BRITISH COLUMBIA The Best Place on Earth	BC Geological Survey Assessment Report 38233
Ministry of Energy and Mines BC Geological Survey	Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: Drilling	TOTAL COST: \$598,181.26
AUTHOR(s): Adrian Newton, P.Geo	SIGNATURE(S): adm The
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): NOW File No: 14675-2 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): EV	
PROPERTY NAME: <u>SNIP</u> CLAIM NAME(S) (on which the work was done): <u>1056547 (WESTSIDE),</u> 222347 (SNIP 3), 300552 (JIM 1), 300553 (JIM 2)	1056548 (CLEA), 1056595 (PHIZGAP), 222219 (SKY 3),
COMMODITIES SOUGHT: Au MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 104B 250	
MINING DIVISION: Liard	NTS/BCGS: 104B
LATITUDE: <u>56</u> ° <u>39</u> <u>'51.35</u> " Longitude: <u>131</u>	^o 07 '32 " (at centre of work)
OWNER(S): 1) Skeena Resources Ltd.	2)
MAILING ADDRESS: 650 - 1021 West Hastings Street, Vancouver, BC, V6E 0C3	
OPERATOR(S) [who paid for the work]: 1) Skeena Resources Ltd.	.)
MAILING ADDRESS: 650 - 1021 West Hastings Street, Vancouver, BC, V6E 0C3	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, a Red Bluff Porphyry, Jurassic, Texas Creek Plutonic Suite, Stuhini	
Jim Porphyry Early Jurassic Intrusive, Sky Creek Shear Zone, Bro	nson Stock Triassic Intrusive, Sericite-Pyrite Alteration,
Snip Mine	
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REF	PORT NUMBERS: 01657, 00630, 15336A, 16748, 15621, 00769,

Next	Pag	e
------	-----	---

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)	J		
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			
Silt			
Rock			
Other			
DRILLING (total metres; number of holes, size)			
Core 649.0 m; 3 holes; NQ2	2	300552, 300553	\$575,412.70
Non-core			
RELATED TECHNICAL			
Sampling/assaying 520 NQ2	core samples	300552, 300553	\$22,768.56
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres			
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	\$598,181.26

Assessment Report

for the

2018 Diamond Drilling Program on the Snip Gold Property

in the

Liard Mining Division British Columbia, Canada

NTS Map Sheets 104B11

Centre of Work Area:

Latitude: 56° 39' 51.35" N; Longitude: 131° 07' 32.0" W

Owned and Operated by:

Skeena Resources Ltd.

Suite #650 – 1021 West Hastings Street Vancouver, B.C. V6E 0C3

Report Author:

Adrian Newton, B.Sc., P.Geo., Skeena Resources Ltd.

Original Report Submitted May 9, 2019 Amended Report Submitted October 29, 2019

Table of Contents

1.0 Executive Summary
2.0 Introduction
2.1 Terms of Reference7
2.2 Property Location and Description7
2.3 Access
2.4 Local Resources and Infrastructure9
2.5 Climate and Physiography11
3.0 Property Ownership
3.1 Mineral Tenure
4.0 Exploration and Production History13
4.1 Past Production
5.0 Geology
5.1 Regional Geology16
5.2 Property Geology
5.3 Structure
5.4 Deposit Types
5.5 Mineralization
6.0 2018 Exploration Program25
6.1 Diamond Drilling25
6.2 Drill Hole Targets and Results27
6.2.1 Jim Porphyry Target27
6.2.2 Gold Soil Anomaly Proximal to Bronson Stock
6.3 Sample Method, Preparation, Analysis and Security
6.4 Data Verification and QAQC
6.4.1 Blank Analysis
6.4.2 Certified Reference Materials
6.4.3 Geotechnical Data
7.0 Interpretation and Conclusions
8.0 Recommendations

9.0 References	36
10.0 Statement of Costs	38
11.0 Statement of Qualifications	40

List of Figures

Figure 1. Snip project location map	
Figure 2. Snip project access map	10
Figure 3. Snip property Mineral Claim and Lease Ownership.	12
Figure 4. Proximity of significant deposits to the Jurassic-Triassic boundary in NW BC	17
Figure 5. Regional geology	18
Figure 6. Snip area local geology.	22
Figure 7. Snip genesis	24
Figure 8. 2018 Exploration drill hole locations.	26
Figure 9. 2018 Snip blank samples; gold control chart	29
Figure 10. 2018 Snip blank samples; silver control chart	30
Figure 11. CRM Au control chart for GS1P5R.	31
Figure 12. CRM Au control chart for GS1T.	31
Figure 13. CRM Au control chart for GS5T.	32
Figure 14. CRM Au control chart for GS12B.	32
Figure 15. CRM Au control chart for GS16	33
Figure 16. CRM Au control chart for GS22	33
Figure 17. CRM Au control chart for GS5T.	

List of Tables

Table 1. Snip property mineral titles	13
Table 3. Snip mine historic production statistics.	15
Table 4. Drill hole summary information.	25
Table 5. ALS code ME-MS61 elements and detection limits	28
Table 6. ALS code ME-OG62 elements and detection limits.	28
Table 7. Au Certified Reference Materials, December 2018.	30
Table 8. Ag Certified Reference Materials, December 2018.	30
Table 9. Average SG and measurement count by lithology type	34

Appendices

Appendix I: Mineral Titles Online – Event 5740926 Appendix II: Drill Logs Appendix III: Drilling Cross Sections Appendix IV: Assay Certificates

1.0 Executive Summary

The Snip gold property is located 100 km north-northwest of Stewart, British Columbia. The property is 100% owned by Skeena Resources Ltd. and consists of seven (7) mineral claims and one (1) mineral lease covering 4,528.38 hectares. The historic Snip Gold mine produced 1.1 million ounces of gold at an average grade of 27.53 g/t Au during the period 1991-1999. During the 2018 exploration season, 54 diamond drill holes (11,298.25 m) were completed on the property. From this, 51 holes (10,649.25 m) were drilled within the mining lease while the remaining three holes (649.00 m) were drilled on the surrounding mineral claims. This report summarizes relevant past work and documents the 2018 surface exploration drilling program completed on the mineral claims for assessment credit.

Helicopter supported exploration was conducted from a camp constructed on the site of the old Snip mine processing facility. Mobilization and demobilization, temporary accommodation and logistical support was enabled using the AltaGas operated McLymont and Forrest Kerr hydroelectric facilities on the Iskut River.

The 2018 surface drilling program was designed to test gold in soil anomalies identified in proximity to the Jim Porphyry and the Bronson Creek stock. The program commenced on the 7th of November 2018 and completed on the 30th of November 2018. A total of 649.00 metres of diamond drilling from three holes was completed and included analysis of 520 core samples.

A statement of work (Event Number ID 5740926) was filed on the seven contiguous mineral claims on May 9th, 2019 for a total of \$667,168.06; an amended total of \$598,181.26 is being claimed for assessment credit in this report. On condition of acceptance of this Assessment Report, this is sufficient to push forward the expiry of the seven mineral claims from 2019 to 2029.

2.0 Introduction

2.1 Terms of Reference

This report provides a description of the surface diamond drilling exploration program completed by Skeena Resources Ltd. ("Skeena") on the Snip Gold property for assessment credit. A total of 649.00 metres of diamond drilling was completed in three holes during the period November 7-30, 2018. The exploration program was co-managed by Colin Russell (P.Geo) and Adrian Newton (P.Geo) with guidance provided by Paul Geddes, P.Geo, Vice President of Exploration and Resource Development at Skeena Resources Ltd.

The work was conducted under work approval for Mines Act Permit MX-1-959.

2.2 Property Location and Description

The Snip Gold Project is located in the Golden Triangle region of British Columbia, Canada, on the western flanks of the Coast Mountain ranges. The property epicenter is located at 56° 39' 51.35" N and 131° 07' 32.0" W.

The property lies 1.5 km south of the Iskut River, near the tributary of Bronson Creek (Figure 1). It is 100 km north-northwest of Stewart, 320 km northwest of Smithers, 330 km north-northwest of Terrace and 80 km east of Wrangell, Alaska. The property is located wholly within NTS map sheet 104B/11 and is within the Traditional Territory assertions of the Tahltan Nation.

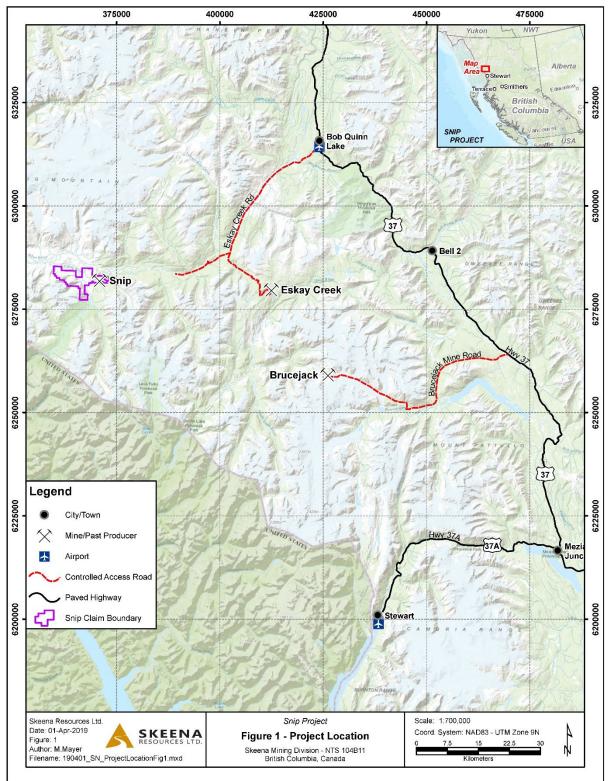


Figure 1. Snip project location map.

2.3 Access

Access to the Snip Gold property can be gained either by direct air or boat transportation to the 1.5 km long Bronson Airstrip located adjacent to the Iskut River. Direct charter flights by fixed wing aircraft can land at the Bronson airstrip which is maintained under Licence of Occupation No. 635844 by SnipGold Corp, a subsidiary of Seabridge Gold. The Snip Gold property is located immediately south of Bronson Airstrip.

Alternatively, the property can be accessed using a combination of vehicle and helicopter transportation. The closest vehicle access to the project is via Highway 37 (Stewart Cassiar Highway). The Eskay Mine Road is an all-season gravel road that connects to Highway 37 approximately 135 km north of Meziadin Junction (Figure 2). The Eskay Mine Road is a 58.5 km private industrial road that is operated by AltaGas Ltd. (0 km to 43.5 km) and Skeena Resources Ltd. (43.5 km to 58.5 km). At kilometre 37.5, a secondary road heads west to the AltaGas Ltd. McLymont staging area; this is the closest road access to the property. From McLymont, it is a 10-minute helicopter flight (18 km) to Snip camp.

2.4 Local Resources and Infrastructure

The Snip Gold property is located in the Pacific northwest region of British Columbia, Canada. Support services for mining and other resource sector industries in the region are provided primarily by the communities of Smithers (pop. 5,400) and Terrace (pop. 11,500). Both communities are accessible by commercial airlines with daily flights to and from Vancouver. Volume freight service in the region is supported by rail connections that extend from tidewater ports in Prince Rupert and Vancouver. The closest tidewater port to the project is located in Stewart, approximately 260 km from the Project. Stewart is an ice-free shipping location and provides access for bulk shipping 365 days/year.

Road infrastructure in the region is well developed. Highway 16 (Yellowhead Highway) extends from Prince George in central British Columbia, through several communities including Smithers and Terrace, and terminates at the Port of Prince Rupert. Highway 37 (Stewart Cassiar Highway) connects to Highway 16 at Kitwanga and extends to the Alaska Highway in the Yukon. The Eskay Mine Road connects to Highway 37 roughly 293 km north from Kitwanga. Driving time from either Smithers or Terrace to the McLymont staging area is approximately five hours.

The region is supported by the Provincial power grid. A 287 kV transmission line extends from a grid connection at Terrace to Bob Quinn, primarily following Highway 37. Power supply opportunities exist close to the Snip Gold project. The Forest Kerr, McLymont, and Volcano Creek hydroelectric plants are within 20 km and collectively produce up to 277 MW which is fed to the provincial grid via transmission lines that extend along the Eskay Mine Road.

Services, workforce, supply chains, and infrastructure are all well established in the region to support mining operations.

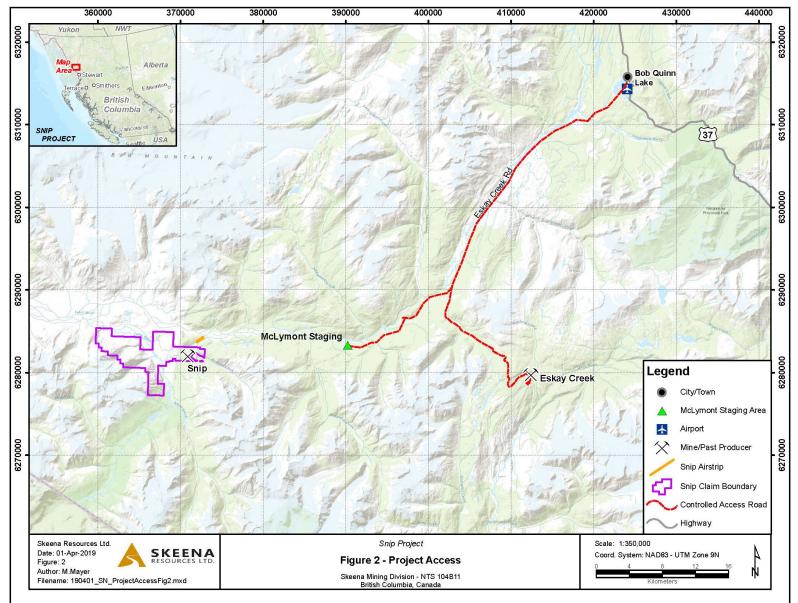


Figure 2. Snip project access map.

2.5 Climate and Physiography

The Snip Gold property is located within the Coast Mountains, a major regional chain extending from Alaska, through British Columbia and into Washington State. The dominant feature of the region is the Stikine Icecap which is centered 80 km to the northwest of the property along the Alaska border. The Snip Gold property lies between the Iskut River, Craig River and Bronson Creek within the Stikine Watershed.

Local elevations vary from just over 100 metres ASL at Bronson Creek, to 900 metres ASL in the subalpine located in the far south-eastern portion of the property.

There are no long-term weather datasets available for the region. Data recorded from a weather station located on the Bronson Airstrip from 1994 to 1998 (Lawrence and Seen, 2009) shows the annual precipitation between 1300 and 2100 mm of which 30% fell as snow. Precipitation levels were highest in September and October and lowest in the period May through August.

Mean daily temperatures were highest in July and August reaching approximately 16° C, and lowest in January falling to -15° C. The highest temperature recorded on site over the 5-year period was 31° C and the lowest temperature recorded was -32° C.

For a review of flora and fauna, the reader is directed to the report by Burgoyne (2010), which provides a list covering species on and around Johnny Mountain. The property lies within the Coastal Western Hemlock BEC Zone and a small portion of the eastern property is mapped as Mountain Hemlock. The Snip Gold property has almost no alpine vegetation, with sub-alpine flora dominated by scattered Sitka Spruce, with transition to Engelmann Spruce, farther east.

At lower elevations in proximity to Bronson Creek, natural vegetation is Western Hemlock and Sitka Spruce, with riparian populations of cottonwood and spruce. Devil's club and slide alder can be thick in low to moderate elevations and disturbed areas are overrun with the same vegetation. Huckleberry, blueberry, grouseberry and mountain arnica grow at various elevations. Natural regrowth is rapid, with hemlock and spruce growing to five metres within twenty years.

3.0 Property Ownership

3.1 Mineral Tenure

The 4,528.38-hectare Snip Gold property consists of seven mineral claims and one mining lease (Figure 3, Table 1) which are 100% owned by Skeena Resources Ltd. The property is contiguous, except for a portion of Mining Lease 226132 which is a remnant of an earlier claim swap with a predecessor of Seabridge Gold Inc. The good-to-dates reflect event ID 5740926 which was recorded on May 9th, 2019 and are subject to acceptance of this assessment report.

There are no royalties on the property.

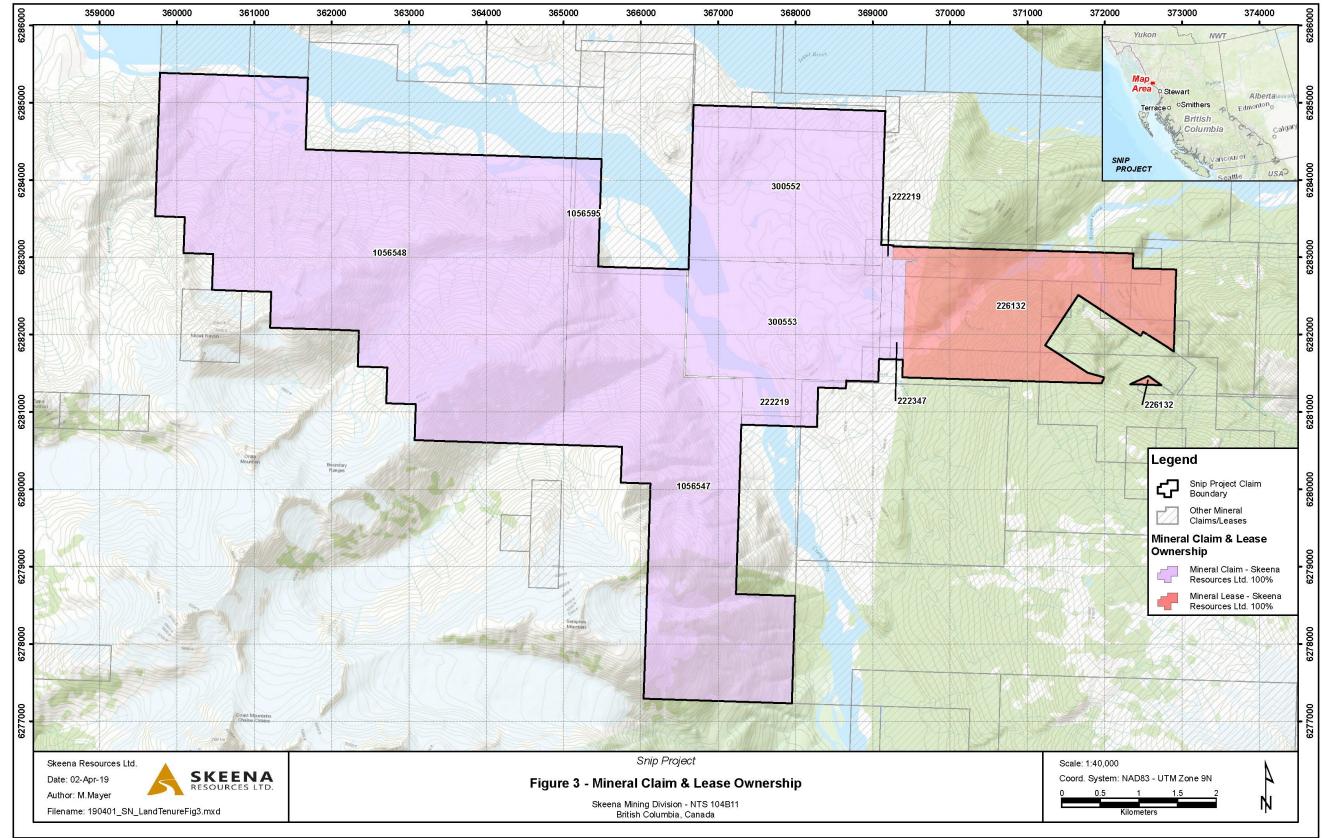


Figure 3. Snip property Mineral Claim and Lease Ownership.

Title Number		Title Type			Area (Hectares)
222219	SKY 3	Mineral Claim	9/13/1982	7/15/2029	500.00
222347	SNIP 3	Mineral Claim	10/20/1983	7/15/2029	75.00
226132		Mining Lease	7/21/1989	7/21/2019	482.07
300552	JIM 1	Mineral Claim	7/22/1986	7/15/2029	500.00
300553	JIM 2	Mineral Claim	7/22/1986	7/15/2029	375.00
1056547	WESTSIDE	Mineral Claim	11/21/2017	5/22/2029	925.13
1056548	CLEA	Mineral Claim	11/21/2017	5/22/2029	1617.85
1056595	PHIZGAP	Mineral Claim	11/22/2017	5/22/2029	53.33

Table 1. Snip property mineral titles.

4.0 Exploration and Production History

The Iskut area has been subject to extensive exploration dating back well over 100 years. In 1907, a prospecting syndicate from Wrangell Alaska named the "Iskut Mining Company," recorded claims on Bronson Creek. These claims would later become Crown Granted and still exist to this day. In 1909, the Red Bluff claims were staked, and from 1908 to 1911, several short adits were driven into the Red Bluff porphyry to obtain a bulk sample (King, 1988).

From 1911 to 1920, the Iskut Mining Company reported trenching, stripping and drifting on several gold bearing veins on the Red Bluff and Iskut claims, on and adjacent to the current Snip property. Extracted material from the original Iskoot claims, assayed at 0.06 oz. Au, 44.2 oz. Ag and 12.4% Cu (King, 1988).

In 1929, Cominco Ltd. ("Cominco") staked 42 claims on Johnny Mountain, however, these would lapse soon after and the area experienced no recorded work until 1954 (King, 1988).

Geologist Forrest Kerr mapped portions of the Iskut River region from 1926- 1929, and published GSC map 311A in 1935. Kerr's memoir 246 on the area was published posthumously in 1948. The Geological Survey of Canada's "Operation Stikine" in 1956 mapped the Stikine-Iskut area on a regional basis, publishing it as GSC Map 9-1957 (Nichols, 1989).

From 1954 to 1960, Hudson Bay Mining and Smelting Co. Ltd.'s drilling resulted in copper discoveries on and near the Johnny Mountain Gold Mine. In 1964, Cominco Ltd. targeting copper, optioned claims from Tuksi Mining Company and Jodi Explorations Ltd. and in 1965 completed drilling on the Red Bluff claim North and East of the property. In 1973 and 1974, the same property was examined by Texas Gulf Sulphur Inc. for its copper and base metal content (King, 1988).

In 1964, the Tuksi Mining Co. acquired Crown grants, and Jodi Exploration Co., Cominco Ltd. and Copper Soo Mining Co. staked claims around Tuksi's property. Further work at that time discussed the regional geology of the Iskut Area and can be found in Mawer (1964), Parsons (1965), Nagy (1966) and Bagshaw (1968).

The following year Cominco Ltd. concentrated an exploration program on the Red Bluff porphyry copper deposit and discovered visible gold in a vein exposed in a nearby creek bed. In 1966, channel sampling on the vein returned assays up to 244 ppm Au over 1.2 metres.

From 1980 to 1986, grass roots exploration, soil sampling and trenching were conducted on the Snip property by Cominco. In 1986, Cominco signed a JV agreement with Delaware Resources Corp., who provided the funding for the project, and over two years, drilled over 15,000 metres. The work outlined the Twin Zone, and a decision was made to go underground in 1988, via a portal at the 300 metre elevation. An additional 6,800 metres of surface drilling, coupled with underground development and related drilling at 12.5 metre centers, produced a first reserve estimate for the Twin Zone of 940,000 tonnes grading 28.5 g/t Au (Nichols, 1989).

The Snip Mine operated between January 1991 and June 1999, first by Cominco Ltd. and then, beginning in 1996, by Homestake Canada Inc. The mine was closed in October 1999. In 2001, the property was acquired by Barrick Gold Inc. ("Barrick") as part of its acquisition of Homestake Canada Inc. (Sibbick and MacGillivray, 2006).

The property lay dormant until 2016 when Skeena entered into an agreement with Barrick, granting an option to acquire a 100% interest in the past producing gold mine and associated mineral claims.

In 2016, Skeena Resources Ltd. completed 7,179.1 m of diamond drilling in 29 holes, collected 668 soil samples, and completed 171 line kilometres of airborne magnetic surveying. The majority of drilling was completed on the portion of the property covered by the mining lease. The drilling program was designed to test targets in the Twin and Twin West Zones of the mining lease as well as regional targets located on the mineral claims portion of the property. Infill soil sampling was conducted to test the continuity of historic gold anomalies and to add multi-element data in areas which previously only had gold data.

In 2017, Skeena worked entirely on the mining lease at Snip. During the early part of the 2017 season, work focused on camp expansion including construction of six additional structures (kitchen/dining hall, dry/washhouse, first aid, office, storage shed and generator shack) along with reopening and rehabilitating the 300 portal access road. In mid-August the 300 portal plug was removed allowing underground access. Utilizing two underground drills, drilling commenced on October 12th and continued until December 16th on several levels from the 300 to the 550. A total of 8,650.86 metres were drilled testing several targets including the Upper Twin, Twin, 150 Vein and the 412 Zone.

4.1 Past Production

The Snip Gold Mine began production in January 1991 and was officially opened on July 25th, 1991. Ore was mined using conventional shrinkage and cut and fill methods in the lower parts of the orebody, while mechanized cut and fill methods were used in the upper, wider parts of the orebody.

Initial plant design was planned for a daily production of 300 tonnes. Diluted ore reserves at startup using a 12 g/t gold cut-off, totaled 940,000 tonnes grading 28.5 g/t gold, with a mine life of ten years at an annual output of 2.9 million grams (93,000 oz gold).

In the first year, mine production totaled 119,812 ounces from 122,648 tonnes mined. That same year, the first resource estimate on the 150 Vein was calculated at 46,300 tonnes grading 32.0

g/t Au. Peak total gold ounce production occurred in 1992 with 164,713 tonnes grading 31.73 g/t (1.02 oz/t or 168,011 ounces). A peak production rate of 472 tpd (172,163 tonnes) at an average grade of 25.46 g/t Au occurred two years later.

The Snip Mine consisted of an underground mining operation, mill, tailings impoundment and ancillary facilities. The mine was a fly-in / fly-out operation which was serviced by air flights from Wrangell, Alaska, Bob Quinn Lake and Smithers to the Bronson Airstrip located adjacent to Snip.

Access to the underground workings was provided by a series of portals that accessed the Twin Zone (130, 180, 300, 340, 400, 420, 440, and 520 portals) and Twin West Zone (150 and 225 portals). Access and haulage from the Twin Zone workings was provided by the 130 and 180 portals. The mill and ancillary facilities were located north of the mine between Monsoon and Bronson Creeks. The tailings impoundment was constructed in the saddle of a narrow valley forming the headwaters to both Monsoon Creek and Sky Creek. Dams were constructed at each end to form a tailings impoundment approximately 150 metres wide and 800 metres long. Discharge from the impoundment was directed towards Sky Creek.

Ore was mined using a variety of underground mining methods and hauled to the mill for processing. Free gold was recovered from the ore using shaker tables and processed on site into doré bars; approximately 34% of the gold was recovered by this process. A sulphide-rich concentrate was subsequently produced and shipped to Japan for processing. Overall metallurgical recovery was estimated at 91.5%.

Mine waste generated during operations included waste rock and tailings. During operation, limited waste rock (180,000 Mt) was stockpiled in dumps adjacent to five portals (130, 180, 300, 440 and 150). The bulk of the waste rock was ground down and used as hydraulic backfill (280,000 Mt), or placed directly as rock fill underground (344,648 Mt). Tailings were discharged to the tailings pond.

By the end of 1998 total production was 1,250,198 tonnes grading 27.53 g/t gold (0.88 oz/t) or 1,106,510 ounces gold. A production summary is detailed in Table 2 (Nichols et al., 2017). The mine was closed and reclaimed in 1999.

Zone	Tonnes	Tonnes (%)	Grams		Ounces	Au (%)	
Twin	762,437	61%	28.95	0.93	22,070,709	709,601	64%
150 vein	277,926	22%	25.41	0.82	7,060,746	227,012	21%
HW min	89,288	7%	26.86	0.86	2,398,031	77,100	7%
FW min	67,712	5%	28.31	0.91	1,916,875	61,630	6%
130 vein	26,582	2%	19.9	0.64	528,929	17,006	2%
T-West	9,668	1%	18.1	0.58	174,967	5,625	1%
Misc	16,585	1%	16.01	0.51	265,536	8,537	1%
Total	1,250,198	100%	27.53	0.88	34,415,792	1,106,510	100%

Table 2. Snip mine historic production statistics.

5.0 Geology

5.1 Regional Geology

Despite extensive exploration, there has been a tendency to rely on only a few authors for information on the regional geology. The following geologic overview by Rhys (1994) provides the best summary of the regional geology of the area:

The region lies within the Intermontane Belt, located on the western margin of the Stikine terrain. Anderson, (1989), recognized three distinct stratigraphic elements in the western portion of the area; Upper Paleozoic schists, argillites, coralline limestone and volcanic rocks of the Stikine Assemblage; the Triassic Stuhini Group volcanic and sedimentary arc related strata, and Lower to Middle Jurassic Hazelton Group volcanic and sedimentary, arc-related strata. The region is host to many economic metal deposits and is often referred to as the "Golden Triangle".

Intrusive rocks in the Iskut River region comprise five plutonic suites. The Stikine plutonic suite is composed of Late Triassic calc-alkaline intrusions which are coeval with group strata. The Copper Mountain, Texas Creek and Three Sisters plutonic suites are variable in composition but are roughly coeval and co-spatial with Hazelton Group volcanic strata. The Tertiary age Coast Plutonic Complex is represented by predominantly granodioritic to monzonitic Eocene intrusions of the Hyder plutonic suite, exposed 12 km south of the Bronson Slope deposit (Britton et al., 1990).

The age, mineralogy and texture of the adjacent Red Bluff porphyry stock (associated with the adjacent Bronson Slope deposit), suggest that it belongs to the economically important Early Jurassic Texas Creek plutonic suite (see Alldrick, 1985; Alldrick et al, 1987; Brown, 1987). Plutons of this suite are located in the Stewart, Iskut River region and range in age from 196 to 185 My (Anderson, 1993; MacDonald et al., 1992). Additional reference material includes Alldrick et al., (1990).

Kyba and Nelson (2013) have mapped the Triassic – Jurassic unconformity at several locations throughout the "Golden Triangle" of Northern BC. The trace of this contact, shown as a red line in Figure 4 demonstrates that most of the major deposits in the region, including the Snip deposit, occur within 2.5 kilometres of the unconformity.

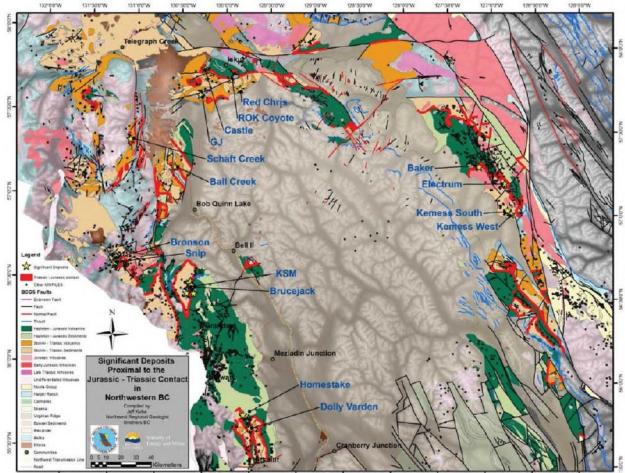


Figure 4. Proximity of significant deposits to the Jurassic-Triassic boundary in NW BC (from Kyba, 2015).

More recent regional work has investigated or merely reported on, the geology, mineralization and to some extent, structure of the region. Nelson and Kyba's (2015) work on the regional porphyry mineralization provides general information on the geology. Their work did not specifically address Snip property geology but shows that the Snip deposit is located along a significant regional structure known as the Bronson Corridor (Figure 5).

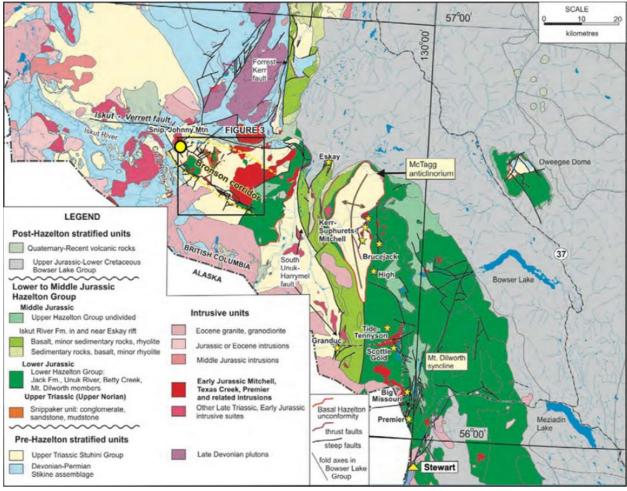


Figure 5. Regional geology (from Nelson and Kyba, 2015).

5.2 Property Geology

Due to a lack of internal geologic markers, the property geology can only be broadly differentiated. The following is a brief description of lithologies, based largely on observations from Rhys (1993).

1. Strata of the Upper Triassic Stuhini Formation underlies most of the Snip property which consists of moderately to weakly metamorphosed feldspathic turbiditic greywackes with subordinate interbedded siltstones, mudstones, volcanic conglomerate and rare dolostone and/or limestone. As seen mostly from the Snip underground workings, the rocks consist primarily of grey weathering massive fine to medium grained poorly sorted feldspathic to lithic greywacke. Laminated and graded beds of siltstone and mudstone comprise between 3-15% of the sequence. Massive coarse-grained greywacke comprising 5–10%, and less abundant matrix supported volcanic conglomerate (1–2%) also occur throughout. Greywacke framework grains consist of, in decreasing order of abundance, plagioclase (mainly albitic), quartz, K-feldspar, siltstone/mudstone and volcanic rock fragments. Graded bedding, lack of any other sedimentary structures, clast type and angularity, poor sorting and abundance of sandstone suggest that these rocks formed as turbidites proximal to a volcanic source. Abundant subhedral and angular

plagioclase suggest that there may be reworked crystal tuffs in the sequence. Bedding throughout the workings dips moderately to steeply north to northwest. Laminated graded beds of siltstone and greywacke are upright and face north.

2. The Red Bluff Porphyry is exposed on the mountain in the north-eastern portion of the property, extending eastwards onto the Seabridge Gold property. Approximately two km long and 250 metres wide, it is exposed north of the Snip Mine, trending parallel to it, and is probably cut off to the west by the Monsoon Lake Fault. Underground, it is separated by 850 metres from the orebody at the 180-metre elevation, and by 400 metres at the 600-metre elevation. It has been dated at 194+ 1 Ma. (MacDonald et al, 1992).

Underground, the Red Bluff Porphyry is observed as a porphyritic to megacrystic K-feldspathic quartz diorite, tan to greenish grey, altering the host greywackes to a quartz-sericitic assemblage. Compositionally, it is plagioclase quartz- K-feldspathic, and has undergone two phases of alteration, potassic and phyllic, the former characterized by a quartz-magnetite-sericite-K-feldspar-biotite-hematite-pyrite-chalcopyrite assemblage altering over 80% of the intrusion, the latter, a sericite-pyrite-quartz-albite assemblage. Phyllic alteration occurs throughout the porphyry and in some of the adjacent sediments.

Giroux and Gray (2010), in their technical assessment of the Bronson Slope Property for Skyline Resources, describes the porphyry as:

"The Red Bluff porphyry (a portion of which extends westwards onto the Snip Gold Property), is a hydrothermally altered K-feldspar megacrystic, plagioclase porphyritic intrusion of probable quartz diorite to quartz monzonite composition. Subhedral tabular pink K-feldspar phenocrysts generally vary in length from 2 mm to 20 mm. They usually comprise from less than 1% to 5% of the modal mineralogy. The matrix to the K-feldspar megacrysts consists of medium-grained porphyry containing phenocrysts of albitic plagioclase altered amphibole and quartz. The plagioclase is usually completely altered to aggregates of sericite \pm quartz \pm K- feldspar. Mafic phenocrysts, probably original hornblende from grain shapes, are commonly altered to magnetite, hematite, pyrite, biotite, and chlorite. Equant, clear to smoky sub rounded quartz phenocrysts, 0.2 mm to 1.5 mm in diameter, comprise less than 1% to 4%. In areas of moderate to intense alteration original quartz is difficult to identify."

"Accessory minerals include apatite, zircon and titanite. The fine-grained matrix to the phenocrysts forms between 35% and 70% of the rock volume."

"Quartz-magnetite-hematite veins are the earliest phase of veining in the Red Bluff porphyry system. They form an intense stock work that is spatially related to the Red Bluff porphyry."

"The quartz - Fe-oxide stockwork and altered sediments on its southwest margin are overprinted by quartz-pyrite ± chalcopyrite veins/alterations and pyrite + chalcopyrite

veinlets that are associated with the highest gold and copper grades. Where quartz-pyrite assemblages overprint and sulphidise the quartz-Fe-oxide stockwork there is a net loss of iron from the system. Veins are discrete, with sharp boundaries outside the stockwork in greywacke, but have indistinct alteration boundaries with quartz-Fe-oxide veins within the stockwork."

"The overall sequence from intense early Fe-oxide veining to less intense quartz-pyritechalcopyrite veins and finally to pyrite and carbonate stringers corresponds with a progressive decrease in the total amount and intensity of veining through time."

"A 25 to 50-metre-wide zone known as the transition zone of K-feldspar + Fe oxide alteration in greywacke occurs along the western upper periphery of the quartz-magnetite-hematite stock work and separates stock work from biotitic greywacke to the west. Calcite veinlets, common in the biotitic greywacke, become predominantly quartz veinlets in the transition zone."

3. A distinctive unit at Snip Mine is the Biotite Spotted Unit, or 'BSU'. It is typically described as a non-mineralized basic to intermediate biotitic dyke that intrudes the Twin Zone vein mineralization.

Mining indicated it tended to follow the plane of the Zone, with dips from 50°-70° at lower and upper elevations with shallower, mid-elevation dips. Widths range from several decimetres up to five metres with an average width of 2.5-3 metres. It is moderately to strongly biotitized and hosts calcite-pyrite quartz-sericite-chlorite. Biotite content ranges from two to 20% as disseminations, veins and fracture infill.

4. The Bronson Stock is a poorly documented heterogeneous, medium-grained equigranular plagioclase rich clinopyroxene-amphibole bearing diorite. The stock lies north and north-west of the former producing Snip Mine. A poorly constrained Late Triassic U-Pb zircon age date of between 197 Ma and 225 Ma was obtained from a K-feldspar and plagioclase phyric monzodiorite phase of this unit (Macdonald et al, 1992). It has also been noted by various workers that the Stock has been intruded by several dykes, sills; and small stocks, of unknown age and intermediate to mafic composition.

Contacts of the stock with country rocks are not well defined, but where observed in drill core, are either faulted or intrusive. The southwest and northeast contacts appear to be southwesterly dipping. Screens of altered greywacke up to 40 m wide are common throughout the intrusion.

5. There are few surface exposures of felsic to intermediate extrusive and chronologically related intrusive lithologies. 2016 drilling on the Jim claims intersected the extrusive unit and possibly the intrusive unit. They are characterized as feldspar-phyric, feldspar-quartz rich pyroclastic fall, ash-lapilli, agglomeratic, debris flow and volcaniclastic sections intruded by mineralogically similar dykes and sills. Feldspar porphyroblastic dacitic

intrusions may have been intersected in previous holes (based on conclusions, and inferences drawn from 2016 core, past drill logs and Rhys reported images), with some intercepts suggesting they could represent additional porphyry copper targets. Their extents are unknown due to lack of outcrop and drill density. It is conceivable that they represent Hazelton Group equivalent rocks. Rhys (1997), suggests some of the feldspar porphyroblastic dykes ascribed to the loosely termed and even more loosely defined 'Jim Porphyry system', are related to the Jurassic age Texas Creek Plutonic suite. His generalized definition of the 'Jim Porphyry System' is based on examination of over a dozen holes. A quartz (vein) stockwork is near ubiquitous in drill holes with several intersecting megacrystic K-feldspar porphyry dykes. Alteration is an assemblage of quartz-sericite-chlorite-albite-pyrite-carbonate.

6. Un-deformed lamprophyre dykes of probable Tertiary (Oligocene) age have been mapped and seen in drill core at several locations on the property, as have lower Jurassic feldspar porphyry dykes. Basalt dykes, possibly correlative with recent volcanism, have also been observed.

A map detailing the property scale geology and the various intrusive bodies in shown in Figure 6.

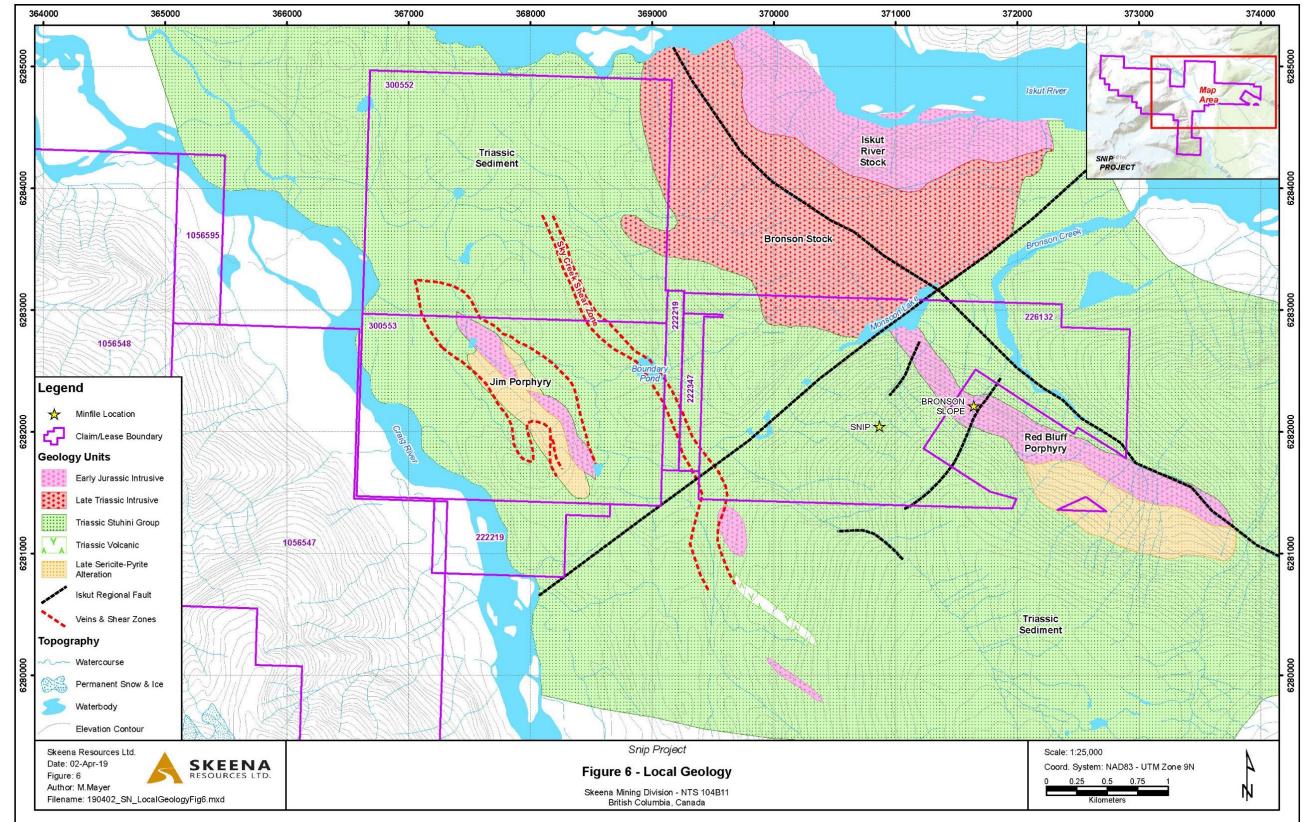


Figure 6. Snip area local geology.

5.3 Structure

The most detailed information on the structure of the Snip Mine is provided by Rhys (1993). The following is a summary of his structural observations:

Several periods of deformation and veining have affected the Snip Mine sequence. Earliest quartz-calcite veining is superseded by a (single) shear vein phase, followed by extensional veining. All of these features are cut by northwest dipping gouge filled faults that have oblique right lateral displacements. At least one set of the extension veins displays reverse shear sense relative to shear veining.

Rhys cites "consistency of mineralogy, identical progression of the same alteration facies from vein to wallrock, and the continuity of structural thickness from biotite-pyrite veinlets to shear veins suggest that these structures were formed during the same hydrothermal event." The intimate association of biotite to shears, veining and the overall homogeneity of the alteration envelope are suggestive of a close relationship to the same event.

Ore type formation and alteration were in his words, 'synchronous and part of a protracted process'. Evidence for this is:

- 1. Deformed and undeformed auriferous quartz and sulphide veins in single exposures, and deformed veins cross-cutting foliation.
- 2. Stacked repetitive sets of quartz and sulphide veins.
- 3. Biotitic envelopes on deformed and shear veins suggesting alteration from the time of vein formation and continuing after the intrusion of the BSU.
- 4. Multiple quartz-sulphide veining with various styles and clear cross-cutting relationships.

His conclusion on the BSU dyke is that it was intruded late in the deformation history of the Twin Zone, after ore type formation and mineralization but during the waning stages of the hydrothermal system. Also, displacement on the Twin Zone and shear veins during the event that offset the extension veins must have only minor offset since there is no offset along the dyke, which predates the extension veins. The displacement of the extension veins must thus define a late reactivation of the shear veins that is minor and temporally unrelated to the main period of offset on the Twin Zone.

5.4 Deposit Types

The Snip gold deposit is located adjacent to the Red Bluff Porphyry; an Early Jurassic intrusion of quartz monzonite composition. The Red Bluff Porphyry is probably related to the Early Jurassic Texas Creek plutonic suite and is texturally and mineralogically analogous to other intrusions throughout the area that are spatially related to gold mineralization, including the Valley of the Kings (Pretium) and the Silbak Premier deposits (Ascot Resources).

Sillitoe and Thompson (1998) stated that "the Snip deposit exploits the Twin shear-vein system which starts approximately 600 metres from the Red Bluff intrusion. The shear fabrics associated

with the gold mineralization in the Twin Zone are similar to those described from many orogenic vein gold deposits, however, the metal association in the veins (Au-Cu-Mo-Zn), and the importance of potassic alteration suggest a magmatic origin for the ore fluid. This is supported by the proximity of the Twin Zone to the Red Bluff Porphyry as well as lead isotope data from the Twin vein, that indicate a similar age of \pm 195 million years for both the intrusive and the mineralization (Rhys, 1995). Veins more distal with respect to the Red Bluff Porphyry contain higher zinc, lead, and silver contents, as expected in a zoned porphyry system. The veins in the district can therefore be classified as intrusive related, similar to those in many other porphyry systems."

Many significant gold deposits in northwestern British Columbia have Pb-Pb isotopic data consistent with an early Jurassic age and are located within 500 m of early Jurassic intrusions and dikes of the Texas Creek Intrusive Suite. Examples include Valley of the Kings, Silbak-Premier, Red Mountain and Snowfield (Rhys, 1993).

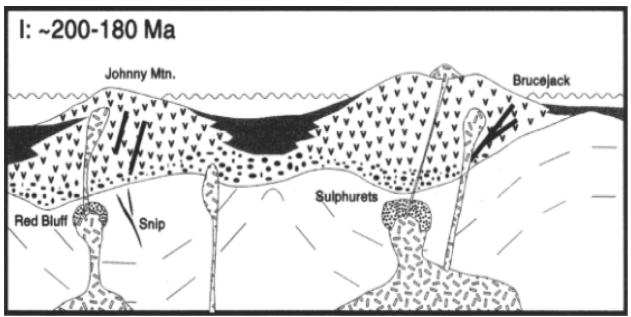


Figure 7. Snip genesis (from MacDonald, 1996).

5.5 Mineralization

Snip Mine mineralization is varied and has been reported from at least six major ore zones which include the following: Twin Zone; 150 Vein; Hangingwall Zone; Footwall Zone; 130 Vein; and the T-West (Twin West) Zone.

Gangue mineralization is predominately calcite, iron-carbonate, quartz, pyrite, chlorite and biotite in decreasing order. Ore mineralization is divided into the following:

1. Carbonate Ore: Banded to laminated calcite and chlorite/biotite with up to 70% of the ore type as carbonate. Quartz is disseminated to vein(let) in nature. Sulphides content ranges from trace to 5%.

- 2. Chlorite-Biotite Ore: Up to 60% phyllosilicates and 30-40% calcite. Minor to moderate to predominant quartz was recorded, and much of it as vein-type or 'augen'. Sulphide content is up to 5% and includes pyrite and pyrrhotite.
- 3. Sulphide Ore: Pyrite, chalcopyrite, pyrrhotite, arsenopyrite, galena, sphalerite can occur in varying percentages and combinations, as threads, veinlets, vein, semi- massive concentrations or disseminations.
- 4. Quartz Ore: Banded-parallel or 'foliation-parallel' white to milky in colour, with sulphides as previous. Pyrrhotite and chalcopyrite were reported as more abundant than in the Sulphide Ore. These veins were also reported as commonly fractured with quartz and Fecarbonate infill.

6.0 2018 Exploration Program

The 2018 exploration program completed on mineral claims of the Snip Gold property for assessment credit consisted of 649.0 metres of diamond drilling in three drill holes. One additional site was cleared and had a pad built but was not drilled due to weather constraints. Details of the work program are included in the following sections.

6.1 Diamond Drilling

Three diamond drill holes totaling 649.0 metres were completed on the mineral claims of the property during the 2018 exploration program. A total of 520 core samples were analyzed. Drill collar location details are documented in Table 3 while the hole locations are plotted in Figure 8.

Hole ID	Target	UTM Grid	DGPS Easting	DGPS Northing	DGPS Elevation (m)	Final Depth (m)	Azimuth	Dip	Core Size
S18-032	Jim Porphyry/ Au soil anomaly	NAD83_Z9	368332.84	6281689.68	211.59	29.00	67.6	-46.0	NQ2
S18-033	Jim Porphyry/ Au soil anomaly	NAD83_Z9	368332.98	6281689.29	210.58	415.00	72.0	-51.1	NQ2
S18-034	Au soil anomaly	NAD83_Z9	368571.97	6284017.52	115.99	205.00	26.2	-45.0	NQ2

Table 3. Drill hole summary information.

Drill hole collars were surveyed by Skeena staff using a Trimble Geo 7X handheld GNSS system combined with a Zephyr Model 3 Rover Antenna. Downhole surveying was completed every 30 m using a REFLEX EZ-Trac; downhole surveying was completed by the drilling contractor, DMAC Drilling of Langley, British Columbia.

Drill logs are attached in Appendix II.

Drill cross sections are attached in Appendix III. Each cross section is oriented parallel to the orientation of the drill string and plotted at a scale of 1:5,000.

Drill sample assay certificates are attached in Appendix IV.

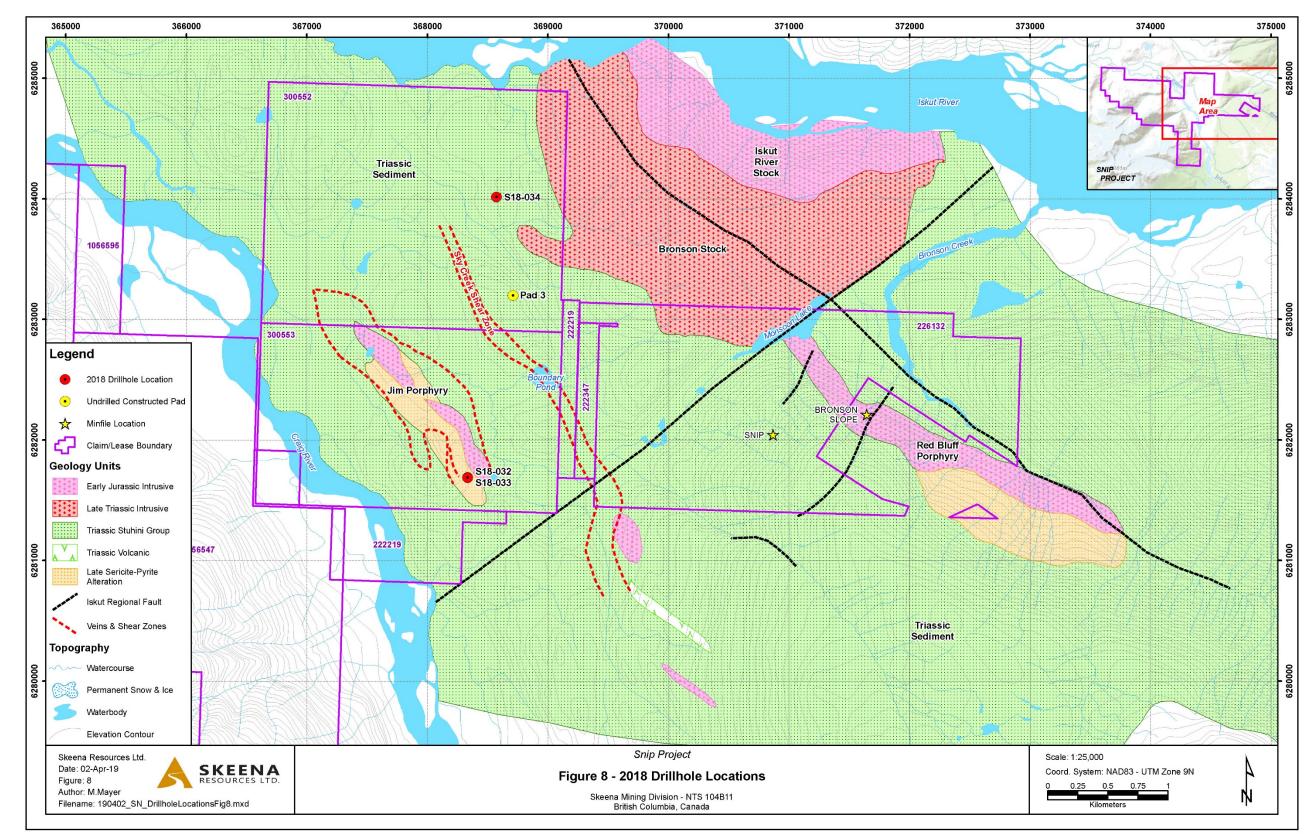


Figure 8. 2018 Exploration drill hole locations.

6.2 Drill Hole Targets and Results

6.2.1 Jim Porphyry Target

Drill holes S18-032 (abandoned) and S18-033 were designed to test a gold-high anomaly in soils, while attempting to extend a mapped potassic zone with quartz stockwork veining to the south. Drill hole S18-032 was abandoned at a depth of 29.00 m after the driller's attempted to advance the casing in unstable ground conditions which resulted in damage to and shearing off the rods in the drill string. The drill was subsequently tilted at the same site and hole S18-033 was completed to depth. S18-033 intersected primarily greywacke and siltstones with some massive to foliated mafic phyllites. Significant sericite pyrite alteration was encountered to 75 m depth. A notable interval of quartz-calcite veining (>10%) was intersected from 169.00-212.00 m associated with 2-10% disseminated to blebby pyrite ± galena, sphalerite, chalcopyrite and pyrrhotite. The mafic phyllite intersected intermittently from 298.26-342.43 m was initially interpreted as BSU due to its high biotite content and similar phenocryst-spotted texture. Petrographic analysis of several samples showed that these mafic phyllites have higher iron and titanium contents reflecting chemistry and source differences to the BSU. No significant assay results were returned for either of these drill holes and they were unsuccessful in extending zones of potassic alteration reported further to the south.

6.2.2 Gold Soil Anomaly Proximal to Bronson Stock

Hole S18-034 was drilled north of the Sky Creek Shear Zone, close to the Bronson Stock. It was designed to target a gold-high anomaly in soils. This hole collared into a quartz monzonite at surface and changed to a homogenous greywacke sequence at 24.15 m, continuing through to the end of the hole. No significant assay results were returned. The source of the gold in soil anomaly may be explained by sporadic quartz-chlorite veins noted in the near surface quartz monzonite containing trace pyrite, galena, sphalerite and chalcopyrite.

6.3 Sample Method, Preparation, Analysis and Security

Core logging was conducted using GeoSpark Core Database software and included geological descriptions, recovery, RQD, specific gravity and down-hole surveys. The program also handled assay results import and data merging. All drill core was photographed prior to cutting and sampling, with sample intervals and tags displayed.

Drill core was measured, logged, marked for sampling and sawn with a diamond blade core saw at the company's core processing facility located at the Snip camp. For each sample, the half designated for sampling is placed with a unique sample tag number into a labelled poly sample bag and sealed with a plastic zip tie. The remaining drill core is retained in the original drill core box and stored securely at the Snip camp site. The company inserts quality control (QC) samples at regular intervals in the sample stream, including blanks and reference materials with all sample shipments to monitor laboratory performance.

Once a number of samples had been prepared, individual samples (five to six depending on size) were placed into labelled rice bags and sealed with security tags for chain of custody requirements. Prepared sample shipments were delivered by secure courier to Bandstra

Transportation Systems in Smithers for subsequent transportation to the laboratory. Skeena employed ALS, an ISO 9001:2015 and ISO/IEC 17025:2017 certified laboratory, for sample preparation and analysis. Sample preparation was conducted in the lab's facility in Kamloops, B.C. with a split of the pulp samples shipped to the lab in Vancouver for analysis.

The entire sample was dried and then crushed using a Terminator crusher. Crushing was done to better than 70% passing a 2 mm Tyler 10 mesh screen. A split of roughly 1000 g was taken and pulverized to better than 85% passing a 75 micron Tyler 200 mesh screen (PREP-31BN). The LM2 Pulverizing Mill is equipped with a B2000 standard steel bowl.

Gold assays were performed on 50 g samples by fire assay and atomic absorption (Au-AA26). The lower detection limit for gold was 0.01 g/t and the upper detection limit was 100 g/t. For assay results that were above 10 g/t Au, samples were analyzed by metallic screening (Au-SCR24). The lower detection limit for this analysis was 0.05 g/t and the upper detection limit was 100,000 g/t. For results that contained greater than 100 g/t Au, samples were analyzed by fire assay with a gravimetric finish (Au-GRA22). The lower detection limit for this analysis was 0.05 g/t and the upper detection limit for this analysis was 0.05 g/t and the upper detection limit was 0.05 g/t.

48 element ICP suite analysis (ME-MS61) was also completed on 0.25 g samples with four-acid digestion followed by atomic emission spectrometry (ICP-AES) and plasma mass spectrometry (ICP-MS). Detection limits for the various elements are documented in Table 4. For ICP results that exceeded the upper detection limits for Pb, Zn and Ag, a four-acid over-limit method was performed on a 0.4 g sample (ME-OG62). The detection limits for this analysis package are documented in Table 5.

CODE	AN	ALYTES & RA	NGE	6 (ppm)				
	Ag	0.01-100	Cu	0.2-10,000	Na	0.01%-10%	Sr	0.2-10,000
	Al	0.01%-50%	Fe	0.01%-50%	Nb	0.1-500	Та	0.05-100
	As	0.2-10,000	Ga	0.05-10,000	Ni	0.2-10,000	Те	0.05-500
	Ва	10-10,000	Ge	0.05-500	Ρ	10-10,000	Th	0.01-10,000
ME-MS61	Ве	0.05-1,000	Hf	0.1-500	Pb	0.5-10,000	Ti	0.005%-10%
0.25g	Bi	0.01-10,000	In	0.005-500	Rb	0.1-10,000	ΤI	0.02-10,000
sample	Са	0.01%-50%	К	0.01%-10%	Re	0.002-50	U	0.1-10,000
sample	Cd	0.02-1,000	La	0.5-10,000	S	0.01%-10%	V	1-10,000
	Ce	0.01-500	Li	0.2-10,000	Sb	0.05-10,000	W	0.1-10,000
	Со	0.1-10,000	Mg	0.01%-50%	Sc	0.1-10,000	Υ	0.1-500
	Cr	1-10,000	Mn	5-100,000	Se	1-1,000	Zn	2-10,000
	Cs	0.05-500	Мо	0.05-10,000	Sn	0.2-500	Zr	0.5-500

Table 4. ALS code ME-MS61 elements and detection limits.

Table 5. ALS code ME-OG62 elements and detection limits.

CODE	AN	ALYTES & RAI	NGES	6 (ppm)				
(+)-OG62	Ag	1-1,500ppm	Со	0.0005-30	Mg	0.01-50	Pb	0.001-20
(+)-0002 0.4g	As	0.001-30		0.002-30	Mn	0.01-60	S	0.01-50
-	Bi	0.001-30	Cu	0.001-50	Мо	0.001-10	Zn	0.001-30
sample	Cd	0.001-10	Fe	0.01-100	Ni	0.001-30		

6.4 Data Verification and QAQC

The Snip 2018 drill program utilized a QAQC program of systematic insertion of blanks and certified reference materials (standards) into the sample stream with a frequency of 8%. The blank material used for the Snip program was a marble garden rock obtained from Canadian Tire in Smithers, B.C. Approximately one kg of this material was used for each blank sample. Three blanks were inserted for every 100 samples, typically at the "20", "60" and "00" numbers in the sample tag sequence. Five standards were inserted for every 100 samples, typically at the "10", "30", "50", "70" and "90" numbers in the sample tag sequence. Most standards used in 2018 were certified for Au only; one was certified for both Au and Ag. Standards were obtained from CDN Resource Laboratories in Langley, B.C. In addition to the external control samples submitted by Skeena, the two analytical labs used maintained an internal QAQC program consisting of preparation duplicates, pulp duplicates, standards and blanks that were monitored by a certified assayer.

The results of external control samples were monitored throughout the drill program by a dedicated QAQC geologist. Any issues identified were resolved immediately, samples reanalyzed where necessary and verified prior to any news releases. As part of Skeena's QAQC program, check assays were also analyzed by an external lab – SGS Canada Inc. of Vancouver, B.C. A random number generator was used to select 1% of all samples and then an additional 1.5% of moderate to higher grade samples, for a total of 2.5%.

6.4.1 Blank Analysis

Figure 9 and Figure 10 show the Au and Ag results for the blank material from the December 2018 program. There were no failures in the blank results.

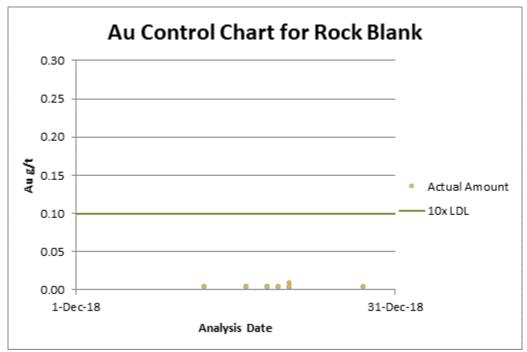


Figure 9. 2018 Snip blank samples; gold control chart.

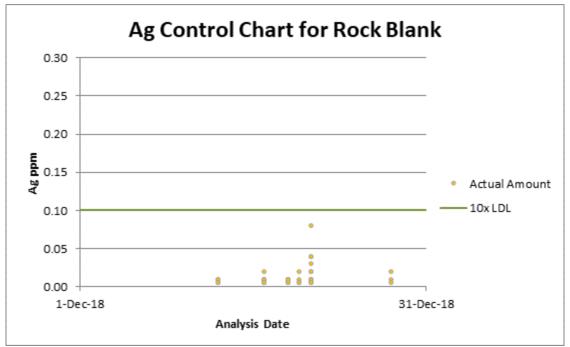


Figure 10. 2018 Snip blank samples; silver control chart.

6.4.2 Certified Reference Materials

A total of six different standards were used for the December 2018 Snip program and are listed in Table 6 and Table 7.

Standard	Element	Total STD	Failures at 3SD (incl. field failures)	Field Failures
GS1P5R	Au	5	1	0
GS1T	Au	17	3	1
GS5T	Au	23	0	0
GS12B	Au	11	0	0
GS16	Au	7	1	0
GS22	Au	15	0	0
		78	5	1

 Table 6. Au Certified Reference Materials, December 2018.

Standard	Element	Total STD	Failures at 3SD (incl. field failures)	Field Failures
GS5T	Ag	23	0	0
		23	0	0

Individual standards were plotted along with their expected values, ± 2 Standard Deviations ("SD") and ± 3 SD. Values outside ± 2 SD were flagged with a warning and values outside ± 3 SD were considered failures. If a failure occurs for an element, additional QAQC data for other certified elements in the standard and from the labs internal QAQC is examined for acceptance. Should

re-analysis be required, the series of five to nine samples above and below the failure are reanalyzed. In December 2018, four standard failures were noted but were not deemed significant enough to warrant re-analysis. Three field failures (sample switches) were also noted and corrected in the database. CRM control charts for each of the standards are shown in Figure 11 through Figure 17.

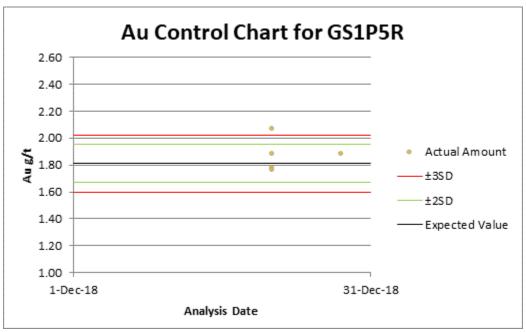


Figure 11. CRM Au control chart for GS1P5R.

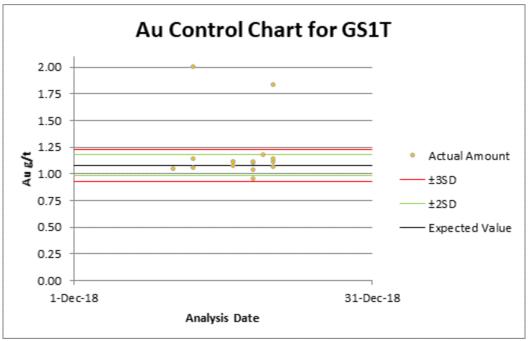
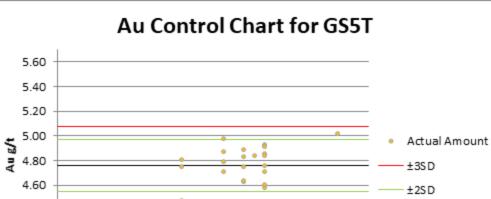



Figure 12. CRM Au control chart for GS1T.

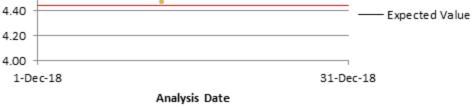


Figure 13. CRM Au control chart for GS5T.

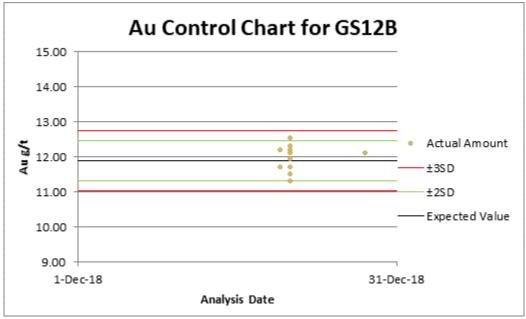


Figure 14. CRM Au control chart for GS12B.

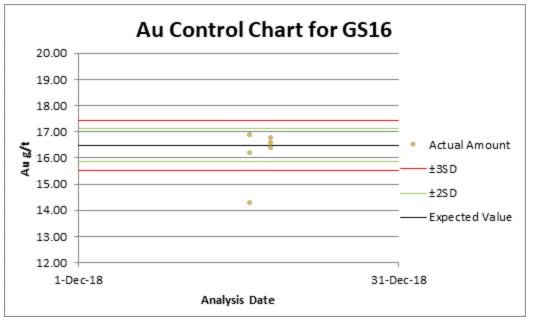


Figure 15. CRM Au control chart for GS16.

