Ministry of Energy and Mines BC Geological Survey	BC Geological Survey Assessment Report 37141	Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: Geological and Geochemical	TOTAL CO	st: \$16,394.49
AUTHOR(S): Diana Benz	SIGNATURE(S): Diana Benz	Signed to their Brow Brow Rel co-class bios or Johann Daporters IM, emil-Hanninghryster/Treeck, e-CA Ume (2011) 12 / 3 / 3 / 6 / 6000
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):		YEAR OF WORK: 2017
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S)	: 5665322	
PROPERTY NAME: Goldridge		
CLAIM NAME(S) (on which the work was done): Gold Ridge		
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:	NTS/BCGS: <u>NTS 104K/01, 104J/0</u> 96 (at centre of w	4, 104F/16 & 104G/13
OWNER(S): 1) J2 Syndicate Holdings Ltd.	2)	
MAILING ADDRESS: 303-10090 152 Street		
Surrey, BC V3R 8X8		
OPERATOR(S) [who paid for the work]: 1) J2 Syndicate Holdings Ltd.	_ 2)	
MAILING ADDRESS: 303-10090 152 Street		
Surrey, BC V3R 8X8		
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur Stuhini Group	e, alteration, mineralization, size and attitude):
Triassic		
Epithermal		
Triassic		

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 19917, 33330

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil		- Cold Didge	¢0 700 44
Silt <u>3 (ICP-MS: 35 element,</u>		Gold Ridge	\$2,732.41
Rock 15 (ICP-MS: 35 elemen		Gold Ridge	\$13,662.08
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	\$16,394.49

GEOLOGICAL AND GEOCHEMICAL SURVEY ON THE GOLDRIDGE PROPERTY

ATLIN MINING DIVISION NTS 104K/01, 104J/04, 104F/16 & 104G/13 58.006° N 131.963° W

PREPARED FOR:

J2 SYNDICATE HOLDINGS LTD.

CLAIM WORKED: 1046846

Prepared by:

Diana Benz, Ph.D. Takom Exploration Ltd.

Date

December 17, 2017

EXECUTIVE SUMMARY

The Goldridge Property is located within the Coast Range Mountains of the Atlin Mining Division in north-western British Columbia approximately 40 kilometres northwest of Glenora (BC), 50 kilometres northwest of Telegraph Creek (BC) and 145 km southeast of Juneau, Alaska (USA). It is comprised of one mineral tenure 100% owned by J2 Syndicate Holdings Ltd. and totals 1,166 hectares of land at the junction of the Tulsequah 104K/01, Dease Lake 104J/04, Chutine Peak 104F/16 and Telegraph Creek 104G/13 NTS map sheets. The property is within an area of rugged topography between the Sheslay and Tahltan Rivers. This area experiences typical north-western BC long, cold and wet winters with occasionally sunny and dry summers. Mineral exploration may be conducted on a year round basis, although at higher elevations, the season may be dependent on the snow pack levels and/or stability as well as fog.

Historical mineral exploration within the Telegraph Creek region was initially for placer gold deposits. More recent activities include exploration for porphyry-style copper-silver-gold mineralization such as the Galore Creek alkalic porphyry deposit and its related epithermal gold-silver-copper-lead-zinc deposits. Placer mining for gold also remains active within this area. Historical work within the current Goldridge Property includes reconnaissance geochemical surveys and an aerial geophysical survey. Geochemical surveying in 2016, by the J2 Syndicate, announced the gold-silver-copper Gravy Train Zone, within the centre of the Goldridge Claim, that returned maxima of 0.797 ppm Au, 55.1 ppm Ag and 87870 ppm Cu within a 20 centimetre wide quartz-carbonate/quartz-pyrite-sericite vein hosted in mafic volcanic rock.

The Goldridge Property is located within the Stikine Terrane and is primarily comprised of Upper Triassic Stuhini Group limestone, marble and calcareous sedimentary rock. These rocks overly Middle to Late Triassic quartz diorite to the northwest and undivided granitoid rocks of the Late Triassic to the southeast.

The 2017 exploration program was carried out on the Goldridge Property on August 9th. The program consisted of reconnaissance and follow-up prospecting, mapping and rock sampling program. Twenty-two (22) samples were taken: 16 rock samples and 6 silt samples. One geologist and two prospector traversed the property taking samples, geological observations and photographs.

Rock sampling returned 0.241 ppm gold within the Gravy Train Zone, moderate silver and copper contents with minor amounts of zinc. Lead values did not return prospective values while with zinc showed an increase towards the eastern half of the Property.

Sample ID	Туре	Description	Au	Ag	Cu	Pb	Zn
W385571	outcrop	At same location as W386670, chip across slickenside , 15 cm long by 8 cm wide, 10% chalcopyrite, malachite and azurite staining, visible malachite on weathered surface, 30 m by 20 m outcrop, chip sample across 0.5 m length by 2 cm width, lots carbonate, mineralization associated with rhyolite/diorite dike, lots epidote	0.241	0.9	3280	4	47
W385518	talus	talus/float grab, very rusty angular float found just below rock face 40 cm long 20 cm wide 15% + sulfides, chalcopyrite, malachite stained, still looks like rusty quartz rich granite	0.142	0.7	5650	3	24
W385516	talus	talus/float grab, angular, quartz rich magnetic granite, float was 20 cm x 15 cm with quartz veining, black magnetite with quartz stringers both carrying sulfides (site) angular float found directly below cliff with rounded masses of magnetite found frequently down slope down talus as big as 50 cm, photo of sample as well as mass magnetite will be included, weathered colour-black, grey and white, fresh-black, granite pink, white, finger painting at magnetite in site photo	0.119	<0.2	176	3	33

Rock Sample Highlights: All the highlighted rock samples were collected within the Gravy Train Zone. All values are parts per million unless otherwise specified.

2017 rock and silt sampling revealed gold, silver and copper mineralization within the Gravy Train Zone. Gold, silver and copper mineralization was found within slickenside and associated with rhyolite/diorite dike. Abundant epidote and carbonates were associated with approximately 10% chalcopyrite, malachite and azurite.

After examining the historical compilations, an exploration program consisting of geochemical surveys, detailed mapping and prospecting may be conducted. If warranted, trenching and channel sampling may also be used to further examine the potential for economic mineralization within the Gravy Train Zone.

TABLE OF CONTENTS

Ex	ECUT	IVE SUN	1MARY	I								
1.	Intr	ODUCT	ION	1								
	1.1	Locati	on and Access	1								
	1.2	Physic	ography and Climate	3								
	1.3	Property Status and Ownership										
2.	Ехр	LORATI	ON HISTORY	6								
3.	GEO	LOGICA	L SETTING	7								
	3.1	Regio	nal Geology	7								
	3.2	Prope	rty Geology, Mineralization and Alteration	9								
		3.2.1	Surficial Geology	9								
		3.2.2	Geological Model	9								
			3.2.2.1 Epithermal Deposits	9								
4.	201		DRATION PROGRAM - GEOCHEMICAL SURVEY									
	4.1	Surve	y Overview10)								
			Rock Grab Sampling Protocol10									
		4.1.1		C								
			Silt Sampling Protocol									
		4.1.2		1								
	4.2	4.1.2 4.1.3	Silt Sampling Protocol1	1 1								
	4.2 4.3	4.1.2 4.1.3 High F	Silt Sampling Protocol	1 1 1								
		4.1.2 4.1.3 High F	Silt Sampling Protocol	1 1 3								
		4.1.2 4.1.3 High F Geocl 4.3.1 4.3.1	Silt Sampling Protocol	1 1 3 9 2								
		4.1.2 4.1.3 High F Geocl 4.3.1 4.3.1	Silt Sampling Protocol	1 1 3 9 2								
5.	4.3 4.4	4.1.2 4.1.3 High F Geocl 4.3.1 4.3.1 Sumn	Silt Sampling Protocol	1 1 3 9 2 3								
5 . 6 .	4.3 4.4 CON	4.1.2 4.1.3 High F Geocl 4.3.1 4.3.1 Sumn	Silt Sampling Protocol 1 Data Verification 1 Resolution Satellite Imagery 1 nemical Results 1 Rock Grab Samples 1 Silt Samples 2 nary of Exploratory Work 2	1 1 3 9 2 3 4								
•••	4.3 4.4 Con Stat	4.1.2 4.1.3 High F Geocl 4.3.1 4.3.1 Sumn CLUSIO	Silt Sampling Protocol 1 Data Verification 1 Resolution Satellite Imagery 1 nemical Results 1 Rock Grab Samples 1 Silt Samples 2 nary of Exploratory Work 2 NS AND RECOMMENDATIONS 2	1 1 3 9 2 3 4 4								

FIGURES

Figure 1 Goldridge Property Location	2
Figure 2 Goldridge Property Tenure	5
Figure 3 Goldridge Property Regional Geology (after Cui et al., 2017)	8
Figure 4 Goldridge High Resolution True Colour Satellite Imagery	12
Figure 5 Goldridge 2017 Gold Geochemical Results	14
Figure 6 Goldridge 2017 Silver Geochemical Results	15
Figure 7 Goldridge 2017 Copper Geochemical Results	16
Figure 8 Goldridge 2017 Lead Geochemical Results	17
Figure 9 Goldridge 2017 Zinc Geochemical Results	18
Figure 10 Goldridge 2017 Sample W385570 and W385571 Location	20
Figure 11 Goldridge 2017 Rock Sample W385518	20
Figure 12 Goldridge 2017 Sample W385516 Material Collected (left) and Location (right)	20

TABLES

Table 1 Goldridge Mineral Tenure	4
Table 2 Goldridge Rock Grab Sample Highlights (concentrations are in ppm unless othe specified)	
Table 3 Goldridge 2017 Rock Grab Sample Summary (below detection limit value replaced by half the detection limit for each element)	
Table 4 Golddigger 2017 Silt Sample Summary (below detection limit values were replace half the detection limit for each element).	

APPENDICES

Appendix A:	Geochemical Certificates
Appendix B:	Sample Descriptions
Appendix C:	2016 Field Season Summary (Turna, 2017)

1. INTRODUCTION

1.1 Location and Access

The Goldridge Property is located within the Coast Range Mountains of the Atlin Mining Division in north-western British Columbia. The Property is approximately 40 km northwest of Glenora (BC), 50 kilometres northwest of Telegraph Creek (BC), 123 kilometres southwest of Dease Lake (BC), 145 km southeast of Juneau, Alaska (USA) and 260 kilometres northwest of Stewart (BC) (Figure 1). The nearest infrastructure includes the deep water port at Juneau, AK (140 km northwest) and the Stewart West Harbour with a mineral concentrate deep sea port export terminal and railway access (260 km south). The Stikine River also provides navigable water access from Wrangell, AK north to Telegraph Creek.

The property is accessible via a 50 kilometre helicopter flight from Glenora. There is a 1,524 metre gravel airstrip located within Telegraph Creek that will accommodate short take-off and landing aircraft. The privately owned, Graham Air Telegraph Creek Water Aerodrome is 1.9 km west-southwest of Telegraph Creek. Another gravel airstrip, suitable for light aircraft, is located approximately 32 km southeast of the Goldridge Property on a placer mining camp access road approximately one kilometre from their camp. Nearby accommodations include all-season bed and breakfast facilities within Glenora.

The community of Telegraph Creek is located at the confluence of the Stikine River and Telegraph Creek and is accessible via the Telegraph Creek Road, a 150 km gravel road that follows the banks of the Stikine River. This road has the occasional steep gradient and sharp switchbacks. Telegraph Creek Road connects with Highway 37 (Stewar-Cassiar) at Dease Lake. Telegraph Creek's district population is approximately 450. Basic supplies can be found in town. Most services and supplies are available at the resource-based community of Dease Lake with a district population of approximately 700. Helicopter access is available via a number of charter companies based in Stewart, Terrace and Dease Lake.

The closest road access to the Goldridge Property is the Golden Bear Road: a 153 kilometre long restricted-access road off of the Telegraph Creek Road. The current status of the Golden Bear Road is considered to be 4x4 all-weather, although a number of bridges may be washed out. The Golden Bear Road passes within approximately 10 km of the Goldridge Property.

The nearest BC hydro network is the 387 kilovolt Northwest Transmission line that extends 344 km from Terrace, BC to Bob Quinn Lake (156 km southeast of Goldridge). A 92 kilometre extension is being planned by Imperial Metals to extend the line to a new substation near Tatogga approximately 120 kilometres southeast of Goldridge. Telegraph Creek electrical needs are met by a 1.8 MW BC Hydro diesel generator. Future power generation opportunities also include local run-of-river hydro and wind power generation.

