

# ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: ASSESSMENT REPORT ON SURPRISE CREEK PROPERTY

TOTAL COST: \$150,000

AUTHOR(S): A. Walus, P.Geo

SIGNATURE(S):

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):

STATEMENT OF WORK EVENT NUMBER(S)/DATE (S): Event No: 5684992, February 08 2018

YEAR OF WORK:2017

PROPERTY NAME: Surprise Creek Property

CLAIM NAME(S) (on which work was done): 540452, 540453, 540454, 540455, 540456

COMMODITIES SOUGHT: copper, lead, zinc, silver

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 104A-188, 104A-189, 104A-191,

104A-192

MINING DIVISION: Skeena

NTS: 104-A/4 LATITUDE: 56° 12'

LONGITUDE: 129° 40' " (at centre of work)

UTM Zone:9 EASTING:460000 NORTHING: 6226000

OWNER(S): Mountain Boy Minerals

MAILING ADDRESS: 426 King Street,

PO Box 859 Stewart. BC

OPERATOR(S) [who paid for the work]: Mountain Boy Minerals

MAILING ADDRESS: Same

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**): Kuroko VMS mineralization, copper-lead-zinc silver mineralization, barite.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 27981, 29446, 32800A

| TYPE OF WORK IN<br>THIS REPORT      | EXTENT OF WORK (in metric units) | ON WHICH CLAIMS   | PROJECT COSTS<br>APPORTIONED<br>(incl. support) |
|-------------------------------------|----------------------------------|-------------------|-------------------------------------------------|
| GEOLOGICAL (scale, area)            |                                  |                   |                                                 |
| Ground, mapping                     |                                  |                   |                                                 |
| Photo interpretation                |                                  |                   |                                                 |
| GEOPHYSICAL (line-kilometres)       |                                  |                   |                                                 |
| Ground                              |                                  |                   |                                                 |
| Magnetic                            |                                  |                   |                                                 |
| Electromagnetic                     |                                  |                   |                                                 |
| Induced Polarization                |                                  |                   |                                                 |
| Radiometric                         |                                  |                   |                                                 |
| Seismic                             |                                  |                   |                                                 |
| Other                               |                                  |                   |                                                 |
| Airborne                            |                                  |                   |                                                 |
| GEOCHEMICAL (number of sample       | s analysed for)                  |                   |                                                 |
| Soil                                |                                  |                   |                                                 |
| Silt                                | 445                              | 540450            | 00.000                                          |
| Rock                                | 115                              | 540453,<br>540454 | 30,000                                          |
| Other                               |                                  | 5 40 450          |                                                 |
| DRILLING (total metres, number of I | noles, size, storage location)   | 540453            | 120000                                          |
| RELATED TECHNICAL                   |                                  |                   |                                                 |
| Sampling / Assaying                 |                                  |                   |                                                 |
| Petrographic                        |                                  |                   |                                                 |
| Mineralographic                     |                                  |                   |                                                 |
| Metallurgic                         |                                  |                   |                                                 |
| PROSPECTING (scale/area)            |                                  |                   |                                                 |
| PREPATORY / PHYSICAL                |                                  |                   |                                                 |
| Line/grid (km)                      |                                  |                   |                                                 |
| Topo/Photogrammetric (scal          | e, area)                         |                   |                                                 |
| Legal Surveys (scale, area)         |                                  |                   |                                                 |
| Road, local access (km)/trail       |                                  |                   |                                                 |
| Trench (number/metres)              |                                  |                   |                                                 |
| Other                               |                                  |                   |                                                 |
|                                     |                                  | TOTAL COST        | \$150,000                                       |

BC Geological Survey Assessment Report 37453

# ASSESSMENT REPORT ON SURPRISE CREEK PROPERTY

Located 32 km Northeast of Stewart, British Columbia in Skeena Mining Division

56 degrees 12 minutes latitude 129 degrees 40 minutes longitude N.T.S. 104A/4

**Event Number: 5684992** 

Project Period: July 01 to November 01, 2017

On Behalf of Mountain Boy Minerals

Report by
A. Walus, P.Geo.
e-mail: alexwalus@hotmail.com

**Date: March 20, 2018** 

| TABI | Page                                |    |
|------|-------------------------------------|----|
| SUM  | MARY                                | 4  |
| INTR | ODUCTION                            | 6  |
|      | Location and Access                 | 6  |
|      | Physiography and Topography         | 6  |
|      | Property Ownership                  | 9  |
| WOR  | K HISTORY                           | 10 |
| GEOI | LOGY                                | 12 |
|      | Regional Geology                    | 12 |
|      | Property Geology                    | 13 |
|      | Mineralization                      | 14 |
|      | Alteration                          | 15 |
|      | Major Mineralized Zones             | 16 |
| 2017 | ROCK SAMPLING                       | 18 |
|      | Introduction                        | 18 |
|      | Rock Sampling Results               | 18 |
| 2017 | DRILLING                            | 19 |
|      | Introduction                        | 19 |
|      | Drilling Results                    | 19 |
| CON  | CLUSIONS AND DISCUSSION             | 25 |
| RECO | OMMENDATIONS                        | 27 |
| REFE | RENCES                              | 28 |
| CERT | TIFICATE OF AUTHOR'S QUALIFICATIONS | 29 |
| STAT | EMENT OF EXPENDITURES               | 30 |

# **LIST OF FIGURES**

|                   |                                                         | <u>Page</u> |
|-------------------|---------------------------------------------------------|-------------|
| Figure 1          | Location Map                                            | 7           |
| Figure 2          | Claims Map                                              | 8           |
| Figure 3          | Ataman Zone Map                                         | 17          |
| Figure 4          | Location of 2017 Work                                   | 20          |
| Figure 4A, 4B, 4C | Rock Sample Locations and<br>Au, Ag, Cu, Pb, Zn Results | 21, 22, 23  |
| Figure 5          | Cross section - Holes SC17-03 and                       | 24          |
|                   | SC17-04, Geology and Geochemistry                       |             |
|                   | LIST OF APPENDICES                                      | <u>Page</u> |
| APPENDIX I        | Rock Samples Description                                | 31          |
| APPENDIX II       | Drill Logs                                              | 39          |
| APPENDIX III      | Geochemical Results                                     | 46          |
| APPENDIX IV       | Petrographic Report                                     | 73          |

#### **SUMMARY**

The Surprise Creek property is situated approximately 32 kilometers northeast of Stewart, British Columbia. At the present time access to the property is by helicopter from Stewart or Meziadin camp located some 20 km to the east. Highway 37A running between Stewart and Meziadin Junction comes just 2.0 kilometres from the southern boundary of the property.

The property consists of 19 claims (claims 519010 to 540456) totaling 7,472.10 hectares located between Todd and Surprise creeks. Ownership of all 19 claims is presently registered with Mountain Boy Minerals.

During the 2017 rock sampling program on Surprise Creek property a total of 115 samples were collected. Of those, 24 samples were taken by a team of climbers from the top part of prominent sericite-quartz-pyrite zone situated at the base of Ataman Zone. The primary goal of using climbers was to find the source of several large boulders carrying VMS mineralization found in 2016 at the bottom of Ataman zone. The climbers failed to find the source of VMS boulders. Instead, they encountered several barite-carbonate-quartz veins and replacements with up to 10% galena and sphalerite. Eight samples contained more than 1% of combined lead and zinc assaying up to 198 g/t Ag, 10.8% Pb and 2.65% Zn.

The remaining 91 samples were collected by a 3-person team in other parts of the property. Several grab samples collected from quartz veins at the toe of Grunwald glacier returned significant precious and base metal values of up to 25.3 g/t Au, 210 g/t Ag, 1.79% Cu, 6.94% Pb and 3.35% Zn. A grab sample collected from 0.3-0.5 m wide layer of mudstone/limestone with minor sphalerite and galena yielded 10.6 g/t Ag, 0.14% Pb and 0.89% Zn.

In the Long Glacier valley several float samples of quartz vein with pyrrhotite/pyrite +/- galena +/- sphalerite assayed up to 3.0 g/t Au, >100 g/t Ag, 5.82% Pb and 0.52% Zn. At the toe of Long Glacier several quartz - pyrite/pyrrhotite veins up to 30 cm wide were found. They yielded up to 1.54 g/t Au, 62.2 g/t Ag and 0.31% Zn.

The 2017 drilling program on Surprise Creek property consisted of two diamond drill holes totaling 345 metres of NQ core. The best results came from core interval from 48.95 to 75.0 m of hole SC17-03 which averaged 22.34 g/t Ag, 0.36% Cu, 0.03% Pb, 1.03% Zn and 41.0% BaSO4 over 26.05 m. The interval represents VMS horizon composed of barite and chert with lesser sphalerite, galena and chalcopyrite. Barite is a valuable commodity used mostly as a drilling mud in the oil and gas industry. The initial metallurgical work on the core rejects done by SGS Laboratory located in Richmond, BC indicate that barite concentrate from Surprise Creek far exceeds API (American Petroleum Institute) standards.

The entire Surprise Creek - BA area has an excellent potential to host Kuroko type VMS deposits. To date, three major zones of Kuroko style VMS mineralization has been identified. Of those, Barbara zone attracted the most attention with over 178 holes drilled. Another zone called Ataman Zone was the focus of exploration in 2016 and 2017. The zone is at least 200 by 600 metres in horizontal and 650 metres in vertical dimension. It features numerous VMS type mineral occurrences carrying sphalerite, galena and barite.

In the Surprise Creek area there is a conspicuous lack of VMS related copper mineralization which was encountered only in holes recently drilled on Ataman zone. That fact indicates that glacial erosion in the Surprise Creek area did not reach the central parts of VMS system. Large areas of the Surprise Creek property are weakly explored due to extensive ice coverage. However, the rapidly receding ice enables better access to these areas which may host more mineralized zones similar to Barbara and Ataman zones.

Based in large part on petrographic study, the upper part of drillholes are dominated by trachyte and lower parts by trachyte pyroclastics which include tuff, lapilli tuff and lapilli-tuff-breccia. Petrographic study also indicates that a prominent sericite-quartz-pyrite alteration zone situated on the bottom of Ataman zone represents a subvolcanic trachyte intrusion. The barite-chert-suphide zone is located below the sulphide bearing crackle breccia which most likely represents silicified outer part of trachyte intrusion. This fact points to trachyte intrusion as the source of mineralization. This would represent an unusual situation where VMS mineralization is related to trachyte. Trachytic rocks encountered during drilling are strongly to completely replaced by alteration assemblage dominated by sericite/muscovite with lesser carbonate, quartz, pyrite, +/-magnetite, +/-fuchsite (or mariposite).

For the next exploration season a total of 2,000 metres of drilling is recommended. The holes should further test the newly discovered VMS mineralization on Ataman zone. The cost of the planned drilling program is estimated at 568,000 dollars.

#### INTRODUCTION

This report is based on the results of the 2017 exploration program which included geochemical rock sampling and drilling on the Surprise Creek property. The program was conducted under author's supervision on behalf of Mountain Boy Minerals in the period from July 01 to October 10, 2017. The pertinent statement on exploration work performed in this period was filed on February 07, 2018 (event # 5684992). Data from previous assessment reports and MINFILE were also used. The complete list of sources used in this report is provided in references.

To provide better reference (similarly as in the 2005 and 2007 assessment reports), four glaciers located on the property were given informal names of Long, Grunwald, Jagiello and Ataman (see figure 4).

#### **Location and Access**

The property is situated approximately 32 kilometers northeast of Stewart, British Columbia. The claim area is centered approximately on 56 degrees 12 minutes latitude and 129 degrees 40 minutes longitude on NTS sheet 104A/4. Location of the property is shown on figures 1 and 2.

At the present time access to the property is by helicopter from Stewart or Meziadin camp located some 20 km to the east, on the junction of Highways 37 and 37A. Highway 37A running between Stewart and Meziadin Junction comes just 2.0 kilometres from the southern boundary of the property. An old mining road (non-maintained) runs from the Highway 37 A to the former gold-silver Nordore Mine, located approximately one kilometer from the southeast corner of the property.

# Physiography and Topography

The area of Surprise Creek property encompasses steep mountain slopes typical of the Coast Range region of British Columbia. The property includes the southern part of Mount Patullo and the headwaters of Surprise and Todd creeks. Topography is rugged with numerous glaciers transecting the area. Slopes range from moderate to precipitous. Elevations vary from about 600 m in the eastern portion of the property to about 2733 m (Mount Patullo). Most of the western part of the property is covered by ice and snow fields. Eastern part of the property is to large degree covered by glacial material. Overall, outcrops comprise approximately 30-35% of the property. Lower slopes of the mountain valleys are occupied by spruce and hemlock trees. Higher elevations are covered by alpine grass and heather.

Due to the large snowfall, the surface exploration is restricted to summer and early fall with the maximum rock exposure occurring in late August and September.





# **Property Ownership**

The Surprise Creek property consists of 19 claims (claims 519010 to 540456) totaling 7,472.10 hectares located between Todd and Surprise creeks. Ownership of all 19 claims is presently registered with Mountain Boy Minerals. Between July 01 and November 01, 2017 Mountain Boy Minerals spent \$150,000 on geochemical rock sampling and drilling of this property. On February 07, 2018 this work was registered (event # 5684992) with the Ministry of Mines. Part of the work was applied to extend expiry dates of eight Surprise Creek claims (claims Ataman 3 to 10) and ten claims which belong to Great Bear Resources (claims No. 1049889 to 1049898). The reminder of the work was credited to the Mountain Boy's Portable Account Credit (PAC). The relevant claim information is summarized in the table below. Claims location copied from MTO database is presented on figure 2.

| Title Number | Claim Name | Owner         | Issue Date  | <b>Good to Date</b> | Area (ha) |
|--------------|------------|---------------|-------------|---------------------|-----------|
| 519010       | ATAMAN3    | 202088 (100%) | 2005/AUG/13 | 2019/SEP/28         | 431.67    |
| 519011       | ATAMAN4    | 202088 (100%) | 2005/AUG/13 | 2019/SEP/28         | 377.84    |
| 519017       | ATAMAN5    | 202088 (100%) | 2005/AUG/13 | 2019/SEP/28         | 377.95    |
| 519018       | ATAMAN6    | 202088 (100%) | 2005/AUG/13 | 2019/SEP/28         | 378.07    |
| 519019       | ATAMAN7    | 202088 (100%) | 2005/AUG/13 | 2019/SEP/28         | 378.19    |
| 519020       | ATAMAN8    | 202088 (100%) | 2005/AUG/13 | 2019/SEP/28         | 432.35    |
| 519021       | ATAMAN9    | 202088 (100%) | 2005/AUG/13 | 2019/SEP/28         | 288.31    |
| 519023       | ATAMAN10   | 202088 (100%) | 2005/AUG/13 | 2019/SEP/28         | 360.51    |
| 519247       |            | 202088 (100%) | 2005/AUG/22 | 2018/SEP/28         | 377.85    |
| 519248       |            | 202088 (100%) | 2005/AUG/23 | 2018/SEP/28         | 377.97    |
| 519249       |            | 202088 (100%) | 2005/AUG/23 | 2018/SEP/28         | 378.10    |
| 519250       |            | 202088 (100%) | 2005/AUG/23 | 2018/SEP/28         | 378.22    |
| 519251       |            | 202088 (100%) | 2005/AUG/23 | 2018/SEP/28         | 378.33    |
| 519252       |            | 202088 (100%) | 2005/AUG/23 | 2018/SEP/28         | 360.43    |
| 540452       |            | 202088 (100%) | 2006/SEP/05 | 2018/SEP/05         | 449.73    |
| 540453       |            | 202088 (100%) | 2006/SEP/05 | 2018/SEP/05         | 449.97    |
| 540454       |            | 202088 (100%) | 2006/SEP/05 | 2018/SEP/05         | 432.05    |
| 540455       |            | 202088 (100%) | 2006/SEP/05 | 2018/SEP/05         | 432.21    |
| 540456       |            | 202088 (100%) | 2006/SEP/05 | 2018/SEP/05         | 432.35    |
|              |            |               |             |                     |           |
| 1049889      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 180.38    |
| 1049890      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 216.50    |
| 1049891      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 288.83    |
| 1049892      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 252.51    |
| 1049893      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 180.42    |
| 1049894      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 18.03     |
| 1049895      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 36.09     |
| 1049896      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 72.11     |
| 1049897      |            | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 36.07     |
| 1049898      | WINTERFELL | 277053 (100%) | 2017/FEB/08 | 2019/FEB/08         | 956.98    |

#### WORK HISTORY

### 1970s - 1990s

In the 1970s and 1980s, the area presently covered by Surprise Creek claims was prospected and trenched but there are no records of this work. In 1989, the Surp claims were acquired by Teuton Resources Corp. The following year, Teuton Resources conducted soil, silt and rock sampling. In 1994 and 1996, Teuton Resources conducted an exploration program consisting of reconnaissance geochemical rock and silt sampling as well as geological mapping. The work concentrated on area presently covered by claims No. 540453, 540454 and 540455. The program was focused on finding gold bearing mineralization.

#### 2003

In 2003 Pinnacle Mines collected a total of 78 rock samples from outcrop and float as well as 23 silt samples during an exploration program. Assay results yielded highly anomalous values for gold, silver, lead, zinc, arsenic and copper. The highs for these metals were as follow: 13.02 ppm for gold, 3,076.8 ppm for silver, >9999 ppm for lead, 56,866 ppm for zinc, >9999 ppm for arsenic and 28,026 ppm for copper.

#### 2004

That year Pinnacle continued reconnaissance geochemical rock and silt sampling of the property. A total of 220 rock samples both from outcrop and float as well as 19 silt samples were collected during the exploration program. Assay results of the samples indicate highly anomalous values for gold, silver, lead, zinc, arsenic and copper. The highest assay for gold was 3.9 ppm, for silver 1305 ppm, for lead 9.1%, for zinc > 10,000 ppm, for arsenic >10,000 ppm and for copper 8.67%.

# 2005

In 2005 Pinnacle continued exploration on Surprise Creek property. That year a total of 279 rock and 8 silt samples were collected. These samples represented abundant and diverse mineralization found on the property. The most important mineralization consisted of extremely fine-grained syngenetic pyrite, sphalerite and galena with high silver, mercury, and manganium hosted in black chert, limestone and mudstone. Contents of zinc, lead, silver and mercury varied in a broad range from slightly elevated values to the highs of 7.61% for zinc, 1.1% for lead, 106 g/t for silver, and 33,800 ppb for mercury.

#### 2006

Pinnacle work in 2006 was focused on the west part of the property. This area features very intense zone of pervasive K-feldspar alteration which stretches out for at least 10 kilometres in the north-south and 4-5 kilometres in the east-west direction. The extent of this alteration was

determined by K-feldspar staining (using sodium cobaltinitrite) of a few dozen samples collected from the area. The intensity of K-feldspar alteration was determined in percentages by visual estimate of stained samples.

A total of 58 rock samples were collected during 2006 exploration program. The highest assays came from the southeast corner of the property. Sample S06-1, a float of mudstone/siltstone with hydrozincite stain and a few % of sphalerite, yielded 10.3g/t Ag, 0.2% Pb, 1.94% Zn and 6000 ppb Hg. Another sample (S06-2) from the same area (a float of silicified breccia composed of jasper fragments with 2-3% galena, 1-2% pyrite and trace malachite) returned 100.8g/t Ag, 3.62% Pb, 0.15% Zn and 3000ppb Hg.

#### 2007

In 2007, an exploration program by Pinnacle Mines consisted of four diamond-drill holes totaling 1995 metres of NQ core. These holes did not test any specific target but were drilled within a broad area suspected of hosting a Kuroko type VMS mineralization at depth. The holes did not encounter any economic grade VMS mineralization. However, hole SP07-04 intersected (just below a major fault) a weakly mineralized felsic crackle breccia believed to represent a footwall of the VMS system. A combined interval of 5 core samples (15.25 metres) of this breccia returned anomalous values in silver (14.18 g/t), lead (0.07%) and zinc (0.16%) – (Walus A, 2007). Litologically and geochemically this rock closely resembles a footwall of a VMS mineralization encountered in many holes drilled on BA property. No sediment hosted VMS mineralization was intersected in this hole which most likely was displaced by a fault.

## 2010

The 2010 exploration program on Surprise Creek property conducted by Great Bear Resources consisted of a helicopter-borne geophysical survey as well as geological mapping and sampling. Geophysical survey consisted of a versatile time domain electromagnetic (VTEM) survey and a cesium magnetometer survey. A total of 3327 line-kilometres were flown over BA and Surprise Creek claims. From September 6 to September 23, Coast Mountain Geological was contracted to perform a program of geological mapping, prospecting and rock sampling over the Surprise Creek claims (see Theny L.M. 2011). During the program a total of 61 rock samples were collected of which one-third was collected from Ataman Zone (called Rumble Zone in 2010 assessment report).

# 2016

During the 2016 exploration program a total of 218 rock samples were collected. The program was focused on Ataman zone (called Rumble zone in 2010 AR) located on the south side of Jagiello Glacier valley. At the bottom of the zone, Mountain Boy crew found several angular boulders up to 1.0 metres in size composed of limestone/ mudstone with 1 to 15% sphalerite. Three samples collected from these boulders assayed 3.04, 3.13 and 11.64 % zinc plus

anomalous lead, silver, gold, arsenic and tungsten; gold assays averaged 90 ppb. A follow-up prospecting carried out on Ataman Zone led to the discovery of several new mineralized occurrences.

The same year, Mountain Boy drilled 2 holes targeting the lower part of Ataman zone. Hole SC16-2 returned 0.12 g/t Au, 28.0 g/t Ag, 1.21% Zn, 0.03% Pb, 0.31% Cu and 46.73% BaSO4 over 18.94 metres (Mt. Boy Minerals press release, Feb. 02, 2017).

#### **GEOLOGY**

# **Regional Geology**

The Surprise Creek property lies in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Stuhini Group, Hazelton Group and Bowser Lake Group that have been intruded by plutons of both Cenozoic and Mesozoic age.

According to C.F. Greig, in G.S.C. Open File 2931, portions of the general Stewart area are underlain by Triassic age Stuhini Group. The Stuhini Group rocks either underlie or are in fault contact with the rocks of Hazelton Group. These Triassic age rocks consist of dark gray, laminated to thickly bedded silty mudstone, and fine to coarse-grained sandstone. Local hetherolitic pebble to cobble conglomerate, massive tuffaceous mudstone and thick-bedded sedimentary breccia and conglomerate also form part of the Stuhini Group.

The large exposure of Hazelton Group rocks on the west side of Bowser Basin has been named the Stewart Complex. It forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. At the base of the Hazelton Group is the lower Lower Jurassic volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic package (Betty Creek Formation), which in turn is overlain by an upper Lower Jurassic thin felsic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above volcaniclastic sequence.

The Unuk River Formation is at least 4500 metres thick, monotonous package of green andesitic rocks which include ash and crystal tuff, lapilli-tuff, pyroclastic breccia and lava flows.

The Betty Creek Formation represents another cycle of trough filling with a sequence of distinctively coloured red to green epiclastic rocks with interbedded tuffs and flows which range in composition from andesitic to dacitic.

The upper Lower Jurassic Mt. Dilworth Formation consists of a 20 to 120m thick sequence composed chiefly of variably welded dacite tuffs. Hard, resistant, often pyritic rocks of this

formation often form gossanous cliffs. Rocks of Mt. Dilworth Formation are important stratigraphic marker in the Stewart area.

The Middle Jurassic Salmon River Formation is a thick package of complexly folded sedimentary rocks which include banded, predominantly dark colored siltstone, greywacke, and sandstone with intercalated calcarenite rocks, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks are exposed along the western edge of the Bowser Basin, they also occur as remnants on mountaintops in the Stewart area. These rocks consist of dark grey to black clastic rocks dominated by silty mudstone and thick beds of massive, dark green to dark grey, fine to medium grained arkosic sandstone.

A variety of intrusive rocks formed in the area during Early Jurassic and Tertiary periods. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. To the east, there are numerous smaller intrusions which range in composition from monzonite to granite. Some of them probably represent apophysis of the Coast plutonism, others are synvolcanic. Double plunging, northwesterly trending folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area.

# **Property Geology**

The following description of the property's geology is based on the GSC open file map by C. Greig (1994) as well as observations made by the author during the 2005-2007 and 2016-1017 exploration programs.

The Surprise Creek claim group is underlain by a sequence of Jurassic clastic and volcanic rocks which trend north-south to northwest-southeast. The area is dominated by a major anticline, which displays eastern vergence. An area located close to the anticline's axial plane is occupied by reddish to maroon andesitic volcaniclastic and volcanic rocks of Betty Creek Formation. To the west and east of the anticline's axis there are felsic rocks of Mount Dilworth (?) Formation which form 70 to 200 metres wide horizon composed of apple green, light gray or white coloured felsic volcanic rocks which include flows (with flow banded texture), intrusions and pyroclastic rocks. East of the felsic rocks of Mount Dilworth Formation (?), a monotonous sequence of thinly bedded mudstone, siltstone, tuffaceous chert, chert and cherty argillite belonging to Salmon River Formation is present. The pyrite-bearing black mudstones and argillites of this formation tend to weather to a rusty color. Area to the west of Mount Dilworth Formation (?) is underlined by a thick sequence of undivided mostly intermediate volcanic, pyroclastic and epiclastic rocks with subordinate amounts of intercalated sedimentary rocks which include: gray to black limestone, chert and mudstone. Volcanic rocks in this area are

dominated by feldspar, feldspar-hornblende and feldspar-augite porphyritic andesites. All these rocks most likely belong to the Betty Creek Formation.

The structural pattern of the Surprise Creek property is only partly understood due to incomplete exposure from beneath an ice sheet and widespread K-feldspar alteration obliterating earlier structures. The orientation of bedding planes is variable across the property with the majority of planes oriented NW-SE with NE dip (Mazur S, 2006). The bedding is reoriented on limbs of the folds with hinges trending NW-SE to NNW-SSE. The folds axes are plunging gently to the NNW (340/35) or locally to the SE (140/20). In nearly all lithologies except for the massive andesites, there is a well-developed axial cleavage of folds. The cleavages planes dip steeply to the NNE or NE. The attitude of cleavage together with the geometry of outcrop-scale folds indicate the SW-ward vergency of map-scale fold structures. The majority of exposures represent normal NE-dipping limbs of these folds. Locally, in particular directly east of the main ridge, a very steep overturned limb is exposed. The K-feldspar altered rocks bear fairly consistent foliation inclined to the W or SSE at a moderate angle. The orientation of the foliation seems to be unrelated to the position of bedding and axial cleavage of folds. The outcrops of K-feldspars altered rocks are at least partly bounded by faults (255/65 NW; 146/78 SW). A number of meso- to map-scale faults occur in the area. They strike mostly NW-SE and NE-SW

and form two conjugate sets developed under a N-S compression regime. In one case, a thrust was observed having the SW-ward polarity (150/40 NE oriented plane) and the amplitude exceeding a few dozen metres.

#### Mineralization

To date, the following types of mineralization were found on the Surprise Creek Property:

- 1. Extremely fine grained syngenetic pyrite, sphalerite and galena with high silver, mercury, and manganium hosted in black chert, limestone and mudstone.
- 2. Exhalite
- 3. Barite-carbonate veins and shear zones with galena and sphalerite.
- 4. Strongly silicified trachyte with pyrite, sphalerite, galena, and chalcopyrite.
- 5. Precious metals bearing quartz with pyrrhotite and/or pyrite +/- sphalerite +/- galena +/- arsenopyrite +/- chalcopyrite +/- tetrahedrite.
- 6. Laminated to massive barite-chert with sphalerite-galena-chalcopyrite +/-arsenopyrite.

The first type of mineralization is by far the most abundant in the Surprise Creek area. It can be found in every glacial valley from Mt. Patullo to Nelson Glacier, a distance of over 22 kilometres. It is found mostly as numerous boulders and to lesser extent in place. The mineralization is hosted in laminated chert, limestone and mudstone which often display strong soft sediment deformation, frequently forming synsedimentary breccia. Sulphides form thin

laminae and disseminations, often concentrating in matrix of synsedimentary breccia. Content of zinc, lead and silver vary in a broad range from slightly elevated values to the highs of 7.61% for zinc, 1.1% for lead and 106 g/t for silver.

Mineralization described as exhalite (type 2) is found mostly as float and less frequently in situ. It is composed of finely laminated bright red chert +/-hematite+/-magnetite. Some of the exhalite composed of thin intercalated laminae of chert, magnetite and hematite closely resemble rocks of iron formation. This type of mineralization carries only minor zinc, lead and silver values.

The bulk of mineralization listed as type 3 is located on Ataman zone comprising veins and shear zones up to 20 metres wide. Assay values up to 297 g/t silver and up to several per cent of combined lead and zinc were reported from this mineralization type.

The fourth type of mineralization was found exclusively as a few dozen boulders occurring at the toes of Jagiello, Grunwald and Short glaciers. On the surface, boulders comprised of this type of mineralization are off-white colour with patches of manganese stain. They are semirounded to rounded, reaching 2.0 metres across in size. Samples from these boulders collected between 2003 and 2005 yielded up to 5% of combined Zn and Pb, up to 2.8% Cu and up to 213 g/t Ag. The boulders also feature highly anomalous mercury of up 147,000 ppb i.e. 1000 times above the background level. Based on the 2005 Petrographic Study (Walus A. 2005) the primary rocks comprising these boulders were classified as trachyte.

The fifth type of mineralization occurs mainly as float in many parts of the property. The boulders represent fragments of quartz veins (pods) and stockwork zones with coarse grained sulphides. They assayed up to 45.2 g/t Au, 371 g/t Ag, 0.88% Cu, 5.82% Pb, 0.43% Zn and >1% As. This type of mineralization was also found in place as quartz-sulphide veins up to 30 cm wide. They returned up to 25.3 g/t Au, 210 g/t Ag, 1.79% Cu, 6.94% Pb and 3.35% Zn.

Laminated to massive barite-chert with sulphides (mineralization type 6) was found only in holes drilled in 2016 and 2017 on Ataman zone. This mineralization type has laminated to massive texture, laminae are often strongly disturbed locally forming slump breccia. Chert dominate the upper and barite the lower part of the interval. Sulphides listed in order of abundance include pyrite, sphalerite, chalcopyrite, galena and arsenopyrite. A core interval from the 2017 drilling which represents this mineralization type assayed 22.34 g/t Ag, 0.36% Cu, 0.03% Pb, 1,03% Zn and 41.0% barite over 26.05 m.

#### Alteration

# K-feldspar alteration

The Surprise Creek area features a large zone of very intense, pervasive K-feldspar alteration occupying the western part of the property. It stretches out for at least 10 kilometres in the north-south and 4-5 kilometres in the east-west direction. The extent and intensity of this alteration was determined by K-feldspar staining using sodium cobaltinitrite of a few dozen samples collected from the area.

# Sericite-quartz-pyrite alteration

The most prominent zone of this alteration type can be observed at the base of the Ataman zone (see figure 3 for location). Smaller alteration zones of this type exist on the property but were not explored due to difficult access.

