Ministry of Energy and Mines BC Geological Survey	CEIVE C 2 2 2017 DF ENERGY AND MINES THOMO DRIVES THOMO DRIVES
AUTHOR(S): Andris Kikauka	signature(s): A. Kikanka
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): <u>1641286</u> STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	YEAR OF WORK: 2017 5676656
PROPERTY NAME: Longworth Silica CLAIM NAME(S) (on which the work was done): <u>Snow</u> 1022943, Ultra	1023010
COMMODITIES SOUGHT: Silica MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 093H.038	
MINING DIVISION: Cariboo	NTS/BCGS: 093H 14/W, 093H.093
LATITUDE: <u>53</u> <u>6</u> <u>58</u> <u>48</u> LONGITUDE: <u>121</u> OWNER(S): 1) Jared Lazerson	^o <u>29</u> <u>'30</u> " (at centre of work) 2)
MAILING ADDRESS: 303-1080 Howe St	- · · · · · · · · · · · · · · · · · · ·
Vancouver, BC V6C 2T1	<u></u>
OPERATOR(S) [who paid for the work]: 1) same	_ 2)
MAILING ADDRESS: same	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Silurian Nonda Fm high purity quartzite occurs as a 200-400 me	
dipping steeply. There is considerable (Cretaceous?) thrust fau	Iting and entire sequence is tilted and/or tectonically rotated
High purity quartzite encountered in 3 diamond drill holes (total	186.08 m depth),average SiO2 values =99.5%,impurities include
trace muscovite & limonite, minor calcite (DDH17LW-2, 45-48 n	n), quartzite has 1-30% metamorphic, recrystallized qtz vn sweats
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT R	EPORT NUMBERS: 14815

_

,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			<u> </u>
Ground, mapping 1:5000 12 h	ectares	Snow 1022943, Ultra 1023010	5,250.00
Photo Interpretation			· · · · · · · · · · · · · · · · · · ·
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			···
			<u> </u>
Airbome			
GEOCHEMICAL (number of samples analysed for) Soil			
Silt			
Rock 65 ME-ICP06 Whole R		Snow 1022943	23,210.77
Other			
DRILLING			
(total metres; number of holes, size) Core 186.08 m, 3 diamond d	rill holes	Snow 1022943	67,795.00
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			
(scale, area)	·		
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	96,255.77

 $\left(\right)$

BC Geological Survey Assessment Report 36834

NTS 093H 14/W, TRIM 093H.093 LAT. 53 58' 43" N LONG. 121 29' 30" W

CORE DRILLING, GEOLOGICAL, & GEOCHEMICAL REPORT ON LONGWORTH MINERAL PROPERTY SNOW ZONE

SINCLAIR MILLS, BC in proximity to: PRINCE GEORGE, BC

Cariboo Mining Division

by

Andris Kikauka, P.Geo. 4199 Highway 101, Powell River, BC V8A 0C7

36834

Dec 15, 2017

TABLE OF CONTENTS AND LIST OF FIGURES

~

SUMMARY	page # 1
1.0 Introduction	3
2.0 Location, Access, & Physiography	3
3.0 Property Status	5
4.0 Longworth Silica Property History	6
5.0 Regional Geology	9
6.0 2017 Field Program	12
6.1 Scope & Purpose	12
6.2 Methods and Procedures	13
6.3 Diamond Drill Core Geology & Geochemistry	14
7.0 Discussion of Results	15
8.0 Conclusion	16
9.0 Recommendations	17
10.0 References	18
Certificate and Date	

,

Itemized Cost Statement

LIST OF FIGURES

- Fig.1 Longworth Silica Property General Location
- Fig.2 Longworth Silica MTO Tenure Location
- Fig.3 Longworth Claim Geology & Silica Zones
- Fig.4 Longworth Silica General Geology
- Fig.5 Longworth DDH Locations Snow Zone
- Fig.6 Longworth DDH Locations Snow Zone (Detail)
- Fig.7 Longworth DDH17LW-1 Cross-Section Looking WNW, Azimuth 295
- Fig 8 Longworth DDH17LW-2 Cross-Section Looking WNW, Azimuth 295
- Fig 9 Longworth DDH17LW-3 Cross-Section Looking WNW, Azimuth 295

APPENDIX A Geochemical Analysis Certificate (ALS Minerals pdf)

APPENDIX B Geochemical Methods and Procedures (ALS Minerals pdf)

APPENDIX C Drill Drill Hole Logs, Geological Description

APPENDIX D Drill Drill Hole, Geochemical Record

APPENDIX E Minfile Description

SUMMARY

The Longworth property is located about 80 kilometers east-northeast of Prince George, BC. The Longworth silica property consists of a total area of approximately 1,197.8 hectares (2,958.6 acres) located approximately 8 km (5 miles) east of CNR rail siding near Sinclair Mills-and about 20 km (12 miles) east-southeast of McGregor, BC (Fig 1, 2). Nonda Formation quartzite is exposed on the southwest flank of Bearpaw Ridge. The quartzite beds exhibit minor faulting and folding. Quartzite bedding trends parallel to west-northwest trending ridge axis (sub-vertical dip), with jointing trends perpendicular and parallel to ridge axis (sub-vertical dip). The Nonda Fm high purity quartzite unit outcrops intermittently over a 20 km strike length at approximately 1,250-1,550 m elevation (Fig 3, 4). The Longworth property features 4 zones (each zone approximately 300 to 800 m strike length, collectively over 7,000 m strike length) of high purity silica zones referred to as 'Snow, Rain, Long & Doll' (Fig 2). Lower Silurian Nonda Fm white coloured quartzite is approximately 100-400 meters wide, trends northwest, dips steeply to the northeast, and outcrops prominently where numerous localized topographic highs occur on southwest facing slopes. Impurities in quartzite include trace amounts of limonite, calcite and muscovite along fractures and joints. Quartzite in the central portion of the Snow Zone exhibit pure white, northeast trending metamorphic quartz vein sweats, with en echelon pattern (sigmoidal) strain shadows. Metamorphic origin (re-crystallized) quartz veins exhibit sigmoidal strain shadows referred to as ladder velning. The observed sigmoidal texture is the result of deep burial re-crystallization subjected to extension-shortening stress-strain regime. Quartz veining is interpreted as syngenetic in origin, i.e. relatively pure sandstones (i.e. Orthoquartzite, a very pure quartz sandstone composed of usually well-rounded quartz grains cemented by silica), are subjected to metamorphism and partial melting (i.e. minor metamorphic re-crystallized vein quartz, not of hydrothermal origin).

In 2017, core drilling was performed by Neil's Mining (contract for MGX Minerals Inc) using a Longyear 28 wireline core drill (BTW diameter core). Yellowhead Helicopters A-Star helicopter was chartered to mobilize drill equipment and core mobilization. Geological descriptions and geochemical sampling of split core samples (3 meter sample intervals) were carried out, as well as geological mapping on the Snow Zone (lithology, alteration, & structure of Snow Zone surface & drill core), of the Longworth silica mineral property between August 16-September 2, 2017. Fieldwork is recorded in this assessment report, and reported as MEM Event number 5676656. A total of 186.08 meters total depth, BTW size core drilling done at 3 sites (DDH 17LW-1, 2 & 3, spaced approximately 50 meters apart) carried out on Snow Zone ridge at 1,551-1,558 meters elevation, described as follows:

DDH #	Zone Name	Easting NAD 83	Northing NAD 83	Elevation m	Elevation ft
17LW-1	Snow	595625	5985369	1558	5110.2
17LW-2	Snow	595675	5985335	1551	5087.3
17LW-3	Snow	595725	5985283	1552	5090.6

DDH 17LW-1, 2 & 3 Location & Direction

DDH #	Zone Name	Azimuth	Dip	Depth ft	Depth m
17LW-1	Snow		-90	226.5	69.04
17LW-2	Snow	205	-75	169	51.51
17LW-3	Snow	205	-70	215	65.53

Geological mapping outlines the surface trace of high purity quartzite a 200 meter wide X 500 meter long area referred to as 'Snow Zone' (Fig 5, & 6). The diamond drill holes were collared in the central portion of the Snow Zone along a ridge top on solid bedrock. Rock samples were analyzed by ALS Minerals, North Vancouver, BC, using modified Prep 31 (& Pul 33): a special tungsten carbide ring pulverization disc was used versus chrome steel pulverization disc, in order to minimize iron contamination, and finished using whole rock analysis fused bead lithium borate fusion method (ME-ICP-06, Appendix A, & B). Standards and blanks (CDN Resource Lab Ltd) were inserted to sample stream for QC/QA purposes. The quartzite in drill holes 17LW-1, 2, & 3 was variably fractured and faulted (Fig 7, 8, & 9). Drill holes 17LW-1, 2, & 3, overall recoveries were good (>97% core recovery), but the fracture zones were numerous and DDH 17LW-1 was the only hole that ended in relatively high RQD (rock quality designation) values. The quartzite, especially where fractured, wore out the matrix of the diamond drill bits and made drilling with BTW core size not the optimum core diameter. Future core drilling requires large volumes of barite mud additive, and the start of the hole is recommended HQ core diameter with reduction to NQ2, as well as a larger more powerful core drill (e.g. Hydracore 2000, Hy-Tech JKS-300). The core from DDH 17LW-1, 2, & 3 was logged and stored at end of Boulder FSR km 9 (UTM Zone 10, 593,517 E, 5,985,864 N, 1,067 m elev, Lat 54.012581 N, Long -121.57286 W, Lat 54 00' 45.29" N, Long 121 34' 22.31" W). The logging of core identified a prophryblast metamorphic re-crystallized quartz texture in the center of DDH 17LW-1, and near the start of DDH 17LW-3. The quartz porphyryblasts are 0.1-1.5 cm (metamorphic origin) re-crystallized subhedral habit, quartz clots. Where porphyryblast texture is prevalent, there is no metamorphic en echolon pattern (sigmoidal) quartz veining. The porphyryblast texture in quartzite is minor in volume and most of the quartzite is cut by pure white quartz veins (metamorphic quartz sweats). Variation of texture does not appear to affect whole rock geochemical analysis results, as major oxide analysis results of split diamond drill core samples taken from DDH 17LW-1, 2 & 3 Longworth Snow Zone average 99.5% SiO2/Total from top to bottom of all 3 holes (except DDH 17LW-2 45-48 m depth, 3% calcite 0.1-2 cm veins). This table shows the consistent grade of 99.5% SiO2/% Total in DDH 17LW-1, 2, & 3.

DDH 17LW-1, 2 & 3 Snow Zone

	From		Interval								
DDH	(m)	(m)	(m)	SiO2	AI2O3	Fę2O3	Na2O	K20	LOI	Total	SiO2/Total
1	0.6	69.04	68.44	98.92	0.12	0.05	0.07	0.07	0.12	99.41	99.5
2	0.2	45	44.8	99.41	0.18	0.06	0.05	0.09	0.07	99.94	99.45
3	0.3	65.53	65.23	98.8	0.21	0.06	0.01	0.07	0.06	99.3	99.51

The 2017 drill results are consistent with 99.5% SiO2/% total average results from 2015 & 2106 Snow Zoue surface rock chip samples (3 meter width) taken by MGX Minerals Inc.

Based on the range of relatively high purity %SiO2 and relatively low impurity values such as Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, it is possible that the Longworth quartzite silica is suitable for use as a raw material for ferrosilicon production as well as other high purity uses (e.g. silicon metal for solar energy use). Based on relatively high silica content (95.5% SiO2/%Total), from geochemical analysis of Longworth Snow Zone drill core and surface rock sampling, MGX Minerals is planning further evaluation of commercial applications for Longworth silica. The Longworth Snow Zone (200 X 500 m area, to a depth of approximately 80 m) has potential for the dcvelopment of a high purity quartzite deposit (in the order of several million tonnes of high purity silica). The Snow Zone is centered on a WNW trending ridge crest where it is best exposed between 1,500-1,565 meters elevation (MTO tenure number 1022943 & 1023010, Fig 5, & 6).

1.0 Introduction

This technical report has been prepared on behalf of MGX Minerals Inc, and describes property history and core drilling, geological and geochemical fieldwork performed on the Longworth Silica mineral occurrence in August-September, 2017.

British Columbia has not been a major producer of silica. Some quartz, especially from veins, has been used as a flux in smelter operations. The Gypo quartz vein near Oliver produced about 600,000 tonnes of quartz up to 1968 when the main mining operations ceased. Most of this material was used in the building industry and to produce ferrosilicon. In more recent years a significant amount of production has taken place from the Moberly Mountain and Hunt deposits, in quartzite of the Mount Wilson Formation, near Golden. Silica sand from the Moberly Mountain deposit is sold for a variety of uses. Quarrying was begun in 1980 and the 1984 production was 85,000 to 90.000 tonnes. The Hunt deposit has produced intermittently since 1980 at approximately 30,000 tonnes per year, with much of the product being shipped to a ferrosilicon plant in Wenatchee, Washington. Some of the fines have been used by cement producers in British Columbia and Alberta.

2.0 Location, Access, Infrastructure, & Physiography

The property is located on NTS map sheet 093H/14W and on TRIM map sheet 093H093. The Longworth Silica occurrence is located at latitude 53°58' 48" N and longitude 121°29' 30" W. The property covers a series of northwest trending ridges of relatively pure quartzite (found over a range of 1,300-1,565 m elevation) that are located between Bearpaw Ridge (1,700-1,850 m elevation) to the NE and CNR rail line (650 m elevation) to SW.

The Longworth property is located in the Cariboo Mining Division of central British Columbia, Canada. The Longworth Silica property encompasses a 2 X 8 kilometer area aligned with northwest trending topography, located roughly 85 km east-northeast of Prince George, B.C., and approximately 30 km northwest of the property lies the community of Upper Fraser, while the community of Sinclair Mills is located roughly 10 km west of the property (Fig. 1).

3

From Prince George the property can be accessed by travelling east on Highway 16 for approximately 30 km, and then north and westward for 50 km on Upper Fraser Road (Fig. 1). Upper Fraser Road crosses Frastr River at McGregor and continues southeast for 30 km to Longworth, running parallel to Fraser River. From Upper Fraser Road, property access is by way of logging roads and internal access was by 4WD vehicle on Boulder FSR logging road to Km 9, and follow 2 km access trail that starts at 593,950 E, and 5,985,390 N, elevation 1,090 meters (Fig. 5). Alternate access is via helicopter from Prince George base. Access is affected by ecologically sensitive cariboo habitat and restrictions apply. MGX Minerals has retained a Professional Biologist to assess cariboo habitat and ecology.

The CNR main cross Canada raii line runs parallel to Upper Fraser Road and is located less than 4 km from the Property (Fig 1, 3, & 3B). Roughly 75 km northwest of the property, the main 500 kV transmission lines from the Peace River Hydro Power Project run through the region.

Topography in the Prince George region is characterized by rolling hills separated by swamps. The most prominent topographical feature on the Longworth Silica Property is 1,840 meter elevation Bearpaw Ridge which flattens to 1,650 meters elevation to the northwest. The Property is situated on the southwestern flank of Bearpaw Ridge; topography on the Property ranges from 1,060 in in the southwest corner to 1800 m in the northeast. Vegetstion on top of and along the flanks of Bearpaw Ridge consists predominantly of tall spruces, along with some alder. There is a distinct black lichen that forms exclusively on the Longworth quartzite. It is a diagnostic thin black coloured vegetation that also occurs in quartzite of the Mount Wilson Formation (Golden Mining Division). Shrubs, including Devil's Club, are abundant along drainages. The climate in the region is temperate, reaching extremes of 34 degrees C in summer and -50 degrees C in winter. Precipitation is variable and dependent on elevation. Mean annual precipitation ranges from 44 to 90 cm. Snow can be expected in late October or early November and remains until April or May. Total accumulations of snowfall in the region averages 240 om, with higher accumulations on Bearpaw Ridge due to its elevation. Topography is moderate except locally steep, NW trending cliffs with maximum dimensions of 5 m (16.5 ft) in height occur in the vicinity of the Longworth property Snow, Rain, Long and Doll Zones. Elevations on the claim block range from 960 to 1,800 meters (3,149-5,094 feet).

Quartzite weathers prominently and the Longworth silica deposit is well exposed at 1,250-1,550 meter elevation, as a series of NW trending ridge crests within relatively low valley bottom topography. A series of northeast trending, cross-cntting fracturing/jointing has resulted in some small scale offsets (in the order of several meters) of geologic contacts.

The nearest towns are Sinclair Mills and McGregor on Upper Fraser Road where the CNR rail line with sidings can provide transportation link to markets. The nearest population center with significant services is Prince George which has suitable infrastructure to support mining and mineral processing.

3.0 Property Status

The Longworth silica property consists of a total area of approximately 1,197.8 hectares (2,958.6 acres) located approximately 8 km (5 miles) east of CNR rail siding near Sinclair Mills and about 20 km (12 miles) east-southeast of McGregor, BC (Fig 1, 2). Property status data obtained from MTO website indicates the Longworth property is registered 100% to Jared Lazerson (Free Miner Certificate number 249963) on behalf of MGX Minemls Inc. The Longworth silica claims consists of fifteen (15) mineral tenures (listed below) located within the Cariboo Mining Division (Figure 2).

Tenure	Claim Name	Issue Date	Good To Date	Area in
number				hectares
1022782	Silver Standard	2013/oct/03	2025/apr/12	380.36
	Silica #2			
1022943	Snow	2013/oct/11	2025/apr/12	38.01
1022944	Rain	2013/oct/11	2025/apr/12	114.08
1022945	Snowjob	2013/oct/11	2025/apr/12	76.03
1022946	Big Snow	2013/oct/11	2025/apr/12	38.01
1022947	Lookout	2013/oct/11	2025/apr/12	19.01
1023010	Ultra	2013/oct/12	2025/apr/12	95.02
1023011	Sinclair Silica	2013/oct/12	2025/apr/12	19.01
1023075	Silicon 11	2013/oct/15	2025/apr/12	152.16
1023094	\$\$\$Silicapitrd	2013/oct/16	2025/apr/12	19.01
1023096	Max'ssilica	2013/oct/16	2025/apr/12	19.01
1023101	Realrain1&2	2013/oct/16	2025/apr/12	19.01
1023102	Silicastarridge	2013/oct/16	2025/apr/12	19.01
1023103	Silex	2013/oct/16	2025/apr/12	19.01
1023122	Superflux	2013/oct/17	2025/apr/12	57.03

Longworth Property List of MTO Mineral Tenures

The total area of the mineral tenures that comprise the property is 1,197.8 hectares (2,958.6 acres). Details of the status of tenure ownership for the Longworth Silica property were obtained

from the Mineral-Titles-Online (MTO) electronic staking system managed by the Mineral Titles Branch of the Province of British Columbia. This system is based on mineral tenures acquired electronically online using a grid cell selection system. Tenure boundaries are based on lines of latitude and longitude. There is no requirement to mark claim boundaries on the ground as these can be determined with reasonable accuracy using a GPS. The Longworth silica claim has not been surveyed. The mineral tenures comprising the Longworth Silica mineral property are shown in Figure 2. The claim map shown in Figure 2 was generated from GIS spatial data downloaded from the Government of BC GeoBC website. These spatial layers are the same as those incorporated into the Mineral-Titles-Online (MTO) electronic staking system that is used to locate and record mineral tenures in British Columbia.

4.0 Longworth Silica Property History

High purity quartzite was discovered in the Sinclair Mills and Longworth area in the 1970's by Consolidated Silver Standard Ltd. The Longworth tenures were first staked in 1974 by Consolidated Silver Standard Mines Limited (Silver Standard) for production of ferrosilicon and silicon metal. In 1981 Silver Standard carried out a two week blasting and sampling program (Quartermain, 1985).

