

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

20576, 21914, 22613, 23095, 26826, 33605

Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Geochemical sampling and prospecting TOTAL COST: \$9,610.21 SIGNATURE(S): AUTHOR(S): Bernie Kreft, Jarret Kreft NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): YEAR OF WORK: 2017 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5667363 PROPERTY NAME: Wasi-Davies CLAIM NAME(S) (on which the work was done): Wasi Up, Wasi Up and no name for the other two claims COMMODITIES SOUGHT: Zn-Pb-Ag MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094c033, 094c129 MINING DIVISION: Omineca NTS/BCGS: 094c02w/094c016 LONGITUDE: 124 LATITUDE: (at centre of work) OWNER(S): 1) Bernie Kreft MAILING ADDRESS: 1 Locust Place, Whitehorse YT, Y1A 5G9 OPERATOR(S) [who paid for the work]: 1) as above MAILING ADDRESS: as above PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude): Lower Cambrian to Middle Devonian Echo Lake Group limestone and dolomite, sphalerite, galena, pyrite, hydrozincite, breccia, dolomite alteration

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 00072, 01654, 05937, 08324, 19440, 20456,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for	:)		
Soil 54 AQ200 36 eleme	ent ICP incl Au		
Silt			
Rock 15 AQ201 36 elem	ent ICP incl Au		
Other			
DRILLING total metres; number of holes, si	ize)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammet	ric		
Legal surveys (scale, area)			
Road, local access (kilometr	res)/trail		
Comment of the commen		TOTAL COOT	\$9,610.21
		TOTAL COST:	φ9,010.21

BC Geological Survey Assessment Report 37160

Assessment Report

2017 Geochemical Sampling
And
Prospecting Report
On The
Wasi-Davies Property
Tenures Worked On: 1043222, 1043230 and 1052271

Located In The Swannell Ranges Area North-Central British Columbia Omineca Mining Division On NTS: 094C02W

NTS: 094C02W BCGS: 094C016

Latitude $56^{\circ}08'$ North and Longitude $124^{\circ}54'$ West

By Bernie Kreft

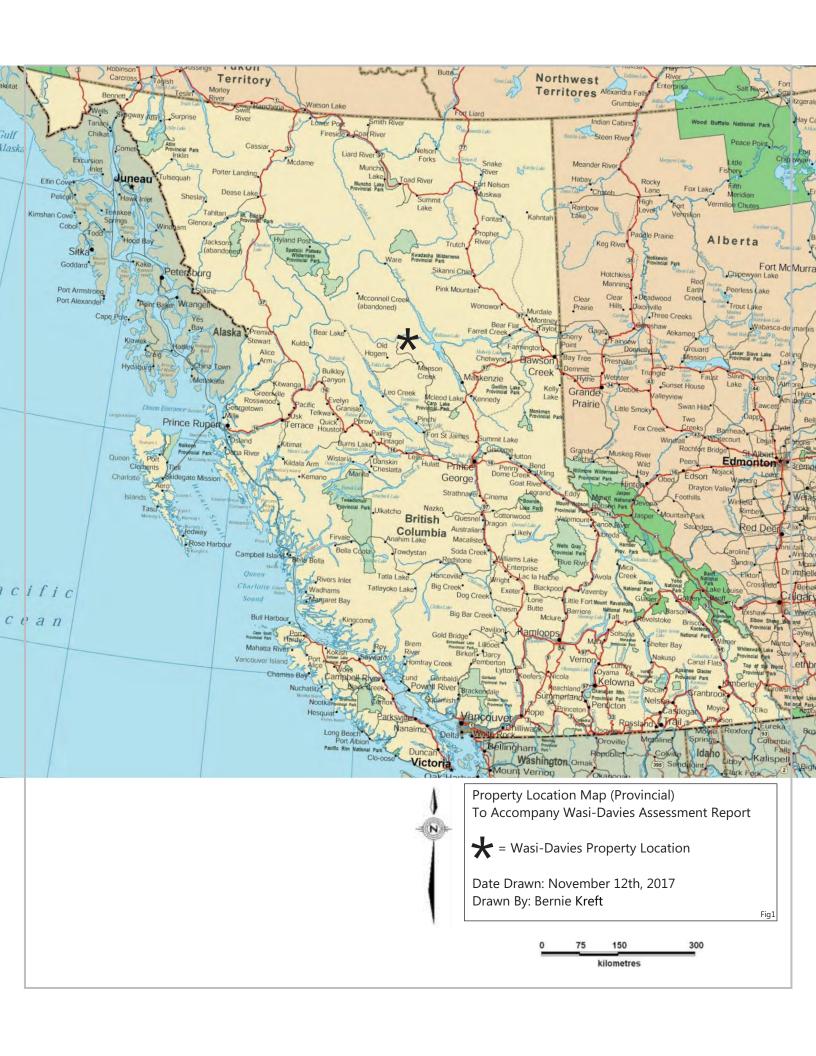
November 7th, 2017

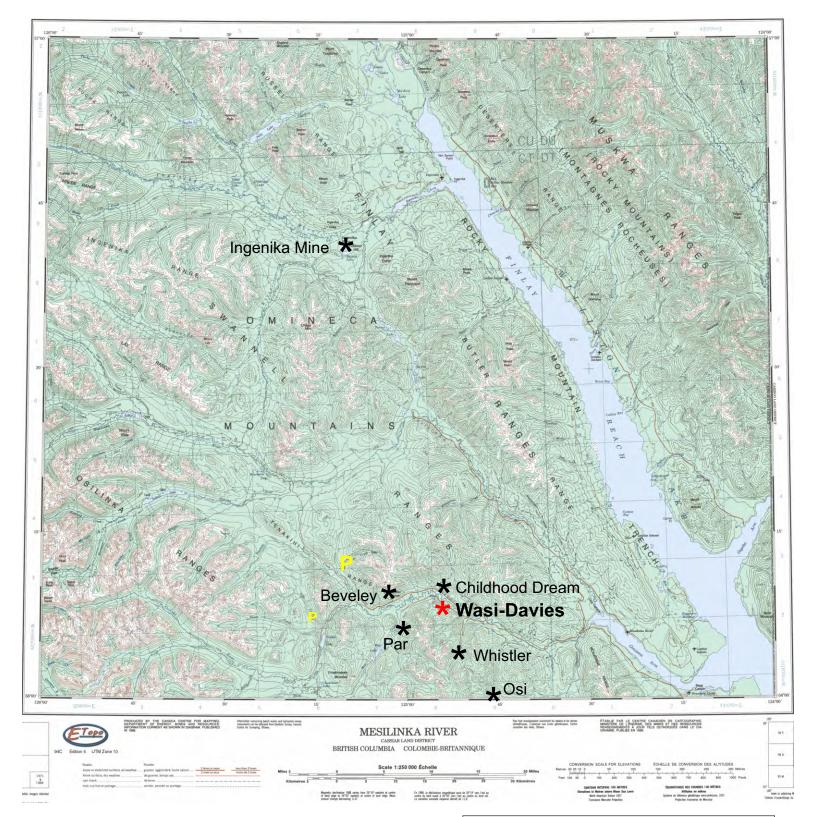
Table Of Contents

Location	Page 1
Claim Status Table	Page 1
Access	Page 1
Topography And Vegetation	Page 1
History And Previous Work	Page 1
BC Map (figure 1)	Page 2
Regional Map (figure 2)	Page 3
Claim Map (figure 3)	Page 4
Regional Geology	Page 6
Geology Map figure 4	Page 7
Property Geology	Page 8
Current Work And Results	Page 8
Conclusions	Page 9
Recommendations	Page 9
Wasi Sample Label Map figure 5	Page 10
Gordon Sample Label Map figure 6	Page 11
Wasi Zinc Value Map figure 7	Page 12
Gordon Zinc Value Map figure 8	Page 13
Statement Of Costs	Page 14
Statement Of Qualifications	Page 15
Rock Sample Table	Page 16
Soil Sample Table	Page 17
Assay Sheets	At Back

Location – The Wasi-Davies project is located on BCGS map sheet 094C016 in the Omineca Mining Division approximately 146 kilometers northwest of Mackenzie BC and 60 kilometres north-northwest of the community of Manson Creek, along the south side of the Osilinka River valley, centered at 56°08' North and 124°54' West. A total of 16 tenures totaling 540.81 hectares comprise the project with claim data found on the following table:

Title Number	Claim Name	Owner	Good To Date	Area (ha)
1043222		114661 (100%)	2021/NOV/30	18.02
1043230	WASI UP	114661 (100%)	2021/NOV/30	18.02
1051182	L	114661 (100%)	2021/NOV/30	18.03
1051184		114661 (100%)	2021/NOV/30	18.02
1051188	WASI NEW	114661 (100%)	2021/NOV/30	36.05
1051190	WASI NW	114661 (100%)	2018/APR/04	18.02
1051310		114661 (100%)	2021/NOV/30	18.03
1051311		114661 (100%)	2021/NOV/30	18.02
1051312	DAVIES	114661 (100%)	2021/NOV/30	54.08
1051315	DAVIES REMAIN	114661 (100%)	2021/NOV/30	18.02
1051317	DAVIES SOUTH	114661 (100%)	2021/NOV/30	36.06
1052238	WASI CONNECT	114661 (100%)	2020/NOV/30	18.03
1052271	WASI UP	114661 (100%)	2021/NOV/30	144.24
1052272		114661 (100%)	2021/NOV/30	18.03
1052276	GORDON CONNECT	114661 (100%)	2018/MAY/31	72.11
1052284	WASI ROAD	114661 (100%)	2020/NOV/30	18.03


Access – Access to the property was achieved by truck from the community of Ft St James to Germansen Landing and then via a series of first and second order forest service roads to the property. Alternatively access can be achieved by truck using the Germansen Landing Road, Finlay Forest Development Road and the Finlay-Osilinka FSR all of which are mainline logging roads commonly maintained for the majority of the year and which can be accessed from either Ft St James or Mackenzie. Secondary forest service roads provide access to many of the showings while the transmission line to the Kemess Mine transects the northwest edge of the property.


Topography and Vegetation – The property is located in the Swannel Ranges on the south side of the Osilinka River valley. Topography consists of rounded to U-shaped valleys with moderate to steep slopes. Valley bottoms are commonly floored with variable thicknesses of glacial till and glaciofluvial gravels which give way to rocky rubble and scree with a small amount of glacial till as elevations increase.

The main economic activity in the area is logging, with approximately 40% of the property being clear cut which has left logging slash with a light growth of shrubbery and sections of 10-15 year old re-planted pine and spruce tree forest. Original vegetation is dominated by evergreens (balsam, pine and spruce) with popular and cottonwood in low-lying areas, and undergrowth of huckleberry and alder.

