LO	LO	< LO	LOD
522	kangcr ol 134 a	Fig. 10 / Area B	rock	ppm	<	46	109	< LOD		< LOD	< LOD	D		< LOD	LOD	89	< LOD	63	< LOD	LO	76038	3128	LOD	LOD	LOD < LOD	4		<LOD	LOD	< LOD	LOD
523	kangcr of 34 b	Fig. 10 / Area B	rock	ppm	<LOD	42	17	LOD	18		< LOD	< LOD	<LOD	LOD	OD	68	OD	10	< LOD	LOD	34934	20	< LOD	< LOD	LOD < LOD	LOD		< LO	< LOD	< LOD	LOD
524	kanger	Fig. 10 / Area B	rock	ppm	<LOD	33		OD		< LOD	<LOD	< LOD		OD	OD	58	OD	60	< LOD	<LOD	53311	1524	< LO	LO	LOD < LOD	LOD		< LOD	< LOD	LO	LOD
525	kangcr oll 35 a	Fig. 10 / Area B	rock	ppm	<LOD	31	149	LOD		< LOD	< LOD	< LOD		< LOD	LOD	45	< LOD	< LOD	< LOD	< LOD	44535	LOD	< LOD	< LO	< LOD < LOD	4		LO	< LOD	< LO	LOD
526	kangcr oll 35b	Fig. 10 / Area B	rock	ppm	<LOD	30	132	LOD		<LOD	< LOD	< LOD		< LOD	OD	53	<LOD	52	< LOD	138	30870		< LOD	< LO	< LOD < LOD	<LOD		<	LOD	LOD	LO
527	kangcr o(136	Fig. 10 / Area B	rock	ppm	<LOD	41	333	11.35		<LOD	< LOD	LOD	<LOD	OD	OD	88	D	99		<LOD	63780	1479	LOD	< LOD	LOD < LOD	LOD		< LO	LO	< LOD	OD
528	kangcr ol 136 a	Fig. 10 / Area B	rock	ppm	<LOD	77	527	14.66	3		<LOD	< LOD	LO	LOD	LOD	59	<LOD	38	< LOD	<LOD	25154		< LOD	< LOD	< LOD < LOD			< LO	< LO	LO	LOD
529	kangcr ol 136 b	Fig. 10 / Area B	rock	ppm	<LOD	41	389	7.67	3	20	< LOD	< LOD	< LOD	< LOD	LOD	66	< LOD		<LOD	< LOD	60092	LOD	LO	LO	LOD < LOD	LOD	2.32	LO	< LOD	< LOD	LO

In all cases <LOD means below level of detection

Table No. 5
Kangaroo Area C-XRF Sampling Results

XRF No	Sample No.	/Area	Type	Units	Mo	Zr	Sr	U	Rb	Th	Pb	Se	As	Hg	Au	Zn	W	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd	Ag	Nb		Bi	Cr	V	
530	cr ol\| 37	Fig. 11 / Area C	ck	ppm	<LOD	34	484	. 5		5 <LOD	LOD	< LOD	LOD	< LOD	LOD	53	LOD	36	LOD	< LOD	2319		< LOD	< LOD	< LOD	OD	LOD	1.59	LOD	LOD	LOD	LOD
531	kangcr ol 137 a	Fig. 11 / Area C	rock	ppm	<LOD	65	419	10.35		6 < LOD	LOD	< LOD	LOD	< LOD	LOD	70	<LOD	< LOD	<LO	<LOD	24704	850		LO	LOD	< LOD	3.73		,			LOD
532	kanger ol 137 b	Fig. 11 / Area C	rock	ppm	<LOD	80	5	< LOD		4	< LOD	< LOD	D	< LOD	OD	74	LOD	275	LO	LOD	595					LOD	5.88					LOD
533	kangcr o(1 38	Fig. 11 / Area C	rock	ppm	<LOD	28	406	OD		6 <LOD			OD	- LOD	OD	47	OD	78	< LOD	OD	3502	LOD										OD
534	kanger ofl 38 a	Fig. 11 / Area C	rock	ppm	<LOD	40	326	< LOD		314	< LOD	< LOD	OD	< LOD	OD	68	LOD	51	< LOD	LOD	4230	LOD		LOD	LO	LOD	3.05					LOD