In 1981 and 1982, the British Colombia Geological Survey Branch collected samples from four of the southeastern tenures and published analytical results for eight samples, which returned SiO2 values between 98.76% and 99.40% (Foye, 1987). In 1985, Silver Standard carried out another program of blasting, trenching and sampling. In addition to the geochemical analysis of these samples, some material was also sent to the University of British Colombia Metallurgical Engineering Lab for thermal shock testing. The samples yielded favourable results, with some exceeding Silver Standard's metallurgical grade specifications for raw quartzite, SiO2 99.5%, Al2O3 0.25%, Fe2O3 0.10%, CaO nil, and L.O.I, 0.20% (Quartermain, 1985). Some of these samples were collected from within MGX's current tenures (Rain and Snow Zones). Thermal breakdown testing by Consolidated Silver Standard was performed on 4" X 4" X 4" sized samples from Snow, Rain, Doll & Long Zones was reported in AR 14,815 (Quartermain, 1985). Thermal tests performed on 16 samples of quartzite in 1985 displayed cracking in all samples at both 1,000 and 1,300 degree temperatures over a 2 hour period. Based on breaking into numerous pieces, a total of 4 samples from the Snow Zone were considered not acceptable, out of 16 total samples tested at UBC Engineering Dept ceramic lab, reported in AR 14,815, Table 2 (Quartermain, 1985).

In 2007, Card JM Resources Inc staked 38 tenures surrounding the Silver Standards Longworth tenures. In 2008, a vertical drill hole was drilled to a depth of 100.6 m on Tenure 559360, then logged and assayed. Three composite samples (roughly 100 ft. each) yielded silica values between 97.90% and 98.83% (Duncan and Childs, 2008).

The Longworth Silica Property, was acquired by Zimtu Capital Corp. (Zimtu) in 2013 covering zones of high purity Nonda Formation quartzite. Dahrouge Geological Consulting (Dahrouge) and Zimtu carried out prospecting and sampling on the Longworth mineral property in 2014.

6

Quartzite outcrops were mapped and 2 surface samples were collected from the property. In 2014, Dahrouge and Zimtu conducted a prospecting program within the Longworth Silica Property. A total of 2 hand samples were examined and collected from the northern end of the Longworth Silica Property along Bearpaw Ridge. The samples were collected from within outcrops of Nonda Formation white quartzite.

In 2015, MGX Minerals Inc performed geological mapping and geochemical sampling of the Snow Zone. Results from 2015 fieldwork confirmed the presence of high purity quartzite in the northwest portion of the Snow Zone, with better grade of silica in the core area of the Snow Zone which also forms a resistant and competent, topographic high.

Table 6: Rock chip samples taken in 2015 by MGX Minerals from the Snow Zone are summarized as follows:

Sample ID	% SiO2	% Fd2O3	% CaO	% MgO	% Ad2O3	% Na2O	% K2O	% LOI	%Total
901	98.9	0.04	0.03	0.04	0.44	0.03	0.14	0.21	99.8 5
902	99.1	0.02	0.02	0.01	0.14	0.03	0.04	0.08	99.45
903	99.5	0.02	0.01	0.01	0.13	0.04	0.04	0.09	99.8 5
904	99.4	0.04	0.01	0.01	0.11	0.04	0.03	0.04	99.7
905	99.3	0.02	0.01	0.01	0.13	0.05	0.04	0.06	99.63
906	99.2	0.02	0.01	0.01	0.12	0.05	0.03	0.11	99.56
907	99.6	0.03	0.01	0.01	0.27	0.01	0.06	0.23	100.24
908	99.9	0.03	0.01	0.01	0.14	0.06	0.04	0.07	100.27
909	99.8	D.03	<0.01	0.01	0.17	0.01	0.05	0.15	100.23
910	98.7	0.03	0.01	0.02	0.4	0.07	0.13	0.18	99.56

Samples 901-910 are all 300 centimeter outcrop chip channel

In 2016, MGX Minerals submitted quartzite samples to Kemetco Research Inc, Richmond, BC, in order to perform thermal shock tests described as follows: A quartz sample (approximately 4"x4"x4', 10.2 X 10.2 X 10.2 cm) was placed in a furnace which has been preheated to 600 °C. The temperature was then raised to 1000 °C over a period of 2 hours. At the end of this 2-hour period, the sample was observed in the furnace and if the sample has cracked apart the test was terminated and the quartz was not accepted. For the sample still in one piece, the test was continued by raising the temperature to 1300 °C over another 2 hour period. At the end of this two hours period, the sample was removed from the furnace and cooled down to room temperature. The sample was examined again and the results were tabulated. exposed on the west and southwest facing slopes of Bearpaw Ridge.

In addition to whole geochemical analysis of rock chip samples, a total of four large blocks of high purity quartzite were tested for thermal breakdown at Kemetco Research Inc, Richmond BC. Samples of quartzite for thermal breakdown tests were selected on competence, pure white colour, and size exceeding 10.2 cm squared. Three of the four samples for thermal tests are from the west portion of the Snow Zone at 1,546-1,564 m elevation. A single sample for thermal breakdown was taken from the Rain Zone.

Previous thermal breakdown testing of Snow, Rain, Doll & Long Zones was reported in AR 14,815 (Quartermain, 1985). Thermal tests performed on 16 samples of quartzite in 1985 displayed cracking in all samples at both 1,000 and 1,300 degree temperatures over a 2 hour period. Based on breaking into numerous pieces, a total of 4 samples from the Snow Zone were considered not acceptable, out of 16 total samples tested at UBC Engineering Dept ceramic lab, reported in AR 14,815 (Quartermain, 1985).

Thermal shock tests performed by Kemetco Research Inc on 2016 sampling of Snow Zone indicated some cracking occurred upon 2 hour exposure to 1,000 and additional 2 hour exposure at 1,300 degree centigrade temperature in test oven. 1 of the 3 rock samples (# 902), fractured into 2 pieces at 1,000 degrees C and is considered not suitable for ferrosilicon. 2 out of 3 rock samples (# 901 & 903), exhibited 1 erack after 2 hour exposures to 1,000 and 2 hours exposure at 1,300 degree centigrade temperature in oven, and are considered probable and likely suitable for ferrosilicon. The 1 piece tested on the Rain Zone withstood 2 hour exposure to 1,000 and additional 2 hour exposure at 1,300 degree centigrade temperature in test oven with only 1 large crack, but fractured into 4 pieces after cooldown, and is considered possible (but not likely) suitable for ferrosilicon production.

In 2016, Geochemical sampling was carried out on exposed surface bedrock of SE extension of Snow Zone & NW extension of Rain Zone. These zones of high purity quartzite lithology are located in close proximity to historic surface sampling and trenching performed by Consolidated Silver Standard Mines Ltd in 1986. A total of 11 rock chip samples were collected from surface outcrop from an area of approximately 150 X 50 meters covering the SE portion of the Snow Zone, and a 300 X 50 m area covering the NW portion of the Rain Zone. Major oxide analysis results of 11 rock chip samples taken from the Longworth Rain & Snow Zone are listed as follows:

Sample ID	Zone name	% SiO2	% Fe2O3	% CaO	% MgO	% Ai2O3	% Na2O	% K2O	% LOI	%Total
1615	Rain NW	99.1	0.04	<0.01	0.04	0.27	0.01	0.1	0.18	99.77
1616	Rain NW	100	0.03	<0.01	0.02	0.23	0.01	0.08	0.18	100.57
1617	Rain NW	98.9	0.03	<0.01	0.01	0.17	0.01	0.09	0.08	99.31
1618	Rain NW	99.7	0.03	<0.01	0.02	0.21	0.01	0.08	0.11	100.19
1619	Rain NW	97.6	0.03	<0.01	0.02	0.26	0.01	0.23	0.1	98.28
1620	Rain NW	97.4	0.03	<0.01	0.05	0.71	0.01	0.24	0.21	98.71
1621	Rain NW	99.2	0.03	<0.01	0.01	0.22	0.01	0.11	0.1	99.71
1622	Rain NW	98.2	0.04	<0.01	0.01	0.21	0.01	0.12	0.06	98.69
1651	Snow SE ext	98.5	0.06	<0.01	0.01	0.13	0.01	0.07	0.05	98.85
1652	Snow SE ext	97.7	0.03	<0.01	0.01	0.27	0.01	0.12	0.07	98.24
1653	Snow SE ext	100	0.03	0.01	0.01	0.14	0.02	0.06	0.13	100.41

Rain & Snow Zone 2016 Rock Chip Sample ME-ICP06 Geochemical Analysis Results:

Average values from 8 Rock Chip Samples, NW Rain Zone, Geochemical analysis by ALS Minerals Whole Rock ME-ICP06:

%SiO2	%Fe2O3	%CaO	%MgO	%Al2O3	%K2O	%LOI	%TOTAL	%SiO2/
								%Total
98.8	0.03	0.01	0.02	0.285	0.06	0.127	99.4	99.39

Average values from 3 Rock Chip Samples, SE Snow Zone Geochemical analysis by ALS Minerals Whole Rock ME-ICP06:

%SiO2	%Fe2O3	%CaO	%MgO	%Al2O3	%K2O	%LOI	%TOTAL	%SiO2/
								%Total
98.73	0.04	0.01	0.01	0.18	0.08	0.08	99.17	99.56

The Snow Zone has relatively higher SiO2 content (% SiO2/%TOTAL=99.56%) than the Rain Zone (% SiO2/%TOTAL=99.39%). The Snow Zone also is exposed on a ridge crest over 200 meters width and 500 meter strike length, whereas the Rain Zone outcrops intermittently over approximately 50-100 meters variable width along 600 meter strike length. The Rain Zone is exposed on the west and southwest facing slopes of Bearpaw Ridge.

5.0 Regional Geology

The region is dominated by Upper Proterozoic and Paleozoic sedimentary and metamorphic rocks separated by a series of northwest-southeast trending faults. In general, the Upper Proterozoic succession is represented by a clastic-dominated sequence on a carbonate shelf environment lying directly on top of Archean and Proterozoic crystalline basement (Lickorish, 1993). This sediment sequence is related to Upper Proterozoic rifting along the western North American margin (Lickorish and Simony, 1995). Overlying the Proterozoic clastics, the Paleozoic deposits, which thicken westwards from southwest Alberta to northeastern British Colombia, represent the shallow water carbonates passing to the west to deep water slope and basinal facies of the Canadian Cordillera passive margin (Pyle and Barnes, 2003). Lithological units and stratigraphy in the area of Longworth Silica are described as follows:

Miette Group

The oldest rocks in the area are that of the Proterozoic Miette Group. The Miette Group can be divided in three separate units (Lickorish, 1993). The lowermost unit is made up of recrystallized dolomite and limestone. The middle unit is comprised of a thick package (2 km) of coarse sandstone and conglomerate, with minor slate. The uppermost unit of the Miette Group is a thin package of black argillites (Taylor, 1971). The metamorphosed equivalent of the Miette Group was classified as the Misinchinka Group by Stott and Taylor (1979), and generally consist of quartzite, schist, slate and phyllite metamorphosed to greenschist grade.

9

Gog Group

Overlying the Miette Group is the Lower Cambrian Gog Group, which consists of 1 - 2 km of thick-bedded quartzites with minor interbedded shale and limestone (Lickorish, 1993). Similar to the Miette Group, the Gog Group can be sub-divided into three distinct units, with the lower quartzites of the McNaughton Formation being separated from the upper quartzites of the Mahto Formation by the middle shale and limestone unit of the Mural Formation.

Kaza Group

The Kaza Group, which is more prominent in the Kaza Mountain area roughly 150 km southeast of Prince George, is comprised of alternating gritty micaceous quartzites and schists, regionally metamorphosed to greenschist facies (Sutherland Brown, 1963). Although reported to be roughly 3.5 km thick, only 1.75 km is exposed at Kaza Mountain itself.

Cariboo Group

The Cariboo Group, with an estimated thickness of 3 km, is comprised of phyllites, micaeous quartzites, and limestones. It is divided into six separate formations, the Issac (grey phyllites), Cunningham (medium-grey thickly bedded limestone), Yankee Bells (light grey-green phyllites and minor fine quartzites), Yank's Peak (thick bedded pure quartzite with minor phyllite interbeds), Midas (dark grey to black phyllite, slate and argillite) and Snowshow Formation (coarse and fine clastics with minor carbonates) (Sutherland Brown, 1963).

Kechika Group

The Late Cambrian to Early Ordovician, Kechika Gronp, consists of ealcareous shale with light-grey to brown weathering, and limestone interbeds. It's lateral facies change represents a change in deposition from a platform to a broad gently dipping ramp (Pyle and Barnes, 2003). This formation thickens westward (400 - 1200 m) from the McDonald Platform to the Kechika Trough.

Skoki Formation

The Skoki Formation, locally recorded up to 1,000 m thick, is typically thick-bedded to massive, and consists of grey weathering dolostone, limestone and shale (Pyle and Barnes, 2003). In the Wilcox Pass area, Pyle and Barnes (2003) recognised two members of the Skoki Formation. The lower Sikanni Chief member is a 126 m thick succession of medium grey thin to thick bedded dolostone with discontinuous chert beds and stringers. The Upper Keily Member is a dark grey mottled massive lime mudstone. Overall, the Skoki Formation represents a shallow water platform succession and conformably overlies the Kechika Group.

Nonda Formation

The Nonda Formation, also a shallow water succession, consists of medium grey weathering, siliceous dolostone, dolomitic siltstone, sandstone and quartzite, with rare limestone beds. It is massive to thick-bedded, and is recorded as 335 m thick (Pyle and Barnes, 2003). The relatively pure white quartzite that occurs within the Nonda Fm is approximately 100-300 meters in width and laterally extensive in the Longworth area. The continuity of the quartzite is intermittent over a 20 kilometer strike length, and appears to have repeated sequence in areas of complex parallel northwest trending faults, and terminates to the southeast in a regional north trending fault.

Slide Mountain Group

The Slide Mountain Group, is represented in the region by the Mississippian Antler Formation. It is comprised of dark green-grey fine-grained basalt pillow lavas and thinly interbedded cherts and argillite. It has a thickness of 1 km at it's type locality, Slide Mountain, but has been reported to be thicker at Palmer Mountain (Sutherland Brown, 1963).

The Nonda Formation quartzite unit is extensive throughout the local area and forms a resistant unit located at 1,400-1,550 meters elevation. High purity quartzite (Snq) Silurian Nonda Formation quartzite occurs as outcrop with relatively strong topographic relief on the Snow Zone covering an area of approximately 500 meters strike length, and 200 meters wide. The Snow Zone white quartzite has an approximate width of 200 meters. The Rain Zone, where 2016 mapping took place is exposed on a sidehill and would be more difficult to access and develop. The Snow Zone forms a resistant ridge crest, and may be continuous quartzite to Rain Zone but intervening area does not have exposed bedrock. Silurian Nonda Fm quartzite has been metamorphosed by deep buriał, and deformed by Late Cretaceous Laramide Orogeny, mountain building, and severe tectonic disruptive events (e.g. dextral displacement in the order of hundreds of kilometers along Rocky Mountain Trench), and subsequent Tertiary tectonic and thermal events. The widening of the Snow Zone quartzite from 50 to 200 meters in the central portion of the Snow Zone is postulated to be a result of Latc Cretaceous/Tertiary folding (open, synform structure) and faulting (brittle failure, resulting in conjugate fractures, joints, gaps, cracks and caves). The widening may be a result of a fold hinge that has effectively doubled the width of the Nonda Fm quartzite. The main planes of weakness of quartzite in the Snow Zone are oriented WNW (paleo-stratigraphy trend) & NNE (fracture/joint trend), and both orientations have steep dips.

STRATIGRAPHIC UNITS OF LONGWORTH AREA (Sutherland-Brown, 1963):

Lower Carboniferous Slide Mountain Antler conglomerate, pillow basalts, bedded chert

Silurian - Nonda Fm dolostone, dolomitic siltstone, sandstone, quartzite

Middle Ordovician - Skoki dolostone, limestone, shale

Late Cambrian to Early Ordovician Kechika - calcareous argillites and argillites

Late Proterozoic to Ordovician?* Cariboo Snowshoe clastics with minor carbonates Midas phyllite, slate, argillite Yanks Peak quartzite with minor phyllite Yankee Bell phyllites and minor quartzite

Cunningham limestone Issac phyllites

Late Proterozoic Kaza - micaceous quartzites and schists

Late Proterozoic to Early Cambrian Gog Mahto quartzite Mural shale and limestone McNaughton quartzite

Late Proterozoic Misichinka unnamed quartzite, schist, slate, phyllite (metamorphosed equivalent of Miette Group)

Proterozoic Miette Upper argillites Middle sandstone, conglomerate, slate Lower recrystallized dolomite and limestone

The Longworth Silica Property lies within the western margin of the Foreland Belt east of the the Rocky Mountain Trench. The Foreland Belt is fault-bounded to the Omineca Belt to the west, which covers the Prince George area. The rocks in this area have been folded and faulted during Mesozoic-Tertiary orogenic activity, with sheets of Proterozoic and Paleozoic rocks being thrust, imbricated in an eastward direction.

Regional mapping by the Geological Survey of Canada (Muller and Tipper, 1968), at a scale of 1 inch to 4 miles covering the area north and east of Prince George, has been superseded by that of Struik (1994). Struik (1989) indicates there are two strike-slip fault trends in the region One trend follows the McLeod Lake Fault Zone at approximately 160°. Movement along this feature is interpreted as mid-Tertiary. The other set includes the older northern Rocky Mountain Trench fault system, which trends approximately 140°. Glacial deposits of various types, exceeding 100 m in places, cover much of the area around Prince George, Upper Fraser and Longworth. As a result, outcrop exposure on the property is scarce and is limited to the high ridges of Bearpaw Ridge which run in a northwest direction, roughly parallel to the Fraser River. The Longworth Silica Property is underlain by Nonda Fm folded sequence of Lower Silurian carbonates, volcanics and quartznes. The primary target for high purity silica on the Property is the Silurian quartzite, which has been recorded in bands approximately 100-300 meters in width along the western flank of the Bearpaw Ridge, reaching a thickness of up to 400 m (Foye, 1987). It is described as pure, massive and homogenous, and is composed of well-sorted and wellrounded quartz grains averaging 0.5 mm in diameter (Quartermain, 1986). The carbonates and volcanics are comprised of dolostone, calcareous shale and volcanic greenstone fragmentals and flows. Brachiopods and corals occur in the carbonates of Bearpaw Ridge (Quartermain, 1986). Bedding in the area has been reported as trending northwest and steeply dipping (70-80°) to the northeast. The quartzite bands are slightly folded and faulted, and trace a synformal structure which opens to the northwest (Foye, 1987).

6.0 2017 Field Program

6.1 Scope & Purpose

The 2017 core drilling geological and geochemical sampling was carried out in order to evaluate mineral potential of the central portion of the Snow Zone, located in the northwest portion of Longworth Silica property in the area where quartzite is well exposed at 1,500-1,560 meter elevation above sea level, located on a west-flanking low relief, WNW trending shoulder ridge (sub-ordinate to Bearpaw Ridge). The data collected by core drilling will be used to evaluate a resource estimate and update NI 43-101 comphant technical reporting.

