

BC Geological Survey Assessment Report 38317

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] 2018 Soil Geochemistry Survey and Geophysical Interpre	tation			total cost \$ 29,281.91
AUTHOR(S) A. Koffyberg, PGeo	SIGNA	.TURE(S)	A. Kry	pha
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S)_none			U	V V YEAR OF WORK 2018, 2019
STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S	Ever	nt 574396	7 dated 201	9/JUN/07
PROPERTY NAME Mikayla Property		······		
CLAIM NAME(S) (on which work was done) 848569, 941104, 98031	1			
			-	
annen melvindenum eilven zine				1
COMMODITIES SOUGHT copper, molybdenum, silver, zinc) 1			
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN 082ENW02 MINING DIVISION Osoyoos and Similkameen)82E/12 ()92H/09_09	2H/16
LATITUDE49 °44" LONGITUDE				
OWNER(S)				
1) CBLT Inc	2)			
·/	/			
MAILING ADDRESS				
855 Brant Street				
Burlington, Ontario L7R 2J6				
OPERATOR(S) [who paid for the work]				
1)same as above	2)			
MAILING ADDRESS				
same as above				
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structur Middle Jurassic Osprey Lake intrusion, light grey, weakly sa				
molybdenum- silver - zinc mineralization, quartz veining in				
biotite - muscovite - anhydrite - molybdenite	SHICH			ation consists of ix-relaspar -

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 33993, 30279, 25298, 24656, 24187, 23776, 20717, 18171, 16437, 15207, 10445, 6558, 6399, 5318

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED
			(incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
GEOCHEMICAL			
(number of samples analysed for)			
Soil8	0 samples, multi-element ICP-MS	848569, 941104, 980311	19,879.51
Silt			
Rock			
Other			
DRILLING			
(total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/tra	ail		
Underground dev. (metres)			
Other		848569, 941104, 980311	9,402.40
		TOTAL COST	29,281.91

ASSESSMENT REPORT

on the

2018 Soil Geochemical Survey and Geophysical Interpretation

on the

MIKAYLA PROPERTY

Osoyoos and Similkameen Mining Divisions, BC

For Owner/Operator

CBLT Inc.

855 Brant Street Burlington, Ontario L7R 2J6

By

A. Koffyberg, PGeo

Discovery Consultants

2916 29th Street Vernon, BC, V1T 5A6

Exploration on titles: 848569, 941104, 980311

Work filed on titles: 941100, 941104

NTS:	082E/12, 092H/09, 092H/16
BCGS MAP SHEETS:	082E.071, 092H.080
LATITUDE:	49° 44' N
LONGITUDE:	119° 58' W
AUTHORS:	A. Koffyberg, PGeo
CONSULTANT:	Discovery Consultants
DATE:	April 20, 2019

TABLE OF CONTENTS

Page

1.0	SUMN	/ARY	. 1
2.0	INTR	ODUCTION	. 4
3.0	LOCA	TION AND ACCESS	. 4
4.0	ТОРО	GRAPHY, VEGETATION & CLIMATE	. 6
5.0	PROP	ERTY DESCRIPTION	. 6
6.0	EXPL	ORATION HISTORY	. 8
7.0	GEOL	OGY	
	7.1	Regional Geology	10
	7.2	Property Geology	11
8.0	2018	SOIL GEOCHEMICAL SURVEY	
	8.1	Sampling Method and Approach	14
	8.2	Sample Preparation, Analysis, QA/QC	14
	8.3	Results	14
9.0	2018	GEOPHYSICAL INTERPRETATION	18
10.0	DISC	USSION AND CONCLUSIONS	18
11.0	REFE	RENCES	21
12.0	STAT	EMENT OF COSTS	23
13.0	STAT	EMENTS OF QUALIFICATIONS	24

LIST OF FIGURES

FIGURE 1	l	Property Location (1:200,000)	5
FIGURE 2	2	Tenure Locations (1:50,000)	. 7
FIGURE 3	3	Property Geology (1:50,000)	13
FIGURE 4	1	Geochemical Sample Locations (1:15,000)	16
FIGURE 5	5	Soil Cu-Ag-Mo Values (1:15,000)	17

LIST OF TABLES

TABLE 1	Title Descriptions	6
TABLE 2	Geochemical Soil Classification1	8

LIST OF PHOTOS

ΡΗΟΤΟ 1	View of soil sample 968S026	15
PHOTO 2	View of soil sample 968S070	15

APPENDICES

- APPENDIX I Soil Samples Analytical Results
- APPENDIX II Certificates of Analysis
- APPENDIX III Aeroquest and IP Interpretation and Comments, Mikayla Property, by Ken Sweet, geophysicist, for CBLT, dated January 12, 2019

1.0 SUMMARY

A soil geochemical sampling program was carried out over sections of the Mikayla Property, which is owned by CBLT Inc. The exploration program was designed by geologist Eugene Spiering of Whistle Creek Consulting Inc, of North Vancouver, BC, and carried out by Discovery Consultants of Vernon, BC. Fieldwork took place from October 10 to 12, 2018. In addition, an interpretation of the 2012 AeroTEM IV airborne electromagnetic and magnetic geophysical survey was done, in order to classify the type of geophysical anomalies present.

The Property is located in the Okanagan Plateau of south-central British Columbia, approximately 16 km west of the town of Peachland and 31 km southwest of the City of West Kelowna. Access is from the town of Summerland via the gravel, secondary Summerland - Princeton road that leaves town from the Prairie Valley Road, and continues for 31 km to the turnoff to Glen Lake Forest Service Road (FSR). From here, the road is taken for 7 km north to the Big Fir FSR, which allows access to the west part of the Property via various logging roads that run through the Property.

Physiographically, the area is situated within the Thompson Plateau in south-central British Columbia. The terrain is moderately mountainous with rangeland, forest and swamps. The Property is situated on a south-facing ridge locally known as Baldy Mountain, located south of the Okanagan Connector highway. Within the Property, elevations range from 1,100 m above sea level (asl) in the western part along Chapman Creek to 1,700 m asl in the north-central part of the Property. Drainage is to the south via several creeks, all of which drain into Trout Creek, which flows east to Okanagan Lake through the town of Summerland.

The Property consists of four MTO mineral titles that form a contiguous block covering an area of approximately 1,144 hectares in the Osoyoos and Similkameen Mining Divisions. All titles are 100% owned by Green Swan Capital Corp, the former name of CBLT Inc.

This discovery of copper-molybdenum mineralization in the 1950s and 1960s, at what would become the Brenda mine, spurred further exploration in the region for copper-molybdenum mineralization. The first documented exploration work within the Property was in 1966, when copper-molybdenum mineralization was discovered by Lakeland Base Metals on the Jass showing. This was followed up by a program of soil sampling, trenching and 610 m of percussion drilling.

In 1973, the area was re-staked as the Mun claim group by Canadian Occidental Petroleum Ltd, and in 1974 an exploration program of geochemical, geological and magnetic surveys was carried out. Several copper-molybdenum-zinc anomalies were identified and three targets were tested by diamond drilling, for a total depth of 275 m.

DISCOVERY

The focus of exploration changed after 1976, when a regional stream sampling by the Geological Survey of Canada (GSC) identified anomalous silver values in streams draining the plateau area northwest of Munro Lake. Re-analysis of drill core and soil samples for precious metals found good correlation between silver soil anomalies and previously identified copper-molybdenum-zinc anomalies.

Almaden Resources Corp staked the ground in 1985, and carried out intermittent exploration until 2010. Most significantly, an IP survey conducted in 1994-1995 outlined a large IP anomaly that extended in an east-west direction over 1,600 m with an average width of 900 m and open to the west. It was interpreted to represent a large pyritic alteration zone, reflecting the top of a large, mineralized porphyry system.

The following year, the survey was extended a further 1,800 m west, resulting in an IP anomaly having a length of 4 km and a width of 800 m, suggesting the presence of a large, disseminated sulphide system. This target was diamond drilled later in 1996, for a total of 1,780 m on seven holes. All seven holes intersected a weakly mineralized silver-molybdenum-copper porphyry system. In 1997, a 5-hole diamond drilling program, totalling 2,042 m, tested the western and eastern edge of the IP anomaly.

In March 2011, mineral title 848569 was MTO staked by Green Swan Capital Corp and the following year, the company purchased three adjoining titles. The current Property overlies much of the historic 1970s work and IP anomaly outlined by Almaden Resource Corp.

In Nov 2012, the company carried out an Aeroquest AeroTEM IV airborne electromagnetic and magnetic geophysical survey. In total, 222.7 line-km were flown, with flight lines oriented north-south at 100 m line spacing. A series of northeast and northwest trending structures were outlined, along with a well developed, northeast-trending electromagnetic anomaly.

The dominant rock type on the Property is a medium-grained, relatively massive granodiorite. Locally, the granodiorite has a porphyritic texture due to the presence of very coarse-grained potash feldspar crystals. The granodiorite is cut by quartz feldspar porphyry dykes that trend east-northeast. Locally narrow aplite veins and dykes cut the granodiorite. Quaternary glaciofluvial and glacial deposits are irregularly distributed; however, large portions of the Property are covered with thick overburden.

Two types of mineralization have been recognized on the Property. Porphyry-type pyritechalcopyrite-molybdenite mineralization was exposed in several trenches. This type has been explored for with trenching, geophysical surveys and drilling. It is known as the Rose-Munroe Lake showing. Low grade alteration is pervasive with local narrow envelopes of sericitized country rock enclosing mineralized fractures and quartz veins, carrying pyrite, molybdenite and chalcopyrite. Several set of veins and fractures occur, having various attitudes. The showing was drilled in 1977, intersecting silver-copper-zinc-molybdenum mineralization. A second type occurs as quartz veining in silicified shear zones. Chalcopyrite-pyrite-specular hematite mineralization in altered and silicified granodiorite is associated with east to northeast trending shears. Sampling at the Cache showing [east of the Property] returned values of up to 100 g/t silver over vein widths of 0.3 m.

The country rock granodiorite has zones that have undergone weak but pervasive potassic alteration. The rocks are commonly sheared, and intense texturally destructive alteration is structurally controlled. Three generations of quartz veining have been recognized in drill core. Early quartz-K-feldspar-molybdenum veins are crosscut by quartz-K-feldspar-pyrite-chalcopyrite ±sphalerite veins. Both sets of veins are crosscut by late milky quartz-pyrite veins.

The 2018 exploration program comprised a reconnaissance-type soil geochemical survey across the western and central part of the Property. The focus of the work was to investigate possible new areas of exposure from areas of recent logging. About 80 sites for soil ±rock ±float sampling were selected by geologist Eugene Spiering of Whistle Creek Consulting Inc, in North Vancouver, with traverses following logging roads either newly developed or in various states of re-growth. The area is known to be covered by glacial till and locally poorly developed soils, so the crew was instructed to sample the best material encountered along the pre-selected traverses. Soil sampling was carried out along 16 traverses.

The soil sampling program was designed to explore for, and help define, areas of greater geochemical values within the Property, as a first-pass exploration tool. The high geochemical values in the eastern part of the survey are promising, as this area is the western extension of the area of known mineralization. Elevated copper-silver-molybdenum-lead-zinc values were obtained, having highs of 108 ppm Cu, 3.2 ppm Ag, 41 ppm Mo, 37 ppm Pb and 2,999 ppm Zn. The western part of the survey also has anomalous copper geochemistry, with highs of 107 ppm Cu and 6.3 ppm Mo.

Geophysicist Ken Sweet, of Littleton, Colorado, USA, was contacted to conduct an interpretation of the data from the 2012 airborne AeroTEM electro-magnetic (EM) and magnetic survey, flown over the Property by Aeroquest. In addition, the plan-view map of the chargeability data from the 1994/95 IP geophysical survey was briefly reviewed, since the original data could not be obtained.

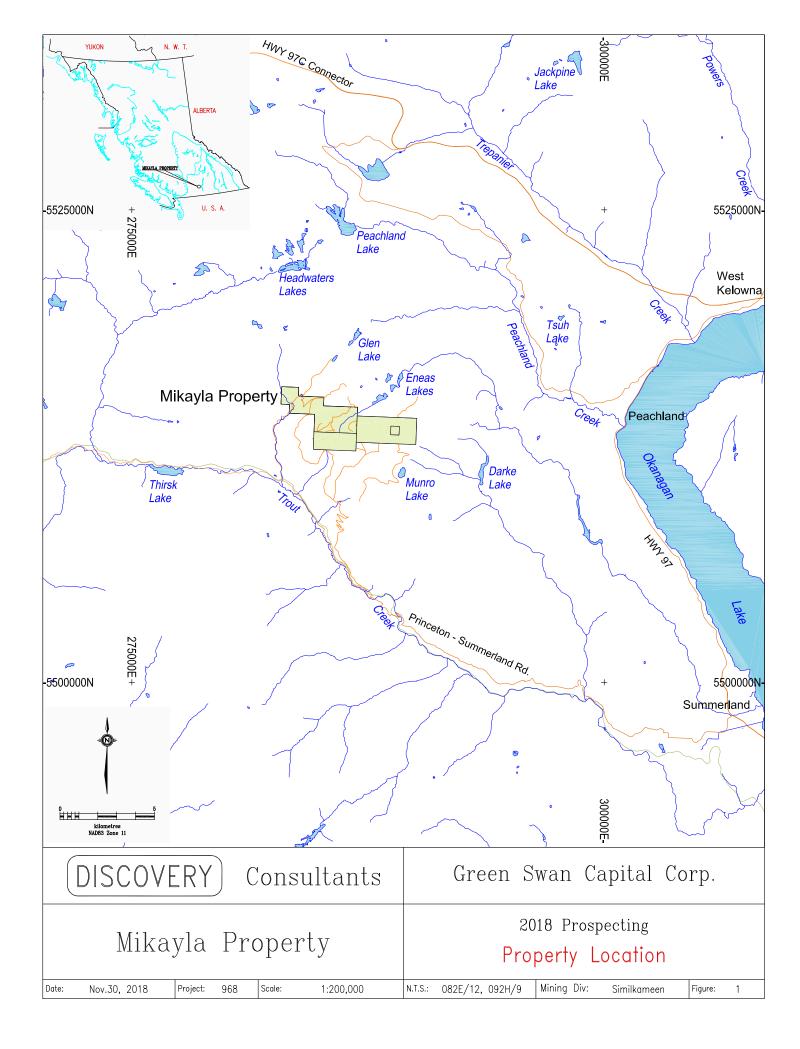
He concluded that the strong EM response is due to glacial till cover. Modelling and inversion indicate a flat-lying resistivity layer of less than 100 ohm-metres, indicating a surface response and not an alteration response from a deeper source. The magnetic response has little correlation with the historic IP data. The inferred change in lithology from north to south, as seen on the IP data, is not seen in the magnetic data. The interpreted faults do show up in the magnetic data, particularly in the plot of the vertical gradient.

