

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Technical Exploration and Development Report

TOTAL COST: \$217,854.73

AUTHOR(S): Michael Rose

SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): NoW: 1300431-201501 April 27, 2016

STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5675083

YEAR OF WORK: 2016

PROPERTY NAME: Pishon Green Jade

CLAIM NAME(S) (on which work was done): **Pishon Green Jade** COMMODITIES SOUGHT: **Nephrite**

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Omineca Mining Division

NTS / BCGS: 93K/14W, BCGS93K.093

LATITUDE: 54°58'05.02"N

LONGITUDE: 125°26'44.14"W (at centre of work)

UTM Zone: 10 EASTING: 343398E

NORTHING: 6093913N

OWNER(S): Aimin Liao

MAILING ADDRESS: 4228 Union St., Burnaby, BC, V5C 2X4

OPERATOR(S) [who paid for the work]: Aimin Liao

MAILING ADDRESS: 4228 Union St., Burnaby, BC, V5C 2X4

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**)

Nephrite, Jade, Outcrop,

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples	analysed for)		
Soil			
Silt			
Rock			
Other			
DRILLING (total metres, number of h 83.7 115 Core meters holes	oles, size, storage location) 51 Nanyang, mm Henan dia. Province, China	546982	217,854.73
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)			
Topo/Photogrammetric (scale	, area)		
Legal Surveys (scale, area)			
Road_local_access (km)/trail			

	I	
Trench (number/metres)		
Underground development (metres)		
Other		
	TOTAL	217,854.73

BC Geological Survey Assessment Report 37069

TECHNICAL EXPLORATION and DEVELOPMENT REPORT

for the

PISHON GREEN JADE PROJECT

TENURE #: 546982, 546986, 546988, 546990 and 546995

Omineca Mining Division

NTS: 93K/14W, BCGS93K.093

Latitude 54°58'05.02"N/Longitude 125°26'44.14"W

UTM 10 6093913N 343398E

For

OWNER and OPERATOR: AIMIN LIAO PISHON JADE RESOURCES INC. 4228 Union St., Burnaby, BC, V5C 2X4 Phone: 604-537-6617

By

MICHAEL ROSE, B.E.Sc. 1106-2440 Old Okanagan Hwy, West Kelowna, BC, V4T 1X6 Phone: 250-317-3877 Email: mikerose2@hotmail.com

February 17th, 2017

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	MAP OF CLAIM LOCATIONS	2
3.0	MAP OF BULK SAMPLE LOCATION	3
4.0	WORK ACTIVITY	4
5.0	DRILLING PROGRAM AND INTERPRETATION OF RESULTS	5
6.0	DRILL LOGS	6
7.0	DRILLING RESULTS	11
8.0	BOREHOLE LOCATION MAPS	15
9.0	COST STATEMENT	16
10.0) STATEMENT OF THE AUTHOR'S QUALIFICATIONS	18
API	PENDIX 1 - SITE PHOTOS	19

1.0 INTRODUCTION

The Pishon Green Jade claims are located northwest of Fort St. James down route 27 and Forest Service roads approximately 120 km to Middle River then 10 km on Forest Service Road 767105 west of Middle River to Road R01559. The deposit is located 6.4km upstream from Middle River. Access to the claims is via a 5.2 km trial. Drilling and bulk sampling occurred on Tenure 546982.

The jade deposit was first discovered in 1968 by Ms. W. Robertson. Mining was conducted in 1969 with fly-in camps. In 1995, global Metals Ltd. Drilled 29 holes which intersected zones of tremolite and nephrite jade. Assessment Report #24094 by John F. McIntyre, P. Eng. states: "Sources dating from the period of activity variously report jade on the O'Ne-el Creek property reserves of 23.6 million kg, 3.6 million kg or 45,900 tonnes. However, supporting documentation for these numbers is not at hand. Current estimates are considerably lower than this." The claims are currently owned and operated by Aimin Liao.