6.2 Methods and Procedures

Geological descriptions, geochemical sampling of split core samples, as well as geological surface mapping were carried out on the Snow Zone (lithology, alteration, & structure of Snow Zone surface & drill eore), of the Longworth silica mineral property between August 16-September 2, 2017. Fieldwork is recorded in this assessment report, and reported as MEM Event number 5676656. A total of 186.08 meters total depth, BTW size core drilling done at 3 sites Diamond drill hole 17LW-1, 2 & 3 are located on Snow Zone at 1,551-1,558 meters elevation (Fig 5. & 6). Geological descriptions are summarized in geological drill logs (Appendix C). Photos were taken before and after core splitting. A total of 62 split core samples were taken across 3 meter intervals from DDH 17LW-1, 17LW-2, and 17LW-3 (Appendix D- drill core geochemical record). Split core samples were taken with a screw vise splitter and consist of split 50% (half sampled, half returned & oriented in core box), drill core bedrock pieces forming a total weight ranging from 3-5 kgs for each 3 meter interval. The split diamond drill core (sampled continuously at 3 meter intervals the entire length of drill hole, was shipped to ALS Global (N Vancouver, BC) for whole rock geochemical ME-ICP06 analysis (at 3 meter intervals), in order to determine purity of quartzite, and impurities (e.g. calcite or muscovite).

Sample material was placed in marked poly ore bags, tagged and shipped to ALS Minerals, North Vancouver. Standards and blanks (from CDN Resource Lab Ltd, Langley, BC) were inserted every 15th sample into the sample stream for QC/QA purposes. The core from DDH 17LW-1, 2, & 3 was logged and stored at end of Boulder FSR km 9 (UTM Zone 10, 593,517 E, 5,985,864 N, 1,067 m elev, Lat 54.012581 N, Long -121.57286 W, Lat 54 00' 45.29" N, Long 121 34' 22.31" W).

ALS Minerals crushed better than 70% passing a 2 mm screen split and pulverized rock chip samples. A split of 250 grams is pulverized to better than 85% passing a 75 micron screen. The pulverizing ring was made from tungsten carbide and does not contain iron (prep code PUL33), in order to reduce contamination from iron. The sample pulp is analyzed using ALS Minerals Ltd ME-ICP-06 (ICP-06) Li borate flux major oxide whole rock geochemical analytical methods (Appendix B).

Geological mapping was carried out over 12 hectares of exposed quartzite in the Snow Zone (Fig 4, & 5). Geological lithology changes were noted and mapped at a scale of 1:5,000 and based on the outline of quartzite outcrop the drill hole collars were selected and geology of drill core was compared to surface mapping. Diamond drill hole logs (geological descriptions, e.g. lithology, alteration, minerals, fault/fracture) are summarized in Appendix C.

13

6.3 Diamond Drill Core Geology, & Geochemistry

Snow ridge ESE of helipad

17LW-3

Based on geological mapping of the outline of Snow Zone quartzite, a total of 3 drill sites, were located near the center of the quartzite (spaced approximately 50 meters apart). Location and orientation data of 2017 core drilling is listed as follows

DDH #	Zone Name	Easting NAD 83	Northing NAD 83	Elevation m	Elevation ft
17LW-1	Snow	595625	5985369	1558	5110.2
17LW-2	Snow	595675	5985335	1551	5087.3
17LW-3	Snow	595725	5 9 85283	1552	5090.6
DDH #	Location	Description			
17LW-1	Snow ridge	near helipad			
17LW-2	Snow ridge	ESE of helipad	,		

DDH #	Zone Name	Azimuth	Dip	Depth ft	Depth m	
17LW-1	Snow		-90	226.5	69.04	
17LW-2	Snow	205	-75	169	51.51	
17LW-3	Snow	205	-70	215	65.53	

2017 core drilling was performed by Neil's Mining (contract for MGX Minerals Inc) using a Longyear 28 wireline core drill (BTW diameter core). Yellowhead Helicopters A-Star helicopter was chartered to mobilize drill equipment and core mobilization. Geological descriptions and geochemical sampling of split core samples (3 meter sample intervals) were carried out, as well as geological mapping on the Snow Zone (lithology, alteration, & structure of Snow Zone surface & drill core), of the Longworth silica mineral property. A total of 186.08 meters total depth, BTW size core drilling done at 3 sites (DDH 17LW-1, 2 & 3, spaced approximately 50 meters apart) carried out on Snow Zone ridge at 1,551-1,558 meters elevation (Fig 5, & 6).

Geological mapping outlines the surface trace of high purity quartzite a 200 meter wide X 500 meter long area referred to as 'Snow Zone' (Fig 5, & 6). The diamond drill holes were collared in the central portion of the Snow Zone along a ridge top on solid bedrock. Rock samples were analyzed by ALS Minerals, North Vancouver, BC, using modified Prep 31 (& Pul 33): a special tungsten carbide ring pulverization disc was used versus chrome steel pulverization disc, in order to minimize iron contamination, and finished using whole rock analysis fused bead lithium borate fusion method (ME-ICP-06, Appendix A, & B). Standards and blanks (CDN Resource Lab Ltd) were inserted to sample stream for QC/QA purposes. The quartzite in drill holes 17LW-1, 2, & 3 was variably fractured and faulted (Fig 7, 8, & 9). Drill holes 17LW-1, 2, & 3, overall recoveries were good (>97% core recovery), but the fracture zones were numerous and DDH 17LW-1 was the only hole that ended in relatively high RQD (rock quality designation) values. The quartzite, especially where fractured, wore out the matrix of the diamond drill bits and made drilling with BTW core size not the optimum core diameter. Future core drilling

14

requires large volumes of barite mud additive, and HQ core diameter is recommended at the start of proposed drill hole, with reduction to NQ2, as well as a using a larger, more powerful core drill (e.g. Hydracore 2000, Hy-Tech JKS-300).

The core from DDH 17LW-1, 2, & 3 was logged, photographed before and after splitting and stored at end of Boulder FSR. The logging of core identified a prophryblast metamorphic recrystallized quartz texture in the center of DDH 1,7LW-1, and near the start of DDH 17LW-3. The quartz porphyryblasts are 0.1-1.5 cm (metamorphic origin) re-crystallized subhedral habit, quartz clots. Where porphyryblast texture is prevalent, there is no metamorphic en echelon pattern (sigmoidal) quartz veining. The porphyryblast texture in quartz texture is minor in volume and most of the quartzite is cut by pure white quartz veins (metamorphic quartz sweats). Variation of texture does not appear to affect whole rock geochemical analysis results, as major oxide analysis results of split diamond drill core samples taken from DDH 17LW-1, 2 & 3 Longworth Snow Zone average 99.5% SiO2/Total from top to bottom of all 3 holes (except DDH 17LW-2 45-48 m depth, 3% calcite 0.1-2 cm veins). This table shows the average grade of 99.45-99.51% SiO2/% Total in DDH 17LW-1, 2, & 3:

DDH 17LW-1, 2 & 3 Snow Zone

From To Interval											
DDH	(m)	(m)	(m)	SiO2	Al2O3	Fe2O3	Na2O	K20	LOI	Total	SiO2/Total
1	0.6	69.04	68.44	98.92	0.12	0.05	0.07	0.07	0.12	99.41	99.5
2	0.2	45	44.8	99.41	0.18	0.06	0.05	0.09	0.07	99.94	99.45
3	0.3	65.53	65.23	98.8	0.21	0.06	0.01	0.07	0.06	99.3	99.51

Geochemical analysis results from Snow Zone 2017 core drilling are consistent with Snow Zone 2015 & 2016 surface rock chip samples (3 meter width).

7.0 Discussion of Results

Based on the range of relatively high purity %SiO2 and relatively low impurity values such as Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, it is possible that the Longworth quartzite silica is suitable for use as a raw material for ferrosilicon production as well as other high purity uses (e.g. silicon metal for solar energy use, quartzite countertops). Based on relatively high silica content (95.5% SiO2/%Total), from geochemical analysis of Longworth Snow Zone drill core and surface rock sampling, the Longworth Snow Zone (200 X 500 m area, to a depth of approximately 80 m) has potential for the development of a high purity quartzite deposit (in the order of several million tonnes of silica). The Snow Zone is centered on a WNW trending ridge crest where it is best exposed between 1,500-1,565 meters elevation (MTO tenure number 1022943 & 1023010, Fig 5, & 6). MGX Minerals will be further evaluating metallurgical and thermal shock testing. and commercial applications for Longworth silica, focussing on the Snow Zone.

The geochemical analysis of quartzite from the Snow and Rain Zones compare favourably with other silica producers such as Moberly, Hunt and HCJ Properties near Golden, BC. Impurity compounds of interest (Al2O3, MgO, CaO, Fe2O3) approach specifications required for producing ferrosilicon alloy, and other industrial applications. Manufacturers of glass and fiberglass have listed specifications for the purity of silica as follows:

Minimum and Maximum Values Specified for Silica Used in Glass & Fiberglass:

Silica	99.1 % minimum	
Calcium Carbonate	0.3 % maximum	
Magnesium Carbonate	0.3 % maximum	
Iron Oxides	0.3 % maximum	
Aluminum Oxides	0.3 % maximum	

Whole rock geochemical analysis of Longworth Snow and Rain Zone high purity quartzite is within the specifications for minimum SiO2, and maximum CaCO3, MgCO3, Fe2O3 & Fe3O4, Al2O3 for use in industrial glass products.

The Longworth silica deposit has potential to contain several million tonnes of near surface high purity quartzite in the range of 99.0-99.5% SiO2. In order to assess marketability and technical requirements of quartzite, further metallurgical testing is required to determine the viability of using the raw material for production of ferrosilieon. Additional metallurgical testing would include thermal shock testing of large, 20-25 cm (3-4 kilogram) sized pure quartzite blocks. A program of core drilling is proposed to determine the vertical extent of the quartzite to a depth of 50-100 meters and covering the 200 X 500 meter surface area of the Snow Zone. Ideally, 50-100 meter deep exploration drill holes should be spaced at 50 meter intervals, with -60 degree dip, and azimuth directed in a southeast direction in order to cut the dominant fracture/jointing pattern. Core samples in the order of 3 meter interval lengths should be applied for metallurgy test runs.

8.0 Conclusion

Reviewing available data, the writer offers the following interpretations & conclusions. The Longworth quartzite is a significant silica resource, comparing favourably in size with other deposits in BC e.g. Moberly Mountain, Hunt, & HCJ.

Access to the property is relatively good with a reasonable access road connecting Longworth Silica. There is good infrastructure in the form of a paved highway, CNR rail line and major powerline all of which are located in close proximity to the property.

Silurian Nonda Formation sandstone, shale, carbonate sedimentary sequence and intercalated volcanic rocks have been subjected to regional metamorphism (heat and pressure from deep burial during Cretaceous orogeny events, and subsequent erosion) has resulted in recrystallization of the sediments into quartzite, greenstone and other metamorphic equivalents.

The Longworth property features exposed Nonda Formation silica bearing quartzite lithology that follows a segmented ridge crest that strikes northwest, and dips sub-vertically. Quartzite exposed along the crest of the ridge is accessible by logging roads to 1,150 m elevation, and a 2 km foot trail to 1,500 m elevation gives access to the northwest end of the Snow Zone. The orientation of the deposit along the crest of a ridge is amenable to open pit mining with a relatively low stripping ratio. The grade of 99.5% SiO2/% total in DDH 17LW-1, 2, & 3, geochemical analysis results from Snow Zone 2017 core drilling are consistent with Snow Zone 2015 & 2016 surface rock chip samples (3 meter width).

9.0 Recommendations

Based on the range of relatively high purity %SiO2 and relatively low impurity values such as MgO, CaO, Na2O, K2O and Fe2O3, it is possible that the Longworth quartzite silica is suitable for use as a raw material for ferrosilicon production as well as other high purity uses. Based on relatively high geochemical analysis results for SiO2 from rock chip sampling on the Snow & Rain Zone in 2016, MGX Minerals is planning further evaluation of commercial applications for Longworth silica. The Longworth Snow Zone has potentiai for the development of a high purity quartzite quarry centered on the ridge crest where it is best exposed. The Snow Zone is recommended for core drilling (1,000 m total), and geochemical analysis (in order to determine grade and tonnage). Thermal breakdown tests such as Hanover Drum Test of the core area of the Snow Zone is also recommended.

Future exploration and development of Longworth Silica should be focused on defining the extensions of known quartzite formations of primarily the Snow Zone and secondarily of the Rain Zone. In order to outline exploration and development of Longworth property zones of high purity quartzite, geochemical data should be collected from the Snow, Rain, Long and Doll Zones, and can be used to interpret economics of projected cost vs benefit preliminary economic analysis of mining, mineral processing and marketing. Core drilling, geological mapping, and geochemical sampling is also recommended

Further metallurgical testing for use in ferrosilicon production and other end uses is warranted. Silicon production for the Aluminum or chemical market is another possible end use. The SiO2-reactivity test, also known as the Hanover drum test measures the thermal stability of quartz, and tests for the reducing agents is an important one for choosing the right material; improper material will reduce the effectiveness of the processing. For a feasible furnace operation, it is very important that the SiO₂ is stable in the lower furnace part. This property of thermal stability is tested by the Hanover drum test. Future detailed testing of deeper and less oxidized high purity quartzite outerop of central Snow Zone using drum test method is recommended.

10.0 References

Boucher, H. A. (1985): Silica, Canadian Minerals Yearbook. pp.53.1-53.6

Campbell, R.B. (1967) M c B r i d e (93H) Map-Area, British Columbia in Report of Activities, Pt A. May to Oct -1967, GSC Paper 68-1A, pp.14-23

Campbell, R.B., E.W. Mountjoy and F.G. Yarg, (1973) Geology of the McBride Map-Area, British Columbia, GSC p a p e r 72-35, 104p. (incl: GSC Map 1356A)

Duncan, M.S., and Childs, J.F. (2008) Report on the Quartzite Silica occurences, Longworth Properties, British Columbia, Canada: BC Min. Energy, Mines, Petr. Res. assessment report 30247, 25 p., 5 fig., 6 appendices.

EMPR Annual Report 1965-274

EMPR EXPL 1986- C342, 343

EMPR FIELDWORK 1982, p 196

EMPR Property File Consolidated Silver Standard Ltd., Annual Report 1988

Foye, G. (1987) Silica Occurrences in British Columbia, BC Min. Energy, Mines, Petr. Res., Open File 1987-15, 55 p.

GSC Map 1424A

Kluczny, P. (2014): 2014 EXPLORATION AND FIELDWORK ON THE LONGWORTH SILICA PROPERTY, Longworth Group Assessment Report, Zimtu Capital Corp BC EMPR Assessment Report 35,136

Lay, D. (1941), Fraser R Tertiary Drainage - History, BCDM Bulletin No.11

Lickorish, W.H. (1993): Structural Evolution of the Porcupine Creek Anticlinorium, Western main

Ranges, Rocky Mountains, British Columbia. Journal of Structural Geology, v. 15, p. 477 - 489

Lickorish, L.H. and Simony, S. (1995) Evidence for Late Rifting of the Cordilleran Maring outlined by Stratigraphic division of Lower Cambrian Gog Group, Rocky Mountain Main Ranges, British Columbia and Alberta. Can. J Earth Sci., v. 32, p. 860 - 874

Muller, J.E., and Tipper, H.W. (1968) McLeod Lake, British Columbia; Geol. Surv. Can., Map 1204A.

Murphy, G. F. and Brown, R. E. (1985): Silicon, United States Department of the Interior, Bureau of Mines. Reprint from Bulletin 675

Murphy. T. D. and Henderson, G. V. (1983): Silica and Silicon, Society of Mining Engineers, American Institute of Mining, Metallurgical. and Petroleum Engineers, Inc., Industrial Minerals and Rocks, 5th Edition, Volume 2, pp.1167-1185

Pyle, L.J, and Barnes, R. (2003) Lower Paleozoic Stratigraphic and Biostratipgraphic Correlations in the Canadian Cordillera; implications for the Tectonic Evolution of the Laurentian Margin. Can. J. Earth Sci., v. 40, p. 1739 -1753

Quartermain, R., 1985, Geological Survey and Geochemical Sampling of the SNOW Claim of the Longworth Group, Bearpaw Ridge, Sinclair Mil1s, B C Consolidated Silver Standard Ltd BC EMPR Assessment Report # 14,815

Struik, L.C. (1989) Regional geology of the McLeod Lake map areas, British Columbia *in* Current Research Part A, Geol. Surv. Can. Paper 89-1E, p. 109 - 114.

Struik, L.C. (1994) Geology of the McLeod Lake Map Area (93J), British Columbia, Geol. Surv. Can. Open File 2439

Sutherland Brown, A. (1963) Geology of the Cariboo River area, British Columbia, B.C. Dept. Mines Petr. Resources Bull. 47

Taylor, G.C. (1971) Devonian and Earlier Stratigraphy and Structure of Monkman Pass and Wapiti map-areas, British Columbia and Alberta. Geol. Surv. Can. Paper 71-01 A, p. 234 -23

Taylor, G.C., and Stott, D.F. (1979) Geology of Monkman Pass (93I) map-area, northeastern British Columbia; Geol. Surv. Can. Open File 630.

CERTIFICATE AND DATE

I, Andris Kikauka, of 4199 Highway, Powell River, BC am a self-employed professional geoscientist. I hereby certify that:

1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geologieal Sciences, 1980.

2. I am a Fellow in good standing with the Geological Association of Canada.

3. I am registered in the Province of British Columbia as a Professional Geoscientist.

4. I have practiced my profession for thirty five years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., Mexico, Central America, and South America, as well as for three years in uranium exploration in the Canadian Shield.

5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject property during which time a technical evaluation consisting of geological core logging & mapping, surveying, geochemical core sampling carried during August and September, 2017

6. I have a direct interest in the Longworth Property and MGX Minerals Inc. The recommendations in this report cannot be used for the purpose of public financing.