535	kangcr ofl 38 b	Fig. 11 / Area C	rock	ppm	<LOD	53	431	7.71			< LOD	< LOD	< LOD	< LOD	D	54	D	83	< LOD	< LOD	200	1046	< LO	< LO	< LOD	< LOD	3.88			LOD	LOD	D
536	kangcr o(l 39	Fig. 11 / Area C	rock	ppm	<LOD	36	191	OD	D	< LOD	< LOD		LOD	<LOD	D	75	D	13	< LOD	OD	710	223		LOD			LOD					LOD
537	kangcr oll 39a	Fig. 11 / Area C	rock	ppm	<LOD	39	143	8.06	D	< LOD			LOD	< LOD	OD	89	LOD	67	< LOD	LOD	808	LOD					LOD					LOD
538	kangcr ofl 39	Fig. 11 / Area C	rock	ppm	<LOD	37	267	< LOD		7 <LOD	< LOD		< LOD	< LOD	D	64	OD	32	< LOD	OD	48291	LOD		LOD	LOD	LO	LOD			LOD	LOD	LOD
539	kangcr o(140	Fig. 11 / Area C	rock	ppm	< LOD	OD	LOD	< LOD	OD	< LOD	< LOD		LOD	< LOD	OD	18	LOD	< LOD	< LOD	LOD	2181		< LOD	< LOD	LO	LOD						
540	kangcr ol 100 a	Fig. 11 / Area C	rock	ppm	<LOD	OD	OD	< LOD	LOD	< LOD			OD	<LOD	OD	OD	LOD	< LOD	< LOD	LOD												OD
54	kangcr of 40 b	Fig. 11 / Area C	rock	ppm	<LO	LOD	LOD						OD	< LOD	D	14	< LOD	<LOD	< LO	LOD		LOD		LO	LO	LO	LOD	LOD	LOD	LO	LOD	LOD
542	kangcr o(l 41	Fig. 11 / Area C	rock	ppm	<LOD	43	165	LOD		2	< LOD	< LOD	LOD	< LOD	LOD	95	<LOD	34	< LO	<LOD	79517	LOD	< LOD	LOD	LO	LOD	LOD		LOD	LOD	LOD	LOD
54	kangcr o(l 41 a	Fig. 11 / Area C	rock	ppm	<LOD	35	229	LOD		2	LOD		OD	13.3	LOD	85	73	71	LO	LOD	6256	124	< LOD	LOD	LOD	LO	3.55		LOD	LOD	LOD	<LOD
544	kanger ol 141 b	Fig. 11 / Area C	rock	ppm	<LOD	43	180	8.15			< LOD	< LOD	D	< LO	LOD	99	<LOD	252	< LOD	LOD	77212		< LO	LOD	LOD	LO	LO					LOD
545	kangcr o(142	Fig. 11 / Area C	rock	ppm	<LOD	44	464	7.6		3 <LOD	< LOD	< LOD	< LOD	< LOD	OD	107	D	152	130	LOD	53124	2288	< LO	LO	< LOD	< LOD	LO		LOD	LO	LO	OD
546	kangcr ofl 42 a	Fig. 11 / Area C	rock	ppm	<LOD	56	308	LOD		4 9	LOD	< LOD	LOD	< LOD	< LOD	195	OD	326	126	LOD	84534	358	< LOD	LO	LOD	LOD	LOD		LO	LOD	LOD	LOD
547	kangcr ol 142 b	Fig. 11 / Area C	rock	ppm	<LOD	43	250	9.07		$3<$ LOD	LOD	OD	LOD		LOD	83	<LOD	< LOD	< LOD	LOD	65476	Lo	< LOD	< LOD	< LOD	LOD	LO		LOD	LOD	LOD	< LOD
548	kangcr o(1 43	Fig. 11 / Area C	rock	ppm	<LOD	57		<LOD		LOD	D	< LOD		LO	OD	58	<LOD	134	LOD	<LOD	82468	LOD	< LOD	LO	LO	LOD	LOD		LOD	LO	LOD	LOD
54	kanger oll 43 a	Fig. 11 / Area C	rock	pp	<LOD	46		LOD		OD	< LOD	LOD		3 < LOD	LOD	45	< LOD	103	LO	LOD	66831	LOD	OD	LO	LOD	LOD	4.3		LOD	LOD	LOD	LOD
