

Ministry of Energy and Mines

BC Geological Survey

TYPE OF REPORT [type of survey(s)]: Rock geochemistry and prospecting

Assessment Report Title Page and Summary

TOTAL COST: \$48,518.37

AUTHOR(S): John Bradford, Tyler Ruks	SIGNATURE(S): & Mu tho
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): N/A STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	YEAR OF WORK: 2016
PROPERTY NAME: Oxide Peak	
CLAIM NAME(S) (on which the work was done): <u>1042455</u> , 1042462, 10	142307, 1042340, 1042300
COMMODITIES SOUGHT: Cu, Au	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:	
MINING DIVISION: Liard	NTS/BCGS: 094E/06, 094E/11; 094E045
MINING DIVISION: Liard LATITUDE: 57 29 LONGITUDE: 127	• <u>05</u> ' ' (at centre of work)
OWNER(S): 1) Seven Devils Exploration Ltd.	2)
MAILING ADDRESS: 24510 106B Avenue	
Maple Ridge, B.C. V2W 2G2	
OPERATOR(S) [who paid for the work]: 1) Seven Devils Exploration Ltd.	2)
MAILING ADDRESS: 24510 106B Avenue	
Maple Ridge, B.C. V2W 2G2	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Hazelton Group, Toodoggone Formation, Takla Group, advance	
chalcopyrite, pyrite	

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: <u>5194, 8998, 14795, 15070, 18793, 27638,</u> 34762

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres) Ground			
Magnetic			
Radiometric			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil		_	
Rock 26		1042455, 1042567, 1042546, 1042568	11,979.81
Other		_	
DRILLING (total metres; number of holes, size)			
Core		_	
Non-core		_	
RELATED TECHNICAL			
Sampling/assaying 26		_	599.15
Petrographic		_	
Mineralographic		_	
Metallurgic		_	
PROSPECTING (scale, area) 1:10,00	00, 3.0 sq km	1042455, 1042567, 1042546, 104256	35,939.41
PREPARATORY / PHYSICAL			
Line/grid (kilometres)		_	
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail	_	
Trench (metres)		_	
Underground dev. (metres)			
Other			
		TOTAL COST:	\$48,518.37

BC Geological Survey Assessment Report 36482

Assessment Report

Rock Geochemistry and Prospecting on the Oxide Peak Property

Liard Mining Division

094E/06, 094E/11 094E045

615500mE 6372000mN UTM Z09 NAD83 57°29'N 127°05'W NAD83

For

Seven Devils Exploration Ltd.

By

John Bradford Tyler Ruks

December 2016

Table of Contents

Introduction	
Location and Access	4
Physiography, Climate and Vegetation	4
Claims and Ownership	5
Exploration History.	8
Regional Geology and Metallogeny	9
Reconnaissance Geology, Alteration and Mineralization 1	
Oxide Peak - Oxide Creek 1	4
Gordonia1	5
Tarn1	6
Falcon1	7
Rock Geochemistry 2016 1	8
Procedure1	8
Results1	8
Oxide Peak - Oxide Creek 1	8
Gordonia2	20
Tarn	22
Falcon	24
Conclusions and Recommendations	26
Oxide Peak - Oxide Creek	26
Gordonia - Tarn	26
Falcon	27
References	28
Appendix A Statement of Qualifications	30
Appendix B Statement of Expenditures	32
Appendix C Rock Samples and Stations	34
Appendix D Analytical Certificates	

List of Figures

Figure 1	Location of the Oxide Peak Property.
Figure 2	Mineral Tenures, Oxide Peak Property.
Figure 3	Regional geology and MINFILE occurrences, based on Diakow et al. (1985).
Figure 4	Detailed geology and areas investigated in 2016 (map legend on next page).
Figure 5	Geological stations, rock sample locations with sample number and Cu value (ppm), Oxide Peak.
Figure 6	Geological stations, rock sample locations with sample number and Cu value (ppm), Gordonia
Figure 7	Geological stations, rock sample locations with sample number and Cu value (ppm), Tarn

Figure 8 Geological stations, rock sample locations with sample number and Cu value (ppm), Falcon

List of Tables

Table 1Claim Status

Rock Geochemistry and Prospecting on the Oxide Peak Property

Introduction

The Oxide Peak Property was examined by the author and geologists Tyler Ruks and Gustavo Zulliger over the course of six days from July 29 to August 3, 2016. The primary focus of the work program was to re-examine previously documented alteration and mineralized zones in order to document the style of mineralization and alteration and determine the area's prospectivity for porphyry copper-gold deposits. Representative rock samples were collected in mineralized areas to document the distribution and tenor of mineralization. All work including report writing was completed at a cost of \$48,518.37.

Location and Access

The Oxide Peak Property is located in the northern part of the Toodoggone district in northern B.C. on the north side of the Toodoggone River between McClair and Mulvaney Creeks (Figure 1). The property is located in NTS 094E/06 and 094E/11 centered near UTM 615500mE 6372000mN, 57°29'N 127°05'W. The property is helicopter access only, with the nearest road access to the old Baker and Lawyers mine sites, about 18-20 kilometers to the southwest. The nearest power line is about 55 kilometers to the south at the Kemess mine and mill site. An old mineral exploration camp is located at UTM 613833 E, 6372024 N on a small lake within the Gordonia Gulch valley.

Physiography, Climate and Vegetation

The Oxide Peak Property is located within the Metsantan Range, one of the Swannell Ranges of the Omineca Mountains. The property occupies an area of deeply incised, glaciated mountainous terrain with elevations extending from just below 1400 meters in the Belle Lakes area to almost 2200 meters at Mount Gordonia, near the center of the property.

Seasonal temperatures vary from -35°C in winter to over 30°C during the 4 months of summer. The mean daily temperatures for July and January are approximately 14° C and -15° C, respectively. Annual precipitation averages between 50 and 75 centimeters, with most during the winter months as snow cover of approximately 2 meters.

The area lies within the Spruce-Willow-Birch Biogeoclimatic Zone, with vegetation cover occurring in the main valleys, surrounding broad alpine areas. A variety of wildlife inhabits the area including black bears, grizzlies, wolves, fox, moose and caribou.

Claims and Ownership

The Oxide Peak Property consists of 7 contiguous claims which total 3359 hectares, as indicated in Table 1 and Figure 2. They are owned 100% by Seven Devils Exploration, Ltd., Vancouver, BC.

Title Number	Owner	Title Type	Issue Date	Good To Date	Status	Area (ha)
1042455	282819 (100%)	Mineral	2016/mar/01	2019/apr/01	GOOD	1269.9728
1042460	282819 (100%)	Mineral	2016/mar/01	2019/apr/01	GOOD	504.9508
1042462	282819 (100%)	Mineral	2016/mar/01	2019/apr/01	GOOD	87.0118
1042546	282819 (100%)	Mineral	2016/mar/04	2019/apr/01	GOOD	348.2344
1042547	282819 (100%)	Mineral	2016/mar/04	2019/apr/01	GOOD	17.4143
1042567	282819 (100%)	Mineral	2016/mar/04	2019/apr/01	GOOD	887.3359
1042568	282819 (100%)	Mineral	2016/mar/04	2019/apr/01	GOOD	243.8311
						3358.7511

Table 1: Claim Status

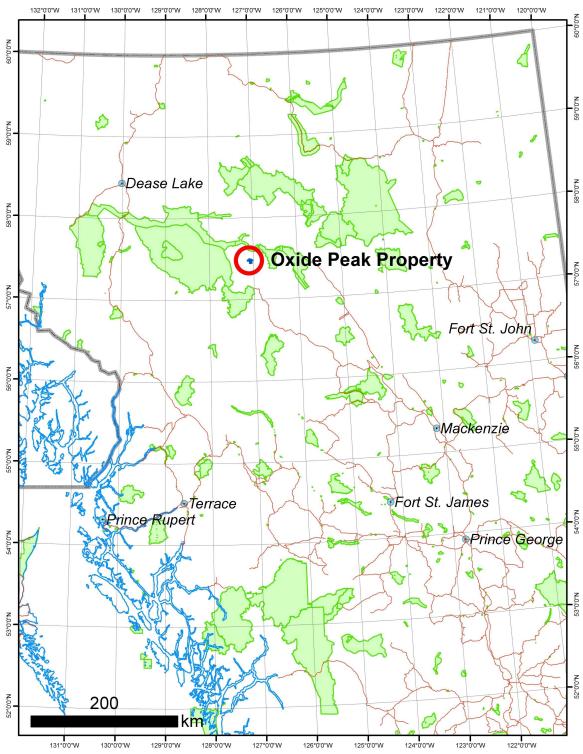


Figure 1: Location of the Oxide Peak Property.

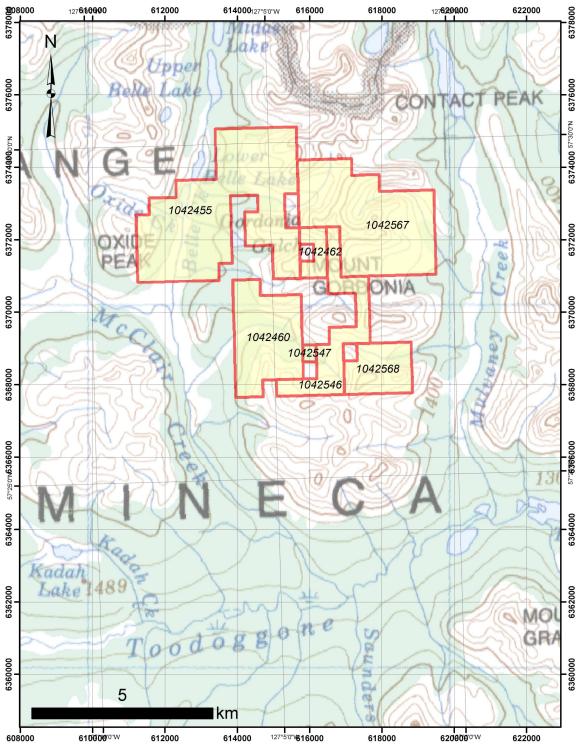


Figure 2: Mineral Tenures, Oxide Peak Property.

Exploration History

A brief summary of the exploration history of the Toodoggone district is presented in Diakow et al., 1993 (pp. 45-46). The earliest placer mining in the district in the mid-1920's took place in McClair Creek, just 5 kilometers south of the Oxide Peak property.

In 1970, a ground magnetometer survey was completed by Red Rock Mines in the central part of the property near Mount Gordonia, as a follow-up on the discovery of bornite and copper staining (McKelvie, 1970). In 1974, Union Miniere carried out geological mapping, soil sampling, and an EM survey in the eastern part of the property (Burgoyne, 1974). A variety of small geochemical (soil and rock) sampling programs were carried out north and south of Mount Gordonia in the 1980's (see References for assessment carried out on the Joanna and Magic claims). In addition, a 110 line-kilometer airborne magnetic survey was flown in 1986 (Woods, 1988). This survey outlined two large magnetic highs on the east side of Belle Creek valley.

In the western part of the property in 1980, SEREM carried out a program of geological mapping and soil and silt sampling around the Oxide Peak alteration zone (Crawford and Vulimiri, 1981). Additional mapping and sampling was carried out in 1986 (Yeager and Ikona, 1986) and 1988 (Lyman, 1988).

Stealth Minerals carried out the most extensive geochemical sampling program on the Gordonia and Oxide Peak areas in 2004 (Kuran and Barrios, 2005), collecting 628 rock samples, 30 soils, and 10 silt samples, as well as doing PIMA analyses of 274 rock samples. This program detailed widespread high Cu, Au, Ag and other base metal anomalies.

Regional Geology and Metallogeny

Regional geology of the Toodoggone River district was compiled in Diakow et al. (1985; Figure 3) and revised by Diakow (2006; Figure 4). The following general summary of the regional geology and metallogeny of the northern Toodoggone district is adapted from McBride and Leslie (2014).

The Toodoggone volcanic sequence, which appears to underlie most of the Oxide Peak Property, occurs in the northeastern part of the Intermontane tectonic belt, within the Stikine and northern Quesnel terranes. This lower Jurassic unit, comprising calcalkaline latite and dacite subaerial volcanic rocks of distinctive lithologies and comagmatic plutons, accounts for most of the island arc-forming Hazelton Group rocks exposed between the Finlay and Chukachida Rivers. Unconformably underlying this sequence is the late Triassic Takla Group, dominated by island arc basaltic to andesitic flows, tuffs and breccias with subordinate sedimentary clastics and limestone. The oldest rocks of the region, intensely deformed late Carboniferous to Permian Asitka Group volcanics and sedimentary rocks, are of limited extent, cropping out in uplifted blocks and around pluton margins as in the Baker mine area to the south. Continental clastic sediments of the Cretaceous Sustut Group unconformably cap the volcanic successions.

Associated with an elongate, northwesterly trending, volcanic-tectonic structural development, the Toodoggone volcanics represent a voluminous accumulation of material over a 90 by 25 km. area within an asymmetric collapse feature in a continent-arc setting. Two eruptive cycles are recognized within the Toodoggone. The lower cycle is characterized by plateau forming dacitic ash-flow and air-fall tuffs interspersed with and followed by latite flows and lahars. Following an erosional event which partially unroofed previous co-magmatic plutons, the upper cycle proceeded with explosive dacite pyroclastic eruptions, culminating with voluminous ashflow tuff accumulations.

A variety of mineral deposit types are related to the Toodoggone eruptive cycles and co-magmatic events (Diakow et al., 1991; Duuring et la., 2009). These include: gold- and silver-rich, low-sulphidation epithermal systems characterized by quartz veins, stockworks and breccias with associated adularia, sericite and calcite; high-sulphidation systems with associated fine-grained silica, alunite, barite and clay; and porphyry copper-gold systems within and marginal to early Jurassic plutons. The more common sericite-adularia type, is typified by the Lawyers and Shasta deposits. The acid sulphate deposits include the Ranch (BV/Al), Baker and Silver Pond prospects. The Kemess South mine and the Kemess North and Kemess East deposits, examples of copper - gold porphyry systems, are characterized by chalcopyrite, pyrite and minor molybdenite (+/- magnetite) occurring as disseminations and polyphase quartz stockworks.

