

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2017 Technical Assessment Report Geochemical and Biogeochemical sampling for the Nak Property

TOTAL COST: \$14,542.00

AUTHOR(S): Richard Beck

SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): STATEMENT OF WORK EVENT NUMBER(S)/DATE(S):

YEAR OF WORK: 2017

PROPERTY NAME: NAK

CLAIM NAME(S) (on which work was done): 1046090 COMMODITIES SOUGHT: Au, Ag, Cu, Mo, Pb and Zn

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Omineca NTS / BCGS: 93M LATITUDE: 55 16' 39.79" LONGITUDE: 126 13' 38.24" UTM Zone: EASTING:

NORTHING:

OWNER(S): Bernard Kreft

MAILING ADDRESS:

1 Locust Place. Whitehorse Yukon. Y1A 5G9

OPERATOR(S) [who paid for the work]:

MAILING ADDRESS:

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) Babine Igneous suite, cretaceous to Tertiary, Hazelton group, copper gold porphyry, copper, gold, diorite, hornfels, pyrite

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 119A, 2959, 3311 , 22143, 2335a, 23A4A, 24273 , 24479 , 247 58, '24928, 25100, 25376, 29855, 30986, 31285, 32356, 36172

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping		1046090	\$5693.50
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of sample	es analysed for)		
Soil – 32		1046090	\$1000.00
Silt			
Rock			
Other			
DRILLING (total metres, number of	holes, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling / Assaying		1046090	\$5693.50
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
	le, area)		
Legal Surveys (scale, area)			
Road, local access (km)/trail	l		
Trench (number/metres)			
Underground development (metres)		
Other – report writing			\$2155.00
		TOTAL COST	\$14,542.00

BC Geological Survey Assessment Report 36946

2017 TECHNICAL ASSESSMENT REPORT ON GEOCHEMICAL AND BIOGEOCHEMICAL SAMPLING FOR THE NAK PROPERTY

Omineca Mining Division, British Columbia

NTS 93M

55 16' 39.79" N/126 13' 38.24" W

Event #'s: 5650918 & 5672430

Tenure #'s:

1036713, 1039257, 1039264, 1044645, 1044646, 1044649, 1044650, 1044651, 1044656, 1044657, 1044661, 1044663, 1044664, 1046090

Prepared for:

Bernard Kreft Whitehorse, Yukon

Prepared by:

Richard Beck

R. Beck Consulting Services

Smithers, BC

September 2017

Table of Contents

1.Summary
2. Introduction and Terms of Reference
3. Property Description and Location
3.1 Accessibility and Infrastructure 4
3.2 Mineral Tenure Information7
3.3 Physiography and Climate
4. History
5. Geological Setting
5.1 Regional Geology 12
5.2 Local Geology 15
6. Sampling program 15
6.1 Geochemical Samples 15
6.1 Geochemical and Biogeochemical Sampling Methodology16
8. Interpretation and Conclusions
9. Recommendations
10. Statement of Costs
11. References
12. Statement of Qualifications
Appendix I: Field Notes Spreadsheet
Appendix II: Assay Contour Maps
Appendix III: Assay Certificates

List of Figures

Figure 1. Nak Property Location.	6
Figure 2. Nak Property Claims.	
Figure 3. Nak Property Area Regional Geology.	
Figure 4. Nak Property sample location.	17
Figure 5. Nak Property Ag Soil contour map	24
Figure 6. Nak Property Ag Vegetation contour map	25
Figure 7. Nak Property Au Soil contour map	
Figure 8. Nak Property Au Vegetation contour map	27
Figure 9. Nak Property Cu Soil contour map	
Figure 10. Nak Property Cu Vegetation contour map	29
Figure 11. Nak Property Mo Soil contour map	
Figure 12. Nak Property Mo Vegetation contour map	31
Figure 13. Nak Property Pb Soil contour map	32
Figure 14. Nak Property Pb Vegetation contour map	
Figure 15. Nak Property Zn Soil contour map	
Figure 16. Nak Property Zn Vegetation contour map	

List of Tables

Table 1.	Mineral Te	enure Claims			7
----------	------------	--------------	--	--	---

1.SUMMARY

In May of 2017, Mr. Bernard Kreft of Whitehorse, Yukon Territory contracted R. Beck Consulting Services of Smithers, B.C. to conduct a field exploration program on the Babine Lake area British Columbia NAK property claims. The program for which R. Beck Consulting Services was contracted was a soil sampling and biogeochemical sampling program over specified gridded area within the middle of the claim group.

This report covers the work performed by R. Beck Consulting Services between May and June 2017. As the author of this report, I was physically on the property between May and June 2017.

The worked performed was a soil and biogeochemical sampling program throughout the mineral tenures held by Mr. Kreft.

The property is comprised of 14 mineral tenures that cover greater than 1,600 hectares. The tenures completely cover the hillside immediately east of the Nakinilerak Lake.

Sampling was designed to provide additional data layers to an area identified by geophysical surveys as having mineral potential.

The NAK Property is located approximately 80km northeast of Smithers, British Columbia and consists of 14 mineral claims (Figure 1). Exploration included preparatory work and geochemical sampling.

This field program was conducted between May 24th 2017 and June 6nd 2017 and provided all of the data on which this report is based.

2. INTRODUCTION AND TERMS OF REFERENCE

This report borrows/quotes from historical assessment reports of the area as noted in the References section.

3. PROPERTY DESCRIPTION AND LOCATION

3.1 ACCESSIBILITY AND INFRASTRUCTURE

The property is accessed from the town of Smithers, B.C. From Smithers you drive approximately 80 kilometers east along highway #16 and then another 40km north to Topley Landing (Figure 1). From Topley Landing you take the barge across the lake. Using the Local FSR's (Jin and Nak) it is another 56km northeast to the Nak claims. The property is a moderate slope from west to east flanked on either side by logging roads. A few steeper sections exist on the property in the form of small canyons and large outcrop exposures. From west to east over a 2-km distance the elevation changes from 950m ASL to 1200m ASL with northwest/southeast valleys in between.

Figure 1: Nak Property Location

3.2 MINERAL TENURE INFORMATION

The Nak Property consists of 14 mineral claims, totaling 1603.056ha. The property is located on NTS map sheet 93M in the Omineca Mining Division and approximately 40km north of the town of Topley, B.C. The geographic coordinates of the approximate centre of the property are 55 16' 39.79" N/126 13' 38.24" W. (Table 1 & Figure 2).

Table 1: Mineral Tenures

Title Number	Claim Name	Owner	Title Type	Map Number	Issue Date	Good To Date	Status	Area (ha)
1036713		114661 (100%)	Mineral	093M	2007/FEB/18	2018/JUL/20	GOOD	18.4293
1039257		114661 (100%)	Mineral	093M	2015/OCT/12	2018/JUL/20	GOOD	313.157
1039264	DOROTHY EXT	114661 (100%)	Mineral	093M	2015/OCT/12	2018/JUL/20	GOOD	92.1787
1044645	Nak west	114661 (100%)	Mineral	093M	2015/OCT/12	2018/JUL/20	GOOD	73.6989
1044646	Nak Main north	114661 (100%)	Mineral	093M	2007/FEB/18	2018/JUL/20	GOOD	36.844
1044649	Nak Northeast	114661 (100%)	Mineral	093M	2015/OCT/12	2018/JUL/20	GOOD	55.2663
1044650	Nak South and East	114661 (100%)	Mineral	093M	2015/OCT/12	2018/JUL/20	GOOD	221.1357
1044651	Nak Furthest South	114661 (100%)	Mineral	093M	2015/OCT/12	2018/JUL/20	GOOD	55.2957
1044656	Nak Furthest SE	114661 (100%)	Mineral	093M	2015/OCT/12	2018/JUL/20	GOOD	239.5997
1044657	Nak SE	114661 (100%)	Mineral	093M	2015/OCT/12	2018/JUL/20	GOOD	18.4315
1044661	Nackered	114661 (100%)	Mineral	093M	2007/FEB/18	2018/JUL/20	GOOD	36.8477
1044663	Nak Core 1	114661 (100%)	Mineral	093M	2007/FEB/18	2018/JUL/20	GOOD	73.7069
1044664	Nak Core 2	114661 (100%)	Mineral	093M	2007/FEB/18	2018/JUL/20	GOOD	73.7065
1046090	NAK NW PERIM	114661 (100%)	Mineral	093M	2016/AUG/19	2018/JUL/20	GOOD	294.7581
					To	tal Hectares		1603.056

Figure 2: Nak Property Claims

3.3 Physiography and Climate (Kreft, 2016; AR 36172)

The property is located in the Nechako Plateau which in the Babine region is characterized by basin and range topogaphy. Deeply incised valleys are commonly filled with lakes and large streams while uplands are heavily forested with while spruce and lodgepole pine. Swampy and low lying areas are often covered by thick accumulations of brush and devil's club and are a significant hindrance to ground traversing.

Extensive glacial sediments cover the area limiting the effectiveness of ground prospecting techniques to areas such as steep slopes and ridge tops where isolated outcrops occasionally occur. Glacial direction was predominantly from the northwest to the southeast.

Forestry and logging is the main economic activity in the area with numerous clear cuts of various ages scattered throughout the property. Recent cut blocks occur within 1.5 kilometres to the south of the main work area with further logging planned for the immediate area of the property (Craig Macarthur personal communication) during the winter of 2016-17.