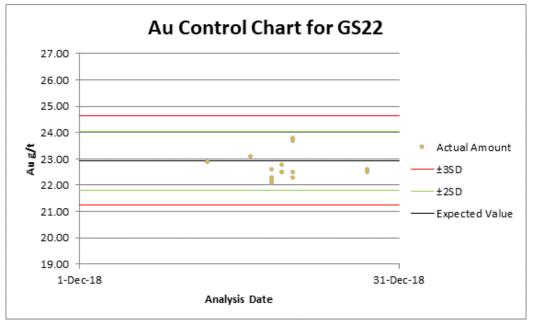


Figure 16. CRM Au control chart for GS22.

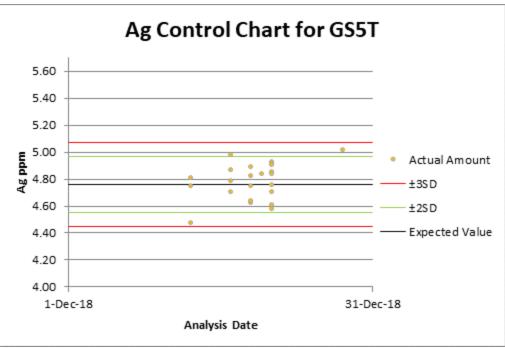


Figure 17. CRM Au control chart for GS5T.

6.4.3 Geotechnical Data

Geotechnical logging included recovery, magnetic susceptibility, rock quality designation (RQD), longest stick and specific gravity measurements.

Specific gravity measurements for the 2018 drill program were completed at the Snip site. Solid pieces of uncut core 10-15 cm in length were selected approximately every 20 m. The hole depth at the centre of the piece was recorded, as well as the length of the piece. The dry core was placed on a scale and the weight was recorded; the core was then suspended in a bucket of water and the weight of the "wet" core was recorded. Figure 10 shows the average SG measurement for each lithology and the number of measurements taken.

December 2018 SG Measurements					
Lithology	Average SG	Count			
Biotite Spotted Unit	2.76	5			
Greywacke	2.77	55			
Greywacke-Siltstone	2.92	8			
Lamprophyre	2.70	1			
Mafic Dyke	2.87	1			
Quartz Monzonite	2.69	1			
Siltstone	2.83	15			

Table 8. Average SG and measurement count by lithology type.

7.0 Interpretation and Conclusions

Drilling failed to intersect any notable mineralization at either of the two tested targets. Although evidence suggested potential to intersect intrusive units with porphyry style mineralization in holes S18-032 and S18-033, only sedimentary units and barren mafic dikes were encountered. A 43 m long interval of increased quartz-carbonate veining unfortunately did not contain any significant mineralization. The gold in soil anomaly tested by S18-034 may be explained by sporadic quartz-chlorite veins containing trace sulphides in the quartz monzonite unit encountered in the first 24.15 m of the hole.

8.0 Recommendations

There has been no geological mapping performed on the property in over 15 years. Exposures are limited to steep slopes on the east side of Monsoon Creek, and further evaluation is best undertaken by drilling. Western areas of the claim block should be reconnaissance mapped in the future.

No additional drill testing is recommended at either of the two targets tested during the 2018 exploration program. Additional gold in soil anomalies exist on the property which should be followed up with a combination of field investigation and diamond drilling.

The Jim Porphyry target area contains several historic drill holes with anomalous gold. Additional investigation of this target area is warranted, following an evaluation of past drill results and more recent surface geochemical sampling.

9.0 References

Alldrick, D.J. (1985). Stratigraphy and Petrology of the Stewart Mining Camp (104B/1). BC Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1984. Paper 1985-1. Pages 316-341.

Alldrick, D.J., et al. (1987). Lead Isotope Data from the Stewart Mining Camp (104B/1), B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1986, Paper 1987-1, pages 93-102.

Alldrick, D.J., Britton, J.M., Maclean, M.E., Hancock, K.D., Fletcher, B.A., And Giebert, S.N. (1990). Geology and Mineral Deposits — Snippaker Area. B.C. Ministry of Energy, Mines and Petroleum Resources Open File Map 1990-16.

Anderson, R.G. (1989). A stratigraphic, plutonic, and structural framework for the Iskut River map area, north-western British Columbia. GSC paper 89-1E p. 147-154.

Anderson, R.G., et al. (1993). A Mesozoic Stratigraphic and Plutonic Framework for North western Stikinia (Iskut River Area), north western British Columbia in Mesozoic Palaeography of the Western United States, edited by G. Dunne and K. MacDougall Society of Economic Palaeontologists and Mineralogists, Vol. II, Pacific Section.

Bagshaw, R. (1968). Geological Report on the Cat Group No. 1 Johnny Mountain, Iskut River Area. ARIS Assessment Report 01657. BC MEM.

Britton, J.M. et al. (1990). Snippaker Map Area. British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1989, Paper 1990-1.

Burgoyne, A.A., Burgert, A., Giroux, G.H. (2010). Technical Report for Skyline Gold Corporation on The Bronson Slope Property, North-western British Columbia dated Jan. 28, 2010.

Giroux, G.H and Gray, J.H. (2010). Preliminary Assessment Update – Bronson Slope Property for the Skyline Gold Corporation. https://secure.kaiserresearch.com/i/jk/tr16/TRSGG20101105.pdf

King, G.R. (1988). Geological and Geochemical Report on the Ian 6 and 8 Claims Iskut River Area, Liard Mining Division, B.C. <u>http://aris.empr.gov.bc.ca/ArisReports/18086.PDF</u>

Kyba, J. (2015). Exploration and mining in the Skeena Region, British Columbia. In: Exploration and Mining in British Columbia, 2014. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Information Circular 2015- 2, pp. 97- 114.

Kyba, J. and Nelson, J.L. (2015). Stratigraphic and tectonic framework of the Khyber-Sericite-Pins mineralized trend, lower Iskut River, northwest British Columbia. In: Geological Fieldwork 2014, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2015-1, pp. 41-58.

Lawrence, J.A.R., and Seen, V. (2009). Technical Report, Preliminary Economic Assessment with Mining Plan and Cost Estimate for Skyline Gold Corp., Vancouver, BC, On The Bronson Slope Property, dated March 6, 2009.

MacDonald, A.J., et al. (1992). Geochronometry of the Iskut River Area – An update. In Geological Fieldwork 1991. BC Ministry of EMPR, Paper 1992-1, pp. 495-501.

MacDonald, A.J., et al. (1996). Metallogeny of an Early to Middle Jurassic Arc, Iskut River Area, Northwestern Columbia. Econ. Geol., Vol. 91, 1996, pp. 1098- 1114.

Mawer, A.B. (1964). Report on Geological Survey of Bron Nos. 1 and 2 Groups. ARIS Assessment Report: 00630. BC MEM.

Nagy, L.J. (1966). 1986 Geochemical Report on the Aurum Group Iskut River Area for IORI Enterprises Inc. ARIS Assessment Report 15336A & B. BC MEM.

Nichols, R. (1986). Assessment Report on the SNIP 1,2,3,4,5 and Jim 1,2, Mineral Claims. ARIS Assessment Report 15621. BC MEM.

Nichols, R. and Giles, G. (2017). 2016 Assessment Report of the Snip Gold Property. ARIS Assessment Report 36883. BC MEM.

Parsons, G. (1965). Geological Report on Bronson Creek No. 1-3 Claim Group. ARIS Assessment Report 00769. BC MEM.

Rhys, D.A. (1993). Geology of the Snip Mine and its Relationship to Magmatic and Deformational History of the Johnny Mountain Area, Northwestern BC. MSc Thesis, UBC, 1993.

Rhys, D.A. (1994.). Geology of the Stonehouse Gold Deposit (Johnny Mountain Mine) and Exploration Implications. Prepared for International Skyline Gold Corporation. (unpub).

Rhys, D.A. (1995). The Red Bluff gold-copper porphyry and associated precious and base metal veins, north-western British Columbia in Porphyry Deposits of the North- western Cordillera of North America, pages 838 — 850, editor T. G. Schroeter, Special volume 46, Canadian Institute of Mining, Metallurgy.

Rhys, D.A. (1997). Internal memo to Homestake Canada Inc.

Sibbick, S.J. & MacGillivray, R. (2006). Snip Mine: Seven years after closure. Report by AMEC Environmental Ltd., and Barrick Gold Inc.

Sillitoe R.H., Thompson, J. (1998). Intrusion Related Vein Gold Deposits, Resource Geology, Vol. 48, No.2, pp. 237-250.

10.0 Statement of Costs

Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Colin Russell/Exploration Manager	Nov. 14-30, 2018	17			
Adrian Newton/Exploration Manage		1	\$750.00		
Raegan Markell/Geologist	Nov. 15-30, 2018	16			
John Tyler/Project Geologist	Nov. 7-16, 2018	10	\$593.75		
John Tyler/Geologist	Nov. 23-30, 2018	8	\$475.00		
Laura MacNeill/Geologist	Nov. 8-21, 2018	14			
Chris Woolverton/Geotechnician	Nov. 12-24, 2018	13			
Dwayne Tashoots/Core Cutter	Nov. 12-29, 2018	18			
Dean Humphrey/Camp Manager	Nov. 7-16, 2018	10	\$577.50		
Glenn Foerester/Camp Manager	Nov. 16-30, 2018	14	\$577.50		
Mike Dupuis/Camp Maintenance	Nov. 27-30, 2018	4	\$577.50		
Sean Rahel/Cook	Nov. 7-21, 2018	15	\$577.50		
Theresa McCook/Cook	Nov. 19-27, 2018	9			
Vicki Abou/Bull Cook	Nov. 7-13 & 19-27, 2018	16	\$450.00		
Brianna Louie/Bull Cook	Nov. 13-20, 2018	8	\$450.00		
Michael Corfe/Pad Builder	Nov. 9-18, 2018	10	\$577.50		
Michael Keating/Pad Builder	Nov. 9-13, 2018	5			
Eli Tennent/Pad Builder	Nov. 9-18, 2018	10	\$577.50		
John Johnson/Pad Builder	Nov. 9-13, 2018	5			
Spencer Ehault/Pad Builder	Nov. 9-13, 2018	5			
Devon Derbyshire/Pad Builder	Nov. 9-13, 2018	5			
Jean-Luc Romieu/Pad Builder	Nov. 14-18, 2018	5	\$577.50		
Ken Murray/Tree Faller	Nov. 8-14, 2018	7	\$787.50		
Robin Millis/Mechanic	Nov. 22-28, 2018		\$1,035.30		
Robin Minis/Mechanic	100. 22 20, 2010		\$1,035.50	\$128,092.10	\$128,092.10
Office Studies	List Personnel (note - Office on	v do no	t include f		\$120,092.10
Report preparation	Adrian Newton - 3 days	3.0			
	Auton Studys	5.0	\$750.00	\$2,250.00	\$2,250.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	\$2,250.00
Drill (cuttings, core, etc.)	520 samples	520.0			
Drin (cuttings, core, etc.)	520 samples	520.0	<i>ачэ.19</i>	\$22,768.56	\$22,768.56
Drilling	No. of Holes, Size of Core and Metres	No	Rate	Subtotal	<i>\$22,100.30</i>
Diamond	3 holes / NQ2 / 649.00 m	649.0			
Diamona	5 Holes / NQ2 / 049.00 Hi	045.0	\$105.55	\$123,006.86	\$123,006.86
Transportation		No.	Rate	Subtotal	\$125,000.00
-					
Airfare				\$9,460.26	
Airfare Crew Transport Shuttle				\$9,460.26 \$7,006.75	
Airfare Crew Transport Shuttle Truck Rental				\$9,460.26 \$7,006.75 \$2,717.74	
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel	* Datails for sharage outlined helpow	100	¢1.400.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73	
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours)	* Details for charges outlined below	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00	
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel	* Details for charges outlined below	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09	£225 166 57
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel		109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00	\$225,166.57
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food	* Details for charges outlined below Rates per day	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57	\$225,166.57
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel	Rates per day	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96	\$225,166.57
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental	Rates per day Tents, heater stoves, generator	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50	\$225,166.57
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel	Rates per day	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01	
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food	Rates per day Tents, heater stoves, generator	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50	\$225,166.57 \$31,255.47
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous	Rates per day Tents, heater stoves, generator	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47	
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor	Rates per day Tents, heater stoves, generator	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81	
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous	Rates per day Tents, heater stoves, generator	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84	\$31,255.47
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies	Rates per day Tents, heater stoves, generator	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81	
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies	Rates per day Tents, heater stoves, generator Direct food cost	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84	\$31,255.47
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies	Rates per day Tents, heater stoves, generator Direct food cost Fuel tanks, fuel bladders,	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84	\$31,255.47
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies Equipment Rentals	Rates per day Tents, heater stoves, generator Direct food cost Fuel tanks, fuel bladders, generators, radio & satellite	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84 \$36,028.65	\$31,255.47
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor	Rates per day Tents, heater stoves, generator Direct food cost Fuel tanks, fuel bladders, generators, radio & satellite equipment, pad building tools, first	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84	\$31,255.47
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies Equipment Rentals	Rates per day Tents, heater stoves, generator Direct food cost Fuel tanks, fuel bladders, generators, radio & satellite	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84 \$36,028.65 \$22,780.99	\$31,255.47 \$36,028.65
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies Equipment Rentals Field Gear (Specify)	Rates per day Tents, heater stoves, generator Direct food cost Fuel tanks, fuel bladders, generators, radio & satellite equipment, pad building tools, first	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84 \$36,028.65	\$31,255.47 \$36,028.65
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies Equipment Rentals Field Gear (Specify)	Rates per day Tents, heater stoves, generator Direct food cost Fuel tanks, fuel bladders, generators, radio & satellite equipment, pad building tools, first	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84 \$36,028.65 \$22,780.99	\$31,255.47 \$36,028.65
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies Equipment Rentals	Rates per day Tents, heater stoves, generator Direct food cost Fuel tanks, fuel bladders, generators, radio & satellite equipment, pad building tools, first	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84 \$36,028.65 \$22,780.99 \$22,780.99 \$6,832.06	\$31,255.47
Airfare Crew Transport Shuttle Truck Rental Diesel Fuel Helicopter (hours) Jet Fuel Accommodation & Food Hotel Camp Rental Food Miscellaneous Expeditor Camp Supplies Equipment Rentals Field Gear (Specify) Freight, rock samples	Rates per day Tents, heater stoves, generator Direct food cost Fuel tanks, fuel bladders, generators, radio & satellite equipment, pad building tools, first	109	\$1,499.00	\$9,460.26 \$7,006.75 \$2,717.74 \$23,109.73 \$163,391.00 \$19,481.09 \$225,166.57 \$8,728.96 \$11,028.50 \$11,498.01 \$31,255.47 \$30,235.81 \$5,792.84 \$36,028.65 \$22,780.99 \$22,780.99	\$31,255.47 \$36,028.65

* Details of Daily Helicopter Use

Date	Activity	Hours							
7-Nov-19	Drop off and pick up geo's to sight drill pad S18-032; sling lumber from McLymont staging to Snip for pad builders; fly pad builders from McLymont staging to Snip camp;	7.1							
8-Nov-19	sling drill parts from McLymont staging to Snip camp Sling drill parts from McLymont staging to Snip camp; transport staff from McLymont staging to Snip camp	5.8							
9-Nov-19	Drop off and pick up geo's to sight drill pad S18-034; sling lumber from McLymont staging to Snip for pad builders; sling camp supplies from McLymont staging to Snip camp; transport tree faller to and from site S18-032	4.7							
10-Nov-19	Transport lumber and fuel from McLymont staging to Snip camp; sling lumber to drill site S18-032; Drop off and pick up tree faller and pad builders to site S18-032	6.3							
11-Nov-19	9 Sling lumber from Snip camp to site S18-032; drop off and pick up tree faller and pad builders (sites S18-032 and S18-034)								
12-Nov-19	Sling drill from Spin camp to pad S18-032: Drop off and pick up tree faller and pad								
13-Nov-19	Drill crew change; drop off and pick up tree faller and pad builders to pad S18-034 and pad 3; sling lumber from Snip camp to pad S18-034; sling camp supplies from McLymont staging to Snip camp; drill support	3.4							
14-Nov-19	Drill crew change; service drill; sling fuel from McLymont staging to Snip camp; sling lumber from Snip camp to pad S18-034; drill support; sling core samples from Snip camp to McLymont staging	5.9							
15-Nov-19	Drill crew change: drill support: sling camp supplies from Mclymont staging to Spin								
16-Nov-19	Drill crew change; drill support; sling fuel from McLymont staging to Snip camp; sling core samples from Snip camp to McLymont staging	6.2							
17-Nov-19	Drill crew change; drill support; crew change to McLymont staging	2.9							
18-Nov-19	Drill crew change; drill support; sling fuel and supplies from McLymont staging to Snip camp	5.6							
19-Nov-19	Drill crew change; drill support	3.1							
20-Nov-19	Drill crew change; move drill from pad S18-032 to pad S18-034; drill support; sling core samples from Snip camp to McLymont staging; crew change to McLymont staging	7.2							
21-Nov-19	Drill crew change; drill support	3.1							
22-Nov-19	Drill crew change; drill support	3.1							
23-Nov-19	Drill crew change; drill support	3.1							
24-Nov-19	Drill crew change; drill support; sling supplies from McLymont staging to Snip camp; sling core samples from Snip camp to McLymont staging	4.7							
25-Nov-19	Drill crew change; crew change to McLymont staging; sling drill from pad S18-034 to Snip camp; sling fuel from McLymont staging to Snip camp	7.0							
26-Nov-19	Transport crew from Snip to McLymont staging to receive drill parts; sling drill parts from Snip camp to McLymont staging; drop off and pick up geo's from three pad sites; sling core samples from Snip camp to McLymont staging	8.0							
27-Nov-19	Transport crew from Snip to McLymont staging to receive drill parts; sling drill from Snip camp to McLymont staging; sling fuel from McLymont staging to Snip camp	3.9							
28-Nov-19	Transport drill crew out from Snip camp to McLymont staging; sling camp supplies and equipment from Snip camp to McLymont staging; transport all staff from Snip to McLymont for camp shut down	4.5							
29-Nov-19	Transport crews from McLymont staging to Snip camp to continue tear down of camp; sling tents and equipment from Snip camp to McLymont staging; transport crews from Snip camp to McLymont staging	4.7							
	TOTAL	109.0							

Snip Assessment Report

11.0 Statement of Qualifications

- I, Adrian Newton, P.Geo., do hereby certify that:
 - 1) I am currently employed as an Exploration Manager by:

Skeena Resources Ltd. 650 – 1021 West Hastings Street Vancouver, British Columbia V6E 0C3

- 2) I graduated with a degree of Bachelor of Science with specialization in Earth Sciences from Simon Fraser University in 2004.
- 3) I am a member of the Association of Professional Engineers and Geoscientists of British Columbia, licence # 39299.
- 4) I have worked continuously as a geologist for 15 years since my graduation from university.
- 5) I am responsible for the preparation of this assessment report.

Dated this 28th day of October, 2019.

SIC OF **B. NEWTON** # 39293 BRIMSH Signature CIEN

APPENDIX I:

Mineral Titles Online – Event 5740926

Print and Close

Cancel

Mineral Titles Online

BRITISH

OLUMBIA

Mineral Claim Exploration and Development Work/Expiry Date Change

Confirmation

Recorder:DEVEAU, STUART
WILLIAM (282199)Recorded:2019/MAY/09D/E Date:2019/MAY/09

Submitter:DEVEAU, STUART
WILLIAM (282199)Effective:2019/MAY/09

Confirmation

If you have not yet submitted your report for this work program, your technical work report is due in 90 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission. **Please attach a copy of this confirmation page to your report.** Contact Mineral Titles Branch for more information.

Event Number: 5740926

cal Work
J

Work Start Date:	2018/NOV/07
Work Stop Date:	2018/NOV/29
Total Value of Work:	\$ 667168.06
Mine Permit No:	

Summary of the work value:

Title Number	Claim Name/Property	Issue Date	Good To Date	New Good To Date	# of Days For- ward	in Ha	Applied Work Value	Sub- mission Fee
1056547	WESTSIDE	2017/NOV/21	2019/MAY/22	2029/MAY/22	3653	925.13	\$ 136437.90	\$ 0.00
1056548	CLEA	2017/NOV/21	2019/MAY/22	2029/MAY/22	3653	1617.85	\$ 238600.04	\$ 0.00
1056595	PHIZGAP	2017/NOV/22	2019/MAY/22	2029/MAY/22	3653	53.33	\$ 7862.75	\$ 0.00
222219	SKY 3	1982/SEP/13	2027/JUL/15	2029/JUL/15	731	500.00	\$ 20000.00	\$ 0.00
222347	SNIP 3	1983/OCT/20	2027/JUL/15	2029/JUL/15	731	75.00	\$ 3000.00	\$ 0.00
300552	JIM 1	1986/JUL/22	2027/JUL/15	2029/JUL/15	731	500.00	\$ 20000.00	\$ 0.00
300553	JIM 2	1986/JUL/22	2027/JUL/15	2029/JUL/15	731	375.00	\$ 15000.00	\$ 0.00

Financial Summary:

Total applied work value:\$ 440900.69

PAC name:	Skeena Resources Ltd.
Debited PAC amount:	\$ 0.0
Credited PAC amount:	\$ 226,267.37

Total Submission Fees:	\$ 0.0
Total Paid:	\$ 0.0

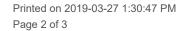
Please print this page for your records.

The event was successfully saved.

Click here to return to the Main Menu.

APPENDIX II:

Drill Logs



Proje	ct: S	Snip											
Hole:	S	518-032)										
Pros	pect:		Jim Claim	Survey 1	Гуре:		DGPS	Logged	By:		L. MacNe	eill Core Size:	NQ2
UTM	1 Grid:	I	NAD83_Z9	Survey l	Ву:		J. Tyler	Drill Co	mpany:		DM	AC Reduced?:	
UTM	1 East:	:	368332.84	Geo Azi	muth:		67.6	Drill Ri	g:		Ri	^{g1} Reduced Depth(m):	
UTM	1 North:	6	281689.68	Local Az	imuth:		39.4	Drill St	arted:		2018-11-		
UTM	1 Elevation (m	n):	211.59	Dip:			-46	Drill Co	mpleted:		2018-11-		\checkmark
Loca	l Grid:		MINE	Length (m):		29	Hole Ty	/pe:		E	DD Casing Depth (m):	6
	l East:		2648	Hole Sta	itus:	Co	ompleted	Hole D	iameter:		7.	⁵⁷ Year:	2018
Loca	l North:		483									Company:	Skeena
Mini	ing Division:		Liard	Comme									
				Hole aba	andonded, c	asing atter	mpted to b	e extended a	and it inter	sected and	d cut off r	ods.	
Depth (m)	Survey Method	Survey By	Date Surveyed	Dip	Measured Geo Azimuth	Correction Factor	Corrected Geo Azimutł	Local Azimuth	Mag. Field	Temp (C)	Accept Values?	Comments	
0	EZShot	DMAC	2018-11-12	-46	48.8	18.8	67.6	39.4	55405		\checkmark	First downhole survey used as collar survey	
29	EZShot	DMAC	2018-11-12	-46	48.8	18.8	67.6	39.4	55405		\checkmark		

Hole:	:	S18-0)32												
From (m)	To (m)		Rock Type & Descript	ion			From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
0.00	5.00	CAS	Casing												
Casing to 6	m, Rubbley ı	ounded over	ourden Silicified Greywacke 4.75	-5m.											
5.00	29.00	GRWK	Greywacke	g	rey brown	FG	5.00	8.00	3.00	X507801	0.05	386	2.16	22.3	12.1
alteration ov veinlets. Pe	verprinted by rvasive Fe-c	strong proto	ering), Strongly QSP altered, fine ith obscuring QSP. Multiple gene nese oxides and goethite alteration noughout.	erations of sulphide	mineralized cross of	utting									
Hole Aband	londed, casir	ng attempted	to be extended and it intersected	and cut off rods.											
Coreloss ~5	50%.														
Intersitital f Py 3-5% th	finely banded proughout; In	d Galena 0.1-	ena / 0.02% chalcopyrite / 10% m 0.5%, Blebby and disseminated and PyBt stringers throughout. but.			s with	8.00	9.50	1.50	X507802	0.03	452	4.82	43.5	11.9
moderate I partially ob	Biotite>> Socured. Exte	trong pervasi ensive Fe-Oxi	eak-moderate Pyrite / moderate ve (weakly patchy Intense), QSF de, manganese and goethite alte res and of rubble zones.	overprinting of FG	mod BT altered GR	WK. Protolith	9.50	11.00	1.50	X507803	0.04	466	4.29	25.4	23.1
< <vein: -="" 5="" td="" throughout<=""><td></td><td>artz-Calcite /</td><td>2% Biotite-Pyrite / 0.1% Quartz-</td><td>Calcite>> 3 Gene</td><td>rations of cross cutt</td><td>ing veinlets</td><td>11.00</td><td>14.00</td><td>3.00</td><td>X507804</td><td>0.06</td><td>604</td><td>3.98</td><td>53.3</td><td>16.5</td></vein:>		artz-Calcite /	2% Biotite-Pyrite / 0.1% Quartz-	Calcite>> 3 Gene	rations of cross cutt	ing veinlets	11.00	14.00	3.00	X507804	0.06	604	3.98	53.3	16.5
0	QzCc planar appearance	stringers 65d	leg tca, cross cutting all vein gen	s-non mineralized,	weakly tenstional in	filing									
PyBT Strin	igers cross c	utting minera	lized QzCc Planar 30deg tca vnl	S.											
QzCc plan	ar vnlts (olde	est) 30deg tca	a (trace up to 60deg), w/ PyGalC	y mineralization 0	5-1.5cm width.										
< <struc: 5<="" td=""><td>.4 - 5.4001:</td><td>fracture>></td><td>Iron stained frac</td><td></td><td></td><td></td><td>14.00</td><td>15.50</td><td>1.50</td><td>X507805</td><td>0.06</td><td>851</td><td>4.14</td><td>106</td><td>19.9</td></struc:>	.4 - 5.4001:	fracture>>	Iron stained frac				14.00	15.50	1.50	X507805	0.06	851	4.14	106	19.9
< <struc: 8<="" td=""><td>.85 - 8.8501:</td><td>vein - quart</td><td>z-carbonate>> QzCc Py min v</td><td>nlt</td><td></td><td></td><td>15.50</td><td>17.00</td><td>1.50</td><td>X507806</td><td>0.03</td><td>398</td><td>2.43</td><td>63.8</td><td>30.1</td></struc:>	.85 - 8.8501:	vein - quart	z-carbonate>> QzCc Py min v	nlt			15.50	17.00	1.50	X507806	0.03	398	2.43	63.8	30.1
< <struc: 1<="" td=""><td>1 - 11.001:</td><td>vein - biotite-</td><td>pyrite>> Py vnlt with Bt env.</td><td></td><td></td><td></td><td>17.00</td><td>20.00</td><td>3.00</td><td>X507807</td><td>0.06</td><td>503</td><td>4.89</td><td>119</td><td>86.7</td></struc:>	1 - 11.001:	vein - biotite-	pyrite>> Py vnlt with Bt env.				17.00	20.00	3.00	X507807	0.06	503	4.89	119	86.7
< <struc: 1<="" td=""><td>5.95 - 15.95</td><td>01: vein - qu</td><td>artz-carbonate>> QzCc Sulph</td><td>min vnlt (oldest) cr</td><td>oss cut by BtPy and</td><td>QzCc</td><td>20.00</td><td>23.00</td><td>3.00</td><td>X507808</td><td>0.07</td><td>522</td><td>9.37</td><td>66.5</td><td>24.7</td></struc:>	5.95 - 15.95	01: vein - qu	artz-carbonate>> QzCc Sulph	min vnlt (oldest) cr	oss cut by BtPy and	QzCc	20.00	23.00	3.00	X507808	0.07	522	9.37	66.5	24.7
< <struc: 1<="" td=""><td>5.96 - 15.96</td><td>01: vein - bio</td><td>otite-pyrite>> PyBt xcutting Qz0</td><td>Cc</td><td></td><td></td><td>23.00</td><td>26.00</td><td>3.00</td><td>X507809</td><td>0.17</td><td>259</td><td>5.63</td><td>49</td><td>219</td></struc:>	5.96 - 15.96	01: vein - bio	otite-pyrite>> PyBt xcutting Qz0	Cc			23.00	26.00	3.00	X507809	0.17	259	5.63	49	219
< <struc: 1<="" td=""><td>7.5 - 17.500</td><td>1: vein - qua</td><td>artz-carbonate>> QzCc late vr rtz-carbonate>> Non min</td><td>It cross cutting all g</td><td>gen</td><td></td><td>26.00</td><td>29.00</td><td>3.00</td><td>X507811</td><td>0.13</td><td>605</td><td>7.98</td><td>46.5</td><td>157</td></struc:>	7.5 - 17.500	1: vein - qua	artz-carbonate>> QzCc late vr rtz-carbonate>> Non min	It cross cutting all g	gen		26.00	29.00	3.00	X507811	0.13	605	7.98	46.5	157
< <struc: 2<="" td=""><td>0.2 - 20.200</td><td>1: fracture>></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	0.2 - 20.200	1: fracture>>	•												

Hole:	S18-032								
From (m) To (m)	Rock Type & Description	From (m)	To (m) Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
	: vein - biotite-pyrite>> 001: vein - quartz-carbonate>> QzCc Sulphide mineralized vnlt								

End of Hole @ 29

Project: Sn	ip									
Hole: S1	8-033									
Prospect:	Jim Claim	Survey Type:	DGPS	Logged By:	L. MacNeill	Core Size:	NQ2			
UTM Grid:	NAD83_Z9	Survey By:	J. Tyler	Drill Company:	DMAC	Reduced?:				
UTM East:	368332.98	Geo Azimuth:	72	Drill Rig:	Rig2	Reduced Depth(m):				
UTM North:	6281689.29	Local Azimuth:	43.8	Drill Started:	2018-11-13	Reduced Size:				
UTM Elevation (m):	210.58	Dip:	-51.1	Drill Completed:	2018-11-19	Casing Pulled?:				
Local Grid:	MINE	Length (m):	415	Hole Type:	DD	Casing Depth (m):	8			
Local East:	2648	Hole Status:	Completed	Hole Diameter:	7.57	Year:	2018			
Local North:	483					Company:	Skeena			
Mining Division:	Liard		Comments: Logged by L. MacNeill to 324m, then logged by R. Markel to EOH.							

Depth (m	Survey Method	Survey By	Date Surveyed	Dip	Measured Geo Azimuth		Corrected Geo Azimuth	Local Azimuth	Mag. Field	Temp (C)	Accept Values?	Comments
() EZShot	DMAC	2018-11-13	-51.1	53.3	18.7	72	43.8	56625		\checkmark	First downhole survey used as collar survey
25	EZShot	DMAC	2018-11-13	-51.1	53.3	18.7	72	43.8	55726		\checkmark	
55	EZShot	DMAC	2018-11-19	-51.6	54	18.7	72.7	44.5	55437		\checkmark	
85	EZShot	DMAC	2018-11-19	-51.6	56.9	18.7	75.6	47.4	55430		\checkmark	
115	EZShot	DMAC	2018-11-19	-53	60.2	18.7	78.9	50.7	55433		\checkmark	
145	EZShot	DMAC	2018-11-19	-53.7	62.7	18.7	81.4	53.2	55449		\checkmark	
175	EZShot	DMAC	2018-11-19	-54.6	65.7	18.7	84.4	56.2	55476		\checkmark	
205	EZShot	DMAC	2018-11-19	-55	68.4	18.7	87.1	58.9	55469		\checkmark	
235	EZShot	DMAC	2018-11-19	-55.4	70.1	18.7	88.8	60.6	55505		\checkmark	
265	EZShot	DMAC	2018-11-19	-55.2	70.6	18.7	89.3	61.1	55522		\checkmark	
295	EZShot	DMAC	2018-11-19	-55.4	71.6	18.7	90.3	62.1	55518		\checkmark	

Depth (m)	Survey Method	Survey By	Date Surveyed	Dip	Measured Geo Azimuth		Corrected Geo Azimuth	Local Azimuth	Mag. Field	Temp (C)	Accept Values?	Comments
325	EZShot	DMAC	2018-11-19	-55.6	72.7	18.7	91.4	63.2	55516		\checkmark	
355	EZShot	DMAC	2018-11-19	-55.7	73.4	18.7	92.1	63.9	55512		\checkmark	
385	EZShot	DMAC	2018-11-19	-55.9	74.1	18.7	92.8	64.6	55532		\checkmark	
415	EZShot	DMAC	2018-11-19	-56.1	77	18.7	95.7	67.5	55526		\checkmark	

Hole: \$18-033								
From (m) To (m) Rock Type & Description	From (m)	To (m) Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
0.00 8.00 CAS Casing casing to 8m.								
8.00 111.25 GRWK Greywacke Greywacke and Greywacke with extensive fracturing (surficial weathering) to 30.2m (coreloss ~30%). Moderate pervasive biotite alteration of wacke overprinted by strong patchy protolith obscuring QSP throughout. Multiple generations of sulphide mineralized cross cutting veinlets throughout. CcQz sheeted to tensional veinlets 78.8-240m.	8.00	10.00 2.00	X507812	0.06	904	6.08	131	14.2
Pervasive Fe-oxide, manganese oxides and goethite alteration along fracture surfaces to 30.2m. Angular zones of rubble, 0.1-5cm in size with sandy apperance to 30.2m.								
Minor <5% Siltstone. Well defined bedding 40-50deg tca to ~165m. Massive weakly bedded to 120m.								
"Streaky", sheared veins 5-30cm in size, with PySphCpyGal mineralization 78.8-120m.								
Multiple small 5 cm gougey faults @50deg tca throughout. < <min: -="" 0.01%="" 0.1%="" 2%="" 30.2:="" 8="" chalcopyrite="" galena="" pyrite="">> Pyrite in QzCc and BtPy vnlts throughout, 2-3%.</min:>	10.00	11.50 1.50	X507813	0.05	432	3.27	21.3	11.2
Banded interisital galena in QzCc veinlets with Py and trace Cpy.								
< <min: -="" 0.01%="" 1%="" 30.2="" 46.65:="" 5%="" chalcopyrite="" galena="" pyrite="">> Py Disseminated and blebby throughout greywacke (primary), localized in beds. As well as in QzCc and PyBt vnlts and blebby surrounding vnlts locally up to 10%. 5-6% throughout.</min:>	11.50	13.00 1.50	X507814	0.04	557	3.63	14.6	10.7
QzCc vnlts with intersital and blebby PyGalCpy locally up to 3%, Gal weakly remobilized in PyBt vnlts banded along vnlt margins.								
< <min: -="" 0.01%="" 0.25%="" 3%="" 46.65="" 65:="" chalcopyrite="" galena="" pyrite="">> Disseminated Primary Pyrite in beds of Grwk, (possibly alt);</min:>	13.00	16.00 3.00	X507815	0.06	451	3.61	81.5	28.2
Veinlets and stringers of PyBt and PyCc throughout, locally up to 5%Py.								
QzCc veinlets and remobilised finely banded Gal along margins of PyBt vnlts 0.1-0.25%								
Minor Cpy with blebby/Diss Py in gmass and in vnlts.								
< <min: -="" 0.1%="" 0.5%="" 5%="" 65="" 73.5:="" chalcopyrite="" galena="" pyrite="">> CcSulphide veinlets throughout with Primarily disseminated and blebby Py within 5-7%, Remobilized banded galena along veinlet margins 0.5-1% and VF banded throughout associated with Py stringers. Trace to 0.25% Cpy engulphed in Py in veinlets. Blebby Gal-Py-Cpy localized around veinlets up to 1%.</min:>	16.00	17.50 1.50	X507816	0.03	378	1.98	14.85	10.8
< <min: -="" 0.01%="" 3%="" 73.5="" 78.8:="" galena="" pyrite="">> Disseminated and blebby Py as well as minor stringers of PyCc, 2-3% throughout. Cubic to blebby appearance throughout wacke groundmass (primary). Minor trace Very fine galena haloing blebby Py in gmass (late recrystalization?).</min:>	17.50	19.00 1.50	X507817	0.04	270	2.18	41.5	43.9

		510-055									
From (m)	To (m)	Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
		% pyrite / 0.1% galena / 3% sphalerite / 0.01% chalcopyrite>> 3-5% Disseminated, blebby and Cc proughout; some dissemianted possible patchy alteration Py. Blebs associated with Py vnlts.	19.00	20.50	1.50	X507818	0.07	460	2.98	83.5	17.8
Sheared Cpy	CcChIBt Sul	phide veins have locally semimassive sulphides, Py 20-25%, Sph 3-10%, 0.5-1% Gal 0.1%, 0.01%									
		3% pyrite / 0.1% galena / 0.1% sphalerite>> Fine disseminated Py in stringers throughout as well or Sph banded along vnlt margins.	20.50	22.00	1.50	X507819	0.03	312	2.25	44.8	56.2
Remobiliz	zed Gal in Co	cQz veinlets.									
moderate partially c	Biotite>>	g silicification / weak-moderate Pyrite / moderate sericitic / moderate-strong Iron oxide / weak- Strong pervasive (weakly patchy Intense), QSP overprinting of FG mod BT altered GRWK. Protolith tensive Fe-Oxide, manganese and goethite alteration strongly along fracture surfaces and gradient protocol fractures and of rubble zones.	22.00	25.00	3.00	X507821	0.12	581	8.94	211	193
		noderate Biotite / weak sericitic>> Moderate pervasive biotite alteration of wacke. Small patchy ring selective beds of GRWK. Py vein haloing with strong Bt envelope and weak ser bleaching	25.00	29.50	4.50	X507822	0.06	849	2.92	66	18.8
bleaching	of biotite all	trong sericitic / weak-moderate Pyrite / moderate silicification / trace Biotite>> Strong sericite sered grwk. Py replacement of lithic clasts throughout, as well as disseminated throughout. gly haloing Hydrothermal QzCc mineralized veinlets throughout unit. Weak Bt envelope of Py vnlts.	29.50	30.20	0.70	X507823	0.04	518	1.83	127	20.7
	.7 - 43.65: w of beds of g	veak-moderate Biotite / weak sericitic>> Moderately pervasively bt altered wacke. Selective Ser	30.20	31.50	1.30	X507824	0.07	601	2.36	119	14.4
overprinti	ng of bt alter	moderate-strong sericitic / strong silicification / moderate Pyrite / weak Biotite>> Strong QSP ed grwk. Py disseminated appearnce-replacement of lithic clasts throughout. QSP ass. w/ Incr alized veining throughout area. Bleaching throughout.	31.50	33.00	1.50	X507825	0.08	767	3.6	118	8.7
of wacke.	Locally mod	moderate Biotite / weak-moderate sericitic / trace silicification>> Moderate pervasive Bt alteratino I-strong envelope to Py vnlts.Selective Ser bleaching of beds of grwk and haloing late stringers. Si s throughout	33.00	34.50	1.50	X507826	0.08	873	2.45	23.7	5.4
bleaching Patchy st	of Moderate rong silica a	trong sericitic / weak silicification / weak-moderate Pyrite / weak Biotite>> Intense sericite by biotite altered (original) greywacke. Sericite locally intense obscuring all textures of bedding, ssociated with and haloing Qz veins. Pyrite replacement of grains with disseminated appearance buge in small shears	34.50	36.00	1.50	X507827	0.07	498	1.55	239	5.5
bleaching	g overprinted	trong silicification / trace Iron oxide / trace sericitic>> Strong Silica replacement, Weak sericite by silica; Sericite weakly pseudobx appearance, replacement of anastomosing stringers ng along fracture surfaces	36.00	37.50	1.50	X507828	0.12	529	1.86	303	12
Calcite>>	Chlorite-S	weak-moderate Chlorite / weak-moderate sericitic / trace Pyrite / trace silicification / trace Sericite replacmeent of greywacke, Light green-grey appearaance. Localized silica haloing around rs throughout. Disseminated py replacment of wacke clasts throughout (possible min not alt); weak	37.50	39.00	1.50	X507829	0.09	621	2.18	284	10.4

patchy calcite weakly pseudobx appearance.

		518-855									
From (m)	To (m)	Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
Moderate	e pervasive	veak-moderate Biotite / trace Chlorite / moderate sericitic / trace silicification / weak Pyrite>> biotite alteration, Sericite alteration overprinting and bleaching. Weak chl haloing veinlets and loing Qz vning.Bt haloing Py vnlts; Blebby and disseminated Py replacement throughout.	39.00	39.55	0.55	X507831	0.05	720	1.9	304	7.7
alteration chlorite ha	of wacke a aloing QzC	moderate Biotite / weak sericitic / weak Chlorite / trace Pyrite>> Moderate pervasive biotite ad as a vein envelope to Py stringers throughout as well as late banded in sheared vning. Weak planar sheeted veinlets throughout, as well as banded in sheared vning. Sericite bleaching haloiing d sheared veins up to 0.5m halo. Blebby to disseminated Py possible Py replacement of Cc in grwk	39.55	40.50	0.95	X507832	0.05	624	1.78	34	4.5
tca, 0.5-1	cm width, w	% Quartz-Calcite / 2% Biotite-Pyrite / 3% Quartz-Calcite>> Mineralized QzCc Veinlets 60-70deg th PyGal Tr Cpy min. Weakly irregular appearance. Cross cut by BtPy vnlts and Planar QzCc al appearance.	40.50	41.50	1.00	X507833	0.07	958	2.65	54.7	9.4
BtPy vein	elets and s	ingers Irregular to planar with 0.1-0.3cm width, Bt envelope.									
Incr Dens		5% Quartz-Calcite / 3% Calcite Sulfide vein / 3% Biotite-Pyrite / 3% Quartz-Calcite>> Zone of Iphide PyGalCpy vnlts, weakly irregular appearance. 0.5-5cm width, 30-60deg tca. (latest gen). allel.	41.50	42.70	1.20	X507834	0.06	1035	2.49	1010	6
PyCc veir	nlets 0.5-3c	n width, 40-60deg tca. Weakly banded streaky appearance. Planar margins.									
		inlets, irregular 0.1-0.5cm width ers cross cutting; late.									
		% Calcite Sulfide vein / 2% Biotite-Pyrite / 0.25% Quartz-Calcite / 1% Quartz-Calcite>> CcPy and and discordant to bedding, 0.1-0.5cm width, 5-10/m appear to be same generation. Weak Bt	42.70	43.65	0.95	X507835	0.06	811	2.43	88.7	5.7
QzCc Sul	lphide GalP	Cpy mineralized veinlets decreased intensity, ~1/m, 1-10cm width.									
Late CcQ	zFecarb pla	nar hairline veinlets and stringers cross cutting all bedding and vein types									
2cm width		% Calcite Sulfide vein / 0.5% Quartz-Calcite / Calcite>> PyCc irregular veinlets and stringers 0.1- inar, with weak to no Bt Envelope. Sericite alteration of Cc giving dark grey texture, Remobilized rgins.	43.65	44.65	1.00	X507836	0.06	837	2.49	72.5	5.6
QzCc veir	nlets weakl	planar, primarily Infilling irregular appearance. With GalPyCpy mineralization.									
Cc anasto	omising stri	gers replaced with sericite giving crackle brecciated apperance.									
< <vein: 7<="" td=""><td>73.5 - 78.8:</td><td>Quartz-Calcite / Calcite Sulfide vein>> CcQzFecarb Irregular weakly tensional, fractured stringers tca. Giving crackle brecciated appearance. Weakly sigmoidal sheared appearance at 77.7m.</td><td>44.65</td><td>45.65</td><td>1.00</td><td>X507837</td><td>0.06</td><td>778</td><td>2.78</td><td>183.5</td><td>8.5</td></vein:>	73.5 - 78.8 :	Quartz-Calcite / Calcite Sulfide vein>> CcQzFecarb Irregular weakly tensional, fractured stringers tca. Giving crackle brecciated appearance. Weakly sigmoidal sheared appearance at 77.7m.	44.65	45.65	1.00	X507837	0.06	778	2.78	183.5	8.5

PyCc Stringers throughout, 0.1-0.3cm width.

Hole: \$18-033								
From (m) To (m) Rock Type & Description	From (m)	To (m) Le	ength Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <vein: -="" 1%="" 10%="" 109:="" 3%="" 5%="" 78.8="" biotite-pyrite="" calcite="" calcite-quartz-chlorite="" quartz-calcite="" sulfide="" vein="">> QzCc Planar sheeted, stringers and veinlets with tensional appearance 70deg tca.</vein:>	45.65	46.65	1.00 X507838	0.05	432	1.25	226	5.8
Streaky CcChlBtSulphide mineralized sheared veins, 5cm, 15cm and 34cm width, 50deg tca. PySphGal mineralization. Minor subrounde BX Qz vein clasts within "weakly crackley"								
BtPyCc veinlets and stringers 0.3-1cm width, 50-70deg tca with Bt envelope; 3-5/m								
< <vein: -="" 10%="" 109="" 119.3:="" 5%="" calcite="" calcite-quartz="" quartz-calcite="" sulfide="" vein="">> QzCc-CcQz, Irregular Sulphide mineralized veinlets and veins, 0.5-15cm width, Banded fine intersitial Gal and disseminated Py within, Late Sph along margins. 40-80deg tca. Vuggy pitted erosion of Cc throughout</vein:>	46.65	48.00	1.35 X507839	0.03	630	1.69	66.7	5.1
CcSulph planar to irregular Py mineralized veinelts with remobilized Gal along margins and Sph late banded haloing. 70- 80deg tca, 0.25-3cm width. Mod Bt-Chl haloing Ubiquitous tensional planar sheeted veinlets, QzCc throughout giving stripey appearance. Minor remobilized galCpy within.								
Incr CcQz to 115.3m and then incr PyCc toi 117.47m								
< <struc: -="" 9="" 9.001:="" fracture="">> Oxid stained frac ser of 10</struc:>	48.00	49.50	1.50 X507840	0.04	615	1.46	57.3	4.4
< <struc: -="" 14="" 14.0001:="" quartz-carbonate="" vein="">> GalPyCpy QzCc vnlt</struc:>	49.50	51.00	1.50 X507841	0.04	313	0.79	28.2	4.5
< <struc: -="" 15="" 15.0001:="" bedded="" finely="" laminated="">></struc:>	51.00	52.50	1.50 X507842	0.03	445	0.84	28.9	3.4
< <struc: -="" 20.1="" 20.1001:="" quartz-carbonate="" vein="">></struc:>	52.50	53.55	1.05 X507843	0.02	329	0.88	49.6	3.6
< <struc: -="" 30="" 30.0001:="" bedded="" finely="" laminated="">></struc:>	53.55	54.50	0.95 X507844	0.08	317	2.73	316	11.8
< <struc: -="" 30.2="" 30.2001:="" contact="">> LCT Iron staining-fracturing along surface</struc:>	54.50	56.00	1.50 X507845	0.05	260	2.56	174.5	25.5
< <struc: -="" 33.89="" 33.8901:="" carbonate-sulphide="" vein="">> PyCc</struc:>	56.00	57.50	1.50 X507846	0.03	404	2.03	55.6	18.6
< <struc: -="" 34.5="" 34.5001:="" quartz-carbonate="" vein="">> GalPyCpy</struc:>	57.50	59.00	1.50 X507847	0.05	466	4.5	28.5	20.1
< <struc: -="" 37.1="" 37.1001:="" bedded="" finely="" laminated="">></struc:>	59.00	60.50	1.50 X507848	0.05	270	2.2	8.41	4.9
< <struc: -="" 38.5="" 38.5001:="" quartz-carbonate="" vein="">> GalPyCpy</struc:>	60.50	62.00	1.50 X507849	0.06	290	1.86	31.8	4.2
< <struc: -="" 40.4="" 40.4001:="" bedded="" finely="" laminated="">></struc:>	62.00	63.50	1.50 X507851	0.09	467	4.74	365	15.5
< <struc: -="" 41.5="" 41.5001:="" quartz-carbonate="" vein="">> Gal{PyCpy</struc:>	63.50	65.00	1.50 X507852	0.03	357	1.39	17.65	16.2
< <struc: -="" 42.8="" 42.8001:="" bedded="" finely="" laminated="">></struc:>	65.00	66.00	1.00 X507853	0.05	432	1.89	41.8	165
< <struc: -="" 44.75="" 44.7501:="" quartz-carbonate="" vein="">></struc:>	66.00	67.50	1.50 X507854	0.09	935	4.89	194.5	493
< <struc: -="" 45.1="" 45.1001:="" quartz-carbonate="" vein="">></struc:>	67.50	68.00	0.50 X507855	0.79	3560	11.4	101.5	114
< <struc: -="" 46.7="" 46.7001:="" biotite-pyrite="" vein="">></struc:>	68.00	69.00	1.00 X507856	0.06	271	2.31	19.2	130
< <struc: -="" 47="" 47.0001:="" bedded="" finely="" laminated="">></struc:>	69.00	70.50	1.50 X507857	0.07	275	1.7	191.5	159.5

From (m) To (m) Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <struc: -="" 48.2="" 4<="" td=""><td>8.2001: vein - carbonate-sulphide>></td><td>70.50</td><td>72.00</td><td>1.50</td><td>X507858</td><td>0.05</td><td>260</td><td>1.36</td><td>13.9</td><td>331</td></struc:>	8.2001: vein - carbonate-sulphide>>	70.50	72.00	1.50	X507858	0.05	260	1.36	13.9	331
< <struc: -="" 49.1="" 4<="" td=""><td>9.1001: vein - biotite-pyrite>></td><td>72.00</td><td>73.50</td><td>1.50</td><td>X507859</td><td>0.02</td><td>158.5</td><td>0.91</td><td>28.1</td><td>169.5</td></struc:>	9.1001: vein - biotite-pyrite>>	72.00	73.50	1.50	X507859	0.02	158.5	0.91	28.1	169.5
< <struc: -="" 49.7="" 4<="" td=""><td>9.7001: vein - quartz-carbonate>></td><td>73.50</td><td>74.65</td><td>1.15</td><td>X507861</td><td>0.03</td><td>272</td><td>1.66</td><td>37.8</td><td>76.9</td></struc:>	9.7001: vein - quartz-carbonate>>	73.50	74.65	1.15	X507861	0.03	272	1.66	37.8	76.9
< <struc: -="" 51.5="" 5<="" td=""><td>1.5001: vein - biotite-pyrite>></td><td>74.65</td><td>76.00</td><td>1.35</td><td>X507862</td><td>0.21</td><td>95.8</td><td>0.68</td><td>0.72</td><td>152.5</td></struc:>	1.5001: vein - biotite-pyrite>>	74.65	76.00	1.35	X507862	0.21	95.8	0.68	0.72	152.5
< <struc: -="" 54.1="" 5<="" td=""><td>4.1001: fault gouge>> Ser altered gouge</td><td>76.00</td><td>77.50</td><td>1.50</td><td>X507863</td><td>0.14</td><td>337</td><td>1.24</td><td>0.59</td><td>40.7</td></struc:>	4.1001: fault gouge>> Ser altered gouge	76.00	77.50	1.50	X507863	0.14	337	1.24	0.59	40.7
< <struc: -="" 55.1="" 5<="" td=""><td>5.1001: fault gouge>> Ser gouge</td><td>77.50</td><td>78.75</td><td>1.25</td><td>X507864</td><td>0.02</td><td>204</td><td>0.96</td><td>1.25</td><td>54.6</td></struc:>	5.1001: fault gouge>> Ser gouge	77.50	78.75	1.25	X507864	0.02	204	0.96	1.25	54.6
< <struc: -="" 55.6="" 5<="" td=""><td>5.6001: Finely laminated/laminated/finely bedded>></td><td>78.75</td><td>79.35</td><td>0.60</td><td>X507865</td><td>0.43</td><td>442</td><td>8.63</td><td>3.29</td><td>6520</td></struc:>	5.6001: Finely laminated/laminated/finely bedded>>	78.75	79.35	0.60	X507865	0.43	442	8.63	3.29	6520
< <struc: -<="" 57.45="" td=""><td>57.4501: Finely laminated/laminated/finely bedded>></td><td>79.35</td><td>80.00</td><td>0.65</td><td>X507866</td><td>0.19</td><td>183.5</td><td>1.99</td><td>0.82</td><td>859</td></struc:>	57.4501: Finely laminated/laminated/finely bedded>>	79.35	80.00	0.65	X507866	0.19	183.5	1.99	0.82	859
< <struc: -<="" 61.35="" td=""><td>61.3501: Finely laminated/laminated/finely bedded>></td><td>80.00</td><td>81.00</td><td>1.00</td><td>X507867</td><td>0.4</td><td>201</td><td>2.48</td><td>0.68</td><td>1180</td></struc:>	61.3501: Finely laminated/laminated/finely bedded>>	80.00	81.00	1.00	X507867	0.4	201	2.48	0.68	1180
< <struc: -<="" 62.55="" td=""><td>62.5501: vein - quartz-carbonate>></td><td>81.00</td><td>82.50</td><td>1.50</td><td>X507868</td><td>0.15</td><td>191.5</td><td>1.18</td><td>1.1</td><td>139.5</td></struc:>	62.5501: vein - quartz-carbonate>>	81.00	82.50	1.50	X507868	0.15	191.5	1.18	1.1	139.5
< <struc: -<="" 63.02="" td=""><td>63.0201: vein - quartz-carbonate>></td><td>82.50</td><td>84.00</td><td>1.50</td><td>X507869</td><td>0.07</td><td>292</td><td>2.15</td><td>5.38</td><td>131.5</td></struc:>	63.0201: vein - quartz-carbonate>>	82.50	84.00	1.50	X507869	0.07	292	2.15	5.38	131.5
< <struc: -="" 63.6="" 6<="" td=""><td>3.6001: vein - biotite-pyrite>></td><td>84.00</td><td>85.50</td><td>1.50</td><td>X507871</td><td>0.09</td><td>512</td><td>2.61</td><td>10.95</td><td>102.5</td></struc:>	3.6001: vein - biotite-pyrite>>	84.00	85.50	1.50	X507871	0.09	512	2.61	10.95	102.5
< <struc: -="" 66.3="" 6<="" td=""><td>6.3001: vein - carbonate-sulphide>></td><td>85.50</td><td>87.00</td><td>1.50</td><td>X507872</td><td>0.1</td><td>262</td><td>0.91</td><td>1.11</td><td>119</td></struc:>	6.3001: vein - carbonate-sulphide>>	85.50	87.00	1.50	X507872	0.1	262	0.91	1.11	119
< <struc: -<="" 67.52="" td=""><td>67.5201: vein - carbonate-sulphide>></td><td>87.00</td><td>87.50</td><td>0.50</td><td>X507873</td><td>0.27</td><td>320</td><td>6.31</td><td>9.86</td><td>5060</td></struc:>	67.5201: vein - carbonate-sulphide>>	87.00	87.50	0.50	X507873	0.27	320	6.31	9.86	5060
< <struc: -="" 67.8="" 6<="" td=""><td>7.8001: vein - carbonate-sulphide>></td><td>87.50</td><td>89.00</td><td>1.50</td><td>X507874</td><td>0.07</td><td>451</td><td>1.58</td><td>1.68</td><td>503</td></struc:>	7.8001: vein - carbonate-sulphide>>	87.50	89.00	1.50	X507874	0.07	451	1.58	1.68	503
< <struc: -="" 68.8="" 6<="" td=""><td>8.8001: fault gouge>></td><td>89.00</td><td>90.50</td><td>1.50</td><td>X507875</td><td>0.04</td><td>264</td><td>0.78</td><td>0.32</td><td>12.8</td></struc:>	8.8001: fault gouge>>	89.00	90.50	1.50	X507875	0.04	264	0.78	0.32	12.8
< <struc: -="" 69.9="" 6<="" td=""><td>9.9001: fault gouge>></td><td>90.50</td><td>92.00</td><td>1.50</td><td>X507876</td><td>0.03</td><td>325</td><td>0.98</td><td>0.47</td><td>8.4</td></struc:>	9.9001: fault gouge>>	90.50	92.00	1.50	X507876	0.03	325	0.98	0.47	8.4
< <struc: -="" 71="" 71.<="" td=""><td>001: vein - quartz-carbonate>> Bx appearance</td><td>92.00</td><td>93.25</td><td>1.25</td><td>X507877</td><td>0.03</td><td>209</td><td>1.39</td><td>2.17</td><td>140.5</td></struc:>	001: vein - quartz-carbonate>> Bx appearance	92.00	93.25	1.25	X507877	0.03	209	1.39	2.17	140.5
< <struc: -="" 72.8="" 7<="" td=""><td>2.8001: fracture>> Iron stained set of fractures</td><td>93.25</td><td>93.75</td><td>0.50</td><td>X507878</td><td>0.39</td><td>12.7</td><td>0.98</td><td>7.44</td><td>36.2</td></struc:>	2.8001: fracture>> Iron stained set of fractures	93.25	93.75	0.50	X507878	0.39	12.7	0.98	7.44	36.2
< <struc: -="" 75.5="" 7<="" td=""><td>5.5001: Weakly foliated>></td><td>93.75</td><td>94.75</td><td>1.00</td><td>X507879</td><td>0.03</td><td>203</td><td>0.74</td><td>1.74</td><td>7.8</td></struc:>	5.5001: Weakly foliated>>	93.75	94.75	1.00	X507879	0.03	203	0.74	1.74	7.8
< <struc: -="" 76.6="" 7<="" td=""><td>6.6002: vein - carbonate-sulphide>></td><td>94.75</td><td>95.25</td><td>0.50</td><td>X507880</td><td>0.01</td><td>156.5</td><td>0.64</td><td>0.3</td><td>8.4</td></struc:>	6.6002: vein - carbonate-sulphide>>	94.75	95.25	0.50	X507880	0.01	156.5	0.64	0.3	8.4
< <struc: -="" 78.9="" 7<="" td=""><td>8.9001: Sheared>> Sulphide mineralizeed sheared vn Bx Qz</td><td>95.25</td><td>96.50</td><td>1.25</td><td>X507881</td><td>0.01</td><td>104.5</td><td>0.62</td><td>0.5</td><td>46.9</td></struc:>	8.9001: Sheared>> Sulphide mineralizeed sheared vn Bx Qz	95.25	96.50	1.25	X507881	0.01	104.5	0.62	0.5	46.9
< <struc: -<="" 79.35="" td=""><td>79.3501: Sheared>> weak gouge and stringers</td><td>96.50</td><td>98.00</td><td>1.50</td><td>X507882</td><td>0.01</td><td>160.5</td><td>0.64</td><td>0.84</td><td>9.4</td></struc:>	79.3501: Sheared>> weak gouge and stringers	96.50	98.00	1.50	X507882	0.01	160.5	0.64	0.84	9.4
< <struc: -="" 81="" 81.<="" td=""><td>0001: vein - quartz-carbonate>> Sheeted vns</td><td>98.00</td><td>99.50</td><td>1.50</td><td>X507883</td><td>0.01</td><td>161</td><td>0.47</td><td>0.42</td><td>8.1</td></struc:>	0001: vein - quartz-carbonate>> Sheeted vns	98.00	99.50	1.50	X507883	0.01	161	0.47	0.42	8.1
< <struc: -<="" 84.15="" td=""><td>84.1501: vein - carbonate-sulphide>> CcGalPy</td><td>99.50</td><td>101.00</td><td>1.50</td><td>X507884</td><td>0.01</td><td>186</td><td>0.52</td><td>1.24</td><td>8.1</td></struc:>	84.1501: vein - carbonate-sulphide>> CcGalPy	99.50	101.00	1.50	X507884	0.01	186	0.52	1.24	8.1
< <struc: -="" 85.5="" 8<="" td=""><td>5.5001: Sheared>> CCBtChlPy shear vn</td><td>101.00</td><td>102.50</td><td>1.50</td><td>X507885</td><td>0.02</td><td>283</td><td>0.78</td><td>0.87</td><td>9</td></struc:>	5.5001: Sheared>> CCBtChlPy shear vn	101.00	102.50	1.50	X507885	0.02	283	0.78	0.87	9
< <struc: -<="" 87.15="" td=""><td>87.1501: Sheared>> Sheared Streaky vn UCT,</td><td>102.50</td><td>104.00</td><td>1.50</td><td>X507886</td><td>0.02</td><td>212</td><td>0.56</td><td>0.55</td><td>8.9</td></struc:>	87.1501: Sheared>> Sheared Streaky vn UCT,	102.50	104.00	1.50	X507886	0.02	212	0.56	0.55	8.9
< <struc: -="" 90.9="" 9<="" td=""><td>0.9001: vein - quartz-carbonate>> sheeted</td><td>104.00</td><td>105.25</td><td>1.25</td><td>X507887</td><td>0.005</td><td>128</td><td>0.45</td><td>0.29</td><td>9.4</td></struc:>	0.9001: vein - quartz-carbonate>> sheeted	104.00	105.25	1.25	X507887	0.005	128	0.45	0.29	9.4
< <struc: -<="" 93.31="" td=""><td>93.3101: Sheared>> streaky sheared CcChlBt semimassive ss vn</td><td>105.25</td><td>106.00</td><td>0.75</td><td>X507888</td><td>0.01</td><td>201</td><td>0.74</td><td>0.44</td><td>7.9</td></struc:>	93.3101: Sheared>> streaky sheared CcChlBt semimassive ss vn	105.25	106.00	0.75	X507888	0.01	201	0.74	0.44	7.9

From (m) To (m)	Rock Type & Description			From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <struc: -="" 95.01="" 95.0101:="" fault="" gou<="" td=""><td>ige>> Ser Bt gogue</td><td></td><td></td><td>106.00</td><td>107.50</td><td>1.50</td><td>X507889</td><td>0.01</td><td>168</td><td>0.65</td><td>2.14</td><td>13.7</td></struc:>	ige>> Ser Bt gogue			106.00	107.50	1.50	X507889	0.01	168	0.65	2.14	13.7
< <struc: -="" 96.65="" 96.6501:="" qu<="" td="" vein=""><td>artz-carbonate>> Fractured QzCc veinlet</td><td></td><td></td><td>107.50</td><td>109.00</td><td>1.50</td><td>X507891</td><td>0.04</td><td>302</td><td>1.42</td><td>2.92</td><td>119.5</td></struc:>	artz-carbonate>> Fractured QzCc veinlet			107.50	109.00	1.50	X507891	0.04	302	1.42	2.92	119.5
< <struc: -="" 99.15="" 99.1501:="" qu<="" td="" vein=""><td>artz-carbonate>></td><td></td><td></td><td>109.00</td><td>110.00</td><td>1.00</td><td>X507892</td><td>0.07</td><td>233</td><td>2.16</td><td>0.44</td><td>610</td></struc:>	artz-carbonate>>			109.00	110.00	1.00	X507892	0.07	233	2.16	0.44	610
< <struc: -="" 102="" 102.0001:="" qua<="" td="" vein=""><td>artz-carbonate>></td><td></td><td></td><td>110.00</td><td>111.25</td><td>1.25</td><td>X507893</td><td>0.05</td><td>235</td><td>1.26</td><td>0.52</td><td>332</td></struc:>	artz-carbonate>>			110.00	111.25	1.25	X507893	0.05	235	1.26	0.52	332
< <struc: -="" 105.3="" 105.3001:="" c<="" td="" vein=""><td>calcite>> Sheeted vnlts</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	calcite>> Sheeted vnlts											
< <struc: -="" 109="" 109.001:="" sheared="">></struc:>	> weak shearing											
< <struc: -="" 109.3="" 109.3001:="" q<="" td="" vein=""><td>uartz-carbonate>> with blebby Gal</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	uartz-carbonate>> with blebby Gal											
< <struc: -="" 109.8="" 109.8001:="" q<="" td="" vein=""><td>uartz-carbonate>> PyGal min</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	uartz-carbonate>> PyGal min											
111.25 254.30 GRWK- SLST	Interbedded Greywacke- Siltstone	dark brown	VFG	111.25	112.00	0.75	X507894	0.22	720	10.9	2.92	7350
Fine grained, intensely biotite altered tca.	, greywacke with interbedded very fine graine	d siltstone (~30%); bedd	ing 60-70deg									
Extensive QzCc sheeted planar veinl	ets cross cutting unit to ~230m.											
	ones composed of QzCc and PyBt veining wit Increased Disseminated and blebby Py up to		g haloing									
Small sericite gougey faults througho 252.15-253m with 0.85cm coreloss.	out with Si-Ser bleaching haloing (5cm in size)	218-252m. Intense gou	gey fault zone									
< <min: -="" 0<br="" 111.25="" 115.2:="" 7%="" pyrite="">pyrite in veins (CcQz and PyCc), as</min:>	0.2% galena / 0.5% sphalerite>> 7-10% Diss well as haloing-around veinlets.	seminted ,blebby and ba	nded interisial	112.00	113.00	1.00	X507895	0.05	386	1.39	7.82	328
Fine banded Galena in CcQz veins	as well as remobilized banded along margins	of PyCc veinlets, locally	up to 1%									
Late banded Sph along veinlet marg	jins-deep orange appearance.											
throughout 5-6%; PyCc veinlets with	0.5% galena / 1% sphalerite>> Fine dissemin n 5% Py fine disseminated within, and then ble g. Banded galena and Sphalerite remobilized	bby-disseminated haloir	ng in	113.00	114.00	1.00	X507896	0.04	104.5	0.45	1.47	44
sulphides. CcSulphide veinlets with disseminated and blebby Py haloing	/ 5% sphalerite / 0.1% galena / 0.01% chalco disseminated Py within. intense late banded associated with veinlets infilling greywacke n argins as well as trace blebby Cpy with Py. 30	sphalerite along margins natrix as well as remobili	and	114.00	115.20	1.20	X507897	0.04	273	1.47	1.1	421
	01% galena>> Fine disseminated Py in wack mobilized banded along margins of Py stringe		ySulph	115.20	116.55	1.35	X507898	0.08	258	2.93	2.02	1710

Hole: S18-033									
From (m) To (m) Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <min: -="" 0.01%="" 0.05%="" 0.5%="" 10%="" 120="" 128.7:="" chalcopyrite="" galena="" pyrite="" sphalerite="">> Blebby, disseminated and Veinlets of Py, with banded late FG Sph along margins. Py Blebs appear almost cubic and are up to 0.4cm in size, possible primary py?</min:>	116.55	117.45	0.90	X507899	0.13	442	13.35	28	8700
Galena and Cpy blebs in QzCc sheeted vnlts throughout (possibly remobilized?) along margins of veins.									
< <min: -="" 0.01%="" 0.1%="" 128.7="" 131:="" 5%="" galena="" pyrite="" sphalerite="">> Disseminated and blebby py in grwk, small Py stringers throughout, Minor Sph banded along margins.</min:>	117.45	118.50	1.05	X507901	0.02	212	0.83	1.2	69.4
Gal remobilized trace in CcQz veinlets.									
< <min: -="" 0.01%="" 0.1%="" 1.5%="" 10%="" 131="" 136:="" chalcopyrite="" galena="" pyrite="" pyrrhotite="" sphalerite="">> zone of incr density PyCc veinlets and disseminated and blebby Py throughout greywacke groundmass, 7-10%.</min:>	118.50	120.00	1.50	X507902	0.03	150.5	1.23	0.55	116
Banded late sphalerite throughout, appears to be along margins of veinlets and with silica flooded alt zone 1-2%. Gal remobilized banded along margins of vnlts with Sph 0.1-0.25%									
Trace Cpy with Py in py vnlts									
Trace CpyGalPo in QzCc sheeted vnlts and in QzCc veinlets.									
< <min: -="" 0.01%="" 136="" 146:="" 2%="" chalcopyrite="" galena="" pyrite="" pyrrhotite="">> Disseminated and blebby Py in grwk 2-3%, as well as Py veinlets but density decreased.</min:>	120.00	121.50	1.50	X507903	0.04	222	1.27	0.22	169
Trace Po, Cpy and Gal in Veinlets QzCc sheeted remobilized.									
< <min: -="" 0.01%="" 0.5%="" 10%="" 146="" 147:="" 5%="" chalcopyrite="" galena="" pyrite="" sphalerite="">> Disseminated and blebby py throughout, 5-7%,</min:>	121.50	123.00	1.50	X507904	0.05	344	0.89	2.17	65.6
Late banded irregular sulphide infill-along and around small shear. Patchy to erratic appearance, with disseminated PySphCpy and Gal, FMG.									
< <min: -="" 0.01%="" 0.05%="" 0.1%="" 147="" 150.57:="" 7%="" chalcopyrite="" galena="" pyrite="" sphalerite="">> Disseminated and blebby py throughout grwk groundmass as well as veinlets of PyCc. Minor Sph banded along margins of Py vnlts, and trace Cpy engulphed in Py in vnlts.</min:>	123.00	124.50	1.50	X507905	0.05	245	1.22	1.03	330
Trace Galena in QzCc planar sheeted vnlts. Remobilized along margins on vnlts									
< <min: -="" 0.01%="" 1%="" 150.57="" 150.82:="" 90%="" chalcopyrite="" pyrite="" sphalerite="">> Msv Py healed shear with QzCc. 1-2% blebby cpy and trace late Sph banded within.</min:>	124.50	126.00	1.50	X507906	0.07	132	2.49	3.99	1165
< <min: -="" 0.01%="" 0.05%="" 150.82="" 169:="" 2.5%="" chalcopyrite="" galena="" pyrite="" sphalerite="">> Disseminated, blebby and veinlets-stringers of Py throughout with trace Cpy. Banded trace very fine Sph along margins. 2-3% Py; locally up to 5% Py ~164m.</min:>	126.00	127.50	1.50	X507907	0.04	271	1.2	3.15	60.7

