BRITISH COLUMBIA The Best Place on Earth		eological Su ssment Rep	-	T Street and t
Ministry of Energy and Mines BC Geological Survey		37617	Assessment Report Title Page and Summary	
TYPE OF REPORT [type of survey(s)]: Geochemical Samplin	ıg		тоти	AL COST: \$ 36,630.50
AUTHOR(S): Mielniczuk, Milosz		SIGNATURE(S)):	d/~
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):				YEAR OF WORK: 2018
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)	/ DATE(S) : <u>570</u>	1222,5707194		
PROPERTY NAME: KM 26				
CLAIM NAME(S) (on which the work was done): 596283 6377 1051516 1050312 1050319 1050321 1050325 1049506				
COMMODITIES SOUGHT: Nickel MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 093K	113			
MINING DIVISION: Omineca Mining Division		NTS/BCGS: 093K/0	087 - 093ł	<15E
LATITUDE: <u>54</u> <u>° 51</u> <u>'16</u> <u>" LONGITUDE</u>	<u>•</u> 124 •	44 '40 "	(at cent	re of work)
OWNER(S): 1) Fort Saint James Nickel Corp	2)			
MAILING ADDRESS: Suite 888, 888 Dunsmuir street Vancouver BC				
V6C 3K4				
OPERATOR(S) [who paid for the work]: 1) Fort Saint James Nickel Corp	2)			
MAILING ADDRESS: Suite 888, 888 Dunsmuir street Vancouver BC				
V6C 3K4				
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, Paleozoic, Cache Creek Group Mesozoic Takla Group				
Nickel, Gold				
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSES	SMENT REPO	RT NUMBERS: 1229	5, 14926,	31433, 31877

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			
Silt			
Rock 9 roock Samples			
Other Deep soil/till auger sar	nples		
DRILLING (total metres; number of holes, size)			
Core			
Non-core 10 auger holes			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)		_	
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	\$ 36,630.50

Kilometer 26 PROPERTY Omineca Mining Division, B.C.

2018 Exploration Report On Geochemical Sampling

NTS Sheets

NTS 093K/087 (NAD 83) Latitude 54°51'16" Longitude 124°44'40" (Centre of Property)

Statement of Work - Event # 5701222 & 5707194

Site Work completed: Geochemical Sampling between June 18, 2018 and June 30, 2018

> Prepared for: Fort Saint James Nickel Corp. (FMC #283271)

Prepared by: Milosz Mielniczuk G.I.T B.Sc

Aug 25, 2018

Table of Contents

1.	Summary	1
2.	Property Description and Location	2
1	. Accessibility Climate and Physiography	4
3.	Exploration History	5
4.	Geology	6
1	. Regional Geology	6
2	Property Geology	7
3	. Mineralization Styles	8
5.	2018 Work Program	8
6.	Conclusions and Recommendations	13
7.	Statement of Authors Qualifications	14
8.	Statement of Costs	15
9.	References	16

Table Of Figures

Figure 1 Location Map	. 3
Figure 2 Tenure Map	. 4
Figure 3 Regional Geology	. 7
Figure 4 Sample Locations	12

List of Tables

Table 1: Mineral Tenures	2
Table 2: Rock Sample Locations and Results	9
Table 3: Deep Soil Auger Hole Locations and Results	10

APPENDIX

1- Analytical results

1. Summary

The following summary is largely derived from an in-house report for Fort St. James Nickel Corp. written by J.W. (Bill) Morton, P. Geo. in 2012. The Kilometer 26 Project is a nickel project with possible gold mineralization located in central British Columbia. It is approximately 50 kilometers northwest of the community of Fort St. James (Figure 1), approximately 2 ½ hours by vehicle from the regional centre of Prince George, BC.

The Kilometer 26 property consists of 21claims (Table 1) totalling 5,178 hectares. The original claims of the Kilometer 26 claim group were staked by Eastfield Resources Ltd. in 2009 as a gold target. Eastfield Resources completed a small whole rock sampling program later that year including two angular pieces of rubble with disseminated nickel sulphide. They returned values comparable to what was being explored for by First Point Minerals Corp. and Cliffs Natural Resources Inc. at the Decar Project, 30 kilometers to the west.

The occurrence of these pieces of rubble prompted subsequent geophysical work in 2010 and 2011 (largely induced polarization and magnetometer surveying). This work indicated the nickel mineralization was possibly sourced in a 7,000 metre plus long feature paralleling a logging road and extending to the west for at least 600 metres. The anomaly is a low lying, relatively flat, and completely covered with overburden.

Late in 2011 Eastfield sold the Kilometer 26 property to Fort St. James Nickel Corp. for 20,000,000 shares which were distributed to shareholders of Eastfield Resources Ltd. in April 2012. Approximately \$625,000 was spent on the project from staking to the commencement of a diamond drilling program carried out in November and December of 2011. Nickel mineralized, ultramafic rock was encountered in all the 6 holes, spaced about 400 metres apart, from bedrock interface to the end of the hole. Nickel values exceeding 0.20 % Ni over the entire hole occurred in 5 of the 6 holes. About 65% of this nickel is pentlandite.

Ophiolite hosted in disseminated nickel (low grade, large tonnage) is the primary target of interest on the Kilometer 26 property. Motherlode style (ophiolite gold) mineralization is a secondary interest. (Morton, 2012).

Two geological terranes are covered by the property. Paleozoic Cache Creek Group rocks underlay most the of the property. These rocks are oceanic in origin. The extreme eastern region of the claims is underlain by Mesozoic rocks of the Quesnel Terrane. These are predominantly island arc in derivation. The Pinchi Fault Zone forms the suture which marks this boundary which, in the region of the claims, is predominantly north-south in orientation but is interpreted to be more north-west/south-east on the Fort St. James property. Cache Creek Group rocks in the vicinity of this property are dominated by ultramafic serpentinites, limestone, and basalt. These rocks are interpreted to be a collage of fault blocks formed by a series of accretions, obductions, and thrust faults, directed west to east, of oceanic rock. They extend tens of kilometers in the east-west direction and several times that in the north-south direction. Of interest for nickel mineralization are the mantle derived (now serpentinized) ultramafic units; it is believed these units were thrust up and in some cases over (obducted) shallower oceanic sediments. In the eastern region of the claim group, the Takla Group (Quesnel Terrance) rocks are predominantly volcanic in origin.

These ultramafic rocks occurring at the Kilometer 26 Property host the nickel mineralization. Of note is past exploration work at the Decar Project, located 30 kilometers to the west. Both First Point Minerals Corp. and Cliffs Natural Resources Inc., have identified ultramafic ophiolitic rocks that host awaruite, an iron nickel alloy, as a potential new source of non-sulphide nickel. The reader should be cautious however, that this mineralization may not be the same as Kilometer 26.

The following report describes the 2018 rock sampling and deep auger hole probing program on the KM26 property.

2. **Property Description and Location**

All the claims are held 100% by Fort St. James Nickel Corp. All claims located in the Omineca Mining Division. They have no royalties, back in rights or other burdens. There are no known environmental issues specific to the property. The claims fall within the asserted traditional lands of the Tl'azt'en Nation which is a first nation community of the Carrier Tribe who have an unresolved land claim in this region of British Columbia. The list of claims is found in Table 1 below and shown in Figure 2.