The most recent geological compilation by Diakow (2006) includes the eastern two-thirds of the Oxide Peak property east of McClair Creek and the Belle Lakes (Figure 4). North of the Toodoggone River the general sequence south to north is as follows:

- McClair Pluton: Early Jurassic quartz monzonite (Black Lake plutonic suite)
- Late Triassic Takla Group: includes basalt and andesite lava flows; typically fine to medium grained clinopyroxene-plagioclase porphyries and aphanitic lavas; typically massive and inherently difficult to subdivide (uTTa); also sandstone and siltstone; drab olive green, dominated by plagioclase and lesser pyroxene grains; bedded section between lava flows of unit uTTa (uTTs)
- Early Jurassic Hazelton Group, Upper Toodoggone Formation: includes conglomerate and sandstone dominated by fine grained basaltic detritus that is presumably derived in part from units TJv or uTTa; reworked polymict lapilli tuffs and breccias; heterolithic unit comprising diffusely layered very thick beds (TJs); also basalt and andesite lava flows characterized by crowded plagioclase 1mm long or less and relatively fresh pyroxene; minor pyroxene bearing sandstone interbeds (TJv); also dacite ash-flow tuff, light green to maroon, texturally variable including nonwelded, locally lithic rich, and thick (100-150m) welded columnar jointed zones; diagnostic accidental pyroclasts include pink, quartz-biotite dacite porphyry and biotite-hornblende quartz monzonite; rare cross-laminated ground surge tuff or layered fallout ash and fine lapilli tuff at the base (TG).

The gently to moderately north dipping Takla - Hazelton unconformity is mapped along the south flank of Mount Gordonia in the central part of the property. A U/Pb zircon age date of 194.7 + 0.4 Ma was obtained from a site about 0.5 kilometers southeast of the peak (Diakow, 2006).

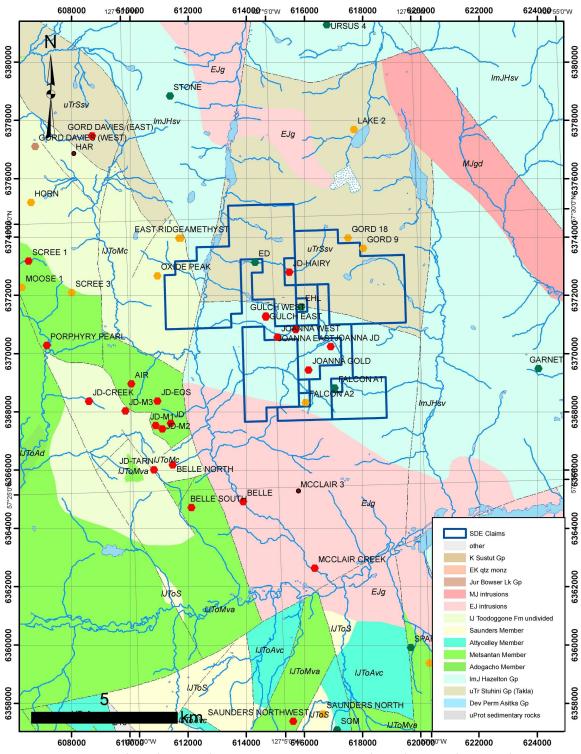


Figure 3: Regional geology and MINFILE occurrences, based on Diakow et al. (1985).

Reconnaissance Geology, Alteration and Mineralization

Reconnaissance traverses were conducted in four separate areas, designated: (1) Oxide Peak - Oxide Creek, (2) Gordonia, (3) Tarn, and (4) Falcon (Figure 4). Initial traverses focused on the Oxide Peak and Gordonia areas in late July, followed by the Tarn and Falcon areas on August 1-3. Regional mapping (Figure 3) had suggested that the Gordonia, Tarn and Falcon areas were close to the favourable Takla/Stuhini - Hazelton unconformity, a regionally significant indication of proximity to porphyry environments (e.g., Kyba, 2014). In addition, the Falcon area lies between that contact and a sizable pluton of the Black Lake plutonic suite (McClair Pluton).

The Oxide Peak area is characterized by extensive ridgetop gossans suggesting the possibility of advanced argillic alteration related to a buried porphyry system.

Previous work (Kuran and Barrios, 2005) in and around Mount Gordonia had documented widespread quartz and sulfide veins with high grade copper and precious metal values, but the significance of this veining in terms of a porphyry system or other valid exploration target was not understood.

The Tarn and Falcon areas were also judged to have porphyry copper-gold potential during the compilation of historical data based on the presence of widespread copper and gold mineralization and mention of intrusive dykes in sample descriptions (Kuran and Barrios, 2005).

Areas traversed and generalized geological observations are indicated in Figures 5-8, along with locations of rock samples and copper assay values.

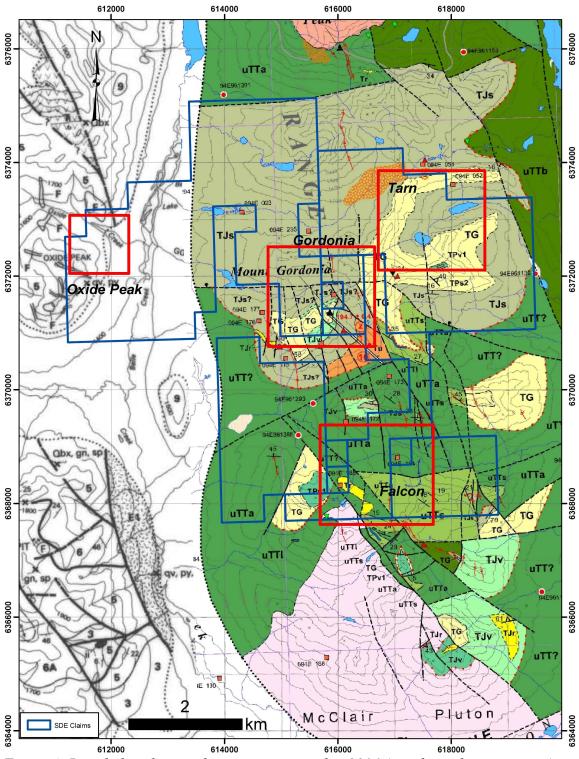


Figure 4: Detailed geology and areas investigated in 2016 (map legend on next page).

Units east of McClair Creek (Diakow, L.J. 2006)					
BLqm - Early Jurassic McClair Pluton: quartz monzonite (Black Lake plutonic suite)					
Tr - Dacite to rhyolite sills, locally flow laminated					
 Early Jurassic Hazelton Group, Upper Toodoggone Formation: TG - dacite ash-flow tuff, light green to maroon, texturally variable including nonwelded, locally lithic rich, and thick (100-150m) welded columnar jointed zones; diagnostic accidental pyroclasts include pink, quartz-biotite dacite porphyry and biotite-hornblende quartz monzonite; rare cross-laminated ground surge tuff or layered fallout ash and fine lapilli tuff at the base TJr - dacite to rhyolite lava flows; lenticular; commonly flow-laminated deposits TJs - conglomerate and sandstone dominated by fine grained basaltic detritus that is presumably derived in part from units TJv or uTTa; reworked polymict lapilli tuffs and breccias; heterolithic unit comprising diffusely layered very thick beds TJv - basalt and andesite lava flows characterized by crowded plagioclase 1mm long or less and relatively fresh pyroxene; minor pyroxene bearing sandstone interbeds 					
 Late Triassic Takla Group (uTT): uTTa - basalt and andesite lava flows; typically fine to medium grained clinopyroxene-plagioclase porphyries and aphanitic lavas; typically massive and inherently difficult to subdivide uTTs - sandstone and siltstone; drab olive green, dominated by plagioclase and lesser pyroxene grains; bedded section between lava flows of unit uTTa 					
Units west of McClair Creek (Diakow, L.J., Panteleyev, A., and Schroeter, T.G. 1985)					
Early Jurassic Hazelton Group, Upper Toodoggone Formation:					
 9 - undivided volcanic and sedimentary rocks 6 - Tuff Peak Formation: pale purple, grey and green biotite augite hornblende plagioclase porphyry flows, autobrecciated flows, minor sills and plugs, crystal and lapilli tuff 6A - conglomerate or lahar with graded and crosslaminated mudstone and sandstone interbedded; debris flows, lailli and crystal tuffs 5 - McClair Creek Formation: purple, grey, green crowded fine to medium grained plagioclase porphyritic flows, includes some lapilli tuff, breccia and minor epiclastic beds 3 - Lawyers-Metsantan quartzose andesite: green to grey quartzose pyroxene hornblende plagioclase porphyry flows and tuffs, with local flow breccia, lapilli tuff and rare welded tuff units 					
Tr - Late Triassic Takla Group: dark green augite porphyry basalt flows and breccias with lesser andesite and minor interbedded sediments					
F - Feldspar porphyry, hornblende feldspar porphyry					
E1 - Granodiorite, quartz diorite					

Figure 4: Map legend.

Oxide Peak - Oxide Creek

The McClair Creek member of the Toodoggone Formation, consisting of a heterogeneous sequence of predominantly andesitic flows and tuffs, underlies the Oxide Peak area in the western part of the property. The volcanics are intruded by a number of porphyritic intrusive phases, including feldspar, hornblende, quartz and biotite phyric dykes. The distribution of dykes (unit F) is shown somewhat schematically, in Figure 4. Two traverses in this area confirmed the presence of widespread advanced argillic and

propylitic alteration in the volcanics and porphyry dykes at higher elevations near the ridgetop, and multiphase mineralized and unmineralized feldspar-hornblende (-quartz-biotite) porphyries along the creek valley.

Propylitic alteration (epidote and chlorite) is the most widespread alteration in the intermediate volcanics (including heterolithic lapilli tuffs) along the ridge. The volcanics are cut by a number of feldspar-hornblende porphyry and quartz-feldspar-porphyry dykes and approximately east-west striking structural zones along which intense silica and advanced argillic alteration is developed. Locally the advanced argillic (mainly pyrophyllite and kaolinite, but also alunite in places) is accompanied by up to 10% pyrite as disseminations and stringers, as well as barite veins and clots and sheeted quartz veins. It appears that silica-pyrite+clay locally overprints epidote alteration in some of these dykes.

Chalcopyrite bearing quartz veins, sheeted veins and weak stockwork are hosted by texturally and compositionally variable monzodiorite (feldspar-hornblende+biotite porphyry) to quartz monzonite (feldspar-quartz-biotite) porphyry along Oxide Creek over an east-west distance of about 300 meters. Part of this zone includes polymetallic quartz-calcite veins with galena and sphalerite as well as chalcopyrite. One outcrop on the west side of this zone contains patchy chlorite-magnetite and chlorite-magnetite veinlets, possibly after secondary biotite. Chalcopyrite is present but not abundant in this outcrop, although pyrite stringers and disseminated pyrite are quite intensely developed.

At the eastern end of the chalcopyrite bearing creek exposures, very strong quartz stockwork is developed in porphyry across at least 100 meters and is locally associated with graphic textured porphyry and pegmatite. Chalcopyrite (and pyrite) is very sparse in this zone, however.

West of the chalcopyrite bearing vein zone, a zone of variable to locally intense fracturing and chlorite<u>+</u>sericite alteration with locally silicified shears is exposed sporadically over an east-west distance of over 450 meters. West of this, alteration transitions to propylitic (chlorite and epidote). Although veining and copper mineralization is not strong in the creek transect, significant alteration (chlorite-sericite to possible remnant potassic and quartz stockwork) is exposed across a width of about 700 meters.

Gordonia

A west to east transect along the valley draining to the east on the north side of Mt. Gordonia in the central part of the property encountered a diverse assemblage of Hazelton Group volcanics and sedimentary rocks. In the western part of the transect, massive maroon intermediate flows dominate, and are likely equivalent to unit TJv (Figure 4). The intermediate flows appear to overlie a unit of massive white to orange weathering aphyric to sparsely quartz-feldspar-hornblende phyric felsic volcanics (dacite

to rhyodacite) exposed in the valley. In places the dacite is cut by quartz and chlorite stringers. Further to the east very coarse, immature maroon polymictic volcanic conglomerate crops out extensively (unit TJs), and may be intercalated with a unit of massive bladed feldspar porphyry (mafic volcanics or sills). Clasts of bladed porphyry are found in the conglomerate. In the eastern part of the valley the volcanic package includes maroon intermediate tuffs and flow banded rhyolite.

Patchy epidote and hematite alteration is widespread and appears to increase in intensity from west to east up the valley. Open space textured crustiform and cockscomb textured quartz-chalcopyrite veins are also widespread in the area. These veins become increasingly sulfide-rich, thicker and more laterally continuous in an easterly direction.

Tarn

The Tarn area is located in the vicinity of a small alpine lake on the northeast side of a >2200 meter peak about 1.5 km NE of the Gordonia valley area described in the previous section. Previous work by Stealth (Kuran and Barrios, 2005) had documented high grade Cu and Au mineralization as well as quartz stockworks and magnetite veins in this area. The area is mapped by Diakow (Figure 4) as underlain by unit TG (dacitic ash flow tuff) overlying TJs (sedimentary rocks). A limited traverse in the Tarn area found no evidence of the sedimentary unit and did not ascend high enough to encounter the ash flow tuff. The exposures around the small alpine lake (tarn) are dominated by a suite of hypabyssal intrusive (microdiorite, diorite, monzonite) and volcanic (dacite to andesite) rocks, including fine grained intermediate feldspar-hornblende porphyries, flow banded dykes and/or domes, and various monomictic to polymictic intrusive and magmatic-hydrothermal breccias. This suite of rocks may be related to unit TG as they may be interpreted as part of a resurgent dome complex or similar eruptive center.

Alteration in the Tarn area is dominated by widespread, locally intense, epidote, which occurs as veins and stockworks, selectively replaced breccia clasts, and layer parallel seams and pods. Epidote is often accompanied by chlorite, quartz and and less commonly by albite, carbonate, magnetite, and/or specular hematite. At lower elevations to the east, quartz-K-feldspar veins are seen in a few places.

Mineralization consists of widespread, albeit scattered, low sulfide comb textured quartz+chalcopyrite veins and stockworks, sulfide-rich, poddy quartz-pyrite+magnetite-chalcopyrite veins (oriented 330/86), and massive specular hematite-quartz-carbonate-chalcopyrite veins.

In the Tarn area, high level intrusive and volcanic rocks have undergone variable but locally intense epidote-dominant alteration accompanied by a variety of mineralized vein types. Vein and quartz stockwork density is high only on a very local scale (over a few meters at most); otherwise, veins are widely scattered. Disseminated sulfides are not significant.