# **Major Mineralized Zones**

#### Ataman Zone

Ataman Zone (called Rumble Zone in the 2010 AR) is located on the south side of Jagiello Glacier valley (see figures 4 and 4B). The full size of the zone is not known as the zone was not fully explored. It is at least 200 by 600 metres in horizontal and 650 metres in vertical dimension. At the bottom of Ataman Zone there is a zone of intense sericite-quartz-pyrite alteration with locally developed quartz stockwork, veins and replacements which carry from trace to 3% galena and sphalerite. Pyrite is very abundant, up to 30% in some areas, occurring as disseminations, clots, stringers and veins up to 5 cm in width. The sericite dominated zone is approximately 120 metres high and 200-220 metres long. Microscopic examination of several thin sections derived from the zone indicate it represents a subvolcanic trachyte plug (see Petrographic Report in Appendix IV). In 2010, Great Bear Resources crew collected 9 chip and 3 grab samples from parts of sericite-quartz-pyrite zone. The samples returned an average of 29.3 ppm Ag, 1819 ppm Pb and 3054 ppm Zn. Also in 2010, numerous boulders composed of barite and carbonates containing up to 15% galena and 5% sphalerite were found just above the sericite dominated zone. At the bottom of Ataman zone, a float composed of finely laminated barite and sphalerite was found which assayed 2.28% Zn. Also at the bottom of Ataman zone, during the 2016 exploration program, Mountain Boy crew found several angular boulders up to 1.0 metres in size composed of limestone/ mudstone with 1 to 15% sphalerite. Three samples collected from these boulders (AW-5, 6 and 10) assayed 3.04, 3.13 and 11.64 % zinc plus anomalous lead, silver, gold, arsenic and tungsten; gold assays averaged 90 ppb. Subsequent prospecting carried out on the Ataman Zone led to the discovery of several new mineralized occurrences.

The same year Mountain Boy drilled two holes targeting the lower part of Ataman zone. Hole SC16-2 returned 18.94 m interval averaging 0.12 g/t Au, 28.0 g/t Ag, 0.31% Cu, 0.03% Pb, 1.21% Zn and 46.73% BaSO4.



# Jagiello Zone

This zone located in the headwaters of Jagiello Glacier (see figure 4) attracted little attention due mainly to difficult access. This area however is highly promising as it is the source of numerous boulders carrying VMS lead-zinc-silver mineralization. A float sample (A05-234) collected in 2005 below the presumed location of the zone returned 1.1% Pb, 7.61% Zn and 60.5 g/t Ag.

#### 2017 ROCK SAMPLING

#### Introduction

During the 2017 rock sampling program on Surprise Creek property a total of 115 samples were collected. Of those, 24 samples were taken by a team of climbers from the top part of a prominent sericite-quartz-pyrite zone situated at the base of Ataman Zone (see figure 3 for location). The remaining 91 samples were collected from other areas of the property (see figure 4). Descriptions of samples along with their coordinates in NAD 83 are shown in Appendix I. Samples locations along with their Au, Ag, Cu, Pb and Zn results are presented on figures 4A, 4B and 4C. Full geochemical results are presented in Appendix III.

All samples were analyzed by Actlabs - an ISO certified Laboratory in Kamloops, BC. All samples were analyzed for the 30 elements ICP. Samples which exceeded a threshold of 5,000 ppb for gold, 100 g/t for silver, 10,000 ppm for copper, 5,000 ppm for lead and 10,000 ppm for zinc by ICP method were assayed for these elements using multi acid digestion, peroxide fusion and AA finish.

# **Rock Sampling Results**

# Samples collected by climbers

The primary goal of using climbers was to find the source of several large boulders carrying VMS type mineralization found in 2016 at the bottom of Ataman zone. A total of 23 grab and 1 chip sample numbered LJ-023 to 029 and LJ-061 to 077 were collected. The climbers failed to find the source of VMS boulders. Instead, they encountered several barite-carbonate-quartz veins and replacements with up to 10% galena and sphalerite. Eight samples contained more than 1% of combined lead and zinc assaying up to 198 g/t Ag, 10.8% Pb and 2.65% Zn.

# Other rock samples

Several grab samples collected at the toe of Grunwald Glacier returned significant precious and base metal values (see figure 4B for location). Sample DM126 taken from discontinuous gash filled with minor quartz and pockets of very fine-grained pyrite and lesser chalcopyrite assayed 12.4 g/t Au, 47g/t Ag and 1.34% Cu. Sample DM127 collected from 15 cm wide quartz vein with small amounts of pyrite and chalcopyrite returned 25.3 g/t Au, 210 g/t Ag, 1.79% Cu,

6.94% Pb and 1.71% Zn. Sample DM132 taken from quartz vein with discontinuous bands of pyrite, chalcopyrite, galena and sphalerite retuned 1.65 g/t Au, 171 g/t Ag, 0.31 % Pb and 3.35 % Zn. Sample A17-132 collected from 0.3-0.5 m wide layer of weathering brown mudstone/limestone with minor sphalerite and galena yielded 10.6 g/t Ag, 0.14% Pb and 0.89% Zn.

In the area of Long Glacier (see figure 4A) sample A17-9, an angular float of quartz vein with 7-10% pyrrhotite assayed 3.0 g/t Au and 98.8 g/t Ag. Sample A17-10, a fist size float of quartz vein fragment with 25-30% coarse grained pyrite and some galena returned 1.67 g/t Au, >100 g/t Ag, 5.82% Pb and 0.52% Zn. Sample A17-13, a grab from 7-8 cm wide quartz vein with pockets of coarse pyrite yielded 1.04 g/t Au. Sample A17-15, a grab from 20-30 cm wide irregular quartz vein with up to 20% pyrite returned 1.54 g/t Au, 62.2 g/t Ag and 0.31% Zn.

A few float samples of finely laminated chert/limestone with extremely fine-grained pyrite and trace to minor sphalerite and galena collected in the area of Ataman Glacier (see figure 4C) assayed up to 0.22% Pb and 0.72% Zn.

#### 2017 DRILLING

#### Introduction

The 2017 drilling program on the Surprise Creek property consisted of two diamond drill holes totaling 345 metres of NQ core. Information about each hole azimuth, dip and GPS coordinates is includes in drill logs (see Appendix II). The holes were drilled from the same pad used for the 2016 drilling which location is shown on figures 3 and 4. Cross section of the 2017 holes is presented on figure 5. Drilling was done by More Core Drilling Services of Stewart, BC using a modified underground drill. No camp was constructed on the property. Drillers stayed in Stewart and were transported every day to the job site by helicopter. Helicopter support was done mostly by AS350-B2 helicopter provided by Mustang Helicopters from its field base in Stewart. The entire core from the drilling was transported to Stewart where it was logged, sampled and later securely stored in a yard of an office building owned by Mountain Boy Minerals.

# **Drilling Results**

In 2016 the Ataman zone was tested by two holes drilled from the same pad located just above a large prominent zone of sericite-quartz-pyrite alteration (see figure 3). The holes intersected a sequence of volcanic rocks dominated by trachyte in the upper and trachyte pyroclastics in the lower parts of the holes. Hole SC16-1 did not return any significant results. The best core interval of hole SC16-2 which represents a barite-chert-sulphide zone averaged 0.12 g/t Au, 28.0 g/t Ag, 0.31% Cu, 0.03% Pb, 1.21% Zn and 46.73% BaSO4 over 18.94 metres (Mt. Boy press release, Feb. 02, 2017). Due to bad weather the hole was terminated in mineralization at 78.69m.











In 2017, two more holes were drilled from the same pad (see cross section shown on figure 5). Originally, it was planned to re-enter the 2016 hole SC16-2. Eventually, it was decided to drill a new parallel hole (SC17-03) collared just 0.6 m beside the old collar. A core interval from 33.0 to 37.5 m returned an average of 23.1 g/t Ag, 0.1% Cu. 0.71% Pb and 3.27% Zn over 4.5 m. The interval is hosted within crackle breccia/sulphide zone comprised of weakly brecciated silicified trachyte with fractures filled with chalcedony, carbonates, pyrite, sphalerite and galena. Interval from 48.95 to 75.0 m averaged 22.34 g/t Ag, 0.36% Cu, 0.03% Pb, 1.03% Zn and 41.0% BaSO4 over 26.05 m. This interval represents the same barite-chert-sulphide zone encountered in the 2016 hole SC16-02. The zone has laminated to massive texture, laminae are often strongly disturbed locally forming slump breccia. Sulphides include up to 10% pyrite, trace to 3% sphalerite, <1% galena and trace to 1% chalcopyrite. Chert dominate in the upper and barite in the lower part of the interval.

Hole SC17-04 was drilled from the same pad as hole SC17-03. From 39.0 to 45.0 m the hole intersected an interval averaging 39.71g/t Ag, 0.07% Cu, 0.17% Pb and 1.37% Zn over 6.0 m. The interval is hosted partly in crackle breccia/sulphide zone (similar as in hole SC17-03) and partly in trachyte. Core interval from 61.9 to 76.95 m returned 26.48 g/t Ag, 0.19% Cu, 0.09% Pb, 0.42% Zn and 66.82% BaSO4 over 15.05 m. It is hosted in the same barite-chert-sulphide zone encountered in holes SC17-03 (see figure 5) and SC16-02. Core interval from 102.0 to 106.5 m returned 15.36 g/t Ag, 0.28% Cu, 0.37% Pb and 1.28% Zn over 4.5 m. The interval represents portion of a chert-sulphide zone consisting mostly of chert lesser barite clasts cemented by chert. It contains up to 15% pyrite, up to 3% sphalerite, trace to 1% galena and chalcopyrite.

# **CONCLUSIONS AND DISCUSSION**

The entire Surprise Creek - BA area has an excellent potential to host Kuroko type VMS deposits. Lead-zinc-copper-silver +/-gold VMS mineralization can be found along a north -south belt stretching from Mt. Patullo to Nelson Glacier over a distance of 22 kilometres. VMS mineralization seems to be spatially associated with volcanic eruption centers within felsic volcanic rocks of Mt. Dilworth (?) Formation. In the area, felsic volcanic rocks of this formation form a relatively thin horizon 70 to 200 metres wide within prevailing volcanic rocks of intermediate to mafic composition. To date, three major zones of Kuroko style VMS mineralization has been identified. Of those, Barbara zone attracted the most attention with over 178 holes drilled. Jagiello zone located several km west of Ataman Zone attracted little attention due mainly to difficult access. This area however is highly promising as it is the source of numerous boulders carrying VMS lead-zinc-silver mineralization. A float sample collected in 2005 below the presumed location of the zone returned 1.1% Pb, 7.61% Zn and 60.5 g/t Ag (Walus A, 2005). The third zone of VMS mineralization called Ataman Zone was the focus of

exploration in 2016 and 2017. The zone is at least 200 by 600 metres in horizontal and 650 metres in vertical dimension. It features numerous VMS type mineral occurrences carrying sphalerite, galena and barite (see figure 3 for their location).

In the Surprise Creek area there is a conspicuous lack of VMS related copper mineralization which was encountered only in holes recently drilled on Ataman zone. That fact indicates that glacial erosion in the Surprise Creek area did not reach the central parts of VMS system. Large areas of the Surprise Creek property are weakly explored due to extensive ice coverage. However, the rapidly receding ice enables better access to these areas which may host more mineralized zones similar to Barbara and Ataman zones.

The 2016 and 2017 drilling on Ataman zone intersected significant copper, zinc, lead, silver +/-gold mineralization. The biggest mineralized zone contains from 41 to 66 % barite which is a valuable commodity used mostly as a drilling mud in the oil and gas industry. The initial metallurgical work on the core rejects done by SGS Laboratory located in Richmond, BC indicate that barite concentrate from Surprise Creek far exceeds API (American Petroleum Institute) standards (see Mt. Boy press release from July 18, 2017).

In general, the rocks encountered in holes drilled on Ataman zone are difficult to identify due to strong alteration and the presence of abundant K-feldspar which is not readily recognizable in the field. To identify the rocks, seven thin sections derived from the 2017 core were examined using polarizing microscope (see Petrographic Report in Appendix IV). In addition, the samples were stained with sodium cobaltinitrite for easy K-feldspar identification. Based in large part on this study, the upper parts of drillholes are dominated by trachyte and lower parts by trachyte pyroclastics which include tuff, lapilli tuff and lapilli-tuff-breccia. Felsic (?) tuff to lapilli tuff marked as lithological unit E on Figure 5 could also be a very strongly altered trachytic rock. Petrographic study also indicates that a prominent sericite-quartz-pyrite alteration zone situated on the bottom of Ataman zone (see figure 3) represents a subvolcanic trachyte intrusion. Heat from that intrusion most likely caused formation of a weak biotite hornfels detected in the nearby trachyte pyroclastics (see Petrographic Report). Trachytic rocks encountered during the drilling are strongly to completely replaced by alteration assemblage dominated by sericite/ muscovite with lesser carbonate, quartz, pyrite, +/- magnetite, +/-fuchsite (or mariposite). The barite-chert-suphide zone (lithological unit D on figure 5) is located below the sulphides bearing crackle breccia which most likely represents silicified outer part of trachyte intrusion. This fact points to trachyte intrusion as the source of mineralization. This would represent an unusual situation where VMS mineralization is related to trachyte.

#### RECOMMENDATIONS

For the next exploration season a total of 2,000 metres of drilling is recommended. The holes should further test the newly discovered VMS mineralization on Ataman zone. It is recommended to use similar type of drill as last year, capable of drilling holes with dips ranging from +25 to -90 degrees. It is strongly advised to start drilling program in June when there is a possibility to use a runoff water from the snow patch instead of pumping water up a few hundred metres from the main creek.

It is recommended to drill the following holes:

- 1) Three more holes from the same pad and at the same azimuth (270 degrees) as 2017 holes.
- 2) Ten holes from two pads located 150-200 metres up the hill from the 2017 pad.

The cost of the planned drilling is estimated at 568,000 dollars.

# **Estimated Cost of the Program**

| A total of 2,000 metres of drilling @ \$140/a metre (all inclusive) | 280,000   |
|---------------------------------------------------------------------|-----------|
| Geologist, 20 days @650/a day                                       | 13,000    |
| Field assistant, 20 days @ \$350/a day                              | 7,000     |
| Drilling pads                                                       | 15,000    |
| Mob/demob                                                           | 10,000    |
| Helicopter support                                                  | 150,000   |
| Expediting                                                          |           |
| Core cutting                                                        | 5,000     |
| Vehicle rental                                                      | 2,000     |
| Assaying                                                            | 5,000     |
| Accommodation and food (in Stewart)                                 | 15,000    |
| Report                                                              | 5,000     |
| Subtotal                                                            | · · ·     |
|                                                                     | \$568,000 |

#### REFERENCES

Cremonese, D. (1995); "Assessment Report on Geochemical Work on the Surprise Creek Claims", British Columbia Ministry of Energy and Mines Assessment Report # 23,935

Greig, C. J., Anderson, R. G., Daubeny, P. H., Bull, K. F. (1994); "Geology of the Cambria Icefield: Stewart (103P/13), Bear River (104A/4), and Parts of Meziadin Lake (104/3)", Geological Survey of Canada, Open File 2931.

Kruchkowski, E.R. (2003); "43-101 Report on Surprise Creek Property",

Kruchkowski, E.R, (1997); "Assessment Report on Geochemical Work on the Surprise Creek Property", British Columbia Ministry of Energy and Mines Assessment Report # 24,996.

Kruchkowski, E.R, (2003); "Assessment Report on Geological and Geochemical Work on the Surprise Creek Property", British Columbia Ministry of Energy and Mines Assessment Report # 27,290.

Kruchkowski, E.R, (2004); "Assessment Report on Geological and Geochemical Work on the Surprise Creek Property", British Columbia Ministry of Energy and Mines Assessment Report # 27,577.

Mazur S. (2006). Structural Geology of the Surprise Creek Area. Internal Pinnacle Mines Report.

Mountain Boy press releases, February 02 and July 18, 2017

Theny L.M. (2011), "Assessment Report on Geological and Geochemical Work on the Surprise Creek Property", British Columbia Ministry of Energy and Mines Assessment Report # 32800A.

Vanwermeskerken M., (2011), Summary Report on 2010 Surprise Creek Claims Field Program for Great Bear Resources.

Walus, A. (2005); "Assessment Report on Geological and Geochemical Work on the Surprise Creek Property", BC Assessment Report # 27,981.

Walus, A. (2007); "Assessment Report on Technical Work on the Surprise Creek Property", BC Assessment Report # 29,446.

Walus A. (2016); Assessment Report on Surprise Creek Property. Assessment Report # 36,401

CERTIFICATE OF AUTHORS' QUALIFICATIONS

I, Alojzy Walus, residing at 8577 165 Street in Surrey, BC, hereby certify that:

1. I received a Master of Science degree in Geology from the University of Wroclaw,

Poland in 1985.

2. I have been practicing my profession continuously since graduation.

3. I am a member of the Association of Professional Engineers and Geoscientists of British

Columbia.

4. I am a consulting geologist working on behalf of Mountain Boy Minerals Ltd.

5. This report is based on my 2017 field work as well as historical reports from this area.

6. I am familiar with this type of deposit having conducted exploration programs on similar

mineral occurrences in the Stewart region.

Date: March 20, 2018

"Alojzy Walus"

Alojzy Walus, P. Geo.

29

# STATEMENT OF EXPENDITURES FOR 2017 PROGRAM

| ITEM                                    | Quantity | Units      | Rate          | Subtotal    | Totals    |  |
|-----------------------------------------|----------|------------|---------------|-------------|-----------|--|
| Field Personnel                         |          |            |               |             | 20.050    |  |
| Alex Walus - geologist                  | 14       | days @     | \$650.00      | 9,100       | 20,950    |  |
| Dates worked: July 25, Aug. 01          | 1-7      | uuys 🤤     | Ψ000.00       | 3,100       |           |  |
| Sept. 08, 14, 15, 27, 29, 30            |          |            |               |             |           |  |
| October 01, 02, 07, 08, 09, 10          |          |            |               |             |           |  |
| Krzysztof Mastalerz - geologist         | 5        | days @     | \$650.00      | 3,250       |           |  |
| Dates worked: July 25, Aug. 01          |          |            |               |             |           |  |
| Sept. 08, 14, 15                        |          |            |               |             |           |  |
| Dirk Meckert- geologist                 | 3        | days @     | \$650.00      | 1,950       |           |  |
| Dates worked: Sept. 08,14,15            |          |            |               |             |           |  |
| Laurent Janssen – climber/geologist     | 3        | days @     | \$700.00      | 2,100       |           |  |
| Dates worked: Sept. 8, 14, 15           |          |            |               |             |           |  |
| Dave Gauley- climber                    | 3        | days @     | \$700.00      | 2,100       |           |  |
| Dates worked: Sept. 8, 14, 15           |          |            |               |             |           |  |
| Thomas Bernard-core cutter              |          |            |               |             |           |  |
| Dates worked: October 8-14              | 7        | days @     | \$350         | 2,450       |           |  |
| Helicopter                              | 31.1     | hours @    | \$1,738       | 54,051      | 54,051    |  |
| Mustang Helicopters - base in Stewart   | 01.1     |            | Ψ1,700        | 01,001      | 04,001    |  |
| Used on Jul. 25, Aug. 1, Sept. 8,14, 15 |          |            |               |             |           |  |
| 27, 29, 30; Oct. 1, 2, 7, 8, 9, 10      |          |            |               |             |           |  |
| , , , , , , ,                           |          |            |               |             |           |  |
| Drilling                                | 345      | metres @   | 140           | 48,300      | 48,300    |  |
| More Core Drilling Services             |          |            |               |             |           |  |
| September 27 – October 10               |          |            |               |             |           |  |
| Field Expenses                          |          |            |               |             | 13,705    |  |
| 4x4 Vehicle rental                      | 20       | days @     | \$95.00       | 1,900       | 10,100    |  |
| Gas                                     |          | uayu c     | ψσσ.σσ        | 400         |           |  |
| Accommodation                           | 99       | man/days @ | \$15          | 1,485       |           |  |
| Food                                    | 99       | man/days @ | \$67.23       | 6,655       |           |  |
| Shipment of samples                     |          | •          |               | 953         |           |  |
| Field equipment and supplies            |          |            |               | 2,312       |           |  |
| Assay Costs                             |          |            |               |             | 8,905     |  |
| •                                       | 445      |            | <b>#00.45</b> | 0.007       | 0,303     |  |
| Rock samples                            | 115      | samples @  | \$32.15       | 3,697       |           |  |
| Core samples                            | 162      | samples @  | \$32.15       | 5,208       |           |  |
| Report                                  |          |            |               |             | 4,089     |  |
| Thin sections preparation               | 7        | sections @ | \$27          | 189         |           |  |
| Thin section descriptions – Alex Walus  | 7        | sections @ | \$100         | 700         |           |  |
| Drafting                                |          |            |               | 1200        |           |  |
| Report writing – Alex Walus             | 5        | days @     | 400           | 2,000       |           |  |
|                                         |          |            |               | Grand Total | \$150,000 |  |

# APPENDIX I ROCK SAMPLES DESCRIPTIONS

| Sample  | UTM Coordinates |           | Sample | Description                                                                                                   |  |  |
|---------|-----------------|-----------|--------|---------------------------------------------------------------------------------------------------------------|--|--|
| Label   | Easting         | Northing  | Туре   |                                                                                                               |  |  |
| GGKM-01 | 462,651         | 6,226,713 | Grab   | Quartz pod 1 x 1.5 m across in greenish-grey andesite(?) lapilli tuff to tuff breccia; quartz white, massive, |  |  |
|         |                 |           |        | coarse-crystalline; strongly gossaneous; hematite and goethite 1-3%                                           |  |  |
| GGKM-02 | 462,651         | 6,226,713 | Grab   | Small scale ore shoots (0.5-2 cm wide) of semi-massive pyrite in siliceous andesite tuff; layering at 75      |  |  |
|         | 150             |           |        | degrees, strikes N-S                                                                                          |  |  |
| GGKM-03 | 462,644         | 6,226,717 | Float  | Banded rhyolite-to-chert (strongly siliceous), whitish; diss. Py 1-1.5%                                       |  |  |
| GGKM-04 | 462,648         | 6,226,725 | Grab   | Concordant (sub-parallel to layering/bedding) thin ore shoots of diss. Py 5-7%, banded, in silicified marron  |  |  |
|         |                 |           |        | to brownish Betty Creek lapilli tuff                                                                          |  |  |
| GGKM-05 | 462,643         | 6,226,725 | Grab   | Quartz vein (10-25 cm) in Betty Creek lapilli tuff/tuff; diss. Py usually 1%, locally Py reaches up to 15%    |  |  |
| GGKM-06 | 462,636         | 6,226,733 | Grab   | Orange-yellowish quartz-carbonate pods/irregular veins in greenish andesite tuff/lapilli tuff; cubed Py 2-    |  |  |
|         |                 |           |        | 5%, tr. Cpy, Mn-Fe hydroxides                                                                                 |  |  |
| GGKM-07 | 462,551         | 6,226,709 | Float  | Quartz vein material with dark greenish andesite tuff wallrock, epiclastic (?) material); Py 2-4%             |  |  |
| GGKM-08 | 462,580         | 6,226,744 | Grab   | Irregular quartz veins (about 20 cm thick) along the boundary between andesite tuff and andesite lapilli      |  |  |
|         | •               |           |        | tuff/tuff breccia; specularite hematite + goethite 1%                                                         |  |  |
| GGKM-09 | 462,565         | 6,226,746 | Grab   | Irregular quartz-carbonate veins in a shear zone cutting through greenish andesite tuff; diss. + cubed Py 1-  |  |  |
|         |                 |           |        | 3%                                                                                                            |  |  |
| GGKM-10 | 462,375         | 6,226,909 | Float  | Intense reddish, thinly banded jasperoid, slightly brecciated with thin chalcedony veinlets; diss.            |  |  |
|         |                 |           |        | Specularite hematite + magnetite                                                                              |  |  |
| GGKM-11 | 462,226         | 6,227,093 | Float  | Medium grey, cloudy, very strongly silicified rhyolite or chert, massive; with stringers/lenses containing    |  |  |
|         |                 |           |        | diss. Py 1-2%                                                                                                 |  |  |
| GGKM-12 | 462,289         | 6,227,189 | Float  | Quartz vein material, whitish to yellowish-rusty; Py 1%, Sph 5%, tr. Ga                                       |  |  |
| GGKM-13 | 462,332         | 6,227,223 | Float  | Moderately silicified dacite volcanic, incipient brecciation; Py tr0.5%, tr. Sph?                             |  |  |
| GGKM-14 | 462,330         | 6,227,278 | Grab   | Strongly silicified andesite/dacite(?) volcanic with irregular pyrite flooding zones; Py diss.+blebs 7-10%    |  |  |
| GGKM-15 | 462,330         | 6,227,278 | Grab   | Strongly silicified andesite/dacite(?) volcanic, distinct strong brecciation and associated incipient quartz  |  |  |
|         |                 | **        |        | veining; diss.+blebs Py less than 1%                                                                          |  |  |
| GGKM-16 | 462,355         | 6,227,269 | Float  | Strongly silicified and brecciated/quartz veining andesite/dacite (?) volcanic; locally Py stockwork 3-10%    |  |  |
| GGKM-17 | 462,442         | 6,227,347 | Float  | Strongly silicified dacite tuff; cubed + diss Py 1-3%                                                         |  |  |
| GGKM-18 | 462,461         | 6,227,368 | Float  | Quartz vein, 3-5 cm wide, drusy, medium crystalline in wallrock of light greenish-yellow andesite-dacite      |  |  |
|         |                 |           |        | volcanic rock; cubed Py 3-4%                                                                                  |  |  |
| AGKM-01 | 462,134         | 6,229,842 | Float  | Big boulder of weakly silicified banded jasperoid/tuff with fractures perpendicular to banding filled with    |  |  |
|         |                 |           |        | drusy quartz; cubed Py 3-9%                                                                                   |  |  |
| AGKM-02 | 462,116         | 6,229,825 | Float  | Banded jasperoid, cherty, lo&ally strongly brecciated with quartz veinlets and/or silica flooding; Py 1%      |  |  |

| Sample   | UTM Coordinates         |           | Sample  | Description                                                                                                                                                                                               |  |
|----------|-------------------------|-----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Label    | Easting                 | Northing  | Туре    | Description                                                                                                                                                                                               |  |
| AGKM-03  | 462,116 6,229,825 Float |           | Float   | Quartz vein material, coarse crystalline, white to slightly yellowish-rusty with wallrock of andesite volcanic rock; Ga 1.5%, Py tr1%                                                                     |  |
| AGKM-04  | 462,158                 | 6,229,787 | Grab    | Black, organic-rich silty shale/mudstone with silica-pyrite concretionary forms of small size, leached (Bowser Lake Group?)                                                                               |  |
| AGKM-05  | 462,189                 | 6,229,778 | Subcrop | Dark grey, pyriteferous silty black shale/mudstone, laminated; Py disseminated in laminae and in quartz veinlets 3-5% (Bowser Lake Group?)                                                                |  |
| AGKM-06  | 462,185                 | 6,229,782 | Grab    | Quartz-carbonate vein 20 cm thick in a tectonic zone/fault cutting through black shale/mudstone; no visible sulphides (Bowser Lake Group?)                                                                |  |
| AGKM-07  | 462,247                 | 6,229,788 | Subcrop | A set of thin quartz veinsalong the tectonic/fault contact of the black mudstone/shale with very thick bedded volcaniclastics (epiclastic material admixed); quartz yellowish-rusty; no visible sulphides |  |
| AGKM-08  | 462,243                 | 6,229,774 | Grab    | Package of black pyriteferous shale/mudstone covering an uneven surface of the faulted blocks of volcaniclastics; Py most like syngenetic (base of the Bowser Lake Group?)                                |  |
| AGKM-09  | 462,272                 | 6,229,779 | Float   | Light gray-yellowish, silicified, dacite(?) coarse-grained tuff to lapilli tuff; Py flood, blebs and disseminations, Py 5-10%                                                                             |  |
| AGKM-10  | 462,272                 | 6,229,779 | Float   | Coarse-grained epiclastic tuff, most likely felsic, with blebs of Py 3-5%                                                                                                                                 |  |
| AGKM-11  | 462,289                 | 6,229,791 | Float   | Large fragment of a quartz vein, quartz white, coarse-crystalline; Py 0.5-1%, tr. enargite(?)                                                                                                             |  |
| AGKM-12  | 462,072                 | 6,230,241 | Float   | Fragments of thin banded jasperoid-chert with quartz veinlets cutting across the banding; very magnetite rich (strongly magnetic); Py diss. 3-5%                                                          |  |
| AGKM-12a | 462,072                 | 6,230,241 | Float   | Fragment of thin banded, dark grey to brownish chert; diss. Py in selected laminae; tr. Sph?                                                                                                              |  |
| AGKM-13  | 462,023                 | 6,230,286 | Float   | Fragments of dark grey, thin banded mudstone/chert with extr. thin laminae enriched in Py and Sph(?)                                                                                                      |  |
| AGKM-14  | 461,910                 | 6,230,404 | Float   | Fragments of dark grey, thinly banded chert; diss. Py and Sph(?) in selected thin laminae                                                                                                                 |  |
| AGKM-14a | 461,910                 | 6,230,404 | Float   | Small fragments of quartz vein material, white to patchy-yellowish; tr1% Ga                                                                                                                               |  |
| AGKM-15  | 461,841                 | 6,230,827 | Grab    | Thin to medium thick quartz veins along the tectonic/fault contact cutting across the felsic(?) tuff; no visible sulphides                                                                                |  |
| AGKM-16  | 461,903                 | 6,230,796 | Grab    | Black calcareous shale/mudstone, slightly concretionary, locally pyriteferous; Py 1-3%                                                                                                                    |  |
| AGKM-17  | 462,008                 | 6,230,737 |         | Quartz-carbonate veins from a zone of a strong tectonic deformation (faulting and folding), locally strongly sheared, patchy gossaneous; cubed + diss. Py 1-3%                                            |  |
| LGKM-01  | 463,156                 | 6,224,676 | Float   | Small boulder with a white quartz vein in a silicified dacite/andesite of mixed composition (epiclastic?) rock; strong limonite stain, tr Py                                                              |  |
| LGKM-02  | 463,056                 | 6,224,655 | Float   | Yellowish dacite epiclastic (redeposited?) rock with thin Py stringers; Py 0.5-1%                                                                                                                         |  |
| LGKM-03  | 462,941                 | 6,224,632 | Float   | Yellowish-grey dacite volcanic rock with cherty bandes with diffuse boundaries, thin quartz veins; tr Py                                                                                                  |  |