Trace galena in CcQz sheeted vnlts

From (m)	To (m)	Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
and dissen (backgrour apperance QzCcChl v	ninated L nd) Py wit With trac veinlets wi	: 10% pyrite / 0.1% pyrrhotite / 0.01% chalcopyrite / 0.01% galena / 0.25% sphalerite>> Blebby ATE FMG Pyrite mineralization. Cross cutting all vein types-flooding appearance. Pervasive 3-5% n zones 5-50cm in length locally up to 30% Py with sometimes weakly banded to erratic e PoCpy th 0.1-0.25% Po, 0.1-0.5%Cpy and 1% Py as well as trace galena. bhalerite-trace to 0.5%	127.50	128.70	1.20	X507908	0.08	241	1.81	1.32	123.5
		.52: 2% pyrite / 0.1% sphalerite / 0.01% chalcopyrite / 0.01% pyrrhotite>> FG Stringers and I as minor disseminated/weakly blebby in groundmass, 2-2.5% throughout.	128.70	130.00	1.30	X507909	0.03	233	1.32	1.91	29.2
Banded lat	te sphaler	aite haloing veinlets, trace to 0.1%.									
Blebby Po	CpyPy in	QzCc veinlets.									
	ted and in	.9: 2% galena / 7% pyrite / 3% sphalerite / 0.2% chalcopyrite>> Crackle Qz veins with terstitial FG Py, 5%, blebby and banded Gal 2-3%; banded late sph haloing vnlts and haloing blebs I-0.25%	130.00	131.00	1.00	X507911	0.04	256	1.15	1.9	36.1
Dissemina	ted Py ha	loing and sph in groundmass 7-10%.									
3% throug	hout.	3: 3% pyrite / 0.01% chalcopyrite / 0.01% pyrrhotite / 0.01% galena>> Disseminated and blebby g pyrite cross cutting veinlets and flooding throughout up to 5-7% locally.	131.00	132.00	1.00	X507912	0.02	183	0.77	0.71	29.4
Primarily P	y veinlets	and stringers throughout with disseminated and halos 3-5%. Trace Cpy with Py with dissem.									
212.4-212.	.6m-Si flo	oding with ~7-10% Py with 0.5-1% Gal locally and 2% Sph									
QzCcChl v	veinlets wi	th trace CpyGalPo									
sericite ble visible. Str	eaching ar	3: strong sericitic / weak-moderate silicification / weak-moderate Pyrite / trace Biotite>> Intense Id replacment of FG grwk and slst-protolith partially to completely obscured only weak bedding associated with and weakly haloing QzCc mineralized veining. Pyrite replacment of wacke and Cc elict Bt alt wacke.	132.00	133.00	1.00	X507913	0.04	243	1.01	2.06	27.4
wacke, Ba	nded biot	moderate-strong Biotite / weak Chlorite / weak sericitic>> Strong pervasive biotite alteation of te-chlorite haloing (vein enveloping) Py sulphide mienralized veining-very strong to 117.47m. sericite bleaching assosicated with vuggy fracturing @119.2m.	133.00	134.00	1.00	X507914	0.25	233	5.11	2.54	2340
		5: strong Biotite / trace Chlorite >> Intense biotite replacment of greywacke, protolith partially nplete replacement; weak chlorite atleraiton in QzCc veinlets.	134.00	135.00	1.00	X507915	0.31	114	4.11	1.74	2030
biotite alte	ration of v	35: moderate-strong Biotite / moderate silicification / trace potassic>> Moderate-Strong pervasive vacke, Overprinted by moderate silica alteartion-weakly lightening brown appearance, Locally strong nalo to blebby Py. Weak possible K alteration of Siltstone	135.00	136.00	1.00	X507916	0.17	332	2.69	0.73	1365

	•										
From (m)	To (m)	Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
		rong Biotite / trace Chlorite >> Intense biotite replacment of greywacke, protolith partially lete replacement; weak chlorite atleraiton in QzCc veinlets and as envelope.	136.00	137.00	1.00	X507917	0.03	130	2.11	0.31	1270
< <alt: 133<br="">of modera</alt:>	8 - 135.1: stro tley biotite al	ong silicification / weak-moderate Biotite / weak Pyrite>> Strong Silica overprinting/replacement ered Grwkslst. Weak bleaching. Fine disseminated Py throughout (possible alt Py)	137.00	138.50	1.50	X507918	0.02	40.2	0.19	0.29	30.3
destructive	e bitotie repla	strong Biotite / trace Chlorite / trace sericitic>> Strong to intense-protolith obscuring-texturally cemnt of wacke and silts. Weak sericite haloing of CcQz sheeted veinlets, Moderate chlorite d weakly haloing veins	138.50	140.00	1.50	X507919	0.01	60.7	0.12	0.14	9.9
Moderate tensional	to strong Per veining and b	moderate-strong Biotite / moderate sericitic / weak-moderate silicification / weak potassic>> vasive biotite alteration of wacke and silts. Sericite bleaching of groundmass associated with leaching of shears/haloing shears-replacing calcite partial healing. Weak to trace K alt of silts (?) ng silica alteration of smsv shr and weakly haloing Qz veinelts.	140.00	141.50	1.50	X507921	0.01	24.5	0.08	0.61	8.7
< <alt: 163<br="">silt beds</alt:>	8.85 - 165.35	strong Biotite / trace sericitic>> Intense biotite replacement of wacke, weak sericite alteration of	141.50	142.76	1.26	X507922	0.04	99	0.36	0.65	29
		moderate sericitic / moderate silicification / trace Biotite>> Sericite-Silica bleaching of Bt altered cross cutting unit.	142.76	144.00	1.24	X507923	0.03	201	0.54	0.36	10.2
		ong Biotite / trace sericitic / trace silicification>> Intense pervasive biotite replacement of wacke. g of silt beds. Locallized silica haloing Qzcc veinlets within	144.00	145.00	1.00	X507924	0.04	142.5	2.11	0.38	1250
alteration	of wacke gro	ong Biotite / moderate silicification / trace potassic / weak Chlorite >> Strong pervasive biotite undmass, Selectively strong silica bleaching and of silts giving a weakly patcky-light brown colour. ssem mineralization. Chlorite in QzCc veining and weakly haloing veins. Possible weak K alt with	145.00	146.00	1.00	X507925	0.03	84	0.46	0.99	98.4
biotite(ove	erprinted); Sil	derate-strong silicification / moderate sericitic / weak Biotite>> Moderate to weak pervasive ca Bleaching and pervasive overprinting. Locally intense sericite replacement 199.05-199.20m. h silica throughout unit. Sericite replacemnt along fractures	146.00	147.00	1.00	X507926	0.5	989	19.7	0.5	10750
Moderate-	weak pervas	rong Biotite / weak silicification / trace sericitic>> Strong pervasive biotite alteration of wacke, ive silica overprinting of silts within weak pervasive - light brown zones. Selectively strong silica weakly bleaching haloing.Minor sericite alteration haloing veinlets.	147.00	148.50	1.50	X507927	0.1	94.1	1.54	0.29	356
biotite alte overprintir	eration of wac	strong Biotite / moderate-strong silicification / weak sericitic / weak Chlorite >> Strong pervasive ke and silts (original and background); weak-mod pervasive and locally strong patchy silica aching) haloing sericite altered gougey shears and haloing Qz veining. Sericite alteration of ars throughout. Trace chl op with silica, altering QzCc veins throughout.	148.50	150.00	1.50	X507928	0.04	197	0.7	0.37	19.3
of wacke (strongly over	eak Biotite / strong silicification / weak-moderate sericitic>> Moderate biotite original alteration printed); Intense Silica-Sericite bleaching-replacement of wacke associated with fracturing, small ricitre replacement of gougey small shears	150.00	150.50	0.50	X507929	0.04	124.5	1.74	1.74	241
		ong sericitic / weak-moderate fuchsite>> Intense sericite and fucsite (chrome mica) alteration cke and gougey in faultzone.	150.50	151.00	0.50	X507931	0.19	1010	9.31	17.5	526

From (m) 1	o (m) Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
	54.15: strong Biotite / weak fuchsite / weak-moderate silicification>> Strong biotite alteration of wacke, ve chrome mica alteartion througohut and strong pervasive silica alteration ass. w/ vning.	151.00	152.00	1.00	X507932	0.02	25.9	0.24	0.98	15.3
	- 254.3: strong sericitic / weak-moderate fuchsite / trace Biotite>> Biotite altered wacke intensely ericite and fucsite alteration (chrome mica). In FLT zn.,	152.00	153.50	1.50	X507933	0.02	41	0.3	0.79	36.8
	- 136: 10% Calcite-Quartz / 2% Calcite Sulfide vein / 0.1% Quartz-Calcite>> CcQz Sheeted veinlets and kly tensional appearance, 70-90deg tca, 0.1-1cmwidth, minor remobilized blebby sulphides within ong margins.	153.50	155.00	1.50	X507934	0.02	153.5	0.81	1.25	159
CcSulphide+/	Qz, Py veinlets, planar margins, 0.1-2cm width, stringers throughout with same apperance, 40-90deg tca.									
	r weakly planar veinlets with banded intersitial and blebby galena. Cross cut by all vein generations as well ed/vuggy erosion. Minor Chl-possibly hydrothermal Chl									
	156: 2% Quartz-Calcite / 0.01% Calcite-Chlorite / 10% Quartz-Calcite / 1% Calcite Sulfide vein>> Planar gular QzCc veinlets with Blebby galena, 40-80deg tca.	155.00	156.50	1.50	X507935	0.01	101	0.24	1.03	6.4
	c veinlets throughout with Ser bleaching haloing and weak chl internal alt, remobilized sulphides in some ers. Tensional Planar appearance. (latest gen).									
PyCc with Bt	envelope veinlets planar 70-90deg tca, Trace Cpy.,									
	169: 5% Quartz-Calcite / 0.1% Quartz-Calcite / 0.5% Calcite Sulfide vein>> QzCc planar to weakly ets 0.5-2cm width, trace sulphides, Bleaching Sericite-Silica haloing. 30-40deg tca	156.50	158.00	1.50	X507936	0.01	35.9	0.67	1.89	179.5
QzCc tension	al sheeted planar, discontinuous veinlets throughout, 70-90deg tca. Non mineralized									
PyCcBt veinle	ts, 60-80deg tca, 0.1-1cm width, and stringers throughout									
	200: 10% Calcite-Quartz / 2% Quartz-Calcite-Chlorite / 1% Calcite Sulfide vein>> CcQz sheeted veinlets anar to tensional discontinuous veinlets 70-90deg tca.	158.00	159.50	1.50	X507937	0.01	45.2	0.18	2.04	12
QzCcChl vein @180-182m	lets 0.5-1.5cm width, cross cutting Sheeted veinlets. 50-80deg tca. Sulphide mineralized. Up to 10/m									
CcSulph-and	Py veinlets with trace Cc, 50-70deg tca.									
	209.52: 10% Quartz-Calcite / 0.01% Quartz-Calcite / 0.25% Calcite Sulfide vein>> Sheeted CcQz planar scontinuous veinlets and stringers throughout, 60-80deg tca, 0.1-0.3cm width.	159.50	161.00	1.50	X507938	0.01	54.2	0.29	0.71	13.5
QzCc +/-Trac	e Chl veinlets minor with Sulphides.									
Dut/ Constring	ers and veinlets weakly planar to irregular 40.60deg to a with Bt envelope, 1 vp 20deg to 3cm width									

Py+/-Cc stringers and veinlets weakly planar to irregular 40-60deg tca, with Bt envelope. 1 vn 20deg tca 3cm width

Hole: \$18-033									
From (m) To (m) Rock Type & Description	From (m)	To (m) I	.ength	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <vein: -="" 209.52="" 212:="" 3%="" 30%="" calcite-quartz="" quartz-calcite-biotite="">> Crackle QzCcBtChl veining, banded margins with sulphides intersititally, blebby and disseminated (haloing). 1-18cm width, ave 5cm, 40-70deg tca, sharp contacts 60-70deg tca.</vein:>	161.00	162.50	1.50	X507939	0.01	19.9	0.14	0.45	7.4
Ccqz sheeted veinlets within, sheared arwaekly reworked sigmoidal appearance.									
< <vein: -="" 1%="" 212="" 254.3:="" 4%="" 5%="" calcite="" calcite-quartz="" quartz-calcite-chlorite="" sulfide="" vein="">> QzCcChl 45-65deg tca, cross cutting tensional veinlets (dominant vein type).Sulphide mineralized.</vein:>	162.50	163.85	1.35	X507940	0.01	59.6	0.28	0.49	6.2
Cc tensional veinlets discontinous and planar, overprinted by ser/silica throughout.									
PyCc irregular and planar veinlets and stringers throughout, 0.1-0.5cm width. 50-70deg tca.									
< <struc: -="" 111.25="" 111.25:="" contact="">> Bleached UCT SLST Beds,; Alt ct 70deg tca.</struc:>	163.85	165.25	1.40	X507941	0.01	56.8	0.32	0.33	10.4
< <struc: -="" 111.6="" 111.6001:="" carbonate-sulphide="" vein="">> With gal and Cpy</struc:>	165.25	166.00	0.75	X507942	0.02	69.9	0.48	1.73	18.1
< <struc: -="" 112.5="" 112.5001:="" bedded="" finely="" laminated="">> Ser bleached relict beds</struc:>	166.00	167.50	1.50	X507943	0.02	114.5	0.9	1.3	45.4
< <struc: -="" 113.6="" 113.6001:="" quartz-carbonate="" vein="">> CQ vn with Gal Py</struc:>	167.50	169.00	1.50	X507944	0.005	48.7	0.15	0.94	4.7
< <struc: -="" 115.2="" 115.2001:="" sheared="">> weakly gougey ser altered LCT CcQz vn</struc:>	169.00	170.50	1.50	X507945	0.005	86.1	0.64	1.91	36
< <struc: -="" 115.5="" 115.5001:="" carbonate-sulphide="" vein="">> CcPy vnlt weakly sheared</struc:>	170.50	172.00	1.50	X507946	0.04	186	2.51	1.71	75.2
< <struc: -="" 116.5="" 116.5001:="" quartz-carbonate="" vein="">> QC vn with Gal</struc:>	172.00	173.50	1.50	X507947	0.01	103	0.43	0.91	11.4
< <struc: -="" 117="" 117.0001:="" carbonate-sulphide="" vein="">> Py mineralized CcPy vn</struc:>	173.50	175.00	1.50	X507948	0.005	77.3	0.4	1.22	18.2
< <struc: -="" 117.4="" 117.4001:="" pyrite-biotite="" vein="">> banded BTPy vning</struc:>	175.00	176.00	1.00	X507949	0.07	288	6.85	3.58	108
< <struc: -="" 117.47="" 117.4701:="" contact="">> LCT Vn zn</struc:>	176.00	177.50	1.50	X507951	0.05	161.5	1.99	2.44	29.5
< <struc: -="" 119="" 119.0001:="" quartz-carbonate="" vein="">> CcQZ sheeted vn</struc:>	177.50	179.00	1.50	X507952	0.07	225	4.6	0.76	33.8
< <struc: -="" 120.2="" 120.2001:="" carbonate-sulphide="" vein="">> PyCc vnlt</struc:>	179.00	180.50	1.50	X507953	0.06	315	4.32	0.74	69.1
< <struc: -="" 122.5="" 122.5:="" carbonate-quartz="" vein="">> sheeted</struc:>	180.50	182.00	1.50	X507954	0.03	236	3.7	1.28	143.5
< <struc: -="" 124.5="" 124.5001:="" carbonate-quartz="" vein="">> Sheeted</struc:>	182.00	183.50	1.50	X507955	0.05	235	4.11	2.08	81.5
< <struc: -="" 128.05="" 128.0501:="" quartz-carbonate="" vein="">> with gal and vugs</struc:>	183.50	185.00	1.50	X507956	0.03	266	2.18	2.51	25.1
< <struc: -="" 128.65="" 128.6501:="" carbonate-sulphide="" vein="">> Py min</struc:>	185.00	186.50	1.50	X507957	0.01	168.5	0.86	2.36	16.2
< <struc: -="" 132.6="" 132.6001:="" carbonate-sulphide="" vein="">> Py</struc:>	186.50	188.00	1.50	X507958	0.01	72.7	0.65	7.55	28.7
< <struc: -="" 135="" 135.0001:="" sheared="">> minor ser gouge and weak shearing of vnlts.</struc:>	188.00	189.50	1.50	X507959	0.01	126	0.98	2.03	52.7
< <struc: -="" 135.8="" 135.8001:="" carbonate-sulphide="" vein="">></struc:>	189.50	191.00	1.50	X507961	0.01	142	1.1	1.96	92.2
< <struc: -="" 136.02="" 136.0201:="" quartz-carbonate="" vein="">></struc:>	191.00	192.50	1.50	X507962	0.01	296	1.05	1.97	21.5
< <struc: -="" 138.55="" 138.5501:="" calcite-chlorite="" vein="">></struc:>	192.50	194.00	1.50	X507963	0.03	396	2.49	0.68	50.3

From (m) To (m)	Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <struc: -="" 139.8="" 139.8<="" td=""><td>3001: vein - quartz-carbonate>> Sheeted</td><td>194.00</td><td>195.50</td><td>1.50</td><td>X507964</td><td>0.02</td><td>224</td><td>1.91</td><td>0.63</td><td>25.4</td></struc:>	3001: vein - quartz-carbonate>> Sheeted	194.00	195.50	1.50	X507964	0.02	224	1.91	0.63	25.4
< <struc: -="" 141.5="" 141.5<="" td=""><td>5001: vein - quartz-carbonate>> sheeted</td><td>195.50</td><td>196.45</td><td>0.95</td><td>X507965</td><td>0.02</td><td>216</td><td>1.55</td><td>0.33</td><td>21.7</td></struc:>	5001: vein - quartz-carbonate>> sheeted	195.50	196.45	0.95	X507965	0.02	216	1.55	0.33	21.7
< <struc: -="" 146="" 146.00<="" td=""><td>01: Sheared>> Small polymetallic mineralized weakly streaky shear</td><td>196.45</td><td>197.50</td><td>1.05</td><td>X507966</td><td>0.02</td><td>51.3</td><td>0.9</td><td>0.59</td><td>63.8</td></struc:>	01: Sheared>> Small polymetallic mineralized weakly streaky shear	196.45	197.50	1.05	X507966	0.02	51.3	0.9	0.59	63.8
< <struc: -="" 146.9="" 146.9<="" td=""><td>2001: Semi-massive sulphide>> Sulphide infill</td><td>197.50</td><td>198.30</td><td>0.80</td><td>X507967</td><td>0.01</td><td>64.2</td><td>0.57</td><td>1.8</td><td>26.8</td></struc:>	2001: Semi-massive sulphide>> Sulphide infill	197.50	198.30	0.80	X507967	0.01	64.2	0.57	1.8	26.8
< <struc: -="" 148.7="" 148.7<="" td=""><td>7001: vein - carbonate-sulphide>> PyCc</td><td>198.30</td><td>199.00</td><td>0.70</td><td>X507968</td><td>0.01</td><td>93.7</td><td>0.99</td><td>2.13</td><td>55.3</td></struc:>	7001: vein - carbonate-sulphide>> PyCc	198.30	199.00	0.70	X507968	0.01	93.7	0.99	2.13	55.3
< <struc: -="" 150.57="" 150<="" td=""><td>.57: Contact>> UCT SMSV SHR</td><td>199.00</td><td>200.00</td><td>1.00</td><td>X507969</td><td>0.01</td><td>103</td><td>1.44</td><td>1.22</td><td>164.5</td></struc:>	.57: Contact>> UCT SMSV SHR	199.00	200.00	1.00	X507969	0.01	103	1.44	1.22	164.5
< <struc: -="" 150.82="" 150<="" td=""><td>.8201: Contact>> LCT SMSV SHR</td><td>200.00</td><td>201.50</td><td>1.50</td><td>X507971</td><td>0.01</td><td>114</td><td>1.27</td><td>1.36</td><td>63</td></struc:>	.8201: Contact>> LCT SMSV SHR	200.00	201.50	1.50	X507971	0.01	114	1.27	1.36	63
< <struc: -="" 152.1="" 152.1<="" td=""><td>1001: Sheared>> Transitional shear</td><td>201.50</td><td>203.00</td><td>1.50</td><td>X507972</td><td>0.01</td><td>91.9</td><td>1.08</td><td>1.67</td><td>52.2</td></struc:>	1001: Sheared>> Transitional shear	201.50	203.00	1.50	X507972	0.01	91.9	1.08	1.67	52.2
< <struc: -="" 153.3="" 153.3<="" td=""><td>3001: Sheared>> transitional partially healed shear</td><td>203.00</td><td>204.50</td><td>1.50</td><td>X507973</td><td>0.01</td><td>109</td><td>0.88</td><td>2.05</td><td>29.6</td></struc:>	3001: Sheared>> transitional partially healed shear	203.00	204.50	1.50	X507973	0.01	109	0.88	2.05	29.6
< <struc: -="" 154.8="" 154.8<="" td=""><td>3001: vein - carbonate-sulphide>> PyCc</td><td>204.50</td><td>206.00</td><td>1.50</td><td>X507974</td><td>0.01</td><td>93.5</td><td>1.35</td><td>1.78</td><td>69</td></struc:>	3001: vein - carbonate-sulphide>> PyCc	204.50	206.00	1.50	X507974	0.01	93.5	1.35	1.78	69
< <struc: -="" 157.2="" 157.2<="" td=""><td>2001: Sheared>></td><td>206.00</td><td>207.50</td><td>1.50</td><td>X507975</td><td>0.02</td><td>164</td><td>2.66</td><td>2.22</td><td>371</td></struc:>	2001: Sheared>>	206.00	207.50	1.50	X507975	0.02	164	2.66	2.22	371
< <struc: -="" 158.4="" 158.4<="" td=""><td>4001: Weakly foliated>></td><td>207.50</td><td>208.50</td><td>1.00</td><td>X507976</td><td>0.03</td><td>97.2</td><td>2.78</td><td>4.33</td><td>495</td></struc:>	4001: Weakly foliated>>	207.50	208.50	1.00	X507976	0.03	97.2	2.78	4.33	495
< <struc: -="" 160.6="" 160.6<="" td=""><td>6001: Finely laminated/laminated/finely bedded>></td><td>208.50</td><td>209.52</td><td>1.02</td><td>X507977</td><td>0.02</td><td>98.9</td><td>1.45</td><td>3.07</td><td>279</td></struc:>	6001: Finely laminated/laminated/finely bedded>>	208.50	209.52	1.02	X507977	0.02	98.9	1.45	3.07	279
< <struc: -="" 161.95="" 161<="" td=""><td>.9501: vein - carbonate-sulphide>> PyCcSph</td><td>209.52</td><td>210.10</td><td>0.58</td><td>X507978</td><td>0.03</td><td>99.9</td><td>2.69</td><td>1.65</td><td>1905</td></struc:>	.9501: vein - carbonate-sulphide>> PyCcSph	209.52	210.10	0.58	X507978	0.03	99.9	2.69	1.65	1905
< <struc: -="" 164="" 164.00<="" td=""><td>01: Finely laminated/laminated/finely bedded>></td><td>210.10</td><td>210.90</td><td>0.80</td><td>X507979</td><td>0.07</td><td>405</td><td>7.23</td><td>0.99</td><td>4290</td></struc:>	01: Finely laminated/laminated/finely bedded>>	210.10	210.90	0.80	X507979	0.07	405	7.23	0.99	4290
< <struc: -="" 165.2="" 165.2<="" td=""><td>2001: vein - carbonate-sulphide>> PyCc</td><td>210.90</td><td>212.00</td><td>1.10</td><td>X507980</td><td>0.12</td><td>82.9</td><td>1.58</td><td>0.82</td><td>1000</td></struc:>	2001: vein - carbonate-sulphide>> PyCc	210.90	212.00	1.10	X507980	0.12	82.9	1.58	0.82	1000
< <struc: -="" 165.65="" 165<="" td=""><td>.6501: vein - quartz-carbonate>></td><td>212.00</td><td>213.00</td><td>1.00</td><td>X507981</td><td>0.05</td><td>129</td><td>1.69</td><td>0.4</td><td>609</td></struc:>	.6501: vein - quartz-carbonate>>	212.00	213.00	1.00	X507981	0.05	129	1.69	0.4	609
< <struc: -="" 166.9="" 166.9<="" td=""><td>9001: Finely laminated/laminated/finely bedded>></td><td>213.00</td><td>214.50</td><td>1.50</td><td>X507982</td><td>0.02</td><td>140</td><td>0.38</td><td>1.54</td><td>10.9</td></struc:>	9001: Finely laminated/laminated/finely bedded>>	213.00	214.50	1.50	X507982	0.02	140	0.38	1.54	10.9
< <struc: -="" 171.2="" 171.2<="" td=""><td>2001: vein - carbonate-sulphide>> with Py</td><td>214.50</td><td>216.00</td><td>1.50</td><td>X507983</td><td>0.05</td><td>211</td><td>0.64</td><td>1.27</td><td>6.9</td></struc:>	2001: vein - carbonate-sulphide>> with Py	214.50	216.00	1.50	X507983	0.05	211	0.64	1.27	6.9
< <struc: -="" 171.21="" 171<="" td=""><td>.21: Sheared>> weak shearing streaky CcBT apperance</td><td>216.00</td><td>217.50</td><td>1.50</td><td>X507984</td><td>0.01</td><td>90.9</td><td>0.39</td><td>1.96</td><td>11</td></struc:>	.21: Sheared>> weak shearing streaky CcBT apperance	216.00	217.50	1.50	X507984	0.01	90.9	0.39	1.96	11
< <struc: -="" 175.21="" 175<="" td=""><td>.2101: fracture>> with serBt gouge</td><td>217.50</td><td>218.50</td><td>1.00</td><td>X507985</td><td>0.01</td><td>98.2</td><td>0.51</td><td>0.99</td><td>11</td></struc:>	.2101: fracture>> with serBt gouge	217.50	218.50	1.00	X507985	0.01	98.2	0.51	0.99	11
< <struc: -="" 175.9="" 175.9<="" td=""><td>9001: Sheared>></td><td>218.50</td><td>220.00</td><td>1.50</td><td>X507986</td><td>0.01</td><td>84.5</td><td>0.35</td><td>1.43</td><td>6.8</td></struc:>	9001: Sheared>>	218.50	220.00	1.50	X507986	0.01	84.5	0.35	1.43	6.8
< <struc: -="" 177.3="" 177.3<="" td=""><td>3001: vein - carbonate-sulphide>></td><td>220.00</td><td>221.50</td><td>1.50</td><td>X507987</td><td>0.005</td><td>85.9</td><td>0.35</td><td>1.54</td><td>9.5</td></struc:>	3001: vein - carbonate-sulphide>>	220.00	221.50	1.50	X507987	0.005	85.9	0.35	1.54	9.5
< <struc: -="" 177.9="" 177.9<="" td=""><td>9001: fracture>> with weak gouge</td><td>221.50</td><td>223.00</td><td>1.50</td><td>X507988</td><td>0.005</td><td>99.4</td><td>0.65</td><td>1.21</td><td>49.4</td></struc:>	9001: fracture>> with weak gouge	221.50	223.00	1.50	X507988	0.005	99.4	0.65	1.21	49.4
< <struc: -="" 178.4="" 178.4<="" td=""><td>4001: vein - quartz-carbonate>> QzCcChl</td><td>223.00</td><td>224.50</td><td>1.50</td><td>X507989</td><td>0.005</td><td>84.7</td><td>0.74</td><td>1.39</td><td>89.3</td></struc:>	4001: vein - quartz-carbonate>> QzCcChl	223.00	224.50	1.50	X507989	0.005	84.7	0.74	1.39	89.3
< <struc: -="" 180.8="" 180.8<="" td=""><td>3001: vein - quartz-carbonate>></td><td>224.50</td><td>226.00</td><td>1.50</td><td>X507991</td><td>0.01</td><td>62.1</td><td>0.98</td><td>0.89</td><td>119.5</td></struc:>	3001: vein - quartz-carbonate>>	224.50	226.00	1.50	X507991	0.01	62.1	0.98	0.89	119.5
< <struc: -="" 181.9="" 181.9<="" td=""><td>9001: vein - quartz-carbonate>> QzChl</td><td>226.00</td><td>227.50</td><td>1.50</td><td>X507992</td><td>0.02</td><td>148</td><td>1.25</td><td>1.11</td><td>87.3</td></struc:>	9001: vein - quartz-carbonate>> QzChl	226.00	227.50	1.50	X507992	0.02	148	1.25	1.11	87.3
< <struc: -="" 182.1="" 182.1<="" td=""><td>1001: Fault>> Zone of fracturing with weak gouge</td><td>227.50</td><td>229.00</td><td>1.50</td><td>X507993</td><td>0.03</td><td>195.5</td><td>1.23</td><td>3.23</td><td>90.1</td></struc:>	1001: Fault>> Zone of fracturing with weak gouge	227.50	229.00	1.50	X507993	0.03	195.5	1.23	3.23	90.1
< <struc: -="" 184.5="" 184.5<="" td=""><td>5001: Massive sulphide>> Dissem py late</td><td>229.00</td><td>230.50</td><td>1.50</td><td>X507994</td><td>0.04</td><td>193</td><td>0.94</td><td>2.19</td><td>14.6</td></struc:>	5001: Massive sulphide>> Dissem py late	229.00	230.50	1.50	X507994	0.04	193	0.94	2.19	14.6

From (m) To (m	n) Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <struc: -="" 188.8="" 1<="" td=""><td>88.8001: vein - quartz-carbonate>> QzC</td><td>230.50</td><td>231.50</td><td>1.00</td><td>X507995</td><td>0.03</td><td>127</td><td>0.68</td><td>0.9</td><td>24.7</td></struc:>	88.8001: vein - quartz-carbonate>> QzC	230.50	231.50	1.00	X507995	0.03	127	0.68	0.9	24.7
< <struc: -="" 192.3="" 1<="" td=""><td>92.3001: vein - quartz-carbonate>></td><td>231.50</td><td>232.50</td><td>1.00</td><td>X507996</td><td>0.01</td><td>85.9</td><td>0.51</td><td>1.6</td><td>35.5</td></struc:>	92.3001: vein - quartz-carbonate>>	231.50	232.50	1.00	X507996	0.01	85.9	0.51	1.6	35.5
< <struc: -<="" 194.35="" td=""><td>194.3501: vein - quartz-carbonate>></td><td>232.50</td><td>233.50</td><td>1.00</td><td>X507997</td><td>0.01</td><td>80.7</td><td>0.44</td><td>3.01</td><td>14.2</td></struc:>	194.3501: vein - quartz-carbonate>>	232.50	233.50	1.00	X507997	0.01	80.7	0.44	3.01	14.2
< <struc: -="" 195="" 195<="" td=""><td>5.0001: Massive sulphide>> banded dissem py</td><td>233.50</td><td>235.00</td><td>1.50</td><td>X507998</td><td>0.01</td><td>69.5</td><td>0.51</td><td>1.82</td><td>24.6</td></struc:>	5.0001: Massive sulphide>> banded dissem py	233.50	235.00	1.50	X507998	0.01	69.5	0.51	1.82	24.6
< <struc: -="" 196.7="" 1<="" td=""><td>96.7001: vein - quartz-carbonate>></td><td>235.00</td><td>236.50</td><td>1.50</td><td>X507999</td><td>0.01</td><td>124</td><td>0.48</td><td>1.2</td><td>17.7</td></struc:>	96.7001: vein - quartz-carbonate>>	235.00	236.50	1.50	X507999	0.01	124	0.48	1.2	17.7
< <struc: -="" 199="" 199<="" td=""><td>0.0001: fracture>> with ser gouge</td><td>236.50</td><td>237.30</td><td>0.80</td><td>X497101</td><td>0.005</td><td>50.1</td><td>0.3</td><td>1</td><td>18</td></struc:>	0.0001: fracture>> with ser gouge	236.50	237.30	0.80	X497101	0.005	50.1	0.3	1	18
< <struc: -="" 202.5="" 2<="" td=""><td>02.5001: vein - quartz-carbonate>> shtd</td><td>237.30</td><td>238.45</td><td>1.15</td><td>X497102</td><td>0.005</td><td>52.6</td><td>0.39</td><td>1.69</td><td>19</td></struc:>	02.5001: vein - quartz-carbonate>> shtd	237.30	238.45	1.15	X497102	0.005	52.6	0.39	1.69	19
< <struc: -="" 204="" 204<="" td=""><td>4.0001: vein - carbonate-sulphide>> Py vnlt</td><td>238.45</td><td>239.55</td><td>1.10</td><td>X497103</td><td>0.01</td><td>57.8</td><td>0.78</td><td>1.07</td><td>107.5</td></struc:>	4.0001: vein - carbonate-sulphide>> Py vnlt	238.45	239.55	1.10	X497103	0.01	57.8	0.78	1.07	107.5
< <struc: -="" 205.7="" 2<="" td=""><td>05.7001: vein - carbonate-sulphide>></td><td>239.55</td><td>241.00</td><td>1.45</td><td>X497104</td><td>0.01</td><td>57</td><td>0.5</td><td>1.18</td><td>26.5</td></struc:>	05.7001: vein - carbonate-sulphide>>	239.55	241.00	1.45	X497104	0.01	57	0.5	1.18	26.5
< <struc: -<="" 209.52="" td=""><td>209.5201: vein - quartz-carbonate>> crkl Qz</td><td>241.00</td><td>242.15</td><td>1.15</td><td>X497105</td><td>0.01</td><td>105</td><td>0.79</td><td>1.21</td><td>17.6</td></struc:>	209.5201: vein - quartz-carbonate>> crkl Qz	241.00	242.15	1.15	X497105	0.01	105	0.79	1.21	17.6
	10.4001: Fault>> sericite gougey shear1cm, Strong foliation and banded weakly sigmoidal T wacke 209-211m.	242.15	243.50	1.35	X497106	0.005	68.4	0.65	1.33	25.9
< <struc: -<="" 210.95="" td=""><td>210.9501: Sheared>></td><td>243.50</td><td>245.00</td><td>1.50</td><td>X497107</td><td>0.01</td><td>58</td><td>0.51</td><td>1.53</td><td>31.6</td></struc:>	210.9501: Sheared>>	243.50	245.00	1.50	X497107	0.01	58	0.51	1.53	31.6
< <struc: -="" 212.8="" 2<="" td=""><td>12.8001: Finely laminated/laminated/finely bedded>></td><td>245.00</td><td>246.50</td><td>1.50</td><td>X497108</td><td>0.01</td><td>80</td><td>0.82</td><td>3.07</td><td>61.4</td></struc:>	12.8001: Finely laminated/laminated/finely bedded>>	245.00	246.50	1.50	X497108	0.01	80	0.82	3.07	61.4
< <struc: -<="" 214.05="" td=""><td>214.0501: Finely laminated/laminated/finely bedded>></td><td>246.50</td><td>248.00</td><td>1.50</td><td>X497109</td><td>0.02</td><td>148</td><td>1.48</td><td>1.95</td><td>86.7</td></struc:>	214.0501: Finely laminated/laminated/finely bedded>>	246.50	248.00	1.50	X497109	0.02	148	1.48	1.95	86.7
< <struc: -="" 216.4="" 2<="" td=""><td>16.4001: Fault>> with ser gouge</td><td>248.00</td><td>249.50</td><td>1.50</td><td>X497111</td><td>0.01</td><td>99.1</td><td>1.4</td><td>4.87</td><td>86.9</td></struc:>	16.4001: Fault>> with ser gouge	248.00	249.50	1.50	X497111	0.01	99.1	1.4	4.87	86.9
< <struc: -="" 218.3="" 2<="" td=""><td>18.3001: Fault>> partialy healed gougey flt</td><td>249.50</td><td>251.00</td><td>1.50</td><td>X497112</td><td>0.01</td><td>73.5</td><td>0.8</td><td>1.3</td><td>35.4</td></struc:>	18.3001: Fault>> partialy healed gougey flt	249.50	251.00	1.50	X497112	0.01	73.5	0.8	1.3	35.4
< <struc: -="" 223.5="" 2<="" td=""><td>23.5001: vein - quartz-carbonate>> QC Shtd</td><td>251.00</td><td>252.00</td><td>1.00</td><td>X497113</td><td>0.01</td><td>67.3</td><td>1.13</td><td>2.04</td><td>137</td></struc:>	23.5001: vein - quartz-carbonate>> QC Shtd	251.00	252.00	1.00	X497113	0.01	67.3	1.13	2.04	137
< <struc: -="" 225.8="" 2<="" td=""><td>25.8001: vein - quartz-carbonate>> QzChlCc</td><td>252.00</td><td>253.50</td><td>1.50</td><td>X497114</td><td>0.005</td><td>42.5</td><td>0.41</td><td>0.39</td><td>17.6</td></struc:>	25.8001: vein - quartz-carbonate>> QzChlCc	252.00	253.50	1.50	X497114	0.005	42.5	0.41	0.39	17.6
< <struc: -<="" 230.15="" td=""><td>230.1501: fracture>> gougey fracturing</td><td>253.50</td><td>254.30</td><td>0.80</td><td>X497115</td><td>0.01</td><td>188</td><td>0.89</td><td>0.64</td><td>16.6</td></struc:>	230.1501: fracture>> gougey fracturing	253.50	254.30	0.80	X497115	0.01	188	0.89	0.64	16.6
< <struc: -="" 231.2="" 2<="" td=""><td>31.2001: Fault>> gouge</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	31.2001: Fault>> gouge									
< <struc: -="" 232.5="" 2<="" td=""><td>32.5001: fracture>> with ser gouge</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	32.5001: fracture>> with ser gouge									
< <struc: -="" 233.5="" 2<="" td=""><td>33.5001: vein - quartz-carbonate>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	33.5001: vein - quartz-carbonate>>									
< <struc: -="" 237.5="" 2<="" td=""><td>37.5001: Fault>> Uct partially healed fit</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	37.5001: Fault>> Uct partially healed fit									
< <struc: -="" 240.8="" 2<="" td=""><td>40.8001: vein - carbonate-sulphide>> PyCc vnlt</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	40.8001: vein - carbonate-sulphide>> PyCc vnlt									
< <struc: -="" 242.8="" 2<="" td=""><td>42.8001: fracture>> with ser gouge</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	42.8001: fracture>> with ser gouge									
< <struc: -="" 246.6="" 2<="" td=""><td>46.6001: vein - carbonate-sulphide>> PyCc stringer</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	46.6001: vein - carbonate-sulphide>> PyCc stringer									
< <struc: -="" 247.7="" 2<="" td=""><td>47.7001: vein - carbonate-sulphide>> Py vnlt</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	47.7001: vein - carbonate-sulphide>> Py vnlt									
< <struc: -<="" 252.15="" td=""><td>252.15: Fault>> UCT flt</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	252.15: Fault>> UCT flt									

Hole: \$18-033											
From (m) To (m) Rock	Type & Description		From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <struc: -="" 254.25="" 254.2501:="" sheared="">> banded s</struc:>	hearing										
		-	254.30	255.50	1.20	X497116	0.01	127.5	0.93	0.86	19.7
254.30 276.55 GRWK Greywack	ke brownish grey	FG	255.50	256.73	1.23	X497117	0.01	115	0.78	0.98	15
Fine grained, well sorted, weakly finely bedded (30-40	deg tca) greywacke with minor <3% siltstone.	-									
Cross cut by QzCc Planar tensional-sheeted veinlets,	QzCcChl planar veinlets and minor PyCc veinlets	s and stringers.									
Patchy Strong sericiteSilica bleaching throughout.											
Streaky CcChIBt healed mineralized shear 256.73-257	′.4m										
< <min: -="" 254.3="" 256.73:="" 5%="" pyrite="">> Disseminated</min:>	FG py in healed CC small shear and in stringers/	veinlets throughout.	256.73	257.40	0.67	X497118	0.01	28.9	1.64	0.64	114.5
< <min: -="" 0.1%="" 0.2<br="" 256.73="" 257.4:="" 5%="" galena="" pyrite="">Dissemiated to weakly blebby Py throughout with 5%</min:>	1 2		257.40	258.50	1.10	X497119	0.01	111.5	1.23	1.05	22.1
Banded FG galena-weakly disseminated appearance	0.1-0.25%										
Late banded sphalerite 0.25-0.5%.											
< <min: -="" 0.01%="" 2%="" 2-2.5%="" 257.4="" 274:="" fine="" galena="" grained.<="" pyrite="" td="" throughout="" very=""><th>% chalcopyrite>> Py dissemianted and in veinle</th><td>ets/stringers</td><td>258.50</td><td>260.00</td><td>1.50</td><td>X497121</td><td>0.01</td><td>88.4</td><td>1.91</td><td>1.26</td><td>263</td></min:>	% chalcopyrite>> Py dissemianted and in veinle	ets/stringers	258.50	260.00	1.50	X497121	0.01	88.4	1.91	1.26	263
Trace galena and cpy and py in QzCc veinlets.											
< <min: -="" 0.01%="" 274="" 283.2:="" 3%="" and="" as="" beds="" chalcopyrite="" in="" pyrite="" stringers="" td="" throughout="" veinlets="" w<="" well=""><th></th><td>eminated fine py in</td><td>260.00</td><td>261.50</td><td>1.50</td><td>X497122</td><td>0.005</td><td>114</td><td>1.97</td><td>1.12</td><td>164.5</td></min:>		eminated fine py in	260.00	261.50	1.50	X497122	0.005	114	1.97	1.12	164.5
QzCc veinlets with Trace CpyPoGal											
< <alt: -="" 254.3="" 260.5:="" biotite="" moderate-strong="" weak<br="">alteration of wacke. Locally strong-mod banded Chl- and chl within</alt:>			261.50	263.00	1.50	X497123	0.005	74.9	1.5	1.25	126.5
< <alt: -="" 260.5="" 281:="" biotite="" moderate-strong="" moderate<br="">strong pervasive alteration of greywacke. Strong pate fracturing with weak Ser gouge throughout, bleaching haloing py veinlets throughout. Weak-mod pervasive</alt:>	chy Silica-Sericite bleaching associated with QzC halos 2cm to 1m in size. Minor chlorite altering	Cc veining and	263.00	264.50	1.50	X497124	0.01	45	0.28	1.03	4.3

From (m)	To (m)	Rock Type & Description			From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
	54.3 - 283.2: 2% Quartz-0 ith trace galena py and cp	Calcite-Chlorite / 3% Calcite-Quartz / 0.1% Calcit y mineralization.	e Sulfide vein>>	QzCcChl planar	264.50	266.00	1.50	X497125	0.005	81.3	0.38	0.8	5.5
CcQz tens	sional sheeted planar vein	lets, somewhat discontinuous.											
Py+/-Cc st	tringers and veinlets 0.1-0	.5cm in size 70deg tca.											
< <struc: 2<="" td=""><td>255.52 - 255.5201: Shear</td><td>ed>></td><td></td><td></td><td>266.00</td><td>267.50</td><td>1.50</td><td>X497126</td><td>0.01</td><td>78.3</td><td>0.39</td><td>2.35</td><td>4.8</td></struc:>	255.52 - 255.5201: Shear	ed>>			266.00	267.50	1.50	X497126	0.01	78.3	0.39	2.35	4.8
< <struc: 2<="" td=""><td>256.73 - 256.7301: Conta</td><td>ct>> Banded streaky shearing mineralizaiton</td><td></td><td></td><td>267.50</td><td>269.00</td><td>1.50</td><td>X497127</td><td>0.01</td><td>66.2</td><td>0.46</td><td>2.07</td><td>12.3</td></struc:>	256.73 - 256.7301: Conta	ct>> Banded streaky shearing mineralizaiton			267.50	269.00	1.50	X497127	0.01	66.2	0.46	2.07	12.3
< <struc: 2<="" td=""><td>257.42 - 257.4201: vein -</td><td>quartz-carbonate>> QzCc</td><td></td><td></td><td>269.00</td><td>270.50</td><td>1.50</td><td>X497128</td><td>0.01</td><td>139.5</td><td>0.85</td><td>1.21</td><td>77.2</td></struc:>	257.42 - 257.4201: vein -	quartz-carbonate>> QzCc			269.00	270.50	1.50	X497128	0.01	139.5	0.85	1.21	77.2
< <struc: 2<="" td=""><td>257.6 - 257.6001: vein - q</td><td>uartz-chlorite>></td><td></td><td></td><td>270.50</td><td>272.00</td><td>1.50</td><td>X497129</td><td>0.01</td><td>70.5</td><td>1</td><td>1.16</td><td>151.5</td></struc:>	257.6 - 257.6001: vein - q	uartz-chlorite>>			270.50	272.00	1.50	X497129	0.01	70.5	1	1.16	151.5
< <struc: 2<="" td=""><td>259.8 - 259.8001: vein - q</td><td>uartz-carbonate>> sheeted</td><td></td><td></td><td>272.00</td><td>273.00</td><td>1.00</td><td>X497131</td><td>0.01</td><td>103.5</td><td>0.35</td><td>0.78</td><td>9.6</td></struc:>	259.8 - 259.8001: vein - q	uartz-carbonate>> sheeted			272.00	273.00	1.00	X497131	0.01	103.5	0.35	0.78	9.6
< <struc: 2<="" td=""><td>263.5 - 263.5001: vein - q</td><td>uartz-carbonate>> QzCcChl</td><td></td><td></td><td>273.00</td><td>274.00</td><td>1.00</td><td>X497132</td><td>0.01</td><td>133.5</td><td>0.56</td><td>1.27</td><td>24.3</td></struc:>	263.5 - 263.5001: vein - q	uartz-carbonate>> QzCcChl			273.00	274.00	1.00	X497132	0.01	133.5	0.56	1.27	24.3
< <struc: 2<="" td=""><td>265.3 - 265.3001: Sheare</td><td>d>> weak shr</td><td></td><td></td><td>274.00</td><td>275.50</td><td>1.50</td><td>X497133</td><td>0.02</td><td>101.5</td><td>0.81</td><td>2.03</td><td>60.9</td></struc:>	265.3 - 265.3001: Sheare	d>> weak shr			274.00	275.50	1.50	X497133	0.02	101.5	0.81	2.03	60.9
< <struc: 2<="" td=""><td>266.7 - 266.7001: fracture</td><td>Ser gougey frac</td><td></td><td></td><td>275.50</td><td>276.55</td><td>1.05</td><td>X497134</td><td>0.01</td><td>141.5</td><td>1.02</td><td>2.19</td><td>146.5</td></struc:>	266.7 - 266.7001: fracture	Ser gougey frac			275.50	276.55	1.05	X497134	0.01	141.5	1.02	2.19	146.5
< <struc: 2<="" td=""><td>270.54 - 270.5401: vein -</td><td>carbonate-sulphide>> Py stringers</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	270.54 - 270.5401: vein -	carbonate-sulphide>> Py stringers											
< <struc: 2<="" td=""><td>272.7 - 272.7001: vein - q</td><td>uartz-carbonate>> QzCcChl</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	272.7 - 272.7001: vein - q	uartz-carbonate>> QzCcChl											
< <struc: 2<="" td=""><td>275 - 275.0001: Finely lar</td><td>ninated/laminated/finely bedded>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	275 - 275.0001: Finely lar	ninated/laminated/finely bedded>>											
276.55	293.00 GRWK- SLST	Interbedded Greywacke- Siltstone	light grey	FG									

Finely bedded, extensively brittle faulted, fractured and sheared, Sericite-silica-Fuchsite(chrome mica) altered greywacke-siltstone.

Fractured beds of silt 40deg tca.

QzCc sulphide mienralized infill veining throughout as well as disseminated and blebby and irregular Py veinlets. <<Min: 283.2 - 287: 7% pyrite / 0.25% pyrrhotite / 0.05% chalcopyrite / 0.01% galena / 1% sphalerite>> QzCc veinlets/infill with blebby PyPoCpyGal mineralization up to 2% sulphides locally.

Stringers/veinlets of Py with dissemianted halos throughout 5-7% with trace Po.

Banded late Sph haloing QzCc infill

<<Min: 287 - 291.3: 5% pyrite / 0.01% pyrrhotite>> stringers and veinlets of Py with trace CcQz. Disseminated and blebby haloing; 5-6% Py very finegrained.

Trace Po in Qz bx veinlets.

Hole:		S18-033								
From (m)	To (m)	Rock Type & Description	From (m)	To (m) Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
		06: 0.25% pyrite / 0.01% pyrrhotite>> 0.1-0.25% fine disseminated Py laminated in beds of ace veinlets/stringers. Trace dissem in BSUs throughout unit.								
Blebby Po i	in QzCc v	veinlets. Trace to 0.1%								
		moderate-strong sericitic / weak-moderate silicification>> Strong sericite belaching and ouge within FLT, Moderate Silica overprinting silt clasts within.								
biotite alter	ation of w	moderate silicification / weak-moderate sericitic / moderate-strong Biotite>> Moderate pervasiv vacke. Patchy strong sericite-silica bleaching of wacke associated with gouge/fracturing in flt and prv QzCc infill veining.	9							
of relict wea	akly band	strong sericitic / trace Biotite / weak silicification>> Strong-Intense sericite bleaching/replaceme led biotite altered silts/wacke. Protolith partially obscured (texturally destructive alt). Weak silica te in in angular clastic rubble.	nt							
Sheared sil	Its and wa	moderate-strong sericitic / moderate fuchsite / trace silicification>> Intense sericite bleaching of acke, Fuchsite (chrom mica) overprinting of Sericite (mint green appearance). Trace silica CT 292.7-293m								
		5% Quartz-Calcite / 1% Calcite Sulfide vein>> QzCc+/-Fecarb Irregular infilling to planar veinle 5cm width, PoPyCpyGal mineralized.	its,							
Py+/-CcQz	irregular	stringers and veinlets 30-70deg tca. 0.2-0.5cm width Blebby and dissem Py within								
		5% Calcite Sulfide vein / 0.1% Quartz-Calcite>> Py+/-CcQz stringers of Py (fine disseminated mineralization.								
Brecciated	QzCc vei	ining throughout trace PoPy mineralization.								
		: 3% Quartz-Calcite / 5% Calcite>> QzCc weakly planar to irregular veinlets 0.5-1cm widht, bleb 5-70deg tca.	by							
Planar wea Weakly "str		ed Cc veinlets-discontinuous to tensional apperance, sheared in small shears and fractured locall bearance.	Ι.							
< <struc: 27<="" td=""><td>76.55 - 27</td><td>76.5501: Contact>> graded Ct.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	76.55 - 27	76.5501: Contact>> graded Ct.								
< <struc: 27<="" td=""><td>77.8 - 277</td><td>7.8001: Finely laminated/laminated/finely bedded>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	77.8 - 277	7.8001: Finely laminated/laminated/finely bedded>>								
< <struc: 27<="" td=""><td>79.15 - 27</td><td>79.1501: vein - quartz-carbonate>> QzCcChl</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	79.15 - 27	79.1501: vein - quartz-carbonate>> QzCcChl								
< <struc: 28<="" td=""><td>81 - 281.0</td><td>0001: Fault>> UCT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	81 - 281.0	0001: Fault>> UCT								
< <struc: 28<="" td=""><td>81.45 - 28</td><td>31.4501: fault gouge>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	81.45 - 28	31.4501: fault gouge>>								
< <struc: 28<="" td=""><td>81.55 - 28</td><td>31.55: fracture>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	81.55 - 28	31.55: fracture>>								
< <struc: 28<="" td=""><td>83.25 - 28</td><td>33.2501: vein - quartz-chlorite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	83.25 - 28	33.2501: vein - quartz-chlorite>>								

Hole:	S18-033									
From (m) To (m)	Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <struc: -="" 284.9="" 284.9<="" td=""><td>001: vein - quartz-chlorite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	001: vein - quartz-chlorite>>									
	001: vein - carbonate-sulphide>> Py									
	001: fracture>> gougey									
	fracture>> Uct FLt Frac zone									
<struc: -="" 288.7="" 288.7<="" td=""><td>001: fault gouge>> gouge and rubble</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	001: fault gouge>> gouge and rubble									
< <struc: -="" 289.8="" 289.8<="" td=""><td>3001: Contact>> LCt BSU and SHr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	3001: Contact>> LCt BSU and SHr									
< <struc: -="" 290.6="" 290.6<="" td=""><td>001: vein - carbonate-sulphide>> Py stringer</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	001: vein - carbonate-sulphide>> Py stringer									
< <struc: -="" 291.3="" 291.3<="" td=""><td>3001: fault gouge>> Ct</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	3001: fault gouge>> Ct									
< <struc: -="" 291.9="" 291.9<="" td=""><td>0001: fault gouge>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	0001: fault gouge>>									
< <struc: -="" 292.05="" 292.<="" td=""><td>0501: Sheared>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	0501: Sheared>>									
< <struc: -="" 292.5="" 292.5<="" td=""><td>i001: Sheared>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	i001: Sheared>>									
		276.55	277.50	0.95	X497135	0.01	81.6	0.42	3.82	29.3
		277.50	279.00	1.50	X497136	0.01	86.9	0.57	2.47	41.1
		279.00	280.00	1.00	X497137	0.01	164.5	0.59	1.19	26.2
		280.00	281.00	1.00	X497138	0.01	178	0.86	1.24	31.1
		281.00	281.55	0.55	X497139	0.03	187.5	1.64	1.09	304
		281.55	282.50	0.95	X497140	0.02	134	0.51	1.3	19.9
		282.50	283.20	0.70	X497141	0.02	160.5	1.08	1.06	162
		283.20	284.30	1.10	X497142	0.06	210	2.24	1.18	467
		284.30	285.50	1.20	X497143	0.07	213	1.82	1.37	76.6
		285.50	287.00	1.50	X497144	0.03	156.5	0.84	1.39	26.5
		287.00	288.50	1.50	X497145	0.02	117.5	0.68	1.33	34.6
		288.50	290.00	1.50	X497146	0.01	155	0.54	1.25	9.5
		290.00	291.30	1.30	X497147	0.01	112	0.5	1.08	15
		291.30	292.00	0.70	X497148	0.005	69.8	0.27	0.68	11.7

292.00

293.00

1.00

X497149

0.005

64.2

0.86

8.4

0.22

Hole: \$18-033											
From (m) To (m) Rock Type & Description			From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
293.00298.26SLSTsiltstoneDark brown-dark grey, finely bedded Silt (60%) and mudstone (30%) with minor <10%	dark brown 6 FG greywacke.	VFG	293.00	294.50	1.50	X497151	0.005	90.2	0.3	1.43	12.4
Finely laminated beds 50-70deg tca.											
Graded poor UCT (sheared).											
Small <30cm shears throughout with Sericite-Fuchsite bleaching. Weak-moderately f	oliated/banded zones.										
Mineralized QzCc veinlets throughout.											
<alt: -="" 293="" 297:="" biotite="" sericitic="" silicification="" strong="" trace="">> Pervasive bic trace sericite bleaching of wacke beds. Silica haloing weakly QzCc veining through</alt:>		nd mudstone,	294.50	296.00	1.50	X497152	0.005	100	0.31	1.37	9.1
< <alt: -="" 297="" 300.92:="" biotite="" sericitic="" weak-moder<br="" weak-moderate="">Moderate pervasive biotite alteratoin of silts and BSU within, Overprinted and replac with shears and mod-strong inshears). Strong selective patchy silica replacment an</alt:>	ed by sericite and silica		296.00	297.00	1.00	X497153	0.005	115.5	0.31	1.44	7.8
< <struc: -="" 293="" 293.0001:="" sheared="">></struc:>			297.00	298.26	1.26	X497154	0.005	78	0.62	1.13	54.1
< <struc: -="" 293.4="" 293.4001:="" bedded="" finely="" laminated="">></struc:>											
< <struc: -="" 294.9="" 294.9001:="" quartz-carbonate="" vein="">></struc:>											
< <struc: -="" 297.55="" 297.5501:="" sheared="">></struc:>											
			298.26	299.20	0.94	X497155	0.005	105.5	0.36	0.99	15.2
298.26 298.80 BSU Biotite Spotted Unit	greenish brown	FMG									
Sericite-chrome mica (fuchsite) weakly relict biotite altered Biotite Spotted unit (dyke) 70deg tca.	. Sheared streaky UCT	/LCTs. 60-									
Spotted appearance, with sharp contacts and brecciated reworked veining within. < <struc: -="" 298.26="" 298.2601:="" contact="">> Uct BSU and shear</struc:>											
298.80 299.20 SLST siltstone	brown	FG									
Dark brown-dark grey, finely bedded Silt (60%) and mudstone (30%) with minor <10%	6 FG greywacke.										
Finely laminated beds 50-70deg tca.											
			299.20	300.00	0.80	X497156	0.005	62.5	0.28	0.73	15.1

Hole: \$18-033											
From (m) To (m) Rock Type & Description			From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
299.20 300.92 BSU Biotite Spotted Unit	greenish brown	FMG	300.00	300.92	0.92	X497157	0.005	48.5	0.17	0.65	6.8
Sericite-chrome mica (fuchsite) weakly relict biotite altered Biotite Spotted unit (dyke and 70deg tca.		CT/LCTs. 30									
Spotted appearance, with sharp contacts and brecciated reworked veiing within. < <struc: -="" 299.2="" 299.2001:="" contact="">> BSU CT UCT</struc:>											
			300.92	302.00	1.08	X497158	0.005	101	0.27	1.52	8
300.92 308.06 SLST siltstone	dark brown	FG	302.00	303.50	1.50	X497159	0.005	107	0.35	1.64	9
Dark brown-dark grey, finely bedded Silt (60%) and mudstone (30%) with minor <10	% FG greywacke.										
Finely laminated beds 50deg tca.											
< <alt: -="" 300.92="" 308.06:="" biotite="" sericitic="" silicification="" strong="" trace="">> Perva mudstone, trace sericite bleaching of wacke beds. Silica haloing weakly QzCc vein</alt:>		f silts and	303.50	305.00	1.50	X497161	0.005	66.2	0.22	0.66	11.1
< <vein: (latest="" -="" 0.01%="" 15%="" 2%="" 301="" 324:="" ap="" as="" beds="" bsu="" calcite-chlorite="" calcite-quart="" calcite-quartz="" cross="" cutting="" gen="" mineralized.<="" sheeted="" silt="" stringers="" td="" vnlt),="" weakly="" well=""><td></td><td></td><td>305.00</td><td>306.50</td><td>1.50</td><td>X497162</td><td>0.005</td><td>84.2</td><td>0.24</td><td>0.7</td><td>10</td></vein:>			305.00	306.50	1.50	X497162	0.005	84.2	0.24	0.7	10
CcChl+/-Fecarb weakly banded fractured veinlet 70deg tca 3cm width.											
Brecciated, Subrounded reworked clasts of Cc+/-Qz veining in BSU (relict clastic) a brecciated apperance. Vein clasts 0.1-5cm in size, ave 1.5cm; Augen appearance											
< <struc: -="" 300.92="" 300.9201:="" contact="">> LCt BSU</struc:>			306.50	307.50	1.00	X497163	0.005	102	0.35	1.23	7.5
< <struc: -="" 303.8="" 303.8001:="" bedded="" finely="" laminated="">></struc:>			307.50	308.06	0.56	X497164	0.01	61.3	0.25	1	9.2
< <struc: -="" 306.8="" 306.8001:="" bedded="" finely="" laminated="">></struc:>											

Hole: S18-033										
From (m) To (m) Rock Type & Description			From (m)	To (m) Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
308.06 342.43 BSU Biotite Spotted Unit	brown	FMG								
Medium brown, weakly-moderately foliated (50-60deg tca), Biotite spotted unit (d biotite "flakes" throughout. Brecciated subrounded to elongate (augens) of Qz ve "groundmass" of dyke with spots throughout.										
Trace patchy magnetism (fine disseminated Po throughout)										
Minor QzCc planar veinlets cross cutting unit.										
Small Fuchsite-sericite altered shear along UCT and at 315m										
Disseminated Py throughout.										
Mod-str structure (fol/shearing) throughout, weaker shearing 333.5-338.95m 335.45-335.80: bx'd, str bt section of BSU (stands out from mod chl alt'd surround veins at 55 deg - poss 2nd pulse of BSU. < <min: -="" 0.1%="" 2%="" 308.06="" 324:="" pyrite="" pyrrhotite="">> Very fine disseminated Py Trace to 0.25% Po.</min:>	- /									
< <min: -="" 0.01%="" 1%="" 324="" 333:="" pyrite="" sphalerite="">> sph assoc with veining</min:>		_								
< <min: -="" 0.01%="" 1%="" 3%="" 333="" 333.5:="" chalcopyr<="" galena="" pyrite="" sphalerite="" td=""><td>ite>> Sx assoc with q</td><td>c veining</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	ite>> Sx assoc with q	c veining								
< <min: -="" 0.3%="" 333.5="" 356.32:="" pyrite="">> Py assoc with veins.</min:>										
< <alt: -="" 308.06="" 324:="" biotite="" fuchsite="" moderate="" moderate-strong="" silicifica<br="" trace="">Moderate to strong pervasive biotite alteration throughout. Sericite and Chrome small shears along UCT and throughout (localized mint green bleaching). Bando 10cm bands ~60deg tca with fol).</alt:>	Mica replacement (fuch	hsite) alteration of								
< <alt: -="" 324="" 333.5:="" assoc="" biotite="" chl="" chlorite="" fuch="" in="" section.="" silicification="" strong="" td="" this="" tr="" trace="" veining.<="" weak-moderate="" with=""><td>moderate-strong Calcit</td><td>te>> Lack of</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	moderate-strong Calcit	te>> Lack of								
< <alt: -="" 333.5="" 338:="" and="" appearance="" biotite="" chl="" chlorite="" in="" increases;="" less="" section.<="" sheared="" silicification="" strong="" td="" this="" weak="" weak-moderate=""><td>weak-moderate Calcite</td><td>e>> Sil drops off</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	weak-moderate Calcite	e>> Sil drops off								
< <alt: -="" 338="" 340.5:="" biotite="" calcite="" strong="" weak="">></alt:>		-								
< <alt: -="" 340.5="" 356.32:="" biotite="" fuchsite="" section.<="" strong="" td="" this="" weak-moderate=""><td>silicification>> Calcite</td><td>e altn absent in</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	silicification>> Calcite	e altn absent in								
< <vein: -="" 2%="" 3%="" 324="" 333.5:="" calcite="" calcite-quartz="">> Low angle veining (pa</vein:>	rallel TCA) 326-327.3m									
< <vein: -="" 1%="" 3%="" 333.5="" 340.5:="" calcite="" quartz-calcite="">></vein:>		-								
< <vein: -="" 2%="" 340.5="" 356.32:="" quartz-calcite="">> Locally vuggy.</vein:>		-								
< <struc: -="" 308.06="" 308.0601:="" contact="">> SHRD Uct BSU</struc:>		_								

Hole:	S18-033									
From (m) To (m)	Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <struc: -="" 309="" 309.0<="" td=""><td>0001: Moderately foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	0001: Moderately foliated>>									
< <struc: -="" 310.3="" 310<="" td=""><td>0.3001: vein - calcite-chlorite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	0.3001: vein - calcite-chlorite>>									
< <struc: -="" 312.1="" 312<="" td=""><td>2.1001: Moderately foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	2.1001: Moderately foliated>>									
< <struc: -="" 314.85="" 3<="" td=""><td>14.8501: Sheared>> SerFuchsite gouge</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	14.8501: Sheared>> SerFuchsite gouge									
< <struc: -="" 315.6="" 315<="" td=""><td>5.6001: Strongly foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	5.6001: Strongly foliated>>									
< <struc: -="" 319.1="" 319<="" td=""><td>9.1001: Moderately foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	9.1001: Moderately foliated>>									
< <struc: -="" 321.3="" 32<="" td=""><td>1.3001: Moderately foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	1.3001: Moderately foliated>>									
< <struc: -="" 323.1="" 323<="" td=""><td>3.1001: vein - carbonate-quartz>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	3.1001: vein - carbonate-quartz>>									
< <struc: -="" 323.3="" 323<="" td=""><td>3.3001: Moderately foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	3.3001: Moderately foliated>>									
< <struc: -="" 324="" 333.5<="" td=""><td>5: Moderately foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	5: Moderately foliated>>									
< <struc: -="" 333.5="" 337<="" td=""><td>7.93: Strongly foliated>> Fol'n of bt spots</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	7.93: Strongly foliated>> Fol'n of bt spots									
< <struc: -="" 337.93="" 33<="" td=""><td>38: Sheared>> Streaky cct+bt+wk chl shear; only tr py.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	38: Sheared>> Streaky cct+bt+wk chl shear; only tr py.									
< <struc: -="" 338="" 342.4<="" td=""><td>43: Strongly foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	43: Strongly foliated>>									
		308.06	309.00	0.94	X497165	0.005	79.2	0.31	1.14	18.2
		309.00	310.50	1.50	X497166	0.01	81.5	0.62	2.37	108.5
		310.50	312.00	1.50	X497167	0.005	92	0.75	1.34	164

309.00	310.50	1.50	X497166	0.01	81.5	0.62	2.37	108.5
310.50	312.00	1.50	X497167	0.005	92	0.75	1.34	164
312.00	313.50	1.50	X497168	0.005	87.1	0.25	1.18	11.2
313.50	314.80	1.30	X497169	0.005	71.6	0.17	0.85	11.8
314.80	316.00	1.20	X497171	0.005	65.5	0.45	2.03	115.5
316.00	317.50	1.50	X497172	0.005	71	0.24	2.23	13.4
317.50	319.00	1.50	X497173	0.005	70.9	0.3	1.55	14.7
319.00	320.00	1.00	X497174	0.01	47	0.23	0.26	11.7
320.00	321.00	1.00	X497175	0.005	122	0.46	0.29	11.3
321.00	322.50	1.50	X497176	0.005	101	0.33	1.28	16
322.50	324.00	1.50	X497177	0.005	101	0.28	1.25	24.4
324.00	325.50	1.50	X497178	0.005	57.2	0.17	1.32	15.2
325.50	327.00	1.50	X497179	0.005	74.8	0.24	1.55	16.1
327.00	328.50	1.50	X497180	0.005	105.5	0.33	0.57	15.7
328.50	330.00	1.50	X497181	0.005	86.6	0.43	1.91	38.9