Falcon

The Falcon area is located about 4 kilometers south of the Tarn area, north of the McClair Creek pluton. The area is underlain by Takla Group sedimentary and volcanic rocks, although the Takla Group - Hazelton Group unconformity crosses a ridge just west of the area traversed in 2016 (Figure 4). At higher elevations, shallowly north to northeast dipping, strongly hornfelsed thin to medium bedded siltstone to fine grained sandstone comprises unit uTTS of Diakow (2006). This unit is in fault contact with andesitic volcanic rocks to the north (unit uTTa). Both sedimentary and volcanic packages are intruded by a series of monzonite (feldspar-hornblende) porphyry and quartz-feldspar porphyry dykes. According to Diakow (2006), this area is strongly affected by north-south, east-west and northwest trending block faults (Figure 4).

Gossanous exposures are present at lower elevations on both sides of a 1 km long northwest trending ridge where the Falcon A1 MINFILE occurrence is located (094E 184), and in the valley to the east. The rusty outcrops comprise andesitic volcanics, feldspar-hornblende monzonite porphyry and QFP dykes, with alteration ranging from widespread epidote-chlorite-pyrite to more restricted zones of chlorite(-sericite)-pyrite and quartz-sericite-pyrite (QSP). The strongest alteration in the valley east of the ridge consists of pervasive QSP with abundant clear quartz and quartz-pyrite stringers. More common are outcrops of strong epidote-chlorite-pyrite with thin pyrite stringers, or epidote-quartz-pyrite veins which locally contain albite or K-feldspar haloes. Locally sheeted quartz veins were observed in porphyry dykes, associated with pervasive silicification.

About 1.1 km southeast of the Falcon A1 ridge, a knob just north of a small lake (Falcon A2 MINFILE 094E 185) comprises variably silica-carbonate-pyrite-chlorite/sericite altered aplitic to fine grained dacite to rhyodacite porphyry. The porphyry is locally strongly brecciated and is cut by quartz-pyrite+galena-sphalerite+chalcopyrite veins. These 1-2 cm veins are commonly comb textured and locally sheeted. In poorly exposed felsenmeer south of the knob, strongly fractured rusty pyritic chlorite-pyrite to silica-pyrite altered intrusive rocks contain scattered quartz-pyrite+chalcopyrite veins and clots. A single outcrop about 300 meters southwest of the knob comprises chlorite altered andesitic volcanics cut by a fine grained monzodiorite porphyry dyke. Small scale shears in the volcanics are associated with thin bornite-calcite stringers. This zone is adjacent to the McClair Pluton.

Rock Geochemistry 2016

The Oxide Peak Property was examined by the author and geologists Tyler Ruks and Gustavo Zulliger over the course of six days from July 29 to August 3, 2016. The primary focus of the work program was to re-examine previously documented alteration and mineralized zones in order to document the style of mineralization and alteration and determine the area's prospectivity for porphyry copper-gold systems. Representative rock samples (26 in total) were collected in mineralized areas to document the distribution and tenor of mineralization.

Procedure

Rock samples were collected from variably mineralized and altered rock in order to help characterize the tenor of different styles of mineralization. The samples comprise representative grabs from outcrops and locally derived talus or felsenmeer. Samples were collected in plastic sample bags and sealed with plastic zip ties. Sample locations were recorded by GPS. Sample locations are marked with flagging tape and embossed aluminum tags. Samples were bundled in security sealed rice bags and trucked to ALS Minerals laboratory in North Vancouver.

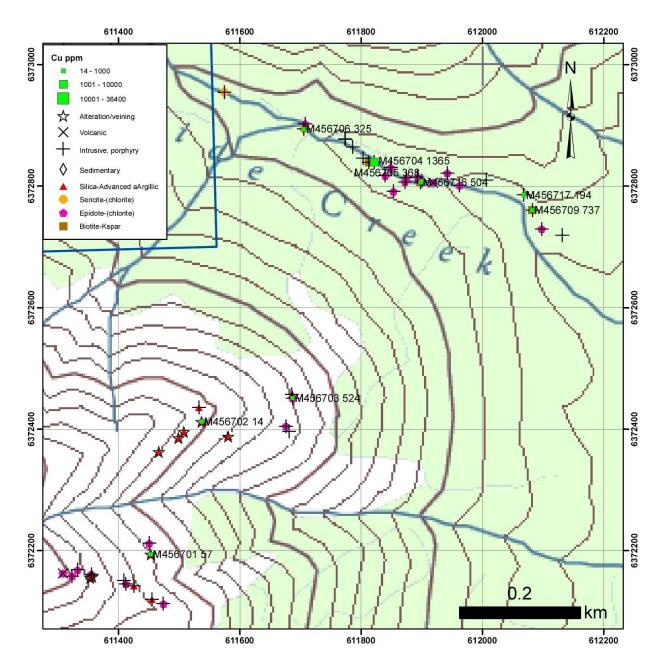
At the laboratory, the samples were dried, crushed and pulverized using standard rock preparation procedures. The pulps were then analyzed for Au using a 30 gram fire assay with ICP-AES finish and for 35 elements by ICP-AES. Aqua regia digestion was utilized for the ICP analyses. Ore grade (>1%) copper was re-analyzed by ICP-AES. Quality control at the laboratory is maintained by submitting blanks, standards and re-assaying duplicate samples from each analytical batch.

Rock sample descriptions and analytical results are in Appendix C. Sample locations and copper assays are plotted on Figures 5 through 8.

Results

Oxide Peak - Oxide Creek

In the Oxide Peak area, west of Belle Creek, three samples were collected from alteration along the ridge and six from variably altered porphyry along Oxide Creek (Figure 5). Two samples (M456701 and M456702) were collected from strongly pyritized and silicified to advanced argillic altered rocks along the ridge with sheeted quartz(-pyrite) veins. These samples returned weakly anomalous Au (89 and 172 ppb) and low Cu values (57 and 14 ppm), with locally elevated As (100 ppm in M456702) and Mo (21 ppm in M456701). In the lower part of the advanced argillic zone, a sample from a strongly silica and epidote altered (epidote with a silica overprint?) coarse grained feldspar-hornblende-biotite porphyry dyke with patchy pyrite-chalcopyrite (M456703)


returned significantly higher copper (524 ppm Cu). This sample location is just 60 meters elevation below M456702.

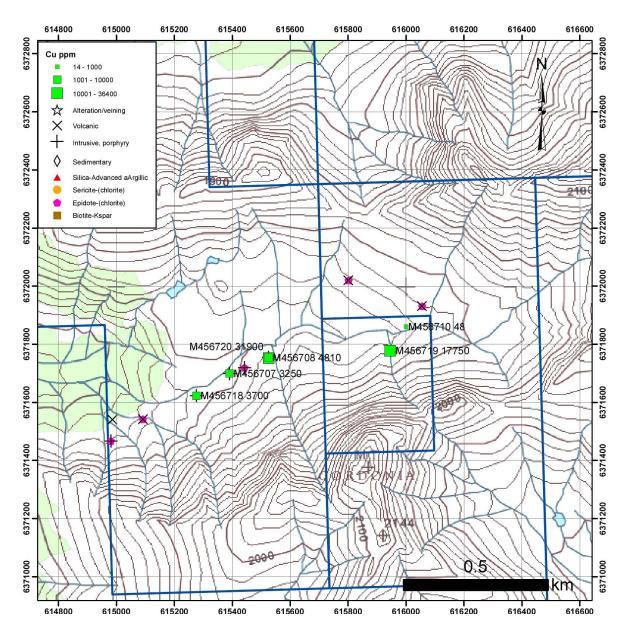
A series of six samples of variably altered and quartz and sulfide veined porphyry were taken along the creek over a distance of 400 meters. The westernmost sample of strongly fractured, chlorite-sericite-pyrite altered monzodiorite porphyry returned a low but anomalous Cu value of 325 ppm (M456706). About 130 meters to the east of this location, an outcrop of strongly pyritized medium to coarse grained monzodiorite porphyry returned the highest Cu (1365 ppm), Au (77 ppb) and Mo (22 ppm) in this transect. This mineralization is associated with patchy chlorite-magnetite alteration and magnetite stringers which are strongly suggestive of relict biotite-magnetite (potassic) alteration which has been overprinted by chlorite-pyrite.

Just east of this outcrop a zone of sheeted quartz \pm pyrite-chalcopyrite-sphalerite-galena veins is hosted in brick red porphyry which may represent a different intrusive phase. Two samples from this zone (M456705 and M456716) contained below detection limit Au and 1 ppm Mo and elevated base metals (368-504 ppm Cu, 202-1030 ppm Pb and 281-600 ppm Zn).

The easternmost samples (M456709 and M456717) were from a zone of finer grained brick red porphyry cut by a quartz-chalcopyrite stockwork with finely disseminated chalcopyrite. As in the previous samples, Au and Mo are near or below detection limit (1 ppb and 1 ppm, respectively), while Cu is weakly elevated (194 and 737 ppm). Unlike the previous zone, Pb and Zn are low.

The six samples from the creek transect are consistently anomalous in Cu, averaging 582 ppm, while epithermal indicators such as As, Sb and Bi are uniformly low. The core of the transect contains a zone of polymetallic veining.

Figure 5: Geological stations, rock sample locations with sample number and Cu value (ppm), Oxide Peak.

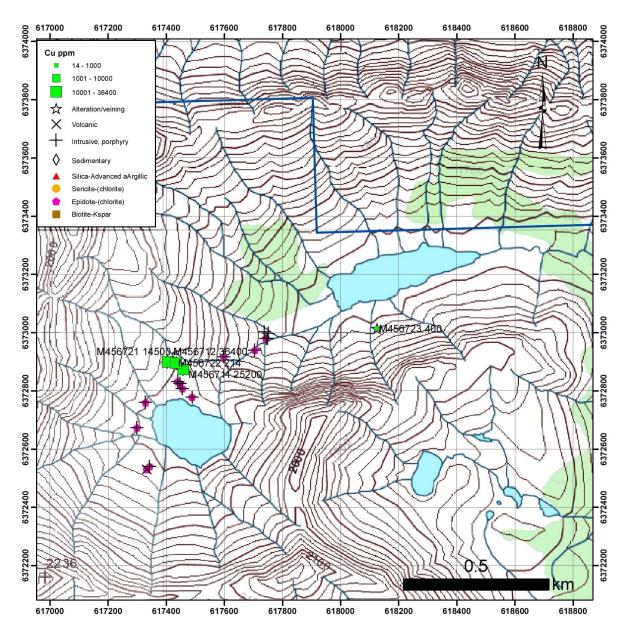

Gordonia

In the Gordonia area, six representative samples of vein mineralization (M456707, M456708, M456710 and M456718-720) were taken across an east-west transect of about 760 meters (Figure 6). Mineralized veins in this area are dominantly coarse grained coxcomb quartz with chalcopyrite blebs, of variable thickness from sub-centimeter to 10-30 centimeters. They are hosted by epidote - chlorite (<u>+</u>hematite) altered mafic to

intermediate volcanics and maroon polymictic conglomerate. Although common and quite widespread, these veins do not achieve an economically significant density in any area observed. Four samples of this type of mineralization (M456707-708 and M456719-720) averaged 1.44% Cu, 1.3 g/t Au and 45 g/t Ag. Anomalous As (averaging 25 ppm), Bi (113 ppm) and Mo (96 ppm) suggest that these veins are genetically related to intrusive rocks, and are perhaps more typical of a "reduced intrusion related" (RIR) environment than a porphyry system.

In the eastern part of the Gordonia transect, one sample without significant chalcopyrite was taken across a 0.4 meter wide banded quartz-pyrite vein with euhedral coxcomb quartz and large clots of coarse grained pyrite, near a contact between maroon tuff and flow banded rhyolite (M456710). Although low in base metals, this sample contained a strongly anomalous suite of RIR-compatible elements, including As (26 ppm), Bi (57 ppm), Mo (14 ppm) and W (420 ppm). This corroborates the suggestion that the Gordonia mineralization is more akin to a RIR-type system.

These data supported by extensive rock geochemical data in Kuran and Barrios (2005) suggests that a large (\sim 4 x 2 kilometer) zone of RIR-compatible element enrichment around Mount Gordonia is roughly coextensive with the largest part of Diakow's TG ash-flow tuff unit (Diakow, 2006, Figure 4).


Figure 6: Geological stations, rock sample locations with sample number and Cu value (ppm), Gordonia.

Tarn

In the Tarn area, four samples (M456711-712 and M456721-722) were taken from a small (~100 by 120 meters) zone containing well mineralized but poddy copper sulfide bearing veins. These include both pyrite-chalcopyrite-magnetite veins (M456711), and specular hematite-sulfide \pm quartz-calcite veins (M456712, M456721). These samples average 1.9% Cu and 9.2 grams per tonne Ag, but contain low values in Au and the RIR-compatible elements.

The Tarn zone is associated with variable chlorite-epidote-magnetite/hematite \pm albite alteration in a fine grained, locally flow banded hypabyssal intrusive rock. This is associated with widespread intrusive and polymictic magmatic-hydrothermal breccia.

Coxcomb quartz veins similar to those encountered in the Gordonia area are also broadly distributed in the Tarn area. The lone sample of this type of vein (M456723) was weakly anomalous in Cu but low in all other elements of interest.

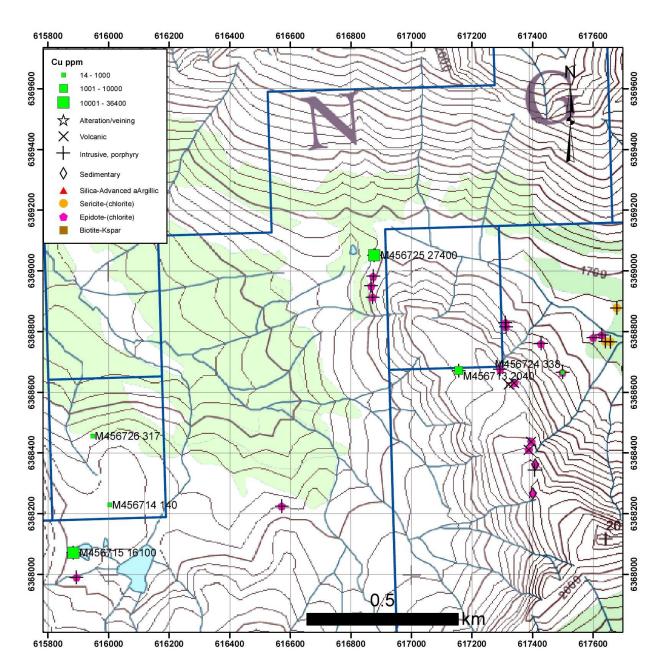


Figure 7: *Geological stations, rock sample locations with sample number and Cu value (ppm), Tarn.*

Falcon

Three samples of altered intrusive rocks with quartz-chalcopyrite veins from the Falcon A1 zone (M456713, M456724-725) returned highly variable Cu values (2040, 338 and 27400 ppm). M456725 also contained anomalous Au (83 ppm) and Mo (174 ppm). Although they are all associated with strong epidote alteration, these veins are texturally distinctive from the comb textured quartz veins which are more widely distributed in the volcanics. In some cases the veins have strong K-feldspar or albite haloes.