4. HISTORY

(Kreft, 2016; AR 36172)

The Nak property is in the Omineca Mining Division approximately 80 kilometres northeast of Smithers, B.C. The property covers a sizeable area of known copper porphyry style mineralization associated with the Babine porphyry belt.

The belt is approximately 80 kilometers long and includes twelve significant porphyry copper deposits and prospects including the Bell and Granisle past producers- The estimated value of known in-ground mineral resources in the area is \$1.96 billion and the value of past production is estimated at \$1.13 billion (1986 dollars).

1964-1971: Following the discovery of anomalous copper values in shear sediments northeast of Nakinilerak Lake, Noranda Exploration Company Ltd. Performed mineral exploration work on the ground covered by the Nak Property between 1964 and 1970. This included soil geochemical, surface geophysical and geological mapping surveys. As well, limited trenching and diamond drilling of 28 holes totaling 1,837 metres in length was performed.

In 1971 geological, geochemical and geophysical surveys were also conducted by Noranda on the Snow claim group southeast of the main Nak property. This area became the south-western part of the Nak claims.

Early 1970's: Ducanex Resources performed geophysical and geochemical surveys on the Lynn property, which was subsequently included into the northern part of the Nak claims. Ducanex also performed 480 metres of diamond drilling in 8 holes. (This area is located well north of the 1995 and 1996 Hera Resources drill programs).

1970-76: Dorothy property was staked by Evergreen Exploration. Exploration by Evergreen included an airborne magnetic survey and a ground IP survey. In 1971 Twin Peak Mines Ltd. and Ducanex Resources Ltd. completed a bulldozer trenching program and drilled 2,973 m in 29 diamond drill holes.

1992-1993: The Nak 1, 2, 3 and 4 claims were located by Lorne B- Warren who optioned the ground to Tri-Alpha Investments which began a new grid on the ground but subsequently cancelled their exploration program and returned the property to owner Lorne B. Warren.

1993: An airborne geophysical survey (16 line km helicopter-airborne magnetometer, electromagnetic and VLF-EM) was carried-out on behalf of Noranda Exploration Company Ltd. over the central portion of the Nak claims. Also, Teck Exploration Ltd. requested Jim Oliver, P.Geo. to carry-out petrographic and litho-geochemical studies on surface rock and drill-core samples collected from the Nak property. Results of these programs were summarized by Carter (1994).

1994: The property was re-staked and the claims optioned by Hera Resources Inc. In late 1994 a camp was established and an induced polarization (IP) and magnetic survey was conducted on the Nak 1 thru 5 claims over a newly constructed grid. A total of45.2 kilometres of grid line was cut. The IP survey outlined several anomalous zones worthy of further mineral exploration including a central zone of low chargeability surrounded by high chargeability indicating a probable pyrite halo surrounding a mineralized porphyry core (Howell, 1995).

1995: The 1994 grid was extended by Hem Resources Inc. and later covered by additional IP and magnetometer surveys. These surveys outlined a large, low chargeability response coincident with rare outcrops of a quartz diorite and other intrusive rocks containing up to 5% chalcopyrite (Bridge, 1996). The low chargeability response was rimmed by a strong but variable chargeability response which at the time was noted to coincide with known pyrite mineralization. Most of the anomalous areas were covered by glacial till. Hera Resources Inc. carried-out a drill program on the Nak 95-1 and Nak 95-2 claims that consisted of43 BQ diamond drill holes totaling 8007.30 metres. This work resulted in the discovery of copper mineralization related to rhyodacite dykes along the western margin of a quartz diorite and rhyodacite. The eastern edge of the low chargeability area was also drilled and all, but one drill hole encountered only trace amounts of copper and/or gold mineralization.

1996: Hem Resources Inc. drilled the north-trending highs in the center of the IP anomaly. In all, 28 BQ diamond drill holes were drilled totaling 5304.10 metres; 1,600 core samples were assayed. The I996 drilling program resulted in the identification of a zone of significant copper-gold mineralization in the south of the known mineralized area called the 'Southern Zone'. A study of copper-gold ratios in drill core also suggested possible mineralized extensions of the Southern Zone elsewhere. As well, the Southern Zone was found to host localized high-grade copper veins (1.318% Cu and 0.2039/t Au over 18.28 metres) and associated disseminated

mineralization in adjacent sedimentary units. Geological mapping and sampling were performed on a 1:5,000 scale around the area of drilling on 34.3 kilometres of grid line. Core from the 1995 drill program was re-examined and correlated with the 1996 drilling with the aim of developing consistency with the nomenclature of lithologic units, alteration and mineralization. Based on these results a review of geological modeling at the Nak deposit was undertaken.

2007: Copper Ridge Explorations Inc. undertook an IP and magnetic survey to extend coverage from the Nak deposit in the northwest to the Dorothy deposit in the southeast. A 90-km grid with a 9.5km long northwest-southeast trending baseline was established to facilitate the program, and surveying commenced on November 19th. Due to severe winter conditions, the survey terminated before completion on December 13th. This work, however, confirmed the IP and magnetic results from earlier surveys and demonstrated that the pattern of a chargeability low flanked by a chargeability high continued to the southeast. Results of the magnetometer survey also confirmed that an area of increased magnetic susceptibility is associated with the known mineralization.

2008: The 2008 exploration program (AR30986) included ground IP and magnetometer geophysical surveys and soil geochemical surveys, in conjunction with line cutting mapping, prospecting and core resampling, which was followed by a 5-hole 1264.7-meter program of NQ diamond drilling of 4 holes on the Nak prospect and 1 hole at Dorothy. Best results here returned from a drill hole into the Nak South Zone with an average grade of 0.12% Cu and 0.329 g/t Au throughout its length including a 98.04-meter interval of 0.195% Cu and 0.518 g/t Au. Geophysical surveying defined a coincident mag and IP anomaly that extends southeast of the South Zone, this anomaly (IP Embayment) with its reduced chargeability and anomalous magnetic signature, was thought to be a logical extension to the South Zone. There are no drill holes in this area.

2010: Copper Ridge conducted 460 sample Ah (humus) soil sampling program and a 502-line kilometer Heli-borne ZTEM (Z-axis Tipper electromagnetic) geophysical survey covering approximately 124 km's. Results of the Ah soil geochemistry program confirmed results of the 2007-06 B-horizon soil sample survey. The ZTEM survey confirmed that the known porphyry copper mineralization at Nak is associated with pronounced magnetic and resistivity highs. A lobe of the magnetic high extends 500 metres to the southeast of the known mineralization into an area untested by drilling and with little outcrop.

2014: Redtail Metals conducted an airborne survey which produced high quality magnetic data for the Nak property showing the relative lows of the intrusions surrounded by relatively high magnetic hornfels zone around the intrusions. Several north-northwest and northwest structures were also outlined by the survey. A drill program was recommended for the property.

2016: Bernie Kreft and assistant conducted a short field program for 2 days in June collecting 6 rock samples and 14 soil samples from the southern end of the South Zone IP anomaly in efforts to define the potential existing copper mineralization associated with the geophysical signature.

5. GEOLOGICAL SETTING

5.1 REGIONAL GEOLOGY

(Kreft, 2016; AR 36172)

The Nak and Dorothy copper-gold-molybdenum porphyry occurrences are associated with the Babine Igneous Suite of Tertiary and possible Cretaceous age, located in north-central British Columbia (Macintyre et al., 1997). The most important of these deposits are the Granisle and Bell Mines which together produced a combined total of 110 million tonnes of ore at 0.4% Cu, 0.15 g/t Au and 0.75 g/t Ag. The Morison deposit, located southwest of the Nak property, contains measured and indicated resources of206,869,000 tonnes grading 0.39% Cu, 0.2 8pt Au and 0.005% Mo (Pacific Booker Minerals Inc. web site). The deposits are known to occur within a narrow belt approximately 40 kilometers wide and extending more than 100 km north-northwesterly from the northern part of Babine Lake.

The Nak and Dorothy deposits are situated on the eastern edge of this belt.

The Babine Igneous Suite intrudes Mesozoic volcanic and sedimentary rocks of the Stikine Terrane within the Intermontane Tectonic Belt. The Stikine Terrane is an ocean island arc that was accreted to the western margin of North America in Late-Jurassic to Early-Cretaceous time. The Property lies on the northern edge of a transverse tectonic feature known as Skeena Arch that separates the Bowser Basin in the north from the Nechako Trough in the south. The Skeena Arch was uplifted during the Jurassic and the faults thus generated acted as controls for the emplacement of Cretaceous and Tertiary intrusions (Carter, 1981).

The Stikine Terrane consists primarily of an island arc assemblage of Late-Triassic (Takla Group) and Early-Jurassic (Hazelton Croup) marine volcanic, volcaniclastic and sedimentary rocks. The Babine property is underlain by an irregularly dipping sequence of Mesozoic andesite flows, breccias and Iapili tuff in fault contact with volcaniclastic sandstone, siltstone, mudstone, volcanic-granitic cobble conglomerate, minor shale and argillaceous coal beds (fuchards, 1973).

Marine and non-marine sedimentary rocks of the Mid- to Late-Jurassic Bowser Lake and Mid-Cretaceous Skeena groups overlie the older volcanic and sedimentary units, and are preserved in down-dropped basins bounded by north-northwest trending faults developed during extensional and trans-tensional tectonic activity in Late-Cretaceous and Early-Tertiary time (Carter et al, 1995).