From (m) To (m)	Rock Type & Description			From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
				330.00	331.50	1.50	X497182	0.01	83.2	0.3	1.41	15.9
				331.50	333.00	1.50	X497183	0.005	71.3	0.22	3.85	21.5
				333.00	333.50	0.50	X497184	0.04	394	9.5	2.4	5860
				333.50	335.00	1.50	X497185	0.005	113	0.37	0.48	24.8
				335.00	336.50	1.50	X497186	0.005	60.4	0.18	0.32	15.8
				336.50	338.00	1.50	X497187	0.005	101.5	0.41	2.32	11.4
				338.00	339.50	1.50	X497188	0.01	97.6	0.39	1.53	10.6
				339.50	341.00	1.50	X497189	0.01	80.8	0.32	1.7	9.1
				341.00	342.43	1.43	X497191	0.01	78.1	0.32	3.1	13.3
342.43 342.70 SLST	siltstone	light brown	ו FG									
•	dence that the host unit is intrusive (BSU minated/laminated/finely bedded>> Be	•••	up clast. Flame			0.50						
				342.43	342.93	0.50	X497192	0.005	35.6	0.12	1.81	10.7
342.70 397.55 BSU	Biotite Spotted Unit	brown	FMG	342.93	344.00	1.07	X497193	0.01	83.8	0.25	1.39	7
Mod-strongly foliated throughout; str bt with local mottled appearance due to irreg sil+fuch discont bands. This section is less obviously a BSU; due to alteration(?) bt spots are rarer. 350.02-350.55: mod bkn and spun core.												
< <min: -="" 2.5%="" 356.32="" 368.5:="" pyrite="">> 2.5% overall but loc to 5%, esp. 361.0-361.5m.</min:>				344.00	345.50	1.50	X497194	0.005	43	0.17	0.37	5.8
< <min: -="" 0.5%="" 368.5="" 397.55:="" pyrite="">></min:>				345.50	347.00	1.50	X497195	0.005	79.3	0.24	0.39	5.1
< <alt: -="" 356.32="" 363.7:="" biotite="" calcite="" moderate="" silicification="" strong="" weak-moderate="">> Fuch drops off in this section. Sil str alters clasts.</alt:>				347.00	348.50	1.50	X497196	0.01	102.5	0.31	1.63	6.2
< <alt: -="" 363.7="" 377.15:="" biotite="" calcite="" chlorite="" moderate="" strong="" weak-moderate="">></alt:>			348.50	350.00	1.50	X497197	0.005	78.9	0.4	2.73	9.1	
< <alt: -="" 377.15="" 389.35:="" biotite="" chlorite="" moderate-strong="" silicification="" weak="" weak-moderate="">></alt:>			350.00	351.50	1.50	X497198	0.01	77.4	0.34	1.71	8.9	
<< Alt: 389.35 - 391.5: moderate-strong Biotite / weak Chlorite / weak silicification / weak-moderate fuchsite>> Fuch returns briefly.				351.50	353.00	1.50	X497199	0.01	63.2	0.23	1.02	13.5
< <alt: -="" 391.5="" 397.55:="" biotite="" calcite="" chlorite="" strong="" weak="" weak-moderate="">> Loc intense chl.</alt:>				353.00	354.50	1.50	X497201	0.005	39.4	0.13	1.17	7.6
< <vein: -="" 3%="" 356.32="" 363.7:="" quartz-calcite="">> Discont qtz vein pieces/clasts approx 10% throughout.</vein:>				354.50	356.00	1.50	X497202	0.01	116.5	0.49	1.22	7.6
< <vein: -="" 1%="" 363.7="" 370.45:="" 5%="" calcite="" quartz-calcite="">> Crackle qtz section but v. little minzn. Chl increases in this section and continues downhole to 377.15m.</vein:>				356.00	357.50	1.50	X497203	0.005	64	0.26	1.37	12.8

From (m) To (m)		Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <vein: -="" 370.45="" 389.5<="" td=""><td>: 2% Quartz-Calcite>></td><td>Veining up to 4cm wide, mostly low angle but loc 50 deg. Not well minz'd.</td><td>357.50</td><td>359.00</td><td>1.50</td><td>X497204</td><td>0.005</td><td>73.6</td><td>0.31</td><td>1.3</td><td>18</td></vein:>	: 2% Quartz-Calcite>>	Veining up to 4cm wide, mostly low angle but loc 50 deg. Not well minz'd.	357.50	359.00	1.50	X497204	0.005	73.6	0.31	1.3	18
< <vein: -="" 389.5="" 397.5<="" td=""><td>: 5% Quartz-Calcite>></td><td>394.0-394.3m str crackle qtz section.</td><td>359.00</td><td>360.50</td><td>1.50</td><td>X497205</td><td>0.01</td><td>52.5</td><td>0.28</td><td>1.64</td><td>16.1</td></vein:>	: 5% Quartz-Calcite>>	394.0-394.3m str crackle qtz section.	359.00	360.50	1.50	X497205	0.01	52.5	0.28	1.64	16.1
< <struc: -="" 342.7="" 356.3<="" td=""><td>2: Strongly foliated>></td><td></td><td>360.50</td><td>362.00</td><td>1.50</td><td>X497206</td><td>0.01</td><td>122</td><td>0.64</td><td>1.44</td><td>24.6</td></struc:>	2: Strongly foliated>>		360.50	362.00	1.50	X497206	0.01	122	0.64	1.44	24.6
< <struc: -="" 356.32="" 377:<="" td=""><td>Moderately foliated>></td><td></td><td>362.00</td><td>363.50</td><td>1.50</td><td>X497207</td><td>0.005</td><td>100.5</td><td>0.41</td><td>1.47</td><td>14.2</td></struc:>	Moderately foliated>>		362.00	363.50	1.50	X497207	0.005	100.5	0.41	1.47	14.2
< <struc: -="" 380="" 383:="" m<br="">then begins to steepen</struc:>	2	ol'n shallows to subparallel to CA in this section (stretching of bt spots),	363.50	365.00	1.50	X497208	0.005	66.9	0.4	2.72	37.8
< <struc: -="" 383.4="" 383.5<="" td=""><td>3: Sheared>> Wk sh</td><td>ear, chl+qtz+cct+bt laminations</td><td>365.00</td><td>366.50</td><td>1.50</td><td>X497209</td><td>0.005</td><td>89.9</td><td>0.27</td><td>0.9</td><td>9.9</td></struc:>	3: Sheared>> Wk sh	ear, chl+qtz+cct+bt laminations	365.00	366.50	1.50	X497209	0.005	89.9	0.27	0.9	9.9
< <struc: -="" 383.53="" 391.<="" td=""><td>45: Moderately foliated</td><td>>> Fol'n weak to absent after this, as dyke approaches below.</td><td>366.50</td><td>368.00</td><td>1.50</td><td>X497211</td><td>0.005</td><td>76.9</td><td>0.23</td><td>0.25</td><td>8.5</td></struc:>	45: Moderately foliated	>> Fol'n weak to absent after this, as dyke approaches below.	366.50	368.00	1.50	X497211	0.005	76.9	0.23	0.25	8.5
			368.00	369.50	1.50	X497212	0.005	84.3	0.13	0.25	8.4
			369.50	370.95	1.45	X497213	0.005	99.7	0.11	0.26	9.2
			370.95	372.00	1.05	X497214	0.005	77.5	0.09	0.37	7.4
			372.00	373.50	1.50	X497215	0.005	101.5	0.09	0.2	6.6
			373.50	375.00	1.50	X497216	0.005	88.8	0.08	0.23	8.5
			375.00	376.50	1.50	X497217	0.005	74	0.08	0.21	7.9
			376.50	378.00	1.50	X497218	0.005	81.4	0.17	1.45	11.4
			378.00	379.50	1.50	X497219	0.005	95.6	0.16	0.83	7.9
			379.50	381.00	1.50	X497221	0.005	68	0.17	3.04	10.3
			381.00	382.50	1.50	X497222	0.005	56.8	0.23	2.68	13.1
			382.50	384.00	1.50	X497223	0.005	49.9	0.2	1.97	8.9
			384.00	385.50	1.50	X497224	0.005	65.7	0.18	2.04	11.7
			385.50	387.00	1.50	X497225	0.005	58.5	0.19	3.22	16.9
			387.00	388.50	1.50	X497226	0.01	188.5	0.62	2.21	13.1
			388.50	390.00	1.50	X497227	0.005	70.2	0.58	0.71	48.6
			390.00	391.50	1.50	X497228	0.005	53.4	0.32	1.59	20.4
			391.50	393.00	1.50	X497229	0.01	64.6	0.14	1.6	8.9
			393.00	394.50	1.50	X497231	0.005	73.8	0.16	1.88	7.6
			394.50	396.00	1.50	X497232	0.01	108	0.15	0.21	4.4
			396.00	397.00	1.00	X497233	0.005	124.5	0.13	1.74	6.6
			397.00	397.55	0.55	X497234	0.005	233	0.23	0.9	14

From (m) To (m)	Rock Type & Description			From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Bes ppm
397.55 399.98 MD	mafic dyke	dark green	FG									
5% <1mm cct spots throughout.												
< <min: -="" 0.1%="" 397.55="" 399.98:="" mag<br="">red mineral at contacts - hematite?</min:>	netite / 0.01% pyrite>> Tr (rare) py ble Wk-mod magnetic throughout but no po	bs dissem throughout. Cct blek visible - assumed to be f. disse	es are alt'd with em mt.									
< <alt: -="" 397.55="" 399.98:="" chlo<br="" strong="">hematite?</alt:>	rite / trace oxide/rust>> red mineral al	ters cct blebs at upper and low	er contact -									
< <vein: -="" 0.01%="" 397.55="" 399.98:="" ca<="" td=""><td>alcite>> <1mm hairline cct stringers</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	alcite>> <1mm hairline cct stringers											
< <struc: -="" 397.55="" 397.5501:="" conta<="" td=""><td>act>> UCT sharp, chilled.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	act>> UCT sharp, chilled.											
				397.55	399.00	1.45	X497235	0.005	16.8	0.05	2.05	12.3
				399.00	399.98	0.98	X497236	0.005	15.4	0.04	2.05	12.5
				399.98	401.00	1.02	X497237	0.005	14.9	0.15	0.18	25.5
399.98 409.13 GRWK	Greywacke	dark green	FG	401.00	402.50	1.50	X497238	0.005	48.9	0.1	0.19	12.3
Str chl alt'd and mod foliated greywa	cke(?). Bt/chl spots still occas visible - ຣເ	•	due to str alt'n.									
< <min: -="" 1.5%="" 399.98="" 409.13:="" pyrite<="" td=""><td>e>> Py assoc with cct+/-qtz veining.</td><td>-</td><td></td><td>402.50</td><td>404.00</td><td>1.50</td><td>X497239</td><td>0.01</td><td>86.3</td><td>0.13</td><td>0.5</td><td>11.3</td></min:>	e>> Py assoc with cct+/-qtz veining.	-		402.50	404.00	1.50	X497239	0.01	86.3	0.13	0.5	11.3
< <alt: -="" 399.98="" 409.13:="" chlo<="" strong="" td=""><td>rite / moderate Calcite / weak Biotite>></td><td></td><td></td><td>404.00</td><td>405.50</td><td>1.50</td><td>X497240</td><td>0.005</td><td>81.4</td><td>0.16</td><td>8.16</td><td>11.3</td></alt:>	rite / moderate Calcite / weak Biotite>>			404.00	405.50	1.50	X497240	0.005	81.4	0.16	8.16	11.3
< <vein: -="" 399.98="" 4%="" 409.13:="" cct="" cutting="" quart="" stringers.<="" td=""><td>z-Calcite>> Veins often appear anasta</td><td>amosing due to stress, occas o</td><td>ffset by x-</td><td>405.50</td><td>407.00</td><td>1.50</td><td>X497241</td><td>0.005</td><td>128</td><td>0.22</td><td>0.95</td><td>13.7</td></vein:>	z-Calcite>> Veins often appear anasta	amosing due to stress, occas o	ffset by x-	405.50	407.00	1.50	X497241	0.005	128	0.22	0.95	13.7
< <struc: -="" 399.98="" 399.9801:="" conta<="" td=""><td>act>> LCT sharp, chilled.</td><td></td><td></td><td>407.00</td><td>408.50</td><td>1.50</td><td>X497242</td><td>0.005</td><td>97.9</td><td>0.15</td><td>2.66</td><td>9.1</td></struc:>	act>> LCT sharp, chilled.			407.00	408.50	1.50	X497242	0.005	97.9	0.15	2.66	9.1
< <struc: -="" 405="" 409:="" fol<="" moderately="" td=""><td>iated>></td><td></td><td></td><td>408.50</td><td>409.13</td><td>0.63</td><td>X497243</td><td>0.005</td><td>91.1</td><td>0.16</td><td>1.07</td><td>8.7</td></struc:>	iated>>			408.50	409.13	0.63	X497243	0.005	91.1	0.16	1.07	8.7
				409.13	410.50	1.37	X497244	0.005	17.6	0.1	1.85	15.4
409.13 411.16 MD	mafic dyke	dark green	FG	410.50	412.00	1.50	X497245	0.005	40.3	0.11	1.62	12.6
	enos/clasts 409.75-409.78 and 409.95-4	•										
< <min: -="" 0.01%="" 409.13="" 411.16:="" pyr<="" td=""><td>•</td><td>) altara aat blaba</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	•) altara aat blaba										
•	rite / trace oxide/rust>> Fe-Ox (hem? uartz-Calcite>> Wispy qtz+cct hairline :											
< <ver><<ver><<ver><<ver><<09.13 - 411.16:</ver></ver></ver></ver>	13 1											
411.16 411.45 GRWK	Greywacke	dark green	FG									
		dark droop										

Hole:	S18-033											
From (m) To (m)	Rock Type & Descrip	tion		From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <alt: -="" 411.16="" 411.4<br="">decreasing in this sho</alt:>	5: moderate Biotite / moderate Chlorite / mode rt section.	erate-strong Calcite>> Bt increasing	and chl									
< <vein: -="" 411.16="" 411.<br="">low angle.</vein:>	45: 2% Calcite-Quartz>> Some veins follow	fol'n angle but most cross-cut at varia	ble angles, typ									
< <struc: -="" 411.16="" 411<="" td=""><td>.1601: Contact>> Sharp, somewhat irreg, c</td><td>hilled LCT.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.1601: Contact>> Sharp, somewhat irreg, c	hilled LCT.										
< <struc: -="" 411.1601="" 4<="" td=""><td>11.45: Moderately foliated>> 55-60 deg</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	11.45: Moderately foliated>> 55-60 deg											
411.45 413.10) MD mafic dyke	dark green	FG	412.00	413.10	1.10	X497246	0.005	17	0.05	1.88	12
As above. Cct spotted 411.60-411.63: GRWK	Contacts chilled. LCT sharp but irreg.	-										
< <min: -="" 411.45="" 413.1<="" td=""><td>1: 0.01% pyrite / 0.1% magnetite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	1: 0.01% pyrite / 0.1% magnetite>>											
< <alt: -="" 411.45="" 413.1<="" td=""><td>strong Chlorite >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	strong Chlorite >>											
< <vein: -="" 411.45="" 413<="" td=""><td>1: 0.05% Calcite-Quartz>> Hairline cct+/-qtz</td><td>stringers <1mm.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	1: 0.05% Calcite-Quartz>> Hairline cct+/-qtz	stringers <1mm.										
< <struc: -="" 411.45="" 411<="" td=""><td>.4501: Contact>> UCT sharp, chilled.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.4501: Contact>> UCT sharp, chilled.											
				413.10	414.00	0.90	X497247	0.005	101	0.18	0.47	10.6
413.10 415.00) GRWK Greywacke	dark green	FG	414.00	415.00	1.00	X497248	0.01	144.5	0.49	1.16	21.3
Bt alteration increases < <min: -="" 413.1="" 415:="" td="" ´<=""><td>compared to chl alt'n above. l% pyrite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	compared to chl alt'n above. l% pyrite>>											
< <alt: -="" 413.1="" 415:="" st<="" td=""><td>rong Biotite / weak-moderate Calcite / weak-mo</td><td>oderate Chlorite >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	rong Biotite / weak-moderate Calcite / weak-mo	oderate Chlorite >>										
< <vein: -="" 413.1="" 415:<="" td=""><td>2% Quartz-Calcite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	2% Quartz-Calcite>>											
< <struc: -="" 413.1="" 415:<="" td=""><td>Moderately foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	Moderately foliated>>											

End of Hole @ 415

Proje	ct: S	nip												
Hole:	S	518-034	ŀ											
Pros	spect:	Gol	d Anomaly	Survey T	уре:		DGPS	Logged	By:		R. Marl	kel	Core Size:	NQ2
UTN	/I Grid:		NAD83_Z9	Survey E	By:		J. Tyler	Drill Co	mpany:		DM		Reduced?:	
UTN	/I East:		368571.97	Geo Azir	muth:		26.2	Drill Ri	g:		Ri	- 2	Reduced Depth(m):	
UTN	/ North:	6	284017.52	Local Az	imuth:		358	Drill St	arted:		2018-11-	20	Reduced Size:	
UTN	/I Elevation (m	ı):	115.99	Dip:			-45	Drill Co	mpleted:		2018-11-	23	Casing Pulled?:	
Loca	al Grid:		MINE	Length (m):		205	Hole Ty	/pe:		[Casing Depth (m):	1.5
Loca	al East:		1624	Hole Sta	tus:	Co	ompleted	Hole D	iameter:		7.	F7	Year:	2018
Loca	al North:		2594									(Company:	Skeena
Min	ing Division:		Liard	Commei	nts:									
Depth (m)	Survey Method	Survey By	Date Surveyed	Dip	Measured Geo Azimuth	Correction Factor	Corrected Geo Azimuth	Local Azimuth	Mag. Field	Temp (C)	Accept Values?	Comments	5	
0	EZShot	DMAC	2018-11-23	-45	7.5	18.7	26.2	358			\checkmark			
25	EZShot	DMAC	2018-11-23	-45	7.5	18.7	26.2	358	55498	12	\checkmark			
55	EZShot	DMAC	2018-11-23	-45.7	8.6	18.7	27.3	359.1	55378	13	\checkmark			
85	EZShot	DMAC	2018-11-23	-46.1	9.6	18.7	28.3	0.1	55419	14	\checkmark			
115	EZShot	DMAC	2018-11-23	-46.5	10.1	18.7	28.8	0.6	55472	14	\checkmark			
115 145	EZShot EZShot	DMAC DMAC	2018-11-23 2018-11-23	-46.5 -46.9	10.1 11	18.7 18.7	28.8 29.7	0.6 1.5	55472 55348	14 15				

Hole:	S1	8-C	34											
From (m)	To (m)		Rock Type & Descrip	tion		From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
0.00	1.50 OVE	BN	Overburden											
1.50	24.15 QM	DNZ	quartz monzonite	green-gre	y FG	1.50	3.00	1.50	X497249	0.08	10.8	0.25	3	33.6
Mod-str fol'd	, str qtz veined, sti	sil alt'o	d, biotitic and chloritic Bronson	Stock intrusive (qtz monz).	-									
< <min: 1.5<br="">12.3-13.0m</min:>		te / 0.0	1% sphalerite / 0.01% galena /	0.01% chalcopyrite>> Tr sph,	gal and cpy esp.	3.00	4.50	1.50	X497251	0.03	24.9	0.41	2.16	49.9
oxide/rust>		d bt do	wnhole. Wk to locally mod oxid	ong silicification / trace fuchsite / (lim? Goeth?) on frac surfaces,		4.50	6.00	1.50	X497252	0.06	42.6	0.5	2.94	23.5
< <vein: 1.5<="" td=""><td>- 24.15: 7% Qua</td><td>rtz-Chlo</td><td>orite>> Veins follow fol'n, ofter</td><td>n discont. Rare x-cutting qtz vein</td><td>s, discont, @ 30 deg.</td><td>6.00</td><td>7.50</td><td>1.50</td><td>X497253</td><td>0.03</td><td>10</td><td>0.15</td><td>6.72</td><td>13.1</td></vein:>	- 24.15: 7% Qua	rtz-Chlo	orite>> Veins follow fol'n, ofter	n discont. Rare x-cutting qtz vein	s, discont, @ 30 deg.	6.00	7.50	1.50	X497253	0.03	10	0.15	6.72	13.1
< <struc: 1.8<="" td=""><td>5 - 24.15: Strong</td><td>y foliate</td><td>ed>> 55-60 deg fol'n.</td><td></td><td></td><td>7.50</td><td>9.00</td><td>1.50</td><td>X497254</td><td>0.005</td><td>11.7</td><td>0.09</td><td>3.88</td><td>5.3</td></struc:>	5 - 24.15: Strong	y foliate	ed>> 55-60 deg fol'n.			7.50	9.00	1.50	X497254	0.005	11.7	0.09	3.88	5.3
< <struc: 12<="" td=""><td>2.22 - 12.36: Shea</td><td>ared>></td><td>Wk shear with laminated qtz,</td><td>bt, chl 60-65 deg.</td><td></td><td>9.00</td><td>10.50</td><td>1.50</td><td>X497255</td><td>0.02</td><td>7.1</td><td>0.11</td><td>9.45</td><td>5.9</td></struc:>	2.22 - 12.36: Shea	ared>>	Wk shear with laminated qtz,	bt, chl 60-65 deg.		9.00	10.50	1.50	X497255	0.02	7.1	0.11	9.45	5.9
						10.50	12.00	1.50	X497256	0.03	6.8	0.21	11.25	19
						12.00	13.00	1.00	X497257	0.17	22.5	1.66	56.3	176
						13.00	14.50	1.50	X497258	0.02	9.1	0.42	13.1	38.7
						14.50	16.00	1.50	X497259	0.01	14.3	0.4	6.53	18.2
						16.00	17.50	1.50	X497261	0.03	8.1	0.22	11.7	24.7
						17.50	19.00	1.50	X497262	0.01	6.6	0.24	18.95	17.2
						19.00	20.50	1.50	X497263	0.005	6.8	0.36	6.26	15.1
						20.50	22.00	1.50	X497264	0.01	11.5	0.49	8.12	36.4
						22.00	23.50	1.50	X497265	0.03	15.4	0.52	6.68	26.2
						23.50	24.15	0.65	X497266	0.05	27.4	0.56	8.92	30.8
24.15	205.00 GRV	VK	Greywacke	greenish brown	FG									
@ 25.95 1 ci 27.15-27.25:	m gouge crkl qtz vn with tr	po .	 Mod-str fol'd throughout. .9m due to qtz-ser haloing from 	fault and bx.										

203.4 to EOH v.f.gr, fol'n lost. Poss dyke but no chill margins, gradational coarsening and abrupt fining downhole. Poss slst but no bedding visible.

<<Min: 24.15 - 27.74: 2% pyrite>>

<<Min: 27.74 - 27.79: 1% galena / 3% pyrite / 0.01% sphalerite>> In small shear.

<<Min: 27.79 - 30.65: 2% pyrite / 0.01% pyrrhotite>> Po with py in cct vein @ 29.3m.

Hole:	S18-034								
From (m) To (m)	Rock Type & Description	From (m)	To (m) Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <min: -="" 3.<br="" 30.65="" 33.25:="">ep+chl. One 0.3cm sph v</min:>	.5% pyrite / 0.01% sphalerite>> Py increases in section of increases sil and then increased vein @ 31.13m.								
< <min: -="" 2.<="" 33.25="" 37.05:="" td=""><th>5% pyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	5% pyrite>>								
< <min: -="" 2%<="" 37.05="" 37.9:="" td=""><th>pyrite / 0.1% sphalerite / 0.01% galena / 0.01% chalcopyrite>> In streaky cct veined zone</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite / 0.1% sphalerite / 0.01% galena / 0.01% chalcopyrite>> In streaky cct veined zone								
< <min: -="" 37.9="" 39.55:="" 4%<="" td=""><th>pyrite / 0.01% pyrrhotite / 0.01% chalcopyrite>> Mostly as dissems, occas veins py.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite / 0.01% pyrrhotite / 0.01% chalcopyrite>> Mostly as dissems, occas veins py.								
< <min: -="" 2.<="" 39.55="" 49.88:="" td=""><th>5% pyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	5% pyrite>>								
< <min: -="" 29<="" 49.88="" 51.85:="" td=""><th>% pyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	% pyrite>>								
< <min: -="" 39<="" 51.85="" 60.45:="" td=""><th>% pyrite>> Py dissems and as veins. @ 60.41m 4 cm semi-msv py+qtz+cct vn @ 35-40 deg.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	% pyrite>> Py dissems and as veins. @ 60.41m 4 cm semi-msv py+qtz+cct vn @ 35-40 deg.								
< <min: -="" 2%="" 60.45="" 70:="" p<="" td=""><th>pyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite>>								
< <min: -="" 3%="" 70="" 75.05:="" p<="" td=""><th>pyrite / 0.01% pyrrhotite / 0.01% chalcopyrite>> Po and cpy blebs assoc with qtz+/-cct veining.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite / 0.01% pyrrhotite / 0.01% chalcopyrite>> Po and cpy blebs assoc with qtz+/-cct veining.								
< <min: -="" 3%<="" 75.05="" 75.4:="" td=""><th>o pyrite / 0.01% sphalerite / 0.01% galena>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	o pyrite / 0.01% sphalerite / 0.01% galena>>								
< <min: -="" 5%="" 75.4="" 78:="" py<="" td=""><th>rite>> Veins and dissems.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	rite>> Veins and dissems.								
< <min: -="" 2.5%<="" 78="" 90.9:="" td=""><th>pyrite>> 2-3% py.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite>> 2-3% py.								
< <min: -="" 209<="" 91.15="" 91.6:="" td=""><th>% pyrite>> Semi-msv py in bleached partially healed fault.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	% pyrite>> Semi-msv py in bleached partially healed fault.								
< <min: -="" 0.0<="" 91.6="" 92.15:="" td=""><th>1% pyrite>> Str ser section of fault, v. little minzn. Milled clasts up to 5cm wide.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	1% pyrite>> Str ser section of fault, v. little minzn. Milled clasts up to 5cm wide.								
< <min: -="" 8%<="" 92.15="" 92.5:="" td=""><th>pyrite>> Large irreg, discont vns within bleached and gougey fault.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite>> Large irreg, discont vns within bleached and gougey fault.								
< <min: -="" 103.4:="" 2%<="" 92.5="" td=""><th>pyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite>>								
< <min: -="" 103.4="" 104.3:="" 59<="" td=""><th>% pyrite / 0.01% chalcopyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	% pyrite / 0.01% chalcopyrite>>								
< <min: -="" 1%<="" 104.3="" 106:="" td=""><th>pyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite>>								
	% pyrite / 0.01% chalcopyrite / 0.01% molybdenite>> Tr cpy assoc with qc veining, esp. @								
135.9, 147.75m. @ 146.95m tr mo? (or ga	al) blebs in 1cm qtz+ep vn @ 55deg - v. soft, blueish tint								
< <min: -="" 151.5="" 154.62:="" 5<="" td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>									
< <min: -="" 154.62="" 156:="" 2%<="" td=""><th>6 pyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	6 pyrite>>								
< <min: -="" 156="" 169.7:="" 2%<="" td=""><th>pyrite>></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite>>								
with qtz veining. 169.7-169.9: crkl qtz vn v	pyrite / 0.01% chalcopyrite / 0.01% pyrrhotite>> Py veins and dissems. Cpy and po (tr) assoc w tr cpy + po ev py vn with cct @ 70 deg								
< <min: -="" 183="" 184.1:="" 2%<="" td=""><th>pyrite>> Vein and bleb py in cct alt'd section</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	pyrite>> Vein and bleb py in cct alt'd section								
< <min: -="" 184.1="" 190.5:="" 29<="" td=""><th>% pyrite / 0.01% pyrrhotite / 0.01% chalcopyrite>> Po esp. prevalent 184.1-185.75m.</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	% pyrite / 0.01% pyrrhotite / 0.01% chalcopyrite>> Po esp. prevalent 184.1-185.75m.								

Hole: S18-034 From (m) To (m) **Rock Type & Description** From (m) To (m) Length Sample # Au Best Cu Best Ag Best Mo Best Pb Best ppm ppm ppm ppm ppm <<Min: 190.5 - 205: 3% pyrite / 0.01% chalcopyrite / 0.01% pyrrhotite>> Po and cpy blebs assoc with qtz-cct-chl veins. <<Alt: 24.15 - 30.65: intense Biotite / trace Chlorite / weak Calcite>> <<Alt: 30.65 - 31.45: strong Biotite / moderate-strong silicification / weak Chlorite >> <<Alt: 31.45 - 34.3: strong Chlorite / weak-moderate Biotite / moderate-strong Epidote>> Ep assoc with cct veining. <<Alt: 34.3 - 49.88: moderate-strong Chlorite / strong Biotite / moderate Epidote / weak-moderate silicification>> Ep assoc with cct veining. This section varies between dominantly chl and dominantly bt alt'n. <<Alt: 49.88 - 51.85: strong silicification / weak-moderate Potassium feldspar / weak Biotite>> << Alt: 51.85 - 60.5: moderate-strong Biotite / moderate-strong Chlorite / moderate Epidote / trace Haematite / trace Potassium feldspar>> Ep alters cct veins. Tr hem assoc with cct veining, esp. @ 53.75m. Intense ksp+sil alt'n floods out from microfractures 56.95-57.10 and 58.15-58.20m. << Alt: 60.5 - 75.05: strong Chlorite / weak Biotite / weak-moderate Epidote / trace Haematite >> Ep alters cct veins. Wk-mod hem on frac surfaces, esp. 66-68m. <<Alt: 75.05 - 75.4: strong Biotite / trace Chlorite / moderate silicification>> <<Alt: 75.4 - 86.38: strong Chlorite / weak Biotite / moderate-strong Epidote>> Ep alters cct veins. <<Alt: 86.38 - 89.5: strong silicification / moderate sericitic / weak-moderate Biotite>> <<Alt: 89.5 - 90.45: strong Biotite / weak-moderate Chlorite / moderate sericitic / weak silicification>> <<Alt: 90.45 - 93.15: strong silicification / moderate sericitic / weak Chlorite / weak Biotite>> << Alt: 93.15 - 94.58: moderate-strong silicification / moderate-strong sericitic / moderate-strong Chlorite / weak Biotite>> <<Alt: 94.58 - 106: strong Chlorite / moderate-strong Epidote / weak-moderate Biotite / weak silicification>> << Alt: 106 - 107.25: weak Haematite / strong Chlorite / weak-moderate Biotite / moderate-strong silicification>> Hem spots in cct veins << Alt: 107.25 - 118: strong Chlorite / weak Biotite / moderate Epidote / weak-moderate silicification / trace Haematite >> Tr hem assoc with qc veins << Alt: 118 - 156: strong Chlorite / weak Epidote / weak-moderate silicification / trace Haematite >> Hem assoc with gc veins <<Alt: 156 - 183: moderate Chlorite / weak-moderate Biotite / weak-moderate Epidote / weak silicification>> Ep alters cct veins. <<Alt: 183 - 184.1: moderate-strong Calcite / weak-moderate Chlorite / weak-moderate Biotite / weak silicification>> Bleached appearance due to carb flooding. <<Alt: 184.1 - 190.5: moderate-strong Biotite / moderate Chlorite >> Alternating bt-chl alt'n. <<Alt: 190.5 - 205: strong Chlorite / weak-moderate Epidote / weak Biotite / weak-moderate silicification>>

Hole:	S18-034									
From (m) To (r	Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
< <vein: -="" 49.88="" 5<="" td=""><td>85: 3% Qtz>> Vuggy qtz (replacing cct?) veining heals fault and bx.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	85: 3% Qtz>> Vuggy qtz (replacing cct?) veining heals fault and bx.									
< <vein: -="" 51.85="" 7<br="">at low-mod angle</vein:>	3% Calcite / 0.5% Quartz-Calcite>> Ep alters cct veins. Qtz+cct veins typ follow fol'n but also x-cut occas.									
< <vein: -="" 70="" 94.7<="" td=""><td>4% Calcite / 1% Quartz-Calcite>> 94.58-94.75: crkl qtz vn with 1% py on margins.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	4% Calcite / 1% Quartz-Calcite>> 94.58-94.75: crkl qtz vn with 1% py on margins.									
< <vein: -="" 1<="" 94.75="" td=""><td>2: 1% Quartz-Calcite-Chlorite / 2% Calcite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	2: 1% Quartz-Calcite-Chlorite / 2% Calcite>>									
< <vein: -="" 112="" 137<="" td=""><td>5: 3% Calcite / 2% Quartz-Calcite-Chlorite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	5: 3% Calcite / 2% Quartz-Calcite-Chlorite>>									
< <vein: -="" 137.5="" 1<="" td=""><td>3.65: 15% Quartz-Calcite-Chlorite / 1% Calcite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	3.65: 15% Quartz-Calcite-Chlorite / 1% Calcite>>									
< <vein: -<="" 138.65="" td=""><td>05: 1% Quartz-Calcite-Chlorite / 4% Calcite>> Qtz veining decreases 156.5-169.5m.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	05: 1% Quartz-Calcite-Chlorite / 4% Calcite>> Qtz veining decreases 156.5-169.5m.									
< <struc: -="" 24.15="" 2<="" td=""><td>.1501: Contact>> Sharp, qtz veined.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.1501: Contact>> Sharp, qtz veined.									
< <struc: -="" 28="" 37:<="" td=""><td>Strongly foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	Strongly foliated>>									
< <struc: -="" 42="" 49.8<="" td=""><td>: Strongly foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	: Strongly foliated>>									
< <struc: -="" 51.25="" 8<="" td=""><td>.38: Strongly foliated>> 40-50 deg.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.38: Strongly foliated>> 40-50 deg.									
< <struc: -="" 106<="" 95="" td=""><td>Strongly foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	Strongly foliated>>									
< <struc: -="" 108="" 15<="" td=""><td>Strongly foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	Strongly foliated>>									
< <struc: -="" 177="" 18<="" td=""><td>Moderately foliated>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	Moderately foliated>>									
< <struc: -="" 184.1="" 2<="" td=""><td>3.15: Strongly foliated>> Str fol'n ends just before EOH.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	3.15: Strongly foliated>> Str fol'n ends just before EOH.									
		24.15	25.50	1.35	X497267	0.01	67.2	0.28	59.7	14.9
		25.50	27.00	1.50	X497268	0.02	115	0.3	61.5	23.8
		27.00	28.50	1.50	X497269	0.01	160.5	0.26	284	18.6
		28.50	30.00	1.50	X497271	0.01	124	0.16	45.4	9.3
		30.00	30.65	0.65	X497272	0.01	117	0.3	13.3	9.5
		30.65	31.45	0.80	X497273	0.02	259	1.3	16.75	193
		31.45	32.50	1.05	X497274	0.01	267	0.39	26.3	7.3
		32.50	33.25	0.75	X497275	0.01	390	0.37	39	6.5
		33.25	34.50	1.25	X497276	0.01	219	0.29	46	6.6
		34.50	36.00	1.50	X497277	0.005	157.5	0.39	53	9

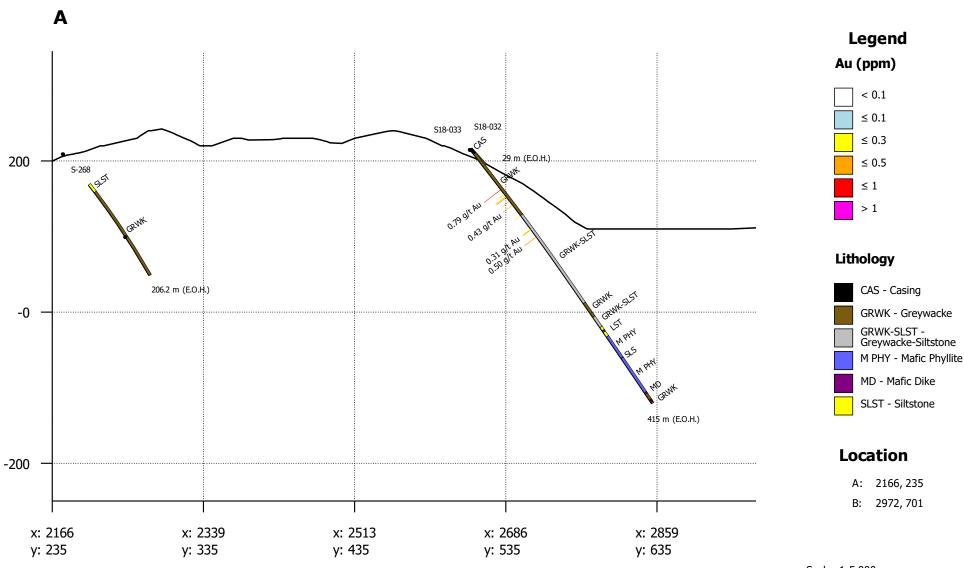
Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
	36.00	37.05	1.05	X497278	0.01	98.4	0.25	24.8	10.6
	37.05	37.90	0.85	X497279	0.08	398	3.76	53.8	448
	37.90	38.60	0.70	X497280	0.04	523	0.8	74.5	15.4
	38.60	39.55	0.95	X497281	0.05	564	1.24	16.9	16.7
	39.55	41.00	1.45	X497282	0.01	356	0.71	31.5	43.5
	41.00	42.50	1.50	X497283	0.005	108.5	0.3	15.8	37.3
	42.50	44.00	1.50	X497284	0.01	159	0.31	18.65	6.9
	44.00	45.50	1.50	X497285	0.02	284	0.58	80.4	13.7
	45.50	47.00	1.50	X497286	0.01	170	0.23	24.5	5.6
	47.00	48.50	1.50	X497287	0.01	180	0.24	40.5	6.1
	48.50	49.88	1.38	X497288	0.005	116	0.54	8.92	30.8
	49.88	50.70	0.82	X497289	0.01	209	0.52	4.83	10.5
	50.70	51.85	1.15	X497291	0.04	537	1.28	42.7	41.6
	51.85	53.00	1.15	X497292	0.02	276	0.68	65.1	34.8
	53.00	54.50	1.50	X497293	0.03	291	0.63	77.4	15.2
	54.50	56.00	1.50	X497294	0.02	160	0.29	31.6	13.2
	56.00	57.50	1.50	X497295	0.02	211	0.86	55.4	23.3
	57.50	59.00	1.50	X497296	0.03	300	0.62	52.9	8.1
	59.00	60.00	1.00	X497297	0.02	190.5	0.52	19.6	6.7
	60.00	60.50	0.50	X497298	0.02	215	0.61	66.2	8.6
	60.50	62.00	1.50	X497299	0.01	105	0.26	59.2	8.8
	62.00	63.15	1.15	X497301	0.005	101	0.26	44.1	8.7
	63.15	63.65	0.50	X497302	0.01	108.5	0.22	23.3	5.8
	63.65	65.00	1.35	X497303	0.02	168.5	0.29	78	6.1
	65.00	66.50	1.50	X497304	0.02	139	0.23	48.5	7.1
	66.50	68.00	1.50	X497305	0.02	144.5	0.25	29.3	5.6
	68.00	69.50	1.50	X497306	0.01	179.5	0.4	68.1	8.4
	69.50	70.50	1.00	X497307	0.01	153.5	0.29	25.6	9.4
	70.50	71.50	1.00	X497308	0.03	458	0.92	59.2	16.8

Type & Description	From (m)		Length	Sample #	Au Best	Cu Best	Ag Best	Mo Best	Pb Best
Sciption	rioini (m)	10 (in)	Length	Sample #	ppm	ppm	ppm	ppm	ppm
	71.50	72.65	1.15	X497309	0.01	181.5	0.31	70.9	6.4
	72.65	73.45	0.80	X497311	0.01	77.6	0.16	124.5	9.5
	73.45	74.55	1.10	X497312	0.005	112	0.24	71.6	10
	74.55	75.05	0.50	X497313	0.005	67.7	0.14	33.3	16.2
	75.05	75.55	0.50	X497314	0.03	277	7.58	53.7	5520
	75.55	76.50	0.95	X497315	0.01	140	1.41	52.6	720
	76.50	78.00	1.50	X497316	0.02	515	0.93	84.7	27.2
	78.00	79.50	1.50	X497317	0.01	217	0.37	26.3	11.9
	79.50	81.00	1.50	X497318	0.01	305	0.41	130.5	13.4
	81.00	82.50	1.50	X497319	0.04	506	4.28	136	4810
	82.50	84.00	1.50	X497321	0.02	322	1.73	76.4	516
	84.00	85.50	1.50	X497322	0.01	199.5	0.93	24.1	133
	85.50	86.38	0.88	X497323	0.02	416	0.71	82.4	49.3
	86.38	87.50	1.12	X497324	0.02	498	0.77	64.7	17.8
	87.50	88.50	1.00	X497325	0.02	376	0.54	186	9.5
	88.50	89.50	1.00	X497326	0.01	201	0.39	44.4	7.4
	89.50	90.45	0.95	X497327	0.02	188.5	0.35	202	18
	90.45	91.15	0.70	X497328	0.01	96.3	0.5	150	30.4
	91.15	91.65	0.50	X497329	0.02	45.7	0.29	19.95	169
	91.65	92.50	0.85	X497331	0.02	89.2	0.27	36.6	94.2
	92.50	93.15	0.65	X497332	0.01	134.5	0.24	37.2	9
	93.15	94.58	1.43	X497333	0.02	96.7	0.24	47.3	11.9
	94.58	96.00	1.42	X497334	0.01	87.9	0.16	26.9	11
	96.00	97.50	1.50	X497335	0.03	213	0.36	36.8	15.6
	97.50	99.00	1.50	X497336	0.02	160	0.29	61.2	10.7
	99.00	100.50	1.50	X497337	0.01	98.3	0.17	70.9	9
	100.50	102.00	1.50	X497338	0.02	154	0.23	84.3	6.1
	102.00	103.50	1.50	X497339	0.02	265	0.34	105	8.9

c	o (m) Rock Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
		105.00	106.00	1.00	X497341	0.04	111	0.49	141.5	33.1
		106.00	107.25	1.25	X497342	0.03	20.8	0.24	77.3	38.3
		107.25	108.50	1.25	X497343	0.02	118.5	0.22	41.2	16.2
		108.50	110.00	1.50	X497344	0.01	130	0.37	69.4	6.7
		110.00	111.50	1.50	X497345	0.02	165.5	0.5	169.5	4.9
		111.50	113.00	1.50	X497346	0.03	264	0.77	46.7	251
		113.00	114.50	1.50	X497347	0.01	115.5	0.34	82.2	64.9
		114.50	116.00	1.50	X497348	0.04	178.5	0.29	248	7.7
		116.00	117.50	1.50	X497349	0.01	167	0.21	105.5	5.8
		117.50	119.00	1.50	X497351	0.02	123.5	0.19	91.3	6.6
		119.00	120.50	1.50	X497352	0.01	112.5	0.19	128.5	7.3
		120.50	122.00	1.50	X497353	0.01	112.5	0.15	42.8	7.6
		122.00	123.50	1.50	X497354	0.02	56.6	0.11	102	27.5
		123.50	125.00	1.50	X497355	0.01	53.2	0.11	128.5	17.1
		125.00	126.50	1.50	X497356	0.01	124.5	0.2	74.2	5.6
		126.50	128.00	1.50	X497357	0.03	75.2	0.12	67.5	5.7
		128.00	129.50	1.50	X497358	0.02	72.2	0.13	40.5	6.4
		129.50	131.00	1.50	X497359	0.03	120	0.2	36	9.3
		131.00	132.50	1.50	X497361	0.03	104	0.18	8.44	10.4
		132.50	134.00	1.50	X497362	0.04	117	0.21	29.1	8.1
		134.00	135.50	1.50	X497363	0.03	85.1	0.14	27.7	9.8
		135.50	136.50	1.00	X497364	0.02	112.5	0.2	37.1	8.2
		136.50	137.50	1.00	X497365	0.03	151	0.23	23.8	9.8
		137.50	138.65	1.15	X497366	0.02	53.7	0.12	58.7	15.3
		138.65	140.00	1.35	X497367	0.03	115.5	0.23	58.4	11.9
		140.00	141.50	1.50	X497368	0.01	95.9	0.13	130.5	7.6
		141.50	143.00	1.50	X497369	0.01	197	0.22	8.28	6.9
		143.00	144.50	1.50	X497371	0.01	132.5	0.29	418	6.9
		144.50	146.00	1.50	X497372	0.01	208	0.27	24.7	4.8

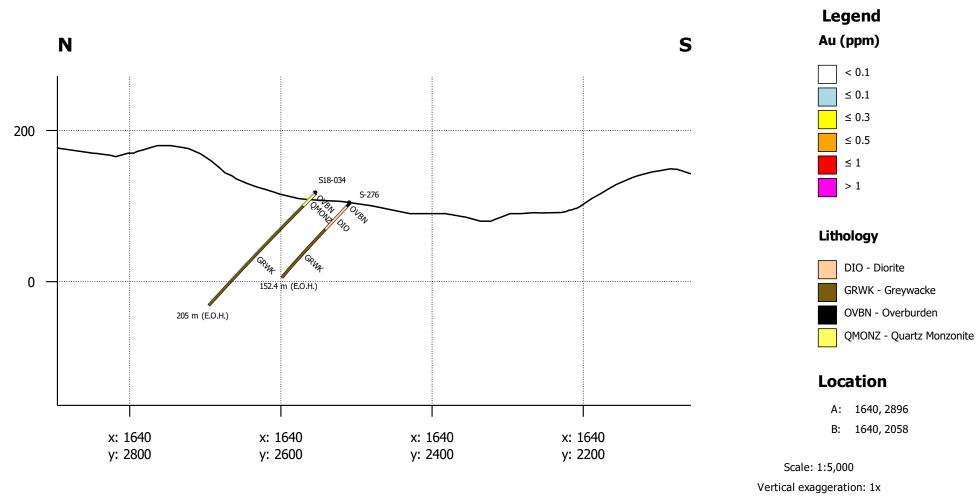
To (m) Rock	Type & Description	From (m)	To (m)	Length	Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
		146.00	147.50	1.50	X497373	0.02	205	0.3	312	7
	—	147.50	149.00	1.50	X497374	0.01	146	0.25	166	7.8
	—	149.00	150.50	1.50	X497375	0.01	149.5	0.25	50	12.6
		150.50	151.50	1.00	X497376	0.03	398	0.47	25.9	7.2
	—	151.50	152.50	1.00	X497377	0.04	433	0.51	87.6	10.3
		152.50	154.00	1.50	X497378	0.02	273	0.37	64.4	15.5
		154.00	154.62	0.62	X497379	0.02	390	0.61	34.3	25.9
		154.62	156.00	1.38	X497380	0.04	411	0.77	211	49.4
		156.00	157.50	1.50	X497381	0.02	201	0.57	76.1	15.3
		157.50	159.00	1.50	X497382	0.005	124.5	0.23	24.6	5.2
		159.00	160.50	1.50	X497383	0.005	133	0.16	3.58	3.3
		160.50	162.00	1.50	X497384	0.005	109.5	0.13	19.45	3.6
		162.00	163.50	1.50	X497385	0.005	159.5	0.24	21.6	23.2
		163.50	165.00	1.50	X497386	0.005	191	0.53	20.9	165
		165.00	166.50	1.50	X497387	0.005	159.5	0.24	11.55	11.8
		166.50	168.00	1.50	X497388	0.005	117.5	0.2	4.42	4.4
		168.00	169.50	1.50	X497389	0.005	121	0.16	1.43	4
		169.50	170.00	0.50	X497391	0.005	55.8	0.13	2.79	10.5
		170.00	171.50	1.50	X497392	0.005	100.5	0.23	15.1	6.5
		171.50	173.00	1.50	X497393	0.005	103.5	0.28	24.9	11.9
		173.00	174.50	1.50	X497394	0.005	105.5	0.23	14	6.1
		174.50	175.50	1.00	X497395	0.005	118.5	0.22	3.95	5.9
		175.50	176.00	0.50	X497396	0.02	217	0.37	6.7	7
		176.00	177.50	1.50	X497397	0.005	96.1	0.17	8.94	7.3
		177.50	179.00	1.50	X497398	0.005	116.5	0.17	1.93	7.4
		179.00	180.50	1.50	X497399	0.005	105.5	0.23	2.38	9
		180.50	182.00	1.50	X497401	0.01	236	0.65	30.9	18
		182.00	183.00	1.00	X497402	0.01	376	0.58	45.8	13
		183.00	184.10	1.10	X497403	0.01	168.5	0.34	17.2	9.7

То	(m)	Rock Type & Description	From (m)	To (m) Length		Sample #	Au Best ppm	Cu Best ppm	Ag Best ppm	Mo Best ppm	Pb Best ppm
			184.10	185.50	1.40	X497404	0.02	69.6	0.24	3.34	4.9
			185.50	187.00	1.50	X497405	0.01	73.8	0.2	12.85	5.8
			187.00	188.50	1.50	X497406	0.02	103	0.38	3.3	12.4
			188.50	190.00	1.50	X497407	0.005	140	0.21	2.13	7
			190.00	191.50	1.50	X497408	0.005	155	0.24	2.31	7.8
			191.50	193.00	1.50	X497409	0.005	154.5	0.2	20.9	6.5
			193.00	194.50	1.50	X497411	0.01	118	0.14	14.6	5.5
			194.50	196.00	1.50	X497412	0.02	196.5	0.24	3.76	5.4
			196.00	197.50	1.50	X497413	0.08	98.9	0.15	4.57	4.7
			197.50	199.00	1.50	X497414	0.01	108.5	0.25	25.9	6.7
			199.00	200.50	1.50	X497415	0.01	154.5	0.36	8.89	8.7
			200.50	202.00	1.50	X497416	0.01	125	0.31	5.39	7.6
			202.00	203.40	1.40	X497417	0.01	105.5	0.3	11.4	6.8
			203.40	204.20	0.80	X497418	0.01	78.7	0.28	5.7	10.2
			204.20	205.00	0.80	X497419	0.01	57.3	0.18	6.67	6.3


End of Hole @ 205

APPENDIX III:

Drilling Cross Sections


Section 2650E Looking North West (+/- 25 m)

Vertical exaggeration: 1x

Scale: 1:5,000

Section 2650N Looking West (+/- 25 m)

APPENDIX IV:

Assay Certificates

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11- DEC- 2018 Account: SKERES

CERTIFICATE KL18294778

Project: Snip

P.O. No.: S- C18- 120

This report is for 11 Drill Core samples submitted to our lab in Kamloops, BC, Canada on 20- NOV- 2018.

The following have access to data associated with this certificate:

PAUL GEDDES ADRIAN NEWTON	RAEGAN MARKEL COLIN RUSSELL	MIKE MAYER

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
LOG- 21	Sample logging - ClientBarCode	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 32	Pulverize 1000g to 85% < 75 um	
BAG- 01	Bulk Master for Storage	
LOG-23	Pulp Login - Rcvd with Barcode	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA26	Ore Grade Au 50g FA AA finish	AAS
ME- MS61	48 element four acid ICP- MS	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18294778

Sample Description	Method	WEI-21	Au- AA26	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61
	Analyte	Recvd Wt,	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0₌01	0.01	0.01	0, 2	10	0.05	0.01	0_01	0.02	0.01	0,1	1	0.05	0, 2
X507801		3.43	0.05	2.16	7.80	14.1	1000	1 41	1.97	1 29	0.25	15.70	8.8	34	3.59	386
X507802		2.46	0.03	4.82	8.04	24.4	870	1 35	0.54	0.63	0.10	22.9	11.2	50	4.40	452
X507803		2.36	0.04	4.29	7.07	38.9	1210	0 94	0.52	0.82	0.10	26.0	13.8	55	2.96	466
X507804		2.75	0.06	3.98	7.37	30.5	1460	0 96	0.58	0.69	0.11	22.3	15.4	59	3.61	604
X507805		2.89	0.06	4.14	6.86	63.3	1190	0 92	0.50	1 65	0.33	19.70	13.3	49	1.96	851
X507806		3.37	0 03	2 43	6.28	143.5	760	0 95	0.47	1 99	0.51	17.50	10_0	50	1.76	398
X507807		3.09	0 06	4 89	7.26	175.5	930	1 07	2.15	1.11	0.54	21.1	16.0	49	3.08	503
X507808		3.47	0 07	9 37	8.11	70.0	1710	0 88	0.71	1 41	0.80	21.5	10_8	37	2.11	522
X507809		1.40	0 17	5 63	8.48	34.0	2410	0 79	0.54	1 23	6.53	28.9	9.5	40	2.33	259
X507810		0.12	1 05	0 16	7.88	30.1	390	0 81	0.18	5 27	0.20	26.8	30_0	294	1.07	113.0
X507811		2.54	0.13	7.98	7.70	38-7	1210	1.06	1_75	0.33	0.97	25.6	15.3	66	3.42	605

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11- DEC- 2018 Account: SKERES

 (\mathbf{x})

Project: Snip

CERTIFICATE OF ANALYSIS KL18294778

Sample Description	Method	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME- MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0_01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	S	0.05	0.03	0.1	0.2	10
X507801		2.42	18 15	0.14	0 4	0 022	5,33	7.9	24,5	1.12	768	22.3	1.14	6 5	25.8	1110
X507802		2.99	19 15	0.17	0 4	0.021	4,89	11.1	20,7	0.93	503	43.5	1.87	4 6	38.6	1370
X507803		2.94	15 75	0.18	0 5	0.028	4,35	12.2	12,6	0.75	582	25.4	1.56	3 9	45.2	1750
X507804		3.78	16 85	0.15	0 3	0 032	4,98	11.6	12,5	0.95	623	53.3	1.14	4 6	47.1	1230
X507805		3.13	14 10	0.17	0 4	0 042	4,66	9.9	12,7	0.97	893	106.0	1.44	4 2	42.1	1220
X507806		2.49	13 80	0.14	0.4	0.027	3.78	9.3	17.0	1 09	1020	63.8	0.86	3.9	30.0	1040
X507807		4.24	16 00	0.16	1.2	0.040	4.06	11.5	16.1	0.93	557	119.0	1.49	4.2	43.3	1390
X507808		2.76	16 30	0.16	0.4	0.038	5.15	10.1	17.1	0 83	795	66.5	0.86	5.1	32.8	1310
X507809		3.18	14 90	0.15	0.5	0.049	5.11	13.0	15.8	0.80	1430	49.0	0.40	5.4	30.7	1340
X507810		5.18	15 45	0.13	1.2	0.054	0.97	12.1	12.2	4.17	1090	4.30	1.92	6.7	221	380
X507811		4.01	15.75	0.15	0.4	0.034	4.40	11.7	15.3	0.64	447	46.5	1.75	3.6	30.5	1460

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18294778

Sample Description	Method	ME- MS61	ME-MS61	ME-MS61	ME- MS61											
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOD	0_5	0.1	0.002	0.01	0.05	0_1	1	0.2	0.2	0,05	0.05	0.01	0,005	0.02	0.1
X507801		12.1	115 0	0.091	1.03	6.57	11.3	7	1.0	224	0.39	0.09	2.44	0.225	1.52	0_6
X507802		11.9	156 5	0.122	1.90	10.70	15.2	12	1.2	205	0.28	0.08	2.76	0.216	1.50	0_7
X507803		23.1	116 5	0.073	1.95	11.85	12.8	13	1.1	249	0.23	0.25	2.20	0.182	1.32	0_7
X507804		16.5	126 0	0.192	2.69	6.75	12.9	14	1.1	273	0.26	0.24	2.22	0.206	1.62	0.6
X507805		19 9	115.5	0.289	2.31	10.15	11.7	12	0.9	398	0.23	0.10	2.33	0.183	1,23	0.7
X507806		30 1	114.0	0.251	1.38	20.2	11.5	10	0.9	348	0.23	0.08	2.36	0.187	1.06	0.5
X507807		86 7	140.5	0.516	3.31	27.8	14.2	15	1,1	318	0.24	0.15	2.73	0.190	1.35	0.8
X507808		24.7	125.5	0.250	1.97	32.4	13.1	9	1.6	365	0.30	0.06	2.23	0.240	1.46	0.6
X507809		219	102.5	0.061	1.69	17.25	13.6	7	1.6	312	0.31	0.06	2.52	0.249	1.91	0.8
X507810		13.0	24.9	<0.002	0.05	1.53	18.2	<1	1.5	350	0.41	0.05	3.79	0.228	0.23	1.5
X507811		157.0	139.0	0.111	2.41	14.70	14.9	18	1.0	190.5	0.19	0.17	2 20	0.192	1.38	0.8

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME- MS61 V ppm 1	ME- MS61 W ppm 0,1	ME- MS61 Y ppm 0,1	ME-MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	
X507801 X507802 X507803 X507804 X507805		109 155 132 150 131	1.9 1.8 1.9 1.7 1.9	9.9 11.5 11.5 9.5 9.6	52 40 44 51 66	13.8 13.8 13.2 11.1 13.2	
X507806 X507807 X507808 X507809 X507810		117 152 147 146 125	2 2 1 9 2 8 3 2 0 8	93 103 84 81 175	79 116 117 806 115	11,4 24,1 11,4 14,5 25,6	
x507811		215	2.8	12,1	231	15.2	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 11- DEC- 2018 Account: SKERES

Project: Snip

		CERTIFICATE CO	MMENTS	
			YTICAL COMMENTS	
Applies to Method	REE's may not be totally s ME- MS61	soluble in this method.		
			ATORY ADDRESSES	
Applies to Method:	Processed at ALS Kamloo BAG- 01	ps located at 2953 Shuswap Drive, Ka CRU- 31	amloops, BC, Canada.	
Apples to Method	LOG- 23 WEI- 21	PUL- 32	CRU- QC PUL- QC	LOG- 21 SPL- 21
Applies to Method	Processed at ALS Vancouv Au- AA26	ver located at 2103 Dollarton Hwy, N ME- MS61	orth Vancouver, BC, Canada.	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

CERTIFICATE KL18298166

Project: Snip

P.O. No.: S-C18-122

This report is for 99 Drill Core samples submitted to our lab in Kamloops, BC, Canada on 23-NOV-2018.

