BRITISH COLUMBIA			Salish COLUMP
The Best Place on Earth			
Ministry of Energy, Mines & Petroleum Resources			A ROGICAL SUF
Mining & Minerals Division BC Geological Survey			Assessment Report Title Page and Summary
Be deological survey			The Tage and Summary
TYPE OF REPORT [type of survey(s)]: Prospecting and Rock Geoche	mistry	TOTAL COST:	\$3,884.00
AUTHOR(S): Lisa Fodor	SIGNATURE(S):	Lise	todo
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):			YEAR OF WORK: 2017
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5661234 / August 21, 201	7	
PROPERTY NAME: Little Gem			
CLAIM NAME(S) (on which the work was done): Cobalt 1, Cobalt 2			
COMMODITIES SOUGHT: Gold, Copper, Cobalt			
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:			
MINING DIVISION: Lillooet	NTS/BCGS: 092J14W	, 092J15W	
LATITUDE: 50 ° 53 '45 " LONGITUDE: 122	<u> </u>	(at centre of worl	k)
OWNER(S):			
1) Cobalt One Energy Corporation Ltd	2)		
MAILING ADDRESS: 1112-933 Hornby Street, Vancouver, BC, V6Z 3G4			
OPERATOR(S) [who paid for the work]: 1) Blackstone Minerals Ltd	2)		
MAILING ADDRESS: Po Box 1175, West Perth, Western Australia, 6872			
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Diorite, Fe-oxide, pyrite, quartz, chalcopyrite, malachite, azurite			
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT R	EPORT NUMBERS: Church,	B.N., 2008, #3	30031.
Shearer, J.T., 2017.			
			Next Page

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)	
GEOLOGICAL (scale, area)	1			
Ground, mapping				
GEOPHYSICAL (line-kilometres)				
Ground				
Magnetic				
Electromagnetic		·		
Induced Polarization				
Radiometric				
Seismic				
Other				
Airborne				
GEOCHEMICAL (number of samples analysed for)				
Soil				
Silt				
Rock 23		Cobalt 1	\$1,505.00	
Other				
DRILLING (total metres; number of holes, size)				
Core				
Non-core				
RELATED TECHNICAL				
Sampling/assaying 23	· · · · · · · · · · · · · · · · · · ·	Cobalt 1	\$874.00	
Petrographic				
Mineralographic				
Metallurgic				
PROSPECTING (scale, area) 1000m	x 700m	Cobalt 1	\$1,505.00	
PREPARATORY / PHYSICAL				
Line/grid (kilometres)				
Topographic/Photogrammetric (scale, area)				
Legal surveys (scale, area)				
Road, local access (kilometres)/t	rail			
-				
Underground dev. (metres)				
		TOTAL COST:	\$3,884.00	

Prospecting and Rock Geochemistry Report

Little Gem Project

COBALT 1 and COBALT 2 Claims

(Tenure numbers 1046246 & 1046253)

Dickson Range/Roxey Creek Area

South-Central British Columbia

Lillooet Mining Division

NTS Mapsheet 092J14W, 092J15W (092J.085, 092J.086)

50°53'45" N, 122°58'58" W

Written for

Cobalt One Energy Corporation Ltd

Operated by

Blackstone Minerals Ltd

Prepared By

Lisa Fodor, B.Sc

November 21, 2017

	Page
1.0 Summary	4
2.0 Introduction	
2.1 Terms of Reference	5
2.2 Location, Access and Property Description	5
2.3 Physiography, Climate and Infrastructure	8
2.4 History	9
3.0 Regional Geology	9
4.0 Property Geology and Mineralization	
4.1 Mineral Potential	
5.0 August 2017 Exploration Program	12
5.1 Program Summary	12
5.2 Sample Collection	
5.3 Sample Preparation, Analyses and Security	16
6.0 Results	
7.0 Discussion and Conclusions	25
8.0 Recommendations	26
9.0 References	
10.0 Statement of Qualifications	28

TABLE OF CONTENTS

List of Figures

List of Tables

	Page
1. List of Claims	7
2. Sample Locations, Assay results and Descriptions	20

List of Appendices

	Page
1. Topographic Sample Map – Gold	29
2. Topographic Sample Map – Copper	30
3. Topographic Sample Map – Cobalt	31
4.North Sample Location Map – Gold	32
5.South Sample Location Map – Gold	
6 East Sample Location Map – Gold	34
7.North Sample Location Map – Copper	35
8.South Sample Location Map – Copper	36
9.East Sample Location Map – Copper	37
10North Sample Location Map – Cobalt	38
11South Sample Location Map - Cobalt	39
12.East Sample Location Map – Cobalt	40
13.Cost Statement	41
14.ALS Vancouver Certificate	44
15.MS Analytical Certificate	49

1.0 SUMMARY

The Cobalt 1 & 2 claims lie favourably along strike from the Little Gem Cobalt and Gold Deposit. Numerous iron stained gossanous zones were identified visually across the valley during visits to the Little Gem deposit as well as from Google Earth.

18 outcrop and 5 float samples were collected during the Cobalt 1 prospecting and sampling program. Gossanous zones on the Cobalt 2 claim require helicopter drop off for access and were unable to be reached by foot during this program.

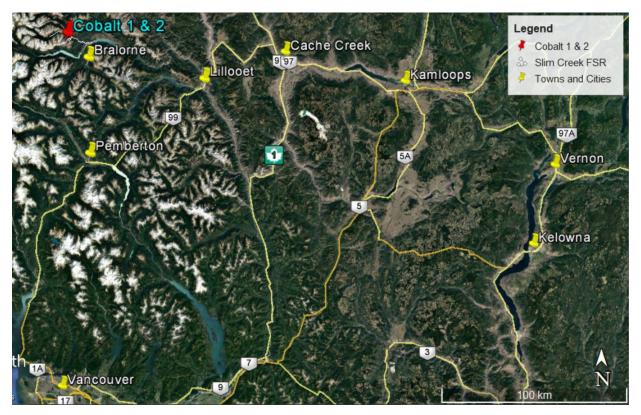
One outcrop sample of gossanous pyrite & quartz altered diorite (SOLG019A) returned 24.2 ppm (g/t) Au and 1.94% Cu. Two samples, V394214 and V394221, hosted malachite, azurite and chalcopyrite in cm-scale aplitic dikelets and returned 0.30 ppm (g/t) & 0.27 ppm (g/t) Au respectively and 0.42% & 0.28% Cu respectively. V394214 was a float sample whereas V394221 was sourced from outcrop.

It is recommended that further prospecting, sampling and geological mapping in the vicinity of SOLG019A be completed to determine the extent and geological controls of the highly anomalous grades. It is also recommended that the gossanous zones on the western side of the Cobalt 2 claim are prospected and sampled during the next field season.

2.0 INTRODUCTION

Prospecting and sampling on the Cobalt 1 claim was undertaken during two stages in summer 2017 in order to assess the economic potential of gossanous zones observed on the western side of Roxey creek. An initial day was spent to inspect and sample the gossanous outcrops closest to road access. After receiving assay results from this initial sampling, further prospecting and sampling was targeted at all other gossanous outcrops within foot traverse distance on the Cobalt 1 claim. 2 days, one night camping were spent further investigating the mineral potential of the newly acquired Cobalt 1 claim. 23 rock samples were collected for assay.

2.1 TERMS OF REFERENCE


This report and the completed work program in 2017 described within was prepared at the request of Blackstone Minerals, where Cobalt One Energy Corporation Ltd is a wholly owned subsidiary of Blackstone Minerals, to document the work competed in 2017 and to recommend further exploration strategies on these claims which are in proximity to the known Little Gem deposit. The information contained in this report is derived from unpublished and published maps, reports, government open file sources and on field work conducted by the author or under the supervision of Blackstone Minerals employees.

2.2 LOCATION, ACCESS AND PROPERTY DESCRIPTION

LOCATION

The Cobalt 1 & 2 claims (from now on referred to as "the claims") are located within the Dickson Range, 11 km and 19 km to the northwest of the townships of Gold Bridge and Bralorne, respectively (see Figure 1). The claims are within the Lillooet Mining Division, covered by NTS Mapsheets 092J14W and 092J15W and are approximately centered at 50°53'45" N latitude and 122°58'58" W longitude (UTM WGS84 Zone 10N 501216 easting, 5638231 northing).

Figure 1. Location Map

ACCESS

The claims can be accessed from Gold Bridge along the Slim Creek Forest Service Road. At km 12.9 there is a 4 km long access road south to the claims via the Roxey creek drainage passing through the Goldbridge Holdings Ltd claims which are fully owned by Cobalt One Energy Corporation Ltd. The road comes within 50 m of the eastern border of the Cobalt 1 claim.

PROPERTY DESCRIPTION

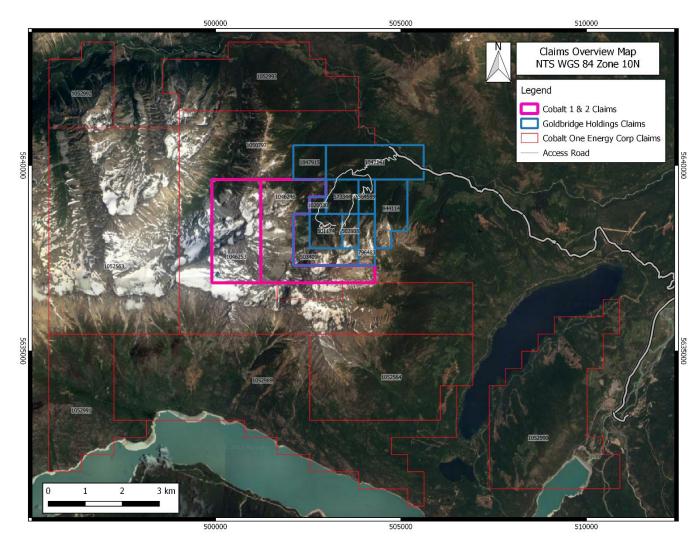

The claims combined cover 774.62 ha. The claims are fully owned by Cobalt One Energy Corporation. Cobalt One Energy Corporation Ltd is a fully owned subsidiary of Blackstone Minerals. Table 1 lists individual claim information.

Table 1. List of Claims

Name	Tenure #	Area (ha)	Current Expiry Date	Registered Owner
Cobalt 1	1046246	407.7	24-08-2018	COBALT ONE ENERGY CORP
Cobalt 2	1046253	366.92	25-08-2018	COBALT ONE ENERGY CORP

The claims are located approximately 4 km west of the of the historic Little Gem Gold and Cobalt Deposit (see figures 2 and 4).

