BRITISH COLUMBIA The Best Place on Earth				T RECOLUTE
Ministry of Energy and Mines BC Geological Survey				Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: Technical Report - Geochemi	nical Sa	mpling	TOTAL COST:	\$11,145.13
AUTHOR(S): Arne O Birkeland. P.Eng.		SIGNATURE(S):		
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): N/A No Surface Dis)isturba	nce		YEAR OF WORK: 2016
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	s): <u>5645</u>	610 - 2017/APR/12		
PROPERTY NAME: Deer Bay				
CLAIM NAME(S) (on which the work was done): Tenure 570162				
COMMODITIES SOUGHT: Cu-Ni-Co-PGE				
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092F 029				
MINING DIVISION: Alberni		NTS/BCGS: 092F/4,5		
LATITUDE: <u>49</u> • <u>14</u> • LONGITUDE: <u>125</u>	o	35 ""	at centre of work	:)
OWNER(S): 1) Arne Birkeland	2)			
MAILING ADDRESS: TH 101, 735 15th St West, north Vancouver, BC, V7M 0B8				
OPERATOR(S) [who paid for the work]: 1) Arne Birkeland	2)			
MAILING ADDRESS: Same				
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure West Coast Crystalline Complex, massive and disseminated su	re, altera sulphide	tion, mineralization, size as in float and outcro	and attitude): D.	

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 13121,14182,14315,15155,15447,18751.

ATTISH COLUMN

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)	I		
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic		-	
Electromagnetic		-	
Induced Polarization		-	
Radiometric		-	
Seismic		-	
Other		-	
Airborne		-	
GEOCHEMICAL (number of samples analysed for)			
Soil		-	
		-	
Rock 14		-	\$11,145.13
Other		-	
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying		-	
Petrographic		-	
Mineralographic		_	
Metallurgic		_	
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	\$11,145.13

REPORT ON GEOCHEMICAL SAMPLING

Deer Bay Property, Alberni M.D.

NTS: 092F/4, 092/F5

Lat: 49° 14′ Long: 125° 35′

Report By

Arne O. Birkeland, P. Eng.

Arnex Resources Ltd,

Report Dated: May 18, 2017

TABLE OF CONTENTS

Page

1.0	Intro	duction	
	1.1 1.2 1.3 1.4	General Property Description Location and Access History	3 3 3 4
2.0	Geol	ogy	5
	2.1 2.2	Regional Geology and Stratigraphy Property Geology and Lithologic Descriptions	5 6
3.0	Geoc	hemical Sampling	6
4.0	Conc	lusions	7
5.0	Reco	mmendations	7
6.0	Refe	rences	7
7.0	Qual	ification of Author	8

APPENDIX

Tables Figures Analytical Certificates

Report on Geochemical Sampling

Deer Bay Property

1.0 Introduction

1.1 General

Prospecting and Geological sampling was carried out over approximately a two Ha area on float and outcrop exposed by a landslide on the south-facing slope west of Similar Island on the Deer Bay Property. Ten person-days of field-work were conducted by A. Birkeland, P. Eng. and E. Birkeland during the periods May September 18 to 25,2016.

The principle objective of the geochemical sampling was to investigate the occurrence of sulphide rich float and outcrop exposed by a relatively recent landslide.

A total Expenditure of \$11,145.13 was incurred as itemized in Table 16-2, Statement of Expenditures. This assessment report is submitted in conjunction with a Statement of Work filed on April 12,2017 as Event Number 5645610 (Appendix I). No Notice of Work and Reclamation Permit was filed as there was no surface disturbance caused by the work that was done.

1.2 Property Description

The Deer Bay Property (formerly known as the Tofino Nickel Property), Mineral Inventory Minfile Number 092F 029, is comprised of four contiguous mineral claims owned by Peter Buckland of Boat Basin, BC, and A. O. Birkeland (FMC 102420) of North Vancouver, B. C. (see Table 16-1, (Figure 2). The claims cover a total area of 743.02 Ha.

1.3 Location and Access

The Deer Bay Property is located in the Alberni Mining Division 25 km ENE of Tofino near the head of Tofino inlet on the west central coast of Vancouver Island (Figure 1). The center of the property is located at approximately 49° 14′ north latitude and 125° 35′ east longitude in NTS 092F/4,5. The Main Showing is located on a steep timbered hillside 0.5 km north of Similar Island at an elevation of approximately 295 m.

Access is by logging road (70 km from Tofino via Kennedy Lake Bridge) or by boat (30 km from Tofino). Access for the 2016 Geochemical Sampling Program was from Tofino by boat taking 45 minutes, then by hiking up the hillside in the landslide area.

1.4 History

Exploration activity on the Deer Bay property dates back to the late 1890's when hand cobbed ore was produced from shafts and adits dug on small quartz veins along Tofino Creek. Between 1953 and 1984 the property was explored for its skarn and porphyry Cu-Mo potential associated with an Island Intrusive Stock at the head of Tofino Bay.