Goldridge 2017 Geochemical and Geological Survey

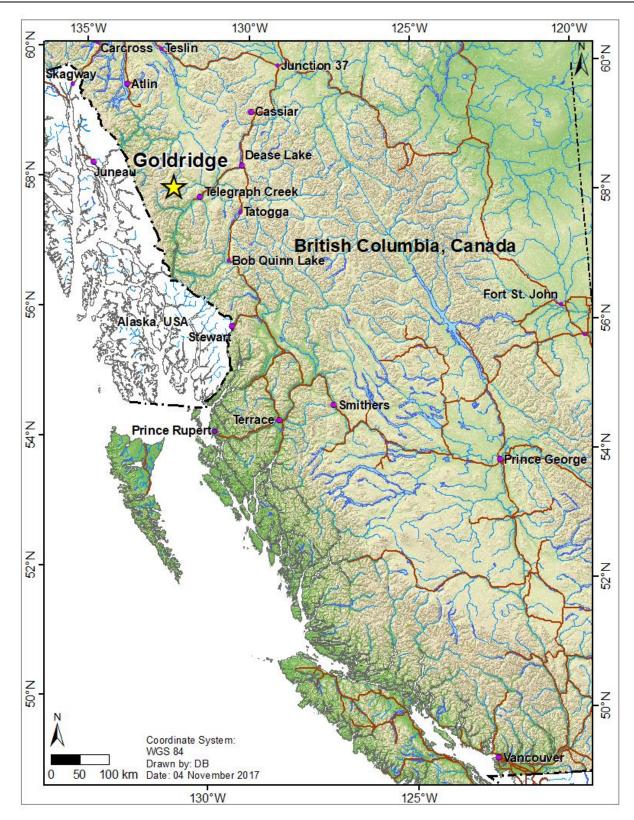


Figure 1 Goldridge Property Location

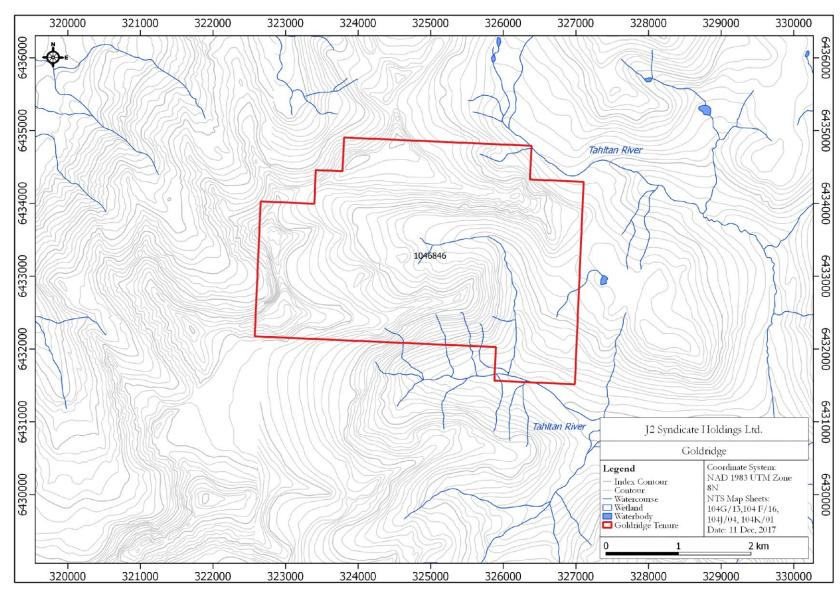
1.2 Physiography and Climate

The Goldridge Property is located at the headwaters of the Tahltan River within the Tahltan Highlands physiographic region of British Columbia. The Property is within an area of rugged topography between Sheslay and Tahltan River at the junction of Tulsequah 104K/01, Dease Lake 104J/04, Chutine Peak 104F/16 and Telegraph Creek 104G/13 NTS map sheets. Above 6,500 feet (1,981 metres) elevation, the peaks are extremely rugged and form sharp matterhorns from intense cirque erosion (Holland, 1976). Below 6,500 feet (1,981 metres) elevation, however, cirque erosion is primarily limited to the northern and eastern aspects. Typically, the slopes below 3,500 (1,067 metres) and 4,500 feet (1,372 metres) are heavily forested.

Elevations range from 4,100 feet (1,250 metres) above sea level within the valley bottom to over 7,700 feet (2,347 metres) in the southwest of the Property. The most notable topographic feature on the Property is the east-west trending, right-angled hanging valley that drains into the Tahltan River to the south. The climate of this region is characterized by long, cold and wet winters with occasionally sunny and dry summers.

The Goldridge Property is within the Boreal Altai Fescue Alpine biogeoclimactic zone at higher elevations and the Spruce-Willow-Birch Zone at middle to lower elevations (Meidinger and Pojar, 1991). Within the Boreal Altai fescue-mountain sagewort-cetraria biogeoclimactic zone that dominates the majority of the Property, Altai fescu (Festuca altaica) and mountain sagewort (Artemisia norvegica ssp. saxatilis) comprise the majority of the well-developed herb layer (Pojar and Stewart, 1991a). Dry grassy tundra is common on steep, generally south-facing colluvial slopes. Within the Spruce-Willow-Birch Zone at the middle to lower elevations, the area is generally forested with hybrid white spruce (*Picea engelmannii x glauca*) and subalpine fir (*Abies lasiocarpa*) (Pojar and Stewart, 1991b). Paper birch can be found in moist, rich areas whereas Douglas fir occurs on warm, dry sites. Lodgepole pine stands typically occur in drier areas within mature forests. At higher elevations, the landscape is primarily dominated by 1-4 metre tall deciduous shrubs such as scrub birch and willows. A "double treeline" can be found in some high, wide valleys where cold air can settle to produce non-forested mosaics of shrubfields, fens and grasslands within the valley bottoms, a skirt of trees on the lowers slopes and at higher elevations the shrubs dominate again (Pojar and Stewart, 1991b). Above 1,200-1,400 metres permafrost may also develop in these valleys. Many species of wildlife can be found in this area including black and grizzly bears, mountain goats, sheep, moose, caribou, elk and many small mammals and a variety of birds (Pojar and Stewart, 1991a). There are no known designated wildlife habitat areas within the Property.

Mineral exploration may be conducted on a year round basis, although at higher elevations, the season may be dependent on the snow pack levels and/or stability. Prospecting activities could start in May and continue into mid-October depending on elevation and aspect. The climate is typical of north-western British Columbia. Summer temperatures average a daytime high in the 12°C range with occasional temperatures reaching the low 6°C range or a high of 19°C. December through February sees average sub-zero temperatures (-17°C) with lows averaging -10°C from November through March. The annual precipitation is approximately 1,780 mm including winter snowfall. Clouds and fog can often shroud the local mountain tops.


1.3 Property Status and Ownership

The Goldridge Property consists of one mineral tenure (Figure 2). The tenure covers 1165.9128 hectares of land at the junction of the Tulsequah 104K/01, Dease Lake 104J/04, Chutine Peak 104F/16 and Telegraph Creek 104G/13 NTS map sheets. The Property is located between latitudes 58.007° and 58.005° North and longitudes 131.949° and 131.945° West. The centre of the claim block is located at 58.006° North and 131.963° West. All of the tenures are 100%-owned by J2 Syndicate Holdings Ltd. Expiry dates include some of 2017 assessment work filed and are pending acceptance (Table 1).

Table 1 Goldridge Mineral Tenure

Tenure No.	Claim Name	Issue Date	Good to Date	<u>Area (ha)</u>
1046846	GOLD RIDGE	2016-Sep-21	2020-Jan-24	1165.9128

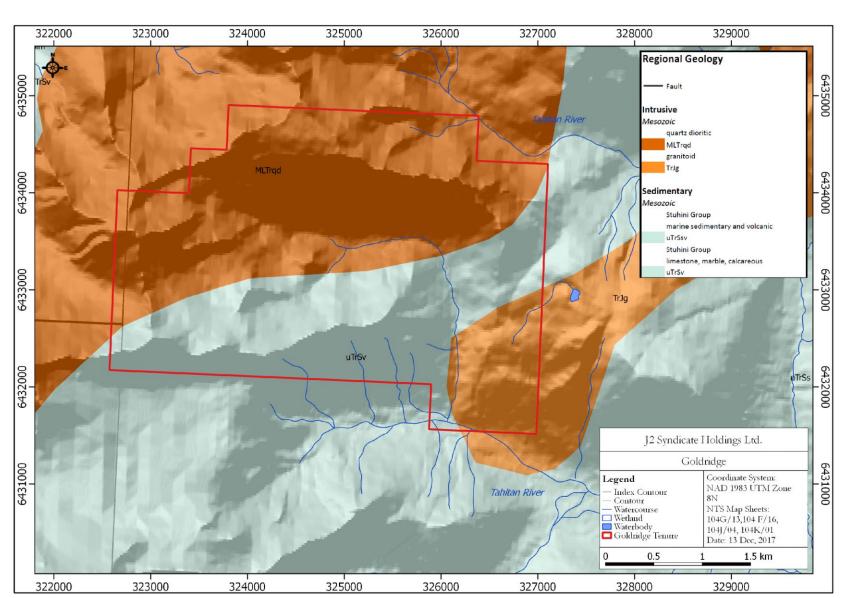
2. EXPLORATION HISTORY

Prospecting in the Telegraph Creek area began in the early 1860's when gold was discovered on the Stikine River resulting in the Stikine and Cassiar Gold Rushes. At least 64 kilograms of placer gold was extracted, during this time, at Buck's Bar approximately six kilometres southwest of Telegraph Creek (Holland, 1950 after Brown et al., 1996). Prospecting for gold moved further north to the Cassiar and Klondike by the late 1800s but the Stikine remained the main transportation and supply route to these northern gold fields (Brown et al., 1996). By the early 20th century, mining activities turned to lode gold deposits resulting in the discovery of significant porphyry copper deposits near Galore Creek (1955) and Schaft Creek (1975), as well as precious metal deposits: Jonny Mountain (1907), Premier (1918), Brucejack (1960s), Kerr-Sulphurets-Mitchell-Iron Cap (circa 1963), Golden Bear (1981), Snip (1982) and Eskay Creek (1988). Placer mining is also still active within this region. The lower Barrington River placer deposits, approximately 30 km southeast of Goldridge, have been worked sporadically since 1903 and there is an access road to this placer mining camp (Caulfield, 1989). There has been very little historical work performed within the current Goldridge Property boundary prior to 2016. The history of the work performed on the Property is summarized in Table 2.

Year-ARIS-	Claim Name-	Exploration Activities
MINFILE	Operator-Author	
1989; ARIS 19917	Tahl – Kestrel Resources Ltd. – Chase, 1989	In 1989, a preliminary geological mapping and geochemical sampling program was conducted on the Tahl 5-12 (grouped to Tahl 2 and 3) mineral claims. Tahl 5 – 8 overlap the current Goldridge claim. A total of 28 rock samples and 18 panned concentrate samples were collected. Within the Tahl 5 to 8 claims, a 0.065 oz/st Au panned concentrate sample was collected from the southeast stream and a 0.442 oz/st Au panned concentrate sample was collected from the north by northeast stream in proximity to mapped quartz monzonite. A 0.012 oz/st Au rock grab sample was collected in the north consisting of quartz comb carbonate-altered amphibolite with disseminated pyrite.
2012; ARIS 33330	Eagle – Teck Resources Limited – Takaichi and Johnson, 2012	In 2011 and 2012, Teck Resources conducted a large scale reconnaissance sampling and geological mapping program over their Eagle Property. Two moss mat samples were collected within the current Goldridge claim. These samples returned 50-200 ppm Cu, and >20 ppb Au. An aerial ZTEM and aeromagnetic survey was also flown over this area. A number of conductive structures were identified within the Eagle Property. The property mapping conducted on Eagle did not cover the current Goldridge claim boundary
2016 (summary, see Appendix C)	Goldridge- J2 Syndicate Holdings – Turna 2017	A one day reconnaissance exploration program was conducted on August 19 th prior to staking the Goldridge claim. A total of 9 rock grab samples were collected within the newly discovered Gravy Train Zone. The Gravy Train Zone, within the centre of the current Goldridge Claim, returned a maximum of 0.223 to 2.14 ppm Au, 1.8 ppm Ag and 4530 Cu within malachite-stained, pyritic volcanic rock outcrop.

Table 2: Summary of Previous Work

3. GEOLOGICAL SETTING


The metallogeny of British Columbia is primarily linked to the tectonic evolution for the Canadian Cordillera (Clarke et al., 2017). The sequence of events for its formation includes the welding of allochthonous (derived at a distance) terranes to the western margin of ancestral North America resulting in deformation and post-accretionary tectonism and magmatism. The Northwest Region of British Columbia intersects with the Cordilleran orogeny and is comprised of: 1) the autochthonous (formed at present position) and parautochthonous (intermediate character between auto- and allochthonous) carbonate and siliciclastic strata of ancestral North America; 2) Intermontane terranes including the Slide Mountain back-arc basin, Yukon-Tanana rifted pericratonic arc, Quesnel and Stikine volcanic arcs, as well as the Cache Creek oceanic terrane; 3) Alexander Terrane (a large composite crustal fragment); 4) post-accretionary rocks; and 5) younger overlying rocks (Clarke et al., 2017). The accretion of the allochthonous terranes to each other and North America occurred within the Jurassic. Post-accretion plutonic suites as well as Jurassic, and younger, syn- to post-accretionary siliciclastic deposits mosaic this area.

3.1 Regional Geology

The Goldridge property lies primarily within the Chutine Peak 104F/16 and Telegraph Creek 104G/13 NTS areas of the Coast Mountain Ranges within the northern Intermontane Belt of the Canadian Cordillera. The Intermontane Belt is a partly collisional tectonic belt comprised of a series of accreted terranes. The terrane superstructure of north-western BC consists of four major units: the polydeformed western block of metamorphosed Proterozoic to middle Palaeozoic pericontinental rocks of the Nisling Assemblage; the exotic oceanic crustal and low-latitude marine strata of the eastern block; the central units which include the Palaeozoic Stikine Assemblage, the Triassic arc-volcanic and the flanking sedimentary rocks of the Stikine Terrane; as well as the overlying block of the Late Triassic to Middle Jurassic arc-derived strata of the Whitehorse Trough (Mihalynuk et al., 1995).

The geology of the Goldridge area is primarily comprised of the Stikine Terrane (Cui, et al., 2017). This Terrane is a volcanic arc composed of Palaeozoic and Mesozoic arc volcano-sedimentary successions and coeval plutonic complexes (Brown et al., 1996). The oldest rocks within this region are Devonian limestones and bimodal volcanic/plutonic rocks with primitive arc signatures of the Stikine Assemblage. These rocks represent the remnants of the paleo-Pacific oceanic arc system that existed for more than 150 million years. The middle sequence consists of carboniferous limestone and mafic volcanic rocks, while the youngest sequence is locally comprised of thick, but laterally discontinuous, Lower to Upper Permian limestones. These limestones were deposited in an open marine environment that was locally, tectonically stable. Built upon the Palaeozoic strata are the Upper Triassic and Lower to Middle Jurassic calcalkaline volcanic successions of the Stuhini and Hazelton island arc complexes. Neogene to recent times produced the stratovolcano and surrounding plateau lavas of the Mount Edziza complex as a result of a change in the relative movement of the North American and Pacific continental plates approximately 40 million years ago: a convergence regime to an oblique/transtensional regime.