Assessment Report #24094 by John F. McIntyre, P. Eng. states: "The showings lie at an elevation of approximately 1,070m ASL on a section of creek which is somewhat incised into bedrock and which leis immediately above a significant (+ 30 m) waterfall and a deeply incised canyon." "The jade deposits occur close to the contact between the Pennsylvanian and Permian Cache Creek Group and the Permian to Middle Triassic Trembleur Intrusions." "On the property the Cache Creek rocks include chert, quartzite, greenstone, calcareous shale, sandstone and argillaceous sediments ranging from black and massive to buff with contorted lamine." "The Trembleur Intrusives are regionally closely associated with the Cache Creek Group. They consist of sills and stocks of ultramafic composition including peridotite, dunite, pyroxenite and occasional gabbro, mainly altered to serpentine."

Exploration and development work commenced at the Pishon Green Jade Project on September 27th, 2016 and was completed December 12th, 2016. The drilling program consisted of 115 holes, 51 mm in diameter, totaling 83.7 meters in depth. Short holes were drilled into jade outcrops (see Photo 1) and filled with an expanding grout to fracture the jade into sections that could be removed by helicopter. The fractured jade pieces were manually separated and moved into helicopter nets. A drill site was constructed and maintained, an access trail was maintained, and a helicopter pad was constructed to support drilling and bulk sampling.

2 | Physical Exploration and Development Report-Pishon Jade Resources Ltd.

3 | Physical Exploration and Development Report-Pishon Jade Resources Ltd.

4.0 WORK ACTIVITY

Bulk sampling of jade outcrops involved drilling short holes and filling the holes with an expanding grout to fracture the jade into sections that could be removed by helicopter. The fractured jade pieces were manually separated with the use of chain hoists, tripods, jacks, pry bars, wedges and sledgehammers. Larger jade pieces were weighed and placed into helicopter nets. Smaller jade pieces were placed into sand bags before weighing and placed into helicopter nets. There was a total of 28 pieces including bags of smaller material and individual jade sections. The total volume of the bulk sample was 8.17 m³ with a total weight of 24.5 tonnes.

Construction of the drill site involved clearing minor vegetation, digging a settling pond and installation of overhead tarps. The settling pond dug upgrade of the drill site was $2 \times 1 \times 0.5$ m or 1 m^3 .

Small gas powered handheld drills were used to drill 115 holes, 51 mm in diameter, totaling 83.7 m in depth. There were 52 holes drilled at Location 1 (0343413 E 06093847 N) totaling 58.5 m in depth. There were 63 holes drilled at Location 2 (0343441 E 06093884 N) totaling 25.2 m in depth. Drilling effluent was captured in buckets, dumped into a barrel, and pumped to a settling pond.

Once drilling was completed the drill holes were cleaned and allowed to dry. Expanding grout (Next Pand) was mixed in buckets on site with a handheld drill and poured into the holes with a funnel. The grout was left to cure fracturing the jade as it expanded.

A 5.2 km trail was maintained to transport personnel, equipment and materials to the work site by means of ATVs (see Photo 2). Trail maintenance involved the installation of sediment control measures such as silt fencing and sediment control over waterway crossings (see Photo 3). Deadfall and minor vegetation was cleared. Ditching and sediment traps were maintained and cleaned as needed. The trail was seeded twice to minimize impact.

A helicopter pad was constructed by clearing brush and laying out logs. The bulk sample was removed by latching the helicopter cable to the helicopter nets and flying the jade to an area where a backhoe loaded a transport truck.

5.0 DRILLING PROGRAM AND INTERPRETATION OF RESULTS

Drilling was conducted to analyse the quality of jade outcroppings and to provide holes into which an expanding grout could be poured. The only mineral found in the cores was nephrite. The deepest hole was 2.1 m. The elevation is approximately 1060 m Small gas powered handheld drills were used to drill 115 holes, 51 mm in diameter, totaling 83.7 m in depth. There were 52 holes drilled at Location 1 (0343413 E 06093847 N) totaling 58.5 m in depth. There were 63 holes drilled at Location 2 (0343441 E 06093884 N) totaling 25.2 m in depth. All cores are current being stored in the City of Nanyang, Henan Province, China.