2.0 INTRODUCTION

Discovery Consultants, at the request of Eugene Spiering, a geologist affiliated with CBLT Inc, carried out a soil geochemical sampling program over portions of the Mikayla Property ("Property"). The exploration program was designed by geologist Eugene Spiering of Whistle Creek Consulting Inc, of North Vancouver, BC. The geochemical survey was carried out from October 10 to 12, 2018. In addition, an interpretation of the 2013 airborne electro-magnetic and magnetic geophysical survey was carried out by geophysicist Ken Sweet, of Littleton, Colorado, USA.

Much of the information in this assessment report ("Report") is after Walker's 2013 assessment report. This Report describes sampling procedures and analytical results. Figures were prepared by Discovery Consultants. The geophysical interpretation is in Appendix III. No permitting was required for this exploration program.

3.0 LOCATION AND ACCESS


The Property is located in the Okanagan Plateau of south-central British Columbia, approximately 16 km west of the town of Peachland and 31 km southwest of the City of West Kelowna (Figure 1). The Property covers an area of approximately 3 km north to south by 7 km east to west, with the Property centre at approximate latitude 49° 44' north and longitude 119° 58' west.

The Property can be reached from the town of Summerland via the gravel, secondary Summerland-Princeton Road, which leaves town from the Prairie Valley Road, and continues for 31 km to the turnoff to Glen Lake Forest Service Road (FSR). From here, the road is taken for 7 km north to the Big Fir FSR, which allows access to the west and central part of the Property.

An alternative access is via the Munro Lake FSR, which leaves the Summerland-Princeton Road at about the 27 km mark, and then heads north along numerous switchbacks along the Munro Lake FSR. After about 11 km the road intersects the eastern part of the Property boundary. Various logging roads allow access to most areas of the Property. Because of the numerous switchbacks, as of October 2018, the field crew recommended that this road is best used heading downhill on the return trip.

The Property can also be accessed from the north via the Brenda Mine Road out of Peachland for 11 km; then along the Peachland Main FSR (6 km); then to the Glen Lake FSR (5.5 km); and finally to the Big Fir FSR.

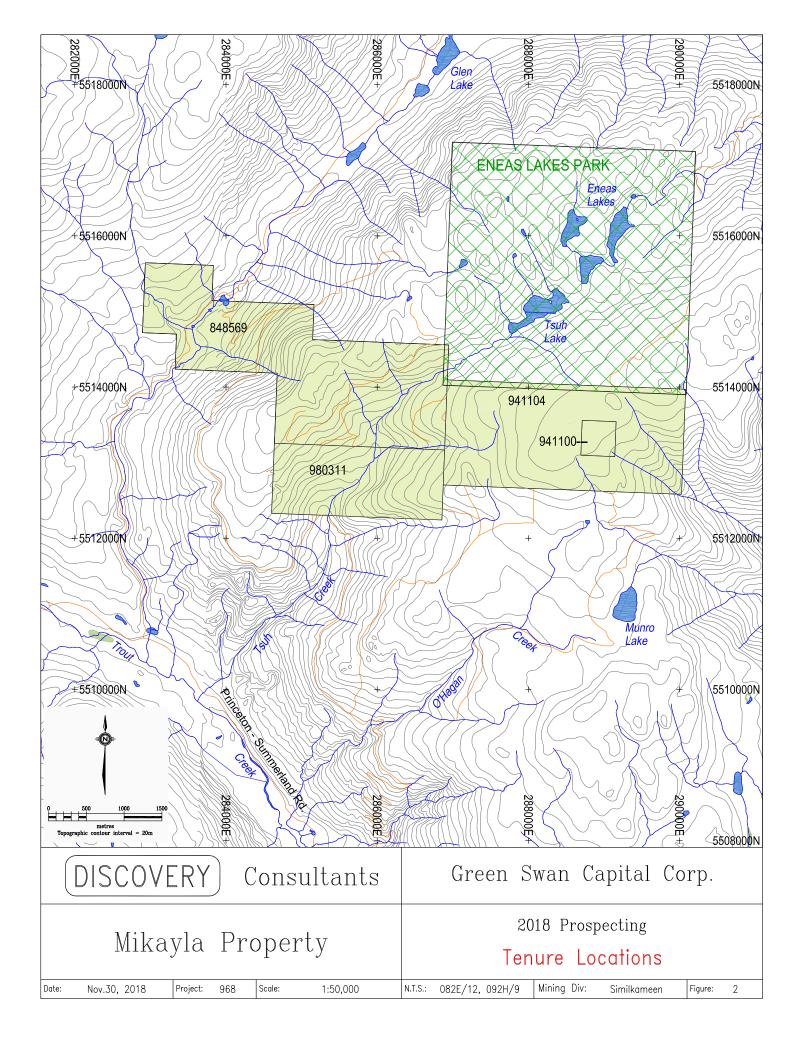
Numerous smaller trails and old logging roads occur throughout the area, which adds a level of difficulty in determining which roads are passable and which are overgrown trails. A four-wheel drive vehicle, a GPS and a chainsaw for clearing old logging roads are recommended.

4.0 TOPOGRAPHY, VEGETATION & CLIMATE

Physiographically, the area is situated within the Thompson Plateau in south-central British Columbia. The terrain is moderately mountainous with rangeland, forest and swamps. The Property is situated on a south-facing ridge locally known as Baldy Mountain, located south of the Okanagan Connector highway (Highway 97C). Within the Property, elevations range from 1100 m above sea level ("asl") in the western part along Chapman Creek to 1700 m asl in the north-central part of the Property. Drainage is to the south via several creeks. These are, from west to east: Camp Creek (a tributary of Chapman Creek), Tsuh Creek, O'Hagan Creek, Darke Creek and Daniels Creek. These creeks drain into Trout Creek, which flows east to Okanagan Lake through the town of Summerland.

The Property is covered by a mantle of glacial till. At higher elevations, it is generally about 1 to 3 m thick, although one drill hole encountered overburden depths of 40 m. During the last glacial period, the ice advanced in a southeasterly direction (Arnold et al., 2016). Rock outcroppings are scarce and are typically found along the bluffs at the edges of the plateau.

Vegetation in the area consists of balsam, spruce, and pine, with alder, willow and devil's club growing as part of the underbrush. Parts of the Property have been logged at various times, resulting in areas having open hillsides with younger forest growth. Small swamps occur in the flatter parts of the Property.


The climate of the area is modified continental with cold, snowy winters and warm summers. Snow can fall as early as mid-October and as late as mid-May; similar to the conditions noted on the Okanagan Connector highway.

5.0 PROPERTY DESCRIPTION

The Property consists of four MTO mineral titles that form a contiguous block covering an area of approximately 1,144 ha in the Osoyoos and Similkameen Mining Divisions (Figure 5.1). The titles lie on BCGS Map Sheets 082E.071 and 092H.080. All titles are 100% registered in the name of Green Swan Capital Corp, the former name of CBLT Inc. The titles border on the north onto Eneas Lakes Provincial Park. Table 1 lists title descriptions.

Title Number	Issue Date	Good To Date*	Area (ha)
848569	2011/MAR/10	2019/JUN/17	518.96
941100	2012/JAN/16	2022/DEC/22	20.88
941104	2012/JAN/16	2022/DEC/22	395.10
980311	2012/APR/16	2019/JUN/10	208.83
		Total hectares	1,143.78

* Pending acceptance of this Report

6.0 EXPLORATION HISTORY

Much of the following section has been taken from Poliquin and King (1996) and Watt (1988).

In the 1930s, the Sandberg brothers discovered copper-molybdenum mineralization in quartz veins in the area 17 km north of the Property, at what would become the Brenda Mine. There was little further activity until 1954 when a local prospector, Bob Betchel, staked a claim over the old workings and contacted Noranda Inc, a large base mining company, to conduct further exploration. The company drilled three holes in 1956, but as there was no established market for molybdenum at the time, the property was not advanced. However by 1965, technological advances in mining made it profitable to mine copper-molybdenum, and production began in 1970.

This discovery spurred further exploration in the region for copper-molybdenum mineralization. The first documented exploration work within the Property was in 1966, when coppermolybdenum mineralization was discovered by Lakeland Base Metals on the JASS showing [currently the Rose-Munroe Lake mineral occurrence]. This was followed up by a program of soil sampling, trenching and 610 m of percussion drilling.

The property was re-staked in 1970 by Copper Range Exploration Company Inc as the Hen claim group. Minor stream geochemistry was done.

In 1973, the area was re-staked as the Mun claim group by Canadian Occidental Petroleum Ltd, and in 1974 an exploration program of geochemical, geological and magnetic surveys was carried out (Schindler, 1974). Several copper-molybdenum-zinc anomalies were identified and three targets were tested by diamond drilling, for a total depth of 275 m. The results of the drilling were not recorded.

Regional stream sampling by the Geological Survey of Canada (GSC) in 1976 identified anomalous silver values in streams draining the plateau area northwest of Munro Lake. This led the company to re-focus exploration from porphyry-type copper-molybdenum mineralization towards silver-gold mineralization within veins and shears. The company re-analysed drill core and soil samples for precious metals, and good correlation was found between silver soil anomalies and previously identified copper-molybdenum-zinc anomalies. The highest values obtained were 85 g/t Ag and 0.09 g/t Au over 0.7 m from 37.8 to 38.5 m in drill hole MUN 74-3 (Wallis, 1977). The following year, a Cu-Mo-Zn-Ag soil anomaly was tested with drill hole MUN 4-77, resulting in 3,960 ppm Zn and 10 ppm Ag over 10 m (MacDonald, 1977).

In 1981, a total of 396 m of trenching was carried out to test a large, silver-base metal anomaly. A 108-m section averaged 3.06 g/t Ag, 0.15% Zn, 0.05% Cu, 0.003% Mo and 0.008% Pb (Henrick, 1981). The claims were allowed to lapse in 1983.

DISCOVERY

Almaden Resources Corp staked the ground in 1985, and between 1985 and 1987 conducted VLF-EM surveys, followed by an induced polarization survey ("IP") over 15 line-km on the central and eastern parts of the Property (Watt, 1986). Co-incident geophysical and geochemical anomalies were subsequently tested by a 25-hole, reverse circulation drill program within the overburden. A series of northeast trending Au-Ag-Zn anomalies was outlined within basal till (Watt, 1987). In 1988, the company drilled 34 overburden holes, totaling 296 m. Analysis of heavy mineral concentrates from the basal till yielded up to 15.6 ppm Au, 1,210 ppm Ag and 5.6% Zn (Watt, 1988).

In 1990, the company completed 48 line-km of VLF EM, gradient magnetometer and gammaray spectrometer surveys. The work outlined several coincident geophysical anomalies striking northeast (Watt, 1990).

From 1994 to 1995, an IP survey conducted over the property outlined a large IP anomaly that extended in an east-west direction over 1,600 m with an average width of 900 m and open to the west. It was interpreted to represent a large pyritic alteration zone, reflecting the top of a large mineralized porphyry system (Hendrickson, 1995a, b).

The following year, the grid was extended a further 1,800 m west and further IP work was completed. The IP anomaly was broadened to a length of 4 km and a width of 800 m, with chargeability values of up to 24 msec, suggesting the presence of a large, disseminated sulphide system. This target was diamond drilled later in 1996, for a total of 1,780 m in seven holes. All seven holes intersected a weakly mineralized silver-molybdenum-copper porphyry system. Hole M-96-3 carried 231.9 m of 0.047% Cu, 0.020% Mo and 5.54 g/t Ag (Poliquin and King, 1996).

In 1997, a 5-hole diamond drilling program, totalling 2,042 m, tested the western and eastern edge of the IP anomaly. Copper-molybdenum-silver mineralization was intersected in holes M-97-1 and M-97-2, but was not of economic interest (King, 1997).

No further work was carried out until 2008, when Almaden Minerals Ltd carried out a regional stream sediment sampling program. Anomalous values of Cu, Ag, Mo and Zn were outlined, with strong correlations between copper, molybdenum, silver and indium (Poliquin and Ullrich, 2008). The mineral titles were allowed to lapse in 2010.

In March 2011, mineral title 848569 was MTO staked by R. Walker on behalf of Green Swan Capital Corp. In November 2012, the company purchased three adjoining mineral titles from F. Laroche. The current Property overlies much of the historic work done by Canadian Occidental and the IP anomaly outlined by Almaden Resource Corp.

In Nov 2012, the company carried out an Aeroquest AeroTEM IV airborne electromagnetic and magnetic geophysical survey (Walker, 2013). In total, 222.7 line-km were flown, with flight

lines oriented north-south at 100-m line spacing. The data agreed fairly well with the 1994-96 IP data of Almaden Resources. A series of northeast and northwest trending structures were outlined, along with a well developed, northeast-trending electromagnetic anomaly.

The company changed its name to CBLT Inc in June, 2017.

7.0 <u>GEOLOGY</u>

7.1 Regional Geology

This section is after Poliquin and Ullrich (2008). The area was mapped by Little (1961) of the Geological Survey of Canada, and later by GSC geologist Templeman-Kluit (1989).

The Property is underlain by the Late Triassic and /or Early Jurassic Pennask Batholith. It is part of the larger Okanagan Composite Batholith, which also includes the Similkameen and Okanagan Batholiths (Woodsworth et al, 1991). The Okanagan Batholith is crudely zoned, both spatially and temporally, and consists of at least seven plutonic units that intrude the Upper Triassic Nicola Group, and are overlain by Tertiary volcanic rocks. The margin consists of older granodiorite to quartz diorite called the Pennask Batholith in the north and the Similkameen Intrusions to the south. These rocks are characteristically equigranular and contain more hornblende than biotite. The core of the batholithic complex, here called the Osprey Pluton, consists of characteristically pink granodiorite to granite that intrude the typically greenish to grey Similkameen and Pennask intrusions. Abundant K-feldspar megacrysts are characteristic of the Osprey Lake Pluton. Biotite generally predominates over hornblende.