Goldridge 2017 Geochemical and Geological Survey

3.2 Property Geology, Mineralization and Alteration

There was a preliminary geological mapping survey conducted by Chase (1989). The following paragraph is a summary of his work.

The western portion of this area is predominately underlain by fresh, light to medium green augite-andesite volcanic flows, pyroclastic rocks and sub-volcanic intrusions. Alteration, in this area, consisted of quartz-carbonate partially altered to chlorite and talc (with finely disseminated pyrite). Partially brecciated and/or porphyritic rocks with disseminated pyrite were the primary mineralization observed.

3.2.1 Surficial Geology

The Goldridge Property is a rugged area with high alpine peaks and glaciers and a deep cutting river valley (Holland, 1976). The land was heavily loaded with ice during the Pleistocene and the current coast line was submerged beneath the sea. During this time, the major rivers in this region (Taku, Sutlahine, Tahltan, Stikine, Iskut Rivers and Mess Creek) served as antecedent rivers whose valleys were the main drainages for the westward flow of glacial ice. These valleys were greatly deepened and straightened by the passage of the large amounts of ice and resulted in the formation of the many hanging valleys typical of this region. Cirque erosion played a major role in the formation of the north and northeast sides of peaks and ridges (Holland, 1976).

3.2.2 Geological Model

The mineral deposits within the greater Chutine Peak and Telegraph Creek regions may be classified into three main deposit types: copper and gold [silver] alkalic porphyry such as Galore Creek (approximately 100 km south of Goldridge), copper \pm molybdenum \pm gold calcalkaline porphyry copper-gold deposit at Schaft Creek (90 km southeast), as well as precious metal deposits like Golden Bear (30 km northwest). An intrusion-related, epithermal deposit is thought to occur on the Goldridge Property.

3.2.2.1 Epithermal Deposits

Epithermal gold deposits are created after the formation of its host rock in the shape of mineral replacements, veins, pore-infills or breccia (Robb, 2005). These deposits form close to the Earth's surface at temperatures ranging from 50 to 200°C (Robb, 2005), for example the Golden Bear Mine (deGroot, 2012). They range from narrow, high-grade vein systems to large, low-grade disseminated mineralization (Robb, 2005). Their formation is associated with extensional or transtensional tectonics and include: volcanic island arc, oceanic arc, continental arc and back arc basins. The geochemical signature of epithermal deposits is typically dominated by gold, copper and arsenic (± silver, zinc and lead) with notable concentrations of silver, zinc, lead, antimony, molybdenum, bismuth, tin, tellurium, tungsten, boron and mercury (Panteleyev, 1996a; Panteleyev, 1996b).

4. 2017 EXPLORATION PROGRAM - GEOCHEMICAL SURVEY

4.1 Survey Overview

The 2017 geochemical sampling survey consisted of a one day program, on August 9th, conducted by one geologist and two prospectors. The purpose of the 2017 program was to follow-up on the 2016 prospective results, visit targets delineated by high resolution satellite imagery and to expand the geochemical knowledge of the area.

A total of 22 samples were collected during the 2017 field season: 16 rock samples and 6 silt samples. All samples collected during the 2017 field season were selected, sealed and shipped to ALS Canada Ltd.'s lab in Terrace, BC. All samples were selected by J2 Syndicate Holdings site geologists or prospectors. The rock samples were photographed in situ, and as a hand sample, prior to sealing with a cable tie in a labelled polypropylene sample bag. Representative rock samples were also collected for future reference.

Samples were stored at a secure facility in Glenora, BC which served as the base of the 2017 field program. Groups of rock samples were placed into sturdy, labelled, woven-polyethylene bags, sealed with a cable tie prior to shipping. All sample packaging for transport was overseen by the site geologist and documented with sample names, sample type, assay type, shipping date, shipping ID, and the number of woven-polyethylene bags. Samples were transported by the crew to Telegraph Creek, BC where they were shipped to Terrace, BC by Bandstra.

All rock samples were crushed and pulverized at ALS Canada Ltd.'s lab in Thunder Bay, ON or Reno, Nevada. The resulting sample pulps were analyzed by fire assay for gold by ALS Canada Ltd.'s lab in Reno, Nevada or Vancouver, BC and the multi-element assay was conducted by ALS Canada Ltd.'s lab in Vancouver, BC. The coarse reject portions of the rock samples, as well as the pulps, were shipped to J2 Syndicate's storage facility in Terrace, BC. The samples were analyzed using ALS Canada Ltd.'s assay procedure ME-ICP41, a 1:1:1 aqua regia digestion with inductively-coupled plasma atomic emission spectrometry (ICP-AES) finish for 35 elements as well as the Au-AA24/AA-26 (gold) lead-collection fire assay fusion procedure with atomic absorption spectroscopy (AAS) finish. The assay certificates and short procedural descriptions are located in Appendix A: Certificates of Analysis.

4.1.1 Rock Grab Sampling Protocol

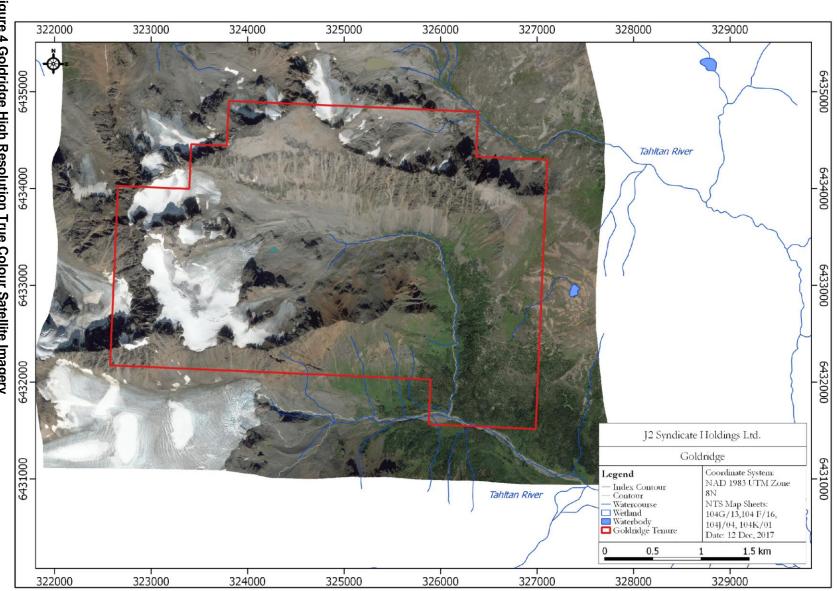
Rock grab samples were collected by foot with helicopter assistance. The rock sampling locations were chosen by geologists based on the potential source areas of MINFILE locations, placer creek occurrences, regional silt anomalies and the potential occurrences of gossans based on high resolution satellite imagery. The tops of ridges were typically chosen for the easier location of rock outcrop, subcrop and float. The rock grab sample sites were chosen in the field by a geologist or prospector based on changes in lithology and/or the potential for mineralization.

The rock grab samples were extracted using a rock hammer to expose fresh surfaces and to liberate a sample of approximately 0.5 to 2.0 kilograms. All sample sites were flagged with biodegradable flagging tape and marked with the sample number. All sample sites were recorded using hand-held GPS units (accuracy 1-10 metres) and the following information was recorded on all-weather paper: sample ID, easting, northing, elevation, type of sample (outcrop, subcrop, float), and a brief description.

4.1.2 Silt Sampling Protocol

Silt samples were collected by foot with helicopter assistance. The silt sampling locations were chosen by geologists and prospectors based on the potential source areas of MINFILE locations, placer creek occurrences, regional silt anomalies and downstream of potential occurrences of gossans based on high resolution satellite imagery. Rusty-coloured streams with a well-developed bed were typically chosen for silt sample collection sites.

The silt samples were extracted to ensure the greatest amount of silt, based on the sampler's desired method. All sample sites were flagged with biodegradable flagging tape and marked with the sample number. All sample sites were recorded using handheld GPS units (accuracy 1-10 m) and the following information is recorded on all-weather paper: sample ID, easting, northing, elevation.

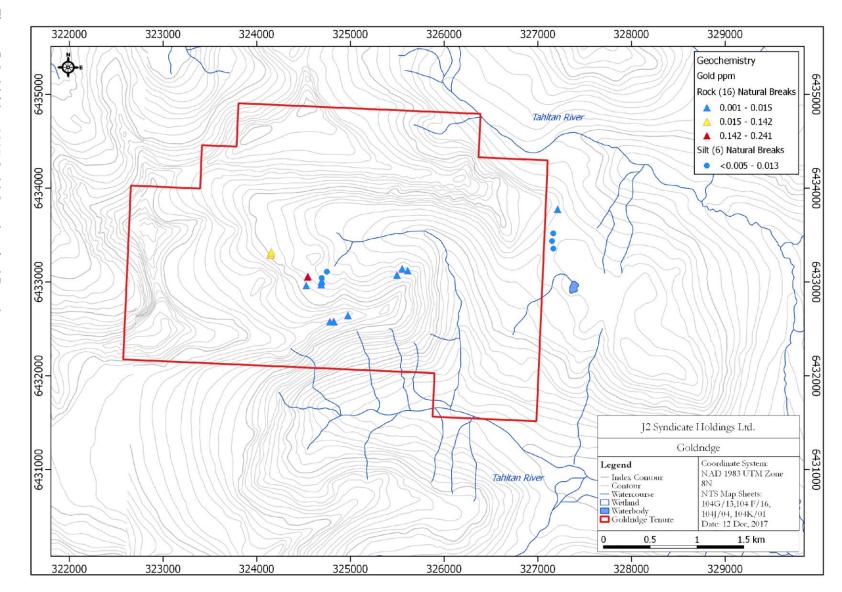

4.1.3 Data Verification

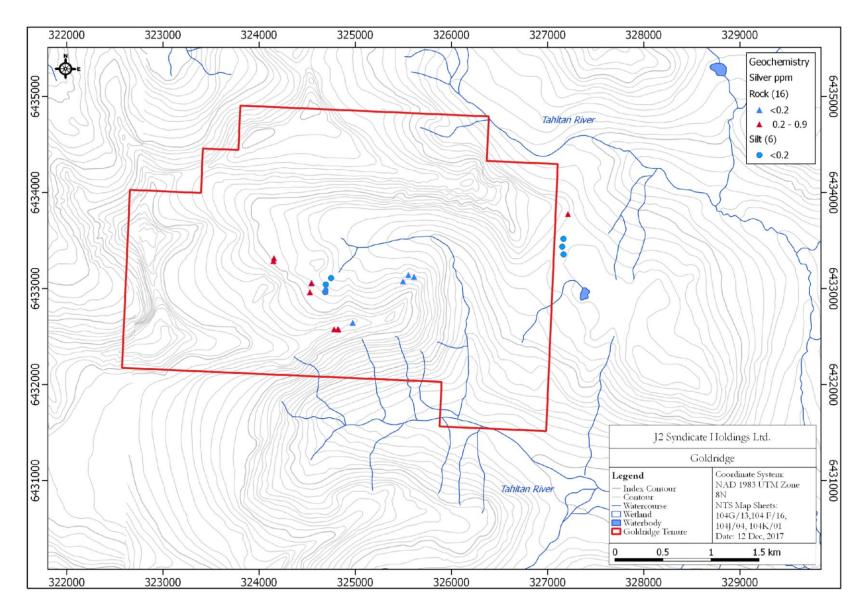
All GPS units were downloaded to a laptop using DNR Garmin®. The GPS information was transferred into a Microsoft Excel® spreadsheet and the remaining sample information underwent manual data entry. The database was checked by the site geologist while in the field, and again in the office prior to submission to the project geologist. A second check of the database was conducted when the results are merged with the database. The third and final check of the database was performed by the author of the report.

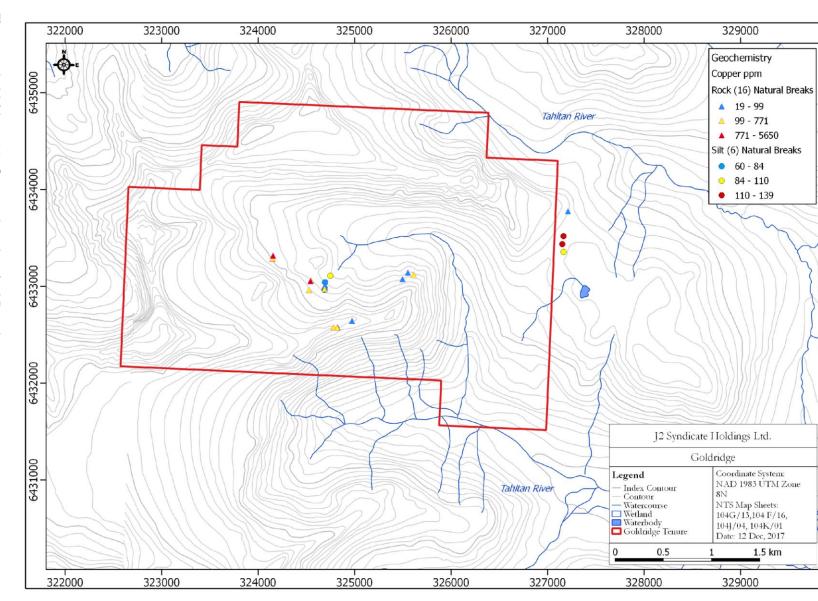
All the rock and silt samples were processed and analyzed by ALS Canada Ltd. labs. Verification of assays was performed by ALS using internal QA/QC procedures of duplicates, blanks and proprietary reference standards. Due to the small size of the 2017 exploration program, a rigorous quality assurance/quality control (QA/QC) program including blanks, standards and duplicates was not conducted. Ideally 20 of each type of QC sample would be inserted into the sample stream to acquire a statistical representation of the quality of the data.