7. I am not aware of any material fact or material change with respect to the subject matter of this Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

8. This technical work report supports requirements of BCEMPR for Exploration and Development Work/Expiry Date Change.

Andris Kikauka, P. Geo.,

A. Kikanka

December 15, 2017

ITEMIZED COST STATEMENT-LONGWORTH GROUP OF ADJOINING MINERAL TENURES: 1022782, 1022943, 1022944, 1022945, 1022946, 1022947, 1023010, 1023011, 1023075, 1023094, 1023096, 1023101, 1023102, 1023103 & 1023122 FIELDWORK, SAMPLING PERFORMED August 16-Sept 2, 2017, WORK PERFORMED ON MINERAL TENURES 1022943 & 1023010 CARIBOO MINING DIVISION, NTS 93H 14W (TRIM 093H 093)

FIELD CREW:

A. Kikauka (Geologist) 18 days (surveying, core logging)	\$ 9,900.00
S. Apted (Geotechnician) 14 days (core handling, splitting, sampling)	4,410.00

FIELD COSTS:

Mob/demob/preparation	2,545.90
Meals and accommodations	1,481.20
Excavator (Kubota 161, 47 HP, 5,230 Kg) operator & rental	
(84 hours @ \$160.00/hour)	13,440.00
Neil's Drilling Ltd (Burns Lk, BC) 3 X BTW core size, 3 drill holes total	
186.08 meters, basic cost \$125/meter	23,260.15
Core drilling, cost plus for diamond drill bits added to total cost of drilling	ng 7,854.90
Helicopter charters (A-star, Yellowhead Helicopters Ltd) 13.3 hrs total	25,236.75
Truck mileage & fuel	2,705.10
Standards & Blanks (CDN Resource Lab Ltd, Langley, BC)	125,00
Niton XL3T-500 analyser rental 14 days	840.00
Shipping (Prince George, BC)	575.35
Li Borate Fusion ICP AES geochemical analysis (66 split core samples)	2,631.42
Report	1,250.00

Total= \$ 96,255.77

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

Page: 1 Total # Pages: 3 (A - B) Plus Appendix Pages Finalized Date: 1-OCT-2017 Account: MGXMIN

Appendix A ALS Global Geochemical Analysis Certificate

CERTIFICATE VA17186466

Project: Longworth

This report is for 42 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 1-SEP-2017.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION						
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-24	Pulp Login - Rcd w/o Barcode						
LOG-22	Sample login - Rcd w/o BarCode						
CRU-31	Fine crushing - 70% < 2mm						
SPL-21	Split sample - riffle splitter						
PUL-33	Pulverise in Tungsten Carbide						

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
OA-GRA08	Specific Gravity - Bulk Sample	WST-SEQ
ME-ICPO6	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ
TOT-ICP06	Total Calculation for ICP06	ICP-AES

To: MGX MINERALS INC ATTN: ANDRIS KIKAUKA 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET

VANCOUVER BC V6Z 2T1

Page: 2 - A Total # Pages: 3 (A - B) Plus Appendix Pages Finalized Date: 1-OCT-2017 Account: MGXMIN

CERTIFICATE OF ANALYSIS VA17186466

Project: Longworth

														<u> </u>	0400	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	OA~GRAD8 5.G. Unity 0.01	ME-ICP06 SiO2 % 0.01	ME+ICP06 Al2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.01	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01
1 2		2.76 3.56		98.7 97.7	0,14 0.11	0.05 0.03	0.06	0.02	0.05 0.04	0.09	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
3		4.42		99.5	0.13	0.03	0.03 0.02	0.01 0.01	0.04	0.10 0.02	< 0.01	0.02	<0.01	< 0.01	<0.01	<0.01
		4.42	2.64	99.5 97.9	0.13	0.03	0.02	0.01	0.01	0.02	0.01 0.01	0.02 0.04	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
5		4.76	2.04	99.7	0.14	0.04	0.02	0.02	0.03	0.02	0.01	0.04	<0.01	0.01	<0.01	<0.01
6		4,46		97,9	0.10	0.04	0.01	0.01	0.06	0.06						
7		4.40		99.3	0.10	0.04	0.01	0.01	0.08	0.06	0.01 0.01	0.02 0.03	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
8		4.28	2.63	98.6	0.09	0.04	0.02	0.01	0.06	0.08	<0.01	0.03	<0.01	<0.01	<0.01	<0.01
9		5.30	2,00	97.9	0.07	0.04	0.01	0.01	0.08	0.04	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
10		4.70		99.1	0.07	0.04	0.01	0.01	0.10	0.06	0.01	0.01	<0.01	<0.01	<0.01	<0.01
11		4.14		99.4	0.17	0.05	0.01	0.02	0.11	0.09	0.01	0.03	<0.01	<0.01	<0.01	<0.01
12		4.06	2.64	99.3	0.17	0.06	0.02	0.02	0.10	0.09	0.01	0.03	<0.01	<0.01	<0.01	<0.01
13		3.54		98.9	0.19	0.05	0.02	0.02	0.10	0.11	0.01	0.04	<0.01	<0.01	<0.01	<0.01
14		5.04		99.3	0.13	0.07	0.01	0.01	0.11	0.08	0.01	0.03	<0.01	<0.01	<0.01	<0.01
15		0.08		68.9	10.55	8.63	1.99	1.94	2.25	1.37	0.01	0.43	0.23	0.10	0.02	0.07
16		4.06	2.64	99.7	0.10	0.05	0.01	0.01	0.10	0.08	0.01	0.02	<0.01	<0.01	<0.01	<0.01
17		3.84		99,9	0.08	0.04	0.01	0.01	0.01	0.06	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
18		4.74		99.4	0.11	0.07	0.01	0.01	0.11	0.15	0.01	0.03	<0.01	<0.01	<0.01	<0.01
19		3,36		98.7	0.12	0.07	<0.01	0.01	0.01	0.05	0.01	0.03	<0.01	<0.01	<0.01	<0.01
20		4.70	2.65	99.2	0.13	0.05	0.01	0.01	0.11	0.08	0.01	0.02	<0.01	<0.01	<0.01	<0.01
21		4.70		99.4	0.12	0.03	0.01	<0.01	0.01	0.02	0.01	0.03	<0.01	<0.01	<0.01	<0.01
22		5.26		98.9	0.10	0.07	0.01	0.01	0.11	0.08	0.01	0.03	<0.01	<0.01	<0.01	<0.01
23 24		4,34 4,64	2.62	97.9 98.8	0.12	0.04 0.04	0.02 0.01	0.01	0.10	0.09	0.01	0.02	<0.01	<0.01	<0.01	<0.01
25		4.88	2.02	98.6 99.0	0.11 0.31	0.04	0.01	0.01 0.02	0.09 0.10	0.06 0.13	0.01 0.01	0.03 0.03	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
																_
26 27		4.52 4.84		99.4 98.9	0.34 0.23	0.05 0.05	0.01 0.01	0.02 0.02	0.10 0.10	0.14 0.17	<0.01	0.03	<0.01	< 0.01	<0.01	<0.01
28		4.46	2.63	99.1	0.23	0.06	0.01	0.02	0.09	0.08	0.01 0.01	0.03 0.02	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
29		4.30	2.00	99.4	0.14	0.05	0.01	0.01	0.07	0.09	0.01	0.02	<0.01	<0.01	<0.01	<0.01
30		0.42		46.2	14.15	13.05	9.31	9.95	3.00	1.00	0.06	1.99	0.17	0.03	0.06	0.04
31		4.54		99,9	0.20	0.17	0.04	0.05	0.02	0.08	0.01	0.03	<0.01	<0.01	<0.01	<0.01
32		5.48	2.64	100.0	0.14	0.04	0.02	0.02	0.01	0.05	0.01	0.02	<0.01	<0.01	<0.01	<0.01
33		5.10		99.2	0.19	0.03	0.01	0.02	0.07	0.11	0.01	0.02	<0.01	<0.01	<0.01	<0.01
34		4.84		99.7	0.13	0.03	0.01	0.01	0.07	0.08	0.01	0.02	<0.01	<0.01	<0.01	<0.01
35		4.34		98.4	0.19	0.04	0.02	0.02	<0.01	0.08	<0.01	0.03	<0.01	<0.01	<0.01	<0.01
36		4.20	2.64	99.9	0.19	0.05	0.01	0.02	0.07	0.11	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
37		3.38		99.9	0.16	0.06	0.01	0.01	0.01	0.05	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
38		3.52		99.6	0/13	0.21	<0.01	<0.01	0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
39		2,44		99.3	0.13	0.05	0.02	0.01	0.01	0.07	0.01	0.02	<0.01	0.01	<0.01	<0.01
40		3.24	2.63	99.5	0.13	0.04	0.02	0.01	0.01	0.06	<0.01	0.03	<0.01	0.02	<0.01	<0.01

***** See Appendix Page for comments regarding this certificate *****

)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

Page: 2 - B Total # Pages: 3 (A - B) Plus Appendix Pages Finalized Date: 1-OCT-2017 Account: MGXMIN

Project: Longworth

CERTIFICATE OF ANALYSIS VA17186466

Sample Description	Method Analyte Units LOR	OA-GRA05 LOI % 0.01	TOT-ICP06 Tot s! % 0.01	
1		0.21	99.34	
2		0.24	98.28	
3		0.14	99.89	
4		0.16	98.52	
5		0.14	100.12	
6 7		0.12	98.33 99.77	
7		0.11	99.77	
8		0.16	99.08	
8 9 10		0.11	98.28	
		0.23	99.64	
11 12 13 14 15		0.17	100.06	
12		0.21	100.01	
13		0.11	99.55	
14		0.06	99.81	
15		4.10	100.59	
16 17		0.06	100.14	
17		0.05	100.18	
18 19		0.10	100.00	
19		0.06	99.06	
20		-0.03	99.59	
21 22 23 24 25		0.08	99.71	
22		0.12	99.44	
23		0.05	98.36	
24		0.14	99.30	
25		0.09	99.74	
26 27 28 29 30		0.19	100.28	
27		0.11	99.63	
28		0.01	99.53	
29		0.06	99.89	
		-0.24	99.07	
31 32 33 34 35		0.10	100.60	
32		0.00	100.31	
33		0.00	99.66	
34		0.03	100.09	
		0.06	98.84	
36		0.00	100.37	
37		0.19	100.41	
38		0.24	100.23	
36 37 38 39 40		0.20	99.83	
40		0.18	100.00	

***** See Appendix Page for comments regarding this certificate *****

)

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

Page: 3 - A Total # Pages: 3 (A - B) Plus Appendix Pages Finalized Date: 1-OCT-2017 Account: MGXMIN

Project: Longworth

CERTIFICATE OF ANALYSIS VA17186466

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	OA-GRA08 S.G. Unity 0.01	ME-ICP06 SiO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.01	ME-1CP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01
41 42		2.94 3.58		95.2 99.7	0.29 0.20	0.10 0.03	1.64 0.01	0.65 0.01	0.02 0.02	0.07 0.06	<0.01 0.01	0.04 0.02	<0.01 <0.01	0.01 <0.01	<0.01 <0.01	<0.01 <0.01

***** See Appendix Page for comments regarding this certificate *****

5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

Page: 3 - B Total # Pages: 3 (A - B) Plus Appendix Pages Finalized Date: 1-OCT-2017 Account: MGXMIN

Project: Longworth

CERTIFICATE OF ANALYSIS VA17186466

Methods Analyse Units Oraclexes (1) Total Cost (1) Total Cost (2) 22.7 100.28			· · ·		
Analyse mple Description U.01 No.8 Total % 2.27 100.29 2 0.22 100.28			04.09405	TOT-ICROS	
mple Description Units 0.01 % % 2.27 100.28 0.22 100.28		Method			
		Analyte	LOI	Iotal	
		Units	%	%	
	sample Description	LOR	0.01	0.01	
	41		2.27	100.29	
	47		0.22	100.28	
	*4		0.22	100.20	
		1			
		1			
		1			

.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 1-OCT-2017 Account: MGXMIN

Project: Longworth

CERTIFICATE OF ANALYSIS VA17186466

		CERTIFICATE COMMENTS									
	LABORATORY ADDRESSES										
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.CRU-31LOG-22LOG-24ME-ICP06OA-GRA05OA-GRA08PUL-33SPL-21TOT-ICP06WEI-21										

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

Page: 1 Total # Pages: 2 (A - B) Plus Appendix Pages Finalized Date: 7-OCT-2017 Account: MGXMIN

CERTIFICATE VA17194346

Project: Longworth

This report is for 24 Rock samples submitted to our lab in Vancouver, BC, Canada on 11-SEP-2017.

The following have access to data associated with this certificate: MGX MINERALS

ANDRIS KIKAUKA

SAMPLE PREPARATION				
ALS CODE	DESCRIPTION			
WEI-21	Received Sample Weight			
LOG-22	Sample login - Rcd w/o BarCode			
CRU-31	Fine crushing – 70% <2mm			
PUL-33	Pulverise in Tungsten Carbide			
SPL-21	Split sample - riffle splitter			

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
OA-GRA08	Specific Gravity - Bulk Sample	WST-SEQ
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ
TOT-ICP06	Total Calculation for ICP06	ICP-AES

To: MGX MINERALS INC **ATTN: ANDRIS KIKAUKA 303-1080 HOWE STREET** VANCOUVER BC V6Z 2T1

r

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

Page: 2 - A Total # Pages: 2 (A - B) Plus Appendix Pages Finalized Date: 7-OCT-2017 Account: MGXMIN

Project: Longworth

CERTIFICATE OF ANALYSIS VA17194346

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	OA-GRA08 S.G. Unity 0.01	ME-ICP06 SIO2 % 0.01	ME-ICP06 Al2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.01	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICPO6 P2O5 % 0.01	ME-ICP06 SrO % :0.01	ME-ICP06 BaO % 0.01
43 44 45		3,64 4,44 Not Recvd		99.0 99.4	0.28 0.24	0.05 0.04	0.02 0.01	0.03 0.02	0.01 0.01	0.07 0.06	0.01 0.01	0.04 0.03	<0.01 <0.01	0.01 0.01	<0.01 <0.01	<0.01 <0.01
46 47		4.22 5.26	2.59	98.8 99.1	0.09 0.11	0.03 0.05	<0.01 0.01	0.01 0.01	0.01 0.02	0.02 0.04	0.01 0.01	0.02 0.02	<0.01 <0.01	0.01 0.01	<0.01 <0.01	<0.01 <0.01
48 49 50		4.42 4.66 2.96	2.64	98.2 98.9	0.17 0.15	0.07	0.01	0.02	0.01 0.02	0.04	0.01 0.01	0.05 0.03	<0.01 <0.01	<0:01 0.01	<0.01 <0.01	<0.01 <0.01
50 51 52		2.90 3.14 4.40	2.64	99.4 97.7 99.6	0.14 0.13 0.15	0.05 0.06 0.06	0.01 0.01 0.01	0.01 0.01 0.01	0.02 0.01 0.01	0.06 0.04 0.05	0.01 0.01 0.01	0.03 0.03 0.03	<0.01 <0.01 <0.01	<0;01 <0;01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01
53 54 55		3.54 4.74 4.36	2.64	98.3 99.2	0.14 0.12	0.07 0.04	0.01 <0.01	0.01	0.01 0.01	0.04 0.04	0.01 0.01	0.03 0.02	<0.01 <0.01	0.01 <0.01	<0.01 <0.01	<0.01 <0.01
55 56 57		4.30 3.48 4.02	2.64	98.2 99.8 99.4	0.18 0.40 0.22	0.04 0.06 0.04	<0.01 0.03 <0.01	0.01 0.03 0.02	0.01 <0.01 0.01	0.13 0.16 0.08	0.01 0.01 0.01	0.02 0.04 0.02	<0.01 <0.01 <0.01	0.02 <0.01 0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01
58 59 60		4.80 4.70 0.34		99.5 97.6 45,1	0.18 0.19 13.65	0.04 0.05 13.50	0.01 0.01 9.31	0.01 0.01	0.01 <0.01	0.05	0.01	0.02	<0.01 <0.01	<0:01 0.01	<0.01 <0.01	<0.01 <0.01
61 62		4.80 5.04	2.64	98.3 99.8	0.33 0.19	0.12 0.06	0.06 0.02	11.30 0.07 0.02	2.64 0.03 <0.01	0.99 0.09 0.07	0.06 0.01 0.01	2.09 0.04 0.03	0.18 <0.01 <0.01	0.35 0.01 <0.01	0.06 <0.01 <0.01	0.04 <0.01 <0.01
63 64 65		3.54 3.16 4.58		99.7 98.2 96.8	0.16 0.25 0.46	0.05 0.05 0.06	0.02 0.02 0.02	0.01 0.02 0.03	0.01 0.02 0.01	0.07 0.09 0.16	0.01 0.01 0.01	0.02 0.02 0.04	<0.01 <0.01 <0.01	<0:01 <0:01 <0:01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01
66		2.52	2.64	99.0	0.27	0.04	0.02	0.02	0.01	0.11	0.01	0.03	<0.01	<0;01	<0.01	<0.01
															,	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

Page: 2 - B Total # Pages: 2 (A - B) Plus Appendix Pages Finalized Date: 7-OCT-2017 Account: MGXMIN

Project: Longworth

CERTIFICATE OF ANALYSIS VA17194346

Sample Description	Method Analyte Units LOR	OA-GRA05 LOI % 0.01	TOT-ICPO6 Total % 0.01	
43 44		0.01 0.28	99.53 100.11	
43 44 45 46 47		0.00 0.07	99.00 99.45	
48 49 50 51 52	· • • •	0.14 0.04 0.05 0.00	98.72 99.29 99.78 98.00	
52 53 54 55 56 57		0.02 0.09 0.00 0.09 0.01 0.07	99.95 98.72 99.45 98.71 100.54 99.88	
57 58 59 60 61 62	,	-0.07 -0.01 0.10 0.00 0.08 -0.09	99.88 99.82 98.06 99.27 99.14 100.11	
63 64 65 66		0.02 0.10 0.18 0.14	100.10 98.78 97.77 99.65	

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: MGX MINERALS INC 303-1080 HOWE STREET VANCOUVER BC V6Z 2T1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-OCT-2017 Account: MGXMIN

Project: Longworth

CERTIFICATE OF ANALYSIS VA17194346

		CERTIFICATE COMM	ENTS								
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. CRU-31 LOG-22 ME-ICP06 OA-GRA05 OA-GRA08 PUL-33 SPL-21 TOT-ICP06 WEI-21 VEI-21 VEI-21 VEI-21										
		•									

Appendix B Longworth 2017 DDH Geochemical Analysis Methods and Procedures

WHOLE ROCK GEOCHEMISTRY

ME- XRF06

SAMPLE DECOMPOSITION

50% - 50% Li₂ B₄ O₇ - LiBO₂ (WEI- GRA06)

ANALYTICAL METHOD

X-Ray Fluorescence Spectroscopy (XRF)

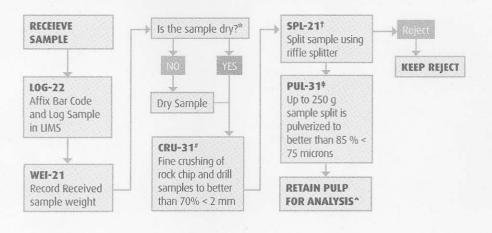
A calcined or ignited sample (0.9 g) is added to 9.0g of Lithium Borate Flux (50 % - 50 % $Li_2 B_4 O_7 - LiBO_2$), mixed well and fused in an auto fluxer between 1050 - 1100°C. A flat molten glass disc is prepared from the resulting melt. This disc is then analysed by X-ray fluorescence spectrometry.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Aluminum Oxide	Al ₂ 0 ₃	%	0.01	100
Barium Oxide	BaO	%	0.01	100
Calcium Oxide	CaO	%	0.01	100
Chromium Oxide	Cr ₂ O ₃	%	0.01	100
Ferric Oxide	Fe ₂ 0 ₃	%	0.01	100
Potassium Oxide	K ₂ 0	%	0.01	100
Magnesium Oxide	MgO	%	0.01	100
Manganese Oxide	MgO	%	0.01	100
Sodium Oxide	Na ₂ 0	%	0.01	100
Phosphorus Oxide	P202	%	0.01	100
Silicon Oxide	SiO ₂	%	0.01	100
Strontium Oxide	SrO ₂	%	0.01	100
Titanium Oxide	TiO ₂	%	0.01	100
Loss On Ignition	LOI	%	0.01	100
	Total	%	0.01	101

NOTE: Since samples that are high in sulphides or base metals can damage Platinum crucibles, a ME- ICP06 finish method can be selected as an alternative method.

SAMPLE PREPARATION PACKAGE

PREP-31


STANDARD SAMPLE PREPARATION: DRY, CRUSH, SPLIT AND PULVERIZE

Sample preparation is the most critical step in the entire laboratory operation. The purpose of preparation is to produce a homogeneous analytical sub-sample that is fully representative of the material submitted to the laboratory.

The sample is logged in the tracking system, weighed, dried and finely crushed to better than 70 % passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen. A split of up to 250 g is taken and pulverized to better than 85 % passing a 75 micron (Tyler 200 mesh, US Std. No. 200) screen. This method is appropriate for rock chip or drill samples.