Figure 2. Claim Map

2.3 PHYSIOGRAPHY, CLIMATE, AND INFRASTRUCTURE

PHYSIOGRAPHY

The gossans of interest on the claims are exposed on a steep hillside in the Dickson Range, part of the eastern Coast Mountain Ranges. Steep peaks are separated by wooded valleys and slopes. The timber line is between 1700 metres to 2100 metres in the area. The area is timbered with Douglas fir, spruce, pine and alpine balsam. The area of the claims has been heavily affected by Pleistocene to recent glaciation with arêtes, cirques, tarns and hanging valleys common in the area. Steep slopes are often covered by a thin veneer of talus. The lower levels of the claims are heavily forested (Shearer, 2017).

CLIMATE

The general area has a high elevation northern inland dominated climate. Dramatic variations in the climate are caused by a combination of elevation, rainshadow effects, and latitude. Generally, winters are long and summers cool and short with occasional heat waves. Valley bottoms average -7°C in January and 22°C in July. Annual precipitation ranges from less than 380mm at lower elevations to over 1,250mm at higher elevations. The claim area can usually be worked from June to October without handling or plowing snow. Temperatures from the Bralorne weather station varied from a low of -36°C in winter to a maximum of 37.8°C in summer. Overall, the annual mean temperature was 4.6°C. In terms of precipitation, total annual rainfall averaged 386mm while total snowfall averaged 231 cm (Shearer, 2017).

INFRASTRUCTURE

The claims occur 11km to the northwest of the town of Gold Bridge accessible by gravel forest service roads. Local resources in Gold Bridge include a general store and two hotels. For major services, the town of Lillooet is a 105.4 km drive from Gold Bridge along Lillooet Pioneer Rd 40. The town of Pemberton is accessible during the summer months along the Hurley forest service road, a 80 km drive from Gold Bridge.

The Bralorne Gold Mine is 19km to the southeast of the claims and has an operational water treatment and camp facilities. The mill has been decommissioned for the time being.

Electricity can be sourced from Gold Bridge and the area is an active hydroelectric generation region.

There is adequate water from several creek drainages for mineral exploration on the claims.

2.4 HISTORY

No recorded previous exploration history on these claims. Since the 1930's a handful of different companies have worked the Little Gem deposit but most of the focus was on underground drifting, diamond drilling, and sampling. There was also limited exploration in the immediate vicinity of Little Gem; diamond drilling, sediment geochemistry, geophysics, rock geochemistry and trenching.

3.0 REGIONAL GEOLOGY

The regional geology of the Bridge River area has been summarized by Kirkam, 2016:

The Bridge River district is situated at a tectonic boundary between the Cache Creek and Stikine allochthonous terranes. The Bridge River Terrane is possibly equivalent to the Cache Creek Terrane and comprises slabs of oceanic and transitional crust that were stacked against the continental margin together with island-arc-related units of the Cadwallader Terrane, interpreted as part of the Stikine Terrane. Diverse rock units of these two terranes are structurally deformed and imbricated in the area, together with large fault-bounded slices of gabbroic and ultramafic rocks. These early structures are crosscut by later northwest- and north-trending major faults related to the Fraser-Yalakom regional dextral strike slip fault system, and by Late Cretaceous and Tertiary granitic plutons and related dikes (see figure 3).

The Bridge River Terrane comprises Mississippian to Middle Jurassic accretionary complexes of oceanic basalt and gabbro and related ultramafic rocks, chert, basalt, shale and argillite. It is juxtaposed with Late Triassic to Early Jurassic island arc volcanic rocks and mostly marine, arc-marginal clastic strata of the Cadwallader Terrane. These assemblages are variably overlain, mostly to the north, by clastic, mostly non-marine successions belonging to the Jurassic-Cretaceous Tyaughton Basin.

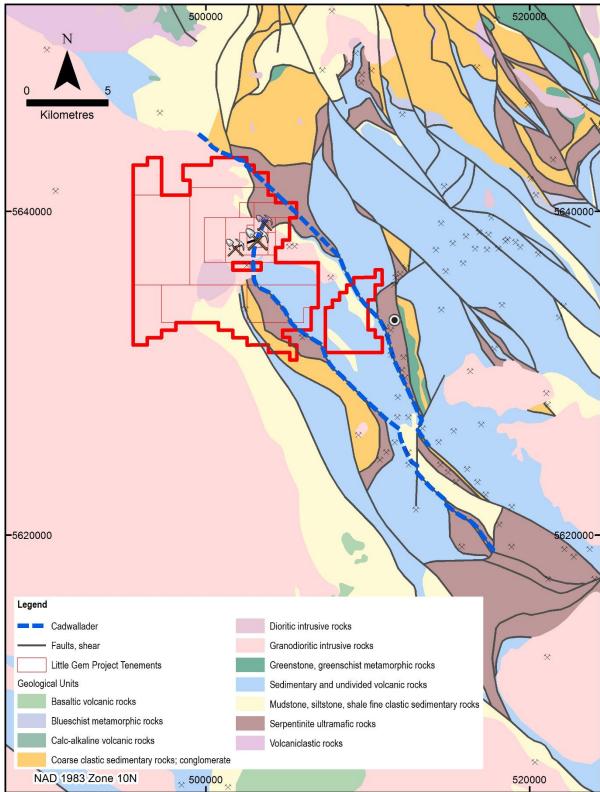


Figure 3. Regional Geology in vicinity of the Little Gem Project

The region has been intruded by a wide range of Cretaceous and Tertiary plutonic and volcanic rocks and their hypabyssal equivalents. Most significant among these are the dominantly Cretaceous granitoid bodies that form the Coast Plutonic Complex (CPC), which is locally characterized by the 92 Ma Dickson McClure intrusions, and the large individual bodies of the Late Cretaceous Bendor plutonic suite. Hypabyssal magmatism is reflected by emplacement of porphyritic dikes between 84 and 66 Ma, with the youngest magmatic event being 44 Ma lamprophyre dikes.

The district has been deformed by mid-Cretaceous contractional deformation within the westerly trending Shulaps thrust belt, and by contractional and oblique-sinistral deformation associated with the Bralorne-Eldorado fault system. The timing of this deformation and metamorphism is ca. 130 to 92 Ma, with synorogenic sedimentary flysch, as young as mid-Cretaceous, cut by the faults. The Bridge River and Cadwallader Terrane are juxtaposed along the Bralorne-Eldorado fault system, which in the Bridge River area consists of linear, tectonized and serpentinized slices of late Paleozoic mafic and ultramafic rocks known as the Bralorne-East Liza Lake thrust belt, a 1 to 3 km wide zone defined by Schiarizza et al., 1997.

The main gold-forming event in the Bridge River district took place at ca. 68 to 64 Ma at the Bralorne-Pioneer deposit. Mineralization pre-dated or was synchronous with the emplacement of the Bendor batholith, and the gold event overlaps initiation of dextral strike-slip on the regional fault systems in this region. The abundance of gold, antimony, and mercury deposits and occurrences along the various main structures in the district suggests that the onset of dextral strike-slip in this part of the Cordillera facilitated widespread fluid flow along the reactivated fault systems.

4.0 PROPERTY GEOLOGY AND MINERALIZATION

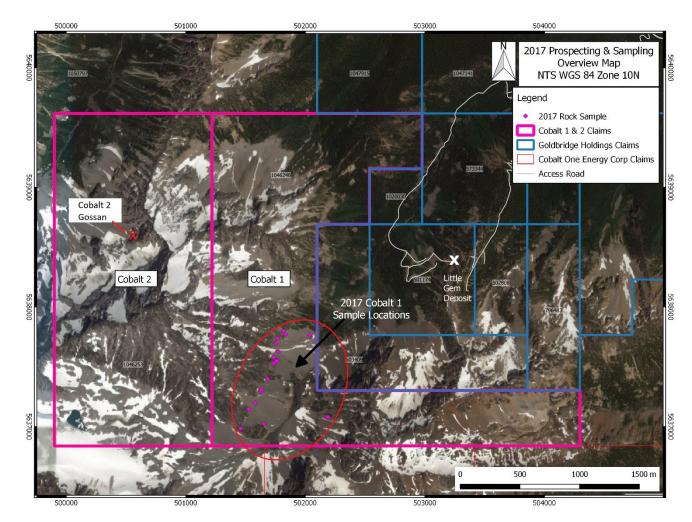
The claims are underlain by the Penrose lobe of the Coast Plutonic Complex that projects easterly from Dickson Peak to Gun Lake. These rocks are mostly of biotite hornblende granodiorite.

Several gossans are present on the eastern side of Dickson Peak on the Cobalt 1 claim. The gossanous zones appear to contain very fine grained disseminated pyrrhotite in a dark fine grained mafic or ultramafic lithology.

Local copper mineralization on the claims is generally associated with cm-scale aplite/quartzkspar dikelets/veinlets containing clots of localized chalcopyrite and malachite staining on weathered surfaces. These veinlets generally occur near the gossanous zones.

4.1 MINERAL POTENTIAL

Heavily mineralized lenses and disseminations of cobalt bearing arsenic sulphides are exposed in the nearby Little Gem mine where they occur in a steeply dipping zone of bleached granodiorite. Near the showings and adjacent slopes the granodiorite is cut by a variety flat and steeply dipping shears from which carbonate alteration has spread producing prominent tan coloured bands. These alteration bands attained widths of 25 feet and often cut across the main zone of mineralization.


Due to the interpreted ENE-WSW strike of the known mineralized zone at Little Gem, it is possible that this zone may extend at depth within the bounds of the Cobalt 1 & 2 claims.

The claims are also along strike of the Cadwallader fault zone that hosts the historic Pioneer-Bralorne gold camp with a total estimated endowment of 4.4 Moz at 17 g/t Au.

5.0 AUGUST 2017 EXPLORATION PROGRAM

5.1 PROGRAM SUMMARY

3 total days were spent during the summer 2017 field season prospecting and sampling on the Cobalt 1 claim (see figures 4 and 5). The first day was conducted during a site visit from Blackstone Minerals Senior Geologists at the end of July. They collected 4 samples on the Cobalt 1 claim from gossanous outcrops as well as interesting float and received interesting assay results. This warranted follow up work from August 17-18th, 2017 on the rest of the gossanous zones along Roxey creek. 2 days were spent by the author and a field assistant prospecting and collecting samples from the remaining accessible gossans on the Cobalt 1 claim. The crews drove up to site from Gold Bridge, B.C. and parked near Roxey creek, which allowed for the closest foot access. The first crew did a one day trip whereas the second crew hiked in camping gear and spent one night on claim 503409. Access to the Cobalt 2 claim during August 2017 was not viable by foot and requires future helicopter assistance to investigate gossans (see figure 4 for location and 6 for image) on the north-western side of Dickson Peak.

