

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

AUTHOR(S): Donald Bunce, Michael Mee, Christopher Stevens SIGNATURE(S): NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-1-817, Nov 2013 to Mar 2019 YEAR OF WORK: STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5646990, April 25, 2017 PROPERTY NAME: Jade Fever Jade Fever CLAIM NAME(S) (on which the work was done): Jade Fever 5 Tenure No. 838284, Jade Fever 6 Tenure No. 918229 COMMODITIES SOUGHT: Nephrite Nephrite MINING DIVISION: Liard Mining Division NTS/BCGS: 104J/080 LATITUDE: 58	TYPE OF REPORT [type of survey(s)]: Geological & Prospecting	TOTAL COST: \$38,706.73
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5646990, April 25, 2017 PROPERTY NAME: Jade Fever CLAIM NAME(S) (on which the work was done): Jade Fever 5 Tenure No. 838284, Jade Fever 6 Tenure No. 918229 COMMODITIES SOUGHT: Nephrite MINING DIVISION: Liard Mining Division MINING DIVISION: Liard Mining Division ATITUDE: 58	AUTHOR(S): Donald Bunce, Michael Mee, Christopher Stevens	SIGNATURE(S):
PROPERTY NAME: Jade Fever CLAIM NAME(S) (on which the work was done): Jade Fever 5 Tenure No. 838284, Jade Fever 6 Tenure No. 918229 COMMODITIES SOUGHT: Nephrite MINING DIVISION: Liard Mining Division ATTUDE: 58	NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-1-817, Nov 201	13 to Mar 2019 YEAR OF WORK: 201
CLAIM NAME(S) (on which the work was done): Jade Fever 5 Tenure No. 838284, Jade Fever 6 Tenure No. 918229 COMMODITIES SOUGHT: Nephrite MINING DIVISION: Liard Mining Division MINING DIVISION: Liard Mining Division ATTITUDE: 58	STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S)	: <u>5</u> 646990, April 25, 2017
COMMODITIES SOUGHT: Nephrite MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: MINING DIVISION: Liard Mining Division ATITUDE: 58	PROPERTY NAME: Jade Fever	
MINING DIVISION: Liard Mining Division LATITUDE: 58	CLAIM NAME(S) (on which the work was done): Jade Fever 5 Tenure	No. 838284, Jade Fever 6 Tenure No. 918229
MINING DIVISION: Liard Mining Division NTS/BCGS: 104J/080 LATITUDE: 58		
DWNER(S): Donald Bunce 2) Robin Bunce ALILING ADDRESS: 21670 Chief Lake Rd. Prince George B.C. V2K 5K5 Donald Bunce 2) Robin Bunce PO BOX B8 Jade City B.C. V0C 1E0 PERATOR(S) [who paid for the work]: Donald Bunce 2) Robin Bunce PO BOX B8 Jade City B.C. V0C 1E0 PO BOX B8 Jade City B.C. V0C 1E0 PO BOX B8 Jade City B.C. V0C 1E0 PO BOX B8 Prince George B.C. V2K 5K5 Jade City B.C. V0C 1E0		NTS/BCGS: 104J/080
21670 Chief Lake Rd. Prince George B.C. V2K 5K5 Prince George B.C. V2K 5K5 Donald Bunce PO BOX B8 Jade City B.C. V0C 1E0 ROPERATOR(S) [who paid for the work]: 2) Robin Bunce PO BOX B8 Jade City B.C. V0C 1E0 PO BOX B8 Jade City B.C. V0C 1E0 PO BOX B8 Jade City B.C. V0C 1E0 ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):	DWNER(S):	(at centre of work)
PERATOR(S) [who paid for the work]: Donald Bunce 2) Robin Bunce AILING ADDRESS: 21670 Chief Lake Rd. Prince George B.C. V2K 5K5 Prince George B.C. V2K 5K5 AILING ADDRESS: Dade City B.C. V0C 1E0 ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):	**************************************	PO BOX B8
AlLING ADDRESS: 21670 Chief Lake Rd. Prince George B.C. V2K 5K5 Prince George B.C. V2K 5K5 Prince George B.C. V2K 5K5 Alling Address: 21670 Chief Lake Rd. PO BOX B8 Jade City B.C. V0C 1E0 ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):	Prince George B.C. V2K 5K5	Jade City B.C. V0C 1E0
21670 Chief Lake Rd. Prince George B.C. V2K 5K5 Prince George B.C. V2K 5K5 Jade City B.C. V0C 1E0 ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):		2) Robin Bunce
ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude):	**************************************	PO BOX B8
ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude): Gerpentinite, Nephrite, Cache Creek Complex, Cache Creek Terrane, Quesnellia Terrane, Dease Lake, Sawmill Point	Prince George B.C. V2K 5K5	Jade City B.C. V0C 1E0
The state of the s	ROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, Gerpentinite, Nephrite, Cache Creek Complex, Cache Creek Tei	alteration, mineralization, size and attitude): rrane, Quesnellia Terrane, Dease Lake, Sawmill Point,
heibert Fault		

TYPE OF WORK IN EXTENT OF WORK (IN METRIC UNITS)			APPORTIONED (incl. support)
SEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation	Mind and a survey of a survey		
SEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other	***************************************		The state of the s
Airborne			
EOCHEMICAL number of samples analysed for)			
Soil			
Rock			
Other		_	
RILLING otal metres; number of holes, size)			
Core			
Non-core			
ELATED TECHNICAL			
Sampling/assaying 68 lithogeoc	hemical samples	Tenure No. 838284	\$2,549.32
Petrographic	1000 TO 1000 T		
Mineralographic		21/10/2007	AUTO OF THE PARTY
Metallurgic			
ROSPECTING (scale, area) 2.65 squ	are km	TenureNo. 838284, TenureNo. 918229	\$12,150.90
REPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/tra	il 0.862 km	Tenure No. 838284	\$5,183.32
Trench (metres) 30.2 m		Tenure No. 838284	\$657.26
Underground dev. (metres)	· · · · · · · · · · · · · · · · · · ·		
Other Labour, Room & Board,		Tenure No. 838284	\$18,165.93
		TOTAL COST:	\$38,706.73

GEOLOGICAL ASSESSMENT REPORT ON THE
JADE FEVER PROPERTIES
OF THE CASSIAR REGION,
NORTHERN BRITISH COLUMBIA

BC Geological Survey Assessment Report 36616

Report Prepared by:

Quartz Creek Development Ltd.

GEOLOGICAL SURVEY BRANCH
ASSESSMENT REPORT

36,616

GEOLOGICAL ASSESSMENT REPORT ON THE JADE FEVER PROPERTIES OF THE CASSIAR REGION, NORTHERN BRITISH COLUMBIA

UTM NAD 83 09 E472899 N6574663

Latitude 58°45'42"N Longitude 130°05'03"W

Prepared by:

Quartz Creek Development Ltd.

19611 Westminster Hwy N Richmond, BC V6V 1B2

Email: mmee@quartzcreekds.com

Website: www.quartzcreekdevelopment.com

Document Number:

207.03.20.ASM.005

Effective Date:

June 22th, 2017

Signature Date:

June 22th, 2017

Authored by:

Christopher D Stevens, M. Sc.

Christopher Stavens

Exploration Geologist

Quartz Creek Development Ltd.

Authored by:

Michael Mee, E.I.T.

Project Engineer

Quartz Creek Development Ltd.

TABLE OF CONTENTS

1.0	Disclaimer	1
2.0	Executive Summary	2
3.0	Introduction	3
3.1	Information and Data Sources	3
4.0	Property Description and Location	4
	Location and Access	4
4.1	Tenure	5
	Status of Mining Titles	5
4.3	Status of Mining Titles	7
5.0	Setting	7
5.1	Climate and Physiography	7
5.2	Vegetation	7
5.3	Infrastructure	7
5.4	Site History	۱
6.0	Geologic Setting	0
6.1	Regional Geology	c
6.2	Local Geology	&
7.0	2016 Jade Fever Exploration Program	10
7.1	Trail Construction, Trenching, and Sampling	1
7.2	Geological Field Assessment	1
8.0	Conclusions	12
24272	Recommendations	12
9.0	Statement of Qualifications	14
10.0	4.3000410	1
110	Pafarances	

A DOENDICE	S	16
	2016 Work Area and Trench Locations	A-1
Appendix A	2016 Exploration Trail And Trenche Photos	B-1
Appendix B Appendix C	2016 Exploration Trench Sample Locations	C-1
Appendix D	2016 Bureau Veritas Geochemistry Analysis Results	D-6
Appendix E	2016 Jade Fever Exploration Program Cost Statements	E-1
Appendix F	2016 Jade Fever Exploration Program Field Notes	F-1
, dele er iens,	TERMINOVER CONTRACTOR OF A CON	

Figure 1 – Jade Fever Property location	4
Figure 2 – Jade Fever Tenure location and boundaries.	
Figure 3 - Geologic Terranes in the Dease Lake region (Gabrielse 1998)	8
Figure 4 - Jade Fever bedrock geology.	10
Table 1 – Jade Fever Property Land Title Information	5

1.0 DISCLAIMER

Quartz Creek Development Ltd. (the "Consultant") has been retained by Mr. Donald William Bunce (the "Client") to prepare an Assessment Report based on exploration work done on the Jade Fever Property in 2016. The Jade Fever Property is located 41 km north of Dease Lake, British Columbia. Conditions and limitations of use apply to this report. The report may be used by the Client or his nominees in connection with it's review of the Jade Fever 4,5,6,7,8 mineral titles (Tenures 666783,838284,918229,918269,1001902) (collectively the "Property") and their existing and potential opportunities. The Consultant accepts no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on this report.

This report was prepared for Mr. Donald William Bunce by the Consultant using information provided by the Client. The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in the Consultant's services, based on information available at the time of preparation, data supplied by outside sources, and assumptions, conditions, and qualifications set forth in this report. This report is intended for internal use only by the Client, subject to the terms and conditions of its contract with the Consultant. This contract does not permit the client to file this report as a Technical Report with Canadian Securities Regulatory Authorities pursuant to National Instrument 43-101, Standards of Disclosure for Mineral Projects. Except for the purposes legislated under provincial securities law, any other uses of this report by any third party is at that party's sole risk.

While it is believed that the information contained herein is reliable under the conditions and subject to the limitations set forth herein, this report is based in part on information not within the control of the Consultant, and the Consultant does not guarantee the validity or accuracy of conclusions or recommendations based upon that information. While the Consultant has taken all reasonable care in producing this report, it may still contain inaccuracies, omissions, or typographical errors, and any reader other than the client should do their own due diligence in verifying the facts and data presented in this report.

The report is intended to be read as a whole, including the Executive Summary and Appendices, and sections should not be read or relied upon out of context. This report is not intended to be a National Instrument (NI) 43-101 compliant report due to the nature of the data available for this project. It is not intended to be used for public disclosure, but only for the exclusive use of the client, who can share this report with whoever he feels appropriately qualified to review it with permission by the Consultant. The writer has used a format and procedure that is an accepted format for this type of analysis and evaluation. The information contained in this technical report may not be modified unless the Client has obtained the Consultant's express permission. The information contained in this technical report may not be reproduced in any form, electronic or otherwise, except by the Client for the Client's designated use and as per agreement with Quartz Creek Development Ltd.

2.0 EXECUTIVE SUMMARY

The Jade Fever property consists of 5 mineral titles located 42 km north of Dease Lake, British Columbia. The property is 50% owned by Mr. Donald William Bunce and 50% owned by Robin Neil Bunce. Mr. Donald William Bunce ("the Client") retained Quartz Creek Development Ltd. ("Quartz Creek") to prepare an assessment report based on the 2016 Jade Fever exploration program. This report summarizes the exploration and reclamation work conducted on the property 2016. Trenching and geochemical sampling was conducted by Donald Bunce from June 15, 2016 to September 11, 2016. Donald Bunce retained Quartz Creek Development to conduct a geological field assessment of the property from July 7, 2016 to July 13, 2016. The total cost of the exploration work and geochemical analysis conducted by Donald Bunce was \$26,555.88 and the total cost for exploration work conducted by Quartz Creek Development was \$12,150.90. Total exploration and reclamation expenses for the Jade Fever property in 2016 were \$38,706.73.

3.0 INTRODUCTION

The Jade Fever property ("the Property") consists of 5 mineral titles located 42 km north of Dease Lake, British Columbia. The property is 50% owned by Mr. Donald William Bunce and 50% owned by Robin Neil Bunce. Mr. Donald William Bunce retained Quartz Creek Development Ltd. ("Quartz Creek") to prepare an assessment report based on the 2016 Jade Fever exploration program.

The 2016 Jade Fever exploration program consisted of exploration work conducted by Donald Bunce and Quartz Creek. Trenching and geochemical sampling was conducted by Donald Bunce from June 15, 2016 to September 11, 2016. Donald Bunce retained Quartz Creek Development to conduct a geological field assessment of the property from July 7, 2016 to July 13, 2016. The objective of the 2016 Jade Fever exploration program was to further characterize site geology and to provide recommendations for future exploration work.

3.1 INFORMATION AND DATA SOURCES

This assessment report is based on trenching information and geochemical data provided by Donald Bunce and the field assessment conducted by Quartz Creek Development. The geochemical analysis results from 68 rock samples are included in Appendix D. Trail construction and trenching details including photos of the trenches are included in Appendix A and Appendix C

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 LOCATION AND ACCESS

The Property is located approximately 42 km north of Dease Lake, British Columbia along Highway 37 (Figure 1). The Property is roughly 600 m east of Highway 37 and many parts of the Property can be reached using pre-existing access roads. Parts of the Property that are inaccessible by road are accessed on foot and using all-terrain vehicles. Exploration trails have been constructed by the owner since 2011. Exploration trails constructed in 2016 are shown in Appendix A.

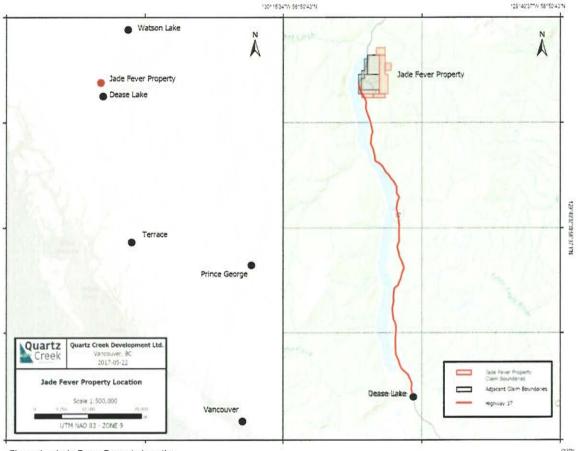


Figure 1 – Jade Fever Property Location.

4.2 TENURE

The Jade Fever property consists of 5 mineral titles listed in Table 1. Donald Bunce began acquiring the Jade Fever mineral titles in 2009. In 2012, Donald Bunce entered an agreement with Robin Bunce where each party assumed 50% ownership of the Property. The following operations have taken place on the Property under the management of Donald Bunce:

2011: Trail construction, trenching, and geochemical sampling

2012: Trail construction, trenching, and geochemical sampling

2015: Trail construction, trenching, and geochemical sampling

2016: Trail construction, trenching, geochemical sampling, geological field mapping

4.3 STATUS OF MINING TITLES

The Property consists of 5 mineral titles (Figure 2) covering a total area of 721.6 ha. The mineral titles are listed in Table 1.

Table 1 - Jade Fever Property Land Title Information

Tenure No.	Claim Name	Owner	Interest	In Good Standing To	Area (ha)
666783	JADE FEVER 4	Bunce, Donald William	50%	June 30, 2020	67.2
838284	JADE FEVER 5	Bunce, Donald William	50%	June 30, 2020	67.2
918229	JADE FEVER 6	Bunce, Donald William	50%	June 30, 2020	419.5
918269	JADE FEVER 7	Bunce, Donald William	50%	June 30, 2020	100.6
1001902	JADE FEVER 8	Bunce, Donald William	50%	June 30, 2020	67.1
				TOTAL	721.6

Note - The status of listed mining title in this section was obtained by means of public information through the Province of British Columbia Mineral Titles Online (BC MTO) land tenure database.