The quality of the cores presented in section 7.0 DRILLING RESULTS is described as P=Poor, G=Good, and VG=Very Good corresponding with the lower, middle, and upper sections of each core. Each core was also rated as inconsistent or consistent depending on the overall quality of the core. The quality was determined by wetting the core sections and visually examining the core. A flashlight was used to determine translucency. Hardness tests were also conducted by scratching the cores with steel. Cores with many fractures, a darker color, a greyer color, more opaque, softer, and with a higher talc content were considered poor. Cores with fewer fractures, a green color, harder, more translucent, and with a low talc content were considered very good. Boreholes identified as "COMBI" were completed with a hammer-drill resulting in no core. No laboratory analysis was conducted on the cores. No dip test was conducted.

The quality improved toward the centre of the lens. Borehole locations can be seen in section 8.0 BOREHOLE LOCATION MAPS. Boreholes 6-10 were of the highest quality. Boreholes 11-18 progressively showed a higher talc content with most sections having no commercial value. Boreholes 11 - 18 were heavily fractured and inconsistent. Boreholes 19, 1-5 were consistent and appeared less talcy. The middle section of the cores showed higher quality jade on average.

6.0 DRILL LOGS

DRILL LOG

DRILLING LOCATION 1 UTM GPS LOCATION: 0343413 E 06093847 N

BORE	BORE NO.	BORE DIAMETER	ORIENTATION	TERMINATED DEPTH	CUMULATIVE DEPTH	COR	E BOX NO.
COUNT				Meters	Meters		
1	1-1	41 MM	VERTICAL	1.2	1.2	L1.R1.1	
2	1-2	41 MM	VERTICAL	1.52	2.7	L1.R1.1	
3	1-3	41 MM	VERTICAL	2.11	4.9	L1.R1.1	L1.R1.2
4	1-4	41 MM	VERTICAL	2.13	7.0	L1.R1.2	
5	1-5	41 MM	VERTICAL	1.98	9.0	L1.R1.2	L1.R1.3
6	1-6	41 MM	VERTICAL	1.85	10.8	L1.R1.3	
7	1-7	41 MM	VERTICAL	1.02	11.8	L1.R1.4	
8	1-8	41 MM	VERTICAL	1.52	13.4	L1.R1.4	
9	1-8A	51 MM	VERTICAL	1.26	14.6	L1.R1.10	
10	1-8B	51 MM	VERTICAL	0.97	15.6	L1.R1.10	
11	1-9	51 MM	VERTICAL	1.52	17.1	L1.R1.5	
12	1-10	51 MM	VERTICAL	1.68	18.8	L1.R1.5	
13	1-11	51 MM	VERTICAL	1.73	20.5	L1.R1.6	
14	1-11A	51 MM	VERTICAL	1.32	21.8	L1.R1.10	L1.R1.11
15	1-11B	51 MM	VERTICAL	0.72	22.6	L1.R1.11	
16	1-12	51 MM	VERTICAL	1.73	24.3	L1.R1.6	
17	1-13	51 MM	VERTICAL	1.42	25.7	L1.R1.7	
18	1-14	51 MM	VERTICAL	1.30	27.0	L1.R1.7	
19	1-14A	51 MM	VERTICAL	1.47	28.5	L1.R1.11	
20	1-14B	51 MM	VERTICAL	0.99	29.5	L1.R1.12	
21	1-15	51 MM	VERTICAL	1.30	30.8	L1.R1.7	L1.R1.8
22	1-16	51 MM	VERTICAL	1.35	32.1	L1.R1.8	
23	1-17	51 MM	VERTICAL	1.32	33.4	L1.R1.8	L1.R1.9
24	1-17A	51 MM	VERTICAL	1.57	35.0	L1.R1.12	

25	1-17B	51 MM	VERTICAL	1.50	36.5	L1.R1.12	L1.R1.13
26	1-17C	51 MM	VERTICAL	1.45	37.9	L1.R1.13	
27	1-18	51 MM	VERTICAL	0.63	38.6	L1.R1.9	
28	1-14H	51 MM	HORIZONTAL	0.20	38.8	L1.R1.17	
29	1-14H	51 MM	HORIZONTAL	0.66	39.2	L1.R1.18	
30	1-15H	51 MM	HORIZONTAL	0.76	40.0	L1.R1.18	
31	1-16H	51 MM	HORIZONTAL	0.76	40.8	L1.R1.18	
32	1-19	51 MM	VERTICAL	0.38	41.1	L1.R1.9	
33	1-2A	51 MM	VERTICAL	1.52	42.7	L1.R1.9	
34	1-2/3	51 MM	VERTICAL	1.68	44.3	L1.R1.14	
35	1-3/4	51 MM	VERTICAL	1.68	46.0	L1.R1.14	
36	1-4/5	51 MM	VERTICAL	1.22	47.2	L1.R1.15	
37	18A/B	51 MM	VERTICAL	1.12	48.4	L1.R1.15	