In 1984, Cominco examined the Cu-Ni-PGE Main Showing and optioned the property in 1985. Detailed geologic mapping, soil sampling, limited geophysics and trenching was carried out. Cominco concluded that *PGE bearing Cu-Ni* mineralization may have been emplaced as an immiscible liquid at the same time of injection of the ultrabasic host. A report by Mason, July 1986 states: While the isolated outcrop (Main Showing) is only 30 m by 10 m, the associated rock types (altered ultramafics and anorthosite) and the Cu-Ni sulfide bands suggest that it is part of a much larger body... the property has both demonstrated grades and potential for significant tonnage. Additional work was recommended but was not carried out by Cominco.

Reconnaissance geological mapping and geochemical surveys were conducted by Stag Explorations during 1988. Soil geochemistry was somewhat effective in delineating anomalous zones around the gabbro intrusion and at the Main Showing. The program also discovered an anomaly at the northeastern end of the soil grid which has never been followed-up further. In 1992, reconnaissance soil and moss mat stream sediment sampling along new road-cuts above the Main Showing detected anomalous Cu, Ni, Co, Au and PGM extending the prospective mineralized strike length up to 2 km beyond the areas previously explored.

Recent orientation soil and stream sediment sampling conducted in 1995 defined geochemical anomalies up-drainage from the Main Showing. These results confirm earlier reports of anomalies up-slope and indicate additional undiscovered mineralization is present. Petrographic examination of specimens of host rock from the Main Showing indicated that the mineralization is hosted in a zoned ultramafic intrusion complex and the occurrence was classified as belonging to the economically important Gabbroid Cu-Ni-Co deposit type.

Detailed mapping and engineering geology was carried out at the Main Showing in April of 1997. It was concluded that the massive sulphide band at the Main Showing is concordant with the foliation and the contact of the host amphibolite.

The massive sulphides and footwall disseminated and stockwork zone strikes northwesterly and dips moderately to the southwest. The topography will allow two relatively convenient drill site locations on 15 metre sections lines. It was recommended that a fan of holes be drilled by a light-weight helicopter portable diamond drill on each section line to test the down-dip continuation of the mineralized zone that is exposed on surface.

Geologic Mapping was carried out on rocks exposed by a debris slide along a drainage in the central portion of the property in April 1997.

Arnex Resources Ltd. conducted a grid magnetometer survey and rock chip geochemical exploration program on the Deer Bay Property during June to August, 2000. Twenty six rock chip samples were analyzed. Magnetometer readings were taken from approximately a 200 metre by 400 metre grid. SJ Geophysics of Delta BC processed the magnetic data. Three days of physical work was performed by rehabilitating the access trail to the Main Showing. The total cost of the year 2000 exploration program was \$16,485.

The magnetometer survey indicated that a strong magnetic high exists to the west and northwest of the Main Zone Showing. It is interpreted that the high is due to an accumulation of magnetic Ni assemblage mineralization down dip from the Main Showing. Deeper drill targets are indicated. The magnetometer survey also indicates surface projections of the Main Zone on strike to the southeast.

A Geological Mapping Program was carried out by Arnex Resources Ltd in 2008.

A rock geochemical sampling was carried out on the recent landslide area during the period October 16 to 25, 2012.

Additional rock geochemical sampling was carried out on the landslide area during the period May 18 to July 24, 2014.

2.0 Geology

2.1 Regional Geology and Stratigraphy

Vancouver Island lies within the Canadian Cordillera within terrain classified as Wrangellia. Central and western Vancouver Island is predominantly underlain by Paleozoic and Mesozoic strata intruded by Jurassic and Tertiary Intrusions (See Figure 3, Regional Geology Map).

2.2 Property Geology and Lithologic Descriptions

The Deer Bay property is underlain by a northwesterly striking southwesterly dipping stratigraphic sequence known as the West Coast Crystaline Complex on the western portion of the property, and by Paleozoic Sicker group rocks on the eastern part of the claims. Intruding the Paleozoic strata to the southwest and northeast respectively are intrusive stocks of Tertiary Catface Intrusions and Jurassic Island Intrusions.

The country rock underlying the Main Showing area is the West Coast Complex which consists of quartzo-felspathic gneiss containing foliated amphibolite lenses and numerous thin amphibolite bands (Figure 4, Geology.

The principal rock type hosting the mineralization at the Main Showing is characterized by dark gray to black medium to coarse grained amphibolite. Previous petrographic analysis of the amphibolite indicates that it is part of a differentiated-zoned ultramafic intrusion complex. It appears that the amphibolite dykes sills and lenses are related to a major hornblende gabbro intrusive body, which has been historically reported to outcrop approximately 400 m southwest of the Main Showing. A genetic relationship between the gabbro intrusive and the Cu-Ni-Co-PGE bearing amphibolite at the Main Showing has been previously suggested supported by the fact that the gabbro intrusive is geochemically anomalous in the same suite of metals.