The following have access to data associated with this certificate:

PAUL GEDDES ADRIAN NEWTON	RAEGAN MARKEL COLIN RUSSELL	MIKE MAYER
------------------------------	--------------------------------	------------

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 21	Sample logging - ClientBarCode	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 32	Pulverize 1000g to 85% < 75 um	
BAG- 01	Bulk Master for Storage	
LOG-23	Pulp Login - Rcvd with Barcode	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA26	Ore Grade Au 50g FA AA finish	AAS
ME- MS61	48 element four acid ICP- MS	
Ag- OG62	Ore Grade Ag - Four Acid	
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES
Zn- OG62	Ore Grade Zn - Four Acid	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS

ALS Canada Ltd

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298166

Sample Description	Method	WEI- 21	Au- AA26	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61
	Analyte	Recvd Wt	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0_01	0-01	0:01	0+2	10	0=05	0+01	0:01	0.02	0.01	0.1	1	0-05	0.2
X507812		3.68	0 06	6.08	7.11	27 4	860	0.97	0 74	1 26	0.20	25.8	15.7	47	2.93	904
X507813		3.08	0 05	3.27	8.02	25 3	1390	1.03	0 30	0 77	0.11	25.2	10.4	60	3.06	432
X507814		3.32	0 04	3.63	8.28	24 8	1280	1.18	0 30	0 61	0.14	22.1	11.9	56	3.33	557
X507815		4.65	0 06	3.61	7.78	50 5	890	1.19	0 47	0 74	0.32	23.3	15.0	58	2.79	451
X507816 X507817 X507818		3 20 2 45 3 89	0 03 0 04 0 07	1 98 2.18 2 98	7.43 8.06 7.02	32 9 29 9 57 4	530 950 760	1.16 1.20 1.08	0.29 0.58 0.84	1.34 1.01 2.21	0.41	23.2 20.7 20.3	12.2 8.6 12.1	74 60 40	3.47 3.03 2.95	378 270 460
X507819		1.54	0.03	2.25	7.93	66.2	820	1,06	0.68	1.58	0.61	24.6	6 2	39	2.38	312
X507820		1.19	<0.01	0.02	0.10	0.9	30	0,06	0.02	34.4	<0.02	1.09	0 6	1	<0.05	3.0
X507821		2.69	0.12	8.94	7.14	95.1	400	0,85	1.56	0.53	1.92	25.2	20 1	46	2.98	581
X507822		1.67	0.06	2 92	7 96	27.6	540	0.98	0.21	2 86	0.96	19.15	25.9	44	4 29	849
X507823		1.55	0.04	1 83	9 07	24.1	820	1.44	0.32	2 65	0.39	21.3	18.4	56	5 24	518
X507824		3.44	0.07	2 36	7 85	20.1	750	1.15	0.23	2 95	0.26	21.5	23.9	48	6 36	601
X507825		4.15	0.08	3 60	8 10	22.8	620	1.01	0.42	2 80	0.13	22.1	35.8	41	8 64	767
X507825		2.60	0.08	2 45	8 57	23.2	580	1.18	0.48	1 76	0.08	13.40	41.9	49	9 45	873
X507827		3.18	0 07	1 55	8.78	19.2	860	1.31	0.26	2.47	0.06	22.8	27.6	60	10.15	498
X507828		5.32	0 12	1 86	8.71	21.7	620	1.19	0.66	2.11	0.13	20.3	26.8	58	9.88	529
X507829		4.00	0 09	2 18	8.47	21.3	770	1.25	0.42	2.92	0.12	24.5	28.3	53	9.09	621
X507830		0.13	4 61	>100	1.47	47.6	210	2.81	0.79	10.10	10.35	12.05	2.4	13	2.13	100.0
X507831		1.55	0 05	1 90	8.17	20.4	560	0.89	0.30	2.84	0.08	22.0	38.2	46	7.80	720
X507832		2.05	0 05	1.78	8 52	23.1	530	1.17	0.50	3.87	0.10	18.70	33.7	51	4.64	624
X507833		2.75	0 07	2.65	10.10	25.7	570	1.72	0.57	0.75	0.13	22.8	44.5	66	3.10	958
X507834		3.22	0 06	2.49	10 55	21.0	670	1.76	0.44	0.59	0.11	36.1	36.4	83	3.84	1035
X507835		2.41	0 06	2.43	8 54	21.0	500	1.21	0.77	1.54	0.09	20.8	33.4	51	8.75	811
X507836		2.49	0 06	2.49	7 59	19.6	860	0.79	0.42	1.74	0.06	26.6	22.1	56	2.91	837
X507837		2.76	0 06	2.78	8 12	17.8	860	0.79	0.30	1 46	0.39	23.0	22.3	82	2.45	778
X507838		2.48	0 05	1.25	6 80	15.9	740	0.79	0.67	2 14	0.04	15.15	22.3	62	2.16	432
X507839		3.30	0 03	1.69	8 15	15.6	660	1.10	0.81	1 37	0.06	14.05	33.6	108	7.24	630
X507840		4.18	0 04	1.46	8 27	19.6	850	1.03	0.53	1 66	0.07	17.95	34.7	89	6.49	615
X507841		4.55	0 04	0.79	7 52	19.1	1480	1.20	0.41	2.96	0.06	20.3	21.1	56	3.86	313
X507842		3.12	0.03	0.84	8-16	22.1	990	1.40	0.32	2.98	0.04	16.00	28.7	78	6.49	445
X507843		2.81	0.02	0.88	8-83	15.0	920	1.12	0.28	1.59	0.04	17.40	18.5	52	6.10	329
X507844		2.45	0.08	2.73	7-13	17.4	840	0.93	0.45	2.47	0.14	15.00	13.2	58	2 79	317
X507845		4.20	0.05	2.56	6-63	23.3	850	1.05	0.31	3.15	1.18	16.75	14.0	62	2 38	260
X507846		4.17	0.03	2.03	8-03	22.9	850	1.33	0.44	2.30	0.12	15.05	23.0	68	5.64	404
X507847		3.82	0.05	4.50	7.80	28.2	830	1.08	0.85	2.08	0.08	14.60	32.7	53	4.53	466
X507848		4.07	0.05	2.20	7.97	22.2	870	1.26	0.35	2.20	0.10	19.30	21.7	53	3.68	270
X507849		3.79	0.06	1.86	8.15	25.1	820	1.45	0.26	1.73	0.14	20.3	20.9	60	3.11	290
X507850		0.12	1.12	0.21	7.70	32.4	390	0.73	0.19	5.33	0.27	29.2	32.6	315	1.25	115.0
X507851		4.23	0.09	4.74	7.78	32.5	580	1.39	0.70	1.83	0.17	32.5	31.5	60	2.78	467

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298166

	Method	ME- MS61														
	Analyte	Fe	Ca	Ge	Hf	In	к	La	Li	Mg	Mn	Mo	Na	Nb	Ni	Р
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LÓD	0.01	0.05	0.05	0_1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
x507812		3.43	16.80	0.19	0.5	0.051	4.76	12.0	14.8	0,95	762	131.0	1.35	4.5	45.6	1230
X507813		3.08	16.90	0.14	0.4	0.070	4.51	11.6	10.3	0.81	616	21.3	2,44	5.9	35.4	1390
X507814		2,87	19.30	0.17	0.7	0_041	4.67	10.6	12.9	0.72	578	14.60	2.49	5.1	35.4	1510
X507815		3.26	17.80	0.16	0.5	0.028	4.71	11.4	19.8	0.75	502	81.5	0.92	4.0	49.0	1390
X507816		2.62	15.80	0.14	0.5	0.017	3.67	11.6	16_7	1.14	978	14.85	1.70	3.9	42.2	1270
X507817		3.63	16.65	0.15	0.6	0.021	4.67	11.0	20.8	0_98	599	41.5	1.38	5.0	23,1	1170
X507818		3.18	15,60	0,17	0.5	0_030	4.03	10.2	19.7	1,49	984	83.5	1,18	4.6	34.9	1110
X507819		2.24	17.10	0.14	0.4	0.018	4,17	11.2	16.3	1.00	1240	44.8	1,88	3,8	28.5	1080
X507820		0,12	0.29	0.18	<0.1	<0.005	0.03	1.1	1.0	1,54	110	0.29	0.04	0,1	0.6	70
X507821		5.05	14,90	0.18	0.3	0.047	5.09	10.7	15.9	0.67	640	211	0.45	3.4	33.8	1190
X507822		4.55	15 70	0.20	0.2	0.036	4.72	9.1	28.8	1,96	1290	66.0	1.08	3.4	32.6	1600
X507823		4.05	19 70	0.15	0.2	0.047	5.11	9.5	40.2	2.09	1120	127.0	0.66	3.1	26.7	1560
X507824		3.97	17.85	0.15	0.2	0.053	4.43	9.4	32.6	2.46	1300	119.0	1.50	3.9	33.7	1350
X507825		5.12	17,20	0,16	0.2	0.058	4,27	10.3	27.8	2.84	1350	118.0	1.51	3.0	33,5	1380
X507826		6.13	16.60	0.17	0_1	0.025	4.20	62	28.9	2,88	690	23.7	2,06	2.3	38.8	1470
X507827		4.64	17,55	0.15	0.2	0.061	4.72	10.6	33.3	3,05	1010	239	1,42	2.6	35.2	1520
X507828		5.50	16.95	0.18	0.1	0.041	4.89	9.4	31.2	2.91	987	303	1.03	2.1	38.7	1510
X507829		4,81	17.45	0.16	0.2	0.069	4.65	11.2	30.7	2,81	1260	284	1.03	2.5	30.3	1450
X507830		2.16	3.34	0.08	0.5	0.708	1.17	6.4	42.4	0.10	1980	6.85	0.04	2.2	10.3	110
X507831		5.41	15.20	0.17	0.2	0.113	4.03	9_9	20_9	2.51	1020	304	1.85	2.4	28.3	1400
X507832		4.73	16.70	0.16	0.2	0.098	4.30	8.1	30.3	2.35	1520	34.0	0.52	3.2	27.0	1730
X507833		4.81	22.3	0.18	0.2	0,135	6.30	9.6	41.3	1.06	359	54.7	0.08	3.4	40.4	1840
X507834		3.37	24.9	0.15	0_1	0.088	6.78	17.5	43.5	1.11	289	1010	0.08	3.5	34.7	2030
X507835		4.75	15.25	0.15	0.3	0.087	4.09	8.6	22.1	2.19	951	88.7	2.16	3.0	37.5	1550
X507836]	2.86	14.05	0,18	0.2	0.074	4.74	11,9	13.3	1.10	818	72.5	2:13	3.6	34.2	1360
X507837		2,96	14 95	0.17	0.1	0.041	6.23	10.9	21.4	1,00	636	183.5	1.21	2.7	34.7	1420
X507838	0	3:78	13.30	0.18	0.3	0.040	3.25	7.0	21.5	1.25	719	226	1.05	3.4	35.3	1220
X507839		4.61	17 25	0.15	0.3	0_044	4.01	6.8	28.5	2.34	552	66.7	2.36	2.7	42.2	1410
X507840		4,70	16.35	0.18	0.2	0,053	3.44	8.0	22.5	2.16	636	57.3	2.94	3.7	45.6	1500
X507841		3.59	15_70	0.14	0.5	0.074	4.05	8.3	19.3	1,80	803	28.2	2.01	6 5	38.2	1330
X507842		4.30	18.35	0.16	0.3	0.074	4.50	6.9	34.4	2.53	853	28.9	1.71	3.0	41.8	1570
X507843		2.88	16.60	0.15	0.3	0.023	4 16	78	29.1	1.94	606	49.6	2.61	3.5	35.1	1680
X507844		2.97	15.50	0.14	0.2	0.029	4.44	7.3	29.5	1.65	881	316	0.44	2.8	24.6	1220
X507845	1	3.01	14.95	0.14	0.5	0.030	3.90	7.3	29.3	1.68	1520	174.5	0.39	5.2	30.4	1190
X507846		3.65	16.05	0.14	0.4	0.045	3.96	6.9	21.9	1.96	855	55.6	2.15	3.7	40.5	1520
X507847		4.59	16 25	0.15	0.3	0.056	3.92	6-1	18.4	1.82	1370	28.5	1.30	2.7	37.6	1580
X507848		3.13	17.35	0 13	05	0.045	3,91	9.0	17.8	1.46	695	8.41	1.56	5.6	36.0	1610
X507849		2.84	17.75	0.15	0.4	0.038	4.34	9.5	22.2	1.30	667	31.8	0.96	5.0	31.7	1450
X507850		5.10	15.30	0_13	1.3	0.059	0.93	13.4	11.3	4.09	1050	4.38	1.88	72	212	390
X507851		5.79	18 40	0.13	0.5	0.064	4.53	14.5	23.5	1.33	829	365	0.05	4.3	40.3	1480

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOD	0.5	0:1	0.002	0.01	0.05	0_1	1	0.2	0,2	0.05	0,05	0_01	0.005	0.02	0⊾1
X507812		14 2	124 5	0 795	2 35	9.22	13.8	15	1.1	261	0.28	0.16	2.58	0.175	1.36	0.7
X507813		11 2	115 0	0 057	1 58	5.90	13.4	15	1.4	277	0.35	0.07	2.59	0.214	1.38	0.8
X507814		10.7	129.5	0.047	1.60	6.89	17_0	12	1.3	264	0.30	0,06	2.68	0.203	1.41	1.1
X507815		28.2	141.0	0.482	2.27	10.00	16.1	13	1.2	173.0	0.24	0.10	2.62	0.201	1.47	0.7
X507816		10.8	128.5	0.063	1.56	12.45	13_0	12	0.8	212	0.26	<0.05	2.80	0.182	1.37	0.8
X507817		43 9	148 0	0.108	2.04	16.25	18 1	12	1.0	375	0.29	0.08	4.00	0.193	1.55	0.8
X507818		17 8	136 0	0.248	2.33	11.55	15 4	11	1.0	505	0.27	0.11	2.92	0.186	1.35	0.7
X507819		56.2	126 0	0 121	1.21	19 15	11.0	6	1.0	390	0.21	<0.05	2.32	0.170	1.31	0.4
X507820		1.0	0 8	<0 002	0.01	0 11	0.2	1	<0.2	80.2	<0.05	<0.05	0.07	0.006	<0.02	0_1
X507821		193.0	145 0	0 599	3.32	44 3	13.2	19	1.4	191.0	0.22	0.17	2.00	0.173	1.67	0.6
X507822 X507823		18.8 20.7	144_0 172_0	0.204	3 33 2 77	12.90 12.45	20.5 30.0	14 14	1.4 2.6	382 275	0.17 0.17	0.08 0.07	1.22 1.12	0.275 0.344	1.63 1.71	0.4 0.4
X507824		14.4	143.5	0.435	2 67	12.60	27 4	16	23	295	0.21	<0.05	1.18	0.318	1.64	0.3
X507825		8.7	161.0	0.394	3 54	11.35	28 9	27	23	255	0.16	0.07	0.98	0.335	1.85	0.3
X507826		5.4	148.5	0.089	4 94	8.88	22.8	21	17	224	0.13	0.10	0.69	0.295	2.11	0.2
X507827		5.5	170 0	0.947	2 94	11.00	24.1	13	2.1	236	0.13	0.11	0.86	0.287	2.02	0.3
X507828		12.0	175 5	0.989	4 22	12.20	23.5	17	1.7	200	0.10	0.10	0.71	0.269	2.10	0.2
X507829		10:4	186.0	0.950	3.30	11,50	26.9	17	2.0	255	0.12	0.21	0.91	0.306	1.93	0.3
X507830		5230	58.4	0.003	0.28	53,2	1.5	1	3.3	317	0.21	0.64	3.37	0.025	0.92	1.3
X507831		7.7	148.0	0.890	3.92	8,28	25.9	26	1.9	344	0.12	0.29	0.90	0.286	1.84	0.3
X507832 X507833		4.5 9.4	133.5 197.0	0 134 0 211	3 31 5 04	6.19 7.99	27.4 35.8	15 23	2.0 2.3	279 59.9	0.17 0.16	0 20 0 56	1.03 1.24	0.318 0.402	1.55 1.61	0.3
X507834		6.0	208	2.13	3.26	8.64	29 1	12	2.0	54.7	0.16	0.27	1 40	0.349	1.83	0.3
X507835		5.7	156.5	0.280	3.76	8.53	20 5	19	2.1	260	0.16	0.22	1 44	0.226	2.00	0.5
X507836		5.6	116.0	0.167	2.37	5.97	16 1	17	1.3	304	0.21	0.18	2 10	0.180	1.25	0.5
X507837		8.5	148.0	0.468	2.75	15.95	18.9	17	1₌4	275	0.13	0.18	1.33	0.153	1.54	0.2
X507838		5.8	70.5	0.511	3.23	4.66	13.6	18	1.8	246	0.19	0.14	2.02	0.165	0.89	0_4
X507839		5.1	132.5	0.101	3,55	6.45	21.8	23	1.3	262	0.15	0.17	1.23	0.221	1.60	0.4
X507840		4.4	106.0	0.138	3,45	5.46	19.8	26	1.3	316	0.20	0.16	1.62	0.230	1.34	0.5
X507841		4.5	93.5	0.108	2,38	6.78	16.4	19	2.1	344	0.33	0.12	2.02	0.267	1.19	0.7
X507842		3.4	120 0	0.111	2.86	7.29	21.1	19	1.4	337	0.16	0.13	1.08	0.260	1.63	0.3
X507843		3.6	145.5	0.299	1.74	10.05	18.5	14	0.8	352	0.20	0.13	1.93	0.263	1.48	0.5
X507844		11 8	114.5	0.816	2.30	46.4	14.5	11	2.4	435	0.14	0.15	1.39	0.191	1.12	0.2
X507845		25 5	90.3	0.654	2.25	23.5	14.9	12	1.2	350	0.28	0.16	2.06	0.211	0.93	0.5
X507846		18 6	123.5	0.167	2.67	10.75	18.4	18	1.3	327	0.20	0.16	1.80	0.238	1.43	0.4
X507847 X507848		20 1 4 9	97 8 107 0	0 170 0 047	3.97 2.32	13.80 9.68	17 6 17.7	20 17	1.5 1.2	262 322	0.16 0.31	0.20	1.41 2.25	0.203 0.237	1.55 1.24	0_4 0.7
X507849		4 2	140.0	0.078	2.22	8,86	16.3	15	1.2	254	0.28	0.09	2:46	0.232	1.42	0.7
X507850		14 0	27.3	0.002	0.05	1.45	20.0	1	1.5	344	0.43	0.05	4.18	0.219	0.22	1.3
X507851		15 5	165.5	0.354	5.58	18.35	18-2	23	3.8	198.5	0.20	0.17	2.42	0.225	1.37	0.7

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298166

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0=1	ME- MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0:5	Ag-OG62 Ag ppm 1	Zn- OG62 Zn % 0.001	
X507812 X507813 X507814 X507815 X507816		126 147 180 159 142	19 21 25 26 15	12.5 9.5 13.5 13.6 12.9	65 49 51 55 69	14.2 13.9 19.4 14.0 15.7			
X507817 X507818 X507819 X507820 X507821		166 136 74 2 140	2.1 1.9 2.0 <0.1 2.5	11.8 12.2 12.1 2.1 10.9	57 43 90 4 265	19.5 16.6 11.4 1.6 9.8			
X507822 X507823 X507824 X507825 X507825		193 264 240 256 231	3.8 3.5 2.8 3.1 2.5	12.3 10.5 9.3 9.2 7.8	142 77 76 65 49	5.2 4.2 4.7 3.6 2.0			
X507827 X507828 X507829 X507829 X507830 X507831		227 225 240 28 222	2.2 3.2 2.1 2.8 1.6	9.6 10.4 10.4 3.4 9.1	44 57 69 865 64	4.2 2.1 3.9 13.1 4.0	130		
X507832 X507833 X507834 X507835 X507835		237 317 296 198 189	3.9 3.3 3.7 1.7 2.0	10 9 12 9 13 9 8 3 8 5	54 29 34 68 32	3.9 4.5 3.0 8.3 9.3			
X507837 X507838 X507839 X507840 X507841		156 142 196 191 174	1.6 1.9 1.5 1.3 1.5	8 8 8 2 9.5 8 9 7 3	62 30 47 53 41	3.0 8.2 9.0 7.8 14.4			
X507842 X507843 X507844 X507845 X507845		216 188 154 162 192	1.7 2.1 3.0 3.3 1.9	8.7 10 2 7.8 9.4 8.8	52 43 37 192 53	7.4 12.0 6.0 16.6 9.5			
X507847 X507848 X507849 X507850 X507851		181 187 192 127 180	2.7 2.7 2.6 0.8 2.8	8 8 9 9 10 7 19 5 8 7	52 42 44 113 43	8.8 17.2 12.8 28.6 13.5			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298166

		0/						A.								
	Method	WEI- 21	Au- AA26	ME- MS61												
	Analyte	Recvd Wt.	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
Sample Description	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample Description	LOD	0.02	0.01	0,01	0.01	0 2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
X507852		3.70	0.03	1.39	8.65	26.1	980	1.62	0.29	2.54	0,18	24.3	23.2	54	2.86	357
X507853		2.50	0.05	1.89	7.82	33.4	690	1.26	0.34	2.81	1.87	23.7	27.1	57	2.54	432
X507854		3.96	0.09	4.89	7.23	30.8	470	0.99	0.77	2.72	8.55	25.7	28.2	45	1,99	935
X507855		0.96	0,79	11.40	7.64	43.0	330	1 19	0.71	2,10	2.91	18.25	23.0	46	2.15	3560
X507856		2.98	0.06	2:31	6.96	41.8	290	1.00	0.67	2.63	2.36	17.90	20.1	51	1,98	271
X507857		3.56	0.07	1,70	6.74	54.8	650	1.04	0,69	3.24	2.44	19.55	34.0	43	2.56	275
X507858	0	3.88	0.05	1,36	6.78	38.0	1040	1,02	0,47	3.00	7.25	9.57	20.8	40	2.03	260
X507859		3.86	0_02	0,91	7.07	17.3	1220	1.00	0.36	2.72	2.14	10.85	19.0	37	2,71	158.5
X507860		1.11	<0.01	0.01	0,14	0.4	20	0.10	0.10	32.5	0.02	1,19	0.5	2	< 0.05	2.5
X507861		2,90	0.03	1,66	7.87	18.5	790	0.88	0,40	2.22	1.58	9.49	27.2	34	2.49	272
X507862		3.15	0.21	0,68	8.29	28.4	780	1.17	0.20	4.39	1.96	14.05	22.1	40	1.88	95.8
X507863		4.15	0 14	1,24	7_20	50.7	400	0.87	0.64	6.49	1.59	15.55	21.5	43	1.04	337
X507864		3,10	0.02	0.96	6.88	33.2	580	0.92	0.40	5.63	1.00	15.35	14.1	40	1.06	204
X507865		1.84	0.43	8.63	7.07	94.3	330	1,33	0.82	4.03	80.4	15.50	13.6	43	1.31	442
X507866		1,91	0_19	1.99	7,40	57.0	930	1,35	0.52	4.10	13.40	23.7	14.3	37	1.60	183.5
X507867		2.76	0.40	2.48	7,68	48.2	1230	1,18	0.48	3.23	29.2	17.10	27.2	50	1_89	201
X507868		3.89	0.15	1.18	7.12	39.5	1000	1,08	0.45	4.54	4.67	23.8	15.2	49	1.37	191.5
X507869		4.04	0 07	2.15	7.44	26.9	620	1,15	0.51	4 18	1.93	9.40	15.0	35	0.67	292
X507870		0.13	4 93	>100	1.51	56.9	220	3.34	0.85	10.30	10.35	12.35	2.4	14	2.20	104.0
X507871		3.93	0.09	2.61	7.21	39.3	600	1.08	0.92	6.15	1.58	17.75	47.6	78	1.06	512
X507872		4.16	0.10	0.91	7.51	59.6	760	1.27	0.75	6.48	1.29	16.00	37.9	67	3.38	262
X507873		1.47	0.27	6.31	5.87	153.5	310	1.00	1.75	5.62	117.0	23.3	247	55	1,90	320
X507874		3.95	0.07	1.58	7.52	71.0	690	1.44	1.28	3.52	4.58	14.10	32.6	60	2.62	451
X507875		3.59	0.04	0.78	8.09	59.6	700	1.43	0.47	5.23	0.17	17.00	17.7	69	2,51	264
X507876		3.77	0.03	0.98	8.01	37.7	530	1.30	0.39	5.37	0.17	30.3	11.0	58	2.17	325
X507877		3.06	0.03	1.39	7.40	43.2	390	1.38	1.18	5.63	4.52	18.70	30.0	39	1,96	209
X507878		1.36	0.39	0.98	4.83	197.5	260	1.07	3.76	11.90	0.09	41.6	377	21	1.06	12.7
X507879		2.81	0.03	0.74	7.96	21.4	460	1.16	0.82	5.82	0.13	21.0	20.0	55	2.07	203
X507880		1.31	0.01	0.64	7.86	25.7	590	1.45	0_39	5.25	0.10	16.75	11.3	56	2.18	156_5
X507881		3.30	0.01	0.62	7,87	27.7	920	1.34	0.29	7.51	0.33	25.5	22.2	41	2.11	104.5
X507882		4.94	0.01	0.64	7.59	36.8	670	1.45	0.42	7.22	0.12	20.6	20.8	41	1,88	160.5
X507883		3.94	0.01	0.47	7.64	39.5	550	1,34	0.42	3.91	0.09	13.30	29.6	55	2.31	161.0
X507884		4.01	0 01	0.52	7.96	31.2	530	1,43	0.47	2.64	0.09	8.90	28.7	59	2,41	186.0
X507885		3.99	0.02	0.78	7.96	37.9	550	1.32	0.67	3.24	0,11	10.35	35.6	81	2.40	283
X507886		4.09	0.02	0.56	8.11	26.7	480	1.35	0.46	3.98	0.11	13.65	21.8	69	2.28	212
X507887		3.20	<0.01	0.45	7.71	20.7	580	1.25	0.37	6.92	0.20	29.1	13.9	91	2.43	128.0
X507888		2.09	0.01	0.74	8.38	26.4	600	1,35	0.49	6.07	0.16	16 75	20.2	99	2 43	201
X507889		3.86	0.01	0.65	7.77	22.1	270	0,97	0.45	6.60	0.13	17.60	16.0	52	1.27	168.0
X507890		0.13	12.20	32.4	5.34	5660	640	1.08	10.55	4.22	5,96	31.3	24.8	54	3.67	347
X507891		3.86	0 04	1.42	7.73	45.5	620	1.00	0.62	5.34	0.85	20.1	20.9	85	2.03	302

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298166

Sample Description	Method	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.01	0:05	0.05	0.1	0.005	0:01	0.5	0.2	0:01	5	0.05	0.01	0-1	0-2	10
X507852		3.43	18.85	0.17	0.4	0.067	4.80	9.6	28.6	1,49	864	17 65	0.51	6.5	32.3	1760
X507853		4.35	17 30	0.15	0.6	0.068	5.12	9.7	23.0	1,45	1080	41 8	0.29	6.2	39.7	1610
X507854		4.23	15 15	0.17	0.5	0.126	5.14	11.5	19.1	1,28	1340	194 5	0.14	6.2	36.9	1310
X507855		4.94	16 80	0.14	0.6	0.363	4.85	7.6	21.3	1,10	1070	101 5	0.38	5.1	33.8	1370
X507856		4.53	13.90	0.12	0,5	0.067	4.60	7.0	19.5	1.22	1570	19.20	0.59	5.0	30.6	1430
X507857		4.23	13.10	0.16	0,3	0.037	3.62	8.3	22.6	1.61	1480	191.5	0.63	4.5	27.8	1340
X507858		3.33	13.15	0.14	0,4	0.048	3.94	3.9	16.3	1.37	1260	13.90	0.96	4.3	35.1	1460
X507859		2.34	14.00	0.15	0,4	0.021	4.25	4.3	17.4	1.34	1170	28.1	1.72	5.0	17.6	1750
X507859		0.12	0.44	0.16	0,1	<0.005	0.04	1.2	1.4	1.45	101	0.17	0.06	0.2	0.6	60
X507861		3.58	14.15	0.17	0.4	0.021	4.09	4 2	12.2	1.06	1010	37_8	3.13	4.2	21.8	970
X507862		5.32	14.60	0.13	0.2	0.133	2.81	7 0	26.9	3.97	2220	0.72	2.06	2.5	33.7	1270
X507863		4.53	13.55	0.12	0.6	0.283	1.78	6 9	12.3	1.99	1770	0.59	2.98	5.1	41.6	1310
X507864		3.46	12.45	0.13	0.6	0.312	2.02	7 3	5.4	1.42	1430	1.25	3.72	5.6	41.4	1210
X507865		5.30	15.50	0.08	0.4	0.348	3.38	7 6	24.2	2.09	2380	3.29	1.36	3.8	29.3	1310
X507866		5.07	14.15	0.08	0.3	0.207	4.07	13.4	18.6	2.17	3210	0.82	1.59	3.3	22.9	1280
X507867		4.40	15.05	0.08	0 6	0.244	3.06	8.3	22.0	1.89	2090	0.68	3.14	6.2	28.1	1400
X507868		4.14	14.15	0.11	0.6	0.253	3.89	14.1	17.1	1.48	1980	1.10	2.37	6.1	30.4	1230
X507869		3.60	14.80	0.07	0 8	0.333	1.49	4.0	14.3	1.51	1420	5.38	4.16	12.1	25.4	1150
X507870		2.22	3.65	<0.05	0 5	0.686	1.20	6.8	50.9	0.10	2070	6.65	0.04	2.3	9.4	120
X507871		5.64	14.80	0.09	0 7	0.461	1.90	9.3	18.2	1.84	1950	10.95	2.81	4.6	41.1	1320
X507872		6.33	15.00	0.09	0.5	0.200	3.35	8.3	22.2	2 22	2540	1.11	1.79	2.5	39.0	1220
X507873		11.75	13.55	0.14	0.4	0.477	2.33	15.2	17.6	1 56	2780	9.86	1.39	2.3	272	1030
X507874		6.96	15.00	0.08	0.3	0.493	2.86	7.0	25.8	2 30	1700	1.68	2.52	2.5	35.9	1760
X507875		6.01	15.60	0.09	0.3	0.234	2.59	8.9	25.8	2.25	2040	0.32	2.66	2.9	33.0	1440
X507875		6.12	15.55	0.08	0.3	0.402	2.14	19.3	24.3	2.71	1740	0.47	2.44	3.1	28.3	1480
X507877 X507878 X507879 X507880 X507880 X507881		5.97 9.93 5.13 5.18 4,36	13.75 12.45 15.00 16.40 16.10	0.08 0.17 0.07 0.08 0.09	0.6 0.3 0.3 0.3 0.5	0 739 0 818 0 276 0 189 0 206	1.72 1.44 2.35 2.62 2.97	11.1 29.9 12.0 8.8 15.2	20.2 16.5 22.4 26.5 27.1	2.54 1.92 2.67 2.53 2.42	1690 4070 1360 1260 2310	2.17 7.44 1.74 0.30 0.50	1.80 0.92 2.44 1.77 2.09	2.2 1.3 2.5 2.5 2.6	47.9 207 33.7 31.0 25.4	1380 1110 1260 1310 1370
X507882		4,62	15.10	0 09	0.4	0.214	2.46	12.0	21.4	1.83	1280	0.84	2,51	2.9	39.6	1420
X507883		6,09	14.95	0 07	0.2	0.183	2.26	6.7	25.3	2.25	811	0.42	3,11	2.8	33.5	1500
X507884		7,32	14.95	0 08	0.2	0.137	2.24	4.2	28.4	2.83	620	1.24	3,02	2.1	32.1	1480
X507885		8,01	14.95	0.08	0.2	0.200	2.10	4.9	27.0	2.80	931	0.87	2,95	2.1	37.0	1570
X507886		6,93	15.00	0 07	0.2	0.189	2.10	6.7	29.3	2.78	1100	0.55	2,95	3.2	35.7	1480
X507887		4.97	14.45	0.11	0.5	0.258	2.27	19.0	30.5	2.87	1540	0.29	2.25	2.2	48.2	1140
X507888		5.41	14.65	0.08	0.3	0.288	2.40	9.5	27.8	2.74	1020	0.44	2.76	2.0	41.7	1280
X507889		4.24	13.10	0.08	0.4	0.227	1.26	8.1	17.8	2.15	1120	2.14	3.72	5.2	32.2	1270
X507890		10.05	14.90	0.09	1.6	1.480	1.36	17.7	18.6	1.01	972	42.8	0.96	4.5	29.2	630
X507891		6.62	15.60	0.10	0.3	0.223	1.98	9.9	24.7	2.58	2110	2.92	2.86	2.6	48.1	1380

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298166

Sample Description	Method	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOD	0.5	0.1	0:002	0-01	0:05	0-1	1	0=2	0:2	0.05	0.05	0-01	0-005	0.02	0-1
X507852		16.2	148.0	0.053	2.57	7.87	18 2	17	2.6	265	0.34	0.05	2,30	0.276	1,49	0.6
X507853		165.0	103.5	0.069	3.61	7.10	17 8	25	3.2	286	0.34	0.07	2.08	0.264	1,54	1.0
X507854		493	99 8	0.195	3.74	7.79	13.6	22	2.6	301	0.31	0.11	2.45	0.213	1.44	0.8
X507855		114 0	111 0	0.357	4.61	8.65	15.0	18	3.3	290	0.27	0.10	2.15	0.209	1.42	0.8
X507856		130 0	100 5	0.051	4.06	5.69	13.2	19	2.1	342	0.28	0.09	1.94	0.211	1.27	0.7
X507857 X507858		159.5 331	99 0 76 5	0.793	3.63 2.76	7.41 6.81	15.0 13.0	19 12	1.4 1.4	426 327	0.22 0.23	0.10 0.06	1.61 1.46	0.191	1,14 1.34	0.4
X507859		169.5	89.6	0.040	1_64	5.94	12.2	8	1.5	321	0.28	<0.05	1.51	0_203	1.22	0.5
X507860		1.3	1.3	<0.002	<0_01	0.10	0.2	1	<0.2	77.1	<0.05	<0.05	0.13	0.005	<0.02	0.2
X507861		76.9	112.0	0.059	3.42	7.86	11.8	13	1.2	309	0.24	0.05	1.58	0.179	1.28	0.6
X507862 X507863		152.5 40.7	113.0 74.3	0.002	1.35	4.19	22.0	2	1.1	353 398	0.14	0.09	0.93	0.291	1.51	0.3
X507864		54_6	76.5	0.003	1,99	4.51	15.6	2	1.6	341	0.30	0.10	1.95	0.261	0.94	0.8
X507865		6520	94.9	0.002	3,98	11.80	17.1	4	1.7	306	0.20	0.23	1.31	0.272	1.30	0.5
X507866		859	103.0	<0.002	3,05	4.78	16.1	2	1.6	365	0.19	0.13	1.04	0.269	1.67	0.5
X507867 X507868		1180 139.5	76.0 75.8	0.002	3.00 2.49	3.76 2.17	16.1 14.5	2 2	1.8 1.5	407 489	0.32	0.19 0.12	1.63 1.82	0.312	1.22 1.22	0.6 0.6
X507869		131.5	33 1	0.004	1.92	1.90	12 0	2	1.6	447	0.64	0.09	2.61	0.274	0.56	0_9
X507870		5430	62 0	<0.002	0.29	55.4	1 4	1	3.2	330	0.21	0.65	3.57	0.026	0.93	1_3
X507871		102.5	57 8	0.007	3.94	2.52	22 4	4	1.7	464	0.24	0.21	2.30	0.303	0.68	0_9
X507872 X507873		119.0 5060	116.0 82.0	<0.002 0.089	3.80 >10.0	2.93 8.57	23.6 15.2	2 21	1.6 3.0	442 332	0.14 0.11	0.17 0.52	0.79 0.74	0.368	1.46 1.04	0.6
X507874		503	69.6	0.002	3.97	3.42	15.4	2	1.9	312	0.11	0.22	0.67	0.283	1,34	0.3
X507875		12.8	79.4	<0.002	2.36	2.85	21.9	1	1.3	388	0.15	0.10	0.95	0.317	1.30	0.3
X507876		8.4	80.9	<0.002	1.88	1.97	24.6	1	2.0	357	0.16	0.05	1.11	0.347	1.02	0.5
X507877		140.5	72.5	0.010	2.78	2.88	22 9	4	4.0	341	0.11	0.20	0.88	0.324	0.83	0.7
X507878		36_2	67.0	0_065	8.95	3.88	12 6	31	5.1	535	0.07	0.58	0.59	0.113	0.66	1.3
X507879		7.8	91.8	0 003	2.05	1.97	24.1	1	1.8	361	0.15	0.11	1.00	0.332	1.14	0.4
X507880		8.4	88.3	<0 002	1.82	2.69	25.4	1	1.5	307	0.14	0.12	0.82	0.347	1.29	0.3
X507881		46.9	111.0	<0 002	1.51	2.04	25.0	1	1.6	399	0.14	0.10	0.96	0.356	1.46	0.5
X507882 X507883		9.4 8.1	89.7 58.8	<0.002 0.002	2.19 2.79	4.12 3.51	22.7 19.3	1	1 3 1.1	383 320	0.16 0.13	0.14 0.14	0.97	0.320	1,13 1,14	0.5
X507884		8.1	51.4	<0.002	3.16	4 22	17.7	1	0.8	272	0.10	0.12	0.53	0.304	1.23	0.2
X507885		9.0	57.2	<0.002	3.82	5 58	20.2	2	1.0	279	0.10	0.19	0.64	0.261	1.20	0.2
X507886		8.9	71.1	<0.002	2.91	4 20	20.5	1	1.2	327	0.15	0.13	0.95	0.288	1.19	0.3
X507887 X507888		9.4 7.9	92.3 90.5	<0.002 0.002	1.32 2.00	1_93 6.72	24.0 24.0	1 2	1.5 1_6	387 367	0.12 0.11	0.06	1.00 0.83	0.253 0.280	1.20 1.21	0.5
X507889		13.7	53 4	<0.002	1.88	2.87	17.9	2	1.5	417	0.30	0.06	1.76	0.296	0.65	0.6
X507890		279	55 2	0.012	2.55	9.78	9.4	2	10.2	322	0.26	9.23	4.06	0.199	1.26	8.5
X507891		119.5	69 1	0.005	3.74	4.49	21.3	3	1.4	334	0.16	0.15	1.15	0.308	1.05	0.4

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298166

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME- MS61 W ppm 0,1	ME- MS61 Y ppm 0_1	ME- MS61 Zn ppm 2	ME-MS61 Zr ppm 0,5	Ag- OG62 Ag ppm 1	Zn- OG62 Zn % 0,001	
X507852 X507853 X507854 X507855 X507855		205 190 161 174 163	2.7 3.0 2.7 2.5 2.9	8.4 6.7 6.8 7.5	45 277 1160 340 361	15.4 18.7 15.4 16.9 14.3			
X507857 X507858 X507859 X507860 X507861		151 141 159 2 119	3.3 2.8 3.0 <0.1 3.4	8 4 9 1 8 8 2 3 9 3	356 973 318 5 254	10.4 14.9 14.4 1₌6 12.1			
X507862 X507863 X507864 X507865 X507865		201 179 125 191 180	1.3 1.2 1.8 1.9 1.5	10_0 14_3 12_2 8_0 9_6	357 218 139 >10000 2140	6.1 18.9 18.2 13.5 8.6		1,205	
X507867 X507868 X507869 X507870 X507870		181 156 149 29 183	1.4 1.4 1.1 2.9 1.4	7.1 9.0 7.8 3.6 10.4	4520 758 330 896 271	16.6 18.8 28.3 13.2 22.0	128		
X507872 X507873 X507874 X507875 X507876		223 166 197 225 227	2.0 1.9 1.2 1.3 1.2	10 0 8 8 6 2 8 5 10 2	244 >10000 738 70 75	11_8 9.5 6.9 6.7 10.3		1,900	
X507877 X507878 X507879 X507880 X507880		201 139 224 228 235	1.3 1.1 1.3 2.0 1.3	9.5 16.1 9.4 8.7 12.3	615 38 52 59 106	13,8 13.2 8,7 5.8 12,6			
X507882 X507883 X507884 X507885 X507885 X507886		221 227 219 212 207	1.3 1.0 0.9 0.7 1.2	11 3 6 4 5 0 5 3 7 1	42 50 43 42 53	12.1 5.8 4.2 5.5 6.3			
X507887 X507888 X507889 X507890 X507891		191 212 172 82 208	0.7 0.9 1.7 16.7 1.4	11 2 9 8 11 9 10 8 8 2	61 65 50 861 205	11.4 7.2 9.7 57.0 6.4			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: + 1 (604) 984 0221 Fax: + 1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298166

Sample Description	Method	WEI-21	Au- AA26	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61								
	Analyte	Recvd Wt	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.01	0.01	0.01	0_2	10	0_05	0.01	0.01	0.02	0.01	0⊾1	1	0.05	0:2
X507892		2.78	0 07	2 16	7 34	79.0	230	1.16	0.81	7.05	7.62	23.0	34.3	63	2.42	233
X507893		3.43	0 05	1 26	6.98	62.9	230	1.03	0.69	5.58	6.76	11.70	32.2	60	2.88	235
X507894		1.99	0.22	10 90	6 54	140.5	1010	0.90	1.92	8.09	89.5	16.80	23.7	63	0.82	720
X507895		2.46	0 05	1 39	5 62	65.6	280	0.96	0.68	11.40	6.39	39_8	21.2	49	0.48	386
X507895		2.59	0 04	0.45	4 82	70.4	680	0.89	0.62	17.15	0.28	32_1	20.4	29	0.57	104,5
X507897		2.66	0 04	1 47	5.38	63.0	750	0.96	0.56	15.00	7.19	23.6	14.7	35	0.81	273
X507898		3.60	0 08	2 93	6.94	82.4	320	1.00	0.82	7.93	20.1	17.30	25.5	55	2.34	258
X507899		2.69	0 13	13 35	6.56	172.0	420	0.99	2.12	5.67	136.0	18.50	63.0	37	2.42	442
X507900		1.28	<0 01	0 04	0.09	0.3	30	0.07	0.03	34.3	0.19	1.04	0.6	2	<0.05	3.3
X507901		2.82	0 02	0 83	7.64	48.6	420	1.37	0.76	3.58	0.54	28.2	27.6	36	3.42	212
X507902		4.11	0.03	1 23	7 45	45.6	280	1 25	0 65	4 19	2.49	27.0	22.9	34	3.05	150,5
X507903		3.83	0.04	1 27	8 48	40.0	540	1.14	0 56	2 13	4.57	18.20	26.9	66	4.12	222
X507904		4.21	0.05	0 89	8 03	46.4	240	1.20	0 68	2 07	0.56	17.35	24.4	102	4.98	344
X507905		3.90	0.05	1 22	7 16	52.3	170	0 98	0 62	3.21	5.21	14.05	26.6	96	4.34	245
X507906		4.26	0.07	2 49	7.44	60.1	150	0 88	0 96	3 35	13.20	16.15	24.2	60	3.19	132.0
X507907		3.50	0.04	1.20	7.35	46.8	460	0.75	0.61	4.52	0.48	18.65	23.7	51	1.51	271
X507908		3.32	0.08	1.81	7.15	41.9	530	0.91	1.49	3.99	1.37	25.0	21.2	48	1.83	241
X507909		3.57	0.03	1.32	7.65	34.1	520	0.99	1.03	4.33	0.39	18.10	17.1	64	1.60	233
X507910		0.13	4.86	>100	1.51	60.2	220	3.45	0.90	10.15	10.95	12.90	2.6	14	2.38	108 0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method	ME- MS61	ME- MS61	ME·MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS6 1	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mri	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0-01	0.05	0.05	0.1	0.005	0-01	0.5	0.2	0-01	5	0₌05	0-01	0-1	0.2	10
X507892		7.47	14 30	0.09	0 3	0.160	2.76	10.9	26.5	2.43	3710	0.44	1,29	2.0	40.3	1330
X507893		7.32	14 10	0.08	0.5	0.172	3.04	5.5	25 2	2.21	2830	0.52	1.62	2.4	43.6	1160
X507894		8.76	11 90	0.10	0.5	0.309	2.83	8.7	27 2	1.83	3920	2.92	0.06	2.2	59.3	1060
X507895		6.28	10.60	0.09	0 3	0.278	1.16	24.3	18 3	4.45	3600	7.82	0.03	1.8	43.3	970
X507895		5.76	9 94	0.08	0 2	0.114	1.30	19.5	16 0	3.03	4680	1.47	0.03	1.5	29.7	1070
X507897		4.82	10.10	0.07	0.2	0 121	1.64	14.8	17.4	1.68	3670	1.10	0.16	1.7	25 8	1010
X507898		6.43	13.40	0.08	0.3	0 175	3.13	9.6	22.9	2.09	3560	2,02	1.26	2.6	35 8	1200
X507899		13.65	16.20	0.12	0.4	0.551	2.98	9.8	31.8	3.29	3650	28,0	0.52	2.0	85 4	1260
X507900		0.12	0.25	<0.05	<0.1	0 005	0.03	1.2	1.2	1.30	110	0.13	0.03	0.1	0 2	80
X507901		6.20	17.30	0.11	0.5	0.247	3.84	13.0	40.3	2.54	2560	1.20	1.71	3.4	25 8	1500
X507902 X507903 X507904 X507905 X507905		6 16 7 56 7.73 7.54 7 46	15.15 16.65 17.05 15.60 14.00	0.12 0.12 0.13 0.12 0.12 0.10	0.5 0.3 0.3 0.3 0.3 0.4	0.165 0.132 0.190 0.127 0.126	3.35 3.44 4.36 3.92 3.24	12.0 8.8 8.1 6.7 7.5	34.2 39.9 40.6 35.1 26.4	2.31 2.94 2.81 2.58 2.01	2130 1680 1760 2330 2210	0.55 0.22 2.17 1.03 3.99	2.45 3.14 1.79 2.24 2.91	4.5 3.2 2.7 2.7 4.1	25.4 37.1 45.4 43.5 36.4	1640 1650 1470 1190 1360
X507907		6.15	12.55	0.13	0.6	0.141	1,45	9.5	18.5	1.77	2090	3.15	4.07	6.4	37.5	1230
X507908		6.48	13.50	0.12	0.9	0.260	1.67	14.8	20.5	2.21	1470	1.32	3.07	5.6	35.1	1160
X507909		5.25	14.30	0.11	0.6	0.224	1.55	9.6	21.0	2.06	1220	1.91	3.67	5.9	38.2	1240
X507910		2.21	3.79	0.10	0.6	0.707	1.18	7.0	52.5	0.10	2070	7.02	0.04	2.5	10_1	120

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0=5	ME-MS61 Rb ppm 0:1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0₌01	ME- MS61 Sb ppm 0=05	ME-MS61 Sc ppm 0,1	ME- MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME-MS61 Te ppm 0-05	ME- MS61 Th ppm 0-01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0.1
X507892 X507893 X507894 X507895 X507895		610 332 7350 328 44.0	94.8 86 9 53 9 36.5 37 9	<0 002 0 002 0 002 0 008 <0 002	5 29 5 20 9 07 4.76 4.01	4.13 4.10 16.50 11.60 3.37	22.7 21.7 17.0 15.0 12.1	2 2 5 2 1	1.2 1.4 1.8 1.6 0.7	357 335 285 381 668	0.12 0.14 0.12 0.09 0.07	0.25 0.23 0.70 0.14 0.15	0_81 0_74 0_71 0.83 0.55	0.319 0.336 0.264 0.202 0.175	1,25 1,56 0,71 0,31 0,36	0.3 0.4 0.5 0.5 0.4
X507897 X507898 X507899 X507900 X507901		421 1710 8700 14.9 69.4	48.9 97.8 80.4 0.8 107.5	<0.002 0.002 0.018 <0.002 <0.002	3.46 4.52 >10.0 0.02 3.54	4.21 5.18 18.20 0.09 3.20	16_1 18_1 18_6 0_2 20_8	2 3 8 1 2	0.8 1.3 2.3 <0.2 1.9	467 421 296 86.4 272	0.09 0.13 0.10 <0.05 0.17	0.21 0.33 0.81 <0.05 0.14	0.70 0.81 0.74 0.07 1.50	0.217 0.272 0.280 0.006 0.351	0.49 1.34 1.41 <0.02 1.77	0.4 0.5 0.8 0.2 0.6
X507902 X507903 X507904 X507905 X507906		116 0 169 0 65 6 330 1165	83.3 83.5 113.0 96.8 78.8	<0.002 <0.002 0.002 0.002 0.002 0.006	4 30 4 75 4 86 5 32 5 78	5 01 5 05 4 37 4 96 5 14	19.5 20.1 23.9 23.4 18.1	2 2 3 2 2	1.4 1.3 1.9 1.2 1.2	350 295 232 302 359	0.22 0.15 0.14 0.14 0.23	0.26 0.26 0.16 0.18 0.31	1.84 0.86 0.66 0.72 1.20	0.365 0.350 0.379 0.292 0.313	1.51 1.73 2.07 1.89 1.24	0.6 0.4 0.3 0.3 0.5
X507907 X507908 X507909 X507910		60 7 123 5 29 2 5500	44.0 56.5 52.8 62.3	0.002 0.002 0.002 0.002	4.68 4.28 3.03 0.28	4.34 2.87 3.06 57.2	15 5 15 3 17 4 1 4	3 3 2 1	1.1 1.6 1.4 3.7	410 358 386 329	0.36 0.35 0.32 0.22	0.19 0.61 0.26 0.69	2.36 1.83 1.86 3.52	0.272 0.263 0.293 0.026	0.67 0.72 0.69 0.93	0.7 1.0 0.7 1.4

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME- MS61 W ppm 0:1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Ag- OG62 Ag ppm 1	Zn- OG62 Zn % 0.001	
X507892 X507893 X507894 X507895 X507896		202 206 149 134 135	1.4 1.6 2.5 1.5 2.1	11_2 7.6 11_0 16_6 19_4	1150 1050 >10000 1010 114	10.8 10.6 12.6 7.9 9.4		1.400	
X507897 X507898 X507899 X507900 X507901		146 178 215 2 220	1.9 2.3 2.2 <0_1 3.0	17.3 9.7 8.2 2.1 8.7	1030 3060 >10000 34 199	6.7 8.5 11.0 1.6 13.9		2.04	
X507902 X507903 X507904 X507905 X507906		211 223 233 193 178	2.8 1.8 2.6 2.1 2.8	95 68 61 59 69	392 700 214 849 1980	16.2 7.8 7.9 6.4 9.9			
X507907 X507908 X507909 X507910		142 154 168 28	2.1 1.9 2.0 2.9	8.9 8.3 9.1 3.9	115 234 90 873	14.9 15.4 15.2 14.9	130		

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: Appendix 1 Total # Appendix Pages: 1 FInalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

		CERTIFICATE CO	MMENTS	
			YTICAL COMMENTS	
Applies to Method:	REE's may not be totally ME- MS61	soluble in this method.		
			ATORY ADDRESSES	
Applies to Method	Processed at ALS Kamloo BAG-01	ps located at 2953 Shuswap Drive, Ka		
Applies to Method	LOG- 23 WEI- 21	CRU- 31 PUL- 32	CRU- QC PUL- QC	LOG- 21 SPL- 21
	Processed at ALS Vancou	ver located at 2103 Dollarton Hwy, No	orth Vancouver, BC, Canada.	
Applies to Method:	Ag- OG62 Zn- OG62	Au- AA26	ME- MS61	ME- OG62

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

CERTIFICATE KL18298175

Project: Snip P.O. No.: S-C18-124 This report is for 100 Drill Core samples submitted to our lab in Kamloops, BC, Canada on 23-NOV-2018.

***** See Appendix Page for comments regarding this certificate *****

The following have access to data associated with this certificate:

PAUL GEDDES ADRIAN NEWTON	RAEGAN MARKEL COLIN RUSSELL	MIKE MAYER

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-32	Pulverize 1000g to 85% < 75 um	
BAG-01	Bulk Master for Storage	
LOG-23	Pulp Login - Rcvd with Barcode	

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA26	Ore Grade Au 50g FA AA finish	AAS
ME-MS61	48 element four acid ICP-MS	
Ag-OG62	Ore Grade Ag - Four Acid	
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Pb-OG62	Ore Grade Pb - Four Acid	
Zn-OG62	Ore Grade Zn - Four Acid	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

															_	
	Method	WEI-21	Au-AA26	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
ample Description	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
sample Description	LOD	0.02	0 01	0.01	0.01	0_2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0-05	0.2
507911		2,54	0.04	1.15	7.63	34.0	450	0.69	0.58	3.78	0,63	15.15	12.7	113	2,09	256
(507912		2.81	0.02	0.77	7.36	37.3	700	0.93	1.25	4.08	0.36	15.30	44.2	80	3.54	183.0
(507913		2.93	0.04	1.01	7.15	48.8	560	1.19	1.06	4.53	0.28	20.9	32.4	95	4.44	243
K507914		2.76	0.25	5.11	6.32	139.5	580	0.79	2.11	4.81	49.6	32.1	29.9	90	1.84	233
(507915		2.90	0.31	4.11	6.48	188.0	490	0 80	0.99	5.09	32.2	38.1	30.0	51	2,21	114.0
507916		2.92	0,17	2 69	6.51	101.5	130	1.01	1.74	6,29	32.2	53.6	71.6	66	2,73	332
(507917		2.57	0.03	2.11	7 77	38.7	760	1.11	0.64	5.51	9,90	20,5	20.9	90	5.06	130.0
(507918		4.35	0.02	0.19	8.42	31.2	970	1.12	0.21	6.46	0.27	15.55	21.9	81	3.89	40.2
K507919		3.28	0.01	0.12	7.93	19.1	900	1.07	0.14	5.87	0.06	30.2	12.7	80	3.98	60.7
(507920		1.12	<0.01	<0.01	0.13	0.2	40	0.07	0.04	33.7	0.02	1.14	0.5	2	<0.05	2.8
(507921		4.05	0.01	0.08	8 26	14.7	990	0.90	0.09	4.69	0.05	12.00	21.3	83	4.27	24.5
(507922		3.38	0.04	0.36	7.89	35.5	1350	1.11	0.29	6.35	0.21	19.65	23.0	87	3.68	99.0
(507923		3.25	0.03	0.54	7.62	24.4	580	0 88	0.70	5.62	0.12	13.00	36.5	74	1.39	201
(507924		2.75	0 04	2.11	7.87	32.4	850	0.88	0.53	4.87	16.45	18.35	23.5	71	2,26	142.5
(507925		2.76	0.03	0.46	7.57	45.6	820	1.01	0.32	6.50	1.22	18,90	23.3	72	2.31	84.0
507926		2.91	0.50	19.70	6.09	156.5	770	0.98	1.12	4.91	218	12,95	24.9	73	2.56	989
(507927		4 64	0.10	1.54	7.41	74.5	200	1:11	0.87	5.27	12 45	13.70	29.7	73	3.11	94.1
(507928		4.26	0.04	0.70	7.83	37.7	1100	1.15	0.80	4 45	0.27	12.10	27.5	68	3.79	197.0
(507929		1.48	0.04	1.74	7:05	52.8	140	0.99	2.66	4.64	2.06	13 45	44.8	67	1.85	124.5
x507930		0_21	22.5	3.25	6.49	34.3	910	1 ₋ 55	0.56	1.13	0.13	17.05	10.4	31	14.75	63.3
X507931		1.45	0.19	9.31	5.11	202	650	0.71	15,45	5.80	22.4	25.1	254	41	1.29	1010
x507932		3.00	0.02	0.24	7,69	26.4	770	1.07	1.11	4.90	0.10	25.9	20.9	62	2.97	25 9
x507933		3.34	0.02	0.30	7.34	31.5	1010	1.22	0.70	3 69	0.37	17.50	25.6	97	2.56	41.0
X507934		3.92	0.02	0.81	8 26	31.5	560	1.25	0.69	3.08	1.30	13.70	27.2	93	2.33	153.5
x507935		4.72	0.01	0.24	7.70	15.7	860	1.18	0.24	4.78	0.07	12.80	27.2	52	2.21	101.0
(507936		3.59	0.01	0.67	7.30	23.1	490	1.16	0.71	3.61	4.67	12.80	18.8	77	1.91	35.9
(507937		4.95	0.01	0.18	7.38	19.8	1140	1.25	0.49	3.64	0.08	10.65	22.4	75	1.97	45.2
(507938		3.89	0.01	0.29	7,61	24.0	760	1 ₀ 17	0.64	4_07	0.07	19.25	23.1	54	1.41	54.2
(507939		3.91	0.01	0.14	7.48	24.9	490	1.11	0 43	4 71	0.04	19.30	19.8	51	1.23	19.9
<507940		3,69	0.01	0 28	7.97	22.4	640	1.21	0.33	4.26	0.10	19.10	18.9	55	1.61	59.6
(507941		3.88	0.01	0.32	7.95	26.6	890	1.22	0.42	3.50	0.08	11,45	14.9	62	1.91	56.8
(507942		1.79	0.02	0.48	6.92	40.5	670	1.28	0.71	3.68	0.57	27.4	12.9	49	0.74	69.9
K507943		4.04	0.02	0.90	6.75	43.5	530	1.09	1.56	4.16	1.72	19.95	22.3	52	1.38	114.5
X507944		3:77	<0.01	0-15	7.42	9.2	1830	1_23	0_60	3.96	0.08	19.80	11.9	42	1.27	48.7
x507945		4.03	<0.01	0.64	7 29	25.1	1720	1.00	0.89	4_10	1.66	22.3	14.5	41	1-14	86.1
K507946		4.13	0.04	2.51	6.55	103.5	210	0.99	3.39	4_42	2.86	19.90	37.7	52	1.44	186.0
X507947		4.07	0.01	0.43	7.73	14.3	1410	1.46	0.91	3.77	0.25	15.70	21.0	55	1.86	103.0
x507948		3.90	<0.01	0 40	7.36	24.4	1650	1.00	0,97	5.00	5.30	24.4	14.7	39	1.06	77.3
X507949		2.93	0.07	6 85	5.88	199.0	310	0.98	9.70	5.55	2.77	20.3	58.3	43	0.86	288
X507950		0.13	11.95	32.4	5.45	5740	540	0.98	9.79	4.29	6.14	29.5	23.5	55	3.69	349

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298175

	Method	ME-MS61														
	Analyte	Fe	Ga	Ge	Hf	In	к	La	Li	Mg	Mn	Mo	Na	Nb	Ni	Р
Sample Description	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOD	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0,01	0.1	0.2	10
X507911		6,28	14.45	0.08	0.2	0.148	1,72	7.5	18,9	2,46	1700	1.90	3,44	1.8	38.2	1310
X507912		6.66	14.25	0_11	0.4	0.167	2.97	7.6	24.9	2,71	1360	0.71	2.38	22	35.4	1260
X507913		6.97	14.75	0.13	0.4	0.422	3.74	9.7	27.1	2.48	1520	2.06	1.36	2.5	81.4	1140
X507914		7.13	11 35	0_12	0.4	0.468	4.86	17.5	17,7	1,65	2220	2.54	0.56	1.9	85.4	1170
X507915		7:65	12.40	0.12	0.3	0.376	4 99	22.6	21.1	2.00	2660	1.74	0.40	1.5	57_8	990
x507916		7.99	13.55	0.14	0.4	0.575	3 88	30,4	23.2	2 28	2490	0.73	0.98	1.8	48_6	1130
K507917		6.54	15.00	0.10	0.2	0.263	4,11	10,2	35,6	3.70	1790	0,31	1.42	2.2	40.0	1300
X507918		5.74	15.65	0.10	0.1	0 117	3.91	7.6	39.3	3.64	2000	0.29	1.77	2.2	35.8	1250
X507919		4.89	15,20	0.09	0.2	0,201	3.60	16,5	34.6	3,29	1940	0.14	1.83	2.5	27.8	1260
X507920		0.12	0.32	0.06	<0_1	<0.005	0.05	1,1	1,2	1,34	116	0.07	0.05	0.2	0.5	70
X507921		6,29	14 15	0.10	0.1	0,111	3.41	5.4	36.6	4.04	1800	0.61	2.15	2.4	31.9	1240
X507922		6.02	15.10	0.12	0.2	0.181	3.85	9.1	33.0	3.03	2540	0.65	1.48	24	29.6	1260
X507923		5.14	12.30	0.09	0.5	0.176	2.00	6.6	16.9	1,81	1160	0,36	3.32	4.6	39.4	1280
X507924		5.26	13.70	0.11	0,5	0.170	3.00	9_4	20,6	2,35	1560	0.38	2.42	4.5	33.8	1240
X507925		5,46	13.50	0,11	0.4	0.153	2.97	9.6	25.4	2.73	1990	0,99	1,96	4.0	36.8	1290
(507926		9,48	12.65	0_10	0.7	0.468	3,31	6.2	28.6	2,98	2260	0.50	0.46	2.3	31.5	1030
X507927		7.81	15 15	0.09	0_2	0 176	3.92	6.1	31.5	3.66	2300	0,29	1.01	3.0	38.3	1300
X507928		6.28	15.90	0.10	0.3	0.292	4 35	5.5	28.6	2.86	1680	0.37	1.72	29	39.8	1220
X507929		7.12	14 10	0.10	0.4	0.313	5.18	6.5	20.4	1.84	1580	1.74	1.22	2.9	39_6	1190
X507930		4.42	21.8	0.12	2.8	0.036	3.30	4.1	74.7	0.61	349	2180	0.67	2.1	25.4	260
X507931		14.70	9 15	0.16	0.5	0.767	2.33	15.8	14.0	1.22	1760	17.50	1.38	3.1	87.7	930
X507932		5.47	14.80	0.09	0.5	0.252	2.61	16.8	17.9	2.66	1160	0.98	2.75	4.8	27.2	1370
X507933		5,40	16.90	0.10	0.3	0.210	3.13	99	24.1	2.62	1170	0.79	1.60	4.1	51.4	1400
X507934		6.72	15 05	0.12	0.3	0 147	3 71	7.0	25.8	2.75	1570	1.25	1,28	3.9	51.0	1320
X507935		6.00	13.95	0.10	0.2	0.160	2,89	6.4	23.3	2.93	1260	1.03	2,19	3.2	33.4	1350
X507936		5 67	15,30	0.13	0.2	0.162	3.36	6.5	26.0	2.31	1420	1.89	1,44	4.3	33,3	1400
X507937		5.70	15.95	0.12	0.2	0.112	3.56	5.0	26.0	2.66	1260	2.04	1.75	3.2	38.7	1370
X507938		5.23	15.20	0.14	0.6	0.221	2 24	10.9	17.3	2.10	896	0.71	3.69	8.8	35.4	1650
X507939		5.36	14.30	0_14	0_4	0.264	1.82	11.1	15.6	2.06	935	0.45	3.79	5.3	35.7	1340
X507940		5.54	16 50	0_10	0.5	0.307	2.39	10.9	21,5	2,60	1020	0.49	3.34	5.8	38.5	1520
X507941		6,46	15.80	0_10	0.3	0.307	3.53	6.1	27.5	3,11	1180	0.33	2.52	2.7	35.8	1470
X507942		4.25	16 40	0.14	1 3	0.115	3 75	15.4	18.0	1.29	1040	1.73	2 25	6.4	33,8	970
X507943		5.37	14.75	0.11	0.7	0.152	4.94	11.3	18_1	1.44	865	1.30	1,45	6.5	40.5	1210
X507944		4.30	15 80	0.10	0.6	0.250	3.47	11.8	19.9	1.55	786	0.94	2.75	9.5	28.3	1270
X507945		4.51	14.50	0.14	0.6	0.252	3.44	13.5	16.2	1.37	851	1.91	2.67	8.7	29.6	1210
X507946		7.47	12.50	0.11	0.5	0.323	3.85	10.5	21.5	1.60	1380	1.71	1.63	7.0	76.1	1270
X507947		6.10	15 60	0 13	0 4	0.183	3.87	8.8	24_6	2.32	958	0.91	2.21	5.2	33.0	1260
X507948		4,49	15 75	0,13	0,9	0,322	3,40	15.6	17_6	1.43	872	1.22	2.50	8.7	34.7	1280
X507949		9.49	10.90	0_12	0.5	0.323	4.06	11.1	15,1	0.99	1840	3,58	1.02	6.5	96.3	1170
X507950		10.25	14.45	0.12	1.7	1.515	1.37	16.5	16 0	1 03	994	43.0	0.97	4.6	30.7	640

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0=5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0_05	ME-MS61 Sc ppm 0:1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0 2	ME-MS61 Sr ppm 0,2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0-01	ME-MS61 Ti % 0_005	ME-MS61 TI ppm 0:02	ME-MS61 U ppm 0,1
X507911		36.1	61.0	0.004	3.35	4.04	22.4	2	1.0	346	0.10	0.17	0.95	0.256	0.95	0.4
X507912		29_4	105.0	0.003	3.79	3.88	21.8	2	1.2	318	0.12	0.30	0.70	0.318	1,49	0.4
X507913		27.4	142.0	0.004	4.57	6.54	23.5	5	2.2	295	0.12	0.31	0,90	0.329	2.06	0.6
X507914		2340	117_0	<0.002	6.95	8,95	22.2	6	2.2	359	0.10	0.92	1.12	0.242	1 11	0.6
X507915		2030	127.0	0.004	6.80	7.08	22 3	6	2.7	409	0.07	0.65	0.75	0_247	1.47	0.5
X507916		1365	127_0	<0.002	6.86	5,67	27.1	4	3.4	448	0,10	0.36	0.75	0.331	1.42	0.8
X507917		1270	175.0	0.003	2.27	4.27	30.2	2	1.4	421	0.12	0.31	0.71	0.415	2.40	0.2
X507918		30.3	141.0	<0.002	1.47	2.83	27.2	1	0.6	630	0.12	0.18	0.65	0.378	1.74	0.2
X507919		9.9	140.5	<0.002	0.99	3.69	26.7	1	1.7	494	0.14	0.11	0.79	0.393	1.80	0.3
X507920		0.7	1.4	0.002	0.01	0.06	0.3	1	<0.2	81.6	<0.05	<0.05	0.06	0.007	<0.02	0.1
X507921		8.7	116.5	0.002	0.99	1.90	26.4	<1	0.4	396	0.14	0.08	0_60	0.425	2,10	0,1
X507922		29.0	120 5	0.003	2.55	2.68	26.0	1	0.8	433	0.14	0.21	0.72	0_403	1.62	0.3
X507923		10.2	60_0	0 002	2.66	3.99	21.3	1	1.3	499	0.25	0.21	1.31	0.325	0.87	0.6
X507924		1250	89.5	<0.002	2.75	4.52	20.4	1	1,2	442	0.25	0.34	1.38	0.319	1,17	0.6
X507925		98,4	95.8	<0.002	2.84	4.33	24.1	1	0.9	465	0,22	0.17	1.26	0_402	1.15	0.5
X507926		>10000	113.5	0.002	9.10	15.40	25.2	6	1.1	295	0.13	1.88	0.75	0.366	1.43	0.2
X507927		356	117.0	0.002	5.04	4.30	28.0	1	0.8	348	0.16	0.43	0.67	0.436	1.59	0.2
X507928		19.3	118.5	0.003	3.27	3.06	25.1	1	1.4	324	0.17	0.23	0.61	0.448	2.00	0.3
X507929		241	91.7	0 007	6 57	2.94	23.1	2	1.9	366	0.16	0.68	0.59	0.408	1.47	0.5
X507930		29.8	74.3	0.161	3.42	79,0	5.4	4	4.5	276	0.12	1.98	1.45	0.182	17.30	0.6
X507931		526	63.7	0 016	>10_0	7 49	12.2	12	2.1	298	0.16	1.74	1.01	0.233	0.84	0.8
X507932		15.3	91.2	<0.002	2.84	2,18	21.3	2	1.8	394	0.23	0,21	1,45	0.403	1.13	0.7
X507933		36.8	63 6	<0.002	3.08	3.35	21.9	2	1.4	353	0.20	0.25	0.74	0.415	1.18	0.4
X507934		159.0	80.1	<0.002	4.56	3.31	22.2	2	0.9	275	0.20	0.19	0.81	0.353	1:19	0.3
X507935		6.4	81.0	<0.002	2.30	3.72	18.1	2	0.8	411	0.18	0.08	0.79	0.353	1.28	0.3
X507936		179.5	59.9	0.005	3.61	3.76	19.2	3	1.2	318	0.23	0.11	0.89	0.360	1.15	0.3
X507937		12.0	75_4	0.018	3.26	3.06	21.4	4	1.5	351	0.17	0.12	0.61	0.358	1.21	0.2
X507938		13 5	64 0	0.009	3.35	3.02	17.8	3	1.8	449	0.41	0.13	2.30	0.394	0.84	0.6
X507939		7_4	54.9	0.004	3.34	3.01	17.6	2	1.8	459	0.26	0.15	1.54	0.359	0 69	0.6
X507940		6.2	78.0	<0.002	2.64	3.57	19.6	1	2.2	426	0.28	0.17	1.46	0.398	1.00	0.7
X507941		10.4	87.3	<0.002	3.06	3.90	19.3	1	2 1	357	0.15	0.20	0.53	0.362	1,48	0.3
X507942		18.1	74_4	0.004	2.59	3.79	11.0	2	1.3	421	0.35	0.26	4.51	0.240	0.98	1.9
X507943		45.4	79.4	0.009	2.70	3.59	13.4	2	1.0	447	0.35	0.57	1.97	0.307	1.61	0.9
X507944		4.7	72.4	0.003	0.72	2_17	14.4	1	1.1	436	0.53	0.10	2 41	0.331	0.98	0.9
X507945		36.0	79.7	0.003	1.39	3.08	13.9	2	1_0	404	0.47	0.21	2,58	0.318	1,06	0.7
X507946		75.2	92.4	<0.002	4.78	5.49	15.4	3	0.9	396	0.37	1.45	1.74	0.295	1.50	0.8
X507947		11.4	98.1	0.003	1.63	3.24	17.1	2	0.9	375	0.28	0.21	1.39	0.321	1.44	0.4
X507948		18.2	86.7	0.006	1.19	3.81	15.4	2	1.1	435	0.47	0.25	2.81	0.321	1,06	1.1
X507949		108.0	83.8	0.006	8.53	6.93	11.4	4	1.0	361	0.35	4.21	1.85	0.267	1.08	0.8
X507950		283	52 8	0.015	2.60	10.20	9.2	2	7.1	331	0.26	8.95	4.07	0.209	1.26	8.2

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0-1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0-5	Ag-OG62 Ag ppm 1	Pb-OG62 Pb % 0_001	Zn-OG62 Zn % 0.001	
X507911 X507912 X507913 X507914 X507915		206 199 202 164 172	1 3 1.4 2 3 3 3 3 9	6.8 6.4 7.2 9.2 8.6	172 116 96 7400 4800	5.9 7.6 10.7 11.9 6.7				
X507916 X507917 X507918 X507919 X507920		217 232 223 218 2	2.8 1.7 2.1 1.8 <0.1	10.0 9.3 10.1 9.8 2.4	4970 1540 147 123 5	10.3 3.8 3.8 4.4 1.4				
X507921 X507922 X507923 X507924 X507925		225 225 170 174 192	1.0 2.2 1.5 1.9 2.1	9.1 12.5 18.0 10.5 15.4	88 112 48 2480 220	1.9 4.7 12.3 11.5 10.2				
X507926 X507927 X507928 X507929 X507929		184 223 227 211 566	2.9 3.3 2.7 3.6 42.7	14.0 13.4 12.1 10.5 4.7	>10000 1900 124 403 98	49 46 60 87 1010		1.075	3.30	
X507931 X507932 X507933 X507934 X507935		117 204 227 200 190	3.4 3.1 2.2 2.1 1.5	132 150 133 109 124	2720 80 139 244 67	12.8 11.7 7.2 5.3 4.4				
X507936 X507937 X507938 X507939 X507939 X507940		197 209 202 184 202	2.3 2.7 2.1 1.6 2.0	11.0 10.7 16.8 17.7 14.8	620 72 57 54 59	4.7 3.7 18.0 11.0 12.3				
X507941 X507942 X507943 X507944 X507945		220 129 153 162 145	2.4 3.8 4.0 3.6 3.2	7.4 7.5 9.9 13.8 12.9	74 90 259 45 257	6.3 46.0 22.2 18.7 17.8				
X507946 X507947 X507948 X507949 X507950		145 184 152 116 83	4.7 4.7 3.2 4.3 17.4	11 9 11 2 15 3 17 0 10 8	401 107 515 352 861	15.0 10.0 26.4 17.0 51.1				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18298175

Sample Description	Method	WEI-21	Au-AA26	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0:02	0_01	0-01	0.01	012	10	0-05	0-01	0.01	0.02	0.01	0,1	1	0-05	0.2
X507951		4.16	0.05	1 99	6.83	65.3	450	0.85	3.01	5.53	0.13	25.3	29.4	60	1.31	161.5
X507952		3.85	0.07	4 60	6.43	68.7	290	0.52	5.58	4.05	0.17	30.2	34.1	20	0.85	225
X507953		4.20	0.06	4 32	6.82	81.3	220	0.69	4.63	2.64	0.23	21.0	46.5	29	0.93	315
X507954		3.51	0.03	3,70	6.07	51.1	350	0.52	3.44	3.21	3.90	26.9	29.2	24	0.61	236
X507955		3.96	0.05	4,11	6.98	56.0	250	0.88	4.81	3.71	0.31	18.95	41.3	43	1.20	235
X507956		4,22	0.03	2.18	6.95	75.4	260	1.00	2 57	4.06	0.28	26.6	39.6	56	1.60	266
X507957		3.73	0.01	0.86	7.27	40.7	1220	0.96	1 50	3.82	0.74	15.60	29.2	60	1.88	168,5
X507958		4.59	0.01	0.65	7.21	31.3	1200	1.00	0 94	4.66	0.98	21.9	14.9	51	1.55	72,7
X507959		4.16	0.01	0.98	7.27	47.5	580	1.01	1.43	4.50	0.92	17.30	23.7	62	1.39	126.0
X507960		1.19	<0.01	0.02	0.56	0.6	50	0.31	0.03	31.2	0.02	1.73	0.6	3	0.07	3.2
X507961		4.17	0.01	1.10	7.49	35.3	1360	0.84	1 48	2.87	3.59	19.60	23.9	69	1_37	142.0
X507962		4.08	0.01	1.05	6.85	46.1	170	1.20	1 43	2.83	0.26	15.00	45.6	51	1_30	296
X507963		3.89	0.03	2.49	6.35	58.8	280	0.87	2 60	3.14	1.04	31.1	60.4	23	0_78	396
X507964		4.03	0.02	1.91	6.26	44.4	290	0.70	1 88	5.76	0.33	23.7	33.3	25	0.80	224
X507965		2.53	0.02	1.55	5.97	42.7	260	0.65	3 53	5.58	0.11	16.50	30.0	39	0_85	216
X507966		2.77	0.02	0.90	6 40	21.0	1800	0.95	1.36	6.25	2.34	22.2	9,9	42	0.82	51.3
X507967		1.99	0.01	0.57	7.10	44.7	1570	1.05	0.50	3.56	0.43	27.3	13.9	43	0.86	64.2
X507968		2.21	0.01	0.99	7 01	37.0	1990	1.01	0.62	2.90	0.65	27.3	17.4	28	0.75	93.7
X507969		1.04	0.01	1.44	6 58	43.5	1730	0.82	0.69	3.95	2.59	19.35	15.1	41	0.68	103.0
X507970		0.11	1.14	0.32	7 45	33.8	380	0.81	0.16	5.16	0.28	28.6	32.2	286	1.16	108.0
X507971 X507972 X507973 X507974 X507975		4.09 3.89 4.15 3.38 3.87	0.01 0.01 0.01 0.01 0.01 0.02	1.27 1.08 0.88 1.35 2.66	7 26 7.18 7 22 7 06 7.16	32.4 68.3 30.5 40.7 36.2	1210 1860 1270 1520 1240	1.05 0.94 0.98 1.00 0.98	0.91 0.97 0.93 1.24 1.27	3.83 4.20 4.08 6.30 4.56	4.67 2.79 0.96 1.02 18.60	23.2 23.6 23.7 27.5 28.9	18.2 16.7 19.4 16.0 27.4	47 39 45 40 43	0.95 0.75 0.90 0.86 0.92	114.0 91.9 109.0 93.5 164.0
X507976 X507977 X507978 X507979 X507979 X507980		2.63 2.64 1.63 2.44 3.01	0.03 0.02 0.03 0.07 0.12	2.78 1.45 2.69 7.23 1.58	7.08 7.45 6.16 7.35 6.70	29.9 55.6 32.3 113.5 150.5	1300 1270 1140 280 110	0.83 1.00 0.99 1.33 1.17	0.93 0.80 0.51 2.76 0.36	5.58 4.16 3.45 4.05 3.44	28.1 7.71 35.7 78.9 24.8	29.6 26.9 15.85 17.00 16.35	18.8 18.5 15.3 22.7 19.0	36 50 81 104 94	1.00 1.30 1.64 1.28 1.31	97.2 98.9 99.9 405 82.9
X507981		2.97	0.05	1 69	6.98	64.3	220	0.90	0.81	4.43	15.50	20.1	23.1	78	1.19	129.0
X507982		4.19	0.02	0 38	6.96	41.9	1000	0.98	0.64	4.34	0.13	20.2	22.9	50	1.12	140.0
X507983		4.08	0.05	0 64	7.48	36.3	1030	1.28	0.60	4.90	0.49	22.2	14.5	59	1.36	211
X507984		3.98	0.01	0 39	7.05	15.3	620	1.07	0.68	5.38	0.24	19.55	17-7	56	0.89	90.9
X507985		2.56	0.01	0 51	7.12	22.1	780	0.96	0.76	4.65	0.24	28.8	17.4	59	0.85	98.2
X507986 X507987 X507988 X507989 X507989 X507990		4.04 4.06 4.02 4.05 0.14	0.01 <0.01 <0.01 <0.01 4.84	0.35 0.35 0.65 0.74 >100	7 33 7 46 7 38 7.17 1 49	13.0 10.4 13.0 10.3 60.2	1710 1820 2110 1550 220	1.14 1.33 1.51 1.31 3.30	1.08 1.17 0.89 1.00 0.79	3.74 3.78 4.23 4.07 10.30	0.27 0.17 1.03 5.06 11.00	21.7 24.2 25.3 21.7 13.05	17.8 18.4 17.9 15.4 2.6	51 46 39 45 13	1.22 1_10 1_15 0_94 2.24	84.5 85.9 99.4 84.7 104.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