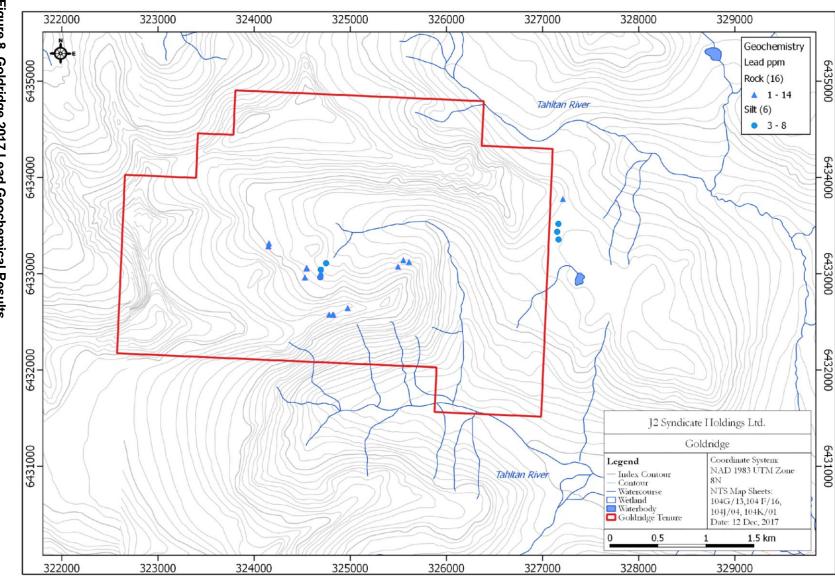
4.2 High Resolution Satellite Imagery

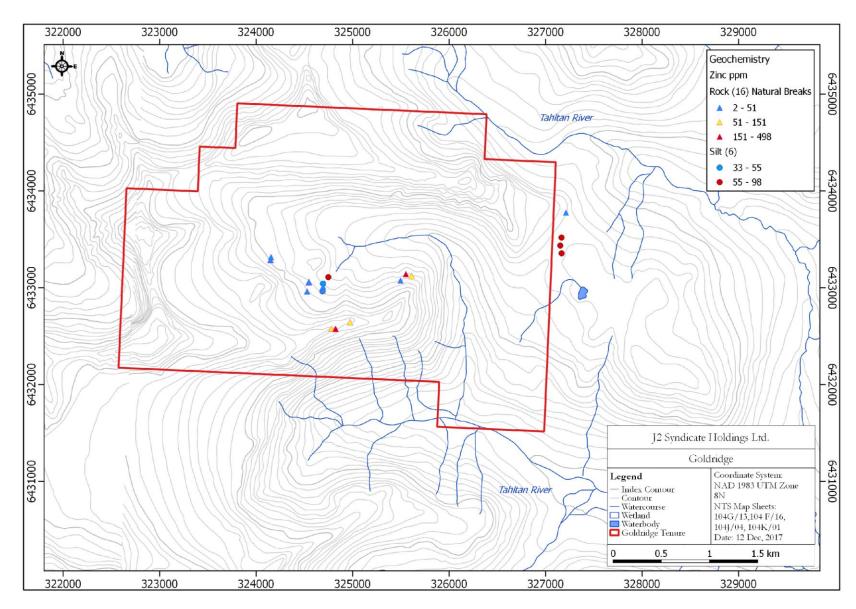
To assist with exploration program planning, high resolution (40 cm pixel) satellite imagery of the Goldridge Property was purchased from Blackbridge Geomatics Canada. The archived imagery was captured August 10th, 2013 and was used to delineate possible traverses and potential gossanous areas. The resulting true colour image is presented in Figure 4.




4.3 Geochemical Results


The 2017 geochemical survey on the Goldridge Property took place on August 9th by a crew of three. The property was traversed by foot with helicopter assistance. The traverse areas were based on MINFILE locations, ridge tops for outcrop exposures and regional silt anomalies. The main element of interest is gold, whereas secondary elements of interest include silver, copper, lead and zinc. A total of 22 samples were collected during the 2017 field season: 16 rock and 6 silt samples. The sample descriptions are located in Appendix B. The results of the 2017 geochemical survey are displayed in Figures 5 through 9.





Goldridge 2017 Geochemical and Geological Survey

4.3.1 Rock Grab Samples

Exploratory data analysis (EDA) of the 16 rock samples collected during the 2017 exploration program includes a summary table. No float samples were collected. The information compiled during EDA is used to determine the composition of the data, to discover anomalies and to determine pathfinder relationships unique to the area in which the samples were collected. Due to the small number of samples collected (less than 50) further statistical analysis was not performed.

The rock grab samples collected in 2017 are displayed in Table 2 with sample name, material sampled and description as well as gold, silver, copper, lead and zinc concentrations. All the samples were collected within the Gravy Train Zone. Figures 10 to 12 shows the sample material collected and the site for the highlighted rock grab samples. The information for all the samples is located in Appendix B: Sample Descriptions.

Table 2 Goldridge Rock Grab Sample Highlights (concentrations are in ppm unless otherwise specified)

Sample ID	Туре	Description	Au	Ag	Cu	Pb	Zn
W385571	outcrop	At same location as W386670, chip across slickenside , 15 cm long by 8 cm wide, 10% chalcopyrite, malachite and azurite staining, visible malachite on weathered surface, 30 m by 20 m outcrop, chip sample across 0.5 m length by 2 cm width, lots carbonate, mineralization associated with rhyolite/diorite dike, lots epidote	0.241	0.9	3280	4	47
W385518	talus	talus/float grab, very rusty angular float found just below rock face 40 cm long 20 cm wide 15% + sulfides, chalcopyrite, malachite stained, still looks like rusty quartz rich granite	0.142	0.7	5650	3	24
W385516	talus	talus/float grab, angular, quartz rich magnetic granite, float was 20 cm x 15 cm with quartz veining, black magnetite with quartz stringers both carrying sulfides (site) angular float found directly below cliff with rounded masses of magnetite found frequently down slope down talus as big as 50 cm, photo of sample as well as mass magnetite will be included, weathered colour-black, grey and white, fresh-black, granite pink, white, finger painting at magnetite in site photo	0.119	<0.2	176	3	33

Figure 10 Goldridge 2017 Sample W385570 and W385571 Location

Figure 11 Goldridge 2017 Rock Sample W385518 Material Collected (left) and Location (right)

Figure 12 Goldridge 2017 Sample W385516 Material Collected (left) and Location (right)

The summary table includes sample count, detection limits, quantiles, minimum (Min)maximum (Max) values, standard deviation (St. Dev.), mean absolute deviation (MAD) and the coefficient of variation (CV) (Table 3). These summary statistics assist in determining the character of the data. The below detection limit values were replaced by half the detection limit for each element.

Table 3 Goldridge 2017 Rock Grab Sample Summary (below detection limit values are replaced by half the detection limit for each element). NA = not applicable, DL= detection limit, Min = minimum, Max = maximum, St. Dev. = standard deviation, MAD = mean absolute deviation and CV = coefficient of variation.

01.10	a latio													
Element	Units	Count	DL	% < and > DL	Min	25%	Median (50%)	Mean	95%	99%	Max	St. Dev.	MAD	CV
Ag	ppm	16	0.2	50.00%	0.1	0.1	0.2	0.3	0.8	0.9	0.9	0.27	0.10	1.04
Al	pct	16	0.01	0.00%	0.26	0.96	1.18	1.24	2.09	2.12	2.13	0.53	0.41	0.43
As	ppm	16	2	0.00%	2	5	7	13	45	49	50	14.57	4.00	1.14
В	ppm	16	10	87.50%	5	5	5	6	10	10	10	1.71	0.00	0.30
Ва	ppm	16	10	0.00%	10	20	30	53	153	231	250	60.28	220.0	1.15
Ве	ppm	16	0.5	93.75%	0.25	0.25	0.25	0.29	0.41	0.80	0.90	0.16	0.00	0.56
Bi	ppm	16	2	68.75%	1	1	1	1	2	3	3	0.62	1.00	0.45
Са	pct	16	0.01	0.00%	0.270	0.965	1.135	2.464	8.458	14.332	15.800	3.79	0.37	1.54
Cd	ppm	16	0.5	68.75%	0.25	0.25	0.25	0.45	1.40	1.64	1.70	0.43	0.00	0.94
Со	ppm	16	1	0.00%	7.0	10.8	15.0	18.8	39.0	58.2	63.0	13.63	5.00	0.72
Cr	ppm	16	1	0.00%	5.0	10.3	16.0	39.9	145.8	157.2	160.0	50.93	6.00	1.28
Cu	ppm	16	1	0.00%	19	97	149	719	3873	5295	5650	1534	73.50	2.13
Fe	pct	16	0.01	0.00%	0.78	2.75	3.61	3.64	5.68	5.84	5.88	1.56	1.06	0.43
Ga	ppm	16	10	75.00%	5	5	5	6	10	10	10	2.24	5.00	0.36
Hg	ppm	16	1	37.50%	1	1	1	1	2	3	3	0.66	0.25	0.66
К	pct	16	0.01	0.00%	0.0	0.0	0.1	0.1	0.3	0.4	0.5	0.11	0.39	0.95
La	ppm	16	10	56.25%	5.0	5.0	5.0	7.8	12.5	18.5	20.0	4.07	5.00	0.52
Mg	pct	16	0.01	0.00%	0.0	0.9	0.9	1.2	2.6	4.6	5.1	1.14	0.14	0.95
Mn	ppm	16	5	0.00%	52.0	224.5	321.5	413.6	1015.0	1027.0	1030.0	275.6	255.0	0.67
Mo	ppm	16	1	18.75%	0.5	1.0	2.0	8.8	43.5	47.1	48.0	14.95	1.00	1.70
Na	pct	16	0.01	0.00%	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.02	0.02	0.40
Ni	ppm	16	1	0.00%	4.0	11.5	20.0	35.8	82.8	108.6	115.0	32.69	15.00	0.91
Р	ppm	16	10	0.00%	30.0	812.5	990.0	958.8	1562.5	1592.5	1600.0	374.3	560.0	0.39
Pb	ppm	16	2	37.50%	1.0	1.0	2.5	3.3	8.8	13.0	14.0	3.34	1.50	1.01
S	pct	16	0.01	0.00%	0.0	0.1	0.4	0.9	2.7	2.7	2.7	0.98	0.39	1.07
Sb	ppm	16	2	87.50%	1.0	1.0	1.0	1.7	4.3	9.7	11.0	2.50	0.00	1.48
Sc	ppm	16	1	6.25%	0.5	3.0	4.0	6.0	16.8	21.0	22.0	5.57	1.00	0.93
Sr	ppm	16	1	0.00%	9.0	21.5	31.0	66.7	208.8	345.0	379.0	91.76	14.00	1.38
Th	ppm	16	20	93.75%	10.0	10.0	10.0	11.3	15.0	27.0	30.0	5.00	0.00	0.44
Ti	pct	16	0.01	12.50%	0.0	0.1	0.1	0.1	0.2	0.3	0.3	0.08	0.13	0.57
TI	ppm	16	10	100%	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.00	0.00	0.00
U	ppm	16	10	93.75%	5.0	5.0	5.0	6.6	11.3	26.3	30.0	6.25	0.00	0.95
V	ppm	16	1	0.00%	9.0	55.8	68.0	96.8	232.0	373.6	409.0	93.43	21.50	0.97
W	ppm	16	10	100%	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.00	0.00	0.00
Zn	ppm	16	2	0.00%	2.0	22.5	38.0	81.3	246.8	447.8	498.0	119.3	40.00	1.47
Au-24	ppm	1	0.005	100%	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	0.0025	NA	NA	NA
Au-ICP	ppm	15	0.001	33.33%	0.0005	0.0005	0.0020	0.0358	0.1717	0.2271	0.2410	0.07	0.00	2.03

EDA indicates there is insufficient assay data for boron, beryllium, bismuth, cadmium, gallium, antimony, thorium, thallium, uranium and tungsten due to greater than 65 percent of the population below the detection limits (DL) of the assay method. The St. Dev. and MAD values indicate that silver, aluminium, arsenic, barium, calcium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, nickel, phosphorous, sulfur, strontium, titanium, vanadium, zinc and gold vary greatly from the mean. The CV values show that the variance is high for silver, arsenic, barium, calcium, chromium, copper, molybdenum, lead, sulfur, antimony, strontium, zinc and gold. These large CV values indicate possible links with mineralization or changes in lithology although it is difficult to determine with a small sample size. Due to the small population of rock grab samples (less than 30) a correlation matrix was not created.

4.3.1 Silt Samples

Exploratory data analysis (EDA) of the 6 silt samples collected during the 2017 exploration program includes a summary table. This information is used to determine the composition of the data, to discover anomalies and to determine pathfinder relationships unique to the area in which the samples were collected. Due to the small number of samples collected (less than 50) further statistical analysis was not performed.

The summary table includes sample count, detection limits, quantiles, minimum (Min)maximum (Max) values, standard deviation (St. Dev.), mean absolute deviation (MAD) and the coefficient of variation (CV) (Table 4). These summary statistics assist in determining the character of the data. The below detection limit values were replaced by half the detection limit to calculate the summary statistics.

Table 4 Golddigger 2017 Silt Sample Summary (below detection limit values were replaced by half the detection limit for each element). NA = not applicable, DL= detection limit, Min = minimum, Max = maximum, St. Dev. = standard deviation, MAD = mean absolute deviation and CV = coefficient of variation.