The main areas of mineralization on the Property are hosted by a light-grey, weakly saussuritized porphyritic granodiorite of the Middle Jurassic Osprey Lake Intrusions.

Based on known geology and mineralization in the region of the Property, it appears that the most reasonable exploration target is porphyry copper-molybdenum \pm silver \pm gold mineralization. The past-producing Brenda mine, 17 km to the north of the property, is the best regional example of this type of mineralization.

The Brenda mine is associated with early Jurassic age intrusive rocks, with the host rock being dated at 191 million years. Most of the Property, except for the northwest corner, has been mapped as middle Jurassic. For copper porphyry deposits in BC, ages of the deposits are very significant, depending on types of deposit and their locations. There is anomalous copper-molybdenum mineralization over significant intersections of intrusive rocks on the Property. However, the age difference between the intrusions is important and may rule out any significant Brenda-style mineralization on the Property. To confirm the published mapping, a small program of rock sampling to measure the age of the intrusions could be done.

At the Elk gold deposit, 27 km northwesterly, gold mineralization is associated with quartz veining within middle Jurassic intrusive rocks dated at 166 million years. To evaluate the

potential for gold mineralization on the Property, heavy mineral stream sediment sampling followed by sophisticated heavy mineral production and analysis could be done.

7.2 Property Geology

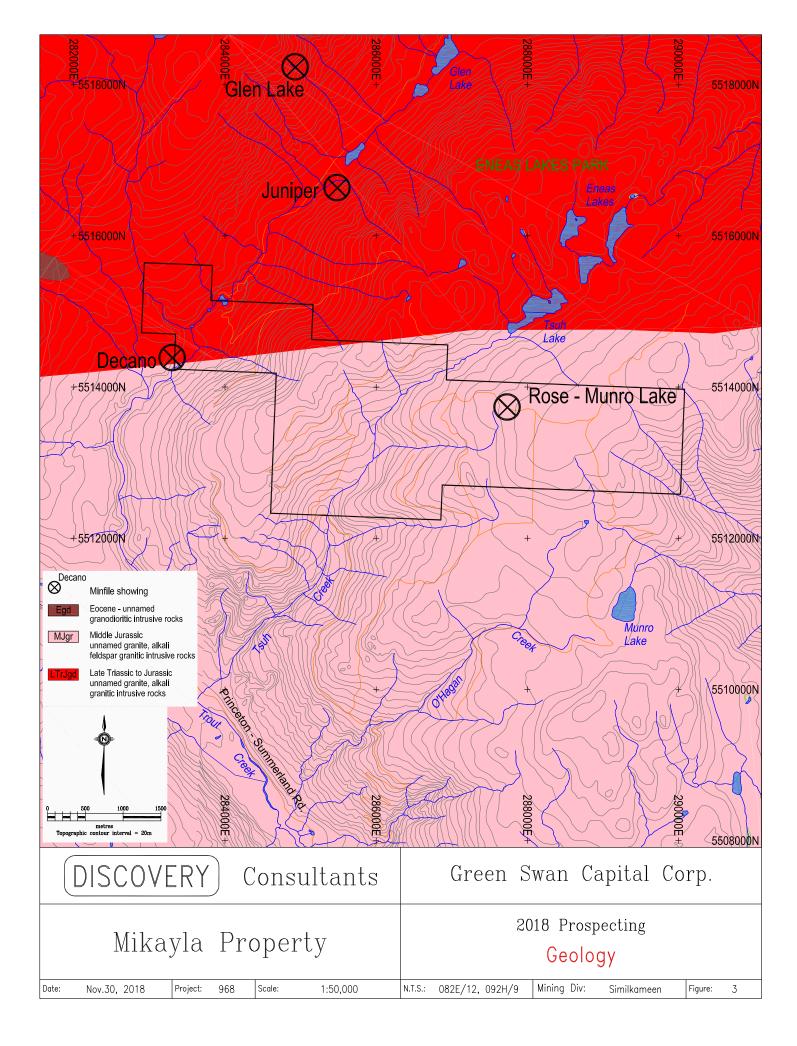
The geology of the Property has been detailed by Poliquin and Ullrich (2008) and Poliquin and King (1996) and the following is based on their work.

The dominant rock type on the Property is a medium-grained, relatively massive granodiorite. Locally, the granodiorite has a porphyritic texture due to the presence of very coarse-grained potash feldspar crystals. The granodiorite is cut by quartz feldspar porphyry dykes that trend east-northeast. Locally narrow aplite veins and dykes cut the granodiorite. Quaternary glaciofluvial and glacial deposits are irregularly distributed; however, large portions of the Property are covered with thick overburden.

Two types of mineralization have been recognized on the Property. Weak, porphyry-type pyritechalcopyrite-molybdenite mineralization was exposed in several trenches. This type has been explored with trenching, geophysical surveys and drilling. It is known as the Rose-Munroe Lake showing (Minfile occurrence 082ENW021). Low grade alteration is pervasive with local narrow envelopes of sericitized country rock enclosing mineralized fractures and quartz veins, carrying pyrite, molybdenite and chalcopyrite. Several set of veins and fractures occurs, having various attitudes. The showing was drilled in 1977, intersecting silver-copper-zinc-molybdenum mineralization.

A second type occurs as quartz veining in silicified shear zones. Chalcopyrite-pyrite-specular hematite mineralization in altered and silicified granodiorite is associated with east to northeast trending shears. Sampling at the Cache showing [east of the Property] returned values of up to 100 g/t Ag over vein widths of 0.3 m.

The country rock granodiorite has zones that have undergone weak but pervasive potassic alteration. The rocks are commonly sheared, and intense texturally destructive alteration is structurally controlled. Three generations of quartz veining have been recognized in drill core. Early quartz-K-feldspar-molybdenum veins are crosscut by quartz-K-feldspar-pyrite-chalcopyrite ±sphalerite veins. Both sets of veins are crosscut by late milky quartz-pyrite veins.


Petrographic studies have indicated that:

- biotite pervasively replaces igneous biotite adjacent to the quartz-K-feldsparmolybdenite veins
- K-feldspar occurs as an open space mineral in quartz veins, and also replaces the groundmass and plagioclase adjacent to quartz-K-feldspar veins
- anhydrite occurs in association with hydrothermal muscovite, biotite, quartz and K-feldspar in vein selvages and within veins. Chalcopyrite and pyrite are associated with anhydrite

- early muscovite is associated with K-feldspar-biotite-anhydrite. Late sericite is associated with chlorite
- calcite occurs as fine grained masses and in veinlets. It is associated with sericite and chlorite
- pyrite is the most common sulphide and occurs up to 5% in veins and disseminated in wall rocks adjacent to veins. It is associated with chalcopyrite, sphalerite and more rarely molybdenite
- chalcopyrite occurs in quartz veins and is associated with K-feldspar, anhydrite, pyrite and sphalerite

Two distinct alteration assemblages were identified from logging diamond drill core and petrography. An assemblage of K-feldspar-biotite-muscovite-anhydrite-molybdenite (type I) is associated with quartz-K-feldspar-molybdenite veining and occurs dominantly in the selvages of these veins. Subsequent, overprinting sericite \pm chlorite (type II) alteration is pervasive and is controlled to a lesser extent by veining. Quartz-minor-K-feldspar-chalcopyrite \pm sphalerite veining is associated with sericite-chlorite alteration.

In addition to the Rose-Munroe Lake showing, the Property is also very close to the Decano molybdenite showing (Minfile occurrence 092HNE027), which is exposed in several roads on both sides of Camp Creek. The showing lies just west of the southwestern boundary of the Property. The showing lies within several dykes of altered feldspar porphyritic quartz monzonite, belonging to the Middle Jurassic Osprey Lake Batholith, which cuts through granodiorite of the Early Jurassic Pennask Batholith. The dykes are highly altered, fractured and mineralized with molybdenite and ferrimolybdenite, as fine-grained disseminations in the quartz-sericite matrix and within fractures, quartz veins and vugs. The showing was explored with rotary holes by Maverick Mines in 1965, with percussion holes by Juniper Mines Ltd in 1969; and by further prospecting and silt sampling in the early 1990s.

8.0 2018 SOIL GEOCHEMICAL SURVEY

8.1 Sampling Method and Approach

The 2018 exploration program comprised a reconnaissance-type soil geochemical survey across the western and central part of the Property. The focus of the work was to investigate possible new outcrop/subcrop exposures in areas of recent logging. Fieldwork was carried out from October 10 to 12, 2018.

About 80 sites for soil \pm rock \pm float sampling were selected by geologist Eugene Spiering of Whistle Creek Consulting Inc, in North Vancouver, with traverses mainly following logging roads either newly developed or in various states of re-growth. The area is known to be covered by glacial till and locally poorly developed soils, so the crew was instructed to sample the best material encountered along the pre-selected traverses.

Fieldwork was performed by a 2-person crew. Soil sampling was carried out along 16 traverses, the majority along dirt roads that criss-cross the Property. However, several parallel traverses in the south-central and eastern parts of the survey involved prospecting through the bush, as no trails existed. The soils were collected at 10 to 40 cm depth, generally within the C horizon, with some B horizon samples. The soil collected is generally modified till or poorly developed soils. Ground control of sample sites was carried out with the use of a hand-held Garmin GPS instrument. At each location field observations about the sample site, float and in-situ geology, were recorded.

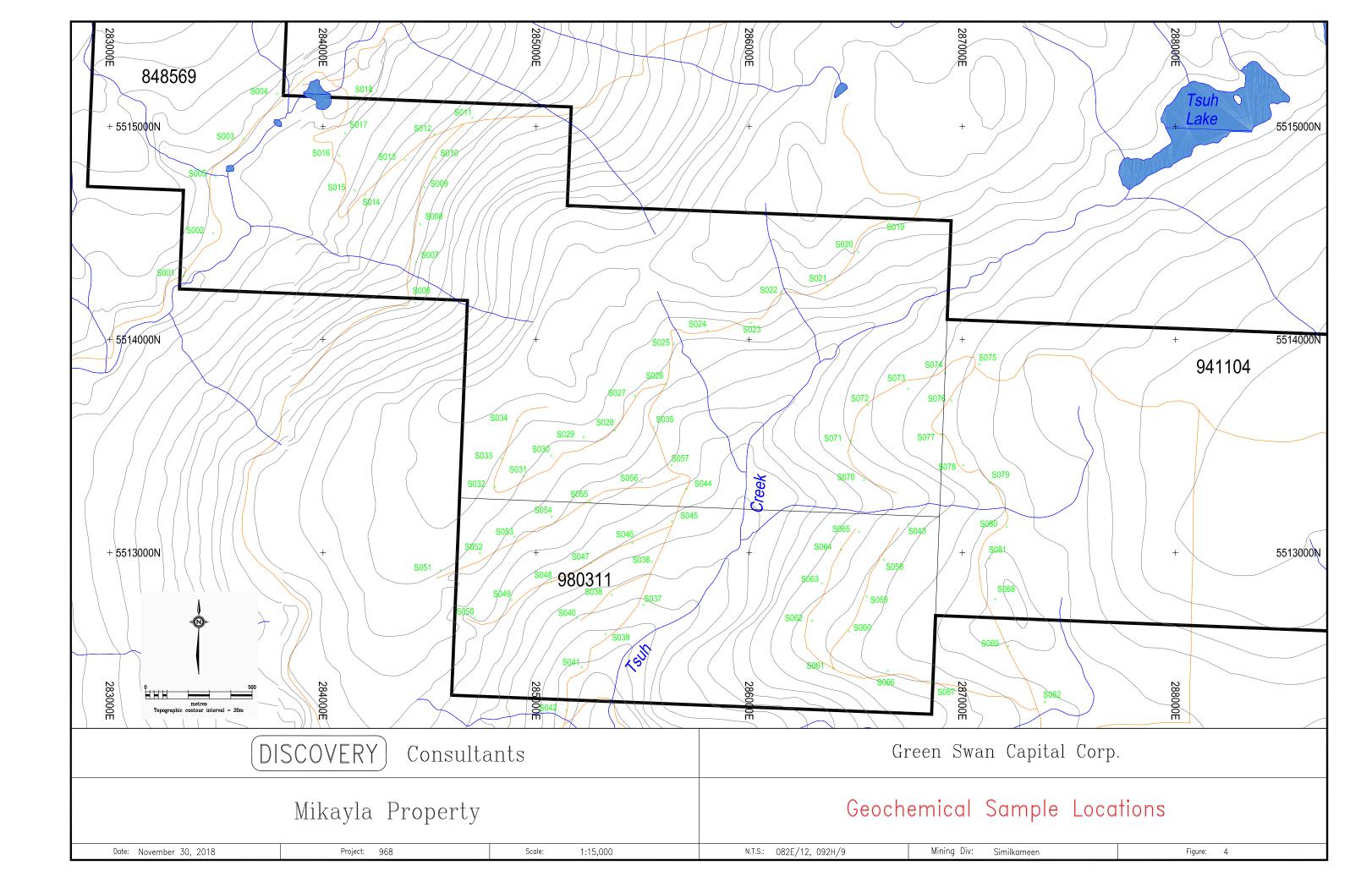
The Property was accessed using a 4-wheel drive vehicle. The crew stayed in the town of Summerland and drove out daily to the Property. Samples were collected in kraft bags, placed in rice bags and sent to MS Analytical Labs ("MS") in Langley, BC, for analysis. In total, 80 soil samples were sent for analysis.