| Sample    | ole UTM Coordinates |           | Sample | Description                                                                                                                                           |  |  |  |
|-----------|---------------------|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Label     | Easting             | Northing  | Туре   |                                                                                                                                                       |  |  |  |
| LGKM-04   | 462,907             | 6,224,580 | Float  | A boulder of yellowish dacite, fine-crystalline to aphanitic volcanic rock with some quartz-carbonate veins, coarse-crystalline; no visible sulphides |  |  |  |
| LGKM-05   | 462,770             | 6,224,515 | Float  | Glacial lateral moraine; small fragment of quartz vein/chert with dark maroon stain (jasperoid-type); Py tr0.5%, Ga tr.                               |  |  |  |
| LGKM-06   | 462,770             | 6,224,515 | Float  | Small fragment of quartz-rhodochrosite(?) vein or pod with strong limonite-goethite stain (5-7%); tr. Py                                              |  |  |  |
| LGKM-07   | 462,725             | 6,224,544 | Float  | A cobble size boulder of dark grey, strongly silicified/cherty dacite/rhyodacite to rhyodacite breccia; semimassive Py 10-15%                         |  |  |  |
| LGKM-08 ° | 462,448             | 6,224,493 | Float  | A cobble size boulder with quartz-carbonate vein (white to orange) in greenish andesite volcanic rock; tr. 0.5% Sph                                   |  |  |  |
| LGKM-09   | 462,236             | 6,224,485 | Float  | Lateral moraine with predominant Betty Creek type of material; small-size fragment of quartz-carbonate vein to breccia, coarse crystalline; tr. Sph   |  |  |  |
| LGKM-10   | 462,236             | 6,224,485 | Float  | A small fragment of quartz-epidote vein, white to orange, probably with pinkish rhodochrosite                                                         |  |  |  |
| A17-01    | 453269              | 6221330   | grab   | Dark gray massive bed of chert 10 m wide with 1-2% limonite pseudomorphs after pyrite.                                                                |  |  |  |
| A17-06    | 464358              | 6224819   | float  | Angular boulder 20x20 cm of chert breccia cemented by limestone/mudstone with                                                                         |  |  |  |
|           |                     |           |        | some extremelly fine grained disseminated sulphides, minor galena.                                                                                    |  |  |  |
| A17-07    | 464358              | 6224819   | float  | Angular boulder 40x30 cm of andesitic rock cut by numerous quartz veinlets with minor                                                                 |  |  |  |
|           |                     |           |        | pyrite, galena and black unindentified sulphide.                                                                                                      |  |  |  |
| A17-08    | 464621              | 6224734   | float  | Subrounded float 10x10 cm of laminated chert/argillite with some extremely fine grained                                                               |  |  |  |
|           |                     |           |        | disseminated sulphides.                                                                                                                               |  |  |  |
| A17-09    | 464722              | 6224587   | float  | Angular float 10x15 cm of quartz vein with 7-10% pyrrhotite.                                                                                          |  |  |  |
| A17-10    | 464723              | 6224561   | float  | Fist size float of quartz vein fragment with 25-30% coarse pyrite and minor galena.                                                                   |  |  |  |
| A17-11    | 464598              | 6224652   | float  | Angular boulder 40x30 cm in size of mudstone cemented breccia composed of chert and                                                                   |  |  |  |
|           |                     |           |        | limestone fragments with some gray sulphides (?) in the matrix. There are few similar                                                                 |  |  |  |
|           |                     |           |        | boulders nearby of up to 1.0 m in size.                                                                                                               |  |  |  |
| A17-12    | 463931              | 6224942   | grab   | 5-15 cm wide quartz vein with 15-20% coarse pyrite. Orientation 160/v. Pyrite is                                                                      |  |  |  |
|           |                     |           |        | concentrated in a few spots within the vein. There are several similar veins nearby.                                                                  |  |  |  |
| A17-13    | 463936              | 6224937   | grab   | 7-8 cm wide quartz vein with 25-30% coarse pyrite. In most part the vein contais no                                                                   |  |  |  |
|           |                     |           |        | sulphides except in a few spots. Orientation 90/30S.                                                                                                  |  |  |  |
| A17-14    | 463944              | 6224849   | grab   | 10 cm wide quartz vein with 30-40% coarse pyrite. Mineralization of the vein is sporadic,                                                             |  |  |  |
|           |                     |           |        | concentrated in a few places. Orientation 140/shallow S.                                                                                              |  |  |  |
|           |                     |           |        | 34                                                                                                                                                    |  |  |  |

| Sample #  | Coordinat | tes (NAD 83) | Sample type | Description                                                                                  |
|-----------|-----------|--------------|-------------|----------------------------------------------------------------------------------------------|
|           | Easting   | Northing     |             |                                                                                              |
| A17-15    | 463939    | 6224886      | grab        | Irregular quartz vein 20-30 cm wide, sporadically it contains up to 20% pyrite.              |
|           |           |              |             | Orientation 190/shallow W.                                                                   |
| A17-104   | 463381    | 6224649      | float       | Angular float 20x10 cm of quartz vein fragment with minor pyrite and sphalerite.             |
| A17-105   | 463383    | 6224666      | float       | Big angular float 1.0 x 0.2 m in size of limonitic quartz vein with minor blackish sulphide. |
| A17-106   | 463909    | 6224757      | grab        | Quartz vein 20 cm wide with minor pyrite and dark gray exteremely find grained sulphide.     |
| A17-107   | 463876    | 6224747      | float       | Small fragment of 3 cm wide quartz vein with 1% pyrite and arsenopyrite (?) as thin          |
|           |           |              |             | 1 mm wide veinlets. It most likely came from the cliff above.                                |
| A17-108 - | 462658    | 6224529      | float       | Small slab of maroon volcanicks with 1-2% chalcopyrite as small veinlets and blebs.          |
| A17-131   | 462702    | 6226681      | float       | Angular boulder 20x10 cm of mudstone with felsic fragments.                                  |
| A17-132   | 462896    | 6226810      | grab        | Layer of weathering brown mudstone/siltstone 0.3-5m wide with trace to minor sphalerite,     |
|           |           |              |             | galena and minor hydrozincite stain. Orientation 300/20N. The layer can be traced for        |
|           |           |              |             | 15-20m.                                                                                      |
| A17-133   | 463090    | 6226848      | grab        | Sericite-quartz altered zone 4-20 metres wide with 1-3% disseminated pyrite. The zone is     |
|           |           |              |             | a part of larger fault which strike 330 degrees with steep N dip.                            |
| A17-134   | 463063    | 6226912      | float       | Angular float 40x20 cm of limonitic quartz with trace to minor pyrite, fine grained galena,  |
|           |           |              |             | sphalerite and black unidentified sulphide.                                                  |
| A17-135   | 462956    | 6226963      | float       | Angular float 40x20 cm, thick slab of limestone with trace to minor sphalerite.              |
| A17-136   | 462955    | 6226970      | float       | Angular boulder 0.5 m across of laminated chert-limestone, weathering brown with 0.5%        |
|           |           |              |             | sphalerite forming streaks parallel to lamination and disseminated grains.                   |
| A17-137   | 462158    | 6230564      | float       | Angular boulder 10 cm across of quartz cemented mudstone breccia, abundant limonite.         |
| A17-138   | 462226    | 6230495      | float       | Fist size float of limestone/chert with trace to minor galena and sphalerite (?)             |
| A17-139   | 462903    | 6230295      | grab        | 40 cm wide layer of mudstone with some limonite and bluish stain.                            |
| A17-140   | 462941    | 6230189      | float       | Boulder 40x30 cm of finelly laminated chert with some extremely fine grained sulphides.      |
| A17-141   | 463344    | 6230179      | float       | Angular float (fist size) of finelly laminated limestone/chert with minor spahalerite and    |
|           |           |              |             | galena.                                                                                      |
|           |           |              |             |                                                                                              |
|           |           |              |             |                                                                                              |
|           |           |              | Pi .        |                                                                                              |
|           |           |              |             |                                                                                              |
|           |           | 7+7          |             |                                                                                              |
|           |           |              |             |                                                                                              |
|           |           |              |             |                                                                                              |
|           |           |              |             |                                                                                              |
|           |           |              |             |                                                                                              |
|           |           |              |             |                                                                                              |

| Sample # | Coordinate | es (NAD 83) | Sample type | Description                                                                                                                                                                                                                                                                                 |
|----------|------------|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Easting    | Northing    |             |                                                                                                                                                                                                                                                                                             |
| LJ023    | 462258     | 6228255     | Grab        | O/C, heavy, strong black to orange yellow staining on surface, near Qz Barite veining (15 to 1cm wide) with zipper fibrous texture, hard to get fresh sample, some boxwork, tr to 1% diss py, tr galena, 1-2% sphalerite                                                                    |
| LJ024    | 462258     | 6228255     | Grab        | O/C, heavy, strong black to orange yellow staining on surface, Barite vein, white and brown on fresh surface, 1% diss+bleb py, 2% diss chalco, tr galena, 5-10% sphalerite                                                                                                                  |
| LJ025 .  | 462258     | 6228255     | Grab        | O/C, Qz,carbonate, barite vein, intense Fe oxy on weathered surface, crystaline chlorite veins and bleb, 1% sphalerite                                                                                                                                                                      |
| LJ026    | 462252     | 6228255     | Grab        | Horizontal Qz, carbonate, barite vein, mineralization is very variable, coxcomb texture. Qz and barite left, tr sphalerite, galena, py, chalco in bleb, lot of black oxyde, mangenese staining visible on surface and fractures                                                             |
| LJ027    | 462252     | 6228255     | Grab        | Same horizontal Qz, carbonate, barite vein, mineralization is very variable, coxcomb texture.  Mostly Qz and barite left, where not too altered tr sphalerite, galena, py, chalco in blebs, lot of black oxyde, mangenese staining visible on surface and fractures                         |
| LJ028    | 462252     | 6228255     | Grab        | Calcite barite vein/bleb, shows dense stockwork of brown stringners (in positive relief), some bleb of dark crystaline chlorite, little Fe oxy.                                                                                                                                             |
| LJ029    | 462252     | 6228255     | Grab        | Mafic rock, 10-20% very fine grain diss galena, tr diss py, 5-10% shalerite?, 5% white barite, strong Fe ox on weathered surface, very lightly magnetic                                                                                                                                     |
| LJ061    | 462203     | 6228166     | Grab        | Btw 2 chert bed, dark brown more alt rock, mox of chert and barite, dark brown alt, tr py, 1% chalco, up to 5% sphalerite, tr galena, syngenetic, magnetic (Magnetite), bedded meta sed                                                                                                     |
| LJ062    | 462203     | 6228166     | Grab        | meta sed, barite, very heavy, tr-1% galena diss, up to 5% sphalerite, tr py, some maganese staining, pale white to brown on fresh surface, white to salmon like color on weathered surface                                                                                                  |
| LJ063    | 462189     | 6228172     | Grab        | Meta sed, black to dark grey on weathered surface, dark grey to black and brown an fresh surface, sandstone like texture and grain size, up to 50% galena very fine grain, diss, 10% sphalerite, coarse grain diss, syngenetic bed, very weakly magnetic, hematite, specularite, magnetite? |
| LJ064    | 462170     | 6228200     | Grab        | mafic volcanic, HB porphyry phenocryst, cut by galena/sphalerite veinlet, light brown sphalerite tr- 1% overall, coarse to fine grain galena, tr-1% overall, volcanic host is Fe oxy on weathered surface with tr diss py, weak chlorite alt                                                |
| LJ065    | 462203     | 6228199     | Grab        | barite veining, white with brown dots (sphalerite?), tr to 1% galena bleb, 1-5% sphalerite?, weak Fe oxy on weathered surface                                                                                                                                                               |
| LJ066    | 462203     | 6228199     | Grab        | dark grey to black on weathered surface, hydrozynchite?, sandstone-siltstone, barite, heave, 5-<br>10% galena fine grain diss, 5-10% sphalerite? Fine grain, some Fe-carbonate veinlet bearing tr<br>chalco cutting through the sample                                                      |

| 74 6228117<br>74 6228117 |       | Sample type        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | -     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74 6228117               | LJ067 | Grab               | Old adit? Hole in the cliff, about 2-3 feet in diameter by 6-7 feet deep. Very heavy grab, barite rich (white) otherwise mostly dark grey, brecciated texture, no visible mineralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | LJ068 | Grab               | Very alt, cant get fresh sample, black to dark brown, heavy, must by barite rich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 70 6228123               | LJ069 |                    | sub-crop, barite vein?, up to 15% galena in bleb, fine grain, white-brown-beige on weathered surface, very powdery feeling, white on fresh surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 61 6228123               | LJ070 | Grab               | Very localized hydrothermal vein, or small finelly bedded lens or raft of barite sphalerite galena, some hydrozinchite, 5-10% sphalerite diss+veinlets, 60% barite, 5-10% galena, diss+veinlets, wavy layering in veins, generaly oriented discordant to surounding meta sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 59 6228128               | LJ071 |                    | 2 m to the looker's right of LJ070. Finely bedded chert?, grey aphanitic, cut by some red-brown stockwork (very fine grain sphalerite?) no obvious mineralization, curiously has the same orientation as LJ070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 59 6228128               | LJ072 |                    | Very localized hydrothermal vein, or small finelly bedded lens or raft of barite sphalerite galena, some hydrozinchite, 5-10% sphalerite diss+veinlets, 60% barite, 5-10% galena, diss+veinlets, wavy layering in veins, generaly oriented discordant to surounding meta sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 59 6228128               | LJ073 |                    | Very localized hydrothermal vein, or small finelly bedded lens or raft of barite sphalerite galena, some hydrozinchite, 5-10% sphalerite diss+veinlets, 60% barite, 5-10% galena, diss+veinlets, wavy layering in veins, generaly oriented discordant to surounding meta sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 66 6228148               | LJ074 |                    | Finely bedded chert, with tr galena, dark brown to black alt on weathered surface, white to dark grey on fresh surface, cut by some mm size calcite galena sphalerite(very lustery) veinsome weak hydrozinchite staining, tr-1% galena, tr-1% spahlerite, the bedding is wavy but concordant with the other meta sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 65 6228142               | LJ075 | Grab               | Finely bedded wavy chert, with barite and tr galena, black alt on weathered surface, dark grey to brown on fresh surface, some weak hydrozinchite staining, tr-3% galena, tr-1% spahlerite, the bedding is wavy but concordant with the other meta sed, 0.75 lower than previous sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 48 6228125               | LJ076 | ,                  | on the edge of the ridge quite higher up the LJ070, some tight fold visible on weathered surface black-brown, to white on weathered surface, grey white and brown on fresh surface, calcite, Qz, barite fine grain, 1% galena bleb fine grain, tr-3% sphalerite brownish, fine grain in bleb and stringners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48 6228125               | LJ077 | Chip               | Chip sample taken over 1,8m from LJ070 to LJ071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          |       | 6228125<br>6228125 | Caption Control of the Control of th |

| Sample # | Coordinat | tes (NAD 83) | Sample type | Description                                                                                                                                                                           |
|----------|-----------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Easting   | Northing     |             |                                                                                                                                                                                       |
| DM124    | 462670    | 6226680      | Float       | Light green felsic volcanic with quartz on joints showing trace pyrite and galena.                                                                                                    |
| DM125    | 462711    | 6226661      | Grab        | Gossanous weathering spongy Lapilli Ash Tuff with no visible sulphides.                                                                                                               |
| DM126    | 462725    | 6226708      | Grab        | Discontinuous gash with minor quartz and pockets of very fine grained pyrite and lesser chalcopyrite.                                                                                 |
| DM127    | 462760    | 6226843      | Grab        | Narrow but prominent shear with 15cm quartz vein on south boundary. Small amounts of chalcopyrite in quartz.                                                                          |
| DM128    | 462760    | 6226843      | Grab        | 20cm quartz vein on North boundary (1m apart) contains pyrite and sphalerite in large pods. 20z% sulphides.                                                                           |
| DM129    | 462729    | 6226875      | Grab        | Gossanous quartz vein from same structure as DM127.                                                                                                                                   |
| DM130    | 462731    | 6226925      | Float       | Cobble of quartz vein with bands of medium grained pyrite and sphalerite. Angular and presumably from same structure as DM127. 7% sulphides.                                          |
| DM131    | 462686    | 6226925      | Chip        | Same structure as DM127. Sample across 0.5m quartz vein with fine galena and pyrite to 1%.                                                                                            |
| DM132    | 462686    | 6226925      | Grab        | Sample at edge of glacier from Northern boundary of shear. 2m away from sample DM131. Pyrite and chalcopyrite in discontinous bands with lesser galena and sphalerite. 15% sulphides. |
| DM133    | 462714    | 6226974      | Float       | Cobble of dark grey chert with boxwork of thin quartz veinlets containing disseminated pyrite.                                                                                        |
| DM134    | 462714    | 6226974      | Float       | Brown weathering pale pink on fresh breaks. Banded to laminated chert. Partially brecciated with finely disseminated sulphides. Pyrite and galena and or magnetite.                   |
| DM135    | 462407    | 6229904      | Float       | Cobble of light grey andesitic intrusive with thin quartz vein and trace disseminated pyrite.                                                                                         |
| DM136    | 461998    | 6229932      | Float       | Small boulder of chert and fine gray flsic intrusive. Possibly a Breccia with fine pyrite on fractures.                                                                               |
| DM137    | 461950    | 6229964      | Float       | Pale green to reddish Ash Tuff with very fine disseminated sulphides. Coarser cubic pyrite on fractures.                                                                              |
| DM138    | 461904    | 6230003      | Float       | Cobble of crudely banded pinkish to red jasperoid (?) trace sulphides and magnetite (?).                                                                                              |
| DM139    | 461527    | 6230231      | Grab        | Undulating 10cm quartz vein with centre of arsenopyrite and lesser pyrite. 20% sulphides. Near edge of glacier. Structure seems discontinuous.                                        |
| DM140    | 461821    | 6229954      | Float       | Pinkish red and crudely banded jasperoid with trace galena/ magnetite. Outcrop can be seen in cliff above talus slope. Vertical and up to 3m wide.                                    |
| DM141    | 461907    | 6229896      | Float       | Brecciated quartz vein with granular masses of arsenopyrite, chalcopyrite and trace galena. Sulphides 5%                                                                              |

**APPENDIX II** 

**DRILL LOGS** 

| : 275<br>on: 25 |       |                                                                     | Total depth: 210.00 m Core size: NQ                                                                                                                                         | Logged b                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
|-----------------|-------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |       |                                                                     | Start: October 01, 2017                                                                                                                                                     | Easting:                                                                                                                                                                                                                                                                                                                                                             | 462313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                                                      | North                    | ing: 6228        | 3243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
|                 |       |                                                                     | Completion: October 07, 2017                                                                                                                                                | Elevation                                                                                                                                                                                                                                                                                                                                                            | ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
| al (met         | ters) | Rock type                                                           | Rock description                                                                                                                                                            | Sa                                                                                                                                                                                                                                                                                                                                                                   | mple in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | terval (n                                                                                                    | netres)                                                                                                              | Ag                       | Cu               | Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Au                                                                                                                                                               |
| Ťο              | Width | 71                                                                  | ·                                                                                                                                                                           | Sample #                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | To                                                                                                           | Width                                                                                                                |                          | %                | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm                                                                                                                                                              |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
| 19.60           | 19.60 | Trachyte                                                            | Gray, completely sericite-chlorite altered rock, massive texture.                                                                                                           | 132001                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.00                                                                                                         | 3.00                                                                                                                 | 1.3                      | 0.023            | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005                                                                                                                                                           |
|                 |       |                                                                     | The rock is magnetic from 1-2% fine disseminated magnetite.                                                                                                                 | 132002                                                                                                                                                                                                                                                                                                                                                               | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.00                                                                                                         | 3.00                                                                                                                 | 5.7                      | 0.007            | 0.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005                                                                                                                                                           |
|                 |       |                                                                     | The interval contains several veins 0.2 to to 20 cm wide composed of                                                                                                        | 132003                                                                                                                                                                                                                                                                                                                                                               | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.00                                                                                                         | 3.00                                                                                                                 | 2.9                      | 0.004            | 0.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005                                                                                                                                                           |
|                 |       |                                                                     |                                                                                                                                                                             | 132004                                                                                                                                                                                                                                                                                                                                                               | 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.00                                                                                                        | 3.00                                                                                                                 | 4.2                      | 0.005            | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005                                                                                                                                                           |
|                 |       |                                                                     | galena and sphalerite. Veins atitudes vary from 20 to 90 degrees to                                                                                                         | 132005                                                                                                                                                                                                                                                                                                                                                               | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.00                                                                                                        | 3.00                                                                                                                 | 4.3                      | 0.006            | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005                                                                                                                                                           |
|                 |       |                                                                     | c/a.                                                                                                                                                                        | 132006                                                                                                                                                                                                                                                                                                                                                               | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.00                                                                                                        | 3.00                                                                                                                 | 11                       | 0.006            | 0.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005                                                                                                                                                           |
|                 |       |                                                                     |                                                                                                                                                                             | 132007                                                                                                                                                                                                                                                                                                                                                               | 18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.60                                                                                                        | 1.60                                                                                                                 | 13.3                     | 0.015            | 0.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005                                                                                                                                                           |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
| 22.00           | 2.40  |                                                                     |                                                                                                                                                                             | 132008                                                                                                                                                                                                                                                                                                                                                               | 19.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.00                                                                                                        | 2.40                                                                                                                 | 56.4                     | 0.017            | 0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.012                                                                                                                                                            |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
|                 |       |                                                                     | galena and sphalerite.                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
| 20.85           | 0.35  |                                                                     | Quartz vein with minor galena.                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
| 33.00           | 11.00 | Trachyte                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.006                                                                                                                                                            |
|                 |       | locally silicified which destroyed the primary texture of the rock. |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                  |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.006                                                                                                                                                            |
|                 |       |                                                                     |                                                                                                                                                                             | 132012                                                                                                                                                                                                                                                                                                                                                               | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.00                                                                                                        | 3.00                                                                                                                 | 9.6                      | 0.004            | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.006                                                                                                                                                            |
| 10.00           | 0.00  |                                                                     |                                                                                                                                                                             | 100010                                                                                                                                                                                                                                                                                                                                                               | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4.70                                                                                                       | 4.50                                                                                                                 |                          |                  | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
| 42.60           | 9.60  |                                                                     | • • • • • • • • • • • • • • • • • • • •                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                           |
|                 |       | sulphide zone                                                       |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 1.50                                                                                                                 |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005                                                                                                                                                            |
|                 |       |                                                                     | carbonates, pyrite and sporadically minor galena and sphalerite.                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 4.50                                                                                                                 |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.066                                                                                                                                                            |
| 00.00           | 0.05  |                                                                     | 40.450/ . (                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.015                                                                                                                                                            |
| 36.00           | 0.65  |                                                                     | 10-15% of extremaly fine grained pyrite, mostly as replacements.                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 1.50                                                                                                                 |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.012                                                                                                                                                            |
| 00.00           | 0.40  |                                                                     | 0-1                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | 4.50                                                                                                                 |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                           |
| 38.00           | 0.40  |                                                                     | Carbonate replacements with 10-15% sphalerite and minor galena.                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.018                                                                                                                                                            |
|                 |       |                                                                     |                                                                                                                                                                             | 132020                                                                                                                                                                                                                                                                                                                                                               | 40.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.60                                                                                                        | 2.10                                                                                                                 | 23                       | 0.012            | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.012                                                                                                                                                            |
| 10 OF           | 6.25  | Trachuto                                                            | Same as interval 22.0 to 22.0 m                                                                                                                                             | 122021                                                                                                                                                                                                                                                                                                                                                               | 42.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.00                                                                                                        | 2.40                                                                                                                 | 16.7                     | 0.011            | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.006                                                                                                                                                            |
| 40.95           | 0.33  | Hachyte                                                             | Same as milerval 22.0 to 55.0 m.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.006                                                                                                                                                            |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
|                 |       |                                                                     |                                                                                                                                                                             | 132023                                                                                                                                                                                                                                                                                                                                                               | 47.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.90                                                                                                        | 1.90                                                                                                                 | ∠4                       | 0.166            | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005                                                                                                                                                           |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash \vdash \vdash$                                                                                                                                           |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash \vdash \vdash$                                                                                                                                           |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\vdash \vdash \vdash$                                                                                                                                           |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |
|                 |       |                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              |                                                                                                                      |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\vdash$                                                                                                                                                         |
| 2 3 3           | 19.60 | 19.60                                                               | 19.60 19.60 Trachyte  22.00 2.40 Laminated chert -pyrite sulphide zone  20.85 0.35  33.00 11.00 Trachyte  42.60 9.60 Crackle breccia/ sulphide zone  36.00 0.65  38.00 0.40 | 19.60   Trachyte   Gray, completely sericite-chlorite altered rock, massive texture.   The rock is magnetic from 1-2% fine disseminated magnetite.   The interval contains several veins 0.2 to to 20 cm wide composed of carbonates with lesser quartz, barite, up to 5% pyrite and up 3% galena and sphalerite. Veins attitudes vary from 20 to 90 degrees to c/a. | 19.60 Trachyte Gray, completely sericite-chlorite altered rock, massive texture.  The rock is magnetic from 1-2% fine disseminated magnetite.  The interval contains several veins 0.2 to to 20 cm wide composed of carbonates with lesser quartz, barite, up to 5% pyrite and up 3% 132004 galena and sphalerite. Veins attitudes vary from 20 to 90 degrees to c/a.  132006  22.00 2.40 Laminated chert -pyrite The interval is composed of 1 to 10 mm thick laminae of gray to black sulphide zone chert and pyrite. Their attitude ranges from 20 to 70 deg. to c/a, often they are strongly deformed to brecciated. Locally trace to minor galena and sphalerite.  20.85 0.35 Quartz vein with minor galena.  20.85 0.35 Quartz vein with minor galena.  20.86 Usable texture. The rock is strongly sericitizied, chloritizied and locally silicified which destroyed the primary texture of the rock.  20.87 Trachyte Massive texture. The rock is strongly sericitizied, chloritizied and locally silicified which destroyed the primary texture of the rock.  20.88 O 9.60 Crackle breccia/ The same rock as interval above. In many places the rock is silicified and and weakly brecciated with fractures filled with chalcedony, carbonates, pyrite and sporadically minor galena and sphalerite.  20.89 O 0.65 The same rock as interval above. In many places the rock is silicified and locally silicified and primary texture of the rock.  20.80 O 0.65 The same rock as interval above. In many places the rock is silicified locally silicified and suphalerite.  20.80 O 0.60 Crackle breccia/ Suphalerite and sphalerite.  20.80 O 0.60 Crackle breccia/ Suphalerite and sphalerite.  20.81 O 0.62 Suphalerite and minor galena.  20.80 O 0.60 Suphalerite and minor galena.  20.80 O | 19.60   19.60   Trachyte   Gray, completely sericite-chlorite altered rock, massive texture.   132001   0.00 | 19.60   Trachyte   Gray, completely sericite-chlorite altered rock, massive texture.   132001   132002   3.00   6.00 | 19.60   19.60   Trachyte | 19.60   Trachyte | 19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.6 | 19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.60   19.6 | 19.60   19.60   Trachyte   Gray, completely sericite-chlorite altered rock, massive texture.   132001   0.00   3.00   3.00   3.00   0.13   0.023   0.023   0.118 |

| DDH: S | C17-3  |       | Rock type               | Rock description                                                        | Sa       | mple in | terval (m |       | Ag    | Cu    | Pb    | Zn    | Au     |
|--------|--------|-------|-------------------------|-------------------------------------------------------------------------|----------|---------|-----------|-------|-------|-------|-------|-------|--------|
| From   | То     | Width |                         |                                                                         | Sample # |         | То        | Width |       | %     | %     | %     | ppm    |
| 48.95  | 76.20  | 27.25 | Barite-chert-           | The interval consists of barite and chert with small amount of          | 132024   | 48.95   | 50.00     | 1.05  | 17.6  | 0.093 | 0.015 | 0.714 | 0.006  |
|        |        |       |                         | mudstone, carbonate, sulphides and possibly gypsum. They mostly         | 132025   | 50.00   | 51.00     | 1.00  | 20.7  | 0.099 | 0.014 | 0.634 | 0.012  |
|        |        |       |                         | form highly deformed laminae and slump breccia. Lamination attitude     | 132026   | 51.00   | 52.50     | 1.50  | 20.8  | 0.038 | 0.028 | 1.030 | 0.008  |
|        |        |       |                         | ranges from 15 to 80 degree to c/a. Chert dominate in the upper and     | 132027   | 52.50   | 54.00     | 1.50  | 75.1  | 0.257 | 0.066 | 2.290 | <0.005 |
|        |        |       |                         | barite in the lower part of the interval. Sulphides include up to 10%   | 132028   | 54.00   | 55.50     | 1.50  | 27    | 0.620 | 0.038 | 1.370 | 0.005  |
|        |        |       |                         | pyrite, trace to 3% sphalerite and trace to 1 % chalcopyrite. They      | 132029   | stan    | dard      |       | 71.6  | 0.215 | 1.320 | 1.560 | 0.031  |
|        |        |       |                         | occur as laminae, disseminated grains and patches.                      | 132030   | 55.50   | 57.00     | 1.50  | 19.4  | 0.600 | 0.024 | 1.220 | <0.005 |
|        |        |       |                         |                                                                         | 132031   | 57.00   | 58.50     | 1.50  | 10.8  | 0.363 | 0.019 | 0.661 | <0.005 |
|        |        |       |                         |                                                                         | 132032   | 58.5    | 60.00     | 1.50  | 12.6  | 0.240 | 0.055 | 1.140 | <0.005 |
|        |        |       |                         |                                                                         | 132033   | dupl    | icate     |       | 12.2  | 0.241 | 0.058 | 1.270 | <0.005 |
|        |        |       |                         |                                                                         | 132034   | 60.0    | 61.50     | 1.50  | 32.9  | 0.754 | 0.051 | 0.691 | 0.014  |
|        |        |       |                         |                                                                         | 132035   | 61.50   | 63.00     | 1.50  | 18.6  | 0.269 | 0.037 | 1.790 | 0.012  |
|        |        |       |                         |                                                                         | 132036   | 63.00   | 64.50     | 1.50  | 14.3  | 0.255 | 0.015 | 1.020 | 0.011  |
|        |        |       |                         |                                                                         | 132037   | 64.50   | 66.00     | 1.50  | 13.8  | 0.247 | 0.010 | 0.400 | 0.011  |
|        |        |       |                         |                                                                         | 132038   | 66.00   | 67.50     | 1.50  | 11.6  | 0.150 | 0.016 | 0.682 | 0.026  |
|        |        |       |                         |                                                                         | 132039   | 67.50   | 69.00     | 1.50  | 10.8  | 0.302 | 0.008 | 0.889 | 0.021  |
|        |        |       |                         |                                                                         | 132040   | 69.00   | 70.50     | 1.50  | 13.8  | 0.210 | 0.028 | 1.530 | 0.035  |
|        |        |       |                         |                                                                         | 132041   | 70.50   | 72.00     | 1.50  | 22.1  | 0.562 | 0.020 | 0.598 | 0.013  |
|        |        |       |                         |                                                                         | 132042   | dupl    | icate     |       | 18.3  | 0.464 | 0.020 | 0.462 | 0.011  |
|        |        |       |                         |                                                                         | 132043   | 72.00   | 73.50     | 1.50  | 21.5  | 0.682 | 0.018 | 0.148 | 0.018  |
|        |        |       |                         |                                                                         | 132044   | 73.50   | 75.00     | 1.50  | 36.7  | 0.544 | 0.035 | 1.530 | 0.012  |
|        |        |       |                         |                                                                         | 132045   | bla     | ank       |       | < 0.2 | 0.001 | 0.000 | 0.006 | <0.005 |
|        |        |       |                         |                                                                         | 132046   | 75.00   |           | 1.20  | 17.7  | 0.282 | 0.010 | 0.079 | 0.006  |
|        |        |       |                         |                                                                         |          |         |           |       |       |       |       |       |        |
| 76.20  | 77.20  | 1.00  | Pyrite replacement      | The interval is composed of chert with lesser carbonate. In most part   | 132047   | 76.20   | 77.20     | 1.00  | 5.2   | 0.005 | 0.012 | 0.122 | 0.043  |
|        |        |       |                         | it is replaced by coarse grained pyrite which constitute 50-60% of      |          |         |           |       |       |       |       |       |        |
|        |        |       |                         | the interval.                                                           |          |         |           |       |       |       |       |       |        |
| 77.20  | 86.00  | 8.80  | Felsic (?) tuff         | Mostly massive texture, occasionally bedding @ 60 to 70 deg. to c/a     | 132048   | 77.20   | 79.00     | 1.80  | 5.2   | 0.080 | 0.002 | 0.040 | 0.018  |
|        |        |       |                         | can be seen. In several places places small clasts of chert were noted  | 132049   | 79.00   | 81.00     | 2.00  | 1     | 0.155 | 0.022 | 0.039 | 0.016  |
|        |        |       |                         | Possible presence of barite in the upper part of the interval. The rock | 132050   | 81.00   | 84.00     | 3.00  | 5.9   | 0.086 | 0.005 | 0.028 | 0.015  |
|        |        |       |                         | is strongly sericitizied and locally silicified. Small quartz veins and | 132051   | 84.00   | 86.00     | 2.00  | 3.9   | 0.042 | 0.002 | 0.014 | 0.012  |
|        |        |       |                         | replacements are present throughout the interval. Trace to 3% pyrite.   |          |         |           |       | 1.3   |       |       |       |        |
|        |        |       |                         |                                                                         |          |         |           |       |       |       |       |       |        |
| 86.00  | 92.00  | 6.00  | Mudstone/trachyte tuff  | Massive texture, sporadically lithic clasts up to 3.0 cm in size, minor | 132052   | 86.00   | 88.00     | 2.00  | 4.3   | 0.059 | 0.008 | 0.016 | 0.010  |
|        |        |       |                         | pyrite.                                                                 | 132053   |         |           |       | 7.9   |       |       |       | <0.005 |
| 89.90  | 90.50  | 0.60  |                         | Strongly silicified interval cut by quartz veinlets mostly @ 20-30 deg. | 132054   | 90.00   |           | 2.00  | 4.6   | 0.068 | 0.029 | 0.027 | 0.007  |
|        |        |       |                         | to c/a, 1-2% sphalerite ?                                               |          |         |           |       |       |       |       |       |        |
|        |        |       |                         | · '                                                                     | 132055   | 92.00   | 93.00     | 1.00  | 7.3   | 0.103 | 0.039 | 0.101 | 0.042  |
| 92 00  | 104.80 | 12.80 | Felsic (?) lapilli-tuff | The interval contains numerous chert clasts up to 5 cm across,          | 132056   | 93.00   | 96.00     | 3.00  | 8.5   | 0.070 | 0.087 | 0.024 | 0.075  |
|        |        |       | (. / iapiii tali        | moderate sericitization.                                                | 132057   | 96.00   | 99.00     | 3.00  | 1.7   | 0.033 | 0.003 | 0.009 | 0.019  |
|        |        |       |                         | moderate constitution.                                                  | 132058   | 99.00   | 102.00    |       | 0.5   | 0.033 | 0.003 | 0.032 | 0.014  |
|        |        |       |                         |                                                                         |          |         |           |       |       |       |       |       |        |
|        |        |       |                         |                                                                         | 132059   | 102.00  | 104.80    | 2.80  | 0.3   | 0.014 | 0.000 | 0.014 | 0.044  |