Radiometric ages for mineralized and un-mineralized biotite-feldspar porphyries of the Babine suite have yielded an average age of 50 Ma (Carter et al, 1995), suggesting that these intrusive bodies were emplaced over a short period in Mid-Eocene time.

Intrusive rocks include six major intrusive suites including Topley (173-206 Ma), Omineca (121 – 181 Ma), Bulkley (70 84 Ma), Goosley Lake (49 - 53 Ma), Nanika (47 56 Ma) and Babine (49 - 55 Ma).

All suites have related economic metal deposits, however the most important porphyry copper mineralization in the area is associated with the Babine intrusive Suite. The Babine Igneous Suite

has been characterized (from oldest to youngest as equigranular, fine- to medium-grained quartz diorite and quartz monzonite, sub-porphyritic rhyolite and dacite and a distinctive 'crowded' (hornblende)-biotite feldspar porphyry ("BFP") (Carter et al, 1995). These rocks occur as irregular dykes, dyke swarms and plugs generally not exceeding one kilometer in surface area. Multiple intrusive events are a common feature at some deposits, including Nak. It has also been reported that some of the better mineralized properties in the region contain pre-, inter- and post-mineral (hornblende) biotite-feldspar porphyries and intrusive breccias,

Alteration zones associated with mineralized porphyries of the Babine Igneous Suite include a central potassic zone (hydrothermal biotite + K-spar), grading outward into a phyllic zone (quartz-sericite-pyrite), and finally an outer zone of propylitic alteration (chlorite-carbonate + epidote).

Regionally, copper mineralization officially occurs within northeast and northwest striking, steeply dipping quartz-chalcopyrite + bornite veinlets less than 5 mm wide (Carter, 1994).

Enhanced grades are locally developed at, or adjacent to contacts between intrusive phases and volcanic and sedimentary rocks of the Hazelton Group. Mineralized haloes containing 5 to 10% pyrite have been reported at some deposits and extend up to 300 metres outward from a central zone of copper mineralization.

Figure 3: Nak Property Area Regional Geology

5.2 LOCAL GEOLOGY (Kreft, 2016; AR 36172)

The Nak property is characterized by thick till cover and limited outcrop, therefore much of the geology of the area is based on diamond drill-logs and geophysical data (Spencer, 1996).

Geology consists of a northwest-trending, east-dipping sequence of andesite flows, volcaniclastics, and argillaceous and cherty sedimentary rocks of the Jurassic Hazelton Group-Sandstone and conglomerate bordering Nakinilerak Lake may belong to a younger sequence (Carter, 1994).

Hazelton Group rocks at the Nak property are intruded by diorite to monzonite bodies of probable Early-Cretaceous age, and by stocks, sills and dykes of the Eocene age Babine igneous suite.

The centre of the Nak property contains an approximately 1.8 km polyphase intrusive stock consisting of fine-gained quartz diorite and quartz monzonite, and numerous varieties of BFP (Carter, 1994). Similar intrusive bodies outcrop on ridges near the western claim boundaries. Due to poor outcrop in the area, intrusive contacts and spatial relationships are not well defined. Several dykes and sills cut layered rocks hundreds of metres to the south and west of this main stock, as well as in the northern portion of the property. The central polyphase intrusive stock is thought to be situated at the intersection of northeast and northwest faults. This is structurally like other porphyry systems in the region (Carter, 1994).

6. SAMPLING PROGRAM

6.1 GEOCHEMICAL SAMPLES

Between the end of May and the beginning of June of 2017 R. Beck Consulting Services collected thirty two samples within the grid location. The samples taken were from 16 separate sites. At each site a soil sample was taken as well as a biogeochemical sample.

R. Beck Consulting Services personnel collected the samples using spade shovels and trowels for the soil samples and garden clipping shears for the biochemical samples. All samples were marked with orange flagging tape and aluminum marked butter tags. All sites were identified using handheld Garmin GPS units. Soil samples were collected, placed into a paper kraft bag with associated sample assay lab tag and sealed with a flagging. Kraft bags were then placed into individual small plastic sandwich bags to avoid any contamination between samples and then they were placed in a 6mm poly bag for storage and prtoection when returning to camp. All biochemical samples were collected using a garden clippings shear whereby only the branch tips of selected pine trees were chosen and placed into a 6mm poly sample bag. Each bag was filled approximately $\frac{3}{4}$ full, contained an appropriate sample tag and was sealed using a zap

strap. Samples were taken at the discretion of the mapping geologist as per instructions from Mr. Kreft. All samples taken are found in Figure 4 and Appendix I.

6.1 GEOCHEMICAL AND BIOGEOCHEMICAL SAMPLING METHODOLOGY

Soil sample locations were chosen based on a grid system in-part, provided by Mr. Kreft, and derived from older assessment reports. Once the area was identified as being the area of interest, each site was found and chosen using a handheld Garmin GPS. Upon arriving at the site the area was scoured for the best possible spot to provide the best medium necessary for the purpose of soil sampling (given that the area is heavily till covered). Once the area was chosen then each location was dug out using a spade shovel and a rounded forest floor mat was removed and set aside thus exposing the soil beneath. The hole was now dug down to depth that best provided a B-horizon (this was not always achieved) or a soil that was considered local; i.e. angularity of pebbles and cobbles provided this detail. All holes varied in depth from 35cm to 65cm in depth before the desired soil was reached.

Once the soil horizon was chosen a trowel was used to remove the soil and place on a white rice bag on surface. Once a significant amount of soil was removed then all pebbles and cobbles and organics were sifted out so to provide a "soil" sample of the area. This soil was then place into an industry standard Kraft bag with sample tag and closed off using flagging (zap straps rip the kraft bags). The kraft bag was then place into a plastic sandwich bag to avoid cross contamination between samples while carrying them in our backpacks. Kraft bags were then placed into poly bags and carried to the next site.

Biochemical samples were taken from the exact location of the soil sample in efforts to provide an additional layer of data from an alternative sampling means of the possible mineralization beneath the ground. At the very first sample site it was established that we would be sampling smaller pine trees with an average diameter of 2-3 inches (these seemed to be prevalent in the area) so to keep the consistency of what we were sampling as identical as possible. Within the sampling area, on average, we chose about 4-6 different trees within a 20 foot radius of the soil sample site in order to fill our tree tip sample bags.

The end of the tips of the newest branches of as much of the tree as we could reach were sampled – this was continued until the sample bag was filled to the desired level. Tips were removed using a garden clipping shear and placed into 6mm poly sample bags and sealed using a zap strap.

Prior to leaving each site the soil sample hole was filled back in, the forest floor cap mat was place back onto the hole site and an aluminum tag with sample ID, date and samplers initials was tied to a branch using flagging tape to identify the area sampled.

8. INTERPRETATION AND CONCLUSIONS

When analyzing and comparing the data collected from the two different sample mediums, soil geochemical (B-Horizon soils) and Biogeochemical (tree tip branch samples) it becomes rather convincing that the two varied methodologies, from the exact same location, provide considerable weight to the approach in mineral exploration for potential discoveries.

Though only a short window of area was completed during this field term the density of samples is enough (spread out over two distinct areas) to effectively compare the data of the two approaches. Appendix II contains the assay contour maps of both methodologies and it is rather striking with respect to the coincidental anomalous findings. Ag, Au, Cu and Mo appear to be the closest in comparison and all 4 elements outline potential larger anomalous regions, while Pb and Zn, though anomalous appear to exhibit the inverse in high and lows between the soils and the tree tip methodologies.

These anomalous regions do coincide well with the coloring of the soil encountered within the sample sites; i.e. when we encountered yellowish or reddish brown soils there was a strong assumption that these areas may hold better potential due to the alteration versus the dark brown or brown sample sites.

Interpretation here and now would be premature at best given the density of sample sites, however, seeing the anomalous regions in the contour maps and their location being similarly located to the geophysical anomalies of the area, there is potential to produce a larger coincident anomaly.

9. RECOMMENDATIONS

Further work is strongly warranted especially in broadening the area of sampling for which this report identifies. It is the authors opinion that both methods, again, be utilized to maintain consistency and to better understand the distinguishing differences both analyses present.

Creating a soil/biogeochem grid over this area that matches the geophysical anomalies as well as extends the existing small grid of 2017 is recommended. As there is very little in the way of outcrop present throughout the area it is also recommended that the historical drilling data (which is extensive) of the area be modelled, compared to the geophysical anomalies and then projected to surface to postulate a potential for continued mineralization in the area that cannot be readily identified on surface.