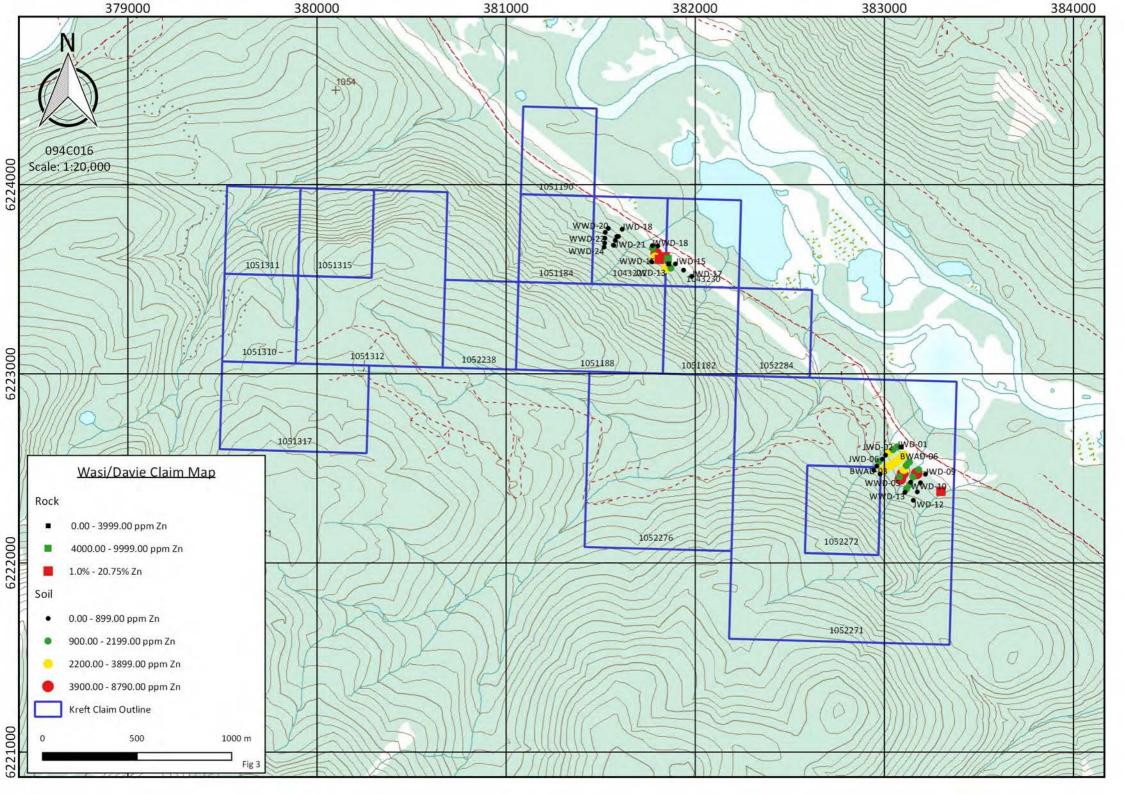
History And Previous Work – A series of assessment reports detailing work completed within, or close to, current property boundaries exist within the public domain. A brief chronological summary of these reports is as follows:

AR00071 – Kennco Exploration – 1951 – Work consisted of geological mapping and a biogeochemistry survey focusing on the Zn content of various tree types in the area of the Davies and Gordon showings. Mapping at Davies encountered low to medium grade Zn-Ag-Pb mineralization occurring as a replacement of dolomitic limestone while work at Gordon encountered similar mineralization associated

Ingenika Mine - Replacement type Ag-Pb-Zn Manto, 22,677 tonnes grading
119.9 grams per tonne silver, 9.8 per cent lead and 6.1 per cent zinc
Beveley - Irish-type carbonate-hosted Zn-Pb, 99,781 tonnes grading 1.42 %Pb, 2.24%
Zn and 36.3 g/t Ag

Par - Mississippi Valley-type Pb-Zn, 8.4% Zn, 3.5% Pb and 14.2g/t Ag over 17.2m Childhood Dream - Mississippi Valley-type Pb-Zn, 9.23% Zn and 5.62% lead over 3.0m

Whistler - Mississippi Valley-type Pb-Zn, grab samples to 9% combined Zn-Pb Osi - Mississippi Valley-type Pb-Zn, grab samples to 10.98% Pb, 41.25% Zn, 256 g/t Ag, 0.253% Cd and 0.039% Ge


Property Location Map (Regional)
To Accompany Strongbow Assessment Report

P = large scale placer deposit

P = small scale deposit or prospect

 \star = significant deposits or occurences

Date Drawn: November 12th, 2017 Drawn By: Bernie Kreft

faulted and brecciated dolomitized limestone. Biogeochemistry encountered several anomalies which appear to indicate extensions to both the Gordon and Davies showings.

AR00072 – Kennco Exploration – 1952 – Work consisted of geological mapping and geochemical sampling over the Davies and Gordon showings. Sampling at Davies returned values such as 6% Zn over 13 feet, 5.5% Zn over 6.5 feet and 1.6% Zn over 96 feet. Sampling at Gordon was hindered by widespread oxidation but did return values of up to 2.6% Zn over 40 feet. Lead and silver values typically average approximately 0.2% Pb and 1.0 oz/T Ag at both Davies and Gordon. Mapping suggests mineralization occurs within a favourable horizon generally occurs along bedding planes associated with fracture cleavage and in areas of drag folding.

AR01654 – Canex Aerial – 1968 – Work consisted of a soil sampling survey (samples analyzed for Ag only) and a Crone E.M. survey. Values of up to 56 ppm Ag occur as scattered anomalies across the grid with the highest values noted in the immediate vicinity of the Davies showing. Four significant E.M. anomalies paralleling stratigraphic trends were noted, but their lack of correlation with soil geochemical anomalies suggested that they were related to lithological differences in bedrock and not mineralization.

AR05937 – Canex Placer – 1976 – Work consisted of geological mapping and limited rock sampling. As a whole sulphide mineralization was thought to consist of widespread and patchy concentrations within dolomitic limestone breccia as well as a porous coral limestone as coral infillings. Sampling returned values of up to 20% Zn and 3.88% Pb from a grab sample at the Davies Showing.

AR08324 – Placer developments – 1980 – Work consisted of infill and extensions to the existing soil sample grid, test deep soil sampling using a Pionjar drill as well as prospecting of existing soil anomalies. Although widespread soil anomalies with greater than 1000 ppm Zn and rock sample values of up to 10.7% Zn, 3.35% Pb and 48 ppm Ag (Ag highs to 72 ppm) were located at Davies, it was felt there was only limited potential for delineating enough tons at a viable grade to satisfy Placer's investment criteria.

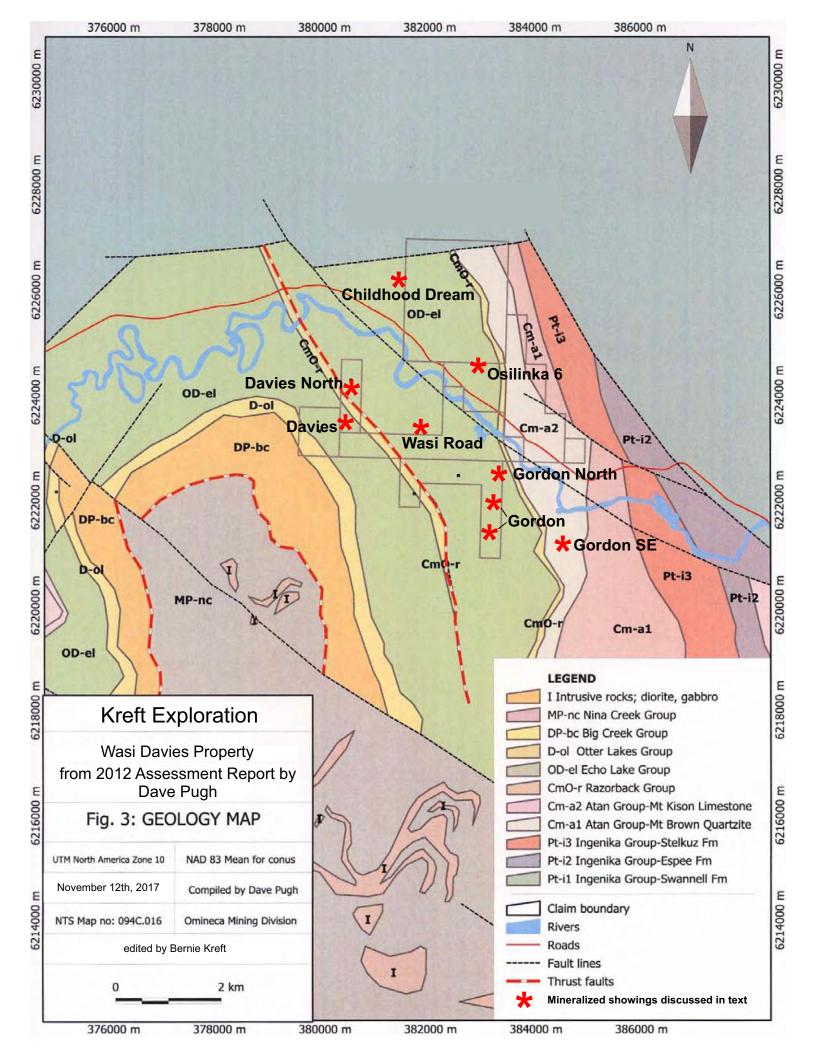
AR19440 – William Halleran – 1989 – Work consisted of staking of the Gordon and Davies showings and a limited prospecting/mapping program initiated due to significant improvements to the areas accessibility brought about by logging road construction. Results suggest that mineralization may be related to small andesitic intrusions.

AR20456 – William Halleran – 1990 – Halleran conducted a limited amount of claim staking and prospecting to cover a newly discovered carbonate hosted lead-zinc-silver showing located approximately 2.0km southeast of the Gordon Showing (Gordon SE). One of two rock samples taken returned 19,887 ppm Pb and 65.4 ppm Ag from a sample of a galena rich zone within iron oxide rich brecciated dolomite.

AR20576 – William Halleran – 1990 – Work consisted of furthering mapping within the area of the Gordon and Davies showings in an effort to better define the geological setting of these showings in light of new mapping efforts by the BCGS (Ferri and Melville). Given that the mineralization does not appear restricted to a particular age or stratigraphic unit and that the showings appear associated with andesite and pyrite breccias as well as quartz healing of carbonate breccias it was thought that the showings may be hydrothermal in nature rather than a classic Mississippi Valley type.

AR21914 – Cominco Ltd – 1991 – Cominco optioned the Halleran property and conducted a 16 man-day program of prospecting and soil sampling yielding 28 rock samples and 131 soil samples from areas of the property not covered by the 1979-80 Placer Development gridwork, with this work resulting in the discovery of two new mineralized showings and one significant Zn-Pb-Ag soil geochem anomaly. Work at the Wasi Road showing encountered mineralization within a porous dolomite or dolomite collapse breccia with rock sampling returning up to 2.0m of 15.8% Zn and 0.3% Pb and individual grab samples

with up to 35.1% Zn. Work at Davies North showing encountered crackle brecciated dolomite with red and green sphalerite analyses of which returned up to 12,800 ppm Zn, 5,422 ppm Pb and 14.7 ppm Ag. Soil sampling adjacent to a logging road approximately 650m north of the Gordon Showing returned values of up to 12,800 ppm Zn, 938 ppm Pb and 7.3 ppm Ag. Recommendations were for further sampling and prospecting with excavator trenching and drilling pending results of this work.


AR22613 – Cominco Ltd – 1992 – Cominco conducted a program of grid soil sampling (955 samples) and mapping on the Osilinka River slopes (Osilinka 6 claim) opposite the Gordon and Wasi Road showings. Anomalous values of up to 29,600 ppm Zn and 70,100 ppm Pb form a northwesterly trending anomaly paralleling the strike of underlying lithologies. Two Pb-Zn showings were found associated with the soil geochem anomaly. Recommendations were for detailed prospecting and trenching to find a source for the anomalous soil values.

AR23095 – Cominco Ltd – 1993 – Cominco followed up the showings and Pb-Zn soil geochem anomalies on the Osilinka 6 claim with detailed prospecting, mapping, trenching and 4 diamond drill holes totaling 313 metres. Geology consists of Middle Ordovician to Lower Devonian Sandpile Group (Echo Lake Group) dolomite and limestone. Mineralization, thought to be erratic and discontinuous, consists of irregular patches and disseminations of galena, smithsonite, hydrozincite and sphalerite associated with dolospar veining or pervasive dolomite flooding assaying up to 5.4% Zn, 1.9% Pb and 30.9 ppm Ag over 4.0m. Drilling, designed to test geophysical conductors located approximately 150m east of the mineralized showings, returned only weakly anomalous metal values.