		Map		a			
Title Number	Claim Name	Number	Good To Date	Status	Area (ha)		
596283	26 KM	093K	2019/JUN/15	GOOD	465.54		
637783	KM 26 (D)	093K	2019/JUN/15	GOOD	465.56		
649203	KM 26 (D)	093K	2019/JUN/15	GOOD	465.58		
	FTJ NEW						
1049350	CLAIMS	093K	2019/JUN/15	GOOD	205.02		
1049351	FTJ012017	093K	2019/JUN/15	GOOD	93.21		
1049352	FTJ 20	093K	2019/JUN/15	GOOD	93.16		
1049354	FTJ0120172	093K	2019/JUN/15	GOOD	55.90		
1050322	MOE34567	093K	2019/JUN/15	GOOD	93.11		
1051515	FTJ_SW	093K	2019/JUN/15	GOOD	763.88		
1051516	FTJ_SW2	093K	2019/JUN/15	GOOD	484.59		
1050312	MOE12345	093K	2019/JUN/15	GOOD	372.79		
1050319	MOE23456	093K	2019/JUN/15	GOOD	55.89		
1050321	NICKEL	093K	2019/JUN/15	GOOD	18.62		
1050325	NICKEL 2	093K	2019/JUN/15	GOOD	18.62		
1049506	FTJ 21	093K	2019/JUN/15	GOOD	186.02		
1049513	FTJ 22	093K	2019/JUN/15	GOOD	334.84		
1049515	FTJ 23	093K	2019/JUN/15	GOOD	223.33		
1061100	FTJ MID	093K	2019/JUN/15	GOOD	37.26		
1061107	FTJ LOW	093K	2019/JUN/15	GOOD	37.28		
1061099	FTJ NORTH	093K	2019/JUN/15	GOOD	595.5		
1061108	SOUTH BLOCK	093K	2019/JUN/15	GOOD	111.83		
	Total Area: 5177.55						

Table 1 Mineral Tenure

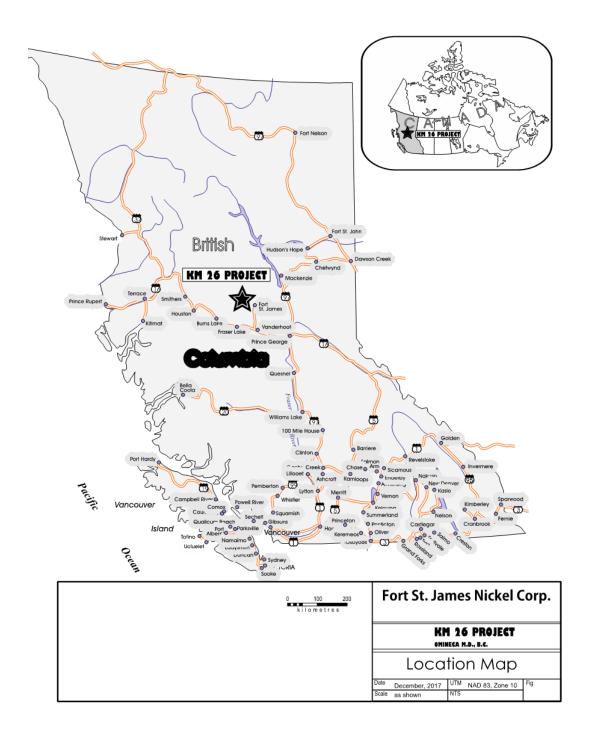


Figure 1 Location Map

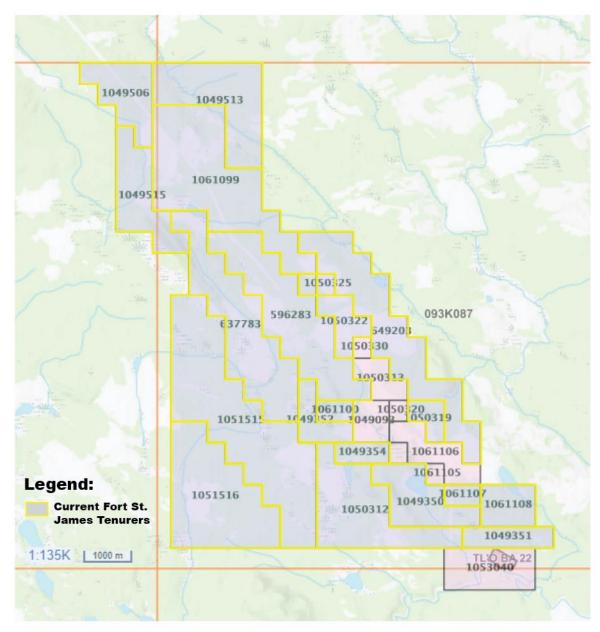


Figure 2 Tenure Map

1. Accessibility Climate and Physiography

The southern boundary of the Kilometer 26 project is located approximately 50 kilometers northwest of the town of Fort St. James in central British Columbia. Access to the project is provided by the Tachie road (~ 40km) and then the all weather gravel Leo Creek Forestry Road.

The topography of the Kilometer 26 project is flat to undulating. Elevations varies from 760 metres (2500 feet) to about 880 metres (2900 feet). Lodge-pole pine, spruce, and minor Douglas

The claim is covers a large swath of sub boreal spruce BC Biogeoclimatic zone. The southern portion of the claim is noted to be a Dry warm subzone with the northern portion being a damp Cool subzone.

The climate for this area is typical of central British Columbia with warm to hot summers and cool to cold winters. Permanent snow typically covers the ground from the first part of November until mid-April. Logging activities persist year-round except during spring breakup, when the ground frost melts and road restrictions are invoked to protect the road system. The surface facilitates road-building because of the subdued character of the landscape. Sources of water are plentiful.

3. Exploration History

The following exploration history is largely derived from an in-house report for Fort St. James Nickel Corp. written by J.W. (Bill) Morton, P. Geo. in 2012.

In 1983, Cominco Limited conducted a targeted prospecting and geochemical program north of its Pinchi mercury mine along the postulated trace of the Pinchi Fault targeting gold mineralization related to the fault. They successfully discovered a large mineralized boulder at the 26 km mark of the Leo Creek Forestry Road. The boulder, described as being composed of quartz-ankerite-magnesite and mariposite (list-wanite style alteration) repeatedly graded approximately eight grams per tonne gold when sampled several times.

In 1986 Equinox Resources Ltd. (Ross Beaty president) optioned the then Cominco owned claims and completed 734 metres of reverse circulation drilling (Christofferson, 1986). Twenty-one holes were completed with fourteen encountering bedrock. While no significant gold or arsenic results were obtained several holes encountered (and ended in) serpentinite. Importantly, no analysis was performed for nickel.

Nickel mineralized boulders were first sampled at Kilometer 26 in 2009. In 2010 they were traced to two source bedrock areas. Total nickel values varying from 0.15% to 0.23% were sampled in 2010 at six sites. Non silicate nickel for these samples varies from 0.03% to 0.14% and averages 0.10% nickel. Of these samples, three had greater than 60% of the nickel in a non silicate form (up to 0.14% non silicate nickel). The first identification of the awaruite nickel alloy was reported in a scanning electron microscope study by P.C. Le Couteur in a report dated 13 January 2011. High tenor pentlandite (\pm Ni) dominated the samples examined by Le Couter.

In 2010 and 2011, the most significant exploration was carried out by Fort St. James Nickel Corporation (formerly OroAndes Resource Corp). They established a 64 line kilometers cut grid, completed 57 kilometers of induced polarization surveying, 64 kilometers of magnetometer surveying and collected and analysed 1400 soil samples and 148 rock samples (Morton, 2012).

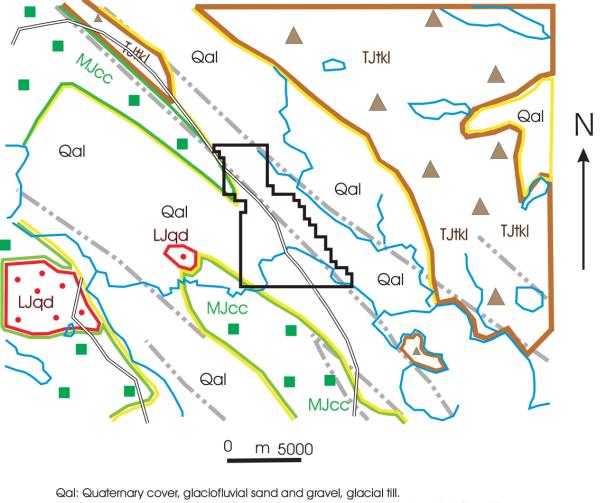
In November and December 2011 Fort St. James Nickel Corp. completed six diamond drill holes totaling 813 metres. This drilling tested a 1400 metre by 400 metre area of a 7,000 metre long geophysical target (magnetic high). All six holes started and ended in mineralized serpentinite

with five of the holes returning total nickel intercepts of 0.20% to 0.24% Ni and four of the holes (only four analysed for nickel sulphide) returning nickel sulphide values of 0.10% to 0.15% nickel over intervals as wide as 63 metres. Preliminary metallurgical testing has confirmed that most of the mineralization is high nickel tenor pentlandite (average \approx 35% Ni) (Morton, 2012).