10. STATEMENT OF COSTS

Nak Property Estimate					
Geological Sampling Program					
May June 2017					
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal	
Richard Beck - travel days	May 24th & June 2nd	2	\$250.00	\$500.00	
Richard Beck - field days	May 25th - June 1st	8	\$500.00	\$4,000.00	
Ewen Wallace - travel days	May 24th & June 2nd	2	\$187.50	\$375.00	
Ewen Wallace - field days	May 25th - June 1st	8	\$375.00	\$3,000.00	
				\$7,875.00	\$7,875.00
Office Studies	List Personnel (note - Office only,	do not inc	lude fiel	d days	
	-	Hours	Rate	Subtotal	
Report preparation	R. Beck	24.0	\$55.00	\$1,320.00	
Report preparation	A. Ledwon	3.0	\$105.00	\$315.00	
Report preparation	GIS	8.0	\$65.00	\$520.00	
				\$2,155.00	\$2,155.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Soil		16.0	\$20.00	\$320.00	
Rock		0.0	\$30.00	\$0.00	
Biogeochemistry		16.0	\$30.00	\$480.00	
Other (specify)	freight and shipping	1.0	\$200.00	\$200.00	
				\$1,000.00	\$1,000.00
Transportation		No.	Rate	Subtotal	
Airfare			\$0.00	\$0.00	
Taxi			\$0.00	\$0.00	
truck rental		10.00	\$120.00	\$1,200.00	
kilometers		1816.00	\$0.75	\$1,362.00	
				\$2,562.00	\$2,562.00
Accommodation & Food	Rates per day	No.	Rate	Subtotal	
Hotel	meals included x 2 persons (\$150/ea)	6.00	\$150.00	\$900.00	
Camp				\$0.00	
Meals				\$0.00	
				\$900.00	\$900.00
Miscellaneous					
Propane				\$0.00	
Field supplies				\$50.00	
Other (Specify)					
				\$50.00	\$50.00
Equipment Rentals					
Sattelite phone/radios				\$0.00	
Geological tool kits				\$0.00	
				\$0.00	\$0.00
SUB-TOTAL Expenditures					\$14,542.00
· ·					
TOTAL Expenditures	w/o taxes				\$14,542.00

11. References

1. Kreft, B. (2016); 2016 Geochemical Sampling and Prospecting Report on the Nak Property

12. STATEMENT OF QUALIFICATIONS

I, Richard Beck, residing at 4901 Slack Road, Smithers, British Columbia, do hereby certify that:

- I am the sole proprietor of R. Beck Consulting Services and I was the former President of UTM Exploration Services Ltd.
- I attended Dalhousie University from 1985 to 1989, specializing in Geology;
- Between 1987 and 1990, and 1990 to present I have been continuously employed as a junior geologist/project manager/senior exploration geologist in the mineral exploration sector;
- I did visit the property acting on behalf of R. Beck Consulting Services Ltd at the time and I did witness all the sampling and the sample locations for which this report identifies. I have solely compiled the data collected herein and written the assessment report

Date at Smithers, British Columbia, and this 30th day of September, 2017.

Dictor

Richard Beck

R. Beck Consulting Services

APPENDIX I: FIELD NOTES SPREADSHEET

Sampling Date	Sampling Crew	Client name	Property name	Sample #	Easting (NAD83)	Northing (NAD83)	Station #	UTM Zone	Soil Horizon	Sample depth (cm)	Sample colour	Moisture	Slope
					、	. ,				1 ()			
5/28/2017	RB/EW	Kreft	NAK	5214560	675776	6128948	1	9	В	40	brown	wet	15
5/28/2017	RB/EW	Kreft	NAK	5214561	675837	6128951	2	9	В	50	brown	wet	25
5/28/2017	RB/EW	Kreft	NAK	5214562	675881	6128960	3	9	В	35	brown	moist	35
5/28/2017	RB/EW	Kreft	NAK	5214563	675927	6128944	4	9	В	50	reddish brown	moist	35
5/28/2017	RB/EW	Kreft	NAK	5214564	675973	6128951	5	9	В	35	brown	moist	5
5/29/2017	RB/EW	Kreft	NAK	5214565	675784	6129400	6	9	В	55	brown	wet	5
5/29/2017	RB/EW	Kreft	NAK	5214566	675827	6129433	7	9	В	60	reddish brown	moist	10
5/29/2017	RB/EW	Kreft	NAK	5214567	675883	6129472	8	9	В	35	brown	wet	15
5/29/2017	RB/EW	Kreft	NAK	5214568	675926	6129502	9	9	В	35	reddish brown	dry	15
5/29/2017	RB/EW	Kreft	NAK	5214569	675978	6129540	10	9	В	30	reddish brown	dry	15
5/29/2017	RB/EW	Kreft	NAK	5214570	675971	6129487	11	9	В	40	brown	moist	15
5/30/2017	RB/EW	Kreft	NAK	5214571	675776	6129477	12	9	В	50	brown	moist	15
5/30/2017	RB/EW	Kreft	NAK	5214572	675832	6129472	13	9	В	50	brown	wet	10
5/30/2017	RB/EW	Kreft	NAK	5214573	675820	6129382	14	9	В	60	brown	dry	10
6/1/2017	RB/EW	Kreft	NAK	5214574	675823	6129322	15	9	В	60	yellow	moist	15
6/1/2017	RB/EW	Kreft	NAK	5214575	675773	6129286	16	9	В	40	yellow	moist	15

APPENDIX II: ASSAY CONTOUR MAPS

APPENDIX III: ASSAY CERTIFICATES

				Client:	Richard Beck 4901 Slack Road Smithers British Columbia	a VBJ 2N2 Canada		
BUREAU VERITAS Bureau Veritas C 9050 Shaughnes PHONE (604) 25	MINERAL LABORATORIES www.bur Commodities Canada Ltd. syy St Vancouver British Columbia V6P 6E5 Cana 3-3158	eauveritas.com/um ida		Submitted By: Receiving Lab: Received: Report Date: Page	Richard Beck Canada-Vancouver June 19, 2017 July 20, 2017			
CERTIFI	CATE OF ANALYSIS				VAN	170011	93.1	
CLIENT JOB I	NFORMATION	SAMPLE P	REPARATION	NAND ANALYTICA	L PROCEDURES			
Project: Shipment ID: P.O. Number	NAK	Procedure Code Dry at 60C	Number of Samples 16	Code Description		Test Wat (a)	Report Status	Lab
Number of Samples:	16	AG200	16	1:1:1 Aqua Regia digest	ion ICP-MS analysis	0.5	Completed	VAN
SAMPLE DISP	OSAL	ADDITION		rs				
Sureau Veritas does after 90 days without	not accept responsibility for samples left at the laboratory prior written instructions for sample storage or return.							
Invoice To:	Richard Beok 4901 Slack Road Smithers British Columbia V0J 2N2 Canada				(00)	ARRA DE	CERTIFIC	
CC:	Bemle Kreft				Hall	MARCUSI	HAU BA	2