AR26826 – Cross Lake Minerals – 2001 – Cross Lake Minerals completed a rock sampling and diamond drilling program over the historical Childhood Dream showing which consists of two showings previously explored by adits and located in a creek bed approximately 70m apart. Geology consists of lower Cambrian to middle Devonian limestone and dolomite. Rock sampling returned up to 10.2% Zn and 9.39% Pb over 2.0m of brecciated and dolospar veined dolomite. Two drill holes totalling 146.2m tested the showings with results of 3.16% Pb and 10.4 ppm Ag over 1.6m and 2.14% Zn over 3.0m. Holes were oriented west and northwest or approximately parallel to the regional geological strike.

AR33605 – Killdeer Minerals – 2012 – Killdeer staked numerous claims covering the majority of known showings in the area and completed a reconnaissance scale prospecting and sampling program extending from the area of Cominco's Osilinka 6 claim to Cross Lake Minerals Childhood Dream showing. This work generally confirmed the geological setting and geochemical tenor of the historically known showings and anomalies. Recommendations were for detailed structural and stratigraphic mapping to help define controls on mineralization.

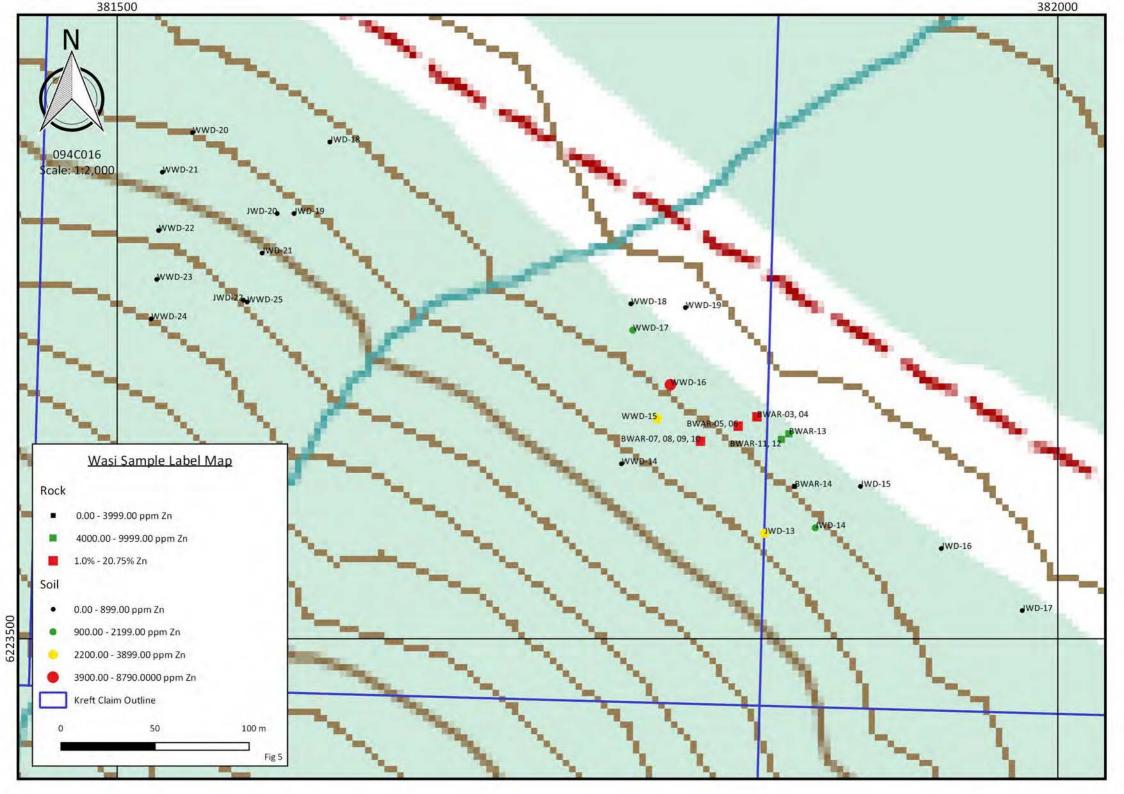
Regional Geology – The Wasi-Davies Property is located at the boundary between the Intermontane and Omineca tectono-stratigraphic belts of the Canadian Cordillera. The Western Intermontane Superterrane is represented by the Slide Mountain and Quesnel terranes. Together with the eastern autochthonous North American stratigraphy, these rocks form part of a southwest dipping homoclinal sequence. This sequence has been cut by a series of north-easterly trending normal faults. With the exception of the eastern pericratonic strata all of the rocks have been weakly metamorphosed. The Wasi-Davies Property is underlain by the pericratonic North American rocks consisting of primarily carbonates and siliciclastics of miogeoclinal origin. These rocks include the Upper Proterozoic Ingenika Group consisting of impure quartzite, schist, phyllite, limestone, feldspathic wacke and arkosic sandstone, which is overlain by the Lower Cambrian to Middle Devonian Atan, Razorback, Echo Lake and Otter Lake Groups. These Groups consist of limestone, dolomite, shale, quartzite, and argillaceous limestone. Echo Lake Group limestone and dolomite units host the majority of the zinc, lead and silver mineralization on the Wasi-Davies Property.

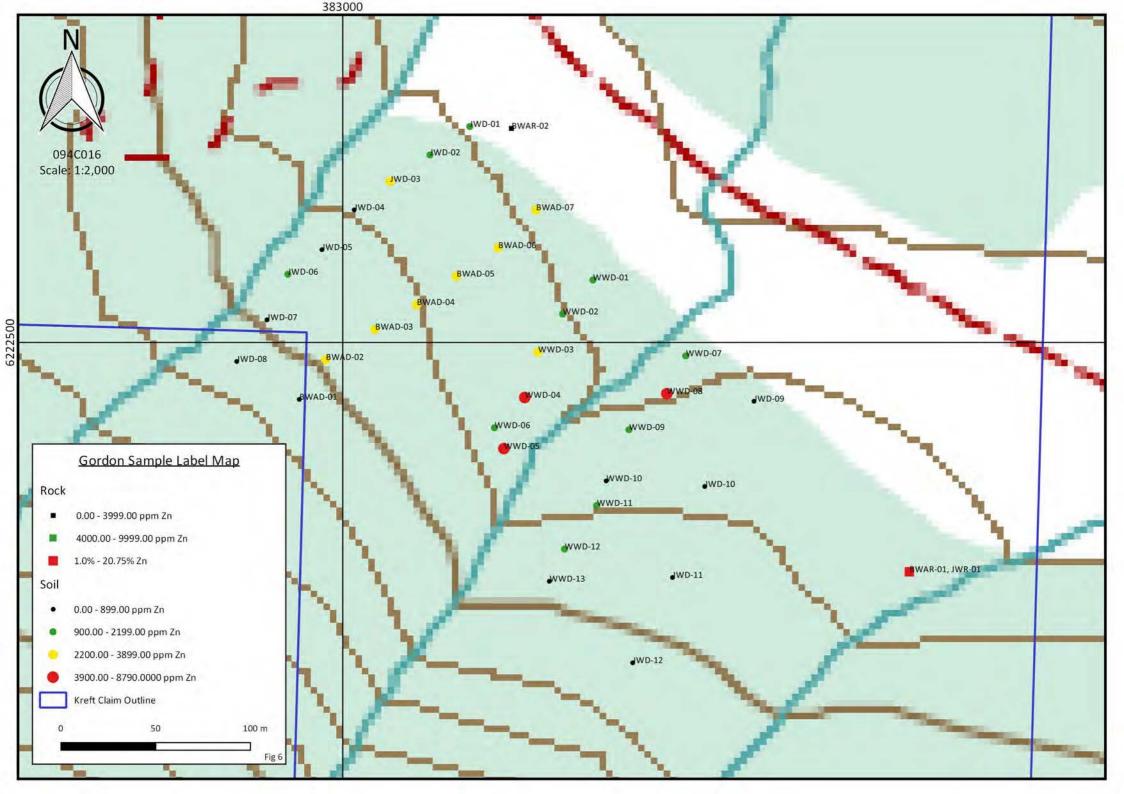
Property Geology – Geology in the area of the property consists of a Cambrian to Lower Devonian package consisting of the Razorback (Kechika and Road River group equivalents), Echo Lake (Sandpile Group equivalent) and Otter Lakes (McDame Group equivalent) groups which comprise a regional northwest-plunging anticline offset by faults and local drag folds. Sandy and argillaceous dolomite, massive limestone and minor calcareous slate comprise this Lower Paleozoic sequence. The Wasi-Davies property itself is predominantly underlain by pale-gray, thick bedded to massive, commonly brecciated limestones and dolomites of the Ordovician-Lower Devonian Echo Lake Group with some Otter Lake Group rocks reported in the Gordon Showing area.

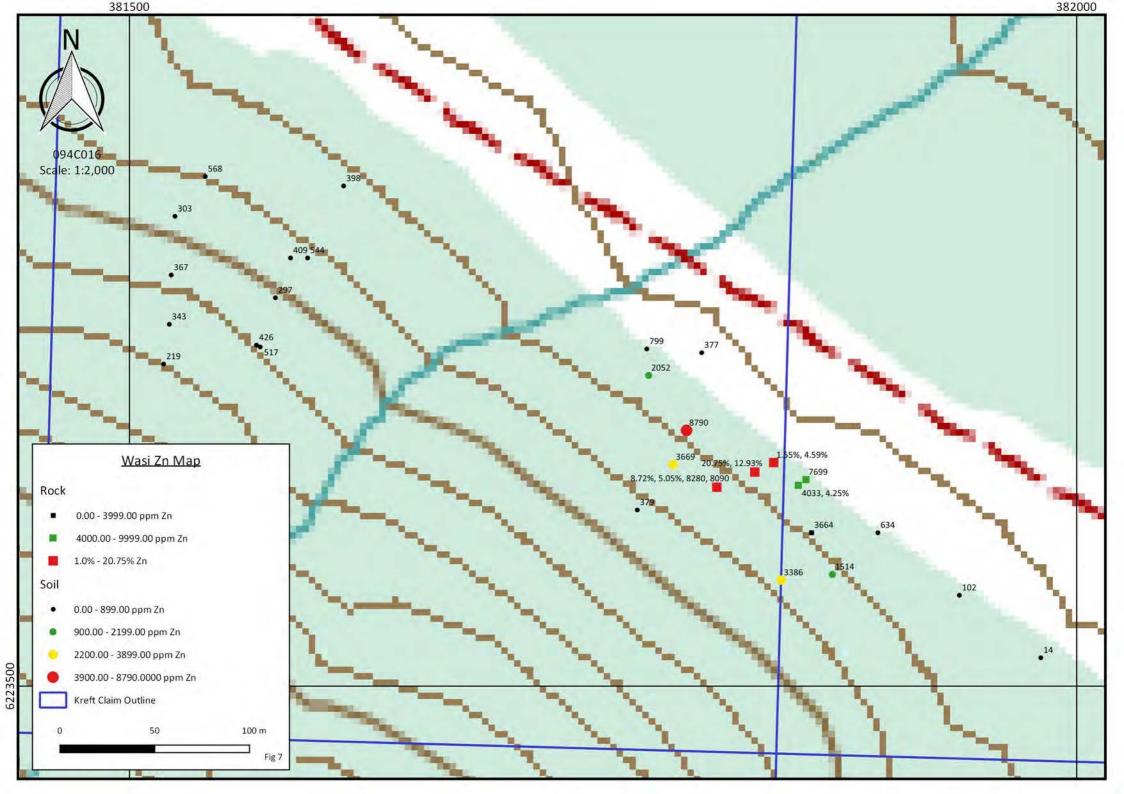
Late deformation has produced a ubiquitous crackle brecciation varying from weak to intense which has obscured or even obliterated stratification and other primary sedimentary features. The stronger the brecciation generally the more dolomitic the rock becomes due in part to healing of the fractures by white to grey dolomite. Locally the breccia has a cement of quartz. Silica flooding of breccia also takes place, but is even more restricted in distribution than is the quartz veining. The boundaries of intense brecciation are gradational and although it cannot be conclusively proven it is believed its trend is 300° to 320°.