550	kangcr o(143	Fig. 11 / Area C	rock	ppm	< LOD	60		< LOD	41	1	< LOD	< LOD		2 < LOD	9.82	63	OD	102	13	LOD	89608	3040	LOD	LO	LOD	LOD	LO		LOD	LOD	LOD	< LOD
551	kangcr o(1 44	Fig. 11 / Area C	ro	ppm	<LOD	39		LOD	6		D	D	LOD	< LOD	< LOD	56	OD	72		LOD	43785	1276	< LOD	LOD	< LOD	LOD	3.44		LOD	LOD	< LOD	LO
552	kangcr ol 14 a	Fig. 11 / Area	rock	pp	OD	36		D		LOD	D	< LOD	LOD	< LO	LOD		OD		< LOD	LOD	29		LOD	LOD	LOD	LOD	2.94		LOD	LOD	LOD	LOD
553	kangcr o(1 44b	Fig. 11 / Area C	rock	ppm	< LOD	56		OD		7 < LOD	< LOD	< LOD	OD	< LO	OD	68	OD	95	< LOD	<LOD	9050	3014	LOD	LO	LOD	LOD	LOD		LOD	LOD	< LOD	< LOD
554	kanger	Fig. 11 / Area C	roc	ppm	<	D			D	< LOD		< LOD		7 <LOD	OD	24	OD	< LOD	< LOD	D	6915			LO	LOD	LO	LO	LO	LOD	LO	< LOD	<LOD
555	kanger oll 45 a	Fig. 11 / Area C	rock	ppm	<LOD	26		LOD		8 <LOD	< LOD	< LOD		2 <LOD	10.95	63	OD	70		<LOD	45182	143	< LOD	LOD	LOD	LO	LOD	2.2	< LO	LO	<LO	LOD
556	kangcr o(l 45b	Fig. 11 / Area C	rock	ppm	< LOD	11		LOD		< LOD	LOD	< LOD		1 < LOD	< LOD	52	OD		< LO	LOD	348	LOD	LOD	LO	LOD	LOD	LO	LOD	Lod	LOD	LOD	LOD
557	kangcr o(146	Fig. 11 / Area C	rock	ppm	<LOD	LOD	< LOD	< LOD	LOD	OD	D		OD	<	OD	13	D	<LOD	< LOD	OD				LOD	LOD	LOD		LOD	LOD	LOD	LOD	LOD
558	kanger ol 146 a	Fig. 11 / Area C	rock	ppm	<LOD	< LOD	OD	< LOD	D	< LOD	OD	< LOD	LOD	< LOD	LOD	< LOD	<LOD	LOD	< LOD	<LOD		LOD	< LO	LOD	< LO	LO	< LOD	< LO	< LO	< LOD	LOD	LOD
559	kangcr o(l 46b	Fig. 11 / Area C	rock	ppm	< LOD	D	LOD	< LOD	LOD	< LOD	< LOD	< LOD	LOD	< LOD	< LOD	LOD	<LOD	<LOD	< 10	LOD	113	LOD	LOD	LO	< LOD	LO	< LOD	LOD	LOD	LOD	< LOD	LOD
560	kangcr o(1 47	Fig. 11 / Area C	rock	ppm	<LOD	16		< LOD		4 < LOD	< LOD	< LOD		2 < LOD	10.84	47	< LOD	78	< LO	<LOD	23812		LOD	< LOD	< LOD	LOD	LOD	LO	LO	LO	< LOD	OD
561	kangcr ol 147 a	Fig. 11 / Area C	rock	ppm	<LOD	38		< LOD		$1<$ LOD	< LOD	< LOD	10	09.57	< LOD		<LOD	41		<LOD	33224		LO	LO	LO	LOD	<LOD		LOD	LOD	LO	<LOD
562	kangcr ol 147 b	Fig. 11 / Area C	rock	ppm	<LOD	64		< LOD		6 < LOD	< LOD	< LOD		4 < LOD	< LOD	99	<LOD	79	< LOD	<LOD	105034	2706	LOD	< LOD	LOD	LOD	4.31	2.24	< LOD	< LOD	< LO	LOD

APPENDIX I

Frank Creek Project
Maps and XRF Geochemical Results

Table No. 6
Frank Creek Area A - XRF Sampling Results

Table No. 6

Table No. 6