In September of 2017 Fort St. James Nickel Corp. completed a small soil and rock sampling program. Twenty-nine soils were collected at twenty-five meter intervals on GPS controlled lines. Three whole rock samples were taken at the northern end of the property.

4. Geology

1. Regional Geology


The Pinchi Fault Zone is the major structure in the region. It separates two distinct geological terranes; the predominantly Paleozoic aged Cache Creek Group rocks to the west and the predominantly Mesozoic aged Takla Group rocks to the east (part of the Quesnel Terrane). It extends in a north-west, south-east orientation for more than 450 kilometers (twenty kilometers on the Kilometer 26 property) and shows characteristics, over time, of both thrusting and normal faulting. Current hot spring activity on the Pinchi Fault at Tchentlo Lake, located 50 kilometers to the north of the property, confirms that its activity has persisted to recent times and continues. Metamorphic grade of rocks in proximity to the fault zone often are blueschist grade (high pressure-low temperature) much as is the case along the Melones Fault Zone (the Motherlode trend) in California.

In an oceanic tectonic environment like the Cache Creek Group, the bulk of the ultamafic rocks are currently interpreted to be ophiolite complexes (Nixon and Hammack). These types of rocks are often associated with nickel mineralization.

Of interest for regional interpretation, the Axelgold layered gabbro intrusion is located in the Cache Creek Group approximately 150 kilometers to the north-west of Kilometer 26. This several thousand metre thick intrusion is a well-layered, gabbroic to anorthositic complex measuring twelve by five kilometers. The lower, ultramafic portion has not been located and is interpreted, if present, to be buried under an unknown depth of the intrusion.

The Takla Group is part the Quesnel Terrane, a northwest-southeast trending Mesozoic remnant of a west facing volcanic arc. It constitutes the continental margin to which the Cache Creek Group was both accreted and obducted. Takla Group rocks occupy the extreme eastern side of the Kilometer 26 property (around 25% of the property). See figure 3.

Regional Geology Vicinity Km 26

Qal: Quaternary cover, glaciofluvial sand and gravel, glacial fill. Tjtk: Tiassic-Jurassic, Takla Group, Tzzaron Sequence, augite phyric basalt, tuff, argillite. MJcc: Mississipian to Jurassic, Cache Creek Group, limestone, mafic volcanics, serpentinite. MLJqd: Middle to late Jurassic, quartz diorite. ------ Fault, interpreted. Claim block.

Figure 3 Regional Geology

2. Property Geology

The western two-thirds of the Kilometer 26 property are underlain by the Paleozoic aged Cache Creek Group. The Cache Creek Terrane, in British Columbia, represents a Paleozoic ocean floor. The full sequence of pelagic sedimentary rocks, including chert, limestone and some ultramafic rock represents an accretionary assemblage. The ultramafic bodies are generally interpreted to be part of ophiolite sequences (mantle derivatives). Ophiolites are suites of mafic and ultramafic rocks generated in a mantle slab beneath oceanic crust. They are interpreted to be in fault contact

with the younger Takla Group. Both the accretionary and ophiolitic assemblage rocks are well represented in the subsurface on the Kilometer 26 property.

Lithologies identified in outcrop at Kilometer 26 include Cache Creek Group gabbro and limestone, Takla Group mudstone and mafic volcanic tuff. Serpentinite has not been observed outcropping but comprises the entire core sequence drilled in 2011. The chemistry of the serpentinite, particularly its high magnesium content (20%-23% Mg in drill core), implies that the protolith was very rich in olivine and was probably a dunite (Morton, 2012).

3. Mineralization Styles

Nickel

Nickel mineralization in serpentinized ultramafic rocks believed to be of ophiolitic origin has been discovered at Kilometre 26. The mineralization initially exposed in rubble has now been confirmed in diamond drilling over a long dimension of 1400 metres and aver a width of approximately 400 metres. Two other mineralized areas distanced as much as 1.8 kilometers west from the drill intercepts have also been discovered. All the mineralized samples are similar in their association with elevated cobalt and chromium and their magnesium content which varies in the surface samples from 7.2% to 18.5% and in drill core to 23% (indicative of serpentinization). The samples are generally very low in sulfur content and have negligible to undetectable mercury. The first identification of the awaruite nickel alloy was reported in a petrographic study by P.C. Le Couteur in January 2011. One sample (of 11 samples submitted) contained the nickel alloy awaruite in the habit of numerous grains ranging from less than 0.01 mm to about 0.15 mm (10 to 150 microns). The average nickel content of the awaruite grains was determined to be 81%. Metallic minerals in the remaining samples were almost exclusively pentlandite with an average nickel content of 35% for all of the non awaruite metallics.

Gold

Gold mineralization first identified at Kilometre 26 by Cominco Limited in 1983 (the Cominco Boulder) is thought to be similar to gold mineralization discovered at the Snowbird Gold Deposit (Stuart Lake) and the Indata property (70 kilometers to the north). Collectively the evidence indicates that the Pinchi Fault has considerable gold potential that has remained unknown because of almost complete till coverage. It can be surmised that the Cominco boulder was not in place but most likely is derived from a nearby source within the Pinchi Fault Zone. The boulder, which was analyzed repeatedly at the time, averaged 8.1 g/t gold and was associated with highly anomalous

9 concentrations of arsenic. The mineralization in the boulder indicates listwanite type alteration which is predictable in an environment of obducted ophiolitic mafic and ultramafic rocks.