Figure 4. 2017 Prospecting and Sampling Overview Map

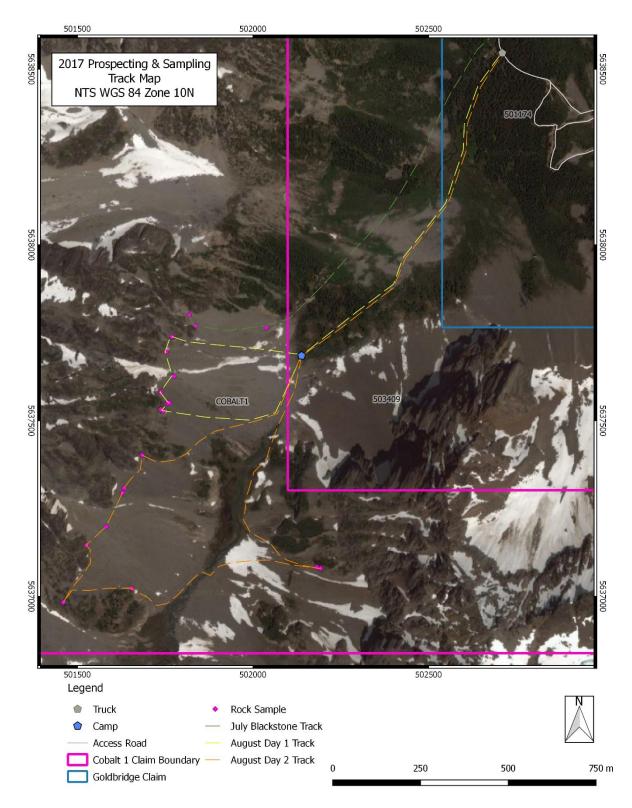


Figure 5. 2017 Prospecting and Sampling Track Map

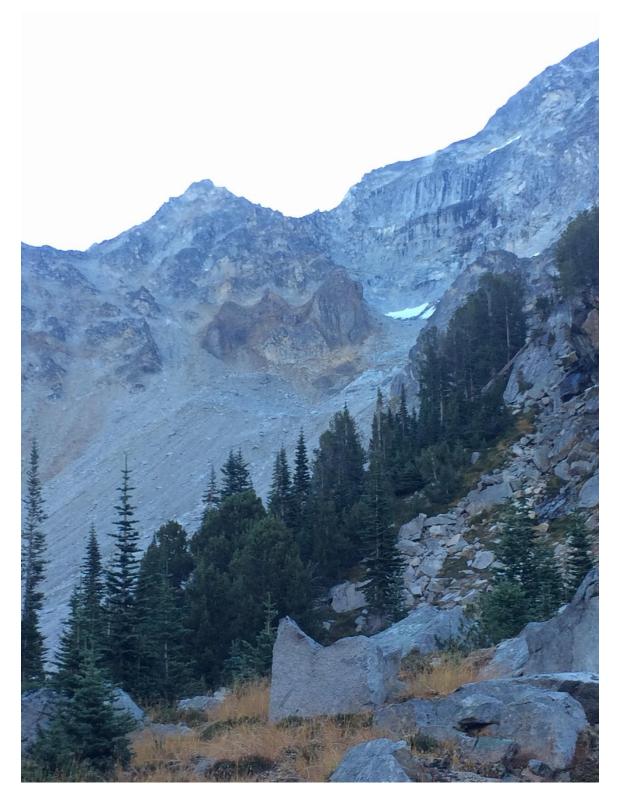


Figure 6. Gossan on Cobalt 2 claim, photo taken from the valley to the west of Dickson Peak.

5.2 SAMPLE COLLECTION

The samples were either chipped across a specific distance or a single grab sample. An averaged waypoint location was taken by Garmin GPS62s or GPS64s and recorded for each sample. The samples were then placed in a fresh poly plastic or calico cotton bag with sample ID written on the outside of the bag. Where a sample tag booklet was used, a unique tag was assigned to the sample and the tag was placed in the bag with the sample. Photos were taken of sample specimens and sample locations. Sample locations were marked in the field by writing the sample ID on pink flagging tape then wrapping and tying around a local rock. The bags were closed securely with a zip tie for transport out of the field.

5.3 SAMPLE PREPARATION, ANALYSES, AND SECURITY

At the office the samples were placed in labelled rice bags, securely closed with zip ties and hand delivered to the lab by the author or trusted Cobalt One Energy Corp employee.

SOLG018, SOLG019A, SOLG019B and SOLG020 were delivered to ALS Laboratories in Vancouver along with other samples collected during the Blackstone Senior Geologists visit to the Little Gem Property.

V394211-V394229 were hand delivered to MS Analytical in Vancouver by the author.

The preparation and analysis at each lab is listed below.

ALS Vancouver:

Preparation:

CRU-31 Fine crushing – 70% <2mm

SPL-21 Split sample – riffle splitter

PUL-31 Pulverize split to 85% <75um

Analysis:

Au-AA26 Ore grade Au, 50g FA AA finish

ME-ICP61 33 element, four acid ICP-AES

Cu-OG62 Ore grade Cu, four acid ICP-AES

A3 1 through 4 were added by ALS Vancouver. There were no client QC samples.

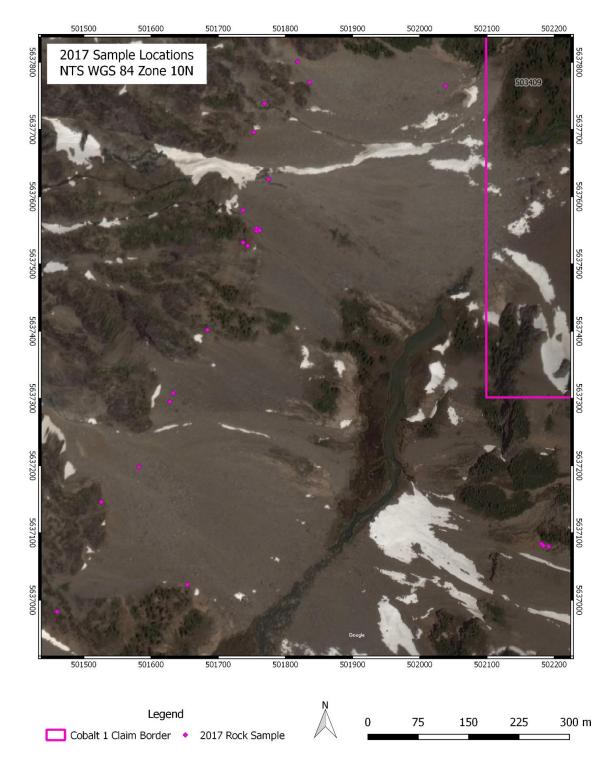
MS Analytical Vancouver:

Preparation: PRP-910 Dry, crush to 70% passing 2mm, split 250g, pulverize to 85% passing 75um

Analysis:

FAS-221 Ore grade Au fire assay, 50g fusion, AAS finish

ICP-230 34 element, 0.2g, four acid, ICP-AES, trace level


Added to sample run by MS Analytical:

2 granite blanks, 1 sample PD, 2 sample duplicates, 2 standard blanks, 2 standards (CDN-GS-2P and CDN-CM-38).

No blanks or standards were added in the sample submittal to either lab. These will be added in future work by the company.

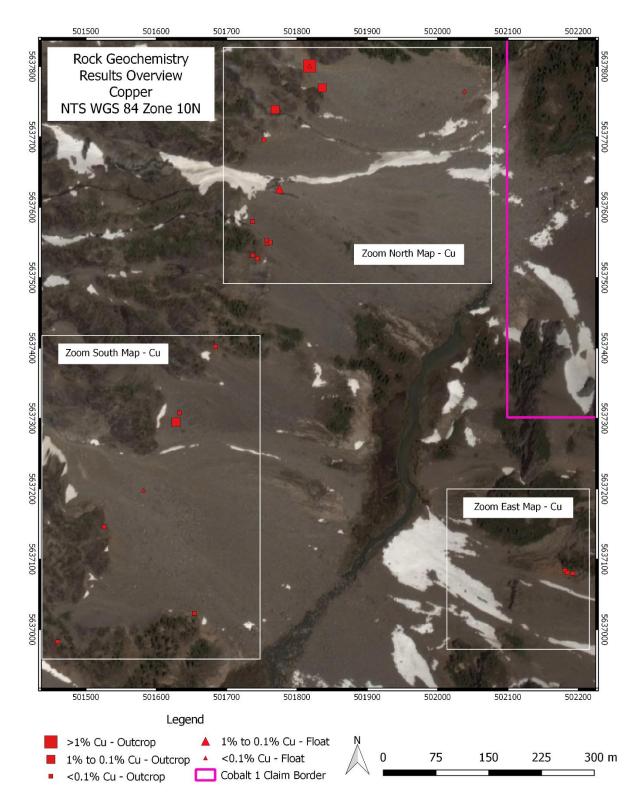
6.0 RESULTS

18 outcrop and 5 float rock samples were collected on the Cobalt 1 claim, totalling 23 rock samples. These samples were taken from gossanous zones as well as malachite stained locations (see figure 7 for sample locations). Topographic maps showing contours, creeks, tenures and sample locations for Gold, Copper and Cobalt have been included in the appendix section (appendices 1 to 3).

Figure 7. 2017 Rock Sample Locations

Table 2 lists the collected sample coordinates in UTM WGS84 Zone 10, Gold, Cobalt and Copper assay values and rock descriptions.


Sample ID	Easting	Northing	Elevation (m)	Sample Type	Au (ppm)	Co (ppm)	Cu (%)	Description
SOLG018	502038	5637765	1828	float	0.05	69	0.07	float of fe-stained sugary qz+py (3%) altered ?diorite
SOLG019A	501818	5637801	1975	outcrop	24.2	28	1.94	outcrop ±10m tk of Fe-stained qz+py altered diorite
SOLG019B	501818	5637801	1975	float	0.19	42	0.08	minor float diorite with tu+amp+cpy filled vugs
SOLG020	501836	5637770	1939	subcrop	0.13	48	0.44	sugary qz+bt+cpy (est 2%) altered diorite
V394211	501769	5637739	1997	outcrop	<0.01	28	0.11	2m tk, 4m long, Fe-oxide stained gossan. fg fe-stained sugary qtz in center of gossan. M- drk grey (fresh surf), vfg unit on margins of gossan with <10% fg diss Po. Tr fg bornite(?). Mod-magnetic
V394212	501753	5637696	1992	outcrop	0.01	46	0.04	2m tk, Fe-oxide stained, tr diss fg py, cpy, Po. Weak-magnetic. Hosted in cg fsp-hb diorite.
V394213	501737	5637580	1990	outcrop	<0.01	7	0.01	Fe-oxide stained gossan with fg sugary crumbly qtz in center and dk grey fg unit on margins containing tr fg diss Po. Hosted in cg fsp-hb diorite.
V394214	501775	5637626	1980	float	0.3	34	0.42	Float in scree. mlc & az staining w 1-2% f-cg cpy blebs in white aplite dike w tr chl alt. Dike cuts cg fsp-hb diorite. Fsp zoned, altered to qtz.
V394215	501757	5637553	1969	outcrop	<0.01	17	0.02	contact of gossan with mg diorite. Fe-oxide stained, silicified mg diorite, tr fg diss Po.
V394216	501757	5637549	1974	float	<0.01	25	0.01	float bldr from cliffs above. Very heavy & orange Fe-oxide altered. Weathering vugs partially lined with sooty dk grey mineral.
V394217	501744	5637527	1980	outcrop	0.01	23	0.04	very fe-oxide weathered, fg sugary qtz. Localized tr vfg diss Po in fg dk grey unit.
V394218	501737	5637532	1986	outcrop	0.01	22	0.03	dk grey vfg dike (?), very silicified with ~10% vfg diss Po. Cuts through altered diorite
V394219	501762	5637550	1965	outcrop	0.01	11	0.03	fe-oxide weathered gossan with sugary fg qtz in weak breccia/shear zone. Local dk grey unit with 1% fg diss Po. Chip sampled across 3m.
V394220	501684	5637402	1971	outcrop	<0.01	5	0.02	10cm tk qtz-hb vein with silicification halo. Surrounding diorite Fe-oxidized. Tr fg cpy in vein.
V394221	501628	5637295	2002	outcrop	0.27	17	0.28	mlc + az + cpy clusters in 3cm tk qtz aplite dikelet on margin of Fe-oxide gossan zone. cg zoned fsp-hb diorite is highly silicified around dikelet.
V394222	501633	5637308	2009	outcrop	0.02	29	0.05	grab of mod-strongly magnetic, fe-ox, fg sugary qtz diorite. Gossan zone is ~30m wd, 50m tall. <1% fg diss Po.