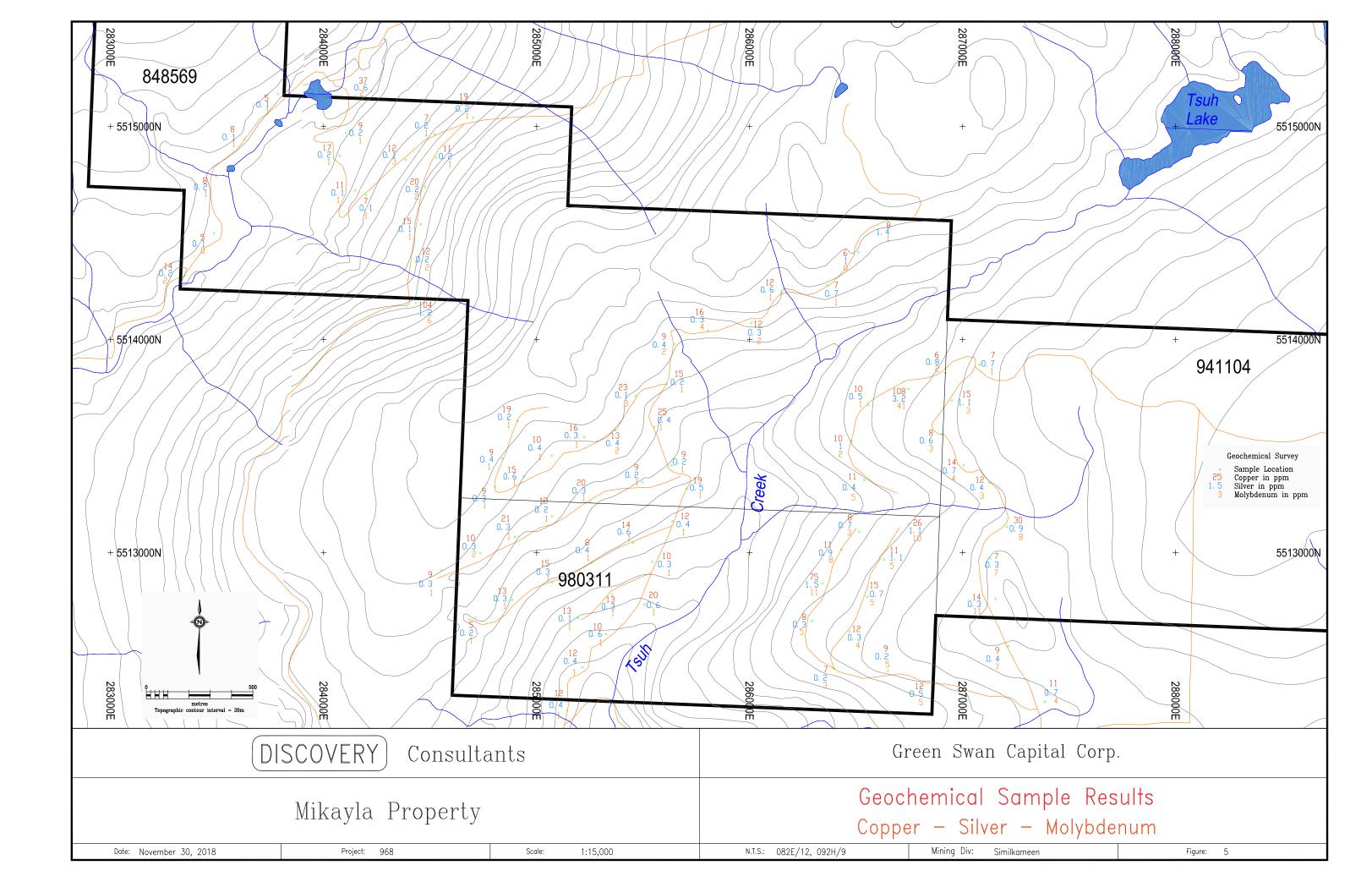
8.2 Sample Preparation, Analysis, QC/QA

At MS, the soil samples were dried and sieved to -80 mesh. A 0.5 gram sub-sample was digested in hot aqua regia; following this, the sample were analysed by inductively-coupled plasma mass spectrometry (ICP-MS) techniques, for a suite of 39 elements (Method IMS-116). The analytical results are shown in Appendix I, and the assay certificates are in Appendix II.

Because the level of exploration was reconnaissance in nature, no field standards, blanks or duplicates were added to the sample batches. The lab analysed two blanks, two duplicate samples and two standards within the batch. No QC/QA problems were noted.

8.3 Results


The field crew noted that the majority of the traverses and surrounding property is overlain with sinuous mounds of glacial outwash sediments as well as various sandy, glacio-fluvial horizons, and locally incised by seasonal creeks. Some outcrop and float was observed, consisting of coarse-grained quartz biotite-rich granitoids. Rock and float samples were


DISCOVERY

explored for at the indicated sites. Soil samples were sampled at approximate 200 metre intervals along the logging roads but within undisturbed ground. Locations of the soil samples are shown on Figure 4, and copper, silver and molybdenum values are shown on Figure 5. Photos of samples 966S026 and 966S070 show examples of the type of soil encountered.

Photos 1 and 2: View of soil samples 968S026 and 968S070, showing the type of soil encountered and the equipment used.

A statistical analysis using probability plots was used to determine the geochemical classification of the soil, as shown on Table 2. Because of the limited sample size, classifications were simplified to anomalous and background. Gold is not classified due to uniformly low values.

	Cu ppm	Ag ppm	Mo ppm	Pb ppm	Zn ppm
Anomalous	30	1.4	10	22	500
Background	<30	<1.4	<10	<22	<500

 Table 2 - Geochemical Soil Classification (n = 82)

Several samples have high copper, silver, molybdenum and lead values along the traverses in the eastern part of the survey. This area lies west of the area of historic work at the Rose-Munroe Lake occurrence. Anomalous copper values of 108, 75, 30 and 26 ppm Cu were obtained, with corresponding silver values of 3.2, 1.5, 0.92 and 1.1 ppm Ag, respectively. Of these four samples, sample 968S073 also has 22 ppm Pb, 41 ppm Mo and 2,999 ppm Zn. Sample 968S063 also had high corresponding values of 11 ppm Mo and 740 ppm Zn.

Two samples in the western part of the survey have elevated copper, molybdenum and silver. Sample 968S006 has values of 104 ppm Cu, 1.2 ppm Ag, 6.3 ppm Mo and 48 ppm Pb. Further north is sample 968S018, which carries 37 ppm Cu and 32 ppm Pb.

9.0 2018 GEOPHYSICAL INTERPRETATION

Geophysicist Ken Sweet, of Littleton, Colorado, USA, was contracted to conduct an interpretation of the data of the 2012 airborne AeroTEM electro-magnetic (EM) and magnetic survey, flown over the Property by Aeroquest. In addition, the plan-view map of the chargeability data from the 1994/95 IP geophysical survey was briefly reviewed, since the original data could not be obtained. His report is presented in Appendix III.

The 2012 airborne EM data had outlined a series of northeast- and northwest-trending structures, along with a well developed, northeast-trending electromagnetic anomaly in the central part of the Property. This anomaly, consisting of a resistivity low, was originally thought to possibly reflect an area of strong alteration. In addition, the magnetic data was thought to outline broadly the lithological contact between the Late Triassic to Early Jurassic granodiorite to the north and the Middle Jurassic granite to the south (Walker, 2013).

10.0 DISCUSSION AND CONCLUSIONS

The soil sampling program was designed to explore for, and help define, areas of greater geochemical values within the Property, as a first-pass exploration tool. The high geochemical values in the eastern part of the survey are promising, as this area is the western extension of

the area of known mineralization. Elevated copper-silver-molybdenum-lead-zinc values were obtained, having highs of 108 ppm Cu, 3.2 ppm Ag, 41 ppm Mo, 37 ppm Pb and 2999 ppm Zn.

The western part of the survey also has anomalous copper geochemistry, with highs of 107 ppm Cu and 6.3 ppm Mo.

There was a lack of geochemical response in the central part of the survey. This area corresponds to a northeast-southwest trending EM conductive anomaly, identified in the 2012 airborne AeroTEM geophysical survey. The lack of a geochemical response may be due to the thickness of the till and/or glacio-fluvial overburden.

On the Property, overburden may be masking subcrop geochemistry over a significant area. Therefore it appears that geophysics may be the priority exploration tool.

There is anomalous copper-molybdenum mineralization over significant intersections of intrusive rocks on the Property.

The age difference between the intrusions is important and may rule out any significant Brendastyle mineralization on the Property. To confirm the published mapping, a small program of rock sampling to measure the age of the intrusions could be done.

The geophysical interpretation by K. Sweet led to several important conclusions:

- The strong EM response is due to glacial till cover. Modelling and inversion indicate a flat-lying resistivity layer of less than 100 ohm-meters, indicating a surface response and not an alteration response from a deeper source.
- The magnetic response has little correlation with the historic IP data. The inferred change in lithology from north to south, as seen on the IP data, is not seen in the magnetic data. The interpreted faults do show up in the magnetic data, particularly in the plot of the vertical gradient.
- Not much can be added to the IP data, since only a plan map of the chargeability was available. As was known, the chargeability map delineates within the Property a northern moderate IP response and a southern lower response. A review of the original data may have shown isolated areas of higher chargeability. However, the gradient array that was used for the survey has little resolution for narrow features, and provides little information at depth. The array used at that time is appropriate for large areas; it is fast and thus relatively cheap. From reading the reports, the author concludes that the geophysicist working with the IP data was competent, and the company followed up the data well.
- The author discussed the alteration and mineralization reported in drill holes M97-1 and M97-2. In this area a magnetic low may be due to alteration and magnetic destruction. A drill hole to test this hypothesis could be located 200 m southwest of M97-1.

DISCOVERY

Respectfully submitted,

A. Kothor A. M. J. Kothor A. M

EBUISH COLORINA SCHINA

A. Koffyberg, PGeo

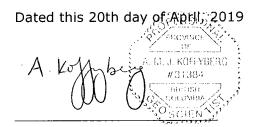
Vernon, BC April 20, 2019

11.0 REFERENCES

- Arnold, H. Ferbey, T. and Hickin, A.S. (2016): Ice-flow indicator compilation, British Columbia and Yukon; British Columbia Geological Survey, Open File 2016-04, scale 1:1,750,000
- Carr, J.M. (1967): British Columbia Ministry of Mines and Petroleum Resources, Annual Report 1967, p 213-214
- Hendrickson, G.A. (1995a): Geophysical Report, Munro Lake Area, *for* Almanden Resources Corp; BC Assessment Report 23776
- Hendrickson, G.A. (1995b): Geophysical Report, Detail Surveys, Munro Lake Area, *for* Almanden Resources Corp; BC Assessment Report 24187
- Henrick, M.P. (1981): Trenching Program on the MUN Claim Group, *for* Canadian Occidental Petroleum Ltd; BC Assessment Report 10445
- King, H.L. (1997): Report on the diamond drilling, Munro Lake Property, Summerland Area, BC, *for* Almaden Resources Corp; BC Assessment Report 25298
- Little, H.W. (1961): Geology, Kettle River (West Half), British Columbia; Geological Survey of Canada, Map 15-1961, scale 1:253,440
- MacDonald, C.C. (1977): Diamond Drilling on the Mun Claims, *for* Canadian Occidental Petroleum Ltd; BC Assessment Report 6558
- Poliquin, M.J. and King, H.L. (1996): Report on the Diamond Drilling, Munro Lake Property, Summerland Area, BC, *for* Almaden Resources Corp and Lausanne Development Corp; BC Assessment Report 24656
- Poliquin, M.J. and Ullrich, T.D. (2008): 2008 Report on Exploration Activities, Stream Sediment Sampling and Geochemistry, Munro Lake Property, *for* Almaden Minerals Ltd; BC Assessment Report 30279
- Schindler, J.N. (1974): Geology, Geochemistry and magnetometer Survey of the Mun Claim Group, *for* Canadian Occidental Petroleum Ltd; BC Assessment Report 5318
- Templeman-Kluit, D.J. (1989): Geology, Penticton, British Columbia; Geological Survey of Canada, Map 1736A, scale 1:250,000
- Wallis, R.H. (1977): Silver and Gold Geochemistry of the Mun Claim Group, *for* Canadian Occidental Petroleum Ltd; BC Assessment Report 6399
- Walker, R.T. (2013): Assessment Report on the Mikayla Property, Airborne Geophysics, for Green Swan Capital Corp, BC Assessment Report 33993
- Watt, D.D. (1990): Geophysical report for the Munro #1 and Munro #2 Claim Groups, for Almanden Resources Corp; BC Assessment Report 20717
- Watt, D.D. (1988): A report on the Overburden Drilling on the Rose Claim Group, *for* Almanden Resources Corp; BC Assessment Report 18171

- Watt, D.D. (1987): Overburden Drilling and Geochemical Sampling Report on the Rose Claim Group, *for* Almanden Resources Corp; BC Assessment Report 16437
- Watt, D.D. (1986): Geophysical and Prospecting Report on the Rose Claim Group, *for* Almanden Resources Corp; BC Assessment Report 15207
- Woodsworth, G.J., Anderson, R.G. and Armstrong, R.L. (1991): Chapter 15 Plutonic Regimes, *in* Geology of the Cordilleran Orogen in Canada; Gabrielse, H., Yorath, C.J., eds, Geological Survey of Canada, No. 4, pp.491-531

120 STATEMENT OF COSTS


	\$1,100.00	
	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	
	3,950.00	
	2,400.00	
-		\$7,450.00
51,500.00		
	1,500.00	
930.00		
135.00		
	-	2 825 00
-		2,835.00
166.46		
1,226.72		
84.85		
	1,478.03	
	84.74	
135.00		
343.00		
154.45		
-		16,334.92
oration Eve	anditura	\$26,619.92
		320,019.92 2,661.99
Total Expe	enditure:	\$29,281.91
-	1,500.00 930.00 135.00 270.00 	2,400.00

DISCOVERY

13.0 STATEMENTS OF QUALIFICATIONS

I, Agnes Koffyberg, a geologist employed by Discovery Consultants of Vernon, British Columbia, do hereby certify that:

- 1) I am a Geologist with Discovery Consultants, with a business address of 2916, 29th Street, Vernon, BC, V1T 5A6.
- I am a graduate of Brock University of Ontario with a 1987 Bachelor of Science degree in combined Geological Sciences / Chemistry. In addition, I have obtained a M.Sc. degree in Geology at the University of Alberta in 1994.
- 3) I am a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia (membership #30384).
- 4) I have been practicing my profession for over 20 years since graduation, with experience in mineral exploration in a variety of base and precious metals.
- 5) On the Mikayla Property, I provided field support on the 2018 exploration program.
- 6) I am independent of CBLT Inc.

Agnes Koffyberg, PGeo Discovery Consultants

APPENDIX I

Soil Samples

Analytical Results

CBLT Inc.

