BRITISH COLUMBIA The Best Place on Earth			T BOOGLA BRET
Ministry of Energy and Mines BC Geological Survey			Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: Geochemical, Prospecting		TOTAL COST:	\$12,861.04
AUTHOR(S): Jacques Houle, P.Eng.		SIGNATURE(S):	,
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):			YEAR OF WORK: 2017
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	566	5697 / 2017/SEP/22; 5676974 / 2017	7/DEC/08
PROPERTY NAME: Prosper			
CLAIM NAME(S) (on which the work was done): 1052319 , 1046927			
COMMODITIES SOUGHT: Gold, Silver, Copper, Lead MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092F 053, 092 MINING DIVISION: Alberni LATITUDE: 49 ° 23 '38 LONGITUDE: 125 OWNER(S): 1) New Sunro Copper Ltd.		NTS/BCGS: <u>092F 05E</u> , -05W; 092F 0 <u>44</u> ' <u>36</u> " (at centre of work	;)
MAILING ADDRESS: 55 Colorado Drive			
Campbell River, BC V9H 1N1			
OPERATOR(S) [who paid for the work]: 1) New Sunro Copper Ltd.	2)		
MAILING ADDRESS: 55 Colorado Drive			
Campbell River, BC V9H 1N1			
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, Basalt, Granodiorite, Limestone, Triassic, Jurassic, Eocene, Var	ncou	ver Group, Karmutsen Formation, Is	land Jurassic Suite,
Cu Skarn, Fe Skarn, Cu-Ag Quartz Veins, Gold, Silver, Copper,	Lea	a, ∠inc	

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: <u>02997</u>, 03629, 07439, 13571, 14067, 17620, 21444

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Induced Polarization		_	
Radiometric			
Seismic		_	
Other		_	
Airborne		_	
GEOCHEMICAL (number of samples analysed for)			
Soil		_	
Silt		_	
Rock 6		1052319	857.30
Other		_	
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying 6		1052319, 1046927	3937.22
Petrographic			
Mineralographic		_	
Metallurgic		_	
PROSPECTING (scale, area)		_	
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t			
Trench (metres)			
Underground dev. (metres)			
other Reports		1052319, 1046927	8923.82
		TOTAL COST:	12861.04

BC Geological Survey Assessment Report 37149

2017 Assessment Report

for the

Prosper Property

Vancouver Island, British Columbia

NTS 092F 05E, -05W BCGS 092F 032, -042

Latitude 49º 23' 38" Longitude 125º 44' 36"

UTM NAD83 Zone 10N 300950E 5474850N

For

New Sunro Copper Ltd.

55 Colorado Drive

Campbell River, BC V9H 1N1

By

Jacques Houle P.Eng.

6552 Peregrine Road

Nanaimo, B.C. V9V 1P8

December 8, 2017

Contents

Introduction	Page
Property location, access and physiography	4
Property definition, owner, operator, geology and history	4
List of claims and work completed	11
Technical data, Interpretation, Conclusions and Recommendations	12
Authors' Qualifications	17
References	18
Tables:	
Table 1 – Cell Mineral Claims & Status as of December 8, 2017	5
Table 2 – Crown Granted Mineral Claims & Status as of December 8, 2017	5
Table 3 – BC MINFILE Occurrences on the Prosper Property as of December 8, 2017	6
Table 4 – Proposed Work Program & Budget Summary for the Prosper Property	16
Figures:	
Prosper Property Location and Access (MapPlace) – 1:500,000 scale	Figure 1
Prosper Property Infrastructure (MapPlace) – 1:50,000 scale	Figure 2

Prosper Property 1st Vert. Deriv. Aeromagnetics (MapPlace) – 1:50,000 scaleFigure 4Prosper Property RGS Gold in ppb (MapPlace) – 1:50,000 scaleFigure 5

Figure 3

Prosper Property BCGS 2005 Geology (MapPlace) – 1:50,000 scale

Prosper Property Title Details (MapPlace) – 1:25,000 scale Figure 6

Prosper Property West Title Details (MapPlace) – 1:10,000 scale	Figure 7
Prosper Property 2017 NOW Application Locations – 1:20,000 scale	Figure 8
Prosper Target Area 2016 and 2017 Rock Sample Locations – 1:2,000 scale	Figure 9
Prosper Target Area 2016 & 2017 Geochemistry Highlights – 1:2,000 scale	Figure 10
Prosper Target Area 2017 ARD Potential Highlights – 1:2,000 scale	Figure 11
Prosper Target Area 2017 Major Element Highlights – 1:2,000 scale	Figure 12
Prosper Target Area 2017 NOW Application Locations – 1:2,000 scale	Figure 13

Appendices:

2016 and 2017 GPS & Rock Sample Data	Appendix 1
2016 and 2017 Analytical Data	Appendix 2
2017 Assessment Cost Data	Appendix 3
2017 Mineral Titles Data	Appendix 4

Attachments:

Assessment Report Title Page

Introduction

Property location, access and physiography

The Prosper Property is centred approximately 70 km. west of Port Alberni, B.C. and 30 km. north of Tofino, B.C. on western Vancouver Island at latitude 49°24' N. and longitude 125°45' W, as shown in Figure 1. Access to the Prosper Property from Tofino is via boat for 25 km. north through the sheltered ocean waters of Maurus Channel and Clayoquot Sound to the Clayoquot Wilderness Resort located at the head of Bedwell Sound. From there a maintained historic mining road follows the west side of the Bedwell River for 4 km. north to the Prosper Property and a further 3 km. north past several historic mineral occurrences across a footbridge to beyond the southern boundary of Strathcona Park. Near the 1 km. mark, a 100-m. foot trail, 10 m. crossing of the Bedwell River, a 500-m. foot trail connects to un-maintained historic mining road which follows the east side of the Bedwell River. The road continues north through the Prosper Property to Strathcona Park, and south for 600 m. to the historic Prosper Mine workings. The tourist community of Tofino has a port, airport, and basic services available year-round; the resource community of Port Alberni has a marine port, airport, hospital, and complete services available year-round. Travel time from Port Alberni to Tofino by paved road is 1.5 hours; and from Tofino to the Property by boat, road and trail is 2.5 hours. See Figures 1 and 2 for location and infrastructure details of the Prosper Property.

The Prosper Property is situated on western Vancouver Island straddling the Bedwell River valley (50 m. el.) between Mt. Cotter (1207 m. el.) to the west and Mt. Ursus (1471 m. el.) to the east, near the confluence of west-flowing Ursus Creek and east-flowing Penny Creek. Topography consists of flat-bottomed river valleys surrounded by rugged mountains incised by steep sided canyons containing fast-flowing creeks. Most of the Property is covered by growth west coast rain forest, with small areas of second growth selectively logged for local use. The climate is warm and dry in the summer and cool and very wet in the winter, with little or no snow accumulations below 250 m. elevations, but generally heavy rain and winds in the winter. This allows for a year-round field season for most surface and any underground work.

Property definition, owner, operator, geology and history

The Prosper Property ("Property") is a surface and underground gold exploration property located on western Vancouver Island, British Columbia, Canada. The Property consists of 2 cell mineral claims covering 736 hectares held 100% by owner and operator New Sunro Copper Ltd. ("New Sunro" or "the Company"), and located in the Alberni Mining Division. The cell mineral claims are subject to a purchase agreement with the previous title holders, Glen Belanger, Doug Pinder and Gary Richards ("Belanger, Pinder and Richards") whereby the Company will pay to Belanger, Pinder and Richards \$250,000, consisting of an initial payment of \$10,000, with the remainder to be paid in stages from proceeds of future production from the claims. The cell mineral claims of the Property overlie or partially overlie 7 older crown granted mineral claims, of which 1 has been cancelled, 3 have reverted to the crown, and 3 are active and in good standing. The mineral rights for the areas previously covered by the cancelled and reverted crown grants are held by the portions of the overlying cell mineral claims. The northern boundary of the Prosper Property is defined by the southern boundary of Strathcona Provincial Park. The details and status of the Property claims are shown in several of the accompanying figures, but are best shown in Figures 6 and 7. Details of cell mineral claims are shown in Table 1 below; and of crown granted mineral titles in Table 2 below and in Appendix 4:

Title Number	Claim Name	Owner	Title Type	Title Sub Type	Map Number	Issue Date	Good to Date	Status	Area (ha)
1046927	PROSPER EXTENSION	282568 (100%)	Mineral	Claim	092F	2016/SEP/26	2020/SEP/04	GOOD	525.6141
1052319		282568 (100%)	Mineral	Claim	092F	2017/JUN/03	2020/SEP/04	GOOD	210.2799
TOTALS	2 cell claims								735.8940

Table 1 – Prosper Property Mineral Titles as of December 8, 2017

Table 2 – Underlying Crown Granted Mineral Titles as of December 8, 2017

PIN	District Lot	Claim Name	Surface/Under	Location	Status	Area (ha)
216270	700	Seattle	Undersurface	Clayoquot	Cancelled	14.6
216300	701	Brooklyn	Undersurface	Clayoquot	Reverted	7.8
216430	702	Omaha	Undersurface	Clayoquot	Reverted	13.6
216560	703	New York	Undersurface	Clayoquot	Active	6.9
216690	704	Tacoma	Undersurface	Clayoquot	Active	18.8
216720	705	Grey Mule	Undersurface	Clayoquot	Active	20.5
216850	706	Rebecca	Undersurface	Clayoquot	Reverted	3.4

There are currently no industrial power generating or transmission facilities near the Prosper Property, nor road access from the Property to the provincial or logging road network on Vancouver Island. The nearest active main logging road is Taylor Main which ends 20 km. east of the Property and connects to provincial highway 4 40 km. west of Port Alberni. Both the Bedwell River and Ursus Creek have adequate water supply for hydro power generation and for a processing plant, and the Property has several possible sites for a small processing plant and for waste and tailings disposal, if required. The Prosper Property lies midway between Nyrstar's Myra Falls Operating Cu-Zn-Pb-Ag-Au mine and plant 20 km. to the NE, and Imperial Metals' Catface Cu-Mo-Au advanced project 20 km. to the SW, as shown in Figure 1. The geology of the Prosper Property consists of two major rock units exposed in that portion of the Wrangellian Terrain: basaltic volcanics of the Triassic Vancouver Group and granodiorite of the Jurassic Island Plutonic Suite. Also, interbeds and lenses of sedimentary rocks including limestone of the Triassic Vancouver Group occur conformably with the basalts. Northwest trending regional scale faults offset all geological units, except the overlying unconsolidated sands and gravel of Quaternary age which fill the valleys of major rivers and creeks, shown in Figure 3. A thorough historic description of the geology and mineral deposits of the Property and the area appears in BCDM Bulletin No.8, Preliminary Report on Bedwell River Area by H. Sargent, 1940. The first vertical derivative aeromagnetic response in the area of the Prosper Property is shown in Figure 5. The rock units shown in Figure 3 are summarized in the following geological legend from BC MapPlace BCGS 2005 Geology layer:

Early Jurassic to Middle Jurassic

Island Intrusive Suite

EMJIgd granodioritic intrusive rocks

Middle Triassic to Upper Triassic

Vancouver Group

uTrVK	Karmutsen Formation basaltic volcanic rocks

muTrVs undivided sedimentary rocks

The Property covers or partially covers metallic mineralization of 2 distinct styles in 5 BC MINFILE occurrences as follows:

Table 3 – BC MINFILE Occurrence on the Prosper Property as of December 8, 2	017
Table 5 De Mini ILL Occurrence on the mosper moperty as of December 0, 2	.01/

MINFILE No.	Name	Status	Commodities	Deposit Type 1	Deposit Type 2
092F 053	Prosper, Isob	Past Producer	Au, Ag, Cu, Pb, Zn	Cu-Ag Quartz Veins	
092F 054	Seattle (L.700)	Showing	Au, Cu, Zn, Ag		Cu Skarn, Fe Skarn
092F 056	Galena, Bat	Showing	Cu, Fe		Cu Skarn, Fe Skarn
092F 350	Avon, Castle	Prospect	Au, Ag, Cu, Pb	Cu-Ag Quartz Veins	Cu Skarn, Fe Skarn
092F 354	Brooklyn (L.701)	Showing	Au, Pb	Cu-Ag Quartz Veins	

The Cu Skarn and Fe Skarn (Seattle, Galena and Avon) occurrences are limited to the eastern edge of the large intrusive body located the western side of the Prosper Property. The goldbearing Cu-Ag Quartz Vein (Avon and Prosper) occurrences have been found both proximal and distal to the same intrusive body. The ages of skarn and vein mineralization in these occurrences have not been previously determined, but are most likely Jurassic and/or Eocene. The following history of exploration and development on the Prosper Property is summarized primarily from publicly available government sources including BC Ministry of Energy and Mines and Geological Survey Branch Annual Reports, BC Assessment Reports, BC MINFILE Reports, and BC Property File Data. Any data reported in imperial or other historic units have been converted to metric units, and place names updated for consistency with modern data sets.

From the 1860's to the 1880's Chinese placer miners reportedly found considerable gold in the upper reaches of the Bear River (now called Bedwell River), but no details are known.

In 1898, copper mineralization, gold-bearing quartz veins and placer gold were explored on the Seattle, Castle (Avon), and King Richard claim groups, apparently with good results.

In 1899, the British Pacific Gold Property Co. of Victoria completed work on the Seattle Group, consisting of the New York, Seattle, Tacoma, Grey Mule, Brooklyn, Omaha and Rebecca claims, including tunnels and shafts mainly on the Seattle claim targeting a skarn deposit oriented N. 15 ^o E., and stockpiling of chalcopyrite, pyrite and magnetite bearing rock. Mr. George R. Talbot of Clayoquot completed work on the Castle Group, consisting of the Castle, Golden Crown, White Swan and Blue Jay Fraction claims, including considerable tunneling mainly on the Castle claim, targeting a 3-m. thick skarn deposit striking NNE and dipping 70 ^o W. On the same claim a 0.15 m. thick quartz vein striking NW containing gold, chalcopyrite, pyrite and galena was exposed in an open cut. Messrs. J.A. Drinkwater and G. Brown of Clayoquot completed work on the Galena Group, consisting of the Galena, Copper, Blue Top, Delmonico and Trilby claim, including tunneling and a shaft targeting a mineralized dike striking N. 15 ^o E. and dipping 70 ^o W., containing massive magnetite, chalcopyrite and 26 gram per tonne gold.

In 1900, minimal assessment work was completed on the Seattle, Castle, and Galena Groups of mineral claims by their respective owners.

In 1902, British Pacific Gold Property Co. resumed on the Seattle Group of mineral claims.

In 1903, British Pacific Gold continued work on the Seattle Group of mineral claims.

In 1914, Ptarmigan Mines Limited of London, England commenced work a 20-km. wagon-road and bridges along the Bedwell River valley from its mouth at Bedwell Sound to their Big Interior Property, 15 km. NE of the Prosper Property. The work ceased in 1916 at the start of WW 1.

In 1916, prospectors resumed work on existing claims and began acquiring new claims in the Bedwell River area. A select sample taken from the Galena mineral claim, owned by Mr. Joe Drinkwater, yielded 21.4 % copper.

In 1928, a Vancouver based company resumed surface work and tunneling on the Seattle Group of mineral claims. The wagon-road along the west side of the Bedwell River was reported to be in fair condition at that time, except that some of the bridges were washed out by high water.

In 1940, H. Sargent of the B.C. Dept. of Mines completed Bulletin No. 8, Preliminary Report on Bedwell River Area, detailing the geology and mineral occurrences in the area at that time based on extensive mapping and sampling in the area during the 1939 field season. Only the 4 occurrences in the immediate area of the Prosper Property are summarized below. The Prosper Group of mineral claims were held by a group of 8 individuals, including Walter Guppy. It is reported that an old adit (Prosper Upper Adit) was completed on the NE striking (Prosper Vein) quartz sulphide vein in 1903 when the ground was held as the Pakeha Claim. The bulletin describes the geology and mineralization in detail, including sample results from the adit and surface open cuts nearby, yielding values up to 31 g/t gold over 0.4 m. thick from an open cut . The 7 crown-granted Seattle Group of mineral claims (L.700 to L.706 inclusive) were held by W.L. McIntosh and D.W.G. Aimer of Victoria. Old workings consist of 2 adits, 1 shaft and surface open cuts exposing Cu skarn mineralization along the northeast side of Penny Creek on the Seattle claim. More recent surface cuts exposed a narrow East-striking and shallowly northdipping gold-bearing quartz vein 400 m. northeast of the old workings, probably on or near the Brooklyn claim. The bulletin describes the geology and sample results from the vein, yielding values up to 38 g/t gold over 0.13 m. thick. The Avon Group consisting of 6 mineral claims were held by a group of 2 individuals and 1 company from Tofino, and were optioned in 1939 to a group of 3 individuals. Old workings consisting of 2 shafts, 1 adit and surface open cuts tested Cu Skarn and Fe Skarn mineralization in limestone. More recent open cuts exposed 3 variably oriented, narrow gold-bearing quartz veins located south (A Vein and B Vein) and west (C Vein) of the old workings. The bulletin describes the geology and sample results from the veins, yielding up to 78 g/t gold over 0.15 m. thick (A Vein), 76 g/t gold and 37 g/t silver over 0.06 m. thick (B Vein) and 76 g/t gold over 0.13 m. thick (C Vein). The Galena Group consisting of 2 mineral claims were held by R. Matterson and J. Von Brendel. Old workings consisting of a 12 m. long open cut with a shaft at one end exposing a magnetite-chalcopyrite skarn striking N 25⁰ E and dipping 75° W.

In 1942, Bralorne Gold Mines Limited acquired an option on the Prosper Property, and produced 90 tonnes of ore averaging 74.3 g/t gold, 70.6 g/t silver, and 0.04% copper from the upper adit.

In 1946, the Prosper Mining Syndicate continued work on the Prosper Property, with a view to bringing the property into production.

8

In 1947, Prosper Gold Mines Limited acquired the 8 claims, and advanced the No.2 Adit (Prosper Lower Adit) to 128 m. from the portal, and drove a 13-m. raise on vein from the Lower Adit 65 m. from the portal.

In 1971, Walter Guppy completed soil geochemistry on his Tie and Braw claims and on his Brooklyn mineral lease #60 located along the western side of the Bedwell River.

1n 1979, Walter Guppy on behalf of Golden Hinde Mines Limited completed mapping and sampling of open cuts exposing the Isob Vein and in the Upper Prosper Adit, both located on his Bes Claim. Samples from the Isob Vein yielded up to 17 g/t gold over 0.51 m. thickness, and from the Upper Prosper Adit continuous sampling of the vein in the back of the adit for a length 25 m. yielded an average of 68 g/t gold over 0.56 m. thickness.