| DDH: S | SC17-3 |       | Rock type              | Rock description                                                        | Sample | interva | l (metres | s)    | Ag    | Cu    | Pb    | Zn    | Au     |
|--------|--------|-------|------------------------|-------------------------------------------------------------------------|--------|---------|-----------|-------|-------|-------|-------|-------|--------|
| From   | То     | Width |                        | ·                                                                       | Sample | From    | То        | Width | ppm   | %     | %     | %     | ppm    |
| 104.80 | 121.00 | 16.20 | Trachyte lapilli-tuff  | Very dark, almost black rock with 20-30% of small pale yellow           | 132060 | 104.80  | 108.00    | 3.20  | < 0.2 | 0.004 | 0.001 | 0.018 | 0.016  |
|        |        |       |                        | patches (concentrations of sericite and carbonates) which gives the     | 132061 | 108.00  | 111.00    | 3.00  | 0.2   | 0.001 | 0.000 | 0.011 | 0.032  |
|        |        |       |                        | rock mottled appereance. In places the rock contains small clasts       | 132062 | 111.00  | 114.00    | 3.00  | < 0.2 | 0.000 | 0.000 | 0.010 | <0.005 |
|        |        |       |                        | of chert. Minor disseminated pyrite.                                    | 132063 | 114.00  | 117.00    | 3.00  | < 0.2 | 0.000 | 0.001 | 0.011 | 0.022  |
|        |        |       |                        |                                                                         |        |         |           |       |       |       |       |       |        |
| 114.00 | 120.50 | 6.50  |                        | strong sericitization.                                                  | 132064 | 117.00  | 121.00    | 4.00  | < 0.2 | 0.001 | 0.001 | 0.014 | 0.029  |
|        |        |       |                        |                                                                         |        |         |           |       |       |       |       |       |        |
| 121.00 | 156.50 | 35.50 | Trachyte lapilli-tuff- | Except trachyte fragments the rock also contains fragments of           | 132065 | 121.00  | 123.00    | 2.00  | 0.3   | 0.020 | 0.001 | 0.022 | <0.005 |
|        |        |       | breccia                | rhyolite and chert. Clasts are up to 37 cm across. Locally the rock is  | 132066 | 123.00  | 126.00    | 3.00  | 0.3   | 0.020 | 0.001 | 0.026 | 0.007  |
|        |        |       |                        | moderately sericitizied and chloritizied. Minor extremely fine grained  | 132067 | 126.00  | 129.00    | 3.00  | 1     | 0.022 | 0.007 | 0.046 | 0.012  |
|        |        |       |                        | disseminated pyrite.                                                    | 132068 | 129.00  | 132.00    | 3.00  | 1.4   | 0.003 | 0.215 | 0.023 | 0.043  |
|        |        |       |                        |                                                                         | 132069 | 132.00  | 135.00    | 3.00  | < 0.2 | 0.000 | 0.001 | 0.011 | <0.005 |
|        |        |       |                        |                                                                         | 132070 | 135.00  | 138.00    | 3.00  | < 0.2 | 0.001 | 0.000 | 0.010 | <0.005 |
|        |        |       |                        |                                                                         | 132071 | 138.00  | 141.00    | 3.00  | < 0.2 | 0.001 | 0.000 | 0.010 | <0.005 |
|        |        |       |                        |                                                                         | 132072 | 141.00  | 144.00    | 3.00  | 0.2   | 0.006 | 0.000 | 0.010 | <0.005 |
| 156.50 | 160.30 | 3.80  | Fault Zone             | Some sections of the fault consists of strongly limonitic, badly broken | 132073 | 144.00  | 147.00    | 3.00  | 0.3   | 0.011 | 0.000 | 0.017 | 0.006  |
|        |        |       |                        | core to rock chips. They are intercalated with sections replaced by     | 132074 | 147.00  | 150.00    | 3.00  | < 0.2 | 0.001 | 0.000 | 0.013 | <0.005 |
|        |        |       |                        | quartz.                                                                 | 132075 | 150.00  | 153.00    | 3.00  | 0.3   | 0.002 | 0.001 | 0.024 | <0.005 |
|        |        |       |                        |                                                                         | 132076 | 153.00  | 156.50    | 3.50  | < 0.2 | 0.001 | 0.000 | 0.019 | <0.005 |
|        |        |       |                        |                                                                         | 132077 | 156.50  |           | 3.80  | 0.9   | 0.005 | 0.001 | 0.031 | <0.005 |
| 160.30 | 210.00 | 49.70 | Trachyte lapilli-tuff  | Dark, almost black colour. Except trachyte fragments the rock also      | 132078 |         | 162.00    | 1.70  | < 0.2 | 0.003 | 0.000 | 0.034 | <0.005 |
|        |        |       |                        | contains 5-15% rhyolite and small amount of chert clasts.               | 132079 | 162.00  | 165.00    | 3.00  | 0.3   | 0.002 | 0.000 | 0.031 | 0.005  |
| 165.00 | 165.15 | 0.15  | Fault                  | Small quartz fragments and fault gouge.                                 | 132080 | 165.00  |           | 3.00  | < 0.2 | 0.002 | 0.000 | 0.038 | 0.005  |
|        |        |       |                        |                                                                         | 132081 | 168.00  | 171.00    | 3.00  | 0.3   | 0.002 | 0.001 | 0.014 | 0.006  |
| 184.80 | 185.00 | 0.20  | Fault                  | Clay gouge                                                              | 132082 | 171.00  |           | 3.00  | 0.4   | 0.002 | 0.000 | 0.023 | <0.005 |
|        |        |       |                        |                                                                         | 132083 | 174.00  |           | 3.00  | 0.3   | 0.002 | 0.001 | 0.024 | <0.005 |
| 186.00 | 197.50 | 11.50 |                        | Interval has a light gray colour due to sericite alteration.            | 132084 | 177.00  | 180.00    | 3.00  | 0.2   | 0.002 | 0.000 | 0.038 | <0.005 |
|        |        |       |                        |                                                                         |        |         |           |       |       |       |       |       |        |
| 189.00 | 192.00 | 3.00  |                        | Remnant bedding @70 degrees to c/a.                                     | 132085 |         | 183.00    | 3.00  | < 0.2 | 0.002 | 0.000 | 0.038 | <0.005 |
|        |        |       |                        |                                                                         | 132086 | 183.00  |           | 3.00  | < 0.2 | 0.002 | 0.000 | 0.031 | 0.018  |
| 192.10 | 195.10 | 3.00  | Fault                  | Badly broken core to strongly limonitic rock chips, locally clay gouge. | 132087 | 186.00  |           | 3.00  | 0.5   | 0.003 | 0.001 | 0.023 | <0.005 |
|        |        |       |                        |                                                                         | 132088 | 189.00  |           | 3.00  | 0.3   | 0.005 | 0.001 | 0.039 | <0.005 |
|        |        |       |                        |                                                                         | 132089 |         |           |       | 1.8   | 0.002 | 0.001 | 0.018 |        |
|        |        |       |                        |                                                                         | 132090 |         |           |       | 0.3   | 0.008 | 0.002 | 0.029 |        |
|        |        |       |                        | EOH 210.00 metres                                                       |        |         | 201.00    |       | < 0.2 | 0.006 | 0.001 | 0.029 | <0.005 |
|        |        |       |                        |                                                                         |        |         | 204.00    |       | < 0.2 | 0.001 | 0.000 | 0.024 | 0.019  |
|        |        |       |                        |                                                                         |        |         | 207.00    |       | < 0.2 | 0.001 | 0.000 | 0.014 | <0.005 |
|        |        |       |                        |                                                                         | 132094 | 207.00  | 210.00    | 3.00  | < 0.2 | 0.001 | 0.000 | 0.015 | 0.005  |
|        |        |       |                        |                                                                         |        |         |           |       |       |       |       |       |        |
|        |        |       |                        |                                                                         |        |         |           |       |       |       |       |       |        |

| DDH:     | SC17-4  |       |                                      | Total depth: 135.00 m Core size: NQ                                                                                                     | Logged    | by: A. W | alus     |       |          |          |       |       |        |
|----------|---------|-------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|-------|----------|----------|-------|-------|--------|
|          | h: 275  |       |                                      | Start: October 07, 2017                                                                                                                 | Easting:  |          |          |       | North    | ning: 62 | 28243 |       |        |
| Inclinat | ion: 0  |       |                                      | Completion: October 09, 2017                                                                                                            | Elevation |          |          |       |          | l        |       |       |        |
| Inter    | val (me | ters) | Rock type                            | Rock description                                                                                                                        |           | ple inte | val (met | res)  | Ag       | Cu       | Pb    | Zn    | Au     |
| From     | Τo      | Width | ,,                                   | •                                                                                                                                       | Sample #  | -        | Τo       | Width | ppm      | %        | %     | %     | ppm    |
| 0.00     | 2.00    | 2.00  | Air                                  |                                                                                                                                         |           |          |          |       |          |          |       |       |        |
| 2.00     | 34.50   | 32.50 | Trachyte                             | Gray, completely sericite-chlorite altered rock, massive texture.                                                                       | 132095    | 2.00     | 3.00     | 1.00  | 6.3      | 0.004    | 0.175 | 0.399 | <0.005 |
|          |         |       |                                      | The rock is magnetic from 1-2% fine disseminated magnetite.                                                                             | 132096    | 3.00     | 6.00     | 3.00  | 0.7      | 0.003    | 0.018 | 0.084 | <0.005 |
|          |         |       |                                      | The interval contains several veins 0.2 to to 20 cm wide composed of                                                                    |           | 6.00     | 8.73     | 2.73  | 3        | 0.005    | 0.034 | 0.262 | <0.005 |
|          |         |       |                                      | carbonates with lesser quartz, barite, up to 5% pyrite and up 3%                                                                        | 132098    | 8.73     | 10.10    | 1.37  | 3        | 0.003    | 0.129 | 0.213 | <0.005 |
|          |         |       |                                      | galena and sphalerite. Veins atitudes vary from 20 to 90 degrees to                                                                     | 132099    | 10.10    | 12.00    | 1.90  | 2.3      | 0.004    | 0.043 | 0.113 | <0.005 |
|          |         |       |                                      | c/a.                                                                                                                                    | 132100    | 12.00    | 15.00    | 3.00  | 4.7      | 0.005    | 0.059 | 0.367 | <0.005 |
|          |         |       |                                      |                                                                                                                                         | 132101    | 15.00    | 18.00    | 3.00  | 3.7      | 0.005    | 0.056 | 0.599 | <0.005 |
| 8.73     | 10.10   | 1.37  |                                      | Quartz-carbonate vein with minor sphalerite and galena.                                                                                 | 132102    | 18.00    | 21.00    | 3.00  | 5.5      | 0.005    | 0.054 | 0.318 | <0.005 |
|          |         |       |                                      |                                                                                                                                         | 132103    | 21.00    | 24.00    | 3.00  | 6.8      | 0.008    | 0.058 | 0.489 | <0.005 |
| 27.70    | 27.93   | 0.23  |                                      | Pyrite vein with minor sphalerite and galena.                                                                                           | 132104    | 24.00    | 27.00    | 3.00  | 4.4      | 0.005    | 0.027 | 0.155 | <0.005 |
|          |         |       |                                      |                                                                                                                                         | 132105    | 27.00    | 30.00    | 3.00  | 16.8     | 0.011    | 0.204 | 1.13  | <0.005 |
|          |         |       |                                      |                                                                                                                                         | 132106    | 30.00    | 33.00    | 3.00  | 7.1      | 0.005    | 0.055 | 0.304 | 0.01   |
|          |         |       |                                      |                                                                                                                                         | 132107    | 33.00    | 34.50    | 1.50  | 17.4     | 0.01     | 0.115 | 1.54  | <0.005 |
| 24.50    | 25.40   | 0.00  | Laminated short numits               | The interval is composed of 1 to 10 mm thick lemines of growth block                                                                    | 122100    | 24.50    | 2F 40    | 0.00  | 20.7     | 0.011    | 0.224 | 0.630 | 0.04   |
| 34.50    | 35.40   | 0.90  | Laminated chert-pyrite sulphide zone | The interval is composed of 1 to 10 mm thick laminae of gray to black chert and pyrite. Their attitude ranges from 0 to 30 deg. to c/a, | 132108    | 34.50    | 35.40    | 0.90  | 38.7     | 0.011    | 0.234 | 0.639 | 0.01   |
| -        |         |       | Sulphide Zone                        | Locally trace to minor sphalerite.                                                                                                      |           |          |          |       | <u> </u> |          |       |       |        |
|          |         |       |                                      |                                                                                                                                         |           |          |          |       |          |          |       |       |        |
| 35.40    | 41.70   | 6.30  | Crackle breccia/                     | Strongly silicified and weakly to moderately brecciated felsic rock.                                                                    | 132109    | 35.40    | 36.85    | 1.45  | 24.7     | 0.008    | 0.322 | 0.863 | <0.005 |
| 00.10    | 11.70   | 0.00  | sulphide zone                        | Fractures are filled with pyrite and minor sphalerite.                                                                                  | 132110    | 36.85    | 39.00    | 2.15  | 18.4     | 0.006    |       |       | <0.005 |
|          |         |       |                                      | ractares are miss war pyrite and miner opticionies                                                                                      | 132111    | 39.00    | 40.50    | 1.50  | 13.7     | 0.014    | 0.089 | 1.15  | <0.005 |
|          |         |       |                                      |                                                                                                                                         | 132112    | 40.50    | 41.70    | 1.20  | 39.5     | 0.035    | 0.297 | 2.28  | 0.01   |
|          |         |       |                                      |                                                                                                                                         |           |          |          |       | 1        |          |       |       |        |
| 41.70    | 61.90   | 20.20 | Trachyte                             | Light to medium gray trachitic rock to various degree sericitizied and                                                                  | 132113    | 41.70    | 45.00    | 3.30  | 51.6     | 0.102    | 0.158 | 1.13  | 0.01   |
|          |         |       | ,                                    | to lesser extent chloritizied. It is cut by numerous quartz-carbonate-                                                                  | 132114    | 45.00    | 48.00    | 3.00  | 34.3     | 0.038    | 0.112 | 0.934 | 0.01   |
|          |         |       |                                      | barite (?) -pyrite veins 0.3-1.0 cm wide which locally form stockwork,                                                                  | 132115    | 48.00    | 51.00    | 3.00  | 16       | 0.019    | 0.148 | 0.821 | <0.005 |
|          |         |       |                                      | sporadically trace to minor sphalerite.                                                                                                 | 132116    | 51.00    | 54.00    | 3.00  | 18.3     | 0.031    | 0.117 | 0.789 | <0.005 |
|          |         |       |                                      |                                                                                                                                         | 132117    | 54.00    | 57.00    | 3.00  | 14.2     | 0.037    | 0.151 | 0.426 | 0.03   |
| 51.15    | 51.25   | 0.10  | Fault                                | Small rock chips and grounded rock.                                                                                                     | 132118    | 57.00    | 60.00    | 3.00  | 9.8      | 0.125    | 0.069 | 1.45  | 0.06   |
|          |         |       |                                      |                                                                                                                                         | 132119    | 60.00    | 61.90    | 1.90  | 12.3     | 0.105    | 0.07  | 0.288 | 0.01   |
|          |         |       |                                      |                                                                                                                                         |           |          |          |       |          |          |       |       |        |
| 61.90    | 76.95   | 15.1  | Barite-chert                         | The interval in composed of barite and chert with much less                                                                             | 132120    | 61.90    | 63.00    | 1.10  | 16.1     | 0.037    | 0.026 |       |        |
|          |         |       | sulphide zone                        | mudstone, carbonates, sulphides and possibly gypsum. Chert and                                                                          | 132121    | 63.00    |          | 1.50  | 26.5     |          | 0.047 |       |        |
|          |         |       |                                      | mudstone dominate in the top 2.0 metres of the interval and barite in                                                                   | 132122    | 64.50    |          | 1.50  | 31       | 0.368    |       |       | <0.005 |
|          |         |       |                                      | the remaining part. The zone is mostly laminated with lamination                                                                        | 132123    |          | dard     | 4 = - | 84.9     |          | 2     | 2.41  | 0.06   |
|          |         | ļ     |                                      | attitude ranging from 45 to 60 deg. to c/a. Lamination in many parts                                                                    | 132124    | 66.00    | 67.50    | 1.50  | 19.6     |          |       | 0.414 | <0.005 |
|          |         |       |                                      | of the zone is strongly disturbed locally forming slump breccia.                                                                        | 132125    | 67.50    | 69.00    | 1.50  | 17.7     |          |       |       | 0.01   |
|          |         |       |                                      | Sulphides include up to 3% pyrite, up to 1% sphalerite and trace to                                                                     | 132126    | dupl     | icate    |       | 19.9     | 0.221    | 0.027 | 0.385 | <0.005 |

| DDH: S | C17-4  |                                | Rock type                                                                  | Rock description                                                         | Samp     | le interv | /al (metr        | es)   | Ag    | Cu    | Pb    | Zn    | Au       |
|--------|--------|--------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|-----------|------------------|-------|-------|-------|-------|-------|----------|
| From   | То     | Width                          |                                                                            | -                                                                        | Sample # | From      | То               | Width | ppm   | %     | %     | %     | ppm      |
|        |        |                                |                                                                            | minor galena, sphalerite and chalcopyrite.                               | 132127   | 69.00     | 70.50            | 1.50  | 32.6  | 0.086 | 0.046 | 1.35  | <0.005   |
|        |        |                                |                                                                            |                                                                          | 132128   | bla       | ank              |       | < 0.2 | 0.016 | 0     | 0.005 | <0.005   |
|        |        |                                |                                                                            |                                                                          | 132129   | 70.50     | 72.00            | 1.50  | 15.3  | 0.173 | 0.016 | 0.436 | 0.01     |
|        |        |                                |                                                                            |                                                                          | 132130   | 72.00     | 73.50            | 1.50  | 15.2  | 0.214 | 0.01  | 0.032 | 0.01     |
|        |        |                                |                                                                            |                                                                          | 132131   | 73.50     | 75.00            | 1.50  | 13.4  | 0.268 | 0.046 | 0.098 | 0.01     |
|        |        |                                |                                                                            |                                                                          | 132132   | 75.00     | 76.95            | 1.95  | 12.5  | 0.254 | 0.034 | 0.291 | 0.01     |
|        |        |                                |                                                                            |                                                                          |          |           |                  |       |       |       |       |       |          |
| 76.95  | 87.10  | 10.15                          | Felsic (?) tuff                                                            | Variable sericite-chlorite alteration. The upper half of the interval is | 132133   | 76.95     | 78.00            | 1.05  | 12.6  | 0.01  | 0.104 | 1.38  | 0.01     |
|        |        |                                |                                                                            | brecciated and partly replaced by chalcedony.                            | 132134   | 78.00     | 81.00            | 3.00  | 16    | 0.007 | 0.137 | 0.597 | 0.01     |
|        |        |                                |                                                                            |                                                                          | 132135   | 81.00     | 84.00            | 3.00  | 8.4   | 0.006 | 0.063 | 0.309 | 0.03     |
|        |        |                                |                                                                            |                                                                          | 132136   | 84.00     | 87.10            | 3.10  | 14    | 0.02  | 0.061 | 0.214 | 0.01     |
|        |        |                                |                                                                            |                                                                          |          |           |                  |       |       |       |       |       |          |
| 87.10  | 98.40  | 11.30                          | Interacalated trachyte                                                     | Trachyte (?) breccia intercalated with intervals composed of chert       | 132137   | 87.10     | 90.00            | 2.90  | 39.3  |       | 0.109 | 0.842 | 0.01     |
|        |        |                                | and chert-barite breccia                                                   |                                                                          | 132138   | 90.00     | 93.00            | 3.00  | 19.4  | 0.011 | 0.046 | 0.657 | <0.005   |
|        |        |                                |                                                                            | strongly chloritizied.                                                   | 132139   | 93.00     | 96.00            | 3.00  | 13.8  | 0.009 | 0.016 | 0.494 | <0.005   |
|        |        |                                |                                                                            |                                                                          | 132140   | 96.00     | 98.40            | 2.40  | 13.7  | 0.01  | 0.047 | 0.213 | <0.005   |
|        |        |                                |                                                                            |                                                                          | 132141   | stan      | dard             |       | 63.8  | 0.201 | 1.36  | 1.48  | 0.05     |
|        |        | 00 15 60 Chart sulphide zone   |                                                                            |                                                                          |          |           |                  |       |       |       |       |       | igsquare |
| 98.40  | 114.00 | 1.00 15.60 Chert-sulphide zone | The zone consists mostly of chert lesser barite clasts cemented by         | 132142                                                                   |          | 100.50    | 2.10             | 21.3  | 0.027 | 0.026 | 0.115 |       |          |
|        |        |                                | chert, locally the interval displays lamination with attitude ranging from | 132143                                                                   |          | 102.00    | 1.50             | 13.5  | 0.041 | 0.032 | 0.289 |       |          |
|        |        |                                |                                                                            | 30 to 60 degrees to c/a. Laminae are often strongly disturbed locally    | 132144   |           | icate            |       | 13.3  | 0.064 | 0.032 | 0.526 | <0.005   |
|        |        |                                |                                                                            | forming slump breccia. The interval contains up to 15% pyrite, up to     | 132145   |           | 103.50           | 1.50  | 8     | 0.184 | 0.023 | 1.35  | 0.01     |
|        |        |                                |                                                                            | 3% sphalerite and trace to minor galena and chalcopyrite.                | 132146   |           | 105.00           | 1.50  | 26.7  | 0.393 | 0.939 | 2.04  | 0.02     |
|        |        |                                |                                                                            | Most pyrite is concentrated in the lower part of the interval.           | 132147   |           | ank              | 4.50  | < 0.2 | 0.017 | 0.001 | 0.006 | <0.005   |
| 444.40 | 440.00 | 0.00                           |                                                                            | Malana and and an analysis of the Processing                             | 132148   |           | 106.50           | 1.50  | 11.4  | 0.268 |       | 0.458 | 0.03     |
| 111.40 | 112.00 | 0.60                           |                                                                            | Vein composed of vuggy quartz and coarse pyrite, limonitic,              | 132149   |           | 108.00           | 1.50  | 11.6  | 0.008 | 0.01  | 0.04  | 0.11     |
|        |        |                                |                                                                            | shearing @ 20 deg. to c/a.                                               | 132150   |           | icate            | 4.50  | 9.8   | 0.007 | 0.009 | 0.05  | 0.1      |
| 440.50 | 440.00 | 0.00                           |                                                                            | Destini and a conset by average stance live exite                        | 132151   |           | 109.50           | 1.50  | 7.5   | 0.006 | 0.006 | 0.202 | 0.1      |
| 112.50 | 113.30 | 0.80                           |                                                                            | Partial replacement by quartz, strong limonite.                          | 132152   |           | 111.00           | 1.50  | 11.1  | 0.008 | 0.008 | 0.026 | 0.19     |
| 442.20 | 110 10 | 0.40                           | Cardt                                                                      | Constituto vitia vast abina                                              | 132153   | 111.00    |                  | 1.50  | 9.1   | 0.203 | 0.008 | 0.048 | 0.08     |
| 113.30 | 113.40 | 0.10                           | Fault                                                                      | Small limonitic rock chips                                               | 132154   | 112.50    |                  | 1.50  | 10.9  | 0.064 | 0.007 | 0.081 | 0.28     |
| 444.00 | 101 50 | 7.50                           | Trachista tieff                                                            | Manaire targers compared of the interval is attracted all sites          |          | 114.00    |                  | 3.00  | 23.9  | 0.089 | 0.008 | 0.094 | 0.05     |
| 114.00 | 121.50 | 7.50                           | Trachyte tuff                                                              | Massive texture, upper part of the interval is strongly silicified.      | 132156   | 117.00    | 120.00<br>121.50 | 3.00  | 16.6  | 0.1   | 0.041 | 0.35  | 0.04     |
| 116.00 | 119.90 | 2.70                           |                                                                            | Costion to large degree replaced by lete guests                          | 132157   | 120.00    | 121.50           | 1.50  | 6.3   | 0.02  | 0.038 | 0.248 | 0.13     |
| 116.20 | 119.90 | 3.70                           |                                                                            | Section to large degree replaced by late quartz.                         |          |           |                  |       |       |       |       |       | $\vdash$ |
| 121 50 | 121.60 | 0.10                           | Fault                                                                      | Fault gouge and rock chips.                                              |          |           |                  |       |       |       |       |       | $\vdash$ |
| 121.50 | 121.00 | 0.10                           | rauit                                                                      | raun gouge and rock onips.                                               |          |           |                  |       |       |       |       |       | $\vdash$ |
| 101 50 | 120 40 | 10.00                          | Fine folding (2) triff                                                     | From 121 E to 122 E m thore is a distinct lamination @ 20 der to         | 122450   | 101 50    | 122.00           | 1.50  | 16.4  | 0.245 | 0.040 | 0.007 | 0.04     |
| 121.50 | 132.40 | 10.90                          | Fine felsic (?) tuff                                                       | From 121.5 to 123.5 m there is a distinct lamination @ 30 deg. to        | 132158   |           | 123.00           | 1.50  | 16.1  | 0.345 |       |       | 0.04     |
|        |        |                                |                                                                            | c/a., the reminder of the inteval has a massive texture. From 125.9 to   | 132159   |           | 126.00           | 3.00  | 11.8  |       |       |       |          |
|        |        |                                |                                                                            | 132.4 m the rock is brecciated and partly replaced by chalcedony.        | 132160   | 126.00    | 129.00           | 3.00  | 3.6   | 0.048 | 0.003 | 0.012 | 0.03     |
|        |        |                                |                                                                            |                                                                          |          |           |                  |       |       |       |       |       |          |

| DDH: S | SC17-4 |       | Rock type               | Rock description                                                     | Samp   | le interv | /al (metr | es)   | Ag  | Cu    | Pb    | Zn    | Au   |
|--------|--------|-------|-------------------------|----------------------------------------------------------------------|--------|-----------|-----------|-------|-----|-------|-------|-------|------|
| From   |        | Width |                         | ·                                                                    | Sample | From      | То        | Width | ppm | %     | %     | %     | ppm  |
|        |        |       |                         |                                                                      | 132161 | 129.00    | 132.40    | 3.40  | 2.6 | 0.032 | 0.001 | 0.004 | 0.03 |
| 132.40 | 135.00 | 2.60  | Trachyte crystal-lithic | Very dark, almost black colour, massive texture, partial replacement | 132162 | 132.40    | 135.00    | 2.60  | 0.3 | 0.017 | 0     | 0.014 | 0.01 |
|        |        |       | tuff                    | by late quartz.                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         | 135.0 metre EOH                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |
|        |        |       |                         |                                                                      |        |           |           |       |     |       |       |       |      |