This alteration is picked up across the valley to the southeast at the Falcon A2 showing, which consists of brecciated and strongly altered aplitic intrusive rocks with locally well developed quartz-polymetallic stockwork. A sample of this material (M456726) is anomalous in Pb (4290 ppm), Zn (1890 ppm) and Cu (317 ppm) with low Au, Ag, As, Bi and Mo. Farther south and adjacent to the McClair Pluton a sample (M456715) from a small zone of bornite-quartz-calcite stringers ran 1.6% Cu, 0.324 g/t Au and 53 g/t Ag. This zone is associated with weak shearing in chlorite altered andesite intruded by a monzonite dyke. With very little exposure east of this outcrop the significance of this isolated mineralization is not clear.

Figure 8: Geological stations, rock sample locations with sample number and Cu value (ppm), Falcon.

Conclusions and Recommendations

Oxide Peak - Oxide Creek

Limited reconnaissance traverses in the Oxide Peak area support the following conclusions:

- 1) The Oxide Peak area is underlain by Toodoggone Formation intermediate volcanics intruded by a variety of dykes and other hypabyssal intrusive rocks.
- 2) Extensive gossans near the ridgeline at Oxide Peak are related to weathering of pyrite associated with both epidote-chlorite and silica-advanced argillic alteration
- 3) Silica-advanced argillic alteration is spatially related to dykes and zones of faulting and shearing
- 4) Outcrops in Oxide Creek are mainly comprised of a varied suite of porphyry intrusions ranging from monzodiorite to quartz monzonite
- 5) Alteration in the creek varies from a strong barren quartz stockwork (±K-feldspar)at the east end through epidote-chlorite with limited zones of relict biotite-magnetite (?) to chlorite-sericite to epidote-chlorite in the west
- 6) Quartz-chalcopyrite and quartz-carbonate-chalcopyrite-sphalerite-galena veins and weak sheeted zones and stockworks crop out over a width of about 300 meters
- 7) Although mineralization is low grade the creek transect may not represent the best grade present in the system, which has not been drilled.

Further work in the area would be dependent on expanding the property to the west, south and north, and could include further reconnaissance with a focus on exposures in lower elevation creeks and gulleys, followed by detailed magnetic and induced polarization surveys.

Gordonia - Tarn

Widespread coxcomb quartz veins with chalcopyrite and local high grade gold values are exposed in the Gordonia and Tarn areas in a varied suite of Toodoggone Formation mafic and intermediate to felsic volcanic rocks, coarse conglomeratic volcanic sedimentary rocks and hypabyssal intrusive rocks and heterolithic breccias. Alteration is dominated by epidote-chlorite. Additionally, poddy sulfide rich veins associated with either magnetite or hematite are found in the Tarn area. Although widely distributed, and locally high grade, these veins never approach an economically interesting density, and do not appear to be related to porphyry intrusions or significant alteration. This is supported by an element association of Bi, As, Mo and W, which is more typical of a reduced intrusion related (RIR) system. The veins are spatially related to an ash flow tuff unit overlying their host rocks, which may also have genetic significance.

Falcon

In the Falcon area, quartz-chalcopyrite veins, sheeted zones, and weak stockworks are spatially related to both quartz-phyric and feldspar-hornblende phyric porphyry dykes intruding Takla Group sedimentary and mafic volcanic rocks. Broad zones of gossanous outcrops are present at lower elevations, and are related to alteration ranging from widespread epidote-chlorite-pyrite, to more restricted zones of chlorite-sericite and quartz-sericite-pyrite. These zones also locally contain strong disseminated pyrite and pyrite stringers. Further prospecting in the area is recommended, followed by magnetic and induced polarization geophysical surveys as warranted by results.

References

Bell, M. 1986. 1985 Geochemical Report on the Joanna III and IV Mineral Claims. BCGSB Assessment Report 14795.

Bell, M. 1986. 1985 Geochemical Report on the Joanna I and II Mineral Claims. BCGSB Assessment Report 14795.

Bell, M. 1986. 1985 Geochemical Report on the Magic I and II Mineral Claims. BCGSB Assessment Report 15070.

Burgoyne, A.A. 1974. Geological Survey, Geochemical Soil Survey, and Electromagnetic Survey (EM-16) on the Gord 1-40 Mineral Claims. BCGSB Assessment Report 5194.

Crawford, S.A. and Vulimiri, M.R. 1981. Geological and Geochemical Report on the Oxide Claim. SEREM. BCGSB Assessment Report 8998.

Diakow, L.J., Panteleyev, A., and Schroeter, T.G. 1985. Geology of the Toodoggone River Area, NTS 94E. B.C. Ministry of Energy, Mines and Petroleum Resources, Preliminary Map 61.

Daikow, L.J., Panteleyev, A. and Schroeder, T.G. 1991. Jurassic Epithermal Deposits in the Toodoggone River Area, B.C. Examples of Well Preserved Volcanic-hosted Precious Metal Mineralization. Economic Geology v. 86.

Diakow, L.J., Panteleyev, A., and Schroeter, T.G. 1993, Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map Area, Northern British Columbia. B.C. Mineral Resources Division, Geological Survey Branch, Bulletin 86.

Diakow, L.J. 2006. Geology of the Central Toodoggone River Map Area, North-Central British Columbia. B.C. Geological Survey Geoscience Map 2006-6.

Duuring, P., Rowins, S.M., McKinley, B.S.M., Dickinson, J.M., Diakow, L.J., Kim, Y., and Creaser, R.A. 2009 Examining Potential Genetic Links Between Jurassic Porphyry Cu-Au+/-Mo and Epithermal Au+/-Ag Mineralization in the Toodoggone Distric of North-Central British Columbia, Canada, Miner Deposita v. 44.

Kidlark, R.G. and Yacoub, F.F. 1989. Geological-Geochemical Report on the Joanna I and II Claims. BCGSB Assessment Report 18763.

Kuran, D.L. and Barrios, A. 2005. Geochemical Report on the Gordo-Too Group Claims. BCGSB Assessment Report 27638.

Kyba, J. 2014. The Stuhini-Hazelton unconformity of Stikinia, investigations at KSM-Brucejack, Snip-Johnny Mountain, and Red Chris areas. Geological Society of America Abstracts with Programs. Vol. 46, No. 6, p.589

Lyman, D.A. 1988. Geological, Geochemical and Geophysical Report on the Amethyst Valley and Kidview Claims (Oxide Peak Property). BCGSB Assessment Report 17683

McBride, S. and Leslie, C.D. 2014. 2013 Geological, Geophysical, and Diamond Drilling Report on the JD Property, Northern British Columbia. BCGSB Assessment Report 34762.

McKelvie, D. 1970. Geophysical Report on the Ed 1-14, EHL 1-12 and Belle 1-42 Mineral Claim. Red Rock Mines. BCGSB Assessment Report 2506

Steel, J.S. and Sorbara, J. P. 1986. 1986 Geochemical Report on the Joanna I and II Mineral Claims. BCGSB Assessment Report 15818.

Woods, D.V. 1988. Geophysical Report on an Airborne Magnetic Survey, Joanna I and II Mineral Claims. BCGSB Assessment Report 17267.

Yeager, D.A. and Ikona, C.K. 1986. Assessment Report on the Oxide Peak Property (Kidview and Amethyst Valley Claims). BCGSB Assessment Report 15412.

Appendix A Statement of Qualifications

I, John Bradford, P.Geo., certify that:

- I am presently Vice President Exploration for Seven Devils Exploration, Ltd. with a business address located at: 24510 106B Ave.. Maple Ridge, BC, Canada V2W 2G2
- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of B.C.
- 3. I graduated from the University of British Columbia in 1985 with a Bachelor of Science in Geology and from the University of British Columbia in 1988 with a Master of Science in Geology.
- 4. Since 1988 I have been continuously employed in exploration for base and precious metals in North America, South America and China.
- 5. I supervised and participated in the 2016 exploration program at Oxide Peak and am therefore personally familiar with the geology of the Oxide Peak Property and the work conducted in 2016. I have co-prepared all sections of this report.

Dated this 21st Day of November, 2016

JEmp

Signature

John Bradford, M.Sc, Pgeo

I, Tyler Ruks, certify that:

- I am presently President of Seven Devils Exploration, Ltd. with a business address located at: 24510 106B Ave.. Maple Ridge, BC, Canada V2W 2G2
- 6. I graduated from the University of Victoria in 2002 with a Bachelor of Science in Earth and Ocean Sciences (Honours), from Laurentian University in 2004 with a Master of Science in Geology, and in 2015 from the University of British Columbia with PhD in Geology.
- 7. Since 2000 I have been employed in exploration for base and precious metals in North America.
- 8. I supervised and participated in the 2016 exploration program at Oxide Peak and am therefore personally familiar with the geology of the Oxide Peak Property and the work conducted in 2016. I have co-prepared all sections of this report.

Dated this 21st Day of November, 2016

Jul tho

Signature

Tyler Ruks, MSc, PhD

Appendix B Statement of Expenditures

Item	Description	#	Cost	Item sub-total		Sub-totals
Geologica	I - salaries and wages (including mob/demob)	days	daily rate			
<u>j</u>	Tyler Ruks	9	750 \$	6,750.00		
	Gustavo Zulliger	7	900 \$	6,300.00		
	John Bradford	8	750 \$	6,000.00		
		24			\$	19,050.00
Food. Fue	8 Accommodation: on-site					
,	Kemess: 3 rooms and board 7 nights	21	300 \$	6,615.00		
					\$	6,615.00
Field Rent						
	Winch, rope, ground anchor		\$	250.00		
	Chainsaw		\$	200.00		
	VHF radios		\$	80.00		
					\$	530.00
Communie	artions					
Communic	Truck radio		\$	89.60		
	Satellite phone		₽ \$	150.00		
			Ť		\$	239.60
Assays			¢	500 45		
	ALS 26 rock samples		\$	599.15	\$	599.15
					Ψ	555.15
Vehicle						
	Truck rental, insurance		\$	700.00	-	700.00
					\$	700.00
Report		davs	daily rate			
	Preparation	4	750 \$	3,000.00		
					\$	3,000.00
MOB/DF	MOB COSTS					
1100,01						
Food Fuel	& Accommodation: travel to/from site					
	Motel Prince George 4 rooms		\$	454.39		
	Food 5 man-days		\$ \$	385.90		
	Fuel, Vancouver - Kemess - Vancouver Flight Prince George - Vancouver		\$ \$	614.96 156.58		
	Flight Filice George - Vancouver		<u>ې</u>	150.56	\$	1,611.83
					т	_,
Subtotal	without helicopter				\$	32,345.58
Helicontor	r, fuel (12.6 hours)					
nencopter	Silver King Helicopters		\$	26,198.05		
			۲	_0,_0000	\$	26,198.05
						-
Allowable helicopter costs (maximum of 50% work)					\$	16,172.79
		As	sessment wo	rk to claim:	\$	48,518.37
						·