	Method	ME-MS61														
	Analyte	Fe	Ga	Ge	Hf	In	к	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
ample Description	LOD	0.01	0.05	0.05	0_1	0.005	0-01	0.5	0-2	0.01	5	0.05	0.01	0:1	0.2	10
507951		6.47	15 15	0.13	0.5	0.635	4.95	13.8	18.0	1.76	1900	2.44	1.01	6.7	30,9	1240
(507952		6.66	13,15	0.14	0.3	0.230	5.23	13.6	15.9	1.49	1160	0.76	0.96	7.5	13.8	1190
X507953		8.31	13.65	0_13	0.3	0.241	4.91	9_4	17.2	1.48	875	0.74	1.46	7.6	16.6	1390
X507954		5.53	11.25	0_12	0.3	0.234	4.73	12.2	11.1	0.90	914	1.28	1,15	7.0	9,2	970
X507955		7.31	13.95	0.12	0.3	0 320	3 38	9.6	18.3	1.62	1100	2.08	2,30	6.8	30,1	1340
(507956		7.32	14.45	0,13	0.3	0 422	3 36	14.3	21.3	1.78	1120	2.51	2.09	5.4	40.1	1260
(507957		6,60	15.45	0.12	0.3	0.323	3.22	87	19.6	2.01	942	2.36	2.47	6.6	35.2	1240
X507958		4.31	14.00	0.12	0.6	0 390	2,97	13.2	19.4	1.68	1140	7.55	2.63	7.7	33,0	1220
X507959		6.11	14.70	0.11	0.4	0.288	3.64	9.5	23.2	1.80	1240	2.03	2.02	6.0	55.2	1240
(507960		0.18	2.04	0.10	0.4	0.008	0.21	1.5	1.7	1.39	115	0.22	0.30	1.3	0.7	50
X507961		6.42	15 50	0 10	0.5	0.366	3.44	11.5	21.0	1.99	845	1.96	2.57	6.5	45.4	1200
X507962		8.48	17.55	0.11	0.4	0.776	3.65	7.3	18.8	1_61	881	1.97	2.05	5.6	47.1	1370
(507963		9.51	12 15	0 13	0.3	0.455	5.25	15.0	12.2	0.91	831	0.68	0.87	8.6	35.1	1250
X507964		5.67	12.75	0.12	0.5	0.437	5.11	11.4	12.6	0.94	964	0.63	0.66	7.7	31,8	1140
(507965		6,41	11,30	0.11	0.6	0 700	4,89	8.8	13,5	1.04	916	0.33	0.45	5.9	33.7	1150
(507966		3.28	12.55	0.15	0.6	0 555	3 57	12.3	14.8	1.26	989	0.59	1,96	7.2	22.6	1170
K507967		3.95	16.05	0.16	0.7	0.268	3.54	15.4	18.9	1.42	848	1.80	2.25	10.3	36.2	1080
x507968		3.94	15.90	0:17	0.7	0.371	4.13	14.8	15.6	1.26	727	2.13	1.68	14.8	33.2	1080
X507969		3,57	13,35	0.14	0,5	0.447	3,40	10.9	14.5	1.47	860	1.22	1.93	11 3	35.9	1130
X507970		5.04	15.95	0.13	1.2	0.057	0.92	13.7	11,9	4.00	1040	4,53	1.84	7.4	211	370
X507971		4.70	15.00	0.13	0.3	0.323	2,98	14.1	16.3	1,57	863	1.36	2.70	7,1	35,0	1320
X507972		4,26	14.55	0.12	0_6	0.565	3.94	14.0	16 2	1,39	894	1.67	2.17	10.9	28.5	1160
X507973		4.61	15.00	0.12	0.4	0 449	3.11	14.4	15.7	1.48	856	2.05	2.52	7.1	35.3	1330
X507974		4.47	15.20	0.12	0.5	0.667	3.45	17.0	15.6	1.44	1220	1.78	2,26	9.4	25.1	1130
X507975		4.89	15.65	0 15	0.5	0.562	2.94	18.2	14.3	1.35	881	2.22	2.70	9.0	68.3	1230
K507976		3.90	14.75	0.13	0.7	0.332	2.71	18_6	13.4	1.28	990	4.33	2.92	10.1	44.1	1170
K507977		4.64	15.95	0.16	0.7	0.228	2.72	16.3	16_1	1,53	938	3.07	3.05	9.1	49.0	1190
X507978		4.80	12 20	0.12	0.2	0.121	3,13	8.4	23.7	2.67	1160	1.65	1,17	2.9	29.4	1000
X507979		7.05	15 35	0.16	0.2	0 341	4.36	8.0	24 7	2.70	1180	0.99	0.59	3.1	38.1	1150
X507980		7,49	13,10	0.13	0.3	0.212	3.87	7.9	22,1	2,17	1290	0,82	1.12	3.1	41.9	1180
K507981		5.89	13.25	0.15	0.4	0.235	3.70	11.0	15.3	1,99	1280	0.40	2.15	4.1	35.0	1140
X507982		4.16	13.80	0.10	0.7	0.338	2.75	12.4	13.6	1.84	740	1.54	2.82	6.6	39.0	1240
X507983		4.88	16.20	0.10	0_4	0.319	3.06	13.6	17.3	1.94	693	1.27	2.48	3.7	38.8	1120
X507984		3.39	13.80	0.10	0.6	0.245	1_70	11.4	13 7	1.87	749	1.96	3.19	6.1	24.4	1200
X507985		3.96	13.50	0.13	0.5	0.252	2.00	17.6	13,1	1,90	785	0.99	2.75	5.4	35.5	1260
X507986		4.78	15.85	0.13	0.5	0.353	4.08	12.3	15.6	1.34	733	1.43	2.43	6.9	32.8	1280
X507987		4.51	17.00	0.14	0.5	0.372	4.20	14.4	13.9	1,40	721	1.54	2.47	8.8	35.7	1260
X507988		4 19	17.10	0.14	0.6	0.829	4.54	14.3	12,4	1.30	772	1.21	2 29	10.8	38.6	1360
X507989		3.86	15.10	0.11	0.4	0.504	3.28	12.7	11.5	1,21	687	1.39	2.78	7.1	30.4	1270
X507990		2 21	3.68	0.08	0.5	0.715	1.18	7.0	45.6	0.10	2040	7.13	0.04	2.4	10.6	110

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-M561	ME-MS61
	Analyte	Pb	RЬ	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Те	Th	Ti	TI	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Sample Description	LOD	0.5	01	0.002	0.01	0.05	0:1 :	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
X507951		29.5	105.0	0.002	3.21	4.22	18.0	3	1.4	396	0.33	1.33	1.73	0.294	1.56	1.1
X507952		33.8	85 0	0.002	4.35	3.58	13.0	3	0.9	402	0.40	2.52	1,57	0.295	1.25	0.2
X507953		69.1	95.7	<0 002	5 84	4.36	15.0	4	1.2	305	0.43	2.08	1.38	0.345	1.35	0.3
X507954		143.5	74.4	0.002	4.11	3.02	11:3	3	1.0	404	0.38	1.66	1.41	0.251	0.81	0.2
X507955		81.5	81.4	0.003	4.04	3.98	15.9	3	0.9	350	0,37	2,32	1,76	0,317	1.04	0.4
X507956		25.1	90.0	0_004	4.15	3_50	17.5	3	0.9	383	0.28	0.89	1,66	0.286	1.19	0.6
X507957		16.2	86.7	0.004	2 73	3.87	19.0	2	0.9	440	0.34	0.45	1.65	0.328	1.23	0.5
X507958		28.7	83.4	0.005	1.21	3.10	14,7	1	1.0	464	0.43	0.33	2.69	0.301	1.01	0.8
X507959		52,7	72.2	0.006	2.74	3.60	16.7	2	0.9	443	0,32	0.25	1,61	0.307	1.06	0.6
X507960		1,7	5.9	<0.002	0.02	0.08	0.3	1	0.2	81.4	0.12	<0_05	0.45	0.007	0.05	0_6
X507961		92.2	73.0	0.004	2.52	3.32	15.3	2	1.0	369	0.38	0.33	1.68	0.308	1,32	0.6
X507962		21.5	78.8	0.002	4 78	3.35	16.9	3	2.0	309	0.30	0.32	1.14	0.300	1.69	0_6
X507963		50 3	75 7	<0.002	7.84	6.43	12.2	4	1.3	428	0.46	0.70	1.63	0.332	1_44	0.4
X507964		25.4	81,9	0.002	3 75	2.94	12.2	2	1_2	550	0,44	0,93	1.75	0.298	1 41	0.4
X507965		21.7	78,0	0.002	4.26	2,67	11.3	2	1,1	445	0.33	1.46	1,68	0.272	1.51	0.7
X507966		63.8	87.8	<0.002	0.83	1.73	15,0	1	1,1	491	0.38	0.55	2,21	0.288	1.16	0.9
X507967		26.8	94.2	0.003	1.06	3.12	13.2	1	0.9	356	0.52	0.14	3.30	0.287	1.17	1.1
X507968		55.3	71.0	0.005	1.58	2.65	10.7	1	1.2	341	0.70	0.18	3.21	0.250	0.90	1.2
X507969		164.5	64.1	0.002	1.28	2.87	14.0	2	1.0	379	0.53	0.27	2.29	0.278	0.94	0.7
X507970		14 1	25.5	<0.002	0.05	1.40	19.8	1	1.5	337	0.44	0.06	3,92	0 217	0.26	1.5
X507971		63.0	87.5	0.003	1.49	2.79	17.1	2	1.2	382	0.36	0.15	2.03	0.335	1.33	0.5
X507972		52.2	93.5	<0.002	1.61	2.72	13,9	2	1,1	436	0.61	0.22	3.05	0,295	1,12	0.9
X507973	1	29.6	90 7	0,003	1,54	2.45	17.0	1	12	386	0.37	0.26	2.19	0.326	1.15	0.4
X507974		69.0	83.9	0.002	1.53	2.39	15.7	2	1.3	506	0.52	0.40	2.40	0.300	1.07	0.9
X507975		371	78.3	0.004	2.04	4.76	15.9	3	1.2	481	0.47	0.40	2.57	0.320	1.20	1.0
X507976		495	70.5	0.003	1.26	5.38	15.8	2	0.9	573	0.55	0.28	2.77	0.299	0.98	0.9
X507977		279	84.2	0.008	1.61	6.16	16.4	2	1.0	478	0.46	0.24	2.74	0.326	1.21	1.0
X507978		1905	100 0	<0.002	1.88	3.52	20.9	4	0.9	301	0.17	0.51	0.91	0.340	1:17	0.3
X507979		4290	96.0	<0.002	5.09	7.21	29.2	8	1.7	335	0.16	1.34	0.73	0.422	1.04	0.2
X507980		1000	94.9	<0_002	6.22	4.80	29.2	3	1.6	389	0,15	0.32	0.69	0.432	1.09	0.3
X507981		609	94.4	< 0.002	4.83	3.24	24.8 16.6	4	1.9 1.2	513 437	0.22	0.36	1.09 2.20	0.396	1.03 0.89	0.5
X507982		10,9	82.0	0.004	2.35	1,91	16.6	2 2	1.2	437 445	0.34	0.16	2,20	0.298	0.89	0.6
X507983		6.9	96.1	0.006	2.38	3 59		_					1.19	0.299	0.60	0.9
X507984		11.0	49.4	0.004	1.30	2.59	18.1	1	1.1	504	0.31	0.16	2.24	0.293	0.60	0.9
X507985		11_0	52.8	0.004	1.76	1.60	18.3	2	1_2	441	0.30	0.18				
X507986		6.8	96.6	0.004	1.33	2 69	18.0	2	1.1	580	0.37	0.19	2.02	0.321	1.26	0.7
X507987		9.5	80.0	0.005	1.44	2.61	17.5	2	1_1	518	0.47	0.30	2.35	0.341	1.31	0.7
X507988		49.4	109.5	0.004	1,40	3.18	16.8	2	1.4	520	0.58	0.22	2,67	0.327	1.60	1.0
X507989		89.3	87.6	0.002	1.45	3,11	16.9	1	1.3	421	0.37	0.27	2.13	0.317	1.28	0.5
X507990		5540	64.9	0.002	0.28	54.7	1.6	1	3.3	328	0.22	0.66	3.64	0.026	0,98	1.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0_1	ME-MS61 Y ppm 0.1	ME-M\$61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Ag-OG62 Ag ppm	Pb-OG62 Pb % 0-001	Zn-OG62 Zn % 0-001	
X507951 X507952 X507953 X507954		147 89 114 81	4 0 4 7 7 2 8 9	13.1 14.4 11.9 12.4	61 55 76 346	14.4 9.7 7.9 9.4				
X507955 X507956 X507957 X507958		151 153 171	7.1 6.5 5.1	10 0 11 6 10 4	80 84 135	10.2 8.4 10.7				
x507958 x507959 x507960 x507961		151 174 1 168	50 47 01 52	12 9 13 0 3 6 10 9	183 324 8 495	20.9 14.9 7.2 15.1				
X507962 X507963 X507964 X507965		146 83 93 111	6.1 9.3 5.7 4.6	11.6 16.3 17.6 11.9	102 168 82 44	11.4 9.6 13.0 11.8				
X507966 X507967 X507968 X507969 X507970		132 128 119 128 120	4.6 3.7 3.5 4.4 1.0	14.9 12.4 10.7 13.6 18.9	394 129 157 320 112	17_1 27_5 30_4 17_3 27_9				
X507971 X507972 X507973 X507974		154 138 153 151	3.9 4.9 5.2 4.3	13.6 11.8 12.8 15.3	526 338 202 273	10 1 20 0 11 9 18 5				
x507975 x507976 x507977 x507978 x507979		156 148 159 168 234	5 2 3 9 3.3 2 6 4.4	13.9 15.5 12.8 8.0 8.6	2150 3220 922 4680 >10000	20.1 22.8 23.6 7.7 4.0			0.997	
X507980 X507981 X507982 X507983 X507984 X507984		218 192 154 181 154	3.8 2.3 2.3 3.1 3.0	12.5 13.3 14.2 11.7 13.2	3420 2160 55 82 47	6.5 11.5 22.7 13.4 20.9				
X507985 X507986 X507987 X507988 X507989 X507989		159 164 170 162 154 28	4.5 5.0 4.7 5.5 5.4 2.9	12 3 9 0 10 4 10 6 9 5 3 6	42 67 52 179 622 869	17_1 17_0 17.3 20_1 13_1 14_3	127			

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

Sample Description	Method	WEI-21	Au-AA26	ME-MS61												
	Analyte	Recvd Wt,	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0-01	0.01	0.01	0.2	10	0.05	0_01	0_01	0.02	0.01	0_1	1	0.05	0,2
X507991		3.96	0 01	0.98	7.21	18.1	2340	1:12	2 36	4.95	5.59	24.2	11_4	45	0.88	62.1
X507992		4.12	0 02	1.25	7.12	29.7	700	1:15	3 35	4.53	5.64	24.9	21.5	53	1.30	148.0
X507993		4.03	0 03	1.23	7.21	45.9	310	1,18	1 65	4.42	2.97	22.0	30.9	57	1.70	195.5
X507994		4.13	0 04	0.94	6.95	36.5	200	0.97	2 50	4.28	0.16	23.1	31_4	63	1.72	193.0
X507995		2.45	0 03	0.68	6.82	38.7	930	1,20	1.41	3.46	0.25	14.85	27.8	82	1.96	127.0
(507996		2.48	0 01	0.51	7.54	26.5	670	0.95	0.76	3.35	0.53	18.45	21.5	89	1.83	85.9
(507997		2.61	0 01	0.44	6.90	21.5	1180	0.88	0.76	4.33	0.62	17.30	20.1	66	2.80	80.7
(507998		4.24	0 01	0.51	7.30	22.3	1650	1.20	0.80	3.57	0.30	24.2	17_4	47	1.77	69.5
(507999		4.06	0 01	0.48	7.46	18.5	980	1.06	1.16	3.50	0.75	19.60	26_2	49	1.88	124.0
(508000		1.36	<0 01	<0.01	0.56	0.4	60	0.26	0.02	29.5	<0.02	1.58	0.8	4	0.06	2.0
497101		2.12	<0.01	0.30	7 71	14.0	960	0.91	0.47	3 52	0.09	20.5	13.7	55	1 58	50.1
497102		2.86	<0.01	0.39	6 85	17.9	1150	1.03	0.38	4 02	0.22	19.15	12.2	44	2.06	52.6
497103		2.99	0.01	0.78	7 00	18.4	1290	0.91	0.58	3 96	6.51	22.0	14.3	43	1.08	57.8
497104		4.15	0.01	0.50	6 96	21.9	1340	1.07	0.47	3 63	0.98	21.2	14.1	44	0 91	57.0
497105		3.44	0.01	0.79	7 20	24.7	1720	0.92	0.90	3 74	0.13	27.3	18.2	47	1 22	105.0
497106		3.11	<0.01	0 65	7.12	21.6	1330	1.08	0 49	3.85	0.24	20.1	14.0	50	1 24	68.4
497107		4.20	0.01	0 51	6.87	24.3	1630	0.86	0 47	4.37	0.75	16.25	12.5	41	1.45	58.0
497108		3.55	0.01	0 82	6.97	32.4	1560	1.01	0 66	3.45	1.10	16.70	14.2	42	1 48	80.0
497109		4.06	0.02	1 48	6.79	50.2	1260	1.10	1 13	4.00	3.08	17.85	21.9	43	1 72	148.0
497110		0.12	11.70	30 0	5.06	5310	560	0.89	8 68	3.98	5.74	31.2	22.4	51	3 48	328
		-														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0.01	ME-MS61 Ga ppm 0_05	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0_1	ME-MS61 In ppm 0:005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0=2	ME-MS61 Mg % 0-01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0_01	ME-MS61 Nb ppm 0_1	ME-MS61 Ni ppm 0.2	ME-MS61 P ppm 10
X507991 X507992 X507993 X507994 X507995		3.14 5.00 5.98 5.83 6.44	16.85 15.15 14.15 12.45 14.45	0.14 0.13 0.12 0.10 0.10	05 05 05 03 02	0.681 0.773 0.420 0.354 0.287	4.62 3.58 3.35 3.07 2.89	13.6 14.2 12.6 12.5 7.3	10.9 14.3 15.7 12.1 14.4	1.03 1.25 1.38 1.44 2.27	733 752 724 687 926	0.89 1.11 3.23 2.19 0.90	2.35 2.38 2.50 2.54 1.76	8.8 7.5 7.3 4.8 3.1	29.8 62.5 73.1 45.5 40.8	1310 1330 1230 1210 1280
X507996 X507997 X507998 X507999 X508000		5.96 5.65 4.59 6.47 0.16	14.70 12.85 16.55 15.85 1.68	0.11 0.09 0.12 0.12 0.06	0.3 0.3 0.6 0.3 0.2	0.325 0.346 0.237 0.134 <0.005	1.79 3.00 3.09 3.10 0.24	9.7 9.6 14.4 10.7 1.2	12.6 11.0 14.1 15.1 1.9	2.33 2.67 1.69 2.08 1.27	1280 987 783 968 95	1.60 3.01 1.82 1.20 0.24	3.37 2.20 2.56 2.38 0.24	4.0 5.2 9.5 5.6 0.9	40,9 36.2 33.4 24.3 0.4	1300 1110 1190 1220 50
X497101 X497102 X497103 X497104 X497105		5.40 4.23 4.36 4.28 5.09	17.45 14.10 14.35 14.40 15.30	0.15 0.11 0.09 0.10 0.12	0.4 0.4 0.5 0.4	0.189 0.178 0.214 0.194 0.278	3.07 2.21 2.80 2.84 3.54	11.1 11.2 12.5 12.1 16.4	15.4 13.8 11.2 10.4 11.6	2.30 1.58 1.23 1.31 1.23	1050 959 984 1020 839	1.00 1.69 1.07 1.18 1.21	2.68 2.28 2.70 2.52 2.33	5.5 7.0 7.5 7.5 7.2	31.1 28.1 28.8 29.7 35.4	1290 1190 1150 1180 1180
K497106 K497107 K497108 K497109 K497110		4.44 3.94 3.99 4.86 9.44	15 15 14 25 15 10 14 55 13 25	0.13 0.10 0.11 0.12 0.08	0 5 0 4 0 5 0 3 1 5	0.246 0.210 0.258 0.337 1.380	2 94 3 41 3 46 2 76 1.26	12.2 10.2 10.4 10.1 15.9	10.4 10.4 10.3 10.3 16.7	1.45 1.60 1.35 1.55 0.95	1090 1040 914 1120 937	1.33 1.53 3.07 1.95 38.6	2.43 1.96 2.16 2.02 0.90	8.3 9.8 9.6 6.1 4.0	30.6 25.2 35.9 34.4 27.6	1320 1120 1180 1260 600

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0=5	ME-MS61 Rb ppm 0_1	ME-MS61 Re ppm 0_002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0,1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0,2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0⊦02	ME-MS61 U ppm 0.1
X507991 X507992 X507993 X507994 X507995		119.5 87.3 90.1 14.6 24.7	103 0 102 0 91 0 77 2 93 8	<0.002 0.002 0.003 0.003 0.003	1.14 2,47 3,42 3.58 1,99	2,59 3,28 3,43 2,38 2,51	15.6 18.3 19.0 19.8 25.4	1 2 2 1	1.2 1.3 1.4 0.8 0.9	485 386 398 417 412	0.47 0.40 0.40 0.25 0.17	0.98 1.37 0.37 1.05 0.40	2.76 2.24 1.97 1.62 0.93	0.281 0.299 0.297 0.285 0.351	1.46 1.54 1.06 0.71 0.93	1.0 1.1 0.9 0.4 0.3
(507996 (507997 (507998 (507999 (508000		35.5 14.2 24.6 17.7 0.6	58.0 88.9 79.6 104.5 6.1	0 006 0 003 0 004 0 002 <0.002	1.27 1.81 1.26 1.92 <0.01	1.90 2.89 2.81 2.12 <0.05	21.9 19.6 16.5 18.1 0.5	1 2 1 2 1	0.8 0.8 1.3 0.8 <0.2	465 620 377 371 78.1	0.23 0 28 0 46 0.29 0.10	0.16 0.16 0.21 0.21 <0.05	1.26 1,40 2.47 1,55 0.34	0.359 0.320 0.322 0.289 0.008	0.60 0.98 0.88 1.23 0.08	0.4 0.5 0.9 0.4 0.5
<497101 <497102 <497103 <497104 <497105		18.0 19.0 107.5 26.5 17.6	92.5 54.3 61.4 57.5 76.2	0.004 0.005 0.003 0.003 <0.002	0.62 0.70 0.81 1.06 1.66	1.51 1.98 2.12 2.45 3.11	20.0 14.2 14.3 14.0 15.3	1 2 1 2 3	0.8 0.9 0.9 1.1 1.1	394 368 418 310 406	0.30 0.40 0.43 0.45 0.39	0.11 0.09 0.15 0.11 0.17	1.66 2.02 2.22 2.20 2.26	0.313 0.290 0.284 0.294 0.295	0.96 0.62 0.75 0.69 0.87	0.6 0.6 0.5 0.5 0.6
X497106 X497107 X497108 X497109 X497110		25.9 31.6 61.4 86.7 274	58.0 71.0 67.0 55.6 51.6	0.002 0.005 0.004 0.002 0.015	0.92 0.73 0.86 1.48 2.39	2.03 2.57 2.87 2.87 8.67	14.5 12.9 13.3 15.8 8.8	1 1 1 2 3	1.1 1.0 1.1 1.0 6.7	321 330 306 298 308	0.49 0.55 0.53 0.37 0.25	0.13 0.11 0.15 0.27 9.62	2.07 2.45 2.10 1.37 3.55	0 319 0.275 0 312 0 327 0 194	0.62 0.64 0.76 0.57 1.15	0.6 0.6 0.4 8.3
			1.851		Veri	1 24	8									

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0,1	ME-MS61 Y ppm 0:1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	Pb-OG62 Pb % 0.001	Zn-OG62 Zn % 0.001	
X507991 X507992 X507993 X507994 X507995		145 165 159 169 193	7.4 6.3 7.0 5.1 5.9	10.4 10.7 10.7 9.4 9.0	679 781 459 51 94	17.8 17.1 16.8 9.3 6.4				
X507996 X507997 X507998 X507999 X508000		186 162 164 168 2	3 3 5 2 4 8 2 8 0 1	11.1 10.0 9.9 8.5 2.8	133 95 101 133 5	7.4 10.9 19.6 8.8 5.3				
X497101 X497102 X497103 X497104 X497104 X497105		185 148 137 138 149	36 41 36 40 36	10.1 9.5 9.1 9.5 9.0	106 84 746 169 60	12.6 14.2 12.2 13.6 13.2				
X497106 X497107 X497108 X497109 X497109 X497110		157 147 162 177 79	4.4 4.0 4.8 5.3 15.5	8.8 9.2 7.8 8.1 10.3	96 147 229 387 815	15.7 15.2 15.0 9.4 49.7				

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 21-DEC-2018 Account: SKERES

Project: Snip

		CERTIFICATE CO	MMENTS	
		ANAL	YTICAL COMMENTS	
Applies to Method:	REE's may not be totally ME-MS61	soluble in this method.		
		LABOR	ATORY ADDRESSES	
		pps located at 2953 Shuswap Drive, K		
Applies to Method:	BAG-01 LOG-23 WEI-21	CRU-31 PUL-32	CRU-QC PUL-QC	LOG-21 SPL-21
Applies to Method:	Ag-OG62 Pb-OG62	iver located at 2103 Dollarton Hwy, N Au-AA26 Zn-OG62	orth Vancouver, BC, Canada. ME-MS61	ME-OG62

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

CERTIFICATE KL18301681

Project: Snip P.O. No.: S- C18- 126 This report is for 100 Drill Core samples submitted to our lab in Kamloops, BC, Canada on 27- NOV- 2018.

The following have access to data associated with this certificate:

PAUL GEDDES ADRIAN NEWTON	RAEGAN MARKEL COLIN RUSSELL	MIKE MAYER

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 21	Sample logging - ClientBarCode	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 32	Pulverize 1000g to 85% < 75 um	
BAG- 01	Bulk Master for Storage	
LOG- 23	Pulp Login - Rcvd with Barcode	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA26	Ore Grade Au 50g FA AA finish	AAS
ME- MS61	48 element four acid ICP- MS	
Ag- OG62	Ore Grade Ag - Four Acid	
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES
Zn- OG62	Ore Grade Zn - Four Acid	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	WEI- 21 Recvd Wt kg 0,02	Au- AA26 Au ppm 0_01	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0_01	ME- MS61 As ppm 0_2	ME-MS61 Ba ppm 10	ME- MS61 Be ppm 0,05	ME-MS61 Bi ppm 0,01	ME- MS61 Ca % 0_01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm I	ME- MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0.2
X497111 X497112 X497113 X497114 X497115		3.67 3.77 2.49 1.96 1.99	0.01 0.01 0.01 <0.01 0.01	1.40 0.80 1.13 0.41 0.89	7_05 6_95 7_40 5_57 5_40	33.8 25.1 22.3 18.1 32.8	1450 1340 1200 510 490	1.03 0.92 1.10 1.02 1.07	1.22 0.63 0.63 0.24 0.60	3,95 3,79 2,99 8,58 7,72	2.52 0.73 3,89 0.24 0,34	19.10 21.8 20.3 12.05 14.60	16.7 13,0 14.6 35,9 43.0	41 44 54 627 499	1,88 1,62 1,58 2,70 2,71	99.1 73.5 67.3 42.5 188.0
X497116 X497117 X497118 X497119 X497120		2.92 3.54 1.77 2.93 0.90	0.01 0.01 0.01 0.01 0.01	0,93 0,78 1,64 1,23 0,01	7.40 7.18 2.38 6.52 0.08	17.0 25.5 46.5 27.0 <0.2	2080 1170 260 530 20	1.02 0.92 0.49 0.88 <0.05	0,48 0,38 2,20 0,66 0,02	3,63 5,36 17,70 5,38 34,3	0.27 0.57 3.27 0.46 0.02	28.6 21.9 8.67 18.85 0.93	13.4 15.8 20.6 18.6 0.4	46 43 201 63 2	1,43 2.03 1,08 1,76 <0.05	127,5 115,0 28,9 111,5 1,7
X497121 X497122 X497123 X497124 X497124 X497125		3.79 3.51 4.36 3.79 4.01	0 01 <0 01 <0 01 0 01 <0 01	1,91 1,97 1,50 0,28 0,38	7.50 7.84 7.79 7.79 7.92	11.7 12.5 7.4 5.7 3.0	1670 1890 1510 1500 1400	1,35 1,12 1,04 0,88 0,93	0.81 0.75 0.84 0.50 0.54	4,29 4,47 5.14 4,87 3,99	6.59 4.52 2.77 0.07 0.13	21.6 17.45 20.4 22.4 15.60	16.0 16.7 12.4 10.2 10.9	59 56 56 53 42	1.75 1.51 1.29 1.27 1.33	88.4 114.0 74.9 45.0 81.3
X497126 X497127 X497128 X497129 X497129		3.89 3.81 3.93 4.40 0.13	0.01 0.01 0.01 0.01 2.07	0.39 0.46 0.85 1.00 36.2	7.58 6.47 6.91 6.90 7.02	7.8 10.8 28.2 18.5 106.0	1550 1760 2390 1490 840	1,12 0,82 1,38 1,19 0,83	0.77 1.24 0.77 0.73 1.62	4.54 5.65 3.87 5.58 3.74	0.11 0.52 3.45 7.76 6.31	25.0 30.7 18.65 25.0 20.2	15.0 6.3 23.5 14.3 14.9	58 46 71 58 25	1,56 0,83 1,69 1,20 0,71	78,3 66,2 139,5 70,5 207
X497131 X497132 X497133 X497134 X497134 X497135		2.71 2.51 3.47 3.64 1.99	0.01 0.01 0.02 0.01 0.01	0.35 0.56 0.81 1.02 0.42	7,24 7,45 7,04 7,01 6,68	15.5 11.4 18.5 22.7 15.6	2000 1860 2230 1710 1790	1.33 1.00 0.86 0.91 1.18	0.62 0.70 0.79 0.83 0.76	4,73 3,88 4,93 6.18 4,44	0.12 2.83 0.81 8.00 0.16	19.70 19.25 17.20 25.1 18.15	18.8 24.2 15.4 17.6 13.5	82 60 62 52 60	1.65 1.44 0.95 1.06 1.41	103 5 133 5 101 5 141 5 81 6
X497136 X497137 X497138 X497138 X497139 X497140		3,86 2,69 2,74 1,06 1,55	0.01 0.01 0.03 0.02	0.57 0.59 0.86 1.64 0.51	6.96 7.23 7.30 7.23 7.99	25.6 21.5 31.4 44.2 26.3	2180 1210 1340 920 490	1.01 0.83 0.94 1.08 0.81	1,14 1,03 0,95 1,69 1,05	6.05 2.86 3.34 3.77 2.35	0.11 0.05 0.79 11.85 0.11	22.3 11.90 16.35 15.30 22.8	17.1 28.0 23.7 27.4 29.2	61 68 38 40	1.10 1.33 1.95 2.39 0.90	86.9 164.5 178.0 187.5 134.0
X497141 X497142 X497143 X497144 X497144 X497145		0.65 1.38 2.78 4.26 4.03	0.02 0.06 0.07 0.03 0.02	1.08 2.24 1.82 0.84 0.68	8.11 6.97 7.27 7.90 7.19	21.5 21.9 62.4 41.2 45.8	620 700 710 510 830	0.86 1.11 1.08 0.79 0.64	0.84 1.38 3.91 2.31 1.40	1,72 2,63 2,48 1,89 2,95	5.43 19.90 4.27 0.41 0.50	12.25 15.65 10.35 8.67 16.35	27.5 28.9 27.1 23.7 25.5	40 32 60 62 37	1.18 1.23 1.28 1.24 0.87	160.5 210 213 156.5 117.5
X497146 X497147 X497148 X497149 X497149 X497150		3.12 1.97 1.64 2.43 0.13	0.01 0.01 <0.01 <0.01 12.55	0.54 0.50 0.27 0.22 32.3	7,38 7,13 4,22 5,36 5,39	36.6 24.4 44.1 70.9 5710	560 580 1050 210 700	0 68 0 72 1 61 1 09 1 00	1 25 1 14 0 07 0.03 10 80	2 41 3 41 7.68 6 83 4 24	0.13 0.15 0.23 0.23 6.11	14.35 13.60 11.40 16.25 31.5	27.2 26.8 39.9 33.7 25.1	35 39 542 401 56	1.01 0.80 6.11 1.43 3.67	155.0 112.0 69.8 64.2 345

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18301681

	Method	ME- MS61	ME- MS61	ME- MS61	ME- MS61											
	Analyte	Fe	Ga	Ge	Hf	In	к	La	Lì	Mg	Mn	Mo	Na	Nb	Ni	Р
Comple Description	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample Description	LOD	0-01	0.05	0-05	0-1	0-005	0-01	0-5	0-2	0-01	5	0.05	0-01	0-1	0-2	10
X497111		4,10	15.20	0.12	0.4	0.236	2.99	10,8	11,0	1,50	959	4.87	2,13	8.3	38 4	1180
X497112		4.49	14.80	0.12	0.5	0.228	2 86	13.4	10.8	1.61	1070	1.30	2.34	8.4	32.0	1150
X497113		4.61	16 65	0.10	0.4	0.261	2.44	12.4	14.2	1.23	1000	2.04	2.21	6.6	54.7	1260
X497114		5.14	11.20	0.09	0.4	0.111	2.09	6.5	23.4	4.54	1760	0.39	0.16	3.6	252	1450
X497115		6.73	10.85	0.07	0.3	0.226	1.96	7.3	16.8	4,48	1540	0.64	0.71	3.0	276	1520
X497116		4.70	13.80	0.13	0.4	0.290	3 50	16.7	9.7	1.42	736	0.86	3.08	9.4	28.6	1230
X497117		5.00	13.00	0.11	0.3	0.291	2 37	13,4	9.0	1.27	959	0.98	3.46	47	28.1	1320
X497118		4.35	6.09	0.06	0.2	0.094	0.79	4.8	8.4	3.05	3180	0.64	0.25	1.0	206	580
X497119		5.02	12.40	0.09	0.4	0.261	2 72	11.5	10.9	1.45	991	1.05	2,58	4.0	48.9	1110
X497120		0.13	0.28	0.07	<0.1	<0.005	0.03	1:1	1:1	1.47	115	0.15	0.03	0.1	0.3	60
X497121		4.27	16.10	0.11	0_4	0.415	3.57	11.8	15.5	1.31	818	1.26	3.16	5.6	52.9	1340
X497122		5.49	15_45	0.11	0.2	0.409	4.20	9.3	19.6	1.62	1040	1.12	2.33	4.2	45.1	1510
X497123		5.72	14 90	0.09	0.5	1,195	3,71	11.9	16.9	1.75	1100	1,25	2,30	5.1	31.8	1430
X497124		5,59	14.90	0.10	0.4	1.315	3.73	12,4	17,9	1.70	1050	1.03	2.54	5.5	29.2	1470
X497125		6.55	14 65	0,11	0.3	1,300	3.22	8.5	19.0	1.90	1200	0.80	2,61	4.1	24.0	1390
X497126		6.66	16.70	0.13	0.3	1.400	3.12	12.9	16.7	1.82	1210	2.35	2.07	3.9	28.2	1410
X497127		2.49	8.42	0_13	0.3	0.361	2.85	15.5	8.9	1.12	710	2.07	2.70	5.2	23.2	1170
X497128		5.92	15.55	0.16	0.2	0.579	4.24	9.4	16.4	1.57	823	1.21	1.41	7.6	61.1	1370
X497129		4.08	13.30	0.18	0.3	0.370	2.99	13 1	13.5	1.39	958	1.16	2.32	6.7	33.7	1200
X497130		4.20	15 95	0 14	1_1	0 122	1,19	9,0	8 2	1.21	937	5.95	2.38	4.8	14.9	530
X497131		6.06	18 20	0.19	0.2	1.490	4.20	10 7	17.5	1 67	1060	0.78	1.40	6.0	38.7	1320
X497132		6.18	14 55	0.19	0.3	0.493	3.73	10.2	17.3	1.67	1060	1.27	2,17	8.7	29.5	1430
X497133		4.60	12 25	0.16	0.5	0.725	3.92	9.6	13.2	1.29	906	2.03	2.07	59	37.4	1410
X497134		4.68	13.75	0.16	0.7	1.335	3.31	14.9	11.5	1.35	985	2 19	2,10	6.6	56.4	1500
X497135		4.52	15.00	0.15	0.7	1.310	3.28	10.2	11.6	1.37	945	3.82	1.69	7,4	32,7	1450
X497136		4.76	15.40	0.20	0.8	1.430	4.01	12.8	16.8	1.44	1090	2.47	1.76	7.2	65.0	1650
X497137		7.63	14_05	0.15	0.3	0.439	3.83	6.0	18.9	1.73	1000	1.19	2.18	4.6	56:1	1380
X497138		6.71	13.95	0.17	0.4	0.396	3.09	8.5	15.6	1.75	1080	1.24	2.39	5.4	45:7	1400
X497139		7.44	14.65	0.16	0.2	0.294	2.85	7.6	19.1	2.28	789	1,09	0.82	3.7	46.1 26.6	1070
X497140		7.25	13.60	0.14	0.1	0.179	1.69	11.6	14.6	1.71	916	1.30	3.44	5.8		1360
X497141		7.43	16.25	0.11	0.1	0,198	1.90	58	18,1	1,92	896	1.06	3.29	4.1	27.0 28.8	1340 1240
X497142		7.40	14.55	0.15	0.1	0.285	2 22	7.7	16.3	2.01	955	1.18	2.37 2.37	3.6 2.5	26.8	1240
X497143		8.24	14.20	0.13	0:1	0.281	2.38	4.9	14.7	2.07	925	1.37	2.37	2.5	20.8	1280
X497144		8.20	14.60	014	0.1	0.209	1.96	4.2	18.5	2.15	846	1.39	2.95	4.6	29.7 34.7	990
X497145		6 20	12.00	0_14	0,2	0.233	2.46	7_8	14.2	1,70	689	1.33				
X497146		7 35	13.35	0,14	0.2	0.229	1.93	6.9	18.7	2.09	622	1.25	2.83	4.1	24.2	1170
X497147		7.45	12,55	0.13	0_2	0.224	2.17	6.5	21.9	2.37	775	1.08	2.22	3.2	23.8	1080
X497148		4.56	9.13	0 12	0.4	0.039	1,44	57	11.2	5.76	1170	0.68	0.05	2.7	411	1180
X497149		5.03	10.85	0.11	0.6	0.032	0.52	7.9	19_1	4.90	1200	0.86	0.89	3.2	298	1310
X497150		10.00	14.75	0.15	1-6	1.500	1.32	17.4	17.8	1 02	977	43.0	0.95	4.7	31.0	660

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME- MS61 Pb ppm 0.5	ME- MS61 Rb ppm 0_1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0,01	ME- MS61 Sb ppm 0:05	ME-MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0,2	ME-MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0:02	ME-MS61 U ppm 0,1
X497111 X497112 X497113 X497114 X497115		86 9 35 4 137 0 17 6 16 6	57.0 57.3 46.2 66.8 63.2	0.002 0.002 0.002 <0.002 <0.002	0,84 0.78 0.98 0.61 2,16	2.37 2.80 2.67 2.02 6.75	13.2 12.2 15.8 23.5 23.5	1 1 1 2	1.1 1.0 1.2 0.7 0.7	323 335 267 574 628	0.47 0.50 0.41 0.20 0.17	0.33 0.17 0.16 0.09 0.21	2,24 2,38 1,79 1,08 1.05	0.328 0.319 0.352 0.304 0.281	0.64 0.62 0.60 0.64 0.68	0.6 0.7 0.5 0.4 0.5
X497116 X497117 X497118 X497119 X497120		19 7 15 0 114 5 22.1 0.5	68.6 66.8 25.2 69.9 0.7	0 002 0 003 <0 002 <0 002 <0 002	1.86 2.39 1.68 2.72 0.01	2,52 2,68 3.05 3.79 0.08	12.8 14.9 9.0 12.9 0.2	1 2 1 2 2	0 6 0 4 0.3 0 6 <0.2	399 438 803 481 77.1	0.54 0.26 0.06 0.21 <0.05	0.18 0.11 0.53 0.21 <0.05	2.54 1.68 0.49 1.60 0.08	0.309 0.306 0.110 0.247 0.005	0.83 0.73 0.37 0.73 <0.02	0.9 0.4 0.2 0.5 0.1
X497121 X497122 X497123 X497124 X497124 X497125		263 164.5 126.5 4.3 5.5	79 5 99 7 100 5 102 0 101 0	<0 002 0 002 0 004 0 005 <0 002	1_10 1.59 1_10 0.74 0.81	3.86 2.60 2.54 1.77 1.24	17.8 17.1 16.4 16.2 16.3	1 2 2 2 1	1.5 0 9 1 4 1 7 1 5	463 533 561 609 571	0.33 0.23 0.31 0.35 0.26	0.19 0.13 0.15 0.12 0.14	1.83 1.44 1.89 1.99 1.41	0.328 0.322 0.335 0.333 0.306	1.11 1.52 1.25 1.15 1.20	0.6 0.5 1.1 0.8 0.4
X497126 X497127 X497128 X497129 X497129 X497130		4.8 12.3 77.2 151.5 664	91.3 64.0 87.0 86.4 18.6	0.004 0.007 0.002 0.002 0.002	1.10 0.45 1.65 0.88 0.29	2.14 2.40 5.57 3.05 17.80	17.4 11.8 18.7 16.3 13.3	1 1 3 1 2	1.7 0 9 1 3 1 1 1 7	446 439 315 385 404	0.23 0.31 0.34 0.38 0.32	0.19 0.47 0.09 0.08 0.19	1.36 2.08 1.09 1.85 2.36	0.319 0.251 0.301 0.265 0.272	1.13 0.61 1.44 0.94 0.38	0.8 0.5 0.3 0.4 1.0
X497131 X497132 X497133 X497134 X497134 X497135		9.6 24.3 60.9 146.5 29.3	117.0 110.5 96.8 100.5 71.3	<0.002 0.005 0.008 0.012 0.008	1.23 1.61 1.40 1.18 1.07	3,99 2,80 3,16 3,92 2,38	20,8 17,8 12,9 14,3 15,2	2 4 2 3 2	15 10 10 13 16	391 353 420 436 290	0.28 0.40 0.34 0.40 0.39	<0.05 0.06 0.11 0.08 0.08	1.04 1.77 1.80 2.59 2.05	0.303 0.310 0.287 0.316 0.320	1.49 1.35 1.07 1.02 0.71	0.6 0.3 0.7 1.2 1.2
X497136 X497137 X497138 X497138 X497139 X497140		41.1 26.2 31.1 304 19.9	99.0 80.4 84.4 69.7 42.0	0.012 0.009 0.006 0.004 <0.002	1.35 2.61 1.76 2.22 2.27	3.72 3.16 3.86 5.80 2.64	17.7 16.3 16.3 17.8 18.8	3 3 3 2 1	1.5 0.8 0.8 1.4 0.7	442 305 328 1435 300	0.39 0.27 0.30 0.20 0.34	0.13 0.08 0.13 0.59 0.11	2.25 1.16 1.48 0.98 1.40	0.320 0.296 0.327 0.296 0.331	0.95 1.23 1.08 0.92 0.61	1 6 0 6 0.7 0 5 0 4
X497141 X497142 X497143 X497144 X497144 X497145		162 0 467 76 6 26 5 34 6	44.0 47.3 47.5 47.2 57.4	<0 002 0 002 0 003 <0 002 0 002	1.65 2.12 2.42 1.75 2.69	2.92 5.71 2.04 1.98 3.44	20.1 17.9 17.0 19.2 14.0	1 2 2 1 1	0.6 0.6 0.7 0.6 0.7	256 431 457 245 368	0.24 0.22 0.15 0.17 0.30	0.19 0.26 1.02 0.52 0.23	0.90 0.84 0.60 0.72 1.42	0.370 0.310 0.273 0.278 0.260	1.22 0.85 0.69 0.62 0.57	0.3 0.4 0.2 0.2 0.3
X497146 X497147 X497148 X497149 X497150		9.5 15.0 11.7 8.4 296	39.7 54.3 73.9 21.2 54.9	0.003 0.002 0.002 0.002 0.010	1.91 1.77 0.24 0.44 2.58	1.98 2.71 9.09 2.88 10.20	17.1 16.6 20.1 18.8 10.0	1 1 1 2	0.8 0.6 1.9 0.7 10.4	319 362 1540 480 328	0.24 0.19 0.17 0.20 0.28	0.12 0.10 <0.05 <0.05 8.86	1.04 1.04 0.87 1.39 4.53	0.327 0.246 0.241 0.292 0.207	0.49 0.49 0.32 0.52 1.30	04 04 05 90

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

.

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18301681

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME- MS61 W ppm 0.1	ME-MS61 Y ppm 0_1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0_5	Ag-OG62 Ag ppm 1	Zn- OG62 Zn % 0.001	
X497111 X497112 X497113 X497114 X497115		156 153 181 169 159	4.8 4.0 4.3 2.0 2.0	7.9 8.5 7.7 10.4 10.1	503 167 589 132 124	16.0 15.0 12.5 11.4 12.0			
X497116 X497117 X497118 X497119 X497120		162 149 67 133 1	3.1 2.8 1.2 2.6 <0.1	9 1 10 0 7 2 9 4 1 9	64 97 326 98 5	14.4 8.7 5.2 11.6 1.3			
X497121 X497122 X497123 X497124 X497124 X497125		184 180 199 198 175	4 3 3 6 3 1 2 8 3 3	9.4 9.5 10.5 9.9 8.0	1050 849 578 52 73	13.1 5.9 14.1 11.3 5.5			
X497126 X497127 X497128 X497129 X497129		196 138 196 145 106	3.5 4.2 7.2 6.8 4.1	9.2 10.0 7.1 9.6 16.6	65 70 591 985 1100	8_1 10.9 6.0 8_9 28_1			
X497131 X497132 X497133 X497134 X497134 X497135		196 199 173 177 198	62 57 41 38 52	8.0 7.4 8.1 11.6 10.2	66 451 163 1290 67	8.0 8.3 14.1 22.9 21.3			
X497136 X497137 X497138 X497138 X497139 X497140		246 201 195 180 183	5.0 5.3 5.4 10.0 7.5	12.6 6.3 7.2 4.5 5.9	60 70 195 1760 67	24.5 10.7 10.9 5.5 4.8			
X497141 X497142 X497143 X497144 X497144 X497145		201 184 186 191 145	6.6 6.9 6.9 5.5 9.3	4.6 4.9 4.2 4.6 6.0	694 2310 522 154 86	4.0 4.4 2.3 1.6 6.6			
X497146 X497147 X497148 X497149 X497149 X497150		191 154 134 151 83	10.3 8.3 0.8 1.4 17.3	5.7 6.5 9.0 11.5 11.0	66 54 72 105 869	5.3 6.1 14.0 24.7 54.2			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18301681

	Method	WEI- 21 Recvd Wt	Au- AA26 Au	ME- MS61	ME- MS61 Al	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61
	Analyte	10		Ag	%	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
Sample Description	Units LOD	kg 0.02	ppm 0.01	ppm 0_01	∞ 0.01	ppm 0,2	ppm 10	ppm 0.05	ppm 0.01	% 0.01	ppm 0.02	ppm 0_01	ppm 0:1	ppm 1	ppm 0.05	ppm 0.2
X497151		3,91	<0.01	0.30	7.56	12.9	710	1.18	0.08	4.28	0.55	18.20	19.4	65	1.44	90.2
X497152		4.10	<0.01	0 31	7.43	5.4	910	1.10	0.09	4.41	0.34	19.00	18.4	53	1.67	100.0
X497153		2 54	<0.01	0.31	7.90	5.2	850	1.44	0.03	4.95	0.30	23.4	23.0	54	1.38	115.5
X497154		3.35	< 0.01	0 62	5.31	81.1	370	1.40	0.27	7.83	2.06	13.70	32.0	392	1.50	78.0
X497155		2.52	<0.01	0.36	6.21	47.7	630	1.62	0.09	6.86	6.21	19.80	32.0	379	1.79	105.5
X497156	_	2.31	<0.01	0.28	4.41	78.4	220	1.13	0.05	9.84	0.42	11.45	37.7	572	1.24	62.5
X497157		2.29	<0.01	0.17	5.13	133.0	210	1_41	0.02	7 07	0.16	11.85	47.8	743	1.53	48.5
X497158		2.88	<0 01	0.27	7.41	10_3	960	1.36	0.06	5.47	0,31	24.3	20.9	72	1.49	101.0
X497159		3,97	<0 01	0.35	7.86	16.7	900	1.50	0.11	4.05	0.31	21.7	20.0	49	1.90	107.0
X497160		1.00	<0.01	<0.01	0.09	<0.2	20	0.05	0.01	33.4	0.02	1.05	0,9	2	<0.05	1.9
X497161		4.00	<0.01	0.22	7,43	12,3	690	1.17	0.05	5.82	0.34	18.80	18.0	76	1.46	66.2
X497162		4.08	<0.01	0.24	8.25	14.8	860	1 29	0.07	6 52	0.27	21.4	21.1	96	1.74	84.2
X497163		2.45	<0_01	0.35	7_43	4.4	800	1.23	0.08	4.40	0.24	20.0	19.3	40	1.68	102.0
X497164		1.56	0.01	0_25	7.84	1.6	1080	1.28	0.05	5.61	0.31	19.10	15.6	84	1.60	61.3
X497165		2.15	<0.01	0.31	5.28	31.0	1160	1.45	0.07	8.75	0.21	12,40	34.1	579	2,11	79 2
X497166		4.07	0.01	0 62	6 55	18.9	1830	1.81	0.14	7.89	0.31	24.1	28.9	445	2,19	81,5
X497167		4.24	<0.01	0.75	5.71	15.4	1320	1.93	0.53	8.12	0.63	17.15	41.1	662	2.36	92.0
X497168		3.99	<0.01	0.25	5.95	11.4	940	1,57	0.05	8,11	0.08	14.55	38.7	551	2.13	87.1
X497169		3.53	<0.01	0 17	5.57	11.3	870	1.67	0.06	8.57	0.08	12.25	36.5	521	2.08	71.6
X497170		0.13	1.78	42.4	7.65	108.5	910	0.78	1:57	3.98	6.49	23.2	14.0	28	0.74	229
X497171		2.68	< 0.01	0.45	5.36	22.8	1190	1.38	0.09	8.45	0.96	12.60	33.5	493	2.29	65.5
X497172		4.08	<0.01	0.24	5.60	29.1	910	1.61	0.06	8.22	0.09	13.05	33.1	531	1.79	71.0
X497173		4.05	<0.01	0.30	6.06	40_4	1180	1.70	0.08	7.43	0.10	13.85	36.0	533	2.32	70.9
X497174		2.45	0.01	0.23	5.84	35.6	1090	1.79	0.03	7.56	0.07	12.95	35.3	492	1.99	47.0
X497175		2.81	<0.01	0.46	5.81	35.2	850	1,16	0.05	7,56	0.05	13.95	39.8	595	2,21	122.0
X497176		4.00	<0.01	0.33	5 99	43.9	1340	1.75	0.08	8.23	0.10	13.75	39.0	552	2.01	101.0
X497177		4.02	<0.01	0 28	5.73	21.7	1550	1.93	0.04	8.57	0.35	13.70	35.8	544	2.55	101.0
X497178		3.99	<0.01	0.17	5.87	20.3	1320	1.93	0.06	8.34	0.10	13.35	37.1	566	2.26	57.2
X497179		3.84	<0.01	0 24	5.47	20.2	990	1.45	0.07	9.39	0.10	11.80	36.2	504	1.82	74.8
X497180		3.80	<0.01	0.33	5.83	15.7	900	1.45	0.03	9.50	0.14	14,30	34-8	598	2.23	105.5
X497181		4.08	<0.01	0 43	6 37	30.9	1190	1.69	0.10	8.57	1.42	13,75	37.0	562	2.35	86.6
X497182		4.08	0.01	0.30	5,96	29.1	1120	1.38	0.06	7.45	0.11	12.55	25.3	490	1.67	83.2
X497183		3 90	< 0.01	0.22	5.69	36.9	1610	1,77	0.07	7.36	0.08	12.15	33.2	515	2.09	71.3
X497184		1.25	0.04	9 50	4.95	51.8	270	1.70	0.99	10.25	127.0	14.65	46.6	475	1,71	394
X497185		3.80	<0_01	0.37	5.04	14.9	380	1.33	0.02	9.15	0.33	13,90	46.9	685	1.74	113.0
X497186		3.69	<0.01	0.18	5.09	9.0	320	1.34	0.02	8.60	0.15	12.70	46.6	677	2.10	60.4
X497187		3.72	<0.01	0.41	5.09	15.3	330	1.59	0.03	9.90	0.16	13.80	49.8	689	2.71	101.5
X497188		4.64	0.01	0.39	5.89	12.9	1090	1.84	0.10	8 44	0-09	13.85	36.3	581	2.80	97.6
X497189		3.23	0.01	0.32	5.87	17_4	1400	1.77	0.06	7.26	0.06	14.60	36.7	590	2.50	80.8
X497190		0.21	23.7	3.30	6 82	35.9	280	1.35	0.50	1.21	0.03	16.55	9.7	32	13.85	61.9

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finallzed Date: 21-DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18301681

Sample Description	Method	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0_01	0,05	0 05	0,1	0,005	0,01	0.5	0_2	0.01	5	0.05	0.01	0,1	0_2	10
X497151		5.14	16.80	0.13	0.1	0.051	1.61	8.7	22.6	2.33	1170	1.43	2.02	3.7	33.9	1440
X497152		4.87	16.65	0.14	0.2	0.060	1.71	9.0	15.7	2.06	1010	1.37	2.70	3.8	28.1	1430
X497153		5.36	18.25	0.16	0.3	0.063	1.06	11.5	16.7	2.31	1170	1.44	3.78	4.3	39.7	1500
X497154		4.04	9 98	0.09	0.9	0.031	0.57	7,0	16.6	4.34	1340	1.13	1.50	3.0	323	1170
X497155		5.05	13.25	0.12	0.6	0.060	0.79	9,6	14.5	4.13	1360	0.99	2,15	3.4	213	1450
X497156		4.76	8 76	0.09	0.4	0.034	0.39	5.6	17.6	6 17	1820	0.73	0.17	2.3	367	1120
X497157		5.25	11 05	0.11	0.7	0.037	0.54	5.7	22.4	6.75	1520	0.65	0.10	2.8	431	1320
X497158		5.00	15 60	0.15	0.6	0.048	1.50	12.4	18.6	2 43	1170	1.52	2.38	3.8	43.8	1400
X497159		5.23	18 30	0.14	0.2	0.086	2.25	10.4	17.0	2 11	987	1.64	2.43	4.4	31.1	1600
X497159		0.12	0.26	0.09	<0.1	<0.005	0.02	1.2	1.2	1 50	107	0.13	0.03	0.1	<0.2	60
X497161 X497162 X497163 X497164 X497165		4.65 5.29 4.96 5.12 4.90	15.95 17.50 17.10 14.90 9.63	0.10 0.15 0.14 0.11 0.06	0.3 0.2 0.3 0.4	0.059 0.057 0.072 0.049 0.030	1,94 2,44 2,10 1,97 1,87	9.4 10.5 9.7 9.4 6.4	15.8 16.4 14.7 13.1 18.2	2.06 2.29 1.96 2.28 4.13	1200 1340 1040 1200 1800	0.66 0.70 1.23 1.00 1.14	2.06 2.31 2.47 3.16 0.75	3.4 3.6 4.1 2.9 3.2	29.9 39.1 26.3 29.4 306	1210 1320 1510 1260 1500
X497166 X497167 X497168 X497169 X497169 X497170		5.21 5.50 5.40 5.11 4.55	11.85 11.85 11.10 9.41 15.65	0.10 0.08 0.06 0.05 0.13	0.8 0.6 0.6 0.6 1.1	0.041 0.058 0.039 0.030 0.126	2.71 2.89 2.19 1.81 1.34	11.9 8.6 7.2 6.2 10.1	16.4 21.0 24.3 20.7 8.2	3.04 3.76 5.05 4.60 1.32	1680 2010 1400 1320 1020	2.37 1.34 1.18 0.85 5.55	1.51 0.55 0.84 1.08 2.60	4.9 4.1 4.4 3.8 4.3	240 308 338 277 14.2	1490 1590 1590 1450 560
X497171		5.21	9 88	0.07	0.6	0.026	1.96	6.4	20.6	4.91	1560	2.03	0.76	3.4	264	1510
X497172		5.27	10 75	0.05	0.7	0.033	1.72	6.6	21.3	4.93	1500	2.23	0.95	3.5	258	1420
X497173		5.39	11 15	0.08	0.8	0.033	2.17	7.1	22.1	4.51	1320	1.55	1.39	4.4	259	1610
X497174		5.28	10 70	0.07	0.6	0.030	1.87	6.3	24.1	5.21	1350	0.26	0.98	3.2	299	1590
X497175		5.75	11 70	0.06	0.4	0.043	1.91	7.0	24.1	5.53	1440	0.29	0.87	4.3	357	1750
X497176 X497177 X497178 X497179 X497179		5.33 5.24 5.30 5.08 5.22	11 65 10 65 10 70 9 79 10 95	0.05 0.07 0.06 <0.05 0.06	0.5 0.4 0.4 0.5 0.5	0.031 0.034 0.029 0.028 0.037	2.20 2.46 2.28 2.28 2.28 2.22	7.0 6.9 6.7 5.8 7.1	20.9 18.5 21.3 20.7 19.5	4.40 4.35 4.72 4.69 4.65	1510 1720 1400 1570 1580	1.28 1.25 1.32 1.55 0.57	1.34 0.91 0.88 0.59 1.09	4.5 4.0 4.1 3.5 4.4	290 283 297 266 306	1650 1620 1660 1470 1680
X497181 X497182 X497183 X497184 X497184 X497185		5.33 4.48 5.53 6.12 5.72	10.80 10.05 10.35 9.90 9.58	0.06 0.05 0.07 0.06 <0.05	0.5 0.6 0.4 0.3 0.2	0.031 0.032 0.027 0.607 0.040	2.48 2.15 2.85 2.19 1.13	7.1 6.4 6.0 7.4 6.9	16.4 15.7 17.5 15.2 15.2	4.06 3.67 3.87 3.62 6.07	1520 1580 1820 2530 1690	1.91 1.41 3.85 2.40 0.48	1,70 1,69 0,55 0,59 0,30	4.3 4.4 3.8 3.1 3.2	280 229 257 217 455	1640 1440 1530 1420 1790
X497186 X497187 X497188 X497188 X497189 X497190		5.94 5.90 5.23 5.42 4.65	10.10 9.95 11.05 10.60 20.7	0.06 0.05 0.05 0.06 0.11	0.6 0.3 0.5 0.5 2.6	0.030 0.035 0.039 0.038 0.034	1.14 1.37 1.94 2.37 3.52	6.1 6.8 7.0 7.4 3.7	15.8 19.6 17.3 13.2 70.4	6.47 5.92 4.96 4.64 0.65	1570 1650 1460 1300 375	0.32 2.32 1.53 1.70 2290	0.14 0.47 1.32 1.31 0.69	3.1 2.7 3.4 3.8 2.0	492 478 315 300 21.3	1750 1810 1630 1660 280

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0.5	ME- MS61 Rb ppm 0:1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0_01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0,1	ME-MS61 Se ppm 1	ME- MS61 Sn ppm 0,2	ME-MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME- MS61 Th ppm 0-01	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0_02	ME- MS61 U ppm 0,1
X497151 X497152		12.4 9.1	36,3 42,8	<0.002 0.003	0.30 0.43	1.22 0.97	16.0 15.8	2	0.8	280 358	0.22	0.05	1:17 1.33	0.419 0.406	0.36	0.3 0.3
X497153		7.8	30.4	0.002	0.43	0.61	17.4	1	0.8	464	0.24	0.06	1.56	0.437	0.23	0.4
X497154		54 1	20_1	<0.002	0_20	2,48	14.9	1	0.5	684	0.20	<0.05	1.32	0.204	0.32	0.6
X497155		15.2	26.1	<0.002	0.58	1.46	20.1	1	0.7	675	0.20	<0.05	1.66	0.348	0.33	0.8
X497156		15,1	14.5	<0.002	0.18	1.47	19.9	1	0,4	746	0.13	<0.05	1.00	0.197	0.22	0.5
X497157		6.8	20.0	<0.002	0.13	2.68	25.6	<1	0.6	534	0.16	<0,05	1.19	0.240	0.32	0.6
X497158		8.0	41.3	0.003	0.80	2.73	16.8	2	0.8	454	0.23	<0.05	1.71	0.405	0.41	0.5
X497159		9.0	53.2	0.003	0.52	2.40	16_4	2	1.0	368	0.27	0.09	1:58	0,429	0.50	0.3
X497160		1.0	0.5	<0.002	<0.01	0.10	0.3	1	<0.2	81_8	<0.05	<0.05	0.06	0.006	<0.02	0.2
X497161		11.1	57.3	<0.002	0.28	2.32	19.0	1	0_8	423	0.21	<0.05	1.34	0.416	0.41	0.3
X497162		10.0	72 3	0.003	0.32	1,72	22.2	2	0,8	465	0.21	<0.05	1.29	0.481	0.46	0.3
X497163		7.5	47.9	0.005	0.49	1.65	15.1	2	0.9	384	0.23	0.06	1,48	0.409	0.35	0.3
X497164		9.2	47 2	0.002	0.47	0.84	16.7	1	0.7	562	0_18	0.05	1,33	0,442	0.35	0.4
X497165		18 2	40.8	0.003	0.69	2.81	19.4	1	0.7	665	0.18	0_07	1.13	0.266	0.38	0.6
X497166		108.5	51.0	0.004	1,01	2.03	17.6	<1	0.8	671	0.26	0_12	2.70	0.303	0.45	1.4
X497167		164.0	56.6	0.002	0.71	3.23	22.7	1	1-1	482	0.24	0.11	1.28	0.320	0_45	1_0
X497168		11.2	44.8	0.002	0.52	1.61	21.7	1	0.7	541	0.25	<0.05	1.36	0_301	0_38	0.8
X497169		11.8	37.5	0.003	0.83	1,82	18_4	1	0.6	671	0.20	0.09	1.35	0.278	0.31	0.9
X497170		717	20.6	0.003	0.31	17,90	12.9	2	1.7	428	0.28	0.23	2,48	0.295	0.44	1,1
X497171		115 5	44.5	<0.002	1.08	1.86	19_7	1	0.6	668	0.19	0.13	1.28	0.271	0.30	1.0
X497172		13.4	36.7	0.002	1.33	2,30	19.3	2	0.5	616	0_19	0.13	1.33	0.250	0.29	1.0
X497173		14.7	47.8	0.002	1.77	2.32	20.8	1	0.6	694	0.24	0.15	1.47	0.286	0.34	1.0
X497174		11.7	37.4	<0.002	1.40	1.85	19.3	<1	0.6	658	0.17	0.07	1.29	0.277	0.26	0.6
X497175		11.3	41.9	<0.002	1.47	1.96	23.2	1	0.5	575	0.22	0.05	1.33	0.306	0.35	0.6
X497176		16.0	43.8	<0.002	1.78	2.13	21.0	1	0.6	742	0.23	0.17	1.42	0.298	0.37	0.8
X497177		24.4	55.2	<0.002	1.08	1.86	20.9	1	0.6	754	0.22	0_12	1.39	0.292	0_41	0.8
X497178		15.2	49.1	0.003	0.96	1.90	23.4	1	0.5	735	0.23	0.11	1.31	0.309	0.39	0.7
X497179		16 1	43.3	0.003	0.94	1.75	18.9	1	0.5	799	0.19	0.14	1.18	0.276	0.33	0.7
X497180		15 7	47 0	0.002	0.77	1.89	21.5		0.6	811	0.23	0.08	1.47	0.309	0.34	0.8
X497181		38.9	50.0	0.002	1.52	2.22	22.0	2	0.6	822	0.24	0.16	1.45	0.305	0.37	09
X497182		15.9	37.9	0.002	1.15	2.17	17.4	<1	0.5	740	0.25	0.09	1.46	0.270	0.28	0.9
X497183		21.5	47.7	0.002	1.60	4.46	20.3	1	0.6	635	0.21	0.10	1.23	0.288	0.43	0.8
X497184 X497185		5860 24.8	38.7 29.9	<0.002 <0.002	3.30 0.48	17.55 3.62	18.6 24.1	3 1	0.5	751 671	0.17 0.17	0.52 <0.05	0.97 1.15	0.255 0.277	0.36 0.29	0.6 0.5
		· · · · · · · · · · · · · · · · · · ·	1.00	1.1												1.12
X497186		15.8	33.2	<0.002	0.29	4.67	24.6	<1	0.5	712	0.15	< 0.05	1.11	0.269	0.28	0.5
X497187		11.4	44.3	<0.002	0.76	1.93	26.3	<1	0.5	908	0.14	<0.05	1,16	0.264	0.32	0.6
X497188		10.6	58 4	0.002	0.60	2.10	22.3	1	0.6	844	0.18	0.08	1.36	0.275	0.42	0.8
X497189		9.1	77.7	< 0.002	0.42	1.57	24.7	<1	0.7	736	0.21	0.06	1.47	0.285	0.56	0.7
X497190		27.0	72.3	0.161	3.59	80-2	5.2	4	4.3	289	0.12	1.97	1.33	0.195	18.25	0.6

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21-DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME- MS61 V ppm ז	ME-MS61 W ppm 0-1	ME- MS61 Y ppm 0-1	ME-MS61 Zn ppm 2	ME- MS61 Zr ppm 0,5	Ag- OG62 Ag ppm 1	Zn- OG62 Zn % 0.001	
X497151 X497152 X497153 X497154 X497155		187 172 188 119 176	2 2 0 7 0 8 0 8 0 8	11 6 12 3 15 0 9 6 13 4	142 112 114 305 609	5,9 6,9 9.0 18.3 17,8			
X497156 X497157 X497158 X497159 X497159 X497160		134 159 172 182 2	0 5 0 6 2.0 0 8 <0.1	9 5 11 0 16 0 13 3 2.2	79 76 103 120 4	16.2 17.8 16.4 6.8 1.5			
X497161 X497162 X497163 X497164 X497165		183 213 173 192 158	1.3 0.6 0.6 1.0 1.3	13.0 14.5 12.0 11.4 9.6	108 90 102 111 97	8.6 8.4 7.9 7.3 10.6			
X497166 X497167 X497168 X497169 X497170		158 178 172 155 114	17 15 11 10 69	12 8 11 7 10 9 9 5 17 0	108 138 67 63 1160	32.0 18.8 23.2 19.7 26.7			
X497171 X497172 X497173 X497174 X497175		162 161 172 165 183	13 12 13 13 14	10.1 10.4 10.2 10.0 10.7	197 66 68 65 72	14.5 26.3 20.8 16.5 15.1			
X497176 X497177 X497178 X497179 X497179 X497180		174 173 182 162 175	18 17 17 12 13	10 5 10 9 10 6 9 7 12 0	70 101 70 68 79	18.0 14.5 15.6 12.8 20.3			
X497181 X497182 X497183 X497184 X497185		176 158 170 159 177	1 5 1 4 1 7 1.4 1 3	10.6 9.7 9.7 12.0 10.1	215 70 81 >10000 108	19.3 17.8 12.1 9.4 7.1		1.640	
X497186 X497187 X497188 X497189 X497189 X497190		184 181 177 191 598	1.1 0.9 1.1 1.6 38.6	9.3 11.1 10.7 8.8 4.4	83 79 68 67 104	10.8 10.1 16.4 15.2 101.5			