Ministratul Laborationies www.bureauveritas.com/um Ventras Conmodities Canada Ltd.	Project: Report Date:					
Method Acazoo Acazoo<	Report Date:	NAS				
Method verifies Columbia V8P 6E5 Canada Method Accoo Ac		July 20, 2017				
J50 Shaughnessy St. Vancouver British Columbia V0P 6E5 Canada HONE (604) 253-3158 CERTIFICATE OF ANALYSIS Method Analyte Ac200						
CERTIFICATE OF ANALYSIS Method Maniyte With opm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Page:	2 of 2			Part: 1	of 2
Method Analyte Ac200			VAN17	00119	3.1	
Analyte Moc Cu Pb Zn Analyte Multice Multice </td <td>200 40200 40200</td> <td>AC200 AC200 A</td> <td>0200 40200</td> <td>A0200 A02</td> <td>0 40200</td> <td>40200</td>	200 40200 40200	AC200 AC200 A	0200 40200	A0200 A02	0 40200	40200
Unit ppm ppm <td>As Au Th</td> <td>Sr Cri</td> <td>3b RI</td> <td>V (</td> <td>a P</td> <td>La</td>	As Au Th	Sr Cri	3b RI	V (a P	La
MDL 0.1 0.1 0.1 1 0.1 0.1 1 0.01 1 0.01 1 \$214560 \$001 1.7 49.5 11.3 74 0.1 12.4 13.2 76.8 3.54 16 \$214561 \$001 2.2 48.5 11.2 108 0.2 25.0 13.1 803 3.54 16 \$214562 \$001 3.7 102.6 14.6 82 0.2 25.6 13.0 47.7 2.15 \$214563 \$001 3.3 3.2 7.6 77 70.1 2.1 3.3 3.20 4.47 21 \$214564 \$001 3.3 3.5 7.6 77 70.1 2.1 3.3 3.20 4.28 11 \$214565 \$001 18.1 151.5 10.1 81 0.3 3.20 3.49 1.21 \$214565 \$001 86.4 412.6 119 115 5.28.9 <td>pm ppb ppm</td> <td>ppm ppm</td> <td>ppm ppm</td> <td>ppm</td> <td>6 %</td> <td>ppm</td>	pm ppb ppm	ppm ppm	ppm ppm	ppm	6 %	ppm
5214560 Soil 1.7 49.5 11.3 74 0.1 22.4 13.2 766 3.54 23 5214561 Soil 2.2 48.5 11.2 108 0.2 25.0 13.1 80.3 3.84 11 5214562 Soil 3.7 102.6 14.6 82 2.50 13.1 80.3 3.84 11 5214562 Soil 3.7 102.6 14.6 82 2.55 13.0 479 4.28 5214563 Soil 10.0 96.5 8.4 114 0.2 25.6 13.0 479 4.28 11 5214565 Soil 18.1 151.5 10.1 81 0.3 25.0 13.6 800 3.84 11 5214565 Soil 18.1 151.5 10.1 81 0.3 25.0 13.6 480 3.84 11 5214565 Soil 6.4 412.6 11.9 11.5	0.5 0.5 0.1	1 0.1	0.1 0.1	2 0.0	0.001	1
S214661 Soil 2.2 48.5 11.2 108 0.2 25.0 13.1 803 3.64 11 S214662 Soil 3.7 102.6 14.6 82 0.2 25.9 18.8 97.4 4.17 22 S214663 Soil 10.0 95.6 84.4 114 0.2 25.6 18.8 97.4 4.17 22 S214663 Soil 10.0 95.6 84.4 114 0.2 35.6 13.0 47.9 4.17 22 S214563 Soil 3.3 35.2 7.6 77 <0.1	6.0 2.5 0.9	54 0.1	0.9 0.5	64 0.3	7 0.055	14
S214562 Soil 3.7 102.6 14.6 S2 0.2 25.9 18.8 978 4.17 2' S214563 Soil 10.0 95.6 8.4 114 0.2 35.6 13.0 479 4.17 2' S214564 Soil 3.3 35.2 7.6 77 40.1 2' 3.3 3.0 3.41 1' S214564 Soil 13.1 15.1.5 10.1 81 0.3 25.0 13.6 830 3.84 11 S214565 Soil 18.1 15.1.5 10.1 81 0.3 25.0 13.6 830 3.84 11 S214565 Soil 6.9 70.0 9.9 65 0.2 20.6 13.3 44.2 19 S214567 Soil 6.9 70.0 9.9 65 0.2 20.6 13.3 44.1 3.9 12 S214568 Soil 3.1 41.1 <t< td=""><td>6.0 1.4 0.7</td><td>43 0.3</td><td>0.6 0.3</td><td>67 0.3</td><td>5 0.050</td><td>12</td></t<>	6.0 1.4 0.7	43 0.3	0.6 0.3	67 0.3	5 0.050	12
5214563 Soil 10.0 95.6 8.4 114 0.2 25.6 13.0 479 4.28 11 5214564 Soil 3.3 35.2 7.6 77 <0.1	1.5 4.9 1.6	54 0.2	1.4 0.5	79 0.5	0.080	15
5214564 Soil 3.3 35.2 7.6 77 <0.1 21.3 9.3 32.0 3.41 1 5214565 Soil 18.1 151.5 10.1 81 0.3 25.0 13.6 80.0 3.84 1 5214565 Soil 86.4 412.6 11.8 110 52.0 13.6 80.0 3.84 1 5214565 Soil 86.4 412.6 11.9 115 52.0 13.6 80.0 3.84 1 5214565 Soil 6.9 70.0 9.9 66 0.2 20.6 13.3 641 3.39 12 5214568 Soil 3.1 41.1 14.1 200 0.3 24.2 16.3 54.4 6.05 16.2 5214568 Soil 2.7 7.8 12.9 28.0 1.23.4 41.5 6.05 15.2 5214568 Soil 2.7 7.8 12.9 28.0 1.24.4	1.7 29.3 0.7	23 0.2	0.5 0.7	86 0.3	7 0.058	5
S214565 Soil 18.1 151.5 10.1 81 0.3 25.0 13.6 860 3.88 11 S214566 Soil 06.4 41.2.6 11.9 115 0.5 28.9 21.3 1291 4.62 15 S214567 Soil 6.9 70.0 9.9 66 0.2 20.6 13.3 64.1 3.9 12 S214567 Soil 6.9 70.0 9.9 66 0.2 20.6 13.3 64.1 3.9 12 S214568 Soil 3.1 41.1 14.1 200 0.3 24.2 16.3 67.4 6.06 15 S214568 Soil 3.1 41.1 14.1 200 0.3 24.2 16.3 67.4 6.06 16 S214568 Soil 2.7 7.8 12.9 280 1.23.4 15.6 65.6 6.86 15	1.4 <0.5 0.9	33 0.2	0.4 0.2	66 0.1	9 0.037	6
5214556 Soil 86.4 412.6 11.9 115 0.5 28.9 21.3 1291 4.62 15 5214557 Soil 6.9 70.0 9.9 66 0.2 20.6 13.3 641 3.39 12 5214558 Soil 3.1 41.1 14.1 200 0.3 24.2 16.3 574 6.05 16.5 571.4 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 580 6.05 16.5 6.05 16.5<	1.8 1.7 0.6	82 0.5	0.6 0.3	73 0.3	6 0.067	17
5214567 Soil 6.9 70.0 9.9 66 0.2 20.6 13.3 641 3.39 12 5214568 Soil 3.1 41.1 14.1 200 0.3 24.2 16.3 544 6.59 15 5214568 Soil 2.7 57.8 12.2 208 0.1 23.4 16.5 650 6.56 11	5.1 4.6 0.5	172 0.9	0.9 0.6	87 1.5	8 0.148	27
5214558 801 3.1 41.1 14.1 200 0.3 24.2 16.3 574 6.05 18 5214559 801 2.7 57.8 12.9 298 0.1 23.4 16.5 650 6.86 19	2.0 2.0 0.6	66 0.3	0.6 0.4	73 0.5	0 0.034	10
5214569 Soll 2.7 57.8 12.9 298 D.1 23.4 16.6 650 6.86 19	8.2 1.0 1.4	41 0.7	0.6 0.3	114 0.4	1 0.188	7
	5.9 2.9 1.7	19 0.9	0.4 0.3	121 0.3	0 0.531	7
5214570 Soli 7.3 45.1 12.9 159 0.2 23.3 15.9 554 5.61 17	7.7 0.7 1.2	48 0.5	0.6 0.2	104 0.4	6 0.065	5
5214571 Soli 4.9 51.6 10.9 129 0.2 18.1 11.4 668 3.20 10	0.2 1.2 0.6	62 0.5	0.5 0.3	63 0.5	3 0.047	9
5214572 Soli 9.0 114.5 12.5 95 0.3 22.5 12.0 653 3.80 16	6.1 3.1 0.5	104 0.4	0.7 0.5	76 0.8	0 0.063	14
5214573 Soil 2.5 52.2 9.2 84 0.2 21.8 11.8 457 3.80 11	1.2 <0.5 0.3	40 0.4	0.4 0.2	74 0.3	9 0.045	9
5214574 Soli 1.7 29.6 9.5 85 0.2 17.0 9.3 360 3.56 13	3.3 1.3 0.8	33 0.4	0.6 0.2	75 0.3	3 0.047	9
5214575 Soll 1.2 29.9 8.0 69 <0.1 20.4 10.9 555 3.32 11	1.9 <0.5 0.4	50 0.2	0.5 0.2	62 0.3	1 0.036	9
angont supervises all previous preliminary and final reports with this fils number dated prior to the date on this catificate. Signature indicates final approval; preliminary reports an						

												Clier	nt:	Ric 4901 Smith	hard E Slack Ro hers Britis	Beck ad h Columi	ola VQJ :	2N2 Cana	da		
BUREAU	MINERAL LABORATOR	IES		www.	bureau	veritas	.com/u	um				Projec	+	NAK							
VENITAS	Canada											Repor	t Date:	July	20. 2017						
Bureau Veritas	Commodities Canada Lto	d.																			
9050 Shaughne	ssy St Vancouver Britisk	h Columi	bia V6F	9 6E5 C	anada																
PHONE (004) 2	33-3136											Page:		2 of 2	2				Part:	2 of 2	_
CERTIF	ICATE OF AN	IALY	SIS													VA	N1	7001	193.1		
	Method	AQ200	AG200	AG200	AG200	AG200	AQ200	AG200	AQ200	AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200				-
	Analyte	Cr	Mg	Ba	т	в	AL	Na	к	w	Hg	80	Π	8	Ga	80	Те				
	Unit	ppm	96	ppm	96	ppm	96	96	96	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm				
	MDL	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2				
5214560	Sol	23	0.45	178	0.039	<20	1.41	0.012	0.07	40.1	0.07	7.A	<0.1	<0.05	4	0.7	<0.2				
5214561	Sol	25	0.41	200	0.028	<20	1.72	0.009	0.07	40.1	0.05	5.7	0.1	<0.05	5	<0.5	<0.2				
5214562	Sol	27	0.63	229	0.055	<20	1.81	0.023	0.21	<0.1	0.08	10.0	0.2	<0.05	6	0.6	<0.2				
5214563	Sol	49	0.85	221	0.066	<20	2.39	0.009	0.12	<0.1	0.04	5.7	0.2	<0.05	7	<0.5	<0.2				
5214564	Sol	22	0.38	194	0.023	<20	1.66	0.007	0.04	<0.1	0.05	4,4	<0.1	<0.05	5	<0.5	<0.2				
5214565	Sol	28	0.47	226	0.023	<20	1.90	0.013	0.06	40.1	0.09	7.0	0.1	<0.05	5	1.0	<0.2				
5214566	Sol	33	0.51	226	0.022	<20	2.00	0.017	0.07	0.1	0.20	7.7	0.4	0.14	7	2.3	<0.2				
5214567	Sol	25	0.43	192	0.033	<20	1.66	0.010	0.06	40.1	0.05	5.8	0.1	<0.05	5	<0.5	<0.2				
5214568	Sel	39	0.62	295	0.063	<20	2.72	0.010	0.08	40.1	0.07	1.2	0.1	<0.05	10	<0.5	<0.2				
5214505	0.0	20	0.57	447	0.005	-20	3.75	0.010	0.00		0.05		-0.1	-0.05		-0.5	-0.2				
5214570	Gol	34	0.02	190	0.070	<20	1.51	0.008	0.07		0.07	4.0	20.1	0.00	-	-0.5	20.2				
5214572	Sol	26	0.50	213	0.027	<20	1.92	0.011	0.07	-011	0.07	61	0.1	0.05	6	0.6	<0.2				
5214573	Sol	20	0.42	203	0.027	<20	2.00	0.009	0.05	411	0.04	45	<0.1	<0.00	6	<0.0	<0.2				
5214574	Sol	21	0.36	153	0.043	<20	1.70	0.007	0.05	<0.1	0.04	4.8	<0.1	<0.05	6	<0.5	<0.2				
5214575	Sol	23	0.45	170	0.036	<20	1.57	0.010	0.05	40.1	0.06	4.7	<0.1	<0.05	5	<0.5	<0.2				
This report supersedes all	previous preliminary and final reports wit	h this file num	ber dated p	rior to the dr	ate on this c	etificate. Si	gneture ind	icates final a	oproval; pre	Initiary top	orta ane una	igned and a	hould be us	ed for refere	nce only.						