Appendix C Rock Samples and Stations

area	ident	sample	y_proj	x_proj Lith	Alt	Min	description	Au	Ag Al	I As	s B	В	a Be	Bi	Ca	Cd	Co Cı
							rusty weath strongly frctd adv arg alt assoc with mostly oxidized qtz-py veins to 1 cm, loc			_							
				611453.34 AX		PY	sheeted; loc v. strong py to 10%; also present is epid-chl-py altd FHP; poss. late	0.089				10 2			0.04	-0.50	-1
				611537.36 AX	.	PY	intense qtz-py-clay alt, loc sheeted qtz vnlets, v. strong py to 15%	0.172					40 -0.50		0.02	-0.50	4
Oxide Peak	16JBOP298	M456703	6372450.95	611687.12 FQHP	EP SI	CP PY	c.g. FQHP, perv qtz-epid-py alt, tr cp	0.024	0.4 1	.20	18 -1	10 :	-0.50	3	0.33	1.60	4 -
Oxide Peak	16JBOP301	M456704	6372839.46	611821.66 FHBP	ві мт сн	СР РҮ	rusty weath porphyry, intense qtz-chl-py alt with abund py and thin qtz-py stringers, also blk chl-py stringers poss after sec biot; patchy black chl-mt alt also poss after sec biot, tr Mo +/- bo? along vein margins	0.077	1.4 1	.48	14 -	10 :	30 -0.50	-2	0.13	-0.50	19
Oxide Peak	16JBOP322	M456705	6372808.00	611900.53 FHBP	EP CH	GN SP PY CP	TR sample site; sheeted QV's in brick red porphyry, tr cp-py, loc sp, gn	0.001	0.3 0	.88	3 -1	10 10	-0.50	2	0.88	7.80	5 7
Oxide Peak	16JBOP319	M456706	6372893.79	611705.72 FQHP	SE CH	PY	strongly frctd, pervasively qtz-py-chl-ser alt porphyry, abund py stringers	0.038	1.7 0	.95	3 -1	10 2	00 -0.50	3	0.09	-0.50	4 4
							talus float of crustiform qtz-cp veins to 1.5 cmcutting green chl alt andes; abund talus										
Gordonia	16JBOP332	M456707	6371699.43	615391.16 MIV	СН	CP PY	here of maroon tuff brx, also bladed Fs porphyry	0.218	2.5 1	.22	6 -	10 3	30 -0.50	37	0.51	-0.50	12 6
				615526.30 MIV		CP PY	talus float 10 cm wide zone of qtz-chl-cp-py veining	1.330					40 -0.50			-0.50	23 1'
Oxide Peak				612082.70 MZ PO	KF	СР	potassic alt porphyry cut by numerous qtz veins to 1.5 cm, diss cp	0.001	0.2 1				30 -0.50			-0.50	4 6
							0.4 m wide qtz-py vein with euhedral open space filling qtz, seams and large clots of c.g.										
Gordonia	16JBOP336	M456710	6371860 45	616001.01 RHY	SI	PY	py; trends 305 cutting maroon tuff and flow banded rhy	0.022	6.9 1	09	26 -	10	0 -0.50	57	0.07	-0.50	459
ooraonia			001 1000.10	010001.01	0.		095/40 S dipping zone of very strong qtz-chl-epid-sx-mt veining, with cm-thick seams of	0.0LL	0.0				0.00	0.	0.01	0.00	
Tarn	16JBOP341	M456711	6372873 81	617458.64 MZ BX	EP CH MT	CP PY		0.028	7.2 1	83	18 -1	10	0 -0.50	8	0.23	-0.50	47 2
Tarn				617405.27 MZ BX	-	CP PY	3m wide 310 trending zone of spec ht-cp-py-qtz-cal veining	0.045			7 -		0 -0.50				110 -
Tam	103D0F 342	101430712	0372030.30	017403.27 WZ DX		UFFI	mixed felsenmeer, rusty pink / green epid altered f.g. dyke, gtz and cp veins/stringers,	0.045	21.0 2	.00	1 -	10	-0.50	3	0.03	-0.50	110 -
Falsar	16JBOP351	M456740	6269674 04	617156.86 MZ PO	ED	CP	mixed reisenmeer, rusty pink / green epid altered i.g. dyke, qiz and cp veins/stringers, mal on frcts	0.063	10.6 0	00	2	10 0	30 -0.50	7	0.84	-0.50	8 6
Falcon																	
Falcon	16JBOP376	1456/14	0308228.15	616004.17 FP	SI CH	PY	felsenmeer, very rusty pyritic chl-py to sil-py altered intrus, qtz-py veins and clots	0.003	0.3 1	.09	2 -'	10 1	0 -0.50	-2	0.36	-0.50	7 4
	10 10 000000					50	narrow (0.5m) zone of thin bornite-qtz-cal stringers with strong mal on frcts, in f.g. green		50.5					-			
Falcon	16JBOP377	M456715	6368070.45	615883.82 MIV	СН	BO	chl altered andes cut by f.g. monzodior porph dyke	0.324	52.6 3	.70	8 -1	10	30 1.00	-2	3.81	3.60	30 4
							Bt monz. Reddish. Coarser grained with less qtz than uphill. Mafics to mt-cpy +/-										
							secondary bt. Qtz-Gn-cpy veins. Nice stockwork. Picture: 102-3397, 3398 (add to										
Oxide Peak	16TROP015	M456716	6372805.94	611897.85 FHBP	KF	GN SP PY CP	Arcpad - have to run for chopper), 3363, 3364 (stockwork)	-0.001	0.8 1	.13	2 -1	10 24	40 -0.50	-2	1.29	3.40	6 6
							Avalanche chute by creek. Has float of finer grained monz porph (reddish colour) with										
							qtz +/- cpy stockwork. Noticeably finer grained phase. Nice qtz-cpy stockwork in oc only										
Oxide Peak	16TROP026	M456717	6372785.20	612068.59 MZ PO		CP	meters to the east.	-0.001	-0.2 1	.06	-2 -1	10 2	00 -0.50	-2	0.72	-0.50	6 5
							Skree. Grey green fspar porph, with spec hem-ep-cpy (mal stringers). Mafics to spec										
Gordonia	16TROP030	M456718	6371622.41	615277.31 FP	EP CH HT	СР	hem and cpy.	0.004	19.6 1	.81	-2 -1	10 10	-0.50	-2	1.28	-0.50	12 3
							Talus cockscomb gtz veins with abundant cpy. Just like Pliny. Lots of brick red hem rich							-			
							tuff bx in vicinity. Ep veins in float. Picture: 102-3382 (brick red tuff bx); 3383, 3384										
Gordonia	16TROP033	M456710	6371777 81	615944.90 QV		СР	(Rusty boulder with cockscomb qtz-cpy-mal veins).	2.560	12.6 0	50	23 -	10 .	-0.50	an	1 23	-0.50	27 8
Gordonia				615526.78 QV		CP	Coarse guartz vein with abundant CuOx after CuS (cpy?). Talus.		158.0 0								
Gordonia	1011001032	101430720	03/1/32.13	013320.70 QV		UF .	Breccia/vent complex? Micro monzodior intrusive bx. Several phases. Vertical flow	1.100	130.0 0	.00	+0 -	10 2.	-0.50	231	0.05	-0.50	
							banding in places, convolute layering in others. Epidote altered clasts in bx. Black veinlets (chl) in clasts. Bx x-cut by mt-ep veinlets, wavy in places. In float found a qtz-mt										
							cpy vein. Potential, local kspar flooding. Veins of massive, coarse grained spec hem-										
							cpy-mal slightly uphill. Carb-cpy veins in bx. Picture: 3398 (ep altered clast in bx); 3399										
							(Vertical flow banding in bx); 3400 (bx x-cut by mt-ep veins), 3401 (convolute flow										
T		1450704	0070004.00	047405 40 M7 DV		0.0		0.050	705	~			0 0 50	~	4.04	0.50	000
Tarn	16 I ROP038A	M456/21	6372894.66	617435.12 MZ BX	EP CH MT KF	CP	banding). Sample is spec hem and cpy/mal veining	0.059	7.6 5	.31	18 -	10 :	-0.50	2	1.24	-0.50	206
							Breccia/vent complex? Micro monzodior intrusive bx. Several phases. Vertical flow										
							banding in places, convolute layering in others. Epidote altered clasts in bx. Black										
							veinlets (chl) in clasts. Bx x-cut by mt-ep veinlets, wavy in places. In float found a qtz-mt	1									
							cpy vein. Potential, local kspar flooding. Veins of massive, coarse grained spec hem-										1
							cpy-mal slightly uphill. Carb-cpy veins in bx. Picture: 3398 (ep altered clast in bx); 3399										
							(Vertical flow banding in bx); 3400 (bx x-cut by mt-ep veins), 3401 (convolute flow										1
Tarn	16TROP038B	M456722	6372894.66	617435.12 MZ BX	EP CH MT KF	CP	banding). Sample is ep altered with qtz-cpy veining	0.004	0.2 2	.53	4 -	10	50 -0.50	-2	2.59	-0.50	25
							Cockscomb qtz float below huge vein in oc. Trace cpy in places. Picture: 102-3410 (qtz										
Tarn	16TROP044	M456723	6373013.75	618124.99 QV			vein along cliff. Vert dipping with N-S strike?)	0.003	0.8 0	.11	2 -	10 :	-0.50	-2	0.14	-0.50	1
							QFP with qtz-cpy veinlets. Real porph veinlets. Not the cockcomb/int sulf style we have										-
							been seeing to date. Downslope have strong qtz-ep-kspar stockwork. Qtz ep veins with										
							pink haloes. Mal on fractures. Alteration zonation approaching this area. Ep increases.										
							Qtz-py zone and ep veins pick up fspar selvages. QSP in valley floor with mag high										1
							underneath (JB). Picture: 3420 (add to Arc: picture of zone from valley floot. QFP with										
alcon	16TROP051	M456704	6368664 90	617499.52 QFP	EP KF	CP PY	gtz-cpy veinlets is a dyke. Probably post to late mineral. Rep.	0.005	050	72	2 .	10	50 -0.50	2	0 40	0 50	F
alcon	IOTRUPU51	101430724	0300004.86	01/499.52 QFP				0.005	0.5 0	.12	3 -	10 3	06.0- 0.50	-2	0.49	-0.50	5
			0000054 15		FR 011		Moving west towards Falcon 1. At base of skree slope have rusty boulder. One boulder	0.005		~	~					0.50	40
alcon	16TROP053	M456725	6369051.13	616877.29 MZ PO	EP CH	CP PY	contains intense ep/chl with 4% py +/- cpy. Qtz veins with cpy in sample.	0.083	26.2 1	.28	3 -1	10	50 -0.50	26	0.96	-0.50	18
							Falcon trenches. Aplite bx. Clasts with strong qtz-gal-sphal +/- cpy stockwork. Picture:										1
							3425 (bx), 3426 (qtz-gal-sphal), 3427 (looking back twoards Falcon porph from										
Falcon	16TROP056	M456726		615947.97 APIV		GN SP PY CP		0.006	1.6 0	.73	10 -1	10 43	-0.50	2	1.14	28.40	7
Jxide Peak	16JBOP279		6371614.18	611077.36 INLT	EP KF AB		perv. epid-Ksp/alb altd Tood Fm xtl-lith tuffs										
							crdd apple grn FHP dyke, Hb's have trachytic texture, epid-chl+/- alb alt, tr diss py, cut					Τ					
Oxide Peak	16JBOP280		6371654.80	611095.25 FHP	EP CH AB		by(?) drk green grey strongly magnetic sparsely Fs-Hb(?) phyric mafic dyke										

area		sample y_pro				Alt	Min	description	Au	Ag	Al	As	B	Ba Be	Bi	Ca	Cd	Co Cr
Oxide Peak	16JBOP281	6371	710.83	611104.82	FHP	EP CH AB		FHP dyke cutting xtl-lith tuffs with qtz eyes										
								contact between rusty weath massive tuffs andyellow weath QFP or felsic xtl tuff, strong										
Oxide Peak				611119.35		SE CL	PY	ser/clay-py alt										
Oxide Peak				611118.00		СН		drk green mafic dyke										
	16JBOP284			611102.68				m.g. FHP dyke										
	16JBOP285			611068.21				orange/pink FP, poss dyke										
Oxide Peak				611073.58		CL	PY	crdd FHP intrus, pervasive clay (dickite?)-py alt in narrow structural zone										
Oxide Peak				611193.83		SI		hillside subcrop pervasive silica alt next to flt with slix										
Oxide Peak				611308.33		СН		med-drk green xtl-lith tuff, chl alt										
Oxide Peak				611332.83		СН		med green crdd FHP										
Oxide Peak	16JBOP290	6372	154.99	611353.34	AX	SI	BA	pervasive silica with late c.g. barite										
								massive c.g. FQHP intrusive; shallowly west dipping joint fabric looks like bedding;										
Oxide Peak	16JBOP291	6372	150.95	611409.10	FQHP			maybe sill?										
Oxide Peak				611425.52		SI AA	PY	similar coherent FQHP as last but here with pervasive sil-py-pp										
Oxide Peak	16JBOP294	6372	385.41	611499.01	BX	SI AA	PY	talus float intensely altered silica brx, poss. Hydrothermal										
								white weath. Pervasive silica-clay alt cut by network of fine yellow/orange vnlets, loc										
Oxide Peak				611580.92		SI AA	PY	sheeted to stkwk qtz stringers										
Oxide Peak	16JBOP297	6372	404.73	611676.63	FQHP	СН		crdd FQHP, mafics weakly chl altd, weakly magnetic										
Oxide Peak	16JBOP299	6372	790.84	611853.65	FHBP	EP CH	PY	very pink FHBP, weak chl-epid, tr py										
Oxide Peak	16JBOP300			611849.16		EP CH	PY	very pink FHBP, weak chl-epid, tr py										
	16JBOP303	6372	424.19	611065.81	FQHP			c.g. FQHBP										
Oxide Peak	16JBOP304	6372	470.05	610923.03	FP DC			sparsely Fs phyric pinkish-orange volc.										
Oxide Peak	16JBOP305	6372	530.56	610883.16	MIV			pinkish-buff Fs-amph phyric interm volc, abund small needlelike amph										
Oxide Peak	16JBOP306	6372	649.00	610824.92	QFP		PY	slightly rusty zone of qtz phyric fels volc or dyke, minor diss. Py										
Oxide Peak	16JBOP307	6372	732.21	610790.67	MIV			buff/pink uncrdd FP volc										
Oxide Peak	16JBOP308	6372	831.10	610788.27	MIV			pinkish-buff Fs-amph phyric interm volc, abund small needlelike amph										
Oxide Peak	16JBOP309			610814.17		SI		narrow zone of pervasive silica alt										
Oxide Peak	16JBOP310	6372	889.12	610823.30	MIV	СН	PY	med-drk grn subcrdd FP andes, mafics weakly chl alt, tr py										
Oxide Peak	16JBOP311	6372	793.60	611000.95	MIV			f.g. mafic volc or poss. Diabase										
	16JBOP312			611023.43		СН	PY	crdd FQHP, pink matrix, mafics alt to chl, tr py										
-						-		crdd FQHP, pink matrix, mafics alt to chl, tr py; start of strongly frctd, bleached intrus										
Oxide Peak	16JBOP313	6373	081.11	611416.97	FQHP	СН	PY	about 10 m to east										
Oxide Peak				611472.42		SE CH	PY	strongly frctd, pervasively qtz-py-chl-ser alt porphyry										
Oxide Peak				611494.33		SE CH	PY	strongly frctd, pervasively qtz-py-chl-ser alt porphyry										
Oxide Peak				611530.29		SE CH	PY	very coherent, hard subcrdd FQHP dyke										
Oxide Peak				611560.15				near center of big wide open area										
Oxide Peak				611575.00		SE CH	PY	very coherent, hard subcrdd FQHP dyke										
Oxide Peak				611773.54				subcrdd FQHP, aphan pink matrix, mafic inclusions										
								FHP, brick red matrix, patchy epid-chl alt, loc gtz veinlets, small clots cp/py in mafics, loc										
Oxide Peak	16.IBOP321	6372	814 32	611893.33	FHBP	EP CH	CP PY	dark rounded more mafic inclusions										
Oxide Peak				611942.29		CH CB	-	porphyry cut by qtz-cal-chl veins with minor gn, sp										
Oxide Peak				612131.95				strong qtz stkwk in porphyry, only tr cp, loc graphic texture, pegmatite										
	16JBOP327			613833.05				camp										
	16JBOP328			614605.01		EP CH HT		massive strongly hematized mafic-interm flows										
	16JBOP329			614806.22			MAL	massive white/orange weath aphanitic felsic volc, loc float with mal										
	16JBOP330			614930.89				sparsely Fs phyric dacite/rhyodac flows		1	1							
	16JBOP331			614986.97				white/buff weath sparsely Fs-Hb-Qtz phyric dacite/rhyodac flows	1	1	1					-		
Gordonia	16JBOP333			615091.70		СН	PY	maroon sparsely Fs-Hb-Qtz phyric dacite cut by thin qtz, chl stringers		1	1							
Gordonia	16JBOP335			615928.15		EP HT	-	volcs here with vugs lined with epid and spec ht	1	1	1					-		<u></u>
2 3. 40. 14		5071		10020.10				f.g. strongly magnetic FHP. Riddled with open space comb textured quartz veins,		1	1							
Tarn	16JBOP338	6372	807 64	617456.60	FHP	EP CH		pervasive chlorite-epid alteration, local convolute flow banding						1				
		5072		017-100.00		2. 011		dense f-m.g. dac/andes or equigranular intrusive, v. strong epid-chl, cut by narrow zones	1	1	1							<u></u>
Tarn	16JBOP339	6372	825 32	617448.41	MZ BX	EP CH	PY	of strong qtz - sx veining										
Tann	103001 000	0012	020.02	. 017 440.41														
Tarn	16JBOP340	6372	831 37	617440.14	M7 BY		CP PY	2 m wide zone of strong qtz-chl-epid-(alb?) veining with seams of py-cp, trending 340										
Talli	10JB0F340	0372	.031.37	017440.14		EF CH AD	GEFT	highly variable interm tuff/tuff brx cut by numerous narrow zones (<15 cm) of qtz-cb-chl-										┍──┼──┦
Tarn	16 1800242	6070	520 12	617222 40		EP CH	CP PY	py-cp, also rusty pyritic pods, epid in big patches and clasts										
Tarn	16JBOP343	0372	JZI.43	617333.16												-		
Tam		0070	700 40	017000.00	M7 D0			m.g. dior/monzodior porphyry, cut by qtz, chl and mt veins, moderately magnetic, strong										
Tarn	16JBOP344			617328.83		EP CH MT		epid-mt alt		_						-		
	16JBOP345			617599.37		EP CH		f-m.g. crdd porphyry, strong epid								_		$ \longrightarrow $
	16JBOP346					EP CH MT AB		crdd monzodior porphyry, perv. epid, cut by epid/alb-mt/chl veins/stkwk								_		$ \longrightarrow $
Tarn	16JBOP347			617752.39				0.3 m wide pinch and swell qtz vein, trending 326		_								\square
Falcon	16JBOP349	6368	266.47	617401.15	SD	EP		pink sparsely Fs-Hb phyric dyke cutting well bedded cherty hornfelsed seds										
								talus float of knobbly/jagged weathering matrix poor brx, poss. Intraformational, rare						1				
Falcon	16JBOP350	6368	409.70	617387.81	HT BX	EP	CP	comb textured qtz vnlets with cp										