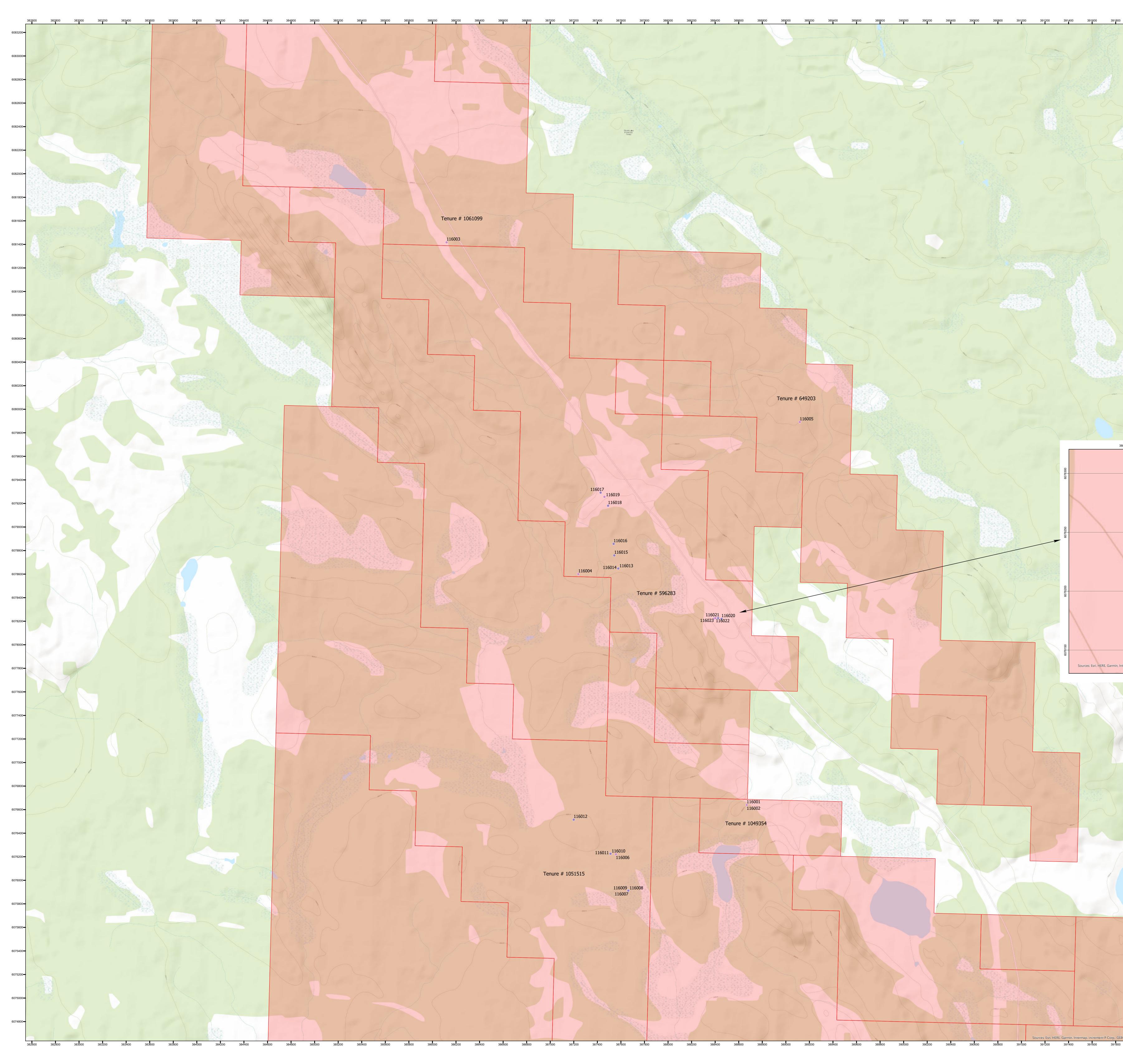
5. 2018 Work Program

Between June 18 and June 30 2018, Fort St. James carried out a rock sampling and deep auger hole probing survey. The auger sampling program was designed to try and identify nickel anomalies between the 2011 diamond drill holes or near nickel bearing boulders.

The rock sampling program followed up on historical known nickel boulder areas as well as explored new areas. Specifically recent cutblocks were visited. A total of 9 rock samples were collected during the work program. Their localtion and associalted Gold, Silver and Nickel values are listed in Table 2 below.

Sample				Au	Ag	Ni
ID	m East	m North	Description	(ppm)	(ppm)	(ppm)
			Au + Me of serpentenite			
			boulder/subcrop. 1x2x2m subround			
			and 1x1x1 angular boulder of dk /med			
			green serp. Strongly magnetic w/ dk			
			grey sulphide magnetite bands. Trace			
			py. Samp of both boulders. Next to			
116001	388668.32	6076639.84	lim outcrop.	<0.005	0.01	2030
			au + me of lt-med grey cherty weak sil			
116002	388668.32	6076639.84	alt limestone. Rare grey qtz stringer	<0.005	0.01	3.3
			au + me of calcite/rare qtz subcrop on			
			roadside pit. Likely road building			
			quarry. Mostly fn siltstone . Sample			
116003	386120.19	6081417.38	tag from 2017 in area.	<0.005	0.01	0.2
			au+ me of weak to mod sil alt			
			limestone. Samp of limestone boulder			
			3x4x3 m near outcrop. Appears sil alt			
116004	387238.68	6078600.06	It med grey w/cherty appearence.	0.005	0.01	3.2
			lim stain med grey metased. Trace py			
			cpy and bornite? Chl alt. med grey			
116005	389118.59	6079891.71	with blue hue. Sil alt.	<0.005	0.04	9.7
			au + me of lg 3x2x4 m boulder +			
			smaller side boulder. Dk green grey			
			serpentenite. Sil alt weak mag.			
110000	207557.20	6076224 25	Sample of both boulder. No	.0.005	0.00	75.4
116006	387557.38	6076221.25	carbonates in matrix.	<0.005	0.02	75.1
			It-med creamy green grey serp? Fn			
110010	207460.06	6070256 40	gre non- v weak mag. Lim stain trace	10,005	0.00	0.0
116019	387460.06	6079256.48	fn py. From 1x2x2 angular boulder	<0.005	0.03	0.9
			med grey /greeen serp boulder			
			/subcrop. V.magnetic. Grey stringers			
116022	200202 70	6070222 64	trace py. 30x40x20cm ang boulder by	<0.005	0.02	2020
116022	388392.78	6078223.61	drill site.	<0.005	0.03	2020
			sub/outcrop of fn gr med grey siltstone3x2x2 buried boulder or			
			outcrop. Non maglim stain on			
116023	388402.16	6078226.38	fractures. Near prev sample.	<0.005	0.03	78.7
110023	500402.10	00/0220.38	nactures. Near prev sample.	<u>\0.005</u>	0.03	/0./

 Table 2: 2018 Rock Sample results


The 2018 deep soil auger program used a Little Beaver "Big Beaver" hydraulic soil sampling auger. The holes were drilled to the machines maximum capability for the ground. Clay swelling made drilling difficult in areas. The holes were sopped when bedrock was assumed to be reached or the machine begun to strain or stall during drilling. The samples were collected from the final auger and in some cases at different intervals down hole. The auger hole locations, samples and associated silver, gold and nickel values are listed in table 3 below.

HOLE ID	Sample ID	m East	m North	Description	Au (ppm)	Ag (ppm)	Ni (ppm)
2018AH01	116007	387662.9	6075912	Auger @ 20 ft dk gey	0.0021	0.084	48.9
2018AH01	116008	387662.9	6075912	auger @ 30 ft wet clay silt	0.001	0.109	55.8
2018AH01	116009	387662.9	6075912	Auger @ 40 to 43 ft (eoh) clay silt loam	0.0014	0.1	51.9
2018AH02	116010	387511.7	6076226	auger hole 20-30 ft brown till	0.0012	0.099	48.1
2018AH02	116011	387511.7	6076226	auger 40-44 (last auger) dk grey silty clay + ang chunks	0.0033	0.102	48.9
2018AH03	116012	387199.3	6076515	till, lost auger bit hole, 3 attempts sandy silt12 ft	0.0017	0.071	56.7
2018AH04	116013	387577.6	6078648	50-54 ft auger (last) silty clay loam	0.0008	0.092	70.7
2018AH04	116014	387577.6	6078648	24-28 auger med gery silty clay	0.0012	0.101	57
2018AH05	116015	387543.8	6078759	18-12 ft auger (last auger Shallow hole) hit boulders? Dk brown silty sand loam + gravel	0.0012	0.12	55
2018AH06	116016	387538	6078857	silt sand loam 30-34 ft auger (34 foot hole) dk grey silt sand loam	0.0011	0.131	89.6
2018AH07	116017	387427.7	6079292	32 ft hole sample 28-32 ft auger silty sand loam	0.0014	0.128	64
2018AH08	116018	387491.1	6079181	48 ft hole sample 44-48 ft auger- grey silty sand loam w both and and round chunks. Till? Fault?	0.0011	0.111	53.8
2018AH09	116020	388454	6078220	20 foot hole, sample 16-20 ft auger 3 other short holes attempted. Fn gr silty sand loam.	0.0017	0.108	54.2
2018AH10	116021	388425.4	6078227	16 ft auger, 12-16 sampled. Grey slty sand w/ gravel. Till?	0.0009	0.11	55.8

 Table 3 Deep Soil Auger Samples

The highlight of the 2018 rock sampling program is sample 116001. This sample was collected in an area that to the author's knowledge has not been previously documented. The sample was collected from two large boulders subangular to angular possible subcrop of serpententite, next to an outcrop of limestone. Sample 116001 returned assays of 2030ppm Ni. Another high Nickel value came from sample 116022 of Serpententite boulders/subcrop near a 2011 drill pad.