In 1981, Canamco Resources Ltd. completed rehabilitation, surveying, engineering, mapping, and sampling of the surface and underground workings of the Prosper workings on the Prosper Claim group. Continuous bulk sampling of the Prosper Vein with wall rock from the back of the Upper Prosper Adit for a length 14 m. yielded an average of 42 g/t gold over 0.86 m. thickness.

In 1985, Bermuda Resources Ltd. completed surface diamond drilling targeting the Prosper Vein on the Prosper Claim group. Three BQ size holes totaling 158.5 m. were fanned from a single drill pad near the Isob Adit, but failed to yield any significant gold intercepts.

In 1987, Tamara Resources Ltd. completed a 75-m. raise along the Prosper Vein from the Lower Adit to the Upper Adit; and collected 15 rock chip samples from the raise, which yielded an average of 24.5 g/t gold over 0.33 metres thickness.

In 1988, Intercontinental Ventures Ltd. completed geological mapping, soil and rock geochemistry, ground geophysics, trenching, diamond drilling, and preliminary mineralogy and metallurgy on the Prosper Property. The orientations of all the veins exposed in the Prosper area trenches and adits were measured. In a grid surrounding and east of the Prosper workings, 116 soil geochemistry samples yielded no significantly elevated values except for 2 samples from contaminated sites near the old workings which yielded coincident highly elevated multi- element values up 40 ppm gold, 25 ppm silver, 986 ppm copper, 786 ppm lead and 131 ppm zinc. VLF-EM survey lines completed on the grid totaled 3.325 km, but failed to yield significant responses. Blasting was completed on the Prosper No.1, Prosper No.2 and Isob No.2 trenches. Selective rock sampling was completed on most of the exposures of the Prosper and Isob Veins. Of 7 samples taken from 3 exposures of the Isob Vein, only 1 sample yielded elevated values of 43 g/t gold, 104 g/t silver, 1.33% copper and 280 ppm lead over 0.3 m. thickness from the Isob Trench No.1. Two samples taken from the Prosper Trench No.1 averaged 13 g/t gold, 4.2 g/t silver, 198 ppm copper and 200 ppm lead over 0.45 m thickness. Of the 5 samples taken from the Prosper Trench 2, only 1 yielded elevated values of 62 g/t gold,

16 g/t silver 240 ppm copper, 1020 ppm lead and 300 ppm zinc over 0.2 m. thickness. Of the 10 samples taken from the Lower Prosper Adit, 4 samples yielded elevated values of only base metals up to 2050 ppm copper, 590 ppb lead and 200 ppm zinc. Of the 11 samples taken from the Prosper Raise between the Lower and Upper Adits, only 4 samples yielded elevated values, of which 3 were the uppermost samples which averaged 29 g/t gold, 52 g/t silver, 6111 ppm copper and 1308 ppm lead. Four samples taken from the Upper Prosper Adit averaged 46 g/t gold, 25 g/t silver, 1491 ppm copper, 3968 ppm lead and 1430 ppm zinc over 0.22 m. thickness. Three AX size diamond drill holes totaling 44.7 m. were completed targeting the Isob Vein. Vertical hole PR-2-88 intersected the Isob Vein beneath and east of the Isob Trench No. 2, yielding an intercept of 66 g/t gold, 27 g/t silver, 280 ppm copper, 1050 ppb lead and 680 ppm zinc over 1.22 m. thickness. Two samples of gold-bearing quartz vein material were taken from the Prosper Trench No.1 and the Upper Prosper Adit for mineralogical and metallurgical studies, with the following results: Ore minerals in the samples in order of relative abundance: pyrite, galena, anglesite-cerussite, chalcopyrite, goethite, gold covellite and sphalerite. Gold is mainly associated with pyrite, occasionally gold is rimmed by goethite, and rarely gold is intergrown with chalcopyrite and galena. Gold is bright yellow, suggesting low silver content; and silver is assumed to be associated with galena and anglesite-cerussite.

In 1991, Golden Hinde Mines Ltd. completed grid based soil geochemistry (77 samples), magnetics and VLF-EM surveys (2.4 km.), extending westwards from and merging data with the previous grid work from 1988. The 1991 soil geochemistry results yielded 2 adjacent sites located 300 m. due north from the Lower Prosper Adit Portal with coincident slightly elevated values of up to 270 ppb gold, 161 ppm copper, 30 ppm lead and 49 ppm zinc. The 1988 soil grid did not extend that far north, so was not able to detect any possible eastward continuation of these elevated values. By combining the 1988 and 1991 soil geochemistry data, a coincident trend of decreased iron and increased potassium values was identified extending southwest and northeast of the combined surface traces of the Prosper and Isob Veins. An apparent geophysical trend of decreased magnetic response and increased VLF-EM response was identified extending southwest of the combined surface traces of the Prosper and Isob Veins.

In 2016, New Sunro Copper Ltd. acquired an interest in the Prosper Property from 3 individuals, Belanger, Pinder and Richards, who had held a single claim covering the Prosper occurrence for many years. On September 8, 2016, B. Olsen and F. Laing visited the Prosper Property and took 7 select or random, non-georeferenced rock grab samples from the area of the historic workings of the Prosper Occurrence. Rock sample descriptions appear in Appendix 1, and geochemical analyses appear in Appendix 2. The author, accompanied by B. Olsen and G. Hinch, visited the property on September 28, 2016 and relocated and geo-referenced most of the historic workings of the Prosper occurrence using a hand-held Garmin GPSMap 64st, for which GPS location details appear in Appendix 1. This was the first time the workings had been geo-referenced. The author also took 1 select grab sample from a 0.5 m. thick exposure of the Prosper Vein at the back of the Upper Prosper Adit 4 m. from the adit portal, which yielded values of 125 g/t gold, 115 g/t silver, 1.67% copper and 982 ppm lead. A duplicate of the rock sample was sent to the geochronology laboratory at UBC for lead isotope analyses, which yielded a similar radiogenic response as known Eocene age mineralization from Catface Copper and the Zeballos Gold District on Vancouver Island. Rock sample location and description details for sample E5123155 appear in Appendix 1, and geochemical and isotope analyses details from that sample along with regional data provided by the UBC geochronology laboratory appear in Appendix 2.

List of claims and work completed

From June 3 to August 31, 2017 intermittently, the author compiled selected historic manual data from the area of the Prosper Property into digital format, and completed and submitted online to Front Counter BC a Notice of Work Application for a proposed surface and underground exploration program on the Property on behalf of New Sunro Copper Ltd. Much of this data was also used in preparing this technical report, including many of the figures.

During the 3 days of September 18 to 20, 2017, Bjorn Olsen and Glen Hinch traveled by truck, boat and foot from Campbell River, BC to the Prosper Property, spent 2 days working on cell claims 1052319 and 10469270f the Property, and returned to Campbell River. On the Property, Mr. Olsen and Mr. Hinch flagged and blazed proposed trails R1 and R2 and the proposed bridge site BR1 as shown in Figures 8 and 13. They also walked along proposed roads R3 and R4 to the historic workings of the Prosper occurrence. At the Prosper occurrence, Mr. Olsen and Mr. Hinch used a hammer drill, sledge hammer and chisel to extract 3 rock samples each at 2 locations, the Isob Adit and the Upper Prosper Adit, as shown in Figure 9. These 6 rock samples consisted of 1 to 2 kg, un-weathered fragments of the hanging-wall, vein and footwall of the Isob and Prosper Veins, respectively, taken in duplicate to be analyzed for parameters required to predict ARD (Acid Rock Drainage) and also potential, silica dust generating potential, from future drilling, blasting and stockpiling of rock during proposed widening and extension of the adits. The samples were also analyzed for gold and multi-element geochemistry. Rock sample location, descriptions and highlights appear in Appendix 1, the analytical reports appear in Appendix 2, and selected highlights shown in Figures 10-12.

From September 21 to December 8, 2017 intermittently, the author sent rock samples for analyses, completed microscopic descriptions of reference rock specimens, received, compiled and evaluated analytical results, filed Statements of Work on the mineral titles of the property, and completed the technical assessment report to support those statements and related costs.

Technical Data, Interpretation, Conclusions and Recommendations

The 2016-2017 field programs at Prosper have confirmed the presence of high gold, silver and copper values in the Prosper Vein established in historic work, and that the sulphides and probably the gold and silver in the quartz-sulphide veins are of Eocene age, similar to gold-silver mineralization at Zeballos and copper-molybdenum-gold mineralization at Catface. The 2017 field program has also allowed characterization of the potential for acid rock drainage (ARD) generating from stockpiling rock from the Prosper and Isob veins and wall rock. The program has also established the potential for airborne silica resulting from drilling and blasting rock from the Prosper and Isob veins and wall rock. Analytical reports for Gold, Geochemistry, ARD and Whole Rock analyses by AGAT Labs, and Age-Dating by UBC appear in Appendix 2.

Six rock samples (E5123652 to E5123657) were taken in 2017, consisting of two (2) vein samples (E5123653 and E5123656) and four (4) wall rock samples (E5123652, E5123654, E5123655 and E5123657).

The two (2) vein samples yielded average values of selected parameters as follows:

٠	CaO	0.1%
•	SiO2	87.3%
٠	Paste pH	7.4
٠	Fizz Rating	None
•	Sulphide Sulphur	2.5%
•	Max. Potential Acidity	77.2 kg CaCO3/tonne
٠	Neutralizing Potential (NP)	4.2 kg CaCO3/tonne
•	Net Neutralizing Potential (NNP)	-73 kg CaCO3/tonne
•	Neutralizing Potential Ratio (NPR)	3.2

The four (4) wall rock samples yielded average values of selected parameters as follows:

•	CaO	7.3%
•	SiO2	48.9%
•	Paste pH	8.6
•	Fizz Rating	Moderate
•	Sulphide Sulphur	0.1%
٠	Max. Potential Acidity	1.9 kg CaCO3/tonne
•	Neutralizing Potential (NP)	80.8 kg CaCO3/tonne
•	Net Neutralizing Potential (NNP)	80.3 kg CaCO3/tonne
•	Neutralizing Potential Ratio (NPR)	34.6

The arithmetic average of the six (6) samples was calculated to estimate average values for combining vein and wall rock at a ratio of 1:2. However, the average vein width is approximately 0.5 m., and the anticipated width of future underground development excavations is 2.5 m., a ratio of 1:4. Therefore, the anticipated selected parameters of a mixture of vein to wall rock at a ratio of 1:4 was calculated as follows:

•	CaO	5.8%
•	SiO2	56.5%
•	Paste pH	8.4
•	Fizz Rating	?
•	Sulphide Sulphur	0.5%
•	Max. Potential Acidity	16.9 kg CaCO3/tonne
•	Neutralizing Potential (NP)	65.5 kg CaCO3/tonne
•	Net Neutralizing Potential (NNP)	49.7 kg CaCO3/tonne
•	Neutralizing Potential Ratio (NPR)	28.3

Threshold parameters published by the USGS for acid rock drainage potential are as follows:

•	Net Neutralizing Potential (NNP)	>20 kg CaCO3/ton	non-acid generating
•	Net Neutralizing Potential (NNP)	<-20 kg CaCO3/ton	acid generating
٠	Net Neutralizing Potential (NNP)	-20 to 20 kg CaCO3/ton	possibly acid generating
•	Neutralizing Potential Ratio (NPR)	>4	non-acid generating
٠	Neutralizing Potential Ratio (NPR)	<1	acid generating
•	Neutralizing Potential Ratio (NPR)	1 to 4	possibly acid generating

For the purpose of this report, the difference in units used by AGAT labs (CaCO3/tonne) vs. that used by the USGS (CaCO3/ton) in Appendix 2 are not considered to be significant. The key interpretations of acid rock drainage potential from the rock samples taken are as follows:

- Prosper Vein sample is acid generating with NNP of -151 and NPR of 0
- Isob Vein sample is possibly acid generating with NNP of 5.1 and NPR of 6.4
- Average vein Sample is probably acid generating with NNP of -73 and NPR of 3.2
- All 4 wall rock samples are non-acid generating with NNP's of 60.2 to 118 and high NPR's
- Average of vein:wallrock @ 1:4 is non-acid generating with NNP of 49.7 and NPR of 28.3

The Sulphur content of the rock samples is generally very low (<0.04%) <u>except</u> for the Prosper Vein sample, which yielded values of 4.94% Total Sulphur and 4.91% Sulphide Sulphur. The CaO content of the rock samples highly variable, being very low in the vein samples (0.03% to 0.18%) and quite high in all 4 wall rock samples (4.72% to 10.9%). This is visually evident from the microscopic examination of the wall rock hand specimens, where calcite was observed as disseminated crystals or veinlets. The 14 rock samples taken from the Prosper Property in 2016-2017 yielded variably elevated contents of 7 metals: Gold, Silver, Copper, Iron, Lead, Vanadium and Zinc. In vein samples, highly elevated values of Gold, Silver and/or Copper may occur.

The silica contents of the 6 rock samples range from 43.5 to 87.9, with silica contained in varying amounts of minerals including quartz, feldspar, pyroxene, chlorite and epidote. Therefore, it should be assumed that silica dust will be generated upon blasting of either vein or wall rock during future underground development, requiring appropriate and industry-standard dust control procedures to be followed.

Over 150 years of exploration, development and mining in Central Vancouver Island has identified large mineral deposits of different ages and types, including Paleozoic age polymetallic massive sulphides (Myra Falls), Jurassic age iron skarns (Maggie) and Eocene age porphyry coppers (Catface). Many smaller mineral deposits have also been identified, including possibly Eocene age gold-bearing quartz-sulphide veins of possible Eocene age (Prosper, Avon and Brooklyn) similar to the Zeballos District, and copper/iron skarns of probable Jurassic age (Seattle, Galena and Avon) on the Prosper Property. The late prospector Walter Guppy held interests in and worked extensively on mineral claims covering the Prosper occurrence for over 50 years from 1940 to the early 1990's, after which no significant exploration work occurred. The gold-bearing quartz-sulphide veins in the immediate area of the Prosper occurrence are the main exploration target for New Sunro Copper Ltd. on the Prosper Property.

Since the last significant exploration programs occurred in the area covered by and surrounding the Prosper Property, prices for gold, the primary target commodity, and for secondary silver and copper have all increased. The understanding of mineral deposits by economic geologists has improved substantially, and industry standard exploration, mining and processing techniques have improved dramatically. The quartz-sulphide vein occurrences in the area are more appropriately classified as Epithermal Au-Ag-Cu; high sulphidation (H04) or Au-quartz veins (I01) according to published BC Mineral Deposit Profiles. Mechanized narrow vein mining techniques have been developed and used to reduce costs and improve safety in underground mines elsewhere. Processing and waste management techniques have been developed to greatly improve recoveries and minimize environmental impacts.

New Sunro Copper Ltd. has not completed any significant amount of exploration work to date on the Prosper Property. To permit the Company to undertake mechanized surface and underground exploration on the Prosper Property, the author completed and submitted a revised Notice of Work Application dated August 31, 2017 to Front Counter BC and the BC Mines Inspector, with confirmation received on September 1, 2017. As part of the requirements of the application, rock samples from veins and adjacent wall rocks were taken by the Company and analyzed for Acid Rock Drainage and Silica generating potential resulting from proposed drilling, blasting and stockpiling of these rocks in the underground workings.

A phased, systematic exploration program is warranted on the property to achieve the following primary exploration objectives, in the author's opinion:

- Establish indicated mineral resources in the Prosper, Isob and any other nearby veins by initial GPS grid controlled surface geological mapping followed by surface exploration diamond drilling on 30 m. centres, and detailed geological interpretation
- Establish measured mineral resources in the Prosper, Isob and any other nearby veins by widening and extending the Lower Prosper, Upper Prosper and Isob adits through the area of positive drill intercepts, detailed geological mapping and sampling of all underground vein exposures, and detailed geological interpretation
- Establish optimal metallurgical processing parameters for the mineral resources through underground bulk sampling, and testing at an operating gold mine and/or recognized metallurgical laboratory
- Establish inferred resources on the other 4 mineral occurrences documented on the Property, by re-locating exposures and conducting appropriate surface ground exploration work, possibly including geology, geochemistry, geophysics and drilling

Also, the author recommends the following environmental and socio-economic programs be initiated to complement the exploration and environmental objectives:

- Obtain 5-year area-based exploration permit from the BC Government
- Establish baseline environmental database using historic and modern data
- Identify, negotiate and establish contract, employment and other co-operation agreements with local First Nations bands and nearby communities
- Negotiate and establish access road, surface and other co-operation agreements with local surface rights holders and any other valid title holders
- Negotiate and establish work progress update protocols with local recreation and conservation groups and nearby communities

The following 3 phase combined surface, underground, and environmental / socio-economic programs and budgets are proposed for the first 2 to 3 years at the Prosper Property. Additional work programs may follow, if appropriate.

Phase - Item	Details	Units	Unit Cost	Item Cost	
1 – NOW Application	Prosper area 5 year	15 days	\$1,000 per day	\$15,000	
1 - Geological Mapping	Prosper area surface	5 days	\$2,000 per day	\$10,000	
1 – Bridge, Trails, Staging	Prosper area surface	15 days	\$5,000 per day	\$75,000	
1 – Diamond Drilling – 5 sites	Prosper area surface	3000 m.	\$200 per metre	\$600,000	
1 – Technical Reports	Prosper area	10 days	\$1,000 per day	\$10,000	
Subtotal Phase 1	Exploration			\$710,000	
2 – Rehab. Lower Prosper Adit	Prosper U/G – 130 m.	8 days	\$5,000 per day	\$40,000	
2 – Rehab. Upper Prosper Adit	Prosper U/G – 38 m.	2 days	\$5,000 per day	\$10,000	
2 – Extend Lower Prosper Adit	Prosper U/G – 100 m.	40 days	\$5,000 per day	\$200,000	
2 – Extend Upper Prosper Adit	Prosper U/G – 100 m.	40 days	\$5,000 per day	\$200,000	
2 – Isob Adit Extension 1	Prosper U/G – 75 m.	30 days	\$5,000 per day	\$150,000	
2 – Isob Adit Extension 2	Prosper U/G – 100 m.	40 days	\$5,000 per day	\$200,000	
2 – Mapping/Sampling Adits	Prosper U/G - 543 m.	50 days	\$1,000 per day	\$50,000	
2 – Engineering/Metallurgy	Prosper U/G –	20 days	\$2,500 per day	\$50,000	
2 – Bulk Sampling	Prosper U/G -	750 t.	\$100 per tonne	\$75,000	
2 – Technical Reports	Prosper U/G -	15 days	\$1,000 per day	\$15,000	
Subtotal Phase 2	Exploration			\$990,000	
3 – Geological Mapping	Avon + 3 others	10 days	\$2,000 per day	\$20,000	
3 – Technical Reports	Avon + 3 others	5 days	\$1,000 per day	\$5,000	
Subtotal Phase 3	Exploration			\$25,000	
				470.000	
1-3 – Environmental Baseline	Prosper Surface	25 mo.	\$2,000 per mo.	\$50,000	
1-3 – Road Use, Surface	Property Agreements	25 mo.	\$2,000 per mo.	\$50,000	
1-3 – First Nations	Property Agreements	25 mo.	\$2,000 per mo.	\$50,000	
1-3 – Local Communities	Property Agreements	25 mo.	\$2,000 per mo.	\$50,000	
Subtotal Phases 1 to 3	Enviro/Socioeconomic			\$200,000	
Total Phases 1 to 3	Expl/Enviro/Socioecon.			\$1,925,000	

Table 4 – Proposed Work Program and Budget Summary

Respectfully submitted by:

Jacques Houle, P.Eng.