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method	WEI- 21	Au-AA26	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61				
	Analyte	Recvd Wt	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0:01	0.01	0.01	0.2	10	0.05	0.01	0:01	0.02	0.01	0.1	1	0:05	0.2
X497191		4.23	0 01	0.32	5.65	37.1	1470	1.80	0.05	6.83	0.07	13.40	37.2	605	2 20	78.1
X497192		1.40	<0 01	0.12	6 91	13.5	1600	2.19	0.04	5.23	0.12	70.6	22.4	287	3 33	35.6
X497193		2.97	0 01	0.25	5 62	20.2	810	1.72	0.03	7.18	0.06	13.20	32.1	499	1.55	83.8
X497194		3.85	<0 01	0.17	5.75	10.5	1230	2.00	0.02	6.04	0.05	13.70	41.6	549	1 44	43.0
X497195		4.04	<0 01	0.24	5.70	24.4	1040	1.95	0.02	6.60	0.05	14.15	40.3	544	1.24	79.3
X497196		4 06	0 01	0.31	5.54	38.2	980	1.95	0.02	6.90	0.09	12.95	35.3	499	1.38	102.5
X497197		3 82	<0 01	0.40	5.80	71.0	1460	1.51	0.04	7.12	0.09	13.60	38.3	618	1.54	78.9
X497198		3 52	0 01	0.34	5.76	26.9	1220	1.59	0.07	7.21	0.09	13.35	36.3	519	1.83	77.4
X497199		3 90	0 01	0.23	5.47	28.2	1130	1.53	0.05	7.54	0.14	14.05	40.2	594	2.85	63.2
X497200		1.28	<0 01	0.04	0.19	1.2	30	0.13	0.02	32.8	0.02	0.94	0.7	3	<0.05	4.6
X497201		3.75	<0.01	0,13	4 89	11.8	760	2:03	0.06	6.84	0.06	14.10	40.1	618	4.68	39.4
X497202		3.76	0.01	0,49	5 81	11.3	770	1:96	0.06	5.91	0.07	13.40	36.5	520	4.50	116.5
X497203		4.00	<0.01	0,26	5 96	15.9	780	1:89	0.11	5.80	0.08	14.10	39.7	577	3.84	64.0
X497204		3.59	<0.01	0,31	5 70	19.3	1270	1:73	0.06	7.89	0.18	14.85	39.8	554	3.13	73.6
X497205		3.92	0.01	0,28	5.95	22.4	950	1:76	0.04	7.42	0.11	13.55	40.9	593	3.89	52.5
X497206		4.16	0 01	0.64	6.16	40.2	1290	1.52	0.07	7.01	0.19	14.50	42.5	569	3.29	122.0
X497207		4.19	<0 01	0.41	6.09	19.4	860	1.71	0.07	7.63	0.15	14.50	40.4	541	3.54	100.5
X497208		3.83	<0 01	0.40	4.88	22.2	360	1.18	0.08	9.41	0.73	12.15	30.8	443	1.92	66.9
X497209		4.05	<0 01	0.27	5.72	17.7	510	2.69	0.05	5.47	0.18	13.85	46.8	613	7.48	89.9
X497210		0.13	4 76	>100	1.52	57.0	230	2.99	0.74	10.55	11.00	12.10	2.4	13	2.27	105.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finallzed Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0,01	ME-MS61 Mn ppm 5	ME- MS61 Mo ppm 0,05	ME- MS61 Na % 0,01	ME-MS61 Nb ppm 0,1	ME-MS61 Ni ppm 0-2	ME-MS61 P ppm 10
X497191 X497192 X497193 X497194 X497194 X497195		5.13 5.25 4.68 5.50 5.47	10 35 14 20 10 20 11 25 11 05	0.07 0.13 0.07 0.06 0.07	0 4 1 8 0 4 0 5 0 6	0.032 0.048 0.032 0.036 0.032	2.45 3.04 2.22 2.21 2.16	6.8 38.9 6.6 7.1 7.2	12,1 11,9 10,5 16,7 15,2	5 29 3 20 4 77 6 53 6 45	1280 1020 1280 1180 1260	3,10 1,81 1,39 0,37 0,39	1,25 1,32 1,52 1,08 1,07	3.5 12.0 3.3 3.8 3.4	300 127_5 253 417 370	1660 2630 1390 1450 1550
X497196 X497197 X497198 X497199 X497200		5.23 4.76 4.85 5.18 0.12	10 05 10 45 10 25 10 65 0 62	0.06 0.06 0.07 0.08 0.06	0.4 0.5 0.5 0.5 0.1	0.039 0.027 0.027 0.039 <0.005	2.39 2.52 2.24 2.70 0.07	65 69 68 71 10	14.1 11.9 12.8 15.1 1.4	5.68 4.96 4.80 5.04 2.02	1300 1230 1260 1280 126	1.63 2.73 1.71 1.02 0.59	0,95 1.17 1.43 0.97 0.09	3 0 2.4 3.1 3.5 0.5	310 279 296 323 3.4	1470 1700 1490 1620 50
X497201 X497202 X497203 X497204 X497204 X497205		5.60 5.14 5.88 5.20 5.55	9.21 9.97 11.10 10.40 10.70	0.05 0.06 0.07 0.05 0.06	05 06 08 07 05	0.033 0.035 0.044 0.034 0.032	2.80 2.80 2.52 2.33 2.14	7 1 6 7 7 1 7 5 6 7	21.6 16.9 20.2 18.4 24.2	6.85 5.88 6.33 4.75 5.72	1220 1080 1120 1280 1320	1.17 1.22 1.37 1.30 1.64	0,23 1.20 0.82 1.06 0.98	4.1 3.8 3.2 3.3 2.5	413 294 329 321 339	1720 1550 1690 1640 1620
X497206 X497207 X497208 X497209 X497209 X497210		5.63 5.55 4.57 6.12 2.29	11 75 11 30 9 11 10 95 3 36	0 07 0 07 <0 05 0 06 <0 05	1.0 0.7 0.6 1.0 0.5	0.040 0.046 0.029 0.037 0.740	1,75 1,69 0,85 2,58 1,22	7.4 7.3 6.1 6.8 6.8	17.2 18.1 14.8 18.6 44.1	4.60 4.97 4.73 8.23 0.11	1400 1410 1480 1230 2090	1.44 1.47 2.72 0.90 6.82	1.69 1.51 1.08 0.40 0.04	3.1 2.8 1.2 3.5 2.0	322 312 254 422 9.7	1820 1580 1280 1810 110

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME- MS61 Pb ppm 0_5	ME- MS61 Rb ppm 0_1	ME- MS61 Re ppm 0_002	ME- MS61 S % 0_01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0_1	ME- MS61 Se ppm 1	ME-MS61 Sn ppm 0,2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0,01	ME- MS61 Ti % 0,005	ME- MS61 TI ppm 0,02	ME- MS61 U ppm 0_1
X497191 X497192 X497193 X497194 X497194 X497195		13.3 10.7 7.0 5.8 5.1	89.1 84.4 76.7 83.4 71.7	0.002 <0.002 0.002 <0.002 <0.002	0.52 0.64 0.47 0.19 0.27	1.69 3.76 2.24 1.18 1.62	21.7 15.6 18.6 20.2 20.4	<1 1 <1 <1 <1	0.6 1.2 0.6 0.6 0.6	737 692 634 707 728	0.20 0.62 0.19 0.22 0.20	0.06 0.05 0.06 <0.05 <0.05	1.11 4.30 1.18 1.31 1.17	0,284 0.632 0,246 0,289 0,285	0.54 0.62 0.48 0.56 0.45	0.6 1.3 0.6 0.5 0.6
X497196 X497197 X497198 X497198 X497199 X497200		6 2 9.1 8 9 13.5 3.6	76.9 74.3 74.1 93.3 1.9	<0.002 <0.002 0.002 0.002 <0.002	0 36 0 49 0 53 0 87 <0 01	1.55 2.01 2.15 1.66 0.39	18.7 22.3 19.3 21.8 0.2	<1 1 1 1 1	0.5 0.5 0.6 <0.2	695 715 695 675 75.0	0.18 0.14 0.17 0.20 0.06	<0.05 0.07 0.08 0.09 <0.05	1.11 1.04 1.28 1.17 0.16	0.255 0.237 0.243 0.256 0.006	0.53 0.50 0.52 0.67 <0.02	0.4 0.6 0.8 0.7 0.3
X497201 X497202 X497203 X497204 X497204 X497205		7.6 7.6 12.8 18.0 16.1	120.0 107.0 82.2 59.9 66.0	<0 002 0 002 0 002 <0 002 <0 002	0.52 0.34 0.47 0.78 0.93	1.44 1.50 2.29 2.05 1.88	21.9 21.5 24.5 22.4 22.9	1 1 1 1	0.5 0.6 0.5 0.5	642 617 562 629 545	0.22 0.20 0.19 0.19 0.14	0.28 0.07 <0.05 <0.05 <0.05	1.19 1.43 1.30 1.27 1.24	0.292 0.289 0.281 0.269 0.278	0.89 0.88 0.70 0.49 0.50	0.7 1.0 0.7 0.9 0.7
X497206 X497207 X497208 X497209 X497210		24.6 14.2 37.8 9.9 5600	54.5 56.7 29.3 110.0 61.3	<0 002 0 003 <0 002 <0 002 <0 002	1,36 0,61 0,47 0,13 0,29	3.83 4.03 2.98 1.86 55.2	27.2 23.5 16.9 27.4 1,4	1 2 <1 <1 2	0.6 0.7 0.5 0.6 3.2	574 673 1095 460 332	0.18 0.17 0.08 0.20 0.19	0.11 0.07 <0.05 <0.05 0.64	1.41 1.41 1.20 1.20 3.33	0.285 0.281 0.169 0.333 0.027	0.42 0.43 0.21 0.70 0.94	1.0 0.8 0.7 0.7 1.2

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages FInalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0,1	ME- MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Ag- OG62 Ag ppm 1	Zn- OG62 Zn % 0,001	
X497191 X497192 X497193 X497194 X497194 X497195		178 143 152 179 179	2.0 2.8 1.4 1.7 1.5	7_7 15.5 7.7 6_4 6_2	70 94 62 78 76	14.8 72.9 16.6 16.0 17.7			
X497196 X497197 X497198 X497199 X497199 X497200		165 176 158 176 1	1.3 1.9 1.8 1.2 <0.1	6.3 7.6 7.5 8.0 2.5	69 65 69 79 9	12.9 11.5 17.6 15.1 2.4			
X497201 X497202 X497203 X497204 X497204 X497205		169 171 181 171 178	1.3 1.3 1.1 1.2 0.8	7.9 7.9 8.4 10.3 10.6	78 63 87 98 73	13.2 26.6 20.2 18.0 24.3			
X497206 X497207 X497208 X497209 X497209 X497210		189 177 144 194 29	1.0 0.8 0.3 0.6 2.7	10 1 10 4 7 0 9 5 3 4	88 73 133 91 895	18.3 22_1 15.5 22.4 12_3	125		

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

		CERTIFICATE COM	IMENTS	
			TICAL COMMENTS	
Applies to Method:	REE's may not be totally s ME- MS61	oluble in this method.		
			ATORY ADDRESSES	
		ps located at 2953 Shuswap Drive, Ka		
Applies to Method:	BAG-01	CRU- 31	CRU- QC	LOG-21
	LOG- 23 WEI- 21	PUL- 32	PUL- QC	SPL- 21
	Processed at ALS Vancouv	ver located at 2103 Dollarton Hwy, No	rth Vancouver. BC. Canada.	
Applies to Method:	Ag- OG62 Zn- OG62	Au- AA26	ME- MS61	ME- OG62
9				

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 1 Total # Pages: 2 $(\overline{A} - D)$ Plus Appendix Pages Finalized Date: 20- DEC- 2018 Account: SKERES

CERTIFICATE KL18301687

Project: Snip P.O. No.: S- C18- 128 This report is for 38 Drill Core samples submitted to our lab in Kamloops, BC, Canada on 27- NOV- 2018. The following have access to data associated with this certificate:

PAUL GEDDES ADRIAN NEWTON	RAEGAN MARKEL COLIN RUSSELL	MIKE MAYER

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 21	Sample logging - ClientBarCode	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 32	Pulverize 1000g to 85% < 75 um	
BAG- 01	Bulk Master for Storage	
LOG-23	Pulp Login - Rcvd with Barcode	

ANALYTICAL PROCEDURES DESCRIPTION INSTRUMENT

ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA26	Ore Grade Au 50g FA AA finish	AAS
ME- MS61	48 element four acid ICP- MS	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 20- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18301687

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt_ kg 0:02	Au- AA26 Au ppm 0:01	ME-MS61 Ag ppm 0:01	ME- MS61 Al % 0:01	ME-MS61 As ppm 0=2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0-05	ME-MS61 Bi ppm 0:01	ME- MS61 Ca % 0_01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0-05	ME-MS61 Cu ppm 0.2
X497211 X497212 X497213		4.17 3 90 4 05	<0.01 <0.01 <0.01	0.23 0.13 0.11	5 24 5 98 5 90	11.8 4.6 4.1	450 420 720	2 50 2 33 2 06	0.02 0.02 0.01	6 10 7 34 7 26	0.13 0.14 0.14	13.85 16.15 15.75	44,1 39,6 34,5	548 476 476	8,16 5,49 4,44	76.9 84.3 99.7
X497214 X497215		2.78 3.93	<0.01 <0.01	0.09	6.09 6.25	4.3 4.4	1100 950	2.50 2.44	0.02	5 38 5 49	0.09 0.13	15.80 16.40	40 9 40 7	494 501	4.87 3.36	77.5 101.5
X497216 X497217 X497218 X497219		3.91 3.96 4.01 3.82	<0.01 <0.01 <0.01 <0.01	0 08 0 08 0 17 0 16	6.13 5.67 5.23 5.79	5.1 3.6 17.5 9.3	1340 1010 890 480	2.12 1.89 1.96 2.31	0.02 0.01 0.02 0.01	7.07 7.98 7.89 5.95	0.10 0.10 0.11 0.08	16.05 15.80 14.40 14.95	38.3 37.0 37.3 37.2	508 476 474 460	3.08 3.63 3.57 2.72	88.8 74.0 81.4 95.6
X497220 X497221		1,13 3,97	<0.01	<0.01	0.12	0.3	30	0.06	0.01	33.9	<0.02	14.95	0.6	5	0.05	4.4
X497222 X497223 X497224 X497225		4.07 3.83 4.11 4.00	<0.01 <0.01 <0.01 <0.01 <0.01	0.23 0.20 0.18 0.19	4.68 4.83 5.79 5.58	20 6 34 5 9 2 24 8	440 260 370 350	2.07 1.49 2.23 2.14	0.01 0.02 0.09 0.12	6 69 7 83 6 18 6 17	0.12 0.17 0.16 0.21	12,55 13,00 14,60 14,20	43 0 38 6 39.7 38 2	569 571 531 517	3.37 2.25 7.01 4.75	56.8 49.9 65.7 58.5
X497226 X497227 X497228 X497229		4,06 3,88 4,11 4,03	0 01 <0 01 <0 01 0 01	0 62 0 58 0 32 0 14	5 20 5 19 6 51 7 51	79.9 155.5 118.0 5.6	580 1080 1320 2400	2.05 1.85 2.00 2.34	0 03 0 04 0 03 0 01	6 56 6 66 4 98 5 31	0.21 0.77 0.22 0.08	16.70 13.60 16.60 15.95	41.2 46.3 32.3 16.6	582 652 480 196	3.79 3.83 4.57 4.26	188.5 70.2 53.4 64.6
X497230 X497231 X497232 X497233 X497233 X497234		0.13 3.92 4.09 2.39 1.36	11 70 <0 01 0 01 <0 01 <0 01	34.5 0.16 0.15 0.13 0.23	5.29 6.77 5.30 5.51 7.23	5550 4.1 2.4 1.8 2.4	680 2730 930 1440 820	0.91 2.05 2.17 2.17 1.57	9.61 0.04 0.06 0.04 0.06	4.14 5.87 5.45 6.32 5.16	6.19 0.06 0.07 0.07 0.09	33.5 15.25 13.50 14.35 16.05	22.7 21.6 37.7 40.2 16.4	56 231 483 586 223	3.69 3.62 4.54 6.16 2.13	340 73.8 108.0 124.5 233
X497235 X497236 X497237 X497238		4.11 2.65 2.87 4.07	<0.01 <0.01 <0.01 <0.01	0.05	7,92 7,98 5,61 5,69	3.6 3.1 3.3 1.6	2780 2720 1600 2090	1.64 1.58 2.12 2.27 2.15	0.04 0.04 0.15 0.08 0.13	3.35 3.35 6.32 6.30 6.09	0.17 0.11 0.29 0.11 0.12	111.5 113.5 15.55 15.85 13.40	19.0 19.2 34.3 39.6 39.6	62 60 649 632 610	0.81 0.70 7.02 7.10 6.58	16.8 15.4 14.9 48.9 86.3
X497239 X497240 X497241		4.02 4.06 3.98	0.01 <0.01 <0.01	0.13 0.16	5.58 5.83 6.33	2.3 2.1 1_6	1020 870 710	2.15 2.03 2.07	0.13	6.42 5.29	0.12	11.45	38.1	560	5.83	81.4
X497242 X497243 X497244 X497245		4.38 1.62 3.06 3.86	<0.01 <0.01 <0.01 <0.01 <0.01	0.15 0.16 0.10 0.11	6 58 5 94 7.91 7 70	1.6 1.5 2.1 2.3	770 600 1620 1680	2.37 2.17 1.75 1.75	0.19 0.21 0.05 0.05	5.07 5.69 3.92 4.71	0.12 0.12 0.06 0.10	17.65 13.65 113.5 101.5	31 3 37 9 22 5 24.2	426 516 87 186	6.44 5.81 2.11 2.08	97.9 91.1 17.6 40.3
X497246 X497247 X497248		2.60 3.21 2.99	<0.01 <0.01 0.01	0.05 0.18 0.49	7.87 6.30 6.15	1.3 12.0 11.7	1730 1620 920	1.47 1.80 1.77	0.04 0.10 0.37	4 27 8 32 6 94	0.09 0.11 0.30	117.0 24.6 19.50	21.4 59.4 42.5	69 656 478	1,29 4,46 3.98	17.0 101.0 144.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 20- DEC- 2018 Account: SKERES

Project: Snip

X497212 5.6 X497213 5.1 X497214 5.7 X497215 5.8 X497216 5.5 X497217 5.2 X497218 5.1 X497219 5.2 X497220 0.1 X497221 5.1 X497220 0.1 X497221 5.1 X497222 5.8 X497223 5.3 X497224 5.3 X497225 5.1 X497226 5.5 X497230 9.8 X497230 9.8 X497231 3.9 X497233 5.3 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497239 5.4 X497234 2.6 X497235 5.7 X497236 5.7 X497239 5.4 X497239 5.4 X497240 5.3 X497240 5.3 X497241 4.6 X497243 4.6	$\begin{array}{ccccc} 5.77 & 10.35 \\ 5.62 & 12.05 \\ 5.16 & 11.15 \\ 5.71 & 11.70 \\ 5.83 & 12.25 \\ \hline 5.56 & 11.65 \\ 5.32 & 11.15 \\ 5.10 & 10.60 \\ 5.21 & 10.80 \\ 0.12 & 0.37 \\ \end{array}$	0 09 0 09 0 08 0 10 0 09 0 07 0 08	0.9 0.9 0.9 0.9 1.4	0.035 0.036 0.035 0.037 0.038	2.48 1.60 1.31 1.43	72 85 84	15.7 14.6	7.50	1150	0.05				
X497214 5.7 X497215 5.8 X497216 5.5 X497217 5.3 X497218 5.1 X497219 5.2 X497220 0.1 X497221 5.1 X497222 5.8 X497223 5.3 X497224 5.3 X497225 5.1 X497226 5.5 X497227 5.5 X497228 4.9 X497230 9.8 X497231 3.5 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497239 5.2 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497240 5.3 X497240 5.3 X497241 4.6 X497243 4.6	5.71 11.70 5.83 12.25 5.56 11.65 5.32 11.15 5.10 10.60 5.21 10.80	0 10 0 09 0 07	0.9 0 9 1 4	0.037	1,31			6.28	1220	0.25 0.25	0_97 1_98	3.9 4.6	369 294	1710 1710
X497215 5.8 X497216 5.5 X497217 5.3 X497217 5.3 X497218 5.1 X497219 5.2 X497220 0.1 X497221 5.1 X497222 5.8 X497223 5.3 X497224 5.3 X497225 5.1 X497226 5.5 X497227 5.5 X497228 4.9 X497230 9.8 X497231 3.2 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497239 5.2 X497234 2.6 X497237 5.7 X497238 5.7 X497239 5.2 X497234 5.3 X497235 5.4 X497236 5.5 X497237 5.7 X497238 5.7 X497240 5.3 X497240 5.3 X497241 4.6 X497242 5.0 X497243 4.6	5.83 12.25 5.56 11.65 5.32 11.15 5.10 10.60 5.21 10.80	0 09	1.4		1.43	0.4	11.8	5.56	1160	0.26	2.45	4.3	252	1760
X497216 5.5 X497217 5.3 X497218 5.1 X497219 5.2 X497220 0.1 X497221 5.1 X497222 5.8 X497223 5.3 X497224 5.3 X497225 5.1 X497226 5.5 X497227 5.5 X497228 4.9 X497229 3.6 X497220 9.8 X497231 3.9 X497233 5.3 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497239 5.4 X497230 5.4 X497234 2.6 X497235 5.7 X497236 5.4 X497239 5.4 X497239 5.4 X497240 5.3 X497240 5.3 X497241 4.6 X497243 4.6	5.56 11.65 5.32 11.15 5.10 10.60 5.21 10.80	0.07		0.038		8.1	12.8	6.68	1080	0.37	2.49	3,9	298	1740
X497217 5.3 X497218 5.1 X497219 5.2 X497220 0.1 X497221 5.1 X497222 5.8 X497223 5.3 X497224 5.3 X497225 5.1 X497226 5.5 X497227 5.5 X497228 4.9 X497230 9.8 X497231 3.9 X497233 5.3 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.5 X497238 5.7 X497239 5.4 X497239 5.4 X497234 2.6 X497237 5.7 X497238 5.7 X497239 5.4 X497240 5.3 X497241 4.6 X497243 4.6	5.3211.155.1010.605.2110.80		0.8		0.95	8.6	11.9	6.72	1080	0.20	2.85	4.3	299	1780
X497218 5.1 X497219 5.2 X497220 0.1 X497221 5.1 X497222 5.8 X497223 5.3 X497224 5.3 X497225 5.1 X497226 5.5 X497227 5.5 X497228 4.9 X497230 9.8 X497231 3.9 X497233 5.3 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497239 5.4 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.3 X497239 5.4 X497240 5.3 X497240 5.3 X497241 4.6 X497242 5.0 X497243 4.6	5.10 10.60 5.21 10.80	0.08		0,034	0.82	8.5	13.0	6.23	1240	0.23	2.73	4.3	290	1820
X497219 5.2 X497220 0.1 X497221 5.1 X497222 5.8 X497223 5.3 X497224 5.3 X497225 5.1 X497226 5.5 X497227 5.5 X497228 4.9 X497230 9.8 X497231 3.9 X497232 5.2 X497233 5.3 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.5 X497238 5.7 X497240 5.3 X497240 5.4 X497241 4.6 X497243 4.6	5.21 10.80		0.8	0.032	0.97	8.5	13.5	5.95	1340	0.21	2.28	3.7	288	1730
x497220 0.1 x497221 5.1 x497222 5.8 x497223 5.3 x497224 5.3 x497225 5.1 x497226 5.5 x497227 5.5 x497228 4.9 x497230 9.8 x497231 3.5 x497232 5.2 x497233 5.3 x497234 2.6 x497237 5.7 x497238 5.7 x497239 5.4 x497234 2.6 x497237 5.7 x497238 5.7 x497240 5.3 x497240 5.3 x497240 5.3 x497241 4.6 x497243 4.6		0.10	0.6	0.034	1.10	7.6	18.0	5.57	1240	1.45	1.62	1.9	273	1570
x497221 5.1 x497222 5.8 x497223 5.3 x497224 5.3 x497225 5.1 x497226 5.5 x497227 5.5 x497228 4.9 x497230 9.8 x497231 3.5 x497233 5.3 x497234 2.8 x497235 5.5 x497230 9.8 x497231 3.5 x497235 5.5 x497234 2.8 x497235 5.5 x497236 5.5 x497237 5.7 x497238 5.7 x497239 5.2 x497234 2.8 x497235 5.2 x497236 5.5 x497237 5.7 x497240 5.3 x497240 5.3 x497241 4.6 x497242 5.0 x497243 4.6	0.12 0.37	0.09	1.2	0.031	0.97	8.0	11.7	5.81	1060	0.83	2,39	2.8	269	1650
K497222 5.8 K497223 5.3 K497224 5.3 K497225 5.1 K497226 5.5 K497227 5.5 K497228 4.9 K497230 9.8 K497231 3.5 K497232 5.2 K497233 5.3 K497234 2.6 K497235 5.5 K497236 5.5 K497237 5.7 K497238 5.7 K497239 5.4 K497234 2.6 K497235 5.2 K497236 5.5 K497237 5.7 K497238 5.7 K497240 5.3 K497241 4.6 K497241 4.6 K497243 4.6		0.05	0_1	<0.005	0_06	1.8	1.2	1,38	101	<0.05	0.04	0.2	1,5	70
x497223 5.3 x497224 5.3 x497225 5.1 x497226 5.5 x497227 5.5 x497228 4.9 x497229 3.8 x497230 9.8 x497231 3.5 x497232 5.2 x497233 5.3 x497235 5.5 x497236 5.5 x497237 5.7 x497238 5.7 x497239 5.4 x497239 5.4 x497240 5.3 x497241 4.6 x497243 4.6	5.14 9.52	0.06	0.5	0.035	0_47	7.2	14,7	6.02	1140	3.04	1.78	1.8	291	1540
x497224 5.3 x497225 5.1 x497226 5.5 x497227 5.5 x497228 4.9 x497229 3.6 x497230 9.8 x497231 3.9 x497232 5.2 x497233 5.3 x497234 2.6 x497235 5.5 x497236 5.5 x497237 5.7 x497238 5.7 x497239 5.4 x497234 5.5 x497235 5.5 x497236 5.5 x497237 5.7 x497238 5.7 x497240 5.3 x497240 5.3 x497241 4.6 x497243 4.6	581 952	0.07	0.6	0.034	1 29	6.5	19.1	7.48	1160	2.68	0.86	2.2	350	1600
x497225 5.1 x497226 5.5 x497227 5.5 x497228 4.5 x497230 9.8 x497231 3.5 x497232 5.3 x497233 5.3 x497234 2.6 x497235 5.5 x497236 5.5 x497237 5.7 x497239 5.4 x497239 5.4 x497239 5.4 x497240 5.3 x497241 4.6 x497243 4.6	5.39 9.62	0.06	0.5	0.037	0.88	6.9	19.5	6.52	1230	1.97	1.33	27	329	1560
X497226 5.5 X497227 5.5 X497228 4.9 X497229 3.8 X497230 9.8 X497231 3.9 X497232 5.2 X497233 5.3 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497240 5.3 X497241 4.6 X497243 4.6	5.36 10.95	0.07	1.3	0.036	2.29	7.8	15.7	6.41	1110	2.04	1.67	3.9	318	1670
K497227 5.5 K497228 4.9 K497230 3.8 K497231 3.9 K497232 5.3 K497233 5.3 K497234 2.6 K497235 5.5 K497236 5.5 K497237 5.7 K497238 5.7 K497239 5.4 K497234 5.3 K497235 5.4 K497238 5.7 K497240 5.3 K497241 4.6 K497243 4.6		0.07	1.0	0.039	1.81	7.7	12.6	6.21	1140	3.22	1.96	2.7	320	1600
(497228 4.9 (497228) 3.8 (497230) 9.8 (497231) 3.9 (497233) 5.2 (497234) 2.8 (497235) 5.5 (497237) 5.7 (497238) 5.7 (497239) 5.2 (497237) 5.7 (497238) 5.7 (497239) 5.2 (497234) 4.8 (497237) 5.3 (497238) 5.3 (497240) 5.3 (497241) 4.6 (497243) 4.8	5.59 10.00	0.06	0.7	0.037	1.65	9.0	17.1	6.61	1260	2 21	1.45	3.4	357	1800
K497229 3.8 K497230 9.8 K497231 3.9 K497232 5.2 K497233 5.3 K497234 2.8 K497235 5.5 K497236 5.5 K497237 5.7 K497238 5.7 K497239 5.2 K497237 5.7 K497238 5.7 K497240 5.3 K497241 4.6 K497243 4.6	5.57 10.40	0.06	0.6	0.030	1.95	7.2	20.9	6.52	1220	0.71	1.26	2.3	365	1650
x497230 9.8 x497231 3.9 x497232 5.2 x497233 5.3 x497234 2.8 x497235 5.5 x497236 5.5 x497237 5.7 x497239 5.4 x497240 5.3 x497241 4.6 x497243 4.6		0.08	1,1	0.029	2.61	9.1	22.2	5.30	1080	1.59	1.98	4.4	256	1640
X497231 3.5 X497232 5.2 X497233 5.3 X497234 2.6 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497239 5.4 X497240 5.3 X497241 4.6 X497243 4.6	3 85 12 70 9 83 13 70	0 09 0 09	0.7 1.6	0.022 1.465	3.75 1.33	8.8 18.3	15.0 17.0	3 06 0 99	1080 971	1.60 41.6	2.77 0.94	5.7 4.3	118 5 28 8	1460 640
x497232 52 x497233 53 x497234 28 x497235 55 x497236 55 x497237 57 x497239 57 x497240 53 x497241 46 x497243 48														
x497233 5.3 x497234 2.8 x497235 5.5 x497236 5.5 x497237 5.7 x497238 5.7 x497239 5.4 x497240 5.3 x497241 4.6 x497242 5.0 x497243 4.6	3 93 11 15	0.07	1.0	0.026	3.42	8.5	12,1	3.42	983	1.88	2.10	4.6	135.0	1390
X497234 2.8 X497235 5.5 X497236 5.5 X497237 5.7 X497238 5.7 X497239 5.4 X497240 5.3 X497241 4.6 X497243 4.6		0.09	0.9	0.037	2.16	7.3	13.7	6.63	1100	0.21	1.33	3.3	302 361	1540
x497235 5.5 x497236 5.5 x497237 5.7 x497238 5.7 x497239 5.4 x497240 5.3 x497241 4.6 x497243 4.6		0.08	0.8	0.035	3.00	7.7 9.3	12.5 7.2	6.78	1200	1.74 0.90	0_84 4.27	5.2 5.2		1620 1040
X497236 5.5 X497237 5.7 X497238 5.7 X497239 5.2 X497240 5.3 X497241 4.6 X497242 5.0 X497243 4.6	2.80 11.40 5.52 20.2	0.09 0.17	0.8 3.6	0.091 0.066	1.04 2.85	9.3 54.6	26.0	2.34 2.30	702 972	2.05	2.74	24.6	104.5 37.5	3690
x497237 5.7 x497238 5.7 x497239 5.2 x497240 5.3 x497241 4.6 x497242 5.0 x497243 4.6	- M			0.			= - 92							
x497238 5.7 x497239 5.4 x497240 5.3 x497241 4.6 x497242 5.0 x497243 4.6	5.55 20.2	0.18	4.0	0.059	2.95	55.0	27.2	2.29	980	2.05	2.79	24.0	36.9	3720
x497239 5.4 x497240 5.3 x497241 4.6 x497242 5.0 x497243 4.6		0.10 0.09	0.7 0.7	0.037 0.038	3.35 3.53	7.8 7.8	16.9 15.0	6 75 6 90	1360 1220	0.18 0.19	0.87 0.58	6.7 6.8	340 345	1880 1890
x497240 5.3 x497241 4.6 x497242 5.0 x497243 4.6	5.43 10.20	0.09	0.7	0.038	3.39	6.5	11.9	6.49	1050	0.19	0.80	5.6	310	1730
X497241 4.6 X497242 5.0 X497243 4.8	5 30 11 00	0.10	0.9	0.031	2.82	5.5	14.2	6.30	1180	8.16	1.09	4.0	260	1540
(497242 5.0 (497243 4.8	4.64 10.75	0.12	1.4	0.037	2 71	7.0	11.0	5.60	939	0.95	1.90	5.2	262	1390
x497243 4.8	5.09 12.40	0.09	1.4	0.038	3.12	8.9	13.0	6.21	1000	2.66	1:74	7.2	250	1520
	4.89 10.90	0.09	1.0	0.041	2.71	6.6	14.6	6.19	1120	1.07	1.27	5.0	291	1520
	5.78 19.65	0.19	4.1	0.071	2.69	57.0	29.3	2.83	792 -	1.85	2.30	22.3	49.4	3720
x497245 5.7	5 76 18 55	0.17	3.4	0.064	2 31	51.3	28.6	3.06	940	1.62	2.37	20.5	94.1	3540
x497246 5.7	5.73 19.55	0.18	4.0	0.071	2 22	55.8	27.6	2.47	934	1.88	2.38	22.8	40.2	3700
		0.11	1.2	0.048	2 70	12.2	12.2	3.83	1150	0.47	2.08	6,5	358	2210
X497248 5.7	4.99 12.05	0.08	1.0	0.040	2 78	9.8	14.3	4.72	1260	1.16	1.39	5.7	269	1670

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 20- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME- MS61 Pb ppm 0 ₁ 5	ME- MS61 Rb ppm 0_1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0_01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0,1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0,2	ME- MS61 Sr ppm 0_2	ME-MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0.1
X497211 X497212 X497213		8.5 8.4 9.2	128 0 84 3 70 1	<0.002 <0.002 0.003	0.23 0.10 0.08	2.45 2.52 2.93	27.8 27.0 27.0	1 1 1	0.7 0.7 0.7	485 582 504	0.25 0.28 0.27	<0.05 <0.05 <0.05	1.39 1.71 1.54	0.331 0.337 0.347	0.74 0.50 0.47	0.8 1.1 1.0
X497214 X497215		7.4 6.6	80.7 55.4	0 002 <0 002	0.05 0.10	3 55 3 64	27.4 29.0	1	0.7 0.7	370 360	0.25 0.29	<0.05 <0.05	1.51 1.48	0,346 0,355	0.47 0.31	1,4 1,4
X497216 X497217 X497218 X497219 X497220		8.5 7.9 11_4 7.9 0.5	44.6 52.0 54.6 49.2 1.8	<0 002 <0 002 <0 002 <0 002 <0 002 <0 002	0.16 0.07 0.23 0.08 <0.01	3.35 2.47 3.04 2.42 0.05	27.9 26.6 24.3 25.3 0.2	1 1 <1 1	0.8 0.7 0.5 0.5 <0.2	546 602 722 515 82.2	0.26 0.25 0.11 0.18 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	1.51 1.35 1.18 1.28 0.09	-0.356 0.330 0.231 0.265 0.006	0.27 0.27 0.32 0.32 0.02	1.1 1,2 0.9 1.1 0.2
X497221 X497222 X497223 X497224 X497224 X497225		10.3 13.1 8.9 11.7 16.9	21.4 59.3 40.3 119.0 86.6	<pre><0 002 <0 002 <0 002 <0 002 0 003 0 003</pre>	0.12 0.04 0.15 0.26 0.42	1.86 1.85 2.50 2.72 2.33	26.2 28.8 28.2 25.9 22.6	1 <1 1 1 1	0.4 0.5 0.5 0.7 0.6	501 469 565 432 447	0.11 0.12 0.16 0.24 0.17	<0.05 <0.05 <0.05 0.08 0.12	1.07 0.91 0.94 1.52 1.39	0.175 0.265 0.223 0.287 0.263	0.17 0.41 0.35 0.74 0.59	0.8 0.6 0.6 1.4 0.9
X497226 X497227 X497228 X497229 X497229 X497230		13.1 48.6 20.4 8.9 286	78.7 79.2 91.2 82.6 55.3	<0.002 <0.002 <0.002 0.002 0.002 0.011	0.18 0.24 0.11 0.13 2.49	2.24 1.89 1.82 1.02 9.42	25.8 27.4 22.2 13.1 9.2	1 1 1 2	0.6 0.6 0.7 0.6 7.1	511 533 580 864 323	0.18 0.14 0.27 0.33 0.27	0.05 <0.05 0.07 <0.05 8.79	1.47 1.18 1.75 1.85 4.20	0.261 0.267 0.271 0.233 0.202	0.52 0.55 0.64 0.42 1.23	0.9 0.5 1.3 1.5 9.2
X497231 X497232 X497233 X497234 X497235		7.6 4.4 6.6 14.0 12.3	79.3 79.8 104.0 34.4 59.9	<0.002 <0.002 0.004 <0.002 <0.002	0.09 0.05 0.04 0.13 0.09	0.83 1 22 0 98 1 32 2 82	14.5 23.2 23.7 12.0 14.4	1 1 <1 1 1	05 08 06 08 18	972 605 643 776 1250	0.27 0.19 0.30 0.32 1.12	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	1.76 1.29 1.32 2.16 5.70	0 227 0 298 0 303 0.194 0.944	0.35 0.32 0.45 0.17 0.38	1.4 0.8 1.0 1.3 1.9
X497236 X497237 X497238 X497239 X497239 X497240		12.5 25.5 12.3 11.3 11.3	65.2 114.0 125.0 118.0 100.0	0.002 <0.002 <0.002 <0.002 0.003	0.10 0.35 0.41 0.68 0.33	2.51 1.36 1.12 0.94 1.04	14.5 26.8 27.6 26.3 26.6	1 1 <1 1 1	1.8 0.7 0.6 0.6 0.5	1240 525 532 496 554	1.19 0.36 0.35 0.30 0.22	0.05 0.06 0.05 <0.05 <0.05	5.95 1.31 1.37 1.17 1.04	0.954 0.337 0.339 0.322 0.306	0.34 0.48 0.55 0.56 0.50	1.9 0.5 0.9 0.7 0.7
X497241 X497242 X497243 X497244 X497244 X497245		13.7 9.1 8.7 15.4 12.6	94.8 115.5 100.5 71.7 57.8	<0.002 0.003 0.002 <0.002 <0.002	0.31 0.22 0.26 0.12 0.14	0.93 1.02 0.77 1.68 0.94	20.1 22.4 23.8 15.7 17.8	<1 <1 <1 <1 <1	0.6 0.9 0.7 1.8 1.7	556 543 531 876 986	0.30 0.39 0.27 1.22 1.10	<0.05 <0.05 <0.05 <0.05 <0.05	1.72 2.78 1.64 6.85 5.72	0.274 0.322 0.285 1.055 0.957	0.53 0.59 0.57 0.34 0.34	1.4 1.9 1.1 2.4 1.9
X497246 X497247 X497248		12.0 10.6 21.3	52.1 98.3 96.9	<0 002 <0 002 0 002	0.13 1.20 1.09	0.95 0.82 0.97	14.5 27.9 22.9	<1 1 1	1.9 0.8 0.9	1075 782 581	1.19 0.35 0.31	<0.05 0.06 0.19	7.06 2.18 1.92	1.035 0.388 0.371	0.25 0.52 0.56	2.4 1.2 1.0

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 20- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0,1	ME- MS61 Y ppm 0,1	ME- MS61 Zn ppm 2	ME-MS61 Zr ppm 0,5	
X497211		187	0.5	11.3	68	27.6	
X497212		193	0.6	14.5	67	25.3	
X497213		190	0.7	14.8	69	26.7	
X497214		197	0.6	14.5	76	30.6	
X497215		201	0.7	15.3	73	28 9	
(497216		200	0.8	15.5	65	27.6	
X497217		190	0.6	15.4	62	23.8	
X497218		172	0.3	10.9	63	23.5	
X497219		183	0.3	9.0	63	25.5	
X497220		2	<0 1	22	3	2.1	
(497221		171	0.5	7_8	81	20_6	
X497222		182	0.5	6.9	72	16.9	
X497223		175	0.9	8.6	75	14.0	
X497224		175	0.8	9.3	78	26.1	
X497225		166	0.6	8.5	81	21.0	
(497226		178	0.8	8.3	82	19.6	
X497227		165	0.7	7.7	150	15.7	
X497228		172	1.3	8_9	143	32.4	
X497229		143	1.5	11.0	63	19.5	
X497230		82	17 5	10,5	847	51.7	
X497231		138	1,5	10.3	46	20.3	
X497232		172	1.0	7.9	65	19.5	
X497233		173	1:1	10.7	75	20.1	
X497234		105	1.9	10.0	34	37.1	
X497235		126	0.9	23.5	121	138.0	
X497236		126	0.8	23.2	122	146_0	
X497237		165	1.6	12.8	293	40.8	
X497238		190	1.1	11.9	94	20.6	
X497239		175	1.0	11.1	72	19.1	
X497240		177	1.4	10.6	68	24.5	
X497241		154	1.3	10.6	59	50.1	
X497242		191	1.6	11.4	65	43.6	
X497243		162	1.2	11.3	67	33.9	
X497244		134	1_1	24.0	116	164.0	
X497245		149	0.9	22.2	119	138.5	
X497246		131	0.6	24.9	123	156.0	
X497247		183	1.3	14.1	61	34.9	
X497248		186	1.4	13.2	75	34.2	

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 20- DEC- 2018 Account: SKERES

Project: Snip

		CERTIFICATE CO	MMENTS	
			YTICAL COMMENTS	
Applies to Method;	REE's may not be totally ME- MS61	soluble in this method.		
			RATORY ADDRESSES	
Applies to Method	Processed at ALS Kamloo	ops located at 2953 Shuswap Drive, K	amloops, BC, Canada.	
Applies to Method.	BAG- 01 LOG- 23 WEI- 21	CRU- 31 PUL- 32	CRU- QC PUL- QC	LOG- 21 SPL- 21
Applies to Method	Processed at ALS Vancou Au- AA26	iver located at 2103 Dollarton Hwy, N ME- MS61	orth Vancouver, BC, Canada.	

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

CERTIFICATE KL18305155

Project: Snip

P.O. No.: S- C18- 130

This report is for 100 Drill Core samples submitted to our lab in Kamloops, BC, Canada on 30- NOV- 2018.

The following have access to data associated with this certificate:

PAUL GEDDES ADRIAN NEWTON	RAEGAN MARKEL COLIN RUSSELL	MIKE MAYER
		1

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI- 21	Received Sample Weight						
LOG-21	Sample logging - ClientBarCode						
CRU- QC	Crushing QC Test						
PUL- QC	Pulverizing QC Test						
CRU- 31	Fine crushing - 70% < 2mm						
SPL- 21	Split sample - riffle splitter						
PUL- 32	Pulverize 1000g to 85% < 75 um						
BAG- 01	Bulk Master for Storage						
LOG-23	Pulp Login - Rcvd with Barcode						

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA26	Ore Grade Au 50g FA AA finish	AAS
ME- MS61	48 element four acid ICP- MS	
Ag- OG62	Ore Grade Ag - Four Acid	
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18305155

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au- AA26 Au ppm 0.01	ME-MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME-MS61 As ppm 0_2	ME-MS61 Ba ppm 10	ME- MS61 Be ppm 0,05	ME-MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME-MS61 Cd ppm 0 ₁ 02	ME-MS61 Ce ppm 0 ₁ 01	ME-MS61 Co ppm 0 _e 1	ME-MS61 Cr ppm 1	ME-MS61 Cs ppm 0 ₁ 05	ME-MS61 Cu ppm 0 ₁ 2
X497249 X497250 X497251 X497252 X497253		3.86 0.13 3.50 4.41 3.77	0 08 1 89 0 03 0 06 0 03	0.25 37.7 0.41 0.50 0.15	7_04 8_04 7_17 6_53 6.48	11.4 105.5 13.9 13.7 8.6	2990 910 4260 4570 2380	0.98 0.98 1.09 1.17 1.48	0.28 2.15 0.26 0.31 0.15	3.36 4.00 2.53 3.04 3.23	0.34 6.85 0.28 2.56 0.19	26.5 25.5 25.9 30.2 28.6	4.7 14.9 4.3 3.7 3.2	7 27 9 9 6	1.52 0.78 1.43 1.74 1.73	10.8 234 24.9 42.6 10.0
X497254 X497255 X497256 X497257 X497257 X497258		3.88 4.07 4.40 2.48 4.13	<0.01 0.02 0.03 0.17 0.02	0.09 0.11 0.21 1.66 0.42	7.18 7.15 6.79 6.53 6.87	4.6 8.0 16.4 18.1 7.1	2490 1910 1820 1500 2260	1.57 1.60 1.24 1.35 1.36	0.05 0.16 0.12 1.05 0.10	2.32 2.84 2.46 3.04 3.01	0.11 0.15 0.09 1.92 0.20	26.9 28.5 22.7 32.2 23.1	3.1 3.4 3.0 2.8 2.8	7 6 8 9 6	2.00 1.69 1.60 1.63 1.82	11.7 7.1 6.8 22.5 9.1
X497259 X497260 X497261 X497262 X497263		4.18 1.09 3.49 3.83 4.27	0.01 <0.01 0.03 0.01 <0.01	0 40 <0 01 0 22 0 24 0 36	6.27 0.08 6.26 6.66 6.70	8.7 <0.2 5.8 6.1 3.9	2020 20 2180 1790 2110	1.13 0.07 1.21 1.27 1.27	0.35 0.03 0.08 0.16 0.06	3.22 34.0 3.36 2.76 2.87	0.14 <0.02 0.27 0.12 0.13	23.0 1.06 21.9 23.1 25.6	3.2 0.6 2.8 2.9 2.7	9 2 8 7 7	1.80 <0.05 1.91 1.54 1.17	14.3 1.0 8.1 6.6 6.8
X497264 X497265 X497266 X497267 X497267 X497268		2.63 4.08 1.73 3.60 4.14	0.01 0.03 0.05 0.01 0.02	0 49 0 52 0 56 0 28 0 30	5.97 6.71 4.97 7.10 7.47	3.4 7.3 17.8 20.7 19.8	2130 2010 1310 1070 960	1,12 1,14 0,89 1,20 1,45	0.05 0.35 0.31 0.18 0.37	2.78 2.70 2.14 3.91 4.62	0.30 0.24 0.28 0.24 0.24 0.65	17.00 23.7 22.3 25.8 45.1	1.8 2.6 3.2 14.0 19.8	9 9 15 83 41	0.75 0.96 0.58 1.01 3.17	11_5 15.4 27_4 67_2 115.0
X497269 X497270 X497271 X497272 X497272 X497273		4.26 0.13 4.07 1.66 2.37	0.01 5.02 0.01 0.01 0.02	0.26 >100 0.16 0.30 1.30	6.67 1.49 7.12 7.58 8.18	14.2 54.7 9.9 12_1 30.6	910 220 1080 1340 1250	1.52 3.43 1.59 1.69 1.79	0.39 0.90 0.21 0.34 0.65	7.05 10.15 4.97 4.57 3.11	1.07 10.50 0.07 0.16 24.0	48.5 11.95 48.6 46.9 35.2	21.0 2.4 21.2 17.4 33.8	15 13 15 12 17	3.31 2.28 4.22 3.30 1.99	160.5 103.0 124.0 117₋0 259
X497274 X497275 X497276 X497277 X497277 X497278		3.05 2.05 3.51 4.34 2.70	0.01 0.01 0.01 <0.01 <0.01 0.01	0.39 0.37 0.29 0.39 0.25	7 62 7 13 7.36 7.74 7 91	18.2 22.0 13.8 14.6 11.5	1130 720 1390 620 600	1.94 1.72 1.64 1.75 1.74	0.58 0.73 0.38 0.79 0.45	5 47 5 74 4 93 5.07 5 33	0.16 0.16 0.27 0.41 0.07	55.0 50.8 49.4 51.2 49.1	36.9 40.5 26.3 21.9 17.1	17 16 14 15 15	2.82 2.19 3.87 3.27 3.75	267 390 219 157.5 98.4
X497279 X497280 X497281 X497282 X497282 X497283		2.33 2.13 2.58 4.32 4.22	0.08 0.04 0.05 0.01 <0.01	3 76 0 80 1 24 0 71 0 30	5.81 7.41 7.29 7.47 7.39	49.4 32.5 28.3 30.5 12.9	740 800 510 840 890	1.36 2.58 1.58 1.64 1.82	7.04 1.39 1.33 1.40 0.33	11.65 4.86 5.10 6.31 5.91	6-32 0-28 0.43 3.38 0.17	41.0 54.4 48.6 52.2 53.2	20.2 42.7 43.8 35.3 20.8	8 21 20 21 16	1.00 1.55 1.66 2.87 3.27	398 523 564 356 108 5
X497284 X497285 X497286 X497287 X497287 X497288		3.67 4.35 4.46 4.31 3.57	0.01 0.02 0.01 0.01 <0.01	0.31 0.58 0.23 0.24 0.54	7.65 7.41 7.79 7.65 7.97	17.2 20.2 15.6 16.0 18.7	1170 690 820 900 790	2.05 1.88 2.03 2.07 2.10	0.34 0.98 0.65 0.82 1.36	5.43 6.44 5.55 4.80 4.37	0.16 0.19 0.14 0.12 0.82	55.6 59.6 56.2 53.8 52.9	27.3 25.8 20.7 22.1 20.4	14 13 12 13 12	3.12 2.90 2.93 3.41 4.42	159.0 284 170.0 180.0 116.0

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Fe % 0_01	ME-MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0:05	ME- MS61 Hf ppm 0_1	ME- MS61 In ppm 0:005	ME- MS61 K % 0_01	ME-MS61 La ppm 0_5	ME- MS61 Li ppm 0_2	ME-MS61 Mg % 0_01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0,05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0 ₄ 1	ME- MS61 Ni ppm 0_2	ME-MS61 P ppm 10
X497249 X497250 X497251 X497252		3.20 4.54 3.18 3.50	17.30 16.95 18.45 16.65	0.08 0.11 0.09 0.10	0.5 1.3 0.6 0.5	0.022 0.129 0.024 0.037	5.40 1.34 5.32 4.74	11.7 11.7 11.2 13.2	6.3 9.0 6.3 6.0	0.90 1.34 0.66 0.74	1460 1000 922 1390	3.00 5.86 2.16 2.94	0.73 2.54 1.18 1.01	4.5 4.7 5.2 4.7	2.6 14.9 3.2 4.9	790 550 820 770
X497253		2 41	16 75	0.09	0.6	0.022	4.23	12.2	5,3	0.51	884	6.72	0.59	4.9	3.2	760
X497254 X497255 X497256 X497257 X497258		2 32 2 55 2 63 2 71 2.10	18 75 17 00 16 70 16 00 19 35	0.08 0.10 0.07 0.08 0.12	07 06 05 05 06	0.026 0.024 0.020 0.040 0.024	4.31 4.09 4.60 4.44 5.13	12.1 12.9 10.0 15.4 9.8	6.8 6.2 5.5 5.9 5.6	0.47 0.60 0.53 0.80 0.37	689 985 977 1350 915	3.88 9.45 11.25 56.3 13.10	0.44 0.34 0.92 0.46 1.13	5.3 4.9 4.8 3.6 5.7	8 8 4.6 5 4 3 4 2 8	830 790 770 670 820
X497259 X497260 X497261 X497262 X497262 X497263		2.47 0.13 2.26 2.45 2.11	16.45 0.40 17.25 17.45 15.30	0.10 0.26 0.21 0.15 0.07	0.5 <0.1 0.6 0.6 0.5	0 022 <0 005 0 025 0 025 0 025 0 046	4.50 0.03 4.64 4.93 4.76	10.4 1.2 9.5 10.1 10.5	5 1 1 3 4 3 6 0 5 3	0.45 2.19 0.36 0.67 0.45	958 123 885 1120 804	6.53 0.10 11.70 18.95 6.26	0.92 0.03 1.49 0.97 1.31	4.8 0.1 5.5 4.9 4.7	2.6 0.7 2.1 2.4 2.8	720 70 760 770 750
X497264 X497265 X497266 X497267 X497267 X497268		1.70 2.23 2.31 3.33 5.71	14 50 15 50 10.45 16 55 19 05	0.06 0.07 0.07 0.09 0.10	0.4 0.4 0.3 0.3	0.031 0.036 0.037 0.048 0.087	5.00 4.78 2.75 3.96 3.50	6,3 9,8 10,5 10,9 17,1	4.3 5.4 4.5 10.6 17.0	0 26 0 38 0 54 1 49 1 71	676 709 681 703 1460	8.12 6.68 8.92 59.7 61.5	1.45 1.40 1.12 2.53 2.09	4.1 4.5 2.6 4.5 8.8	2.1 2.3 3.8 66.0 22.3	680 750 570 1270 1930
X497269 X497270 X497271 X497272 X497272 X497273		6.50 2.21 6.87 5.76 5.66	18 15 3 47 19 45 20 6 21 2	0.14 0.05 0.12 0.13 0.11	0.6 0.4 0.3 0.2 0.5	0.090 0.710 0.092 0.089 0.091	3.34 1.17 3.44 3.66 4.47	21.2 6.3 19.6 18.3 14.7	19 1 55 8 25 9 25 3 17 8	2.13 0.10 2.97 2.51 1.45	1670 2090 1170 1000 612	284 7.43 45.4 13.30 16.75	1,42 0.03 2.05 2.54 2.93	6.8 2.2 9.1 10.0 11.7	10.3 9.5 9.4 10.0 62.4	2100 110 2300 2190 2620
X497274 X497275 X497276 X497276 X497277 X497278		7.95 8.34 7.34 7.10 7.20	21.5 19.10 20.1 21.1 20.5	0 14 0 15 0 14 0 12 0.14	0 9 0.8 0 5 0 5 0 5	0,086 0,070 0,076 0,072 0,063	3.21 2.95 4.17 2.57 2.83	22.0 20.6 20.2 21.0 20.2	15.2 15.5 16.3 14.0 14.0	2.87 2.63 2.92 2.83 2.85	1300 1240 1220 1160 1360	26.3 39.0 46.0 53.0 24.8	1.94 1.82 1.67 2.74 2.49	10.2 10.2 9.8 9.6 9.3	10.9 11.4 10.0 8.8 6.7	2540 2570 2380 2230 2270
X497279 X497280 X497281 X497282 X497282 X497283		4.71 7.94 7.63 8.08 7.49	13.90 18.05 17.30 20.5 19.90	0.12 0.13 0.15 0.17 0.13	0.4 0.8 0.6 0.8 0.5	0.083 0.064 0.066 0.092 0.085	3 32 3.47 3.69 3.31 2.90	16.5 22.0 20.9 21.8 21.7	5.8 8.9 9.4 12.0 13.7	0.86 1.38 1.36 2.21 2.99	2860 1000 890 1280 1460	53.8 74,5 16.90 31.5 15.80	1.68 2.25 1.78 2.12 2.08	7.1 11.7 10.3 10.2 10.5	9,9 8.2 8.6 20.0 8.5	1590 2670 2070 2290 2330
X497284 X497285 X497286 X497287 X497287 X497288		7.47 7.41 7.08 6.66 5.95	21.5 21.0 22.2 21.7 20.3	0 12 0 16 0 15 0 13 0 16	0.6 1.0 0.8 0.6 0.3	0.076 0.105 0.102 0.068 0.066	3 01 2 86 2 80 2 74 2 40	22.6 25.5 22.4 21.5 21.7	13.3 12.8 13.6 13.0 13.3	3.04 2.61 2.32 2.25 2.12	1440 1330 1180 1080 1120	18.65 80.4 24.5 40.5 8.92	2.48 2.05 2.64 2.67 2.79	12.2 11.7 12.3 11.9 11.4	10.3 6.8 6.4 6.9 10.5	2670 2830 2480 2310 2390

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME- MS61 Re ppm 0_002	ME- MS61 S % 0:01	ME- MS61 Sb ppm 0-05	ME- MS61 Sc ppm 0,1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0_2	ME- MS61 Ta ppm 0_05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0,01	ME- MS61 Ti % 0,005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0,1
X497249 X497250 X497251		33.6 701 49.9	71.0 25.9 62.8	<0.002 0.002 <0.002	0.94 0.31 1.02	1.16 19.60 1.18	6.7 14.5 6.9	1 2 1	0.9 1.7 1.0	414 429 470	0.24 0.30 0_26	0.09 0.27 0.14	3.55 2.81 3.29	0.205 0.288 0.223	0.63 0.44 0.60	1.3 1.2 1.3
X497252 X497253		23.5 13.1	77_2 75_5	<0.002 0.003	0_87 0_46	1,79 1,71	7.4 6.3	<1 <1	0.9 0.9	472 392	0.25 0.27	0.07 0.05	3.44 3.27	0.212 0.222	0.59 0.62	1 3 1 3
X497254 X497255 X497256 X497257		5.3 5.9 19.0 176.0	82.1 83.5 74.3 98.3	0 003 0 004 0 006 0 074	0.22 0.49 0.55 0.89	4.15 2.17 1.50 2.14	6.6 7.3 6.3 6.4	<1 <1 <1 <1	1.0 1.0 0.9 0.8	277 286 366 334	0.30 0.26 0.26 0.19	<0.05 0.05 <0.05 0.59	3,80 3,76 3,33 3,71	0.239 0.218 0.217 0.164	0.61 0.56 0.58 0.54	1 4 1 3 1 3 1 4
X497258 X497259		38.7 18.2	80.1 86.8	0.004	0.38	1.54	6.7	<1	0.9	458	0.31	<0.05	3.29	0.232	0_63	1.2
X497260 X497261 X497262 X497263		0.5 24.7 17.2 15.1	1.0 85.8 80.3 96.7	<0.002 <0.002 0.005 0.007 0.002	<0.01 <0.01 0.29 0.36 0.20	0.07 1.36 1.84 1.63	0.3 6.3 6.3 5.9	1 1 <1 1	<0.9 <0.2 0.9 0.9 0.8	473 82.1 607 396 522	<0.25 <0.05 0.28 0.26 0.26	0.06 <0.05 <0.05 <0.05	0.08 2.95 3.34 4.16	0.229 0.229 0.219 0.226	0.58 0.02 0.54 0.56 0.59	1.3 0.2 1.0 1.6 1.3
X497264 X497265 X497266 X497267		36.4 26.2 30.8 14.9	69 7 93 5 63 9 85 1	0.003 0.003 0.009 0.084	0.33 0.58 0.89 0.93	2.36 2.35 6.48 11.50	5.0 6.2 4.3 10.0	1 1 1 2	0.8 0.7 0.6 0.7	545 536 457 712	0.25 0.24 0.14 0.27	<0.05 0.13 0.08 0.07	2.82 3.71 2.90 2.90	0.217 0.228 0.142 0.304	0.48 0.54 0.32 0.58	1.1 1.2 0.8 1.0
X497268 X497269 X497270 X497271 X497272		23.8 18.6 5520 9.3	110.0 121.0 67.0 123.0	0.086	1.68 1.97 0.28 1.27	3,27 2,47 51,3 1,54	20.0 23.6 1.5 27.7	3 4 3 3	1.6 1.6 3.0 1.3	538 640 328 500	0.51 0.39 0.20 0.51	0.07	3.49 3.05 4.10 3.35	0.580 0.632 0.027 0.746	0.70	0,9 1.0 1.5 0.8
X497273		9.5 193.0	103.5 94.8	0.019 0.028	1.14 2.85	1.18 4.04	24.1 27.5	2 4	1.4 1.8	393 351	0.54 0.64	0.08 0.19	3.32 3.35	0.685 0.841	0.93 0.87	0.8 2.2
X497274 X497275 X497276 X497277 X497278		7.3 6.5 6.6 9.0 10.6	107 0 89 3 138 0 102 0 112 5	0.037 0.058 0.059 0.084 0.029	2.17 3.32 1.87 1.44 0.90	3.80 4.52 2.29 2.20 1.77	33.8 31.0 29.5 27.0 26.5	4 5 3 3 3	1.6 1.7 1.5 1.5 1.4	731 676 521 496 598	0.57 0.56 0.54 0.55 0.54	0.17 0.17 0.14 0.09 0.05	3.76 3.72 3.47 3.79 3.62	0.817 0.860 0.781 0.761 0.761	0.73 0.68 0.92 0.83 1.02	1.2 1.5 1.3 1.7 1.5
X497279 X497280 X497281 X497282 X497283		448 15.4 16.7 43.5 37.3	74.1 72.4 91.1 114.5 100.5	0.084 0.089 0.026 0.041	2.78 4.03 4.15 2.82 4.06	2.10 4.37 4.40 2.63	16.4 26.6 26.4 31.0	5 8 7 6	1.5 2.9 2.7 2.7 1.7	411 804 722 573 795	0.40 0.65 0.60 0.55 0.58	0.34 0.19 0.18 0.14 <0.05	2.76 3.72 3.34 3.79 3.73	0.478 0.803 0.693 0.765 0.727	0.61 0.89 0.86 1.08 0.83	1.2 1.8 1.4 1.6 1.5
X497283 X497284 X497285 X497286 X497287		57.3 6,9 13.7 5.6 6.1	86.5 102.5 88.0 89.6	0.019 0.025 0.094 0.023 0.056	1.06 1.54 2.25 1.61 1.56	2.51 2.07 2.43 2.25 2.36	26.4 27.6 30.1 25.0 22.9	3 4 3 4	1.6 2.4 2.9 2.1	795 790 846 979 987	0.63 0.63 0.71 0.63	0.07 0.14 0.10 0.12	4.02 4.08 3.82 3.90	0.749 0.773 0.761 0.705	0.67 0.71 0.65 0.66	2.3 1.9 1.6 1.4
X497288		30.8	97.3	0.008	0.93	1.75	23-2	2	1:4	541	0.61	0.07	3.99	0.727	0.78	1.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18305155

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME- MS61 W ppm 0.1	ME- M561 Y ppm 0_1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0,5	Ag- OG62 Ag ppm 1	
X497249 X497250 X497251 X497252 X497253		114 112 115 118 101	52 57 37 28 44	8.3 18.5 8.4 8.3 8.1	50 1160 79 211 41	10,5 31,0 10,9 9,4 11,7		
X497254 X497255 X497256 X497257 X497258		106 99 94 85 104	52 51 52 59 42	69 77 69 73 75	36 31 30 163 36	12.4 11.0 10.1 8.9 11.9		
X497259 X497260 X497261 X497262 X497263		110 1 95 92 98	29 <01 33 36 29	7.4 2.4 7.8 6.5 6.8	34 3 49 32 37	95 14 99 109 82		
X497264 X497265 X497266 X497267 X497268		88 112 70 133 231	4 1 4 4 6 4 2 2 4 1	5.8 7.1 5.5 9.8 15.2	44 43 41 56 136	6.1 6.3 4.1 8.5 7.0		
X497269 X497270 X497271 X497272 X497272 X497273		302 29 330 292 356	3.3 2.7 2.6 7.4	16.6 3.8 18.2 18.4 10.9	191 891 75 70 3300	13.8 11.0 5.0 3.5 8.1	122	
X497274 X497275 X497276 X497277 X497278		352 357 336 334 338	1.9 2.5 2.9 2.1 2.5	22.9 21.9 20.0 19.9 19.5	76 68 85 97 76	10,9 11,3 8,5 8,6 7,1		
X497279 X497280 X497281 X497282 X497282 X497283		209 309 276 331 327	4.4 3.7 5.0 5.1 1.4	15 2 21 4 19 6 20 9 20 1	871 79 85 654 113	7.3 12.8 9.3 12.7 8.2		
X497284 X497285 X497286 X497287 X497288		330 337 319 300 310	1.7 1.5 1.6 1.2 3.6	21.4 21.4 21.0 19.4 18.7	100 79 69 66 152	9.3 16.3 12.0 8.6 4.9		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18305155