3.0 Geochemical Sampling

A total of 14 rock chip and samples and one moss-mat (stream sediment) sample were taken from an area exposed by a recent landslide. Prospecting revealed that significant sulphide mineralization was present in slide debris float and in outcrop. Most sulphide mineralization occurs as iron sulphide (pyrite, pyrrhotite, marcasite) but minor chalcopyrite, violarite, and galena were also noted.

Values for selected elements and sample descriptions are contained in the Appendix, Tables 16-3,16-4. Sample Locations and Results for selected elements are plotted in Figure 4, Sample Location Map, and Figure 5, Sample Value Map. Analytical Certificates for all sampling is contained the Appendix.

Rock Sample 02 returned "ore" grade values of 104617 ppm Cu, 61344 ppm Ni, 1283 ppm Co, 0.435 ppm Au and 16.9 ppm Ag from a five cm float cobble

containing up to 95% massive sulphide. Sample 03 returned 1316 ppm Cu and16344 ppm Ni from 15 cm float boulder of amphibolite containing significant sulphide mineralization. Of significance was Sample 08 which was a 1.0 metre true width representative chip sample of pyritic felsite ganeiss outcrop containing visible chalcopyrite and violarite .Values of between 1967 to 2210 ppm Cu, 1402 to 8684 ppm Ni and anomalous Pb values from two additional float samples samples.

Anomalous values for Cu and Ni were also present in the moss-mat (stream sediment) sample that was taken.

4.0 Conclusions

The recent large landslide exposed semi massive to massive sulphide mineralization in both float and outcrop. Cu, Ni, Co, Pb, Ag and Au anomalous values were present in the limited geochemical sampling that was conducted.

5.0 Recommendations

It is recommended that mapping, prospecting and rock chip sampling be conducted in the mineralized landslide area. The relationship between the mineralized landslide area and the Main Showing should be investigated to determine tonnage potential for the property.

6.0 References

Aris Assessment Reports 13121,14182,14315,15155,17284,18751 Minfile Property Reference Occurrence 092F 029 Historical Company Reports, Cominco, Braden Exploration.

7.0 Qualifications of Author

Arne O. Birkeland, P.Eng. Arnex Resources Ltd. TH 101 – 735 15th Street West North Vancouver, BC, Canada, V7M 08 Telephone/Fax: (604) 904-0606 Email: <u>arnex@telus.net</u>

I, Arne O. Birkeland, P.Eng., do hereby certify that:

- I am currently employed as a Geological Engineer by: Arnex Resources Ltd. TH 101 – 735 15th Street West, North Vancouver, British Columbia, Canada, V7M 0B8
- 2. I graduated with a Bachelor of Science Degree in Geological Engineering from the Colorado School of Mines in 1972. I am a 1969 graduate of BCIT obtaining a Diploma of Mining Technology.
- 3. I have been a practicing Professional Engineer registered with the Association of Professional Engineers and Geoscientists of British Columbia since 1975, Registration Number 9870. I am a member of the Association of Mineral Exploration of British Columbia.
- 4. I have worked as a geologist for a total of 45 years since my graduation from university. My primary employment since 1966 has been in the field of mineral exploration and development. My experience has encompassed a wide range of geological environments including extensive experience in classification of deposit types as well as considerable familiarization with geochemical and geophysical survey techniques and diamond drilling procedures. Since 1990, my primary involvement in exploration activities has been focused on the BC Cordillera, primarily exploring for Volcanogenic Massive Sulphide and Porphyry type targets.
- 5. I am responsible for the preparation of the report titled Report on Geochemical Sampling, Deer Bay Property, Alberni Mining Division, BC dated May 18, 2017. I have personally conducted and supervised the exploration fieldwork carried out Deer Bay Property that is the subject of this report.

Dated at North Vancouver, British Columbia, this 18th day of May, 20.

"signed" Arne O Birkeland

Arne O. Birkeland, P. Eng. President, Arnex Resources Ltd.