The auger drill program did not return any strong gold, silver or nickel anomalies. The most significant nickel value came from a 34 foot auger hole that sampled a dark grey silty sand loam. The sample returned 89.6 ppm Nickel. The average of all the samples collected is 58ppm Ni.

392000	392200 3	92400 392600	³⁹²⁸⁰⁰	393000 393200 26 Sample Lo		L	4000 394200 60832
		Soil Sam	nples Locatic ples Location Boundary				- 60830 - 60828
	0		Boundary	0.8	1.2	1.6 Kilom	-60826
			(-60822
							-60820
		Sample II 116001 116002 116003 116004 116005 116006 116007 116008 116009 116010 116011 116012 116013 116014 116015 116016 116017 116018 116019	388668.323 388668.323 388668.323 386120.19 387238.68 389118.594 387557.377 387662.874 387662.874 387662.874 387562.874 387511.713 387511.713 387597.566 387577.566 387577.566 387543.789 387543.789 387543.789 387543.789 387491.067	8 6076639.839 <0.005 8 6076639.839 <0.005 6081417.38 <0.005 6078600.064 0.005 6079891.709 <0.005 6076521.249 <0.005 6075912.353 0.0011 6075912.353 0.0012 6076525.506 0.0012 6076514.76 0.0017 6078647.581 0.0012 6078647.581 0.0012 6078758.862 0.0012 6078857.199 0.0011 6079291.912 0.0014 6079181.113 0.0015	 Ag (ppm) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.102 0.102 0.102 0.102 0.102 0.102 0.101 0.092 0.101 0.12 0.131 0.128 0.111 0.03 0.120 	2030 3.3 0.2 3.2 9.7 75.1 48.9 55.8 51.9 48.1 48.9 56.7 70.7 56.7 70.7 55 89.6 64 53.8 0.9	-60818 -60816 -60814 -60812 -60810 -60808
		116020 116021 116022 116023	388425.431 388392.775	6078220.089 0.0017 6078226.808 0.0009 6078223.61 <0.005 6078226.383 <0.005	0.108 0.11 0.03 0.03	54.2 55.8 2020 78.7	-60804
			Å				-60802 -60800
38350	388	400	38845	i0 3:	88500	388550	-60798
	116022	Tenure # 5962 116023	283	116020			-60794 -60792 -60790 -60788 -60786 -60786 -60784 -60782 -60782
termap, increment P (Corp., GEBCO, USGS,	FAO, NPS, NRCAN, Ge	oBase, IGN, Kadaste	er NL, Ordnance Survey, Esri Japan, M	IETI, Esri China (Hon cont	g Kong), swisstopo, © OpenStre ributors, and the GIS User Com	eetMap
							-60776 -60774 -60772 -60770 -60768 -60766
							-60764
							-60762
							-60758
				5			-60756 -60754 -60752
				N			-60750
CO, USGS, FAO, NPS, 392000		5N, Kadaster NL, Ordna 92400 392600	nce Survey, Esri Jap 392800	an, METI, Es <mark>r</mark> i China (Hong Kong), sw 393000 393200			S User Community 4000 394200

6. Conclusions and Recommendations

The 2018 work program located nickel bearing boulders or possible subcrop in a previously undocumented area. The angular and subangular serpentenite boulders were found nearby a limestone outcrop. Further work should be carried out in this area. The program may consist of a detailed prospecting program, or soil sampling. Due to the proximity to outcrop it is recommended that a trenching program be carried out to determine the source of these boulders.

Further auger holes could also be completed in the area of sample 116001. Overburden may be shallow in this region allowing for better data.

7. Statement of Authors Qualifications

I, Milosz Mielniczuk, certify that:

1. I am an exploration geologist (G.I.T) residing at 327 Evergreen Way Vernon, BC, V1H-2B8.

2. I obtained a B.Sc in Earth and Environmental Sciences at UBCO in 2012.

3. I have worked seasonally in the mineral exploration field since 2010.

4. I am a consultant of NBG Eotech & Contracting Services Inc. of Vancouver, British Columbia.

5. I personally carried out the work described in this report.

"Milosz Mielinczuk, G.I.T, B.Sc"

Aug 25th, 2018

Signature

Date of signing

8. Statement of Costs

Labour						
Quantity	Cost total			total		
13	\$	750	/day	\$	9,750	
13	\$	375	/day		4,875	
				\$	14,625	
Equipr	nen	t				
Quantity		С	ost		total	
13	\$	150	/day	\$	1,950	
26	\$	125	/day	\$	3,250	
13	\$	75	/day	\$	975	
13		35	/day		455	
13		350	/day		4,550	
13		40	/day		520	
26		45	/day		1,170	
1		200	/2 weeks		200	
13		50	/day		650	
26	\$	10	/day		260	
				\$	13,980	
-	Vrit	-				
-		-			total	
					1,875	
1	\$	750	/day		750	
				\$	2,625	
Assa	iys				-	
					total	
					667.60	
					542.90	
				Ş	1,210.50	
_	ć			¢	total	
					1,690 3,250	
		1/7	/udv	· ·		
20	Ŷ		7 0.0.7			
20	<u> </u>	120	,,	\$	4,940	
	Quantity 13 13 Equipr Quantity 13 26 13 13 13 26 1 1 13 26 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 1 26 1 1 2.5 1 1 1 2.5 1 1 2 2.5 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Quantity 13 \$ 13 \$ 13 \$ Equip 1 Quantity \$ 13 \$ 13 \$ 13 \$ 13 \$ 13 \$ 13 \$ 13 \$ 13 \$ 13 \$ 13 \$ 13 \$ 26 \$ 13 \$ 26 \$ 13 \$ 26 \$ 13 \$ 26 \$ 13 \$ 26 \$ 13 \$ 26 \$ 13 \$ 26 \$ 1 \$ 2.5 \$ 1 \$ 2.5 \$ 1 \$ 2.5 \$ 1 \$ 2.5 \$ 1 \$ 2.5 \$ 1 \$ 2.5 \$ 3 \$ 4 \$ 5 \$	Quantity 5 13 \$ 375 13 \$ 375 Equip 13 15 Quantity 70 13 \$ 150 Quantity 125 13 \$ 150 13 \$ 150 13 \$ 35 13 \$ 350 13 \$ 350 13 \$ 40 26 \$ 40 13 \$ 350 13 \$ 40 26 \$ 10 13 \$ 50 13 \$ 50 13 \$ 10 26 \$ 10 27 \$ 750 1 \$ 750 1 \$ 750 1 \$ 750 1 \$ 750 2.5 \$ 750 1 \$ 750 1	QuantitySolution13\$ 750//day13\$ 750//day1377CuantityCuantity13\$ 150//day13\$ 125//day13\$ 125//day13\$ 350//day13\$ 350//day13\$ 400//day13\$ 350//day13\$ 400//day13\$ 400//day13\$ 400//day13\$ 200/2weeks13\$ 500//day13\$ 100//day13\$ 500//day13\$ 500//day13\$ 750//day13\$ 750//day14\$ 750//day15\$ 750//day16\$ 750//day17\$ 750//day18\$ 750//day19\$ 750//day10\$ 750//day11\$ 750//day12\$ 750//day13\$ 750//day14\$ 750//day15\$ 750//day16\$ 750//day17\$ 750//day18\$ 750//day19\$ 750//day10\$ 750//day11\$ 750//day12\$ 750//day13\$ 750//day14\$ 750 </td <td>QuantityI13\$750/day\$13\$375/day\$13\$375/day\$VVV10\$QuantityI\$V/day\$13\$150/day\$13\$75/day\$13\$350/day\$13\$350/day\$13\$300/day\$13\$200/day\$13\$200/day\$13\$50/day\$13\$10/day\$13\$50/day\$13\$50/day\$13\$700/day\$13\$50/day\$13\$50/day\$14\$10\$\$15\$750/day\$2.5\$750/day\$2.5\$750/day\$2.5\$750/day\$2.5\$\$\$\$2.5\$\$\$\$2.5\$\$\$\$2.5\$\$\$\$2.5\$\$\$\$3.6\$\$\$\$3</td>	QuantityI13\$750/day\$13\$375/day\$13\$375/day\$VVV10\$QuantityI\$V/day\$13\$150/day\$13\$75/day\$13\$350/day\$13\$350/day\$13\$300/day\$13\$200/day\$13\$200/day\$13\$50/day\$13\$10/day\$13\$50/day\$13\$50/day\$13\$700/day\$13\$50/day\$13\$50/day\$14\$10\$\$15\$750/day\$2.5\$750/day\$2.5\$750/day\$2.5\$750/day\$2.5\$\$\$\$2.5\$\$\$\$2.5\$\$\$\$2.5\$\$\$\$2.5\$\$\$\$3.6\$\$\$\$3	