Mikayla Property

Soil Sample (2018) Results

	Sample				•	Method>	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116
Sample ID	Туре	Lab Report	UTM	UTM	Rec. Wt. /	•	Cu	Ag	Pb	Zn	Мо	W	Au	Al	As
			Easting	Northing	kg	Units>	ppm	ppm 0.05	ppm	ppm 2	ppm 0.05	ppm	ppm	%	ppm
					0.01	LOR>	0.2	0.05	0.2	2	0.05	0.05	0.001	0.01	0.2
9685001	Soil	YVR1811037	283347	5514300	0.39		14.2	0.16	14.0	102	1.57	0.37	0.003	1.24	1.9
9685002	Soil	YVR1811037	283485	5514499	0.44		5.2	0.14	6.0	93	0.46	0.58	< 0.001	0.98	1.3
9685003	Soil	YVR1811037	283627	5514940	0.47		7.6	0.11	8.1	113	0.83	0.68	< 0.001	0.99	1.4
9685004	Soil	YVR1811037	283785	5515152	0.41		4.6	0.09	6.4	106	0.55	0.27	< 0.001	0.82	0.9
9685005	Soil	YVR1811037	283496	5514766	0.32		7.5	0.17	12.1	83	0.66	0.52	< 0.001	0.93	1.3
9685006	Soil	YVR1811037	284433	5514172	0.50		104.1	1.23	48.3	174	6.30	0.51	0.002	1.43	2.5
9685007	Soil	YVR1811037	284435	5514364	0.33		11.6	0.20	8.4	113	1.88	0.27	< 0.001	1.36	1.2
9685008	Soil	YVR1811037	284456	5514541	0.34		15.3	0.10	7.8	119	1.26	0.20	< 0.001	1.18	1.2
9685009	Soil	YVR1811037	284477	5514716	0.24		20.2	0.19	12.0	199	2.22	0.39	< 0.001	1.68	1.9
968S010	Soil	YVR1811037	284528	5514854	0.40		11.3	0.16	7.1	83	1.49	0.27	< 0.001	1.30	1.9
968S011	Soil	YVR1811037	284701	5515041	0.33		19.3	0.15	11.0	87	1.37	0.40	< 0.001	1.28	1.7
968S012	Soil	YVR1811037	284522	5514963	0.32		7.4	0.15	7.0	103	0.57	0.38	0.001	1.08	2.0
9685013	Soil	YVR1811037	284385	5514844	0.35		11.9	0.11	9.5	100	2.77	0.25	< 0.001	1.15	3.0
968S014	Soil	YVR1811037	284198	5514678	0.47		6.6	0.14	7.7	94	0.51	0.31	<0.001	1.01	1.5
968S015	Soil	YVR1811037	284149	5514701	0.38		10.9	0.10	8.7	134	1.20	0.38	<0.001	1.21	2.7
968S016	Soil	YVR1811037	284076	5514862	0.35		16.6	0.21	11.7	143	1.23	0.26	< 0.001	1.57	5.7
968S017	Soil	YVR1811037	284104	5514969	0.44		9.3	0.20	8.1	142	0.63	0.18	<0.001	1.17	4.9
9685018	Soil	YVR1811037	284149	5515143	0.51		37.3	0.59	32.5	157	1.61	0.51	0.003	1.25	5.4
968S019	Soil	YVR1811037	286652	5514560	0.30		7.7	1.40	15.2	332	1.09	0.16	<0.001	1.65	1.4
968S020	Soil	YVR1811037	286511	5514410	0.33		6.2	0.96	11.0	369	0.45	0.19	<0.001	1.17	1.1
9685021	Soil	YVR1811037	286365	5514256	0.28		7.1	0.73	14.8	504	0.80	0.18	<0.001	1.37	1.0
9685022	Soil	YVR1811037	286153	5514218	0.30		11.9	0.58	23.4	349	1.35	0.44	<0.001	1.31	1.5
9685023	Soil	YVR1811037	286007	5514078	0.32		11.5	0.28	25.2	451	2.09	0.19	<0.001	1.28	1.5
9685024	Soil	YVR1811037	285805	5514043	0.34		16.4	0.28	10.8	217	4.44	0.43	<0.001	1.30	0.7
968S025	Soil	YVR1811037	285647	5513979	0.22		8.9	0.43	7.0	107	1.78	0.42	< 0.001	0.78	0.7
9685026	Soil	YVR1811037	285609	5513795	0.17		15.3	0.22	8.0	144	1.21	0.30	<0.001	0.95	0.6

	Sample	Sample			Analytical Method>		IMS-116								
Sample ID	Туре	Lab Report	UTM	UTM	Rec. Wt. /	Analyte>	Cu	Ag	Pb	Zn	Мо	w	Au	Al	As
			Easting	Northing	kg	Units>	ppm	%	ppm						
					0.01	LOR>	0.2	0.05	0.2	2	0.05	0.05	0.001	0.01	0.2
9685027	Soil	YVR1811037	285464	5513736	0.30		22.8	0.12	8.7	250	2.84	0.36	<0.001	1.29	0.7
9685028	Soil	YVR1811037	285369	5513574	0.28		13.4	0.43	6.3	137	1.58	0.37	<0.001	0.96	0.8
9685029	Soil	YVR1811037	285223	5513542	0.21		15.5	0.34	5.5	96	0.83	0.32	<0.001	1.14	1.2
9685030	Soil	YVR1811037	285071	5513455	0.25		10.1	0.36	5.9	137	0.99	0.31	<0.001	1.33	1.7
9685031	Soil	YVR1811037	284941	5513359	0.27		15.3	0.60	7.4	174	1.17	0.65	<0.001	1.33	0.8
9685032	Soil	YVR1811037	284805	5513309	0.30		9.1	0.29	5.1	93	0.67	0.55	<0.001	0.88	0.4
9685033	Soil	YVR1811037	284839	5513442	0.24		8.5	0.37	5.5	152	0.93	0.29	<0.001	1.19	0.7
968S034	Soil	YVR1811037	284910	5513619	0.31		19.0	0.23	7.6	121	1.30	0.47	<0.001	1.93	1.3
968S035	Soil	YVR1811037	285553	5513590	0.24		23.6	0.39	8.8	89	1.25	0.28	<0.001	0.85	0.7
968S036	Soil	YVR1811037	285543	5512957	0.40		10.3	0.28	9.6	179	1.07	0.27	<0.001	1.37	1.5
968S037	Soil	YVR1811037	285505	5512755	0.41		19.8	0.60	9.3	153	0.91	0.32	<0.001	1.28	1.5
9685038	Soil	YVR1811037	285354	5512803	0.40		12.7	0.29	11.9	142	1.23	0.33	<0.001	1.40	1.6
968S039	Soil	YVR1811037	285326	5512617	0.38		9.7	0.62	9.8	162	0.74	0.32	<0.001	1.15	1.6
968S040	Soil	YVR1811037	285193	5512693	0.39		12.5	0.13	6.1	109	0.64	0.27	<0.001	0.56	1.0
968S041	Soil	YVR1811037	285215	5512462	0.45		12.1	0.40	14.3	197	1.23	0.25	<0.001	1.31	1.7
968S042	Soil	YVR1811037	285142	5512259	0.42		11.9	0.44	12.7	238	0.71	0.21	0.002	1.44	1.3
968S043	Soil	YVR1811037	286747	5513135	0.36		25.7	1.11	9.6	288	10.11	0.21	<0.001	1.48	1.2
968S044	Soil	YVR1811037	285705	5513300	0.39		19.1	0.50	6.5	113	0.93	0.33	<0.001	0.98	1.0
968S045	Soil	YVR1811037	285638	5513147	0.33		12.2	0.44	7.0	92	0.89	0.31	<0.001	1.13	1.3
968S046	Soil	YVR1811037	285452	5513046	0.36		13.5	0.64	8.6	176	0.72	0.21	<0.001	1.39	1.5
968S047	Soil	YVR1811037	285258	5512952	0.38		7.8	0.40	7.2	178	0.69	0.28	<0.001	1.00	1.2
968S048	Soil	YVR1811037	285072	5512862	0.38		14.9	0.30	6.3	114	0.44	0.26	<0.001	0.80	0.7
968S049	Soil	YVR1811037	284884	5512778	0.34		12.8	0.26	9.2	244	1.17	0.27	<0.001	1.17	1.4
968\$050	Soil	YVR1811037	284708	5512695	0.40		5.0	0.15	3.3	53	0.40	0.34	<0.001	0.52	0.4
968\$051	Soil	YVR1811037	284553	5512917	0.29		8.7	0.32	7.7	207	1.12	0.15	<0.001	1.06	1.0
968\$052	Soil	YVR1811037	284736	5512997	0.33		9.9	0.30	9.9	470	1.52	0.18	<0.001	1.27	1.4
968S053	Soil	YVR1811037	284898	5513074	0.37		21.4	0.32	5.7	352	0.66	0.28	<0.001	1.08	0.8
968\$054	Soil	YVR1811037	285072	5513170	0.31		9.5	0.19	5.6	163	0.84	0.30	<0.001	1.16	0.9
968\$055	Soil	YVR1811037		5513238	0.34		19.7	0.33	6.4	148	0.80	0.40	0.002	1.55	1.0
968S056	Soil	YVR1811037	285496		0.38		8.9	0.23	6.7	125	1.07	0.50	<0.001	1.20	0.9
968S057	Soil	YVR1811037	285635		0.35		9.1	0.15	8.9	86	1.04	0.28	<0.001	0.77	0.8

	Sample				,	Method>	IMS-116								
Sample ID	Туре	Lab Report	UTM	UTM	Rec. Wt. /	Analyte>	Cu	Ag	Pb	Zn	Мо	w	Au	Al	As
			Easting	Northing	kg	Units>	ppm	%	ppm						
					0.01	LOR>	0.2	0.05	0.2	2	0.05	0.05	0.001	0.01	0.2
968\$058	Soil	YVR1811037	286632	5512967	0.31		10.5	1.10	11.8	174	5.11	0.28	<0.001	1.40	1.7
9685059	Soil	YVR1811037	286551	5512794	0.30		15.4	0.74	9.6	309	5.32	0.18	<0.001	1.48	1.6
9685060	Soil	YVR1811037	286469	5512631	0.34		11.9	0.29	13.3	280	4.34	0.17	0.001	1.66	1.2
9685061	Soil	YVR1811037	286395	5512467	0.41		7.4	0.17	9.9	211	3.01	0.14	<0.001	1.28	0.7
9685062	Soil	YVR1811037	286294	5512680	0.47		8.0	0.29	21.6	322	4.72	0.21	<0.001	1.63	0.8
968S063	Soil	YVR1811037	286341	5512856	0.34		75.3	1.50	16.2	740	11.07	0.20	0.002	1.82	1.8
968S064	Soil	YVR1811037	286431	5513014	0.41		11.2	0.86	10.3	203	7.52	0.29	<0.001	1.40	1.3
968S065	Soil	YVR1811037	286516	5513098	0.38		7.6	0.70	7.4	108	3.34	0.21	<0.001	0.96	0.8
9685066	Soil	YVR1811037	286650	5512445	0.36		9.0	0.18	9.1	170	5.28	0.15	<0.001	1.20	1.0
968S067	Soil	YVR1811037	286856	5512387	0.37		11.9	0.52	16.4	289	4.51	0.19	<0.001	1.15	1.1
9685068	Soil	YVR1811037	287155	5512782	0.35		13.5	0.32	15.7	254	11.15	0.25	<0.001	1.75	1.2
9685069	Soil	YVR1811037	287215	5512561	0.30		8.7	0.37	16.2	524	7.13	0.19	0.001	1.51	1.3
968S070	Soil	YVR1811037	286539	5513341	0.31		11.0	0.39	9.5	288	4.60	0.30	<0.001	0.96	0.8
968S071	Soil	YVR1811037	286478	5513524	0.26		9.9	0.99	13.0	249	2.11	0.38	<0.001	1.18	1.4
968S072	Soil	YVR1811037	286557	5513692	0.29		10.3	0.46	10.7	135	1.43	0.20	<0.001	0.87	1.1
968S073	Soil	YVR1811037	286746	5513769	0.21		107.9	3.21	21.7	2999	40.81	0.35	0.003	2.29	3.7
968S074	Soil	YVR1811037	286918	5513843	0.26		6.4	0.82	12.4	227	1.77	0.21	<0.001	1.26	1.3
968S075	Soil	YVR1811037	287080	5513883	0.33		7.4	0.69	13.0	158	0.89	0.25	<0.001	1.18	1.4
968S076	Soil	YVR1811037	286948	5513714	0.29		14.5	1.09	13.3	463	3.27	0.24	<0.001	1.58	1.8
968S077	Soil	YVR1811037	286904	5513556	0.28		7.7	0.64	15.0	209	2.82	0.27	<0.001	0.92	1.3
968S078	Soil	YVR1811037	287004	5513410	0.22		13.7	0.70	10.8	562	3.63	0.23	<0.001	1.48	1.2
968S079	Soil	YVR1811037	287126	5513329	0.40		11.8	0.42	17.4	458	2.93	0.18	<0.001	1.84	2.0
9685080	Soil	YVR1811037	287208	5513122	0.24		30.4	0.92	12.2	627	7.65	0.22	<0.001	1.53	1.0
9685081	Soil	YVR1811037	287129	5512973	0.29		7.3	0.33	36.9	506	7.09	0.16	<0.001	1.16	0.6
9685082	Soil	YVR1811037	287386	5512300	0.31		10.9	0.66	19.7	389	4.07	0.28	<0.001	1.53	2.2
Laboratory QA	/QC														
Pulp Duplicate	s														
968S025	Soil	YVR1811037					8.9	0.43	7.0	107	1.78	0.42	<0.001	0.78	0.7
DUP 968S025	Soil	YVR1811037					9.0	0.33	6.2	110	1.66	0.40	<0.001	0.80	0.5

UTM UTM Easting Northir		Analyte> Units> LOR>	Cu ppm 0.2 9.9	Ag ppm 0.05	Pb ppm 0.2	Zn ppm 2	Мо ррт 0.05	W ppm 0.05	Au ppm 0.001	Al % 0.01	
Easting Northir			0.2 9.9	0.05	0.2	2					ppm 0.2
	0.01	LOR>	9.9				0.05	0.05	0.001	0.01	0.2
				0.30	0.0	476					
					9.9	470	1.52	0.18	<0.001	1.27	1.4
			9.8	0.29	9.6	468	1.47	0.17	<0.001	1.26	1.4
			<0.2	<0.05	<0.2	<2	<0.05	<0.05	<0.001	< 0.01	<0.2
			<0.2	<0.05	<0.2	<2	<0.05	<0.05	<0.001	<0.01	<0.2
			995.0	49.16	289.9	1339	3.70	1.03	0.749	0.83	307.0
			37.0	0.06	9.1	95	3.80	1.21	0.001	3.32	8.3

Discovery Consultants

W.R. Gilmour, PGeo

December 10, 2018

CBLT Inc.