Location Map- Deer Bay Property

Deer Bay Propertry - Claim Map

Regional Geology Map - Vancouver Island

Table 16-1 Claim Tenure Deer Bay Property

Tenure Number	Claim Name	Owner	Map Number	Issue Date	Good To Date	Area (ha)
200235	SUPER 2	102420 (100%)	092F	1984/may/10	2018/Apr/13	300.0000
516936		102420 (100%)	092F	2005/jul/11	2018/Apr/13	316.4170
570161	NICK 2	102420 (100%)	092F	2007/nov/16	2018/Apr/13	21.0963
570162	NIICK 1	102420 (100%)	092F	2007/nov/16	2018/Apr/13	105.4950
					Total	743.0083

Table 16-2					
Statement of Expenditu	ures				
Deer Bay Property					
2016 Geochemical Proc	yram				
Exploration Work type	Comment	Units			Totals
			D 11		
Personnel (Name)* / Position	Field Days (list actual days)	Days	Kate	+2 000 00	
Arne Birkeland, P.Eng.	Aug 1, 2016 to Sept 25, 2016	5	\$400.00	\$2,000.00	
Emilie Birkeland	Sept 21, 2016 to Sept 25, 2016	5	\$50.00	\$250.00	+
Ground Exploration Surveys	Area in Hostares /List Dersonnel	Samples		\$2,250.00	\$2,250.00
Geochemical Pock	5Ha A O Birkeland	15 0		¢370.55	
	GeoSpark Consulting (digitizing)	15.0		¢2 000 00	
				\$2,000.00 \$2,379.55	\$2 370 55
Transportation				32,575,55	\$2,379.33
Ferries				\$320.00	
Truck Fuel				\$140.00	
Boat Fuel				\$487.44	
				\$947.44	\$947.44
Accommodation & Food					I =
Room	5 days @ \$150.00/day			\$750.00	
Groceries				\$0.00	
Meals				\$287.42	
				\$1,037.42	\$1,037.42
Miscellaneous					
Assessment Report				\$2,500.00	
Other	Boat Rental 5 days @ \$300/day			\$1,500.00	
Other	Moorage			\$0.00	+ 4 000 00
				\$4,000.00	\$4,000.00
Subtatal					¢10 61 <i>1 1</i> 1
Subiolai					φ10/017 .41
GST					¢530 72
					φ 330.7 Ζ
Total					\$11 145 13
iulai					ΨII/ITJ.IJ

Table 16 - 3 - Selected Values MS Analytical Client: Arnex Resources Ltd. File Created: 02-May-2017 Job Number: YVR1710379 Number of Samples: 15 Project: DBP

Sample #	Northing	Easteing	Northing	Easteing	Cu	Ni	Со	Au
	Lat	Long	UTM	UTM	PPM	PPM	PPM	PPM
			NAD 83	Zone 10U				
01	49.21190	125.63081	5454344	308403	96	5	28	0.001
02	49.21197	125.63097	5454352	308392	104617	61344	1283	0.435
03	49.21194	125.63084	5454348	308401	1316	16525	303	0.044
04	49.21213	125.63112	5454370	308382	327	8684	140	0.028
05	49.21215	125.63020	5454370	308449	1967	1402	97	0.017
06	49.21223	125.63081	5454370	308405	55	56	17	0.001
07	49.21236	125.63096	5454395	308394	58	8	5	0.001
08	49.21236	125.63101	5454395	308391	2210	8737	323	0.047
09	49.21197	125.63097	5454352	308392	3359	44	22	0.018
10	49.21197	125.63097	5454352	308392	54	10	19	0.005
11	49.21217	125.63094	5454373	308396	384	2116	29	0.007
12	49.21216	125.63093	5454373	308396	30	16	9	0.001
13	49.21225	125.63150	5454384	308354	398	10	3	0.006
14	49.21220	125.63210	5454380	308311	62	6	12	0.003
MM01	49.21201	125.63091	5454356	308396	93	134	14	0.003

Ag	Pb	Zn
PPM	PPM	PPM
0.10	34	31
16.90	10	189
0.32	214	37
0.15	491	42
0.27	74	21
0.05	386	69
0.05	158	40
0.42	424	48
0.89	167	286
0.21	111	15
0.15	122	21
0.05	111	20
0.47	61	198
0.06	68	36
0.07	4	44

Table 16-4 Geochemical Data Sheet Deer Bay Property

Sample #	Туре	TW/AW	Lithology	Mineralization	Alteration
01	Float	25 cm Boulder	Amphibolite	Dess py, limonite	oxidation
02	Float	5 cm Cobble	Massive Sulphide	Mass Sul, Sul = 95%,Py, cpy, violarite, minor sph	bl chl
03	Float	15 cm Boulder	Amphibolite	Py, Po veins, vio, cpy, gal	lim
04	Float	10 cm Ccobble	Amphiboloite	Dess vio, gal	lim
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
05	Float	10 cm Ccobble	Felsite	Py = 10%, vio, gal	Bl chl
06	Rep chip	TW = 1.0m	Felsite O.C.	VFG dess Py=1%, cpy, gal	lim, ser
07	Float	15 cm Boulder	Felsic Gneiss	Dess py = 10%	lim
00	Dava alaina	TN4 1.0			1:
08	кер спір	1 vv = 1.0m	Feisite O.C.	Des py=5%, cpy, vio	lim
09	Float	1.0 m Boulder	Felsicy Gneiss	Dess py. cpy. sph. gal	sil. lim
					,
10	Rep chip	TW = 1.0m	Felsite O.C.	Minor py, gal	Sil, lim
11	Float	1.0 m Boulder	Mafic volc, amp	Des FG py, vio, gal	Bl chl
12	Float	50 cm Boulder	Foliated Felsic Gneiss	Dess py, minor gal	lim
12		$T_{M} = 1.0m$	Amphihalita	Minor cov oph	lim
13					
14	Float	20 cm Boulder	Amphibolite	Minor py	lim
MM-01	Moss Mat	Drainager .1x.3m	Stream Sediment	Mod Gradient	N/A