Element	Units	Count	DL	% < and > DL	Min	25%	Median (50%)	Mean	95%	99%	Max	St. Dev.	MAD	CV
Ag	ppm	6	0.2	100%	0.1	0.1	0.1	0.1	0.1	0.1	0.10	0.00	0.00	0.00
Al	pct	6	0.01	0.00%	0.57	0.73	1.11	1.16	1.85	1.91	1.92	0.54	0.51	0.49
As	ppm	6	2	0.00%	6	8	17	18	32	33	33	12.00	10.50	0.71
В	ppm	6	10	100%	5	5	5	5	5	5	5	0.00	0.00	0.00
Ba	ppm	6	10	0.00%	60	70	75	108	238	280	290	89.31	5.00	1.19
Ве	ppm	6	0.5	66.67%	0.25	0.25	0.25	0.45	0.98	1.08	1.10	0.35	0.00	1.39
Bi	ppm	6	2	83.33%	1	1	1	1	2	2	2	0.41	0.00	0.41
Ca	pct	6	0.01	0.00%	0.59	0.73	0.83	0.80	0.93	0.93	0.93	0.13	0.10	0.16
Cd	ppm	6	0.5	100%	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.00	0.00	0.00
Со	ppm	6	1	0.00%	7	10	16	15	21	22	22	5.96	5.00	0.38
Cr	ppm	6	1	0.00%	18	19	40	46	84	89	90	30.77	21.00	0.78
Cu	ppm	6	1	0.00%	60	73	101	97	133	138	139	30.18	24.50	0.30
Fe	pct	6	0.01	0.00%	2.27	2.60	3.70	3.42	4.39	4.47	4.49	0.94	0.60	0.25
Ga	ppm	6	10	66.67%	5	5	5	7	10	10	10	2.58	0.00	0.52
Hg	ppm	6	1	50.00%	0.5	0.5	0.8	0.8	1.0	1.0	1.00	0.27	0.25	0.37
К	pct	6	0.01	0.00%	0.05	0.05	0.08	0.08	0.11	0.11	0.11	0.03	0.03	0.38
La	ppm	6	10	16.67%	5	10	10	11	18	20	20.00	4.92	0.00	0.49
Mg	pct	6	0.01	0.00%	0.34	0.53	0.74	0.74	1.06	1.08	1.08	0.30	0.25	0.41
Mn	ppm	6	5	0.00%	369	452	612	682	1126	1185	1200	317.7	227.5	0.52

Goldridge 2017 Geochemical and Geological Survey

-								-						
Мо	ppm	6	1	0.00%	1.0	1.0	2.0	2.7	5.5	5.9	6.00	2.07	1.00	1.03
Na	pct	6	0.01	0.00%	0.010	0.013	0.020	0.018	0.028	0.030	0.030	0.01	0.01	0.38
Ni	ppm	6	1	0.00%	10	12	24	29	56	59	60	20.74	13.00	0.88
Р	ppm	6	10	0.00%	1200	1260	1305	1345	1583	1645	1660	163.1	50.00	0.12
Pb	ppm	6	2	0.00%	3	4	5	5	8	8	8	1.90	1.50	0.38
S	pct	6	0.01	0.00%	0.01	0.01	0.02	0.04	0.10	0.10	0.10	0.04	0.01	2.00
Sb	ppm	6	2	66.67%	1	1	1	1	2	2	2	0.52	0.00	0.52
Sc	ppm	6	1	0.00%	3.0	3.8	6.5	6.0	8.8	9.0	9.00	2.53	2.00	0.39
Sr	ppm	6	1	0.00%	21	33	34	33	39	39	39.00	6.27	2.00	0.19
Th	ppm	6	20	100%	10	10	10	10	10	10	10	0.00	0.00	0.00
Ti	pct	6	0.01	0.00%	0.04	0.06	0.07	0.07	0.10	0.10	0.10	0.02	0.02	0.37
TI	ppm	6	10	100%	5	5	5	5	5	5	5	0.00	0.00	0.00
U	ppm	6	10	100%	5	5	5	5	5	5	5	0.00	0.00	0.00
V	ppm	6	1	0.00%	67	72	88	85	101	102	102	14.71	11.50	0.17
W	ppm	6	10	100%	5	5	5	5	5	5	5	0.00	0.00	0.00
Zn	ppm	6	2	0.00%	33	40	71	66	96	98	98	28.81	23.00	0.41
Au-24	ppm	3	0.005	0.00%	0.0050	0.0050	0.0050	0.0077	0.0122	0.0128	0.0130	0.00	0.01	0.92
Au-26	ppm	3	0.01	33.33%	0.005	0.008	0.010	0.008	0.010	0.010	0.010	0.00	0.01	0.29

EDA indicates there is insufficient assay data for silver, boron, beryllium, bismuth, cadmium, gallium, antimony, thorium, thallium, uranium and tungsten due to greater than 65 percent of the population below the detection limits (DL) of the assay method. The standard deviation (St. Dev.) and MAD values indicate that aluminium, arsenic, calcium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, nickel, phosphorous, sulfur, scandium, strontium, titanium, vanadium and zinc vary greatly from the mean. The CV values show that the variance is high for barium, beryllium, molybdenum, sulfur and gold indicating possible links with mineralization and changes in lithology although it is difficult to determine with a small sample size. Due to the small population of silt samples (less than 30) a correlation matrix was not created.

4.4 Summary of Exploratory Work

A follow-up and reconnaissance sampling program was carried out on the Goldridge Property for one day on August 9th, 2017. A total of 22 samples were taken over this period of time. The property consists of one tenure covering 1165.91 hectares. The property is within an area of rugged topography between the Sheslay and the Tahltan River. The property was accessed via a 40 kilometre helicopter flight from Glenora, BC.

Gold, silver and copper mineralization was found within a rhyolite/diorite dykeassociated slickenside. Abundant epidote and carbonate were associated with approximately 10% chalcopyrite, malachite and azurite in this area.

One geologist and two prospectors traversed the property taking samples, geological observations and pictures. Samples were collected within predefined areas derived from 2016 geochemistry, satellite imagery and topography. Rock sampling returned a gold concentration of 0.241 ppm Au within the Gravy Train Zone, 0.9 ppm silver and 3,280 ppm copper with minor amounts of zinc. Moderate gold, silver and copper values were found within the Gravy Train Zone. Lead values did not return prospective values while with zinc showed an increase towards the east half of the Property.

5. CONCLUSIONS AND RECOMMENDATIONS

The Goldridge Property is located within the Telegraph Creek area of the Coast Range Mountains in north-western British Columbia approximately 40 kilometres southwest of Glenora, BC. This region has been historically explored for lode gold placer mining purposes while recent activities are focused on porphyry-style copper-gold ± molybdenum mineralization as well as their associated distal polymetallic veins or replacement deposits (epithermal). The tectonic evolution of this region has led to the formation of a number of deposits such as the copper and gold [silver] alkalic porphyry at Galore Creek (approximately 100 km south of Goldridge), copper ± molybdenum ± gold calcalkaline porphyry copper-gold deposit at Schaft Creek (90 km southeast), as well as precious metal epithermal deposits like Golden Bear (30 km northwest). Historical work within the current Goldridge Property includes reconnaissance geochemical surveys and an aerial geophysical survey. Geochemical surveying in 2016, by the J2 Syndicate, announced the gold-silver-copper Gravy Train Zone, within the centre of the Goldridge Claim, that returned maxima of 0.797 ppm Au, 55.1 ppm Ag and 87870 ppm Cu within 20 cm wide quartz-carbonate/quartz-pyrite-sericite vein hosted in mafic volcanic rock.

The Goldridge Property is located within the Stikine Terrane and is primarily comprised of Upper Triassic Stuhini Group limestone, marble and calcareous sedimentary rock. These rocks overly Middle to Late Triassic quartz diorite to the northwest and undivided granitoid rocks of the Late Triassic to the southeast.

The future work recommended is:

- A historical compilation and interpretation of the regional and local geochemistry to date with the purpose of identifying geochemical trends that may be related to the epithermal mineralization thought to occur on the Property.
- A historical compilation and interpretation of the geophysical survey to identify structural trends that may be related to the epithermal mineralization historically thought to occur on the Property.

After examining the historical compilations, an exploration program consisting of geochemical surveys, detailed mapping and prospecting may be conducted. If warranted, trenching and channel sampling may also be used to further examine the potential for economic mineralization within the Gravy Train Zone.

Goldridge Aug 09, 2017	Comment	Days			Totals
Personnel (Name)* / Position	Field Days	Days	Rate	Subtotal*	
Diana Benz; Project Geol.	Aug 09	1	\$500.00	\$500.00	
Tanya Schwenk; Prospector	Aug 09	1	\$350.00	\$350.00	
Jeff Niblock; Prospector	Aug 09	1	\$350.00	\$350.00	
Rein Turna, P.Geo.	Aug 28 property visit	0.14	\$1,200.00	\$168.00	
				\$1,368.00	\$1,368.00
Office Studies	List Personnel	Unit/Hours	Rate	Subtotal*	

6. STATEMENT OF COSTS

	Nicolai Goeppel &			A1 526 05	
Program Planning	Tyler Punk	27.94	\$55.00	\$1,536.87	
Database Complilation & Preliminary Mapping	Takom Exploration Ltd.	1.00		\$288.76	
Assessment Report	Takom Exploration Ltd.	1.00		\$1,500.00	
				\$3,325.63	\$3,325.63
Remote Sensing		Unit	Rate	Subtotal*	
Satellite Imagery	Blackbridge	1.00		\$1,004.53	
				\$1,004.53	\$1,004.53
Geochemical Surveying	Lab	No.	Rate	Subtotal	
Silt	ALS Canada Ltd.	3	\$32.23	\$96.69	
Rock	ALS Canada Ltd.	15	\$35.29	\$529.42	
				\$626.11	\$626.11
Transportation		Days/Unit/Hours	Rate	Subtotal	
freight		1		\$478.12	
truck rental	Aug 16	1		\$71.47	
fuel	Fuel costs	3.5		\$1,172.76	
Helicopter (hours)	Discovery Helicopters Ltd., Atlin, BC	6.27	\$875.00	\$5,488.09	
Airfare		1		\$321.15	
				\$7,531.59	\$7,531.59
Accommodation & Food	Rates per day				
Hotel	Lodging & meals			\$1,998.41	
Meals	Groceries & meals			\$61.68	
				\$2,060.09	\$2,060.09
Equipment Rentals					
Field Gear (Specify)	Radio & Equipment chisels, geotools, etc.)	Rentals (hammer,		\$51.97	
Communication	InReach, Satellite Phone			\$46.51	
Field Sampling	sample bags, tags, rice bags, zip ties,			\$380.06	
Supplies	flagging				

TOTAL Expenditures

\$16,394.49

7. REFERENCES

Brown, D.A., Gunning, M.H. and Greig, C.J. (1996). The Stikine Project: Geology of Western Telegraph Creek Map Area, Northwestern British Columbia (NTS 104G/5, 6, 11W, 12 and 13). British Columbia Geological Survey Bulletin 95, 75 p.

Caulfield, D.A. (1989). Geological and Geochemical Report on the SHAKE 1-4 Claims. BC ARIS Report Number 19127. Candela Resources Ltd.

Chase, B. (1989). Report on the Tahl 2 and 3 Groups (Tahl 5-12 Mineral Claims) 1989 Prospecting Program. ARIS Report Number 19917. Kestral Resources Ltd.

Clarke, G. Britton, J., Jago, P., Katay, F. and Northcore, B. (2017). Exploration and Mining in British Columbia, 2016: A summary. In: Provincial Overview of Exploration and Mining in British Columbia, 2016. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Information Circular 2017-1, pp. 1-29.

Cui, Y., Miller, D., Schiarizza, P., and Diakow, L.J. (2017). British Columbia digital geology. British Columbia Geological Survey, Open File 2017-8.

Holland, S.S. (1976). Landforms of British Columbia, a physiographic outline. British Columbia Department of Mines and Petroleum Resources. Bulletin 48, 138 p.

Panteleyev, A. (1996a): Epithermal Au-Ag-Cu: High Sulphidation, in Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits, Lefebure, D.V. and Hõy, T., Editors, British Columbia Ministry of Employment and Investment, Open File 1996-13, pages 37-39.

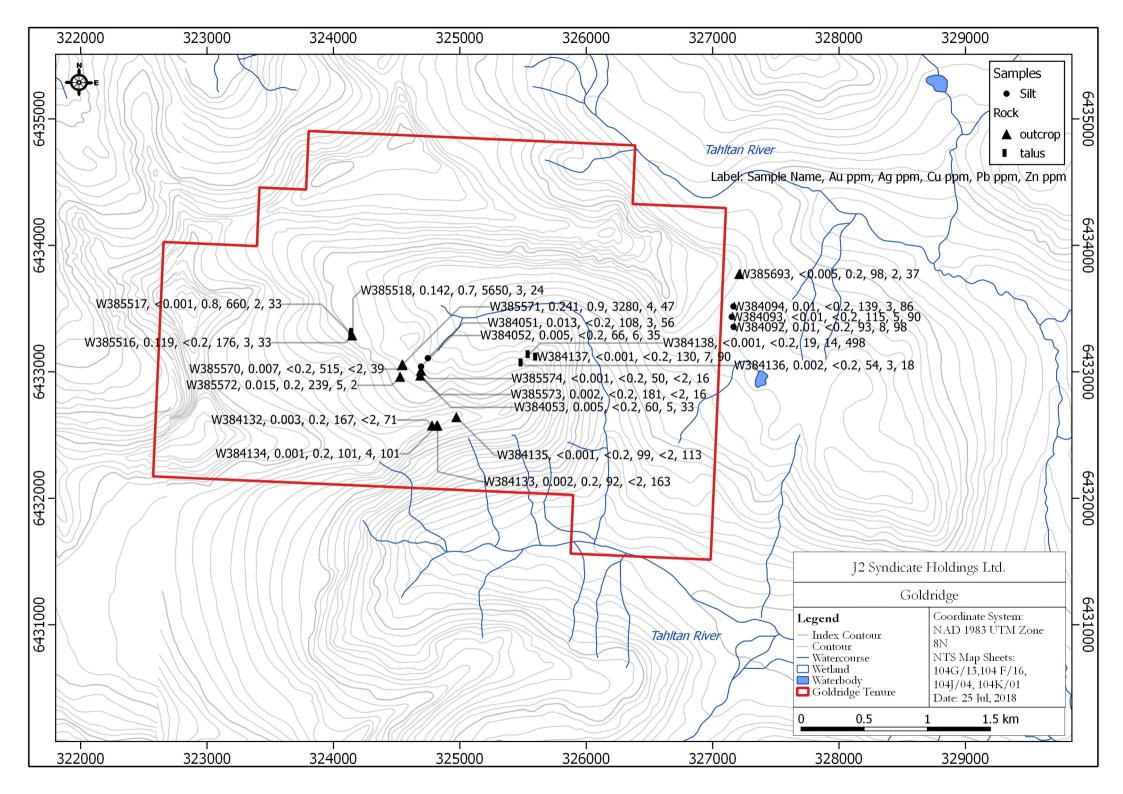
Panteleyev, A. (1996b): Epithermal Au-Ag: Low Sulphidation, in Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits, Lefebure, D.V. and Hõy, T., Editors, British Columbia Ministry of Employment and Investment, Open File 1996-13, pages 41-44.