## APPENDIX III GEOCHEMICAL RESULTS

Final Report Activation Laboratories

Report Date: 1/12/2017

| Report Date: 1/12/2017 |        |        |        |         |        |        |        |        |         |        |         |        |        |        |        |        |        |
|------------------------|--------|--------|--------|---------|--------|--------|--------|--------|---------|--------|---------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol         | Au     | Ag     | Cd     | Cu      | Mn     | Mo     | Ni     | Pb     | Zn      | Al     | As      | В      | Ва     | Be     | Bi     | Ca     | Co     |
| Unit Symbol            | ppb    | ppm    | ppm    | ppm     | ppm    | ppm    | ppm    | ppm    | ppm     | %      | ppm     | ppm    | ppm    | ppm    | ppm    | %      | ppm    |
| Detection Limit        | 5      | 0.2    | 0.5    | 1       | 5      | 1      | 1      | 2      | 2       | 0.01   | 2       | 10     | 10     | 0.5    | 2      | 0.01   | 1      |
| Analysis Method        | FA-AA  | AR-ICP | AR-ICP | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP  | AR-ICP | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| A17-104                | < 5    | < 0.2  | 1.5    | 11      | 124    | 2      | 1      | 15     | 157     | 0.58   | 2       | < 10   | 101    | < 0.5  | < 2    | 0.1    | 2      |
| A17-105                | 71     | 3.4    | 10.8   | 48      | 192    | 14     | < 1    | 788    | 2080    | 1.03   | 7       | < 10   | 186    | < 0.5  | < 2    | 0.17   | 3      |
| A17-106                | 139    | 0.3    | 0.5    | 4       | 1820   | 2      | 3      | 6      | 97      | 0.19   | 2720    | < 10   | 30     | < 0.5  | < 2    | 0.09   | 2      |
| A17-107                | 1180   | 3.2    | < 0.5  | 3       | 7720   | < 1    | 2      | 140    | 128     | 0.26   | > 10000 | < 10   | 50     | < 0.5  | < 2    | 3.76   | 5      |
| A17-108                | < 5    | 0.6    | < 0.5  | 1560    | 1300   | < 1    | 2      | 4      | 41      | 2.19   | 16      | 23     | 708    | 1.1    | < 2    | 1.81   | 5      |
| A17-131                | < 5    | < 0.2  | < 0.5  | 33      | 743    | 1      | 5      | 15     | 142     | 1.49   | 32      | 13     | 236    | 1.2    | < 2    | 0.39   | 13     |
| A17-132                | 28     | 10.6   | 129    | 15      | 7980   | 340    | < 1    | 1380   | 8940    | 0.03   | 145     | < 10   | 29     | < 0.5  | < 2    | 8.95   | 5      |
| A17-133                | 27     | 33.5   | 0.7    | 24      | 123    | 44     | 4      | 410    | 179     | 0.88   | 734     | 13     | 34     | < 0.5  | < 2    | 0.24   | 14     |
| A17-134                | 102    | 1.9    | 8.1    | 10      | 738    | 8      | 2      | 122    | 745     | 0.89   | 1510    | < 10   | 49     | < 0.5  | < 2    | 0.34   | 10     |
| A17-135                | < 5    | 10.3   | 30.4   | 12      | 10900  | 36     | < 1    | 117    | 2980    | 0.07   | 39      | < 10   | 52     | < 0.5  | < 2    | > 10.0 | 6      |
| A17-136                | < 5    | 16.4   | 97.9   | 30      | 11100  | 99     | 2      | 1810   | 7480    | 0.07   | 228     | < 10   | 38     | < 0.5  | < 2    | > 10.0 | 12     |
| A17-137                | < 5    | 0.5    | 2.9    | 24      | 1600   | 2      | 28     | 148    | 423     | 0.47   | 19      | < 10   | 96     | < 0.5  | < 2    | 6.14   | 7      |
| A17-138                | < 5    | 1.3    | 3.6    | 13      | 7010   | 15     | 24     | 97     | 293     | 0.67   | 12      | < 10   | 100    | < 0.5  | < 2    | > 10.0 | 6      |
| A17-139                | < 5    | < 0.2  | < 0.5  | 19      | 1370   | 1      | 5      | 4      | 64      | 0.61   | 13      | < 10   | 114    | < 0.5  | < 2    | 1.48   | 3      |
| A17-140                | 6      | 0.6    | 1.9    | 31      | 711    | 3      | 7      | 21     | 188     | 0.72   | 11      | < 10   | 70     | < 0.5  | < 2    | 1.03   | 5      |
| A17-141                | < 5    | 1.2    | 42.1   | 8       | 4010   | 11     | 6      | 570    | 6000    | 0.39   | 296     | < 10   | 26     | < 0.5  | < 2    | 9.51   | 11     |
| DM-124                 | 3010   | 5.7    | 10.5   | 120     | 691    | 5      | < 1    | 1440   | 769     | 0.76   | 31      | < 10   | 121    | 0.5    | < 2    | 1.3    | 6      |
| DM-125                 | 31     | 6.6    | < 0.5  | 54      | 151    | 47     | 2      | 155    | 146     | 0.82   | 188     | < 10   | 38     | < 0.5  | < 2    | 0.05   | 10     |
| DM-126                 | > 5000 | 47.1   | < 0.5  | > 10000 | 320    | 395    | 11     | 663    | 155     | 0.45   | 738     | < 10   | < 10   | < 0.5  | < 2    | 0.05   | 40 .   |
| DM-127                 | > 5000 | > 100  | 318    | > 10000 | 125    | 20     | 3      | > 5000 | > 10000 | 0.21   | 3980    | < 10   | 15     | < 0.5  | 98     | 0.03   | 2      |
| DM-128                 | 1640   | 1.5    | 0.9    | 34      | 5620   | 3      | 4      | 104    | 81      | 0.09   | 550     | < 10   | 13     | < 0.5  | < 2    | 0.09   | 12     |
| DM-129                 | > 5000 | 17.2   | 28.7   | 261     | 1180   | 3      | 2      | 2240   | 1250    | 0.36   | 5000    | < 10   | 154    | < 0.5  | 7      | 0.1    | 2      |
| DM-130                 | 638    | > 100  | 246    | 212     | 469    | 2      | 2      | 2240   | > 10000 | 0.05   | 6310    | < 10   | < 10   | < 0.5  | 247    | 0.02   | 14     |
| DM-131                 | 732    | 5.2    | 3.4    | 29      | 2550   | 5      | 2      | 69     | 298     | 0.04   | 312     | < 10   | 32     | < 0.5  | 25     | 0.01   | 10     |
| DM-132                 | 1650   | > 100  | 542    | 714     | 1060   | 1      | 3      | 3120   | > 10000 | 0.08   | 791     | < 10   | < 10   | < 0.5  | 290    | 0.05   | 9      |
| DM-133                 | 12     | 1.8    | 18.1   | 30      | 6460   | 6      | 3      | 312    | 1960    | 0.07   | 88      | < 10   | 59     | < 0.5  | < 2    | 9.76   | 3      |
| DM-134                 | < 5    | 1.7    | 4.6    | 5       | 4140   | 16     | 4      | 717    | 473     | 0.06   | 36      | < 10   | 95     | < 0.5  | < 2    | 4.24   | < 1    |
| DM-135                 | < 5    | 1.1    | < 0.5  | 15      | 900    | 2      | < 1    | 25     | 45      | 0.58   | 5       | < 10   | 179    | < 0.5  | 4      | 2.03   | 3      |
| DM-136                 | < 5    | < 0.2  | 0.6    | 6       | 244    | 3      | < 1    | 19     | 83      | 0.32   | 2       | < 10   | 202    | < 0.5  | < 2    | 0.31   | < 1    |
| DM-137                 | 6      | 0.2    | 13.3   | 37      | 2970   | 1      | 1      | 8      | 771     | 0.95   | 19      | < 10   | 91     | < 0.5  | < 2    | 8.67   | 10     |
| DM-138                 | < 5    | < 0.2  | 0.6    | 4       | 2610   | 3      | < 1    | 12     | 23      | 0.04   | 24      | < 10   | 537    | < 0.5  | < 2    | 4.73   | 2      |
|                        |        |        |        |         |        |        |        |        |         |        |         |        |        |        |        |        |        |

Final Report
Activation Laboratories

Report: A17-10633

| Kepolt. A17-10000      |       |        |        |        |        |        | MCCI   | vacioni | anorat | Offica |         |        |        |        |        |        |        |
|------------------------|-------|--------|--------|--------|--------|--------|--------|---------|--------|--------|---------|--------|--------|--------|--------|--------|--------|
| Report Date: 1/12/2017 |       |        |        |        |        |        |        |         |        |        |         |        |        |        |        |        |        |
| Analyte Symbol         | Au    | Ag     | Cd     | Cu     | Mn     | Mo     | Ni     | Pb      | Zn     | Al     | As      | В      | Ва     | Ве     | Bi     | Ca     | Co     |
| Unit Symbol            | ppb   | ppm     | ppm    | %      | ppm     | ppm    | ppm    | ppm    | ppm    | %      | ppm    |
| Detection Limit        | 5     | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2       | 2      | 0.01   | 2       | 10     | 10     | 0.5    | 2      | 0.01   | 1      |
| Analysis Method        | FA-AA | AR-ICP  | AR-ICP | AR-ICP | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| DM-139                 | 3620  | 15.1   | 2.1    | 361    | 79     | < 1    | 6      | 102     | 13     | 0.27   | > 10000 | < 10   | < 10   | < 0.5  | 101    | 0.07   | 29     |
| DM-140                 | 16    | 0.7    | < 0.5  | 13     | 365    | 7      | 3      | 24      | 31     | 0.06   | 509     | < 10   | 44     | < 0.5  | < 2    | 0.45   | 8      |
| DM-141                 | 8     | 1.4    | 4.9    | 233    | 1740   | 2      | 1      | 21      | 312    | 0.07   | 14      | < 10   | 50     | < 0.5  | 6      | 2.97   | 3      |
| AGKM-01                | 144   | 9.5    | 3.1    | 96     | 4620   | 2      | 2      | 72      | 140    | 0.03   | 247     | < 10   | 19     | < 0.5  | 38     | 6.39   | 9      |
| AGKM-02                | < 5   | < 0.2  | 2.3    | 25     | 3160   | 2      | < 1    | 10      | 14     | 0.03   | 15      | < 10   | 581    | < 0.5  | < 2    | > 10.0 | < 1    |
| AGKM-03                | < 5   | 7.7    | 12.7   | 5      | 762    | 2      | < 1    | 2220    | 5670   | 0.36   | 10      | < 10   | 293    | < 0.5  | 6      | 0.42   | 3      |
| AGKM-04                | < 5   | < 0.2  | < 0.5  | 24     | 1450   | < 1    | 9      | 11      | 67     | 1.97   | 5       | < 10   | 305    | < 0.5  | < 2    | 5.14   | 10     |
| AGKM-05                | < 5   | 0.3    | < 0.5  | 26     | 75     | 14     | 9      | 20      | 47     | 1.57   | 3       | < 10   | 80     | 0.6    | < 2    | 0.34   | 11     |
| AGKM-06                | < 5   | 0.3    | 20.6   | 9      | 1710   | 4      | < 1    | 24      | 1590   | 0.34   | 353     | < 10   | 106    | < 0.5  | < 2    | 6      | 3      |
| AGKM-07                | < 5   | < 0.2  | < 0.5  | 2      | 899    | 2      | < 1    | 4       | 67     | 0.18   | 377     | < 10   | 55     | < 0.5  | < 2    | 2.4    | 1      |
| AGKM-08                | < 5   | 0.2    | 0.6    | 14     | 377    | 6      | 11     | 16      | 211    | 1.39   | 53      | < 10   | 37     | < 0.5  | < 2    | 0.36   | 8      |
| AGKM-09                | < 5   | 0.2    | 7      | 8      | 1400   | 1      | 6      | 9       | 377    | 1.3    | 10      | < 10   | 50     | < 0.5  | < 2    | 4.17   | 16     |
| AGKM-10                | 5     | 0.6    | 0.8    | 11     | 704    | 4      | 1      | 18      | 214    | 0.85   | 13      | < 10   | 32     | < 0.5  | < 2    | 3.49   | 9      |
| AGKM-11                | < 5   | 0.4    | 4.6    | 14     | 767    | 2      | < 1    | 14      | 218    | 0.12   | 81      | < 10   | 55     | < 0.5  | < 2    | 1.79   | < 1    |
| AGKM-12                | < 5   | 1.8    | 14.4   | 17     | 2940   | 45     | 5      | 401     | 1430   | 1.18   | 298     | < 10   | 39     | 0.6    | < 2    | 5.81   | 16     |
| AGKM-13                | < 5   | 0.5    | 1.3    | 6      | 3730   | 24     | 4      | 22      | 134    | 1.32   | 347     | < 10   | 37     | < 0.5  | < 2    | 7.64   | 8      |
| AGKM-14                | < 5   | 0.8    | 32.4   | 15     | 5100   | 8      | 4      | 902     | 7260   | 1.11   | 374     | < 10   | 43     | < 0.5  | < 2    | > 10.0 | 16     |
| AGKM-15                | 7     | 0.8    | 0.7    | 11     | 883    | 4      | 3      | 152     | 195    | 0.54   | 97      | < 10   | 80     | < 0.5  | < 2    | 0.33   | 4      |
| AGKM-16                | < 5   | < 0.2  | 1.2    | 51     | 1880   | 6      | 24     | 5       | 148    | 1.36   | 8       | < 10   | 114    | < 0.5  | < 2    | > 10.0 | 6      |
| AGKM-17                | < 5   | < 0.2  | 1.4    | 22     | 1530   | 4      | 7      | 20      | 166    | 0.99   | 23      | < 10   | 61     | < 0.5  | < 2    | 8.32   | 6      |
| AGKM-12a               | < 5   | < 0.2  | 0.9    | 3      | 4950   | 8      | 2      | 29      | 113    | 0.71   | 244     | < 10   | 29     | < 0.5  | < 2    | > 10.0 | 6      |
| AGKM-14a               | < 5   | 4.5    | 8.5    | 12     | 316    | 22     | 1      | 2140    | 1070   | 0.19   | 31      | < 10   | 113    | < 0.5  | < 2    | 0.39   | 9      |
| GGKM-01                | < 5   | < 0.2  | < 0.5  | 3      | 859    | 2      | < 1    | 10      | 34     | 0.19   | 4       | < 10   | 139    | < 0.5  | < 2    | 1.43   | 1      |
| GGKM-02                | 117   | 8.9    | < 0.5  | 116    | 367    | 27     | 10     | 415     | 58     | 0.81   | 389     | < 10   | < 10   | < 0.5  | < 2    | 0.34   | 63     |
| GGKM-03                | < 5   | < 0.2  | < 0.5  | 56     | 86     | 4      | 2      | 9       | 12     | 0.24   | 15      | < 10   | 259    | < 0.5  | < 2    | 0.1    | 1      |
| GGKM-04                | 12    | 8.2    | < 0.5  | 20     | 39     | 28     | 2      | 407     | 15     | 0.57   | 1520    | < 10   | 24     | < 0.5  | < 2    | 0.01   | 4      |
| GGKM-05                | 31    | 3      | < 0.5  | 24     | 1360   | 20     | 4      | 319     | 94     | 0.29   | 382     | < 10   | 34     | < 0.5  | < 2    | 0.25   | 23     |
| GGKM-06                | < 5   | 0.3    | < 0.5  | 9      | 6000   | < 1    | < 1    | 37      | 143    | 0.39   | 9       | < 10   | 110    | < 0.5  | < 2    | > 10.0 | 8      |
| GGKM-07                | < 5   | < 0.2  | < 0.5  | 13     | 2510   | 1      | 3      | 14      | 60     | 0.44   | 242     | < 10   | 102    | < 0.5  | < 2    | 3.36   | 15     |
| GGKM-08                | < 5   | < 0.2  | < 0.5  | 30     | 4150   | 2      | < 1    | 8       | 17     | 0.3    | < 2     | 10     | 937    | < 0.5  | < 2    | 8.27   | 3      |
|                        |       |        |        |        |        |        |        |         |        |        |         |        |        |        |        |        |        |

Page 2 of 9

#### Final Report Activation Laboratories

Report: A17-10633

| Report Date: 1/12/2017 |       |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |
|------------------------|-------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol         | Au    | Ag     | Cd     | Cu     | Mn     | Mo     | Ni     | Pb     | Zn      | Al     | As     | В      | Ва     | Ве     | Bi     | Ca     | Co     |
| Unit Symbol            | ppb   | ppm     | %      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    |
| Detection Limit        | 5     | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2      | 2       | 0.01   | 2      | 10     | 10     | 0.5    | 2      | 0.01   | 1      |
| Analysis Method        | FA-AA | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| GGKM-10                | < 5   | 0.4    | < 0.5  | 5      | 2260   | 5      | 3      | 67     | 110     | 0.3    | 28     | < 10   | 1220   | 0.9    | < 2    | 3.96   | 3      |
| GGKM-11                | 30    | 0.6    | < 0.5  | 5      | 60     | 12     | < 1    | 28     | 4       | 0.24   | 71     | < 10   | 134    | < 0.5  | < 2    | 0.03   | 1      |
| GGKM-12                | 114   | 10.9   | 383    | 215    | 1610   | 2      | 2      | 128    | > 10000 | 0.39   | 125    | < 10   | 33     | < 0.5  | 21     | 0.57   | 15     |
| GGKM-13                | 91    | 1.3    | < 0.5  | 2      | 26     | 8      | < 1    | 58     | 35      | 0.35   | 48     | < 10   | 350    | < 0.5  | < 2    | < 0.01 | < 1    |
| GGKM-14                | 381   | 16.1   | 0.8    | 219    | 73     | 62     | 7      | 166    | 62      | 0.44   | 244    | < 10   | < 10   | < 0.5  | < 2    | < 0.01 | 43     |
| GGKM-15                | 17    | 0.3    | < 0.5  | 6      | 67     | 12     | 1      | 15     | 25      | 0.28   | 33     | < 10   | 200    | < 0.5  | < 2    | < 0.01 | 2      |
| GGKM-16                | 1930  | 15.4   | 1.1    | 59     | 466    | 31     | 8      | 664    | 144     | 0.36   | 645    | < 10   | < 10   | < 0.5  | 25     | 0.02   | 106    |
| GGKM-17                | 8     | 1.1    | 1      | 54     | 2020   | 2      | 2      | 18     | 116     | 0.67   | 12     | < 10   | 190    | < 0.5  | < 2    | 1.54   | 7      |
| GGKM-18                | 191   | 1.2    | 0.6    | 9      | 713    | 2      | 2      | 46     | 57      | 0.09   | 114    | < 10   | 46     | < 0.5  | 3      | 0.02   | 8      |

Final Report
Activation Laboratories

Report Date: 1/12/2017

| Report Date: 1/12/201 | 17     |        |        |        |        |        |        |        |         |        |         |        |        |        |        |        |        |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|---------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol        | Cr     | Fe     | Ga     | Hg     | K      | La     | Mg     | Na     | P       | S      | Sb      | Sc     | Sr     | Ti     | Th     | Te     | TI     |
| Unit Symbol           | ppm    | %      | ppm    | ppm    | %      | ppm    | %      | %      | %       | %      | ppm     | ppm    | ppm    | %      | ppm    | ppm    | ppm    |
| Detection Limit       | 1      | 0.01   | 10     | 1      | 0.01   | 10     | 0.01   | 0.001  | 0.001   | 0.01   | 2       | 1      | 1      | 0.01   | 20     | 1      | 2      |
| Analysis Method       | AR-ICP  | AR-ICP | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| A17-104               | 17     | 1.11   | < 10   | < 1    | 0.21   | < 10   | 0.14   | 0.128  | 0.024   | 0.01   | < 2     | < 1    | 14     | 0.02   | < 20   | < 1    | < 2    |
| A17-105               | 11     | 2.14   | < 10   | 2      | 0.41   | 57     | 0.26   | 0.093  | 0.078   | 0.04   | 2       | 2      | 66     | 0.03   | < 20   | 2      | < 2    |
| A17-106               | 20     | 2.39   | < 10   | < 1    | 0.1    | < 10   | 0.04   | 0.021  | 0.007   | 0.27   | 3       | < 1    | 11     | < 0.01 | < 20   | < 1    | < 2    |
| A17-107               | 7      | 8.7    | < 10   | < 1    | 0.18   | < 10   | 0.38   | 0.02   | 0.013   | 1.76   | 12      | 2      | 238    | < 0.01 | < 20   | < 1    | < 2    |
| A17-108               | 10     | 3.68   | < 10   | < 1    | 1.55   | 13     | 0.33   | 0.025  | 0.115   | 0.11   | 10      | 10     | 49     | 0.06   | < 20   | < 1    | < 2    |
| A17-131               | 7      | 4.14   | < 10   | < 1    | 0.93   | 20     | 0.3    | 0.052  | 0.081   | 0.06   | 6       | 6      | 19     | < 0.01 | < 20   | 4      | < 2    |
| A17-132               | 7      | 1.32   | < 10   | 2      | 0.02   | < 10   | 0.05   | 0.016  | 0.006   | 0.87   | 15      | 6      | 338    | < 0.01 | < 20   | < 1    | < 2    |
| A17-133               | 3      | 4      | < 10   | 5      | 0.73   | 12     | 0.03   | 0.023  | 0.202   | 1.99   | 84      | 3      | 15     | < 0.01 | < 20   | < 1    | 7      |
| A17-134               | 6      | 2.71   | < 10   | 7      | 0.55   | 14     | 0.14   | 0.054  | 0.091   | 1.55   | 31      | 2      | 20     | < 0.01 | < 20   | < 1    | 3      |
| A17-135               | 2      | 0.96   | < 10   | 4      | 0.06   | < 10   | 0.06   | 0.018  | 0.012   | 0.57   | 7       | 1      | 665    | < 0.01 | < 20   | < 1    | 3      |
| A17-136               | 2      | 1.33   | < 10   | 12     | 0.05   | < 10   | 0.05   | 0.018  | 0.011   | 0.94   | 32      | < 1    | 481    | < 0.01 | < 20   | < 1    | < 2    |
| A17-137               | 13     | 4.18   | < 10   | < 1    | 0.24   | < 10   | 1.42   | 0.043  | 0.07    | 0.14   | < 2     | 3      | 315    | < 0.01 | < 20   | < 1    | < 2    |
| A17-138               | 16     | 3.92   | < 10   | < 1    | 0.3    | < 10   | 0.4    | 0.037  | 0.04    | 0.26   | 5       | 3      | 256    | < 0.01 | < 20   | < 1    | < 2    |
| A17-139               | 12     | 2.55   | < 10   | < 1    | 0.13   | < 10   | 0.48   | 0.077  | 0.029   | 0.14   | < 2     | 2      | 81     | < 0.01 | < 20   | < 1    | < 2    |
| A17-140               | 24     | 2.47   | < 10   | < 1    | 0.11   | 11     | 0.38   | 0.121  | 0.052   | 0.72   | < 2     | 5      | 52     | 0.02   | < 20   | < 1    | < 2    |
| A17-141               | 10     | 3.35   | < 10   | 3      | 0.02   | < 10   | 0.1    | 0.015  | 0.012   | 1.1    | 5       | 1      | 440    | < 0.01 | < 20   | < 1    | 5      |
| DM-124                | 6      | 0.99   | < 10   | < 1    | 0.54   | 27     | 0.06   | 0.026  | 0.006   | 0.32   | 7       | < 1    | 61     | < 0.01 | < 20   | 2      | < 2    |
| DM-125                | 4      | 3.78   | < 10   | < 1    | 0.68   | 12     | 0.05   | 0.019  | 0.029   | 1.36   | 11      | 1      | 13     | < 0.01 | < 20   | < 1    | 2      |
| DM-126                | 2      | 17.8   | < 10   | < 1    | 0.36   | 11     | 0.03   | 0.017  | 0.051   | 14     | 47      | 1      | 5      | < 0.01 | < 20   | < 1    | 7      |
| DM-127                | 21     | 1.34   | < 10   | 4      | 0.09   | < 10   | 0.01   | 0.016  | 0.011   | 2.69   | > 10000 | < 1    | 23     | < 0.01 | < 20   | 3      | < 2    |
| DM-128                | 9      | 15.7   | < 10   | < 1    | 0.05   | < 10   | 0.16   | 0.014  | 0.003   | 3.04   | 47      | 2      | 3      | < 0.01 | < 20   | 5      | < 2    |
| DM-129                | 24     | 2.16   | < 10   | < 1    | 0.2    | < 10   | 0.01   | 0.021  | 0.017   | 0.22   | 436     | 2      | 16     | < 0.01 | < 20   | < 1    | < 2    |
| DM-130                | 18     | 5.86   | < 10   | < 1    | 0.03   | < 10   | < 0.01 | 0.016  | 0.001   | 4.7    | 44      | < 1    | 1      | < 0.01 | < 20   | 6      | < 2    |
| DM-131                | 27     | 4.5    | < 10   | < 1    | 0.02   | < 10   | < 0.01 | 0.015  | < 0.001 | 1.45   | 21      | < 1    | 8      | < 0.01 | < 20   | < 1    | < 2    |
| DM-132                | 19     | 6.85   | < 10   | < 1    | 0.04   | < 10   | 0.03   | 0.015  | 0.002   | 5.01   | 206     | < 1    | 2      | < 0.01 | < 20   | 5      | < 2    |
| DM-133                | 4      | 8.92   | < 10   | < 1    | 0.05   | < 10   | 0.19   | 0.014  | 0.013   | 0.26   | 27      | < 1    | 743    | < 0.01 | < 20   | < 1    | < 2    |
| DM-134                | 9      | 15.9   | < 10   | < 1    | 0.04   | < 10   | 0.25   | 0.014  | 0.017   | 0.5    | 11      | < 1    | 287    | < 0.01 | < 20   | 3      | < 2    |
| DM-135                | 6      | 1.61   | < 10   | < 1    | 0.45   | 19     | 0.07   | 0.068  | 0.052   | 0.24   | < 2     | 1      | 78     | 0.05   | < 20   | < 1    | < 2    |
| DM-136                | 22     | 0.79   | < 10   | < 1    | 0.24   | 24     | 0.02   | 0.095  | 0.005   | < 0.01 | 3       | < 1    | 15     | < 0.01 | < 20   | < 1    | < 2    |
| DM-137                | 18     | 3.62   | < 10   | < 1    | 0.45   | < 10   | 0.49   | 0.04   | 0.062   | 0.87   | < 2     | 10     | 294    | < 0.01 | < 20   | < 1    | < 2    |
| DM-138                | 21     | 1.01   | < 10   | < 1    | 0.02   | < 10   | 0.01   | 0.022  | 0.006   | 0.1    | 5       | < 1    | 360    | < 0.01 | < 20   | 2      | < 2    |
|                       |        |        |        |        |        |        |        |        |         |        |         |        |        |        |        |        |        |

| Report Date: 1/12/2017 |          |                |                |          |        |      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |               |          |              |        |           |          |          |
|------------------------|----------|----------------|----------------|----------|--------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---------------|----------|--------------|--------|-----------|----------|----------|
| Analyte Symbol         | Cr       | Fe             | Ga             | Ыa       | K      | La   | Mg     | Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Р     | S      | Sb            | Sc       | Sr           | Ti     | Th        | Te       | TI       |
| Unit Symbol            |          | %              |                | Hg       | %      | ppm  | %      | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %     | %      |               |          |              | %      |           |          |          |
| Detection Limit        | ppm<br>1 | 0.01           | ppm<br>10      | ppm<br>1 | 0.01   | 10   | 0.01   | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001 | 0.01   | ppm<br>2      | ppm<br>1 | ppm<br>1     | 0.01   | ppm<br>20 | ppm<br>1 | ppm<br>2 |
|                        |          |                | P376           |          | AR-ICP |      | AR-ICP |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | AR-ICP |               | AR-ICP   | (a)          |        | 77.7      | AR-ICP   |          |
| Analysis Method DM-139 | AR-ICP   | AR-ICP<br>20.1 | AR-ICP<br>< 10 | AR-ICP   | 0.18   | < 10 | < 0.01 | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.024 | 13.8   | AR-ICP<br>107 | < 1      | 6            | < 0.01 | < 20      | < 1      | < 2      |
|                        | 4<br>53  | 1999,000,000   | < 10           | < 1      | 0.18   | < 10 | 0.02   | THE PARTY OF THE P |       | 0.92   | 12.00         | < 1      |              | < 0.01 | < 20      | 2        | < 2      |
| DM-140                 |          | 2.98           | 0.70           |          |        | 7.77 |        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01  |        | 11            |          | 112          |        |           |          | < 2      |
| DM-141                 | 16       | 5.16           | < 10           | < 1      | 0.04   | < 10 | 0.03   | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003 | 1.21   | 6             | < 1      | 145          | < 0.01 | < 20      | 4        |          |
| AGKM-01                | 7        | 5.52           | < 10           | < 1      | 0.02   | < 10 | 0.02   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01  | 2.13   | 11            | < 1      | 247          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-02                | 7        | 0.9            | < 10           | < 1      | 0.02   | < 10 | 0.03   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.013 | 0.09   | 6             | < 1      | 317          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-03                | 15       | 1.54           | < 10           | 3        | 0.13   | < 10 | 0.06   | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03  | 0.1    | 4             | < 1      | 21           | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-04                | 9        | 3.42           | < 10           | < 1      | 0.46   | 13   | 0.68   | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.129 | 0.12   | < 2           | 3        | 285          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-05                | 4        | 2.67           | < 10           | < 1      | 0.72   | 24   | 0.19   | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.192 | 0.78   | < 2           | 3        | 28           | < 0.01 | < 20      | 1        | < 2      |
| AGKM-06                | 12       | 2.42           | < 10           | < 1      | 0.15   | 12   | 0.08   | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.043 | 0.1    | 3             | 3        | 610          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-07                | 18       | 2.38           | < 10           | < 1      | 0.08   | < 10 | 0.03   | 0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.019 | < 0.01 | < 2           | 2        | 24           | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-08                | 4        | 3.36           | < 10           | < 1      | 0.57   | 13   | 0.32   | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.055 | 1.24   | 5             | 3        | 17           | < 0.01 | < 20      | 2        | < 2      |
| AGKM-09                | 3        | 5.87           | < 10           | < 1      | 0.22   | < 10 | 0.83   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.115 | 1.31   | 4             | 7        | 154          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-10                | 3        | 3.13           | < 10           | < 1      | 0.48   | 10   | 0.18   | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07  | 1.87   | 4             | 2        | 124          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-11                | 18       | 0.92           | < 10           | < 1      | 0.05   | < 10 | 0.01   | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014 | 0.05   | 3             | < 1      | 150          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-12                | 10       | 11.5           | < 10           | < 1      | < 0.01 | < 10 | 0.53   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02  | 1.7    | 6             | 4        | 320          | 0.02   | < 20      | < 1      | < 2      |
| AGKM-13                | 2        | 6.4            | < 10           | < 1      | 0.26   | < 10 | 0.63   | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.057 | 1.8    | 5             | 2        | 605          | < 0.01 | < 20      | < 1      | 3        |
| AGKM-14                | 13       | 4.97           | < 10           | 4        | 0.01   | < 10 | 0.43   | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.024 | 1.2    | 4             | 3        | 352          | < 0.01 | < 20      | < 1      | 7        |
| AGKM-15                | 11       | 4.11           | < 10           | < 1      | 0.27   | 11   | 0.07   | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.085 | 0.8    | 16            | 2        | 37           | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-16                | 3        | 5.72           | < 10           | < 1      | 0.21   | < 10 | 2.27   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.187 | 0.78   | < 2           | 5        | 602          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-17                | 2        | 4.16           | < 10           | < 1      | 0.24   | < 10 | 0.51   | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.049 | 0.84   | 3             | 3        | 462          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-12a               | 3        | 4.15           | < 10           | < 1      | 0.06   | < 10 | 0.43   | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.033 | 1.35   | 3             | 1        | 648          | < 0.01 | < 20      | < 1      | < 2      |
| AGKM-14a               | 14       | 1.64           | < 10           | 3        | 0.1    | < 10 | 0.01   | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.067 | 0.28   | 3             | 1        | 567          | < 0.01 | < 20      | < 1      | 2        |
| GGKM-01                | 11       | 0.64           | < 10           | < 1      | 0.11   | < 10 | 0.01   | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.024 | 0.01   | < 2           | 1        | 35           | < 0.01 | < 20      | < 1      | < 2      |
| GGKM-02                | 4        | 11.5           | < 10           | < 1      | 0.62   | < 10 | 0.06   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.056 | 10.9   | 14            | 2        | 17           | < 0.01 | < 20      | < 1      | 5        |
| GGKM-03                | 26       | 0.54           | < 10           | < 1      | 0.33   | 21   | < 0.01 | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003 | 0.09   | 2             | < 1      | 14           | < 0.01 | < 20      | < 1      | < 2      |
| GGKM-04                | 8        | 2.55           | < 10           | < 1      | 0.51   | 11   | 0.03   | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.048 | 2.02   | 28            | 1        | 9            | < 0.01 | < 20      | < 1      | 28       |
| GGKM-05                | 20       | 3.41           | < 10           | < 1      | 0.22   | < 10 | 0.01   | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.051 | 1.23   | 8             | 2        | 12           | < 0.01 | < 20      | < 1      | 8        |
| GGKM-06                | 2        | 5.46           | < 10           | < 1      | 0.31   | < 10 | 1.89   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03  | 0.65   | < 2           | 4        | 482          | < 0.01 | < 20      | < 1      | < 2      |
| GGKM-07                | 7        | 3.69           | < 10           | < 1      | 0.42   | < 10 | 0.58   | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.061 | 0.49   | 2             | 6        | 100          | < 0.01 | < 20      | 1        | < 2      |
| GGKM-08                | 13       | 1.39           | < 10           | < 1      | 0.16   | < 10 | 0.09   | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05  | 0.02   | < 2           | 5        | 463          | < 0.01 | < 20      | 2        | < 2      |
| GGKM-09                | 4        | 3.22           | < 10           | < 1      | 0.52   | < 10 | 0.21   | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07  | 0.84   | 7             | 6        | 386          | < 0.01 | < 20      | 1        | < 2      |
|                        |          |                | 10.000         | 2011     |        | 1.00 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |               | 100      | 1.00 (m) (m) |        | 41        |          | -        |