38	1.80	51 MM		0.76	49.1	I 1 P1 15	
	1-00		VERTIGAL	0.96	50.0	LI.RI.13	
39	1-8H	51 MM	HORIZONTAL	0.80	0.06	L1.R1.16	
40	1-9H	51 MM	HORIZONTAL	0.30	50.3	L1.R1.16	
41	1-10H	51 MM	HORIZONTAL	0.84	51.1	L1.R1.16	
42	1-11H	51 MM	HORIZONTAL	0.74	51.9	L1.R1.16	
43	112AH	51 MM	HORIZONTAL	0.74	52.6	L1.R1.17	
44	112BH	51 MM	HORIZONTAL	0.81	53.4	L1.R1.17	
45	1-13H	51 MM	HORIZONTAL	0.79	54.2	L1.R1.17	
46	S1A-1	51 MM	VERTICAL	0.61	54.8	L1.R1.19	
47	S1A-2	51 MM	VERTICAL	0.15	55.0	L1.R1.19	
48	S1A-3	51 MM	VERTICAL	0.51	55.5	L1.R1.19	
49	S1A-4	51 MM	VERTICAL	0.36	55.8	L1.R1.19	
50	S2-1	51 MM	HORIZONTAL	1.04	56.9	L1.R1.20	
51	S2-3	51 MM	HORIZONTAL	0.86	57.7	L1.R1.20	
52	S2-3	51 MM	HORIZONTAL	0.53	58.3	L1.R1.20	
			TOTAL	58.5			

DRILLING LOCATION 2 UTM GPS LOCATION: 0343441 E 06093884 N

BORE	BORE	BORE		TERMINATED DEPTH	CUMULATIVE DEPTH	CODE DO	X NO
COUNT	NO.	DIAMETER	ORIENTATION	Meters	Meters		A NU.
1	B1-1	51 MM	VERTICAL	0.51	0.51	B.2016.1	
2	B1_2	51 MM	VERTICAL	0.43	0.94	B 2016 1	
2	D1-2		VENTION	0.25	1.19	D.2010.1	
3	B2-1	51 MM	VERTICAL	0.23	1.42	B.2016.1	
4	B2-2	51 MM	VERTICAL	0.46	1.88	B.2016.1	
5	B3-1	51 MM	VERTICAL	0.27	2.25	B.2016.1	
6	B3-2	51 MM	VERTICAL	0.37	2.25	B.2016.1	
7	B3-3	51 MM	VERTICAL	0.66	2.91	B.2016.1	
8	B3-4	51 MM	VERTICAL	0.33	3.24	B.2016.2	
9	B3-1A	51 MM	VERTICAL	0.00	3.24	N/A	
10	B3-1B	51 MM	VERTICAL	0.20	3.44	B 2016 1	
11		51 MM	VERTICAL	0.28	3.72	P 2016 2	
	D4-1		VERTICAL	0.66	4.38	D.2010.2	
12	B5-1	51 MM	VERTICAL	0.51	4.89	B.2016.2	
13	B5-2	51 MM	VERTICAL	0.61	5 50	B.2016.2	
14	B6-1	51 MM	VERTICAL	0.01	0.00	B.2016.2	
15	B6-2	51 MM	VERTICAL	0.72	6.22	B.2016.2	B.2016.3
16	B6-3	51 MM	VERTICAL	0.64	6.86	B.2016.3	
17	B6-4	51 MM	VERTICAL	0.30	7.16	B.2016.3	
18	B6-5	51 MM	VERTICAL	0.56	7.72	B 2016 3	
10	De e	51 MM		0.46	8.18	P 2016 2	
19	D0-0		VERTICAL	0.56	8.74	D.2010.3	
20	B6-7	51 MM	VERTICAL	0.64	9.37	B.2016.3	
21	B7-1	51 MM	VERTICAL	0.58	9.96	B.2016.3	B.2016.4
22	B7-2	51 MM	VERTICAL	0.00	10.57	B.2016.4	
23	B7-3	51 MM	VERTICAL	0.01	10.57	B.2016.4	
24	B7-4	51 MM	VERTICAL	0.33	10.90	B.2016.4	
25	B8-1	51 MM	VERTICAL	0.64	11.53	B.2016.4	