December 8, 2017

Author's Qualifications

I, Jacques Houle, P.Eng. Do hereby certify that:

I am currently self-employed as a consulting geologist by:

Jacques Houle, P.Eng. Mineral Exploration Consulting

6552 Peregrine Road, Nanaimo, British Columbia, Canada V9V 1P8

I graduated with a Bachelor's of Applied Science degree in Geological Engineering with specialization in Mineral Exploration from the University of Toronto in 1978.

I am a member in good standing with the Association of Professional Engineers and Geoscientists of British Columbia, the Society of Economic Geologists, the Association for Mineral Exploration British Columbia, the Association of Applied Geochemists, and the Vancouver Island Exploration Group; I am also a member of the Technical Advisory Committee for Geoscience B.C., and of the advisory committee for the Earth Science Department of Vancouver Island University.

I have worked as a geologist for 39 years since graduating from university, including 5 years as a mine geologist in underground gold and silver mines, 15 years as an exploration manager, 3 years as a government geologist and 15 years as a mineral exploration consultant.

I am independent of New Sunro Copper Ltd and hold no interest in the subject property of this report.

References

B.C. Ministry of Energy and Mines Website references:

Annual Reports:

http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/AnnualReports/Pages/default.aspx

ARIS Reports: http://www.empr.gov.bc.ca/Mining/Geoscience/ARIS/Pages/default.aspx

Exploration and Mining:

http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/ExplorationinBC/Pages/default.aspx

Fieldwork: http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/Fieldwork/Pages/default.aspx

MapPlace: http://www.empr.gov.bc.ca/MINING/GEOSCIENCE/MAPPLACE/Pages/default.aspx

Mineral Deposit Profiles:

http://www.empr.gov.bc.ca/Mining/Geoscience/MineralDepositProfiles/Pages/default.aspx

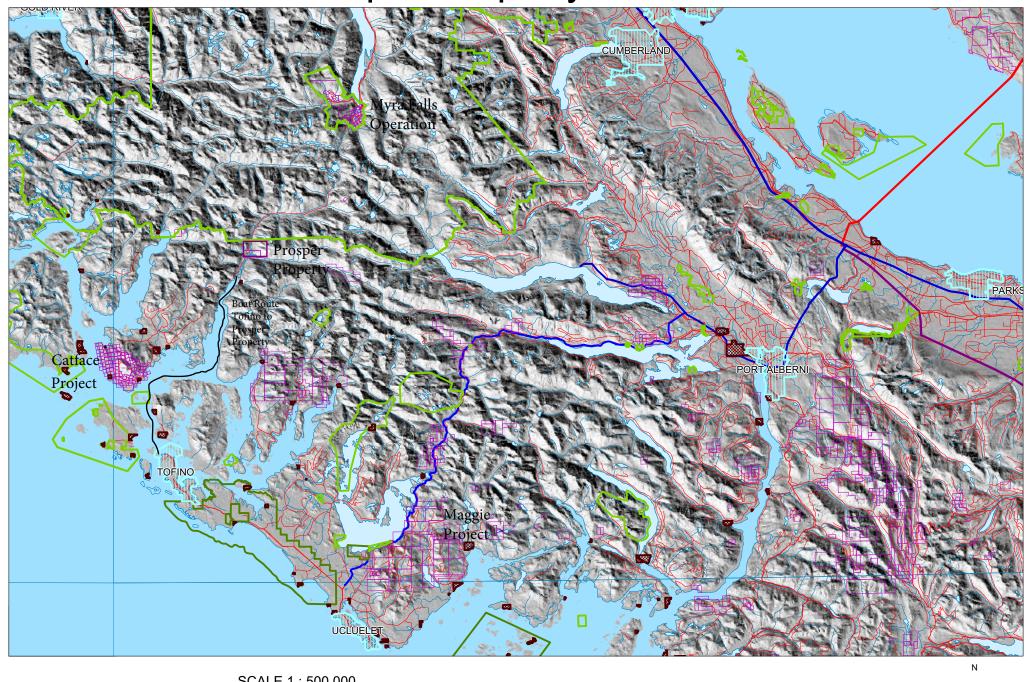
Mineral Titles Online: <u>http://www.empr.gov.bc.ca/Titles/MineralTitles/mto/Pages/default.aspx</u>

MINFILE: <u>http://www.empr.gov.bc.ca/Mining/Geoscience/MINFILE/Pages/default.aspx</u>

Sustainability: <u>http://www.empr.gov.bc.ca/Mining/Sustainability/Pages/default.aspx</u>

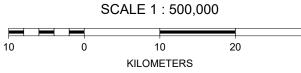
B.C. Forests and Range Integrated Land Management Bureau Website reference:

Gator: http://a100.gov.bc.ca/pub/pls/gator/gator\$queryforms.menu


Front Counter BC Website reference:

Permitting: http://www.frontcounterbc.ca/guides/mines/notice-of-work/overview/

U.S.G.S. Website references:


Acid-Base Accounting: https://pubs.usgs.gov/of/2003/ofr-03-210/Section508/IX Acid-base Accounting-508.pdf

Prosper Property Location

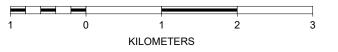
30

Legend from BC MapPlace

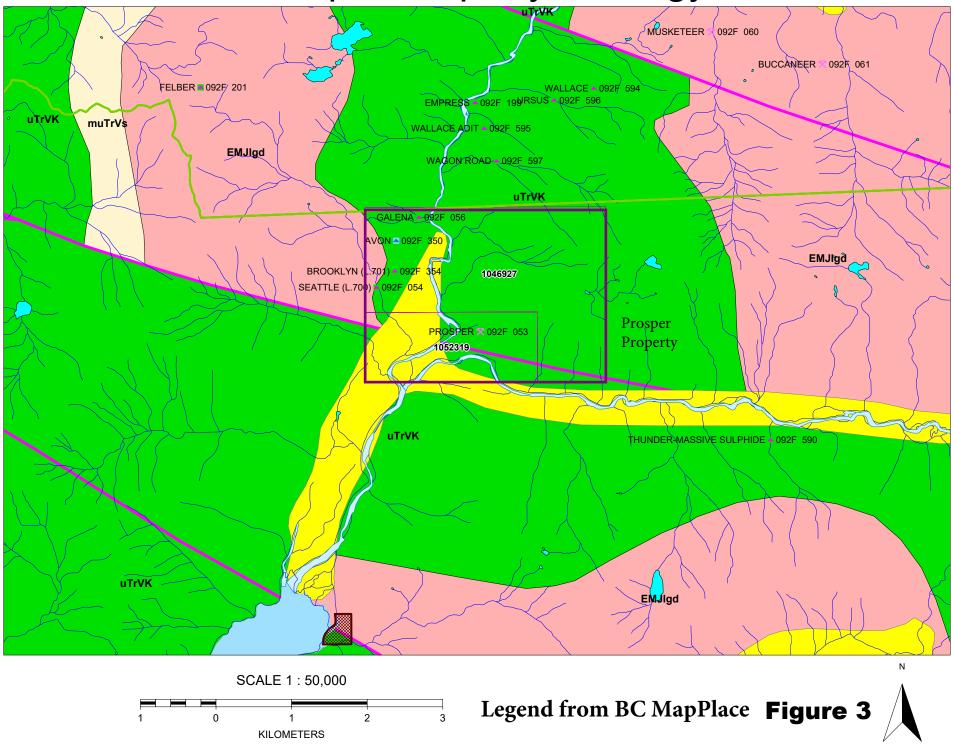


September 23, 2017 5:20 PM

Figure 1

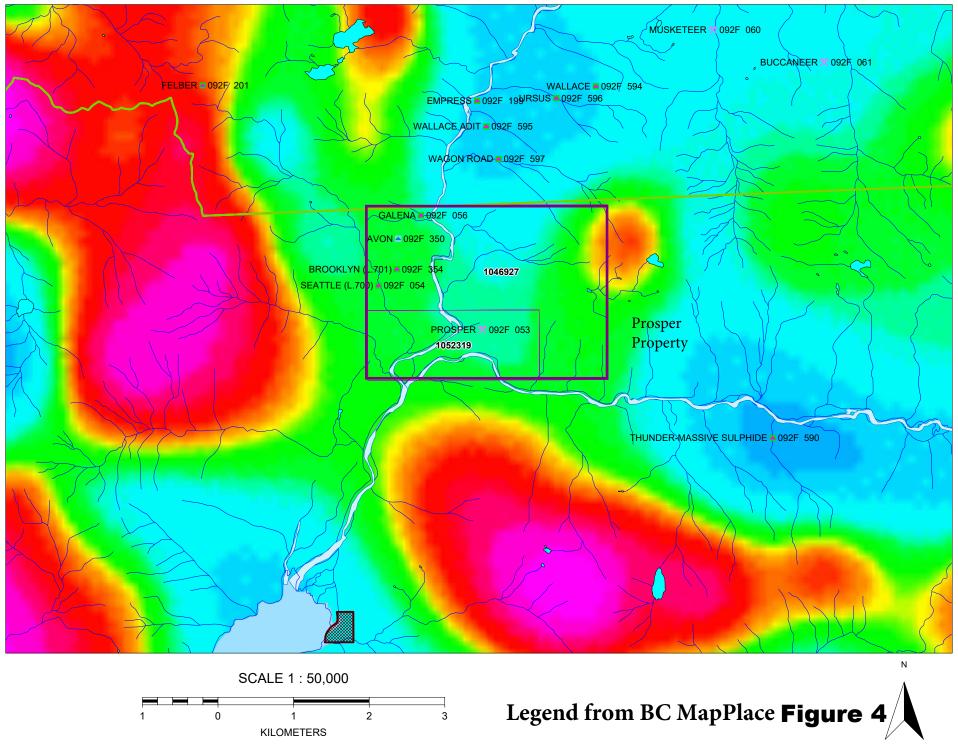

http://webmap.em.gov.bc.ca/mapplace/maps/minpot/bcgs.MWF

Prosper Property Infrastructure


SCALE 1 : 50,000

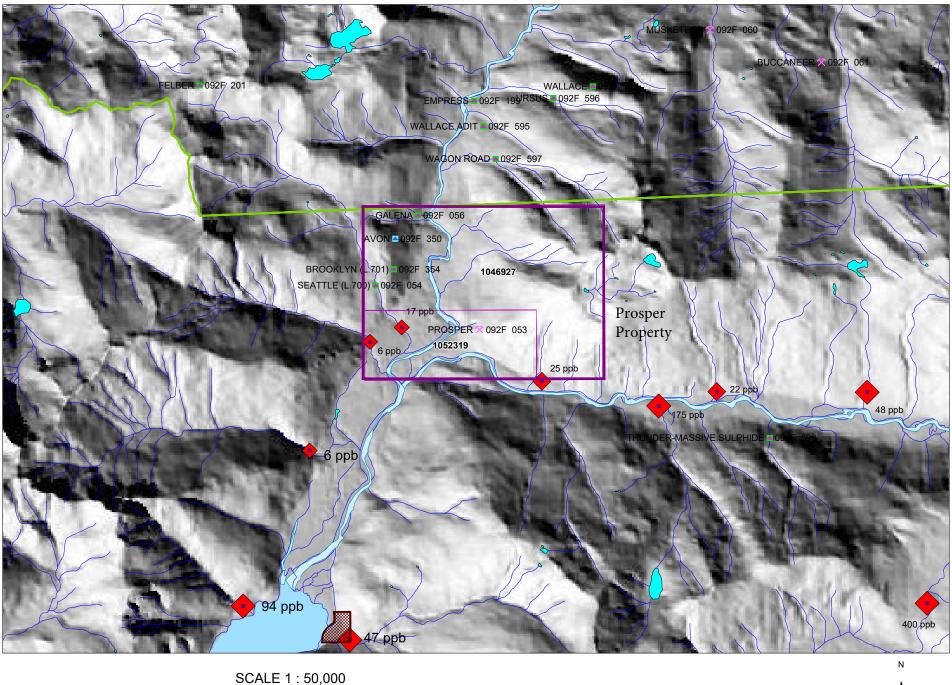
http://webmap.em.gov.bc.ca/mapplace/maps/minpot/bcgs.MWF

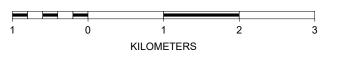
September 23, 2017 5:27 PM


Prosper Property Geology

http://webmap.em.gov.bc.ca/mapplace/maps/minpot/bcgs.MWF

September 23, 2017 5:35 PM

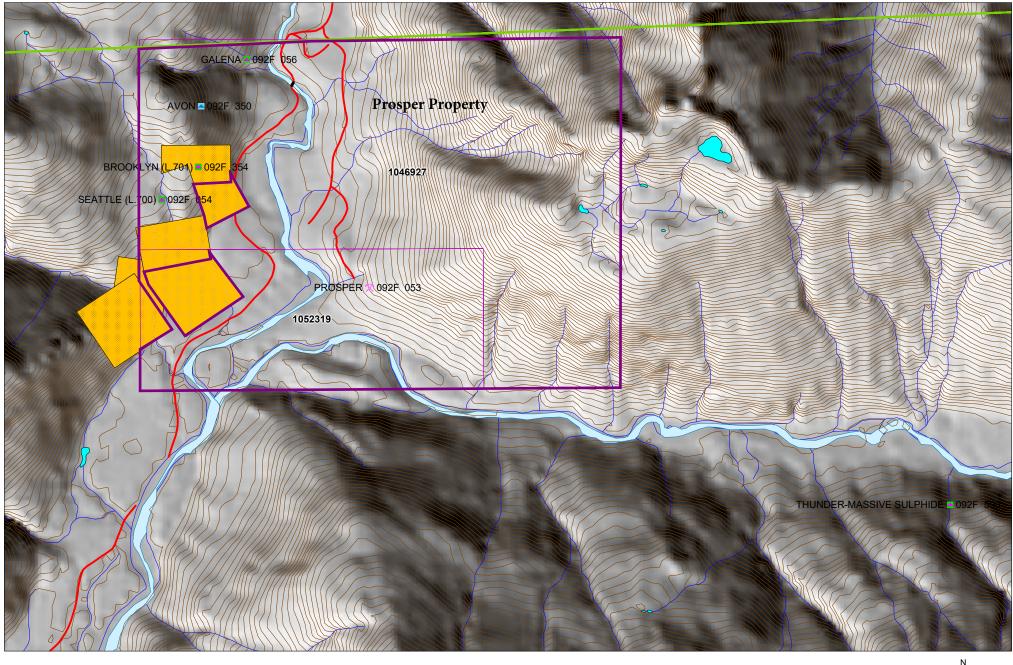

Prosper Property 1st Vertical Derivative Magnetics



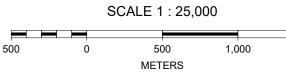
http://webmap.em.gov.bc.ca/mapplace/maps/minpot/bcgs.MWF

September 23, 2017 5:37 PM

Prosper Property RGS Gold



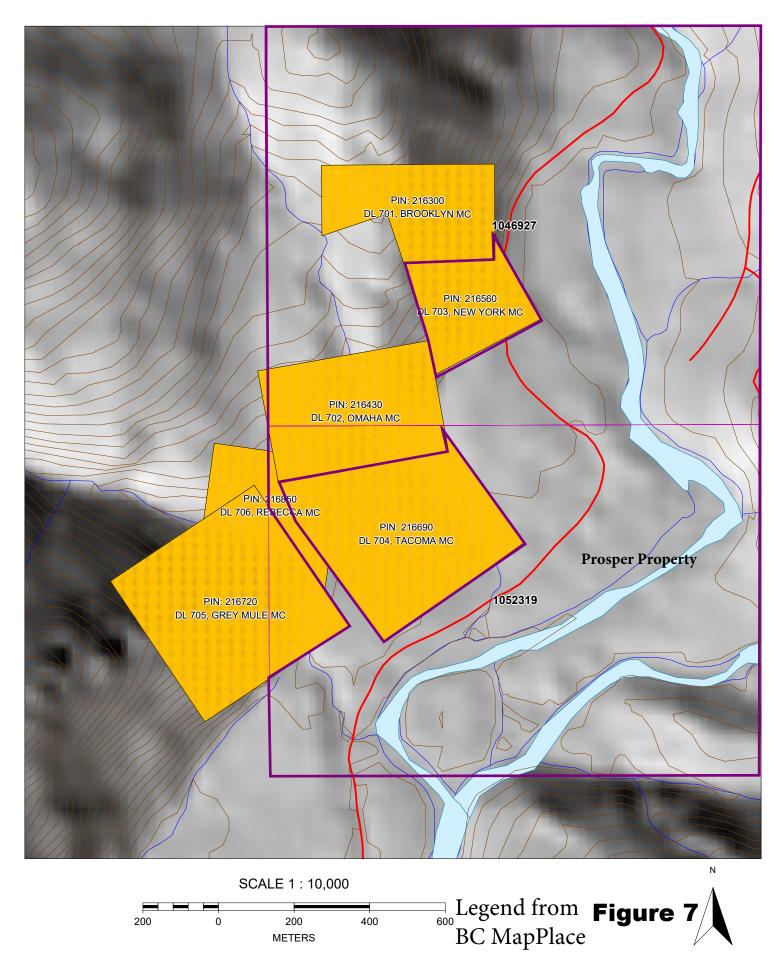
http://webmap.em.gov.bc.ca/mapplace/maps/minpot/bcgs.MWF