Mikayla Proj

Soil Sample

	IMS-116														
Sample ID	В	Ва	Bi	Ca	Cd	Со	Cr	Fe	Ga	Hg	К	La	Mg	Mn	Na
	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	%
	10	10	0.05	0.01	0.05	0.1	1	0.01	0.1	0.01	0.01	0.5	0.01	5	0.01
9685001	<10	160	0.44	0.28	0.15	5.2	14	2.17	4.1	0.01	0.21	11.2	0.32	516	0.03
9685002	<10	174	0.20	0.16	0.09	2.7	8	1.27	3.5	0.01	0.08	9.0	0.13	307	0.04
9685003	<10	208	0.21	0.30	0.26	3.8	8	1.52	3.3	0.02	0.16	7.3	0.17	670	0.04
9685004	<10	159	0.18	0.29	0.30	2.7	8	1.38	3.0	0.01	0.13	6.7	0.13	538	0.03
968S005	<10	169	0.24	0.28	0.11	3.5	9	1.63	3.6	0.02	0.15	11.9	0.20	413	0.03
9685006	<10	191	2.70	0.53	0.26	8.2	14	2.95	6.2	0.02	0.21	41.5	0.51	944	0.04
968S007	<10	152	0.85	0.24	0.11	4.2	8	1.59	4.1	0.02	0.09	6.0	0.16	746	0.03
9685008	<10	126	0.83	0.36	0.24	3.6	10	1.40	3.4	0.02	0.12	4.9	0.16	689	0.03
9685009	<10	253	0.88	0.44	0.43	6.0	14	1.88	4.7	0.03	0.16	8.1	0.27	1524	0.05
9685010	<10	108	0.39	0.20	0.09	4.4	12	1.77	4.0	0.01	0.09	7.6	0.20	263	0.02
968S011	<10	135	0.72	0.61	0.13	5.2	14	1.82	3.9	0.02	0.11	8.8	0.26	477	0.03
968S012	<10	133	0.25	0.26	0.13	4.1	12	1.76	3.5	0.01	0.09	6.0	0.19	353	0.03
9685013	<10	99	0.39	0.30	0.17	5.3	15	2.12	3.5	0.01	0.13	5.8	0.23	499	0.02
968S014	<10	106	0.26	0.23	0.11	3.9	11	1.78	3.3	0.01	0.13	6.1	0.19	240	0.02
968S015	<10	158	0.28	0.23	0.23	4.3	11	1.70	3.6	0.01	0.10	5.9	0.20	469	0.03
968S016	<10	187	0.34	0.32	0.41	5.6	12	1.87	4.4	0.02	0.14	6.9	0.27	678	0.04
968S017	<10	138	0.20	0.24	0.31	5.5	13	1.85	3.6	0.02	0.09	4.0	0.25	613	0.04
968S018	<10	140	1.42	0.51	0.36	7.8	16	2.78	4.8	0.02	0.27	14.2	0.51	634	0.03
968S019	<10	261	0.27	0.18	0.35	3.7	8	1.38	4.7	0.05	0.06	5.8	0.17	600	0.05
9685020	<10	168	0.33	0.11	0.21	3.1	7	1.26	3.7	0.02	0.06	5.7	0.14	359	0.03
9685021	<10	252	0.42	0.21	0.47	2.9	6	1.23	3.9	0.03	0.09	5.8	0.15	785	0.05
9685022	<10	243	1.00	0.20	0.42	3.6	7	1.45	3.8	0.05	0.07	5.7	0.14	1141	0.04
9685023	<10	475	1.81	0.44	0.96	3.7	7	1.50	4.0	0.05	0.17	7.0	0.19	2478	0.08
9685024	<10	315	1.45	0.21	0.32	2.9	6	1.77	3.8	0.03	0.15	5.7	0.16	1244	0.05
968S025	<10	129	0.77	0.15	0.12	2.4	6	1.22	2.6	0.02	0.07	4.4	0.11	409	0.02
9685026	<10	218	1.38	0.23	0.14	2.8	6	1.21	3.1	0.02	0.09	5.3	0.14	1081	0.04

	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116
Sample ID	В	Ва	Bi	Ca	Cd	Со	Cr	Fe	Ga	Hg	К	La	Mg	Mn	Na
	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	% 0.01
	10	10	0.05	0.01	0.05	0.1	1	0.01	0.1	0.01	0.01	0.5	0.01	5	0.01
9685027	<10	219	1.62	0.23	0.29	4.2	8	2.23	4.1	0.02	0.16	5.7	0.21	1200	0.04
968\$028	<10	148	0.72	0.17	0.13	3.0	8	1.32	3.1	0.03	0.07	4.5	0.13	689	0.03
968\$029	<10	206	0.56	0.44	0.11	3.0	8	1.26	3.2	0.02	0.14	5.5	0.14	1104	0.05
968\$030	<10	135	0.55	0.19	0.10	3.1	6	1.21	3.8	0.03	0.05	4.3	0.11	674	0.03
968\$031	<10	186	1.29	0.16	0.14	3.1	7	1.34	3.9	0.04	0.07	3.1	0.12	910	0.03
9685032	<10	97	1.50	0.11	0.06	2.0	4	1.00	2.9	0.02	0.10	2.4	0.11	402	0.02
9685033	<10	200	0.81	0.17	0.12	2.4	6	1.09	3.4	0.02	0.08	3.1	0.11	901	0.04
968S034	<10	221	1.22	0.15	0.15	3.8	9	1.58	4.8	0.02	0.06	5.6	0.16	962	0.04
968S035	<10	123	0.92	0.24	0.17	3.3	7	1.42	2.9	0.02	0.12	10.4	0.16	351	0.03
968S036	<10	129	0.64	0.15	0.11	4.3	9	1.43	5.7	0.02	0.08	3.8	0.17	1045	0.03
968\$037	<10	132	0.69	0.12	0.09	3.9	10	1.59	4.8	0.02	0.06	7.6	0.14	216	0.03
9685038	<10	207	1.57	0.47	0.16	8.4	15	2.12	5.1	0.02	0.13	9.3	0.24	480	0.05
968S039	<10	135	0.87	0.24	0.20	3.6	8	1.40	4.7	0.02	0.09	4.6	0.15	429	0.03
9685040	<10	139	0.65	0.32	0.18	3.1	8	1.30	3.0	0.02	0.11	4.1	0.12	481	0.03
9685041	<10	149	0.69	0.19	0.31	4.0	8	1.56	5.0	0.02	0.07	4.6	0.16	1024	0.03
9685042	<10	186	0.54	0.14	0.16	3.5	7	1.43	5.2	0.01	0.11	4.9	0.18	391	0.03
968S043	<10	195	0.93	0.41	0.23	3.1	8	1.43	5.4	0.02	0.06	7.8	0.13	242	0.04
9685044	<10	124	0.71	0.16	0.05	3.2	9	1.46	4.1	0.01	0.08	11.5	0.15	210	0.03
968S045	<10	140	0.55	0.18	0.09	3.7	8	1.57	4.4	0.02	0.07	4.6	0.13	268	0.03
968S046	<10	247	0.61	0.20	0.19	3.8	8	1.36	5.3	0.02	0.07	5.6	0.15	649	0.05
968S047	<10	184	0.61	0.16	0.19	3.4	8	1.34	4.5	0.02	0.06	3.9	0.13	634	0.03
9685048	<10	97	0.78	0.14	0.09	3.2	8	1.34	3.5	0.01	0.07	6.9	0.13	250	0.02
968S049	<10	167	0.60	0.17	0.28	2.9	7	1.12	4.6	0.03	0.06	4.6	0.12	712	0.03
968\$050	<10	53	0.42	0.12	<0.05	1.4	4	0.79	2.3	<0.01	0.06	3.6	0.06	109	0.01
9685051	<10	203	0.64	0.28	0.27	2.6	6	0.97	4.1	0.05	0.09	3.6	0.11	1015	0.04
9685052	<10	303	1.58	0.41	0.57	2.9	6	1.12	5.3	0.08	0.10	3.2	0.13	2016	0.05
9685053	<10	100	1.44	0.17	0.20	3.1	7	1.42	4.3	0.01	0.09	4.3	0.13	289	0.02
968S054	<10	172	0.68	0.12	0.10	3.0	6	1.23	4.7	0.02	0.07	3.2	0.11	691	0.03
968S055	<10	156	1.10	0.15	0.10	3.7	8	1.54	6.4	0.03	0.10	3.0	0.15	410	0.03
968S056	<10	168	0.78	0.19	0.11	3.3	7	1.45	4.6	0.02	0.08	4.1	0.14	526	0.03
968S057	<10	76	0.72	0.09	0.06	2.7	7	1.15	3.7	0.01	0.07	4.9	0.14	166	0.02

Sample ID	IMS-116 B ppm	IMS-116 Ba ppm	IMS-116 Bi ppm	IMS-116 Ca %	IMS-116 Cd ppm	IMS-116 Co ppm	IMS-116 Cr ppm	IMS-116 Fe %	IMS-116 Ga ppm	IMS-116 Hg ppm	IMS-116 K %	IMS-116 La ppm	IMS-116 Mg %	IMS-116 Mn ppm	IMS-116 Na %
	10	10	0.05	0.01	0.05	0.1	1	0.01	0.1	0.01	0.01	0.5	0.01	5	0.01
968\$058	<10	105	0.60	0.12	0.17	4.7	9	1.52	5.5	0.03	0.05	5.5	0.15	341	0.02
968S059	<10	146	0.49	0.20	0.27	7.2	17	1.77	5.7	0.02	0.10	5.2	0.32	318	0.03
9685060	<10	169	0.35	0.16	0.30	5.2	14	1.56	6.2	0.03	0.06	4.7	0.26	583	0.03
9685061	<10	203	0.33	0.22	0.23	3.4	9	1.43	5.1	0.02	0.11	4.8	0.22	685	0.04
9685062	<10	141	0.58	0.09	0.13	3.6	7	1.39	5.9	0.02	0.07	5.5	0.15	390	0.03
9685063	<10	175	2.36	0.49	0.72	5.1	15	1.92	6.1	0.03	0.12	12.2	0.29	502	0.04
9685064	<10	146	0.63	0.17	0.13	4.3	9	1.56	5.3	0.02	0.06	5.4	0.18	176	0.03
9685065	<10	86	0.57	0.11	0.07	3.2	8	1.25	4.6	0.02	0.05	4.7	0.12	128	0.02
9685066	<10	141	0.37	0.18	0.17	3.5	8	1.31	4.7	0.02	0.08	4.4	0.16	434	0.03
9685067	<10	201	0.62	0.22	0.26	3.9	8	1.56	4.8	0.01	0.11	5.0	0.21	601	0.04
9685068	<10	155	0.98	0.14	0.17	3.9	7	1.55	6.3	0.02	0.06	5.9	0.15	455	0.03
9685069	<10	128	1.11	0.15	0.17	2.8	7	1.42	5.6	0.03	0.04	4.2	0.13	99	0.03
9685070	<10	86	1.35	0.12	0.09	2.9	7	1.41	3.8	0.02	0.08	4.0	0.13	122	0.02
9685071	<10	109	0.75	0.15	0.19	4.1	8	1.51	4.5	0.03	0.06	5.4	0.14	278	0.03
9685072	<10	111	0.50	0.15	0.10	3.6	9	1.25	3.4	0.02	0.07	6.3	0.17	250	0.03
9685073	<10	365	0.77	0.90	4.98	6.2	13	2.19	6.4	0.05	0.08	18.9	0.23	985	0.08
9685074	<10	99	0.32	0.08	0.14	3.9	8	1.45	4.8	0.02	0.04	5.2	0.14	178	0.02
9685075	<10	105	0.39	0.08	0.13	4.0	8	1.42	4.9	0.03	0.03	5.1	0.13	210	0.02
9685076	<10	112	0.49	0.13	0.39	4.3	9	1.52	5.8	0.04	0.05	4.5	0.14	538	0.03
9685077	<10	113	0.45	0.14	0.24	3.6	8	1.34	3.6	0.03	0.05	6.2	0.15	369	0.02
9685078	<10	126	2.08	0.12	0.47	3.6	6	1.38	5.1	0.02	0.06	5.0	0.12	655	0.03
9685079	<10	197	0.90	0.17	0.45	4.9	8	1.54	6.4	0.03	0.08	5.1	0.18	1206	0.04
9685080	10	240	0.62	0.58	0.89	3.5	7	1.49	5.0	0.02	0.40	7.0	0.19	1757	0.14
9685081	<10	96	2.43	0.18	0.31	2.3	6	1.09	4.6	0.02	0.06	6.9	0.08	122	0.02
9685082	<10	141	0.86	0.13	0.52	4.8	9	1.61	5.3	0.05	0.05	5.5	0.16	1080	0.03
Laboratory QA/															
Pulp Duplicates							-								
968\$025	<10	129	0.77	0.15	0.12	2.4	6	1.22	2.6	0.02	0.07	4.4	0.11	409	0.02
DUP 968S025	<10	130	0.78	0.15	0.12	2.5	7	1.31	2.7	0.01	0.07	4.3	0.11	397	0.03

Sample ID	IMS-116 B ppm 10	IMS-116 Ba ppm 10	IMS-116 Bi ppm 0.05	IMS-116 Ca % 0.01	IMS-116 Cd ppm 0.05	IMS-116 Co ppm 0.1	IMS-116 Cr ppm 1	IMS-116 Fe % 0.01	IMS-116 Ga ppm 0.1	IMS-116 Hg 0.01	IMS-116 K % 0.01	IMS-116 La ppm 0.5	IMS-116 Mg % 0.01	IMS-116 Mn ppm 5	IMS-116 Na % 0.01
968S052 DUP 968S052	<10 <10	303 295	1.58 1.50	0.41 0.40	0.57 0.55	2.9 2.9	6 5	1.12 1.19	5.3 5.4	0.08 0.08	0.10 0.10	3.2 3.4	0.13 0.13	2016 1943	0.05 0.05
Analytical Blank STD BLANK STD BLANK	<10 <10	<10 <10	<0.05 <0.05	<0.01 <0.01	<0.05 <0.05	<0.1 <0.1	<1 <1	<0.01 <0.01	<0.1 <0.1	<0.01 <0.01	<0.01 <0.01	<0.5 <0.5	<0.01 <0.01	<5 <5	<0.01 <0.01
Standards STD OREAS 601 STD OREAS 24b	<10 <10	196 148	21.81 0.68	1.05 0.46	7.66 <0.05	4.6 15.7	45 112	2.18 3.99	4.8 11.1	0.29 <0.01	0.26 1.18	20.9 31.9	0.19 1.37	458 362	0.09 0.12

Discovery Consu

W.R. Gilmour, P

December 10, 2(

CBLT Inc.