MS Analytical MS Analytical Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 An A2 Global Company Phone: +1-604-888-0875

CERTIFICATE OF ANALYSIS: YVR1710379A

Project Name:	DBP
Job Received Date:	17-Apr-2017
Job Report Date:	01-May-201
Report Version:	Final

7

COMMENTS:

Test results reported relate only to the samples as received by the laboratory. Unless otherwise stated above, sufficient sample was received for the methods requested and all samples were received in acceptable condition. Analytical results in unsigned reports marked "preliminary" are subject to change, pending final QC review. Please refer to MS Analyticals' Schedule of Services and Fees for our complete Terms and Conditions

To: Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

	SAMPLE PREPARATION	
METHOD CODE	DESCRIPTION	
PRP-757	Dry, Screen to 80 mesh, discard plus fraction	

	ANALYTICAL METHODS
METHOD CODE	DESCRIPTION
IMS-116	Multi-Element (39 elements), 0.5g, 1:1 Aqua Regia, ICP-AES/MS, Ultra Trace Level
1113 110	Multi Element (55 elements), 0.5g, 1.1 Aqua Negia, 1er-AES/105, 01tra Trace Let

Signature:

Jimbo Zheng BSc., PChem, BC Certified Assayer Senior Analytical Chemist MS Analytical

MS Analytical MS Analytical Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 An A2 Global Company Phone: +1-604-888-0875

CERTIFICATE OF ANALYSIS: YVR1710379

Project Name:	DBP
Job Received Date:	17-Apr-2
Job Report Date:	02-May-2
Report Version:	Final

2017 -2017

COMMENTS:

Test results reported relate only to the samples as received by the laboratory.Unless otherwise stated above, sufficient sample was received for the methods requested and all samples were received in acceptable condition. Analytical results in unsigned reports marked "preliminary" are subject to change, pending final QC review. Please refer to MS Analyticals' Schedule of Services and Fees for our complete Terms and Conditions

To: Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

	SAMPLE PREPARATION
METHOD CODE	DESCRIPTION
PRP-910	Dry, Crush to 70% passing 2mm, Split 250g, Pulverize to 85% passing 75µm

	ANALYTICAL METHODS
METHOD CODE	DESCRIPTION
ICF-6Cu	Cu, 0.2g, 4-Acid, ICP-AES, Ore Grade
ICF-6Ni	Ni, 0.2g, 4-Acid, ICP-AES, Ore Grade
IMS-116	Multi-Element (39 elements), 0.5g, 1:1 Agua Regia, ICP-AES/MS, Ultra Trace Level

Signature:

Jimbo Zheng BSc., PChem, BC Certified Assayer Senior Analytical Chemist MS Analytical

YVR1710379

To:

Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

An A2 Global Company

MS Analytical

CERTIFICATE OF ANALYSIS:

Project Name:	DBP
Job Received Date:	17-Apr-2017
Job Report Date:	02-May-2017
Report Version:	Final

	Sample	PWE-100	Method	ICF-6Cu	ICF-6Ni	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116
	Туре	Rec. Wt.	Analyte	Cu	Ni	Ag	AI	As	Au	В	Ba
		kg	Units	ppm	ppm	ppm	%	maa	maa	nom	nom
Sample ID	-	0.01	LOR	10	10	0.05	0.01	0.2	0.001	10	10
1	Rock	0.91				0.10	2.03	0.9	0.001	12	98
2	Rock	0.82		104716	61344	16.90	0.43	159.4	0.435	<10	14
2PD	QC-PD			99724	61511	15.51	0.39	145.9	0.381	<10	17
3	Rock	0.69			13525	0.32	2.35	47.6	0.044	<10	55
4	Rock	0.77				0.15	2.83	23.5	0.028	<10	46
5	Rock	1.05				0.27	1.38	21.0	0.017	<10	98
6	Rock	0.86				<0.05	4.31	3.9	< 0.001	<10	83
7	Rock	0.94			-	<0.05	2.48	12.8	< 0.001	<10	76
8	Rock	0.65				0.42	3.34	66.0	0.047	<10	86
9	Rock	1.08				0.89	3.50	67.0	0.018	15	53
10	Rock	0.79				0.21	0.71	6.5	0.005	10	187
11	Rock	0.91				0.15	1.06	27.0	0.007	12	126
12	Rock	0.80				<0.05	1.40	6.1	<0.001	<10	108
13	Rock	0.99				0.47	3.14	50.3	0.006	12	108
14	Rock	0.87				0.06	2.40	1.8	0.003	14	112
DUP 2				106555	61290			110	0.005	14	115
STD BLANK						<0.05	<0.01	<0.2	<0.001	-10	-10
STD BLANK				<10	<10			-0.2	10.001	<10	<10
STD OREAS 601						49.20	0.87	322.8	0 772	-10	550
STD OREAS 14P				9928	20673		0.07	522.0	0.775	<10	228