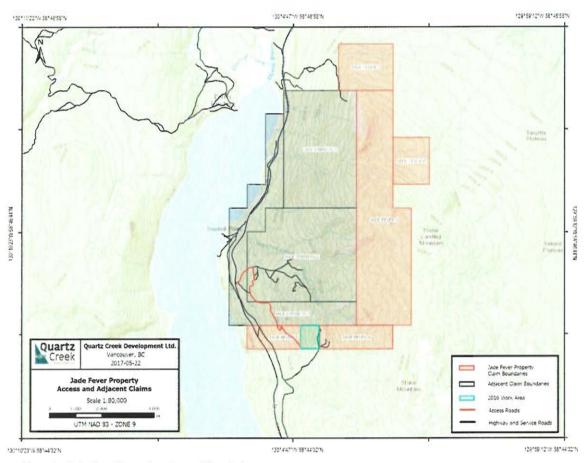


Figure 2 – Jade Fever Tenure Location and Boundaries.

5.0 SETTING

5.1 CLIMATE AND PHYSIOGRAPHY

The climate at the Property consists of cool, wet summer and colder, snowfall winter months. Temperatures range from -30 to 0 °C in the winter months and near 0 to 20 °C in the summer months. An average monthly precipitation of 43 mm of rainfall is expected between May and October. An average monthly snowfall precipitation of 30 cm is expected from October to April, with an average of 45 cm of snowfall in the month of December. The typical field season for exploration and development in the region is from mid-May till end of September.

5.2 VEGETATION

The Property is located within the Stikine Plateau Eco-section. The cold Boreal White and Black Spruce forests grow in the large wide valley bottoms. Black spruce commonly grows around wetlands and muskeg and white spruce grows on deeper alluvial soils. The lower to mid-slopes are dominated by scrubby, cold Spruce-Willow-Birch forests. Alpine vegetation is limited to Level Mountain and a few of the higher ridges, it can be lush and grass rich above tree line, but on Level Mountain wetlands and muskeg predominate (Ministry of Environment, BC Government).

5.3 INFRASTRUCTURE

There is no existing infrastructure on or adjacent to the Property other than unpaved access roads. Highway 37 is located approximately 600 m east of the Property. There are no nearby cell towers and therefore no cellular reception on the Property. Closest infrastructure is located at the town of Dease Lake, approximately 42 km south of the Property. In this way, Dease Lake Airport (YDL) is located in town and direct air service is available to Prince George and Smithers. The Dease Lake power generating station is located 30 km east of Dease Lake. The station has a 3 MW capacity and provides electricity to the town.

5.4 SITE HISTORY

Nephrite boulders were first identified near Sawmill Point along Highway 37 in the 1960s. Exploration in the area during the 1960s identified numerous nephrite boulders along Sawmill Creek. Assessment Report 29457 prepared by Dynasty Jade Ltd. indicated that Dynasty Jade Ltd. also prospected in the area but the date of the prospecting work is unknown.

As previously mentioned Donald Bunce began acquiring the Jade Fever mineral titles in 2009. In 2011 Donald Bunce excavated 5 trenches, collected 10 rock samples, and constructed an exploration trail on Jade Fever 4 mineral claim. In 2012 Donald Bunce excavated 4 trenches, collected 10 rock samples, and continued construction of an exploration trail on Jade Fever 4 claim. In 2015 exploration work was conducted on the Jade Fever 5 claim. Donald Bunce excavated 5 trenches, collected 35 rock samples, and constructed 324 m of exploration trails. The rock samples were sent to a laboratory for geochemical analysis. Lab results indicated high concentrations of Ni, Cr, Cu, Co, and Mn consistent with the known elemental composition of serpentinite rock. This is an indicator of jade deposit in the region.

6.0 GEOLOGIC SETTING

6.1 REGIONAL GEOLOGY

The Jade Fever Property is located along the contact of the Cache Creek Terrane and the Quesnellia Terrane (Figure 3). Information on the regional geology is primarily based on Geological Survey of Canada Bulletin 504 (1998).

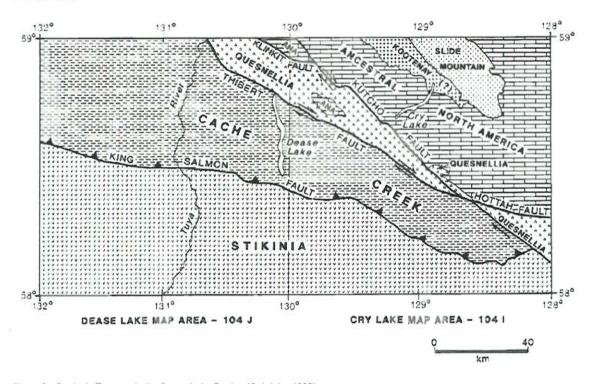


Figure 3 - Geologic Terranes in the Dease Lake Region (Gabrielse 1998).

The Cache Creek Terrane ranges in age from Devonian to Early Jurassic and consists of oceanic and island arc assemblages, including radiolarian chert, argillite, limestone, basalt, diorite, gabbro and ultramafic rock types. The Quesnellia Terrane consists of Mesozoic island arc lithologies including a volcanic and plutonic assemblage and a clastic sedimentary sequence that includes pebble conglomerate, greywacke, and shale (Gabrielse 1998).

The Cache Creek Terrane and Quesnellia Terrane has been heavily deformed during accretion to the Northern American Continent during the Early to Middle Jurassic. The Cache Creek Terrane is intensely foliated, fragmented and folded. The Cache Creek Terrain and the Quesnellia Terrane are separated by the Thibert Fault. The Thibert fault is a dextral, transcurrent fault that is associated with quartz-carbonate alteration and highly sheared, lensoidal serpentinite bodies (Gabrielse 1998).

Cache Creek Terrain consists of three assemblages; the Cache Creek Complex, the Kutcho Formation, and the Sinwa and Inklin Formations. Ultramafic rocks of the Cache Creek Complex host jade occurrences. The most prevalent ultramafic rocks are composed of partly serpentinized dark green to black peridotite with 10 to 20% orthopyroxene. The ultramafic rocks show a succession of metamorphic events with increasing pressure, temperature, and metasomatism including serpentinization and nephrite crystallization. Jade is an alteration product associated with serpentinized peridotite and occurs as small, discontinuous lenses that can be up to 35 m long and 2 to 3 m wide. Jade has primarily been found in an 80 km long, 6 to 15 km wide belt of volcanic, sedimentary and ultramafic rocks bounded by the Thibert, Kutcho and Nahlin Faults (Gabrielse 1998).

6.2 LOCAL GEOLOGY

Much of the Property is located in the Cache Creek Complex but rocks of the Quesnellia Terrane are found in the northern part of the Jade Fever Property (Figure 4). The Property contains outcrops of the Kedahda Formation and ultramafics of the Cache Creek Complex. The exposed Kedahda Formation rocks are predominantly argillites and greywacke but the Kedahda Formation also includes marine sediments such as chert and volcanics. Serpentinite rock is also exposed on the Jade Fever Property. The Empress Property adjacent to the Jade Fever Property contains outcrops of elongated nephrite jade lenses that are associated with highly sheared serpentinized peridotite.

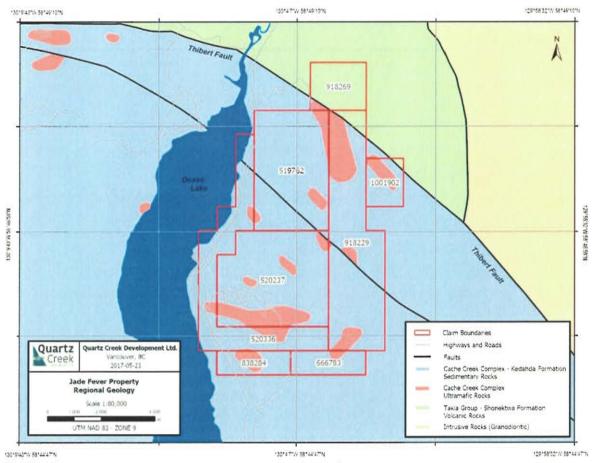


Figure 4 - Jade Fever Bedrock Geology.

7.0 2016 JADE FEVER EXPLORATION PROGRAM

The 2016 Jade Fever exploration program consisted of exploration work conducted by Donald Bunce and Quartz Creek. Trail construction, trenching, and sampling was conducted on Jade Fever 5 claim (Tenure 838284) by Donald Bunce between June 15, 2016 and September 11, 2016. A geological field assessment was also conducted by Quartz Creek between July 7, 2016 and July 13, 2016. The primary objective of the 2016 exploration program was to identify in-situ nephrite lens within the serpentinite rock. A secondary objective was to delineate the contacts between ultramafic rocks and meta-sediments rocks of the Kedahda formation.

7.1 TRAIL CONSTRUCTION, TRENCHING, AND SAMPLING

A map of the exploration work conducted by Donald Bunce is included in Appendix A. The total cost of the exploration work conducted by Donald Bunce is \$26,555.88. A statement of costs is provided in Appendix E. A total of 862 meters of exploration trail was constructed and 12 m of exploration trail was reclaimed as part of the 2016 exploration program. The average width of the trail is 1.5 m. The location of the exploration trail constructed in 2016 is shown in Appendix A. The trail was constructed using hand tools and a compact excavator (Kubota KX41).

Five trenches #TR23/16 through #TR27/16 were excavated. The location of the 5 trenches are shown in Appendix A. The total length of the trenches were 30.2 meters. The average width with side cast was 2.3 meters, and average depth of the trenches were 0.7 meters. Trenches TR23/16, TR24/16, and TR26/16 were fully reclaimed. Trench reclamation involved filling in the trenches and contouring the surface to match the natural slope of the land. Trench TR25/16 was partially reclaimed and TR27/16 was not reclaimed in 2016. TR25/16 and TR27/16 were not fully reclaimed because further investigation needs to be conducted on these trenches in 2017. Photos of the 5 trenches, trench reclamation and the exploration trail are included in Appendix B. The length, width, and dimensions of the side cast for each trench is listed in Appendix F.

A total of 68 rock samples were collected from outcrops and trenches on Jade Fever 5 (Tenure 838284) claim. 34 rock samples were taken from outcrops. 29 samples were collected from the 5 trenches. 5 additional samples were collected from outcrops on the Empress Property with permission of the property owner, Dease Lake Jade Mine Ltd. The Empress Property is located 1.5 km to the northwest of Jade Fever 5 (Tenure 838284). As expected based on the regional geology, the samples collected represent different lithologies including chert, argillite, slate and ultramafics. The location and lithologic description for each sample is provided in Appendix C. The samples collected from the Empress Property were intended to provide reference levels for nickel and chromium in meta-sedimentary rocks, serpentinite, and nephrite. All 68 rocks samples were sent to Acme Labs in Vancouver, BC and analyzed for 53 elements using ultratrace ICP-MS. Laboratory results for all samples are included in Appendix D.

7.2 GEOLOGICAL FIELD ASSESSMENT

A geological field assessment was carried out between July 7, 2016 and July 13, 2016 by Christopher Stevens and Justin Bunce of Quartz Creek Development Ltd. The program focused on locating lithologic contacts between serpentinite and meta-sediments of the Cache Creek Complex where nephrite lenses where likely to occur. Zones of white-rock alteration where also used as indicators of nephrite occurrences. White-rock alteration included talc, wollastonite, chlorite, and fine grained white-brown clay minerals.

The program began with a brief assessment of the exposed nephrite lenses of the adjacent Empress 1,2,3 property, located to the north of the Jade fever 5 Property and owned by Dease Lake Jade Mine Ltd. This was to gain an understating of the regional geological features required for nephrite occurrences in the surrounding area. The program then continued south to the Jade Fever 5 Property (Tenure 838284), where personnel examined features of interest detected by the claim owner, including areas surrounding reclaimed trenches from the 2015 Jade Fever Exploration Program. Noted features included peridotite transitioning to serpentine, preliminary inspection did not reveal any white rock alteration zones.

Geological assessment of the area towards the end of the 2016 exploration trail additions and test pits was then conducted at the eastern most claim boundary of the Jade Fever 5 Property (Tenure 838284). No favourable alteration zones such as those observed at the Empress Property were detected. Field personnel did note that extensive ground cover attributed to the height of the growing season greatly limited assessment of geological features and outcroppings.

Quartz Creek personnel then assessed the Jade Fever 6 Property (Tenure 918229) east of the Empress properties. The property was accessed by ATV and by foot. The area of focus (centered roughly at 130°4'47" W 58°46'44" N) was an ultramafic zone split down the center by cache creek sedimentary rocks (Figure 4). Some serpentinite contacts were observed, but steep terrain and dense ground cover greatly inhibited field work and access. Field personnel noted that the use of an airborne survey to locate preliminary areas of interest would be beneficial for future programs. Details of such surveys and recommendations can be found in Section 9.

The total cost for the geologic assessment conducted by Quartz Creek was \$12,150.90. A statement of costs for exploration work conducted by Quartz Creek is provided in Appendix E.

8.0 CONCLUSION

The 2016 Jade Fever Exploration Program results did reveal similarities with the geology of the adjacent Empress Property, indicating a potential for in-situ nephrite jade occurrences. A strategic program focusing on areas of known contacts between serpentinized peridotite and sedimentary rocks of the Cache Creek complex should now follow. Optical surveys of these areas by drone will aid in locating features and outcroppings, and help determine safer and more efficient access to remote sections of the Jade Fever Properties. Geophysical exploration methods followed by ongoing trail and trench development of contact zones will lead to a greater understanding of the viability of in-situ nephrite development for the Property.

9.0 RECOMMENDATIONS

Additional prospecting and geologic mapping of the Jade Fever Property is recommended to further characterize the spatial distribution of ultramafics across the Property. Geophysics can be used to determine the extent of the nephrite lenses at depth or additional lenses currently covered by vegetation. With the help of geophysical instruments, diamond drilling could then be used in areas of interest to determine the grade

variation with depth and to better define geological contacts and lithologies. If the new jade lenses are proven to be economically viable, a program for detailed site and property wide mapping along with a 3-D geological model for quarry activity permitting and road access should be completed. The continued extraction of nephrite sample cutting/polishing and new nephrite for bulk sampling should continue.

Geophysical and optical analysis may also include:

1. Orthomosaic Survey:

An orthomosaic survey by drone would aid in-situ deposit exploration for the Jade Fever Properties. High definition imagery and stitching software facilitates the detection of regional geological features over broad areas, spot areas of white-rock alteration which is a typical indicator of nearby nephrite mineralization, and could include site topography and images for building road access and diamond drill platforms. Orthomosaics allow technicians and geologists to access difficult terrain while mitigating disturbance, and provide a strong platform of imagery and topography for future site development.

Ground Penetrating Radar (GPR):

Ground penetrating radar using radar pulses to map the subsurface. Using electromagnetic radiation in the microwave band of the radio spectrum, GPR detects the reflected signals from subsurface structures such as large boulders of nephritic compositions. This method is typically used to determine the boundary between materials of different permittivities, such as alluvial gravel beds that could contain placer gold bodies by pinpointing traps in buried stream beds that have the potential for accumulating heavier particles. Typical depth for GPR in low conductivity materials is 30 m.

Ground Magnetics:

Ground magnetics is typically used for mineral deposits that are highly magnetic. It has also been implemented for the detection of magnetic lows due to geological alteration. Nephrite is a metasomatic alteration product that is commonly in contact with ultramafic magnetic serpentine and non-magnetic meta-sediments. Airborne magnetics broad resolution would not be able to detect nephrite; however, in a specified area, ground magnetics may be able to detect a sudden but not depleted drop in magnetism. Cassiar nephrite typically contains magnetic black inclusions in its mineralogy +/- serpentine minerals, depending on grade. Nephrite can also occur as inclusions within serpentinite and a magnetic low within an ultramafic unit may indicate a nephrite inclusion.