METHOD CODE	DESCRIPTION
LOG-22	Sample is logged in tracking system and a bar code label is attached.
	Drying of excessively wet samples in drying ovens. This is the default drying procedure for most rock chip and drill samples.
CRU-31	Fine crushing of rock chip and drill samples to better than 70% of the sample passing 2 mm.
SPL-21	Split sample using riffle splitter.
PUL-31	A sample split of up to 250 g is pulverized to better than 85% of the sample passing 75 microns. Ulzerize in Tungsten Carbide (to avoid Fe contai

FLOW CHART - SAMPLE PREPARATION PACKAGE - PREP-31 STANDARD SAMPLE PREPARATION: DRY, CRUSH, SPLIT AND PULVERIZE

[®]If samples air-dry overnight, no charge to client. If samples are excessively wet, the sample should be dried to a maximum of 120°C. (**DRY-21**)

#QC testing of crushing efficiency is conducted on random samples (CRU-QC).

The sample reject is saved or dumped pending client instructions. Prolonged storage (> 45 days) of rejects will be charged to the client.

‡QC testing of pulverizing efficiency is conducted on random samples (PUL-QC).

^Lab splits are required when analyses must be performed at a location different than where samples received.

DDH17LW-1 Drill Log Geological Description

10.4		6		·	· ····· ·	6102 N		C- 0 N	F-202 N	
		from (m)	• •	• •	lithology		Al2O3 %			RQD %
	17 1	0.6	3	2.4	Nonda Fm orthoquartzite	98.7	0.14	0.06	0.05	41
2	17 1	3	6	3	Nonda Fm orthoquartzite	97.7	0.11	0.03	0.03	77
3	17 1	6	9	3	Nonda Fm orthoquartzite	99.5	0.13	0.02	0.03	70
4	17 1	9	12	3	Nonda Fm orthoquartzite	97.9	0.19	0.02	0.03	66
5	17 1	12	15	3	Nonda Fm orthoquartzite	99.7	0.14	0.01	0.04	68
6	17 1	15	18	3	Nonda Fm orthoquartzite	97.9	0.1	0.01	0.04	80
7	17 1	18	21	3	Nonda Fm orthoquartzite	98.3	0.1Z	0.01	0.05	53
8	17 1	21	24	3	Nonda Fm orthoquartzite	98.6	0.09	0.02	0.04	72
9	17 1	24	27	3	Nonda Fm orthoquartzite	97.9	0.07	0.01	0.04	80
10	17 1	27	30	3	Nonda Fm orthoquartzite	9 9.1	0.07	0.01	0.04	81
11	17 1	30	33	3	Nonda Fm orthoquartzite	98.4	0.17	0.01	0.05	70
12	17 1	33	36	3	Nonda Fm orthoquartzite	99.3	0.17	0.02	0.06	68
13	17 1	36	39	3	Nonda Fm orthoquartzite	98. 9	0.19	0.02	0.05	18
14	17 1	39	42	3	Nonda Fm orthoquartzite	99.3	0.13	0.01	0.07	60
15		Std-1				68.9	10.55	1.99	0.03	
16	17 1	42	45	3	Nonda Fm orthoquartzite	99.7	0.1	0.01	0.05	60
17	17 1	45	48	3	Nonda Fm orthoquartzite	9 9.9	0.08	0.01	0.04	49
18	17 1	48	51	3	Nonda Fm orthoquartzite	99.4	0.11	0.01	0.07	54
19	17 1	51	54	3	Nonda Fm orthoquartzite	98.7	0.12	<0.01	.0.07	22
20	17 1	54	57	3	Nonda Fm orthoquartzite	99.2	0.13	0.01	0.05	80
21	17 1	57	60	3	Nonda Fm orthoquartzite	99.4	0.12	0.01	0.03	79
22	17 1	60	63	3	Nonda Fm orthoquartzite	98.9	0.1	0.01	0.07	82
23	17 1	63	66	3	Nonda Fm orthoquartzite	97.9	0.1Z	0.02	.0.04	70
24	17 1	66	69.04	3.04	Nonda Fm orthoquartzite	98.8	0.11	0.01	0.04	70

Appendix C Longworth 2017 Diamond Drill Hole Logs (Geological Description)

ID # ddh no from (m) to (m) int. (m) alteration

1 17 1 0.6 3 2.4 quartz veining (as metamorphic sweats), trace limonite, muscovite 2 17 1 3 6 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 3 17 1 6 9 3 guartz veining (as metamorphic sweats), trace limonite, muscovite 4 17 1 12 9 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 5 17 1 12 15 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 6 17 1 15 18 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 7 17 1 18 21 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 8 17 1 21 24 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 9 17 1 24 27 3 guartz veining (as metamorphic sweats), trace limonite, muscovite 10 17 1 27 30 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 11 17 1 30 33 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 12 17 1 33 36 3 quartz veining (as metamorphic sweats), 0.1% limonite, muscovite 13 17 1 36 39 3 guartz veining (as metamorphic sweats), 0.1% limonite, muscovite 14 17 1 39 42 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 15 Std-1 CDN Res Lab Ltd, ME-6A 16 17 1 42 45 3 quartz veining (as metamorphic sweats), trace limonite, muscovite massive equigranular quartzite 17 17 1 45 48 3 quartz veining (as metamorphic sweats), trace limonite. muscovite 18 17 1 48 51 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 19 17 1 51 54 3 quartz velning (as metamorphic sweats), trace limonite, muscovite 20 17 1 54 57 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 21 17 1 57 60 3 quartz velning (as metamorphic sweats), trace limonite, muscovite 22 17 1 60 63 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 23 17 1 63 66 3 quartz veining (as metamorphic sweats), trace limonite, muscovite 24 17 1 66 69.04 3.04 guartz veining (as metamorphic sweats), trace limonite, muscovite

lithology, minerals

massive equigranular quartzite massive equigranular guartzite massive equigranular quartzite massive equigranular quartzite massive equigranular guartzite massive equigranular quartzite massive equigranular guartzite massive equigranular quartzite massive equigranular quartzite

massive equigranular quartzite massive equigranular quartzite massive equigranular quartzite massive equigranular quartzite massive equigranular quartzite massive equigranular quartzite massive equigranular quartzite massive equigranular quartzite

ID # ddh no	from (m)	to (m)	int. (m) comments	fault & or fracture (% recov)
1 17 1	0.6	3	2.4 trace carbonaceous (black) fracture fill coatings & streaks	
2 17 1	3	6	3 trace carbonaceous (black) fracture fill coatings & streaks	
3 17 1	6	9	3 trace carbonaceous (black) fracture fill coatings & streaks	
4 17 1	9	12	3	
5 17 1	12	15	3	broken ground 13.15-13.56 m (85% recov)
6 17 1	15	18	3	
7 17 1	18	21	3	broken ground 20-20.85 m (90% recov)
8 17 1	21	24	3	
9 17 1	24	27	3	broken ground 24.25-24.4 m (85% recov)
10 17 1	27	30	3	
11 17 1	30	33	3	broken ground 31-31.25 m (80% recov)
12 17 1	33	36	3	fault (trace clay) 34.2-38.5 m (88% recov)
13 17 1	36	39	3 mottled texture, sugary & recrystallized quartz porphyryblast	fault (trace clay) 34.2-38.5 m (88% recov)
14 17 1	39	42	3 mottled texture, sugary & recrystallized quartz porphyryblast	
15	Std-1			
16 17 1	42	45	3 mottled texture, sugary & recrystallized quartz porphyryblast	
17 17 1	45	48	3 mottled texture, sugary & recrystallized quartz porphyryblast	fault (trace clay) m (88% recov)
18 17 1	48	51	3 mottled texture, sugary & recrystallized quartz porphyryblast	
19 17 1	51	54	3 trace-minor vuggy recrytallized quartz	fault (trace clay) 50.6-53.2 m (88% recov)
20 17 1	54	57	3 trace-minor vuggy recrytallized quartz	
21 17 1	57	60	3 trace-minor vuggy recrytallized quartz	
22 17 1	60	63	3 trace-minor vuggy recrytallized quartz	
23 17 1	63	66	3 trace-minor vuggy recrytallized quartz	
24 17 1	66	69.04	3.04 trace-minor vuggy recrytallized quartz	

1

.

	nom (m)	to (iii)	inc. (iii) metamorphic fabric (fracture cleavage, & dominant qtz sweat)
1 17 1	0.6	3	2.4 0.6-17.2 m (0.1-3%, 0.1-0.8 cm metamorphic qtz sweat veinlets) @10-35 degrees to c.a.
2 17 1	3	6	3 0.6-17.2 m (0.1-3%, 0.1-0.8 cm metamorphic qtz sweat veinlets) @10-35 degrees to c.a.
3 17 1	6	9	3 0.6-17.2 m (0.1-3%, 0.1-0.8 cm metamorphic qtz sweat veinlets) @10-35 degrees to c.a.
4 17 1	9	12	3 0.6-17.2 m (0.1-3%, 0.1-0.8 cm metamorphic qtz sweat veinlets) @10-35 degrees to c.a.
5 17 1	12	15	3 0.6-17.2 m (0.1-3%, 0.1-0.8 cm metamorphic qtz sweat veinlets) @10-35 degrees to c.a.
6 17 1	15	18	3 17.2-34.2 m (0.1-5%, 0.1-1 cm metamorphic qtz sweat veinlets) @30-70 degrees to c.a.
7 17 1	18	21	3 17.2-34.2 m (0.1-5%, 0.1-1 cm metamorphic qtz sweat veinlets) @30-70 degrees to c.a.
8 17 1	21	24	3 17.2-34.2 m (0.1-5%, 0.1-1 cm metamorphic qtz sweat veinlets) @30-70 degrees to c.a.
9 17 1	24	27	3 17.2-34.2 m (0.1-5%, 0.1-1 cm metamorphic qtz sweat veinlets) @30-70 degrees to c.a.
10 17 1	27	30	3 17.2-34.2 m (0.1-5%, 0.1-1 cm metamorphic qtz sweat veinlets) @30-70 degrees to c.a.
11 17 1	30	33	3 17.2-34.2 m (0.1-5%, 0.1-1 cm metamorphic qtz sweat veinlets) @30-70 degrees to c.a.
12 17 1	33	36	3 34.2-38.5 m (0.1-1%, 0.1-0.6 cm metamorphic qtz sweat veinlets) @10-30 degrees to c.a.
13 17 1	36	39	3 34.2-38.5 m (0.1-1%, 0.1-0.6 cm metamorphic qtz sweat veinlets) @10-30 degrees to c.a.
14 17 1	39	42	3 38.5-49.25 m (0.1-1%, 0.1-0.7 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
15	Std-1		38.5-49.25 m (0.1-1%, 0.1-0.7 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
16 17 1	42	45	3 38.5-49.25 m (0.1-1%, 0.1-0.7 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
17 17 1	45	48	3 38.5-49.25 m (0.1-1%, 0.1-0.7 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
18 17 1	48	51	3 49.25-50.6 m (0.5-10%, 0.1-1.8 cm metamorphic qtz sweat veinlets) @20-75 degrees to c.a.
19 17 1	51	54	3 50.6-53.2 m (0.5-10%, 0.1-1.8 cm metamorphic qtz sweat veinlets) @20-55 degrees to c.a.
20 17 1	54	57	3 53.2-69.04 m (0.2-4%, 0.1-3.5 cm metamorphic qtz sweat veinlets) @10-80 degrees to c.a.
21 17 1	57	60	3 53.2-69.04 m (0.2-4%, 0.1-3.5 cm metamorphic qtz sweat veinlets) @10-80 degrees to c.a.
22 17 1	60	63	3 53.2-69.04 m (0.2-4%, 0.1-3.5 cm metamorphic qtz sweat veinlets) @10-80 degrees to c.a.
23 17 1	63	66	3 53.2-69.04 m (0.2-4%, 0.1-3.5 cm metamorphic qtz sweat veinlets) @10-80 degrees to c.a.
24 17 1	66	69.04	3.04 53.2-69.04 m (0.2-4%, 0.1-3.5 cm metamorphic qtz sweat veinlets) @10-80 degrees to c.a.

ID # ddh no from (m) to (m) int. (m) metamorphic fabric (fracture cleavage, & dominant qtz sweat)

ID #	ddh no	from (m)	to (m)	int. (m)	Remarks
	1 17 1	0.6	5	3 2.4	I massive texture, pure white on fresh surface, trace limonite on fractures
	2 17 1	3	5	6 3	a massive texture, pure white on fresh surface, trace limonite on fractures
	3 17 1	6	;	9 3	B massive texture, pure white on fresh surface, trace limonite on fractures
	4 17 1	9) 1	2 3	a massive texture, pure white on fresh surface, trace limonite on fractures
	5 17 1	12	! 1	.5 3	B massive texture, pure white on fresh surface, trace limonite on fractures
	6 17 1	15	i 1	.8 3	a massive texture, pure white on fresh surface, trace limonite on fractures
	7 17 1	18	8 3	21 3	a massive texture, pure white on fresh surface, trace limonite on fractures
	8 17 1	21	. :	24 3	a massive texture, pure white on fresh surface, trace limonite on fractures
	9 17 1	24	1 1	27 3	a massive texture, pure white on fresh surface, trace limonite on fractures
	10 17 1	27	<u>ب</u>	30 3	a massive texture, pure white on fresh surface, trace limonite on fractures
	11 17 1	30) :	3 3	a massive texture, pure white on fresh surface, trace limonite on fractures
	12 17 1	33	8 5	16 3	B massive texture, pure white on fresfr surface, trace limonite on fractures
	13 17 1	36	; :	19 3	8 mottled texture, sugary & recrystallized quartz porphyryhlast
	14 17 1	39) 4	12 3	3 mottled texture, sugary & recrystallized quartz porphyryblast
	15	Std-1			
	16 17 1	42	2 4	15 3	8 mottled texture, sugery & recrystallized quartz pcrphyryblast
	17 17 1	45	; 4	18 3	8 mottled texture, sugary & recrystallized quartz porphyryhlast
	18 17 1	48	; į	51 3	8 mottled texture, sugary & recrystallized quartz porphyryblast
	19 17 1	51	. !	54 3	massive texture, pure white on fresh surface, trace limonite on fractures
	20 17 1	54	<u>ا</u> ا	57 3	massive texture, pure white an fresh surface, trace limonite on fractures
	21 17 1	57	' (50 3	3 massive texture, pure white on fresh surface, trace limonite on fractures
	22 17 1	60) (53 3	3 massive texture, pure white on fresh surface, trace limonite on fractures
	23 17 1	63	6 (56 3	B massive texture, pure white on fresh surface, trace limonite on fractures
	24 17 1	66	6 9 .0)4 3.04	I massive texture, pure white an fresh surface, trace limonite on fractures
					massive texture, pure white on fresh surface, trace limonite on fractures

-

ID# ddh no	from (m)	to (m)	int. (m)	lithology	SiO2 %	AI2O3 %	CaO %	Fe2O3 %	RQD %
25 17 2	0.2	3	2.8	Nonda Fm orthoquartzite	99	0.31	0.01	0.04	81
26 17 2	3	6	3	Nonda Fm orthoquartzite	99.4	0.34	0.01	0.05	69
27 17 2	6	9	3	Nonda Fm orthoquartzite	98. 9	0.23	0.01	0.05	60
28 17 2	9	12	3	Nonda Fm orthoquartzite	99.1	0.14	0.01	0.06	58
29 17 2	12	15	3	Nonda Fm orthoquartzite	99.4	0.16	0.01	0.05	70
30	Blk-basA			Basalt	46.2	14.15	13.05	0.31	
31 17 2	15	18	3	Nonda Fm orthoquartzite	99. 9	0.2	0.04	0.17	71
32 17 2	18	21	3	Nonda Fm orthoquartzite	100	0.14	0.02	0.04	92
33 17 2	21	24	3	Nonda Fm orthoquartzite	99.2	0.19	0.01	0.03	94
34 17 2	24	27	3	Nonda Fm orthoquartzite	99.7	0.13	0.01	0.03	87
35 17 2	27	30	3	Nonda Fm orthoquartzite	98.4	0.19	0.02	0.04	68
36 17 2	30	33	3	Nonda Fm orthoquartzite	99.9	0.19	0.01	0.05	36
37 17 2	33	36	3	Nonda Fm orthoquartzite	99.9	0.16	0.01	0.06	14
38 17 2	36	39	3	Nonda Fm orthoquartzite	99.6	0.13	<0.01	0.21	27
39 17 2	39	42	3	Nonda Fm orthoquartzite	99.3	0.13	0.02	0.05	38
40 17 2	42	45	3	Nonda Fm orthoquartzite	99.5	0.13	0.02	0.04	47
41 17 2	45	48	3	Nonda Fm orthoquartzite	95.2	0.2 9	1.64	0.1	22
42 17 2	48	51.51	3.51	Nonda Fm orthoquartzite	99.7	0.2	0.01	0.03	12

DDH17LW-2 Drill Log Geological Description

-

-

ID #	ddh no	from (m)	to (m)	int. (m)	alteration	lithology, minerals
25	17 2	0.2	3	2.8	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
26	17 2	3	6	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
27	17 2	6	9	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
28	17 2	9	12	3	quartz veining (as metamorphic sweats), trace limonite, muscavite	massive equigranular quartzite
29	17 2	12	15	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
30		Blk-basA			Blank basalt sample	
31	17 2	15	18	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
32	17 2	18	21	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	inassive equigranular quartzite
33	17 2	21	24	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite .
34	17 2	24	27	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
35	17 2	27	30	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
36	17 2	30	33	3	quartz veining (as metamorphic sweats), 0.1% liraonite, muscovite	massive equigranular quartzite
37	17 2	` 33	36	3	quartz veining (as metamorphic sweats), 0.1% limonite, muscovite	massive equigranular quartzite
38	17 2	36	39	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
39	17 2	39	42	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
40	17 2	42	45	3	quartz veining (as metamorphic sweats), trace limonite, muscavite	massive equigranular quartzite
41	17 2	45	48	3	quartz-calcite veining (meta-sweats), trace limonite, muscovite	massive equigranular quartzite
42	17 2	48	51.51	3.51	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite

t

. 1

ID #	ddh no	from (m)	to (m)	int. (m)	comments	fault & or fracture (% recov)
25	17 2	0.2	3	2.8		broken ground 3.65-3.89 m (92% recov)
26	5 17 2	3	6	3		
27	17 2	6	9	3		broken ground 7.5-8 m (90% recov)
28	17 2	9	12	3		broken ground 11-11.29 m (90% recov)
29	17 2	12	15	3	weak vuggy texture of quartz veining	
30)	Blk-basA				
31	17 2	15	18	3	trace carbonaceous (black) fracture fill coatings & streaks	broken ground 16.85-17.4 m (92% recov)
32	17 2	18	21	3		
33	17 2	21	24	3		
34	17 2	24	27	3		
35	17 2	27	30	3		broken ground 28.3-30.1 m (86% recov)
36	17 2	30	33	3		broken ground 31.3-31.85m (92% recov)
37	17 2	33	36	3		
38	17 2	36	39	3	trace carbonaceous (black) fracture fill coatings & streaks	fault 38.77-38.9 m (70% recov, 0.2% clay, 0.1% limonite)
39	17 2	39	42	3	void at 40-40.31 (no core)	broken ground 40.31-41.5 m (94% recov, 0.1% limonite)
40	17 2	42	45	3		fault (trace clay) 42-43.2 m (60% recov, 0.1% limonite)
41	17 2	45	48	3		broken ground 45.5-50.5 m (94% recov)
42	17 2	48	51.51	3.51		broken ground 51-51.51 m (90% recov)

(

ID # ddh no	from (m)	to (m)	int. (m)	metamorphic fabric (fracture cleavage, & dominant qtz sweat)
25 17 2	0.2	3	2.8	0.2-36 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
26 17 2	3	6	3	0.2-36 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
27 17 2	6	9	3	0.2-36 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
28 17 2	9	12	3	0.2-36 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
29 17 2	12	15	3	0.2-36 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
30	Blk-basA			0.2-36 m (0.1-0.5%, 0.1-0.4 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
31 17 2	15	18	3	0.2-36 m (0.1-0.5%, 0.1-0.4 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
32 17 2	18	21	3	0.2-36 m (0.1-0.3%, 0.1-0.4 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
33 17 2	21	24	3	0.2-36 m (0.1-0.5%, 0.1-0.4 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
34 17 2	24	27	3	0.2-36 m (0.1-0.5%, 0.1-0.4 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
35 17 2	27	30	3	0.2-36 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
36 17 2	30	33	3	0.2-36 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
37 17 2	33	36	3	0.2-36 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @30-65 degrees to c.a.
38 17 2	36	39	3	36-38.15 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
39 17 2	39	42	3	38.15-38.45 m 28 cm wide quartz breccia, increased limonite, carbonaceous matter fract fill
40 17 2	42	45	3	38.45-51.51 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-55 degrees to c.a.
41 17 2	45	48	3	38.45-51.51 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.
42 17 2	48	51.51	3.51	38.45-51.51 m (0.1-0.3%, 0.1-0.2 cm metamorphic qtz sweat veinlets) @10-65 degrees to c.a.