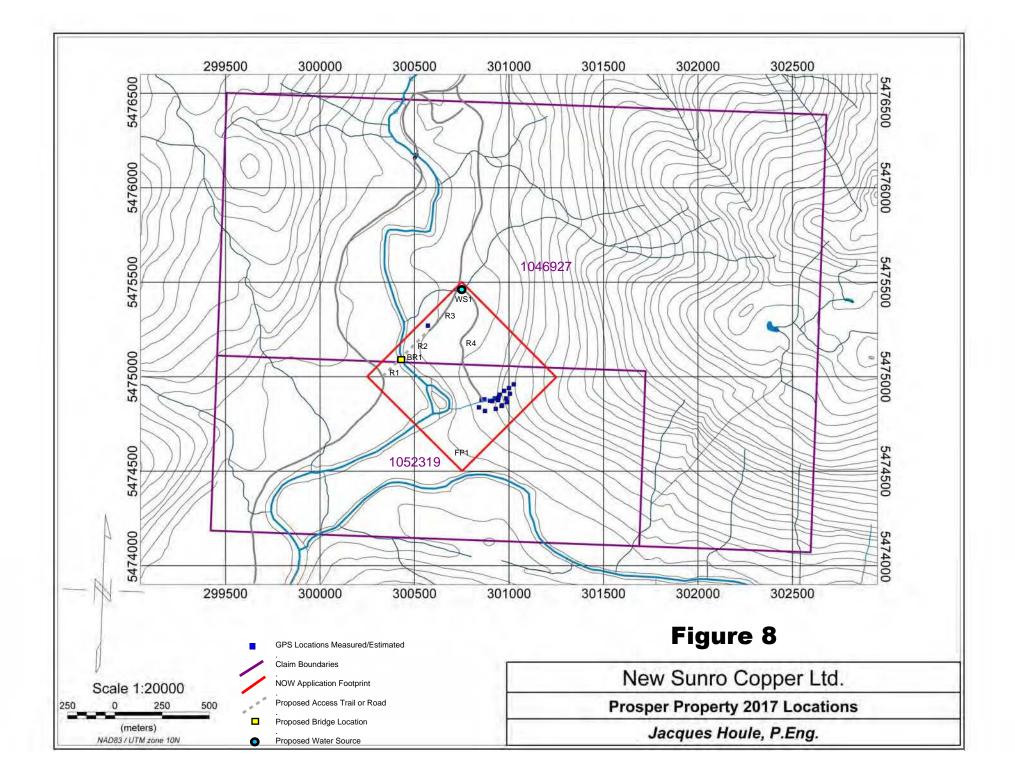

September 23, 2017 5:39 PM

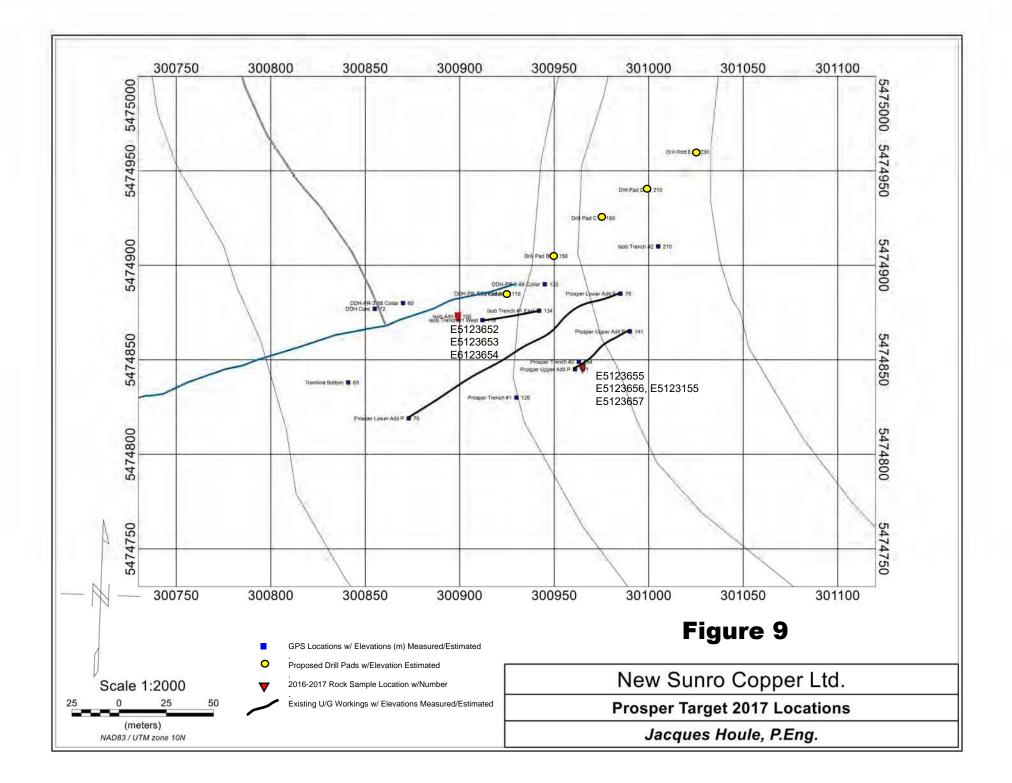
Legend from BC MapPlace Figure 5/

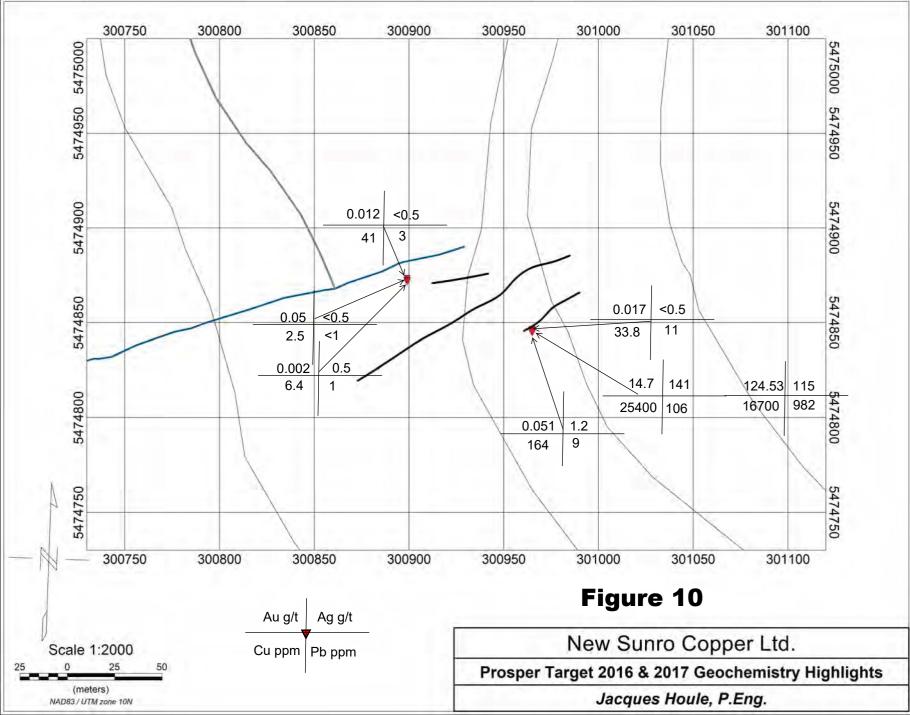
Prosper Property Details

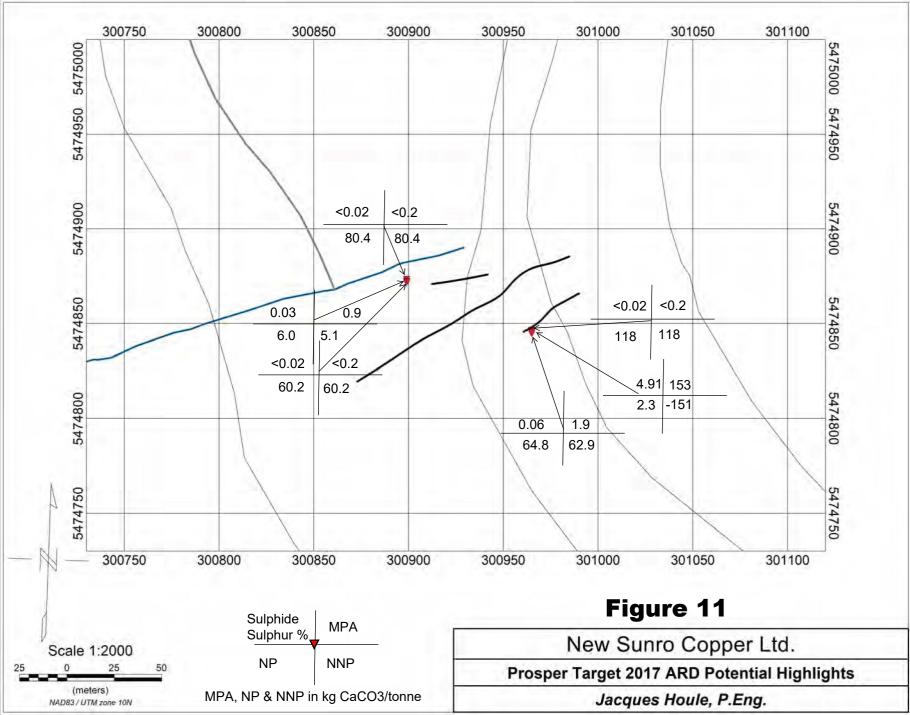
1,500

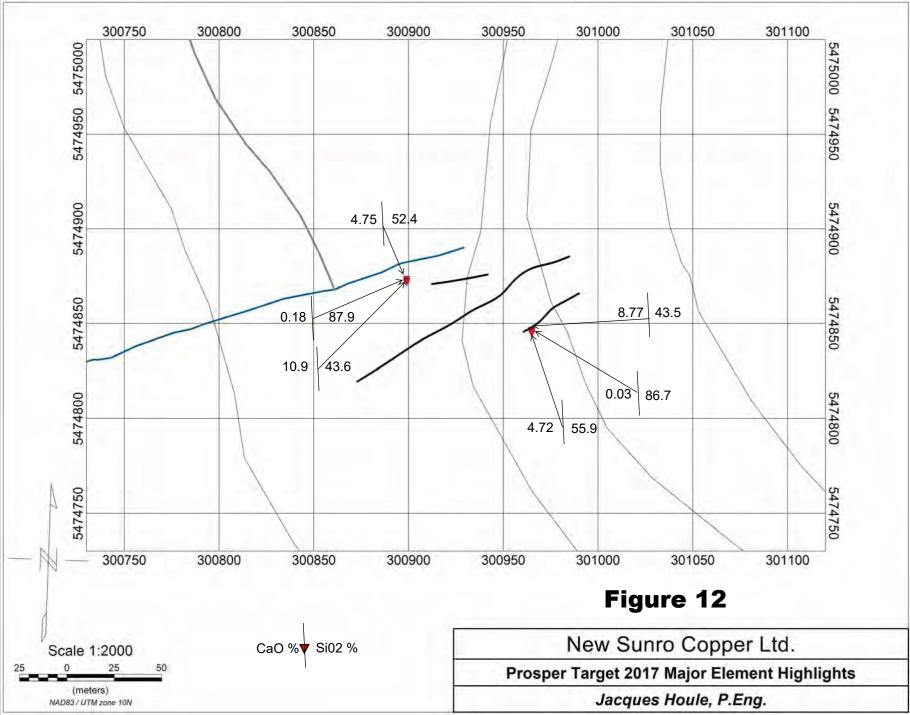


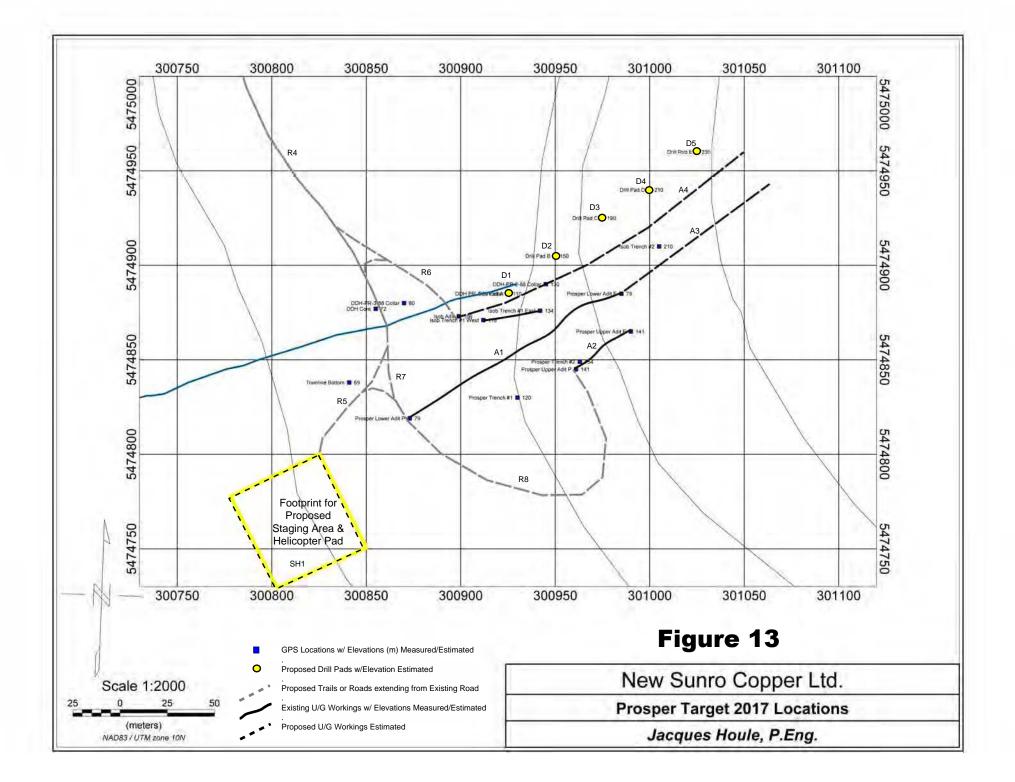

Legend from BC MapPlace




http://webmap.em.gov.bc.ca/mapplace/maps/minpot/bcgs.MWF


Prosper Property West Crown Grants





Appendix 1

GPS and Sample Data

2016 to 2017 GPS Locations for Prosper Project

Waypoint	Date	Taken By	Property	Location	Details	UTM Zone	Easting	Northing	Elevation
Tofino Launch	28-Sep-16	J. Houle	Public Access	Public Boat Launch off 4th Avenue, Tofino, BC	North side of Tofino	10N	288471	5448629	0
Clayoquot Lodge	28-Sep-16	J. Houle	Private Lodge	Clayoquot WildernessResort and Private Boat Dock	West side at the mouth of the Bedwell River	10N	297875	5471345	0
Bedwell Crossing	28-Sep-16	J. Houle	Prosper	Boat crossing point across Bedwell River	Between old mine road (west) and foot trail (east) across river	10N	300419	5475092	0
Trail Fork	28-Sep-16	J. Houle	Prosper	Fork along foot trail east side Bedwell River	North fork to suspension bridge & South fork to Prosper workings	10N	300571	5475270	25
DDH Core	28-Sep-16	J. Houle	Prosper	Piles of drill core, old camp site, overgrown helipad along trail		10N	300855	5474877	72
Tramline Bottom	28-Sep-16	J. Houle	Prosper	Bottom (west end) of old cable tram line to Prosper workings		10N	300841	5474838	69
Prosper Lower Adit	28-Sep-16	J. Houle	Prosper	Portal of adit 1.8 m. high x 1.4 m. wide @ 070 Az.		10N	300873	5474819	79
Prosper Upper Adit	28-Sep-16	J. Houle	Prosper	Portal of adit 1.8 m. high x 1.4 m. wide @ 065 Az.		10N	300961	5474845	141
Prosper Trench #2	28-Sep-16	J. Houle	Prosper	Overgrown trench on Prosper Vein above Upper Adit		10N	300963	5474849	154
Isob Trench #2 East	28-Sep-16	J. Houle	Prosper	East end of long trench on Isob Vein with creek flowing along it		10N	300942	5474876	5 134
Isob Trench #2 West	28-Sep-16	J. Houle	Prosper	West end of long trench on Isob Vein with creek flowing along it		10N	300912	5474871	. 118
Isob Adit	28-Sep-16	J. Houle	Prosper	Portal of short adit on Isob Vein with collapsed wooden roof		10N	300899	5474873	106

2016 to 2017 Rock Sample Locations for Prosper Project									
Sample #	Date	Sampler	Property	Location	Details	UTM Zone	Easting	Northing	Elevation
E5123203	08-Sep-16	B.Olsen	Prosper	top of lower stope	select grab from bag of samples				
E5123204	08-Sep-16	B.Olsen	Prosper	face of upper drift	select grab from bag of samples				
E5123205	08-Sep-16	B.Olsen	Prosper	lower drift 56 m. from portal	random split of entire sample				
E5123206	08-Sep-16	B.Olsen	Prosper	lower drift 60 m. from portal	random split of entire sample				
E5123207	08-Sep-16	B.Olsen	Prosper	lower muck pile 500 tonnes	select split of entire sample				
E5123208	08-Sep-16	B.Olsen	Prosper	muck pile upper raise 50 tonnes	select split of entire sample				
E5123209	08-Sep-16	B.Olsen	Prosper	unlabeled sample	select split of entire sample				
E5123155	28-Sep-16	J.Houle	Prosper	centre back of Prosper Upper Adit 4.0 m. from adit portal (GPS estimated from portal location)	select chip sample from 0.5 m. thick quartz-sulphide vein @ 240/65 containing 10% sulphides, 1% malachite, 5% FeOx; hosted by mafic volcanics	10N	300965	5474846	5 141
E5123652	19-Sep-17	B.Olsen	Prosper	north side of Isob Adit face hangingwall side of vein (original sample # 29901)	0.5 m. wide chip sample from face and left rib of adit containing mafic volcanics	10N	300899	5474874	106
E5123653	19-Sep-17	B.Olsen	Prosper	centre of Isob Adit face Isob Vein (original sample # 29902)	0.5 m. wide chip sample from face of adit containing mainly quartz vein	10N	300899	5474873	3 106
E5123654	19-Sep-17	B.Olsen	Prosper	south side of Isob Adit face footwall side of vein (original sample # 29903)	0.5 m. wide chip sample from face and right rib of adit containing mafic volcanics	10N	300899	5474872	2 106
E5123655	20-Sep-17	B.Olsen	Prosper	north side of Prosper Upper Adit hangingwall side of vein (original sample # 29904)	0.? M. wide chip sample from back and left rib of adit containing mafic volcanics and minor quartz stringers	10N	300965	5474847	7 141
E5123656	20-Sep-17	B.Olsen	Prosper	centre back of Prosper Upper Adit same location as E5123155 (original sample # 29905)	0.? M. wide chip sample from back of adit containing quartz-sulphide vein	10N	300965	5474846	5 141
E5123657	20-Sep-17	B.Olsen	Prosper	south side of Prosper Upper Adit footwall side of vein (original sample # 29906)	0.? M. wide chip sample from back and right rib of adit containing mafic volcanics and minor quartz stringers	10N	300965	5474845	5 141