Pojar, J. and Stewart, A.C. (1991a). Chapter 18 Alpine Tundra Zone. In: D. Meidinger & J. Pojar (Eds.). Special Report Series #6 Ecosystems of British Columbia (pp. 263-274). Victoria, BC: Ministry of Forests Research Branch.

Pojar, J. and Stewart, A.C. (1991b). Chapter 17 Spruce-Willow-Birch Zone. In: D. Meidinger & J. Pojar (Eds.). Special Report Series #6 Ecosystems of British Columbia (pp. 251-262). Victoria, BC: Ministry of Forests Research Branch.

Meidinger, D. and Pojar, J. Special Report Series #6 Ecosystems of British Columbia. Victoria, BC: Ministry of Forests Research Branch, pp. 330.

Mihalynuk, M.G., Meldrum, D., Sears, S. and Johannson, G. (1995). Geology and Mineralization of the Stuhini Creek Area (104K/11). In: Geological Fieldwork 1994, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 1995-1, pp. 321-342.


Takaichi, M and Johnson, C. (2012). Assessment Report on the 2011/2012 Geological, Geochemical, and Geophysical program at the Eagle Property, BC, Canada. ARIS Report Number 33330. Teck Resources Limited.

8. STATEMENT OF QUALIFICATIONS

I, Diana M. Benz, certify that:

- 1. I am the President of Takom Exploration Ltd., a mineral exploration consulting company located at 12925 Chief Lake Road, Prince George, BC.
- 2. I visited the Goldridge Property on August 9th of this year.
- 3. I am the author of the assessment report titled "Geological and Geochemical Survey on the Goldridge Property".
- 4. I do not hold any equity interest in the Goldridge Claims or in J2 Syndicate Holdings or its affiliates.
- 5. I graduated from the University of British Columbia in 1997 with a B.Sc. in Biology, a M.Sc. in Earth Sciences from University of Windsor in 2006 and a Ph.D. (graduand) in Natural Resources and Environmental Studies from the University of Northern British Columbia in 2017. My graduate degrees focussed on geostatistics and geochemistry with a minor Ph.D. project on satellite imagery enhancement for mineral exploration.
- 6. I have worked in the diamonds and base/precious metals exploration industry since 1996 (21 years) on projects located across Canada (BC, YT, NWT, ON) and in Greenland, as well as, remotely through a BC-based office on projects located in the South America, Africa, Eurasia, the Middle East and Nevada, USA.

Diana M. Benz, Ph.D. Takom Exploration Ltd.

Goldridge 2017 Geochemical and Geological Survey

Appendix A GEOCHEMICAL CERTIFICATES

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 2-SEP-2017 Account: SCHORNO

CERTIFICATE VA17172301

Project: Goldridge

This report is for 3 Sediment samples submitted to our lab in Vancouver, BC, Canada on 10-AUG-2017.

The following have access to data associated with this certificate:

DIANA BENZ

BILL CHORNOBAY

	SAMPLE PREPARATION									
ALS CODE	DESCRIPTION									
WEI-21 Received Sample Weight										
LOG-22	Sample login - Rcd w/o BarCode									
SCR-41	Screen to -180um and save both									
	ANALYTICAL PROCEDURES									

ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA24	Au 50g FA AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

TO: J2 SYNDICATE ATTN: DIANA BENZ 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 2-SEP-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
W384051 W384052 W384053	LOR	0.02 4.08 3.08 3.12	0.2 <0.2 <0.2 <0.2	0.01	2 7 6	10 <10 <10	10 80 70 60	0.5 <0.5 <0.5 <0.5	2 <2 <2 <2	0.01 0.91 0.93 0.89	0.5 <0.5 <0.5 <0.5	1 22 8 7	1 90 20 18	1 108 66 60	0.01 3.51 2.29 2.27	10 <10 <10

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 2-SEP-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
W384051 W384052 W384053	LUR	<1 <1 <1	0.06 0.05 0.05	<10 10 10	1.08 0.57 0.51	614 399 369	3 1 1	0.02 0.01 0.01	60 11 10	1290 1250 1200	2 3 6 5	0.10 0.01 0.01	<2 <2 <2 <2	633	33 39 37	<20 <20 <20 <20

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 2-SEP-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA24 Au ppm 0.005	
W384051 W384052 W384053		0.07 0.06 0.06	<10 <10 <10	<10 <10 <10	91 67 68	<10 <10 <10	56 35 33	0.013 0.005 0.005	

Т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 2-SEP-2017 Account: SCHORNO

Project: Goldridge

		CERTIFICATE COMMENTS									
Applies to Method:	Processed at ALS Vancouver locate Au-AA24 WEI-21	LABORATOR ed at 2103 Dollarton Hwy, North Va LOG-22	RY ADDRESSES ncouver, BC, Canada. ME-ICP41	SCR-41							

CERTIFICATE TR17194376

Project: Goldridge

This report is for 1 Rock sample submitted to our lab in Terrace, BC, Canada on 5-SEP-2017.

The following have access to data associated with this certificate:

DIANA BENZ	BILL CHORNOBAY	STEFAN KRUSE

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 15-OCT-2017 Account: SCHORNO

	SAMPLE PREPARATION									
ALS CODE	DESCRIPTION									
WEI-21	Received Sample Weight									
LOG-22	Sample login - Rcd w/o BarCode									
CRU-22c	Crush entire sample >70% -19 mm									
CRU-31	Fine crushing - 70% <2mm									
SPL-21	Split sample - riffle splitter									
PUL-31	Pulverize split to 85% <75 um									

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA24	Au 50g FA AA finish	AAS
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

TO: J2 SYNDICATE ATTN: DIANA BENZ 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 15-OCT-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
W385693		0.88	0.2	1.40	5	<10	30	<0.5	<2	1.28	<0.5	16	14	98	3.78	<10

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 15-OCT-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
W385693		<1	0.12	<10	0.43	189	5	0.07	19	910	2	1.36	<2	4	28	<20

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 15-OCT-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA24 Au ppm 0.005	
W385693		0.14	<10	<10	52	<10	37	<0.005	

Т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-OCT-2017 Account: SCHORNO

Project: Goldridge

		CERTIFICATE COMMENTS	6									
		LABORATORY ADDRESSES										
Applies to Method:	Processed at ALS Reno located at 497 Au-AA24 PUL-31	77 Energy Way, Reno, NV, USA. CRU-22c SPL-21	CRU-31 WEI-21	LOG-22								
Applies to Method:	Processed at ALS Vancouver located a ME-ICP41	at 2103 Dollarton Hwy, North Vancou	uver, BC, Canada.									

CERTIFICATE TR17189342

Project: Goldridge

This report is for 3 Soil samples submitted to our lab in Terrace, BC, Canada on 5-SEP-2017.

The following have access to data associated with this certificate:

DIANA BENZ	BILL CHORNOBAY	STEFAN KRUSE

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2017 Account: SCHORNO

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	
	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA26	Ore Grade Au 50g FA AA finish	AAS
ME-ICP41	35 Element Agua Regia ICP-AES	ICP-AES

TO: J2 SYNDICATE ATTN: DIANA BENZ 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
Sample Description W384092 W384093 W384094	LOR		0.2 <0.2 <0.2 <0.2													

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
W384092 W384093 W384094		1 1 1	0.11 0.09 0.11	20 10 10	0.34 0.90 1.01	1200 609 902	1 6 4	0.02 0.02 0.03	13 34 44	1660 1320 1350	8 5 3	0.01 0.08 0.03	2 <2 2	9 7 8	33 34 21	<20 <20 <20

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 6-OCT-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Tl ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA26 Au ppm 0.01	
W384092 W384093 W384094		0.04 0.10 0.10	<10 <10 <10	<10 <10 <10	85 102 97	<10 <10 <10	98 90 86	0.01 <0.01 0.01	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 6-OCT-2017 Account: SCHORNO

Project: Goldridge

		CERTIFICATE COMMENT	٢S	
Applies to Method:	Processed at ALS Vancouver located Au-AA26 WEI-21	LABORATORY d at 2103 Dollarton Hwy, North Vanc LOG-22		SCR-41

CERTIFICATE TR17170308

Project: Goldridge

This report is for 15 Rock samples submitted to our lab in Terrace, BC, Canada on 10-AUG-2017.

The following have access to data associated with this certificate:

DIANA BENZ	BILL CHORNOBAY	STEFAN KRUSE

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 20-SEP-2017 This copy reported on 26-SEP-2017 Account: SCHORNO

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21 ME-ICP41	Au 30g FA ICP-AES Finish 35 Element Aqua Regia ICP-AES	ICP-AES ICP-AES

TO: J2 SYNDICATE ATTN: DIANA BENZ 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Comments: ***Corrected copy moving samples W385516 to W490862 onto Ardonblue Ventures Inc. account***

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 20-SEP-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
W384132 W384133 W384134 W384135 W384136		1.99 1.98 1.80 1.68 0.91	0.003 0.002 0.001 <0.001 0.002	0.2 0.2 <0.2 <0.2 <0.2	1.43 1.60 2.07 0.97 2.13	9 4 8 28 43	<10 <10 <10 <10 <10	250 40 50 60 20	<0.5 <0.5 <0.5 <0.5 <0.5	2 2 2 <2 <2	0.86 1.02 1.17 6.01 1.71	<0.5 1.3 1.7 0.5 <0.5	10 22 13 21 7	11 5 32 15 7	167 92 101 99 54	3.62 5.88 4.79 5.29 3.55
W384137 W384138 W385570 W385571 W385572		0.90 1.47 0.52 0.35 0.50	<0.002 <0.001 <0.001 0.007 0.241 0.015	<0.2 <0.2 <0.2 <0.2 0.9 0.2	1.93 0.32 1.33 1.07 0.26	10 50 5 3 14	<10 <10 <10 <10 <10 <10	40 120 90 20 10	<0.5 0.9 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 2 2 <2	0.75 15.8 2.00 1.10 0.27	0.5 0.5 <0.5 <0.5 <0.5 <0.5	17 11 28 31 9	27 17 141 8 6	130 19 515 3280 239	5.61 3.59 3.02 5.58 0.78
W385573 W385574 W385516 W385517 W385518		0.63 0.85 1.57 1.51 3.06	0.002 <0.001 0.119 <0.001 0.142	<0.2 <0.2 <0.2 0.8 0.7	0.94 1.19 0.94 1.16 1.17	9 2 5 5 5 5	<10 10 10 <10 <10	20 20 30 20 20	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre> <2 <2 <2 <2 <2 <2 <2 <3 </pre>	1.93 2.62 1.01 0.98 0.92	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	14 12 18 9 63	11 115 160 21 49	181 50 176 660 5650	2.77 1.30 2.67 1.72 4.23
Comments: ***Corre	ected copy	moving sa	mples W38	5516 to W4	190862 on	o Ardonbli	le Venture		unt***							

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 20-SEP-2017 Account: SCHORNO

Project: Goldridge

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
W384132		10	1	0.47	10	0.90	554	1	0.06	5	1550	<2	0.40	<2	3	17
W384133		<10	1	0.06	<10	0.82	527	2	0.03	10	1080	<2	2.66	<2	6	29
W384134		<10	<1	0.08	<10	0.87	447	42	0.03	62	760	4	1.97	<2	10	23
W384135		<10	1	0.17	<10	1.62	1010	1	0.04	17	880	<2	1.06	<2	22	70
W384136		10	1	0.03	<10	0.99	537	<1	0.05	4	1030	3	0.41	<2	3	12
W384137		10	1	0.15	<10	0.99	326	19	0.03	60	730	7	2.70	2	15	9
W384138		<10	3	0.06	10	5.10	1030	48	0.01	16	950	14	0.04	11	7	379
W385570		<10	1	0.24	10	1.72	411	3	0.05	71	830	<2	0.31	<2	7	56
W385571		10	2	0.08	10	0.89	287	1	0.05	21	1600	4	0.27	<2	4	54
W385572		<10	<1	0.02	20	0.03	52	2	0.07	6	30	5	0.15	<2	<1	60
W385573		<10	1	0.05	<10	0.25	182	10	0.04	25	1110	<2	1.08	<2	2	13
W385574		<10	<1	0.04	<10	0.97	208	2	0.05	58	500	<2	0.01	<2	3	108
W385516		<10	<1	0.14	10	1.55	311	<1	0.08	72	1070	3	0.04	<2	3	33
W385517		<10	<1	0.04	<10	0.89	317	<1	0.04	12	1060	2	0.01	<2	2	152
W385518		<10	1	0.13	10	1.09	230	3	0.08	115	1250	3	2.25	<2	4	24

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 20-SEP-2017 Account: SCHORNO

Project: Goldridge

CERTIFICATE OF ANALYSIS TR17170308

Sample Description	Method Analyte Units LOR	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
W384132		<20	0.26	<10	<10	81	<10	71	
W384133		<20	0.13	<10	<10	71	<10	163	
W384134		<20	0.15	<10	<10	409	<10	101	
W384135		<20	<0.01	<10	<10	91	<10	113	
W384136		<20	0.22	<10	<10	87	<10	18	
W384137		<20	0.13	<10	<10	173	<10	90	
W384138		<20	<0.01	<10	30	62	<10	498	
W385570		<20	0.18	<10	<10	81	<10	39	
W385571		<20	0.23	<10	<10	168	<10	47	
W385572		30	0.02	<10	<10	9	<10	2	
W385573		<20	0.11	<10	<10	57	<10	16	
W385574		<20	0.13	<10	<10	43	<10	16	
W385516		<20	0.12	<10	<10	64	<10	33	
W385517		<20	0.11	<10	<10	35	<10	33	
W385518		<20	0.18	<10	<10	65	<10	24	
`omments: ***Corre									