Detailed Gravity:

Detailed gravity may be applicable in nephrite exploration, as nephrites density exceeds that of its contact rocks. In general, nephrite specific gravity is between 2.95-3.01, whereas serpentine is 2.5-2.6, slate 2.7-2.8, chert 2.6 and limestone is 2.3-2.7 g/cm³. Most deposits of nephrite are also fault bound with metasedimentary units. Such faults can be detected by gravity lows on a gravity survey to aid in finding new locations for subsurface nephrite mineralization.

10.0 STATEMENT OF QUALIFICATIONS

- I, CHRISTOPHER D. STEVENS of Apt 902-330 Loretta Ave S, Ottawa, Ontario K1S 4E8 hereby certify that:
- 1. I graduated with a B.Sc. with Honors in Geology degree from Acadia University in 2010
- 2. I graduated with a M.Sc (Earth Science) degree from Carleton University in 2013
- 3. I have participated in the work program described herein and I am responsible for this report and the opinions expressed herein.
- 4. There are no material facts or material changes in the subject matter of this report that would mislead the reader

Signed in Ottawa, Ontario, on the 22 of June 2016.

Christopher Stavens

Christopher D. Stevens, M.Sc.

- I, MICHAEL MEE of 1929 West 3rd Avenue, Vancouver British Columbia V6J 1L3 hereby certify that:
- 1. I graduated with a BASc from the University of British Columbia in 2015.
- 2. I have participated in the work program described herein and I am responsible for this report and the opinions expressed herein.
- There are no material facts or material changes in the subject matter of this report that would mislead the reader.

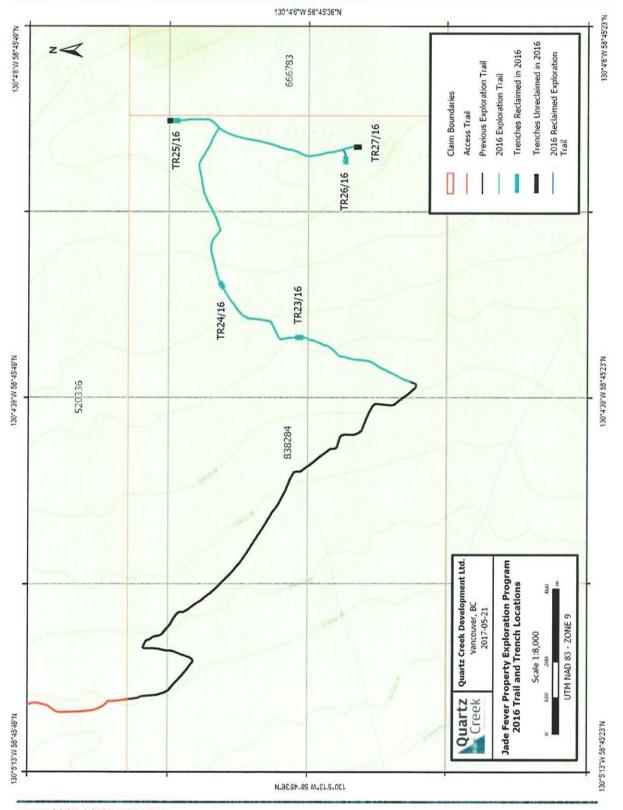
Signed in Vancouver, British Columbia, the 22 of June 2017.

Michael Mee, EIT

11.0 REFERENCES

Gabrielse, H. (1998). Geology of Cry Lake and Dease Lake maps areas, north-central British Columbia. Geological Survey of Canada, Bulletin 504.

APPENDICES


2016 Geological Assessment Report Jade Fever Properties

APPENDIX A

2016 Work Area and Trench Locations

APPENDIX B

2016 Exploration Trail and Trenches
Photos

Figure 5 Exploration Trench #TR23/16.

Figure 6 Exploration Trench #TR23/16 Marked and Filled.

Figure 7 Section of the Exploration Trail Between Trenches #TR22/16 and #TR23/16.

Figure 8 Section of the Exploration Trail Above Trench #TR24/16.

Figure 9 Exploration Trench #TR24/16.

Figure 10 Exploration Trench #TR24/16 Marked and Filled.

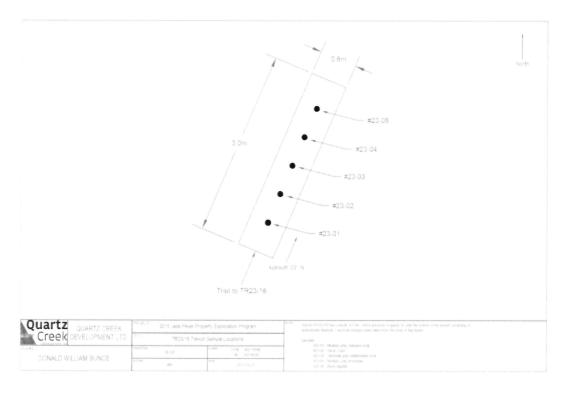
Figure 11 Exploration Trench #TR25/16.

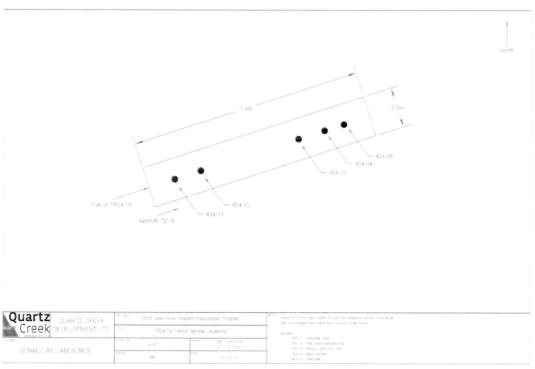
Figure 12 Exploration trench #TR25/16 marked and an estimated 8.2m filled. Roughly 4m remained unfilled and the far end of trench. Investigation of the remaining 4m will is scheduled for summer, 2017.

Figure 13 Exploration trench #TR26/16.

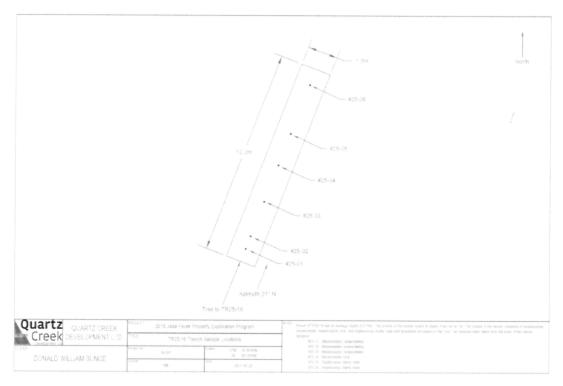
Figure 14 Exploration trench #TR26/16 marked, filled, and reclaimed.

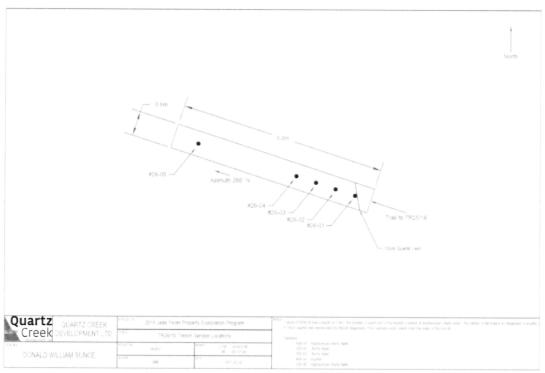
Figure 15 An 11.6-meter-long exploration trail leading to trench #TR26/16 reclaimed.

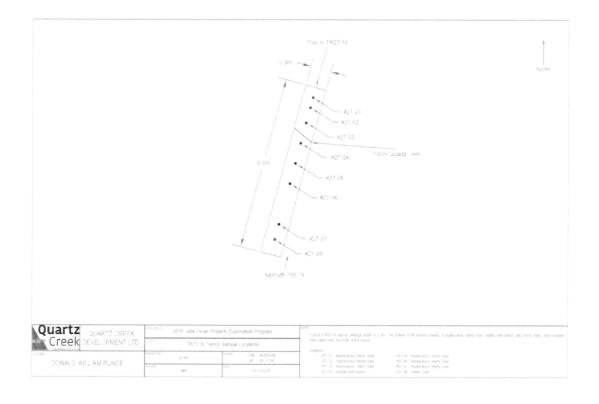

Figure 16 Exploration trench #TR27/16. The trench remained unfilled. Ongoing investigation is scheduled for summer, 2017.



APPENDIX C


2016 Exploration Trench Sample Locations





APPENDIX D

2016 Bureau Veritas Geochemistry Analysis Results

Client:

Donald Bunce 21670 Chief Lake Rd. Prince George British Columbia V2K 5K5 Canada

www.bureauveritas.com/um

Submitted By: Donald Bunce

Receiving Lab: Canada-Vancouver

Received: October 03, 2016

Report Date: November 16, 2016

Page 1 of 4

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

	ï	3			
		١			
	þ	į		į	
ľ	ŝ	þ	9	1	9
	b	į	į	į	į
ľ					
ľ					9
	3				į
	ī	j			
ļ	į	į	į	į	ì
ļ					
Ċ		į	i	į	i

CLIENT JOB	CLIENT JOB INFORMATION		SAMPLE PR	EPARATION	SAMPLE PREPARATION AND ANALYTICAL PROCEDURES			
Project: Shipment ID:	Jade Fever	Procedure Code		Number of Samples	Code Description	Test Wgt (g)	Test Wgt Report Status Lab (g)	Lab
P.O. Number Number of Samples:	89	PRP70-250 AQ251_EXT DRPI P		88 88	Crush, split and pulverize 250 g rock to 200 mesh 1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis Macchanics handling Alsoneting of animal	15	Completed	VAN
SAMPLE DISPOSAL	POSAL		DRRJT	27	Warehouse handling / Disposition of reject			VAN
DISP-PLP DISP-RJT	Dispose of Pulp After 90 days Dispose of Reject After 90 days		ADDITIONAL COMMENTS	COMMENT	S			

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

DOC: 2017.06.15.ASM.015

Invoice To:

BUREAU MINERAL LABORATORIES
VERITAS Carata

Prince George British Columbia V2K 5K5 Canada

Donald Bunce 21670 Chief Lake Rd.

Client:

Prince George British Columbia V2K 5K5 670 Chief Lake Rd. Donald Bunce Canada

Michael Mee

JEFFEY CANNON

S

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvat, preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.
*** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

BUREAU MINERAL LABORATORIES
VERITAS CARRAL

Bureau Veritas Commodities Canada Ltd.

CERTIFICATE OF ANALYSIS

www.bureauveritas.com/um

Donald Bunce 21670 Chief Lake Rd. Client:

Prince George British Columbia V2K 5K5 Canada

Project:

Jade Fever

November 16, 2016

Report Date:

8 of 3 Part 2 of 4 Page: 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

	Method	d WGHT	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251 A	AQ251 /	A0251	AQ251	A0251	A0251 A	A0251					
	Analyte	te Wgt	Mo	Cn	Pb	Zu	Ag	Z	රි	Mn	Fe	As	ם	Αn	F	10000	_	022	B		င္မ
	Unit	it kg	mdd	mdd	mdd	mdd	qdd	mdd	mdd	mdd	%	mdd	mdd	qdd	mdd	mdd	mdd	mdd	mdd	mdd	%
	MDL	L 0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	-	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	7	0.01
DWB16-001	Rock	0.19	0.51	66.77	10.94	38.7	168	14.6	6.2	393	1.47	8.9	0.2	1.2	1.8	34.2	0.24	0.10	0.14	37	2.81
DWB16-002	Rock	0.24	0.28	3.85	10.32	34.2	31	15.4	8.7	287	1.31	7.4	0.3	<0.2	1.5	133.7	0.29	0.10	60.0	51	2.10
DWB16-003	Rock	0.25	0.36	33.35	5.31	63.0	53	39.1	16.5	544	2.85	6.3	0.2	<0.2	1.1	155.2	0.16	0.11	0.04	48	2.36
DWB16-004	Rock	0.18	0.83	9.24	8.03	22.5	47	4.1	2.6	176	0.99	1.3	0.4	1.7	1.0	62.2	0.52	0.16	0.05	37	1.09
DWB16-005	Rock	0.26	0.20	6.61	<0.01	68.4	12	1987.9	107.9	841	2.99	0.1	<0.1	2.5	<0.1	3.0	1.02	1.28	<0.02	44	0.03
DWB16-006	Rock	0.21	0.13	13.20	6.50	97.9	37	27.3	8.5	476	2.86	6.4	0.3	0.4	1.0	33.9	0.10	0.11	0.04	54	1.33
DWB16-007	Rock	0.21	0.37	7.93	5.12	14.4	49	6.5	2.6	197	69.0	1.3	0.1	0.3	0.4	113.8	0.47	60.0	0.03	25	3.19
DWB16-008	Rock	0.16	1.26	33.47	10.81	47.1	22	9.2	1.4	82	1.55	1.3	9.0	2.2	3.7	7.0	0.13	0.28	0.18	10	0.03
DWB16-009	Rock	0.15	0.47	43.01	3.91	28.9	124	11.2	1.7	02	1.48	2.1	0.4	1.4	4.5	4.6	90.0	0.28	0.24	13	0.01
DWB16-010	Rock	0.21	0.37	16.01	7.18	30.6	18	9.5	5.4	184	0.92	3.8	0.3	0.3	1.2	42.5	0.19	0.15	0.05	29	1.03
DWB16-011	Rock	0.19	0.17	21.54	8.51	55.2	38	15.3	8.1	408	2.09	3.3	0.3	<0.2	1.9	47.2	0.29	90.0	80.0	54	1.57
DWB16-012	Rock	0.28	0.51	16.71	9.47	54.2	24	15.5	9.8	364	1.47	1.5	0.4	<0.2	1.2	75.5	0.48	0.10	0.05	52	2.10
DWB16-013	Rock	0.20	0.68	68.97	0.85	70.4	42	61.3	7.4	1326	1.76	9.0	0.2	<0.2	1.6	118.9	0.22	0.14	0.02	13	2.75
DWB16-014	Rock	0.22	0.27	100.95	1.22	76.9	44	51.2	29.9	1978	6.11	4.3	<0.1	9.0	0.1	11.4	0.12	0.10	<0.02	192	1.06
DWB16-015	Rock	0.17	0.16	121.17	0.34	87.0	47	48.7	40.6	1064	6.83	6.8	<0.1	0.5	0.1	18.9	0.25	0.15	<0.02	170	1.45
DWB16-016	Rock	0.34	0.10	133.64	0.87	67.5	43	55.2	37.8	666	5.74	2.9	<0.1	<0.2	0.2	9.8	0.16	0.10	<0.02	242	1.83
DWB16-017	Rock	0.20	0.10	109.78	2.27	58.8	59	36.6	24.4	752	4.21	0.7	<0.1	<0.2	<0.1	28.4	0.19	0.15	<0.02	119	2.23
DWB16-018	Rock	0.25	0.22	69.24	2.16	27.9	47	37.4	7.3	747	0.74	3.4	0.5	0.3	0.3	48.2	0.17	0.12	90.0	9	1.54
DWB16-019	Rock	0.25	0.29	20.00	4.90	29.9	14	21.5	8.9	009	06.0	1.2	0.1	<0.2	1.0	9.7	60.0	0.23	80.0	7	0.21
DWB16-020	Rock	0.27	0.12	94.72	0.19	70.8	28	47.3	29.4	1126	4.68	2.1	<0.1	<0.2	<0.1	105.4	0.37	0.20	<0.02	134	4.01
DWB16-021	Rock	0.30	0.08	108.73	0.26	68.7	46	56.4	29.6	953	4.24	2.9	<0.1	0.3	<0.1	27.0	0.21	0.25	<0.02	93	1.84
DWB16-022	Rock	0.26	0.73	16.68	6.59	34.3	28	8.7	4.5	304	1.42	2.6	0.5	0.5	1.5	100.2	0.50	0.13	0.04	52	1.38
DWB16-023	Rock	0.22	0.41	24.66	99'.	32.0	99	11.2	6.9	152	0.82	3.5	0.2	<0.2	1.0	81.7	0.13	0.11	0.04	25	0.88
DWB16-024	Rock	0.23	0.32	28.38	7.46	53.4	59	27.4	11.3	481	2.05	4.0	0.2	<0.2	1.1	72.4	0.19	0.11	0.05	55	2.42
DWB16-025	Rock	0.25	0.27	23.36	9.59	64.2	61	17.2	9.5	425	2.19	1.8	0.2	<0.2	1.0	81.0	0.24	0.11	0.05	64	3.33
DWB16-026	Rock	0.28	0.25	9.76	8.55	36.7	56	12.7	6.2	394	1.51	1.7	0.2	<0.2	8.0	41.3	0.28	0.10	0.05	63	4.38
DWB16-027	Rock	0.20	1.16	13.83	9.32	18.7	62	4.3	2.2	155	0.87	3.4	0.5	<0.2	1.7	47.1	0.17	0.17	90.0	34	1.40
DWB16-028	Rock	0.52	0.30	11.90	9.00	36.7	61	13.1	0.6	356	1.19	1.2	0.2	<0.2	6.0	238.0	0.12	0.10	0.05	33	3.04
DWB16-029	Rock	0.32	0.26	9.29	7.42	38.2	15	9.5	5.7	255	1.04	2.5	0.2	<0.2	1.0	76.3	0.18	0.15	0.04	40	1.34
DWB16-030	Rock	0.42	0.46	21.17	6.56	39.2	20	10.8	5.1	218	1.12	3.2	0.3	<0.2	1.1	93.7	0.18	0.15	0.05	44	1.29

BUREAU MINERAL LABORATORIES
VERITAS CARACLES

www.bureauveritas.com/um

Donald Bunce 21670 Chief Lake Rd. Client:

Prince George British Columbia V2K 5K5 Canada

Jade Fever Report Date: Project:

November 16, 2016

9 of 3

Part:

2014

Page:

CERTIFICATE OF ANALYSIS 253-3158

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604)

Bureau Veritas Commodities Canada Ltd.