2016 to 2017 Rock Sample Descriptions for Prosper Project

Sample #	Descriptions
E5123203	0.02 m. thick fragments of white, green, bronze and brown, weakly banded quartz-sulphide vein with 90% crystalline quartz, 5% m.g. clustered sulphides including chalcopyrite and bornite, 5% FeOx, trace malachite generally rimming sulphide clusters
E5123204	0.05 m. thick fragments of white, green, brown and bronze, massive quartz-garnet-sulphide vein with 85% crystalline quartz, 10% f.g. granular clusters of 8% green garnets and 2% sulphides including chalcopyrite, sphalerite, 5% FeOx, rare malachite in clusters
E5123205	0.01 m. thick fragments of white, brown, green and bronze, massive to weakly banded quartz-sulphide vein with 90% crystalline quartz, 5% f.g. to m.g. sulphide clusters including chalcopyrite, bornite, sphalerite and a grey dendritic mineral, 5% FeOx, trace malachite rimming sulphides
E5123206	0.005 m. thick fragments of white, bronze, grey and green, massive quartz-sulphide vein with 95% crystalline quartz, 5% m.g. sulphide clusters including chalcopyrite, sphalerite and galena, trace malachite rimming sulphide clusters
E5123207	0.005 m. thick fragments of white, green and black, massive quartz-garnet-sulphide vein with 95% crystalline quartz, 4% f.g. granular clusters of green garnets, 1% f.g. sulphide clusters, mainly sphalerite
E5123208	0.005 m. thick fragments of mixed white, green and red-brown, quartz-sulphide vein, mafic volcanics and garnet-calcite-pyrite skarn; overall 1% sulphides including pyrite and chalcopyrite
E5123209	0.01 m. thick fragments of mixed white, green and brown, quartz-sulphide vein and chlorite-garnet-pyrite skarn; overall 2% sulphides including pyrite and chalcopyrite, trace malachite rimming sulphides
E5123155	0.05 m. thick fragments of white, brown, bronze and green, quartz-sulphide vein with 90% crystalline quartz, overall 9% fine to coarse sulphides in clusters and crude bands including 5% pyrite, 3% chalcopyrite, 1% bornite and 1% malachite along fracturesand rimming sulphides
E5123652	0.1 m. thick fragment of green with black or white speckled, massive, fine to medium grained mafic volcanics; contains 10% chlorite grains, minor calcite grains
E5123653	0.1 m. by 0.05m. thick fragment of white with black inclusions, fine to medium grained quartz-chlorite-sulphide vein; contains 5% elongated chloritic mafic volcanic fragments, 0.1% very fine grained sulphides in clusters
E5123654	0.1 m. thick fragment of green with black or white speckled, massive, moderately magnetic, fine to medium grained mafic volcanics; contains 10% epidote in clusters; 5% chlorite grains, 1% magnetite, minor calcite clusters
E5123655	0.1 m. thick fragment of green with white speckles and black clusters, massive, weakly magnetic, fine grained mafic volcanics; contains 10% chlorite in veinlets and clusters, 2% epidote, 5% calcite disseminated, trace magnetite
E5123656	0.05 m. thick fragment of white, brown, bronze and green, quartz-sulphide vein with 75% chrystalline quartz, 15% fine to coarse sulphides in zoned clusters and crude bands including 10% pyrite, 4% chalcopyrite, 1% sphalerite, trace malachite
E5123657	0.1 m. thick fragment of green with white veinlets and clusters, and black clusters, massive, fine grained mafic volcanics; contains 10% chlorite in clusters, 10% calcite in veinlets and disseminated, trace very fine grained sulphides

2016 to 2017 Rock Geochemistry Highlights for Prosper Project

Sample #	Easting	Northing	Elevation	Au g/t	Ag g/t	Cu ppm	Fe %	Pb ppm	S %	V ppm	Zn ppm
E5123203				3.97	85.0	16200	2.28	137	1.37	50	97
E5123204				4.00	1.3	548	2.27	330	0.20	78	97
E5123205				0.38	2.9	429	0.66	74	0.13	14	21
E5123206				5.10	38.8	6660	0.98	99	0.46	1	46
E5123207				2.38	3.3	541	5.35	43	0.28	202	110
E5123208				1.86	2.6	533	5.49	104	0.31	195	161
E5123209				0.42	15.5	2750	2.16	105	0.21	63	50
E5123155	300965	5474846	141	124.53	115	16700	2.84	982	1.89	6.2	23.7
E5123652	300899	5474874	106	0.012	<0.5	41	6.03	3	0.05	199	88.6
E5123653	300899	5474873	106	0.05	<0.5	2.5	1.82	<1	0.04	113	31.8
E5123654	300899	5474872	106	0.002	0.5	6.4	8.25	1	0.11	307	50.6
E5123655	300965	5474847	141	0.017	<0.5	33.8	7.39	11	0.09	259	65
E5123656	300965	5474846	141	14.7	141	25400	5.49	106	4.95	8.9	44.3
E5123657	300965	5474845	141	0.051	1.2	164	5.41	9	0.11	166	73.3

Sample #	Easting	Northing	Elevation	AI2O3 %	BaO %	CaO %	Cr2O3%	Fe2O3%	K2O %	MgO %	MnO %	Na2O %	P2O5 %	SiO2 %	TiO2 %	SrO %	V2O5 %	LOI %	Total %
E5123652	300899	5474874	106	16.5	0.03	4.75	< 0.01	8.78	2.3	4.22	0.14	2.98	0.2	52.4	0.98	< 0.01	0.04	6.97	100
E5123653	300899	5474873	106	4.44	0.02	0.18	0.03	2.7	1.06	1.11	0.02	0.13	0.06	87.9	0.26	< 0.01	0.02	1.22	99.1
E5123654	300899	5474872	106	15.1	< 0.01	10.9	0.02	12.4	0.07	8.11	0.12	2.68	0.12	43.6	1.37	0.06	0.06	5.83	100
E5123655	300965	5474847	141	13.6	0.01	8.77	0.03	11.2	0.94	7.62	0.16	1.92	0.1	43.5	1.26	0.02	0.06	11.2	100
E5123656	300965	5474846	141	0.22	< 0.01	0.03	0.03	7	0.05	0.03	< 0.01	0.08	< 0.01	86.7	0.01	< 0.01	< 0.01	2.72	96.9
E5123657	300965	5474845	141	15.9	0.06	4.72	< 0.01	7.86	1.93	2.88	0.14	3.95	0.21	55.9	0.94	0.03	0.04	5.57	100
Average for	Vein Sample	s (2)		2.3	0.0	0.1	0.0	4.9	0.6	0.6	0.0	0.1	0.1	87.3	0.1	#DIV/0!	0.0	2.0	98.0
Average for	Wall rock Sa	mples (4)		15.3	0.0	7.3	0.0	10.1	1.3	5.7	0.1	2.9	0.2	48.9	1.1	0.0	0.1	7.4	100.0
Arith. Avg. fo	or Vein & Wa	all Rock Samp	les (6)	11.0	0.0	4.9	0.0	8.3	1.1	4.0	0.1	2.0	0.1	61.7	0.8	0.0	0.0	5.6	99.3
Weighted Av	verage for Ve	ein:Wallrock	1:4 ratio	12.7	0.0	5.8	0.0	9.0	1.2	4.7	0.1	2.3	0.1	56.5	0.9	#DIV/0!	0.0	6.3	99.6

				Paste	Fizz	Total	Sulphate	Sulphide	Maximum	Potential	Neutralizat	ion	Net Neutra	lization	Neutralizat	ion
				рН	Rating	Sulphur	Sulphur	Sulphur	Acidity (M	PA)	Potential (NP)	Potential (NNP)	Potential R	atio (NPR)
Sample #	Easting	Northing	Elevation	pH Units		(wt %)	(wt %)	(wt %)	(kg CaCO3/	'tonne)	(kg CaCO3/	'tonne)	(kg CaCO3/	/tonne)		
E5123652	300899	5474874	106	8.4	MODERATE	0.02	0.02	< 0.02		<0.2		80.4		80.4		NA
E5123653	300899	5474873	106	8.4	NONE	0.04	0.01	0.03		0.9		6.0		5.1		6.4
E5123654	300899	5474872	106	8.9	MODERATE	0.02	0.02	< 0.02		<0.2		60.2		60.2		NA
E5123655	300965	5474847	141	8.5	MODERATE	0.03	0.02	< 0.02		<0.2		118		118		NA
E5123656	300965	5474846	141	6.5	NONE	4.94	0.03	4.91		153		2.3		-151		0.0
E5123657	300965	5474845	141	8.6	MODERATE	0.08	0.02	0.06		1.9		64.8		62.9		34.6
Average for	Vein Sample	s (2)		7.4	NONE	2.5	0.0	2.5		77.2		4.2		-73.0		3.2
Average for	verage for Wall rock Samples (4)			8.6	MODERATE	0.0	0.0	0.1		1.9		80.8		80.3		34.6
Arith. Avg. fo	rith. Avg. for Vein & Wall Rock Samples (6)		les (6)	8.2	?	0.9	0.0	1.7		52.1		55.3		29.2		13.7
Weighted Av	verage for Ve	ein:Wallrock	L:4 ratio	8.4	?	0.5	0.0	0.5	0.0	16.9	0.0	65.5	0.0	49.7	0.0	28.3

Appendix 2

Analytical Data

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION 6552 PEREGRINE ROAD NANAIMO, BC V9V1P8 (250) 390-3930

ATTENTION TO: JACQUES HOULE

PROJECT:

AGAT WORK ORDER: 16T136584

SOLID ANALYSIS REVIEWED BY: Brandon Wang, Spectroscopy Supervisor

DATE REPORTED: Sep 19, 2016

PAGES (INCLUDING COVER): 9

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 16T136584 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

			(2	01-070)	4 Acid D	igest - N	letals Pa	ackage, I	CP-OES	finish					
DATE SAMPLED: Se	p 12, 2016		[DATE RECE	EIVED: Sep	12, 2016		DATE	REPORTED): Sep 19, 20	016	SA	MPLE TYPE:	Other	
	Analyte:	Ag	AI	As	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5123203 (7838411)		85.0	0.69	10	55	<0.5	<1	0.02	7.9	3	9.0	83.6	>10000	2.28	<5
E5123204 (7838412)		1.3	2.09	10	67	1.8	6	0.21	4.7	5	11.5	110	548	2.27	8
E5123205 (7838413)		2.9	0.26	14	18	<0.5	<1	0.01	0.7	3	5.5	73.9	429	0.66	<5
E5123206 (7838414)		38.8	0.06	2	1	<0.5	<1	<0.01	2.7	<1	1.0	86.2	6660	0.98	<5
E5123207 (7838415)		3.3	5.04	12	193	4.0	10	2.18	0.9	12	28.9	129	541	5.35	19
E5123208 (7838416)		2.6	5.39	18	180	3.7	9	2.94	3.3	14	27.0	112	533	5.49	20
E5123209 (7838417)		15.5	1.47	<1	52	1.4	1	0.90	1.5	4	9.4	100	2750	2.16	8
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5123203 (7838411)		3	0.34	<2	7	0.12	148	0.9	<0.01	8.3	29	137	11	1.37	<1
E5123204 (7838412)		3	0.44	<2	5	0.84	207	0.6	0.35	26.0	120	330	16	0.20	1
E5123205 (7838413)		2	0.11	<2	7	0.05	51	<0.5	<0.01	5.3	23	74	<10	0.13	<1
E5123206 (7838414)		4	<0.01	<2	9	0.02	35	0.7	<0.01	4.3	10	99	<10	0.46	1
E5123207 (7838415)		2	1.19	4	9	2.28	1050	<0.5	0.64	49.1	415	43	61	0.28	<1
E5123208 (7838416)		2	1.09	5	10	2.40	1050	<0.5	0.97	47.3	472	104	53	0.31	<1
E5123209 (7838417)		3	0.33	<2	6	0.75	318	1.4	0.06	18.1	108	105	11	0.21	<1
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5123203 (7838411)		5	10	<5	<1	<10	<10	<5	0.03	<5	<5	49.6	<1	<1	97.1
E5123204 (7838412)		9	10	5	4	<10	<10	<5	0.17	<5	<5	77.9	4	2	96.9
E5123205 (7838413)		2	<10	<5	2	<10	<10	<5	0.02	<5	<5	14.2	1	<1	21.2
E5123206 (7838414)		<1	<10	<5	<1	<10	<10	<5	<0.01	<5	<5	1.0	<1	<1	45.5
E5123207 (7838415)		28	<10	10	54	<10	<10	<5	0.35	<5	<5	202	8	8	110
E5123208 (7838416)		27	<10	9	106	<10	<10	<5	0.34	<5	<5	195	8	9	161
E5123209 (7838417)		7	<10	<5	28	<10	<10	<5	0.13	<5	<5	62.8	3	2	50.1

AGAT WORK ORDER: 16T136584 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

			(201-070) 4 Acid Digest - Metals	Package, ICP-OES finish	
DATE SAMPLED: Se	p 12, 2016		DATE RECEIVED: Sep 12, 2016	DATE REPORTED: Sep 19, 2016	SAMPLE TYPE: Other
	Analyte:	Zr			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	5			
E5123203 (7838411)		<5			
E5123204 (7838412)		<5			
E5123205 (7838413)		<5			
E5123206 (7838414)		<5			
E5123207 (7838415)		9			
E5123208 (7838416)		10			
E5123209 (7838417)		<5			

Comments: **RDL** - Reported Detection Limit

7838411-7838417 As, Sb values may be low due to digestion losses.

Certified By:

	G (;		Laboratories		te of Analysis DRDER: 16T136584	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com
CLIENT NAME: JAC	QUES HOU	LE MINER	AL EXPLORATION		ATTENTION TO: JACQU	
			(201-072) 4 Acid D)igest - 24Hr Bas	e Metal Overlimit, AAS finish	
DATE SAMPLED: Sep	12, 2016		DATE RECEIVED:	Sep 12, 2016	DATE REPORTED: Sep 19, 2016	SAMPLE TYPE: Other
	Analyte:	Cu-OL				
	Unit:	ppm				
Sample ID (AGAT ID)	RDL:	2				
E5123203 (7838411)		16200				

Comments: RDL - Reported Detection Limit

Certified By:

R 21

AGAT WORK ORDER: 16T136584 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

			(202-052) Fire Assay - Trace A	Au, ICP-OES finish (ppm)	
DATE SAMPLED: Sep	o 12, 2016		DATE RECEIVED: Sep 12, 2016	DATE REPORTED: Sep 19, 2016	SAMPLE TYPE: Other
	Analyte:	Au			
	Unit:	ppm			
Sample ID (AGAT ID)	RDL:	0.001			
E5123203 (7838411)		3.97			
E5123204 (7838412)		4.00			
E5123205 (7838413)		0.384			
E5123206 (7838414)		5.10			
E5123207 (7838415)		2.38			
E5123208 (7838416)		1.86			
E5123209 (7838417)		0.422			

Comments: RDL - Reported Detection Limit

Certified By:

Quality Assurance - Replicate AGAT WORK ORDER: 16T136584 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				(201	I-070) 4 <i>I</i>	Acid D	igest -	Metals I	Package	e, ICP-O	ES finis	h		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	7838411	85.0	84.6	0.5%										
AI	7838411	0.69	0.69	0.0%										
As	7838411	10	6											
Ва	7838411	55	53	3.7%										
Be	7838411	< 0.5	< 0.5	0.0%										
Bi	7838411	< 1	< 1	0.0%										
Ca	7838411	0.017	0.014	19.4%										
Cd	7838411	7.90	7.41	6.4%										
Ce	7838411	3	2											
Со	7838411	9.0	9.1	1.1%										
Cr	7838411	83.6	84.4	1.0%										
Cu	7838411	16200	16300	0.6%										
Fe	7838411	2.28	2.29	0.4%										
Ga	7838411	< 5	< 5	0.0%										
In	7838411	3	6											
К	7838411	0.34	0.34	0.0%										
La	7838411	< 2	< 2	0.0%										
Li	7838411	7	7	0.0%										
Mg	7838411	0.116	0.114	1.7%										
Mn	7838411	148	147	0.7%										
Мо	7838411	0.92	1.09	16.9%										
Na	7838411	< 0.01	< 0.01	0.0%										
Ni	7838411	8.3	7.9	4.9%										
Р	7838411	29	11											
Pb	7838411	137	143	4.3%										
Rb	7838411	11	12	8.7%										
S	7838411	1.37	1.39	1.4%										
Sb	7838411	< 1	< 1	0.0%										
Sc	7838411	5	5	0.0%										
Se	7838411	10	11	9.5%										
Sn	7838411	< 5	< 5	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 16T136584 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

Sr 7838411 <1															
Te 7838411 < 10 < 10 0.0%	Sr	7838411	< 1	< 1	0.0%										
Th 7838411 <5 <5 0.0% <t< td=""><td>Та</td><td>7838411</td><td>< 10</td><td>< 10</td><td>0.0%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Та	7838411	< 10	< 10	0.0%										
Ti 7838411 0.03 0.03 0.0% Image: constraint of the straint of the	Te	7838411	< 10	< 10	0.0%										
TI 7838411 < 5 < 5 0.0%	Th	7838411	< 5	< 5	0.0%										
No. N	Ti	7838411	0.03	0.03	0.0%										
V 7838411 49.6 48.9 1.4% Image: Constraint of the state	TI	7838411	< 5	< 5	0.0%										
W 7838411 <1 <1 0.0% <th< td=""><td>U</td><td>7838411</td><td>< 5</td><td>< 5</td><td>0.0%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	U	7838411	< 5	< 5	0.0%										
Y 7838411 <1 <1 0.0% Image: Constraint of the state of	V	7838411	49.6	48.9	1.4%										
Zn 7838411 97.1 81.5 17.5% Zr 7838411 <5	W	7838411	< 1	< 1	0.0%										
Zr 7838411 < 5 < 5 0.0% Image: Constraint of the state	Y	7838411	< 1	< 1	0.0%										
(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm) REPLICATE #1 Parameter Sample ID Original Replicate RPD Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Image: Col	Zn	7838411	97.1	81.5	17.5%										
REPLICATE #1 Replicate RPD Replicate Replicate Replicate Replicate Replicate Replicate Replicate Replicate R	Zr	7838411	< 5	< 5	0.0%										
Parameter Sample ID Original Replicate RPD					(20	02-052)	Fire As	say - Tr	ace Au	, ICP-OE	S finisl	n (ppm)			
			REPLIC	ATE #1											
	Parameter	Sample ID	Original	Replicate	RPD										
Au 7838411 3.97 4.25 6.8%	Au	7838411	3.97	4.25	6.8%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 16T136584 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				(201	-070) 4	Acid D	igest -	Metals F	Package	e, ICP-C	DES fin	ish			
	0	CRM #1 (ref	.CDN-ME-12	206)											
Parameter	Expect	Actual	Recovery	Limits											
Ag	274	284	104%	90% - 110%											
Cu	7900	7941	101%	90% - 110%											
Pb	8010	7947	99%	90% - 110%											
Zn	23800	22850	96%	90% - 110%											
				(20)2-052)	Fire As	say -	Frace Au	ICP-O	ES finis	h (ppn	n)	•	•	
		CRM #1	(ref.GS6D)												
Parameter	Expect	Actual	Recovery	Limits											
Au	6.09	6.12	100%	90% - 110%											