(1830)												Client		Rich 4901 S Smithe	land B lack Ros rs British	eck d Columb	la VOJ 2N	12 Canad	a		
REAU MINERAL LABO	RATORIES	undation 1	ww	w.bu	reauv	eritas.	com/u	m				Project: Report	Date:	NAK July 20	, 2017						
ONE (604) 253-3158	er bhush Goi	mula	OF OE	Gana	dud							Page:		1 of 1					Part	: 1 of	2
UALITY CONTI	ROL RE	PO	RT						-							VA	N17	001	193.	1	
	Method AQ2	0 AQ2	00 AQ2	00 AG	2200 A	AG200	A@200	A@200	AQ200	AQ200	AQ200	AG200	AG200	AQ200	AQ200	AG200	AG200	AG200	AG200	AQ200	A@20
	Analyte I	lo (Du i	Pb -	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	BI	۷	Ca	P	
	MDL pp	m pp	in pp	m p	ppm	ppm 0.1	ppm o t	ppm a 4	ppm	96	ppm 0.5	ppb 0.5	ppm a 4	ppm	ppm 0.4	ppm 0.4	ppm 0.1	ppm	0.04	0.004	pp
h Duplicates	MUL		-			0.1	0.1	w.1	-	0.01	U. b	u.6	4.1		0.1	0.1	0.1	2	0.01	0.001	_
4570 Sali		3 44	1 12	9	159	0.2	23.3	15.9	554	5.61	17.7	0.7	12	48	0.5	0.8	0.2	104	0.45	0.065	- 1
P 5214570 QC		3 45	.2 12	9	156	0.2	23.0	16.6	553	5.54	17.6	0.9	1.1	48	0.5	0.7	0.2	106	0.47	0.069	-
lerence Materials										100											
D DS10 Stan	dard 13	2 158	.6 155	.3	358	1.9	77.5	13.1	864	2.74	46.2	48.6	7.4	66	2.4	7.7	10.7	47	1.01	0.074	- 1
D OREAS45EA Stan	dard	6 699	.4 13	.3	31	0.2	372.1	51.8	394	21.92	11.1	52.0	9.9	3	<0.1	0.3	0.2	286	0.03	0.026	- 1
D DS10 Expected	1	6 154.	61 150.3	55	370	2.02	74.6	12.9	875	2,7188	46.2	91.9	7.5	67.1	2.62	9	11,65	43	1.0625	0.0765	17
CREASESEA Expected	1	.6 7	09 14	3 3	31,4	0.26	381	52	400	23.51	10.3	53	10.7	3.5	0.03	0.32	0.26	303	0.036	0.029	7.0
K Blan	k 4	.1 ⊲	l.1 <1	1.1	<1	-11	<0.1	<0.1	4	-0.01	41.5	<0.5	⊲0.1	~1	-0.1	-40.1	<0.1	4	<0.01	<0.001	14
UK Blan	* 4	.1 4	l.f ⊲t	11	<1	<0.1	-0.1	<0.1	ব	40.01	⊲0.5	⊲0.5	⊲0.1	~1	-0.1	-40,1	<0.1	4	<0.01	<0.001	

VALTY CONTROL REPORT VANTOD 103.1 Method Analytic Unit Ad200 Ad200 Ad200 Ad20<	ONE (604) 253-3158	/ancouver British	I. Columi	bia V8F	9 6E5 C	anada							Page		1 01 1					Part	20
Method Analyte Unit Ac200 Cr Mc200 Mg Ac200 Ba Ac200 Ka200 Ac200 Ac200 Ac200 Ac20 Ac200	UALITY CO	INTROL	REP	OR	Г								1.4			-	VA	N17	001	193.1	1
MOL 1 0.01 1 0.001 20 0.01 0.01 0.1 0.1 0.1 0.06 1 0.06 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 1 0.66 0.26 0.66 0.26 0.66 0.26 0.66 0.26 0.66 0.26 0.66 0.26 0.27 0.20 1.01 0.066 0.07 0.01 0.01 0.01 0.02 1.6 0.25 0.27 0.20 1.3 0.26 1.		Method Analyte Unt	AG200 Cr	AQ200 Mg	AQ200 Ba	AQ200 TI %	AQ200 B	AQ200 Al	AQ200 Na	AG200 K	AG200 W	AG200 Hg	AG200 So	A(2200	AQ200 8	AG200 Ga	AG200 3e	AQ200 Te			
Duplicates Soli 32 0.62 147 0.070 <20	11000	MDL	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.6	0.2			
4570 501 32 0.62 147 0.070 <20 2.01 0.008 0.07 <0.1 0.07 5.9 <0.1 0.06 8 0.5 <0.2 \$214570 QC 33 0.61 144 0.072 <20	p Duplicates					1	11		1.1.1			-	100	100	100		200	1.1			
*5214570 QC 33 0.61 144 0.072 <20 2.03 0.008 0.07 <0.1 0.08 5.9 <0.1 <0.05 8 0.6 <0.2 prence Matchias	14570	Sol	32	0.62	147	0.070	<28	2.81	0.008	0.07	<0.1	0.07	5.9	4.1	0.06	8	0,5	⊲0.2			
remote Maderals DG610 Standard 54 0.76 418 0.077 <20 1.01 0.064 0.31 29 0.27 3.0 5.1 0.32 4 2.0 4.9 00REAS45EA Standard 874 0.09 134 0.094 <20 2.44 0.018 0.05 <0.1 0.02 76. <3.0 5.1 0.32 4 2.0 4.9 00REAS45EA Standard 849 0.05 142 0.017 1.029 0.05 3.33 3.3 0 0 0.05 78 0.07 0.036 124 0.78 0.07 0.02 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0.0 12 0.7 0 0 1 0 0	P 5214570	90	33	0.61	144	0.072	<28	2.03	0.006	0.07	<0.1	0.08	5.9	-41.1	<0.05	8	0.6	<0.2			
DE10 Standard 54 0.76 418 0.077 <20 1.01 0.054 0.31 2.9 0.27 3.0 5.1 0.32 4 2.0 4.9 ODERAMEEA Standard 874 0.09 1.01 0.054 0.01 0.02 7.8 0.51 0.32 4 2.0 4.9 ODERAMEEA Standard 874 0.09 1.01 0.05 <0.1	ference Materials					-					1					-	_				
OREAR/SEA Standard 874 0.09 134 0.034 <20 2.84 0.018 0.005 <0.1 0.002 76.5 <0.1 <0.05 1.2 1.3 <0.2 DS1D Expected 54.6 0.775 412 0.0817 1.0299 0.067 0.388 3.32 0.3 2.8 5.1 0.29 4.3 2.3 5.01 DS1D Expected 54.6 0.775 412 0.0817 1.0299 0.057 0.38 3.32 0.3 2.8 5.1 0.29 4.3 2.3 5.01 DS1D Expected 64.9 0.094 3.13 0.02 0.055 7.8 0.072 0.056 1.4 0.078 0.07 DS1AVARTA Expected 84.9 0.094 3.13 0.022 0.055 7.8 0.072 0.056 1.4 0.078 0.07 DS1AVARTA Expected 81.9 0.021 <0.01	D DS10	Standard	54	0.76	418	0.077	<20	1.01	0.064	0.31	2.9	0.27	3.0	5.1	0.32	4	2.0	4.9			
DB10Expected 54.5 0.775 412 0.0817 10.299 0.067 0.338 3.32 0.3 2.8 5.1 0.29 4.3 2.3 5.01 05540AddAtADepend 949 0.095 148 0.0894 3.13 0.02 0.053 78 0.072 0.036 12.4 0.78 0.07 Blank <1 <0.01 <1.40.01 <0.1 <0.1 <0.1 <0.1 <0.05 <1 <0.5 <0.2	D OREAS4SEA	Standard	874	0.09	134	0.094	<28	2.84	0.018	0.05	<0.1	0.02	76.6	⊲.1	<0.05	12	1.3	<0.2			
Biank <1 <0.001 <1 <0.001 <20 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	D DS10 Expected		54.6	0.775	412	0.0817		1.0259	0.067	0.338	3.32	0.3	2.8	5,1	0.29	4.3	2.3	5.01			
Bionni <1 40.01 <1 40.001 <20 40.01 40.01 40.01 40.01 40.01 40.1 40.	Drover-Advise A sopressed		849	0.095	148	0.0984		3.13	0.02	0.053		-	78	0,072	0.036	12.4	0.78	0.07			