La ppm 0.5 5.6 5.6 5.6 5.6 5.6 5.0 5.7 7.7 7.7 7.7 7.9 9.3 3.1 1.9 9.3 3.1 1.2 7.7 7.7 7.9 9.3 3.1 1.9 7.2 7.7 7.9 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9		Method	AQ251	AQ251	AQ251 AQ251	~	AQ251 AC	AQ251 AQ251	251 AQ251	51 AQ251	51 AQ251	1 AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251
Holy % ppm		Analyte	۵	Ē	ప	Mg	Ba	F					7200	F		H		<u>P</u>	Ga	S	g
MODE 0.65 0.65 0.67 0.65 0.07 0.65 0.07 0.65 0.07 0.64 0.07 0.04 0.65 0.07 0.04 0.65 0.07 0.04 0.04 0.05 0.02 0.07 0.04 0.05 0.02 <th< th=""><th></th><th>Unit</th><th>%</th><th>mdd</th><th>mdd</th><th>×</th><th>mdd</th><th></th><th></th><th></th><th></th><th></th><th></th><th>mdd</th><th>%</th><th>qdd</th><th></th><th>mdd</th><th>mdd</th><th>mdd</th><th>mdd</th></th<>		Unit	%	mdd	mdd	×	mdd							mdd	%	qdd		mdd	mdd	mdd	mdd
Rock 0.046 5.6 23.3 0.29 27.2 0.100 3 2.41 0.006 0.11 4.9 4.00 4.9 4.00 0.00 3 2.41 0.00 1.1 4.0 0.00 1.1		MDL	0.001	0.5	0.5	0.01				1275	809	552	1000	0.02	0.02	9		0.02	0.1	0.02	0.1
Rock 0.111 7.5 54.4 0.66 11.7 0.173 3. 1.45 0.02 0.12 0.4 3.6 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.	WB16-001	Rock	0.046	5.6	23.3	0.59		.100	1878	1775	100	(87)	100	<0.02	<0.02	38	950	0.05	9.3	0.03	0.4
Rock 0.091 5.6 3.24 1.06 147.2 0.129 2 2.5 0.010 0.14 0.02 3.8 0.03 4.02 0.03 0.04 0.05 0.04 0.05 1.07 0.05 0.04 0.05 1.08 0.05 0.00 0.05 0.00 0.05 0.05 0.05 0.01 0.05 0.00 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.07 0.05 0	WB16-002	Rock	0.111	7.5	54.4	0.56	123022	1173	20000	0.000				0.02	<0.02	9	8	0.04	5.6	0.12	<0.1
Rock 0.102 4.8 2.6.8 1.42 0.112 4 0.004 -0.11 0.004 0.11 0.004 0.11 0.004 0.004 -0.004 </td <td>WB16-003</td> <td>Rock</td> <td>0.091</td> <td>5.6</td> <td>32.4</td> <td>1.06</td> <td>0.000</td> <td>1.128</td> <td>900.00</td> <td>25,-50</td> <td>10000</td> <td>000</td> <td></td> <td>0.03</td> <td><0.02</td> <td>24</td> <td>1001</td> <td>0.03</td> <td>6.7</td> <td>0.21</td> <td><0.1</td>	WB16-003	Rock	0.091	5.6	32.4	1.06	0.000	1.128	900.00	25,-50	10000	000		0.03	<0.02	24	1001	0.03	6.7	0.21	<0.1
Rock 0.004 <0.5 1492.4 17.94 48.0 0.003 156 6.004 < 0.01 < 0.02 < 0.02 < 0.02 < 0.00	WB16-004	Rock	0.102	4.8	26.8	0.26	000000	1112	25406	Alexandra Areas	375			0.02	5887.7	6	17.70	0.03	3.7	0.21	<0.1
Rock 0.088 7.7 24.3 10.1 236.6 0.116 0.15 0.15 0.024 0.15 0.15 0.024 0.15 0.17 0.00 0.01 0.024 1.8 20.9 0.014 0.01 0.024 1.8 0.01 0.024 1.8 0.03 0.014 0.01 0.024 0.024 0.03 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.03	WB16-005	Rock	0.004	<0.5	1492.4	17.94	13382	,	8101	100	ľ	lisasi Nec	10000	<0.02	0.04	36		<0.02	6.0	0.03	0.1
Rock 0.024 1.8 20.9 0.31 16.4 0.651 6.2 2.3 0.006 -0.01 0.2 2.7 -0.02 -0.02 1.2 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.03 -0.04 3 0.04	WB16-006	Rock	0.088	7.7	24.3	1.01	ASS 980.	1,116	VILER	300000	aste	VORI		0.04	<0.02	5	90	<0.02	8.2	0.22	<0.1
Rock 0.017 6.8 13.9 0.38 263.7 0.004 3 0.77 0.009 0.18 <0.1 1.7 0.07 0.08 0.02 0.01 0.00 0.01 1.5 15.4 0.40 551.4 0.004 4 0.83 0.00 0.01 1.7 0.00 0.0	WB16-007	Rock	0.024	1.8	20.9	0.31	0.00	1.051	247375	i escenti		gues		<0.02	sange sange	12	- 87	0.05	7.9	<0.02	0.4
Rock 0.013 17.8 15.4 0.40 36.14 0.044 0.054 0.040 15.4 0.040 0.04 0.04 0.05 0.04 0.04 0.04 0.05	WB16-008	Rock	0.017	6.8	13.9	0.38	0.76277	1.004				200		0.07	650	23	1,024	0.05	2.8	0.42	<0.1
Rock 0.0941 5.0 22.0 0.126 1.045 0.108 1.04 0.038 0.21 0.12 0.12 0.045 1.04 0.12 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	WB16-009	Rock	0.013	17.8	15.4	0.40	1,6516	1.004	5/4	200		l less		0.09		73		0.05	3.1	0.63	<0.1
Rock 0.120 7.9 38.6 0.69 179.0 0.159 3.17 0.041 0.1 0.02 4.7 33.8 0.49 179.0 0.150 0.17 0.3 2.4 0.03 4.0 0.09 179.0 0.014 0.014 4.7 33.8 0.43 137.3 0.131 3 1.77 0.049 0.17 0.3 2.4 0.02 <th< td=""><td>WB16-010</td><td>Rock</td><td>0.091</td><td>5.0</td><td>22.0</td><td>0.25</td><td>157.7</td><td>1.108</td><td>STORY</td><td></td><td>350</td><td>2000 1000 1000</td><td></td><td></td><td>0.000</td><td>10</td><td>-0</td><td><0.02</td><td>3.2</td><td>0.29</td><td><0.1</td></th<>	WB16-010	Rock	0.091	5.0	22.0	0.25	157.7	1.108	STORY		350	2000 1000 1000			0.000	10	-0	<0.02	3.2	0.29	<0.1
Rock 0.094 4.7 3.36 0.43 13.73 0.131 3 1.77 0.049 0.17 0.03 24 0.02 0	WB16-011	Rock	0.120	7.9	38.6	69.0	Neo	1.159	70000						1000	16	SE	0.03	6.5	0.42	<0.1
Rock 0.072 9.3 6.5 0.72 146.0 0.074 2 0.91 0.005 0.07 0.5 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.07 0.05 0.07 0	WB16-012	Rock	0.094	4.7	33.8	0.43	20000	1.131	anana	3000	96	93		0.02	1200	6	:073	0.02	6.9	0.20	<0.1
Rock 0.059 3.1 9.37 2.40 133.9 0.365 2 3.30 0.031 0.06 0.1 7.1 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	WB16-013	Rock	0.072	9.3	6.5	0.72		1.074	0327	500	65	100		300	000	9	377.5	0.03	4.7	0.23	<0.1
Rock 0.063 2.7 2.3.8 2.56 1240 0.418 3 3.89 0.013 0.11 0.2 7.2 0.03 6.02 7.2 0.03 6.02 9 9 0.04 0.04 0.056 1.9 10.16 2.62 83.3 0.349 3 3.94 0.035 0.01 6.0 7.0 6.0 6.0 7.1 0.03 0.01 6.0 0.01 3.5 6.0 0.02 0.05 0.01 3.5 6.0 0.02 0.02 0.05 0.01 0.03 0.02	WB16-014	Rock	0.059	3.1	93.7	2.40	(95)	1.365		208	155	100		<0.02	192	<5	38/14	<0.02	12.1	0.13	0.2
Rock 1.9 10.66 1.9 10.6 6.24 0.349 3 3.94 0.035 0.01 6.01 6.01 6.01 6.01 6.01 6.01 6.02 6	WB16-015	Rock	0.063	2.7	23.8	2.56		1.418	F1/21/80/1	a300	26	1950		1777	0752	o	8	0.02	14.2	0.22	0.1
Rock 0.041 1.6 65.7 1.66 77.8 0.317 3 2.89 0.027 0.05 0.1 3.5 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.02 6.03 6.	WB16-016	Rock	0.056	1.9	101.6	2.62	2000	1.349		(2000)		West.	10.359.00		80.00	\$	2	0.03	12.9	0.05	0.2
Rock 0.014 3.5 2.3 0.21 13.9 0.012 <1 0.32 0.002 0.00 <0.1 1.1 0.00 <0.00 <0.00 4.2 6.0 0.21 13.9 0.050 1 0.07 0.00 0.01 1.1 0.00 0.00 4.2 6.0 0.21 13.8 0.050 1 0.07 0.00 0.01 1.1 0.00 0.02 5.4 0.01 1.0 0.00 0.01 0.01 1.1 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02	WB16-017	Rock	0.041	1.6	65.7	1.66	800	1.317	NAME OF	AV.	89	0.00			1000	\$	158	<0.02	10.2	0.15	0.2
Rock 0.009 4.2 6.0 0.21 138.9 0.056 1 0.07 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.02 6.03 6.02 6.03 6.03 6.02 6.03 6.02 6.03 6.02 6.04 6.07 6.02 6.04 6.07 6.02 6.04 6.00 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6.04 6.02 6	WB16-018	Rock	0.014	3.5	2.3	0.21		0.012				5330		0.03	1000	₽.	6,	0.07	1.3	0.14	<0.1
Rock 0.031 1.2 19.6 2.22 165.8 0.331 4 4.00 0.024 0.07 0.2 5.4 0.03 6.02 65 Rock 0.032 1.2 113.9 2.01 176.2 0.317 4 2.99 0.041 0.10 0.1 3.7 0.04 0.02 6.04 0.01 0.1 3.7 0.04 0.01 0.02	WB16-019	Rock	0.009	4.2	0.9	0.21	190	0.050	0.000	1/5%	80	100771		68.80	2500	\$	52	0.04	1.6	0.27	<0.1
Rock 0.032 1.2 113.9 2.01 176.2 0.317 4 2.99 0.041 0.10 0.1 3.7 0.04 0.02 65 Rock 0.108 7.2 32.1 0.43 1.16 0.168 0.22 0.4 2.6 0.4 0.02 9 Rock 0.089 4.7 18.9 0.24 139.1 0.089 3 0.80 0.035 0.23 0.2 1.6 0.03 0.02 1.7 0.03 0.02 1.8 0.03	WB16-020	Rock	0.031	1.2	119.6	2.22	SCOOL,	1.331		2015				(4.57)	SON CO	₽	51	0.03	12.5	0.18	0.2
Rock 0.108 7.2 32.1 0.43 214.8 0.176 3 1.34 0.068 0.22 0.4 2.6 0.04 6.002 9 Rock 0.089 4.7 18.9 0.24 139.1 0.088 3 0.80 0.035 0.23 0.2 1.6 0.03 0.02 17 17 Rock 0.089 4.4 50.7 1.40.3 0.133 4 2.31 0.02 0.07 0.23 0.3 3.4 0.02 17 16 Rock 0.089 4.4 50.7 0.79 60.121 3 300 0.020 0.07 0.3 3.4 0.02 16 16 Rock 0.070 4.4 47.6 0.66 65.5 0.129 6 3.67 0.057 0.02 1.3 0.02 1.1 0.02 1.1 0.09 0.03 0.02 1.1 0.05 0.05 0.02 0.02 1.1 0.05	WB16-021	Rock	0.032	1.2	113.9	2.01	0.	1.317	00.00	30				7,23		\$.00	<0.02	9.2	0.20	0.1
Rock 0.089 4.7 18.9 0.24 139.1 0.088 3 0.80 0.035 0.23 0.2 1.6 0.03 0.02 17 Rock 0.093 5.8 43.7 0.70 140.3 0.133 4 2.31 0.027 0.23 0.3 3.4 0.03 40.02 16 Rock 0.089 4.4 50.7 0.79 69.6 0.121 3 3.00 0.09 0.07 0.3 3.7 <0.02	WB16-022	Rock	0.108	7.2	32.1	0.43	1999	0.176	Jacob I	5)7		Vecil		934	525	σ	100	0.02	5.6	0.29	<0.1
Rock 0.093 5.8 43.7 0.70 140.3 0.133 4 2.31 0.027 0.23 0.3 3.4 0.03 60.02 16 Rock 0.089 4.4 50.7 0.79 69.6 0.121 3 3.00 0.07 0.3 3.7 6.02 13 3.7 6.02 13 3.7 6.02 13 3.7 6.02 13 13 6.02 13 3.7 6.02 6.02 13 13 6.02 6.02 13 13 6.02	WB16-023	Rock	0.089	4.7	18.9	0.24	250	3.088		750		COMM.		220	85. T	17	08	0.02	3.2	0.28	<0.1
Rock 0.089 4.4 50.7 0.79 69.6 0.121 3 3.00 0.020 0.070 0.07 4.4 47.6 0.66 65.5 0.129 6 3.67 0.020 0.07 0.3 3.7 <0.02 <0.02 0.07 13 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 </td <td>WB16-024</td> <td>Rock</td> <td>0.093</td> <td>5.8</td> <td>43.7</td> <td>0.70</td> <td>2027</td> <td>7.133</td> <td></td> <td>200</td> <td>300</td> <td>10.3000</td> <td></td> <td>31</td> <td>9/5/20</td> <td>16</td> <td>2</td> <td>0.03</td> <td>8.1</td> <td>0.21</td> <td><0.1</td>	WB16-024	Rock	0.093	5.8	43.7	0.70	2027	7.133		200	300	10.3000		31	9/5/20	16	2	0.03	8.1	0.21	<0.1
Rock 0.070 4.4 47.6 0.66 65.5 0.129 6 3.67 0.020 0.09 0.3 3.8 6.002 6.002 6.020 7 7 7 7 8 8 8 8 9 9 9 9 9 9 1.12 0.027 0.12	WB16-025	Rock	0.089	4.4	20.7	0.79	0.75	1.121				ew.		2	200	13	13X 15	0.02	10.1	0.12	0.2
Rock 0.095 6.0 20.4 0.25 104.7 0.110 6 1.12 0.057 0.12 0.2 1.9 4.0 2.0 1.0 Rock 0.059 4.0 22.6 0.42 95.8 0.102 14 1.40 0.022 0.12 0.2 2.1 4.0 7 Rock 0.101 5.0 26.2 0.35 144.0 0.122 4 1.25 0.046 0.22 0.3 1.9 0.02 40.02 5 Rock 0.100 5.9 32.4 0.35 127.7 0.140 6 1.19 0.049 0.19 0.3 2.1 0.02 40.02 14	WB16-026	Rock	0.070	4.4	47.6	99.0	(0.5)	0.129				0000			177.0	\$	% 754	<0.02	11.8	0.12	0.3
Rock 0.059 4.0 22.6 0.42 95.8 0.102 14 1.40 0.022 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.04 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.03 1.9 0.02 0.00 0.02 0.00	WB16-027	Rock	0.095	0.9	20.4	0.25	593	0.110			os.				2000	16	8	<0.02	4.4	0.14	<0.1
Rock 0.101 5.0 26.2 0.35 144.0 0.122 4 1.25 0.046 0.22 0.3 1.9 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	WB16-028	Rock	0.059	4.0	22.6	0.42	52.7	0.102		8	100	Art of a			5080 L	7	3	0.04	4.0	0.16	<0.1
Rock 0.100 5.9 32.4 0.35 127.7 0.140 6 1.19 0.049 0.19 0.3 2.1 0.02 <0.02 14	WB16-029	Rock	0.101	5.0	26.2	0.35	MA.	0.122				1000	Jac 4,4	23	7053X 7005X	\$	- 87 - 061	0.02	4.8	0.27	0.1
	WB16-030	Rock	0.100		32.4	0.35		0.140			used 1		30734	2	083	14	4	0.02	4.8	0.20	<0.1