(

ID # ddh no from (m) to (m) int. (m) Remarks

(

25 17 2	0.2	3	2.8 massive texture, pure white on fresh surface, trace limonite on fractures
26 17 2	3	6	3 massive texture, pure white on fresh surface, trace limonite on fractures
27 17 2	6	9	3 massive texture, pure white on fresh surface, trace limonite on fractures
28 17 2	9	12	3 massive texture, pure white on fresh surface, trace limonite on fractures
29 17 2	12	15	3 massive texture, pure white on fresh surface, trace limonite on fractures
30	Blk-basA		massive texture, pure white on fresh surface, trace limonite on fractures
31 17 2	15	18	3 massive texture, pure white on fresh surface, trace limonite on fractures
32 17 2	18	21	3 massive texture, pure white on fresh surface, trace limonite on fractures
33 17 2	21	24	3 massive texture, pure white on fresh surface, trace limonite on fractures
34 17 2	24	27	3 massive texture, pure white on fresh surface, trace limonite on fractures
35 17 2	27	30	3 massive texture, pure white on fresh surface, trace limonite on fractures
36 17 2	30	33	3 massive texture, pure white on fresh surface, trace limonite on fractures
37 17 2	33	36	3 massive texture, pure white on fresh surface, trace limonite on fractures
38 17 2	36	39	3 massive texture, pure white on fresh surface, trace limonite on fractures
39 17 2	39	42	3 quartz vein with recrystallized quartz clasts, trace limonite and carbonaceous matter
40 17 2	42	45	3 massive texture, pure white on fresh surface, trace limonite on fractures
41 17 2	45	48	3 massive texture, pure white on fresh surface, trace limonite on fractures
42 17 2	48	51.51	3.51 massive texture, pure white on fresh surface, trace limonite on fractures

(

-ţ

DDH17LW-3 Drill Log Geological Description

ID #	ddh no	from (m)	to (m)	int. (m)	lithology	SiO2 %	Al2O3 %	CaO %	Fe2O3 %	RQD %
43	17 3	0.3	3	2.7	Nonda Fm orthoquartzite	99	0.28	0.02	0.05	70
44	17 3	3	6	3	Nonda Fm orthoquartzite	99.4	0.24	0.01	0.04	33
45		Std ME-6B			not received, no analysis					
46	17 3	6	9	3	Nonda Fm orthoquartzite	99.8	0. 09	<0.01	0.03	78
47	17 3	9	12	3	Nonda Fm orthoquartzite	99.1	0.11	0.01	0.05	92
48	17 3	12	15	3	Nonda Fm orthoquartzite	98.2	0.17	0.01	0.07	69
49	17 3	15	18	3	Nonda Fm orthoquartzite	98.9	0.15	0.01	0.05	71
50	17 3	18	21	3	Nonda Fm orthoquartzite	99.4	0.14	0.01	0.05	21
51	17 3	21	24	3	Nonda Fm orthoquartzite	97.7	0.13	0.01	0.06	62
52	17 3	24	27	3	Nonda Fm orthoquartzite	99.6	0.15	0.01	0.06	78
53	17 3	27	30	3	Nonda Fm orthoquartzite	98.3	0.14	0.01	0.07	6 9
54	17 3	30	33	3	Nonda Fm orthoquartzite	99.2	0.12	<0.01	0.04	72
55	17 3	33	36	3	Nonda Fm orthoquartzite	98.2	0.18	<0.01	0.04	54
56	17 3	36	39	3	Nonda Fm orthoquartzite	99.8	0.4	0.03	0.06	55
57	17 3	39	42	3	Nonda Fm orthoquartzite	98.4	0.22	<0.01	0.04	74
58	17 3	42	45	3	Nonda Fm orthoquartzite	99.5	0.18	0.01	0.04	90
59	17 3	45	48	3	Nonda Fm orthoquartzite	97.6	0.19	0.01	0.05	89
60		Blk-basB				45.1	13.65	9.31	13.5	
61	17 3	48	51	3	Nonda Fm orthoquartzite	98.3	0.33	0.06	0.12	69
62	17 3	51	54	3	Nonda Fm orthoquartzite	99.8	0.19	0.02	0.06	68
63	17 3	54	57	3	Nonda Fm orthoquartzite	99 .7	0.16	0.02	0.08	52
64	17 3	57	60	3	Nonda Fm orthoquartzite	98.2	0.25	0.02	0.05	26
65	17 3	60	63	3	Nonda Fm orthoquartzite	98.8	0.46	0.02	0.06	72
66	17 3	63	65.53	2.53	Nonda Fm orthoquartzite	99	0.27	0.02	0.04	50

.

.

ID# ddh no	from (m)	to (m)	int. (m)	alteration	lithology, minerals
43 17 3	0.3	3	2.7	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
44 17 3	3	6	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
45	Std ME-6B			CDN Res Lab Ltd, ME-6B pulp	
46 17 3	6	9	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quortzite
47 17 3	9	12	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
48 17 3	12	15	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
49 17 3	15	18	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
50 17 3	18	21	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
51 17 3	21	24	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
52 17 3	24	27	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
53 17 3	27	30	3	quartz veining (as metamorphic sweats), 0.1% limonite, muscovite	massive equigranular quartzite
54 17 3	30	33	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
55 17 3	33	36	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
56 17 3	36	39	3	quartz veining (as metamorphic sweats), 0.1% limonite, muscovite	massive equigranular quartzite
57 17 3	39	42	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
58 17 3	42	45	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
59 17 3	45	48	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
60	Blk-basB			Blank basalt sample	
61 17 3	48	51	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
62 17 3	51	54	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
63 17 3	54	57	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
64 17 3	57	60	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
65 17 3	60	63	3	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quartzite
66 17 3	63	65.53	2.53	quartz veining (as metamorphic sweats), trace limonite, muscovite	massive equigranular quortzite

.

I

¥,

ID #	ddh no	from (m)	to (m)	int. (m)	comments	fault & or fracture (% recov)
43	17 3	0.3	3	2.7	mottled texture, sugary & recrystallized quartz porphyryblast	broken ground 2.8-3 m (0.1% lim, 90% recov)
44	17 3	3	6	3	mottled texture, sugary & recrystallized quartz porphyryblast	
45		Std ME-6B				
46	17 3	6	9	3	mottled texture, sugary & recrystallized quartz porphyryblast	broken ground 6.2-6.4 m (0.1% lim, 85% recov)
47	17 3	9	12	3	mottled texture, sugary & recrystallized quartz porphyryblast	
48	17 3	12	15	3		fauit (trace clay) 13.8-14.25 m (0.1% clay, tr lim, 88% recov)
49	17 3	15	18	3		broken ground 15-15.25 m (0.1% lim, 90% recov)
50	17 3	18	21	3		fracture cleavage @27 degrees to core axis 18-19.2 m
51	17 3	21	24	3	trace-minor vuggy recrytallized quartz	broken ground 22.4-23.3 m (0.1% lim, tr clay, 90% recov)
52	17 3	24	27	3	trace-minor vuggy recrytallized quartz	25.4-25.6 Void (core loss in large vug)
53	17 3	27	30	3	trace carbonaceous (black) fracture fill coatings & streaks	broken ground 27-28 m (0.2% lim, tr clay & carbon, 90% recov)
54	17 3	30	33	3	mottled texture, sugary & recrystallized quartz porphyryblast 31.46-32 m	
55	17 3	33	36	3	trace-minor vuggy recrytallized quartz	
56	17 3	36	39	3		broken ground 38.5-38.6 m (0.1% lim, 92% recov)
57	17 3	39	42	3		broken ground 40.4-40.6 m (0.1% lim, 92% recov)
58	17 3	42	45	3		broken ground 41.5-42 m (0.1% lim, 86% recov)
59	17 3	45	48	3		•
60		Blk-basB				
61	17 3	48	51	3		broken ground 49.7-51 m (tr lim, 95% recov)
62	17 3	51	54	3		broken ground 52.9-53.7 m (0.1% lim, 92% recov)
63	17 3	54	57	3		
64	17 3	57	60	3		broken ground 57.3-59.65 m (tr lim, 90% recov)
65	17 3	60	63	3		broken ground 62.6-62.9 m (tr lim, 92% recov)
66	17 3	63	65.53	2.53		broken ground 64.3-65.53 m (tr lim, 95% recov)

t

ID # ddh no	from (m)	to (m)	int. (m)	metamorphic fabric (fracture cleavage, & dominant qtz sweat)
43 17 3	0.3	3	2.7	0.3-10.6 m (0.1-0.5%, 0.1-0.5 cm metamorphic qtz sweat veinlets) @10-45 degrees to c.a.
44 17 3	3	6	3	0.3-10.6 m (0.1-0.5%, 0.1-0.5 cm metamorphic qtz sweat veinlets) @10-45 degrees to c.a.
45	Std ME-6B			
46 17 3	6	9	3	0.3-10.6 m (0.1-0.5%, 0.1-0.5 cm metamerphic qtz sweat veinlets) @10-45 degrees to c.a.
47 17 3	9	12	- 3	10.6-31.46 m (0.1-3%, 0.1-1 cm metamorphic qtz sweat veinlets) @15-70 degrees to c.a.
48 17 3	12	15	3	10.6-31.46 m (0.1-3%, 0.1-1 cm metamorphic qtz sweat veinlets) @15-70 degrees to c.a.
49 17 3	15	18	3	10.6-31.46 m (0.1-3%, 0.1-1 cm metamorphic qtz sweat veinlets) @15-70 degrees to c.a.
50 17 3	18	21	3	10.6-31.46 m (0-1-3%, 0.1-1 cm metamorphic qtz sweat velalets) @15-70 degrees to c.a.
51 17 3	21	24	3	10.6-31.46 m (0.1-3%, 0.1-1 cm metamorphic qtz sweat veinlets) @15-70 degrees to c.a.
52 17 3	24	27	3	10.6-31.46 m (0.1-3%, 0.1-1 cm metamorphic qtz sweat veinlets) @15-70 degrees to c.a.
53 17 3	27	30	3	10.6-31.46 m (0.1-3%, θ.1-1 cm metamorphic qtz sweat velnlets) @15-70 degrees to c.a.
54 17 3	30	33	3	31.46-32 m (15%, 0.1-0.6 cm sugary texture porphyrybasts, weak limonite stain)
55 17 3	33	36	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
56 17 3	36	39	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
57 17 3	39	42	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
58 17 3	42	45	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
59 17 3	45	48	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
60	Blk-basB			
61 17 3	48	51	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
62 17 3	51	54	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
63 17 3	54	57	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
64 17 3	57	60	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
65 17 3	60	63	3	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.
66 17 3	63	65.53	2.53	32-65.53 m (0.1-1%, 0.1-1 cm metamorphic qtz sweat veinlets) @10-60 degrees to c.a.

I.

.

.

ł

ID # ddh no	from (m)	to (m)	int. (m)	Remarks
43 17 3	0.3	3	2.7	mottled texture, sugary & recrystallized quartz porphyryblast
44 17 3	3	6	3	mottled texture, sugary & recrystallized quartz porphyryblast
45	Std ME-6B			
46 17 3	6	9	3	mottled texture, sugary & recrystallized quartz porphyryblast
47 17 3	9	12	3	mottled texture, sugary & recrystallized quartz porphyryblast
48 17 3	12	15	3	massive texture, pure white on fresh surface, trace limonite on fractures
49 17 3	15	18	3	massive texture, pure white on fresh surface, trace limonite on fractures
50 17 3	18	21	3	massive texture, pure white on fresh surfare, trsce limonite an fractures
51 17 3	21	24	3	massive texture, pure white on fresh surface, trace limonite on fractures
52 17 3	24	27	3	massive texture, pure white on fresh surface, trace limonite on fractures
53 17 3	27	30	3	massive texture, pure white on fresh surface, trace limonite on fractures
54 17 3	30	33	3	mottled texture, sugary & recrystallized quartz porphyryblast
55 17 3	33	36	3	massive texture, pure white on fresh surface, trace limonite on fractures
56 17 3	36	39	3	massive texture, pure white on fresh surface, trace limonite on fractures
57 17 3	.). 39	42	3	massive texture, pure white on fresh surface, trace limonite on fractures
58 17 3	42	45	3	massive texture, pure white on fresh surface, trace lindnite on fractures
59 17 3	45	48	3	massive texture, pure white on fresh surface, trace limonite on fractures
60	Blk-basB			
61 17 3	48	51	3	massive texture, pure white on fresh surface, trace limonite on fractures
62 17 3	51	54	3	massive texture, pure white on fresh surface, trace linonite on fractures
63 17 3	54	57	3	massive texture, pure white on fresh surface, trace limonite on fractures
64 17 3	57	60	3	massive texture, pure white on fresh surface, trace limonite on fractures
65 17 3	60	63	3	massive texture, pure white on fresh surface, trace limonite on fractures
66 17 3	63	65.53	2.53	massive texture, pure white on fresh surface, trace linonite on fractures

.

	DDH #	Zone Name	Easting NAD 83	Northing	NAD 83	Elevatio	n m	Elevation ft		
	17LW-1	Snow	595625		5985369		1,558	5110.2		
	17LW-2	Snow	595675		5985335		1551	5087.3		
	17LW-3	Snow	595725		5985283		1552	5090.6		
	DDH #	Location	Description							
	17LW-1	Snow ridge	near helipad							
	17LW-2	Snow ridge	ESE of helipad							
	17LW-3	Snow ridge	ESE of helipad							
	DDH #	Zone Name	Azimuth	Dip		depth ft		depth meters		
	17LW-1	Snow			90	1	226.5	69.04		
	17LW-2	Snow	205		75		169	51.51		
	17LW-3	Snow	205		70		215	65.53		
	·							186.08		
									,	
						····-·.			2	
,										

DDH	From (m)	To (m)	Interval (m)	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	LOI	Total	SiO2/Total
 1	0.6	69.04	68.44	98.92	0.12	0.05	0.01	0.01	0.07	0.07	0.12	99.41	99.5
2	. 0.2	45	44.8	99.41	0.18	0.06	0.01	0.02	0.05	0.09	0.07	99.94	99.45
3	0.3	65.53	65.23	98.8	0.21	0.06	0.01	0.02	0.01	0.07	0.06	99.3	99.51
÷													
					÷								

. .

DH17LW-1 Drill Core Geochemical Record														
SAMPLE														
DESCRIPTION	Unity	%	%	%	%	%	%	%	%					
1LW-1 0.6-3 m		98.7	0.14	0.05	0.06	0.02	0.05	0.09	<0.01					
2LW-1 3-6 m		97.7	0.11	0.03	0.03	0.01	0.04	0.1	<0.01					
3LW-1 6-9 m		99.5	0.13	0.03	0.01	0.01	0.01	0.02	0.01					
4LW-1 9-12 m	2.64	97.9	0.19	0.03	0.02	0.02	0.05	0.1	0.01					
5LW-1 12-15 m		99.7	0.14	0.04	0.01	0.01	0.01	0.02	0.01					
6LW-1 15-18 m		97.9	0.1	0.04	0.01	0.01	0.06	0.06	0.01					
7LW-1 18-21 m		99.3	0.12	0.05	0.01	0.01	0.07	0.06	0.01					
8LW-1 21-24 m	2.63	98.6	0.09	0.04	0.02	0.01	0.06	0.08	<0.01					
9LW-1 24-27 m		97.9	0.07	0.04	0.01	0.01	0.08	0.04	<0.01					
10LW-1 27-30 m		99.1	0.07	0.04	0.01	0.01	0.1	0.06	0.01					
11LW-1 30-33 m		99.4	0.17	0.05	0.01	0.02	0.11	0.09	0.01					
12LW-1 33-36 m	2.64	99.3	0.17	0.06	0.02	0.02	.0.1	0.0 9	0.01					
13LW-1 36-39 m		98.9	0.19	0.05	0.02	0.02	0.1	0.11	0.01					
14LW-1 39-42 m		99.3	0.13	0.07	0.01	0.01	0.11	0.08	0.01					
16LW-1 42-45 m	2.64	99.7	0.1	0.05	0.01	0.01	.0.1	0.08	0.01					
17LW-1 45-48 m		99.9	0.08	0.04	0.01	0.01	0.01	0.06	<0.01					
18LW-1 48-51 m		99.4	0.11	0.07	0.01	0.01	0.11	0.15	0.01					
19LW-1 51-54 m		98.7	0.12	0.07	<0.01	0.01	0.01	0.05	0.01					
20LW-1 54-57 m	2.65	99.2	0.13	0.05	0.01	0.01	0.11	0.08	0.01					
21LW-1 57-60 m		99.4	0.12	0.03	0.01	<0.01	0.01	0.02	0.01					
22LW-1 60-63 m		98.9	0.1	0.07	0.01	0.01	0.11	0.08	0.01					
23LW-1 63-66 m		97.9	0.12	0.04	0.02	0.01	0.1	0.09	0.01					
24LW-1 66-69.04 m	2.62	98.8	0.11	0.04	0.01	0.01	0.09	0.06	0.01					
Average		98.92	0.12	0.05	0.01	0.01	0.07	0.07	0.01					

.

Appendix D Longworth 2017 Diamond Drill Hole Sample (Geochemical Records)

.