Table 2: Sample Locations, Assay results and Descriptions

V394223	501582	5637198	2009	float	<0.01	10	0.01	float in scree gulley. Orange fe-ox. ~10% vfg silver diss sulph, looks like Po but non-mag. Very silicified, hard to tell lith.
V394224	501526	5637146	2020	outcrop	0.01	13	0.02	Im+ka weathering on Fe-ox gossan. Strong mag, possibly fg magnetite? On margin of gossan similar d-gy fg unit w 1% fg diss Po.
V394225	501460	5636983	2008	outcrop	0.05	51	0.08	Fe-ox weathering, d-gy fg silicified unit with vfg diss Po (?) non-magnetic. Above steep gossanous cliff. Hosted by cg fsp-hb diorite.
V394226	501654	5637023	1909	outcrop	<0.01	40	0.01	Fe-ox gossan, f-mg diorite cut by vfg d-gy unit with fg diss bt+mlc, ~3%Po. Weakly magnetic.
V394227	502181	5637084	1981	outcrop	0.01	15	0.01	Fe-ox fg sugary diorite with d-gy fg silicified unit with 5% diss silver sulph (Po?). Non- magnetic. Next to buff weathering dk-gy-blk, heavy fg dike.
V394228	502184	5637081	1974	outcrop	<0.01	102	0.01	±5m tk, buff-og pitted weathering, dk-gy-blk fresh, fg heavy ultramafic dike with 2-5% vfg diss silver sulph, minor fg white mica (?). Contact orientation unclear. Non-magnetic
V394229	502192	5637080	1991	outcrop	<0.01	39	0.02	Fe-ox weathering, similar fg d-gy silicified unit with 5-10% vfg diss silver sulph (Po?). Mod-strongly magnetic.

Figures 8 through 10 display assay values visually for gold, copper and cobalt. The zoomed in areas indicated on the figures can be found in appendices 4 through 12 at the end of this report.

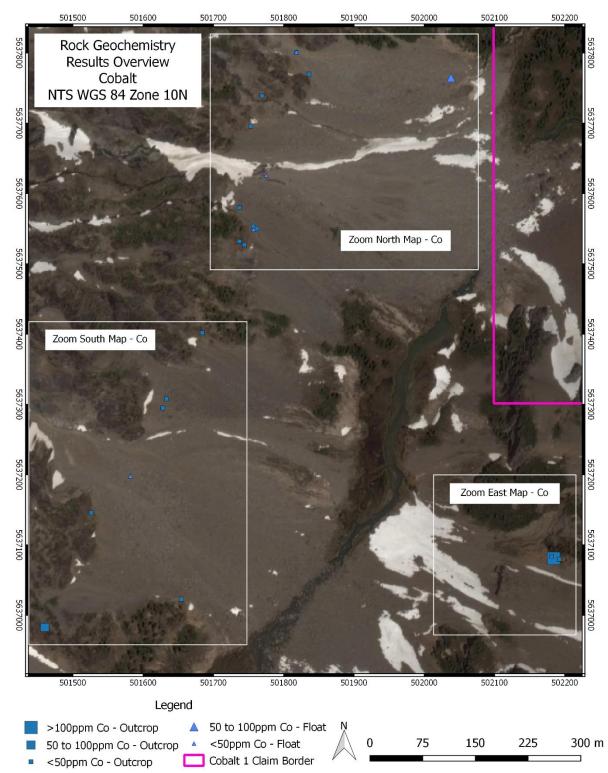

Figure 8. Gold Assay Overview Map

Figure 9. Copper Assay Overview Map

Figure 10. Cobalt Assay Overview Map

7.0 DISCUSSION AND CONCLUSIONS

Prospecting of approximately 1 km long a NNE trending ferruginous zone within the Mt Dickson diorite-granodiorite body returned up to 24 g/t Au and 1.9 % Cu, and is referred to as the Roxey Prospect. The mineralisation is associated with a NNE trending zone of fine grained quartz + sulfide (mainly pyrrhotite and pyrite) alteration within amphibole diorite. Minor sericite, biotite and tourmaline alteration was also locally observed but remains to be delineated.

It is interpreted that quartz + potassium feldspar veins (possibly aplite dikelets) precipitate copper minerals (notably chalcopyrite, malachite and azurite) at three-way structural intersections (see figure 11). In the case of V394221, precipitation occurred during intersection with the gossan contact edge and another structural entity.

Figure 11. Copper mineralization at V394221.

The author has observed this near the Little Gem mine workings as well. It has been noted that three-way intersections of structure in this area allow for precipitation of sulphides in pockets.

If precipitation of sulphides on small scale structure is occurring in the area, it is likely occurring on a larger scale as well.

Ultramafic outcrop and float found on the Cobalt 1 claim suggests presence of unmapped ultramafic inclusions within the diorite – granodiorite pluton. Such inclusions may be prospective for Little Gem type Co + Au mineralisation.

Fuchsite (chrome mica) altered granitoid float within Cobalt 1 claim suggests presence of alteration zones prospective for Little Gem type Co + Au mineralisation. Fuchsite has been observed in the alteration halo and within metres of sulphide mineralization at Little Gem.

The sizeable gossan observed on the northwestern side of Mt Dickson during fall 2017 is of prime interest as it may be a continuation of the gold-copper mineralized zone identified at the Roxey prospect.

8.0 RECOMMENDATIONS

The following have been recommended by Blackstone Senior Geologists and the author for future work on the Cobalt 1 & 2 claims:

- 1. Petrography of identified mineralised and altered materials from Cobalt 1 claim.
- 2. Follow up sampling and geological mapping of the identified mineralized zone within the Cobalt 1 claim. Especially the delineation and sampling of the alteration zones at Roxey.
- 3. Prospecting of gossans observed on Cobalt 2 claim, notably the gossan mentioned in this report.
- 4. Acquisition of satellite spectral data and imaging to enhance alteration signatures and delineation of targets for prospecting in the summer of 2018.
- 5. Lineament and basement interpretation of above mentioned imagery, followed by ground truthing.
- 6. Stream sediment sampling to identify anomalous catchments for follow-up prospecting the summer of 2018.

9.0 REFERENCES

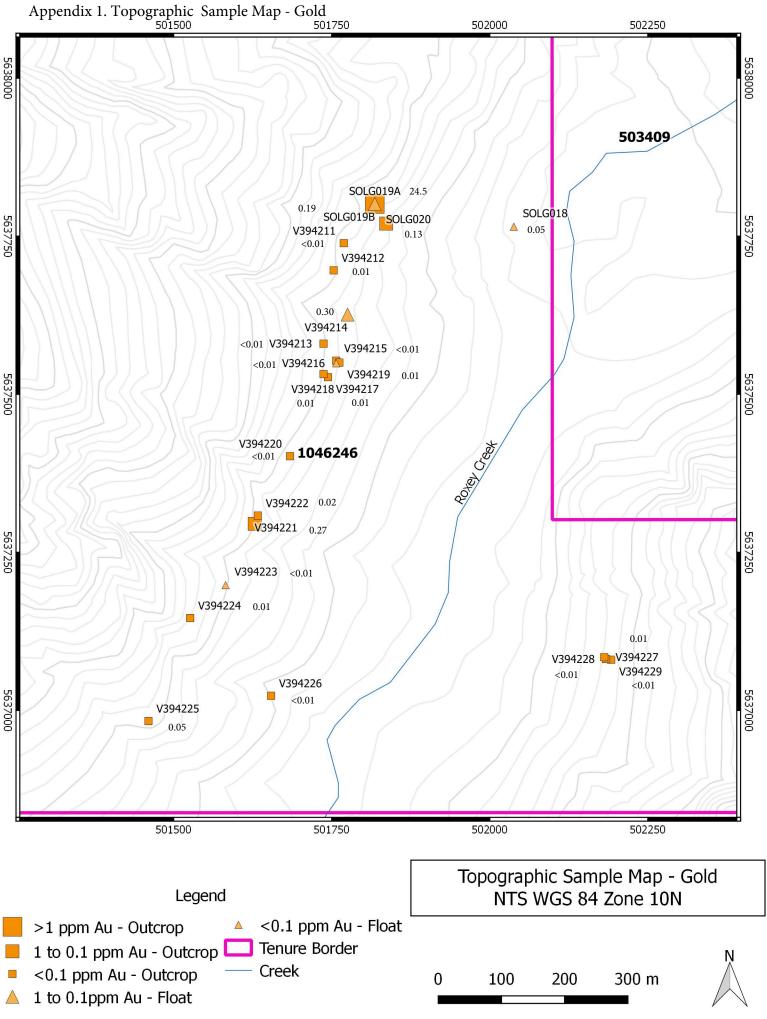
Church, B.N., (2008). Geological and Geochemical Evaluations of the Little Gem Cobalt, Nickel and Gold Deposit, Assessment Report #30031, dated March 30th, 2008.