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-95998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION PROJECT:

AGAT WORK ORDER: 16T136584 ATTENTION TO: JACQUES HOULE

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis		-	
Ag	MIN-200-12002/12020		ICP/OES
AI	MIN-200-12002/12020		ICP/OES
As	MIN-200-12002/12020		ICP/OES
Ва	MIN-200-12002/12020		ICP/OES
Ве	MIN-200-12002/12020		ICP/OES
Bi	MIN-200-12002/12020		ICP/OES
Са	MIN-200-12002/12020		ICP/OES
Cd	MIN-200-12002/12020		ICP/OES
Се	MIN-200-12002/12020		ICP/OES
Со	MIN-200-12002/12020		ICP/OES
Cr	MIN-200-12002/12020		ICP/OES
Cu	MIN-200-12002/12020		ICP/OES
Fe	MIN-200-12002/12020		ICP/OES
Ga	MIN-200-12002/12020		ICP/OES
In	MIN-200-12002/12020		ICP/OES
к	MIN-200-12002/12020		ICP/OES
La	MIN-200-12002/12020		ICP/OES
Li	MIN-200-12002/12020		ICP/OES
Mg	MIN-200-12002/12020		ICP/OES
Mn	MIN-200-12002/12020		ICP/OES
Мо	MIN-200-12002/12020		ICP/OES
Na	MIN-200-12002/12020		ICP/OES
Ni	MIN-200-12002/12020		ICP/OES
P	MIN-200-12002/12020		ICP/OES
Pb	MIN-200-12002/12020		ICP/OES
Rb	MIN-200-12002/12020		ICP/OES
S	MIN-200-12002/12020		ICP/OES
Sb	MIN-200-12002/12020		ICP/OES
Sc	MIN-200-12002/12020		ICP/OES
Se	MIN-200-12002/12020		ICP/OES
Sn	MIN-200-12002/12020		ICP/OES
Sr	MIN-200-12002/12020		ICP/OES
Та	MIN-200-12002/12020		ICP/OES
Te	MIN-200-12002/12020		ICP/OES
Th	MIN-200-12002/12020		ICP/OES
Ti	MIN-200-12002/12020		ICP/OES
ті	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
U	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
V	MIN-200-12002/12020		ICP/OES
Ŵ	MIN-200-12002/12020		ICP/OES
Y	MIN-200-12002/12020		ICP/OES
Zn	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Zr	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Cu-OL	MIN-200-12033		AAS
		BUGBEE, E: A Textbook of Fire	
Au	MIN-200-12006	Assaying	ICP-OES

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION 6552 PEREGRINE ROAD NANAIMO, BC V9V1P8 (250) 390-3930

ATTENTION TO: JACQUES HOULE

PROJECT:

AGAT WORK ORDER: 16T144714

SOLID ANALYSIS REVIEWED BY: Brandon Wang, Spectroscopy Supervisor

DATE REPORTED: Oct 13, 2016

PAGES (INCLUDING COVER): 7

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 16T144714

PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

			(2	01-070)	4 Acid D	igest - N	letals Pa	ackage, I	CP-OES	finish					
DATE SAMPLED: Oc	t 04, 2016		[DATE RECE	EIVED: Oct	04, 2016		DATE	REPORTED): Oct 13, 20)16	SA	MPLE TYPE:	Rock	
	Analyte:	Ag	AI	As	Ва	Be	Bi	Са	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5123155 (7898872)		115	0.12	2	8	<0.5	24	<0.01	5.9	<1	3.4	4.0	>10000	2.84	<5
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5123155 (7898872)		2	0.04	<2	4	0.01	22	4.1	<0.01	2.9	<10	982	<10	1.89	<1
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ТІ	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5123155 (7898872)		<1	<10	<5	<1	<10	<10	<5	<0.01	<5	<5	6.2	<1	<1	23.7
	Analyte:	Zr	Cu-OL												
	Unit:	ppm	%												
Sample ID (AGAT ID)	RDL:	5	0.01												
E5123155 (7898872)		<5	1.67												

Comments: RDL - Reported Detection Limit

7898872 As, Sb values may be low due to digestion losses.

Certified By:

			Labo	oratories		te of Analysis DRDER: 16T144714	5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-9589 http://www.agatlabs.com
CLIENT NAME: JAG	CQUES HOUI			ORATION		ATTENTION TO: JACQU	
				(202-052) Fire	e Assay - Trace A	Au, ICP-OES finish (ppm)	
DATE SAMPLED: Oc	t 04, 2016			DATE RECEIVED	: Oct 04, 2016	DATE REPORTED: Oct 13, 2016	SAMPLE TYPE: Rock
	Analyte:	Au	Au-Grav				
	Unit:	ppm	g/t				
Sample ID (AGAT ID)	RDL:	0.001	0.05				
E5123155 (7898872)		>10	124.53				

Comments: RDL - Reported Detection Limit

Certified By:

ZR

Quality Assurance - Replicate AGAT WORK ORDER: 16T144714 PROJECT: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				(201	-070) 4	Acid D	igest -	Metals I	Package	e, ICP-O	ES finis	h		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	7898872	115	119	3.4%										
Al	7898872	0.119	0.110	7.9%										
As	7898872	2	2	0.0%										
Ва	7898872	8	8	0.0%										
Be	7898872	< 0.5	< 0.5	0.0%										
Bi	7898872	24	30	22.2%										
Са	7898872	< 0.01	< 0.01	0.0%										
Cd	7898872	5.88	5.70	3.1%										
Ce	7898872	< 1	< 1	0.0%										
Со	7898872	3.36	3.24	3.6%										
Cr	7898872	4.02	3.54	12.7%										
Cu	7898872	16700	16300	2.4%										
Fe	7898872	2.84	2.75	3.2%										
Ga	7898872	< 5	< 5	0.0%										
In	7898872	2	2	0.0%										
К	7898872	0.04	0.04	0.0%										
La	7898872	< 2	< 2	0.0%										
Li	7898872	4	4	0.0%										
Mg	7898872	0.01	0.01	0.0%										
Mn	7898872	22	22	0.0%										
Мо	7898872	4.1	3.8	7.6%										
Na	7898872	< 0.01	< 0.01	0.0%										
Ni	7898872	2.91	3.15	7.9%										
Р	7898872	< 10	< 10	0.0%										
Pb	7898872	982	984	0.2%										
Rb	7898872	< 10	< 10	0.0%										
S	7898872	1.89	1.86	1.6%										
Sb	7898872	< 1	< 1	0.0%										
Sc	7898872	< 1	< 1	0.0%										
Se	7898872	< 10	< 10	0.0%										
Sn	7898872	< 5	< 5	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 16T144714 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

Sr	7898872	< 1	< 1	0.0%										
Та	7898872	< 10	< 10	0.0%										
Te	7898872	< 10	< 10	0.0%										
Th	7898872	< 5	< 5	0.0%										
Ti	7898872	< 0.01	< 0.01	0.0%										
ТІ	7898872	< 5	< 5	0.0%										
U	7898872	< 5	< 5	0.0%										
V	7898872	6.2	6.3	1.6%										
W	7898872	< 1	< 1	0.0%										
Y	7898872	< 1	< 1	0.0%										
Zn	7898872	23.7	23.2	2.1%										
Zr	7898872	< 5	< 5	0.0%										
				(20	02-052)	Fire As	say - Tr	ace Au	, ICP-OE	S finisł	ר (ppm))		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Au	7898872	106	92.5	13.6%										
Au-Grav	7898872	124.53	124.21	0.3%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 16T144714 PROJECT:

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				(201	-070) 4	Acid D	Digest -	Metals F	ackag	e, ICP-0	OES fir	nish		
		CRM #1	(ref.GTS-2a)		CF	RM #2							
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits						
AI	6.96	6.27	90%	90% - 110%										
As	124	122	98%	90% - 110%										
Ва	186	174	93%	90% - 110%										
Ca	4.01	3.72	93%	90% - 110%										
Ce	24	23	96%	90% - 110%										
Со	22.1	21.9	99%	90% - 110%										
Cu	88.6	94.8	107%	90% - 110%										
Fe	7.56	7.33	97%	90% - 110%										
К	2.021	1.865	92%	90% - 110%										
Mg	2.412	2.251	93%	90% - 110%										
Mn	1510	1405	93%	90% - 110%										
Na	0.617	0.583	95%	90% - 110%										
Ni	77.1	73.9	96%	90% - 110%										
Р	892	830	93%	90% - 110%										
S	0.348	0.314	90%	90% - 110%										
Sr	92.8	88.7	96%	90% - 110%										
Zn	208	202	97%	90% - 110%										
	(202-052) Fire Assay - Trace A								ICP-C	ES fini	sh (pp	m)		
		CRM #1	(ref.GS6D)		CRM #2									
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits						
Au	6.09	5.99	98%	90% - 110%										
Au-Grav					14.9	14.67	98%	100% - 100%						

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION PROJECT: AGAT WORK ORDER: 16T144714 ATTENTION TO: JACQUES HOULE

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag	MIN-200-12002/12020		ICP/OES
Al	MIN-200-12002/12020		ICP/OES
As	MIN-200-12002/12020		ICP/OES
Ва	MIN-200-12002/12020		ICP/OES
Be	MIN-200-12002/12020		ICP/OES
Bi	MIN-200-12002/12020		ICP/OES
Ca	MIN-200-12002/12020		ICP/OES
Cd	MIN-200-12002/12020		ICP/OES
Ce	MIN-200-12002/12020		ICP/OES
Со	MIN-200-12002/12020		ICP/OES
Cr	MIN-200-12002/12020		ICP/OES
Cu	MIN-200-12002/12020		ICP/OES
Fe	MIN-200-12002/12020		ICP/OES
Ga	MIN-200-12002/12020		ICP/OES
In	MIN-200-12002/12020		ICP/OES
К	MIN-200-12002/12020		ICP/OES
La	MIN-200-12002/12020		ICP/OES
Li	MIN-200-12002/12020		ICP/OES
Mg	MIN-200-12002/12020		ICP/OES
Mn	MIN-200-12002/12020		ICP/OES
Мо	MIN-200-12002/12020		ICP/OES
Na	MIN-200-12002/12020		ICP/OES
Ni	MIN-200-12002/12020		ICP/OES
P	MIN-200-12002/12020		ICP/OES
Pb	MIN-200-12002/12020		ICP/OES
Rb	MIN-200-12002/12020		ICP/OES
S	MIN-200-12002/12020		ICP/OES
Sb	MIN-200-12002/12020		ICP/OES
Sc	MIN-200-12002/12020		ICP/OES
Se	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Sn	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Sr	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Та	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Те	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Th	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES
Ti Ti			
TI U	MIN-200-12002/12020		ICP/OES ICP/OES
-	MIN-200-12002/12020		
V	MIN-200-12002/12020		ICP/OES
W	MIN-200-12002/12020		ICP/OES
Y	MIN-200-12002/12020		
Zn	MIN-200-12002/12020		ICP/OES
Zr	MIN-200-12002/12020		ICP/OES
Cu-OL	MIN-200-12035/12018		ICP/OES
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES
Au-Grav			GRAVIMETRIC

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION 6552 PEREGRINE ROAD NANAIMO, BC V9V1P8 (250) 390-3930

ATTENTION TO: JACQUES HOULE

PROJECT: Prosper

AGAT WORK ORDER: 17T267073

SOLID ANALYSIS REVIEWED BY: Adel Mina, Mining Chief Chemist

DATE REPORTED: Nov 30, 2017

PAGES (INCLUDING COVER): 12

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 17T267073

PROJECT: Prosper

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

			(2	01-070) <i>•</i>	4 Acid D	igest - N	etals Pa	ckage, l	CP-OES	finish					
DATE SAMPLED: Oct	t 02, 2017		[DATE RECE	EIVED: Oct	03, 2017		DATE	REPORTED	: Nov 30, 2	017	SA	MPLE TYPE:	Other	
	Analyte:	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe	Ga
	Unit:	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	0.5	0.01	1	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01	5
E5123652 (8778587)		<0.5	9.59	<1	319	0.8	<1	3.69	1.0	23	24.1	32.7	41.0	6.03	22
E5123653 (8778588)		<0.5	2.31	6	155	<0.5	<1	0.13	<0.5	4	12.1	115	2.5	1.82	8
E5123654 (8778589)		0.5	8.82	10	16	1.0	<1	8.28	1.0	12	40.9	148	6.4	8.25	29
E5123655 (8778590)		<0.5	7.77	<1	146	0.6	<1	6.58	3.1	9	42.5	107	33.8	7.39	22
E5123656 (8778591)		141	0.15	7	8	<0.5	83	0.03	14.9	<1	6.3	127	>10000	5.49	<5
E5123657 (8778592)		1.2	9.19	<1	599	1.1	<1	3.67	1.1	28	18.1	20.8	164	5.41	22
	Analyte:	In	к	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb
	Unit:	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	2	1	0.01	1	0.5	0.01	0.5	10	1	10	0.01	1
E5123652 (8778587)		<1	2.14	11	12	2.69	1070	<0.5	2.44	10.5	970	3	144	0.05	<1
E5123653 (8778588)		<1	0.88	<2	8	0.65	152	0.7	0.04	15.0	316	<1	34	0.04	2
E5123654 (8778589)		<1	0.07	6	9	5.16	932	<0.5	2.22	86.8	592	1	<10	0.11	3
E5123655 (8778590)		<1	0.86	5	12	4.73	1220	<0.5	1.58	81.0	461	11	56	0.09	2
E5123656 (8778591)		<1	0.05	<2	5	0.02	29	2.4	0.01	11.2	<10	106	<10	4.95	2
E5123657 (8778592)		<1	1.79	12	8	1.83	1080	<0.5	3.26	6.6	992	9	100	0.11	<1
	Analyte:	Sc	Se	Sn	Sr	Та	Те	Th	Ti	ТІ	U	V	W	Y	Zn
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	10	5	1	10	10	5	0.01	5	5	0.5	1	1	0.5
E5123652 (8778587)		29	<10	17	130	16	<10	<5	0.39	<5	5	199	<1	14	88.6
E5123653 (8778588)		10	<10	5	7	<10	<10	<5	0.11	<5	<5	113	<1	3	31.8
E5123654 (8778589)		46	<10	38	581	24	<10	<5	0.90	<5	8	307	<1	22	50.6
E5123655 (8778590)		40	<10	21	255	21	<10	<5	0.47	<5	8	259	<1	10	65.0
E5123656 (8778591)		<1	10	<5	9	20	10	<5	<0.01	<5	<5	8.9	<1	<1	44.3
E5123657 (8778592)		24	<10	21	360	14	<10	<5	0.47	<5	<5	166	<1	23	73.3

Certified By:

AGAT WORK ORDER: 17T267073 PROJECT: Prosper 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

(201-070) 4 Acid Digest - Metals Package, ICP-OES finish												
DATE SAMPLED: Oc	et 02, 2017			DATE RECEIVED: Oct 03, 2017	DATE REPORTED: Nov 30, 2017	SAMPLE TYPE: Other						
	Analyte:	Zr	Cu-OL									
	Unit:	ppm	%									
Sample ID (AGAT ID)	RDL:	5	0.01									
E5123652 (8778587)		32										
E5123653 (8778588)		7										
E5123654 (8778589)		41										
E5123655 (8778590)		15										
E5123656 (8778591)		<5	2.54									
E5123657 (8778592)		57										

Comments: RDL - Reported Detection Limit

8778587-8778592 As, Sb values may be low due to digestion losses.