	SAMPLE	S.G.	TiO2	MnO	P2O5	SrO	BaO	LOI	Total	SiO2/Total
	DESCRIPTION	Unity	%	%	%	%	%	%	%	
	1LW-1 0.6-3 m		0.02	<0.01	<0.01	<0.01	<0.01	0.21	99.34	99.36
	2LW-1 3-6 m		0.02	<0.01	<0.01	<0.01	<0.01	0.24	98.28	99.41
	3LW-1 6-9 m		0.02	<0.01	<0.01	<0.01	<0.01	0.14	99.89	99.61
	4LW-1 9-12 m	2.64	0.04	<0.01	<0.01	<0.01	<0.01	9.16	98.52	99.37
	5LW-1 12-15 m		0.03	<0.01	0.01	<0.01	<0.01	0.14	100.12	99.59
	6LW-1 15-18 m		0.02	<0.01	<0.01	<0.01	<0.01	0.12	99.33	99.56
	7LW-1 18-21 m		0.03	<0.01	<0.01	<0.01	<0.01	0.11	99.77	99.53
	8LW-1 21-24 m	2.63	0.02	<0.01	<0.01	<0.01	<0.01	0.16	99.08	99.52
	9LW-1 24-27 m		0.02	<0.01	<0.01	<0.01	<0.01	0.11	98.28	99.61
	10LW-1 27-30 m		0.01	<0.01	<0.01	<0.01	<0.01	0.23	99.64	99.46
	11LW-1 30-33 m		0.03	<0.01	<0.01	<0.01	<0.01	0.17	109.06	99.34
	12LW-1 33-36 m	2.64	0.03	<0.01	<0.01	<0.01	<0.01	0.21	100.01	99.29
	13LW-1 36-39 m		0.04	<0.01	<0.01	<0.01	<0.01	0.11	99.55	99.35
	14LW-1 39-42 m		0.03	<0.01	<0.01	<0.01	<0.01	0.06	99.81	99.4 9
	16LW-1 42-45 m	2.64	0.02	<0.01	<0.01	<0.01	<0.01	0.06	109.14	99.56
	17LW-1 45-48 m		0.02	<0.01	<0.01	<0.01	<0.01	0.05	100.18	99.72
	18LW-1 48-51 m		0.03	<0.01	<0.01	<0.01	<0.01	0.1	100	99.4
	19LW-1 51-54 m		0.03	<0.01	<0.01	<0.01	<0.01	0.06	99.06	99.64
	20LW-1 54-57 m	2.65	0.02	<0.01	<0.01	<0.01	<0.01	-0.03	99.59	99.61
- * -	21LW-1 57-60 m		0.03	<0.01	<0.01	<0.01	<0.01	0.08	99.71	99.46
	22LW-1 60-63 m		0.03	<0.01	<0.01	<0.01	<0.01	0.12	99.44	99.46
	23LW-1 63-66 m		0.02	<0.01	<0.01	<0.01	<0.01	0.05	99.36	99.53
	24LW-1 66-69.04 m	2.62	0.03	<0.01	<0.01	<0.01	<0.01	0.14	99.3	99.5
	Average		0.03	<0.01	<0.01	<0.01	<0.01	0.12	99.41	99.5

SAMPLE	S.G.	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr203
DESCRIPTION	Unity	%	%	%	%	%	%	%	%
25LW-2 0.2-3 m		99	0.31	0.04	0.01	0.02	0.1	0.13	0.0
26LW-2 3-6 m		99.4	0.34	0.05	0.01	0.02	0.1	0.14	<0.02
27LW-2 6-9 m		98.9	0.23	0.05	0.01	0.02	0.1	0.17	0.0
28LW-2 9-12 m	2.63	99.1	0.14	0.06	0.01	0.01	0.09	0.08	0.0
29LW-2 12-15 m		99.4	0.16	0.05	0.01	0.01	0.07	0.09	0.0
31LW-2 15-18 m		99.9	0.2	0.17	0.04	0.05	0.02	0.08	0.0
32LW-2 18-21 m	2.64	100	0.14	0.04	0.02	0.02	0.01	0.05	0.0
33LW-2 21-24 m		99.2	0.19	0.03	0.01	0.02	0.07	0.11	0.0
34LW-2 24-27 m		9 9.7	0.13	0.03	0.01	0.01	0.07	0.08	0.0
35LW-2 27-30 m		98.4	0.19	0.04	0.02	0.02	<0.01	0.08	<0.01
36L W-2 30-35 m	2.64	99.0	0.19	0.05	0.01	0.02	0.07	0.11	<0.01
37LW-2 33-36 m		99.9	0.16	0.06	0.01	0.01	0.01	0.05	<0.01
38LW-2 36-39 m		99.6	0.13	0.21	<0.01	<0.01	0.01	0.02	<0.01
39LW-2 39-4 2 m		99.3	0.13	0.05	0.02	0.01	0.01	0.07	0.0
40LW-2 42- 4 5 m	2.63	9 9.5	0.13	0.04	0.02	0.01	0.01	0.06	<0.01
41LW-2 45-48 m		95.2	0.29	0.1	1.64	0.65	0.02	0.07	<0.01
42LW-2 48-51.51 m		9 9.7	0.2	0.03	0.01	0.01	0.02	0.06	0.0
Average		99.18	0.19	0.06	0.11	0.05	0.05	0.0 9	0.0
DH17LW-2, 0.3-45m									
SAMPLE	S.G .	SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K20	Cr2O
DESCRIPTION	Unity	%	%	%	%	%	%	%	%
25LW-2 0.2-3 m		99	0.31	0.04	0.01	0.02	0.1	0.13	0.0
26LW-2 3-6 m		99.4	0.34	0.05	0.01	0.02	0.1		<0.01
27LW-2 6-9 m		98.9	0.23	0.05	0.01	0.02	0.1	0.17	0.0
28LW-2 9-12 m	2.63	99.1	0.14	0.06	0.01	0.01	0.09	0.08	0.0
29LW-2 12-15 m		99.4	0.16	0.05	0.01	0.01	0.07	0.09	0.0
31LW-2 15-18 m		9 9.9	0.2	0.17	0.04	0.05	0.02	0.08	0.0
32LW-2 18-21 m	2.64	100	0.14	0.04	0.02	0.02	0.01	0.05	0.0
33LW-2 21-24 m	r	9 9.2	0.19	0.03	0.01	0.02	0.07	0.11	0.0
34LW-2 24-27 m		9 9.7	0.13	0.03	0.01	0.01	0.07	0.08	0.0
35 LW-2 27-30 m		98.4	0.19	0.04	0.02	0.02	<0.01	0.08	<0.01
36LW-2 30-33 m	2.64	99.9	0.19	0.05	0.01	0.02	0.07	0.11	<0.01
37LW-2 30 -36 m		99.9	0.16	0.06	0.01	0.01	0.01	0.05	<0.01
38LW-2 36-39 m		99.6	0.13	0.21	<0.01	<0.01	0.01	0.02	<0.01
39LW-2 39-42 m		99.3	0.13	0.05	0.02	0.01	0.01	0.07	0.0
40LW-2 42-45 m	2.63	99 .5	0.13	0.04	0.02	0.01	0.01	0.06	<0.01

SAMPLE	S.G.	TiO2	MnO	P2O5	SrO	BaO	LOI	Total	SiO2/Total
DESCRIPTION	Unity	%	%	%	%	%	%	%	
25LW-2 0.2-3 m		0.03	<0.01	<0.01	<0.01	<0.01	0.09	99.74	99.26
26LW-2 3-6 m		0.03	<0.01	<0.01	<0.01	<0.01	0.19	100.28	99.12
27LW-2 6-9 m		0.03	<0.01	<0.01	<0.01	<0.01	0.11	09.63	9 9.27
28LW-2 9-12 m	2.63	0.02	<0.01	<0.01	<0.01	<0.01	0.01	99.53	99.57
29LW-2 12-15 m		0.03	<0.01	<0.01	<0.01	<0.01	0.06	99.89	99.51
31LW-2 15-18 m		0.03	<0.01	<0.01	<0.01	<0.01	0.1	100.6	99.3
32LW-2 18-21 m	2.64	0.02	<0.01	<0.01	<0.01	<0.01	0	109.31	99.09
33LW-2 21-24 m		0.02	<0.01	<0.01	<0.01	<0.01	0	99.66	99.54
34LW-2 24-27 m		0.02	<0.01	<0.01	<0.01	<0.01	0.03	100.09	99.61
35LW-2 27-30 m		0.03	<0.01	<0.01	<0.91	<0.01	0.06	98.8 4	99.55
36LW-2 30-35 m	2.64	0.02	<0.01	<0.01	<0.01	<0.01	0	109.37	99.53
37LW-2 33-36 m		0.02	<0.01	<0.01	<0.01	<0.01	0.19	10 0.41	99 .49
38LW-2 36-39 m		0.02	<0.01	<0.01	<0.01	<0.01	0.24	100.23	99.37
39LW-2 3 9 -42 m		0.02	<0.01	0.01	<0.01	<0.01	0.2	9 9.83	99.47
40LW-2 42-45 m	2.63	0.03	<0.01	0.02	<0.01	<0.01	0.18	100	99.5
41LW-2 45-48 m		0.04	<0.01	0.01	<0.01	<0.01	2.27	109.29	94.92
42LW-2 48-51.51 m		0.02	<0.01	<0.01	<0.01	<0.01	0.22	100.28	99.42
Average		0.03	<0.01	<0.01	<0.01	<0.01	0.23	100	99.18
DH17LW-2, 0.2-45m		T .00		D20F	.	n - 0		- /	C:02/7-1-1
SAMPLE	S.G.	TiO2	MnO	P2O5		BaO	101	Total	SiO2/Total
DESCRIPTION	Unity		%	% ~0.01	%	% ~0.01	%	%	00.20
25LW-2 0.2-3 m				<0.01			0.09		
26LW-2 3-6 m				<0.01			0.19		
27LW-2 6-9 m	2 62			<0.01			0.11		99.27 99.57
28LW-2 9-12 m	2.63			<0.01			0.01		
29LW-2 12-15 m				<0.01					99.51
31LW-2 15-18 m	2 64			< 0.01					
32LW-2 18-21 m	2.04			< 0.01					
33LW-2 21-24 m				<0.01					
34LW-2 24-27 m				<0.01 <0.01					
35LW-2 27-30 m	264								
36LW-2 39-33 m	2.04			< 0.01			0 10		
37LW-2 30-35 m 38LW-2 36-39 m				<0.01 <0.01					
				<0.01 D.01			0.24		
39LW-2 39-42 m	7 63			0.01					
40LW-2 42-45 m	2.05	0.03	~0.01	0.02	~U.UI	≺u.u 1	0.10	100	99.5
Average									

	DDH17LW-3 Drill Core Geochemical Record													
					S.G.	SiO2	Äl2O3	Fe2O3	CaO	MgO	Na2O	K20	Cr2O3	
ID #	ddh no	from (m)	to (m)	int. (m)	Unity	%	%	%	%	%	%	%	%	
43	17 3	0.3	3	2.7		99	0.28	0.05	0.02	0.03	0.01	0.07	0.01	
44	17 3	3	6	3		99.4	0.24	0.04	0.01	0.02	0.01	0.06	0.01	
45		Std ME-6B	not	received										
46	17 3	6	9	3	2.59	98.8	0.09	0.03	<0.01	0.01	0.01	0.02	0.01	
47	17 3	9	12	3		99.1	0.11	0.05	0.01	0.01	0.02	0.04	0.01	
48	17 3	12	15	3		98.2	0.17	0.07	0.01	0.02	0.01	0.04	0.01	
49	17 3	15	18	3		98.9	0.15	0.05	0.01	0.01	0.02	0.06	0.01	
50	17 3	18	21	3	2.64	99.4	0.14	0.05	0.01	0.01	0.02	0.06	0.01	
51	17 3	21	24	3		97.7	0.13	0.06	0.01	0.01	0.01	0.04	0.01	
52	17 3	24	27	-		99.6				0.01	0.01	0.09	0.01	
53	17 3	27	30	3		98.3			0.01	0.01	0.01	0.06	0.01	
54	17 3	30	33	3	2.64	9 9.2	0.12	0.04	<0.01	0.01	0.01	0.04	0.01	
55	17 3	33	36			9 8.2			<0.01	0.01		0.13	0.01	
56	17 3	36	39	3		99.8	0.4	0.06	0.03		<0.01	0.16	0.01	
57	17 3	39	42		2.64	99.4	0.22		<0.01	0.02		0.08	0.01	
58	17 3	42	45	_		99.5							0.01	
59	17 3	45	48	3		97.6	0.19	0.05			<0.01	0.06	0.01	
60		Blk-basB				45.1		-						
61	17 3	48	51			98.3							0.01	
	17 3	51	54	-				0.06			<0.01	0.07	0.01	
	17 3	54	57	_		99.7							0.01	
64	17 3	57	60	3		98.2								
	17 3	60	63			96.8								
66	17 3	63	65.53	2.53	2.64	99	0.27	0.04	0.02	0.02	0.01	0.11	0.01	
				average		98.81	0.21	0.06	0.01	0.02	0.01	0.07	0.01	

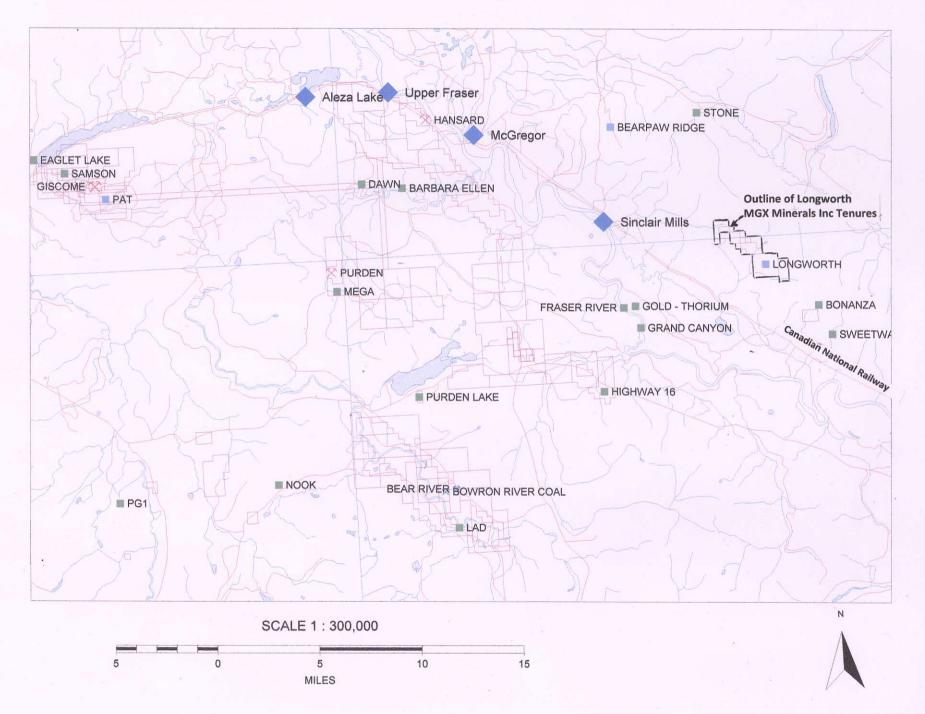
.

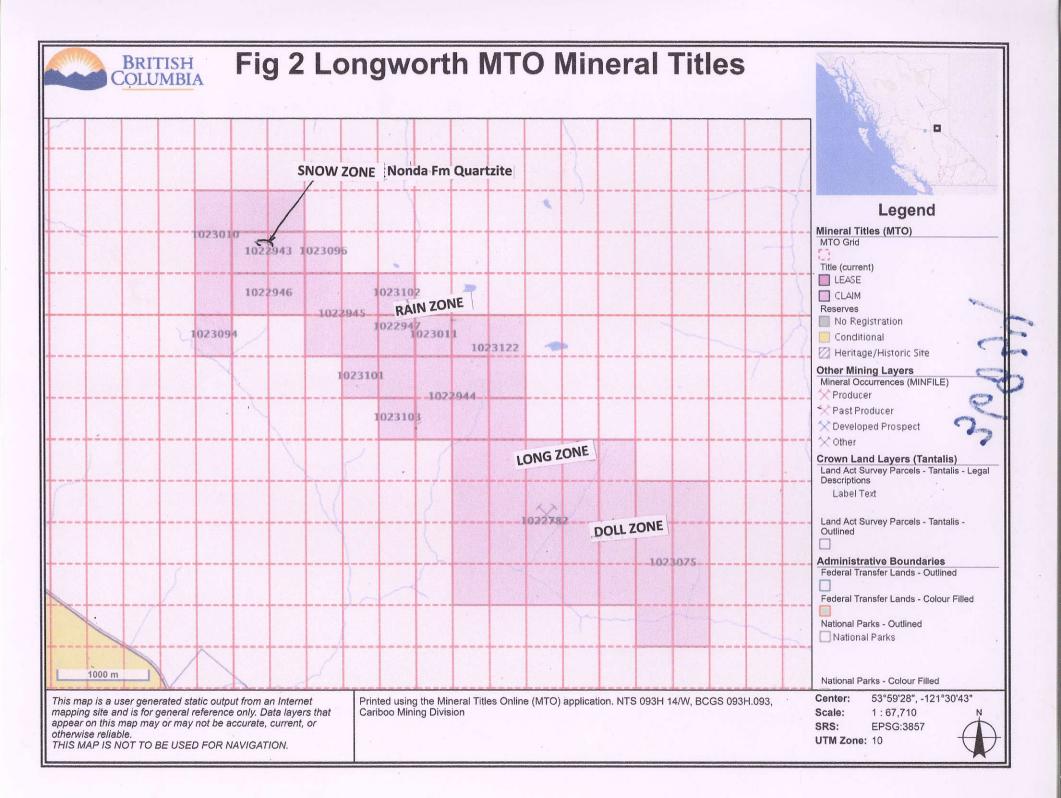
.....