26	B8-2	51 MM	VERTICAL	0.58	12.12	B 2016 4	
27	B9-1	51 MM	VERTICAL	0.56	12.09	B 2016 4	
21		51 MM		0.41	12.52	B 2016 5	
20	D9-2		VERTICAL	0.41	12.50	D.2010.5	
29	B9-3	51 MM	VERTICAL	0.28	12.80	B.2016.5	
30	B9-4	51 MM	VERTICAL	0.25	12.37	B.2016.5	
31	B10-1	51 MM	VERTICAL	0.71	12 62	B.2016.5	
32	B11-1	51 MM	VERTICAL	0.58	13.33	B.2016.5	
33	B11-2	51 MM	VERTICAL	0.00	13.33	B.2016.5	
34	B11-3	51 MM	VERTICAL	0.61	13.92	B.2016.5	B.2016.6
35	B11-4	51 MM	VERTICAL	0.34	14.53	B.2016.6	
36	B12-1	51 MM	VERTICAL	0.20	13.33	B.2016.6	
37	B13-1	51 MM	VERTICAL	0.20	13.54	B.2016.6	
38	B14-1	51 MM	VERTICAL	0.43	13.74	B 2016 6	
30	B15-1	51 MM	VERTICAL	0.36	14.17	B 2016 6	
40		51 MM	VERTICAL	0.66	14.53	D.2010.0	
40	D10-1		VERTICAL	0.56	15.19	D.2010.0	
41	B17-1	51 MM	VERTICAL	0.61	15.75	B.2016.6	
42	B17-2	51 MM	VERTICAL	0.43	16.36	B.2016.6	
43	B18-1	51 MM	VERTICAL	0.33	16 79	B.2016.7	
44	B18-2	51 MM	VERTICAL	0.00	17.10	B.2016.7	
45	B18-3	51 MM	VERTICAL	0.20	17.12	B.2016.7	
46	B18-4	51 MM	VERTICAL	0.30	17.32	B.2016.7	
47	B18-5	51 MM	VERTICAL	0.15	17.63	B.2016.7	
48	B18-6	51 MM	VERTICAL	0.20	17.78	B.2016.7	
49	B19-1	51 MM	VERTICAL	0.58	16.79	B.2016.7	
50	B20-1	51 MM	VERTICAL	0.20	17.37	B 2016 7	
51	B20 2	51 MM		0.41	17.58	B 2016 7	
	B20-2	51 MANA		0.36	17.98	D.2010.7	
52	D2U-3		VERTICAL	0.30	18.34	D.2010.8	
53	B20-4	51 MM	VERTICAL	0.18	18.64	B.2016.8	
54	B20-5	51 MM	VERTICAL	0.30	18.82	B.2016.8	
55	B20-6	51 MM	VERTICAL	0.00	10.02	B.2016.8	

56	B21-1	51 MM	VERTICAL	0.38	17.58	B.2016.8	
57	B22-1	51 MM	VERTICAL	0.20	17.96	B.2016.8	
58	B23-1	51 MM	VERTICAL	0.13	18.16	B.2016.8	
59	B24-1	51 MM	VERTICAL	0.20	18.29	B.2016.8	
60	B25-1	51 MM	VERTICAL	0.38	18.49	B.2016.8	
61	B26-1	51 MM	VERTICAL	0.20	18.87	B.2016.8	
62	B27-1	51 MM	VERTICAL	0.23	19.08	B.2016.8	
63	B28-1	51 MM	VERTICAL	0.25	19.30	B.2016.8	
			TOTAL	25.23			