XRF No.	Sample No.	Fig. No./Area	Type	Units	Mo	Zr	Sr	U		Rb	Th	Pb	Se	As	As Hg	Au	Zn	W	Cu	Ni	Co	Fe	Mn	Sb	Sn	Cd Ag	Nb	Y Bi	Cr	\checkmark	Ti
382	fcc 8405-32b	Fig. 13 / Area A	Rock	ppm	< LOD	<LOD	< LOD	< LOD		LOD	< LOD	< LOD	< LOD	<LOD	OD < LOD	<LOD	20	<LOD	28	<LOD	<LOD	3058	< LOD	D	< LO	< LOD	OD				
383	8405-33	Fig. 13 / Area A	Rock	ppm	<LOD	93		$2<$ LOD		17	OD	< LOD		28	$28<$ LOD	<LOD	313	LOD	109		<LOD	53259	361	< LOD	LOD <	OD < LOD	11	$2<$	< LO		OD
384	fcc 8405-33a	Fig. 13 / Area A	Rock	ppm	<LOD	96		$9<$ Lod			OD	< LOD	< LOD		36 < LOD	DD	393	OD	52		D	71014	488	LOD	OD	OD	12				OD
385	fcc $8405-33 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	<LOD	64		6 < LOD		25		LOD	OD		18 < LOD	LOD	130	<LOD	180	LO	LOD	19034	198	LOD	LOD	LOD	6	2	< LO	LOD	OD
386	fce 8405-34	Fig. 13 / Area A	Rock	ppm	<LOD	93	26	6	8	27		< LOD		61	61 <LOD	LOD	185	LOD	146	< Lo	LOD	41402		< LOD	LOD	OD < LOD		D	<		OD
387	fcc $8400-34 \mathrm{a}$	Fig. 13 / Area A	Roc	ppm	<LOD	53		7 < LOD			<LOD	36	14		$181<$ LOD	<LOD	306	<LOD	200		<LOD	168808		LO	LOD	LOD < LOD		LOD <	< LOD	LOD	OD
388	fcc 8405-34b	Fig. 13 / Area A	Rock	ppm	< LOD	88		2 <LOD			OD	LOD	< LOD		75 < LOD	<LOD	178	<LOD	141	<	LOD	4803	< LO	LOD	OD	LOD		LOD	LOD		LOD
389	fce $8805-35$	Fig. 13 / Area A	Rock	ppm	681	390	179	9351		64	248	253	D	< LOD	OD < LOD	LOD	528	< LOD	< LOD	< LOD	LOD	LOD	LOD	379	LOD	OD < LOD	128	$31<$	< LOD	< LOD	LOD
390	fcc 8405-35a	Fig. 13 / Area A	Rock	ppm	5	15		9 < LOD		10	7		D	< LOD	OD < LOD	LOD	63	<LOD	137	< LOD	< LOD	813	LOD	76		LOD < LOD	10	5 <	LO	< LOD	LOD
391	-405-35b	Fig. 13 / Area A	Roc	ppm	8	14		4 <LOD		6		OD		LOD	OD	OD		OD	113	< LOD	LOD	12	71	36		OD < LOD		OD < L	< LO		LOD
392	fcc $8405-36$	Fig. 13 / Area A	Rock	ppm	6	24		8 <LOD			<LOD		< LOD		$13<$ LOD	< LOD	93	<LOD	148	< LOD	<LOD	2155	LOD	111		LOD < LOD		LOD < L	LOD	LO	LOD
393	fcc $8400-36 \mathrm{a}$	Fig. 13 / Area A	Rock	ppm	16	167	20	0		33	33	LOD	< LOD		$26<$ LOD	< LOD	526	< LOD	74	< LO	LOD	65306	LOD	64		LOD < LOD	31	5 <	LO	< LO	<LOD
394	fcc $8405-36 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	12	83	14	4		20	24	34	LOD		$20<$ LOD	< LOD	272	< LOD	303	LO	<LOD	5836	LOD		LOD	LOD < LOD	15	$2<$ LO	LO	LO	LOD
395	fcc $8405-37$	Fig. 13 / Area A	Rock	ppm	9	31		7 < LOD		19		LOD	<LO		8 <LOD	<LOD	69	<LOD	217	< LOD	LOD	296	LOD	55		OD < LOD	9	$2<$	LOD	< LO	LOD