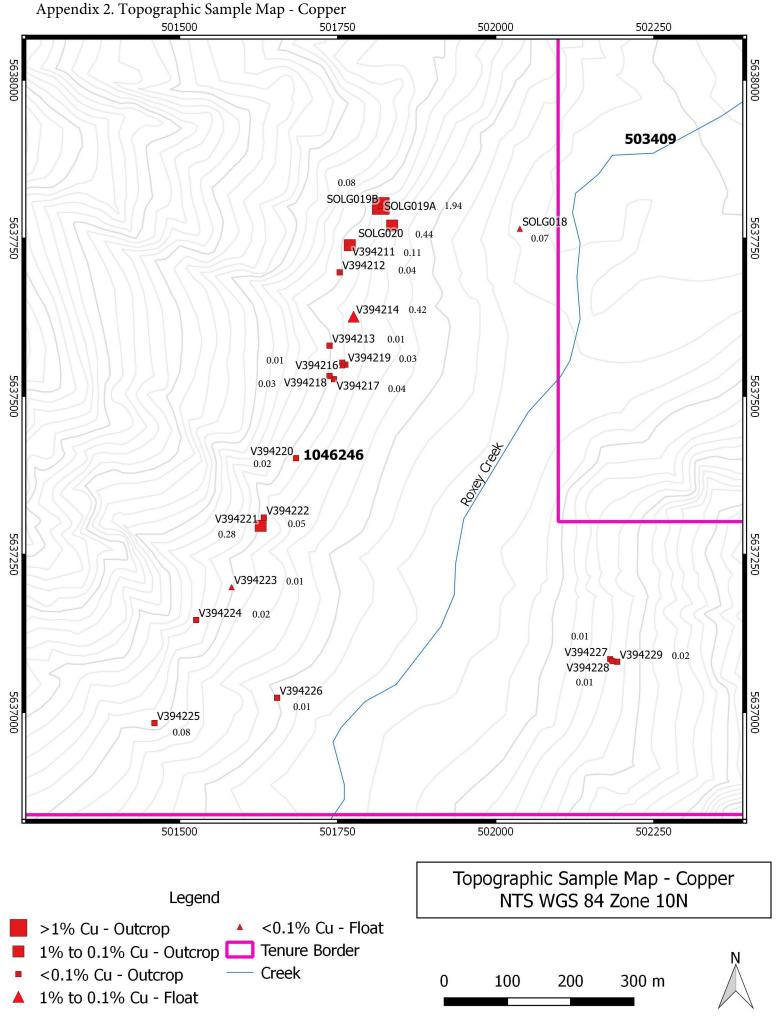
Kirkham, G. (2016). NI 43-101 Technical Report for Bralorne Gold Mine, written by Kirkham Geosystems Ltd, dated October 20th, 2016.

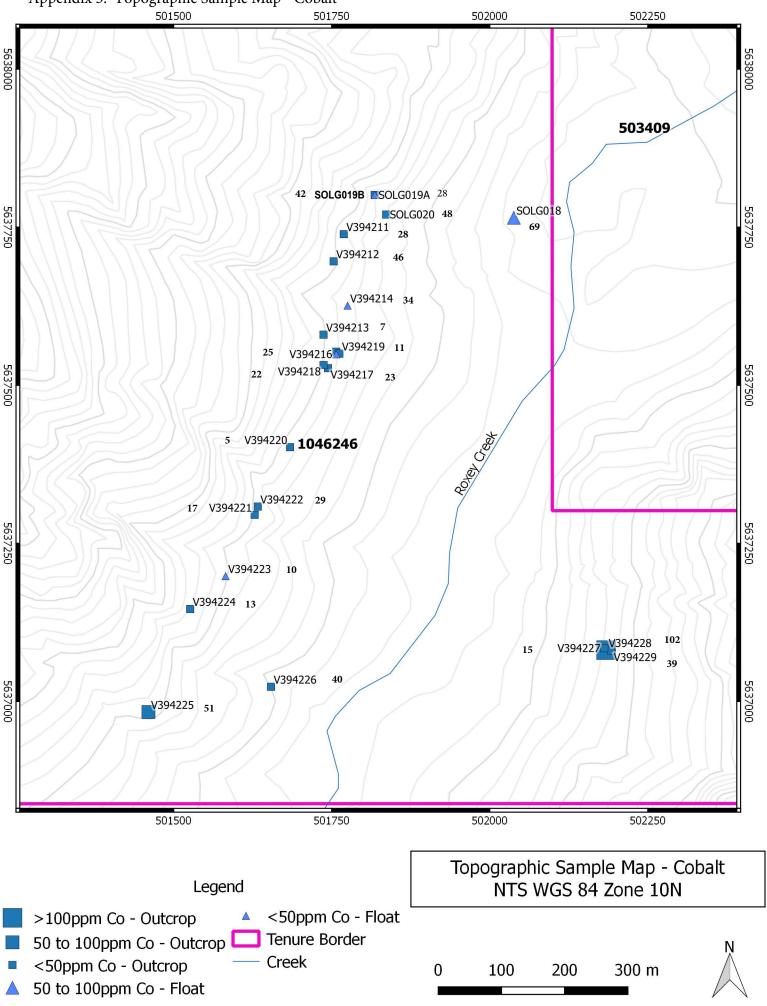
Shearer, J.T., (2017). Technical Report on the Little Gem Cobalt-Gold Property. Dated April 15th, 2017.

10.0 STATEMENT OF QUALIFICATIONS

I, Lisa Nicole Fodor, do hereby certify that:

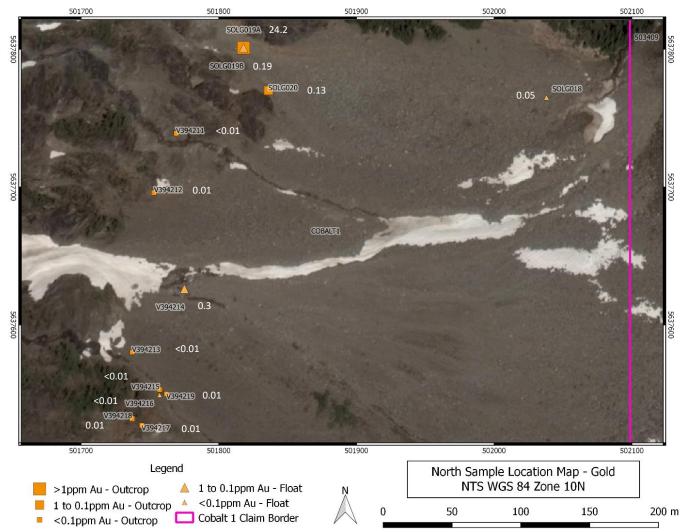

- 1. I am a member in good standing of Engineers and Geoscientists of British Columbia (membership #172360).
- 2. I am a graduate of the University of Victoria (2013) with a Bachelor of Science in Earth Science.
- 3. I have been actively involved in the mining industry since graduation and have 4.5 years of mineral exploration and mining experience in British Columbia, the Northwest Territories, and Saskatchewan.
- 4. I am familiar with the district. This report is based on my supervision and participation in the 2017 prospecting and sampling program described above. I am the author of this report and verify the costs as reported to be true.

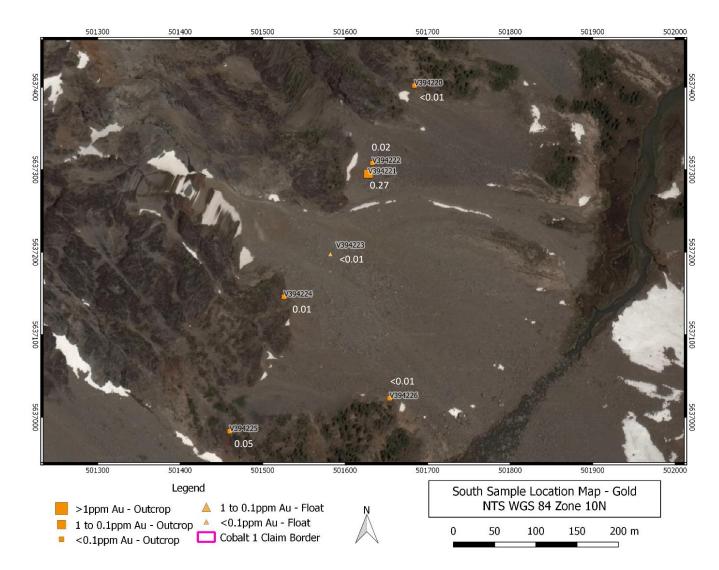

Dated in Bralorne, B.C., the 21st day of November, 2017.


Submitted by:

lisa Jodos

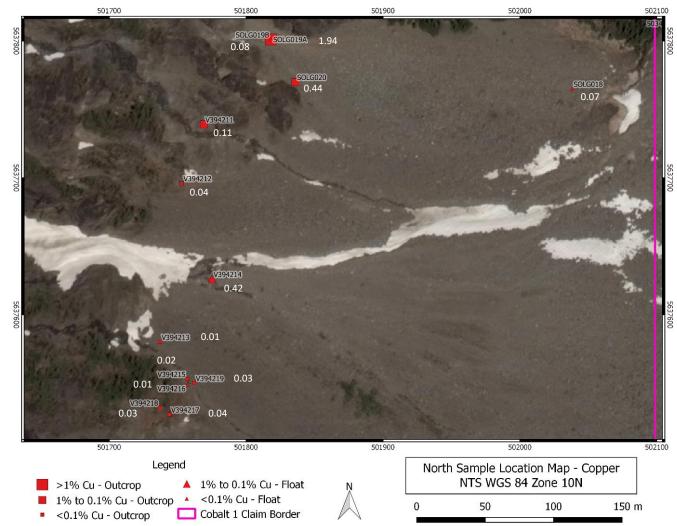
Lisa Fodor, B.Sc. November 21st, 2017

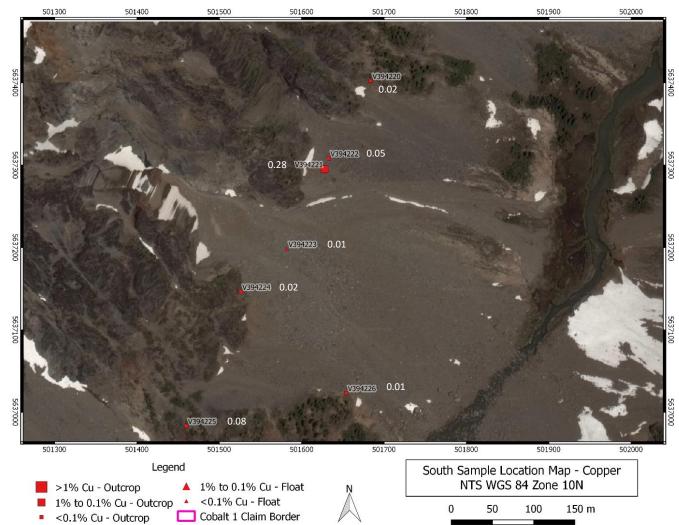




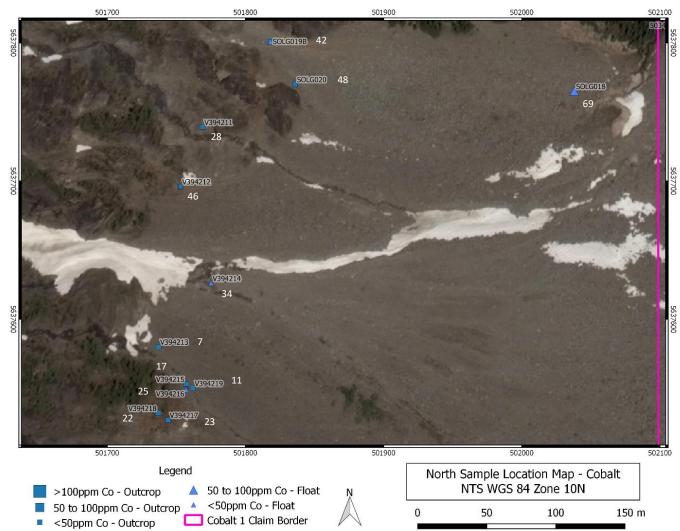
Appendix 3. Topographic Sample Map - Cobalt