7.0 DRILLING RESULTS

DRILLING LOCATION 1

BORE COUNT	BORE NO.	CORE QUALITY POTENTIAL (P=Poor, G=Good, VG=Very Good)				
1	1-1	P-VG-G	CONSISTENT			
2	1-2	P-VG-VG	CONSISTENT			
3	1-3	G-P-VG	CONSISTENT			
4	1-4	P-VG-VG	CONSISTENT			
5	1-5	P-G-VG	CONSISTENT			
6	1-6	G-VG-VG	CONSISTENT			
7	1-7	G-VG-VG	CONSISTENT			
8	1-8	G-VG-G	CONSISTENT			
9	1-8A	P-VG-G	CONSISTENT			
10	1-8B	G-VG-VG	INCONSISTENT			
11	1-9	P-VG-VG	FRACTURED, INCONSISTENT			
12	1-10	P-VG-G	FRACTURED, INCONSISTENT			
13	1-11	P-G-G	FRACTURED, INCONSISTENT			
14	1-11A	P-P-G	FRACTURED, INCONSISTENT			
15	1-11B	P-G-P	FRACTURED, INCONSISTENT			
16	1-12	P-G-G	FRACTURED, INCONSISTENT			
17	1-13	P-G-P	FRACTURED, INCONSISTENT			
18	1-14	P-P-G	FRACTURED, INCONSISTENT			
19	1-14A	P-G-G	FRACTURED, INCONSISTENT			
20	1-14B	P-G-P	FRACTURED, INCONSISTENT			
21	1-15	P-P-P	INCONSISTENT			
22	1-16	P-P-G	FRACTURED, INCONSISTENT			
23	1-17	P-G-VG	CONSISTENT			
24	1-17A	P-G-P	FRACTURED, INCONSISTENT			
25	1-17B	P-G-G	FRACTURED, INCONSISTENT			
26	1-17C	P-P-G	FRACTURED, INCONSISTENT			
27	1-18	P-P-VG	FRACTURED, INCONSISTENT			
28	1-14H	P-P-P	CONSISTENT			
29	1-14H	P-P-P	FRACTURED			
30	1-15H	P-P-P	HIGHLY FRACTURED			
31	1-16H	P-P-P	HIGHLY FRACTURED			
32	1-19	P-G-G	CONSISTENT			
33	1-2A	G-VG-G	INCONSISTENT			
34	1-2/3	P-VG-G	INCONSISTENT			
35	1-3/4	P-VG-VG	INCONSISTENT			

36	1-4/5	P-G-VG	CONSISTENT
37	1-8A/B	P-VG-P	INCONSISTENT
38	1-8C	P-VG-G	INCONSISTENT
39	1-8H	P-G-G	INCONSISTENT
40	1-9H	P-P-P	CONSISTENT
41	1-10H	P-G-P	INCONSISTENT
42	1-11H	P-G-G	CONSISTENT
43	1-12AH	P-P-P	CONSISTENT
44	1-12BH	P-G-G	CONSISTENT
45	1-13H	P-P-P	CONSISTENT
46	S1A-1	P-G-P	CONSISTENT
47	S1A-2	G-VG-G	CONSISTENT
48	S1A-3	G-VG-G	INCONSISTENT
49	S1A-4	G-P-P	INCONSISTENT
50	S2-1	G-VG-VG	CONSISTENT
51	S2-3	G-G-G	CONSISTENT
52	S2-3	G-VG-G	INCONSISTENT

DRILLING LOCATION 2

BORE NO.	CORE QUALITY POTENTIAL (P=Poor, G=Good, VG=Very Good)				
B1-1	P-P-P	INCONSISTENT			
B1-2	P-P-P	INCONSISTENT			
B2-1	P-G-P	CONSISTENT			
B2-2	VG-G-P	INCONSISTENT			
B3-1	P-G-G	INCONSISTENT			
B3-2	P-G-G	INCONSISTENT			
B3-3	P-VG-G	INCONSISTENT			
		PART COMBI.			
B3-4	P-G-VG	INCONSISTENT			
B3-1A	N/A	COMBI			
		PART COMBI.			
B3-1B	G-VG-P	INCONSISTENT			
B4-1	P-G-P	INCONSISTENT			
B5-1	P-VG-VG	CONSISTENT			
B5-2	P-VG-P-VG	CONSISTENT			
B6-1	G-P-VG	INCONSISTENT			
B6-2	P-G-P	INCONSISTENT			
B6-3	G-G-P	INCONSISTENT			
B6-4	P-P-P	INCONSISTENT			