BUREAU MINERAL LABORATORIES
VERITAS Canada

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604)

CERTIFICATE OF ANALYSIS

253-3158

www.bureauveritas.com/um

Prince George British Columbia V2K 5K5 Canada

21670 Chief Lake Rd.

Donald Bunce

Client:

Jade Fever

Project:

November 16, 2016

Report Date:

2 of 4

Page:

10 of 3

Part

	Method	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	ACZDI						
	Analyte	Ħ	N	S.	Sn	Ta	Zr	>	రి	드	Re	Be	=	Pd	۵.
	Unit	mdd	mdd	mdd	qdd	mdd	mdd	qdd	qdd						
	MDL	0.02	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	•	0.1	0.1	10	.4
DWB16-001	Rock	0.27	0.30	0.5	0.7	<0.05	8.4	7.50	12.4	0.03	۲	0.8	7.3	<10	\$
DWB16-002	Rock	0.19	0.49	3.5	9.0	<0.05	5.0	99.9	16.7	<0.02	٧	0.3	7.9	<10	\$
DWB16-003	Rock	0.18	0.17	5.1	9.4	<0.05	5.8	7.34	11.6	<0.02	۲	9.4	18.6	<10	0
DWB16-004	Rock	0.13	0.52	4.4	0.3	<0.05	4.2	4.38	10.6	<0.02	-	0.3	4.7	×10	Q
DWB16-005	Rock	<0.02	<0.02	0.1	<0.1	<0.05	0.1	0.52	4.0	<0.02	₹	<0.1	0.3	<10	80
DWB16-006	Rock	0.17	0.10	4.3	0.5	<0.05	4.1	12.42	16.8	0.02	۲	0.4	16.6	<10	\$
DWB16-007	Rock	0.09	0.13	0.2	0.3	<0.05	2.7	2.73	4.2	<0.02	₹	0.4	2.3	<10	Q
DWB16-008	Rock	0.04	0.05	8.2	0.2	<0.05	2.0	1.87	12.3	<0.02	2	0.2	5.4	<10	0
DWB16-009	Rock	0.12	0.02	9.8	0.2	<0.05	5.0	1.65	34.2	<0.02	က	0.2	7.1	<10	0
DWB16-010	Rock	0.19	0.35	5.7	0.3	<0.05	5.4	4.81	10.5	<0.02	٧	0.2	5.1	<10	0
DWB16-011	Rock	0.26	0.44	7.0	0.5	<0.05	7.7	7.94	16.5	<0.02	۲	0.3	9.8	<10	0
DWB16-012	Rock	0.14	0.42	4.5	0.4	<0.05	4.9	5.90	10.5	<0.02	۲	0.3	0.9	<10	\$
DWB16-013	Rock	0.07	99.0	3.1	0.3	<0.05	1.4	8.32	15.2	<0.02	۲	<0.1	7.2	<10	0
DWB16-014	Rock	0.18	90.0	1.9	0.4	<0.05	3.4	17.49	8.0	0.03	۲	0.2	23.1	<10	\$
DWB16-015	Rock	0.22	90.0	3.7	0.5	<0.05	5.1	17.26	7.4	0.03	₹	0.3	25.0	<10	0
DWB16-016	Rock	0.19	0.07	0.5	1.2	<0.05	3.9	18.80	5.0	0.04	۲	0.3	22.9	12	9
DWB16-017	Rock	0.13	90.0	2.8	4.2	<0.05	2.5	14.94	4.8	0.02	٧	0.2	15.5	13	(-)
DWB16-018	Rock	0.04	0.12	2.2	0.2	<0.05	2.4	4.03	6.3	<0.02	۲	<0.1	1.9	<10	0
DWB16-019	Rock	<0.02	0.63	3.2	0.4	<0.05	0.8	2.75	10.6	<0.02	۲	0.1	1.9	<10	Ş
DWB16-020	Rock	0.16	0.09	3.0	0.4	<0.05	3.2	15.77	3.1	0.02	7	0.2	18.9	11	,
DWB16-021	Rock	0.15	0.10	4.1	0.4	<0.05	2.8	10.66	3.4	<0.02	₹	0.2	19.6	13	-4
DWB16-022	Rock	0.23	0.51	9.9	0.5	<0.05	6.8	. 7.21	15.4	<0.02	٧	0.4	6.7	<10	\$
DWB16-023	Rock	0.16	0.29	6.3	0.3	<0.05	5.1	4.18	9.5	<0.02	۲	0.2	4.7	<10	<2
DWB16-024	Rock	0.17	0.20	0.9	0.4	<0.05	5.5	7.75	12.2	<0.02	₹	0.5	11.1	<10	\$
DWB16-025	Rock	0.17	0.21	2.1	0.5	<0.05	5.0	6.94	9.6	<0.02	₹	0.5	10.5	<10	0
DWB16-026	Rock	0.18	0.28	2.9	9.0	<0.05	5.0	6.80	9.7	<0.02	₹	8.0	7.0	<10	0
DWB16-027	Rock	0.26	0.40	3.2	0.3	<0.05	9.7	5.04	12.5	<0.02	-	0.3	2.9	<10	\$
DWB16-028	Rock	0.15	0.47	3.6	0.4	<0.05	4.3	4.88	8.9	<0.02	₹	9.4	6.3	<10	\$
DWB16-029	Rock	0.13	0.56	6.2	0.4	<0.05	3.9	5.14	10.7	<0.02	۲	0.3	7.3	<10	\$
DIMB16 030	Dock	0.16	0.43	F 4	* 0	100		-	1	-	25.00	7			

BUBEAU MINERAL LABORATORIES
VERITAS CARACL

Bureau Veritas Commodities Canada Ltd.

www.bureauveritas.com/um

Donald Bunce 21670 Chief Lake Rd.

Client:

Prince George British Columbia V2K 5K5 Canada

Jade Fever

November 16, 2016

Report Date: Project

Page:

3014

1 of 3

Part

CERTIFICATE OF ANALYSIS

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604)

253-3158

	Method	WGHT	AQ251	AQ251 /	AQ251	AQ251 A	AQ251 A	AQ251 A	AQ251 /	AQ251 A	A0251 A	A0251	40251								
	Analyte	Wgt	Mo	3	S.		_		u 5 1120				_		i se	Š	25	Sb	Bi		5
	Unit	kg	mdd	mdd	mdd	mdd	qda	maa	mdd	maa	%	maa	maa	qua	maa	maa	muu	muu	1 44		3 %
	MDL	0.01	0.01	0.01	0.01	0.1	. 7	0.1	0.1	-	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
DWB16-031	Rock	0.32	0.29	19.37	12.86	64.9	89	15.3	9.2	539	1.54	1.8	0.3	21.3	1.1	158.3	0.22	0.12	0.07	62	4.86
DWB16-032	Rock	0.64	0.18	17.90	8.29	61.5	29	16.8	9.5	539	2.18	1.7	0.2	<0.2	0.7	222.1	0.20	0.13	0.04	64	4.40
DWB16-033	Rock	0.29	0.31	16.29	96.9	76.5	28	17.8	10.9	584	2.02	2.3	0.2	0.3	1.0	208.8	0.59	0.15	0.03	67	3.57
DWB16-034	Rock	0.28	0.20	18.93	6.43	9.09	47	14.4	9.6	399	1.82	3.3	0.3	0.3	1.5	61.9	0.29	0.05	0.04	37	1.27
23-01	Rock	0.18	0.41	63.30	0.33	62.0	44	67.1	27.7	937	5.00	<0.1	<0.1	3.0	0.1	8.7	0.05	0.04	0.04	186	0.28
23-02	Rock	0.18	1.90	27.75	4.58	13.6	26	7.1	1.4	152	0.88	0.5	9.0	1.6	1.1	8.6	0.07	0.16	0.11	12	0.08
23-03	Rock	0.19	92'0	23.09	9.91	32.1	32	11.3	7.1	225	1.24	4.2	9.0	8.0	2.3	76.6	0.13	0.17	0.12	33	0.96
23-04	Rock	0.30	0.14	4.67	0.78	2.9	6	5.2	0.3	13	0.02	1.7	0.7	9.0	<0.1	373.1	0.36	0.19	0.05	<2	36.53
23-05	Rock	0.20	0.07	33.63	0.24	21.7	15	103.8	19.4	404	2.15	2.5	<0.1	<0.2	<0.1	10.4	0.21	0.04	<0.02	142	1.69
24-01	Rock	0.15	0.25	12.10	0.26	31.9	16 2	2454.3	134.4	3251	3.84	1.9	<0.1	8.2	<0.1	6.4	0.47	3.61	<0.02	49	0.07
24-02	Rock	0.18	1.65	29.83	2.29	9.09	37	40.3	13.5	671	1.78	0.4	1.7	0.4	5.3	16.6	1.75	0.12	0.20	112	6.65
24-03	Rock	0.23	0.28	54.48	1.68	26.5	20	50.9	21.5	370	2.44	0.2	<0.1	<0.2	0.1	51.3	0.16	0.08	<0.02	92	2.81
24-04	Rock	0.22	1.20	34.25	2.30	83.6	32	6.03	10.6	1565	2.34	0.2	0.5	<0.2	1.6	67.3	0.79	90.0	<0.02	55	2.55
24-05	Rock	0.16	0.25	29.86	0.48	185.1	27 18	1888.1	134.5	773	4.48	1.8	8.0	0.5	<0.1	9.3	1.55	1.04	<0.02	39	0.05
25-01	Rock	0.23	0.07	141.41	0.17	58.2	49	57.4	31.5	828	5.49	0.7	<0.1	<0.2	0.2	7.5	0.13	60.0	<0.02	145	1.14
25-02	Rock	0.28	0.15	156.52	0.43	62.6	65	44.3	29.6	827	5.22	1.7	<0.1	6.0	0.1	8.7	0.16	0.10	<0.02	158	1.49
25-03	Rock	0.38	1.44	88.18	0.99	59.3	32	92.3	47.6	1504	4.57	<0.1	0.3	<0.2	0.1	6.8	0.05	0.11	0.02	92	0.50
25-04	Rock	0.26	1.13	28.43	9.15	43.4	24	22.5	6.9	333	1.15	<0.1	9.0	<0.2	2.3	10.4	0.07	0.15	0.18	9	0.20
25-05	Rock	0.28	0.46	49.31	3.00	59.9	50	60.2	26.1	704	2.86	12.6	6.4	<0.2	9.0	8.5	0.27	0.14	90.0	119	1.33
55-06	Rock	0.29	0.17	127.70	99.0	70.5	25	43.2	31.4	1071	5.95	3.9	0.2	<0.2	0.3	23.3	0.31	0.13	<0.02	224	1.97
26-01	Rock	0.37	0.28	29.40	12.14	67.3	44	28.7	15.3	437	3.06	9.7	0.5	<0.2	2.6	58.4	0.35	0.05	60.0	95	2.36
26-02	Rock	0.23	0.14	13.11	6.44	44.6	14	12.6	9.6	462	1.95	2.4	0.3	<0.2	1.3	66.5	0.56	0.07	90.0	65	1.51
26-03	Rock	0.20	0.22	19.91	6.94	94.9	27	15.8	10.5	485	1.81	3.9	0.3	<0.2	1.2	128.7	0.75	90.0	0.05	99	2.11
26-04	Rock	0.26	0.54	31.31	11.78	53.1	54	18.7	9.3	432	1.79	2.6	0.7	<0.2	3.4	73.3	0.27	0.10	0.17	38	2.51
26-05	Rock	0.18	0.74	26.91	12.05	47.3	16	13.5	8.3	498	1.74	2.9	8.0	<0.2	3.5	93.5	0.27	0.11	0.13	33	1.18
27-01	Rock	0.38	0.31	25.64	7.63	61.9	24	19.9	12.3	494	2.50	4.0	0.4	<0.2	1.5	235.1	0.24	80.0	0.07	63	2.61
27-02	Rock	0.16	0.41	26.32	10.97	75.0	22	21.4	14.7	565	2.50	1.3	0.4	<0.2	1.8	632.7	0.30	90.0	60.0	99	3.97
27-03	Rock	0.37	0.26	2.52	11.69	76.2	53	22.1	10.9	672	3.32	6.0	0.2	0.7	1.1	438.0	0.11	0.04	0.07	42	3.16
27-04	Rock	0.24	0.23	11.35	19.00	28.8	40	10.6	9.6	293	1.40	6.0	0.5	<0.2	3.5	61.4	0.17	0.05	0.18	70	2.71
27-05	Rock	0.23	0.23	31.17	7.23	63.6	62	20.3	12.3	537	2.53	3.3	0.4	<0.2	1.6	275.2	0.18	90.0	90.0	74	3.13
																			l		

BUREAU MINERAL LABORATORIES
VERITAS CARAGO

Bureau Veritas Commodities Canada Ltd.

www.bureauveritas.com/um

Donald Bunce 21670 Chief Lake Rd. Prince George British Columbia V2K 5K5 Canada

Client:

Jade Fever Report Date: **Project**:

November 16, 2016

Page:

3 of 4

12 of 3

Part:

VAN16001844.1

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) CERTIFICATE OF ANALYSIS

253-3158

Method
P La
mdd mdd %
MDL 0.001 0.5 0.5 0.01
0.079 5.1 52.6 0.59
4.4 56.1
0.089 4.9 61.7 0.76
0.112 7.2 25.8 0.61
0.037 1.3 172.3 2.31
0.016 4.8 7.6 0.13
8.7 20.6 0
4.7
0.101 1.9 291.5 1.70
0.003 1.1 2215.6 20.72
0.116 11.8 49.1 0.91
0.058 1.1 90.3 0.79
0.046 9.3 20.6 0.90
0.002 1.6 1732.5 19.13
1.6 135.7 2
2.0 37.3 2
2.6 157.0 2
9.1 8.5 0
0.051 2.7 149.5 1.26
0.061 3.4 79.8 2.31
10.4 69.3
0.116 7.0 38.0 0.74
6.7 39.8
10.3 21.1
0.131 9.4 19.4 0.62

0.2 <0.1 <0.1 <0.1

0.03

<0.02

0.10 90.0 0.19

0.02 0.03

13 10

> <0.02 <0.02

3.1 5.0

0.04

7 4

0.159

70.1 132.7

0.62 1.21

9.5 3.9

0.117

Rock

Rock

Rock

0.109

188.1 0.163

0.17

<0.02

4.1

0.3 0.1 0.3 0.4

0.13 0.09

2.63 0.031 1.96 0.033

က 4

0.034 0.031 0.025

1.89 2.28 2.71

106

0.082 158.8 0.165

0.23

279.5 0.196

0.81 0.89

35.5

7.7 7.3

0.110 0.093 0.050

Rock Rock

27-02

27-01

27-03 27-04 27-05

27.5

13.0 42.5

17 17

0.29 0.14

6.8 9.7 6.7 7.7 8.3

<0.02 0.03

<0.1 <0.1 <0.1 <0.1 0.1

<0.02

0.04 <0.02 <0.02 <0.02 0.03

4.9

BUBEAU MINERAL LABORATORIES
VERITAS CARRES

Bureau Veritas Commodities Canada Ltd.

www.bureauveritas.com/um

Report Date: Project.