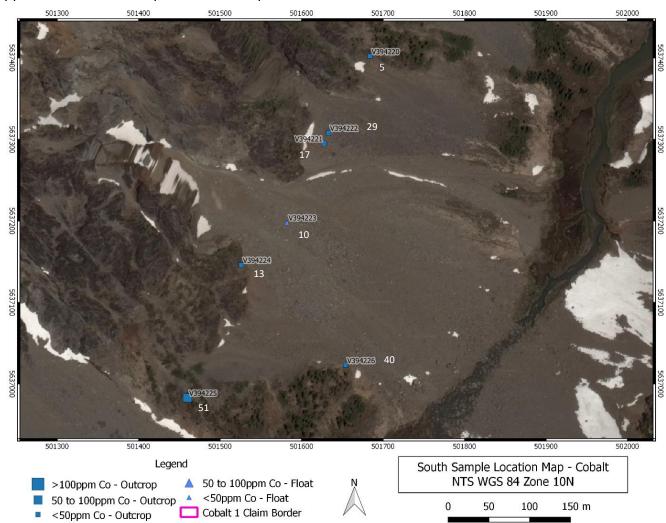
31

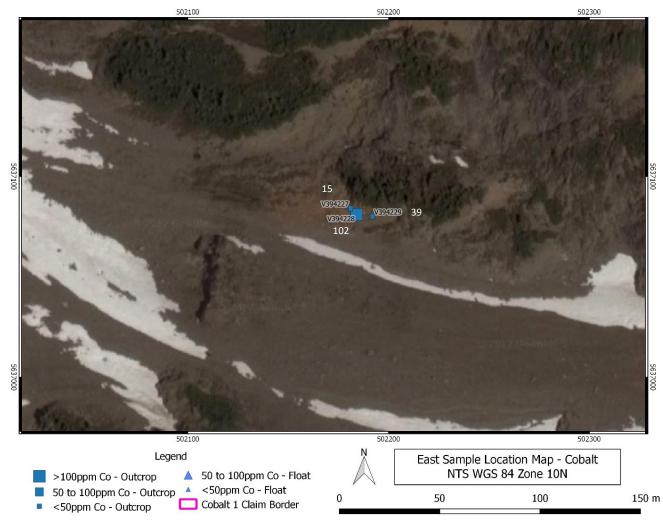

Appendix 4. North Sample Location Map – Gold


Appendix 5. South Sample Location Map – Gold

Appendix 6. East Sample Location Map – Gold


Appendix 7. North Sample Location Map – Copper


Appendix 8. South Sample Location Map – Copper


Appendix 9. East Sample Location Map - Copper

Appendix 10. North Sample Location Map – Cobalt

Appendix 11. South Sample Location Map – Cobalt

Appendix 12. East Sample Location Map - Cobalt

Appendix 13. Statement of Costs					
Exploration Work type	Comment	Days			Totals
prospecting & rock geochem		-			
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Lisa Fodor/Project Geologist	August 17-18, 2017	2	\$400.00	\$800.00	
Jamie Kunka/Field Assistant	August 17-18, 2017	2	\$300.00	\$600.00	
Stuart Owen/Senior Geologist	29-Jul-17	1	\$500.00	\$500.00	
Andrew Radonjic/Senior Geologist	29-Jul-17	1	\$500.00	\$500.00	
				\$2,400.00	\$2,400.00
Office Studies	List Personnel (note - Office onl	y, do no	t include	field days	
Literature search			\$0.00	\$0.00	
Database compilation			\$0.00	\$0.00	
Computer modelling			\$0.00	\$0.00	
Reprocessing of data			\$0.00	\$0.00	
General research			\$0.00	\$0.00	
Report preparation	19-Nov-17	1.0	\$400.00	\$400.00	
Other (specify)			•	\$0.00	
				\$400.00	\$400.00
Airborne Exploration Surveys	Line Kilometres / Enter total invoiced a	amount			
Aeromagnetics	,,,,,,, _		\$0.00	\$0.00	
Radiometrics			\$0.00		
Electromagnetics			\$0.00		
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)			\$0.00		
			7	\$0.00	\$0.00
Remote Sensing	Area in Hectares / Enter total invoiced	amount or	list person		+
Aerial photography			\$0.00		
LANDSAT			\$0.00		
Other (specify)			\$0.00		
			1000	\$0.00	\$0.00
Ground Exploration Surveys	Area in Hectares/List Personnel				1
Geological mapping	· · · · ·				
Regional		note: ex	penditures	here	
Reconnaissance				l in Personne	e/
Prospect			, enditures		
Underground	Define by length and width	,			
Trenches	Define by length and width			\$0.00	\$0.00
					1
Ground geophysics	Line Kilometres / Enter total amount in	nvoiced lis	t personnel		
Radiometrics					
Magnetics					
Gravity					
Digital terrain modelling					
Electromagnetics	note: expenditures for your crew in	the field			
SP/AP/EP	should be captured above in Person				
IP	field expenditures above	-			
AMT/CSAMT					
Resistivity					
Complex resistivity					

00 \$0.00 00 \$0.00 \$150.00 00 \$60.00 00 \$0.00	\$150.00
00 \$0.00	\$150.00
00 \$0.00	\$150.00
\$0.00	
00.0\$ 0.00	
\$0.00	
00 \$150.00	
00.0\$ 0.00	
00 \$0.00	
Subtotal	
00 \$0.00	
00 \$0.00	
\$0.00	
Subtotal	
\$0.00	\$0.00
\$0.00	
\$0.00	
\$0.00	
\$0.00	
Subtotal	
\$0.00	\$0.00
00 \$0.00	
\$0.00	
00 \$0.00	
00 \$0.00	
Subtotal	•
\$874.00	\$874.00
00 \$0.00	
00 \$0.00	
00 \$0.00	
00 \$0.00	
00 \$0.00	
00 \$874.00	
00 \$0.00 00 \$0.00	
00 \$0.00 00 \$0.00	
Subtotal	
\$0.00	\$0.00

Meals	day rate or actual costs-specify	\$0.00	\$0.00	
			\$60.00	\$60.00
Miscellaneous				
Telephone		\$0.00	\$0.00	
Other (Specify)				
			\$0.00	\$0.00
Equipment Rentals				
Field Gear (Specify)		\$0.00	\$0.00	
Other (Specify)				
			\$0.00	\$0.00
Freight, rock samples				
		\$0.00	\$0.00	
		\$0.00	\$0.00	
			\$0.00	\$0.00
TOTAL Expenditures				\$3,884.00

Appendix 14 - ALS Minerals Assay Results

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

CERTIFICATE VA17164215

Project: Little Gem

This report is for 34 Rock samples submitted to our lab in Vancouver, BC, Canada on 1-AUG-2017.

The following have access to data associated with this certificate:

MICHAEL KONNERT	STUART OWEN	ANDREW RADONIIC
and the second		and the process of the second s

To: BLACKSTONE MINERALS LTD. SUITE 3, LEVEL 3, 24 OUTRAM STREET WEST PERTH WA 6005 AUSTRALIA Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 3- SEP- 2017 Account: BMLMEQHI

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 22	Sample login - Rcd w/o BarCode	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 31	Pulverize split to 85% < 75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP- AES	ICP- AES
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES
Co- OG62	Ore Grade Co - Four Acid	ICP- AES
Cu- 0G62	Ore Grade Cu - Four Acid	ICP- AES
Au- AA26	Ore Grade Au 50g FA AA finish	AAS
Au- GRA22	Au 50 g FA- GRAV finish	WST- SIM

To: BLACKSTONE MINERALS LTD. ATTN: STUART OWEN SUITE 3, LEVEL 3, 24 OUTRAM STREET WEST PERTH WA 6005 AUSTRALIA

***** See Appendix Page for comments regarding this certificate *****

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: BLACKSTONE MINERALS LTD. SUITE 3, LEVEL 3, 24 OUTRAM STREET WEST PERTH WA 6005 AUSTRALIA

CERTIFICATE OF ANALYSIS VA17164215

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 3-SEP-2017 Account: BMLMEQHI

Project: Little Gem

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au- AA26 Au ppm 0.01	Au- CRA22 Au ppm 0.05	ME-ICP61 Ag ppm 0.5	ME-ICP51 Al % 0.01	ME- ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-1CP61 Ca % 0.01	ME-1CP61 Cd ppm 0.5	ME-1CP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME- ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01
SOLC018 SOLC019A SOLC019B SOLC020		1.40 0.66 1.52 1.30	0.05 24.2 0.19 0.13		<0.5 24.0 <0.5 1.9	10.30 7.75 6.51 10.50	175 111 51 59	120 200 80 610	<0.5 0.5 <0.5 0.9	2 41 <2 2	6.60 4.13 7.20 3.26	0.7 ≪0.5 0.8 ≪0.5	69 28 42 48	75 39 23 31	679 >10000 791 4350	8.00 4.70 14.70 7.25
A3-1 A3-2 A3-3		1.56 2.36 1.86 1.48	0.05 0.31 1.25 0.81		<0.5 <0.5 <0.5 <0.5	7.82 7.52 7.74 7.90	476 7150 5030 4540	1230 680 2650 800	0.7 0.5 0.5 0.6	<2 3 13 8	3.25 3.06 2.42 3.12	<0.5 <0.5 <0.5 <0.5	32 410 216 432	34 36 36 69	12 488 4 9	4.03 6.10 6.47 7.27

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: BLACKSTONE MINERALS LTD. SUITE 3, LEVEL 3, 24 OUTRAM STREET WEST PERTH WA 6005 AUSTRALIA

CERTIFICATE OF ANALYSIS VA17164215

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 3-SEP-2017 Account: BMLMEQHI