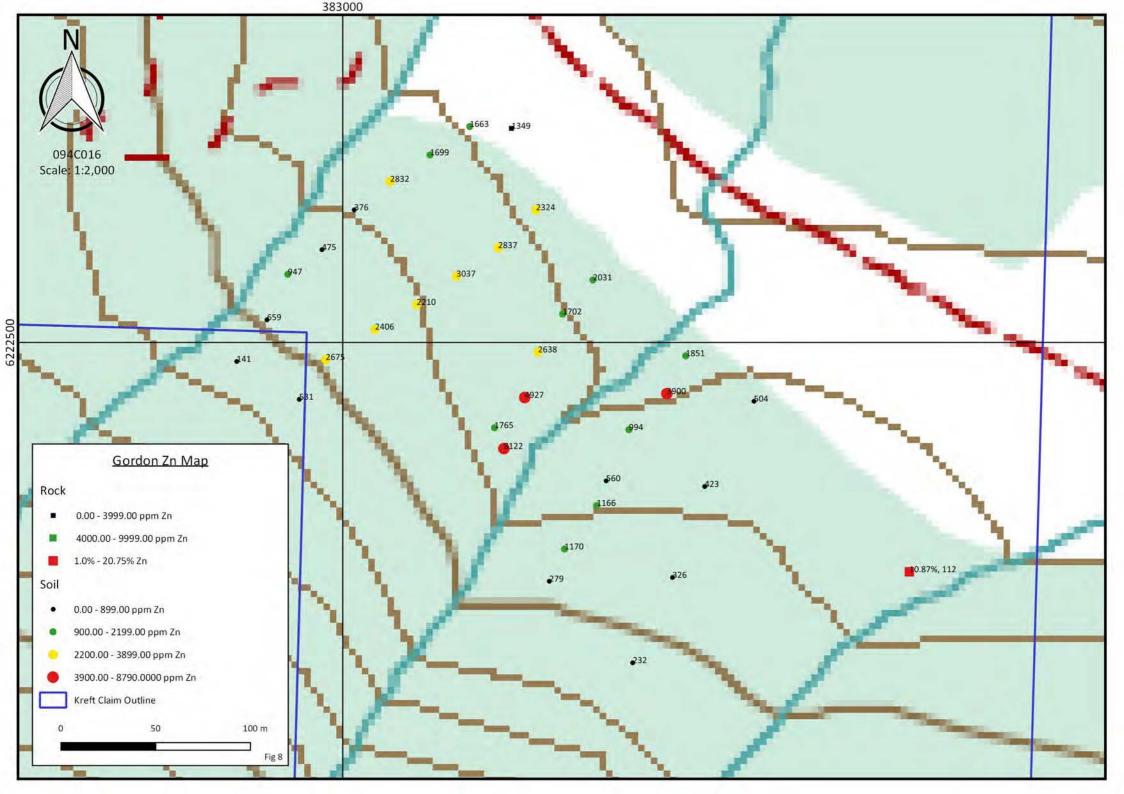
Current Work and Results – Exploration work at Wasi-Davies was conducted on June 7th and 8th 2017, and yielded 54 soil samples and 15 rock samples. Rock samples were taken from small hand dug pits and rare outcrop exposures while soil samples were taken at approximately 80cm depth using hand-held soil augers. Sample sites were marked in the field using flagging inscribed with the sample code, with rock samples placed into standard 8.5x11 poly rock sample bags and soil samples placed into standard soil sample envelopes. All samples were analyzed by ACME, with rocks prepped using PRP7-250 (pulverize and 250g split) and soils prepped using SS80 (sieve 100g to -80 mesh). Rocks were analyzed by AQ201 (36 element icp with 15 gram sample size) while soils were analyzed by AQ200 (36 element icp with 0.5g sample size). Rock samples returning overlimit zinc values were subsequently analyzed for ore grade zinc by MA404 (multi-acid digestion with ore grade finish) and for germanium by GC204 (an ICP-MS process).

Fieldwork was designed to first pass prospecting and soil sampling coverage of the Wasi Road showing and in the area of a historical Zn-Pb soil anomaly approximately 500m north of the Gordon showing (Gordon North).


Work at Gordon North consisted of soil sampling (32 samples) and limited rock sampling (3 samples) within a recent clear cut which exposed widespread variably limonitic till with a low to moderate amount of angular, and likely locally derived, material. Rock sampling returned up to 10.87% Zn, 1,808.7 ppm Pb and 51.4 ppm Ag from a till cobble of pyritic dolomite breccia with trace galena and limonite. The bedrock source for the cobble will likely remain enigmatic as it may be glacially transported or fluvial matter from the actual Gordon showing area, ultimately its presence does suggest potential for good grade bedrock material within the general area. Soil sampling helped partially define a 150m x 200m openended area of >1000 ppm Zn along with highly anomalous Pb and Ag. Peak soil values were found in sample WWD-05 which returned 1427 ppm Pb, 8,122 ppm Zn and 5.3 ppm Ag, with these values high enough to suggest potential for significant nearby mineralization.


Work at Wasi Road consisted of the collection of 22 soil samples and 12 rock samples within the immediate area of the showing. Rock sampling was designed to confirm previously reported grades of up to 2.0m of 15.8% Zn and 0.3% Pb and individual grab samples with up to 35.1% Zn. Results from 2017 fieldwork include values of up to 20.75% Zn, 1,086 ppm Pb and 31 ppm Ag from a 0.6m chip sample of calcite healed brecciated dolomite mineralized with sphalerite, trace disseminated pyrite and possible smithsonite. The 12 samples taken from the Wasi Road showing averaged approximately 5.1% Zn, 14.7 ppm Ag and 2,800 ppm Pb along with highly anomalous Cd to 566.4 ppm. Soil sampling was designed to test for immediate strike extensions to the showing. A soil sample collected approximately 20m to the


northwest of the closest Wasi Road mineralized outcrops returned 958.2 ppm Pb, 8,790 ppm Zn and 6.4 ppm Ag while soils collected approximately 55m to the southeast of the closest Wasi Road outcrops returned peak values of 6,931 ppm Pb, 3,386 ppm Zn and 7.5 ppm Ag. Combined rock and soil sampling results suggests a minimum 100m strike length, open to the northwest and southeast, for the Wasi Road showing.


Conclusions – The Wasi-Davies project contains numerous Zn-Pb-Ag soil anomalies and mineralized showings, exhibiting characteristics of both MVT as well as Manto type targets, generally hosted by carbonates of the Ordovician to Lower Devonian Echo Lake Group. Infrastructure within project environs includes numerous logging roads and the high voltage power line leading to the Kemess Copper mine. The 2017 fieldwork completed at Gordon North and at Wasi Road confirmed historical results and lead to the definition of strong trenching targets at both sites. The combination of a geological and structural setting highly prospective for Zn-Pb-Ag mineralization and excellent infrastructure such as roads and a powerline makes Wasi-Davies a project certainly worthy of further work.

Recommendations – Further work consisting of detailed prospecting and soil sampling, in an effort to define trenching targets, is recommended for all historical showings and soil anomalies. Excavator trenching is recommended for the Wasi Road showing and the Gordon North soil anomaly. Reconnaissance scale prospecting and soil sampling is recommended for all easily accessible areas of Echo Lake and McDame Group carbonates in the vicinity of the Wasi-Davies project. Pending results of this work, a diamond drilling program of the most prospective showings should be contemplated.

Statement of Costs

Wages Jarret Kreft (2.0 field day x \$325/day) June 7 th -8 th , 2017	\$650.00
Wages Joel Wynnyk (2.0 field day x \$325/day) June 7 th -8 th , 2017	\$650.00
Wages Bernie Kreft (2.0 field day x \$475/day) June 7 th -8 th , 2017	\$950.00
Acme Analytical (15 rocks, 55 soils, AQ200, AQ201, Zinc overlimits and Germanium)	\$1,681.66
Report writing, data research and compilation, map making	\$2,500.00
Food, Field Supplies, Camp (3 people x 2 days x \$150/day/person)	\$900.00
Truck Travel 1,297.5 kilometres x \$0.75/km	\$973.13
0.5 day travel - wages for 3 people (wages as above)	\$562.50
0.5 day travel - food and hotel for 3 people (\$100/day/person)	\$225.00
Sample Shipping Greyhound	<u>\$60.29</u>
Sub Total	\$9,152.58
5% Management Fee	<u>\$457.63</u>
Total	\$9,610.21

Statement Of Qualifications

Bernie Kreft

I, Bernie Kreft, directed and participated in the exploration work described herein.

I have 30 years prospecting experience in the Yukon and BC.

This report is based on fieldwork directed or conducted by the author, and includes information from various publicly available assessment reports.

This report is based on fieldwork completed during the period June 7th and 8th of the 2017 field season.

This report is based on fieldwork completed on the Wasi-Davies Project

Respectfully Submitted,

2017 Wasi Davies Rock sample Table

<u>Sample</u>	<u>Property</u>	Easting	Northing	<u>Description</u>	<u>Pb</u>	<u>Zn</u>	<u>Ag</u>	<u>Fe</u>	<u>Cd</u>	<u>Hg</u>	<u>Zn %</u>	<u>Ge</u>
BWAR-01	Wasi/Davies	383299	6222379	pyritic dolomite brx with tr galena and lim, till cobble	1808.7	>10000	51.4	5.23	113.8	36	10.87	6
BWAR-02	Wasi/Davies	383089	6222613	heavily weathered Lst with weak stkwrk, lim and	18.7	1349	0.7	13.7	19.5	0.41	N.A.	N.A.
,				0.25% diss py								
BWAR-03	Wasi/Davies	381840	6223618	brx Lst with pods frac fill and diss py-sph-gal? to 4%	6832.5	>10000	5.5	0.97	91.8	10.38	1.55	7
BWAR-04	Wasi/Davies	381840	6223618	0.6m weakly brx dolomite Lst tr diss py poss diss sphal	99.5	>10000	18.6	1.41	158.1	26.88	4.59	11
BWAR-05	Wasi/Davies	381830	6223613	0.6m brx dolomite w calcite cement, tr diss py,		>10000	31	1.47	561.7	>50.00	20.75	62
			•	sphal to 4%, smithsonite?		-		-		-		
BWAR-06	Wasi/Davies	381830	6223613	as above	924.6	>10000	34.4	1.02	566.4	>50.00	12.93	28
BWAR-07	Wasi/Davies	381820	6223611	0.8m chip sample weakly brx silicic Lst lim in part	2062.5	>10000	15	1.05	261	25.35	8.72	14
BWAR-08	Wasi/Davies	381820	6223611	rusty pod in Lst	426.8	>10000	17.2	0.84	161.9	25.32	5.05	9
BWAR-09	Wasi/Davies	381810	6223605	1.2m chip sample of red ochre pod and fresh material	7428.1	8280	6.9	3.53	44.8	5.23	N.A.	N.A.
BWAR-10	Wasi/Davies	381810	6223605	1.2m chip from small hand trench rusty brx dolomite	2033.5	8090	4.3	0.98	36.4	3.98	N.A.	N.A.
				with calcite cement								
BWAR-11	Wasi/Davies	381853	6223606	2m chip sample rusty pods and brx dolomite	1410.3	4033	1.7	9.08	8	0.49	N.A.	N.A.
BWAR-12	Wasi/Davies	381853	6223606	brx dolomite with calcite cement 0.25% diss py, sphal	394	>10000	23.1	2.21	149.4	15.01	4.25	8
BWAR-13	Wasi/Davies	381857	6223609	pure oxide, lim wad	>10000.0	7699	16.8	>40.00	18.7	0.33	N.A.	N.A.
BWAR-14	Wasi/Davies	381860	6223581	weakly brx lim dolomite with semi-massive sulphide,	802.7	3664	2.1	7.52	9.5	0.56	N.A.	N.A.
-		.	-	talus from hand pit				-		•		
JWR-01	Wasi/Davies	383299	6222379	dolomite with qtz calcite stkwrk poss purple fluorite in	41.4	112	0.2	0.32	0.3	0.05	N.A.	N.A.
		•	•	stkwrk, till cobble				-			•	
					-							