Comments: ***Corrected copy moving samples W385516 to W490862 onto Ardonblue Ventures Inc. account***

Т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: J2 SYNDICATE 0760180 BC LTD 303 10090 152ND STREET SURREY BC V3R 8X8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 20-SEP-2017 Account: SCHORNO

Project: Goldridge

		CERTIFICATE COMMENTS									
	Processed at ALS Thunder Bay locate	LABORATORY ADDRESSES Processed at ALS Thunder Bay located at 645 Norah Crescent, Thunder Bay, ON, Canada									
Applies to Method:	CRU-31 PUL-QC	CRU-QC SPL-21	LOG-22 WEI-21	PUL-31							
Applies to Method:	Processed at ALS Vancouver located Au-GRA21 ME-OG46	at 2103 Dollarton Hwy, North Vancou Au-ICP21	uver, BC, Canada. Cu-OG46	ME-ICP41							

Goldridge 2017 Geochemical and Geological Survey

Appendix B SAMPLE DESCRIPTIONS

Sample_ID	Prospector	Date	Project	Zone	Datum	UTM_Zone	Northing	Easting	Elevation_m	Accuracy_m	Sample_Type
W384051	Diana Benz	2017-Aug-09	Goldridge		NAD 83	9N	6433108.65	324747.18	1633.84	0	silt
W384052	Diana Benz	2017-Aug-09	Goldridge		NAD 83	9N	6433041.50	324693.30			silt
W384053	Diana Benz	2017-Aug-09	Goldridge		NAD 83	9N	6432963.60	324686.40			silt
W384092	Diana Benz	2017-Aug-24	Goldridge		NAD 83	9N	6433354.92	327166.24	1646.94	0	silt
W384093	Diana Benz	2017-Aug-24	Goldridge		NAD 83	9N	6433435.35	327152.03	1639.22	0	silt
W384094	Diana Benz	2017-Aug-24	Goldridge		NAD 83	9N	6433517.72	327165.25	1648.47	0	silt

Sample_ID	Description	Photos	Note	Lab	Received
W384051	fast flowing braided stream from glacier, muddy water, sample taken from behind larger rocks	no		ALS	10-Aug-2017
W384052	estimated location	no		ALS	10-Aug-2017
W384053	estimated location	no		ALS	10-Aug-2017
W384092	dry creek bed, orange-brown dirt, mainly sand, some gravel, minor silt, granodiorite fragments	yes		ALS	05-Sep-2017
W384093	dry swamp bed, some organics, mainly sand, some silt	yes		ALS	05-Sep-2017
W384094	slow flowing creek, mix dark grey-green cobble (volcanic rock) with veining, 0.5 m wide	yes		ALS	05-Sep-2017

Sample_ID	Certificate	Certificate_Date	Assay	LabID	Ag_ppm	Al_pct	As_ppm	B_ppm	Ba_ppm	Be_ppn	Bi_ppm	Ca_pct
W384051	VA17172301	02-Sep-2017	ME-ICP41, Au-AA24	W384051	<0.2	1.02	25	<10	80	<0.5	<2	0.91
W384052	VA17172301	02-Sep-2017	ME-ICP41, Au-AA24	W384052	<0.2	0.63	7	<10	70	<0.5	<2	0.93
W384053	VA17172301	02-Sep-2017	ME-ICP41, Au-AA24	W384053	<0.2	0.57	6	<10	60	<0.5	<2	0.89
W384092	TR17189342	06-Oct-2017	ME-ICP41, Au-AA26	W384092	<0.2	1.19	9	<10	290	1.	1 <2	0.59
W384093	TR17189342	06-Oct-2017	ME-ICP41, Au-AA26	W384093	<0.2	1.92	28	<10	70	0.	6 <2	0.76
W384094	TR17189342	06-Oct-2017	ME-ICP41, Au-AA26	W384094	<0.2	1.65	33	<10	80	<0.5	2	0.72

Sample_ID	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Fe_pct	Ga_ppm	Hg_ppm	K_pct	La_ppm	Mg_pct	Mn_ppm	Mo_ppm	Na_pct	Ni_ppm
W384051	<0.5	22	90	108	3.51	<10	<1	0.06	<10	1.08	614	3	0.02	60
W384052	<0.5	8	20	66	2.29	<10	<1	0.05	10	0.57	399	1	0.01	11
W384053	<0.5	7	18	60	2.27	<10	<1	0.05	10	0.51	369	1	0.01	10
W384092	<0.5	16	19	93	4.49	<10	1	0.11	20	0.34	1200	1	0.02	13
W384093	<0.5	15	59	115	4.1	10	1	0.09	10	0.9	609	6	0.02	34
W384094	<0.5	19	67	139	3.88	10	1	0.11	10	1.01	902	4	0.03	44

Sample_ID	P_ppm	Pb_ppm	S_pct	Sb_ppm	Sc_ppm	Sr_ppm	Th_ppm	Ti_pct	TI_ppm	U_ppm	V_ppm	W_ppm	Zn_ppm	Au-24_ppm
W384051	1290	3	0.1	<2	6	33	<20	0.07	<10	<10	91	<10	56	0.013
W384052	1250	6	0.01	<2	3	39	<20	0.06	<10	<10	67	<10	35	0.005
W384053	1200	5	0.01	<2	3	37	<20	0.06	<10	<10	68	<10	33	0.005
W384092	1660	8	0.01	2	9	33	<20	0.04	<10	<10	85	<10	98	
W384093	1320	5	0.08	<2	7	34	<20	0.1	<10	<10	102	<10	90	
W384094	1350	3	0.03	2	8	21	<20	0.1	<10	<10	97	<10	86	

Sample_ID	Au-26_ppm
W384051	
W384052	
W384053	
W384092	0.01
W384093	<0.01
W384094	0.01

Sample_ID	Prospector	Date	Project	Zone	Datum	UTM_Zone	Northing	Easting	Elevation m	Accuracy m	Sample_Type
campio_ib		Duto	110,000	20110	Butum		lionang	Laoting	Lievation_in	//oouruoy_m	campio_19po
W384132	Tanja Schwenk	2017-Aug-09	Goldridge	South	NAD 83	9N	6432576.10	324780.19	1914.70	3	outcrop
W384133	Tanja Schwenk	2017-Aug-09	Goldridge	South	NAD 83	9N	6432575.40	324823.89	1908.19	3	outcrop
											•
W384134	Tanja Schwenk	2017-Aug-09	Goldridge	South	NAD 83	9N	6432574.12	324817.68	1904.58	3	outcrop
W384135	Tanja Schwenk	2017-Aug-09	Goldridge	South	NAD 83	9N	6432642.45	324972.73	1912.75	3	outcrop
W384136	Tanja Schwenk	2017-Aug-09	Goldridge	South	NAD 83	9N	6433074.03	325496.18	1668.19	3	talus
W384137	Tanja Schwenk	2017-Aug-09	Goldridge	South	NAD 83	9N	6433121.29	325610.93	1640.29	3	talus
W384138	Tanja Schwenk	2017-Aug-09	Goldridge	South	NAD 83	9N	6433140.00	325552.00	1610.00	3	talus
W385516	Jeff Niblock	2017-Aug-09	Goldridge		NAD 83	9N	6433286.48	324149.24	1698.44	22	talus
W385517	Jeff Niblock	2017-Aug-09	Goldridge		NAD 83	9N	6433288.76	324148.10	1705.72	22	outcrop
W385518	Jeff Niblock	2017-Aug-09	Goldridge		NAD 83	9N	6433315.92	324154.09	1674.21	10	talus

Sample_ID	Prospector	Date	Project	Zone	Datum	UTM_Zone	Northing	Easting	Elevation_m	Accuracy_m	Sample_Type
W385570	Diana Benz	2017-Aug-09	Goldridge		NAD 83	9N	6433058.12	324547.41	1723.28	0	outcrop
W385571	Diana Benz	2017-Aug-09	Goldridge		NAD 83	9N	6433053.46	324542.00	1714.65	0	outcrop
W385572	Diana Benz	2017-Aug-09	Goldridge		NAD 83	9N	6432961.44	324527.71	1732.46	0	outcrop
W385573	Diana Benz	2017-Aug-09	Goldridge		NAD 83	9N	6432971.37	324687.41	1632.29	0	outcrop
W385574	Diana Benz	2017-Aug-09	Goldridge		NAD 83	9N	6433010.13	324693.26	1641.05	0	outcrop
W385693	Diana Benz	2017-Aug-24	Goldridge		NAD 83	9N	6433774.57	327211.35	1656.50	0	outcrop

Sample_ID	Chip_Interval_Length_m	Description
W384132	1	1m chip sample from 15-20m wide volcanic outcrop on ridge top. Very oxidized rock with pyrite, ?chalcopyrite pyrite?. Weathered surface is brown. Fresh surface is fine grained dark grey-black-green. One 5mm wide calcite vein on one part of the sample. At some spots very dark red/brown oxidized with almost some goethite sheen to it. Strike=57, dip=40
W384133	2	2m chip sample in fine/medium grained volcanic rock. Very intensively oxidized. Disseminated pyrite and chalcopyrite pyrite throughout the rock. Weathered surface is oxidized, red/brown. Fresh surface is dark grey. Strike=220, dip=32
W384134	5	5m chip sample of oxidized volcanic rock containing chalcopyrite pyrite and pyrite to 20- 30%, weathered surface is oxidized brown/red. Fresh surface is fine grained dark grey to black. Strike= 230, dip=40.
W384135		4m chip sample in more like a carbonitic rock unit besides possible fault. Sulfides like pyrite and chalcopyrite pyrite are disseminated throughout the rock. Weathered surface is beige-light brown. Fresh surface is white-grey, some calcite veining present. Very oxidized. Strike=220, dip=70
W384136		talus grab sample of a big broken off piece 5m below outcrop. Very oxidized, brownish to red on weathered surface. Fresh surface is fine grained dark grey-black, with oxidized patches as well as pyrite.
W384137		talus grab ~50m below massive outcrop on ridge. Very oxidized, brownish to red on weathered surface. Fresh surface is fine grained dark grey-black, with oxidized patches as well as pyrite.
W384138		talus grab of a beige rock. Very vuggy quartz. No sulfides visible. At 09V 325532 6433166 is an actual outcrop of this rock type. As well as up on the ridge
W385516		talus/float grab, angular, quartz rich magnetic granite, float was 20 cm x 15 cm with quartz veining, black magnetite with quartz stringers both carrying sulfides (site) angular float found directly below cliff with rounded masses of magnetite found frequently down slope down talus as big as 50 cm, photo of sample as well as mass magnetite will be included, weathered colour-black, grey and white, fresh-black, granite pink, white, finger painting at magnetite in site photo
W385517		outcrop/grab, quartz rich with chalcopyrite, bornite, malachite stained around bornite, brown altered granite
W385518		talus/float grab, very rusty angular float found just below rock face 40 cm long 20 cm wide 15% + sulfides, chalcopyrite, malachite stained, still looks like rusty quartz rich granite

Sample_ID	Chip_Interval_Length_m	Description
		visible malachite on weathered surface, 30 m by 20 m outcrop, chip sample across 0.5 m
W385570	0.5	length by 2 cm width, lots carbonate, mineralization associated with rhyolite/diorite dike, lots epidote
W385571	0.15	at same site, chip across slickenside , 15 cm long by 8 cm wide, 0% chalcopyrite, malachite and azurite staining
		south side of fault, hornsfel?, large 15-20 cm veins of quartz with dark minerals (diorite dikes?), sample of large rusty quartz/feldspar vein with large knob of rust, no discernible
W385572		pattern to rusty patches
W385573	0.5	chip across 0.15 m rusty area, large outcrop 100 by ~10 m, lots of rusty talus with 25% sulfides, vuggy quartz veins, mainly pyrite 90% with possible 10% arsenopyrite
W385574		phyllite/gneiss, large quartz/K-feldspar veins 10% at 0.5 m, light greenish grey selvages where mineralization occurs
W385693		50+ m long and 2-5m tall, contact with light grey zone, dark brick red weathered, light grey fresh-volcanic tuff, 30% disseminated sub-mm sulfides yellow and silver- >pyrite/arsenopyrite?, fresh looks like 2 cm pale green-grey dike through it (diorite?)