To:

Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Y١	R	1	7	1	n	2	7	Q
		-		-	υ	9		3

Project Name:	DBP
Job Received Date:	17-Apr-2017
Job Report Date:	02-May-2017
Report Version:	Final

IMS-116	IMS_116	INAC 11C	INAC 11C	1146 446	1 10 10 110	T	T			
D:	1113-110	1113-110	1112-110	IIVIS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116
ы	Ca	Cd	Со	Cr	Cu	Fe	Ga	Hg	к	La
ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm
0.05	0.01	0.01	0.1	1	0.2	0.01	0.1	0.01	0.01	0.5
0.14	0.08	0.02	27.6	92	96.2	8.42	5.6	0.07	0.22	<0.5
3.46	0.01	4.12	1283.3	239	>10000	33.83	2.1	6.77	0.01	<0.5
3.74	0.01	3.82	1271.9	222	>10000	32.33	2.0	7 10	<0.01	<0.5
0.72	0.70	0.07	303.2	173	1315.5	9.09	8.3	1.10	0.01	0.5
0.44	1.43	0.04	140.1	161	326.5	5.63	10.0	0.35	0.03	3.9
0.27	0.03	0.06	96.9	169	1966.6	4.99	4.7	0.42	0.17	2.4
0.12	0.89	0.02	17.2	260	55.3	6.16	12.0	0.03	0.27	1.9
0.12	0.04	0.01	5.4	115	58.1	5.16	9.7	0.01	0.27	2.7
0.79	1.04	0.07	323.4	167	2210.3	11.21	10.6	0.89	0.22	1.7
1.96	0.09	0.74	22.0	70	3359.2	17.68	12.4	0.67	0.22	1.7
0.76	0.11	0.03	18.6	140	53.5	6.19	4.0	0.05	0.22	1.5
0.91	0.12	0.06	29.3	131	383.6	7.74	4.8	0.11	0.22	1.2
0.22	0.04	0.01	8.6	175	29.6	3.84	53	0.02	0.25	1.2
1.22	0.12	0.07	2.8	61	397.7	12.08	12.1	0.70	0.23	5.7
0.34	0.09	0.02	12.3	114	61.9	6.60	79	0.70	0.38	0.5
						0.00	7.5	0.15	0.18	3.7
<0.05	<0.01	<0.01	<0.1	<i>c</i> 1	(0.2	-0.01	-0.1			
				~1	NU.2	NO.01	<0.1	<0.01	<0.01	<0.5
20.18	1.07	8 1 1	5.0	42	1026.2	2.22				
	1.07	0.11	5.0	45	1036.2	2.22	5.2	0.30	0.26	22.0
	IMS-116 Bi ppm 0.05 0.14 3.46 3.74 0.72 0.44 0.72 0.12 0.12 0.79 1.96 0.76 0.91 0.22 1.22 0.34 <0.05 20.18	IMS-116 IMS-116 Bi Ca ppm % 0.05 0.01 0.14 0.08 3.46 0.01 3.74 0.01 0.72 0.70 0.44 1.43 0.27 0.03 0.12 0.89 0.12 0.04 0.79 1.04 1.96 0.09 0.76 0.11 0.91 0.12 0.22 0.04 1.22 0.12 0.34 0.09 <0.05	IMS-116 IMS-116 IMS-116 IMS-116 Bi Ca Cd ppm % ppm 0.05 0.01 0.01 0.14 0.08 0.02 3.46 0.01 4.12 3.74 0.01 3.82 0.72 0.70 0.07 0.44 1.43 0.04 0.27 0.03 0.06 0.12 0.89 0.02 0.12 0.04 0.01 0.79 1.04 0.07 1.96 0.09 0.74 0.76 0.11 0.03 0.91 0.12 0.06 0.22 0.04 0.01 1.22 0.12 0.07 0.34 0.09 0.02 <0.05	IMS-116IMS-116IMS-116IMS-116BiCaCdCoppm%ppmppm0.050.010.010.10.140.080.0227.63.460.014.121283.33.740.013.821271.90.720.700.07303.20.441.430.04140.10.270.030.0696.90.120.890.0217.20.120.040.015.40.791.040.07323.41.960.090.7422.00.760.110.0318.60.910.120.0629.30.220.040.018.61.220.120.072.80.340.090.0212.3<0.05	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