2017 Wasi Davies Soil Sample Table

Sample	Property	Easting	Northing	Description	<u>Pb</u>	<u>Zn</u>	Ag	<u>Fe</u>	<u>Cd</u>	Hg
BWAD-01	Wasi/Davies	382977	6222470	till	82.6	531	0.6	4.75	3.3	0.19
BWAD-02	Wasi/Davies	382991	6222491	till	450	2675	0.6	9.06	17.7	0.54
BWAD-03	Wasi/Davies	383017	6222507	till	259.5	2406	0.7	12.37	39.1	0.56
BWAD-04	Wasi/Davies	383039	6222520	till	254	2210	0.5	14.02	22.8	0.52
BWAD-05	Wasi/Davies	383060	6222535	till	369.7	3037	0.6	16.51	26.6	0.66
BWAD-06	Wasi/Davies	383082	6222550	till	351.9	2837	0.8	18.05	22.6	0.83
BWAD-07	Wasi/Davies	383102	6222570	till	200.9	2324	0.8	11.62	20.4	0.5
JWD-01	Wasi/Davies	383067	6222614	till	193.6	1663	0.4	9.61	20.7	0.44
JWD-02	Wasi/Davies	383046	6222599	till	150.6	1699	0.6	7.23	16	0.27
JWD-03	Wasi/Davies	383025	6222585	till	396.7	2832	0.4	9.07	20.8	0.6
JWD-04	Wasi/Davies	383006	6222570	till	148.5	376	0.9	10.67	5	0.33
JWD-05	Wasi/Davies	382989	6222549	till	173.3	475	0.7	11.8	5	0.21
JWD-06	Wasi/Davies	382971	6222536	till	248	947	0.7	9.06	9.7	0.28
JWD-07	Wasi/Davies	382960	6222512	till	31.9	659	0.3	6.59	2.7	0.15
JWD-08	Wasi/Davies	382944	6222490	till	71.8	141	0.4	4.35	1.8	0.1
JWD-09	Wasi/Davies	383217	6222469	till	167.4	504	0.7	2.69	5.2	0.16
JWD-10	Wasi/Davies	383191	6222424	till	294.3	423	0.9	2.18	2.6	0.23
JWD-11	Wasi/Davies	383174	6222376	till	348.5	326	1	3.57	2.7	0.16
JWD-12	Wasi/Davies	383153	6222331	till	117.5	232	0.4	2.39	2.1	0.12
JWD-13	Wasi/Davies	381844	6223556	soil/till	322.2	3386	7.5	7.98	14.5	1.2
JWD-14	Wasi/Davies	381871	6223559	soil/till	6931	1514	7.3	19.81	5.3	0.19
JWD-15	Wasi/Davies	381895	6223581	soil/till	76.4	634	0.3	4.24	2.6	0.02
JWD-16	Wasi/Davies	381938	6223548	soil/till	13.1	102	<0.1	3.71	0.5	0.03
JWD-17	Wasi/Davies	381981	6223515	soil/till	12.4	14	0.1	0.56	0.3	0.04
JWD-18	Wasi/Davies	381613	6223764	soil/till	48.3	398	1.5	2.35	2.2	0.18
JWD-19	Wasi/Davies	381594	6223726	soil/till	65.4	544	0.6	2.46	6.3	0.07
JWD-20	Wasi/Davies	381585	6223726	soil/till	120	409	1.1	2.91	2.4	0.32
JWD-21	Wasi/Davies	381577	6223705	soil/till	46.3	297	0.7	2.89	1.5	0.03
JWD-22	Wasi/Davies	381567	6223680	soil/till	68.5	426	2.7	2.29	3.6	0.28
WWD-01	Wasi/Davies	383132	6222533	till	291.6	2031	0.9	20.73	24	0.69
WWD-02	Wasi/Davies	383116	6222515	till	195.2	1702	0.5	8.85	23.8	0.49
WWD-03	Wasi/Davies	383103	6222495	till	237.1	2638	1	16.22	33.1	0.58
WWD-04	Wasi/Davies	383096	6222471	till	910.8	4927	4	4.52	11.2	2.13
WWD-05	Wasi/Davies	383085	6222444	till	1427	8122	5.3	6.96	17.4	3.09
WWD-06	Wasi/Davies	383080	6222455	till	369.5	1765	0.8	4.8	8.1	0.06
WWD-07	Wasi/Davies	383181	6222493	till	309	1851	0.8	4.48	7.5	0.25
WWD-08	Wasi/Davies	383171	6222473	till	592	3900	2.1	4.71	9.4	0.36
WWD-09	Wasi/Davies	383151	6222454	till	191	994	0.4	2.69	2.4	0.14
WWD-10	Wasi/Davies	383139	6222427	till	79.7	560	0.5	3.22	1.9	0.11
WWD-11	Wasi/Davies	383134	6222414	till	222.7	1166	0.7	4.95	4.7	0.18
WWD-12	Wasi/Davies	383117	6222391	till	190.3	1170	0.7	3.16	5.2	0.18
WWD-13	Wasi/Davies	383109	6222374	till	103.5	279	0.7	3.16	1.9	0.2
WWD-14	Wasi/Davies	381239	6222273	soil/till	98.8	379	0.4	2.13	2.4	0.17

<u>Sample</u>	<u>Property</u>	<u>Easting</u>	<u>Northing</u>	<u>Description</u>	<u>Pb</u>	<u>Zn</u>	Ag	<u>Fe</u>	<u>Cd</u>	Hg
WWD-15	Wasi/Davies	381787	6223617	soil/till	284.7	3669	5.5	4.67	18.7	2.88
WWD-16	Wasi/Davies	381794	6222635	soil/till	958.2	8790	6.4	10.86	40.4	2.71
WWD-17	Wasi/Davies	381774	6223664	soil/till	129.3	2052	0.2	2.85	6	0.03
WWD-18	Wasi/Davies	381773	6223678	soil/till	44.7	799	0.6	3.35	10.1	0.08
WWD-19	Wasi/Davies	381802	6223676	soil/till	41.5	377	0.5	0.92	13.8	0.05
WWD-20	Wasi/Davies	381540	6223769	soil/till	36.3	568	2	2.96	8.6	0.12
WWD-21	Wasi/Davies	381524	6223748	soil/till	27.5	303	2.5	1.68	4.3	0.13
WWD-22	Wasi/Davies	381522	6223717	soil/till	21.7	367	1.4	1.73	2.7	0.06
WWD-23	Wasi/Davies	381521	6223691	soil/till	14.5	343	2.8	1.7	3.5	0.24
WWD-24	Wasi/Davies	381518	6223670	soil/till	48.3	219	1.2	1.97	1.6	0.23
WWD-25	Wasi/Davies	381569	6223679	soil/till	116.6	517	2.2	2.85	5.2	0.21

Client: Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Submitted By: Bernie Kreft

Receiving Lab: Canada-Vancouver Received: June 15, 2017

Report Date: August 10, 2017

Page: 1 of 5

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

VAN17001166.2

CLIENT JOB INFORMATION

Project: None Given Shipment ID:

P.O. Number

Number of Samples: 98

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT Dispose of Reject After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-250	98	Crush, split and pulverize 250 g rock to 200 mesh			VAN
FA430	76	Lead Collection Fire - Assay Fusion - AAS Finish	30	Completed	VAN
EN002	76	Environmental disposal charge-Fire assay lead waste			VAN
AQ201	22	1:1:1 Aqua Regia digestion ICP-MS analysis	15	Completed	VAN
AQ300	21	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed	VAN
DRPLP	98	Warehouse handling / disposition of pulps			VAN
DRRJT	88	Warehouse handling / Disposition of reject			VAN
MA404	8	4 Acid Digest AAS Finish Vancouver	0.5	Completed	VAN
GC204	8	HF + AR digestion, analyzed by ICP & MS analysis	0.25	Completed	VAN

ADDITIONAL COMMENTS

Version 2: MA404-Zn & GC204-Ge included.

Invoice To: Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9

Canada

CC:

Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Project:

None Given

Report Date:

August 10, 2017

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page: 2

2 of 5

Part: 1 of 4

CERTIFICATE OF ANALYSIS VAN17001166.2

		Method	WGHT	FA430	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201	AQ201
		Analyte	Wgt	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca
		Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%
		MDL	0.01	0.005	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01
LKR-01	Rock		0.81		0.5	5.4	1.3	21	<0.1	0.5	0.3	42	0.66	1.4	<0.5	9.1	7	<0.1	0.6	<0.1	5	0.07
LKR-02	Rock		1.00		0.2	1.6	5.3	68	<0.1	5.5	6.8	1051	3.30	6.8	<0.5	1.2	114	<0.1	1.3	0.6	67	2.35
LKR-03	Rock		0.62		0.1	1193.3	11.5	139	0.2	8.7	14.4	861	8.22	7.7	<0.5	1.1	9	<0.1	1.1	1.3	120	0.34
LKR-04	Rock		0.93		0.3	9.6	2.2	173	<0.1	1.5	13.4	782	6.02	1.6	<0.5	1.4	10	<0.1	0.5	<0.1	96	0.45
LKR-05	Rock		0.88		0.4	19.9	5.7	89	<0.1	7.5	18.3	1995	8.20	3.6	<0.5	1.6	29	<0.1	1.1	0.5	126	2.12
LKR-06	Rock		0.73		1.3	>10000	4.1	70	1.5	4.5	14.1	1252	9.85	<0.5	4.4	1.0	26	<0.1	0.9	3.0	102	0.48
LKR-07	Rock		0.81		0.1	22.2	0.5	11	<0.1	1.2	3.2	173	0.87	1.3	<0.5	2.0	16	<0.1	0.5	<0.1	15	0.38
BWAR-01	Rock		0.98		1.3	63.5	1808.7	>10000	51.4	8.1	1.2	637	5.23	53.1	<0.5	0.2	437	113.8	36.1	<0.1	2	12.24
BWAR-02	Rock		0.66		7.9	85.1	18.7	1349	0.7	101.5	43.7	17	13.70	15.4	<0.5	1.7	24	19.5	1.5	<0.1	30	0.63
BWAR-03	Rock		0.46		0.4	4.0	6832.5	>10000	5.5	0.2	0.4	246	0.97	7.8	<0.5	<0.1	30	91.8	6.4	<0.1	3	19.91
BWAR-04	Rock		0.44		0.1	3.6	99.5	>10000	18.6	0.5	0.7	341	1.41	13.6	<0.5	0.1	34	158.1	4.8	<0.1	4	21.05
BWAR-05	Rock		0.63		0.1	30.6	1086.1	>10000	31.0	0.4	0.3	174	1.47	7.3	<0.5	<0.1	13	561.7	21.0	<0.1	<2	8.39
BWAR-06	Rock		0.61		<0.1	23.7	924.6	>10000	34.4	0.9	0.4	273	1.02	7.6	<0.5	<0.1	20	566.4	13.8	<0.1	2	14.84
BWAR-07	Rock		0.63		0.2	8.6	2062.5	>10000	15.0	<0.1	0.4	245	1.05	9.0	0.9	<0.1	27	261.0	9.0	<0.1	3	17.04
BWAR-08	Rock		0.78		0.3	6.8	426.8	>10000	17.2	0.2	0.5	260	0.84	5.8	0.7	<0.1	28	161.9	6.5	<0.1	3	18.64
BWAR-09	Rock		1.16		0.3	3.7	7428.1	8280	6.9	0.3	0.6	303	3.53	23.7	<0.5	<0.1	29	44.8	7.9	<0.1	<2	19.68
BWAR-10	Rock		1.29		0.1	3.0	2033.5	8090	4.3	<0.1	0.3	255	0.98	9.5	0.6	<0.1	34	36.4	3.2	<0.1	<2	22.25
BWAR-11	Rock		1.45		0.4	5.2	1410.3	4033	1.7	1.4	0.7	415	9.08	69.9	<0.5	<0.1	26	8.0	8.1	<0.1	3	15.91
BWAR-12	Rock		0.74		<0.1	7.5	394.0	>10000	23.1	0.2	0.5	282	2.21	7.4	1.3	<0.1	30	149.4	6.3	<0.1	2	18.76
BWAR-13	Rock		0.58		0.5	17.7	>10000	7699	16.8	3.1	0.3	416	>40	657.8	3.9	0.2	<1	18.7	69.9	<0.1	5	0.29
BWAR-14	Rock		0.96		6.6	4.0	802.7	3664	2.1	1.3	1.0	486	7.52	53.1	8.0	<0.1	22	9.5	6.9	<0.1	3	17.64
JWR-01	Rock		0.59		0.3	1.3	41.4	112	0.2	6.5	4.1	434	0.32	3.6	<0.5	0.6	74	0.3	8.0	<0.1	17	21.54
JBR-01	Rock		0.27	0.079																		
JBR-02	Rock		0.26	0.063																		
JBR-03	Rock		0.41	<0.005																		
JBR-04	Rock		0.31	0.096																		
JBR-05	Rock		0.56	0.037																		
JBR-06	Rock		0.16	0.248																		
JBR-07	Rock		0.20	0.035																		
JBR-08	Rock		0.33	0.391																		

Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Project:

None Given

Report Date:

August 10, 2017

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

JBR-06

JBR-07

JBR-08

Rock

Rock

Rock

Page: 2 of 5

Part: 2 of 4

4

1

<1

32

CERTIFICATE OF ANALYSIS VAN17001166.2 Method AQ201 AQ201 AQ201 AQ201 AQ300 AQ201 AQ300 Analyte Ρ La Cr Mg Ba Τi В ΑI Na Κ W Hg Sc ΤI s Ga Se Te Mo Cu Unit % % % ppm ppm % ppm % ppm % ppm ppm ppm ppm % ppm ppm ppm ppm ppm MDL 0.001 1 0.01 0.001 0.01 0.001 0.01 0.1 0.01 0.05 0.5 0.2 1 1 1 1 0.1 0.1 1 LKR-01 Rock 0.026 44 <1 0.02 102 0.004 <1 0.27 0.003 0.20 0.2 0.01 1.2 < 0.1 < 0.05 <1 < 0.5 < 0.2 0.069 < 0.05 LKR-02 Rock 0.121 15 11 0.73 44 2 1.67 0.006 0.20 0.3 < 0.01 5.3 < 0.1 6 < 0.5 < 0.2 LKR-03 Rock 0.156 13 1.03 912 0.067 <1 1.89 0.010 0.14 1.9 0.01 9.3 < 0.1 < 0.05 11 < 0.5 < 0.2 LKR-04 Rock 0.228 13 <1 1.38 70 0.026 <1 2.27 0.023 0.11 0.5 < 0.01 5.1 < 0.1 < 0.05 11 < 0.5 < 0.2 LKR-05 Rock 0.201 25 5 0.99 273 0.067 <1 2.04 0.010 0.25 1.1 < 0.01 9.5 < 0.1 < 0.05 10 <0.5 < 0.2 4 LKR-06 0.141 10 0.75 0.009 0.18 2.7 < 0.01 11 9.5 < 0.2 Rock 115 0.055 1 1.79 5.5 < 0.1 0.73 LKR-07 Rock 0.039 9 0.62 0.088 0.017 0.12 0.4 < 0.01 < 0.1 < 0.05 < 0.5 < 0.2 1 52 <1 0.62 1.9 5 0.028 <1 7.24 0.2 6 3.9 < 0.2 BWAR-01 Rock 1 6 < 0.001 <1 0.05 0.007 < 0.01 < 0.1 36.00 9.2 8.34 27 BWAR-02 Rock 0.315 16 0.32 223 0.003 <1 0.87 0.001 0.20 < 0.1 0.41 3.4 < 0.1 < 0.05 2 0.6 < 0.2 BWAR-03 Rock 0.003 2 <1 10.62 70 < 0.001 <1 0.02 0.009 < 0.01 < 0.1 10.38 <0.1 < 0.1 1.28 <1 1.4 < 0.2 BWAR-04 Rock 0.003 3 <1 11.31 17 < 0.001 <1 0.03 0.010 < 0.01 < 0.1 26.88 0.2 < 0.1 2.67 <1 1.3 < 0.2 BWAR-05 Rock 0.006 1 <1 4.81 8 < 0.001 <1 0.02 0.003 < 0.01 < 0.1 >50 <0.1 < 0.1 1.59 3 <0.5 < 0.2 BWAR-06 Rock 0.007 2 <1 8.27 6 < 0.001 <1 0.02 0.006 < 0.01 < 0.1 >50 0.3 < 0.1 1.31 1 4.8 < 0.2 BWAR-07 Rock 0.004 2 <1 9.38 7 < 0.001 <1 0.02 0.008 < 0.01 < 0.1 25.35 0.2 < 0.1 1.39 <1 3.2 < 0.2 2 BWAR-08 Rock 0.005 <1 9.85 5 < 0.001 <1 0.02 0.014 < 0.01 < 0.1 25.32 < 0.1 < 0.1 1.61 <1 1.8 < 0.2 BWAR-09 Rock 0.003 1 <1 10.61 7 < 0.001 <1 0.01 0.015 < 0.01 < 0.1 5.23 < 0.1 < 0.1 2.91 <1 1.6 < 0.2 BWAR-10 Rock 0.002 1 <1 11.04 4 < 0.001 <1 0.01 0.017 < 0.01 < 0.1 3.98 <0.1 < 0.1 0.64 <1 < 0.5 < 0.2 BWAR-11 Rock 0.009 3 <1 8.77 6 < 0.001 <1 0.02 0.007 < 0.01 < 0.1 0.49 0.1 < 0.1 1.37 <1 1.1 < 0.2 BWAR-12 Rock 0.013 2 <1 9.64 6 < 0.001 <1 0.02 0.006 < 0.01 < 0.1 15.01 <0.1 < 0.1 2.72 <1 1.4 < 0.2 BWAR-13 Rock 0.017 2 0.31 12 < 0.001 <1 0.02 0.001 0.01 0.33 0.5 0.1 0.36 4.8 < 0.2 1 < 0.1 <1 BWAR-14 Rock 0.004 2 <1 9.87 < 0.001 <1 0.016 < 0.01 < 0.1 0.56 < 0.1 0.64 < 0.2 60 0.03 0.2 <1 1.8 JWR-01 0.330 4 2 11.08 0.002 0.01 1.4 < 0.05 <1 < 0.5 < 0.2 Rock 130 <1 0.05 0.010 < 0.1 0.05 < 0.1 JBR-01 Rock <1 2 JBR-02 Rock JBR-03 Rock <1 JBR-04 Rock 4 JBR-05 Rock 2 80

Client: Kreft, Bernie

1 Locust Place

None Given

2 of 5

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um Project:

AQ300 MA404 GC204

Report Date: August 10, 2017

Page:

Bureau Veritas Commodities Canada Ltd.

JBR-01

JBR-02

JBR-03

JBR-04

JBR-05

JBR-06

JBR-07

JBR-08

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

Method

PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Rock

Rock

Rock

Rock

Rock

Rock

Rock

Rock

<0.001

0.001

0.002

0.001

0.002

<0.001

< 0.001

0.001

<20

<20

<20

<20

<20

<20

<20

<20

0.39

0.25

1.01

0.75

1.25

0.38

1.02

0.66

< 0.01

< 0.01

0.02

< 0.01

0.01

< 0.01

< 0.01

< 0.01

0.30

0.20

0.26

0.27

0.22

0.32

0.24

0.12

<2

<2

<2

<2

<2

<2

<2

<2

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

0.16

<1

<1

<1

<1

<1

<1

<1

<1

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

VAN17001166.2

Part: 4 of 4

	Analyte	Ti	В	ΑI	Na	K	W	S	Hg	TI	Ga	Sc	Zn	Ge
	Unit	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	MDL	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5	0.01	1
LKR-01	Rock													
LKR-02	Rock													
LKR-03	Rock													
LKR-04	Rock													
LKR-05	Rock													
LKR-06	Rock													
LKR-07	Rock													
BWAR-01	Rock												10.87	6
BWAR-02	Rock													
BWAR-03	Rock												1.55	7
BWAR-04	Rock												4.59	11
BWAR-05	Rock												20.75	62
BWAR-06	Rock												12.93	28
BWAR-07	Rock												8.72	14
BWAR-08	Rock												5.05	9
BWAR-09	Rock													
BWAR-10	Rock													
BWAR-11	Rock													
BWAR-12	Rock												4.25	8
BWAR-13	Rock													
BWAR-14	Rock													
JWR-01	Rock													

Client: Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Submitted By: Bernie Kreft

Receiving Lab: Canada-Vancouver

Received: June 15, 2017 Report Date: July 05, 2017

Page: 1 of 7

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

VAN17001167.1

CLIENT JOB INFORMATION

Project: None Given Shipment ID:

P.O. Number

Number of Samples: 163

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT-SOIL Immediate Disposal of Soil Reject

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
Dry at 60C	161	Dry at 60C			VAN
SS80	161	Dry at 60C sieve 100g to -80 mesh			VAN
FA430	106	Lead Collection Fire - Assay Fusion - AAS Finish	30	Completed	VAN
EN002	106	Environmental disposal charge-Fire assay lead waste			VAN
AQ300	30	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed	VAN
AQ200	55	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN
DRPLP	161	Warehouse handling / disposition of pulps			VAN

ADDITIONAL COMMENTS

Invoice To: Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9

Canada

CC:

Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Project:

None Given

Bureau Veritas Commodities Canada Ltd.