November 16, 2016 Jade Fever

Donald Bunce 21670 Chief Lake Rd. Prince George British Columbia V2K 5K5 Canada

Client:

Page:

3 of 4

13 of 3

Part

a PHONE (604)	
P 6E5 Canada P	
sh Columbia V6F	VALYSIS
Vancouver Britis	TE OF AN
0 Shaughnessy St -3158	ERTIFICA
965	0

	Method	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251
	Analyte	Ξ	QN	Rb	Sn	T _a	Zr	٨	రి	드	Re	æ	5	Pd	¥
	Unit	mdd	mdd	mdd	mdd	mdd	mdd	mdd	mdd	mdd	qdd	mdd	mdd	qdd	qdd
	MDL	0.02	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2
DWB16-031	Rock	0.15	0.31	4.2	0.5	<0.05	4.6	7.05	11.3	<0.02	<1	0.7	7.1	<10	22
DWB16-032	Rock	0.12	0.26	2.3	0.5	<0.05	2.9	6.87	10.0	0.02	5	0.7	10.7	<10	<2 2
DWB16-033	Rock	0.16	0.26	5.6	9.0	<0.05	4.5	7.36	11.0	<0.02	٧	0.7	8.7	<10	\$
DWB16-034	Rock	0.17	0.26	8.1	0.4	<0.05	4.3	8.10	15.5	<0.02	₹	0.3	8.1	<10	42
23-01	Rock	0.10	0.03	0.4	0.4	<0.05	1.8	8.80	3.4	0.05	~	<0.1	19.3	<10	2
23-02	Rock	0.16	1.21	1.8	9.0	<0.05	6.4	2.75	9.6	<0.02	٧	<0.1	1.4	<10	\$
23-03	Rock	0.26	0.25	5.1	0.4	<0.05	8.3	5.64	16.1	<0.02	7	0.3	5.2	<10	<2
23-04	Rock	<0.02	0.09	0.2	<0.1	<0.05	0.3	11.36	2.4	0.07	₹	<0.1	0.2	<10	2
23-05	Rock	0.16	0.04	9.0	0.2	<0.05	3.2	11.27	4.7	<0.02	₹	0.1	17.5	<10	2
24-01	Rock	<0.02	<0.02	0.1	<0.1	<0.05	0.3	1.27	2.8	<0.02	٧	<0.1	9.0	<10	10
24-02	Rock	0.12	0.20	0.3	1.2	<0.05	4.9	12.68	26.6	0.03	2	<0.1	6.2	<10	2
24-03	Rock	0.14	90.0	0.1	0.3	<0.05	2.3	9.02	2.7	<0.02	1	0.2	7.2	<10	♡
24-04	Rock	90.0	<0.02	0.8	0.2	<0.05	4.6	7.96	15.0	<0.02	-	0.3	9.5	<10	0
24-05	Rock	<0.02	<0.02	<0.1	<0.1	<0.05	0.3	3.02	4.8	<0.02	-	0.3	9.0	<10	7
25-01	Rock	0.20	90.0	4.0	0.5	<0.05	5.3	14.36	4.1	0.02	٧	0.5	21.5	14	10
25-02	Rock	0.23	90.0	3.0	0.4	<0.05	5.2	14.62	4.6	0.02	1	0.1	21.0	<10	6
25-03	Rock	0.17	0.05	5.4	0.4	<0.05	4.1	14.99	5.0	0.02	<1	<0.1	17.8	12	7
25-04	Rock	0.13	0.45	5.2	0.5	<0.05	4.5	4.62	20.9	<0.02	۲>	0.4	1.8	<10	2
25-05	Rock	0.21	0.09	3.6	0.5	<0.05	6.3	16.23	7.1	0.02	-	0.3	11.2	<10	42
25-06	Rock	0.22	0.09	1.8	0.7	<0.05	5.4	20.73	8.1	0.04	7	0.4	22.7	<10	3
26-01	Rock	0.22	0.14	5.2	9.0	<0.05	7.5	9.91	20.9	0.02	۲	0.4	19.5	<10	co
26-02	Rock	0.21	0.30	6.2	9.0	<0.05	5.8	7.34	14.6	<0.02	₹	0.4	11.4	<10	\$
26-03	Rock	0.19	0.28	5.6	0.5	<0.05	5.7	7.00	13.3	<0.02	<1	0.4	10.1	<10	<2
26-04	Rock	0.40	0.20	4.5	9.0	<0.05	11.9	6.20	18.8	<0.02	۲	0.8	11.1	<10	42
26-05	Rock	0.28	0.22	8.7	0.4	<0.05	9.4	6.24	17.8	<0.02	2	0.2	9.5	<10	<2
27-01	Rock	0.25	0.18	9.9	9.0	<0.05	7.4	9.70	16.5	0.02	<1	0.3	11.1	<10	4
27-02	Rock	0.26	0.17	4.2	0.7	<0.05	8.2	10.19	14.7	0.02	<1	0.9	12.1	<10	<2
27-03	Rock	0.16	0.06	2.9	0.3	<0.05	4.7	3.26	7.4	<0.02	۲۷	0.5	18.6	<10	<2
27-04	Rock	0.37	0.23	1.3	9.0	<0.05	10.0	7.40	19.2	<0.02	1	0.3	5.6	<10	<2
27-05	Rock	0.22	0.14	20	0.6	<0.05	6.4	8 78	142	0.03	~	0.5	12.4	440	

BUREAU MINERAL LABORATORIES
VERITAS Careda

www.bureauveritas.com/um

Donald Bunce 21670 Chief Lake Rd. Prince George British Columbia V2K 5K5 Canada

Client:

Jade Fever Report Date: Project

November 16, 2016

1 of 3

Part

4 of 4

Page:

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) Bureau Veritas Commodities Canada Ltd.

253-3158

CERTIFICATE	E OF ANALY	SIS														VAN	11600	01844.	4.1		33
	Method	55-0	WGHT AQ251 AQ251 AQ251 AQ251	AQ251	AQ251		AQ251	AQ251	AQ251	AQ251 AQ251		AQ251 /	AQ251	AQ251	AQ251 AQ251	10251					
	Analyte	Wgt	Mo	2	Pb	Zn	Ag	Z	ဝိ	Mn	Fe	As	>	Au	Ę	Ş	5	Sb	ē	>	ఔ
	Unit	kg	mdd	mdd	mdd	шфф	qdd	mdd	mdd	mdd	%	mdd	шdd	qdd	mdd	mdd	mdd	mdd	mdd	mdd	%
	MDL	0.01	0.01	0.01	0.01	0.1	7	0.1	0.1	-	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01
27-06	Rock	0.18	0.46	51.22	18.23	59.0	127	29.3	14.7	531	2.40	4.4	0.3	<0.2	2.0	39.4	0.15	0.09	0.22	34	0.82
27-07	Rock	0.32	0.20	41.37	12.56	83.8	06	24.5	14.1	822	2.64	4.9	0.5	0.4	2.0	168.0	0.49	0.09	0.09	76	3.76
27-08	Rock	0.27	0.16	37.95	5.31	27.7	87	17.2	5.7	361	1.43	1.8	0.2	1.5	2.6	42.0	0.20	0.07	0.13	14	0.41
REF-01	Rock	0.28	0.23	1.73	0.32	9.5	4	6.8	2.9	117	0.48	0.1	0.2	<0.2	0.2	32.8	0.03	0.10	<0.02	35	1.71
REF-02	Rock	0.24	<0.01	0.38	0.22	19.2	<2	652.3	32.0	242	1.34	0.3	<0.1	<0.2	<0.1	7.1	0.01	<0.02	<0.02	14	0.48
REF-03	Rock	0.12	0.03	3.66	0.54	33.0	5	1879.6	9.68	755	4.39	13.9	<0.1	<0.2	<0.1	32.6	<0.01	60.0	<0.02	38	0.28
REF-04	Rock	0.07	0.02	2.50	0.14	21.3	9	248.1	43.2	1260	3.24	1.3	<0.1	<0.2	<0.1	2.1	<0.01	0.05	<0.02	23	0.02
REF-05	Rock	0.10	0.71	12.32	0.23	8.7	6	1521.2	67.4	367	2.38	2.0	<0.1	1.3	40.1	8.8	0.02	1.26	<0.02	18	0.13

BUREAU MINERAL LABORATORIES
VERITAS Canada

www.bureauveritas.com/um

Client:

Donald Bunce 21670 Chief Lake Rd. Prince George British Columbia VZK 5K5 Canada

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604)

Jade Fever Report Date: Project

November 16, 2016

4 of 4

Page:

15 of 3

Part

١			
ı			
1			
ı			
١			
ı	γ.	7	7
ı	ŀ	4	C
1	r	7	
Į	Ľ	ú	Č
1	Ь	3	
ı	Ы		
1	S	ē	ĕ
ı	G	Z	J
ı	G	F	Ξ
1	þ	ŵ	ē
١	G	1	3
١	n		
ı	r	ä	b
ı		Ξ	ď
ı	1	n	
B	H	ü	ï
1	li	ü	
ı	e	4	ì
1	P.		Ċ
ı	Ľ	9	2
ı	٩	ñ	i
	Ľ	ш	
ı	1	ú	í
	ω	ij	Ü
ı	1	ď	d
1	h	m	ú

253-3158

	Method	AQ251 AQ251	AQ251	AQ251 AQ251		AQ251 /	AQ251 /	AQ251 A	AQ251	AQ251	AQ251	AQ251	AQ251	AQ251 A	AQ251 A	AQ251 A	AQ251 A	AQ251 A(AQ251 A	AQ251 A	AQ251
	Analyte	Δ.	Ľ	ပ်	Mg	Ba	F	œ	A	Na	¥	×	Sc	F	S	Hg	Se	Те	Ga	S	g
	Unit	%	mdd	mdd	*	mdd	%	mdd	%	%	%	mdd	mdd	mdd	%	qdd	mdd	mdd	mdd	mdd	mdd
	MDL	0.001	0.5	0.5	0.01	0.5	0.001	-	0.01	0.001	0.01	0.1	0.1	0.02	0.02	s	0.1	0.02	0.1	0.02	0.1
27-06	Rock	0.045	8.2	19.8	0.74	130.0	0.134	2	1.53	0.008	0.12	0.3	4.3	0.03	<0.02	17	<0.1	90.0	5.6	0.24	0.1
27-07	Rock	0.097	7.9	47.4	1.03	171.0	0.184	4	3.09	0.025	0.16	0.5	6.3	0.03	<0.02	23	<0.1	0.04	10.0	0.17	0.1
27-08	Rock	0.097	7.1	9.2	0.44	153.4	0.091	3	0.85	0.009	0.19	0.3	3.6	0.04	<0.02	10	<0.1	0.04	3.0	0.25	0.1
REF-01	Rock	0.046	2.8	13.7	0.61	56.9	0.272	-	0.22	0.054	0.02	0.1	1.9	<0.02	<0.02	\$	<0.1	<0.02	9.0	80.0	0.1
REF-02	Rock	0.003	<0.5	1079.9	3.89	0.6	0.013	2	1.70	0.004	<0.01	<0.1	1.2	<0.02	<0.02	\$	<0.1	<0.02	6.3	0.27	40.1
REF-03	Rock	<0.001	9.0	1829.7	19.21	20.8	0.003	41	0.72	0.002	<0.01	<0.1	10.3	0.02	<0.02	80	<0.1	<0.02	4.7	1.03	0.1
REF-04	Rock	0.003	<0.5	63.0	19.76	4.1	0.002	20	0.08	<0.001	<0.01	<0.1	4.1	<0.02	<0.02	\$	<0.1	<0.02	0.2	0.93	0.2
REF-05	Rock	<0.001	<0.5	1066.7	20.74	4.5	0.001	101	0.28	<0.001	<0.01	0.3	7.2	<0.02	0.04	\$	0.4	<0.02	0.7	<0.02	0.1

MINERAL LABORATORIES

www.bureauveritas.com/um

Donald Bunce 21670 Chief Lake Rd. Client:

Prince George British Columbia V2K 5K5 Canada

Project: Report Date:

Jade Fever November 16, 2016

30f3

Part

4 of 4

Page:

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Bureau Veritas Commodities Canada Ltd.

Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

 Method
 AQ251
 <t <10 <10 <10 <10 410 <10 <10 qdd <10 14.6 7.8 3.2 14.1 6.0 mdd 12.4 0.1 0.1 0.5 0.2 0.1 <0.1 0.4 0.1 0.2 **0.1** 0.1 qdd ٧ ₹ ٧ ٧ ٧ ₹ ٧ ٧ 0.02 0.02 0.03 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 14.3 6.5 0.5 <0.1 mdd 15.9 16.6 1.0 0.1 <0.1 99.0 0.01 8.96 10.08 7.92 11.03 0.41 0.04 0.11 3.4 2.9 <0.1 mdd 0.1 6.9 8.4 0.7 <0.1 <0.1 0.05 <0.05 <0.05 mdd <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.5 0.3 <0.1 <0.1 <0.1 0.5 <0.1 0.1 0.7 6.5 9.0 Rb ppm 0.8 0.7 0.9 0.1 4.7 5.2 <0.1 0.12 0.15 0.28 <0.02 <0.02 <0.02 0.02 0.17 <0.02 0.16 0.09 <0.02 <0.02 mdd 0.02 0.25 <0.02 <0.02 Unit Rock Rock Rock Rock Rock Rock Rock REF-03 REF-01 REF-02 REF-04 REF-05 27-06 27-07 27-08

BUREAU MINERAL LABORATORIES
VERITAS CURBES

www.bureauveritas.com/um

Client:

Donald Bunce 21670 Chief Lake Rd. Prince George British Columbia VZK 5K5 Canada

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Jade Fever Report Date: Project

November 16, 2016

1 of 1

Page:

17 of 3

Part

	Jup.
	0.46
	2 10 100
	17
	II (III)
	N-0
	1/2 10
	0 O H
	Benzone
	2.0
	Shade.
	E 9 46
	mor
	_
	L-0.
	0.4
	1=
	S-married
	100
	-
	10
1	
1	Down
1	Palls.
1	(W)
1	Roud
1	relii
1	-
1	200
J	1000
1	
1	-
J	Fig. 19
1	
J	Topper.
J	C 4 8
1	Nilla.
1	Berm
1	1000
J	Second Control of the last of

																A LOCAL STATE		5			
	Method	d WGHT	AQ251	AQ251 AQ251 AQ251		AQ251	AQ251 A	AQ251 /	AQ251 #	AQ251 /	AQ251 A	AQ251 AQ251		AQ251 A	AQ251 AQ251		AQ251 A	AQ251 AQ251		AQ251 /	AQ251
	Analyte	e Wgt	Mo	3	Pb	Zn	Ag	Z	ပ္ပ	Mn	Fe	As	>	Αn	f	S	8	Sb	Bi		Ca
	Unit	it kg	mdd	mdd	mdd	mdd	qdd	mdd	mdd	mdd	%	mdd	mdd	qdd	mdd	mdd	mdd	mdd	mdd	mdd	%
	MDL	L 0.01	0.01	0.01	0.01	0.1	2	0.1	0.1	-	0.01	0.1	0.1	0.2	0.1	0.5	0.01	0.02	0.02	7	0.01
Pulp Duplicates																					Ī
DWB16-003	Rock	0.25	0.36	33.35	5.31	63.0	53	39.1	16.5	544	2.85	6.3	0.2	<0.2	1.1	155.2	0.16	0.11	0.04	48	2.36
REP DWB16-003	ac		0.34	31.38	5.16	62.7	54	37.1	15.9	531	2.87	6.3	0.2	1.7	1		0.17	0.12	0.05	49	2.40
23-03	Rock	0.19	0.76	23.09	9.91	32.1	32	11.3	7.1	225	1.24	4.2	9.0	8.0	2.3	76.6	0.13	0.17	0.12	33	0.96
REP 23-03	ac		0.81	23.63	10.19	33.6	31	11.6	7.4	215	1.23	4.3	9.0	0.7	2.4	78.4	0.14	0.16	0.11	33	0.95
Reference Materials																					
STD DS10	Standard		15.24	158.37	152.26	370.6	1780	75.6	13.7	897	2.73	46.7	2.7	61.3	7.9	67.5	2.59	10.09	12.11	41	1.06
STD DS10	Standard		14.63	14.63 153.27	160.29	371.6	1946	68.9	13.1	918	2.79	48.1	3.0	82.6	8.0	71.2	3.09	10.36	13.65	43	1.08
STD OXC129	Standard		1.23	26.04	60.9	43.2	10	73.0	19.2	418	3.01	0.5	0.7	178.7	1.9	176.7	0.03	0.04	<0.02	49	0.62
STD OXC129	Standard		1.21	27.56	7.11	43.4	15	17.1	20.4	428	3.00	9.4	8.0	201.7	1.9	188.0	0.05	0.04	<0.02	20	0.64
STD DS10 Expected			15.1	154.61	150.55	370	2020	74.6	12.9	875 2	2.7188	46.2	2.59	91.9	7.5	67.1	2.62	6	11.65	43	1.0625
STD OXC129 Expected	P		1.3	28	6.3	42.9	28	79.5	20.3	421	3.065	9.0	0.72	195	1.9		0.03	0.04		51	0.665
BLK	Blank		<0.01	0.04	<0.01	<0.1	<2	<0.1	<0.1	۲	<0.01	9.4	<0.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	2	<0.01
BLK	Blank		<0.01	<0.01	<0.01	<0.1	<2	<0.1	<0.1	٧	<0.01	<0.1	40.1	<0.2	<0.1	<0.5	<0.01	<0.02	<0.02	42	<0.01
Prep Wash																					
ROCK-VAN	Prep Blank		0.98	3.40	0.98	30.3	7	6.0	3.7	473	1.69	1.9	0.4	1.	2.2	18.3	0.03	0.07	<0.02	21	0.71
ROCK-VAN	Prep Blank		1.09	3.31	2.64	33.6	80	1.2	3.7	495	1.76	1.8	9.0	9.0	2.2	19.6	0.04	0.10	<0.02	21	0.61

BUREAU MINERAL LABORATORIES
VERITAS Capada

www.bureauveritas.com/um

Donald Bunce 21670 Chief Lake Rd.

Client:

Prince George British Columbia V2K 5K5 Canada

November 16, 2016

Jade Fever

Project:

Report Date: Page: 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada QUALITY CONTROL REPORT Bureau Veritas Commodities Canada Ltd. PHONE (604) 253-3158

18 of 3

Part:

1 of 1

	מסיבון ססונון ססונון ססונון ססונון סונון														Ser. Ser.	##010001NIWA		5	-		10
	Method	AQ251 AQ251		AQ251 AQ251	652.56	AQ251 AQ251		40251	40251	40251	AQ251 AQ251 AQ251 AQ251 AQ251	19251		19251	AQ251 AQ251 AQ251		AQ251 AQ251	19251 A	AQ251 A	AQ251 A	AQ251
	Analyte	۵.	La	ပ်	Mg	Ba	F	œ	¥	Na	×	×	Sc	F	S	Hg	Se	Te	Ga		e
	Unit	%	mdd	mdd	%	mdd	%	mdd	%	%	%	mdd	mdd	mdd	%	qdd	mdd	mdd	mdd	mdd	mdd
	MDL	0.001	0.5	0.5	0.01	9.0	0.001	-	0.01	0.001	0.01	0.1	0.1	0.02	0.02	20	0.1	0.02	0.1	0.02	0.1
Pulp Duplicates																					T
DWB16-003	Rock	0.091	5.6	32.4	1.06	147.2	0.128	2	2.26	0.010	0.18	0.2	3.9	0.03	<0.02	24	<0.1	0.03	6.7	0.21	<0.1
REP DWB16-003	20	0.095	5.5	31.4	1.07	151.5	0.131	2	2.29	0.010	0.18	0.3	4.0	0.03	<0.02	24	<0.1	0.03	6.9	0.22	<0.1
23-03	Rock	0.107	8.7	20.6	0.31	185.1	0.146	3	96.0	0.037	0.17	0.3	2.5	0.03	<0.02	18	<0.1	0.03	3.8	0.18	<0.1
REP 23-03	90	0.099	9.0	20.8	0.31	179.8	0.139	4	0.97	0.036	0.17	0.3	2.3	0.03	<0.02	13	<0.1	0.02	4.3	0.19	<0.1
Reference Materials																					
STD DS10	Standard	0.077	20.3	56.5	0.77	368.9	0.077	7	1.04	690.0	0.33	3.4	3.1	5.32	0.27	259	2.2	5.18	4.4	2.86	<0.1
STD DS10	Standard	0.080	19.8	58.6	0.78	379.9	0.083	9	1.08	0.070	0.34	3.6	3.0	5.30	0.27	289	2.0	5.05	4.6	2.86	0.1
STD OXC129	Standard	0.105	13.9	49.2	1.50	20.0	0.368	₹	1.49	0.580	0.36	<0.1	17	0.03	<0.02	\$	<0.1	0.03	5.3	0.17	0.1
STD OXC129	Standard	0.110	14.0	52.3	1.53	52.1	0.376	-	1.54	0.581	0.35	<0.1	1.0	0.03	<0.02	<5	<0.1	<0.02	5.7	0.16	<0.1
STD DS10 Expected		0.0765	17.5	54.6	0.775	328 (0.0817	**	1.0259	0.067	0.338	3.32	8	5.1	0.29	300	2.3	5.01	4.5	2.63	0.08
STD OXC129 Expected	Q	0.102	13	25	1.545	20	0.4	1	1.58	9.0	0.37	80.0	1.1 0.03	03					5.6	0.16	
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	۲	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	\$	<0.1	<0.02	<0.1	<0.02	<0.1
BLK	Blank	<0.001	<0.5	<0.5	<0.01	<0.5	<0.001	⊽	<0.01	<0.001	<0.01	<0.1	<0.1	<0.02	<0.02	\$	<0.1	<0.02	<0.1	<0.02	<0.1
Prep Wash																					
ROCK-VAN	Prep Blank	0.044	5.7	2.5	0.44	58.2	090.0	2	0.81	0.071	0.07	<0.1	5.6	<0.02	<0.02	9	<0.1	<0.02	3.7	0.24	0.1
ROCK-VAN	Prep Blank	0.044	6.2	3.2	0.46	62.4	0.058	2	0.84	820.0	90.0	<0.1	2.7	<0.02	0.04	5	<0.1	<0.02	3.8	0.25	<0.1

BUREAU MINERAL LABORATORIES
VERITAS CARACA

Bureau Veritas Commodities Canada Ltd.

www.bureauveritas.com/um

Report Date: Project

November 16, 2016 Jade Fever

Donald Bunce 21670 Chief Lake Rd. Prince George British Columbia V2K 5K5 Canada

Client:

1011

Page:

3 of 3

Part

QUALITY CONTROL REPORT

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

	Method Analyte	_	AQ251	AQ251 Rb	AQ251 Sn	AQ251	AQ251	AQ251	AQ251 Ce	2.00	AQ251 AQ251	AQ251		AQ251	AQ251
		ppm 0.02	ppm ppm 0.02 0.1	ррт 0.1	ррш 0.1	ppm 0.05	ppm ppm 0.05 0.1	ppm 0.01	ррт 0.1	ppm 0.02	ppb 1	ppm 0.1	ppm 0.1	pp 10	ppb 2
Pulp Duplicates															
DWB16-003	Rock	0.18	0.17	5.1	0.4	<0.05	5.8	7.34	11.6	<0.02	۲	0.4	18.6	<10	2
REP DWB16-003	ac	0.19	0.17	5.3	0.4	<0.05	6.1	7.46	12.1	<0.02	₹	0.4	19.7	<10	0,
23-03	Rock	0.26	0.25	5.1	9.0	<0.05	8.3	5.64	16.1	<0.02	۲	0.3	5.2	<10	S
REP 23-03	oc	0.26	0.25	4.9	9.4	<0.05	8.2	5.69	16.3	<0.02	₹	0.4	4.8	<10	2
Reference Materials															
STD DS10	Standard	0.05	1.78	30.2	1.7	<0.05	2.6	9.64	42.5	0.26	47	9.0	20.2	122	176
STD DS10	Standard	90.0	1.70	29.6	1.8	<0.05	2.8	8.58	38.6	0.28	53	0.7	21.0	100	192
STD OXC129	Standard	0.33	1.73	15.5	0.7	<0.05	23.5	5.45	25.8	<0.02	₹	0.8	2.4	<10	Q
STD OXC129	Standard	0.31	1.29	16.3	0.7	<0.05	20.9	4.87	24.1	<0.02	₹	0.7	2.6	<10	0
STD DS10 Expected		90.0	1.62	27.7	1.6		2.7	7.77	37	0.23	20	0.63	19.4	110	191
STD OXC129 Expected	po	0.24	1.4		0.7		21	4.7	23.7			0.8	2.22		
BLK	Blank	<0.02	<0.02	<0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	٢	<0.1	<0.1	<10	Ÿ
BLK	Blank	<0.02	<0.02	€0.1	<0.1	<0.05	<0.1	<0.01	<0.1	<0.02	₹	<0.1	<0.1	<10	0,
Prep Wash															
ROCK-VAN	Prep Blank	0.12	0.16	2.0	0.4	<0.05	3.0	9.14	11.9	<0.02	۲	0.2	1.8	<10	2
ROCK-VAN	Prep Blank	0.12	0.14	2.3	0.4	<0.05	3.2	9.36	12.7	<0.02	₹	0.2	1.7	<10	2

APPENDIX E

2016 Jade Fever Exploration Program

Cost Statements

STATEMENT OF EXPENDITURES

Jade Fever Exploration Program Statement of Expenditures 2017-04-19

Metric	Description	Unit	Quanity	-	Rate	Total
Excavator Costs (KX41-1996)						
Trail Construction	0.862 km of trail constructed	hrs	86.5	\$	59.75	\$ 5,168.38
Trail Reclamation	0.012 km of trail reclaimed	hrs	0.25	\$	59.75	\$ 14.94
				200	Sub Total	\$ 5,183.31
Trenching Costs						
Trench Construction	30.2 m of trench constructed	hrs	8.5	\$	59.75	\$ 507.88
Trench Reclamation	19.6 m of trench reclaimed	hrs	2.5	\$	59.75	\$ 149.38
			***************************************		Sub Total	\$ 657.25
Labour						
Forman		hrs	39	\$	40.00	\$ 1,560.00
Labour		hrs	136	\$	30.00	\$ 4,080.00
					Sub Total	\$ 5,640.00
Rock Analysis Cost	was specific company to the contract protectors					
Geochemistry Analysis	Bureau Veritas Assay	\$				\$ 2,549.32
					Sub Total	\$ 2,549.32
Food and Lodging		10200				
Food and Lodging - 2 Personel	\$100 per day, per person	days	40.5		\$200.00	\$8,100.00
					Sub Total	\$8,100.00
Rock Analysis Cost						
Fuel for 4x4 Crew Truck		km	4247	\$	0.68	\$ 2,887.96
Rental of 4x4 Crew Truck		d	200			\$ 4,193.90
7					Sub Total	\$ 7,081.86
					Total	\$ 29,211.74

STATEMENT OF COSTS

Jade Fever Geological Field Assessment

16-007 Statement of Costs 2017-04-19

Metric	Description / Invoice Number	Unit	Quanity	Rate	Total
Labour					
Project Manager	Program implementation and safety	\$/d	5	\$ 400.00	\$ 2,000.00
Exploration Geologist	Field and terrian mapping	\$/d	7	\$ 450.00	\$ 3,150.00
Engineering	Program design and reporting	\$/d	3	\$ 500.00	\$ 1,500.00
	130000C 389			 Sub Total	\$ 6,650.00
Room and Board					
Project Manager	Wolverine Camp R&B	\$/d	4	\$ 180.00	\$ 720.00
Exploration Geologist	Wolverine Camp R&B	\$/d	4	\$ 180.00	\$ 720.00
				Sub Total	\$ 1,440.00
Equipment					
(1) 4x4 Crew Truck	Ford F350 Extended Cab	\$/d	3	\$ 150.00	\$ 450.00
(1) InReach		\$/d	3	\$ 10.00	\$ 30.00
(2) ATV	Polaris	\$/d	2	\$ 130.00	\$ 260.00
				Sub Total	\$ 740.00
Expenses					
Supplies	Field and Camp Supplies	\$			\$ 892.68
Employee Expenses	Flights and Hotels	\$			\$ 2,078.34
				Sub Total	\$ 2,971.02
Fuel					
Gas	4x4 Crew Truck	\$/km	441	\$0.68	\$299.88
Gas	ATV	\$/km	50	 \$1.00	\$50.00
		on a fixed or		Sub Total	\$349.88
				Total	\$ 12,150.90

APPENDIX F

2016 Jade Fever Exploration Program
Field Notes

For Tenure 838284

Summary: The 2016 prospecting and
lithogeochemical Survey was conducted
by, Donald Bunce from June 15,2016
through September 11,2016.

Introduction: The program was conducted by Donald Bunce, from June 15, 2016 through September 11, 2016. (Brock Samples were Taken.

- Total applicable exploration expenses on the Jade Fever Property during the 2016 exploration program were \$26,555.88

Trail construction, Trenching and Sampling:

- Atotal of 862 meters of exploration trail was constructed. Average width of the trail was 1.5 meters
- Fire trenches # TR23/16 through #TR27/16
 totaling 30.2 meters were dug. Average
 width with side cast is 2.3 meters, and
 the average depth of the trenches were
 0.7 meters
- 34 samples were taken from rock out crops 29 samples Were taken from the Fire trenches
 - 5 Samples wiere taken from Dease Lake
 Tades Quarry #1, witch is 1.5km to the
 north west of were we are on Tenure
 #838284. We were going to use their
 assay results as reference Levels for
 nickel and chromium in Our assay
 results

worked on Exploration trail in 2016

For Exploration trail

Total Surface disturbance For Trail
-862 meters Long 7 1293m2 = 0.1293ha.
-1.5 meters Wide

Timber Volume = 3 m3

Reclaimed Trail

- 12 meters Long ? 18 m2 = 0.0018 ha.