B6-5	P-G-G	INCONSISTENT			
B6-6	P-G-G	INCONSISTENT			
B6-7	P-G-G	INCONSISTENT			
B7-1	G-VG-VG	CONSISTENT			
B7-2	G-VG-VG	CONSISTENT			
B7-3	G-VG-VG	CONSISTENT			
B7-4	G-VG-G	CONSISTENT			
B8-1	G-VG-VG	CONSISTENT			
B8-2	G-VG-G	CONSISTENT			
B9-1	G-VG-G	CONSISTENT			
B9-2	P-P-P	CONSISTENT			
B9-3	P-G-P	CONSISTENT			
B9-4	P-P-P	CONSISTENT			
B10-1	P-P-P	CONSISTENT			
B11-1	VG-VG-G	INCONSISTENT			
B11-2	VG-VG-G	INCONSISTENT			
B11-3	P-VG-G	INCONSISTENT			
B11-4	G-G-G	CONSISTENT			
B12-1	P-P-P	CONSISTENT			
B13-1	P-P-P	CONSISTENT			
B14-1	P-P-P	CONSISTENT			
B15-1	P-P-P	CONSISTENT			
B16-1	P-P-P	CONSISTENT			
B17-1	G-VG-VG	CONSISTENT			
B17-2	G-VG-VG	CONSISTENT			
B18-1	P-G-P	CONSISTENT			
B18-2	P-G-P	CONSISTENT			
B18-3	P-G-G	CONSISTENT			
B18-4	P-P-P	CONSISTENT			
B18-5	P-P-P	CONSISTENT			
B18-6	P-P-P	CONSISTENT			
B19-1	P-P-G	CONSISTENT			
B20-1	P-P-P	CONSISTENT			
B20-2	P-P-P	CONSISTENT			
B20-3	P-P-P	CONSISTENT			
B20-4	P-P-P	CONSISTENT			
B20-5	P-P-P	CONSISTENT			
B20-6	P-P-P	CONSISTENT			
B21-1	P-P-P	CONSISTENT			
B22-1	P-P-P	CONSISTENT			
B23-1	P-P-P	CONSISTENT			

13 | Physical Exploration and Development Report-Pishon Jade Resources Ltd.

B24-1	P-P-P	CONSISTENT
B25-1	P-P-P	CONSISTENT
B26-1	P-P-P	CONSISTENT
B27-1	P-P-P	CONSISTENT
B28-1	P-G-P	CONSISTENT

8.0 BOREHOLE LOCATION MAPS

9.0 COST STATEMENT

Exploration Work type	Comment	Days			Totals
Personnel (Name)*	Field Days (list actual				
/ Position	days)	Days	Rate	Subtotal*	
Bryden Lebans	Sept 27, 2016 to Dec 12, 2016	77	\$208.33	\$16,041.41	
Curtis Redlack	Oct 28, 2016 to Nov 14, 2016	1/	\$333.33	\$5,666.61	
Kezheng Li	Sept 27, 2016 to Oct 27, 2016	30	\$166.67	\$5,000.00	
Duncan Campbell	Oct 10, 2016 to Dec 12, 2016	64	\$510.00	\$32,640.00	
			\$0.00	\$0.00	
			\$0.00	\$0.00	
	List Personnel (note -			\$59,348.02	\$59,348.02
	Office only, do not include				
Office Studies	field days				
Literature search			\$0.00	\$0.00	
Database compilation			\$0.00	\$0.00	
Computer modelling			\$0.00	\$0.00	
Reprocessing of data			\$0.00	\$0.00	
General research			\$0.00	\$0.00	
Report preparation					
(Environmental Impact			+712 50		
Assessment)	Duncan Campbell	1	\$/12.50	\$/12.50	
Report preparation					
Environmental					
Protection Plan)	Duncan Campbell	1	\$10 235 14	\$10 235 14	
Report preparation			<i>\\</i>	<i><i><i>q</i>10/200111</i></i>	
(Emergency Response					
Plan)					
	Jo Shearer	1	\$1,470.00	\$1,470.00	
Report preparation			\$0.00	\$0.00	
				\$12,417.64	\$12,417.64
Drilling	No. of Holes, Size of Core and Metres	No	Rate	Subtotal	
Diamond	115 holes 51 mm dia 83 7 m		\$0.00	\$0.00	
Reverse circulation			40.00	40.00	
(RC)			\$0.00	\$0.00	
Rotary air blast (RAB)			\$0.00	\$0.00	
Other (drills, stems,	3 Shaw core drills, stems and				
bits)	bits	1	\$35,588.66	\$35,588.66	
				\$35,588.66	\$35,588.66
Other Operations	Clarify	No.	Rate	Subtotal	
Trenching			\$0.00	\$0.00	
Bulk sampling			\$0.00	\$0.00	
Underground					
development			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00