Page 5 of 9

Final Report

Report: A17-10633

Activation Laboratories

| Report Date: 1/12/2017 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol         | Cr     | Fe     | Ga     | Hg     | K      | La     | Mg     | Na     | P      | S      | Sb     | Sc     | Sr     | Ti     | Th     | Te     | TI     |
| Unit Symbol            | ppm    | %      | ppm    | ppm    | %      | ppm    | %      | %      | %      | %      | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    |
| Detection Limit        | 1      | 0.01   | 10     | 1      | 0.01   | 10     | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 1      | 1      | 0.01   | 20     | 1      | 2      |
| Analysis Method        | AR-ICP |
| GGKM-10                | 10     | 12.4   | < 10   | < 1    | 0.08   | < 10   | 0.16   | 0.027  | 0.011  | 0.03   | 19     | 1      | 160    | < 0.01 | < 20   | 3      | < 2    |
| GGKM-11                | 13     | 1.2    | < 10   | < 1    | 0.33   | 12     | < 0.01 | 0.025  | 0.002  | 0.71   | < 2    | < 1    | 7      | < 0.01 | < 20   | < 1    | < 2    |
| GGKM-12                | 12     | 4.16   | < 10   | < 1    | 0.27   | < 10   | 0.06   | 0.031  | 0.031  | 1.76   | 3      | 1      | 11     | < 0.01 | < 20   | < 1    | < 2    |
| GGKM-13                | 7      | 0.69   | < 10   | < 1    | 0.39   | 44     | < 0.01 | 0.024  | 0.008  | 0.08   | < 2    | < 1    | 7      | < 0.01 | < 20   | 3      | < 2    |
| GGKM-14                | 7      | 8.71   | < 10   | < 1    | 0.4    | 15     | 0.02   | 0.019  | 0.003  | 9.37   | 9      | < 1    | 2      | < 0.01 | < 20   | 6      | 3      |
| GGKM-15                | 15     | 0.66   | < 10   | < 1    | 0.33   | 23     | < 0.01 | 0.025  | 0.004  | 0.11   | 2      | < 1    | 4      | < 0.01 | < 20   | < 1    | < 2    |
| GGKM-16                | 6      | 10.5   | < 10   | < 1    | 0.33   | 13     | < 0.01 | 0.021  | 0.006  | 10.9   | 14     | < 1    | 3      | < 0.01 | < 20   | 2      | < 2    |
| GGKM-17                | 13     | 2.26   | < 10   | < 1    | 0.44   | 14     | 0.19   | 0.026  | 0.055  | 0.07   | 12     | 3      | 32     | < 0.01 | < 20   | < 1    | < 2    |
| GGKM-18                | 17     | 3.05   | < 10   | < 1    | 0.06   | < 10   | < 0.01 | 0.022  | 0.007  | 1.33   | 3      | < 1    | 5      | < 0.01 | < 20   | < 1    | < 2    |
|                        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

Final Report
Activation Laboratories

|                        |        |        |        |        |        |         |         |         | repore  |         |
|------------------------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| Report: A17-10633      |        |        |        |        |        |         | Activ   | vation  | Laborat | ories   |
| Report Date: 1/12/2017 | •      |        |        |        |        |         |         |         |         |         |
| Analyte Symbol         | U      | V      | W      | Y      | Zr     | Au      | Ag      | Cu      | Pb      | Zn      |
| Unit Symbol            | ppm    | ppm    | ppm    | ppm    | ppm    | g/tonne | g/tonne | %       | %       | %       |
| Detection Limit        | 10     | 1      | 10     | 1      | 1      | 0.03    | 3       | 0.001   | 0.003   | 0.001   |
| Analysis Method        | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | FA-GRA  | FA-GRA  | ICP-OES | ICP-OES | ICP-OES |
| A17-104                | < 10   | 9      | < 10   | 2      | 11     |         |         |         |         |         |
| A17-105                | < 10   | 18     | < 10   | 6      | 4      |         |         |         |         |         |
| A17-106                | < 10   | 1      | < 10   | 1      | 2      |         |         |         |         |         |
| A17-107                | < 10   | 5      | < 10   | 10     | 10     |         |         |         |         |         |
| A17-108                | < 10   | 94     | < 10   | 8      | 4      |         |         |         |         |         |
| A17-131                | < 10   | 33     | < 10   | 8      | 4      |         |         |         |         |         |
| A17-132                | < 10   | 2      | < 10   | 5      | < 1    |         |         |         |         |         |
| A17-133                | < 10   | 42     | < 10   | 5      | 4      |         |         |         |         |         |
| A17-134                | < 10   | 18     | < 10   | 4      | 7      |         |         |         |         |         |
| A17-135                | < 10   | 6      | < 10   | 4      | < 1    |         |         |         |         |         |
| A17-136                | < 10   | 4      | < 10   | 5      | 1      | •       |         |         |         |         |
| A17-137                | < 10   | 18     | < 10   | 12     | 2      |         |         |         |         |         |
| A17-138                | < 10   | 19     | < 10   | 7      | 2      |         |         |         |         |         |
| A17-139                | < 10   | 8      | < 10   | 4      | 1      |         |         |         |         |         |
| A17-140                | < 10   | 40     | < 10   | 5      | 2      |         |         |         |         |         |
| A17-141                | < 10   | 10     | < 10   | 4      | 2      |         |         |         |         |         |
| DM-124                 | < 10   | 1      | < 10   | 7      | 28     |         |         |         |         |         |
| DM-125                 | < 10   | 12     | < 10   | 5      | 30     |         |         |         |         |         |
| DM-126                 | < 10   | 9      | < 10   | 5      | 15     | 12.4    |         | 1.34    |         |         |
| DM-127                 | < 10   | 2      | < 10   | < 1    | 1      | 25.3    | 210     | 1.79    | 6.94    | 1.71    |
| DM-128                 | < 10   | 6      | < 10   | 4      | 5      |         |         |         |         |         |
| DM-129                 | < 10   | 7      | < 10   | 2      | 2      | 15.2    |         |         |         |         |
| DM-130                 | < 10   | 1      | < 10   | < 1    | 2      |         | 110     |         |         | 1.47    |
| DM-131                 | < 10   | . 1    | < 10   | < 1    | 1      |         |         |         |         |         |
| DM-132                 | < 10   | 2      | < 10   | < 1    | 2      |         | 171     |         |         | 3.35    |
| DM-133                 | < 10   | 5      | < 10   | 7      | 3      |         |         |         |         |         |
| DM-134                 | < 10   | 10     | < 10   | 2      | 5      |         |         |         |         |         |
| DM-135                 | < 10   | 7      | < 10   | 7      | 10     |         |         |         |         |         |
| DM-136                 | < 10   | 2      | < 10   | 5      | 29     |         |         |         |         |         |
| DM-137                 | < 10   | 40     | < 10   | 8      | 2      |         |         |         |         |         |
| DM-138                 | < 10   | 17     | < 10   | 2      | < 1    |         |         |         |         |         |

Page 7 of 9

Final Report Activation Laboratories

| Report: | A17-  | 10633    |    |
|---------|-------|----------|----|
| Danadi  | - de- | 4/40/004 | 6- |

| Report Date: 1/12/2017 |        |        |        |        |        |         |         |        |         |         |
|------------------------|--------|--------|--------|--------|--------|---------|---------|--------|---------|---------|
| Analyte Symbol         | U      | V      | W      | Y      | Zr     | Au      | Ag      | Cu     | Pb      | Zn      |
| Unit Symbol            | ppm    | ppm    | ppm    | ppm    | ppm    | g/tonne | g/tonne | %      | %       | %       |
| Detection Limit        | 10     | 1      | 10     | 1      | 1      | 0.03    | 3       | 0.001  | 0.003   | 0.001   |
| Analysis Method        | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | FA-GRA  | FA-GRA  | CP-OES | ICP-OES | ICP-OES |
| DM-139                 | < 10   | 7      | 1550   | 1      | 7      |         |         |        |         |         |
| DM-140                 | < 10   | 11     | < 10   | < 1    | 1      |         |         |        |         |         |
| DM-141                 | < 10   | 1      | < 10   | 2      | 1      |         |         |        |         |         |
| AGKM-01                | < 10   | 12     | < 10   | 2      | 2      |         |         |        |         |         |
| AGKM-02                | < 10   | 9      | < 10   | 3      | < 1    |         |         |        |         |         |
| AGKM-03                | < 10   | 6      | < 10   | 2      | 3      |         |         |        |         |         |
| AGKM-04                | < 10   | 18     | < 10   | 7      | 2      |         |         |        |         |         |
| AGKM-05                | < 10   | 15     | < 10   | 5      | 2      |         |         |        |         |         |
| AGKM-06                | < 10   | 8      | < 10   | 8      | 2      |         |         |        |         |         |
| AGKM-07                | < 10   | 6      | < 10   | 5      | 2      |         |         |        |         |         |
| AGKM-08                | < 10   | 19     | < 10   | 5      | 5      | ,       |         |        |         |         |
| AGKM-09                | < 10   | 97     | < 10   | 10     | 3      |         |         |        |         |         |
| AGKM-10                | < 10   | 17     | < 10   | 7      | 7      |         |         |        |         |         |
| AGKM-11                | < 10   | 5      | < 10   | 6      | < 1    |         |         |        |         |         |
| AGKM-12                | < 10   | 73     | < 10   | 5      | 4      |         |         |        |         |         |
| AGKM-13                | < 10   | 21     | < 10   | 7      | 6      |         |         |        |         |         |
| AGKM-14                | < 10   | 38     | 11     | 6      | 2      |         |         |        |         |         |
| AGKM-15                | < 10   | 11     | < 10   | 5      | 5      |         |         |        |         |         |
| AGKM-16                | < 10   | 63     | < 10   | 14     | 3      |         |         |        |         |         |
| AGKM-17                | < 10   | 24     | < 10   | 8      | 3      |         |         |        |         |         |
| AGKM-12a               | < 10   | 12     | < 10   | 7      | 4      |         |         |        |         |         |
| AGKM-14a               | < 10   | 6      | < 10   | 2      | 3      |         |         |        |         |         |
| GGKM-01                | < 10   | 2      | < 10   | 4      | 3      |         |         |        |         |         |
| GGKM-02                | < 10   | 23     | < 10   | 4      | 19     |         |         |        |         |         |
| GGKM-03                | < 10   | < 1    | < 10   | 3      | 23     |         |         |        |         |         |
| GGKM-04                | < 10   | 14     | < 10   | 2      | 10     |         |         |        |         |         |
| GGKM-05                | < 10   | 6      | < 10   | 6      | 12     |         |         |        |         |         |
| GGKM-06                | < 10   | 32     | < 10   | 12     | 3      |         |         |        |         |         |
| GGKM-07                | < 10   | 21     | < 10   | 5      | 5      |         |         |        |         |         |
| GGKM-08                | < 10   | 8      | < 10   | 21     | 1      |         |         |        |         |         |
| GGKM-09                | < 10   | 21     | < 10   | 16     | 2      |         |         |        |         |         |
|                        |        |        |        |        |        |         |         |        |         |         |

Final Report

Report: A17-10633 Activation Laboratories

| Report | Date: | 1/1 | 12/2 | 017 |
|--------|-------|-----|------|-----|

| Report Date. 1/12/2017 |        |        |        |        |        |         |         |         |         |         |
|------------------------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| Analyte Symbol         | U      | V      | W      | Y      | Zr     | Au      | Ag      | Cu      | Pb      | Zn      |
| Unit Symbol            | ppm    | ppm    | ppm    | ppm    | ppm    | g/tonne | g/tonne | %       | %       | %       |
| Detection Limit        | 10     | 1      | 10     | 1      | 1      | 0.03    | 3       | 0.001   | 0.003   | 0.001   |
| Analysis Method        | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | FA-GRA  | FA-GRA  | ICP-OES | ICP-OES | ICP-OES |
| GGKM-10                | < 10   | 53     | < 10   | 5      | 4      |         |         |         |         |         |
| GGKM-11                | < 10   | < 1    | < 10   | 1      | 17     |         |         |         |         |         |
| GGKM-12                | < 10   | 10     | 13     | 3      | 8      |         |         |         |         | 2.24    |
| GGKM-13                | < 10   | 1      | < 10   | 3      | 52     |         |         |         |         |         |
| GGKM-14                | < 10   | 2      | < 10   | 3      | 31     |         |         |         |         |         |
| GGKM-15                | < 10   | < 1    | < 10   | 3      | 23     |         |         |         |         |         |
| GGKM-16                | < 10   | 2      | < 10   | 4      | 49     |         |         |         |         |         |
| GGKM-17                | < 10   | 19     | < 10   | 5      | 4      |         |         |         |         |         |
| GGKM-18                | < 10   | 2      | 91     | 1      | 2      |         |         |         |         |         |
|                        |        |        |        |        |        |         |         |         |         |         |

Final Report Activation Laboratories

Report: A17-10632 Report Date: 9/11/2017

| Report Date: 9/11/2017 |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol         | Au    | Ag     | Cd     | Cu     | Mn     | Mo     | Ni     | Pb     | Zn     | Al     | As     | В      | Ва     | Ве     | Bi     | Ca     | Co     |
| Unit Symbol            | ppb   | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    |
| Detection Limit        | 5     | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2      | 2      | 0.01   | 2      | 10     | 10     | 0.5    | 2      | 0.01   | 1      |
| Analysis Method        | FA-AA | AR-ICP |
| LGKM-01                | < 5   | < 0.2  | 1      | 5      | 811    | 4      | 2      | 19     | 275    | 0.61   | 42     | < 10   | 75     | 0.7    | < 2    | 0.31   | 8      |
| LGKM-02                | < 5   | < 0.2  | < 0.5  | 11     | 1740   | 2      | 4      | 21     | 61     | 0.76   | 35     | < 10   | 79     | 0.7    | < 2    | 2.98   | 9      |
| LGKM-03                | < 5   | < 0.2  | < 0.5  | 4      | 2020   | 1      | < 1    | 18     | 61     | 0.3    | 7      | < 10   | 30     | < 0.5  | < 2    | > 10.0 | 2      |
| LGKM-04                | < 5   | < 0.2  | < 0.5  | 3      | 840    | < 1    | 3      | 3      | 35     | 0.32   | 6      | < 10   | 98     | < 0.5  | < 2    | 0.74   | 1      |
| LGKM-05                | 25    | 4      | 8.5    | 288    | 4030   | 2      | 2      | 290    | 77     | 0.34   | 6      | < 10   | 506    | 0.5    | < 2    | 8.73   | 5      |
| LGKM-06                | < 5   | < 0.2  | < 0.5  | 8      | 2280   | 4      | 2      | 6      | 34     | 0.55   | 66     | < 10   | 163    | < 0.5  | < 2    | 1.3    | 15     |
| LGKM-07                | 17    | 10.6   | < 0.5  | 80     | 60     | 6      | 3      | 341    | 15     | 0.26   | 4440   | < 10   | < 10   | < 0.5  | 4      | 0.07   | 4      |
| LGKM-08                | < 5   | < 0.2  | 1      | 2      | 4190   | 2      | 1      | 13     | 18     | 0.11   | 12     | < 10   | 1090   | < 0.5  | 4      | > 10.0 | 3      |
| LGKM-09                | < 5   | < 0.2  | < 0.5  | 2      | 3560   | < 1    | 3      | 4      | 35     | 0.46   | 7      | < 10   | 580    | < 0.5  | < 2    | 3.88   | 4      |
| LGKM-10                | < 5   | < 0.2  | < 0.5  | 20     | 1060   | 7      | 2      | 10     | 19     | 0.53   | < 2    | < 10   | 1680   | < 0.5  | < 2    | 1.3    | 3      |
|                        |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

Final Report
Activation Laboratories

Report: A17-10632 Report Date: 9/11/2017

| Report Date. 3/11/2011 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol         | Cr     | Fe     | Ga     | Hg     | K      | La     | Mg     | Na     | P      | S      | Sb     | Sc     | Sr     | Ti     | Th     | Te     | TI     |
| Unit Symbol            | ppm    | %      | ppm    | ppm    | %      | ppm    | %      | %      | %      | %      | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    |
| Detection Limit        | 1      | 0.01   | 10     | 1      | 0.01   | 10     | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 1      | 1      | 0.01   | 20     | 1      | 2      |
| Analysis Method        | AR-ICP |
| LGKM-01                | 20     | 0.87   | < 10   | < 1    | 0.39   | 15     | 0.02   | 0.025  | 0.047  | 0.01   | < 2    | 2      | 13     | < 0.01 | < 20   | < 1    | < 2    |
| LGKM-02                | 5      | 1.59   | < 10   | < 1    | 0.51   | 25     | 0.03   | 0.021  | 0.038  | 0.12   | 5      | 3      | 73     | < 0.01 | < 20   | < 1    | < 2    |
| LGKM-03                | 3      | 0.88   | < 10   | < 1    | 0.22   | < 10   | 0.14   | 0.016  | 0.016  | 0.04   | 4      | 1      | 467    | < 0.01 | < 20   | < 1    | < 2    |
| LGKM-04                | 15     | 2.26   | < 10   | < 1    | 0.22   | < 10   | 0.19   | 0.034  | 0.029  | 0.01   | 4      | 1      | 39     | < 0.01 | < 20   | < 1    | < 2    |
| LGKM-05                | 14     | 1.76   | < 10   | < 1    | 0.27   | 18     | 0.19   | 0.034  | 0.021  | 0.05   | 18     | 2      | 271    | 0.01   | < 20   | 4      | < 2    |
| LGKM-06                | 10     | 2.12   | < 10   | < 1    | 0.49   | 48     | 0.07   | 0.032  | 0.064  | < 0.01 | 3      | 4      | 23     | < 0.01 | < 20   | 2      | < 2    |
| LGKM-07                | 4      | 12.2   | < 10   | < 1    | 0.19   | < 10   | 0.01   | 0.068  | 0.037  | 14.9   | 111    | 2      | 6      | < 0.01 | < 20   | < 1    | 43     |
| LGKM-08                | 14     | 0.85   | < 10   | 2      | 0.08   | < 10   | 0.28   | 0.034  | 0.006  | 0.05   | 5      | < 1    | 687    | < 0.01 | < 20   | 5      | < 2    |
| LGKM-09                | 13     | 2.34   | < 10   | < 1    | 0.36   | 10     | 0.09   | 0.03   | 0.039  | 0.02   | 4      | 6      | 46     | < 0.01 | < 20   | < 1    | < 2    |
| LGKM-10                | 12     | 1.32   | < 10   | < 1    | 0.51   | 20     | 0.05   | 0.05   | 0.138  | 0.04   | 4      | 7      | 65     | < 0.01 | < 20   | < 1    | < 2    |
|                        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

Final Report Activation Laboratories

Report: A17-10632 Report Date: 9/11/2017

| Analyte Symbol  | U      | V      | W      | Y      | Zr     |
|-----------------|--------|--------|--------|--------|--------|
| Unit Symbol     | ppm    | ppm    | ppm    | ppm    | ppm    |
| Detection Limit | 10     | 1      | 10     | 1      | 1      |
| Analysis Method | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| LGKM-01         | < 10   | 8      | < 10   | 5      | < 1    |
| LGKM-02         | < 10   | 12     | < 10   | 8      | 1      |
| LGKM-03         | < 10   | 5      | < 10   | 2      | 4      |
| LGKM-04         | < 10   | 6      | < 10   | 3      | 2      |
| LGKM-05         | < 10   | 16     | < 10   | 10     | 3      |
| LGKM-06         | < 10   | 5      | < 10   | 8      | < 1    |
| LGKM-07         | < 10   | 8      | < 10   | 3      | 11     |
| LGKM-08         | < 10   | 1      | < 10   | 6      | < 1    |
| LGKM-09         | < 10   | 11     | < 10   | 10     | 2      |
| LGKM-10         | < 10   | 17     | < 10   | 8      | < 1    |
|                 |        |        |        |        |        |

Final Report Activation Laboratories

| Report: A17-08616     |       |        |        |        |        |        | Acti   | ivation | Labora | tories |        |        |        |        |        |        |        |
|-----------------------|-------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Report Date: 5/9/2017 |       |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        |
| Analyte Symbol        | Au    | Ag     | Cd     | Cu     | Mn     | Mo     | Ni     | Pb      | Zn     | Al     | As     | В      | Ва     | Ве     | Bi     | Ca     | Co     |
| Unit Symbol           | ppb   | ppm     | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    |
| Detection Limit       | 5     | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2       | 2      | 0.01   | 2      | 10     | 10     | 0.5    | 2      | 0.01   | 1      |
| Analysis Method       | FA-AA | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| A17-6                 | < 5   | 51     | 8.4    | 71     | 8200   | 5      | 2      | 1470    | 753    | 0.25   | 381    | 25     | 67     | 3.8    | < 2    | > 10.0 | 4      |
| A17-7                 | < 5   | 0.8    | 1.9    | 43     | 219    | 9      | 2      | 121     | 237    | 1.34   | 13     | 13     | 314    | < 0.5  | 3      | 0.36   | 4      |
| A17-8                 | < 5   | 11.8   | 6.4    | 13     | 1130   | 165    | 1      | 458     | 5840   | 0.03   | 904    | < 10   | < 10   | < 0.5  | < 2    | 2.95   | 13     |
| A17-9                 | 3000  | 98.8   | 1.2    | 439    | 790    | 3      | 2      | 761     | 115    | 0.05   | 1420   | < 10   | < 10   | < 0.5  | 1360   | 0.07   | 7      |
| A17-10                | 1670  | > 100  | 77.6   | 291    | 946    | 2      | 14     | > 5000  | 5220   | 0.32   | 7120   | < 10   | < 10   | < 0.5  | 272    | 0.29   | 11     |
| A17-11                | 8     | 0.2    | < 0.5  | 11     | 13100  | 3      | 13     | 18      | 62     | 0.92   | 25     | < 10   | 79     | < 0.5  | < 2    | > 10.0 | 7      |
| A17-12                | 233   | 9.2    | 3.2    | 608    | 98     | 3      | 4      | 167     | 283    | 0.26   | 142    | < 10   | < 10   | < 0.5  | 8      | 0.46   | 9      |
| A17-13                | 1040  | 7.3    | < 0.5  | 789    | 3050   | 3      | 5      | 214     | 95     | 0.13   | 5780   | < 10   | < 10   | < 0.5  | 4      | 0.24   | 17     |
| A17-14                | 240   | 7.4    | 27.5   | 649    | 120    | 18     | 3      | 137     | 3740   | 0.7    | 1220   | < 10   | < 10   | < 0.5  | 7      | 0.46   | 26     |
| A17-15                | 1540  | 62.2   | 29.9   | 903    | 995    | 3      | 1      | 554     | 3150   | 0.24   | 1320   | < 10   | < 10   | < 0.5  | 179    | 0.1    | 14     |

Final Report
Activation Laboratories

Report: A17-08616 Report Date: 5/9/2017

| Report Date. 3/3/2017 |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol        | Cr     | Fe     | Ga     | Hg     | K      | La     | Mg     | Na     | P       | S      | Sb     | Sc     | Sr     | Ti     | Th     | Te     | TI     |
| Unit Symbol           | ppm    | %      | ppm    | ppm    | %      | ppm    | %      | %      | %       | %      | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    |
| Detection Limit       | 1      | 0.01   | 10     | 1      | 0.01   | 10     | 0.01   | 0.001  | 0.001   | 0.01   | 2      | 1      | 1      | 0.01   | 20     | 1      | 2      |
| Analysis Method       | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| A17-6                 | 4      | 10.1   | < 10   | 3      | 0.01   | < 10   | 0.27   | 0.017  | 0.036   | 2.01   | 13     | < 1    | 274    | < 0.01 | < 20   | 8      | < 2    |
| A17-7                 | 13     | 1.78   | < 10   | < 1    | 0.64   | 19     | 0.32   | 0.106  | 0.063   | 0.22   | 3      | 2      | 22     | 0.01   | < 20   | < 1    | < 2    |
| A17-8                 | 11     | 4.12   | < 10   | 12     | 0.01   | < 10   | < 0.01 | 0.024  | 0.001   | 4.06   | 35     | < 1    | 55     | < 0.01 | < 20   | < 1    | 196    |
| A17-9                 | 33     | 10.8   | < 10   | < 1    | 0.03   | < 10   | 0.03   | 0.018  | < 0.001 | 5.57   | 19     | < 1    | 3      | < 0.01 | < 20   | > 500  | < 2    |
| A17-10                | 8      | 14.1   | < 10   | 1      | 0.22   | < 10   | 0.04   | 0.016  | 0.019   | 13.9   | 272    | 1      | 15     | < 0.01 | < 20   | 3      | < 2    |
| A17-11                | 7      | 2.46   | < 10   | 2      | 0.11   | 15     | 0.4    | 0.058  | 0.317   | 0.36   | 4      | 4      | 293    | 0.07   | < 20   | 2      | < 2    |
| A17-12                | 10     | 12.3   | < 10   | < 1    | 0.15   | < 10   | 0.02   | 0.016  | 0.017   | 11.3   | 24     | < 1    | 8      | < 0.01 | < 20   | 4      | < 2    |
| A17-13                | 6      | 23     | < 10   | < 1    | 0.08   | < 10   | 0.1    | 0.016  | 0.01    | 14.3   | 20     | < 1    | 4      | < 0.01 | < 20   | 4      | < 2    |
| A17-14                | 4      | 22.6   | < 10   | < 1    | 0.11   | < 10   | 0.12   | 0.018  | 0.004   | 15.3   | 65     | < 1    | 16     | < 0.01 | < 20   | 10     | < 2    |
| A17-15                | 18     | 19     | < 10   | < 1    | 0.15   | < 10   | 0.06   | 0.018  | 0.009   | 13     | 17     | < 1    | 2      | < 0.01 | < 20   | 115    | < 2    |

Page 2 of 3

Final Report
Activation Laboratories

Report: A17-08616 Report Date: 5/9/2017 Analyte Symbol U Zr V W Unit Symbol ppm ppm ppm ppm ppm **Detection Limit** 10 1 10 1 Analysis Method AR-ICP AR-ICP AR-ICP AR-ICP A17-6 6 < 10 42 < 10 3 A17-7 < 10 19 < 10 5 8 A17-8 < 10 2 < 10 < 1 1 A17-9 < 10 120 < 1 2 A17-10 2 7 < 10 5 < 10 A17-11 2 < 10 24 < 10 14 5 A17-12 < 10 5 < 10 < 1 A17-13 4 < 10 < 10 1 5 A17-14 < 10 11 < 10 < 1

< 10

12

5

A17-15

Page 3 of 3

#### Final Report Activation Laboratories

| Report: A17-08616       |         |              |
|-------------------------|---------|--------------|
| Report Date: 12/12/2017 |         |              |
| Analyte Symbol          | Pb      | Zn           |
| Unit Symbol             | %       | %            |
| Detection Limit         | 0.003   | 0.001        |
| Analysis Method         | ICP-OES | ICP-OES      |
| A17-10                  | 5.82    |              |
| -A17-27                 | 0.887   |              |
| - BAZK-1                |         | 1.25         |
|                         |         |              |
| ← BAZK-4                | 1.91    | 16.3         |
| ← BAZK-4<br>← BAZK-5    | 1.91    | 16.3<br>1.79 |

Final Report Activation Laboratories

Report: A17-10634 Report Date: 10/11/2017

| Report Date: 10/11/2017 |       |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |
|-------------------------|-------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol          | Au    | Ag     | Cd     | Cu     | Mn     | Mo     | Ni     | Pb     | Zn      | Al     | As     | В      | Ва     | Ве     | Bi     | Ca     | Co     |
| Unit Symbol             | ppb   | ppm     | %      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    |
| <b>Detection Limit</b>  | 5     | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2      | 2       | 0.01   | 2      | 10     | 10     | 0.5    | 2      | 0.01   | 1      |
| Analysis Method         | FA-AA | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| LJ-023                  | 14    | 4.8    | 18.8   | 45     | 1290   | 2      | 4      | 1400   | 1670    | 1.28   | 22     | < 10   | 46     | < 0.5  | 6      | 1.26   | 13     |
| LJ-024                  | 13    | 67.8   | 195    | 72     | 949    | < 1    | 2      | > 5000 | > 10000 | 0.33   | 43     | < 10   | 13     | < 0.5  | < 2    | 1.42   | 9      |
| LJ-025                  | 5     | 2      | 21.1   | 29     | 3970   | 1      | 4      | 469    | 2520    | 0.67   | 17     | < 10   | 345    | < 0.5  | 3      | 8.79   | 10     |
| LJ-026                  | 7     | 4.4    | 54.1   | 72     | 1910   | 4      | 6      | 1210   | 6890    | 0.15   | 15     | < 10   | 173    | < 0.5  | < 2    | 2.26   | 11     |
| LJ-027                  | 5     | 4.9    | 23.6   | 36     | 2500   | 2      | 6      | 1350   | 2800    | 0.53   | 14     | < 10   | 304    | < 0.5  | < 2    | 2.83   | 14     |
| LJ-028                  | 6     | 0.7    | 8.7    | 11     | 4840   | 1      | 3      | 58     | 661     | 0.66   | 11     | < 10   | 290    | < 0.5  | 4      | > 10.0 | 4      |
| LJ-029                  | 11    | 4.2    | 40.5   | 80     | 2330   | < 1    | 6      | 528    | 3650    | 2.3    | 43     | < 10   | 63     | < 0.5  | < 2    | 2.03   | 18     |
| LJ-061                  | 5     | 7.2    | 24     | 232    | 2620   | 3      | 2      | 1390   | 2180    | 0.35   | 78     | < 10   | 33     | < 0.5  | < 2    | 1.85   | 2      |
| LJ-062                  | 8     | 2.7    | 25.8   | 38     | 1060   | 5      | 3      | 1050   | 2400    | 0.32   | 30     | < 10   | 45     | < 0.5  | < 2    | 0.94   | 4      |
| LJ-063                  | 6     | 3.5    | 15.4   | 41     | 2920   | < 1    | 3      | 467    | 1680    | 1.12   | 16     | < 10   | 400    | 0.6    | < 2    | 3.98   | 10     |
| LJ-064                  | < 5   | 1.6    | 28.9   | 25     | 3370   | < 1    | 3      | 156    | 1800    | 1.69   | 23     | < 10   | 509    | 1      | < 2    | 2.63   | 8      |
| LJ-065                  | 6     | 55.2   | 115    | 40     | 1050   | < 1    | 3      | > 5000 | > 10000 | 0.27   | 42     | < 10   | 12     | < 0.5  | < 2    | 2.48   | 10     |
| LJ-066                  | 6     | 3.9    | 3.1    | 39     | 3310   | < 1    | 4      | 510    | 740     | 1.05   | 17     | < 10   | 62     | 0.7    | 5      | 4.35   | 13     |
| LJ-067                  | < 5   | 17.7   | 65.1   | 33     | 1340   | 27     | 6      | 1220   | 8810    | 0.36   | 147    | 10     | 54     | < 0.5  | < 2    | 0.7    | 13     |
| LJ-068                  | < 5   | 5.9    | 46.2   | 31     | 3910   | 15     | 6      | 753    | 3880    | 0.59   | 256    | 14     | 209    | < 0.5  | < 2    | 0.43   | 8      |
| LJ-069                  | 59    | > 100  | 22.3   | 15     | 563    | 15     | 1      | > 5000 | 2210    | 0.27   | 59     | < 10   | 11     | < 0.5  | < 2    | 0.47   | 2      |
| LJ-070                  | < 5   | 22.5   | 195    | 31     | 5800   | 20     | 3      | 4740   | > 10000 | 0.25   | 76     | < 10   | 29     | < 0.5  | 3      | 5.71   | 7      |
| LJ-071                  | < 5   | 1.9    | 5.7    | 36     | 2790   | 5      | 5      | 154    | 733     | 0.7    | 164    | 14     | 52     | < 0.5  | < 2    | 3.02   | 7      |
| LJ-072                  | < 5   | 8.8    | 122    | 23     | 7020   | 9      | 7      | 2410   | > 10000 | 0.07   | 46     | < 10   | 82     | < 0.5  | < 2    | 8.61   | 8      |
| LJ-073                  | < 5   | 10.3   | 118    | 67     | 8160   | 26     | 7      | 1670   | > 10000 | 0.07   | 173    | < 10   | 84     | < 0.5  | 2      | 8.94   | 5      |
| LJ-074                  | < 5   | 14.9   | 137    | 38     | 8990   | 16     | 3      | 2840   | > 10000 | 0.13   | 122    | < 10   | 396    | < 0.5  | < 2    | 7.06   | 7      |
| LJ-075                  | < 5   | 2.2    | 13.9   | 8      | 1940   | 55     | 3      | 268    | 1690    | 0.91   | 430    | 15     | 660    | < 0.5  | < 2    | 0.79   | 5      |
| LJ-076                  | < 5   | 78.4   | 4.3    | 50     | 13000  | 2      | < 1    | 3010   | 440     | 0.16   | 8      | < 10   | 68     | < 0.5  | 2      | > 10.0 | 3      |
| LJ-077                  | < 5   | 14.9   | 111    | 51     | 7290   | 41     | 5      | 2890   | > 10000 | 0.31   | 183    | < 10   | 53     | < 0.5  | 3      | 7.83   | 13     |
|                         |       |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |

Final Report Activation Laboratories

Report Date: 10/11/2017

| Report Date: 10/11/2017 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|-------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol          | Cr     | Fe     | Ga     | Hg     | K      | La     | Mg     | Na     | P      | S      | Sb     | Sc     | Sr     | Ti     | Th     | Те     | TI     |
| Unit Symbol             | ppm    | %      | ppm    | ppm    | %      | ppm    | %      | %      | %      | %      | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    |
| Detection Limit         | 1      | 0.01   | 10     | 1      | 0.01   | 10     | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 1      | 1      | 0.01   | 20     | 1      | 2      |
| Analysis Method         | AR-ICP |
| LJ-023                  | 6      | 2.65   | < 10   | < 1    | 0.81   | 11     | 0.14   | 0.031  | 0.15   | 0.78   | 5      | 5      | 58     | 0.01   | < 20   | < 1    | < 2    |
| LJ-024                  | 3      | 2.48   | < 10   | 22     | 0.17   | < 10   | 0.1    | 0.022  | 0.027  | 2.75   | 29     | 3      | 260    | 0.08   | < 20   | < 1    | < 2    |
| LJ-025                  | 13     | 2.15   | < 10   | 1      | 0.17   | < 10   | 0.34   | 0.052  | 0.047  | 0.12   | 3      | 3      | 485    | 0.04   | < 20   | < 1    | < 2    |
| LJ-026                  | 41     | 0.84   | < 10   | 5      | 0.04   | < 10   | 0.06   | 0.042  | 0.008  | 0.28   | 7      | < 1    | 138    | 0.01   | < 20   | 3      | < 2    |
| LJ-027                  | 29     | 2.81   | < 10   | 2      | 0.21   | < 10   | 0.19   | 0.033  | 0.025  | 0.21   | 6      | 2      | 148    | 0.05   | < 20   | < 1    | < 2    |
| LJ-028                  | 11     | 2.18   | < 10   | < 1    | 0.16   | < 10   | 0.35   | 0.031  | 0.013  | 0.18   | 5      | 4      | 788    | 0.01   | < 20   | < 1    | < 2    |
| LJ-029                  | 13     | 5.47   | < 10   | 2      | 1.52   | 12     | 1.11   | 0.031  | 0.11   | 0.65   | 7      | 7      | 78     | 0.2    | < 20   | 1      | < 2    |
| LJ-061                  | 27     | 1.83   | < 10   | 2      | 0.28   | 16     | 0.06   | 0.021  | 0.021  | 1.08   | 26     | 2      | 218    | < 0.01 | < 20   | < 1    | < 2    |
| LJ-062                  | 27     | 1.07   | < 10   | 2      | 0.27   | 18     | 0.03   | 0.023  | 0.02   | 0.63   | 8      | 2      | 186    | < 0.01 | < 20   | < 1    | < 2    |
| LJ-063                  | 10     | 3.15   | < 10   | 1      | 0.72   | 16     | 0.1    | 0.049  | 0.122  | 0.07   | 6      | 7      | 301    | 0.02   | < 20   | 2      | 2      |
| LJ-064                  | 7      | 3.52   | < 10   | < 1    | 0.98   | 16     | 0.62   | 0.041  | 0.131  | 0.13   | 4      | 8      | 84     | 0.04   | < 20   | < 1    | < 2    |
| LJ-065                  | 3      | 1.65   | < 10   | 12     | 0.19   | < 10   | 0.03   | 0.021  | 0.032  | 2      | 18     | 2      | 259    | 0.01   | < 20   | 2      | < 2    |
| LJ-066                  | 6      | 2.73   | < 10   | < 1    | 0.7    | 12     | 0.11   | 0.045  | 0.131  | 0.47   | 5      | 8      | 225    | < 0.01 | < 20   | < 1    | < 2    |
| LJ-067                  | 24     | 1.71   | < 10   | 6      | 0.21   | < 10   | 0.01   | 0.02   | 0.018  | 0.53   | 21     | 1      | 53     | < 0.01 | < 20   | < 1    | < 2    |
| LJ-068                  | 13     | 1.1    | < 10   | < 1    | 0.34   | 16     | 0.02   | 0.025  | 0.015  | 0.23   | 9      | 3      | 21     | < 0.01 | < 20   | 3      | < 2    |
| LJ-069                  | 20     | 1.32   | < 10   | 2      | 0.24   | 13     | 0.01   | 0.021  | 0.012  | 2.26   | 199    | 2      | 56     | < 0.01 | < 20   | 1      | < 2    |
| LJ-070                  | 19     | 1.8    | < 10   | 9      | 0.14   | < 10   | 0.15   | 0.015  | 0.017  | 0.89   | 29     | 2      | 283    | < 0.01 | < 20   | < 1    | 2      |
| LJ-071                  | 16     | 3.85   | < 10   | < 1    | 0.4    | < 10   | 0.15   | 0.022  | 0.042  | 0.57   | 12     | 4      | 91     | < 0.01 | < 20   | 3      | < 2    |
| LJ-072                  | 14     | 0.75   | < 10   | 6      | 0.04   | < 10   | 0.1    | 0.018  | 0.009  | 0.45   | 24     | 2      | 372    | < 0.01 | < 20   | < 1    | < 2    |
| LJ-073                  | 7      | 0.98   | < 10   | 6      | 0.04   | < 10   | 0.06   | 0.018  | 0.014  | 0.52   | 30     | 2      | 374    | < 0.01 | < 20   | < 1    | 3      |
| LJ-074                  | 7      | 1.58   | < 10   | 5      | 0.07   | < 10   | 0.03   | 0.021  | 0.014  | 0.12   | 21     | 1      | 322    | < 0.01 | < 20   | < 1    | < 2    |
| LJ-075                  | 4      | 4.64   | < 10   | < 1    | 0.49   | 12     | 0.18   | 0.033  | 0.075  | 0.12   | 4      | 2      | 41     | < 0.01 | < 20   | 7      | 2      |
| LJ-076                  | 1      | 1.22   | < 10   | 1      | 0.1    | < 10   | 0.08   | 0.018  | 0.012  | 0.26   | 30     | 3      | 977    | < 0.01 | < 20   | < 1    | 3      |
| LJ-077                  | 9      | 2.07   | < 10   | 5      | 0.18   | < 10   | 0.15   | 0.018  | 0.027  | 0.66   | 32     | 2      | 295    | < 0.01 | < 20   | < 1    | 5      |
|                         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

Final Report Activation Laboratories

Report: A17-10634 Report Date: 10/11/2017

| report bate. 10/11/2017 |        |        |        |        |        |         |        |         |         |
|-------------------------|--------|--------|--------|--------|--------|---------|--------|---------|---------|
| Analyte Symbol          | U      | V      | W      | Y      | Zr     | Ag      | Pb     | Zn      | Au      |
| Unit Symbol             | ppm    | ppm    | ppm    | ppm    | ppm    | g/tonne | %      | %       | g/tonne |
| Detection Limit         | 10     | 1      | 10     | 1      | 1      | 3       | 0.003  | 0.001   | 0.03    |
| Analysis Method         | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | FA-GRA  | CP-OES | ICP-OES | FA-GRA  |
| LJ-023                  | < 10   | 41     | < 10   | 10     | 1      |         |        |         |         |
| LJ-024                  | < 10   | 23     | 17     | 4      | < 1    |         | 1.72   | 1.98    |         |
| LJ-025                  | < 10   | 18     | < 10   | 8      | < 1    |         |        |         |         |
| LJ-026                  | < 10   | 5      | < 10   | 3      | < 1    |         |        |         |         |
| LJ-027                  | < 10   | 15     | < 10   | 4      | < 1    |         |        |         |         |
| LJ-028                  | < 10   | 17     | < 10   | 8      | < 1    |         |        |         |         |
| LJ-029                  | < 10   | 72     | < 10   | 13     | 1      |         |        |         |         |
| LJ-061                  | < 10   | 7      | < 10   | 8      | 6      |         |        |         |         |
| LJ-062                  | < 10   | 8      | < 10   | 3      | 5      |         |        |         |         |
| LJ-063                  | < 10   | 60     | < 10   | 15     | 1      |         |        |         |         |
| LJ-064                  | < 10   | 52     | < 10   | 13     | 1      |         |        |         |         |
| LJ-065                  | < 10   | 15     | < 10   | 4      | < 1    |         | 1.13   | 1.13    |         |
| LJ-066                  | < 10   | 51     | < 10   | 13     | < 1    |         |        |         |         |
| LJ-067                  | < 10   | 6      | < 10   | 3      | 2      |         |        |         |         |
| LJ-068                  | < 10   | 9      | < 10   | 8      | 5      |         |        |         |         |
| LJ-069                  | < 10   | 7      | < 10   | 2      | 9      | 198     | 10.8   |         |         |
| LJ-070                  | < 10   | 9      | 36     | 5      | 1      |         |        | 2.65    |         |
| LJ-071                  | < 10   | 14     | < 10   | 4      | 2      |         |        |         |         |
| LJ-072                  | < 10   | 4      | 24     | 6      | < 1    |         |        | 1.6     |         |
| LJ-073                  | < 10   | 4      | 18     | 7      | < 1    |         |        | 1.48    |         |
| LJ-074                  | < 10   | 7      | 26     | 8      | < 1    |         |        | 1.6     |         |
| LJ-075                  | < 10   | 10     | < 10   | 6      | < 1    |         |        |         |         |
| LJ-076                  | < 10   | 5      | < 10   | 13     | < 1    |         |        |         |         |
| LJ-077                  | < 10   | 11     | 18     | 7      | 1      |         |        | 1.33    |         |
|                         |        |        |        |        |        |         |        |         |         |

Final Report
Activation Laboratories

| Report Date. 1/12/2017 |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        |
|------------------------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol         | Ag     | Cd     | Cu     | Mn     | Mo     | Ni     | Pb     | Zn      | Al     | As     | В      | Ва     | Bi     | Ca     | Co     | Cr     | Fe     |
| Unit Symbol            | ppm     | %      | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | %      |
| Detection Limit        | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2      | 2       | 0.01   | 2      | 10     | 10     | 2      | 0.01   | 1      | 1      | 0.01   |
| Analysis Method        | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| 132001                 | 1.3    | 9.3    | 234    | 2330   | 3      | 6      | 229    | 1180    | 1.25   | 21     | < 10   | 159    | < 2    | 4.18   | 15     | 13     | 3.31   |
| 132002                 | 5.7    | 22.7   | 74     | 2210   | 2      | 6      | 1360   | 2580    | 1.02   | 39     | < 10   | 24     | < 2    | 4.52   | 18     | 10     | 3.08   |
| 132003                 | 2.9    | 16.6   | 43     | 2300   | 1      | 4      | 735    | 1980    | 0.94   | 23     | < 10   | 47     | < 2    | 4.53   | 13     | 10     | 3.16   |
| 132004                 | 4.2    | 40.1   | 51     | 2480   | 5      | 5      | 319    | 3970    | 0.49   | 46     | < 10   | 15     | < 2    | 3.99   | 12     | 8      | 2.91   |
| 132005                 | 4.3    | 20.1   | 61     | 2730   | 2      | 4      | 553    | 2300    | 0.95   | 24     | < 10   | 45     | < 2    | 4.78   | 14     | 9      | 3.19   |
| 132006                 | 11     | 30.9   | 59     | 2040   | 2      | 7      | 2350   | 3390    | 1.33   | 27     | < 10   | 24     | < 2    | 3.68   | 16     | 11     | 4.49   |
| 132007                 | 13.3   | 52.7   | 152    | 1870   | 2      | 5      | 1870   | 5720    | 0.95   | 52     | < 10   | 12     | < 2    | 3.01   | 17     | 9      | 4.28   |
| 132008                 | 56.4   | 35     | 165    | 258    | 47     | 9      | > 5000 | 3590    | 0.13   | 235    | < 10   | < 10   | < 2    | 0.24   | 11     | 23     | 5.28   |
| 132009                 | 20.8   | 4.2    | 68     | 486    | 13     | 3      | 1670   | 271     | 0.42   | 191    | < 10   | < 10   | < 2    | 0.79   | 6      | 14     | 5.34   |
| 132010                 | 14.6   | 1      | 69     | 614    | 7      | 4      | 130    | 144     | 0.56   | 100    | < 10   | < 10   | < 2    | 0.97   | 6      | 9      | 3.99   |
| 132011                 | 14     | 27.5   | 178    | 686    | 13     | 2      | 152    | 3610    | 0.55   | 85     | < 10   | < 10   | < 2    | 1.14   | 7      | 11     | 3.49   |
| 132012                 | 9.6    | < 0.5  | 41     | 831    | 6      | 1      | 74     | 111     | 0.4    | 66     | < 10   | < 10   | < 2    | 1.43   | 8      | 6      | 3.99   |
| 132013                 | 17     | 8      | 66     | 696    | 10     | < 1    | 108    | 1090    | 0.38   | 135    | < 10   | < 10   | < 2    | 1.34   | 7      | 10     | 4.66   |
| 132014                 | 25.8   | 209    | 139    | 1140   | 12     | 2      | 555    | > 10000 | 0.37   | 402    | < 10   | 12     | < 2    | 2.24   | 16     | 3      | 10.3   |
| 132015                 | 83.2   | 180    | 2020   | 1680   | 6      | 15     | > 5000 | > 10000 | 1.72   | 90     | < 10   | 21     | < 2    | 2.34   | 17     | 26     | 4.51   |
| 132016                 | 26.5   | 221    | 273    | 1150   | 31     | 5      | > 5000 | > 10000 | 0.48   | 328    | < 10   | < 10   | 3      | 1.95   | 26     | 10     | 7.67   |
| 132017                 | 27     | 378    | 706    | 1160   | 12     | 2      | 1430   | > 10000 | 0.54   | 246    | < 10   | < 10   | 2      | 2.26   | 18     | 13     | 6.82   |
| 132018                 | < 0.2  | < 0.5  | 5      | 738    | 2      | 5      | 6      | 99      | 2.45   | < 2    | < 10   | 338    | < 2    | 1.44   | 8      | 20     | 3.08   |
| 132019                 | 52.5   | 112    | 299    | 788    | 13     | 3      | 492    | > 10000 | 0.43   | 451    | < 10   | < 10   | 3      | 1.18   | 13     | 8      | 10.2   |
| 132020                 | 23     | 52.7   | 119    | 515    | 12     | 6      | 693    | 6500    | 0.28   | 213    | < 10   | < 10   | < 2    | 0.78   | 8      | 12     | 5.57   |
| 132021                 | 16.7   | 2.5    | 107    | 915    | 8      | 1      | 144    | 280     | 0.37   | 179    | < 10   | < 10   | < 2    | 1.25   | 9      | 9      | 5.11   |
| 132022                 | 10.4   | 1.1    | 41     | 1060   | 5      | 3      | 88     | 213     | 0.67   | 138    | < 10   | < 10   | < 2    | 1.13   | 11     | 5      | 5.86   |
| 132023                 | 24     | 4      | 1860   | 1090   | 10     | 5      | 169    | 477     | 0.64   | 249    | < 10   | < 10   | < 2    | 0.71   | 12     | 12     | 6.74   |
| 132024                 | 17.6   | 53.6   | 929    | 3610   | 10     | 5      | 154    | 7140    | 0.79   | 212    | < 10   | 11     | < 2    | 0.26   | 17     | 3      | 11.9   |
| 132025                 | 20.7   | 54.7   | 988    | 2070   | 13     | 4      | 139    | 6340    | 0.47   | 229    | < 10   | < 10   | 2      | 0.97   | 19     | 2      | 11.4   |
| 132026                 | 20.8   | 77.6   | 378    | 698    | 15     | 5      | 283    | > 10000 | 0.2    | 314    | < 10   | < 10   | < 2    | 0.51   | 7      | 19     | 6.39   |
| 132027                 | 75.1   | 177    | 2570   | 1930   | 25     | 7      | 661    | > 10000 | 0.42   | 639    | < 10   | 11     | 4      | 0.96   | 14     | 10     | 9.41   |
| 132028                 | 27     | 104    | 6200   | 908    | 20     | 4      | 375    | > 10000 | 0.15   | 175    | < 10   | < 10   | < 2    | 0.63   | 9      | 7      | 5.15   |
| 132029                 | 71.6   | 129    | 2150   | 1520   | 7      | 14     | > 5000 | > 10000 | 2.27   | 59     | < 10   | 34     | < 2    | 2.39   | 18     | 26     | 4.72   |
| 132030                 | 19.4   | 93.6   | 6000   | 97     | 6      | 1      | 241    | > 10000 | 0.02   | 143    | < 10   | 10     | 8      | 0.06   | 5      | 6      | 1.23   |
| 132031                 | 10.8   | 45     | 3630   | 109    | 4      | 4      | 192    | 6610    | 0.05   | 87     | < 10   | 19     | 8      | 0.18   | 4      | 7      | 0.97   |
|                        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        |

Final Report
Activation Laboratories

| Report Date: 1/12/2017 |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        |
|------------------------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol         | Ag     | Cd     | Cu     | Mn     | Mo     | Ni     | Pb     | Zn      | Al     | As     | В      | Ba     | Bi     | Ca     | Co     | Cr     | Fe     |
| Unit Symbol            | ppm     | %      | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | %      |
| Detection Limit        | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2      | 2       | 0.01   | 2      | 10     | 10     | 2      | 0.01   | 1      | 1      | 0.01   |
| Analysis Method        | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| 132032                 | 12.6   | 94.6   | 2400   | 242    | 10     | 4      | 553    | > 10000 | 0.14   | 208    | < 10   | 11     | 5      | 0.2    | 7      | 11     | 1.64   |
| 132033                 | 12.2   | 105    | 2410   | 296    | 13     | < 1    | 581    | > 10000 | 0.1    | 215    | < 10   | < 10   | 3      | 0.28   | 7      | 22     | 1.68   |
| 132034                 | 32.9   | 55.1   | 7540   | 1050   | 33     | 4      | 507    | 6910    | 0.02   | 751    | < 10   | < 10   | 15     | 1.71   | 17     | 15     | 5.53   |
| 132035                 | 18.6   | 158    | 2690   | 375    | 11     | 3      | 367    | > 10000 | 0.02   | 272    | < 10   | < 10   | 8      | 0.37   | 5      | 31     | 1.78   |
| 132036                 | 14.3   | 89.2   | 2550   | 420    | 9      | 3      | 149    | > 10000 | 0.16   | 186    | < 10   | < 10   | 4      | 0.41   | 9      | 13     | 2.5    |
| 132037                 | 13.8   | 30.4   | 2470   | 297    | 21     | 3      | 97     | 4000    | 0.15   | 156    | < 10   | < 10   | 3      | 0.41   | 6      | 20     | 2.25   |
| 132038                 | 11.6   | 43.1   | 1500   | 692    | 26     | 4      | 163    | 6820    | 0.03   | 455    | < 10   | < 10   | 4      | 0.76   | 6      | 15     | 2.7    |
| 132039                 | 10.8   | 51.2   | 3020   | 174    | 16     | 3      | 79     | 8890    | 0.04   | 216    | < 10   | < 10   | 4      | 0.24   | 4      | 21     | 1.78   |
| 132040                 | 13.8   | 107    | 2100   | 406    | 26     | 2      | 275    | > 10000 | 0.4    | 379    | < 10   | < 10   | 3      | 0.44   | 8      | 7      | 4.98   |
| 132041                 | 22.1   | 34.9   | 5620   | 959    | 85     | 4      | 196    | 5980    | 0.41   | 116    | < 10   | < 10   | 10     | 0.71   | 11     | 8      | 3.03   |
| 132042                 | 18.3   | 28     | 4640   | 898    | 78     | 3      | 201    | 4620    | 0.34   | 102    | < 10   | < 10   | 7      | 0.71   | 11     | 4      | 2.57   |
| 132043                 | 21.5   | 17.1   | 6820   | 345    | 76     | 1      | 182    | 1480    | 0.14   | 74     | < 10   | < 10   | 10     | 0.28   | 4      | 5      | 2.11   |
| 132044                 | 36.7   | 82.8   | 5440   | 326    | 147    | 3      | 352    | 9680    | 0.38   | 119    | < 10   | < 10   | 18     | 0.17   | 16     | 2      | 3.16   |
| 132045                 | < 0.2  | < 0.5  | 11     | 696    | 1      | 1      | 3      | 57      | 1.92   | < 2    | < 10   | 763    | < 2    | 1.22   | 6      | 16     | 2.5    |
| 132046                 | 17.7   | 11.4   | 2820   | 657    | 112    | 2      | 101    | 790     | 0.08   | 191    | < 10   | < 10   | 5      | 0.84   | 14     | 1      | 2.85   |
| 132047                 | 5.2    | 8.1    | 50     | 3100   | 4      | 4      | 115    | 1220    | 0.06   | 171    | < 10   | < 10   | 56     | 2.22   | 10     | 3      | 16.5   |
| 132048                 | 1      | 7.6    | 801    | 3090   | 4      | 6      | 19     | 396     | 0.82   | 175    | < 10   | 12     | < 2    | 2.02   | 15     | 5      | 7.19   |
| 132049                 | 5.9    | 6.4    | 1550   | 927    | 3      | 4      | 218    | 393     | 0.76   | 34     | < 10   | 23     | 8      | 0.56   | 7      | 14     | 5.39   |
| 132050                 | 3.9    | 2.7    | 862    | 1150   | 8      | 5      | 46     | 284     | 1.1    | 113    | < 10   | < 10   | < 2    | 0.88   | 13     | 14     | 7.25   |
| 132051                 | 1.3    | 1      | 416    | 1180   | 6      | 5      | 24     | 138     | 0.9    | 78     | < 10   | 11     | 4      | 0.87   | 14     | 8      | 7.79   |
| 132052                 | 4.3    | 2.3    | 594    | 1080   | 38     | 4      | 79     | 158     | 1.26   | 167    | < 10   | 14     | < 2    | 0.72   | 18     | 10     | 6.35   |
| 132053                 | 7.9    | 1.9    | 1480   | 749    | 143    | 5      | 1220   | 208     | 0.95   | 44     | < 10   | 29     | < 2    | 0.65   | 14     | 16     | 4.65   |
| 132054                 | 4.6    | 1.8    | 681    | 643    | 2      | 4      | 292    | 271     | 1.37   | 19     | < 10   | 27     | < 2    | 0.56   | 14     | 14     | 4.66   |
| 132055                 | 7.3    | 7.8    | 1030   | 818    | 3      | 5      | 391    | 1010    | 0.48   | 56     | < 10   | 14     | < 2    | 0.67   | 19     | 13     | 4.86   |
| 132056                 | 8.5    | 2.4    | 695    | 536    | 3      | 4      | 872    | 243     | 0.62   | 78     | < 10   | 13     | < 2    | 0.42   | 21     | 11     | 4.68   |
| 132057                 | 1.7    | < 0.5  | 325    | 529    | 3      | < 1    | 27     | 94      | 0.65   | 28     | < 10   | 34     | < 2    | 0.44   | 11     | 6      | 3.12   |
| 132058                 | 0.5    | 5.9    | 135    | 986    | 4      | 3      | 69     | 324     | 0.8    | 28     | < 10   | 41     | 4      | 0.18   | 10     | 4      | 4.4    |
| 132059                 | 0.3    | < 0.5  | 136    | 1470   | < 1    | 3      | 3      | 135     | 0.88   | 3      | < 10   | 150    | < 2    | 0.2    | 8      | 2      | 5.7    |
| 132060                 | < 0.2  | 0.8    | 37     | 1290   | < 1    | 3      | 7      | 178     | 1.93   | 36     | < 10   | 193    | < 2    | 0.31   | 6      | 5      | 6.06   |
| 132061                 | 0.2    | < 0.5  | 6      | 1390   | 1      | 6      | 3      | 105     | 2.11   | 4      | < 10   | 309    | < 2    | 0.4    | 7      | 6      | 6.58   |
| 132062                 | < 0.2  | < 0.5  | 4      | 1460   | 4      | 4      | 2      | 100     | 1.61   | 20     | < 10   | 234    | < 2    | 0.28   | 7      | 3      | 6.7    |

Final Report
Activation Laboratories

| Report Date: 1/12/2017 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol         | Ag     | Cd     | Cu     | Mn     | Mo     | Ni     | Pb     | Zn     | Al     | As     | В      | Ва     | Bi     | Ca     | Co     | Cr     | Fe     |
| Unit Symbol            | ppm    | %      | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | %      |
| Detection Limit        | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2      | 2      | 0.01   | 2      | 10     | 10     | 2      | 0.01   | 1      | 1      | 0.01   |
| Analysis Method        | AR-ICP |
| 132063                 | < 0.2  | < 0.5  | 3      | 1280   | < 1    | 5      | 5      | 112    | 1.1    | 3      | < 10   | 227    | < 2    | 0.27   | 6      | 8      | 5.73   |
| 132064                 | < 0.2  | 1      | 9      | 1020   | < 1    | 3      | 6      | 138    | 1.33   | 12     | < 10   | 227    | < 2    | 0.51   | 7      | 3      | 5.41   |
| 132065                 | 0.3    | 0.8    | 198    | 1600   | < 1    | 4      | 11     | 216    | 3.43   | 5      | < 10   | 233    | < 2    | 0.55   | 4      | 5      | 8.4    |
| 132066                 | 0.3    | 1      | 197    | 1490   | < 1    | 6      | 5      | 255    | 4.21   | 5      | < 10   | 160    | < 2    | 0.29   | 6      | 5      | 10.8   |
| 132067                 | 1      | 8.3    | 218    | 995    | 3      | 6      | 68     | 462    | 3.15   | 27     | < 10   | 198    | < 2    | 0.27   | 7      | 5      | 7.42   |
| 132068                 | 1.4    | 2.2    | 26     | 1080   | 3      | 4      | 2150   | 225    | 2.37   | 25     | < 10   | 299    | < 2    | 0.44   | 5      | 8      | 5.17   |
| 132069                 | < 0.2  | < 0.5  | 4      | 1260   | < 1    | 4      | 6      | 105    | 2.23   | 11     | < 10   | 340    | < 2    | 0.76   | 7      | 6      | 4.59   |
| 132070                 | < 0.2  | < 0.5  | 6      | 1180   | < 1    | 4      | 4      | 97     | 2.01   | 10     | < 10   | 364    | < 2    | 0.91   | 6      | 10     | 4      |
| 132071                 | < 0.2  | < 0.5  | 12     | 710    | < 1    | 3      | 3      | 97     | 2.06   | 2      | < 10   | 354    | < 2    | 0.35   | 6      | 11     | 4.76   |
| 132072                 | 0.2    | 0.5    | 62     | 761    | 3      | 3      | 4      | 96     | 0.98   | < 2    | < 10   | 188    | < 2    | 0.74   | 3      | 24     | 2.64   |
| 132073                 | 0.3    | 0.6    | 108    | 1130   | < 1    | 5      | < 2    | 171    | 3.18   | < 2    | < 10   | 331    | < 2    | 0.65   | 8      | 7      | 7.06   |
| 132074                 | < 0.2  | < 0.5  | 7      | 1160   | < 1    | 7      | 2      | 130    | 2.88   | < 2    | < 10   | 528    | < 2    | 0.77   | 8      | 9      | 6.54   |
| 132075                 | 0.3    | 1.3    | 23     | 1070   | < 1    | 4      | 5      | 241    | 2.2    | 16     | < 10   | 569    | < 2    | 0.76   | 6      | 7      | 4.73   |
| 132076                 | < 0.2  | < 0.5  | 7      | 1210   | < 1    | 4      | 3      | 192    | 2.01   | < 2    | < 10   | 455    | < 2    | 0.92   | 7      | 8      | 4.41   |
| 132077                 | 0.9    | 1.4    | 50     | 303    | 12     | 3      | 10     | 313    | 0.87   | 178    | < 10   | 163    | < 2    | 0.17   | 3      | 31     | 3.59   |
| 132078                 | < 0.2  | 2.8    | 29     | 1170   | 1      | 5      | 3      | 343    | 1.98   | 8      | < 10   | 445    | < 2    | 0.84   | 8      | 11     | 4.17   |
| 132079                 | 0.3    | 2.2    | 23     | 1410   | < 1    | 4      | 3      | 310    | 2.55   | < 2    | < 10   | 40     | < 2    | 1.14   | 11     | 8      | 6.21   |
| 132080                 | < 0.2  | 3.5    | 22     | 1080   | 1      | 4      | 4      | 375    | 2.88   | 7      | < 10   | 85     | < 2    | 0.45   | 9      | 9      | 6.11   |
| 132081                 | 0.3    | < 0.5  | 19     | 2210   | < 1    | 5      | 6      | 139    | 2.37   | < 2    | < 10   | 277    | < 2    | 1.56   | 8      | 10     | 4.67   |
| 132082                 | 0.4    | 0.7    | 19     | 1030   | 1      | 5      | 4      | 230    | 3.26   | 3      | < 10   | 278    | < 2    | 0.36   | 8      | 8      | 6.67   |
| 132083                 | 0.3    | 0.7    | 22     | 1370   | < 1    | 5      | 5      | 236    | 4.1    | 3      | < 10   | 57     | 2      | 0.47   | 10     | 6      | 9.47   |
| 132084                 | 0.2    | 1.4    | 20     | 1310   | < 1    | 3      | 4      | 376    | 3.79   | < 2    | < 10   | 235    | < 2    | 0.57   | 10     | 6      | 8.57   |
| 132085                 | < 0.2  | 1.4    | 21     | 1030   | 1      | 4      | 2      | 307    | 3.01   | 3      | < 10   | 873    | < 2    | 0.65   | 8      | 6      | 4.68   |
| 132086                 | < 0.2  | 0.5    | 34     | 1150   | 1      | 5      | 5      | 233    | 2.37   | 6      | < 10   | 468    | < 2    | 0.68   | 7      | 8      | 5.28   |
| 132087                 | 0.5    | 2      | 54     | 1690   | 2      | 4      | 13     | 391    | 1.71   | 45     | < 10   | 48     | < 2    | 0.93   | 8      | 5      | 4.48   |
| 132088                 | 0.3    | 0.5    | 22     | 1710   | 2      | 4      | 8      | 176    | 1.51   | 6      | < 10   | 278    | < 2    | 1.19   | 8      | 8      | 4.78   |
| 132089                 | 1.8    | 2.8    | 76     | 436    | 4      | 1      | 21     | 285    | 1.49   | 98     | < 10   | 98     | < 2    | 0.23   | 6      | 4      | 3.18   |
| 132090                 | 0.3    | 2.6    | 56     | 810    | 3      | 4      | 7      | 286    | 1.65   | 65     | < 10   | 138    | < 2    | 0.71   | 6      | 7      | 2.94   |
| 132091                 | < 0.2  | 1.6    | 13     | 1220   | 1      | 2      | 3      | 235    | 1.29   | 12     | < 10   | 261    | 2      | 1.46   | 7      | 5      | 3.02   |
| 132092                 | < 0.2  | 0.7    | 5      | 1320   | < 1    | 2      | 3      | 141    | 1.47   | 4      | < 10   | 287    | 5      | 1.97   | 7      | 6      | 3.08   |
| 132093                 | < 0.2  | 0.6    | 5      | 941    | < 1    | 3      | < 2    | 150    | 1.87   | < 2    | < 10   | 414    | < 2    | 1.25   | 8      | 4      | 3.92   |
|                        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