Trail disturbance - 0.1293 ha

Trench disturbance - 0.0081 ha

0.1374 ha

Total > New Surface disturbance For report year > 0.1374 ha.

Trail Reclaimed - 0.0018 hq.

Trench Reclaimed - 0.0053 hq.

0.0071 hq.

Total > Reclaimed For report year

Total Person days 81

Daily Work Sheet For Jade Fever Project

For Collecting Rock Samples From Rock Outcrops

	Date		#NX-1-817 T	Tenure # 838284	
		ing back at Camp	8	& Time	
	Liters of Gas us Time started wo			el used work	
	# of Sample	Type of Sample Time & Picture Taken	NTS	U T M zone <u>09</u> Nad	83
June 23, 2016	- DWB16-00	i-loose rock -Laying under -the Mose	58°45'34.5N 130°04'34.2W	043774/m-N 6513776m-E ±3m	cl. 1142 m
Tune 29, 2016	-DWB16- 002	-loose rock -Laying under the Mose	58°45'34.9 N 130°04'34.1 W	0437746 m-N 6513794 m-E = 3 m	el. 1142 m
ane 29, 2016	-DW811- 093	-loose rock -Laying under -the Mose	58 <u>°45′35.7″</u> N 130°04′33.4″W ±3 _{in}	0 <u>43 7754</u> m-N 6 <u>513820</u> m-E <u>± 3.4</u>	el. 1157m
1 4,2016	-DWB16- 004	-1005e Fock -Laying under -the Mose	5 <u>3°45′36.8</u> N 13 <u>0°04′32.4</u> W 23m	0437777 m-N 4 <u>513854</u> m-E ±3m	el. 1160 m
uly 5, 2016	-DWB16	- loose rock - Laying under - the Mose	53°45'37.18 130°04'32.18 ±3m	0437769 m-N 6513863 m-E = 3 m	el. 1159 m
49.6,2016	-DWB11-	-loose rock -Laying under -the Mose	5 <u>8°45′39.6′</u> N 130°04′23.5″W ±3m	0437916 m-N 6513940 m-E ± 9m	el. 1211 m
49-7,2016	-DWB16-	- 100se rock - Laying under - the Mose	5834540.41 13039419.81 ±3m	0437976m-N 6513960m-E ±3m	el. 1216m
đ	9	ž	N W	m- N m- E	
	•	*	N W	m- N	
	•	•	N 	m- N m- E	
		- P_	_[*		

For Tenure # 838284

From the trail in the Sand

- DWB16-001 Chert Greenish Grey
 - 7/2 in hardness
 - With Quartz Stock work
- DWB16-002 Main part of the rock is Sedimentary
 - -34 in hardness, medium bluish Gray
 - With a Band of Lime Stone and with Bands of Green Quartz 7/2 in Hardness.
- DWB16-003 main part of the rock is Sedimentary
 - 3k in hardness, medium bluish Gray
 - With bands of Limestone and Quartz mixed together and with bands of Green Quartz 75 in Hardness.
- DWB16-004- Medimorphic rock
 - 3 in Hardness
 - Greenish Giray
- DWB16-005-Peridotite
 - 34 in Hardness
 - magnetic
 - with a few veins of asbestos
- DWB16-006 Medimorphic rock
 - 3 in Hardness
 - Greenish Gray
- DWB16-007- Chert, with Quartz stock work
 - 75 in Hardness
 - Dark Greenish Gray

Daily Work Sheet For Jade Fever Project

For Collecting Rock Samples From Rock Outcrops

Odometer Read	1,2016 Work Permit	# Nix -1-817	Tenure # 838284	
	ding at Camp		& Time	
Liters of Gas in	sed	Liters of Dies		
Time started w	ork		i work	
# of Sample	Type of Sample Time & Picture Taken	NTS	U T M zone <u>09</u> Nad 83	
-DWB16- 008	- From Bedrock - Strike 144°N - dip 75° to NE		0437995 m-N 6513822 m-E ± 3	el. 1242 m
-DWB16- 009	- From Bedrock - Strike 132'N	58°45' 36.2 N 130°04' 17.0"W ± 3m	0 <u>438020</u> m-N 6 <u>513829</u> m-E ±3m	e1.1234 m
-DW816- 010	-From Bedrock -Strike 101°N	58°45' 34" N 130°04'17.9" W ±3m	0 <u>437976</u> m-N 6 <u>5/3762</u> m-E 23 m	el. 1242 m
-DWB16-	-From Bed tock -Strike 168°N -dip 75° to E	58°45'34.6"N 130004'17.8"W	0438007 m-N 6513779 m-E ± 3m	el. 1242 m
-DW816-	-From Bedrock -Strike 100°N	5 <u>8°45′ 32.2°N</u> 130°04′17.5°W ± 3m	0438039m-N 65/3708m-E ± 3m	el.1221 m
a.	.t. ⊩ ⊗	N W	m- N m- E	
		N 	m- N m- E	
2	₩ • •	N w	m- N m- E	
-	± .	N w	m- N m- N	
*	<u>:</u>	N W	m- N m- E	

For Tenure #838284

From Bed Rock Outcrops

- DWB16-008 - Black Slate

- DWB16-009 - Black Slote

-DWB16-010 - extrusive rock - 3 in hardness - Light Gray in Color

-DWB16-011 - Black Argillite
- With a Quartz velninit
- 5 in hardness

- DWB16-012 - Sedimentary rock
- with Bands of Green Quartz, with
Limestone traces
- Reacts Litely to acid

Daily Work Sheet For Jade Fever Project

For Collecting Rock Samples From Rock Outcrops

Odometer Reac	3 20 6 Work Permit # ling at Camp		Tenure # 338284 & Time	
Odometer Read	ling back at Camp		& Time	
Liters of Gas us	sed	Liters of Die	sel used	
Time started we			d work	
# of Sample	Type of Sample Time & Picture Taken	NTS	U T M zone <u>09</u> Nad 83	
-DWB16-	-From Belrock	58°45'43.3" N	0438096 m-N	_
013	- Strike 141°N	13009 12.5° W	6 <u>51405/</u> m-E <u>± 3 m</u>	el. 1231 m
-DWB16- 014	-From Bedrock -Strike 106°N	58°45'42.3"N 130°04'13.0"W	0 <u>438086</u> m-N 6 <u>814014</u> m-E ± 3 m	el. 1232m
- DWB16- 015	-From Bedrock -Strike 66°N -dip 60°toNW	58°45′ 42″N 130°04′13.4°W ±3m	0 <u>438081</u> m-N 6514006 m-E ± 3 m	el 1232 m
-DWB16- 016	-From Bedrock -Strike 104°N	53°45'41.7"N 130°04'13.7"W I 3 m	0433076 m-N 65/3997 m-E	el. 1231 m
-	*	N	m- N	
	-	w	m- E	
-	-	N	m- N	
	-	w	m- E	
-	2	N	m- N	
	-	W	m- E	
51		N	m- N	
	#1	w	m- E	
3	£		m- N	
	•	w	m- N	
	9	N W	m- N E	
	*	w	m- E	

For Tenure # 838284

From Bed Rock outcrops

-DWB16-013 - Slate -Grayish Black

-DWB16-014 - Niedimorphic rock - 3 in Hardness - Greenish Gray

- DWB16-015-Medimorphic rock
- 3 in Hardness
- Greenish Gray in Color
- With a very small section that is
Chert
- 75 in Hardness

-DWB16-016-Medimorphic rock -55 in Hardness - Greenish Gray

Daily Work Sheet For Jade Fever Project

For Collecting Rock Samples From Rock Outcrops

Odometer Read	7, 2016 Work Permit	#Mx-1-817	Tenure # 838284	
	ling back at Camp		& Time	
Liters of Gas us	sed	Liters of Die	esel used	
Time started we	ork		ed work	
# of Sample	Type of Sample Time & Picture Taken	NTS	U T M zone <u>09</u> Nad 8	3
-DWBIL - 017	-from Bedrock -Strike 55°N -dip 80° to NE	59°45'42.4N 132004'14.1" ± 3 m		el. 1236 m
018	-from Bedrock -Strike 116°N	58°45 '44.1"N 130°04'15.8"W	0438044 m-N 6514073 m-E ±3m	el. 1234m
DWB16-	-from bed rock -Strike 116°N -dip 60°t, SW	58°45'44.0"N 130°04'15.6"W		e1.1234 m
-DWB16- 020	-from bedrock -Strike 116°N	5 <u>3°45'44.2</u> °N 13 <u>0°04'17.1°</u> W ±3m	0438024 m-N 6514078 m-E ± 3m	el. 1232 m
-DWB16- @21	-from odrock -Strike 138°N	5 <u>8° 45′ 44.1″</u> N 13 <u>0° 04′ 18″</u> W = 3 m	0438008 m-N 6514075 m-E ±320	el. 1224 m
-DWB16- 022	-from bed rock	58°45'37.9"N 130°01'28.5°W		el. 1174 m
-DWB16- 023	-from bedrock	58°45'36.9 N 130°04'29.2°W ±3m	0437323 m-N 65/3352 m-E 13m	e1.1183 m
-DWB16 - 024	-from bedrock	58°45'36.8"N 130°04'29.3"W ± 3m	043/322 m-N 65/385/ m-E = 3m	el. 1183m
-DWB16 025	- From bed rock - Strike 77°N - dip 75° to 5	53°45′36.4″N 130°04′28.8″W ± 3m	0437333 m-N 65/3834 m-N 23m	e1.1194m
2		N		

For Tenure # 838284

From Bedrock outcrops

-DWB16-017 - Medimorphic rock -34 in Hardness - Greenish Gray

- DWB16-018- Black Chert - 75 in Hardness

-DWB16-019-Medimorphic rock -55 in Hardness - Greenish Gray

-DWB16-020-Niedimorphic rock
- 3 iA Hardness
- Greenish Gray with narrow Black
Veins running through the rock

- DWB16-021-Medimorphic rock - 5 in Hardness - Greenish Gray

- DWB16-022 - Medimorphic rock - 34 in Hardness - medium light Gray

- DWB16-023-Medimorphic rock - 3 & in Hardness - medium Gray

- DWB16-024-Black Argillite
- 5½ in hardness
- With Green Quartz Stock Work, with
9 hardness of 7

For Tenure # 838284

From Bedrock outcrops

-DWB16-025- Black Chert With Green Quartz Stock work - 74 in Hardness

Daily Work Sheet For Jade Fever Project

For Collecting Rock Samples From Rock Outcrops

	Odometer Read	ling back at Campsed	&		
	# of Sample	Type of Sample Time & Picture Taken	NTS	U T M zone 09 Nad 8	13
	-DWB16 -	-from Bodrock	58°-35'34.3N 130'04'23.6 W ± 3m	0437914 m-N 6513789 m-E 23m	el. 1229 m
	-DWB16- 027	-from bedrock	58°45' 34"N 130°04' 24.5W ± 3 m	0437899 m-N 6513765 m-E 23m	el.1215 m
	-DW 8/6- 028	-from bedrock	58°45'34.1N 130°04'26.6N	043 78 97 m-N 651 37 65 m-E 23 m	e/. 1223 m
These rock rigdes are about 12'	S 029	-from bed rock -strike 75°N -dip 80° to SE		0437373m-N 6513775m-E 2300	el.1212 m
opart	-DWB11-	-from bed rock -Strike 75°N -dip 30°to SE	5 <u>8°45'34.</u> 2"N 130°04'26" W ± 3m	0 43 73 73 m-N 651 37 13 m-E ±3m	el. 1209m
	-DWB16- 031	-from bed lock -inbetween -029 + 030	53°45'34.3"N 130°04'25.3"W = 3m	0 <u>437378</u> m-N € <u>513176</u> m-E ±3 m	el. 1209m
	-DWB16 -	-from bedrock -strike 75°N -dip 80°to SE	5 <u>8°45′34.4′</u> N 130°04′26.5′W ±3m	043737/ m-N 65/378/ m-E = 3m	el. 1207 m
		E 	N w	m- N m- E	
		E	N 	m- N m- N	
	*	* •	N w	m- N m- E	
		- P _			

For Tenure # 938284

From Bedrock outcrops

- -DWB16-026 Medimorphic rock Black in color
 - -35 in Hardness
 - With a Chert Vein 2 cm wide
 - Bin Hardness
 - Greenish Gray
- DWB16-027- Black Chert
 - 75 in Hardness
 - With a band of Green Quartz
 - Reacts to acid, Pocket of Lime Stone in the rock
- -DWB16-028-Medimorphic rock
 - 4 in Hardness
 - Medium Dark Gray
 - DWB16-029-Medimorphic rock
 - 3 in Hardness
 - Medium Dark Gray
- DWB16 030 Medimorphic rock
 - 34 in Hardness
 - Greenish Gray
- DWB16-031 Black Argillite
 - 4 in Hardness
 - With Quartz. Stock Work
- DWB16-032-Black Chert
 - 7 in Hardness
 - With Quartz Stock Work

Daily Work Sheet For Jade Fever Project

For Collecting Rock Samples From Rock Outcrops

Date Aug. 22	2,2016 Work Permit i	Mx-1-817	Tenure # 838284	
Odometer Read	ling back at Camp		& Time	
Liters of Gas us	sed	Litary of D	& Time	
Time started wo	ork	Time finish	ned work	
i ino station we	, , , , , , , , , , , , , , , , , , ,	i mie imisi	led work	
# of Sample	Type of Sample Time & Picture Taken	NTS	U T M zone <u>09</u> Nad	83
-DWB16- 033	- From bedrock - Strike 75°N -Dip 80° to 5 vv	58°45'40.3 130°04'38.2' ±3m	N 043 7683 m-N W 651 3977 m-E ± 3 m	
-DWB16- 034	from bedrock	58°45'34" 130°04'16.5°	N 0438036 m-N W 65/3763 m-E ±3m	el. 1232 m
ā.	-		Nm- N Wm- E	
₹.	:		Nm- N Wm- E	
			Mm- N Wm- E	
5) 7)			Mm- Nm- E	
2			Mm- N Wm- E	
21			Mm- N Wm- E	
•:	* * *		Nm- Nm- N	
• (#1 -1 	?	m- N wm- E	

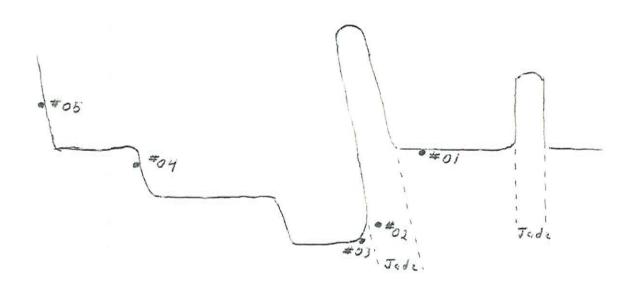
- P ___-

For Tenure # 833284 From Bedrock outerops

-DWB16-033 - Medimorphic rock
- 34 in Hardness
- Medium Dark Gray
- With Quartz Stock Work

-DWB16-034-Medimorphic rock (serpentinite)
-4 in Hardness
- Greenish Gray
- With inclusions of lime stone
- it reacts to acid

Referance sample: from Dease Lake Jades


REF -01-Argillaceous cherty Slate This rock was between the Nephrite Lenses in Quarry #1

REF, -02 - Nephrite from Lens in Quarry #1

REF. -03 - Serpentinite closest to Lens

REF. - 04 - Serpentinite

REF. - 05 - Serpentinite also magnetic