				Client:	Richard Beck 4901 Slack Road Smithers Entish Columbia	VGJ 2N2 Canada		
BUREAU VERITAS Bureau Veritas Co 9050 Shaughness PHONE (604) 253	INTERAL LABORATORIES www.burear anside annotities Canada Ltd. sy St. Vancouver British Columbia V6P 6E6 Canada 3-3158	uveritas.com/um		Submitted By: Receiving Lab: Received Report Date: Page:	Richard Beck Canada-Vancouver June 19, 2017 July 20, 2017 1 of 2			
CERTIFIC	CATE OF ANALYSIS				VAN	170011	94.1	
CLIENT JOB IN	IFORMATION	SAMPLE PRE	PARATION	AND ANALYTICA	L PROCEDURES			-
inoject: ihipment ID: 1.0. Number Number of Samples:	NAK 17	Procedure Code VA475 Spiit A51 from VA475	Number of Samples 17 17	Code Decoription Vegetation Ashing at 479 Analysis sample spit/par	5 Sket	Tect Wat (a) 50	Report Status Completed	Lab VAN VAN
SAMPLE DISPO	DSAL	AQ200	17	1:1:1 Aqua Regia digesti	on ICP-MS analysis	0.5	Completed	VAN
NUMBER OF THE OWNER.	And the second data	ADDITIONAL	COMMENT	rs				
RTRN-PLP RTRN-RJT Suneau Veritas does n Ifter 90 diays without p	Return After 50 days Return After 50 days of accept responsibility for samples left at the laborationy of written instructions for sample storage or return.	ADDITIONAL	COMMENT	5				
RTRN-PLP RTRN-RJT atter 90 days without p nivoloe To:	Return After 90 days Return After 90 days of accept responsibility for samples left at the laborationy of written instructions for sample storage or return. Richard Beck 4901 Slack Road Smithers British Columbia VDJ 2N2 Canada	ADDITIONAL	COMMENT	15	S	5 <u>10</u> A00	CERTIFICO	
tren-PLP stren-FJT days whould be n invoice To: 2C:	Return After 50 days Return After 50 days of accept responsibility for samples left at the laborationy work written instructions for sample storage or return. Ritchard Beck 4901 Slack Road Smithers British Columbia V0J 2N2 Canada Bemle Kreft	ADDITIONAL	COMMENT	15	allet Coo	MARCUSI MARCUSI	Certifico Port	5)

												Clier	nt:	Ric 4901 Smith	hard Slack R hers Brith	Beck oad sh Colum	bla VOJ :	2N2 Can	ada		
BUREAU VERITAS C Bureau Veritas Co	INERAL LABORATOR anada ommodities Canada Lt	ties d.	ubia 1/81	www	burea	veritas	s.com/u	um				Projec Repor	t: t Date:	NAK July :	20, 2017						
PHONE (604) 253	CATE OF AN	JALY	/SIS		anaua.							Page	:	2 of 2	2	VA	N17	700 1	в 1194	art: 1 .1	of 2
	Method Analyte Unit	VA476 e Ash Wa	VA476 shed Wt	AQ200 Mo	AQ200 Cu ppm	AQ200 Pb ppm	AQ200 Zn ppm	AG200 Ag ppm	AG200 Ni ppm	AQ200 Co ppm	AQ200 Mn ppm	AQ200 Fe %	AQ200 Ac ppm	AQ200 Au ppb	AQ200 Th ppm	AG200 Sr ppm	AG200 Cd ppm	AG200 Sb ppm	AG200 Bi ppm	AG200 V ppm	AQ200 Ca %
	MDL	0.001	0.001	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01
5214560a	Vegetation	50.751	1.621	1.0	83.3	6.7	941	0.1	35,4	1.4	>10000	0.07	0.6	2.1	<0.1	837	2.1	0.1	<0.1	<2	20.67
5214561a	Vegetation	50.731	1.481	2.8	93.4	4.5	821	0.1	32.4	1.1	9582	0.11	0.6	1.6	<0.1	638	5.1	0.1	<0.1	<2	17.85
5214562a	Vegetation	50.598	1.845	2.8	78.7	3.1	1125	⊴0.1	23.9	1.9	>10000	0.06	0.5	2.4	<0.1	521	8.5	0.5	<0.1	~2	18.67
OVEN STD-2	Vegetation	30.772	0.887	2.3	45.1	8.2	1275	0.8	14.5	1.1	>10000	0.41	2.7	2.0	0.8	510	0.2	1.3	0.2	2	24.17
5214563a	Vegetation	50.103	1.607	4.9	80.0	4.7	604	<0.1	28.3	2.8	>10000	0.07	0.8	1.2	<0.1	460	1.1	0.1	<0.1	<2	20.74
5214564a	Vegetation	50.936	1.663	3.2	88.4	7.2	1012	0.1	29.1	3.6	>10000	0.05	0.6	<0.5	<0.1	499	3.5	0.2	<0.1	2	18.00
5214565a	Vegetation	50.693	1.555	18.6	153.3	4.4	591	0.2	34.3	1.7	6804	0.07	<0.5	5.2	<0.1	424	0.5	0.1	<0.1	<2	15.63
5214566a	Vegetation	50.248	1.570	15.6	104.6	4.5	777	0.2	7.5	1.1	>10000	0.07	0.6	1.2	<0.1	994	0.9	0.1	<0.1	<2	20.66
5214567a	Vegetation	50.475	1.497	1.8	85.2	5.6	864	0.2	14.2	3.4	>10000	0.10	0.8	0.6	<0.1	842	2.0	0.2	<0.1	<2	19.54
5214568a	Vegetation	50.654	1.495	4.8	76.4	5.9	895	0.2	15.6	3.5	>10000	0.09	<0.5	0.8	<0.1	975	1.7	0.1	<0.1	<2	19.16
5214569a	Vegetation	50.908	1.394	2.7	67.5	7.3	974	0.2	21.1	3.1	>10000	0.06	0.6	0.6	<0.1	659	1.5	0.1	<0.1	<2	16.38
5214570a	Vegetation	50.247	1.438	20.5	86.3	8.5	1087	0.2	14.6	2.0	>10000	0.08	1.0	1.7	<0.1	821	3.4	0.2	<0.1	<2	19.55
5214571a	Vegetation	50.685	1.386	10.4	92.8	6.4	1069	0.2	13.0	23	>10000	0.09	0.8	<0.5	<0.1	1097	2.1	0.2	<0.1	<2	19.77
5214572a	Vegetation	50.842	1.430	2.6	100.0	6.3	1088	0.2	7.2	1.7	>10000	0.15	0.8	1.6	<0.1	934	2.6	0.2	<0.1	3	20.41
5214573a	Vegetation	50.557	1.122	4.3	131.7	8.7	788	0.2	37.7	4.6	>10000	0.13	0.6	2.1	<0.1	417	0.4	0.2	<0.1	<2	14,41
5214574a	Vegetation	50.734	1.403	1.6	77.8	6.6	923	0.2	15.5	2.9	>10000	0.06	<0.5	1.3	<0.1	566	4.1	0.1	<0.1	~	18.53
5214575a	Vegetation	50.761	1.411	1.7	88.3	10.8	953	0.2	12.1	2.8	>10000	0.16	0.6	2.5	<0.1	813	3.0	0.1	<0.1	3	17.87
This report supersedes all pre	vious preliminary and final reports w	th this file mu	mber dated j	prior to the d	ate on this o	etificate. Si	ignature ind	icates final e	approval; pre	Brainwry rep	orte are un	signed and s	hould be us	ed for refere	nce only.						