9. References

- Ash, C.H., 2001, Ophiolite Related Gold Quartz Veins in the North American Cordillera, Ministry of Energy and Mines, Energy and Minerals Division, Geological Survey Branch, Bulletin 108.
- Ausenco, Dec 16, 2011, Royal Nickel Corporation, Technical Report on the Dumont Project, Launay and Trecesson Townships, Quebec, Canada
- B.C. Geological Survey, 2005, Geology of British Columbia, Geoscience Map, 2005-3, North Sheet
- Christofferson, J.E., 1986, A Report on a Reverse Circulation Overburden Drilling [program] on the Gros Property, Fort St. James Area, B.C., for Cominco Limited, Equinox Resources Ltd. and Rennex Resources Ltd., Assessment Report # 14,926.
- Geoscience BC, January 2009, Helicopter Borne AeroTEM System Electromagnetic and Magnetometer Survey, Quest West, Plate 2, Block D&E.
- Irvine, T.N., 1975, Axelgold Layered Gabbro Intrusion, McConnell Creek Map-Area, British Columbia, Paper 75-1, Part B, Geological Survey of Canada.
- Laird, B. and Ambrose, T., 16 June 2011, Kilometre 26 Project, Summary of May- June 2011 Mapping and Prospecting Program, for Eastfield Resources, Ltd., and OroAndes Resources Corp., Mincord Exploration Consultants, Ltd. 15 pp.
- Le Couteur, PC, Ph.D, P.Eng, June 8, 2012: Petrographic Report An Analyses of Opaques in Serpentinite to Eastfield Resources Ltd.; 13 January 2011; 9 pages.
- Le Couteur, PC, Ph.D, P.Eng, January 13, 2011: Petrographic Report an Analyses of Opaques in Serpentinite to Eastfield Resources Ltd.; 15 pages.
- McLeod, JA, 2011; Letter Report of 5 Samples for Mineralogical Study to Bill Morton; 10March 2011, Acme Job VAN11000289, 13 pages
- Monger, J.W.H., 1977: Upper Paleozoic Rocks of the Western Cordillera and their bearing on Cordilleran Evolution; Canadian Journal of Earth Science, volume 14(8), p.1832-1859.
- Morton, J.W., 2009: Report on the 2008 Diamond Drill Program on the Indata Property, for Max Resource Corp. and Eastfield Resources Ltd.; Report filed for Assessment Work requirements.
- Morton, J. W., 2010(a), Assessment Report Describing 2009 Work Completed on the Kilometre 26 Mineral Property, Omineca Mining Division, BC, Latitude 54°51'16", Longitude124°44' 40", NTS 388,000E, 6,080,000N, (NAD 83), (Centre of Property) for Eastfield Resources Ltd. and OroAndes Resource Corp. March 15, 2010.
- Morton, J. W., Feb, 2012, Assessment Report Describing Induced Polarization and Soil Geochemistry Completed on the Kilometre 26 Mineral Property (2011), Omineca Mining Division, BC, Latitude 54°51'16", Longitude124°44' 40", NTS 388,000E,

6,080,000N, (NAD 83), (Centre of Property) for Fort St. James Nickel Corp. and Eastfield Resources Ltd, Feb, 2012.

- Morton, J. W., Oct 5, 2012, Assessment Report Describing Diamond Drilling
 Completed on the Kilometre 26 Mineral Property (2011), Omineca Mining
 Division, BC, Latitude 54°51'16", Longitude124°44' 40", NTS 388,000E,
 6,080,000N, (NAD 83), (Centre of Property) for Fort St. James Nickel Corp. and
 Eastfield Resources Ltd, Oct 5, 2012.
- Nixon, G.T. and Hammack, J.L., 1991: Metallogeny of Ultramafic-mafic rocks in British Columbia with Emphasis on Platinum Group Elements; in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1991-4, P.125-158
- Schiarizza, P. and MacIntyre, D., 1999: Geology of the Babine Lake Takla Lake Area, Central British Columbia, B.C. Ministry of Energy and Mines, Geological Fieldwork, Paper 1999-1, p. 33-68

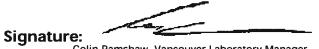
SGS Canada Inc., March 27, 2012, An Investigation into Kilometer 26 Project Samples, prepared for OroAndes Resource Corp., P

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

CERTIFICATE VA18165011

Project: Fort saint James		
This report is for 9 Rock sam 10-JUL-2018.	ples submitted to our lab in	Vancouver, BC, Canada on
The following have access	s to data associated with t	his certificate:
DAVID MARTIN	MILOSZ MIELNICZUK	

***** See Appendix Page for comments regarding this certificate *****


To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-JUL-2018 This copy reported on 8-AUG-2018 Account: NBGECO

SAMPLE PREPARATION ALS CODE DESCRIPTION WEI-21 **Received Sample Weight** LOG-21 Sample logging - ClientBarCode CRU-QC Crushing QC Test PUL-OC Pulverizing QC Test SPL-21 Split sample - riffle splitter CRU-32 Fine Crushing 90% < 2mm PUL-35a Pulv 1 kg split to 95%<106 um BAG-01 Bulk Master for Storage

ANALYTICAL PROCEDURES				
ALS CODE	DESCRIPTION			
ME-MS61	48 element four acid ICP-MS			
Au-AA23	Au 30g FA-AA finish	AAS		

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-JUL-2018 Account: NBGECO

Project: Fort saint James

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME_MS61 Ag ppm 0,01	ME_MS61 AI % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME-MS61 Co ppm 0,1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
V116001		1.56	<0.005	0.01	0.84	0.6	10	<0.05	0.02	0.18	0.08	1.08	98.5	1600	<0.05	12.5
V116002		1.50	<0.005	0.01	0.08	<0.2	20	<0.05	0.02	36.7	1.15	3.28	1.0	6	<0.05	3.1
V116003		1,86	<0.005	0.01	0.31	0.2	30	0.12	0.02	36.9	0.02	4.25	1.2	3	0.65	3.7
V116004		2.18	0.005	0.01	0.07	0.3	80	0.13	0.02	23.8	0.46	0.64	0.8	8	<0.05	2.1
V116005		1.56	<0.005	0.04	2.06	<0.2	1800	0.74	0.24	0.05	0.03	12.95	2.2	18	1.83	22.7
V116006		1.68	<0.005	0.02	9.29	0.3	780	1.49	0.02	3.96	0.12	25.6	35.6	149	0.90	50.2
V116019	22	1.66	<0.005	0.03	8.96	0.3	240	2.39	0.05	2.27	0.16	125.5	5.5	2	0.17	1.6
V116022		2.88	<0.005	0.03	0.46	5.7	40	<0.05	0.01	0.10	0.08	1.39	108.5	1820	<0.05	21.1
V116023		2.54	<0.005	0.03	10.85	0.6	80	0.15	0.04	8.78	0.24	14.10	55.5	185	0.09	83.6