Mikayla Proj

Soil Sample

	IMS-116														
Sample ID	Ni	Р	Re	S	Sb	Sc	Se	Sr	Те	Th	Ti	TI	U	v	Y
	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	0.1	10	0.005	0.01	0.05	0.1	0.2	0.5	0.05	0.2	0.005	0.05	0.05	1	0.5
9685001	6.8	419	<0.005	0.01	0.14	2.8	<0.2	31.2	<0.05	3.4	0.078	0.14	0.85	53	4.9
9685002	4.8	1175	<0.005	<0.01	0.05	1.6	<0.2	19.5	<0.05	3.1	0.056	0.06	0.67	29	2.8
9685003	5.0	569	<0.005	0.01	0.09	1.7	<0.2	29.8	<0.05	2.5	0.059	0.08	0.55	36	2.7
9685004	4.1	517	<0.005	<0.01	0.07	1.4	<0.2	27.4	<0.05	2.4	0.055	0.06	0.35	33	2.0
9685005	4.3	647	<0.005	0.02	0.10	1.7	<0.2	40.8	<0.05	2.4	0.060	0.09	0.72	38	3.4
9685006	9.2	595	<0.005	0.01	0.19	4.7	<0.2	47.1	0.29	8.0	0.057	0.18	34.28	53	39.2
968S007	5.5	336	<0.005	0.01	0.09	1.5	<0.2	28.8	<0.05	1.9	0.061	0.08	1.17	32	2.8
9685008	6.0	546	<0.005	0.01	0.09	1.6	<0.2	33.5	<0.05	2.8	0.061	0.06	0.70	28	2.4
9685009	9.0	599	<0.005	0.02	0.14	2.2	<0.2	41.0	0.17	1.8	0.078	0.10	1.10	41	4.5
9685010	7.0	596	<0.005	<0.01	0.10	1.9	<0.2	19.2	<0.05	2.4	0.070	0.08	1.10	42	3.2
9685011	8.6	437	<0.005	0.02	0.14	2.2	<0.2	54.2	<0.05	2.2	0.067	0.09	1.73	42	4.8
9685012	7.5	748	<0.005	<0.01	0.11	1.6	<0.2	21.0	<0.05	2.0	0.063	0.07	0.41	46	2.3
9685013	8.0	272	<0.005	<0.01	0.12	2.0	<0.2	25.2	<0.05	2.5	0.071	0.09	1.69	58	3.0
968S014	6.0	368	<0.005	<0.01	0.09	1.8	<0.2	20.2	<0.05	2.4	0.065	0.08	0.45	46	2.5
9685015	7.2	942	<0.005	<0.01	0.08	2.0	<0.2	25.0	<0.05	2.4	0.067	0.08	1.26	41	2.7
9685016	10.0	935	<0.005	0.01	0.14	2.6	<0.2	25.1	<0.05	2.0	0.081	0.11	0.80	48	3.9
968S017	9.4	1072	<0.005	< 0.01	0.10	2.0	<0.2	20.9	<0.05	1.2	0.072	0.11	0.33	51	2.1
968S018	8.8	560	<0.005	0.01	0.23	4.0	<0.2	36.5	<0.05	4.1	0.064	0.16	1.44	64	9.4
968S019	5.4	945	<0.005	0.01	0.10	1.6	<0.2	18.8	<0.05	1.5	0.064	0.08	0.74	28	3.2
9685020	5.4	667	<0.005	<0.01	0.09	1.3	<0.2	10.8	<0.05	1.3	0.050	0.08	0.46	30	2.1
968\$021	4.4	839	<0.005	0.01	0.09	1.3	<0.2	19.3	<0.05	1.3	0.049	0.09	0.54	26	2.5
968\$022	5.2	860	<0.005	0.02	0.10	1.3	<0.2	14.7	<0.05	1.0	0.046	0.11	0.63	31	2.4
968\$023	5.4	344	<0.005	0.02	0.10	1.4	<0.2	29.2	<0.05	2.3	0.048	0.15	0.50	28	2.4
968\$024	5.4	595	<0.005	0.04	0.08	1.2	<0.2	23.1	0.09	1.9	0.053	0.12	0.56	27	1.7
968\$025	3.4	233	<0.005	<0.01	0.07	0.9	<0.2	13.3	0.11	1.0	0.038	0.07	0.36	27	1.4
9685026	4.9	599	<0.005	0.01	0.07	1.1	<0.2	20.1	<0.05	1.2	0.045	0.08	0.56	23	2.2

	IMS-116														
Sample ID	Ni	Р	Re	S	Sb	Sc	Se	Sr	Те	Th	Ti	Tİ	U	v	Y
	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	0.1	10	0.005	0.01	0.05	0.1	0.2	0.5	0.05	0.2	0.005	0.05	0.05	1	0.5
9685027	6.2	372	<0.005	0.02	0.07	1.6	<0.2	19.4	0.29	3.5	0.066	0.14	0.83	35	2.1
9685028	5.3	677	<0.005	0.01	0.10	1.2	<0.2	15.7	0.07	1.9	0.050	0.08	0.75	26	2.4
9685029	5.5	1054	<0.005	<0.01	0.07	1.1	<0.2	30.2	0.07	1.3	0.049	0.06	0.71	26	2.6
9685030	5.7	1637	<0.005	<0.01	0.08	1.3	<0.2	14.6	0.07	2.0	0.062	0.06	0.62	24	2.1
9685031	5.5	675	<0.005	0.01	0.07	1.1	<0.2	13.3	0.12	2.5	0.056	0.09	0.61	25	1.6
9685032	2.7	290	<0.005	<0.01	0.06	1.0	<0.2	10.8	0.12	1.8	0.040	0.10	0.57	19	1.3
9685033	4.2	456	<0.005	<0.01	0.06	1.0	<0.2	12.6	<0.05	1.3	0.050	0.08	0.45	21	1.5
968S034	6.0	765	<0.005	0.01	0.08	1.4	<0.2	12.1	0.14	2.3	0.076	0.10	0.78	32	2.8
9685035	4.3	244	<0.005	0.01	0.08	1.3	<0.2	21.7	0.07	2.0	0.051	0.08	2.48	30	6.9
9685036	7.5	1003	<0.005	<0.01	0.07	1.2	<0.2	12.6	<0.05	1.7	0.062	0.10	0.35	30	1.2
968S037	6.3	799	<0.005	<0.01	0.08	1.3	<0.2	11.3	0.09	4.5	0.051	0.07	1.80	34	3.6
9685038	7.5	120	<0.005	0.01	<0.05	2.6	0.2	38.2	<0.05	5.0	0.080	0.11	4.51	32	3.9
968S039	5.3	1050	<0.005	<0.01	0.07	1.2	<0.2	17.4	<0.05	2.5	0.052	0.07	0.65	29	1.6
968S040	3.9	337	<0.005	<0.01	0.08	1.1	<0.2	20.3	0.05	1.8	0.040	0.06	0.46	31	1.5
9685041	6.0	660	<0.005	<0.01	0.07	1.1	<0.2	13.8	<0.05	2.2	0.051	0.11	0.54	34	1.6
968S042	6.1	628	<0.005	<0.01	0.05	1.1	<0.2	11.5	<0.05	3.3	0.048	0.12	0.94	28	1.7
9685043	4.9	180	<0.005	0.01	0.09	1.4	<0.2	77.1	0.07	1.6	0.055	0.06	5.73	30	4.6
968S044	5.7	271	<0.005	<0.01	0.06	1.1	<0.2	16.9	0.11	1.9	0.054	0.07	1.58	32	5.1
968S045	6.1	610	<0.005	<0.01	0.06	1.1	<0.2	15.6	0.05	2.5	0.047	0.07	0.54	34	1.6
968S046	6.7	914	<0.005	<0.01	0.06	1.3	<0.2	18.3	<0.05	2.0	0.060	0.08	0.70	28	2.5
968S047	6.0	631	<0.005	< 0.01	<0.05	0.9	<0.2	14.7	<0.05	2.0	0.049	0.06	0.57	30	1.4
968S048	4.6	306	<0.005	< 0.01	0.06	1.0	<0.2	13.9	<0.05	1.7	0.050	0.07	0.99	30	2.7
968S049	6.0	710	<0.005	0.01	0.07	1.0	<0.2	15.2	<0.05	1.9	0.056	0.07	0.81	24	2.1
968S050	1.8	100	<0.005	< 0.01	<0.05	0.4	<0.2	9.1	<0.05	7.7	0.023	0.08	0.78	18	1.1
968\$051	4.7	505	<0.005	0.02	0.08	0.6	<0.2	19.8	<0.05	1.3	0.044	0.07	0.44	22	1.4
968S052	4.7	639	<0.005	0.02	0.12	1.0	<0.2	18.7	<0.05	1.5	0.056	0.12	0.42	22	1.4
968S053	4.0	238	<0.005	<0.01	0.07	1.1	<0.2	12.4	0.17	5.8	0.056	0.08	1.07	30	2.3
968S054	5.5	660	<0.005	<0.01	0.06	0.9	<0.2	12.1	0.11	1.7	0.050	0.07	0.45	25	1.2
968S055	7.5	998	<0.005	0.01	0.06	1.2	<0.2	12.7	0.17	2.9	0.069	0.11	0.56	33	1.5
968S056	6.0	459	<0.005	<0.01	0.07	1.0	<0.2	17.5	0.08	1.6	0.054	0.08	0.45	29	1.4
968S057	3.7	148	<0.005	<0.01	0.06	0.9	<0.2	8.8	<0.05	1.7	0.046	0.09	0.45	27	1.5

Sample ID	IMS-116 Ni	IMS-116 P	IMS-116 Re	IMS-116 S	IMS-116 Sb	IMS-116 Sc	IMS-116 Se	IMS-116 Sr	IMS-116 Te	IMS-116 Th	IMS-116 Ti	IMS-116 Tl	IMS-116 U	IMS-116 V	IMS-116 Y
	ppm 0.1	ppm 10	ppm 0.005	% 0.01	ppm 0.05	ppm 0.1	ppm 0.2	ppm 0.5	ppm 0.05	ppm 0.2	% 0.005	ppm 0.05	ppm 0.05	ppm 1	ppm 0.5
9685058	6.1	1032	<0.005	0.01	0.08	1.4	<0.2	10.6	<0.05	1.8	0.056	0.08	0.52	36	2.0
9685059	10.3	665	<0.005	<0.01	0.11	1.9	<0.2	24.0	<0.05	1.7	0.080	0.08	0.58	41	2.0
9685060	10.1	646	<0.005	<0.01	0.09	1.5	<0.2	16.8	<0.05	1.5	0.077	0.09	0.39	36	1.9
9685061	5.7	377	<0.005	<0.01	0.07	1.3	<0.2	17.6	<0.05	2.1	0.067	0.12	0.63	30	1.6
9685062	5.1	152	<0.005	<0.01	0.05	1.0	<0.2	9.5	<0.05	1.9	0.041	0.18	0.35	29	1.2
9685063	10.0	229	<0.005	0.01	0.16	3.3	<0.2	77.6	<0.05	2.7	0.071	0.12	6.77	38	11.8
968S064	6.2	306	<0.005	<0.01	0.07	1.4	<0.2	21.3	0.05	1.8	0.058	0.08	0.59	35	2.0
968S065	4.1	436	<0.005	<0.01	0.06	0.9	<0.2	18.2	<0.05	1.2	0.048	0.07	0.42	30	1.5
9685066	4.9	319	<0.005	< 0.01	0.07	1.1	<0.2	23.1	<0.05	1.0	0.061	0.08	0.79	28	1.7
9685067	5.1	496	<0.005	<0.01	0.07	1.2	<0.2	26.7	<0.05	1.2	0.052	0.12	0.51	34	1.7
9685068	4.8	542	<0.005	< 0.01	0.06	1.1	<0.2	10.3	<0.05	1.4	0.049	0.11	1.05	32	2.1
9685069	4.0	177	<0.005	0.01	0.08	0.9	<0.2	14.3	<0.05	0.8	0.053	0.08	0.63	30	1.2
9685070	3.7	192	<0.005	<0.01	0.06	0.8	<0.2	16.6	0.08	1.1	0.042	0.07	0.34	31	1.2
9685071	5.1	450	<0.005	<0.01	0.13	1.3	<0.2	15.3	<0.05	2.0	0.053	0.08	0.41	35	1.9
9685072	4.9	242	<0.005	<0.01	0.10	1.3	<0.2	15.5	<0.05	1.4	0.046	0.08	0.58	31	2.7
9685073	9.8	536	<0.005	0.04	0.19	3.8	0.7	116.0	<0.05	1.9	0.071	0.15	20.46	42	17.0
9685074	4.7	450	<0.005	<0.01	0.10	1.2	<0.2	8.7	<0.05	1.7	0.053	0.07	0.43	35	1.8
9685075	4.8	637	<0.005	<0.01	0.10	1.1	<0.2	9.2	<0.05	2.5	0.054	0.07	0.49	34	2.0
9685076	6.1	681	<0.005	0.01	0.10	1.3	<0.2	13.8	<0.05	1.6	0.078	0.08	0.57	35	2.2
968S077	4.1	617	<0.005	0.01	0.10	1.1	<0.2	13.3	<0.05	1.5	0.041	0.08	0.41	33	2.1
9685078	4.6	963	<0.005	<0.01	0.06	1.2	<0.2	11.4	<0.05	1.5	0.059	0.11	0.62	28	2.2
9685079	7.0	741	<0.005	0.01	0.08	1.3	<0.2	16.1	<0.05	1.8	0.079	0.13	0.57	33	2.0
9685080	4.4	1888	<0.005	<0.01	0.09	1.8	<0.2	94.0	<0.05	2.8	0.041	0.10	2.99	31	3.8
9685081	2.9	161	<0.005	< 0.01	0.06	0.7	<0.2	16.4	<0.05	1.4	0.027	0.15	1.28	26	1.7
9685082	5.5	960	<0.005	0.01	0.12	1.4	<0.2	11.9	<0.05	1.9	0.064	0.11	0.71	35	2.4
Laboratory QA/															
Pulp Duplicates	_					_									
968S025	3.4	233		<0.01	0.07	0.9	<0.2	13.3	0.11	1.0	0.038	0.07	0.36	27	1.4
DUP 968S025	3.5	221	<0.005	<0.01	0.07	0.9	<0.2	13.7	0.09	1.0	0.040	0.07	0.35	29	1.4