396	fcc $8400-37 \mathrm{a}$	Fig. 13 / Area A	Rock	ppm	7	47		0 < LOD		20		LOD	< LOD		27 <LOD	14.37	108	<LOD	286		LOD	32788	424	71		LOD < LOD		LOD < L	LO	LOD	LOD
397	fcc $8405-37 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	7	28		1 <LOD		18		< LOD	< LOD		7 < LOD	12.24	100	<LOD	273		LOD	46725	362	91		LOD < LOD		LOD < LOD	LO	< LO	LOD
398	fc $8405-38$	Fig. 13 / Area A	Rock	ppm	8	156		6 <LOD		22	23	LOD	< LOD	OD	OD < LOD	LOD	112	OD	LOD	LOD	LOD	27686	LOD	82		OD < LOD		LOD < L	< LOD	< LOD	LOD
399	fcc $8400-38 \mathrm{a}$	Fig. 13 / Area A	Roc	ppm	<LOD	114		$5<$ LOD		19		LO	< LOD	<LOD		<LOD	123	D	22	LO	<LOD	2022	LOD	LOD	LO	OD < LOD		LOD <	LO	< LOD	LOD
400	fcc $8405-38 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	<LOD	135		6 <LOD		28		< LOD	LOD	< LOD	OD < LOD	< LOD	92	OD	36	< LOD	<LOD	17094		LOD	LOD	LOD < LOD		LOD < L	< LOD	< LOD	LOD
401	8405-39	Fig. 13 / Area A	Rock	ppm	< LOD	101		2 <LOD		21		LO	LO	< LOD	OD < LOD	OD	146	OD	60		LOD	32233		LOD	LOD	LOD < LOD		LOD < L	< LOD	< LOD	LOD
402	fcc $8400-39 \mathrm{a}$	Fig. 13 / Area A	Rock	ppm	<LOD	98		8 < LOD		18		< LOD	LOD	<LOD	OD < LOD	LOD	180	< LOD	74	< LO	LOD	31937	LOD	< LOD	LO	LOD < LOD	9	$2<$	LOD	< LO	LOD
403	fcc $8405-39 \mathrm{~b}$	Fig. 13 / Area A	Ro	ppm	<LOD	116	71		9	22		LO	< LOD	LOD	OD < LO	< LOD	05	< LOD	42	4	122	24603		< LOD	LOD	LOD < LOD	0	$2<$	LO	< LO	LOD
404	fcc $8405-40$	Fig. 13 / Area A	Rock	ppm	<LOD	138		1 < LOD		18		LOD	LOD		7 < LOD	OD	52	LOD	36	LO	LOD	18279		LOD	LOD	LOD < LOD		LOD < LOD	LO	< LOD	LOD
405	fcc 8405-40a	Fig. 13 / Area A	Rock	ppm	<LOD	104		7 < LOD			OD	LOD	< LOD	<LOD	OD < LOD	< LOD	55	< LOD	33	LO	<LOD	17949	LOD	LO	LOD	LOD < LOD		LOD < L	LOD	< LO	LOD
406	fcc $8405-40 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	<LOD	192		5 < LOD		21		LO	D	< LOD	OD < LOD	<LOD	55	< LOD	31	< LOD	<LOD	9056		< LOD	LOD	< LOD < LOD		LOD < LOD	LOD	< LO	<LOD
407	fcc $8405-41$	Fig. 13 / Area A	Roc	ppm	< LOD	61		LOD			OD	LO	< LOD	LOD	OD	OD	40	< LOD	33	< LOD	OD	3038	LO	< LOD	<	< LOD < LOD		LOD < L	< LOD	< LOD	LOD
408	8405	Fig. 13 / Area A	Rock	ppm	<LOD	47		8 < LOD		25		LOD	LOD	< LOD	OD < LOD	LOD	64	< LOD	27	LOD	<LOD	32	LOD	LO	LO	LOD < LOD		LOD < L	< LOD	< LOD	LOD