YVR1710379

Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

To:

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Project Name:	DBP
Job Received Date:	17-Apr-2017
Job Report Date:	02-May-2017
Report Version:	Final

	IMS-116										
	Mg	Mn	Мо	Na	Ni	Р	Pb	Re	S	Sb	SC
	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	npm
Sample ID	0.01	5	0.05	0.01	0.1	10	0.2	0.005	0.01	0.05	0.1
1	1.17	364	14.42	0.03	5.4	34	1.8	0.021	4.65	<0.05	2.2
2	0.28	88	10.10	<0.01	>10000	<10	4.1	0.150	>10	1.08	0.9
2PD	0.26	80	6.98	<0.01	>10000	<10	4.5	0.158	>10	1.21	0.8
3	1.65	447	4.69	0.04	>10000	214	1.9	0.051	7.08	0.25	12.0
4	2.14	434	1.65	0.12	8684.4	491	1.9	0.020	3.30	0.31	5.2
5	0.99	200	1.83	0.03	1401.6	74	1.0	0.017	2.70	0.83	4.1
6	3.34	815	2.86	0.06	55.6	386	1.5	<0.005	0.37	< 0.05	18.4
7	2.20	443	3.73	0.03	8.4	158	1.3	<0.005	0.22	<0.05	14.7
8	1.32	456	3.77	0.14	8737.3	424	2.2	0.053	8.40	0.60	10.9
9	1.36	875	12.68	0.03	44.1	167	4.0	0.009	>10	0.13	3.8
10	0.25	85	24.98	0.03	9.5	111	5.6	0.018	3.25	0.12	0.5
11	0.32	150	9.19	0.02	2116.1	122	7.4	0.005	1.34	0.19	0.8
12	1.06	253	9.53	0.04	15.7	111	1.1	< 0.005	1.82	<0.05	7.4
13	1.70	791	9.68	0.02	10.3	61	2.2	<0.005	1.53	0.07	3.6
14	1.37	499	9.54	0.03	5.6	68	1.1	< 0.005	0.99	0.09	2.6
DUP 2										0.05	2.0
STD BLANK	<0.01	<5	<0.05	<0.01	<0.1	<10	<0.2	<0.005	<0.01	<0.05	-01
STD BLANK									10.01	10.05	<0.1
STD OREAS 601	0.20	446	3.87	0.08	25.0	359	278 3	<0.005	1.05	21.61	1.0
STD OREAS 14P							27010		1.05	21.01	1.9

YVR1710379

Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

To:

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Project Name:	DBP
Job Received Date:	17-Apr-2017
Job Report Date:	02-May-2017
Report Version:	Final

	IMS-116										
	Se	Sr	Te	Th	Ti	TI	U	v	w	Y	Zn
	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	mag
Sample ID	0.2	0.5	0.05	0.2	0.005	0.05	0.05	1	0.05	0.5	2
1	6.1	21.9	0.38	1.8	0.023	0.07	0.56	11	0.68	1.7	31
2	104.2	0.8	12.40	0.8	0.008	0.10	<0.05	32	1.32	<0.5	189
2PD	108.8	1.0	17.25	0.3	0.007	0.11	<0.05	28	1.31	<0.5	167
3	19.1	8.5	0.25	1.4	0.117	0.05	1.22	48	0.94	7.1	37
4	9.1	34.3	0.13	1.3	0.196	<0.05	0.33	61	0.63	6.1	42
5	6.8	3.2	0.13	1.7	0.069	< 0.05	0.30	14	0.93	4.2	21
6	1.4	25.0	0.71	2.4	0.296	<0.05	0.68	120	0.28	3.9	69
7	2.4	4.9	0.53	1.7	0.199	< 0.05	0.46	111	0.86	1.5	40
8	21.2	55.4	3.39	1.1	0.197	0.06	0.30	82	2.83	5.9	48
9	37.5	7.8	0.53	2.1	0.039	0.10	0.51	45	2.07	6.5	286
10	6.7	49.7	0.16	1.8	0.032	0.09	0.22	9	4.09	1.6	15
11	4.7	4.5	0.10	4.3	0.019	<0.05	0.57	8	3.48	2.0	21
12	2.8	4.6	0.76	8.5	0.041	<0.05	1.40	23	3.48	4.6	20
13	8.4	4.8	1.47	1.6	0.116	0.26	1.04	47	0.76	0.7	198
14	1.4	8.7	0.42	1.8	0.038	<0.05	0.31	32	1.51	5.0	36
DUP 2										0.0	
STD BLANK	<0.2	<0.5	<0.05	<0.2	<0.005	<0.05	<0.05	<1	<0.05	<05	-2
STD BLANK								-		10.5	14
STD OREAS 601	12.0	36.5	14.91	6.6	0.009	0.74	1.85	10	1 04	61	1201
STD OREAS 14P								-0	1.04	0.1	1291