Transportation		No.	Rate	Subtotal	
Airfare		1	\$3,101.98	\$3,101.98	
Тахі		1	\$49.90	\$49.90	
truck rental			\$0.00	\$0.00	
kilometers			\$0.00	\$0.00	
ATV	3 ATVs used to commute from camp to the work site for the 77 day season	231	\$123.35	\$28,493,85	
Fuel		1	\$1.888.08	\$1.888.08	
Heliconter (hours)	7 hours	1	\$27,014,93	\$27,014,93	
Fuel (litres/hour)			\$0.00	00 0¢	
Other			40.00	φ 0.00	
				¢60 548 74	\$60 548 74
Accommodation & Food	Rates per day			\$00,540.74	400, 3 40.74
Hotel		1	\$709.77	\$709.77	
Camp			\$0.00	\$0.00	
Meals	Actual Cost	1	\$3,364.29	\$3,364.29	
				\$4,074.06	\$4,074.06
Miscellaneous					
Telephone			\$0.00	\$0.00	
Other (Helicopter nets)	Helicopter nets	1	\$11,025.00	\$11,025.00	
Other (Rigging equipment)	Wire rope, wire clips, wire rope thimbles, shackles	1	\$10,583.33	\$10,583.33	
Other (Expanding grout)	Nex Pand Expanding Grout	1	\$7,740.28	\$7,740.28	
Other (Seed)	Grass seed for trail maintenance	1	\$196.62	\$196.62	
Other (Scale)		1	\$2,2/8./9	\$2,2/8./9	
Other (Silt fence)		1	117.6	\$117.60	+ = 4 = 6 4 4 = =
				\$31,941.62	\$31,941.62
Equipment Rentals			10.00		
Field Gear (Specify)			\$0.00	\$0.00	
Other (Specify)					
				\$0.00	\$0.00
Freight, rock samples					
Shipping of jade from					
site to vancouver			\$12,556.64	\$12,556.64	
Forklift rental		1	\$1,379.35	\$1,379.35	
				\$13,935.99	\$13,935.99

TOTAL Expenditures

\$217,854.73

10.0 STATEMENT OF THE AUTHOR'S QUALIFICATIONS

I, Michael R. Rose, in the city of West Kelowna hereby certify:

1. I am a graduate of the University of Western Ontario with a degree in Civil and Environmental Engineering;

2. I am a graduate of Sheridan College with a diploma in Chemical and Environmental Engineering;

3. I have three years experience as an Environmental Manager in the aircraft fueling sector during which I was an Engineer in Training (EIT) with the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC);

4. I was the Assistant Mine Manager for the contractor that conducted the exploration and development work on the Pishon Green Jade claims mentioned in this report;

5. I have reviewed reports of previous work conducted on the Pishon Green Jade claims.

Dated at West Kelowna, British Columbia, November 19th, 2017.

Matulhon

Michael R. Rose, B.E.Sc.

APPENDIX 1 - SITE PHOTOS

19 | Physical Exploration and Development Report-Pishon Jade Resources Ltd.

Photo 1 – Jade Outcropping

Photo 3: Waterway Crossing