area	ident	sample	y_proj x_pro	j	Lith	Alt	Min	description	Au	Ag	AI	As	в	Ba Be	Bi	Ca	Cd	Co Cr
Falcon	16JBOP352		6368804.21 61712			EP		o/c pinkish brn sparsely Fs phyric massive andes, patchy epid					_					
Falcon	16JBOP353		6368889.54 6171				PY	slightly rusty c.g. QFP dyke, tr diss py/cp										
Falcon	16JBOP355		6368829.57 6173			EP CH	PY	rusty zone, strongly py-chl-epid altered volc										
Falcon	16JBOP356		6368877.47 6176			QSP	PY	subcrop pervasive QSP altered porphyry with abund clear qtz and qtz-py stringers										
Falcon	16JBOP357		6368765.70 6176			SE CH	PY	v. rusty weath QSP to chl-ser-py altd porphyry, strongly frctd										
Falcon	16JBOP358		6368767.31 61764			SE CL	PY	pale green poss illite-py altered porphyry										
Falcon	16JBOP359		6368788.96 6176			EP CH	PY	Perv epid-chl-py altd porphyry										
Falcon	16JBOP360		6368779.69 6176				PY	same as last, chl, weak epid, strong py										
Falcon	16JBOP363		6347457.77 6233					gossan										
Falcon	16JBOP366		6368797.31 61776			EP CH	PY	weakly rusty f-m.g. monzodior porph, patchy epid-chl, thin sx stringers										-
Falcon	16JBOP367		6368799.80 6178			EP AB	PY	intense epid-qtz-py veining, Ksp/alb halos		-								
Falcon	16JBOP367		6368787.91 6178			EF AD	PY	rusty dyke with salt and pepper text, diss Mt		-								
	16JBOP369		6368981.50 6168			EP CH	PY	rusty talus here mix of strong epid-py and qtz-ser-chl-py - structural zones?							_			
Falcon	IOJEOF209		0300901.30 0100	4.42	IVIIV		FI	rusty talus here mix or strong epic-py and qiz-ser-chi-py - structural zones?							_			
								Pass of sliffs, much interminate matching and shirt all Quarishis much the silicons of										
Falsas	10 10 00 0 20		0000050 50 0400	00.04			D)/	Base of cliffs, prob interm volc, patchy epid-chl+/-alb?, variable py cut by silicous or										
Falcon	16JBOP370		6368950.53 6168			EP CH AB EP	PY	silicified f.g. pink dykes cut by numerous steeply to modly dipping narrow qtz stringers		_	_							
Falcon	16JBOP373		6368221.76 6161	/8.45	MZ PO	EP		c.g. epid alt monzodior porph										
	101000074					0.05		broad rusty zone overlain by ferricrete QSP altered volc or aplitic intrus, loc brx'd, cut by										
Falcon	16JBOP374		6368476.23 6158	(1.4/	APIV	QSP	GN SP PY CP	qtz-gn-sp-py+/- cp veins, most veins completely oxidized	1	_	_	<u> </u>			_			
L .	10 10 000							numerous small pits between 374 and here, rusty altered intrus cut by numerous comb	1			1						,
Falcon	16JBOP375		6368259.31 6160			QSP	GN SP PY CP	textured qtz-gn-sp veins, loc sheeted	-	_					_			
	16TROP000		6372876.57 6108				PY		1	_		1			_			\vdash
	16TROP000		6372047.34 6110			SIAA	LM		1			<u> </u>						
	16TROP000		6372362.87 6114			SIAA			1			<u> </u>						
	16TROP000		6372161.12 6113			СН	PY											
	16TROP000		6372157.73 6113			СН												
	16TROP000		6373074.22 6114			СН												
	16TROP000		6372396.43 61168															
	16TROP000		6372864.33 61178	36.67	FHBP													
	16TROP000		6372816.98 6118			EP CH												
	16TROP000		6371666.54 6110	99.29	FQHP	EP CH	PY											
Oxide Peak	16TROP000		6372846.04 6118	03.27	FQHP													
Oxide Peak	16TROP000		6372774.00 6107	77.04	MIV													
Oxide Peak	16TROP000		6372554.15 61080	09.32	MIV	СН	PY											
Oxide Peak	16TROP000		6372884.17 61082	21.43	MIV	СН												
Oxide Peak	16TROP000		6371997.90 6110	65.25	MIV		LM											
Oxide Peak	16TROP000		6372816.49 6110	76.42	MIV	СН												
Oxide Peak	16TROP000		6372425.11 6110			СН												
	16TROP000		6372105.80 61112			-												
Oxide Peak	16TROP000		6373057.75 61138			EP CH												
	16TROP000		6372800.85 6119															
Oxide Peak	16TROP000		6372809.87 61200	07.03	MZ PO	-												
	16TROP000		6372729.39 6120			EP CH	1		1	-		1						
ondo i oun	1011101 000		0012120.00 0120			2. 0												
								Chl-ep-py altered volc or intrusive? Bx in float with ep-py altered clasts to 2-3 cm size										
								with white alteration rinds. 0.5% dissem py. Rusty ridge near drop off. Hydro-mag bx										
								similar to Nichol zone at Castle? Clasts very similar in places. Also similar to Lower										
								Hazelton volc at ridge above Baker B Zone, which also contains ep altered monz clasts).										
Ovide Peak	16TROP001		6371613.88 61108	81 12	INI T	EP CH	PY	Qtz monz porph just to north of here (chl-ep-py altered). Picture: 102-3392										
Oxide Fedic			0071010.00 0110	51.12				Moving North. Pink green rusty o.c. Xtal-lap tuff with ep altered clasts (0.5%) to 4 mm.										ł
								Most5ly pink kspar xtals (variably broken) and trace qtz xtals to 1-2 mm in matrix. Chl-ep										
Ovido Rook	16TROP002		6371722.88 61110	10 65		EP CH	PY	py alteration. Potential silica-py alteration in places										
Oxide Feak	1011(01:002		03/1/22.00 0111	59.05			F I	Vesic mafic dyke? Mafic volc? Dark green. 2% vesicles to 2-3 mm size. Carb filled							_			
								amygs. X-cutting main axis of ridge. E-W dyke? Ridge is x-cut by series of E-W mafic										. '
																		. '
	167000000		6271020 72 6444	17 07	MD	сц		dykes which cut chl-ep-py altered Lower Hazelton volcanic rocks. Picture: 102-3393:	1			1						, !
Uxide Peak	16TROP003		6371828.72 6111	17.27	IVID	СН		Looking west at nice gossan; 3394: Looking east at Gordonia area.	1	-	_				_			
						<u>.</u> .		Pink sbcrop. Massive silica-lim. Pink colour from alunite? Looks a bit like Albert's Hump										
Uxide Peak	16TROP004		6372127.31 61119	95.12	AX	SI	LM	AA. Slickensides on unit. Fault controlled alteration?		_		<u> </u>			_			<u> </u>
												1						, P
Oxide Peak	16TROP005		6372158.57 61123	38.86	FQHP	СН	PY	Monzodior porph. Equigran with trace py dissem. Chl-py alteration. Rate qtz phenos.	1			<u> </u>						
							L	Silica-barite boulder sbcrp. Right next to chl-py altered intermed volc/intrusives. Looks	1			1						, !
Oxide Peak	16TROP006		6372157.14 6113	56.40	AX	SI	BA	like Ranch style AA/HS-epi.	1			1						
								Monz porph with trace Qes to 2mm. Bleached. 1-2% dissem py. Mafics altered to py-	1			1						, !
Oxide Peak	16TROP007		6372145.32 6114	12.72	FQHP	СН	PY	chl.	1			1						. '

area	ident	sample	y_proj	x_proj	Lith	Alt	Min	description	Au	Ag	AI	As B	Ba	Be	Bi Ca	Cd	Co	Cr
								Right next to last station. Monz porph. Intense silica-clay-py alteration. Fsp to clay/AA.										1
								This AA appears to be structural related. Gus says clay altered fspar = pyroph. Dickite										1
Oxide Peak	16TROP008		6372119.94	611455.4	1 FQHP	SI AA	LM	= soapy. Pyroph = flakey with silkey sheen.										1
								Bt-monz porph. Magnetic with dissem mt xtals (magmatic). Weak chl alteration. X-cut by	1									Í.
Oxide Peak	16TROP009		6372112.47	611474.1	2 FHBP	СН	BA	barite veins in places. AA x-cuts this?										1
-						-		Monz porph. Equigran. Intense/strong chl-ep-py alteration. Mafics to chl-ep-py. 1-2%										[
Ovide Peak	16TROP010		6372212.27	611450 9		EP CH	PY	py. Up to 20-30% ep in places.										1
Oxide Fear			0012212.21	011400.0		EI OII		Talus slope of pinkish to grey weathering silica-clay alteration. Vuggy in places. Qz										
								eyes in matrix. Remnant bx textures. Hydrothermal bx? Very leached. 5% lim boxwork										1
Ovide Deels	16TROP011		6372395.94	C11509.00	C DV	SI AA		after py. Alunite: Hardness = 5 - sugary texture. Forms plates.										1
Oxide Peak	INTROPUTI		6372395.94	011506.00		SIAA	LM				-		_				- '	
								More massive silica-clay alteration. Lim on fractures. Py-chalcocite/cov in places. HS-										1
								epi. Less altered areas appear to be monz porph, bleached with 4-5% dissem py and qtz	-									1
								stringers. Picture: 102-3395: Looking N from station. More alteration. Big zone; 3396:										1
Oxide Peak	16TROP012		6372435.41	611532.7	7 FQHP	SI AA	PY CC	Looking east across valley. Can see old camp at west end of lake?										1
								Bleached monz porph, fairly coarse grained. 5% py dissem. Has 1-2 cm clasts, rimmed										1
Oxide Peak	16TROP013		6372457.44	611686.3	5 FQHP	SI	CP PY	by pyrite. Unaltered bx qtz monz/QFP nearby, which appears post min?										1
								Walked down to ck to N. SLP: All qtz monz porph. Weak chl alteration with no sulfides.										1
Oxide Peak	16TROP014		6372806.54	611872.4	4 FQHP	СН		Strongly magnetic.										1
-						-		Talus slope of pink bt micro QFP. Bt-hbl to 1-3mm. Bt altered to light green ser? No										
Oxide Peak	16TROP016		6372469.62	610916 0	1 FOHP	SE CH	LM	sulfides. Dyke.	1					1				1
SAIGO I GAN	.51101010		3072400.02	510010.0		52 011	LIVI	Hazelton volc. Intermed comp. Dark green, weakly chl-ep altered in places. Xtal tuff-lap		-	-		-			-	+	
Ovide Deels	16TROP017		6070460.04	C10040 4		EP CH		tuff. Clasts to 2 cm to east. Weak layering.	' I									1
Oxide Peak	INTROPUT/		6372463.91	010042.4		EPUN		tun. Glasis to 2 cm to east. Weak layening.					_					⊢
																		1
								Grey croweded, coarse grained fsp porph. Silica-py-ep +/- ch alteration. 1-2% dissem										1
Oxide Peak	16TROP018A		6372601.27	610814.9	3 FHP	EP SI	PY	py-ep veins. 30-40% fspar phenos to 4-5 mm. Have not seen this phase before.										L
								N side of ck. Coarse grained bt-fspar porph, weak chl alteration. 20-30% fsp phenos to										1
Oxide Peak	16TROP018B		6373049.49	611451.0	7 FHBP	СН		3-4mm. 2 phases here, at least. Finer grained porph just to west in creek.										1
																		1
								Nice gossan. Crowded, coarse grained poprh. Intense silica-py alteration. Nearly										1
								impossible to get fresh surface here. 2-3% py dissem. Strong bleaching. Mafics to py.										1
Ovide Peak	16TROP019		6372991.63	611466 6	5 MZ PO	SI	PY	Hand lens useless in rain. Structure: JT: 320 Picture: 102-3361: Outcrop shot.										1
Oxide Four			0072001.00	011400.0		01												<u> </u>
Ovido Book	16TROP020		6372973.64	611529 2	2 M7 DO		PY	Creek bed float. Porph with qtz-sulfide veins. Cpy or py? Py on fractures. Rep sample.										1
Oxide Feak	IOTKOF020		03/29/3.04	011520.2			ГТ	Creek bed hoat. Forph with qiz-sumue veins. Cpy of py? Fy of fractures. Rep sample.					_					⊢
								Protection and the side of enable Occurring discourse and enabled										1
								Rusty oc on north side of creek. Crowded/coarse grained monzodior porph. Bleached										1
	16TROP021		6372902.08			СН	PY	chl-py alteration and silica. Py stringers. Mafics to chl-py. Picture: 102-3362.										<u> </u>
Oxide Peak	16TROP022		6372876.61	611774.04	4 FQHP			Light pink, finer grained FQP with 20-30% fsp-qtz phenos to 2-3 mm. No sulfides.										
								Gossan that JB and GZ sampled yesterday. Mt-py veining in coarse grained porph.										1
								Contact with finer grained FQP to west, not far (see Arcpad). Trace to 0.1% cpy (0.5-										1
								1mm) on some fractures. 5-10% py in places. Potential bx texture in places? Slab										1
Oxide Peak	16TROP023		6372838.88	611812.8	6 FHBP	BI MT CH	CP PY	these samples.										1
Oxide Peak	16TROP024		6372813.11	611874.9	6 FHBP	EP CH MT	PY	Bt monz porph. Mafics (bt and hbl) to mt-chl. Also ep-chl. Mt and trac py here.									_	1
-	-					_		Pink, aphyric dyke x-cuts monz. Local chl-ep and ep veining in porph. Picture: 102-										<u> </u>
Ovide Peak	16TROP025		6372805.59	611919 0	6 DC	EP CH	PY	3365.										1
Oxide Fedit	1011101-020		0072000.00	011010.0	000	EI OII	· ·	Moving into valley. Have pegmatites and incredible qtz stockwork. No sulfides. Roof of										<u> </u>
Ovido Book	16TROP027		6372822.70	612400 4				intrusion? Heli showed up during station. Add station to Arcpad.										1
UNINE FEAK	ISTINUFUZ/		0012022.70	012499.40		-		na usion: nei snoweu up uunny station. Aud station to Arcpau.		-	+	\vdash	-			-	'	\vdash
								East side of assessed a Mafieliation language of finally Miellord on assessing to have from										1
								East side of property. Mafic/int volcanics on west flank. Walked up moraine to here from	1									1
								camp. Many Stealth samples from moraine. Why did they sample this so heavily?										1
								Rainy camp days? Here have oc of purplish weathering mafic volc with hem on										1
								fractures. Chl-ep alteration with local ep veins. Carb veinlets. Looks like flows. Can										1
								see stratification on cliffs and hem rich volc rocks (subaerial Hazelton?) up hill. Is this a										1
Gordonia	16TROP028		6371415.95	614684.13	3 MIV	EP CH HT		downdropped block of Hazelton on east side of the valley? Similar to Kemess East?										1
																		1
					1			Moving east along skree slope. Boulders of highly vesic mafic/int volc, including some						1				1
					1			bx and some more massive liths. Hem on fractures. Carb amygs to 4-5 cm size. Ep						1				1
					1			patches to 10-15 cm size. Hem rich flows along cliffs (subaerial?). If so, why so much						1				1
								epidote around? Ep veining in float, too. Pictures: 102-3376 (ep patches and carb										1
Cordonia	16TROP029		6271400.00	614004 7	G MIN	EP CH HT		amygs); 3377 (ep veining); 3378 (amoeboid ep patches - strange!).	1					1				1
Gordonia			6371466.66				-		I			\vdash		I			- '	<u> </u>
Gordonia	16TROP031		6371718.99	015442.8		EP-CA	-	Bladed fspar porph with 1 cm sized ep-carb amygs.			-					_	- '	
					1			Felsic volc. Creamy/aphyric matrix with trace fspar phenos. Some more mafic clasts.						1				1
								Hem dusting? Hem (spec?) on fractures. Qtz veins everywhere, especially 20 m to										1
Gordonia	16TROP034		6371930.59	616055.4	7 RHY	EP		west.										
																		1
					0 RHY	СН		Felsic volc? As per last. Trace mafics altered to chl. Not as many quartz veins here.										