Sample Description	Method Analyte Units LOD	WEI- 21 Recvd Wt. kg 0.02	Au- AA26 Au ppm 0 ₋ 01	ME-MS61 Ag ppm 0-01	ME- MS61 Al % 0_01	ME- MS61 As ppm 0,2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME- MS61 Bi ppm 0-01	ME- MS61 Ca % 0:01	ME-MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0-01	ME-MS61 Co ppm 0,1	ME- MS61 Cr ppm 1	ME-MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0_2
X497289 X497290 X497291 X497292 X497292 X497293		1.78 0.13 2.96 3.09 3.77	0.01 12.10 0.04 0.02 0.03	0.52 32.7 1.28 0.68 0.63	5.44 5.53 6.43 7.82 7.62	37 5 5740 59 5 26.3 20 4	400 750 610 1050 480	1.08 1.14 1.11 2.45 1.91	0.68 10.20 2.33 1.64 1.04	8.89 4.38 4.74 4.34 5.75	0.13 7.61 4.68 0.56 0.38	34.1 32.4 37.2 64.1 47.8	20.1 25 3 36 4 31 6 25.3	7 58 11 14 11	2.25 3.76 1.20 2.86 2.52	209 359 537 276 291
X497294 X497295 X497296 X497297 X497297 X497298		4.27 3.57 3.85 2.62 1.63	0 02 0 02 0 03 0 02 0 02	0.29 0.86 0.62 0.52 0.61	7.56 7.73 7.19 7.41 7.23	14.9 16.5 19.8 16.1 23.6	940 1080 650 960 710	1.61 1.82 1.94 1.87 1.53	1 17 11 30 1.54 0 75 2 79	5.59 4.25 6.05 5.98 4.55	0.17 0.16 0.21 0.16 0.13	48.2 51.4 66.8 57.3 55.7	13.6 18.0 26.2 22.5 35.9	10 11 13 18 17	2.36 2.32 2.72 2.77 4.02	160.0 211 300 190.5 215
X497299 X497300 X497301 X497302 X497303		4.02 0.98 4.80 1.36 3.92	0 01 <0 01 <0 01 0 01 0 02	0.26 0.02 0.26 0.22 0.29	7.37 0.08 7.72 7.43 7.69	13.7 2,0 11.0 9,8 15.3	1090 30 990 700 1420	1.63 0.07 1.59 1.49 1.48	2.95 0.17 0.81 0.60 0.55	4.96 35.3 5.05 5.87 4.31	0.09 0.69 0.08 0.09 0.11	46.5 1.23 49.1 51.5 41.2	19.2 0.6 23.0 23.8 20.9	11 1 12 14 13	4.14 <0.05 4.38 4.98 3.64	105.0 7,4 101.0 108.5 168.5
X497304 X497305 X497306 X497307 X497307 X497308		4.02 4.07 4.00 2.69 2.85	0 02 0 02 0 01 0 01 0 03	0.23 0.25 0.40 0.29 0.92	7.15 6.95 7.80 7.51 7.20	16.4 15.7 14.7 15.8 23.9	990 940 840 770 470	1.60 1.48 1.50 1.57 2.98	0.35 0.60 0.73 0.45 0.82	6.02 6.22 5.29 5.48 5.92	0.14 0.10 0.21 0.88 0.27	50.5 52.8 51.6 47.8 49.6	23.9 23.6 28.1 18.6 40.1	14 15 17 16 20	4.43 5.14 5.86 4.47 2.89	139.0 144.5 179.5 153.5 458
X497309 X497310 X497311 X497312 X497313		3 12 0 21 1 73 2 82 1 35	0.01 22.5 0.01 <0.01 <0.01	0.31 3.22 0.16 0.24 0.14	7.56 6.69 6.86 7.78 7.48	12.8 38.0 13.2 10.3 8.8	740 110 760 770 930	2,42 1,42 2.89 1,97 1,62	0.58 0.55 0.67 0.32 0.10	6.61 1.18 5.13 5.79 4.72	0.11 0.20 0.08 0.09 0.05	48.9 18.10 40.5 50.5 41.8	20.4 10.5 18.2 16.3 17.0	20 33 17 17 16	1.62 14.35 2.09 2.97 4.16	181,5 66,4 77,6 112,0 67,7
X497314 X497315 X497316 X497316 X497317 X497318		1.53 2.46 4.18 3.76 4.12	0 03 0 01 0 02 0 01 0 01	7.58 1.41 0.93 0.37 0.41	7.09 7.72 7.08 7.67 7.38	62.6 13.6 17.8 11.8 13.2	320 950 300 1240 1070	1.95 2.06 2.02 1.92 2.20	3.45 0.44 0.68 0.51 0.52	5.23 6.70 4.94 5.22 4.89	22.6 4.23 0.33 0.16 0.20	40.6 48.9 42.7 47.3 35.7	17.7 15.2 37.3 19.7 22.7	16 16 16 15 15	2.59 2.44 1.70 1.79 1.60	277 140.0 515 217 305
X497319 X497320 X497321 X497322 X497323		4.00 1.23 4.19 4.08 2.25	0.04 <0.01 0.02 0.01 0.02	4.28 0.01 1.73 0.93 0.71	7.51 0.12 7.35 7.42 7.68	27.2 <0.2 21.3 17.7 25.6	400 40 1530 1560 820	1.49 0.07 1.03 1.62 3.05	1.50 0.04 2.90 1.72 0.35	4.55 34.4 3.58 5.00 4.00	42.1 0.09 22.1 7.00 0.41	44.7 1.28 39.7 32.3 29.4	20.0 0.6 15.2 14.0 31.4	10 1 8 11 13	1.87 <0.05 2.16 1.61 1.84	506 3₌4 322 199₌5 416
X497324 X497325 X497326 X497327 X497327 X497328		2.88 1.82 1.85 2.27 1.94	0.02 0.02 0.01 0.02 0.01	0.77 0.54 0.39 0.35 0.50	8.78 6.78 6.05 8.19 6.94	32.6 1130 1570 13.8 14.4	800 80 70 1480 1270	3.42 3.05 1.45 1.46 1.35	0.29 0.14 0.35 0.74 0.83	1.06 1.72 3.81 1.59 4.82	0.26 0.13 0.15 0.45 0.43	42.2 35.6 35.8 43.3 44.2	47.4 29.9 18.9 21.3 14.0	14 16 6 5	2,64 1,33 1,33 2,61 1,26	498 376 201 188:5 96.3

ALS Canada Ltd, 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18305155

Sample Description	Method	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mri	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.01	0:05	0:05	0.1	0.005	0_01	0, 5	0,2	0_01	5	0 ₆ 05	0:01	0_1	0.2	10
X497289		5_57	14.25	0.11	04	0.038	1.84	15 2	12.0	2.84	1180	4.83	0.66	7.8	6.0	1460
X497290		10.35	14.95	0.08	16	1.545	1,38	15.9	18.6	1.05	1040	45.3	0.98	4.7	29_4	630
X497291		6.46	16.65	0.12	04	0.064	3.49	15 2	10.7	0.80	883	42.7	1.20	10.5	18.1	2110
X497292		6.69	21.7	0.17	06	0.081	4,32	29.1	10.1	1.22	768	65.1	2.21	12.3	7.6	2560
X497293		6.45	19.65	0.17	06	0.064	2,88	20 3	10.9	1.72	922	77.4	2,51	10.2	5.3	2560
X497294		5.24	18.00	0.14	05	0.045	3,61	19 7	10.3	1.81	1090	31.6	2.43	10.2	4.4	2150
X497295		5.12	18.90	0.14	06	0.042	4,74	22.1	10.2	1.69	854	55.4	2,15	11.4	5.0	2320
X497296		6.04	19.55	0.16	07	0.066	3,53	35 5	10.0	2.14	1020	52.9	2.03	11.1	7.1	2450
X497297		6.28	19.25	0.15	0.9	0.074	3.47	26.1	11.3	2 64	1160	19.60	2.05	12.1	10.5	2690
X497298		8.33	20.2	0.18	1.0	0.063	3.86	23.1	15.1	2 85	1140	66.2	1.67	11.5	16.5	2580
X497299		6.58	21.0	0.12	0.4	0.064	4.54	22.3	14.6	2 82	1200	59.2	1.79	11.3	7.9	2780
X497300		0.13	0.30	0.11	<0.1	0.020	0.02	1.3	1.0	1 55	111	0.25	0.03	0.2	0.7	70
X497301 X497302 X497303 X497304		6.61 7.25 6.32 7.99	21 0 20 4 20 7 21 6	0.11 0.11 0.12 0.12	0.3 0.5 0.5 0.6	0.067 0.086 0.049 0.098	4,31 3.85 4.81 3.79	23.9 25.2 19.4 24.5	12.6 13.6 12.2 14.5	2.65 2.75 2.46 2.94	1280 1460 1240 1580	44.1 23.3 78.0 48.5	2.30 2.22 2.19 1.62	12.0 10.6 10.7 10.5	7.8 9.5 7.6	2770 2540 2480 2510
X497305		8_49	21_7	0.13	0.6	0.109	3.92	25.6	15.7	3.43	1840	29.3	1.40	10.2	10.1	2740
X497306		9.23	23_6	0.14	0.3	0.098	4.22	24 3	19.8	3.56	1600	68.1	1.97	12.1	11.9	2980
X497307		6.79	19.65	0.12	0_3	0.063	3.34	23 8	12.0	2.76	1280	25.6	2.54	9.2	11.0	2240
X497308		7.90	18.55	0.12	0.5	0.074	3.23	25 5	7.6	1.48	1180	59.2	2.28	9.1	13.7	2170
X497309		5.36	21.8	0.13	0 9	0.091	2.59	24.4	8.3	1.85	1110	70.9	2.56	9.1	8.5	2190
X497310		4.56	22.1	0.08	2.9	0.029	3.43	4.8	67.1	0.62	361	2220	0.69	2.1	22.5	280
X497311		4.89	17.65	0.08	0 5	0.064	2.53	20.4	8.6	1.36	927	124.5	2.34	8.1	8.2	1690
X497312		5.96	22.3	0.12	0 7	0.112	2.76	23.5	10.0	2.30	1240	71.6	2.61	9.9	12.1	1950
X497313		6.37	20.8	0.11	0 4	0.051	3.57	19.3	13.0	2.66	1440	33.3	2.53	9.7	12.3	2060
X497313 X497314 X497315 X497316 X497317 X497317 X497318		7.36 5.30 7.35 6.04 5.67	18.55 22.0 18.05 20.5 21.0	0.14 0.10 0.13 0.14 0.10	0.4 0.7 0.6 0.8 0.6	0.070 0.100 0.050 0.103 0.085	4.07 2.86 2.98 3.08 3.04	19.5 24.9 20.4 22.3 15.3	7 3 8 4 7 1 8 9 9 8	1.77 2.07 1.15 1.44 1.38	1460 1340 908 1080 974	53.5 52.6 84.7 26.3 130.5	2.05 2.52 2.34 2.63 2.86	9.1 9.2 9.4 11.2 9.6	11.6 10.1 13.6 10.5 12.0	1870 1880 1890 2150 1810
X497319		5.51	18.60	0.12	0.3	0.060	3.35	21.4	9.5	1.18	1240	136.0	2.53	10.1	10.1	1850
X497320		0.12	0.32	<0.05	0.1	<0.005	0.03	1.4	0.8	1.12	105	0.43	0.05	0.2	0.4	70
X497321		5.36	19.10	0.10	0.3	0.052	3.80	18.5	8.6	1.54	1450	76.4	2.27	11.1	7.4	2030
X497322		3.86	18.70	0.11	0.4	0.041	4.35	15.1	7.1	1.23	927	24.1	2.49	9.0	8.5	1680
X497323		5.70	20.2	0.10	0.4	0.040	4.14	13.4	7.6	0.96	842	82.4	2.30	9.0	17.9	1540
X497324 X497325 X497326 X497327 X497328		6.47 9.23 8.65 4.98 4.83	24.1 18.75 16.20 20.7 18.50	0.13 0.11 0.12 0.12 0.12 0.11	0.8 0.5 0.4 0.4 0.3	0.061 0.033 0.036 0.068 0.041	3.70 3.54 3.59 3.99 3.51	19.4 15.9 16.6 20.6 20.2	13.3 11.8 8.3 10.6 7.4	1.21 0.90 1.44 1.30 1.74	533 718 820 725 1940	64.7 186.0 44.4 202 150.0	2.15 1.07 1.15 2.46 2.52	9.9 8.8 9.0 11.7 10.4	25.7 22.8 14.6 10.1 6.5	2030 1600 1550 2140 1830

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18305155

Sample Description	Method	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sri	Sr	Ta	Te	Th	Ti	TI	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOD	0,5	0_1	0 002	0,01	0_05	0.1	1	0_2	0 ₋ 2	0.05	0.05	0.01	0.005	0,02	0_1
X497289 X497290 X497291 X497292 X497292 X497293		10 5 304 41 6 34 8 15 2	61.8 59.6 49.8 112.5 105.0	0 007 0 015 0 053 0 091 0 081	1.71 2.64 4.17 3.53 2.88	2.90 9.90 3.77 2.62 2.91	15.0 9.9 18.3 23.5 18.5	3 2 8 6 5	1.5 7.1 2.3 2.9 1.8	967 338 491 841 1115	0.42 0.29 0.58 0.66 0.59	0.09 9.27 0.39 0.20 0.13	2.68 4.52 2.98 4.16 3.91	0.463 0.225 0.615 0.692 0.591	0.41 1.27 0.71 0.77 0.69	1_1 9_4 1_1 1_7 2.2
X497294 X497295 X497296 X497297 X497297 X497298		13_2 23_3 8.1 6_7 8.6	120_0 115_0 114.0 128.5 175_0	0.036 0.064 0.086 0.027 0.051	1.43 1.84 2.46 1.77 3.30	1.58 1.87 1.98 1.84 2.09	17.2 16.4 24.6 25.4 26.0	3 4 5 4 5	1.3 1.8 3.8 2.3 1.9	580 721 871 930 624	0.55 0.66 0.61 0.66 0.65	0.07 0.32 0.13 0.10 0.44	3.73 3.97 4.16 4.12 4.04	0.569 0.611 0.680 0.666 0.681	0.77 0.81 0.77 0.81 1.19	1.4 1.5 1₌6 1.3 1.8
X497299		8.8	143.5	0.058	1.10	1.34	25.7	2	1.5	594	0.62	0.11	3.13	0 728	1.23	1.7
X497300		8.2	0.7	<0.002	0.01	0.23	0 2	1	<0.2	83.4	<0.05	<0.05	0.11	0 007	0.02	0.5
X497301		8.7	135.5	0.056	1.00	0.95	22.4	2	1.3	688	0.65	0.07	3.51	0 681	0.91	1₌4
X497302		5.8	155.5	0.026	1.06	0.87	28 8	2	1.4	642	0.54	0.07	3.37	0 763	1.01	1.1
X497303		6.1	101.0	0.113	1.47	1.18	18.8	3	1.5	1195	0.61	0.12	2.76	0 656	0.88	1₌5
X497304 X497305 X497306 X497307 X497307 X497308		7.1 5.6 8.4 9.4 16.8	134.0 145.0 138.0 112.5 88.9	0 082 0 044 0 083 0 031 0 071	1.20 1.42 1.55 1.16 3.75	2.20 1.99 1.24 0.81 1.32	29.6 32.8 31.0 21.5 21.4	3 2 3 2 5	1.9 2.2 2.0 1.6 2.0	2030 1130 1210 577 517	0.57 0.53 0.63 0.52 0.53	0.10 0.08 0.09 0.05 0.14	3.24 3.17 3.37 3.54 3.16	0.764 0.849 0.894 0.668 0.706	0.83 0.84 0.99 0.75 0.61	1.2 1.3 1.5 1.5 1.8
X497309		6.4	67.0	0.072	1.65	2,55	23.2	3	2.0	941	0.51	0.06	3.61	0.691	0.39	1.9
X497310		27.4	72.9	0.169	3.54	74,8	5.7	5	4.2	286	0.14	1.94	1.47	0.189	17.50	0.6
X497311		9.5	72.8	0.174	1.57	2,55	16.0	3	1.6	691	0.50	0.09	3.34	0.518	0.48	1.5
X497312		10.0	91.2	0.098	1.10	2,24	24.1	3	2.0	876	0.57	<0.05	3.44	0.694	0.59	1.6
X497313		16.2	106.5	0.058	0.66	1,07	22.1	1	1.2	478	0.55	<0.05	2.79	0.687	0.79	1.3
X497314 X497315 X497316 X497317 X497317 X497318		5520 720 27.2 11.9 13.4	85.1 80.9 60.1 63.2 56.0	0.108 0.072 0.115 0.035 0.205	3.71 1.40 4.01 1.99 2.54	8.20 2.96 2.20 2.35 1.72	22.9 22.5 19.2 22.1 19.1	7 3 7 3 4	1.1 1 9 1 8 2 2 2.2	411 1075 1070 1305 1065	0.51 0.54 0.57 0.65 0.53	0.59 0.14 0.22 0.15 0.16	2.79 3.26 3.13 3.49 2.49	0.637 0.678 0.614 0.696 0.649	0.67 0.52 0.38 0.44 0.49	1.3 1.8 1.5 1.5 1.1
X497319		4810	75.0	0.221	2.99	4.92	17.2	4	1.4	585	0.57	0.29	3.23	0.550	0.50	1.2
X497320		5.9	0.6	<0.002	0.01	<0.05	0.4	1	<0.2	83.6	<0.05	<0.05	0.08	0.011	<0.02	0.2
X497321		516	80.6	0.122	1.94	1.21	15.3	2	1.2	461	0.65	0.11	3.03	0.554	0.63	1.1
X497322		133.0	76.7	0.037	1.55	1.76	14.6	3	1.3	1160	0.51	0.08	2.39	0.529	0.65	0.9
X497323		49.3	75.3	0.126	3.31	2.24	14.2	4	1.6	994	0.51	0.10	2.36	0.518	0.64	0.8
X497324		17_8	86 2	0.104	3.99	2.71	21.9	9	2 3	559	0.56	0-12	3.00	0.681	0.81	1.3
X497325		9.5	69 2	0.297	7.80	91.6	16.6	5	1 8	373	0.50	0.14	2.61	0.523	6.20	1.4
X497326		7.4	71 5	0.058	8.24	134.5	10.6	3	1 1	435	0.52	0.10	2.56	0.421	9.25	1.4
X497327		18.0	92 6	0.349	1.86	1.73	15.8	3	2.2	555	0.69	0.15	3.61	0.552	0.74	1.7
X497328		30.4	71 7	0.245	0,90	1.68	14.0	2	1 1	630	0.58	0.11	2.95	0.484	0.52	1.3

ALS Canada Ltd, 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME- MS61 W ppm 0_1	ME-MS61 Y ppm 0_1	ME-MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	
X497289 X497290		200 87	9.3 18.4	15.3 11.7	60 904	7_1 49_0		
X497291		236	7.8	13.6	511	6.6		
X497292 X497293		279 264	16 43	20 9 19 0	203 131	9.4 10.5		
X497293 X497294		240	4.0	1				
X497294 X497295		240	4.0	16.7 17.5	70 62	6.0 8.6		
X497296		277	3.7	20.2	50	11.1		
X497297		256	2.2	18.5	58	7.6		
X497298		264	5.8	19.0	69	14.0		
X497299		312	3.1	19.3	76	7.0		
X497300		2	<0_1	2,4	47	2.0		
X497301		292	2.1	19.1	73	6.1		
X497302 X497303		313 278	13 29	21.8 16.9	83 68	4.3 8.1		
X497304 X497305		325 365	2.0 3.6	20.9 21.4	94 96	9.6 21.3		
X497305 X497306		305	1.7	21.4	90 116	6.1		
X497307		272	1.3	18.5	136	8.1		
X497308		270	2.6	19.5	75	9.4		
X497309		277	2.6	22.1	47	15.4		
X497310		574	40.6	4.5	102	105.5		
X497311		223	4.4	16.3	50	11.0		
X497312		286	1.2	20.8	65	13.1		
X497313		279	0.8	20_0	116	6.5		
X497314		249	1.3	18.1	2880	5.2		
X497315		285	1.5	19.1	596	14.3		
X497316 X497317		239 276	2.1 1.6	18 2 20 6	88 73	12 4 16 1		
X497318		251	2.3	17.9	50	13.4		
X497319		210	3.0	18.5	5110	7.1		
X497320		3	<0.1	2.4	14	2.5		
X497321		225	3.8	15 6	2730	6.1		
X497322		204	3.1	15 1	795	8.5		
X497323		196	7.9	12 3	92	7.7		
X497324		265	26.1	17.2	78	12,7		
X497325		216	14.3	15.6	50	13.0		
X497326		160	7.2	18.6	48	10.0		
X497327 X497328		210 196	11 2 5 5	16.7 21.4	93 83	8_1 6.4		
A43/320		190	0.0	21.4	00	0.4		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt, kg 0,02	Au- AA26 Au ppm 0_01	ME- MS61 Ag ppm 0,01	ME-MS61 Al % 0.01	ME- MS61 As ppm 0,2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0_01	ME-MS61 Ca % 0_01	ME-MS61 Cd ppm 0_02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0,1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME-MS61 Cu ppm 0_2
X497329 X497330 X497331 X497332 X497333		1,28 0,21 1,86 1,73 3,72	0 02 22 6 0 02 0 01 0 02	0 29 3 11 0 27 0 24 0 24	3.60 6.41 6.86 7.99 8.48	3160 38.2 277 69.2 17.1	100 90 1120 1500 1310	2.22 1.42 1.32 1.62 1.77	0 21 0 58 0 24 0 33 1 93	7.99 1.14 4.34 2.57 1.85	2.19 0.19 1.37 0.09 0.12	26.3 18.75 40.2 42.9 42.8	12.2 10.2 14.4 17.5 16.0	3 33 3 4 5	1 21 14 30 1 02 1 17 1 76	45.7 64.8 89.2 134.5 96.7
X497334 X497335 X497336 X497337 X497338		3.68 3.83 4.13 3.95 4.02	0 01 0 03 0 02 0 01 0 02	0 16 0 36 0 29 0 17 0 23	7 47 8 48 8 12 8 45 7 92	8 3 12 5 10 5 7 2 13.9	1450 1510 1110 1340 1290	1.46 1.73 1.70 1.73 1.62	0.36 0.57 1.04 0.69 0.69	4.16 3.99 3.78 4.29 4.04	0.10 0.23 0.12 0.11 0.11	42.7 48.9 43.9 46.8 43.1	19.9 25.2 19.5 17.5 20.2	12 8 7 6 9	3 20 3 15 2.59 2.55 2.22	87.9 213 160.0 98.3 154.0
X497339 X497340 X497341 X497342 X497343		4.21 4.24 2.55 3.26 3.43	0 02 0 02 0.04 0 03 0 02	0 34 0 31 0 49 0 24 0 22	8.51 8.26 7.97 7.93 7.77	10.4 13.9 5.9 19.2 7.1	1070 1160 1280 1640 1060	1.73 1.56 1.78 1.39 1.52	0.60 0.54 0.73 0.57 0.19	3.74 4.71 3.87 7.67 4.27	0_13 0_19 0.25 0.50 0_22	41.2 48.0 36.4 36.8 40.6	23.1 25.1 22.1 18.9 18.1	21 16 16 12 20	1.68 2.38 3.12 0.86 2.22	265 203 111.0 20.8 118.5
X497344 X497345 X497346 X497347 X497347 X497348		3.96 4.31 3.82 3.69 3.95	0 01 0 02 0.03 0 01 0 04	0.37 0.50 0.77 0.34 0.29	8.04 7.76 7.13 7.97 7.98	6 9 7.7 5 8 10 5 11.2	800 910 840 1090 1040	1.46 1.67 1,31 1.61 1.62	0.27 0.51 0.20 0.26 0.14	5.40 4.27 6.49 5.06 5.15	0.13 0.20 1.07 3.14 0.16	50.2 38.7 47.4 48.6 44.4	18.0 19.9 12.4 16.9 16.6	14 22 8 6 8	2.62 2.43 2.49 2.70 1.65	130.0 165.5 264 115.5 178.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME- MS61 Fe % 0_01	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0,2	ME-MS61 Mg % 0.01	ME- MS61 Mn ppm S	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0,01	ME-MS61 Nb ppm 0₊1	ME- MS61 Ní ppm 0,2	ME-MS61 P ppm 10
X497329 X497330 X497331 X497332 X497333		13.95 4.42 5.41 5.31 4.92	9.67 21.5 16.60 22.0 19.95	0.10 0.08 0.09 0.11 0.09	0.2 2.8 0.4 0.6 0.4	0.022 0.030 0.054 0.070 0.053	1,49 3,38 3,25 3,25 3,25 3,45	12.6 4.8 19.6 19.6 19.0	7.2 61.1 9.2 8.8 7.4	3.52 0.61 1.24 0.85 0.89	801 358 1800 1520 1000	19.95 2170 36.6 37.2 47.3	0.69 0.67 1.78 2.78 3.45	4.8 2.1 10.2 13.9 12.5	21.8 22.9 6.7 5.2 7.1	810 260 2020 2450 2190
X497334 X497335 X497336 X497337 X497338		5.58 6.00 5.87 5.67 5.54	18 80 21 3 21 0 21 7 20 6	0.10 0.17 0.16 0.15 0.16	0.3 0.5 0.5 0.4 0.3	0.053 0.088 0.061 0.060 0.063	3.54 4.07 3.33 3.81 3.57	20.1 22.8 19.6 21.5 19.1	11.2 10.6 10.6 11.4 11.3	1,78 1,54 1,68 1,83 1,65	1120 1060 1050 1030 899	26.9 36.8 61.2 70.9 84.3	2.76 3.11 3.17 2.99 3.00	10,4 12,8 12,3 12.1 11,7	7.7 8.0 5.3 5.4 9.5	2040 2200 2000 2290 2170
X497339 X497340 X497341 X497342 X497343		5.96 7.05 6.98 5.96 5.94	21.4 24.1 23.1 21.7 21.2	0.17 0.17 0.16 0.15 0.15	0.4 0.5 0.1 0.1 0.4	0.056 0.090 0.051 0.051 0.041	2.98 3.62 3.98 3.04 3.15	19.2 22.5 16.0 18.0 18.7	10.4 13.8 19.7 16.1 14.0	1.37 1.93 2.55 2.21 2.01	818 1080 1020 1600 976	105.0 54.8 141.5 77.3 41.2	3.56 2.65 2.23 2.11 2.88	10.9 10.9 6.5 5.8 10.6	12.9 11.3 12.5 10.0 13.7	1860 1960 1880 1500 1920
X497344 X497345 X497346 X497347 X497347 X497348		6.45 5.20 4.99 5.75 4.93	21 3 19 85 17 10 21 3 19 60	0 18 0 16 0 16 0 17 0 17	0.4 0.3 0.4 0.4 0.4	0.059 0.038 0.065 0.066 0.062	3.04 3.20 3.30 3.96 3.48	24.4 18.7 23.3 23.0 20.8	15.2 12.8 11.5 13.6 10.8	2 33 1 69 1 79 1 82 1 52	1050 763 1560 1220 968	69.4 169.5 46.7 82.2 248	2.64 3.05 2.22 2.79 3.01	10.9 9.3 10.2 12.2 11.9	12.0 15.8 6.7 6.2 6.5	1910 1550 1810 2070 2100

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0,5	ME-MS61 Rb ppm 0_1	ME-MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0,1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0_2	ME-MS61 Sr ppm 0_2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0,02	ME-MS61 U ppm 0.1
X497329 X497330 X497331 X497332 X497333		169.0 28.1 94.2 9.0 11.9	38 9 72 5 56 9 56 9 77 5	0.030 0.172 0.057 0.052 0.073	>10.0 3.45 2.11 1.64 0.96	161,5 74,2 13,60 4,08 2,50	6 3 5 6 12 5 16 9 15 4	1 4 2 2 1	0.8 4.2 1.1 1.7 1.3	555 275 587 596 453	0.26 0.14 0.62 0.82 0.75	0.06 1.84 0.06 0.07 0.07	1.93 1.55 2.67 3.19 3.61	0.251 0.185 0.536 0.648 0.588	8.00 17.85 1.12 0.62 0.63	1.5 0.7 2.2 2.9 2.1
X497334 X497335 X497336 X497337 X497337 X497338		11.0 15.6 10.7 9.0 6.1	95.0 110.5 88.5 98.0 84.8	0.031 0.047 0.065 0.102 0.093	0 98 1 66 1.44 0.87 1_40	2.00 2.02 2.20 1.70 1.31	17.3 18.1 18.9 18.0 17.7	2 4 2 2 2	1.3 1.9 1.7 1.4 1.5	915 961 1150 1585 1230	0.58 0.69 0.67 0.66 0.63	0.06 0.10 0.09 0.08 0.16	3.28 3.73 3.20 3.59 3.16	0.584 0.601 0.595 0.596 0.571	0.64 0.73 0.64 0.65 0.60	1 3 1.6 1.7 1.4 1 3
X497339 X497340 X497341 X497342 X497343		8.9 13.9 33.1 38.3 16.2	75.3 95.9 91.5 58.5 73.6	0.147 0.070 0.211 0.114 0.050	2 20 2 03 1 48 1.54 1 10	1.81 2.44 0.83 1.70 2.04	17.5 22.7 22.2 17.6 18.5	4 4 2 2 2	1,5 2,0 1,3 1,2 1,3	1395 1545 1110 1115 2180	0.58 0.55 0.31 0.29 0.57	0.21 0.13 0.11 0.09 0.07	3.10 3.26 2.53 2.70 3.10	0.583 0.686 0.572 0.417 0.574	0.56 0.64 0.75 0.30 0.52	1.4 1.6 1.0 1.2 1.4
X497344 X497345 X497346 X497347 X497347 X497348		6.7 4.9 251 64.9 7.7	98 8 93 8 103 5 111 5 76 4	0.103 0.207 0.079 0.100 0.254	1 08 1 47 1 29 1 63 1 02	2.20 1.07 1.58 1.19 2.49	21.8 16.0 16.6 17.1 16.2	2 3 2 2 3	1.7 1.5 1.5 1.5 1.6	2740 1300 980 867 1790	0.58 0.50 0.58 0.65 0.65	0.08 0.15 0.07 0.06 0.07	3.17 2.88 3.32 3.77 3.41	0.670 0.493 0.494 0.550 0.563	0.61 0.62 0.59 0.66 0.46	1.4 1.1 1.3 1.5 1.5

ALS Canada Ltd, 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME- MS61 V ppm 1	ME- MS61 W ppm 0.1	ME- MS61 Y ppm 0,1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	
X497329 X497330 X497331 X497332 X497333		96 565 231 285 239	2.4 40.2 5.8 8.8 9.8	19.2 4.5 24.2 20.9 15.2	189 99 174 103 85	12.2 103 5 10.6 13.1 8.2		
X497334 X497335 X497336 X497337 X497338		232 232 231 231 231 222	2.4 1.4 2.8 1.3 2.0	16.7 19.5 17.9 19.6 18.6	88 85 73 73 59	6 1 9.4 9 2 7 4 6.4		
X497339 X497340 X497341 X497342 X497343		230 270 280 235 239	1.3 1.6 1.1 1.7 1.1	18.4 20.7 12.4 17.3 17.7	54 72 221 178 100	7.8 8.6 3.4 3.0 6.0		
X497344 X497345 X497346 X497347 X497347 X497348		268 199 190 212 216	1.5 5.2 3.4 3.0 2.4	21.6 17.7 17.6 18.7 17.8	64 52 178 241 50	6.4 7.2 10.9 8.5 7.0		

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 28- DEC- 2018 Account: SKERES

Project: Snip

		CERTIFICATE CO	MMENTS	
			YTICAL COMMENTS	
Applies to Method:	REE's may not be totally s ME- MS61	soluble in this method.		
			ATORY ADDRESSES	
		ops located at 2953 Shuswap Drive, Ka		
Applies to Method	BAG- 01 LOG- 23 WEI- 21	CRU- 31 PUL- 32	CRU- QC PUL- QC	LOG- 21 SPL- 21
	Processed at ALS Vancou	iver located at 2103 Dollarton Hwy, No	orth Vancouver, BC, Canada.	
Applies to Method	Ag- OG62	Au- AA26	ME- MS61	ME- OG62

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

CERTIFICATE KL18305161

Project: Snip

P.O. No.: S- C18- 131

This report is for 72 Drill Core samples submitted to our lab in Kamloops, BC, Canada on 30- NOV- 2018.

The following have access to data associated with this certificate:

	PAUL GEDDES ADRIAN NEWTON	RAEGAN MARKEL COLIN RUSSELL	MIKE MAYER
I			

	SAMPLE PREPARATION									
ALS CODE	DESCRIPTION									
WEI- 21	Received Sample Weight									
LOG- 21	Sample logging - ClientBarCode									
CRU- QC										
PUL- QC	Pulverizing QC Test									
CRU- 31	Fine crushing - 70% < 2mm									
SPL- 21	Split sample - riffle splitter									
PUL- 32	Pulverize 1000g to 85% < 75 um									
BAG- 01	Bulk Master for Storage									
LOG-23	Pulp Login - Rcvd with Barcode									

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
Au- AA26	Ore Grade Au 50g FA AA finish	AAS
ME- MS61	48 element four acid ICP- MS	
Ag- OG62	Ore Grade Ag - Four Acid	
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18305161

Sample Description	Method	WEI- 21	Au- AA26	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61
	Analyte	Recvd Wt	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0_01	0_01	0_01	0.2	10	0 ₋ 05	0,01	0_01	0,02	0.01	0,1	1	0 ₁ 05	0.2
X497349		3.99	0.01	0.21	8.33	4.6	1430	1.52	0.23	3.61	0.10	45.8	20,1	13	1.94	167.0
X497350		0.13	1.89	37.9	7.58	102.5	880	0.80	1.54	3.85	6.74	23.7	15,1	25	0.73	223
X497351		4.19	0.02	0.19	8.07	3.8	1210	1.77	0.31	3.58	0.11	46.2	18,9	9	2.35	123.5
X497352		3.81	0 01	0 19	8.27	2.5	1150	1.46	0.17	3.96	0.08	43.1	18.2	6	2.54	112.5
X497353		4.23	0 01	0 15	8.05	3.4	900	1.32	0.16	4.50	0,07	43,4	22.8	10	2.90	112.5
X497354		3.80	0 02	0 11	7.92	36	1230	1.48	0.26	3,38	0,06	41,4	25.5	8	2.29	56 6
X497355		4.26	0 01	0 11	8.77	50	1090	1.93	0.28	4,50	0.14	50.5	19.6	7	2.75	53 2
X497356		4.09	0.01	0.20	8.37	6.0	1330	1.53	0.51	4.56	0.10	48.2	27.5	7	2.13	124.5
X497357		4.18	0.03	0.12	7.99	5.5	1050	1.69	0.23	5.33	0.12	48.2	21.3	6	2.21	75.2
X497358		3.93	0.02	0.13	8.48	3.6	1220	1.58	0.24	5.86	0.12	49.7	17.8	6	2.40	72.2
X497359 X497360		4.13 1.57	0.02	0.20	8.35 0.21	5.5 <0.2	1300	1.58	0.24	4.66	0.12	49.7	17.8 19.1 0.6	7	2.21	120.0
X497361 X497362 X497363		4.01 4.16 4.11	0 03 0 04 0 03	0.18 0.21 0.14	8.33 8.65 8.97	<0.2 11 1 10 9 5.1	960 1110 1200	1 64 1 58 1 61	0.58 9.71 0.30	34 8 4 44 3 87 3 87	0.02 0.09 0.15 0.21	42.0 50.4 49.7	20.1 21.1 18.9	7 7 7	1 87 2 73 2 42	104.0 117.0 85.1
X497364 X497365		2.69 2.61	0 02 0 03	0 20 0 23	8 32 8 45	3.8 6.2	1120 1020	1.45 1.46	0.19 0.24	4 17 4 26	0.15	47.7	22.0 20.2	9	3.07 2.64	112.5 151.0
X497366		2.95	0.02	0.12	7.71	56	1050	1.69	0.25	9.06	0.29	46.3	18.3	7	2.05	53.7
X497367		3.37	0.03	0.23	8.22	46	970	1.54	0.30	4.77	0.30	48.9	20.9	14	2.61	115.5
X497368		4.01	0.01	0.13	8.13	42	1030	1.64	0.19	4.91	0.12	45.4	21.8	9	2.51	95.9
X497369 X497370		3.79	0.01	0.22	8.20 1.56	4.6	1170	1.56	0.19	4.93	0.12	47.2	17.6	9 14	2.07	197.0 106.0
X497371		3.89	0.01	0 29	8 51	4.3	1190	1.59	0 19	4 45	0.08	47.6	19.4	9	2.34	132.5
X497372		4.21	0.01	0 27	8 32	8.7	1070	1.65	0 21	5.06	0.14	47.6	19.9	8	2.55	208
X497373 X497374		4 12 4 01	0.02	0.30	8.14	5.1 4.1	1050 1150	1_39 1_55	0.22	4.98 4.87	0.14	43.5 44.6	22.8 20.1	9	2.43 2.81	205 146.0
X497375		3.81	0.01	0.25	8.26	4.8	1010	1.52	0.27	4_63	0.17	45.0	20.1	13	2.79	149.5
X497376		2.73	0.03	0.47	7.78	8.9	890	1.45	0.44	4.20	0.12	38.4	35.9	17	2.13	398
X497377		2.65	0.04	0.51	7.76	16.0	820	1.33	0.53	3_82	0.19	33.7	26.7	34	1.85	433
X497378		3.92	0.02	0.37	7.68	13.4	920	1.57	0.30	4.48	0.27	31.6	25.8	43	1.64	273
X497379		1.63	0.02	0.61	6.43	24.2	570	1.04	0.23	3.11	0.56	24.2	23.0	94	1 16	390
X497380		3.66	0.04	0.77	7.09	28.5	680	1.33	0.29	4.97	0.86	24.9	31.0	23	0.82	411
X497381		4.13	0.02	0.57	8.13	15.4	810	1.38	0.62	5.39	1.72	39.1	17.1	37	2 12	201
X497381 X497382 X497383		4.13 3.87 3.84	<0.01 <0.01 <0.01	0.23 0.16	8.24 8.47	7.0 6.0	950 960	1.38 1.74 1.64	0.82 0.74 0.27	4.50 4.34	0.15	46.8 43.7	16.2 19.0	7 6	2.12 2.11 1.43	124.5 133.0
X497384		4.04	<0.01	0.13	8.15	6.5	870	1.70	0.34	4.36	0.07	41_9	16.0	8	1,47	109.5
X497385		4.32	<0.01	0.24	8.18	7.9	1030	1.88	0.37	3.76	0.20	41.8	17.7	9	1,85	159.5
X497386		4.01	<0.01	0.53	8.07	10.6	1060	1.51	1.00	4.71	0.85	51.3	22.6	8	2,43	191.0
X497387		4.25	<0.01	0.24	8.14	8.1	970	1.72	0.45	4 66	0.09	49.9	20.9	7	2.68	159 5
X497388		4.06	<0.01	0.20	7.67	8-0	970	1.63	0.27	4.34	0.07	47.1	18.4	8	2.36	117 5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

CERTIFICATE OF ANALYSIS KL18305161

Sample Description	Method	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.01	0.05	0.05	0_1	0.005	0_01	0.5	0_2	0.01	5	0.05	0.01	0,1	0.2	10
X497349		5.83	19 15	0.17	0.4	0.054	4.26	21.1	12.7	1 62	845	105.5	2.55	10.1	7_7	2090
X497350		4.38	15 50	0.13	1.0	0.126	1.27	9.7	8.8	1 28	980	5.89	2.49	4.1	16.2	540
X497351		5.69	19 60	0.15	0.3	0.046	3.88	18.9	13.9	1 67	882	91.3	2.94	9.8	6.8	2260
X497352		5.43	18 70	0.16	0.3	0.055	3.45	20.4	14.1	1 79	1050	128.5	3.20	9.4	7_3	2080
X497353		6.42	18 60	0.16	0.3	0.076	3.27	21.2	15.2	2 43	1360	42.8	2.78	9.0	9_3	2380
X497354 X497355 X497356 X497357 X497357 X497358		5.70 5.70 6.03 5.95 5.84	19.90 22.0 20.6 18.90 18.35	0.15 0.17 0.16 0.14 0.14	0 2 0 2 0 4 0.2 0.2	0.056 0.054 0.050 0.060 0.056	3,36 3,25 2,86 2,83 3,25	18.7 22.6 22.2 22.0 24.2	16.6 17.0 13.5 13.4 12.7	2,05 1,92 1,93 1,89 1,99	920 1240 1230 1390 1450	102.0 128.5 74.2 67.5 40.5	3.20 3.48 3.18 3.09 2.80	8.2 10.9 10.5 9.6 9.7	8 9 9 4 12 5 7 6 6 2	2340 2020 2050 2010 2080
X497359		6.00	18.80	0.15	0.2	0.068	2.91	21.7	13.0	2.04	1290	36.0	3.14	9.8	6 1	2000
X497360		0.12	0.66	0.11	0.1	<0.005	0.07	1.2	1.2	1.26	106	0.28	0.09	0.4	0 3	60
X497361		6.01	20.6	0.12	0.4	0.058	2.55	19.0	11.1	1.88	1220	8.44	3.27	10.7	6 2	1930
X497362		6.43	20.4	0.15	0.3	0.070	3.07	21.2	13.8	2.04	1220	29.1	3.56	11.3	6 3	2240
X497363		5.92	20.3	0.15	0.1	0.068	3.39	23.8	12.2	1.90	1140	27.7	2.96	11.0	5 4	2240
X497364 X497365 X497366 X497366 X497367 X497368		6.50 6.37 6.16 6.04 6.27	21.0 19.50 17.75 18.70 18.95	0.15 0.14 0.16 0.14 0.14	0.1 03 03 03 02	0.063 0.066 0.079 0.082 0.069	3.53 3.20 3.18 3.10 3.10 3.10	21.1 22.5 21.9 22.5 23.1	15.1 13.9 14.4 13.3 14.3	2.14 2.02 2.16 1.97 1.92	1280 1240 1880 1260 1320	37.1 23.8 58.7 58.4 130.5	3.15 3.44 2.15 3.23 3.23	10.1 9.6 8.2 9.3 9.3	7.4 7.1 5.6 6.9 6.5	2350 2420 2060 2340 2320
X497369		6.18	19.05	0.13	0.3	0.094	2.99	21.9	13.6	1.89	1220	8.28	3.00	8.9	7.1	2320
X497370		2.27	3.35	0.09	0.4	0.688	1.21	6 3	41.9	0.10	2110	6.16	0.04	2.0	9.8	120
X497371		6.14	18.25	0.17	0.3	0.062	3.06	23 8	13.1	1.83	1210	418	3.47	8.5	6.9	2300
X497372		6.07	18.80	0.18	0.3	0.077	3.27	23 6	12.2	1.78	1200	24.7	2.56	8.3	7.4	2230
X497373		6.07	18.25	0.14	0.4	0.066	3.20	20 5	11.1	1.84	1080	312	2.92	8.1	7.4	2240
X497374 X497375 X497376 X497377 X497377 X497378		5.81 5.49 6.60 6.70 6.14	18.55 20.0 18.20 17.45 17.55	0.14 0.14 0.14 0.15 0.15	0.3 0.4 0.4 0.3 0.2	0.064 0.066 0.039 0.029 0.050	3.51 3.71 3.93 4.97 4.32	21.4 21.2 18.4 15.3 17.0	12.5 12.7 12.9 12.9 11.6	1.89 2.16 2.05 1.93 1.47	1120 900 703 678 781	166.0 50.0 25.9 87.6 64.4	2.85 2.80 2.26 1.52 2.30	7.5 8.5 7.1 6.5 4.3	7.3 10.8 18.6 36.1 36.9	2330 2280 1980 1800 1420
X497379		6.40	14.85	0.12	0.4	0.050	4.66	13.8	5.9	0.69	684	34 3	1.19	2.9	55.3	980
X497380		6.52	18.10	0.13	0.3	0.037	4.95	13.1	8.8	0.85	865	211	1.23	3.7	23.6	1410
X497381		5.71	18.35	0.15	0.4	0.078	3.60	20.5	9.7	1.70	1030	76.1	2.23	5.9	22.3	1740
X497382		5.63	18.75	0.14	0.3	0.060	3.15	19.9	11.0	1.97	1000	24.6	2.84	9.6	4.8	2250
X497383		5.87	21.5	0.15	0.4	0.058	2.50	18.4	12.2	2.21	1080	3 58	3.43	10.9	4.9	1990
X497384		5.44	21.1	0.17	0.6	0.072	2.85	17.7	10.7	2.10	1010	19.45	3.03	13.2	5.5	2130
X497385		5.75	20.5	0.17	0.7	0.067	3.31	17.5	10.8	2.13	1070	21.6	2.98	13.2	6.2	2050
X497386		6.26	19.30	0.17	0.6	0.084	3.53	23.4	10.6	2.15	1420	20.9	2.59	12.1	5.9	2340
X497387		6.35	19.85	0.19	0.6	0.080	3.24	23.8	10.0	2.15	1400	11.55	2.68	11.6	6.1	2360
X497388		6.29	18.90	0.16	0.6	0.090	2.83	21.0	9.8	2.06	1350	4.42	2.51	11.6	5.8	2400

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: + 1 (604) 984 0221 Fax: + 1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0,5	ME-MS61 Rb ppm 0,1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0_1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0_2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0:05	ME- MS61 Te ppm 0,05	ME- MS61 Th ppm 0_01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0,1
X497349		5.8	103.0	0.133	1.59	2.31	16.5	1	1.7	1435	0.61	0.06	3.64	0.571	0.56	1.4
X497350		694	22.7	0.003	0.30	17.60	14_1	1	1.7	421	0.28	0.22	1.99	0.279	0.37	0.9
X497351		6.6	96.2	0.094	1.40	1.80	16.6	2	1.4	1400	0.59	0.10	3.05	0.563	0.54	1,3
X497352		7.3	86.4	0.167	0.97	1.31	16.4	2	1.2	1070	0.59	<0.05	2.94	0.573	0.48	1,2
X497353		7.6	96.1	0.057	0.86	1 61	23.1	1	1.4	1010	0.50	<0.05	2.88	0,687	0.51	1.3
X497354		27.5	80.6	0.132	1.13	2 21	17.8	2	1.2	1085	0.47	0.10	2.88	0.544	0.47	1.1
X497355		17.1	94.4	0.229	0.90	2.01	19.5	1	1.6	1525	0.59	0.05	2.95	0.589	0.55	1.3
X497356		5.6	81.3	0.095	1.42	2.41	20.1	3	1.4	1570	0.55	0.08	2.90	0.608	0.46	1.3
X497357		5.7	88.6	0.110	1.21	1_91	19_4	2	1,3	1415	0.51	0.05	2.90	0.595	0.49	1.2
X497358		6,4	93,7	0.052	0.82	1.39	18.7	2	1.3	1405	0.57	<0.05	3_12	0,618	0.56	1,1
(497359		9.3	88.7	0_027	1.15	1,69	18.5	1	1.3	1245	0.57	<0.05	2.83	0,621	0.48	1,3
X497360		0.9	2.0	<0.002	0.01	0_11	0.2	3	<0_2	89.3	<0.05	<0.05	0.15	0.007	0.02	0.2
X497361		10_4	64.8	0.012	0.82	2.86	17.0	2	1.5	1780	0.63	<0.05	2.75	0.618	0.43	1.1
X497362		8.1	94 1	0.044	0.86	1.47	20.4	1	1.6	966	0.62	0_08	3.00	0.683	0.55	1,2
(497363		9.8	89.7	0.046	0.75	1.11	17.9	1	1.5	957	0.65	<0.05	3.33	0.644	0.52	1.2
(497364		8.2	91.4	0.061	0.82	1.17	21.1	1	1.4	967	0.62	0.05	2.81	0.706	0.59	1.3
(497365		9.8	87.8	0.027	0.95	1.46	20.8	1	1.5	825	0.57	<0.05	3.35	0.671	0.53	1.3
X497366		15.3	87,1	0.099	1.09	1,81	18_4	1	1.4	1175	0.50	<0_05	3.14	0.551	0_45	1.2
X497367		11.9	85 0	0.099	1.07	1.34	19.8	2	1.4	1030	0.54	0.05	3.32	0,603	0.50	1.2
X497368		7.6	83,0	0.150	0.96	1.73	19.4	2	1_4	1330	0.57	0.05	3.27	0,620	0.48	1,3
X497369		6.9	76.9	0,009	1.36	2,63	18.7	2	1.5	1765	0.53	0.05	3.32	0,617	0.41	1,4
X497370		5700	64 5	0.002	0.29	51.7	1.4	1	3,0	341	0.19	0.62	3.41	0.027	0.95	1.2
X497371		6.9	85.7	0.751	1.09	1.76	18.5	2	1.5	1310	0.52	<0.05	3.36	0.603	0.48	1.1
X497372		4.8	100.5	0.042	1.42	1.39	17_9	3	1.5	992	0.50	<0.05	3.40	0.553	0.50	1.0
X497373		7.0	82.1	0,595	2 22	1,30	16_6	3	1_4	1315	0_46	0.09	3.22	0.579	0 55	1.1
(497374		7.8	105.0	0.229	1.43	1,57	17.9	2	1.5	1355	0_47	0.07	3.34	0.564	0.62	1.0
(497375		12.6	103.5	0.055	1.42	1.70	18.3	2	1.7	1180	0.52	<0.05	3,47	0,587	0.67	1.1
X497376		7.2	102.0	0.035	3,31	1.57	18.2	4	3.5	762	0.42	0_11	2,88	0.561	0.63	0.9
X497377		10.3	110.0	0.106	3.74	1.88	15.2	4	4.7	743	0.36	0.15	2.44	0,489	0.59	0.9
X497378		15.5	97.3	0.063	2.98	1.64	12.9	5	2.1	588	0.27	0.08	2,21	0,405	0.54	0.9
(497379		25.9	88.5	0.043	4.12	1.80	9.7	4	1.8	523	0.17	0.07	1.60	0.300	0.48	0.8
X497380		49.4	70.5	0.285	4.22	1.89	10.5	5	2.0	599	0.22	0.10	2.13	0.364	0.40	1.0
X497381		15,3	110.5	0.096	2.26	1.31	15.6	3	1.8	1150	0.34	0.06	2.63	0.483	0.60	1.0
X497382		5 2	83.5	0.042	1_10	2.09	17.5	2	1.5	1575	0.56	0.08	2.86	0.619	0.63	1.2
X497383		3.3	58.3	0.004	1.10	2,65	18,6	2	1,5	2130	0.65	0.07	2.50	0.627	0,42	1.1
X497384		3.6	67.3	0.031	0.94	2.18	18,7	2	1,6	1585	0.74	0.07	2.80	0.646	0.54	1.3
X497385		23.2	77.8	0.028	1.30	1,81	18.7	3	1.8	1175	0.77	0.06	2.79	0.658	0.63	1.3
X497386		165.0	96.9	0.032	1.63	2.28	23.3	3	1.9	811	0.65	0.09	3.45	0.676	0.76	1.6
X497387		11.8	93.0	0.013	1.38	1.63	21.8	2	1.7	926	0.68	0.07	3.52	0_644	0.62	1.7
X497388		4.4	77.6	0.006	0.84	1.85	20.9	1	1.7	1180	0.66	0.05	3.18	0.640	0.62	1.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME- MS61 W ppm 0_1	ME- MS61 Y ppm 0_1	ME-MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Ag- OC62 Ag ppm 1	
X497349 X497350 X497351		225 111 238	1.4 4.3 1.4	18.6 18.0 17.1	57 1100 70	7.3 28.2 6.4		
X497352 X497353		233 281	1.8 1.3	16,7 20,0	66 85	5.1 5.8		
X497354 X497355		238 225	1.2 1.7	16.6 18.7	123 99	4 1 3 7		
X497356 X497357		248 251	16 16	20.6 19.3	81 87	7.7 4.5		
X497358 X497359		255 247	2.5	20.1	80	2.9 3.5		
X497360 X497361		2 244	0.1	2.7 16.5	4 79	2.8 7.2		
X497362 X497363		269 257	4 9 4 4	19.1 17.2	105 110	5.4 2.4		
x497364 x497365		281 265	1.0 1.2	20 2 20 9	111 114	3.4 9.0		
X497366 X497367 X497368		223 239 249	2.3 1.2 1.4	20.0 20.1 19.9	119 110 93	4.0 6.0 5.3		
X497369 X497370		250 30	1.4 2.5	193 36	75 873	6.2 12.7	126	
X497371 X497372		247 225	1.4 3.7	21.4 20.4	80 84	6.2 5.9		
X497373 X497374		228 240	2.8	19_2 19_2	68 79	7.9 5.8		
X497375 X497376		240 240 222	2.4 3.7	19.6 20.9	67 41	8.0 8.2		
X497377 X497378		192 162	4.8 3.0	18 1 16 9	43 59	83 65		
(497379 (497380		133 140	4 1 5 1	11.8 12.2	85 125	9.2 9.2		
X497381 X497382 X497383		196 256 253	4₋1 4_3 1.8	21.5 18.1 18.2	143 63 63	9.9 7.1 7.1		
X497384		255	1.4	17.5	63	10.4		
X497385 X497386		257 274	16 29	17 6 20 6	101 226	11 5 14 3		
X497387 X497388		266 258	3.3 1.4	20.8 19.5	106 111	12.4 11.6		

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	WEI- 21 Recvd Wt. kg 0.02	Au- AA26 Au ppm 0,01	ME-MS61 Ag ppm 0,01	ME- MS61 Al % 0.01	ME-MS61 As ppm 0 ₈ 2	ME-MS61 Ba ppm 10	ME- MS61 Be ppm 0,05	ME-MS61 Bi ppm 0.01	ME- MS61 Ca % 0,01	ME- MS61 Cd ppm 0,02	ME- MS61 Ce ppm 0,01	ME- MS61 Co ppm 0,1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0,05	ME-MS61 Cu ppm 0,2
X497389 X497390 X497391 X497392 X497393		4.24 0.13 1.38 4.00 3.99	<0 01 11 30 <0 01 <0 01 <0 01	0,16 33,9 0,13 0,23 0,28	8,45 5,30 7,88 7,88 7,88 7,93	8.6 5590 7.3 6.4 6.3	1040 530 910 760 790	1.75 0.93 1.78 1.73 1.74	0.18 9.51 0.18 0.12 0.20	5.01 4.21 3.69 4.00 4.21	0.09 5.97 0.11 0.06 0.39	52.3 30.4 31.0 29.9 28.3	23.6 24.2 10.6 16.4 13.6	9 53 13 12 9	2.20 3.64 1.65 2.00 1.76	121.0 339 55.8 100.5 103.5
X497394 X497395 X497396 X497397 X497397 X497398		4.03 2.81 1.53 4.13 4.30	<0 01 <0 01 0 02 <0 01 <0 01	0.23 0.22 0.37 0.17 0.17	8,31 8,44 7.09 8.43 8,09	4.6 2.9 11.4 5.4 2.0	1020 830 320 980 880	1,88 1,70 1,75 1,84 1,79	0.10 0.07 0.27 0.21 0.18	4,54 4,87 6.03 5.92 5,98	0.08 0.08 0.07 0.08 0.07	40.1 50.1 37.9 49.4 47.8	18,2 18,2 81,2 20,5 18,6	7 8 5 6 6	2,53 3,93 2,89 3,57 3,53	105.5 118.5 217 96.1 116.5
X497399 X497400 X497401 X497402 X497402 X497403		4.10 1.36 3.88 2.65 3.08	<0.01 <0.01 0.01 0.01 0.01	0.23 0.01 0.65 0.58 0.34	8.11 0.29 7.64 7.03 6.09	2.7 <0.2 14.4 5.9 14.4	630 30 900 470 550	1.79 0.16 1.97 1.93 1.62	0.16 0.02 0.36 0.51 0.29	5.28 33.2 5.96 7.95 8.99	0.16 <0.02 0.79 0.18 0.13	51.8 1.14 46.3 42.4 41.1	22.4 0.8 22.9 28.9 16.9	6 1 7 6 5	4.81 0.09 3.11 2.80 1.00	105.5 3.1 236 376 168.5
X497404 X497405 X497406 X497407 X497407 X497408		3.94 4.16 4.14 3.74 4.12	0.02 0 01 0 02 <0 01 <0 01	0.24 0.20 0.38 0.21 0.24	4.74 7.00 7.18 7.60 7.67	3_0 4_0 3.2 2_4 7_4	350 550 630 720 750	1.22 1.64 2.18 1.87 1.72	0.18 0.23 0.56 0.22 0.27	12.35 7.23 7.19 7.32 6.21	0.10 0.04 0.08 0.13 0.26	34.4 42.4 45.1 45.1 46.9	11.8 17.6 16.3 20.3 21.1	3 6 7 7	2.39 3.04 3.39 3.82 3.82	69.6 73.8 103.0 140.0 155.0
X497409 X497410 X497411 X497412 X497413		4.12 0.21 3.95 3.65 3.66	<0.01 22.3 0.01 0.02 0.08	0.20 3.29 0.14 0.24 0.15	7.95 6.15 7.76 7.71 7.49	6.8 32.8 5.3 11.2 10.6	780 590 770 910 650	1.71 1.45 1.71 1.75 1.56	0.24 0.48 0.17 0.23 0.28	5.94 1.08 4.95 5.11 5.19	0.17 0.03 0.15 0.27 0.13	47.3 16.25 44.6 45.9 40.3	21.0 10.4 22.0 21.6 20.7	8 30 8 9 8	3.49 13.45 3.75 3.47 2.52	154.5 61.6 118.0 196.5 98.9
X497414 X497415 X497416 X497417 X497417		4.14 3.77 3.93 3.85 1.98	0.01 0.01 0.01 0.01 0.01	0.25 0.36 0.31 0.30 0.28	7.66 7.87 8.32 7.42 7.73	4.3 5.9 3.6 4.1 8.3	840 980 1090 1000 880	1.62 1.66 1.56 1.61 1.44	0.48 0.85 0.27 0.24 0.51	4.78 4.46 4.66 4.25 3.44	0.12 0.25 0.13 0.16 0.10	43.2 41.0 46.3 42.3 30.8	17.5 24.3 20.2 18.4 14.0	8 8 10 22	3.73 3.96 3.77 3.33 2.58	108.5 154.5 125.0 105.5 78.7
X497419 X497420		2.18 1.52	0.01 <0.01	0.18 0.01	7.74 0.06	6.3 <0.2	960 10	1.53 0.06	0.13 0.02	2.87 31.6	0.04 0.02	39.0 0.91	14,9 1.0	17 2	2.11 <0.05	57.3 5.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0,01	0.05	0.05	0_1	0.005	0.01	0_5	0.2	0.01	5	0.05	0.01	0_1	0_2	10
X497389		6.34	19 60	0 17	0 6	0 076	2.92	24.8	10 9	2 20	1410	1,43	2.91	11.8	6.5	2490
X497390		9.87	13 45	0 11	1 7	1 630	1.33	15.0	17 1	1 01	985	43.0	0.93	4.2	31.4	620
X497391		4.36	17 15	0 10	0 2	0 052	2.51	13.1	10 3	1 52	1000	2,79	3.30	10.1	6.4	1700
X497392		5.54	19 30	0 13	0 2	0 050	2.33	12.3	11.4	1 63	1200	15,10	3.31	9.0	8.5	1580
X497393		4.40	18 75	0 11	0 2	0 050	2.41	11.2	9 5	0 80	972	24.9	3.66	9.2	7.0	1430
X497394 X497395 X497396 X497397 X497397 X497398		5.07 6.07 8.82 5.36 6.21	20.0 19.60 17.40 20.0 18.75	0.14 0.16 0.17 0.20 0.16	0 3 0 8 0 3 0 2 0 4	0.065 0.062 0.062 0.059 0.083	2.71 2.76 2.69 3.27 3.34	16.4 23.1 17.4 23.1 21.9	10.6 14.4 10.1 10.2 11.0	0.97 1.75 1.22 1.20 1.43	1140 1420 1380 1330 1500	14.00 3.95 6.70 8.94 1.93	3.42 3.20 2.51 2.78 1.96	12.2 12.4 10.8 12.3 11.3	6 4 4.9 7 1 5 3 4.7	2060 2160 1990 2240 2170
X497399		6.37	20.8	0.14	0.5	0.076	2.97	24.0	11.8	2.22	1420	2.38	2.45	12.1	6 0	2430
X497400		0.17	1.00	0.06	0.1	<0.005	0.12	1.1	2.5	2.01	122	0.30	0.12	0.9	0 4	70
X497401		6.17	19.75	0.15	0.6	0.138	3.12	20.8	10.1	1.09	1290	30.9	2.48	12.4	5 5	2320
X497402		7.75	17.05	0.18	0.6	0.148	2.50	19.6	7.9	1.13	1710	45.8	2.39	10.5	6.5	2040
X497403		6.95	15.20	0.14	0.4	0.085	2.61	19.4	14.8	0.97	1880	17.20	0.41	9.0	4 7	1800
X497404		6.51	12.35	0.12	0.5	0.066	2.42	15.6	8 1	1.13	2430	3.34	0.49	6.6	3.3	1250
X497405		6.47	16.70	0.17	0.3	0.075	3.05	19.6	9 1	1.35	1620	12.85	1.49	9.9	5.2	2070
X497406		9.59	17.00	0.14	0.6	0.069	2.94	20.2	9 7	0.85	1960	3.30	0.97	10.3	7.1	2200
X497407		6.70	18.65	0.13	0.4	0.176	4.07	21.4	11 8	1.17	1820	2.13	0.80	10.4	6.2	2200
X497407		6.47	18.40	0.15	0.4	0.140	3.11	21.4	12 1	1.27	1900	2.31	2.38	10.3	6.0	2260
X497409		5.95	18.75	0.15	0 4	0.108	2.99	21.6	11.6	1.27	1670	20.9	2.83	10.7	6.5	2260
X497410		4.18	19.00	0.14	2 7	0.026	3.10	3.6	65.0	0.57	330	2060	0.62	1.9	22.6	260
X497411		6.20	17.65	0.15	0 3	0.092	2.49	20.2	13.2	1.64	1620	14.60	2.88	10.3	6.6	2210
X497412		6.69	18.05	0.15	0.4	0.137	2.54	21.2	14.4	1.67	2170	3.76	2.51	9.8	6.4	2230
X497413		5.85	16.80	0.10	0 3	0.071	2.13	18.7	13.5	1.53	1630	4.57	2.95	9.0	5.7	2200
X497414		5.46	17.65	0.12	0.3	0.082	2.85	20.2	12.7	1,53	1340	25.9	2.70	9.2	6.3	2070
X497415		6.11	18.70	0.14	0.3	0.096	3.18	18.7	13.4	1,62	1250	8.89	2.54	9.7	7.3	2220
X497416		5.87	19.25	0.17	0.4	0.075	2.92	21.4	13.1	1,66	1200	5.39	2.98	9.2	6.4	2230
X497417		5.33	18.00	0.12	0.3	0.052	2.79	19.6	13.8	1,73	1040	11.40	2.61	8.7	9.5	2050
X497418		4.42	16.75	0.11	0.2	0.038	2.73	14.1	11.8	1,60	827	5.70	2.75	5.9	17.4	1460
X497419		4.28	17.15	0.13	0.2	0.040	2.98	17.3	13.5	1.59	750	6.67	2.96	9.0	14.7	1920
X497420		0.12	0.30	0.09	<0_1	0.006	0.01	1.1	1₋0	2.51	118	0.59	0.03	0.1	0.8	80

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOD	0.5	0 ₊ 1	0.002	0_01	0.05	0_1	1	0.2	0.2	0,05	0.05	0.01	0,005	0,02	0 ₊ 1
X497389		4.0	85,1	<0.002	1.18	1.80	22,7	2	1.7	1125	0.67	<0.05	3.55	0.668	0.58	1.5
X497390		291	52,9	0.012	2.53	9.69	9.2	2	7.2	317	0.28	9.37	3.95	0.199	1,28	7.9
X497391		10.5	63,0	0.003	0.39	1.44	15,2	<1	1.1	1035	0.55	0.05	2.61	0.524	0,54	1.1
X497392		6.5	54,6	0.013	0.87	1.53	13,8	2	1.3	1405	0.51	<0.05	2.16	0.514	0,67	0.9
X497393		11.9	56,3	0.023	0.88	1.15	12,2	2	1.3	1090	0.54	0.10	2.04	0.474	0,67	0.9
X497394 X497395 X497396 X497397 X497397 X497398		6.1 5.9 7.0 7.3 7.4	76.6 88.3 69.2 106.5 117.0	0.008 0.004 0.004 0.008 <0.002	0.92 0.59 5.50 0.85 0.94	1.17 1.03 1.34 0.86 0.67	19.0 18.2 15.5 20.0 19.8	1 1 7 2 1	1.5 1_6 1_7 1_5 1.5	1155 1455 910 709 841	0.68 0.69 0.58 0.70 0.62	0.05 <0.05 0.16 <0.05 <0.05	2.89 3.43 2.64 3.37 3.20	0,614 0.631 0.552 0.643 0.647	0.74 0.77 0.73 0.79 0.91	1.4 1.5 1.2 1.2 1.1
X497399		9.0	112.5	<0.002	0.82	0.89	22.6	2	1 7	742	0.69	0.09	3.42	0.685	0.91	1.2
X497400		0.6	3 9	<0.002	<0.01	0.07	0.3	1	0 2	79.2	0.08	<0.05	0.15	0.006	0.05	0.4
X497401		18.0	101.5	0.020	2.48	1.30	20.4	2	2 2	602	0.69	0.20	3.16	0.663	0.99	1.2
X497402		13.0	93.3	0.019	3.35	1.60	21.2	3	2.6	577	0.57	0.19	2.81	0.658	0.87	1.4
X497403		9.7	68.4	0.016	2.17	3.43	17.3	2	2.1	323	0.50	0.09	2.45	0.549	0.47	1.2
X497404		4.9	86.3	0.002	1,79	0.57	13.8	1	1.2	353	0.35	<0.05	1.66	0.407	0.65	0.7
X497405		5.8	109.5	0.012	1.63	0.63	19.3	1	1.5	345	0.56	<0.05	3.00	0.595	0.85	1.2
X497406		12.4	108.0	0.006	2.89	0.91	20.4	2	1.5	579	0.54	0.09	3.15	0.588	0.90	1.4
X497407		7.0	145.5	0.003	1.20	0.93	19.7	1	1.8	407	0.58	0.06	3.60	0.589	1.22	1.7
X497407		7.8	112.0	<0.002	1.34	1.19	19.3	2	1.8	631	0.58	0.13	3.80	0.589	0.97	1.7
X497409		6.5	95.3	0.011	1.27	1.46	19.2	2	1.7	549	0.60	0.10	3.68	0.599	0.83	1.6
X497410		25.7	69.7	0.157	3.23	72.6	5.2	3	4.2	262	0.12	1.70	1.33	0.169	16.85	0.6
X497411		5.5	76.5	0.026	0.99	1.46	18.9	1	1.6	1010	0.58	0.08	3.58	0.584	0.70	1.5
X497412		5.4	75.0	0.006	1.67	2.56	18.7	2	1.9	1305	0.54	0.09	3.59	0.570	0.63	1.8
X497413		4.7	55.2	0.007	1.12	2.23	16.5	2	1.5	1150	0.49	0.06	3.10	0.536	0.48	1.3
X497414		6.7	85.5	0.018	0.94	0.75	17.6	1	1.4	896	0.48	<0.05	3.39	0.553	0.71	1.1
X497415		8.7	89.5	0.007	1.62	0.99	17.8	2	1.7	915	0.55	0.08	3.33	0.576	0.81	1.1
X497416		7.6	82.0	0.005	1.14	0.88	17.8	2	1.4	1135	0.49	0.08	3.62	0.561	0.72	1.1
X497417		6.8	79.5	0.017	1.02	0.82	17.7	2	1.2	1035	0.47	0.06	3.32	0.521	0.62	1.1
X497418		10.2	73.9	0.005	0.97	1.41	11.6	1	0.8	778	0.35	0.06	2.73	0.348	0.57	0.7
X497419 X497420		6.3 1.3	70.2 0.4	0.010 <0.002	0.64 <0.01	0.88 0.14	11.6 0.2	1	1.0 <0.2	786 74.9	0.52 <0.05	<0.05 <0.05	3.40 0.42	0.426 0.005	0.52 <0.02	0.9 0.3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME- MS61 W ppm 0_1	ME- MS61 Y ppm 0_1	ME-MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	
X497389 X497390 X497391 X497392 X497393		273 80 192 201 178	13 163 16 23 31	21.8 10.2 14.5 16.0 12.8	114 874 82 75 102	13.3 54.4 4.0 4.2 3.6		
X497394 X497395 X497396 X497397 X497397 X497398		246 252 226 258 259	34 1.5 4.4 35 29	16.5 20.6 14.8 19.5 18.0	57 89 50 58 82	4.9 5.9 5.7 5.1 10.4		
X497399 X497400 X497401 X497402 X497403		283 1 261 258 218	3.3 <0.1 5.4 4.8 6.8	20.4 3.4 17.6 17.4 18.8	97 6 104 62 47	6.9 3.5 13.6 14.5 9.3		
X497404 X497405 X497406 X497407 X497407 X497408		164 245 235 240 241	3.1 3.5 4.5 4.6 2.4	16 0 17 3 19 4 19 6 20 0	52 59 57 89 117	4.2 8.5 6.0 8.6 9.2		
X497409 X497410 X497411 X497412 X497413		240 533 233 230 216	2.2 36.0 2.2 2.1 2.3	20.1 4.3 20.2 19.2 16.8	112 94 135 156 105	8.4 98.2 7.6 9.4 9.6		
X497414 X497415 X497416 X497417 X497417 X497418		221 231 230 214 140	2.5 5.1 3.6 2.5 2.0	16.6 16.2 18.8 17.5 14.7	91 98 84 72 72	9.1 10.4 8.6 8.8 6.0		
X497419 X497420		164 2	2.1 0.1	15.9 2.0	56 5	7.7 1.3		

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: SKEENA RESOURCES 650 - 1021 WEST HASTINGS STREET VANCOUVER BC V6E 0C3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 21- DEC- 2018 Account: SKERES

Project: Snip

		CERTIFICATE COM	MENTS	
	REE's may not be totally soluble in this method. ME- MS61 LABORATORY ADDRESSES			
Applies to Method:				
Annilian an Martin C	Processed at ALS Kamloops located at 2953 Shuswap Drive, Kamloops, BC, Canada.			
Applies to Method:	BAG- 01 LOG- 23 WEI- 21	CRU- 31 PUL- 32	CRU- QC PUL- QC	LOG- 21 SPL- 21
	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.			
Applies to Method:	Ag- OG62	Au- AA26	ME- MS61	ME- OG62
	·			