Report Date:

July 05, 2017

4 of 7

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

CEPTIFICATE OF ANALYSIS

PHONE (604) 253-3158

Page:

Part: 2 of 4

CERTIFICATE) F AN	NALI	SIS													VF	AIN I	r UU I	116/	. !	
	Method	AQ300	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200													
	Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	w	S	Hg	TI	Ga	Sc	Мо	Cu	Pb	Zn	Ag	Ni
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm						
	MDL	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5	0.1	0.1	0.1	1	0.1	0.1
JBD-08 Soil		36	0.78	95	0.028	<20	2.29	<0.01	0.12	<2	<0.05	<1	<5	6	<5						
JBD-09 Soil		27	0.38	101	0.117	<20	1.42	<0.01	0.06	<2	<0.05	<1	<5	<5	<5						
JBD-10 Soil		32	0.44	123	0.115	<20	1.43	<0.01	0.07	<2	<0.05	<1	<5	<5	<5						
BWAD-01 Soil																9.7	13.2	82.6	531	0.6	25.8
BWAD-02 Soil																6.8	16.9	450.0	2675	0.6	63.6
BWAD-03 Soil																7.6	20.0	259.5	2406	0.7	52.2
BWAD-04 Soil																9.2	15.0	254.0	2210	0.5	55.5
BWAD-05 Soil																10.2	19.0	369.7	3037	0.6	73.2
BWAD-06 Soil																10.6	26.2	351.9	2837	8.0	90.0
BWAD-07 Soil																7.1	16.9	200.9	2324	8.0	50.0
JWD-01 Soil																6.4	12.5	193.6	1663	0.4	44.4
JWD-02 Soil																4.5	8.5	150.6	1699	0.6	28.0
JWD-03 Soil																6.5	11.9	396.7	2832	0.4	52.1
JWD-04 Soil																8.9	17.9	148.5	376	0.9	26.1
JWD-05 Soil																7.3	7.4	173.3	475	0.7	15.0
JWD-06 Soil																8.2	17.3	248.0	947	0.7	35.7
JWD-07 Soil																3.2	37.7	31.9	659	0.3	58.5
JWD-08 Soil																4.2	11.7	71.8	141	0.4	15.0
JWD-09 Soil																5.1	23.6	167.4	504	0.7	41.1
JWD-10 Soil																3.4	23.7	294.3	423	0.9	34.7
JWD-11 Soil																2.4	12.6	348.5	326	1.0	18.0
JWD-12 Soil																1.8	9.2	117.5	232	0.4	12.1
JWD-13 Soil																2.4	7.2	322.2	3386	7.5	6.1
JWD-14 Soil																6.7	16.5	6930.6	1514	7.3	11.4
JWD-15 Soil																3.5	19.7	76.4	634	0.3	23.9
JWD-16 Soil																1.5	43.2	13.1	102	<0.1	34.0
JWD-17 Soil																0.3	4.4	12.4	14	0.1	4.8
JWD-18 Soil																16.4	31.3	48.3	398	1.5	55.0
JWD-19 Soil																12.0	16.9	65.4	544	0.6	36.3
JWD-20 Soil																13.5	28.3	120.0	409	1.1	51.9

Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Project:

None Given

Report Date:

July 05, 2017

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page: 4 of 7

Part: 3 of 4

CERTIFICATE O	F AN	IALY	SIS													VA	\N1	7001	1167	'.1	
	Method	AQ200																			
	Analyte	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ва	Ti	В	AI
	Unit	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%
	MDL	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01
JBD-08 Soil																					
JBD-09 Soil																					
JBD-10 Soil																					
BWAD-01 Soil		6.8	1774	4.75	23.9	1.3	0.5	35	3.3	3.0	<0.1	22	12.77	0.081	6	11	6.42	918	0.008	<20	0.36
BWAD-02 Soil		15.6	343	9.06	35.2	1.0	0.5	26	17.7	8.1	<0.1	53	14.31	0.179	9	17	7.31	124	0.003	<20	0.52
BWAD-03 Soil		7.9	557	12.37	49.0	8.0	0.5	30	39.1	9.8	<0.1	52	14.13	0.167	8	17	7.16	113	0.008	<20	0.48
BWAD-04 Soil		7.7	544	14.02	53.7	8.0	0.6	29	22.8	11.0	<0.1	49	13.09	0.156	8	15	6.77	104	0.008	<20	0.41
BWAD-05 Soil		7.4	598	16.51	69.8	1.0	0.7	25	26.6	14.6	<0.1	60	12.66	0.158	7	13	6.67	90	0.004	<20	0.34
BWAD-06 Soil		15.6	651	18.05	65.1	1.1	0.9	21	22.6	12.3	<0.1	52	10.01	0.210	10	17	5.29	117	0.006	<20	0.52
BWAD-07 Soil		9.3	376	11.62	40.1	<0.5	0.4	24	20.4	7.7	<0.1	35	13.11	0.158	8	15	6.92	83	0.005	<20	0.42
JWD-01 Soil		5.3	479	9.61	46.8	0.7	0.5	30	20.7	8.3	<0.1	44	14.41	0.109	6	11	7.34	89	0.006	<20	0.33
JWD-02 Soil		4.6	311	7.23	27.3	0.9	0.2	28	16.0	5.7	<0.1	35	14.03	0.130	6	11	7.40	72	0.004	<20	0.33
JWD-03 Soil		4.5	488	9.07	45.2	1.1	0.3	31	20.8	10.9	<0.1	48	15.79	0.144	5	7	8.32	64	0.002	<20	0.23
JWD-04 Soil		5.1	608	10.67	39.7	1.9	0.8	25	5.0	6.6	<0.1	33	11.50	0.106	7	13	6.29	238	0.010	<20	0.50
JWD-05 Soil		3.0	515	11.80	37.1	1.1	0.4	24	5.0	7.2	<0.1	19	14.54	0.084	4	8	7.85	149	0.005	<20	0.22
JWD-06 Soil		8.8	524	9.06	35.3	1.5	0.8	26	9.7	6.2	<0.1	46	11.42	0.119	8	16	5.58	311	0.011	<20	0.62
JWD-07 Soil		42.0	420	6.59	19.2	1.7	1.7	25	2.7	1.6	<0.1	72	1.18	0.120	18	36	0.79	690	0.035	<20	1.04
JWD-08 Soil		4.1	293	4.35	25.7	0.6	0.5	42	1.8	3.0	0.2	21	13.21	0.092	5	8	6.61	419	0.009	<20	0.36
JWD-09 Soil		9.7	537	2.69	13.0	1.8	3.3	18	5.2	2.1	0.2	74	4.16	0.106	24	20	2.44	381	0.010	<20	1.00
JWD-10 Soil		8.2	456	2.18	11.2	2.3	1.2	49	2.6	2.3	<0.1	39	10.98	0.096	13	15	5.43	392	0.010	<20	0.67
JWD-11 Soil		6.7	516	3.57	18.5	1.4	0.5	33	2.7	2.6	<0.1	32	11.90	0.089	9	13	6.05	287	0.008	<20	0.59
JWD-12 Soil		3.2	339	2.39	16.3	0.9	0.4	36	2.1	2.5	<0.1	15	14.28	0.049	4	7	7.45	143	0.006	<20	0.26
JWD-13 Soil		3.4	1921	7.98	56.3	<0.5	0.8	19	14.5	7.4	<0.1	26	11.58	0.097	14	10	5.94	136	0.014	<20	0.74
JWD-14 Soil		4.4	1055	19.81	454.4	2.1	0.7	17	5.3	33.6	<0.1	26	7.46	0.112	10	11	3.65	220	0.011	<20	0.58
JWD-15 Soil		11.0	290	4.24	23.0	1.8	2.3	19	2.6	1.7	0.1	116	0.33	0.085	9	34	0.47	167	0.056	<20	1.59
JWD-16 Soil		12.3	361	3.71	11.2	0.7	2.9	32	0.5	0.5	0.1	100	0.46	0.090	11	41	0.71	151	0.073	<20	1.70
JWD-17 Soil		1.7	713	0.56	2.5	<0.5	<0.1	25	0.3	0.3	<0.1	8	15.99	0.180	4	4	8.29	167	0.003	<20	0.31
JWD-18 Soil		8.0	284	2.35	33.8	2.3	3.4	21	2.2	5.8	0.1	162	2.62	0.196	26	18	1.54	230	0.015	<20	0.81
JWD-19 Soil		6.9	487	2.46	31.4	1.0	0.5	36	6.3	2.0	0.1	97	8.27	0.132	14	18	4.27	394	0.008	<20	0.83
JWD-20 Soil		7.8	261	2.91	34.9	0.9	3.6	26	2.4	4.2	0.1	166	3.25	0.118	18	21	1.81	257	0.013	<20	1.01

Kreft, Bernie
1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

Project:

None Given

Report Date:

July 05, 2017

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page: 4 of 7

VAN17001167.1

Part: 4 of 4

CERTIFICATE OF ANALYSIS

	Method	AQ200									
	Analyte	Na	K	W	Hg	Sc	TI	S	Ga	Se	Te
	Unit	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
JBD-08 Soil											
JBD-09 Soil											
JBD-10 Soil											
BWAD-01 Soil		0.012	0.04	<0.1	0.19	1.3	0.2	<0.05	<1	1.4	<0.2
BWAD-02 Soil		0.012	0.06	0.2	0.54	3.3	0.8	<0.05	1	0.9	<0.2
BWAD-03 Soil		0.008	0.03	0.1	0.56	2.7	0.7	<0.05	1	1.5	<0.2
BWAD-04 Soil		0.008	0.02	0.2	0.52	2.6	8.0	<0.05	1	1.2	<0.2
BWAD-05 Soil		0.008	0.02	0.2	0.66	2.5	1.3	<0.05	<1	1.8	<0.2
BWAD-06 Soil		0.008	0.03	0.2	0.83	3.3	0.9	<0.05	1	1.9	<0.2
BWAD-07 Soil		0.011	0.02	0.1	0.50	2.5	0.4	<0.05	1	1.2	<0.2
JWD-01 Soil		0.009	0.02	0.2	0.44	1.9	0.6	<0.05	<1	8.0	<0.2
JWD-02 Soil		0.010	0.02	0.1	0.27	1.6	0.3	<0.05	<1	1.3	<0.2
JWD-03 Soil		0.009	0.01	0.2	0.60	1.9	1.0	<0.05	<1	1.1	<0.2
JWD-04 Soil		0.011	0.04	0.1	0.33	1.9	0.3	<0.05	1	1.2	<0.2
JWD-05 Soil		0.014	0.02	<0.1	0.21	1.3	0.3	<0.05	<1	1.0	<0.2
JWD-06 Soil		0.010	0.06	0.1	0.28	2.6	0.4	<0.05	2	1.4	<0.2
JWD-07 Soil		0.008	0.04	0.1	0.15	6.3	0.2	<0.05	3	1.2	<0.2
JWD-08 Soil		0.011	0.05	0.1	0.10	1.3	0.2	<0.05	<1	8.0	<0.2
JWD-09 Soil		0.006	0.10	<0.1	0.16	3.5	0.3	<0.05	3	<0.5	<0.2
JWD-10 Soil		0.010	0.08	<0.1	0.23	2.4	0.3	<0.05	2	0.8	<0.2
JWD-11 Soil		0.010	0.04	<0.1	0.16	1.8	0.2	<0.05	1	<0.5	<0.2
JWD-12 Soil		0.012	0.03	<0.1	0.12	0.9	0.3	<0.05	<1	<0.5	<0.2
JWD-13 Soil		0.009	0.01	<0.1	1.20	1.6	0.1	0.20	2	<0.5	<0.2
JWD-14 Soil		0.009	0.02	0.1	0.19	1.7	0.2	0.10	1	2.0	<0.2
JWD-15 Soil		0.009	0.06	0.2	0.02	2.8	0.1	<0.05	6	<0.5	<0.2
JWD-16 Soil		0.014	0.06	0.2	0.03	4.4	<0.1	<0.05	5	<0.5	<0.2
JWD-17 Soil		0.011	<0.01	<0.1	0.04	0.3	<0.1	<0.05	<1	<0.5	<0.2
JWD-18 Soil		0.006	0.25	0.2	0.18	3.5	0.7	0.07	2	1.7	<0.2
JWD-19 Soil		0.009	0.06	0.2	0.07	1.9	0.4	<0.05	2	<0.5	<0.2
JWD-20 Soil		0.005	0.17	0.2	0.32	3.6	0.5	<0.05	3	0.8	<0.2

www.bureauveritas.com/um

Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Project:

None Given

Bureau Veritas Commodities Canada Ltd.