												Clier	ıt:	Ricl 4901 Smith	hard E Slack Ro ers Britis	Beck ad h Columi	bia V6J 2	N2 Cana	da		
VERITAS Cana	ERAL LABORATOR	IES		www.	bureau	verita	s.com/u	m				Projec	t:	NAK							
Bureau Veritas Com	modities Canada Lt	d.										Repor	t Date:	July 2	0, 2017						
0050 Shoughnorry	St. Vancouver Britis	h Colum	hin M80		chene																
PHONE (604) 253-3	158	Colum		ULU C	anaua							Dana		2 - 4 2					Dart	2 - 4 - 2	
CERTIFIC/	ATE OF AN	IALY	'SIS									T uga		101		VA	N17	001	194.	1	
	Method	AG200	AG200	AQ200	AG200	AG200	AQ200	AG200	AQ200	AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200		
	Analyte	P	La	Cr	Mg	Ba	т	в	AI	Na	к	w	Hg	80	т	8	Ga	Se	Те		
	Unit	96	ppm	ppm	%	ppm	%	ppm	96	96	96	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm		
1	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.6	0.2		
5214560a	Vegetation	>5	<1	<1	3.31	200	0.021	318	0.25	0.058	>10	0.1	<0.01	0.3	0.2	1.01	<1	<0.5	<0.2		
52145618 52145528	Vegetation	4./16	<1	<1	2.30	345	0.018	203	0.26	0.047	>10	20.1	<0.01	0.2	40.1	0.53	<1	<0.5	<0.2		
OVEN STD-2	Vegetation	2 647	- 1	- 11	2.35	2357	0.012	269	0.17	0.000	>10	12	<0.01	0.5	0.0	0.70	-	<0.5	<0.2		
52145538	Vegetation	3,820	<1	<1	2.10	374	0.015	202	0.51	0.035	>10	<0.1	<0.01	0.2	<11	0.41	<1	<0.5	<1.2		
5214564a	Vegetation	>5	<1	<1	2.53	286	0.022	334	0.49	0.060	>10	0.1	<0.01	0.3	0.3	0.69	<1	<0.5	<0.2		
5214565a	Vegetation	3.426	<1	<1	2.38	1063	0.014	250	0.08	0.070	>10	<0.1	<0.01	0.3	0.1	0.65	<1	<0.5	<0.2		
5214566a	Vegetation	2.924	<1	<1	1.56	280	0.014	334	0.07	0.082	>10	<0.1	<0.01	0.5	0.2	0.77	<1	<0.5	<0.2		
5214567a	Vegetation	3.505	<1	1	2.33	308	0.016	336	0.27	0.092	>10	<0.1	<0.01	0.6	0.4	0.66	<1	<0.5	<0.2		
5214568a	Vegetation	4.136	<1	1	2.18	226	0.020	251	0.32	0.096	>10	<0.1	<0.01	0.5	0.1	0.75	<1	<0.5	<0.2		
5214569a	Vegetation	>5	<1	<1	3.02	1368	0.022	261	0.74	0.079	>10	0.1	<0.01	0.4	0.3	0.45	<1	<0.5	<0.2		
5214570a	Vegetation	4.704	<1	<1	2.37	231	0.020	408	0.20	0.116	>10	0.1	<0.01	0.5	<0.1	0.95	<1	<0.5	<0.2		
5214571a	Vegetation	4.854	<1	<1	2.64	327	0.020	311	0.19	0.086	>10	<0.1	<0.01	0.5	0.2	0.70	<1	<0.5	<0.2		
5214572a	Vegetation	3.949	<1	1	2.50	260	0.020	359	0.20	0.104	>10	<0.1	<0.01	0.8	0.3	0.69	<1	<0.5	<0.2		
5214573a	Vegetation	4.743	<1	1	3.19	211	0.020	294	0.54	0.141	>10	0.2	<0.01	0.6	0.2	1.10	<1	<0.5	<0.2		
52145748	Vegetation	4.9/1	<1	<1	2.38	239	0.021	300	0.38	0.077	>10	0.2	<0.01	0.4	0.2	0.70	<1	<0.5	<0.2		
52145758	vegetation	4.363	\$1	- 2	2.11	255	0.023	230	0.52	0.091	210	0.2	50.01	U.8	0.2	0.85	\$1	50.5	NU.2		
This report supersedes all previous	s preliminary and final reports wi	h this file nun	iber dated p	rior to the d	ate on this o	etificate. S	ignature ind	icates final s	bbuovait bua	lininary rep	orts are una	igned and a	hould be use	ed for referen	nce only.						

1 of 2	t 1	Part																				
1 of 2	t 1	Part:				2017	NAK July 20,	Date:	Project Report				n	com/ur	veritas.	bureau	www.		es i.	ATORI ada Lto	RAL LABORATO Ida modities Canada I	UREAU FRITAS
00 A	.1	1					1.011		Pane'							anada	0E5 C	bia VBF	n Columi	r Britisk	St. Vancouver Brit 158	50 Shaughnes IONE (604) 25
00 A		94.	011	1170	VA	-	diart.	-		-							r	OR	REP	OL	CONTROL	UALITY
	40	10200	0200	19200	40200	49200	4/2200	40200	40200	40200	40200	4/2200	4/2200	10200	49200	40200	40200	VA475	V0475	Athod	Metho	And the second second
¥.	-	BI	Sb	Cd	Sr	Th	Au	As	Fe	Mn	Co	N	Ag	Zn	Pb	Cu	Mo	hed Wt	Ach Wite	malyte	Analyt	
I	p	ppm	ppm	ppm	ppm	ppm	ppb	ppm	96	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	a	0	Unit	Un	
2	_	0.1	0.1	0.1	1	0.1	0.6	0.6	0.01	1	0.1	0.1	0.1	1	0.1	0.1	0.1	0.001	0.001	MDL	MD	
			-			-	-			-	_		-	-		1.2			1.1			uip Dupilcates
2	-	41.1	0.1	0.5	424	<0.1	5.2	<0.5	0.07	6804	- 1.7	34.3	0.2	591	44	153.3	18.6	1.555	50.693	tion	Vegetation	214565a
2	1	4.1	0.1	0.4	427	<0.1	1.1	<0.5	0.07	6981	21	36.3	0.2	584	44	160.8	19.8				80	EP 5214565a
_		_				-						-										eference Materia
42	-	12.2	6.8	2.8	62	7.3	161.7	43.7	2.72	821	13.1	72.6	1.6	354	143.1	159.9	15.6			ind	Standard	TD DS10
82		0.2	0.2	<0.1	- 4	9,4	51.3	9.8	20.26	378	51.3	378.0	0.2	30	13.2	666.1	1.3			Ind	Standard	TD OREAS45EA
43 1	-	11.65	9	2.62	67.1	7.5	91.9	46.2	2.7188	875	12.9	74.6	2.02	370	150.55	154.61	13.6				Contraction of Contraction of Contraction	TD DS10 Expect
43	- 3	0.26	0.32	0.03	3.5	10.7	53	10.3	23.51	400	52	381	0.26	31,4	14.3	709	1.6			1		TO CREASHOEA EXPR
2	<u> </u>	-41.1	-40,1	<0.1	<1	<0.1	<0.5	<0.5	<0.01	<1	40.1	<0.1										The second se
3		12.2 0.2 11.65 0.26 <0.1	6.8 0.2 9 0.32 <q.1< th=""><th>2.8 <0.1 2.62 0.03 <0.1</th><th>62 4 67.1 3.5 <1</th><th>7.3 9.4 7.5 10.7 <0.1</th><th>161.7 51.3 91.9 53 <0.5</th><th>43.7 9.8 46.2 10.3 <0.5</th><th>2.72 20.26 2.7188 23.51 <0.01</th><th>821 378 875 400 <1</th><th>13.1 51.3 12.9 52 40.1</th><th>72.6 378.0 74.6 381 <0.1</th><th>1.6 0.2 2.02 0.26</th><th>354 30 370 31.4</th><th>143.1 13.2 150.55 14.3</th><th>159.9 666.1 154.61 709</th><th>15.6 1.3 13.6 1.6</th><th></th><th></th><th>erd erd</th><th>Standard Standard</th><th>STD DS10 STD DS10 STD DS10 Expect STD OREAS45EA Expect</th></q.1<>	2.8 <0.1 2.62 0.03 <0.1	62 4 67.1 3.5 <1	7.3 9.4 7.5 10.7 <0.1	161.7 51.3 91.9 53 <0.5	43.7 9.8 46.2 10.3 <0.5	2.72 20.26 2.7188 23.51 <0.01	821 378 875 400 <1	13.1 51.3 12.9 52 40.1	72.6 378.0 74.6 381 <0.1	1.6 0.2 2.02 0.26	354 30 370 31.4	143.1 13.2 150.55 14.3	159.9 666.1 154.61 709	15.6 1.3 13.6 1.6			erd erd	Standard Standard	STD DS10 STD DS10 STD DS10 Expect STD OREAS45EA Expect

INTERA UNIVERAL LABORATORIES Canada Lid. D Shaughnessy St Vancouver British Cr NE (804) 253-3158 UALITY CONTROL R Analyte UNALITY CONTROL R	columbia	a V6P (DRT 2200 A	www.1	bureau anada	veritas	.com/u	m				Project Report Page:	Date:	NAK July 20), 2017				
UNE (604) 253-3158 UALITY CONTROL R Analyte Unit MoL	EPO	DRT 9200 A	6E5 C	anada	-		_				Page:		1.011					
UALITY CONTROL R Method Anslyte Unit MDL	EPO	DRT 2200 A										_	1011	_	_			Pa
Method Ai Analyte Unit MDL (P	Q200 A													VA	N17	001	194
Unit MDL C	N6 1	La	Cr	AG200 Mg	AG200 Ba	A@200 T1	AQ200 B	AG200 Al	AG200 Na	AG200 K	AG200 W	AQ200 Hg	AQ200 80	AG200 TI	AG200	AQ200 Ga	AQ200 8e	A@200 Te
- Laboration	0.001	ppm 1	ppm 1	96	ppm 1	% 0.001	ppm 20	56	5 0.001	96	ppm 0.1	ppm 0.01	ppm 0.1	ppm 0.1	96	ppm 1	ppm 0.5	ppm 0.2
Duplicates			-		-											-		-
4565a Vegetation 3	3.426	4	<1	2.38	1063	0,014	250	0.08	0.070	>18	<0.1	<0.01	0.3	0,1	0.65	×1	⊲0.5	<0.2
5214565a QC 3	3,449	-	<1	2.39	1078	0.014	245	0.09	0.071	>10	<0.1	<0.01	0.3	4.1	0.65	<1	4.5	<0.2
erice Materials														_			-	
/S10 Standard 0	0,076	18	53	0.77	414	0.077	<20	1.03	0.071	0.33	2.7	0.25	3.1	5,1	0.27	4	1.7	4.9
DREAS45EA Standard 0	0.027	7	786	80.0	145	0.088	<20	3.18	0.020	0.05	<0.1	<0.01	71.5	<0.1	<0.05	- 11	0.8	<0.2
DS10 Expected 0.	0765	17.5	54.6	0.775	412	0.0817		1.0259	0.067	0.338	3,32	0,3	2.8	5.1	0.29	4.3	2,3	5.01
EXDECTA Expenses	0.029	7.06	849	0.095	148	0.0964		3.13	0.02	0.053			78	0.072	0.036	12.4	0.78	0.07