Project: Little Gem

	-				108		18 								
Method Analyte Units LOR	ME-ICP61 Ga ppm 10	ME-ICP61 К % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 p ppm 10	ME-ICP61 Pb ppm 2	ME-1CP61 S % 0.01	ME-1CP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP6 Th ppm 20
	20 10	0.05	<10 <10	2.28	1015 814	2	1.44	81 28	320 320	3	2.43	<5 <5	20 14	601 583	<20 <20
	20 20	0.10 1.00	<10 10	1.36 1.39	842 446	1 136	0.85 3.15	43 83	1090 220	<2 2	0.25 2.61	ণ ক ক	14 9	423 570	<20 <20
	20 20	2.29 2.74	10 70	1,52 1.32	495 610	1 7	2.34 0.47	18 17	600 770	7 7	0.02 0.37	<5 13	14 10	411 207	<20 <20
	20 20	4.18 2.62	50 1130	1.44 1.29	564 761	1 2	1.50 0.49	15 24	570 580	2 6	0.12 0.33	7 16	12 15	359 221	<20 30
	Analyte	Analyte Units LOR 10 20 20 20 20 20 20	Analyte Units Ca K Units ppm % LOR 10 0.01 20 0.05 10 20 0.10 20 20 0.10 20 20 1.00 1.00	Analyte Units LOR Ca K La ppm % ppm 10 0.01 10 20 0.05 <10	Analyte Units LOR Ca K La Mg 10 0.01 10 0.01 10 0.01 10 0.01 20 0.05 <10	Analyte Units Ca K La Mg Mn Units ppm % ppm % ppm % ppm LOR 10 0.01 10 0.01 5 5 LOR 10 0.01 10 0.01 5 5 20 0.05 <10	Analyte Units Ga K La Mg Mn Mo UOR 10 0.01 10 0.01 5 1 LOR 10 0.01 10 0.01 5 1 LOR 20 0.05 <10	Analyte Units Ca K La Mg Mn Mo Na LOR 10 0.01 10 0.01 5 1 0.01 LOR 10 0.01 10 0.01 5 1 0.01 20 0.05 <10	Analyte Units Ga K La Mg Mn Mo Na Ni ppm LOR 10 0.01 10 0.01 5 1 0.01 1 LOR 10 0.01 10 0.01 5 1 0.01 1 LOR 10 0.05 <10	Analyte Units Ga K La Mg Mn Mo Na Ni P Units ppm % % ppm % % ppm %	Analyte Units Ca K La Mg Mn Ms Na Ni P Pb Units ppm \$\$ ppm ppm \$\$ ppm \$\$ ppm \$\$ ppm ppm \$\$ ppm ppm \$\$ ppm ppm </td <td>Analyte units Ga K La Mg Mn Mo Na Ni P Pp S Units ppm S S</td> <td>Anajora Units Ca. ppm K k La Mg Mn Mo Na Ni P Pb S Sb LOR 0.01 10 0.01 5 1 0.01 1 10 2 0.01 5 LOR 10 0.01 10 0.01 5 1 0.01 1 10 2 0.01 5 LOR 10 0.01 5 1 0.01 1 10 2 0.01 5 LOR 10 0.01 2 10 10 2 0.01 5 10 0.05 <10</td> 2.28 1015 2 1.44 81 320 3 2.43 <6	Analyte units Ga K La Mg Mn Mo Na Ni P Pp S Units ppm S S	Anajora Units Ca. ppm K k La Mg Mn Mo Na Ni P Pb S Sb LOR 0.01 10 0.01 5 1 0.01 1 10 2 0.01 5 LOR 10 0.01 10 0.01 5 1 0.01 1 10 2 0.01 5 LOR 10 0.01 5 1 0.01 1 10 2 0.01 5 LOR 10 0.01 2 10 10 2 0.01 5 10 0.05 <10	Analyte Units Ca. K La Mg Mn Mo Na Ni P Pb S Sb Sc UOR 0.01 10 0.01 10 0.01 5 1 0.01 1 10 2 0.01 5 1 UOR 10 0.01 10 0.01 5 1 0.01 1 10 2 0.01 5 1 UOR 10 0.01 5 1 0.01 1 10 2 0.01 5 1 UOR 0.05 <10	Analyte UDR Ca K (10) K (20) La (20) Mg (20) Mg (20)

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: BLACKSTONE MINERALS LTD. SUITE 3, LEVEL 3, 24 OUTRAM STREET WEST PERTH WA 6005 AUSTRALIA

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 3-SEP-2017 Account: BMLMEQHI

Project: Little Gem

CERTIFICATE OF ANALYSIS VA17164215

Method Analyte Units LOR	ME-ICP61 Ti % 0.01	ME-ICP61 Ti ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Co- OC62 Co % 0.0005	Cu- OC62 Cu % 0.001		
	0.58 0.33 0.46 0.51	<10 <10 <10 <10	<10 <10 <10 <10	243 212 137 299	<10 <10 <10 <10	123 64 86 84		1.940		
	0.36 0.33 0.37 0.51	<10 <10 <10 <10	<10 <10 <10 50	123 138 163 223	<10 10 <10 20	38 44 52 63				
	Analyte	Analyte Ti Units % LOR 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Analyte Units LOR Ti Ti Ti 0.01 10 10 10 0.01 10 10 10 0.01 10 10 10 0.02 0.01 10 10 0.058 <10	Analyte Units LOR Ti Ti U % Ppm Ppm LOR 0.01 10 10 0 0.01 10 10 0 0.01 10 10 0.03 <10	Analyte Units LOR Ti Ti U V 0.01 10 10 10 1 0.01 10 10 1 1 0.01 10 10 10 1 0.01 10 10 1 1 0.01 10 10 1 1 0.01 10 10 10 1 0.01 10 10 10 1 0.02 0.01 10 10 10 0.033 <10	Analyte Units Ti Ti U V W LOR 0.01 10 10 1 10 LOR 0.01 10 10 1 10 0 0.01 10 10 1 10 0.01 10 10 10 1 10 0.01 0.01 10 10 1 10 0.01 0.01 10 10 1 10	Analyte Units Ti Ti U V W Zn Units % ppm ppm	Analyte Ti Ti U V W Zn Co Units % ppm ppm ppm ppm ppm s co LOR 0.01 10 10 1 10 2 0.0005 Image: LOR 0.01 10 10 1 10 2 0.0005 Image: LOR 0.01 10 10 1 10 2 0.0005 Image: LOR 0.01 10 10 1 10 2 0.0005	Mailyte Units Ti Ti U V W Zo Co Cu Units Si ppm ppm ppm ppm ppm ppm Si Si LOR 0.01 10 10 1 10 2 0.0005 0.001 0.01 10 10 1 10 2 0.0005 0.001 0.03 <10	Analyze T T U V W Zo Co Cu Units S ppm ppm ppm ppm ppm S S LOR 0.01 10 10 1 10 2 0.0005 0.001 LOR 0.01 10 1 10 2 0.0005 0.001

ALS Canada Ltd. 2103 Dollartoni Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: BLACKSTONE MINERALS LTD. SUITE 3, LEVEL 3, 24 OUTRAM STREET WEST PERTH WA 6005 AUSTRALIA Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 3-SEP-2017 Account: BMLMEQHI

Project: Little Gem

CERTIFICATE OF ANALYSIS VA17164215

		CERTIFICATE CON	IMENTS	
			ATORY ADDRESSES	
Applies to Method:	Processed at ALS Vancou Au- AA26	ver located at 2103 Dollarton Hwy, No Au- GRA22	orth Vancouver, BC, Canada. Co- OG62	CRU- 31
Applies to Method.	CRU-QC	Cu- OG62	LOG- 22	ME- ICP61
	ME- OG62	PUL- 31	PUL-QC	SPL- 21
	WEI- 21			

CERTIFICATE OF ANALYSIS: YVR1710793

Project Name:	Little Gem
Job Received Date:	12-Sep-2017
Job Report Date:	10-Oct-2017
Report Version:	Final

COMMENTS:

Test results reported relate only to the samples as received by the laboratory. Unless otherwise stated above, sufficient sample was received for the methods requested and all samples were received in acceptable condition. Analytical results in unsigned reports marked "preliminary" are subject to change, pending final QC review. Please refer to MS Analyticals' Schedule of Services and Fees for our complete Terms and Conditions To: Blackstone Minerals Ltd. Suite 3, Level 3, 24 Outram Street West Perth, Western Australia 6005, Australia

	SAMPLE PREPARATION
METHOD CODE	DESCRIPTION
PRP-910	Dry, Crush to 70% passing 2mm, Split 250g, Pulverize to 85% passing 75µm

METHOD CODE	DESCRIPTION	
FAS-221	Au, Fire Assay, 50g fusion, AAS, Ore Grade	
ICP-230	Multi-Element, 0.2g, 4-Acid, ICP-AES, Trace Level	

yuerette

Signature:

Yvette Hsi, BSc. Laboratory Manager MS Analytical

YVR1710793

To: Blackstone Minerals Ltd. Suite 3, Level 3, 24 Outram Street West Perth, Western Australia 6005, Australia

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Project Name:	Little Gem				
Job Received Date:	12-Sep-2017				
Job Report Date:	10-Oct-2017				
Report Version:	Final				

	Sample	PWE-100	Method	FAS-221	ICP-230								
	Туре	Rec. Wt.	Analyte	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co
		kg	Units	ppm	ppm	96	ppm	ppm	ppm	ppm	96	ppm	ppm
Sample ID	20.0	0.01	LOR	0.01	0.5	0.01	5	10	0.5	2	0.01	0.5	1
Granite Blank	QC-P-BK	-		<0.01	<0.5	10.11	\$	699	1.1	<2	3.25	<0.5	11
Granite Blank	QC-P-BK			<0.01	<0.5	8.69	<5	659	1.0	<2	3.05	<0.5	10
V354211	Rock	0.84		<0.01	<0.5	7.83	<5	150	<0.5	<2	6.15	<0.5	28
V354212	Rock	0.84		0.01	<0.5	7.31	6	153	<0.5	5	6.71	<0.5	46
V394213	Rock	0.75		<0.01	<0.5	9.30	<5	729	0.6	<2	3.87	1.3	7
V394214	Rock	0.98		0.30	2.3	16.22	18	241	0.7	<2	6.34	<0.5	34
V394215	Rock	0.68		<0.01	<0.5	8.23	<5	334	<0.5	з	6.77	<0.5	17
V394216	Rock	0.67		<0.01	<0.5	6.15	8	19	<0.5	<2	18.72	<0.5	25
V394217	Rock	0.90		0.01	<0.5	9.40	<5	201	<0.5	<2	4.89	0.6	23
V394218	Rock	0.58		0.01	<0.5	8.99	<5	316	0.5	<2	6.43	0.6	22
V394218PD	QC-PD			0.01	<0.5	9.08	<5	316	0.5	<2	6.46	0.7	22
V394219	Rock	0.59		0.01	<0.5	10.05	<5	399	0.8	<2	4.16	0.7	11
V394220	Rock	1.16		<0.01	<0.5	7.41	<5	3933	0.6	<2	2.76	<0.5	5
V394221	Rock	0.77		0.27	6.7	10.97	<5	218	0.5	7	5.90	<0.5	17
V394222	Rock	0.62	_	0.02	<0.5	9.97	<5	201	0.6	<2	5.33	<0.5	29
V354223	Rock	1.02		<0.01	<0.5	7.98	12	613	0.9	<2	2.99	3.0	10
V394224	Rock	0.80		0.01	<0.5	9.31	<5	78	<0.5	<2	7.32	<0.5	13
V394225	Rock	0.76		0.05	<0.5	5.99	<5	108	<0.5	<2	4.27	<0.5	51
V394226	Rock	0.98		<0.01	<0.5	6.55	<5	181	<0.5	4	7.69	0.5	40
V394227	Rock	0.83		0.01	<0.5	8.38	<5	161	<0.5	<2	6.32	<0.5	15
V394228	Rock	0.92	9	<0.01	<0.5	0.54	<5	<10	<0.5	8	0.10	<0.5	102
V394229	Rock	0.59		<0.01	<0.5	8.20	6	24	0.5	<2	9.73	<0.5	39