area	ident	sample	y_proj	x_proj	Lith	Alt	Min	description	Au	Ag	AI	As B	Ва	Be Bi	Ca	Cd	Co Cr
								Pervasively chl-ep altered in volc or high level mafic intrusive? Have seen clasts in									
								places. Epidote patches to 2-3 cm size. Flow banding or bedding? Cockscomb qtz									
								veining abundant at 330 deg az. Local magnetite-sulfide veining. Trace cpy with some									
								qtz veins (cockscomb qtz). Mt-sulfide veins pre or post date cockscomb quartz?? No									
								cross-cutting relationships here. Structure: 330/86 = V1. Pictures: 102-3386 (qtz									
Tarn	16TROP036		6372778.16	617489.67	FHP	EP CH	PY	stockwork); 3387 (cockscomb quartz); 3388 (cpy patches); 3389 (mt-sulfide veining).									
								Historic sample area. Mt-lim-cpy vein x-cuts perv chl-ep altered int volc and monz porph									
								Host rocks also x-cut by qtz-spec hem veinlets. Distal to porph? Qtz-ep veining and ep									
								patches. Picture: 3390 (qtz-mt-cpy-lim veining zone); 3391 (ep patches/clasts); 3392									
								Qtz-ep vein with ep selvage; 3393 (ep veins and patches), 3394 (Qtz-spec hem vein with									
Tarn	16TROP037		6372872.02	617454 97	DC	EP CH	CP	trace py).									
Tam			0012012.02	011404.01	00		01	Intrusive bx with ep altered intrusive clasts. Clasts have qtz-ep veins terminating at									
								margins. Clasts to 70 cm size. Pictures: 102-3403 (ep rind on clasts); 3404 (clast with									
Tam	16TROP039		6372673.36	017000.01		ED OLI		ep veins), 3405 (oc with ep altered clasts).									
Tarn	161 KUP039		03/20/3.30	01/299.01		EP CH		ep venis), 3403 (oc with ep altered clasis).									
								On west side of lake. More bx with ep altered clasts. This time with reddish, finer									
								grained matrix. Bx is bringing ep altered clasts to surface? Cockscomb quartz veins with	1								
								high grade cpy in float in places. Also qtz-cpy-sphal veins. Also megacrystic FQP in									
Tarn	16TROP040		6372540.76	617343.03	MZ BX	EP	CP SP	float. 2-3cm pink fspars to epidote and qtz phenos to 3 mm. Picture: 102-3406.									
								Ocs to west of lower lake. Crowded mg dark green-grey porph/bx. Very strong, patchy									
								epidote alteration Weakly magnetic. Lighter pink fresh surface. Ep veins. Intrusive bx?									
Tarn	16TROP041		6372939.78	617705.38	MZ BX	EP		Broken xtals in matrix.									
								Dior porph, nearly equigran with 1-2% miar cavs to 2 cm size, filled with fspar and qtz									
Tarn	16TROP042		6372979.47	617749.03	FP DI			xtals.									
Tarn	16TROP043		6373002.91	617737.85	MD			Mafic dyke at 300 deg az in creek.									
								Light green, well bedded siltstones (bluey-green) x-cut by finer grained pink monz dyke.									
								Local gtz-ep veining in hornfelsed seds. Seds are Stuhini like? Cannot find any									
								sulfides. Dyke looks fresh. No veins in dyke. Picture: 102-3416. Note: Previous									
Falcon	16TROP045		6368361.11	617408.37	SD	EP		pictures of JD and Ox Peak, looking west from this station.									
1 aloon	1011101 040		000001.11	011400.01	00	<u> </u>		Heterolith bx, clast supported, with ep altered volca and sed clasts. JB found some qtz-									
								cpy veins here. Volc bx or hydro bx? Potential qtz cement in places in float. Picture:									
Falcon	16TROP046		6368436.50	617305 80	UT BY	ED	CP	3417.									
Talcon	1011(0)-040		0300430.30	017335.03		Lr	0F	Talus slope. Have heterolith lap tuff with xtal rich matrix. Up to 3-5% clasts to 2 cm size.									
								Some purple green, some hematitic/purplish. Bt monz dyke along ridgetop trending 330.									
								Is an extension of dyke seen in cliff in last photo. Mod ep alteration, patchy. Pink.									
								Picture: 102-3418 (looking south: well bedded volc and seds x-cut by vertical pink									
E al a su	16TROP047		6368630.75	047000.00	м. т	EP		dykes).									
Falcon	161R0P047		6368630.75	617339.96	INLI	EP											
								Talus downslope to east. QFP with 10-20% qtz and kspar phenos. Kspars average									
							-	5mm or greater. Qtz to 1-2mm. Dominantly ep alteration. Local bleaching with chl-py									
Falcon	16TROP048		6368859.93	61/156.01	QFP	EP CH	PY	alteration of mafics with up to 0.25% py dissem.									
								Gossan along flank of ridge. IN volc or porph? Intense qtz-epy-ep alteration with py-ep									
								veins. Gus thinks qtz-py is overprinting ep alteration here. Picture: 102-3419 (add to									
Falcon	16TROP049		6368815.61	617312.82	MIV	EP	PY	Arc).									
								IN volc or intrusion? Intense/strong qtz-ep-chl alteration. Qtz-ep veins have white									
Falcon	16TROP050		6368760.27	617428.21	MIV	EP CH AB	PY	selvages (albite?). Rep and t.s. Alteration vector to porph?									
								Felsenmeer in ck of monz porph plus/minus qtz phenos with intense chl-ep-qtz alteration									
								Abundant qtz veins with inner epidote selvage and outer kspar (?) selvage. Look hot.									
								Also intensely chl-ep altered volc rocks. More bleached, QSP-like zones grade in and									
Falcon	16TROP052		6368797.64	617822.69	MZ PO	EP CH	PY	out. Picture: 102-3421 (qtz-ep-kspar vein in monz).									
								Oc above rusty talus. More chl-ep-py altered volc (fspar phyric) with ep +/- qtz veins with									
Falcon	16TROP054		6368913.04	616872.04	MIV	EP CH AB	PY	white haloes (alb?). Picture: 1020-3422.									
								Equigran, pinkish monz intrusive. Perv chl-ep alteration and dissem, magmatic mt.									
Falcon	16TROP055		6368224.81	616572.24	MZ PO	EP CH	PY	Strongly magnetic.									
Falcon	16TROP057		6368261.05			SICL	PY	On other side of knob. Rusty suboc in little pit. Qtz-py +/- clay alteration.	1								
							1	On side of little lake. Talus full of pink, equigran, mg to cg bt-hbl monz. Fspars altered			1						-+-
Falcon	16TROP058		6367989.97	615894 72	FHBP	CL	MAL	to soapy clay (illite?). Trace mal on fractures.									
Falcon	16TROP000	<u> </u>	6368240.49			SI	PY		1	+	1						-++
Falcon	16TROP000		6368625.76				F .		1	1	+						++
Falcon	16TROP000		6368872.05			1	1		l	+	+						-++
Falcon	16TROP000		6368675.06			ED									\vdash		-+
	16TROP000		6368342.88							+	+		-				-+
Falcon	INTROPUCO		0300342.88	01/406.90	IVIZ PU	1	1			1	1						