Page 3 of 6

Final Report
Activation Laboratories

| Report Date: 1/12/2017 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |       |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|-------|
| Analyte Symbol         | Ga     | Hg     | K      | La     | Mg     | Na     | P      | S      | Sb     | Ti     | Те     | TI     | U      | W      | Zr     | BaSO4   | Au    |
| Unit Symbol            | ppm    | ppm    | %      | ppm    | %      | %      | %      | %      | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | ppm     | ppb   |
| Detection Limit        | 10     | 1      | 0.01   | 10     | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 0.01   | 1      | 2      | 10     | 10     | 1      | 2       | 5     |
| Analysis Method        | AR-ICP | AR-ICF | FUS-ICF | FA-AA |
| 132001                 | < 10   | 1      | 0.82   | 14     | 0.43   | 0.041  | 0.123  | 0.27   | 8      | 0.12   | 2      | < 2    | < 10   | < 10   | 3      |         | < 5   |
| 132002                 | < 10   | 2      | 0.64   | 11     | 0.3    | 0.03   | 0.116  | 0.8    | 9      | 0.1    | 3      | < 2    | < 10   | < 10   | 2      |         | < 5   |
| 132003                 | < 10   | 3      | 0.64   | 12     | 0.24   | 0.028  | 0.11   | 0.47   | 8      | 0.09   | < 1    | < 2    | < 10   | < 10   | 3      |         | < 5   |
| 132004                 | < 10   | 5      | 0.35   | < 10   | 0.15   | 0.021  | 0.098  | 1.06   | 9      | 0.06   | < 1    | < 2    | < 10   | < 10   | 2      |         | < 5   |
| 132005                 | < 10   | 2      | 0.69   | 12     | 0.26   | 0.026  | 0.11   | 0.61   | 11     | 0.08   | 3      | < 2    | < 10   | < 10   | 3      |         | < 5   |
| 132006                 | < 10   | 3      | 0.88   | < 10   | 0.55   | 0.029  | 0.117  | 1.47   | 15     | 0.13   | 4      | < 2    | < 10   | < 10   | 3      |         | < 5   |
| 132007                 | < 10   | 5      | 0.69   | < 10   | 0.28   | 0.025  | 0.108  | 2.84   | 18     | 0.08   | 3      | < 2    | < 10   | < 10   | 3      |         | < 5   |
| 132008                 | < 10   | 7      | 0.1    | < 10   | < 0.01 | 0.017  | 0.024  | 6.13   | 79     | < 0.01 | < 1    | 7      | < 10   | < 10   | 3      |         | 12    |
| 132009                 | < 10   | 1      | 0.33   | < 10   | 0.11   | 0.02   | 0.064  | 5.7    | 25     | < 0.01 | < 1    | 4      | < 10   | < 10   | 6      |         | 6     |
| 132010                 | < 10   | < 1    | 0.45   | < 10   | 0.17   | 0.022  | 0.07   | 3.32   | 23     | 0.02   | < 1    | < 2    | < 10   | < 10   | 5      |         | < 5   |
| 132011                 | < 10   | 5      | 0.47   | < 10   | 0.11   | 0.027  | 0.079  | 2.91   | 35     | < 0.01 | 3      | < 2    | < 10   | < 10   | 6      |         | 6     |
| 132012                 | < 10   | < 1    | 0.34   | < 10   | 0.13   | 0.023  | 0.082  | 3.41   | 14     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 6      |         | 6     |
| 132013                 | < 10   | 2      | 0.33   | < 10   | 0.1    | 0.019  | 0.074  | 4.83   | 23     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 9      |         | < 5   |
| 132014                 | < 10   | 15     | 0.28   | < 10   | 0.09   | 0.017  | 0.053  | 12.4   | 29     | < 0.01 | 4      | < 2    | < 10   | < 10   | 10     |         | 5     |
| 132015                 | < 10   | < 1    | 0.17   | < 10   | 1.36   | 0.241  | 0.042  | 2.4    | 185    | 0.13   | 2      | < 2    | < 10   | 11     | 4      |         | 66    |
| 132016                 | < 10   | 16     | 0.38   | < 10   | 0.13   | 0.022  | 0.08   | 9.49   | 27     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 8      |         | 15    |
| 132017                 | < 10   | 26     | 0.42   | < 10   | 0.13   | 0.023  | 0.072  | 9.06   | 34     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 7      |         | 12    |
| 132018                 | < 10   | < 1    | 1.17   | 13     | 1      | 0.123  | 0.093  | 0.05   | 2      | 0.24   | < 1    | < 2    | < 10   | < 10   | 2      |         | < 5   |
| 132019                 | < 10   | 16     | 0.34   | < 10   | 0.18   | 0.022  | 0.062  | 12.7   | 106    | < 0.01 | < 1    | 2      | < 10   | < 10   | 11     |         | 18    |
| 132020                 | < 10   | 9      | 0.25   | < 10   | 0.18   | 0.024  | 0.063  | 6.21   | 44     | < 0.01 | 2      | < 2    | < 10   | < 10   | 10     |         | 12    |
| 132021                 | < 10   | 1      | 0.32   | < 10   | 0.28   | 0.029  | 0.085  | 4.42   | 30     | < 0.01 | 3      | 3      | < 10   | < 10   | 9      |         | 6     |
| 132022                 | < 10   | 1      | 0.53   | < 10   | 0.39   | 0.025  | 0.087  | 4.2    | 12     | < 0.01 | 1      | 3      | < 10   | < 10   | 10     |         | < 5   |
| 132023                 | < 10   | 2      | 0.46   | < 10   | 0.36   | 0.019  | 0.055  | 5.57   | 21     | 0.01   | < 1    | 2      | < 10   | < 10   | 15     |         | < 5   |
| 132024                 | < 10   | . 8    | 0.53   | < 10   | 0.69   | 0.018  | 0.077  | 9.36   | 17     | 0.05   | 4      | < 2    | < 10   | < 10   | 13     | 185000  | 6     |
| 132025                 | < 10   | 11     | 0.28   | < 10   | 0.39   | 0.02   | 0.032  | 10.5   | 34     | 0.01   | < 1    | 2      | < 10   | < 10   | 14     | 464000  | 12    |
| 132026                 | < 10   | 10     | 0.12   | < 10   | 0.22   | 0.017  | 0.013  | 7.37   | 33     | < 0.01 | < 1    | 3      | < 10   | < 10   | 5      | 222000  | 8     |
| 132027                 | < 10   | 37     | 0.12   | < 10   | 0.31   | 0.021  | 0.008  | 11     | 223    | < 0.01 | < 1    | < 2    | < 10   | < 10   | 6      | 182000  | < 5   |
| 132028                 | < 10   | 24     | 0.09   | < 10   | 0.25   | 0.018  | 0.008  | 5.43   | 31     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 4      | 419000  | 5     |
| 132029                 | < 10   | < 1    | 0.21   | < 10   | 1.46   | 0.32   | 0.052  | 1.83   | 171    | 0.16   | 2      | < 2    | < 10   | < 10   | 5      |         | 31    |
| 132030                 | < 10   | 8      | < 0.01 | < 10   | 0.01   | 0.015  | 0.002  | 1.82   | 34     | < 0.01 | < 1    | < 2    | < 10   | < 10   | < 1    | 551000  | < 5   |
| 132031                 | < 10   | 4      | 0.02   | < 10   | 0.03   | 0.014  | 0.003  | 1.15   | 23     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 2      | 587000  | < 5   |

Final Report
Activation Laboratories

| Report Date: 1/12/2017 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |       |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|-------|
| Analyte Symbol         | Ga     | Hg     | K      | La     | Mg     | Na     | P      | S      | Sb     | Ti     | Те     | TI     | U      | W      | Zr     | BaSO4   | Au    |
| Unit Symbol            | ppm    | ppm    | %      | ppm    | %      | %      | %      | %      | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | ppm     | ppb   |
| Detection Limit        | 10     | 1      | 0.01   | 10     | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 0.01   | 1      | 2      | 10     | 10     | 1      | 2       | 5     |
| Analysis Method        | AR-ICP | FUS-ICF | FA-AA |
| 132032                 | < 10   | 8      | 0.06   | < 10   | 0.07   | 0.019  | 0.009  | 2.06   | 36     | < 0.01 | < 1    | 3      | < 10   | < 10   | 4      | 434000  | < 5   |
| 132033                 | < 10   | 9      | 0.04   | < 10   | 0.09   | 0.018  | 0.007  | 2.22   | 32     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 3      |         | < 5   |
| 132034                 | < 10   | 5      | < 0.01 | < 10   | 0.38   | 0.018  | 0.003  | 5.69   | 98     | < 0.01 | 2      | 5      | < 10   | < 10   | 2      | 177000  | 14    |
| 132035                 | < 10   | 11     | < 0.01 | < 10   | 0.1    | 0.014  | 0.001  | 2.53   | 52     | < 0.01 | < 1    | < 2    | < 10   | < 10   | < 1    | 178000  | 12    |
| 132036                 | < 10   | 6      | 0.05   | < 10   | 0.12   | 0.019  | 0.006  | 2.67   | 21     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 2      | 313000  | 11    |
| 132037                 | < 10   | 5      | 0.03   | < 10   | 0.15   | 0.019  | 0.006  | 1.93   | 15     | < 0.01 | < 1    | 2      | < 10   | < 10   | 2      | 364000  | 11    |
| 132038                 | < 10   | 8      | < 0.01 | < 10   | 0.21   | 0.017  | 0.006  | 2.83   | 65     | < 0.01 | < 1    | 7      | < 10   | < 10   | 1      | 180000  | 26    |
| 132039                 | < 10   | 6      | 0.01   | < 10   | 0.04   | 0.015  | 0.002  | 2.03   | 34     | < 0.01 | 6      | 3      | < 10   | < 10   | < 1    | 382000  | 21    |
| 132040                 | < 10   | 11     | 0.1    | < 10   | 0.17   | 0.022  | 0.008  | 5.27   | 14     | < 0.01 | < 1    | 6      | < 10   | < 10   | 3      | 516000  | 35    |
| 132041                 | < 10   | 5      | 0.13   | < 10   | 0.16   | 0.022  | 0.005  | 2.83   | 32     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 2      | 654000  | 13    |
| 132042                 | < 10   | 4      | 0.1    | < 10   | 0.17   | 0.018  | 0.005  | 2.29   | 27     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 2      |         | 11    |
| 132043                 | < 10   | 2      | 0.04   | < 10   | 0.06   | 0.015  | 0.005  | 2.02   | 12     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 1      | 739000  | 18    |
| 132044                 | < 10   | 8      | 0.15   | < 10   | 0.09   | 0.022  | 0.011  | 3.59   | 27     | < 0.01 | < 1    | 2      | < 10   | < 10   | 2      | 782000  | 12    |
| 132045                 | < 10   | < 1    | 0.89   | 12     | 0.72   | 0.126  | 0.078  | 0.04   | < 2    | 0.19   | 5      | < 2    | < 10   | < 10   | 2      | 4880    | < 5   |
| 132046                 | < 10   | 3      | 0.03   | < 10   | 0.05   | 0.016  | 0.011  | 3.07   | 20     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 1      |         | 6     |
| 132047                 | < 10   | 2      | 0.04   | < 10   | 0.08   | 0.011  | 0.018  | 18.9   | 17     | < 0.01 | 13     | < 2    | < 10   | < 10   | 6      |         | 43    |
| 132048                 | < 10   | 3      | 0.49   | < 10   | 0.96   | 0.021  | 0.064  | 4.92   | 8      | < 0.01 | < 1    | < 2    | < 10   | < 10   | 13     |         | 18    |
| 132049                 | < 10   | < 1    | 0.51   | 13     | 0.58   | 0.02   | 0.046  | 2.03   | 6      | < 0.01 | 4      | < 2    | < 10   | < 10   | 10     |         | 16    |
| 132050                 | < 10   | 2      | 0.78   | < 10   | 0.85   | 0.023  | 0.039  | 2.92   | 9      | 0.06   | 2      | < 2    | < 10   | < 10   | 15     |         | 15    |
| 132051                 | < 10   | 2      | 0.56   | < 10   | 1.04   | 0.025  | 0.045  | 3.89   | 5      | 0.02   | 1      | < 2    | < 10   | < 10   | 16     |         | 12    |
| 132052                 | < 10   | 1      | 0.95   | < 10   | 0.71   | 0.022  | 0.053  | 3.17   | 5      | 0.1    | < 1    | < 2    | < 10   | < 10   | 9      |         | 10    |
| 132053                 | < 10   | < 1    | 0.75   | 12     | 0.62   | 0.025  | 0.053  | 1.49   | 5      | 0.08   | 1      | < 2    | < 10   | < 10   | 8      |         | < 5   |
| 132054                 | < 10   | < 1    | 0.88   | 16     | 0.6    | 0.022  | 0.042  | 1.34   | 6      | 0.07   | < 1    | < 2    | < 10   | < 10   | 9      |         | 7     |
| 132055                 | < 10   | < 1    | 0.35   | 12     | 0.41   | 0.019  | 0.05   | 2.77   | 11     | 0.02   | < 1    | < 2    | < 10   | < 10   | 9      |         | 42    |
| 132056                 | < 10   | < 1    | 0.5    | 12     | 0.3    | 0.024  | 0.057  | 2.92   | 12     | < 0.01 | < 1    | < 2    | < 10   | < 10   | 13     |         | 75    |
| 132057                 | < 10   | < 1    | 0.53   | 16     | 0.35   | 0.023  | 0.046  | 0.83   | 5      | 0.02   | < 1    | < 2    | < 10   | < 10   | 9      |         | 19    |
| 132058                 | < 10   | < 1    | 0.62   | 25     | 0.47   | 0.02   | 0.058  | 0.51   | 6      | < 0.01 | 2      | < 2    | < 10   | < 10   | 3      |         | 14    |
| 132059                 | < 10   | < 1    | 0.67   | 24     | 0.73   | 0.023  | 0.062  | 0.39   | 3      | 0.02   | 4      | < 2    | < 10   | < 10   | 4      |         | 44    |
| 132060                 | < 10   | < 1    | 1.54   | 28     | 0.8    | 0.028  | 0.06   | 0.37   | 4      | 0.12   | 3      | < 2    | < 10   | < 10   | 5      |         | 16    |
| 132061                 | < 10   | < 1    | 1.67   | 24     | 0.9    | 0.029  | 0.064  | 0.26   | 4      | 0.12   | 4      | < 2    | < 10   | < 10   | 5      |         | 32    |
| 132062                 | < 10   | < 1    | 1.29   | 22     | 0.87   | 0.025  | 0.065  | 0.25   | 4      | 0.1    | < 1    | < 2    | < 10   | < 10   | 5      |         | < 5   |
|                        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |       |

Final Report Activation Laboratories

| Report Date. 1/12/2017 |        |        |            |              |            |                    |        |        |        |        |        |              |        |               |              |         |       |
|------------------------|--------|--------|------------|--------------|------------|--------------------|--------|--------|--------|--------|--------|--------------|--------|---------------|--------------|---------|-------|
| Analyte Symbol         | Ga     | Hg     | K          | La           | Mg         | Na                 | P      | S      | Sb     | Ti     | Те     | TI           | U      | W             | Zr           | BaSO4   | Au    |
| Unit Symbol            | ppm    | ppm    | %          | ppm          | %          | %                  | %      | %      | ppm    | %      | ppm    | ppm          | ppm    | ppm           | ppm          | ppm     | ppb   |
| Detection Limit        | 10     | 1      | 0.01       | 10           | 0.01       | 0.001              | 0.001  | 0.01   | 2      | 0.01   | 1      | 2            | 10     | 10            | 1            | 2       | 5     |
| Analysis Method        | AR-ICP | AR-ICP | AR-ICP     | AR-ICP       | AR-ICP     | AR-ICP             | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP       | AR-ICP | AR-ICP        | AR-ICF       | FUS-ICF | FA-AA |
| 132063                 | < 10   | < 1    | 0.89       | 24           | 0.82       | 0.026              | 0.058  | 0.14   | 3      | 0.06   | 5      | < 2          | < 10   | < 10          | 5            |         | 22    |
| 132064                 | < 10   | < 1    | 0.83       | 29           | 1.04       | 0.028              | 0.074  | 0.16   | 3      | 0.03   | < 1    | < 2          | < 10   | < 10          | 5            |         | 29    |
| 132065                 | < 10   | 2      | 0.67       | 19           | 1.89       | 0.025              | 0.052  | 0.22   | 7      | 0.08   | < 1    | < 2          | < 10   | < 10          | 6            |         | < 5   |
| 132066                 | 10     | < 1    | 0.46       | 17           | 2.15       | 0.02               | 0.044  | 0.25   | 6      | 0.07   | < 1    | < 2          | < 10   | < 10          | 7            |         | 7     |
| 132067                 | 10     | 2      | 0.74       | 19           | 1.54       | 0.027              | 0.045  | 0.41   | 7      | 0.09   | 4      | < 2          | < 10   | < 10          | 10           |         | 12    |
| 132068                 | < 10   | < 1    | 1.02       | 23           | 1.15       | 0.038              | 0.046  | 0.28   | 4      | 0.1    | 4      | < 2          | < 10   | < 10          | 11           |         | 43    |
| 132069                 | < 10   | < 1    | 1.41       | 21           | 1.06       | 0.033              | 0.062  | 0.23   | 2      | 0.12   | 3      | < 2          | < 10   | < 10          | 11           |         | < 5   |
| 132070                 | < 10   | < 1    | 1.3        | 22           | 1.04       | 0.033              | 0.06   | 0.08   | 3      | 0.11   | 8      | < 2          | < 10   | < 10          | 11           |         | < 5   |
| 132071                 | < 10   | < 1    | 1.12       | 20           | 0.91       | 0.03               | 0.041  | 0.21   | 3      | 0.09   | < 1    | < 2          | < 10   | < 10          | 12           |         | < 5   |
| 132072                 | < 10   | < 1    | 0.57       | 22           | 0.53       | 0.03               | 0.022  | 0.38   | < 2    | 0.03   | < 1    | < 2          | < 10   | < 10          | 19           |         | < 5   |
| 132073                 | < 10   | 1      | 1.09       | 15           | 1.83       | 0.026              | 0.063  | 0.21   | 3      | 0.13   | 2      | < 2          | < 10   | < 10          | 7            |         | 6     |
| 132074                 | < 10   | < 1    | 1.06       | 21           | 1.84       | 0.031              | 0.058  | 0.16   | 3      | 0.11   | 6      | < 2          | < 10   | < 10          | 9            |         | < 5   |
| 132075                 | < 10   | < 1    | 1.21       | 23           | 1.01       | 0.037              | 0.052  | 0.15   | 4      | 0.09   | 3      | < 2          | < 10   | < 10          | 12           |         | < 5   |
| 132076                 | < 10   | < 1    | 1.13       | 22           | 1.02       | 0.032              | 0.059  | 0.2    | 4      | 0.08   | 3      | < 2          | < 10   | < 10          | 12           |         | < 5   |
| 132077                 | < 10   | < 1    | 0.67       | 12           | 0.21       | 0.03               | 0.055  | 0.4    | 14     | 0.03   | 4      | < 2          | < 10   | < 10          | 10           |         | < 5   |
| 132078                 | < 10   | < 1    | 0.95       | 23           | 0.92       | 0.032              | 0.056  | 0.15   | 4      | 0.07   | 2      | < 2          | < 10   | < 10          | 10           |         | < 5   |
| 132079                 | < 10   | < 1    | 1.52       | 12           | 1.43       | 0.026              | 0.059  | 0.61   | 5      | 0.12   | 5      | < 2          | < 10   | < 10          | 9            |         | 5     |
| 132080                 | < 10   | < 1    | 1.84       | 15           | 1.55       | 0.03               | 0.061  | 0.4    | 4      | 0.13   | 2      | < 2          | < 10   | < 10          | 8            |         | 5     |
| 132081                 | < 10   | < 1    | 1.52       | 19           | 1.6        | 0.033              | 0.066  | 0.29   | 5      | 0.13   | < 1    | < 2          | < 10   | < 10          | 9            |         | 6.    |
| 132082                 | < 10   | < 1    | 1.38       | 16           | 1.84       | 0.032              | 0.057  | 0.33   | 3      | 0.13   | 6      | < 2          | < 10   | < 10          | 9            |         | < 5   |
| 132083                 | < 10   | < 1    | 1.28       | 11           | 2.58       | 0.024              | 0.057  | 0.51   | 5      | 0.14   | 5      | < 2          | < 10   | < 10          | 7            |         | < 5   |
| 132084                 | < 10   | 3      | 1.07       | 15           | 2.36       | 0.029              | 0.065  | 0.31   | 4      | 0.13   | < 1    | < 2          | < 10   | < 10          | 7            |         | < 5   |
| 132085                 | < 10   | < 1    | 1.29       | 23           | 1.58       | 0.045              | 0.071  | 0.09   | 4      | 0.12   | 3      | < 2          | < 10   | < 10          | 6            |         | 18    |
| 132086                 | < 10   | < 1    | 1.01       | 21           | 1.55       | 0.037              | 0.069  | 0.22   | 4      | 0.09   | 2      | < 2          | < 10   | < 10          | 6            |         | < 5   |
| 132087                 | < 10   | < 1    | 0.84       | 18           | 0.91       | 0.029              | 0.066  | 0.73   | 3      | 0.01   | 5      | < 2          | < 10   | < 10          | 5            |         | < 5   |
| 132088                 | < 10   | < 1    | 0.79       | 20           | 1.28       | 0.037              | 0.066  | 0.37   | 4      | 0.02   | < 1    | < 2          | < 10   | < 10          | 5            |         | < 5   |
| 132089                 | < 10   | < 1    | 0.81       | 24           | 0.28       | 0.026              | 0.051  | 0.53   | 6      | < 0.01 | 1      | < 2          | < 10   | < 10          | 4            |         | < 5   |
| 132090                 | < 10   | < 1    | 0.95       | 24           | 0.44       | 0.031              | 0.067  | 0.51   | 6      | 0.01   | < 1    | < 2          | < 10   | < 10          | 4            |         | < 5   |
| 132091                 | < 10   | < 1    | 0.84       | 22           | 0.72       | 0.041              | 0.07   | 0.09   | 4      | 0.02   | 5      | < 2          | < 10   | < 10          | 4            |         | 19    |
| 132092                 | < 10   | < 1    | 0.99       | 23           | 0.88       | 0.038              | 0.07   | 0.05   | 6      | 0.03   | < 1    | < 2          | < 10   | < 10          | 4            |         | < 5   |
| 132093                 | < 10   | < 1    | 1.29       | 22           | 0.91       | 0.037              | 0.067  | 0.11   | 3      | 0.09   | 4      | < 2          | < 10   | < 10          | 5            |         | 5     |
|                        |        |        | ACCUBORGO. | - CREATION - | SECONDARY. | out the country of |        |        | 1150   |        | 708C   | 121 (J. 121) |        | e constantino | <del>.</del> |         | -     |

### Final Report Activation Laboratories

| Report | Date: | 8/12/2017 |
|--------|-------|-----------|

Report: A17-11335

| Pb      | Zn                                              |
|---------|-------------------------------------------------|
| %       | %                                               |
| 0.003   | 0.001<br>ICP-OES                                |
| ICP-OES |                                                 |
| 0.998   |                                                 |
|         | 2.65                                            |
| 1.94    | 2.53                                            |
| 0.641   | 2.31                                            |
|         | 4.62                                            |
|         | 1.38                                            |
|         | 1.03                                            |
|         | 2.29                                            |
|         | 1.37                                            |
| 1.32    | 1.56                                            |
|         | 1.22                                            |
|         | 1.14                                            |
|         | 1.27                                            |
|         | 1.79                                            |
|         | 1.02                                            |
|         | 1.53                                            |
|         |                                                 |
|         | %<br>0.003<br>ICP-OES<br>0.998<br>1.94<br>0.641 |

# APPENDIX IV PETROGRAPHIC REPORT

### PETROGRAPHIC REPORT ON ATAMAN ZONE SURPRISE CREEK PROPERTY

March 03, 2018

Report for: Mountain Boy Minerals Stewart, BC

Report by: Alex Walus, P. Geo Surrey, BC

#### SUMMARY AND CONCLUSIONS

This report is based on microscopic examination of 7 thin sections derived from Ataman Zone. Six of them were prepared from core obtained from the 2017 drilling and one section (sample #RZ-1) was prepared from a float derived from the bottom part of Ataman Zone. All samples were stained with sodium cobaltinitrite for easy K-feldspar identification.

Microscopic examination of sample RZ-1 (derived from the bottom of Ataman zone) as well as samples derived from the upper parts of holes SC17-3 and SC17-4 (samples SC17-3 (29.5m), SC17-4 (21.0m), and SC17-4 (60.5m)) indicate that a prominent sericite-quartz-pyrite alteration zone located at the bottom of Ataman zone represent a trachyte subvolcanic intrusion. Heat from that intrusion most likely caused formation of weak biotite hornfels detected in samples SC17-3 (108m) and SC17-3 (206m). Samples SC17-3 (108m), SC17-3 (206m), SC17-4 (134m) which derive from the lower parts of 2017 drillholes consists of trachyte pyroclastics which include mostly lithic and crystal tuffs. All samples are strongly to completely replaced by alteration assemblage dominated by sericite/muscovite with lesser carbonate, quartz, pyrite, +/- magnetite, +/-fuchsite (or mariposite).

Respectfully Submitted Alex Walus

#### DESCRIPTIONS OF MICROSCOPIC SAMPLES

#### Sample # RZ-1 Sericite altered trachyte porphyry

#### Composition:

K-feldspar 45-50% Sericite 45-50% Opaque 7-10%

The bulk of K-feldspar occurs as larger grains ranging in size from 0.2 to 2.0 mm across. They represent phenocrysts of original trachyte porphyry which contains approximately 50% K-feldspar phenocrysts. Some K-feldspar form patches composed of much smaller anhedral grains ranging in size from 0.02 to 0.1 mm. They represent remnants of trachyte porphyry groundmass. Both K-feldspar phenocrysts and groundmass of original trachyte porphyry are to large degree replaced by later mineral assemblage composed of sericite and opaque (mostly pyrite). The observed dominance of larger K-feldspar grains in relation to smaller ones which comprise the groundmass was the result of preferential replacement of the latter.

#### Sample SC17-3 (29.5m) Strongly sericitized subvolcanic trachyte

#### **Composition:**

| K-feldspar groundmass | 60-70% | Sericite        | 20-30% |
|-----------------------|--------|-----------------|--------|
| Feldspar phenocrysts  | 5-10%  | Carbonate       | 5-10%  |
| Apatite               | < 0.5% | Opaque minerals | 2-3%   |

The sample contains 5-10% of strongly to completely sericitized feldspar phenocrysts ranging in size from 0.5 to 1.5 mm. They are set in a groundmass composed of mosaic of K-feldspar crystals ranging in length from 0.1-0.2 mm; locally they display interlocking texture. Apatite forms several strongly resorped grains. The rock is partly replaced by sericite and carbonate with phenocrysts being preferentially altered. The rock contains 2-3% of disseminated opaque minerals which include some magnetite. The rock is cut by several sericite veinlets 0.05-0.1 mm wide.

#### Sample SC17-3 (108.0m) Hornfelsed trachyte lapilli-crystal-lithic tuff, strong alteration

#### Composition:

| K-feldspar crystal fragments | 15-20% |
|------------------------------|--------|
| Trachyte fragments           | 10-15% |
| Quartz crystal fragments     | <1%    |
| Sericite/muscovite           | 30-35% |
| Carbonate                    | 15-20% |
| Quartz (secondary)           | 5-10%  |
| Biotite (secondary)          | 3-5%   |
| Fuchsite (or mariposite)     | 2-3%   |
| Opaque                       | 1-2%   |

The primary rock is a trachyte lapilli-crystal-lithic tuff. The original rock is represented by K-feldspar crystal fragments (they range in size from 0.2 to 1.0 mm), trachyte fragments (ranging in size from 0.3 to 0.7 mm) and small number of quartz clasts. Trachyte fragments display different textures and grain size. The primary rock was weakly honfelsed which resulted in the formation of secondary biotite. The original rock is partly replaced by secondary mineral assemblage dominated by sericite/muscovite with lesser carbonates, quartz, fuchsite (or mariposite) and opaque. Fuschsite (or mariposite) form small irregular patches composed of very fine grains.

#### Sample SC17-3 (206.0 m) Weakly hornfelsed trachyte lithic tuff, strong sericitization

#### Composition:

| Trachyte fragments    | 20-30% | Sericite            | 50-60% |
|-----------------------|--------|---------------------|--------|
| K-feldspar fragments  | 3-5%   | Biotite (secondary) | 5-10%  |
| Plagioclase fragments | <1%    | Muscovite           | 2-3%   |
| Quartz fragments      | <1%    | Carbonate           | 2-3%   |
|                       |        | Opaque              | <1%    |

The rock consists of trachyte fragments supplemented by small amount of K-feldspar, plagioclase and quartz fragments. They range in size from 0.2 to 2.5 mm across. Trachyte fragments display different textures and grain size. The original trachyte tuff was honfelsed which resulted in the formation of secondary biotite. The rock was subsequently sericitized which led to complete replacements of smaller and partial replacement of larger fragments.

#### Sample SC17-4 (21.0m) Almost completely sericitized trachyte or latite?

#### Composition:

| Large feldspar grains     | 3-5%   |
|---------------------------|--------|
| Trachyte fragments        | 1-2%   |
| Apatite                   | < 0.5% |
| Sericite                  | 80-90% |
| Carbonate                 | 3-5%   |
| Opaque (mostly magnetite) | 3-5%   |

The sample contains 3-5% remnants of large K-feldspar and plagioclase grains ranging in size from 0.3 to 0.7 mm. It also contains 1-2% trachyte fragments composed of fine grained K-feldspar. Both feldspar grains and trachyte fragments are strongly to almost completely replaced by secondary minerals. It is not possible to determine if the primary rock was trachyte (or latite) subvolcanic intrusion or tuff. The primary rock was almost completely replaced by secondary mineral assemblage dominated by sericite with lesser carbonates and opaque minerals. The rock is cut by a few carbonate veins.

#### Sample SC17-4 (60.5m) Completely altered feldspar porphyritic trachyte or latite?

#### Composition:

Sericite/muscovite 75-80% Carbonate 15-20% Quartz 3-5% Opaque 2-3%

Apatite a few grains

The rock contains 35-40% subhedral to anhedral feldspar pseudomorphs ranging in size from 0.4 to 1.5 mm in size. They most likely represent feldspar phenocrysts of original trachyte or latite. The original rock is completely replaced by secondary mineral assemblage dominated by sericite/muscovite with lesser carbonates, quartz and opaque.

#### Sample SC17-4 (134.0m) Strongly altered trachyte crystal-lithic tuff

#### Composition:

K-feldspar crystal fragments 30-35%
Trachyte fragments 20-25%
Sericite/muscovite 30-35%
Quartz (secondary) 1-2%
Magnetite and pyrite 10-15%
Fuchsite (or mariposite?) 2-3%

The rock is comprised of K-feldspar crystal fragments and fragments of trachyte. They range in size from 0.2 to 0.7 mm. They are set in a groundmass composed of secondary minerals which include sericite/muscovite, quartz and opaque minerals. Opaque minerals include magnetite and pyrite. They form anhedral to euhedral grains 0.02-1.0 mm across disseminated throughout the sample. The sample contains 2-3% of chromium mica (fuchsite or mariposite). The bulk of this mineral is concentrated in elongated patches composed of intergrown coarse grained fuchsite (or mariposite) crystals 0.1-0.2 mm in size. These patches contain coarse (0.5 to 1.5 mm in size) subhedral to euhedral magnetite and pyrite crystals. The remainder of fuchsite (mariposite) forms patches comprised of much smaller grains. Fuchsite (mariposite) displays strong emerald colour and very strong pleochroism.