To:

Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

An A2 Global Company

CERTIFICATE OF ANALYSIS: YVR1710379A

Project Name:	DBP
Job Received Date:	17-Apr-2017
Job Report Date:	01-May-2017
Report Version:	Final

	Sample	PWE-100	Method	IMS-116g							
	Туре	Rec. Wt.	Analyte	Ag	AI	As	Au 🕤	В	Ba	Bi	Ca
		kg	Units	ppm	%	ppm	ppm	ppm	maa	ppm	%
Sample ID		0.01	LOR	0.05	0.01	0.2	0.001	10	10	0.05	0.01
MO1	Moss Mat	1.30		0.07	3.32	5.7	0.003	<10	48	0.15	0.34
											0.01
-											
DUP M01				0.07	3.43	5.4	0.002	<10	49	0.14	0.36
STD BLANK				<0.05	<0.01	<0.2	<0.001	<10	<10	< 0.05	<0.01
STD OREAS 601				49.20	0.87	322.8	0.773	<10	559	20.18	1.07
										20.20	1.0,

To:

Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

An A2 Global Company

CERTIFICATE OF ANALYSIS: YVR1710379A

1140 440 1 1140

Project Name:	DBP
Job Received Date:	17-Apr-2017
Job Report Date:	01-May-2017
Report Version:	Final

Sample ID M01	Cd ppm 0.01 0.16	IMS-116g Co ppm 0.1 14.1	IMS-116g Cr ppm 1 34	IMS-116g Cu ppm 0.2 93.4	IMS-116g Fe % 0.01 3.33	IMS-116g Ga ppm 0.1 9.4	IMS-116g Hg ppm 0.01 0.15	IMS-116g K % 0.01 0.04	IMS-116g La ppm 0.5 4.6	IMS-116g Mg % 0.01 0.50	IMS-116g Mn ppm 5 476
DUP M01	0.16	12.6	38	90.1	3.40	8.7	0.14	0.04	5.2	0.51	487
STD BLANK	<0.01	<0.1	<1	<0.2	<0.01	<0.1	<0.01	<0.01	<0.5	<0.01	<5
STD OREAS 601	8.11	5.0	43	1036.2	2.22	5.2	0.30	0.26	22.0	0.20	446

YVR1710379A

To: Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Project Name:	DBP
Job Received Date:	17-Apr-2017
Job Report Date:	01-May-2017
Report Version:	Final

2	IMS-116g	IMS-116g	IMS-116g	IMS-116g	IMS-116g	IMS-116g	IMS-116g	IMS-116g	IMS-116g	IMS-116g	IMS-116g
	Mo	Na	Ni	Р	Pb	Re	S	Sb	Sc	Se	Sr
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	maa	ppm
Sample ID	0.05	0.01	0.1	10	0.2	0.005	0.01	0.05	0.1	0.2	0.5
M01	3.96	0.01	134.2	418	4.2	< 0.005	0.11	0.32	7.1	2.4	14.5
								_			
DUP M01	3.46	0.02	143.4	428	3.9	< 0.005	0.11	0.34	6.9	27	13.9
STD BLANK	<0.05	<0.01	<0.1	<10	<0.2	< 0.005	<0.01	< 0.05	<0.1	<0.2	<0.5
STD OREAS 601	3.87	0.08	25.0	359	278.3	< 0.005	1.05	21.61	19	12.0	26.5
							1.00	21.01	1.5	12.0	30.5
						-					
DUP M01 STD BLANK STD OREAS 601	3.46 <0.05 3.87	0.02 <0.01 0.08	143.4 <0.1 25.0	428 <10 359	3.9 <0.2 278.3	<0.005 <0.005 <0.005	0.11 <0.01 1.05	0.34 <0.05 21.61	6.9 <0.1 1.9	2.7 <0.2 12.0	13.9 <0.5 36.5

Project Name:

MS Analytical Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

Arnex Resources Ltd TH101 735 15th Street West North Vancouver, BC V7M 0B8

To:

An A2 Global Company

CERTIFICATE OF ANALYSIS: YVR1710379A

DBP	
	DBP

Job Received Date:	17-Apr-2017
Job Report Date:	01-May-2017
Report Version:	Final

	IMS-116g								
	Te	Th	Ti	TI	U	v	w	Y	Zn
	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID	0.05	0.2	0.005	0.05	0.05	1	0.05	0.5	2
M01	0.27	1.2	0.096	<0.05	2.97	59	0.29	13.2	44
DUP M01	0.21	1.2	0.098	<0.05	2.83	60	0.21	12.9	46
STD BLANK	<0.05	<0.2	<0.005	<0.05	<0.05	<1	<0.05	<0.5	<2
STD OREAS 601	14.91	6.6	0.009	0.74	1.85	10	1.04	6.1	1291