Certified By:

AGAT WORK ORDER: 17T267073

PROJECT: Prosper

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

DATE SAMPLED: Oc	t 02, 2017		[DATE REC	EIVED: Oc	t 03, 2017		DATE	REPORTED	D: Nov 30, 2	017	SAM	PLE TYPE	: Other	
	Analyte:	AI2O3	BaO	CaO	Cr2O3	Fe2O3	K2O	MgO	MnO	Na2O	P2O5	SiO2	TiO2	SrO	V2O5
	Unit:	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Sample ID (AGAT ID)	RDL:	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
E5123652 (8778587)		16.5	0.03	4.75	<0.01	8.78	2.30	4.22	0.14	2.98	0.20	52.4	0.98	<0.01	0.04
E5123653 (8778588)		4.44	0.02	0.18	0.03	2.70	1.06	1.11	0.02	0.13	0.06	87.9	0.26	<0.01	0.02
E5123654 (8778589)		15.1	<0.01	10.9	0.02	12.4	0.07	8.11	0.12	2.68	0.12	43.6	1.37	0.06	0.06
E5123655 (8778590)		13.6	0.01	8.77	0.03	11.2	0.94	7.62	0.16	1.92	0.10	43.5	1.26	0.02	0.06
E5123656 (8778591)		0.22	<0.01	0.03	0.03	7.00	0.05	0.03	<0.01	0.08	<0.01	86.7	0.01	<0.01	<0.01
E5123657 (8778592)		15.9	0.06	4.72	<0.01	7.86	1.93	2.88	0.14	3.95	0.21	55.9	0.94	0.03	0.04
	Analyte:	LOI	Total												
	Unit:	%	%												
Sample ID (AGAT ID)	RDL:	0.01	0.01												
E5123652 (8778587)		6.97	100												
E5123653 (8778588)		1.22	99.1												
E5123654 (8778589)		5.83	100												
E5123655 (8778590)		11.2	100												
E5123656 (8778591)		2.72	96.9												
E5123657 (8778592)		5.57	100												

Comments: RDL - Reported Detection Limit

Certified By:

AGAT WORK ORDER: 17T267073

PROJECT: Prosper

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

ATTENTION TO: JACQUES HOULE

DATE SAMPLED: Oc	t 02, 2017			DATE RECEIVED: Oct 03, 2017	DATE REPORTED: Nov 30, 2017	SAMPLE TYPE: Other
	Analyte:	Au	Au-Grav	· · ·		
	Unit:	ppm	g/t			
Sample ID (AGAT ID)	RDL:	0.001	0.5			
E5123652 (8778587)		0.012				
E5123653 (8778588)		0.050				
E5123654 (8778589)		0.002				
E5123655 (8778590)		0.017				
E5123656 (8778591)		>10	14.7			
E5123657 (8778592)		0.051				

Comments: RDL - Reported Detection Limit

Quality Assurance - Replicate AGAT WORK ORDER: 17T267073 PROJECT: Prosper

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				(201	-070) 4	Acid D	igest - I	Metals F	Package	e, ICP-O	ES finis	h		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8778587	0.5	0.5	0.0%										
AI	8778587	9.59	9.01	6.2%										
As	8778587	< 1	< 1	0.0%										
Ва	8778587	319	298	6.8%										
Be	8778587	0.8	0.8	0.0%										
Bi	8778587	< 1	< 1	0.0%										
Ca	8778587	3.69	3.47	6.1%										
Cd	8778587	1.0	1.0	0.0%										
Ce	8778587	23	23	0.0%										
Со	8778587	24.1	23.0	4.7%										
Cr	8778587	32.7	30.5	7.0%										
Cu	8778587	41.0	37.8	8.1%										
Fe	8778587	6.03	5.69	5.8%										
Ga	8778587	22	22	0.0%										
In	8778587	< 1	< 1	0.0%										
К	8778587	2.14	2.01	6.3%										
La	8778587	11	10	9.5%										
Li	8778587	12	11	8.7%										
Mg	8778587	2.69	2.52	6.5%										
Mn	8778587	1070	997	7.1%										
Мо	8778587	< 0.5	< 0.5	0.0%										
Na	8778587	2.44	2.30	5.9%										
Ni	8778587	10.5	10.0	4.9%										
Р	8778587	970	942	2.9%										
Pb	8778587	3	2											
Rb	8778587	144	143	0.7%										
S	8778587	0.05	0.05	0.0%										
Sb	8778587	< 1	2											
Sc	8778587	29	29	0.0%										
Se	8778587	< 10	< 10	0.0%										
Sn	8778587	17	14	19.4%										

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

Quality Assurance - Replicate AGAT WORK ORDER: 17T267073 PROJECT: Prosper

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

	L. 0/10000															
Sr	8778587	130	121	7.2%												
Та	8778587	16	16	0.0%												
Te	8778587	< 10	< 10	0.0%												
Th	8778587	< 5	< 5	0.0%												
Ti	8778587	0.388	0.323	18.3%												
TI	8778587	< 5	< 5	0.0%												
U	8778587	5	7													
V	8778587	199	195	2.0%												
W	8778587	< 1	< 1	0.0%												
Y	8778587	14	14	0.0%												
Zn	8778587	88.6	83.6	5.8%												
Zr	8778587	32	24	28.6%												
	-		(2	01-676)	Lithiun	n Borate	e Fusio	n - Sum	mation	of Oxid	es, XRI	- finish		•	-	-
		REPLIC	ATE #1													
Parameter	Sample ID	Original	Replicate	RPD												
AI2O3	8778587	16.5	16.6	0.4%												
BaO	8778587	0.03	0.03	20.0%												
CaO	8778587	4.75	4.75	0.1%												
Cr2O3	8778587	<0.01	<0.01	0.0%												
Fe2O3	8778587	8.78	8.79	0.0%												
K2O	8778587	2.30	2.28	1.0%												
MgO	8778587	4.22	4.23	0.2%												
MnO	8778587	0.14	0.14	1.4%												
Na2O	8778587	2.98	3.01	0.9%												
P2O5	8778587	0.20	0.19	4.6%												
SiO2	8778587	52.4	52.5	0.2%												
TiO2	8778587	0.98	0.99	0.6%												
SrO	8778587	<0.01	<0.01	0.0%												
V2O5	8778587	0.04	0.04	2.6%												
LOI	8778587	6.97	6.94	0.4%												
				(2	02-052)	Fire As	say - Tr	ace Au	, ICP-O	ES finisl	n (ppm)					
		REPLIC	ATE #1													
Parameter	Sample ID	Original	Replicate	RPD												
Au	8778587	0.012	0.006												1	1
					1	1	1	1	1	I	1	1	I	1	<u> </u>	0000 7 of 12

	A	5 (,		Labor	atories		Quality Assurance - Replicate AGAT WORK ORDER: 17T267073 PROJECT: Prosper					5623 McADAM RC MISSISSAUGA, ONTAI CANADA L42 1 TEL (905)501-9: FAX (905)501-0: http://www.agatlabs.c			
CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION							ATTENTION TO: JACQUES HOULE						mp.//www.	ayallabs.com	
Au-Grav					8778591	14.7	14.5	1.4%							

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T267073 PROJECT: Prosper

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

				(201	-070) 4	Acid D	Digest -	Metals I	Packag	e, ICP-0	DES fin	ish			
		CRM #1	(ref.GTS-2a))		CF	RM #2								
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits							
AI	6.96	7.36	106%	90% - 110%											
As	124	128	104%	90% - 110%											
Ва	186	197	106%	90% - 110%											
Ca	4.01	4.2	105%	90% - 110%											
Ce	24	23	95%	90% - 110%											
Со	22.1	22.4	101%	90% - 110%											
Cu	88.6	90	102%	90% - 110%											
Fe	7.56	7.35	97%	90% - 110%											
К	2.021	2.165	107%	90% - 110%											
Mg	2.412	2.582	107%	90% - 110%											
Mn	1510	1499	99%	90% - 110%											
Na	0.617	0.667	108%	90% - 110%											
Ni	77.1	75.4	98%	90% - 110%											
Р	892	1004	113%	90% - 110%											
S	0.348	0.409	118%	90% - 110%											
Sr	92.8	108.8	117%	90% - 110%											
Zn	208	208	100%	90% - 110%											
			((201-676)	Lithiur	n Bora	te Fusi	on - Su <mark>n</mark>	nmatio	n of Oxi	des, X	RF finisł	า		
		CRM	#1 (sy-4)			CF	RM #2								
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits							
Al2O3	20.69	20.6	100%	90% - 110%											
BaO	0.04	0.044	110%	90% - 110%											
CaO	8.05	7.95	99%	90% - 110%											
Fe2O3	6.21	6.18	100%	90% - 110%											
K2O	1.66	1.65	100%	90% - 110%											
MgO	0.54	0.537	99%	90% - 110%											
MnO	0.108	0.113	105%	90% - 110%											
Na2O	7.1	7.32	103%	90% - 110%											
P2O5	0.131	0.121	92%	90% - 110%											
SiO2	49.9	49.7	100%	90% - 110%											
TiO2	0.287	0.291	101%	90% - 110%											

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T267073 PROJECT: Prosper

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

SrO	0.1408	0.133	94%	90% - 110%										
LOI					4.56	4.22	92%	90% - 110%						
	(202-052) Fire Assay - Trace Au, ICP-OES finish (ppm)													
		CRM #1	(ref.GS6D)			CRM #2								
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits						
Au	6.09	5.7	94%	90% - 110%										
Au-Grav					14.9	14.7	98%	95% - 105%						

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

PROJECT: Prosper

AGAT WORK ORDER: 17T267073 ATTENTION TO: JACQUES HOULE

		ATTENTION TO. JACQUES HOULE							
SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Solid Analysis									
Ag	MIN-200-12002/12020		ICP/OES						
Al	MIN-200-12002/12020		ICP/OES						
As	MIN-200-12002/12020		ICP/OES						
Ва	MIN-200-12002/12020		ICP/OES						
Be	MIN-200-12002/12020		ICP/OES						
Bi	MIN-200-12002/12020		ICP/OES						
Са	MIN-200-12002/12020		ICP/OES						
Cd	MIN-200-12002/12020		ICP/OES						
Ce	MIN-200-12002/12020		ICP/OES						
Со	MIN-200-12002/12020		ICP/OES						
Cr	MIN-200-12002/12020		ICP/OES						
Cu	MIN-200-12002/12020		ICP/OES						
Fe	MIN-200-12002/12020		ICP/OES						
Ga	MIN-200-12002/12020		ICP/OES						
In	MIN-200-12002/12020		ICP/OES						
К	MIN-200-12002/12020		ICP/OES						
La	MIN-200-12002/12020		ICP/OES						
Li	MIN-200-12002/12020		ICP/OES						
Mg	MIN-200-12002/12020		ICP/OES						
Mn	MIN-200-12002/12020		ICP/OES						
Мо	MIN-200-12002/12020		ICP/OES						
Na	MIN-200-12002/12020		ICP/OES						
Ni	MIN-200-12002/12020		ICP/OES						
P	MIN-200-12002/12020		ICP/OES						
Pb	MIN-200-12002/12020		ICP/OES						
Rb	MIN-200-12002/12020		ICP/OES						
S	MIN-200-12002/12020		ICP/OES						
Sb	MIN-200-12002/12020		ICP/OES						
Sc	MIN-200-12002/12020		ICP/OES						
Se	MIN-200-12002/12020		ICP/OES						
Sn	MIN-200-12002/12020		ICP/OES						
Sr	MIN-200-12002/12020		ICP/OES						
Ta	MIN-200-12002/12020		ICP/OES						
Te	MIN-200-12002/12020		ICP/OES						
Th	MIN-200-12002/12020		ICP/OES						
Ti	MIN-200-12002/12020		ICP/OES						
TI	MIN-200-12002/12020		ICP/OES						
U	MIN-200-12002/12020		ICP/OES						
V	MIN-200-12002/12020		ICP/OES						
W	MIN-200-12002/12020		ICP/OES						
Y	MIN-200-12002/12020		ICP/OES						
Żn	MIN-200-12002/12020 MIN-200-12002/12020		ICP/OES						
Zr	MIN-200-12002/12020		ICP/OES						
Cu-OL	MIN-200-12035/12018		ICP/OES						
AI2O3	MIN-200-12033/12018 MIN-200-12027		XRF						
BaO	MIN-200-12027		XRF						
CaO	MIN-200-12027 MIN-200-12027		XRF						
Cr2O3	MIN-200-12027 MIN-200-12027		XRF						
Fe2O3	MIN-200-12027 MIN-200-12027		XRF						
	WIIN-200-12021		AIM						

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: JACQUES HOULE MINERAL EXPLORATION

PROJECT: Prosper

SAMPLING SITE:

AGAT WORK ORDER: 17T267073

ATTENTION TO: JACQUES HOULE SAMPLED BY:

AGAT S.O.P MIN-200-12027 MIN-200-12027	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
		XRF
MIN-200-12027		
		XRF
MIN-200-12027		XRF
MIN-200-12021		GRAVIMETRIC
MIN-200-12027		CALCULATION
MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES
MIN-200-12006		GRAVIMETRIC
	MIN-200-12027 MIN-200-12027 MIN-200-12027 MIN-200-12027 MIN-200-12027 MIN-200-12027 MIN-200-12027 MIN-200-12021 MIN-200-12027 MIN-200-12006	MIN-200-12027 MIN-200-12027

T: 778.452.4000 • F: 778.452.4074

www.agatlabs.com

CERTIFICATE OF ANALYSIS • COVER PAGE

Client:	JACQUES HOULE, P.ENG. MINERAL EXPLORATION CONSULTING							
Mailing Address:	6552 Peregrine Road							
	Nanaimo, BC V9V1P8							
Attention To:	Jacques Houle							
E-mail Address:	jhoule06@shaw.ca							
Contact No:	(250) 390-3930							
Fax No:								

AGAT Work Order:	17V273586
Report Version:	1
Pages (Including Cover):	4

	Report Certified By:	Andrew Garrard B.Sc., Genera
	Signature:	and lat

Results:	
Reported To:	1 jhoule06@shaw.ca
	2 bjorn@newsunro.com
	3
	4
Date Reported:	1-Nov-17

Prosper

Invoice:	
Submitted To:	jhoule06@shaw.ca
Date Submitted:	1-Nov-17

Analysis Reviewed By:	Andrew Garrard B.Sc., General Manager
Report Certified By:	Andrew Garrard B.Sc., General Manager
Signature:	and bal

Should you require any further information regarding this analysis please contact your client services representative at (778) 452 4000

<u>Notes:</u>			

Note: All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Results relate only to the items tested and all the items tested

Client Project Name:

Client Project Number:

T: 778.452.4000 • F: 778.452.4074

www.agatlabs.com

CERTIFICATE OF ANALYSIS • SAMPLE DETAILS

AGAT WORK ORDER: 17V273586 REPORT VERSION: 1

CLIENT NAME: JACQUES HOULE, P.ENG. MINERAL EXPLORATION CONSULTING PROJECT NO:

S. No.	AGAT Sample ID	Client Sample ID	Sample Type	Condition	Received Sample Wt (kg)	Dry Sample Wt. (kg)	Sample Receipt Info:	
1	8831740	E5123652	ROCK	PREPPED			Date Samples Received:	17-Oct-17
2	8831744	E5123653	ROCK	PREPPED			No. of Samples Received:	6
3	8831745	E5123654	ROCK	PREPPED			Samples Received By:	V. Ferrera
4	8831747	E5123655	ROCK	PREPPED				
5	8831748	E5123656	ROCK	PREPPED				
6	8831749	E5123657	ROCK	PREPPED			Analytical Instructions:	
7							From:	J. Houle
8							Date:	17-Oct-17
9								
10								
11							Date of Analysis:	
12							Paste pH:	24-Oct-17
13							Fizz Rating:	24-Oct-17
14							Rinse pH:	NA
15							Carbonate Carbon (CO2):	NA
16							Total Carbon:	NA
17							Total Organic Carbon:	NA
18							Total Sulphur:	20-Oct-17
19							Sulphate Sulphur:	19-Oct-17
20							Neutralization Potential (NP):	24-Oct-17
21							Siderite NP:	NA
22								
23								
			Total Sample Weigl	nt Received (kg)	. 0			

Results relate only to the items tested and all the items tested

www.agatlabs.com

CERTIFICATE OF ANALYSIS • ABA RESULTS

AGAT WORK ORDER: 17V273586 REPORT VERSION: 1 CLIENT NAME: JACQUES HOULE, P.ENG. MINERAL EXPLORATION CONSULTING PROJECT NO:

									Mod. ABA NP		
S. No.	AGAT	Client	Paste	Fizz	Total	Sulphate	Sulphide	Maximum Potential	Neutralization	Net Neutralization	Neutralization
	Sample ID	Sample ID	рН	Rating	Sulphur	Sulphur	Sulphur	Acidity (MPA)	Potential (NP)	Potential (NNP)	Potential Ratio (NPR)
Units:			pH Units		(wt %)	(wt %)	(wt %)	(kg CaCO3/tonne)	(kg CaCO3/tonne)	(kg CaCO3/tonne)	
Reported L	Detection Limit (RDL):	0.1		0.01	0.01	0.02	0.2			
1	8831740	E5123652	8.4	MODERATE	0.02	0.02	<0.02	<0.2	80.4	80.4	NA
2	8831744	E5123653	8.4	NONE	0.04	0.01	0.03	0.9	6.0	5.1	6.4
3	8831745	E5123654	8.9	MODERATE	0.02	0.02	<0.02	<0.2	60.2	60.2	NA
4	8831747	E5123655	8.5	MODERATE	0.03	0.02	<0.02	<0.2	118	118	NA
5	8831748	E5123656	6.5	NONE	4.94	0.03	4.91	153	2.3	-151	0.0
6	8831749	E5123657	8.6	MODERATE	0.08	0.02	0.06	1.9	64.8	62.9	34.6

						QUALI	TY ASSURA	ANCE			
Replicate	e Analysis:										
10	8831749	E5123657	8.6	MODERATE	0.08 0.02 0.	0.06	1.9	64.8	62.9	34.6	
10 R	8831749 R	E5123657	8.6	MODERATE	0.08	0.02	0.06	1.9	64.8	62.9	34.6
Referenc	e Material Analys	is:									
Reference	ce Material		KZK-1		KZK-1	RTS-3a			KZK-1		
Ref. Mate	erial Certified/Info	ormational Value	9.2		0.80	0			58.9		
Reference	ce Material Resul	ts	9.1		0.90	0.10			54.8		
Method E	Blank Analysis:										
Method E	Blank Results					<0.01					
Method E	Blank Spike Reco	overy (%)				92					

Notes:

pH of DI water used: 5.16

EC of DI water used: <2

R = Replicate; D = Duplicate

NA = A result is not calculated when the MPA is <0.2

Results relate only to the items tested and all the items tested

CERTIFICATE OF ANALYSIS • METHOD SUMMARY

AGAT WORK ORDER: 17V273586 REPORT VERSION: 1 CLIENT NAME: JACQUES HOULE, P.ENG. MINERAL EXPLORATION CONSULTING PROJECT NO:

Parameter	AGAT S.O.P	Literature Reference	Analytical Technique
Sample Preparation	ARD-181-18007	ASTM E877-08; MEND Report 1.20.1, Version 0 (2009)	Crusher/Pulverizer
Paste pH (Near Saturation)	ARD-181-18003	Sobek, A.A., Schuller, W.A., Freeman, J.R. and Smith, R.M.; EPA-600/2-78-054 (1978)	pH Meter
Fizz Rating	ARD-181-18000	Lawrence, R. W., Poling, G.P. and Marchant, P.B., MEND Project 1.16.1a (1989); MEND Acid Rock Drainage Prediction Manual, MEND Project 1.16.1b, Section 6.2.3 (March 1991)	Observation
Total Sulphur	INOR-181-6027	modified from ASTM E1915-11	Combustion TC
Sulphate Sulphur	ARD-181-18009;	modified from MEND Report 1.20.1, Version 0 (2009);	HCI Extraction
	INOR-181-6028	modified from SM 4500-SO4 ²⁻ E	UV-Vis Spectrophotometer
Sulphide Sulphur			Calculation
Maximum Potential Acidity			Calculation
Neutralization Potential (Modified ABA NP)	ARD-181-18000	Lawrence, R. W., Poling, G.P. and Marchant, P.B., MEND Project 1.16.1a (1989); MEND Acid Rock Drainage Prediction Manual, MEND Project 1.16.1b, Section 6.2.3 (March 1991)	Titration
Net Neutralization Potential			Calculation
Neutralization Potential Ratio			Calculation

ALCULATIONS:
Iphide Sulphur: difference between total sulphur and sulphate sulphur
uximum Potential Acidity (MPA): is based on sulphide sulphur
t Neutralization Potential (NNP): difference between NP and MPA
utralization Potential Ratio (NPR): NP/MPA

METHOD DESCRIPTIONS:

Sample Preparation

ABA: Air-dried or oven dried at 55 ± 5 °C (if samples arrive wet), crushed (if necessary), split by riffling, and pulverized to 85% passing 200 mesh (75 µm).