					TiO2	MnO	P2O5	SrO	BaO	LOI	Total	SiO2/Total
~	ID# ddh no	from (m)	to (m)	int. (m)	%	%	%	%	%	%	%	
	43 17 3	0.3	3	2.7	0.04	<0.01	0.01	<0.01	<0.01	0.01	99.53	99
	44 17 3	3	6	3	0.03	<0.01	0.01	<0.01	<0.01	0.28	100.11	99.29
	45	Std ME-6B	not	received								
	46 17 3	6	9	3	0.02	<0.01	0.01	<0.01	<0.01	0	99	9 9.79
	47 17 3	9	12	3	0.02	<0.01	0.01	<0.01	<0.01	0.07	99.45	99.65
	48 17 3	12	15	3	0.05	<0.01	<0.01	<0.01	<0.01	0.14	98.72	99.47
	49 17 3	15	18	3	0.03	<0.01	0.01	<0.01	<0.01	0.04	99.29	99.61
	50 17 3	18	21	3	0.03	<0.01	<0.01	<0.01	<0.01	0.05	99.78	99.62
	51 17 3	21	24	3	0.03	<0.01	<0.01	<0.01	<0.01	0	98	99.69
	52 17 3	24	27	3	0.03	<0.01	<0.01	<0.91	<0.01	0. 02	99.0 5	99.65
	53 17 3	27	30	3	0.03	<0.01	0.01	<0.01	<0.01	0.09	98.72	99.57
	54 17 3	30	33	3	0.02	<0.01	<0.01	<0.01	<0.01	0	99.4 5	9 9.75
	55 17 3	33	36	3	0.02	<0.01	0.02	<0.01	<0.01	0.09	98.71	99.48
	56 17 3	36	39	3	0.04	<0.01	<0.01	<0.01	<0.01	0.01	109.94	99.26
	57 17 3	39	42	3	0.02	<0.01	0.01	<0.01	<0.01	0.07	99.88	99.62
	58 17 3	42	45	3	0.02	<0.01	<0.01	<0.01	<0.01	-0.01	99.82	99.7
	59 17 3	45	48	3	0.02	<0.01	0.01	<0.01	<0.01	0.1	98.06	99.53
	60	Blk-basB			2.09	0.18	0.35	0.06	0.04	0	99 .27	
	61 17 3	48	51	3	0.04	<0.01	0.01	<0.01	<0.01	0.08	99.14	99.15
	62 17 3	51	54	3	0.03	<0.01	<0.01	<0.01	<0.01	-0.09	100.11	99.69
	63 17 3	54	57	3	0.02	<0.01	<0.01	<0.01	<0.01	0.02	100.1	99.6
	64 17 3	57	60	3	0.02	<0.01	<0.01	<0.01	<0.01	0.1	99.78	99.41
	65 17 3	60	63	3	0.04	<0.01	<0.01	<0.01	<0.01	0.18	97.77	99.61
	66 17 3	63	65.53	2.53	0.03	<0.01	<0.01	<0.01	<0.01	0.14	99.65	99.35
				0101050	0 02	0.01	0.01	0.01	0.01	0.06	00.2	00 51

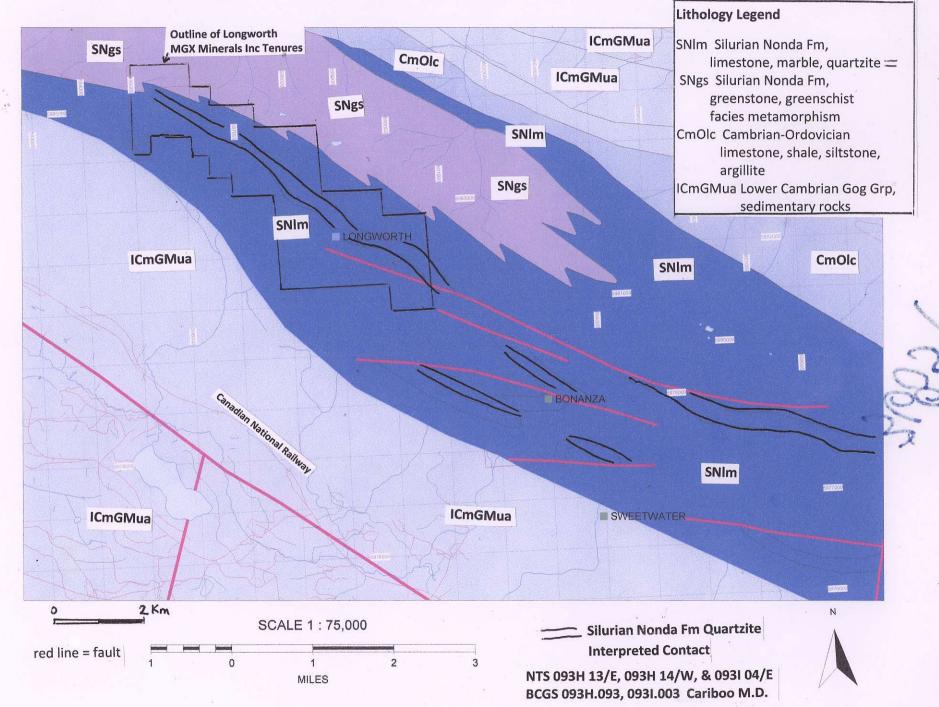
-

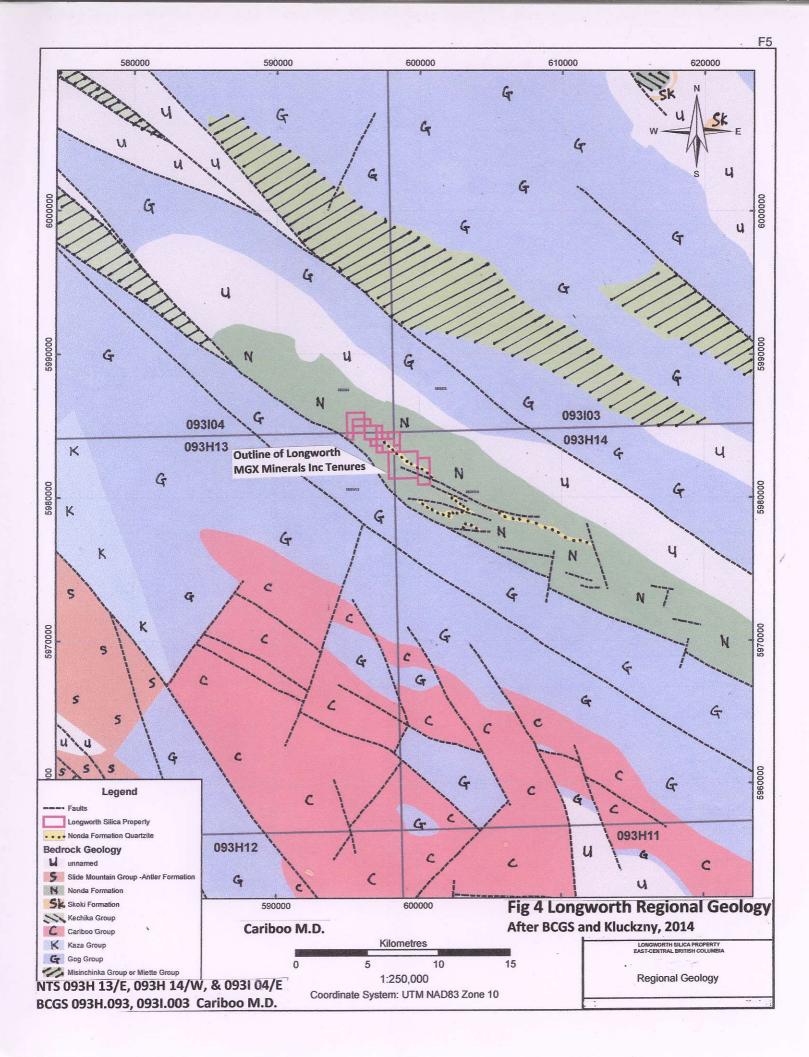
 $\overline{}$

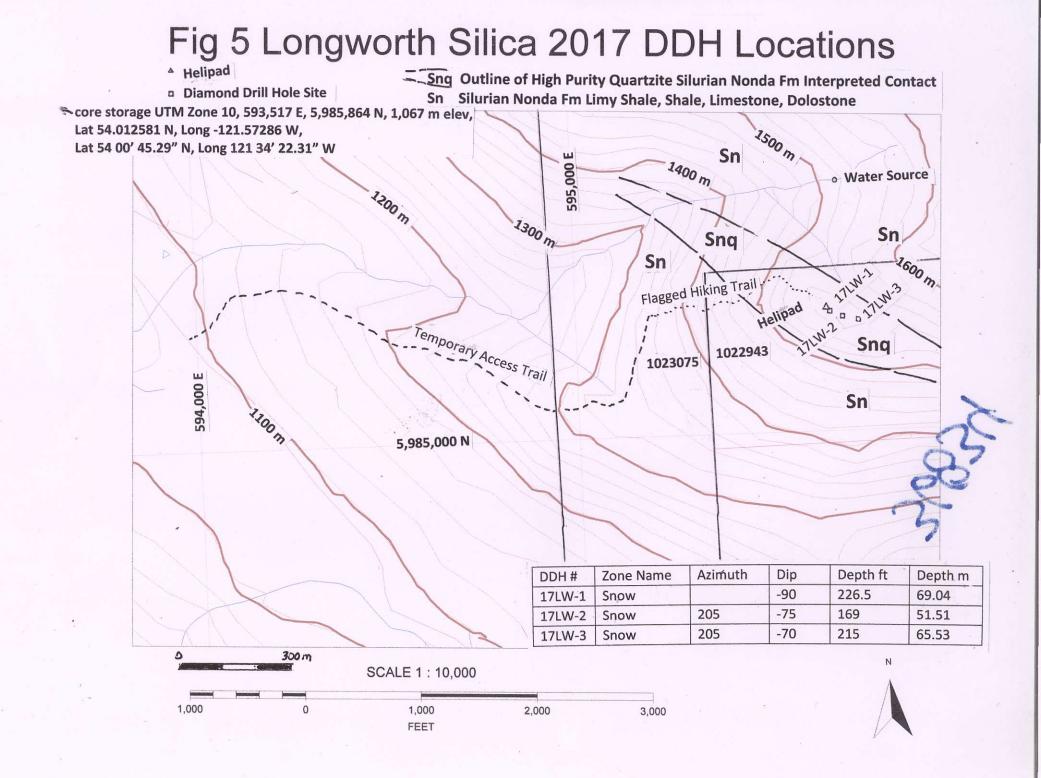

average 0.03 0.01 0.01 0.01 0.01 0.06 99.3 99.51


COLUMBIA and Responsible for Core Review News The Premier Online Ministries & Organizations Job Opportunities Main Index										
MINFILE Home	Appendix E Minfile Description	on								
MINFILE Re	cord Summary	president and a second								
MINFILE No 093H 038			Print Preview PDF V SELECT REPORT New Windo File Created: 24-Jul-85 by BC Geological Survey (BCGS)							
XML Extract/In	ventory Report	Last E								
SUMMARY	·		Summary Help 🔞							
Name	LONGWORTH, NONDA QUARTZITE, SNOW, RAIN, LONG, DOLL	NMI Mining Division BCGS Map	Cariboo 093H093							
Status Latitude	Prospect 53° 58' 48" N	NTS Map	093H14W							
Longitude	<u>121° 29' 30" W</u>	UTM Northing	10 (NAD 83) 5982350							
Commodities Tectonic Belt		Easting Deposit Types Terrane	598914 R07 : Silica sandstone Ancestral North America							
Capsule Geology	The Longworth prospect is located about 80 kilometres east of Prince George. The claims were staked originally in 1974 and blasting, trenching and sampling has been completed on the property									
	The prospect is hosted by a folded sequence of sedimentary and in age and equivalent to the Nonda Formation.	volcanic rocks which u	underlie Bearspaw Ridge. They are all, or in part, Lower Silurian							
	At least four northwest trending bands of quartzite have been ma metres. The main quartzite band outlines a synformal structure o The quartzite is very pure, massive and homogeneous. It is comp millimetre in diameter, which are cemented by silica. The quartzit include muscovite in cavities, limonite on microfractures, minor o Geological Survey Branch averaged 99.5 per cent silica (Open File	pen to the northwest, bosed of extremely we be is pinkish white to be alcite and possible hy	. Rare bedding observed in outcrop dips 70 to 80 degrees east. ell-rounded and well- sorted quartz grains, averaging 0.5 buff on fresh surfaces and weathers grey to white. Impurities							
	Consolidated Silver Standard Mines Ltd. evaluated the property in which 28 had the required chemical specifications, SiO2 was from File 1987-15).									
	EMPR AR 1965-274 EMPR FIELDWORK 1982, p. 196 EMPR ASS RPT * <u>14815</u> EMPR OF 1987-15, pp. 13-15 EMPR PF (Consolidated Silver Standard Mines Ltd. Annual Report 19 EMPR EXPL 1986-C342,343 GSC P 72-35, p. 89 GSC MAP 1424A	88)								

COPYRIGHT | DISCLAIMER | PRIVACY | ACCESSIBILITY


40


Fig 1 Longworth Silica Project General Location



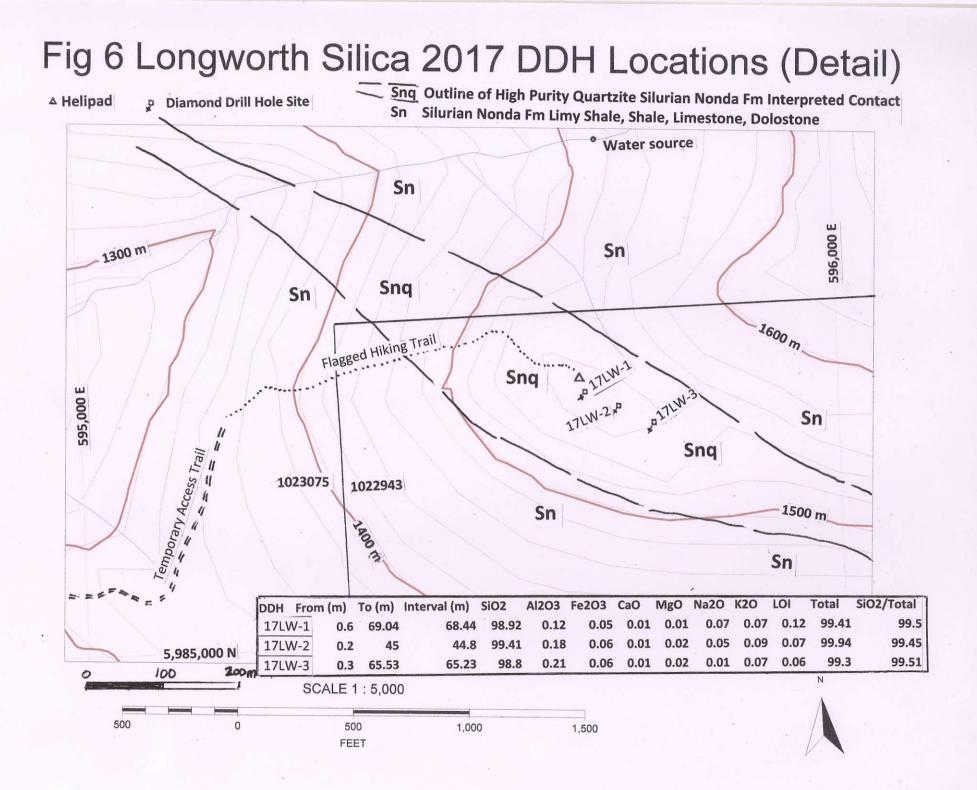


Fig 3 Longworth Silica Project General Geology

		SiO2	AI203	Fe203	101	Total	SiO2/Total	
		%	P.	%	A 1	%	5102/10tai	
		98.7	0.14	"Self"	0.21	99.34	99.36	
	•	97.7	0.11	0.03	0.24	98.28	99.41	-
	•	99.5	0.13	0.03	0.14	99.89	99.61	
-1,550 m elev		97.9	0.19	0.03	0.16	98.52	99.37	
		99.7	0.14	0.04	0.14	100.12	99.59	
	· · · · · ·	97.9	0.1	0.04	0.12	98.33	99.56	
	·	99.3	0.12	0.05	0.11	99.77	99.53	
		98.6	0.09	0.04	0.16	99.08	99.52	
		97.9	0.07	0.04	0.11	98.28	99.61	
		99.1	0.07	0.04	0.23	99.64	99.46	
	6	99.4	0.17	0.05	0.17	100.06	99.34	
	A Starter	99.3	0.17	0.06	0.21	100.01	99.29	
		98.9	0.19	0.05	0.11	99.55	99.35	,
		99.3	0.13	0.07	0.06	99.81	99.49	
		99.7	0.1	0.05	0.06	100.14	99.56	
	1	99.9	0.08	0.04	0.05	100.18	99.72	
	25 5	99.4	0.11	0.07	0.1	100	99.4	
l.	5	98.7	0.12	0.07	0.06	99.06	99.64	
		99.2	0.13	0.05	-0.03	99.59	99.61	
— 1,500 m elev		99.4	0.12	0.03	0.08	99.71	99.46	
		98.9	0.1	0.07	0.12	99.44	99.46	
		97.9	0.12	0.04	0.05	98.36	99.53	
	EOH 69.04 m	98.8	0.11	0.04	0.14	99.3	99.5	
	Average	99	0.12	0.05	0.12	99.41	99.5	

30M 0 -1

Fig 7 Longworth DDH 17LW-1 Cross-Section (Looking WNW, Az 295) Scale 1:500 (1 cm equivalent to 5 m), MTO Tenure Snow 1022943, Cariboo M.D. Fault Broken Ground ?? Re-crystallized quartz porphyryblast Geochemical Analysis ALS Global ME-ICP06 Certificate VA17186466

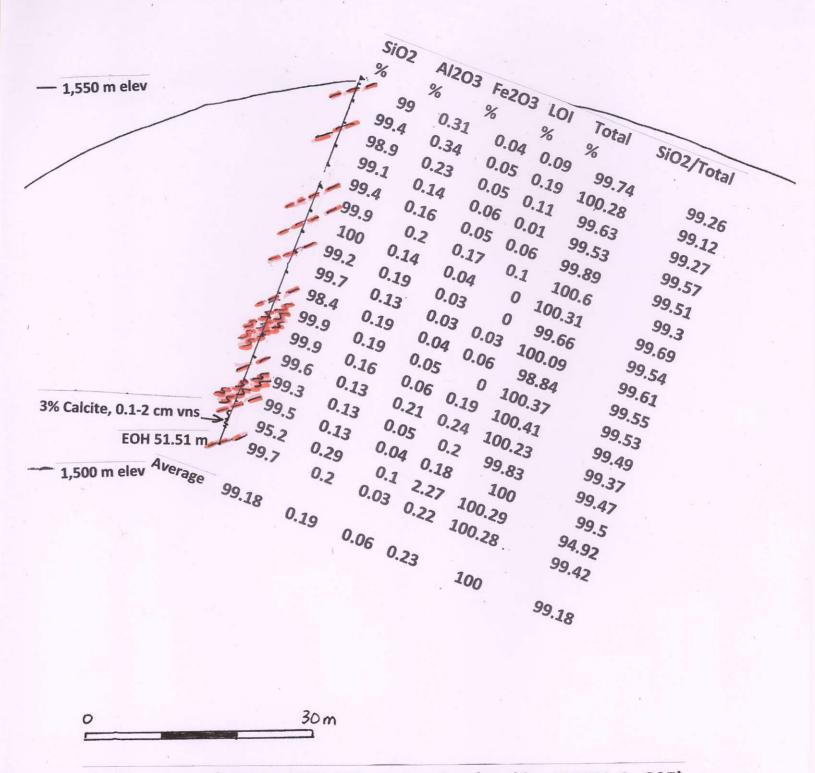


Fig 8 Longworth DDH 17LW-2 Cross-Section (Looking WNW, Az 295) Scale 1:500 (1 cm equivalent to 5 m), MTO Tenure Snow 1022943, Cariboo M.D. Fault Broken Ground & & Re-crystallized quartz porphyryblast Geochemical Analysis ALS Global ME-ICP06 Certificate VA17186466

SiOz A1203 % Fe203 1,550 m elev % 99 % LOI 0.28 99.4 Total % 0.05 98.8 0.24 SiO2/Total % 0.01 99.1 0.04 0.09 99.53 0.28 0.03 0.11 98.2 100.11 0.05 98.9 0.17 0 0.07 99 0.07 99.4 0.15 99.29 99 99.45 0.14 0.05 97.7 0.14 99.79 98.72 0.04 0.05 0.13 99.6 99.65 99.29 0.05 0.06 98.3 0.15 99.47 99.78 0.06 99.2 0.14 99.61 0 0.02 0.07 0.12 98.2 99.62 98 99.95 0.09 0.04 99.8 0.18 99.69 98.72 0.04 99.4 0.4 99.65 0 99.45 0.09 0.06 0.22 99.5 99.57 0.01 98.71 0.04 0.18 97.6 99.75 100.54 0.07 0.04 0.19 98.3 99.48 -0.01 99.88 0.05 1,500 m elev 99.8 0.33 99.26 99.82 0.1 0.12 99.7 0.19 99.52 0.08 98.06 0.06 98.2 0.16 99.7 -0.09 99.14 0.08 0.25 96.8 99.53 100.11 EOH 65.53 0.02 0.05 0.46 99.15 99 100.1 Average 0.06 0.1 0.27 99.69 98.78 0.18 0.04 98.81 99.6 0.14 97.77 0.21 99.41 99.65 0.06 99.01 0.06 99.35 99.3 99.51 30 m 0 Г

Fig 9 Longworth DDH 17LW-3 Cross-Section (Looking WNW, Az 295) Scale 1:500 (1 cm equivalent to 5 m), MTO Tenure Snow 1022943, Cariboo M.D. Fault Broken Ground Re-crystallized quartz porphyryblast Geochemical Analysis ALS Global ME-ICP06 Certificate VA17194346