***Please refer to the cover page for comments regarding this certificate. ***

YVR1710793

To: Blackstone Minerals Ltd. Suite 3, Level 3, 24 Outram Street West Perth, Western Australia 6005, Australia

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Project Name:	Little Gem				
Job Received Date:	12-Sep-2017				
Job Report Date:	10-Oct-2017				
Report Version:	Final				

Туре	Rec. Wt. kg 0.01	Analyte Units LOR	FAS-221 Au ppm 0.01	ICP-230 Ag ppm 0.5	ICP-230 Al 96 0.01	ICP-230 As ppm 5	ICP-230 Ba ppm 10	ICP-230 Be ppm 0.5	ICP-230 Bi ppm 2	ICP-230 Ca 96 0.01	ICP-230 Cd ppm 0.5	ICP-230 Co ppm 1
			<0.01	<0.5	7.22	<5	3894	0.6	<2	2.73	<0.5	5
			1.96	⊲0.5	<0.01	<s< td=""><td><10</td><td>⊲0.5</td><td><2</td><td><0.01</td><td><0.5</td><td><1</td></s<>	<10	⊲0.5	<2	<0.01	<0.5	<1
				6.1	5.62	35	239	0.6	6	0.51	5.3	13
	Type	kg	kg Units	kg Units ppm 0.01 LOR 0.01 <0.01 <0.01	kg Units ppm ppm 0.01 LOR 0.01 0.5 <0.01	kg Units ppm ppm % 0.01 LOR 0.01 0.5 0.01 <0.01	kg Units ppm ppm 96 ppm 0.01 10R 0.01 0.5 0.01 5 <0.01	kg Units ppm ppm % ppm pm pm	kg Units ppm ppm 96 ppm 0.5 0.01 0.5 0.01 0.5 0.6 0.5 0.01 0.5 0.01 0.5 0.01 0.5 0.05 0.01 0.5 0.01 0.5 0.05 0.05 <	kg Units ppm ppm 96 ppm pm	kg Units ppm ppm % ppm pm pm pm	kg Units ppm ppm 96 ppm pi

Report Version:

MS Analytical Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

YVR1710793

To: Blackstone Minerals Ltd. Suite 3, Level 3, 24 Outram Street West Perth, Western Australia 6005, Australia

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Project Name:	Little Gem
Job Received Date:	12-Sep-2017
Job Report Date:	10-Oct-2017

Final

	ICP-230	1CP-230	ICP-230	ICP-230	ICP-230	ICP-230							
	Cr	Cu	Fe	Ga	к	La	Mg	Mn	Mo	Na	Ni	Р	Pb
	ppm	ppm	96	ppm	96	ppm	96	ppm	ppm	96	ppm	ppm	ppm
Sample ID	1	1	0.01	10	0.01	10	0.01	5	1	0.01	1	10	2
Granite Blank	33	19	3.51	23	1.55	<10	1.36	709	<1	3.30	15	611	20
Granite Blank	31	18	3.24	20	1.48	<10	1.16	667	<1	3.23	13	560	19
V394211	43	1077	11.57	29	0.15	<10	2.49	785	<1	2.23	36	479	14
V394212	81	375	7.54	26	0.33	<10	3.76	1280	<1	1.48	55	629	11
V394213	/0	140	7.88	27	0.26	<10	1./4	1023	35	2.58	10	/92	16
V394214	15	4200	6.05	31	0.55	12	1.42	609	9	3.09	17	976	22
V394215	89	178	6.34	23	0.48	<10	3.02	938	1	2.33	14	758	10
V394216	19	54	10.89	25	0.02	<10	0.70	2636	<1	0.01	23	25	7
V394217	58	429	8.98	28	0.16	<10	2.78	1360	з	2.45	25	588	12
V394218	17	259	7.20	28	0.24	<10	1.40	1828	3	1.60	13	1061	14
V394218PD	18	256	7.20	29	0.25	<10	1.40	1829	4	1.61	13	1058	15
V394219	43	266	6.88	26	0.27	<10	1.51	1192	3	2.60	10	640	16
V394220	24	186	3.04	20	0.44	<10	1.44	459	1	3.51	11	344	10
V394221	23	2845	5.87	30	0.25	<10	1.46	922	15	2.65	12	2014	13
V394222	46	459	8.14	33	0.13	<10	2.21	1301	<1	2.38	25	1502	12
V394223	36	94	4.44	23	0.65	<10	0.94	422	6	1.65	25	584	12
V394224	29	182	7.36	28	0.11	<10	2.85	987	<1	1.94	9	958	14
V394225	287	815	10.92	25	0.09	<10	8.04	1587	<1	0.99	311	404	10
V394226	551	74	7.22	25	0.24	<10	7.15	1033	2	1.43	293	435	10
V394227	122	126	6.35	25	0.15	<10	4.29	1184	<1	2.21	64	812	12
V394228	1099	52	5.97	<10	0.05	12	25.43	793	<1	0.02	2093	<10	<2
V394229	194	207	7.01	29	0.09	<10	4.31	1174	<1	1.22	135	465	14

YVR1710793

To: Blackstone Minerals Ltd. Suite 3, Level 3, 24 Outram Street West Perth, Western Australia 6005, Australia

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Project Name:	Little Gem				
Job Received Date:	12-Sep-2017				
Job Report Date:	10-Oct-2017				
Report Version:	Final				

Sample ID	ICP-230 Cr ppm 1	ICP-230 Cu ppm 1	ICP-230 Fe 96 0.01	ICP-230 Ga ppm 10	ICP-230 K % 0.01	ICP-230 La ppm 10	ICP-230 Mg % 0.01	ICP-230 Mn ppm 5	ICP-230 Mo ppm 1	ICP-230 Na % 0.01	ICP-230 Ni ppm 1	ICP-230 P ppm 10	ICP-230 Pb ppm 2
DUP V394229 DUP V394220 STD BLANK	25	187	3.00	16	0.44	<10	1.43	454	1	3.47	12	334	11
STD BLANK STD CDN-GS-2P	<1	<1	<0.01	<10	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10	<2
STD CDN-CM-38	21	6637	7.06	23	2.23	<10	0.50	791	176	0.16	15	516	138
				5									

YVR1710793

To: Blackstone Minerals Ltd. Suite 3, Level 3, 24 Outram Street West Perth, Western Australia 6005, Australia

An A2 Global Company

CERTIFICATE OF ANALYSIS:

Project Name:	Little Gem				
Job Received Date:	12-Sep-2017				
Job Report Date:	10-Oct-2017				
Report Version:	Final				

	ICP-230										
	S	Sb	Sc	Sr	Th	Ti	TI	V	w	Zn	Zr
	96	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	5	2	1	8	0.01	10	1	10	2	5
Granite Blank	0.03	<5	14	508	<8	0.29	<10	86	<10	77	54
Granite Blank	0.03	<5	10	471	<8	0.28	<10	83	<10	59	32
V394211	6.07	9	30	670	<8	0.27	<10	174	<10	61	8
V394212	0.29	<5	45	414	<8	0.35	<10	227	<10	75	9
V394213	0.48	5	36	712	<8	0.60	<10	331	11	182	<5
V394214	0.26	<5	23	760	<8	0.53	<10	179	12	89	11
V394215	0.45	<5	31	673	<8	0.49	<10	206	12	58	9
V394216	0.04	<5	7	4	<8	0.18	12	162	<10	30	14
V394217	0.67	6	35	440	<8	0.58	<10	269	<10	134	<5
V394218	1.12	<5	33	421	<8	0.59	<10	277	<10	94	<5
V394218PD	1.14	<5	34	423	<8	0.60	<10	280	<10	95	<5
V394219	0.19	<5	31	430	<8	0.73	<10	232	<10	142	6
V394220	0.06	<5	16	388	<8	0.28	<10	92	<10	81	<5
V394221	0.25	<5	16	620	<8	0.59	<10	170	11	93	<5
V394222	0.56	7	24	514	<8	0.79	<10	331	<10	124	<5
V394223	1.70	<5	13	298	<8	0.20	<10	206	<10	209	<5
V394224	0.41	<5	40	522	<8	0.56	<10	267	<10	64	10
V394225	0.64	<5	27	269	<8	0.29	11	234	<10	123	<5
V394226	1.44	6	36	282	<8	0.60	<10	268	<10	55	26
V394227	1.52	<5	35	436	<8	0.29	<10	207	<10	44	8
V394228	1.72	8	11	<1	<8	<0.01	<10	40	<10	58	<5
V394229	1.77	7	34	262	<8	0.69	<10	206	<10	52	37

***Please refer to the cover page for comments regarding this certificate. ***

To: Blackstone Minerals Ltd. Suite 3, Level 3, 24 Outram Street West Perth, Western Australia 6005, Australia

An A2 Global Company

CERTIFICATE OF ANALYSIS: YVR1710793

Project Name:	Little Gem				
Job Received Date:	12-Sep-2017				
Job Report Date:	10-Oct-2017				
Report Version:	Final				

Sample ID	ICP-230 S % 0.01	ICP-230 Sb ppm 5	ICP-230 Sc ppm 2	ICP-230 Sr ppm 1	ICP-230 Th ppm 8	ICP-230 Ti % 0.01	ICP-230 TI ppm 10	ICP-230 V ppm 1	ICP-230 W ppm 10	ICP-230 Zn ppm 2	ICP-230 Zr ppm 5
DUP V394229 DUP V394220 STD BLANK STD BLANK STD CDN-GS-2P	0.06 <0.01	ও ও	16 <2	382 <1	8 8	0.28 <0.01	<10 <10	91 <1	<10 <10	80 <2	\$
STD CDN-CM-38	4.99	11	5	81	<8	0.12	<10	56	12	863	\$
		e									