area	ident	sample	Cu	Fe	Ga	Hg	ĸ	La	Mg	Mn	Мо	Na	Ni	Р	Pb	s	Sb	Sc	Sr	Th	Ti	TI	U	V	w	Zn
Oxide Peak	16JBOP293	M456701	57	3.87	-10	1	0.24	10	0.17	117	21	0.16	-1	840	9	1.13	-2	3	116	-20	0.06	-10	-10	34	-10	2
		M456702	14	2.72			0.41		0.02	28	3			200		1.93	2	1	31	-20	-0.01		-10	4		2
Oxide Peak		M456703	524	3.47			0.07		0.99		3			740		2.96	-2	4	35	-20	0.08		-10	57	-10	19
Oxide Peak		M456704	1365	10.85	10	-1	0.13	10	0.61	574	22	0.03	2	390	56	7.03	2	2	10	-20	0.07	10	-10	00	-10	6
-		M456704 M456705	368	2.21			0.13	10		574 638	22	0.03	2	390 490		0.12	-2 -2	3 3	33	-20	0.07	-10 -10		80 51	-10	60
Oxide Peak		M456706	325						0.66			0.05		1100	202	0.12	-2	3	12	-20	0.08			57	-10	2
Oxide F cuit		111100700	020	4.00	10		0.10	10	0.00	200	12	0.00		1100	,	0.02	2	Ū	12	20	0.00	10	10	01	10	-
Gordonia	16JBOP332	M456707	3250	4.01	10	-1	0.14	10	0.59	1010	2	0.05	2	660	9	0.33	-2	2	62	-20	0.03	-10	-10	39	-10	8
Gordonia	16JBOP334	M456708	4810						0.42	588	301	0.01	2	80	47	1.15	-2	1	З	-20	0.01	-10	-10	18	-10	5
Oxide Peak	16JBOP325	M456709	737	2.48	-10	-1	0.18	10	0.70	796	1	0.04	1	680	-2	0.08	-2	4	18	-20	0.08	-10	-10	48	-10	7
Gordonia	16JBOP336	M456710	48	8.98	-10	1	0.07	-10	0.50	622	14	0.01	7	30	9	7.25	-2	1	3	-20	-0.01	-10	-10	13	420	2
Tarn	16JBOP341	M456711	25200	15 45	10	-1	0.03	-10	0.78	880	3	-0.01	-1	470	8	4.07	-2	2	34	-20	0.07	-10	-10	42	10	7
		M456712	36400				0.02		1.73		3		1	410		2.61	-2	2	17	-20	0.04			37	40	15
		M456713	2040				0.03		0.34		6		-1	360		0.19	-2	1	121	-20	0.09			21	10	9
Falcon	16JBOP376	M456714	140	4.83	10	1	0.29	10	1.15	1150	3	0.04	1	1510	9	2.39	-2	3	9	-20	-0.01	-10	-10	44	-10	ę
Falcon	16JBOP377	M456715	16100	5.04	20	-1	0.01	10	2 17	1565	-1	0.05	q	2110	12	0.24	-2	11	189	-20	0.47	-10	-10	169	-10	17
aloon		11100710	10100	0.04	20		0.01	10	2.17	1000		0.00	Ŭ	2110	12	0.24	-		100	20	0.47	10	10	100	10	
Oxide Peak	16TROP015	M456716	504	2.26	-10	-1	0.13	10	0.81	787	1	0.05	3	510	1030	0.10	-2	3	32	-20	0.03	-10	-10	40	-10	28
Oxide Peak	16TROP026	M456717	194	2.29	-10	-1	0.18	10	0.75	688	-1	0.05	2	500	7	0.03	-2	2	17	-20	0.01	-10	-10	39	-10	6
-	-																									
Gordonia	16TROP030	M456718	3700	3.19	10	-1	0.03	10	1.24	926	-1	0.07	3	1200	10	0.03	-2	4	164	-20	0.30	-10	-10	81	-10	8
Gordonia	16TROP033	M456719	17750	4.86	-10	-1	0.16	-10	0.18	673	65	0.01	2	70	92	3.82	2	-1	25	-20	-0.01	-10	-10	7	-10	2
Gordonia	16TROP032	M456720	31900	4.31	-10	-1	0.03	-10	0.22	345	16	0.01	1	80	110	0.55	-2	1	19	-20	0.01	-10	-10	82	-10	2
Tarn	16TROP038A	M456721	14500	16.20	20	-1	0.04	10	3.20	3650	3	0.01	-1	800	4	1.44	-2	4	33	-20	0.05	-10	-10	56	10	30
	16TROP038A 16TROP038B		14500 214							3650 2070		0.01		800		0.44				-20						30
Tarn	16TROP038B	M456722	214	5.29	10	-1	0.28	10	1.36	2070	1	0.01	-1	870	2	0.44	-2	2	53	-20	0.05	-10	-10	41	-10	
Tarn	16TROP038B			5.29	10	-1	0.28	10		2070	1	0.01	-1		2		-2		53	-20		-10	-10		-10	
Tarn	16TROP038B 16TROP044	M456722	214	5.29 0.62	10 -10	-1	0.28	10 -10	1.36	2070 339	1	0.01	-1	870	2	0.44	-2 -2	2	53	-20	0.05	-10	-10	41	-10	1
Tarn Tarn Falcon	16TROP038B 16TROP044 16TROP051	M456722 M456723 M456724	214 400 338	5.29 0.62 1.26	<u>-10</u> -10	<u>-1</u> -1 -1	0.28 0.05 0.25	<u>10</u> -10 20	1.36 0.03 0.27	2070 339 633	1	0.01	<u>-1</u> -1	870 40 240	2 5 7	0.44 0.06 0.04	-2 -2 -2	2 -1 1	53 4 10	-20 -20 -20	0.05 -0.01 0.01	<u>-10</u> -10	-10 -10 -10	41 2 7	-10 -10	15
Tarn Tarn Falcon	16TROP038B 16TROP044 16TROP051	M456722 M456723	214 400 338	5.29 0.62 1.26	<u>-10</u> -10	<u>-1</u> -1 -1	0.28 0.05 0.25	<u>10</u> -10 20	1.36 0.03 0.27	2070 339 633	1	0.01	<u>-1</u> -1	870 40 240	2 5 7	0.44	-2 -2 -2	2 -1 1	53 4 10	-20 -20	0.05 -0.01 0.01	<u>-10</u> -10	-10 -10 -10	41 2 7	-10 -10	1
Tarn Tarn Falcon Falcon	16TROP038B 16TROP044 16TROP051 16TROP053	M456722 M456723 M456724 M456725	214 400 338 27400	5.29 0.62 1.26 7.83	<u>-10</u> -10 -10	-1 -1 -1	0.28 0.05 0.25 0.04	10 -10 20 10	1.36 0.03 0.27 0.47	2070 339 633 739	1 2 1 174	0.01 0.01 0.05 0.01	<u>-1</u> -1 5	870 40 240 640	2 5 7 113	0.44 0.06 0.04 5.26	-2 -2 -2 -2	2 -1 1 1	53 4 10 93	-20 -20 -20 -20	0.05 -0.01 0.01 0.09	-10 -10 -10	-10 -10 -10	41 2 7 19	-10 -10 -10	15
Tarn Tarn Falcon Falcon	16TROP038B 16TROP044 16TROP051 16TROP053 16TROP056	M456722 M456723 M456724	214 400 338	5.29 0.62 1.26	<u>-10</u> -10 -10	-1 -1 -1	0.28 0.05 0.25	10 -10 20 10	1.36 0.03 0.27	2070 339 633 739	1 2 1 174	0.01 0.01 0.05 0.01	<u>-1</u> -1 5	870 40 240 640	2 5 7	0.44 0.06 0.04 5.26	-2 -2 -2 -2	2 -1 1 1	53 4 10 93	-20 -20 -20	0.05 -0.01 0.01 0.09	-10 -10 -10	-10 -10 -10	41 2 7 19	-10 -10 -10	15

Appendix D Analytical Certificates

To: SEVEN DEVILS EXPLORATION LTD. 3417 SLOCAN ST. VANCOUVER BC V5M 3E7 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 24- SEP- 2016 Account: SEDEXP

Project: Seven Devils BC

		CERTIFICATE CO	VINIENTS	
			ATORY ADDRESSES	
		uver located at 2103 Dollarton Hwy, No		
Applies to Method:	Ag-OG46	Au- ICP21	CRU- 31	CRU- QC
	Cu- OG46	LOG-21	ME-ICP41	ME-OG46
	PUL- 31	PUL- QC	SPL-21	WEI-21

CERTIFICATE VA16141462

Project: Seven Devils BC

This report is for 26 Rock samples submitted to our lab in Vancouver, BC, Canada on 24-AUG-2016.

The following have access to data associated with this certificate:

JOHN BRADFORD

TYLER RUKS

To: SEVEN DEVILS EXPLORATION LTD. 3417 SLOCAN ST. VANCOUVER BC V5M 3E7 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 24- SEP- 2016 This copy reported on 18- NOV- 2016 Account: SEDEXP

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
CRU- QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% < 2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% < 75 um	

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Cu-OG46	Ore Grade Cu - Aqua Regia	ICP- AES
Au-ICP21	Au 30g FA ICP- AES Finish	ICP- AES
ME- ICP4 1	35 Element Aqua Regia ICP-AES	ICP- AES
Ag-OG46	Ore Grade Ag - Aqua Regia	ICP- AES

To: SEVEN DEVILS EXPLORATION LTD. ATTN: JOHN BRADFORD 3417 SLOCAN ST. VANCOUVER BC V5M 3E7

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: SEVEN DEVILS EXPLORATION LTD. 3417 SLOCAN ST. VANCOUVER BC V5M 3E7

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 24- SEP- 2016 Account: SEDEXP

Project: Seven Devils BC

								2								
	Method	WEI-21	Au-ICP21	ME-ICP41	ME- ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41						
	Analyte	Recvd Wt.	Au	Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
Sample Description	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
bample Description	LOR	0.02	0.001	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
M456701		1.56	0.089	1.0	0.55	7	<10	200	<0.5	<2	0.04	<0.5	<1	3	57	3.87
M456702		1.28	0.172	0.6	0.36	100	<10	40	<0.5	<2	0.02	<0.5	4	2	14	2.72
M456703		1.26	0.024	0.4	1.20	18	<10	30	<0.5	3	0.33	1.6	4	4	524	3.47
M456704		1.56	0.077	1.4	1.48	14	<10	30	<0.5	<2	0.13	<0.5	19	5	1365	10.85
M456705		1.76	0.001	0.3	0.88	3	<10	160	<0.5	2	0.88	7.8	5	7	368	2.21
M456706		1.10	0.038	1.7	0.95	3	<10	200	<0.5	3	0.09	<0.5	4	4	325	4.58
M456707		0.84	0.218	2.5	1.22	6	<10	330	<0.5	37	0.51	<0.5	12	6	3250	4.01
M456708		1.84	1.330	6.7	0.89	22	<10	40	<0.5	88	0.04	<0.5	23	11	4810	3.51
M456709		1.44	0.001	0.2	1.10	2	<10	80	<0.5	<2	1.65	<0.5	4	6	737	2.48
M456710		1.10	0.022	6.9	1.09	26	<10	10	<0.5	57	0.07	<0.5	459	5	48	8.98
M456711		1.02	0.028	7.2	1.83	18	<10	10	<0.5	8	0.23	<0.5	47	2	>10000	15.45
M456712		0.94	0.045	21.6	2.68	7	<10	10	<0.5	9	0.69	<0.5	110	<1	>10000	21.6
M456713		1.08	0.063	10.6	0.99	3	<10	380	<0.5	7	0.84	<0.5	8	6	2040	3.26
M456714		1.46	0.003	0.3	1.69	2	<10	110	<0.5	<2	0.36	<0.5	7	4	140	4.83
M456715		1.38	0.324	52.6	3.70	8	<10	80	1.0	<2	3.81	3.6	30	4	>10000	5.04
M456716		1.64	<0.001	0.8	1.13	2	<10	240	<0.5	<2	1.29	3.4	6	6	504	2.26
M456717		1.04	<0.001	<0.2	1.06	<2	<10	200	<0.5	<2	0.72	<0.5	6	5	194	2.29
M456718		0.82	0.004	19.6	1.81	<2	<10	160	<0.5	<2	1.28	<0.5	12	3	3700	3.19
M456719		1.30	2.56	12.6	0.50	23	<10	20	<0.5	90	1.23	<0.5	27	8	>10000	4.86
M456720		0.56	1.100	>100	0.50	48	<10	220	<0.5	237	0.05	<0.5	11	7	>10000	4.31
M456721		0.48	0.059	7.6	5.31	18	<10	20	<0.5	2	1.24	<0.5	206	1	>10000	16.20
M456722		1.10	0.004	0.2	2.53	4	<10	50	<0.5	<2	2.59	<0.5	25	3	214	5.29
M456723		0.92	0.003	0.8	0.11	2	<10	30	<0.5	<2	0.14	<0.5	1	9	400	0.62
M456724		1.44	0.005	0.5	0.72	3	<10	50	<0.5	<2	0.49	<0.5	5	5	338	1.26
M456725		0.94	0.083	26.2	1.28	3	<10	50	<0.5	26	0.96	<0.5	18	4	>10000	7.83
M456726		0.24	0.006	1.6	0.73	10	<10	430	<0.5	2	1.14	28.4	7	3	317	1.87

To: SEVEN DEVILS EXPLORATION LTD. 3417 SLOCAN ST. VANCOUVER BC V5M 3E7

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 24- SEP- 2016 Account: SEDEXP

Project: Seven Devils BC

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
M456701 M456702 M456703 M456704 M456705		<10 <10 <10 10 <10	1 <1 <1 <1	0.24 0.41 0.07 0.13 0.11	10 10 10 <10 10	0.17 0.02 0.99 0.61 0.59	117 28 329 574 638	21 3 3 22 1	0.16 0.04 0.10 0.03 0.05	<1 <1 2 2 1	840 200 740 390 490	9 89 8 56 202	1.13 1.93 2.96 7.03 0.12	<2 2 <2 <2 <2 <2	3 1 4 3 3	116 31 35 10 33
M456706 M456707 M456708 M456709 M456710		10 10 <10 <10 <10	<1 <1 <1 <1 <1 1	0.16 0.14 0.06 0.18 0.07	<10 10 <10 10 <10	0.66 0.59 0.42 0.70 0.50	253 1010 588 796 622	12 2 301 1 14	0.06 0.05 0.01 0.04 0.01	<1 2 2 1 7	1100 660 80 680 30	7 9 47 <2 9	0.52 0.33 1.15 0.08 7.25	<2 <2 <2 <2 <2 <2	3 2 1 4 1	12 62 3 18 3
M456711 M456712 M456713 M456714 M456715		10 10 <10 10 20	<1 1 <1 1 <1	0.03 0.02 0.03 0.29 0.01	<10 10 <10 10 10	0.78 1.73 0.34 1.15 2.17	880 2290 754 1150 1565	3 3 6 3 <1	<0.01 0.01 <0.01 0.04 0.05	<1 1 <1 1 9	470 410 360 1510 2110	8 4 78 9 12	4.07 2.61 0.19 2.39 0.24	<2 <2 <2 <2 <2 <2	2 2 1 3 11	34 17 121 9 189
M456716 M456717 M456718 M456719 M456720		<10 <10 10 <10 <10	<1 <1 <1 <1 <1	0.13 0.18 0.03 0.16 0.03	10 10 10 <10 <10	0.81 0.75 1.24 0.18 0.22	787 688 926 673 345	1 <1 65 16	0.05 0.05 0.07 0.01 0.01	3 2 3 2 1	510 500 1200 70 80	1030 7 10 92 110	0.10 0.03 0.03 3.82 0.55	<2 <2 <2 2 2 <2	3 2 4 <1 1	32 17 164 25 19
M456721 M456722 M456723 M456724 M456725		20 10 <10 <10 <10	<1 <1 <1 <1 <1	0.04 0.28 0.05 0.25 0.04	10 10 <10 20 10	3.20 1.36 0.03 0.27 0.47	3650 2070 339 633 739	3 1 2 1 174	0.01 0.01 0.05 0.01	<1 <1 <1 <1 5	800 870 40 240 640	4 2 5 7 113	1.44 0.44 0.06 0.04 5.26	<2 <2 <2 <2 <2 <2	4 2 <1 1 1	33 53 4 10 93
M456726		<10	<1	0.18	20	0.56	809	2	0.05	3	780	4290	0.28	<2	5	36

To: SEVEN DEVILS EXPLORATION LTD. 3417 SLOCAN ST. VANCOUVER BC V5M 3E7

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 24- SEP- 2016 Account: SEDEXP

Project: Seven Devils BC

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME- ICP41 Zn ppm 2	Ag- OG46 Ag ppm 1	Cu- OG46 Cu % 0.001	
M456701 M456702 M456703 M456704 M456705		<20 <20 <20 <20 <20	0.06 <0.01 0.08 0.07 0.08	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	34 4 57 80 51	<10 <10 <10 <10 <10	26 23 192 63 600			
M456706 M456707 M456708 M456709 M456710		<20 <20 <20 <20 <20	0.08 0.03 0.01 0.08 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	57 39 18 48 13	<10 <10 <10 <10 420	28 83 52 78 40			
M456711 M456712 M456713 M456714 M456715		<20 <20 <20 <20 <20	0.07 0.04 0.09 <0.01 0.47	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	42 37 21 44 169	10 40 10 <10 <10	78 157 93 96 176		2.52 3.64 1.610	
M456716 M456717 M456718 M456719 M456720		<20 <20 <20 <20 <20	0.03 0.01 0.30 <0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	40 39 81 7 82	<10 <10 <10 <10 <10	281 68 85 21 28	158	1.775 3.19	
M456721 M456722 M456723 M456724 M456725		<20 <20 <20 <20 <20	0.05 0.05 <0.01 0.01 0.09	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	56 41 2 7 19	10 <10 <10 <10 <10	303 151 4 43 68		1.450 2.74	
M456726		<20	<0.01	<10	<10	15	<10	1890		Angele d Leo	