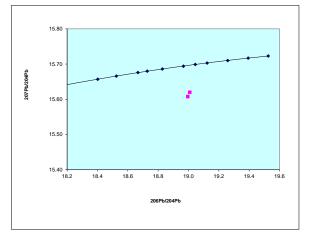
Analytical

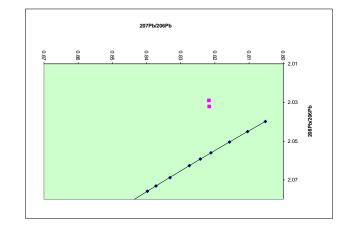
Paste pH: DDI water is added to the prepared sample to form a paste at near saturation. The volume of water added varies depending on the sample's tendency to absorb water. A pH probe is placed in the paste slurry and the pH is read directly from the meter.

Fizz Rating: One to two drops of 25% HCl is added to a sample aliquot and the degree of reaction observed and rated. The presence of CaCO₃ is indicated by a bubbling or audible "fizz" sound.

Sulphate Sulphur: Pulp samples are treated with dilute HCI and boiled for 30 minutes at ~80 °C. The digested sample is then re-constituted with DI water and filtered. Filtered extracts are then analyzed by the turbidimetric method using a UV-Vis spectrophotometer. The analytical results are back-calculated to the initial pulp sample weight and expressed in weight % Sulphate Sulphate.

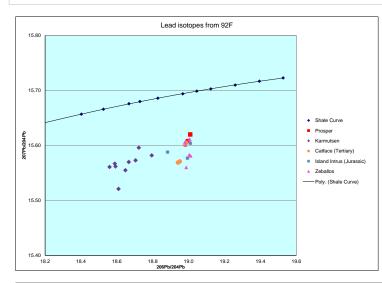
Modified ABA NP: A pulp sample is digested with a known excess of standardized HCI at room temperature for a period of 24 hours in order to determine the amount of neutralizing bases present in the sample. The residual acid solution is titrated to pH 8.3 with standardized NaOH in order to determine the amount of acid consumed by the original sample.

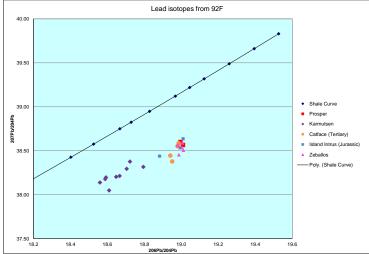

Results relate only to the items tested and all the items tested

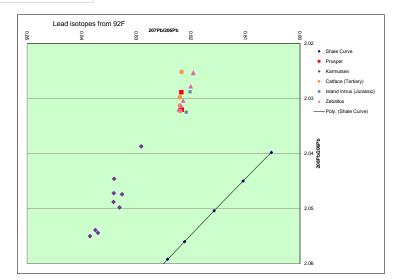

Lead Isotope Analysis of Galenas from Vancouver Island submitted by Jaques Houle

	Error	208Pb/	Error	Error	207Pb/	Error	Error	208Pb/	Error	Error	207Pb/	Error	Error	206Pb/	Mineral	Sample
ute % 2 sign	Absolute	206Pb	% 2 sigma	Absolute	206Pb	% 2 sigma	Absolute	204Pb	% 2 sigma	Absolute	204Pb	% 2 sigma	Absolute	204Pb		Number
0.0001 0.00	0.000	2.0289	0.003	0.0000	0.8217	0.01	0.0049	38.5656	0.01	0.0017	15.6201	0.01	0.0021	19.0083	cpy	Houle
		2.0320		0.0000	0.8217	0.01	0.0051						0.0024	18.9953	cpy	Houle

Analyses by Janet Gabites, Geochronology Laboratory, Department of Earth and Ocean Sciences, The University of British Columbia. Results have been normalized using a fractionation factor of 0.08% based on multiple analyses of NBS981 standard lead, and the values in Thirtwall., 2000. Errors are reported at the 2 sigma level. Mimerals analysed: cp = chalcopyrite The total procedural blank was 230pg, with composition 206Pb/204Pb 18.2, 207Pb/204Pb 15.5, 208Pb/204Pb 37.4.


Stacey Kra	ımı pb206/204 j	ob207/204	pb208/204	pb207/206 j	ob208/206	shalecurve	pb206/204	pb207/204 p	b208/204 j	ob207/206 p	b208/206
0 Ga	18.7000	15.6280	38.6300	0.8357	2.0658	0.0Ga	19.5260	15.7230	39.8300	0.80525	2.0398
0.07	18.5940	15.6230	38.5030	0.84021	2.0707	0.07	19.3940	15.7170	39.6600	0.81043	2.045
0.14	18.4860	15.6170	38.3750	0.8448	2.0758	0.14	19.2590	15.7100	39.4890	0.81573	2.0504
0.21	18.3780	15.6120	38.2460	0.84948	2.0811	0.21	19.1230	15.7030	39.3170	0.82114	2.056
0.25	18.3150	15.6080	38.1720	0.85219	2.0848	0.25	19.0450	15.6990	39.2190	0.82428	2.0592
0.29	18.2520	15.6040	38.0980	0.85493	2.0873	0.29	18.9670	15.6940	39.1200	0.82747	2.0626
0.36	18.1410	15.5980	37.9690	0.8598	2.093	0.36	18.8280	15.6860	38.9480	0.83312	2.0688
0.41	18.0610	15.5930	37.8760	0.86334	2.0971	0.41	18.7280	15.6800	38.8240	0.83724	2.0731
0.44	18.0130	15.5900	37.8200	0.86548	2.0997	0.44	18.6670	15.6760	38.7490	0.83974	2.0758
0.51	17.8990	15.5820	37.6890	0.87055	2.1057	0.51	18.5250	15.6660	38.5750	0.8457	2.0824
0.57	17.8000	15.5750	37.5770	0.87497	2.1111	0.57	18.4020	15.6570	38.4260	0.85083	2.0881
0.7	17.5840	15.5580	37.3330	0.88479	2.1232	0.7	18.1320	15.6360	38.1000	0.86236	2.1013
0.9	17.2420	15.5270	36.9530	0.90056	2.1433	0.9	17.7040	15.5980	37.5950	0.88101	2.1235
1.1	16.8890	15.4900	36.5700	0.91717	2.1654	1.1	17.2630	15.5510	37.0840	0.90083	2.1481
1.3	16.5250	15.4440	36.1830	0.93461	2.1896	1.3	16.8090	15.4940	36.5690	0.92177	2.1755
1.5	16.1490	15.3890	35.7930	0.95291	2.2163	1.5	16.3410	15.4250	36.0480	0.94399	2.2061
1.6	15.9570	15.3570	35.5960	0.96237	2.2307	1.6	16.1010	15.3850	35.7860	0.9556	2.2227
1.887	15.3910	15.2460	35.0260	0.9906	2.2757	1.89	15.391	15.246	35.026	0.99058	2.2757
2	15.1590	15.1920	34.7990	1.0022	2.2956						
2.5	14.0880	14.8700	33.7800	1.0555	2.3978	Godwin and	Sinclair 198	32			
3	12.9310	14.3430	32.7360	1.1092	2.5317						
3.4	11.9380	13.6890	31.8820	1.1467	2.6706						
3.7	11.1520	12.9980	31.2300	1.1655	2.8004						





Plots of the isotope ratios from Prosper with the Shale Curve for reference. The tick marks on the curve represent the time periods listed in the table on sheet 1. Previous analyses from the database have been added for comparison. In general the 207Pb/206Pb v. 208Pb/206Pb plot is more robust, as it does not use 204Pb peak which can have large analytical errors because it is very small .

The Shale Curve is not a good fit for the lead from Vancouver Island, but none of the published model growth curves are either. There are clusters of analyses that can be used to interpret the results from Prosper. Previous analyses from mineralization in the Karmutsen Volcanics (the purple points) are clearly less radiogenic than Prosper, which plots with analyses from Catface Intrusions and Zeballos. This is the most likely age relationship, though two of the analyses from Jurassic Island Intrusions plot nearby and therefore cannot be completely ruled out.

Appendix 3

Cost Data

	Prosper Project 2017 Cost	State	ment		
Exploration Work type	Comment	Days			Totals
1 31		, J	1	I	
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Bjorn Olsen / Shift Boss	September 18,19,20, 2017	3		\$1,200.00	
Glenn Hinch / Labourer	September 18,19,20, 2017	3	\$300.00	\$900.00	
			\$0.00	\$0.00	
				\$2,100.00	\$2,100.00
Office Studies	List Personnel (note - Office on	ly, do no	ot include		
General research	Jacques Houle, P.Eng. June-Aug.	6.2	1		
Report preparation	Jacques Houle, P.Eng. SeptDec.	3.6	\$831.60	\$2,952.18	
Other (specify)				-	
		1	1	\$8,066.52	\$8,066.52
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Rock Geochem, ABA & Whole Rock		6.0			
Other (specify)			\$0.00		
		1	, ,	\$830.55	
Transportation		No.	Rate	Subtotal	
Truck kilometers	Bjorn Olsen - Campbell R Tofino	554.00			
Boat kilometers	Bjorn Olsen - Tofino - Bedwell R.	120.00			
Trailer kilometers	Bjorn Olsen Boat Trailer - w/truck	554.00		\$138.50	
Other		001.00	\$0.20	\$100.00	
				\$1,187.22	\$1,187.22
Accommodation & Food	Rates per day	1		¢1,107.22	\$1,107.22
Hotel	2 men for 2 nights in Ucluelet	4.00	\$100.00	\$400.00	
Meals	2 men for 3 days while traveling	6.00			
	2 mention 5 days while travening	0.00	φ+0.00	\$640.00	\$640.00
Equipment Rentals		1		\$040.00	\$040.00
Field Gear (Specify)	Sat. phone, VHF radio, GPS, tools	1.00	\$10.00	\$10.00	
Other (Specify)		1.00	ψ10.00	\$10.00	
Other (Specify)				\$10.00	\$10.00
Freight, rock samples		1		\$10.00	\$10.00
Mail rocks Nanaimo to Burnaby	6 samples September 21, 2017		\$4.46	\$26.75	
	o samples september 21, 2017		\$4.40		
			\$0.00	\$26.75	\$26.75
		1		φ20.75	\$20.75
TOTAL Symomotity					¢12 0/1 04
TOTAL Expenditures					\$12,861.04
					CESSIO S
					ROVINC PR
					25107
				400	December 7, 2017
					SNGINEE
					"33 3 97 2 J?"

Appendix 4

Mineral Title Data

GATOR Consolidated Parcel Interest Report

Search Criteria: Primary PIN: 216270, Tenure History: On

	Primary Parcel										
PIN	Subdiv	RoW	Legal Description	Area (Ha)	Status	Confirmed	LT Office				
216270			DISTRICT LOT 700, BEING SEATTLE MINERAL CLAIM, CLAYOQUOT DISTRICT.	14.6	Cancelled	20-Sep-1906					

				Inte	erest Summary				
PIN	Tantalis ID	File #	Document #	Interest	Sur/Under	Effective Date	Location	Status	Area (Ha)
216270	202835			Reversion	U	18-Feb-2009		ABSOLUTE	0
216270	88858	0065551	500/975	Crown Grant	U	12-Sep-1958	CLAYOQUOT	Inactive	14.59
216270	1134			Reversion	U	07-Nov-1949		ABSOLUTE	0
216270	88859	0065551	7494/545	Crown Grant	U	03-May-1928	CLAYOQUOT	Inactive	14.58
216270	1133			Reversion	U	03-Nov-1924		ABSOLUTE	0
216270	76169	0000000	4488/208	Crown Grant	U	17-Dec-1907	CLAYOQUOT	Inactive	14.58

GATOR Consolidated Parcel Interest Report

Search Criteria: Primary PIN: 216300, Tenure History: On

			Primary Parcel				
PIN	Subdiv	RoW	Legal Description	Area (Ha)	Status	Confirmed	LT Office
216300			DISTRICT LOT 701, BEING BROOKLYN MINERAL CLAIM, CLAYOQUOT DISTRICT	7.8	Active		

	Interest Summary											
PIN	Tantalis ID	File #	Document #	Interest	Sur/Under	Effective Date	Location	Status	Area (Ha)			
216300	1137			Reversion	U	07-Nov-1949		ABSOLUTE	0			
216300	88855	0065546	7493/545	Crown Grant	U	03-May-1928	CLAYOQUOT	Inactive	7.81			
216300	1136			Reversion	U	03-Nov-1924		ABSOLUTE	0			
216300	76172	0000000	4489/208	Crown Grant	U	17-Dec-1907	CLAYOQUOT	Inactive	7.81			

GATOR Consolidated Parcel Interest Report

Search Criteria: Primary PIN: 216430, Tenure History: On

			Primary Parcel				
PIN	Subdiv	RoW	Legal Description	Area (Ha)	Status	Confirmed	LT Office
216430			DISTRICT LOT 702, BEING OMAHA MINERAL CLAIM, CLAYOQUOT DISTRICT.	13.6	Active	20-Sep-1906	

	Interest Summary											
PIN	Tantalis ID	File #	Document #	Interest	Sur/Under	Effective Date	Location	Status	Area (Ha)			
216430	1140			Reversion	U	07-Nov-1949		ABSOLUTE	0			
216430	88856	0065549	7492/545	Crown Grant	U	03-May-1928	CLAYOQUOT	Inactive	13.57			
216430	1139			Reversion	U	03-Nov-1924		ABSOLUTE	0			
216430	76180	0000000	4490/208	Crown Grant	U	17-Dec-1907	CLAYOQUOT	Inactive	13.57			

GATOR Consolidated Parcel Interest Report

Search Criteria: Primary PIN: 216560, Tenure History: On

			Primary Parcel				
PIN	Subdiv	RoW	Legal Description	Area (Ha)	Status	Confirmed	LT Office
216560			DISTRICT LOT 703, BEING NEW YORK MINERAL CLAIM, CLAYOQUOT DISTRICT	6.9	Active	20-Sep-1906	

						Interest Sur	nmary		
PIN	Tantalis ID	File #	Document #	Interest	Sur/Under	Effective Date	Location	Status	Area (Ha)
216560	922775	1412829	V922775	Licence		01-Mar-2016	CLAYOQUOT SOUND, SITE 1 BEDWELL SND, SITE 2 CYPRESS BAY	Active	20.55
216560	913964	1412829		A/Licence		16-Jan-2014	BEDWELL RIVER	Inactive	21.04
216560	857709	1412829	112856	Licence		01-Jan-2008	CLAYOQUOT SOUND, SITE 1 BEDWELL SND, SITE 2 CYPRESS BAY	Inactive	20.45
216560	50623	0000000	7491/545	Crown Grant	U	01-Jan-1928	UNKNOWN	Active	6.95
216560	1142			Reversion	U	03-Nov-1924		ABSOLUTE	0
216560	76183	0000000	4491/208	Crown Grant	U	17-Dec-1907	BEDWELL RIVER	Inactive	6.86

GATOR Consolidated Parcel Interest Report

Search Criteria: Primary PIN: 216690, Tenure History: On

			Primary Parcel				
PIN	Subdiv	RoW	Legal Description	Area (Ha)	Status	Confirmed	LT Office
216690			DISTRICT LOT 704, BEING TACOMA MINERAL CLAIM, CLAYOQUOT DISTRICT	18.8	Active	20-Sep-1906	

						Interest Sur	nmary		
PIN	Tantalis ID	File #	Document #	Interest	Sur/Under	Effective Date	Location	Status	Area (Ha)
216690	922775	1412829	V922775	Licence		01-Mar-2016	CLAYOQUOT SOUND, SITE 1 BEDWELL SND, SITE 2 CYPRESS BAY	Active	20.55
216690	913964	1412829		A/Licence		16-Jan-2014	BEDWELL RIVER	Inactive	21.04
216690	857709	1412829	112856	Licence		01-Jan-2008	CLAYOQUOT SOUND, SITE 1 BEDWELL SND, SITE 2 CYPRESS BAY	Inactive	20.45
216690	50618	0000000	7490/545	Crown Grant	U	01-Jan-1928	UNKNOWN	Active	18.8
216690	1144			Reversion	U	03-Nov-1924		ABSOLUTE	0
216690	76185	0000000	4492/208	Crown Grant	U	17-Dec-1907	BEAR RIVER	Inactive	18.8

GATOR Consolidated Parcel Interest Report

Search Criteria: Primary PIN: 216720, Tenure History: On

			Primary Parcel				
PIN	Subdiv	RoW	Legal Description	Area (Ha)	Status	Confirmed	LT Office
216720			DISTRICT LOT 705, BEING GREY MULE MINERAL CLAIM, CLAYOQUOT DISTRICT	20.5	Active	20-Sep-1906	

	Interest Summary											
PIN	Tantalis ID	File #	Document #	Interest	Sur/Under	Effective Date	Location	Status	Area (Ha)			
216720	50596	0000000	7488/545	Crown Grant	U	01-Jan-1928	UNKNOWN	Active	20.5			
216720	1145			Reversion	U	03-Nov-1924		ABSOLUTE	0			
216720	76188	0000000	4493/208	Crown Grant	U	17-Dec-1907	BEAR RIVER	Inactive	20.51			

GATOR Consolidated Parcel Interest Report

Search Criteria: Primary PIN: 216850, Tenure History: On

			Primary Parcel				
PIN	Subdiv	RoW	Legal Description	Area (Ha)	Status	Confirmed	LT Office
216850			DISTRICT LOT 706, BEING REBECCA MINERAL CLAIM, CLAYOQUOT DISTRICT	3.4	Active	20-Sep-1906	

	Interest Summary											
PIN	Tantalis ID	File #	Document #	Interest	Sur/Under	Effective Date	Location	Status	Area (Ha)			
216850	1148			Reversion	U	07-Nov-1949		ABSOLUTE	0			
216850	88857	0065550	7489/545	Crown Grant	U	03-May-1928	CLAYOQUOT	Inactive	3.42			
216850	1147			Reversion	U	03-Nov-1924		ABSOLUTE	0			
216850	76190	0000000	4494/208	Crown Grant	U	17-Dec-1907	CLAYOQUOT	Inactive	3.42			