Sample_ID	Lithology	Mineralization	Alteration	Structure	Photos	Note	Lab	Received	Certificate
W384132	volcanic	pyrite, ?chalcopyrite?	Fe-oxide, carbonates	15-20m wide volcanic outcrop on ridge top	ves		ALS	10-Aug-2017	TR1717030 8
W384133	volcanic	pyrite, chalcopyrite	Fe-oxide	3m wide outcrop on ridge top	ves		ALS	10-Aug-2017	TR1717030 8
					,				
W384134	volcanic	pyrite, chalcopyrite	Fe-oxide	5m wide on ridgetop outcrop	yes		ALS	10-Aug-2017	TR1717030 8
		·····			y = -				
									TR1717030
W384135	carbonitic rock unit?	pyrite, chalcopyrite	Fe-oxide, carbonate	2m wide on ridge top	yes		ALS	10-Aug-2017	8
									TR1717030
W384136	volcanic?	pyrite	Fe-oxide		yes		ALS	10-Aug-2017	8
									TR1717030
W384137	volcanic?	pyrite	Fe-oxide		yes		ALS	10-Aug-2017	8
W384138	quartz diorite	silicified	silicified		yes		ALS	10-Aug-2017	TR1717030 8
11001100					yee		7120	107109 2017	
W385516	quartz diorite	sulfides	magnetite, silicified		ves		ALS	10-Aug-2017	TR1717030 8
11000010		chalcopyrite, bornite,	magnetite, siliented		yes		ALO	10-740g-2017	TR1717030
W385517	quartz diorite	malachite	Fe-oxide, silicified		yes		ALS	10-Aug-2017	8
		chalcopyrite, bornite,							TR1717030
W385518	quartz diorite	malachite	Fe-oxide, silicified		yes		ALS	10-Aug-2017	8

Sample_ID	Lithology	Mineralization	Alteration	Structure	Photos	Note	Lab	Received	Certificate
									TR1717030
W385570	quartz diorite	malachite	carbonate, propylitic		yes		ALS	10-Aug-2017	8
									TR1717030
W385571	quartz diorite	malachite	carbonate, propylitic		yes		ALS	10-Aug-2017	8
W385572	hornsfel	silicified	silicified		yes		ALS	10-Aug-2017	TR1717030 8
W385573		pyrite, arsenopyrite	silicified		yes		ALS	10-Aug-2017	TR1717030 8
W385574	phyllite/gneiss		potassic, chlorite		yes		ALS	10-Aug-2017	TR1717030 8
W385693	tuff, intermediate	pyrite, arsenopyrite	silicified		yes		ALS	05-Sep-2017	TR1719437 6

Sample_ID	Certificate_Date	Assay	LabID	Ag_ppm	Al_pct	As_ppm	B_ppm	Ba_ppm	Be_ppm	Bi_ppm	Ca_pct	Cd_ppm
W384132	20-Sep-2017	ME-ICP41, Au- ICP21	W384132	0.2	1.43	9	<10	250	<0.5	2	0.86	<0.5
W384133	20-Sep-2017	ME-ICP41, Au- ICP21	W384133	0.2	1.6	4	<10	40	<0.5	2	1.02	1.3
W384134	20-Sep-2017	ME-ICP41, Au- ICP21	W384134	0.2	2.07	8	<10	50	<0.5	2	1.17	1.7
W384135	20-Sep-2017	ME-ICP41, Au- ICP21	W384135	<0.2	0.97	28	<10	60	<0.5	<2	6.01	0.5
W384136	20-Sep-2017	ME-ICP41, Au- ICP21	W384136	<0.2	2.13	43	<10	20	<0.5	<2	1.71	<0.5
W384137	20-Sep-2017	ME-ICP41, Au- ICP21	W384137	<0.2	1.93	10	<10	40	<0.5	<2	0.75	0.5
W384138	20-Sep-2017	ME-ICP41, Au- ICP21	W384138	<0.2	0.32	50	<10	120	0.9	<2	15.8	0.5
W385516	20-Sep-2017	ME-ICP41, Au- ICP21	W385516	<0.2	0.94	5	10	30	<0.5	<2	1.01	<0.5
W385517	20-Sep-2017	ME-ICP41, Au- ICP21	W385517	0.8	1.16	5	<10	20	<0.5	<2	0.98	<0.5
W385518	20-Sep-2017	ME-ICP41, Au- ICP21	W385518	0.7	1.17	5	<10	20	<0.5	3	0.92	<0.5

Sample_ID	Certificate_Date	Assay	LabID	Ag_ppm	Al_pct	As_ppm	B_ppm	Ba_ppm	Be_ppm	Bi_ppm	Ca_pct	Cd_ppm
		ME-ICP41, Au-										
W385570	20-Sep-2017	ICP21	W385570	<0.2	1.33	5	<10	90	<0.5	<2	2	<0.5
		ME-ICP41, Au-										
W385571	20-Sep-2017	ICP21	W385571	0.9	1.07	3	<10	20	<0.5	2	1.1	<0.5
		ME-ICP41, Au-										
W385572	20-Sep-2017	ICP21	W385572	0.2	0.26	14	<10	10	<0.5	<2	0.27	<0.5
W385573	20-Sep-2017	ME-ICP41, Au- ICP21	W385573	<0.2	0.94	9	<10	20	<0.5	<2	1.93	<0.5
W385574	20-Sep-2017	ME-ICP41, Au- ICP21	W385574	<0.2	1.19	2	10	20	<0.5	<2	2.62	<0.5
W385693	15-Oct-2017	ME-ICP41, Au-AA24	W385693	0.2	1.4	5	<10	30	<0.5	<2	1.28	<0.5

Sample_ID	Co_ppm	Cr_ppm	Cu_ppm	Fe_pct	Ga_ppm	Hg_ppm	K_pct	La_ppm	Mg_pct	Mn_ppm	Mo_ppm	Na_pct	Ni_ppm	P_ppm
W384132	10	11	167	3.62	10	1	0.47	10	0.9	554	1	0.06	5	1550
W384133	22	5	92	5.88	<10	1	0.06	<10	0.82	527	2	0.03	10	1080
W384134	13	32	101	4.79	~10	<1	0.08	~10	0.87	447	42	0.03	62	760
VV 364 134	13	32	101	4.79	<10	< I	0.00	< 10	0.87	447	42	0.03	02	700
W384135	21	15	99	5.29	<10	1	0.17	<10	1.62	1010	1	0.04	17	880
W384136	7	7	54	3.55	10	1	0.03	<10	0.99	537	<1	0.05	4	1030
W384137	17	27	130	5.61	10	1	0.15	<10	0.99	326	19	0.03	60	730
W384138	11	17	19	3.59	<10	3	0.06	10	5.1	1030	48	0.01	16	950
W385516	18	160	176	2.67	<10	<1	0.14	10	1.55	311	<1	0.08	72	1070
W385517	9	21	660	1.72	<10	<1	0.04	<10	0.89	317	<1	0.04	12	1060
W385518	63	49	5650	4.23	~10	1	0.13	10	1.09	230	3	0.08	115	1250

Sample_ID	Co_ppm	Cr_ppm	Cu_ppm	Fe_pct	Ga_ppm	Hg_ppm	K_pct	La_ppm	Mg_pct	Mn_ppm	Mo_ppm	Na_pct	Ni_ppm	P_ppm
W385570	28	141	515	3.02	<10	1	0.24	10	1.72	411	3	0.05	71	830
W385571	31	8	3280	5.58	10	2	0.08	10	0.89	287	1	0.05	21	1600
W385572	9	6	239	0.78	<10	<1	0.02	20	0.03	52	2	0.07	6	30
W385573	14	11	181	2.77	<10	1	0.05	<10	0.25	182	10	0.04	25	1110
W385574	12	115	50	1.3	<10	<1	0.04	<10	0.97	208	2	0.05	58	500
W385693	16	14	98	3.78	<10	<1	0.12	<10	0.43	189	5	0.07	19	910

Sample_ID	Pb_ppm	S_pct	Sb_ppm	Sc_ppm	Sr_ppm	Th_ppm	Ti_pct	TI_ppm	U_ppm	V_ppm	W_ppm	Zn_ppm	Au-24_ppm
W384132	<2	0.4	<2	3	17	<20	0.26	<10	<10	81	<10	71	
1104102	~2	0.4	~2	5	17	~20	0.20	<10	<10	01	<10		
W384133	<2	2.66	<2	6	29	<20	0.13	<10	<10	71	<10	163	
W384134	4	1.97	<2	10	23	<20	0.15	<10	<10	409	<10	101	
W384135	<2	1.06	<2	22	70	<20	<0.01	<10	<10	91	<10	113	
W384136	3	0.41	<2	3	12	<20	0.22	<10	<10	87	<10	18	
W384137	7	2.7	2	15	9	<20	0.13	<10	<10	173	<10	90	
W384138	14	0.04	11	7	379	<20	<0.01	<10	30	62	<10	498	
W385516	3	0.04	<2	3	33	<20	0.12	<10	<10	64	<10	33	
W385517	2	0.01	<2	2	152	<20	0.11	<10	<10	35	<10	33	
W385518	3	2.25	<2	4	24	<20	0.18	<10	<10	65	<10	24	

Sample_ID	Pb_ppm	S_pct	Sb_ppm	Sc_ppm	Sr_ppm	Th_ppm	Ti_pct	TI_ppm	U_ppm V_pp	n W_ppm	Zn_ppm	Au-24_ppm
W385570	<2	0.31	<2	7	56	<20	0.18	<10	<10	31 <10	39	
W385571	4	0.27	<2	4	54	<20	0.23	<10	<10 1	68 <10	47	
W385572	5	0.15	<2	<1	60	30	0.02	<10	<10	9 <10	2	
W385573	<2	1.08	<2	2	13	<20	0.11	<10	<10	57 <10	16	
W385574	<2	0.01	<2	3	108	<20	0.13	<10	<10	13 <10	16	
W385693	2	1.36	<2	4	28	<20	0.14	<10	<10	52 <10	37	<0.005

Goldridge 2017 Rock Samples

Sample_ID	Au-ICP_ppm
W384132	0.003
W384133	0.002
W384134	0.001
W384135	<0.001
W004400	0.000
W384136	0.002
W384137	<0.001
W384138	<0.001
W385516	0.119
W385517	<0.001
W385518	0.142

Goldridge 2017 Rock Samples

_

_

Sample_ID	Au-ICP_ppm
W385570	0.007
W385571	0.241
W385572	0.015
W385573	0.002
W385574	<0.001
W385693	

Goldridge 2017 Geochemical and Geological Survey

Appendix C 2016 Field Season Summary (Turna, 2017)

GOLDRIDGE PROPERTY

J2 SYNDICATE DISCOVERS INTRUSION RELATED MINERALIZATION ALONG PROMINENT CONTACT WITH ASSAYS UP TO 3.89 GRAMS PER TONNE GOLD, 1.8 GRAMS PER TONNE SILVER AND 0.56 PERCENT COPPER

The GoldRidge Property covers 1165 hectares located 48 kilometers north of Telegraph Creek, BC and 30 kilometers southeast of the Golden Bear Mine. The Property was generated and recently staked by the J2 Syndicate following positive results from a brief reconnaissance exploration program which discovered intrusive related mineralization concentrated along a prominent contact which cuts east west through the property. The 2016 prospecting grab samples taken from the newly discovered Gravy Train Zone returned assays up to 3.89 grams per tonne gold 1.18 grams per tonne silver and 0.56 percent copper. The Goldridge property is the eleventh property to be announced from a larger suite of properties generated, prospected and staked by the J2 Syndicate.

Gravy Train Zone

A day's reconnaissance prospecting on the GoldRidge property resulted in the discovery of gold copper mineralization along an extensive intrusive contact. This mineralized zone, now referred to as the Gravy Train Zone, measures 65 meters by 350 meters and remains open. A grab sample taken from mafic volcanics in the zone contained finely to strongly disseminated pyrite and chalcopyrite, and assayed 3.89 grams per tonne gold, 1.8 grams per tonne silver and 0.56 percent copper. Chip samples taken 60 meters southwest from the other side of the contact assayed 2.14 grams per tonne gold and 0.45 percent copper over 0.5 meter from altered granite in bedrock. The Gravy Train Zone is part of an extensive contact zone that remains unexplored and extends 5 kilometers across the GoldRidge property. <ineralization remains open both to the east and to the west.

The property is underlain by fine to medium grained intermediate and mafic volcanic flows interbedded with mafic to intermediate lapilli tuff. These rocks are situated between granitic intrusives to the north and south. Other grab samples taken from outcrop in the Gravy Train Zone have returned 239 and 223 parts per billion gold and 0.18 percent copper from mafic volcanics with disseminated chalcopyrite-pyrite. Within the altered granite pyrite-chalcopyrite, quartz stringers have returned 0.24 percent copper. Copper-gold mineralization is localized within granodiorite and overlaying mafic volcanics along the reactive intrusive contact. Along the same contact zone, over one kilometer to the east, limited sampling across two large prominent gossans has returned up to 737 parts per million arsenic from fine grained disseminated sulphides and vuggy quartz.

Recommended Work

The brief 2016 prospecting program quickly identified previously unknown intrusion related mineralization in a favourable geological setting, with mineralization concentrated along an extensive intrusive contact zone containing good gold-copper values. Based on these results a systematic exploration program is recommended near a gossanous contact zone which produced good gold values in outcrop. Channel sampling is also recommended across mineralized exposures, with mapping to outline the extent of mineralization. Hand trenching and/or a ground magnetics survey is recommended where mineralization is obscured by overburden. Gold-copper mineralization has been identified along the main contact zone and remains open. Additional prospecting is necessary along the entire extent of

the contact and in areas of recent glacial retreat where prominent gossans have been noted and remain to be sampled. Future prospecting is also recommended on and along the margins of the southern granitic intrusion with a focus on faults in regions between intrusions that remain unexplored. The majority of the GoldRidge property remains unexplored, and initial results have demonstrated strong potential for additional discoveries.

In summer, 2016, the J2 Syndicate generated and prospected a total of 110 targets. Based on positive assay results, multiple stand-alone precious metal prospects have been staked in Northwest BC, totaling 40,191 hectares. A brief summary, maps and photos of each property will be released as they become available and posted on the J2 website at www.J2syndicate.com

The J2 syndicate was formed to focus on generating and staking precious metal properties in Northwest BC. The properties will be made available to qualified parties. For further information including photos and maps, interested parties may contact Dan Stuart, by e-mail (danstuart@marketonefinancial.com) or by phone at 778 233 0293.

A total of 9 rock grab samples were taken on the GoldRidge Property in 2016. Rock grab samples ranged from below detection limit to 3.89 grams per tonne gold, 1.8 grams per tonne silver and 0.56 percent copper. There are no assays outstanding.

Rein Turna, P. Geo., is a qualified person, as defined by National Instrument 43-101, for the J2 Syndicate's British Columbia exploration projects. He has reviewed and approved the technical information in this Report.

Sample analysis and assaying for all of J2's projects have been conducted by ALS Global in Vancouver, BC, which is ISO accredited. Rock samples are crushed to 70% less than 2 millimeters, and a 250 gram sample is split with a riffle splitter. The split is pulverized to 85 per cent less than 75 microns, and 30 gram charges are then assayed for gold using fire assay fusion and ICP-ES finish with a lower detection limit of 1 ppb, and an upper detection limit of 10 ppm Au. Samples with gold, silver, copper, lead, or zinc exceeding the upper detection level are reanalyzed the most appropriate method determined by the lab. Rigorous procedures are in place regarding sample collection, chain of custody and data entry. Certified assay standards, duplicate samples and blanks are routinely inserted into the sample stream to ensure integrity of the assay process.

Note: Grab samples are selective by nature, and are unlikely to represent average grades on the property.