Report Date:

July 05, 2017

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

Page:

5 of 7

Part: 2 of 4

CERTIFICA [*]	TE O	F AN	IALY	/SIS													VA	N17	7001	167	.1	
		Method	AQ300	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200													
		Analyte	Cr	Mg	Ва	Ti	В	Al	Na	K	W	S	Hg	TI	Ga	Sc	Мо	Cu	Pb	Zn	Ag	Ni
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm						
		MDL	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5	0.1	0.1	0.1	1	0.1	0.1
JWD-21	Soil																6.8	37.2	46.3	297	0.7	48.1
JWD-22	Soil																10.8	20.8	68.5	426	2.7	43.2
JWD-23	Soil																5.3	10.8	177.8	1471	0.5	39.7
WWD-01	Soil																13.6	18.7	291.6	2031	0.9	54.8
WWD-02	Soil																6.7	11.6	195.2	1702	0.5	43.7
WWD-03	Soil																8.9	23.6	237.1	2638	1.0	67.9
WWD-04	Soil																4.8	16.2	910.8	4927	4.0	18.9
WWD-05	Soil																7.8	37.1	1426.6	8122	5.3	29.1
WWD-06	Soil																2.2	22.5	369.5	1765	8.0	24.8
WWD-07	Soil																3.8	33.2	309.0	1851	8.0	50.6
WWD-08	Soil																4.4	29.4	592.0	3900	2.1	58.1
WWD-09	Soil																1.2	7.3	191.0	994	0.4	26.2
WWD-10	Soil																2.9	46.3	79.7	560	0.5	36.8
WWD-11	Soil																2.5	14.6	222.7	1166	0.7	17.9
WWD-12	Soil																2.5	12.5	190.3	1170	0.7	20.9
WWD-13	Soil																2.6	13.0	103.5	279	0.7	17.1
WWD-14	Soil																1.8	8.6	98.8	379	0.4	13.8
WWD-15	Soil																2.6	3.1	284.7	3669	5.5	0.4
WWD-16	Soil																10.9	17.3	958.2	8790	6.4	24.2
WWD-17	Soil																5.2	6.1	129.3	2052	0.2	13.9
WWD-18	Soil																3.7	11.3	44.7	799	0.6	23.1
WWD-19	Soil																2.0	14.4	41.5	377	0.5	6.4
WWD-20	Soil																11.9	36.0	36.3	568	2.0	54.9
WWD-21	Soil																12.0	46.2	27.5	303	2.5	30.1
WWD-22	Soil																17.7	42.6	21.7	367	1.4	42.0
WWD-23	Soil																12.2	83.3	14.5	343	2.8	56.0
WWD-24	Soil																14.1	24.2	48.3	219	1.2	41.9
WWD-25	Soil																17.6	18.4	116.6	517	2.2	49.6
WCLD-01	Soil																					
WCLD-02	Soil																					

Kreft, Bernie

1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Project:

None Given

Report Date:

July 05, 2017

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

OFFICIOATE OF ANALYOIG

PHONE (604) 253-3158

Page:

5 of 7

Part: 3 of 4

CERTIFICATE C	PF AN	JALY	'SIS													VA	\N1	7001	1167	. 1	
	Method	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200
	Analyte	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ва	Ti	В	Al
	Unit	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%
	MDL	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01
JWD-21 Soil		17.4	245	2.89	17.5	0.5	7.2	7	1.5	3.0	0.2	117	0.23	0.076	27	16	0.37	139	0.022	<20	0.86
JWD-22 Soil		7.1	337	2.29	33.0	1.2	0.6	46	3.6	3.3	<0.1	75	8.54	0.149	14	15	4.36	474	0.010	<20	0.65
JWD-23 Soil		4.7	431	8.23	40.7	0.9	0.4	27	21.5	7.2	<0.1	39	12.51	0.101	6	10	6.38	87	0.006	<20	0.29
WWD-01 Soil		8.3	574	20.73	58.4	8.0	0.6	22	24.0	11.7	<0.1	47	10.12	0.204	7	17	5.56	105	0.009	<20	0.37
WWD-02 Soil		5.7	375	8.85	42.1	<0.5	0.3	31	23.8	8.3	<0.1	40	13.82	0.109	6	13	7.23	63	0.007	<20	0.32
WWD-03 Soil		16.3	606	16.22	79.4	<0.5	1.3	22	33.1	10.4	<0.1	107	5.31	0.262	15	39	3.62	192	0.126	<20	1.53
WWD-04 Soil		5.3	965	4.52	29.2	<0.5	0.5	53	11.2	10.1	<0.1	31	14.00	0.087	7	9	7.28	1434	0.003	<20	0.33
WWD-05 Soil		6.7	817	6.96	46.6	0.7	0.7	49	17.4	15.2	<0.1	32	11.44	0.108	8	10	5.75	1480	0.004	<20	0.36
WWD-06 Soil		11.9	1495	4.80	21.6	<0.5	0.6	15	8.1	2.4	<0.1	90	2.70	0.070	10	25	1.49	422	0.031	<20	1.29
WWD-07 Soil		14.0	668	4.48	16.5	2.0	3.5	16	7.5	2.3	0.3	80	1.42	0.140	24	29	0.91	621	0.012	<20	1.44
WWD-08 Soil		14.7	484	4.71	20.0	1.4	3.0	17	9.4	2.7	0.2	66	1.91	0.110	17	25	1.10	564	0.007	<20	1.30
WWD-09 Soil		10.4	450	2.69	5.3	0.7	2.6	30	2.4	0.9	<0.1	6	10.23	0.038	9	15	5.26	282	0.002	<20	0.88
WWD-10 Soil		13.4	618	3.22	18.2	1.5	1.7	29	1.9	1.8	0.1	54	3.61	0.099	12	23	2.11	415	0.031	<20	1.02
WWD-11 Soil		6.4	455	4.95	25.8	0.9	0.6	37	4.7	4.0	<0.1	24	14.40	0.070	8	10	7.54	254	0.005	<20	0.40
WWD-12 Soil		6.2	543	3.16	18.4	0.9	0.4	35	5.2	2.8	<0.1	30	13.88	0.083	8	12	6.84	316	0.007	<20	0.48
WWD-13 Soil		5.1	340	3.16	18.2	1.4	0.5	42	1.9	2.8	<0.1	27	15.25	0.067	6	10	7.64	188	0.010	<20	0.38
WWD-14 Soil		3.4	313	2.13	12.3	0.7	0.3	43	2.4	2.3	<0.1	14	16.09	0.058	4	7	7.95	194	0.006	<20	0.24
WWD-15 Soil		1.1	417	4.67	17.7	0.7	<0.1	28	18.7	4.6	<0.1	<2	20.13	0.024	4	1	10.76	311	<0.001	<20	0.05
WWD-16 Soil		8.6	807	10.86	73.9	4.9	2.3	19	40.4	10.5	0.1	84	4.21	0.077	18	20	2.35	1283	0.025	<20	1.12
WWD-17 Soil		5.5	927	2.85	9.8	0.7	1.1	16	6.0	1.3	0.1	163	7.17	0.037	8	21	3.62	357	0.027	<20	1.40
WWD-18 Soil		8.8	415	3.35	14.0	<0.5	1.5	19	10.1	0.9	0.2	75	2.33	0.083	24	17	0.85	866	0.008	<20	1.18
WWD-19 Soil		3.6	1647	0.92	2.8	<0.5	<0.1	24	13.8	0.7	<0.1	28	16.71	0.141	3	5	8.63	218	0.002	<20	0.37
WWD-20 Soil		10.3	231	2.96	20.6	1.5	5.1	15	8.6	4.8	0.2	246	0.54	0.201	25	25	0.54	250	0.033	<20	1.27
WWD-21 Soil		6.1	80	1.68	23.0	2.8	5.6	16	4.3	14.1	0.2	198	0.45	0.269	18	14	0.20	73	0.011	<20	0.56
WWD-22 Soil		3.0	67	1.73	18.3	1.6	3.7	11	2.7	7.9	0.3	321	0.36	0.257	14	19	0.31	75	0.016	<20	0.73
WWD-23 Soil		7.2	197	1.70	14.3	2.7	3.4	50	3.5	8.0	0.2	212	2.89	0.281	20	18	1.82	97	0.018	<20	0.86
WWD-24 Soil		6.6	292	1.97	28.5	1.4	0.6	53	1.6	3.3	0.1	71	9.66	0.139	12	15	4.84	238	0.010	<20	0.60
WWD-25 Soil		9.1	504	2.85	43.0	0.9	1.5	32	5.2	2.9	0.1	101	7.33	0.134	16	18	3.84	480	0.009	<20	0.85
WCLD-01 Soil																					
WCLD-02 Soil																					

Kreft, Bernie
1 Locust Place

Whitehorse Yukon Y1A 5G9 Canada

www.bureauveritas.com/um

Project: None Given

Report Date:

July 05, 2017

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page: 5 of 7

Part: 4 of 4
VAN17001167.1

CERTIFICATE OF ANALYSIS

	Method	AQ200									
	Analyte	Na	K	w	Hg	Sc	TI	s	Ga	Se	Те
	Unit	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
JWD-21 Soil		0.004	0.31	<0.1	0.03	2.6	0.3	<0.05	2	1.3	<0.2
JWD-22 Soil		0.008	0.11	0.2	0.28	1.9	0.4	<0.05	2	0.8	<0.2
JWD-23 Soil		0.009	0.02	0.2	0.45	1.7	0.5	<0.05	<1	1.2	<0.2
WWD-01 Soil		0.006	0.02	0.2	0.69	2.5	0.9	<0.05	1	1.7	<0.2
WWD-02 Soil		0.008	0.02	0.1	0.49	2.0	0.6	<0.05	<1	0.6	<0.2
WWD-03 Soil		0.006	0.41	0.2	0.58	5.8	1.0	<0.05	5	1.3	<0.2
WWD-04 Soil		0.010	0.02	<0.1	2.13	1.6	1.1	<0.05	1	<0.5	<0.2
WWD-05 Soil		0.008	0.03	0.2	3.09	2.0	1.7	0.08	2	1.1	<0.2
WWD-06 Soil		0.007	0.06	0.1	0.06	2.9	0.2	<0.05	4	<0.5	<0.2
WWD-07 Soil		0.007	0.10	0.1	0.25	4.5	0.3	<0.05	4	0.6	<0.2
WWD-08 Soil		0.005	0.07	<0.1	0.36	3.3	0.6	<0.05	3	0.9	<0.2
WWD-09 Soil		0.009	0.03	<0.1	0.14	1.6	0.3	<0.05	2	<0.5	<0.2
WWD-10 Soil		0.013	0.08	0.1	0.11	4.2	0.3	0.06	3	0.6	<0.2
WWD-11 Soil		0.012	0.03	<0.1	0.18	2.0	0.3	<0.05	1	0.6	<0.2
WWD-12 Soil		0.014	0.04	<0.1	0.18	1.5	0.3	<0.05	1	1.0	<0.2
WWD-13 Soil		0.013	0.05	<0.1	0.20	1.5	0.2	<0.05	1	0.6	<0.2
WWD-14 Soil		0.012	0.03	<0.1	0.17	1.0	0.2	<0.05	<1	0.7	<0.2
WWD-15 Soil		0.014	<0.01	<0.1	2.88	0.3	<0.1	1.15	<1	1.0	<0.2
WWD-16 Soil		0.008	0.05	0.1	2.71	3.4	0.2	0.16	3	2.0	<0.2
WWD-17 Soil		0.010	0.03	0.1	0.03	2.2	0.1	<0.05	4	<0.5	<0.2
WWD-18 Soil		0.008	0.07	0.1	0.08	2.6	0.3	<0.05	3	1.2	<0.2
WWD-19 Soil		0.016	0.01	<0.1	0.05	0.2	<0.1	80.0	<1	0.9	<0.2
WWD-20 Soil		0.005	0.26	0.2	0.12	3.4	0.4	0.06	3	1.8	<0.2
WWD-21 Soil		0.003	0.27	<0.1	0.13	1.7	0.4	<0.05	2	3.3	<0.2
WWD-22 Soil		0.004	0.30	<0.1	0.06	1.8	0.4	<0.05	3	1.7	<0.2
WWD-23 Soil		0.004	0.33	<0.1	0.24	3.3	0.4	<0.05	3	1.9	<0.2
WWD-24 Soil		0.010	0.11	0.2	0.23	1.6	0.5	<0.05	1	1.3	<0.2
WWD-25 Soil		0.009	0.10	0.3	0.21	2.8	0.5	<0.05	2	1.5	<0.2
WCLD-01 Soil											
WCLD-02 Soil											