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-JUL-2018 Account: NBGECO

Project: Fort saint James

Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0.05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0,2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10
V116001		5.30	1.79	<0.05	0.1	0.008	<0.01	0.5	0.5	22.7	1100	0.17	<0.01	0.3	2030	110
V116002		0.07	0.22	<0.05	0.1	<0.005	0.02	10.9	0.5	0.34	40	0.17	0.02	0.1	3.3	150
V116003	9 B	1.00	0.90	<0.05	0.1	<0.005	0.05	3.0	0.9	0.08	2440	0.07	0.08	0.2	0.2	30
V116004		0.31	0.22	0.07	<0.1	<0.005	0.02	<0.5	1.6	10.65	97	0.13	0.02	0.1	3.2	130
V116005		1.30	6.90	0.06	0.8	0.033	0.88	6.2	14.2	0.38	76	1.04	0.18	2.6	9.7	150
V116006		7.39	22.3	0.09	1.2	0.078	1.36	9.8	37.7	3.09	1200	0.64	3.21	18.5	75,1	1240
V116019		6.10	25.3	0.16	5.6	0.092	0.22	55.9	21.2	1.07	1290	4.22	5.33	66.0	0.9	2920
V116022		6.16	0.96	<0.05	<0.1	0.008	0.01	0.9	2.2	24.6	1640	0.40	0.01	0.2	2020	30
V116023		11.55	20.8	0.09	1.5	0.100	0.05	4.4	36.8	5.84	1880	0.52	0.04	1.8	78.7	830

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-JUL-2018 Account: NBGECO

Project: Fort saint James

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0,1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0,2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1
V116001		<0.5	0.2	<0.002	<0.01	0.45	9.8	<1	<0.2	2.0	<0.05	<0.05	0.05	0.057	<0.02	0.1
V116002		0.5	0.7	<0.002	0.01	° 0.10	0.3	2	<0.2	157.5	<0.05	<0.05	0.09	<0.005	<0.02	2.6
V116003		<0.5	1.9	<0.002	0.01	0.18	2.0	2	<0.2	1575	<0.05	<0.05	0.08	0.014	<0.02	0.1
V116004		<0.5	0.7	<0.002	<0.01	0.05	0.1	1	<0.2	195.5	<0.05	<0.05	0.06	<0.005	<0.02	2.0
V116005		10.6	42.6	0.002	0.02	0.36	6.3	<1	0.8	10.1	0.19	0.16	2.39	0.090	0.29	0.4
V116006		2.3	17,1	<0.002	<0.01	0.81	25.4	<1	1.3	125.5	1.15	<0.05	0.91	1.235	0.18	0.3
V116019		3.2	3.0	<0.002	0.03	0.42	3,7	<1	4.2	494	4.04	<0.05	4.47	0.649	0.03	1.2
V116022		0.9	0.2	<0.002	0.06	1.44	6.1	<1	<0.2	4.8	<0.05	<0.05	0.06	0.010	0.02	0.1
V116023		2.7	1:1	0.002	<0.01	0.33	59.4	<1	1.0	367	0.14	<0.05	0.21	1.210	<0.02	0.2

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-JUL-2018 Account: NBGECO

Project: Fort saint James

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0,1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	
V116001 V116002 V116003 V116004 V116005		47 5 8 10 32	<0.1 <0.1 <0.1 0.1 0.5	2.3 8.0 7.0 0.7 2.5	66 7 7 15 34	3.8 1.7 6.1 3.8 28.2	
V116006 V116019 V116022 V116023		213 7 37 482	1.0 0.5 0.2 0.1	16.9 30.2 0.8 42.0	109 149 40 142	32.3 234 1.7 28.9	
	5						

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 30-JUL-2018 Account: NBGECO

Project: Fort saint James

		CERTIFICATE CON	MENTS	
			TICAL COMMENTS	
Applies to Method:	REE's may not be totally soluble in th ME-MS61	nis method.		
		LABOR	ATORY ADDRESSES	
Applies to Method:	Processed at ALS Vancouver located Au-AA23 LOG-21 SPL-21	at 2103 Dollarton Hwy, Nor BAG-01 ME-MS61 WEI-21	th Vancouver, BC, Canada. CRU-32 PUL-35a	CRU-QC PUL-QC
8 0				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-JUL-2018 This copy reported on 8-AUG-2018 Account: NBGECO

CERTIFICATE VA18165015

Project: Fort saint James

This report is for 14 Sediment samples submitted to our lab in Vancouver, BC, Canada on 10-JUL-2018.

The following have access to data associated with this certificate:

DAVID MARTIN

MILOSZ MIELNICZUK

SAM	PLE PRE	PARAT	ION

 ALS CODE
 DESCRIPTION

 WEI-21
 Received Sample Weight

 LOG-21
 Sample logging - ClientBarCode

 SCR-41
 Screen to -180um and save both

	ANALYTICAL PROCEDURES
ALS CODE	DESCRIPTION
ME-MS41L	Super Trace Lowest DL AR by ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-JUL-2018 Account: NBGECO

Project: Fort saint James

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS41L Au ppm 0.0002	ME-MS41L Ag ppm 0.001	ME-MS41L Al % 0.01	ME-MS41L As ppm 0.01	ME-MS41L B ppm 10	ME-MS41L Ba ppm 0.5	ME-MS41L Be ppm 0.01	ME-MS41L Bi ppm 0.001	ME-MS41L Ca % 0.01	ME-MS41L Cd ppm 0.001	ME-MS41L Ce ppm 0.003	ME-MS41L Co ppm 0.001	ME-MS41L Cr ppm 0.01	ME-MS41L Cs ppm 0,005
V116007 V116008 V116009 V116010 V116011		1.42 1.24 1.58 1.72 0.82	0.0021 0.0010 0.0014 0.0012 0.0033	0.084 0.109 0.100 0.099 0.102	1.31 1.53 1.55 1.47 1.53	6.65 8.78 7.85 7.49 7.57	<10 <10 10 <10 <10	166.5 190.5 242 207 206	0.32 0.43 0.40 0.39 0.41	0.086 0.103 0.101 0.098 0.100	1.37 1.33 2.31 1.64 1.63	0.271 0.299 0.279 0.304 0.298	20.6 21.8 20.1 19.90 20.5	12.65 14.65 13.65 12.75 12.85	48.7 54.0 51.8 45.0 48.3	0.801 1.055 0.932 0.924 0.875
V116012 V116013 V116014 V116015 V116016		0.50 1.74 1.60 2.22 2.12	0.0017 0.0008 0.0012 0.0012 0.0012 0.0011	0.071 0.092 0.101 0.120 0.131	1.50 1.59 1.40 1.43 1.46	7.99 4.55 6.25 7.55 8.58	<10 <10 10 <10 <10 10	188.0 258 209 233 270	0.40 0.51 0.43 0.40 0.40	0.091 0.069 0.076 0.083 0.088	1.18 2.81 2.31 2.08 3.91	0.235 0.261 0.321 0.314 0.377	20.3 22.1 34.6 24.7 22.2 20.2	12.05 13.35 21.7 15.95 12.95 15.00	48.3 53.2 66.7 54.6 53.5 74.3	0.875 0.708 3.01 1.710 0.754 1.005
V116017 V116018 V116020 V116021		1.44 2.70 2.24 1.64	0.0014 0.0011 0.0017 0.0009	0.128 0.111 0.108 0.110	1.53 1.30 1.53 1.49	7.61 7.00 6.79 7.32	10 <10 10 10	283 199.5 202 188.5	0.40 0.38 0.38 0.42	0.077 0.087 0.092 0.091	3.87 2.23 2.69 2.01	0.381 0.320 0.342 0.325	19.20 20.9 19.10 19.55	13.60 12.70 13.65 13.75	69.8 53.3 74.6 64.0	0.969 0.807 0.948 0.928