409	fcc $8405-41 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	<LOD	85		1 <LOD		35		< LOD	< LOD	<LOD	OD < LOD	<LOD	47	< LOD	41	<LOD	<LOD	4912		< LO	LOD	< LOD < LOD		LOD < L	LO	< LO	<LOD
410	fcc $8405-42$	Fig. 13 / Area A	Roc	ppm	< LOD	8		3 <LOD			< LOD		< LOD		< LO	LOD	83	OD	37	< LOD	LOD	2936	LOD	< LOD	LO	< LOD < LOD	< LOD	LOD < LOD	LO	< LOD	LOD
411	fcc $8405-42 \mathrm{a}$	Fig. 13 / Area A	Roc	ppm	<LOD	40	10	0	6		OD		LOD		$20<$ LO	OD	184	<LOD	57	LOD	LOD	42379		< LOD	LOD	< LOD < LOD	LOD	LOD <	< LOD	< LOD	OD
412	fcc $8405-42 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	<LOD	10		< LOD			OD	<LOD	LOD		$11<$ LOD	<LOD	60	<LOD	47	<LOD	<LOD	11149		LOD	< LOD	LOD < LO	LO	D <	< LOD	< LOD	LOD
413	fcc $8405-43$	Fig. 13 / Area A	Rock	ppm	4	211	58	8	9	98	18		OD		20 <LOD	< LOD	279	<LOD	93		LOD	47246		< LOD	LO	LOD < LOD	18	$3<1$	< LOD	< LO	<LOD
414	fcc $8405-43 \mathrm{a}$	Fig. 13 / Area A	Rock	ppm	6	172		2 < LOD		75	18	91	12		49 < LOD	12.20	375	< LOD	672		LOD	107573		< LOD	LOD	LOD < LOD	17	4 <	< LOD	< LOD	LOD
415	fcc $8405-43 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	<LOD	202	55	5		90	18	31		82	$28<$ LOD	< LOD	331	< LOD	83		LOD	64351		< LOD	< LOD	LOD < LOD	17	3 <	< LOD	< LOD	LOD
416	fcc $8405-44$	Fig. 13 / Area A	Rock	ppm	<LOD	66	55	5	7		< LOD		< LOD		$30<$ LOD	< LOD	96	< LOD	120	< LOD	< LOD	21762	< LOD	< LO	< LOD	< LOD < LOD	3	$2<$	< LOD	< LO	<LOD
417	fcc $8405-44 \mathrm{a}$	Fig. 13 / Area A	Rock	ppm	<LOD	63	45	5	7		< LOD		< LOD		27 < LOD	<LOD	119	< LOD	85	< LO	<LOD	25128		< LO	< LOD	< LOD < LOD	3	4 <	LO	< LO	<LOD
418	fcc $8405-44 \mathrm{~b}$	Fig. 13 / Area A	Rock	ppm	<LOD	59		0 < LOD				< LOD	< LOD	< LOD	OD < LOD	< LOD	54	< LOD	41	< LOD	<LOD	8556	< LOD	LO	< LOD	< LOD < LOD		LOD < LOD	LO	LO	LOD
419	fcc $8405-45$ fines	Fig. 13 / Area A	Rock	ppm	<LOD	111	82	2	9	25	11	31	12		$96<$ LOD	< LOD	312	< LOD	199	< LOD	<LOD	82524		LOD	LOD	< LOD < LOD	7	$3<1$	LO	< LO	<LOD
420	fcc $8405-45$ fines a	Fig. 13 / Area A	Rock	ppm	<LOD	126	59	9		31	17	42	15		$89<$ LOD	< LOD	312	< LOD	167		LOD	76168		LOD	< LOD	< LOD < LOD	8	$3<1$	< LO	< LO	<LOD
421	fcc $8405-45$ fines b	Fig. 13 / Area A	Rock	ppm	6	137	47	7	7	36	12	62	14		102 < LOD	<LOD	8	< LOD	226		LOD	85276	531	LO	LOD	<LOD < LOD	10	4 <	< LOD	< LOD	< LOD

[^0]
[^0]: In all cases <LOD means below level of detection