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-JUL-2018 Account: NBGECO

Project: Fort saint James

Sample Description	Method Analyte Units LOD	ME-MS41L Cu ppm 0.01	ME-MS41L Fe % 0,001	ME-MS41L Ga ppm 0.004	ME-MS41L Ge ppm 0.005	ME-MS41L Hf ppm 0.002	ME-MS41L Hg ppm 0.004	ME-MS41L In ppm 0.005	ME-MS41L K % 0.01	ME-MS41L La ppm 0.002	ME-MS41L Li ppm 0.1	ME-MS41L Mg % 0.01	ME-MS41L Mn ppm 0.1	ME-MS41L Mo ppm 0.01	ME-MS41L Na % 0.001	ME-MS41L Nb ppm 0,002
V116007 V116008 V116009 V116010 V116011		31.2 37.4 36.3 36.6 35.3	3.00 3.24 3.27 3.16 3.38	4.24 5.13 5.00 4.74 4.92	0.080 0.087 0.084 0.091 0.085	0.235 0.221 0.242 0.227 0.143	0.032 0.045 0.048 0.045 0.038	0.023 0.028 0.024 0.026 0.022	0.09 0.10 0.12 0.11 0.10	10.10 10.85 9.91 9.82 10.00	9.6 12.1 11.4 11.0 11.4	0.92 1.06 1.16 0.99 1.01	652 728 728 694 691	1.04 0.91 1.23 1.00 1.16	0.025 0.023 0.033 0.031 0.029	0.153 0.181 0.185 0.192 0.199
V116012 V116013 V116014 V116015 V116016		33.8 38.0 33.6 34.6 39.6	3.09 3.60 3.16 2.99 3.13	4.71 5.78 4.98 4.59 4.64	0.073 0.106 0.109 0.075 0.081	0.110 0.323 0.298 0.169 0.260	0.039 0.097 0.098 0.098 0.298	0.025 0.030 0.028 0.033 0.027	0.07 0.10 0.09 0.08 0.11	10.90 15.05 11.80 11.05 10.15	10.3 10.6 10.4 10.6 10.9	0.84 1.33 1.17 1.05 1.79	700 737 673 659 659	0.96 1.01 1.05 1.22 1.79	0.022 0.037 0.032 0.022 0.034	0.286 0.132 0.156 0.223 0.152
V116017 V116018 V116020 V116021		38.9 34.3 37.3 36.7	3.15 2.89 3.50 3.11	5.04 4.22 5.21 4.90	0.090 0.088 0.096 0.082	0.317 0.258 0.315 0.223	0.233 0.122 0.081 0.089	0.023 0.016 0.021 0.026	0.12 0.08 0.11 0.09	9.51 10.40 9.47 9.57	11.6 9.5 11.1 10,9	1.57 1.14 1.18 1.08	650 676 641 634	1.58 1.11 1.56 1.09	0.044 0.027 0.035 0.025	0.153 0.210 0.188 0.218
				20												
	2															
-																
		-														
				<u>.</u>												

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-JUL-2018 Account: NBGECO

Project: Fort saint James

Sample Description	Method Analyte Units LOD	ME-MS41L Ni ppm 0.04	ME-MS41L P % 0.001	ME-MS41L Pb ppm 0.005	ME-MS41L Pd ppm 0.001	ME-MS41L Pt ppm 0.002	ME-MS41L Rb ppm 0.005	ME-MS41L Re ppm 0.001	ME-MS41L S % 0.01	ME-MS41L Sb ppm 0.005	ME-MS41L Sc ppm 0,005	ME-MS41L Se ppm 0,1	ME-MS41L Sn ppm 0,01	ME-MS41L Sr ppm 0.01	ME-MS41L Ta ppm 0.005	ME-MS41L Te ppm 0.01
V116007 V116008 V116009 V116010 V116011		48.9 55.8 51.9 48.1 48.9	0.073 0.069 0.069 0.067 0.068	6.11 7.25 6.90 6.85 6.92	0.002 0.002 0.002 0.006 0.003	<0.002 <0.002 0.002 0.002 0.002	4.77 5.78 6.12 5.47 5.83	<0.001 0.001 0.001 0.001 0.002	0.02 0.04 0.05 0.05 0.05	0.432 0.545 0.540 0.462 0.527	6.33 7.57 7.12 6.85 6.93	0.3 0.3 0.5 0.3 0.5	0.44 0.43 0.50 0.41 0.51	55.9 61.7 69.1 59.3 61.1	<0.005 <0.005 <0.005 <0.005 <0.005	0.03 0.05 0.02 0.03 0.04
V116012 V116013 V116014 V116015 V116016		56.7 70.7 57.0 55.0 89.6	0.070 0.105 0.090 0.072 0.080	6.67 5.14 5.64 6.37 6.01	0.004 0.002 0.002 <0.001 0.004	<0.002 <0.002 <0.002 <0.002 <0.002	5.02 6.89 5.28 5.30 5.72	0.001 0.001 0.002 0.001 0.003	<0.01 0.07 0.08 <0.01 0.12	0.497 0.443 0.492 0.497 0.743	7.14 8.42 7.18 6.85 6.93	0.2 0.4 0.5 0.3 0.6	0.44 0.53 0.39 0.38 0.41	50.4 104.5 86.8 65.3 99.3	<0.005 <0.005 <0.005 <0.005 <0.005	0.03 0.02 0.03 0.02 0.03
V116017 V116018 V116020 V116021		64.0 53.8 54.2 55.8	0.078 0.081 0.070 0.071	5.87 6.25 6.16 6.52	0.003 0.001 0.004 0.005	0.002 0.002 0.002 <0.002	5.61 4.50 5.83 5.50	0.002 <0.001 0.001 0.001	0.12 0.07 0.05 0.04	0.636 0.468 0.559 0.523	7.19 6.31 7.44 7.09	0.6 0.4 0.7 0.5	0.41 0.37 0.54 0.39	115.5 72.6 89.0 80.4	<0.005 <0.005 <0.005 <0.005	0.03 0.03 0.03 0.02
	2															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-JUL-2018 Account: NBGECO

Project: Fort saint James

Sample Description	Method Analyte Units LOD	ME-MS41L Th ppm 0,002	ME-MS41L Ti % 0.001	ME-MS41L Tl ppm 0.002	ME-MS41L U ppm 0.005	ME-MS41L V ppm 0.1	ME-MS41L W ppm 0.001	ME-MS41L Y ppm 0.003	ME-MS41L Zn ppm 0,1	ME-MS41L Zr ppm 0,01	
V116007 V116008 V116009 V116010 V116011		2.01 2.37 2.19 2.16 2.11	0.082 0.078 0.081 0.074 0.078	0.071 0.081 0.095 0.085 0.078	0.510 0.569 0.655 0.569 0.586	59.5 66.9 63.2 59.8 63.4	1.000 0.341 1.645 0.402 0.548	9.54 10.20 9.83 9.56 9.70	67.3 79.8 77.4 75.7 76.1	8.00 8.67 8.52 7.97 6.50	
V116012 V116013 V116014 V116015 V116015 V116016		2.11 2.08 2.03 2.14 2.16	0.085 0.091 0.098 0.089 0.089	0.086 0.073 0.073 0.096 0.102	0.560 0.543 0.543 0.626 0.892	64.7 78.2 67.0 61.8 65.0	0.625 0.281 0.440 0.330 0.671	9.89 12.30 10.55 10.00 10.40	68.4 75.4 70.7 71.3 77.8	5.40 10.60 9.88 6.88 9.57	
V116017 V116018 V116020 V116021	2	2.02 2.04 1.950 2.00	0.102 0.098 0.092 0.086	0.097 0.085 0.089 0.091	0.816 0.623 0.618 0.590	68.1 61.7 67.0 66.9	1.370 0.206 1.140 0.617	10.15 10.30 9.74 9.79	74.4 69.4 75.1 75.6	11.30 8.74 9.80 8.61	
		5									

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: NBG EOTECH & CONTRACTING SERVICES INC. 888 DUNSMUIR ST. SUITE 888 VANCOUVER BC V6C 3K4 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 23-JUL-2018 Account: NBGECO

Project: Fort saint James

	CERTIFICATE COMMENTS
Applies to Method:	ANALYTICAL COMMENTS Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g). ME-MS41L
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. LOG-21 ME-MS41L SCR-41 WEI-21