Sample ID	IMS-116 Ni	IMS-116 P	IMS-116 Re	IMS-116 S	IMS-116 Sb	IMS-116 Sc	IMS-116 Se	IMS-116 Sr	IMS-116 Te	IMS-116 Th	IMS-116 Ti	IMS-116 Tl	IMS-116 U	IMS-116 V	IMS-116 Y
	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	0.1	10	0.005	0.01	0.05	0.1	0.2	0.5	0.05	0.2	0.005	0.05	0.05	1	0.5
968\$052	4.7	639	<0.005	0.02	0.12	1.0	<0.2	18.7	<0.05	1.5	0.056	0.12	0.42	22	1.4
DUP 968S052	4.7	620	<0.005	0.02	0.12	1.0	<0.2	18.5	<0.05	1.9	0.058	0.12	0.45	24	1.4
Analytical Blank															
STD BLANK	<0.1	<10	<0.005	< 0.01	<0.05	<0.1	<0.2	<0.5	<0.05	<0.2	<0.005	<0.05	<0.05	<1	<0.5
STD BLANK	<0.1	<10	<0.005	<0.01	<0.05	<0.1	<0.2	<0.5	<0.05	<0.2	<0.005	<0.05	<0.05	<1	<0.5
Standards															
STD OREAS 601	23.8	375	<0.005	1.02	19.43	1.7	11.5	33.8	14.29	7.0	0.008	0.70	1.86	10	6.0
STD OREAS 24b	57.9	658	<0.005	0.20	0.43	9.9	<0.2	29.0	0.05	15.2	0.211	0.63	1.77	83	11.8

Discovery Consu

W.R. Gilmour, P

December 10, 2(

APPENDIX II

Certificates of Analysis

CERTIFICATE OF ANALYSIS: YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Number of Samples:	82
Report Version:	Final

COMMENTS:

Test results reported relate only to the samples as received by the laboratory. Unless otherwise stated above, sufficient sample was received for the methods requested and all samples were received in acceptable condition. Analytical results in unsigned reports marked "preliminary" are subject to change, pending final QC review. Please refer to MS Analyticals' Schedule of Services and Fees for our complete Terms and Conditions

Discovery Consultants To: 2916 29th Street Vernon, BC, V1T 5A6 Canada

SAMPLE PREPARATION								
METHOD CODE	DESCRIPTION							
PRP-757	Dry, Screen to 80 mesh, discard plus fraction							

	ANALYTICAL METHODS
METHOD CODE	DESCRIPTION
IMS-116	Multi-Element (39 elements), 0.5g, 1:1 Aqua Regia, ICP-AES/MS, Ultra Trace Level

ynerreffi

Yvette Hsi, BSc. Laboratory Manager MS Analytical

Signature:

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	Sample	PWE-100	Method	IMS-116										
	Туре	Rec. Wt.	Analyte	Ag	Al	As	Au	В	Ва	Bi	Ca	Cd	Со	Cr
		kg	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID		0.01	LOR	0.05	0.01	0.2	0.001	10	10	0.05	0.01	0.05	0.1	1
9685001	Soil	0.39		0.16	1.24	1.9	0.003	<10	160	0.44	0.28	0.15	5.2	14
968S002	Soil	0.44		0.14	0.98	1.3	< 0.001	<10	174	0.20	0.16	0.09	2.7	8
968S003	Soil	0.47		0.11	0.99	1.4	<0.001	<10	208	0.21	0.30	0.26	3.8	8
968S004	Soil	0.41		0.09	0.82	0.9	<0.001	<10	159	0.18	0.29	0.30	2.7	8
968S005	Soil	0.32		0.17	0.93	1.3	<0.001	<10	169	0.24	0.28	0.11	3.5	9
968S006	Soil	0.50		1.23	1.43	2.5	0.002	<10	191	2.70	0.53	0.26	8.2	14
968S007	Soil	0.33		0.20	1.36	1.2	<0.001	<10	152	0.85	0.24	0.11	4.2	8
9685008	Soil	0.34		0.10	1.18	1.2	<0.001	<10	126	0.83	0.36	0.24	3.6	10
968S009	Soil	0.24		0.19	1.68	1.9	<0.001	<10	253	0.88	0.44	0.43	6.0	14
968S010	Soil	0.40		0.16	1.30	1.9	<0.001	<10	108	0.39	0.20	0.09	4.4	12
968S011	Soil	0.33		0.15	1.28	1.7	<0.001	<10	135	0.72	0.61	0.13	5.2	14
968S012	Soil	0.32		0.15	1.08	2.0	0.001	<10	133	0.25	0.26	0.13	4.1	12
968S013	Soil	0.35		0.11	1.15	3.0	< 0.001	<10	99	0.39	0.30	0.17	5.3	15
968S014	Soil	0.47		0.14	1.01	1.5	<0.001	<10	106	0.26	0.23	0.11	3.9	11
968S015	Soil	0.38		0.10	1.21	2.7	<0.001	<10	158	0.28	0.23	0.23	4.3	11
968S016	Soil	0.35		0.21	1.57	5.7	<0.001	<10	187	0.34	0.32	0.41	5.6	12
968S017	Soil	0.44		0.20	1.17	4.9	<0.001	<10	138	0.20	0.24	0.31	5.5	13
968S018	Soil	0.51		0.59	1.25	5.4	0.003	<10	140	1.42	0.51	0.36	7.8	16
968S019	Soil	0.30		1.40	1.65	1.4	<0.001	<10	261	0.27	0.18	0.35	3.7	8
968S020	Soil	0.33		0.96	1.17	1.1	<0.001	<10	168	0.33	0.11	0.21	3.1	7
968S021	Soil	0.28		0.73	1.37	1.0	<0.001	<10	252	0.42	0.21	0.47	2.9	6
968S022	Soil	0.30		0.58	1.31	1.5	<0.001	<10	243	1.00	0.20	0.42	3.6	7
968S023	Soil	0.32		0.28	1.28	1.5	<0.001	<10	475	1.81	0.44	0.96	3.7	7
968S024	Soil	0.34		0.28	1.30	0.7	<0.001	<10	315	1.45	0.21	0.32	2.9	6
9685025	Soil	0.22		0.43	0.78	0.7	< 0.001	<10	129	0.77	0.15	0.12	2.4	6

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	Sample	PWE-100	Method	IMS-116										
	Туре	Rec. Wt.	Analyte	Ag	Al	As	Au	В	Ва	Bi	Ca	Cd	Со	Cr
		kg	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID		0.01	LOR	0.05	0.01	0.2	0.001	10	10	0.05	0.01	0.05	0.1	1
968S026	Soil	0.17		0.22	0.95	0.6	<0.001	<10	218	1.38	0.23	0.14	2.8	6
968S027	Soil	0.30		0.12	1.29	0.7	< 0.001	<10	219	1.62	0.23	0.29	4.2	8
968S028	Soil	0.28		0.43	0.96	0.8	<0.001	<10	148	0.72	0.17	0.13	3.0	8
968S029	Soil	0.21		0.34	1.14	1.2	< 0.001	<10	206	0.56	0.44	0.11	3.0	8
968S030	Soil	0.25		0.36	1.33	1.7	<0.001	<10	135	0.55	0.19	0.10	3.1	6
968S031	Soil	0.27		0.60	1.33	0.8	<0.001	<10	186	1.29	0.16	0.14	3.1	7
968S032	Soil	0.30		0.29	0.88	0.4	<0.001	<10	97	1.50	0.11	0.06	2.0	4
968S033	Soil	0.24		0.37	1.19	0.7	<0.001	<10	200	0.81	0.17	0.12	2.4	6
968S034	Soil	0.31		0.23	1.93	1.3	<0.001	<10	221	1.22	0.15	0.15	3.8	9
968S035	Soil	0.24		0.39	0.85	0.7	<0.001	<10	123	0.92	0.24	0.17	3.3	7
968S036	Soil	0.40		0.28	1.37	1.5	<0.001	<10	129	0.64	0.15	0.11	4.3	9
968S037	Soil	0.41		0.60	1.28	1.5	<0.001	<10	132	0.69	0.12	0.09	3.9	10
968S038	Soil	0.40		0.29	1.40	1.6	<0.001	<10	207	1.57	0.47	0.16	8.4	15
968S039	Soil	0.38		0.62	1.15	1.6	<0.001	<10	135	0.87	0.24	0.20	3.6	8
968S040	Soil	0.39		0.13	0.56	1.0	<0.001	<10	139	0.65	0.32	0.18	3.1	8
968S041	Soil	0.45		0.40	1.31	1.7	<0.001	<10	149	0.69	0.19	0.31	4.0	8
968S042	Soil	0.42		0.44	1.44	1.3	0.002	<10	186	0.54	0.14	0.16	3.5	7
968S043	Soil	0.36		1.11	1.48	1.2	<0.001	<10	195	0.93	0.41	0.23	3.1	8
968S044	Soil	0.39		0.50	0.98	1.0	<0.001	<10	124	0.71	0.16	0.05	3.2	9
968S045	Soil	0.33		0.44	1.13	1.3	<0.001	<10	140	0.55	0.18	0.09	3.7	8
968S046	Soil	0.36		0.64	1.39	1.5	<0.001	<10	247	0.61	0.20	0.19	3.8	8
968S047	Soil	0.38		0.40	1.00	1.2	<0.001	<10	184	0.61	0.16	0.19	3.4	8
968S048	Soil	0.38		0.30	0.80	0.7	<0.001	<10	97	0.78	0.14	0.09	3.2	8
968S049	Soil	0.34		0.26	1.17	1.4	<0.001	<10	167	0.60	0.17	0.28	2.9	7
968S050	Soil	0.40		0.15	0.52	0.4	<0.001	<10	53	0.42	0.12	<0.05	1.4	4

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	Sample	PWE-100	Method	IMS-116										
	Туре	Rec. Wt.	Analyte	Ag	Al	As	Au	В	Ва	Bi	Ca	Cd	Со	Cr
		kg	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID		0.01	LOR	0.05	0.01	0.2	0.001	10	10	0.05	0.01	0.05	0.1	1
968S051	Soil	0.29		0.32	1.06	1.0	<0.001	<10	203	0.64	0.28	0.27	2.6	6
968S052	Soil	0.33		0.30	1.27	1.4	< 0.001	<10	303	1.58	0.41	0.57	2.9	6
968S053	Soil	0.37		0.32	1.08	0.8	<0.001	<10	100	1.44	0.17	0.20	3.1	7
968S054	Soil	0.31		0.19	1.16	0.9	<0.001	<10	172	0.68	0.12	0.10	3.0	6
968S055	Soil	0.34		0.33	1.55	1.0	0.002	<10	156	1.10	0.15	0.10	3.7	8
968S056	Soil	0.38		0.23	1.20	0.9	<0.001	<10	168	0.78	0.19	0.11	3.3	7
968S057	Soil	0.35		0.15	0.77	0.8	<0.001	<10	76	0.72	0.09	0.06	2.7	7
968S058	Soil	0.31		1.10	1.40	1.7	<0.001	<10	105	0.60	0.12	0.17	4.7	9
968S059	Soil	0.30		0.74	1.48	1.6	<0.001	<10	146	0.49	0.20	0.27	7.2	17
968S060	Soil	0.34		0.29	1.66	1.2	0.001	<10	169	0.35	0.16	0.30	5.2	14
968S061	Soil	0.41		0.17	1.28	0.7	<0.001	<10	203	0.33	0.22	0.23	3.4	9
968S062	Soil	0.47		0.29	1.63	0.8	<0.001	<10	141	0.58	0.09	0.13	3.6	7
968S063	Soil	0.34		1.50	1.82	1.8	0.002	<10	175	2.36	0.49	0.72	5.1	15
968S064	Soil	0.41		0.86	1.40	1.3	<0.001	<10	146	0.63	0.17	0.13	4.3	9
968S065	Soil	0.38		0.70	0.96	0.8	<0.001	<10	86	0.57	0.11	0.07	3.2	8
9685066	Soil	0.36		0.18	1.20	1.0	<0.001	<10	141	0.37	0.18	0.17	3.5	8
968S067	Soil	0.37		0.52	1.15	1.1	<0.001	<10	201	0.62	0.22	0.26	3.9	8
9685068	Soil	0.35		0.32	1.75	1.2	< 0.001	<10	155	0.98	0.14	0.17	3.9	7
968S069	Soil	0.30		0.37	1.51	1.3	0.001	<10	128	1.11	0.15	0.17	2.8	7
968S070	Soil	0.31		0.39	0.96	0.8	<0.001	<10	86	1.35	0.12	0.09	2.9	7
968S071	Soil	0.26		0.99	1.18	1.4	<0.001	<10	109	0.75	0.15	0.19	4.1	8
968S072	Soil	0.29		0.46	0.87	1.1	<0.001	<10	111	0.50	0.15	0.10	3.6	9
968S073	Soil	0.21		3.21	2.29	3.7	0.003	<10	365	0.77	0.90	4.98	6.2	13
968S074	Soil	0.26		0.82	1.26	1.3	<0.001	<10	99	0.32	0.08	0.14	3.9	8
9685075	Soil	0.33		0.69	1.18	1.4	< 0.001	<10	105	0.39	0.08	0.13	4.0	8

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	Consula	DW/F 400		1146 446	1146 446	1146 446	10.45 4.4.5	10.45 4.4.5	10.45 4.45	10.45 4.4.5	1146 446	1145 445	1146 446	10.45 4.4.5
	Sample	PWE-100	Method	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116	IMS-116
	Туре	Rec. Wt.	Analyte	Ag	Al	As	Au	В	Ва	Bi	Ca	Cd	Со	Cr
		kg	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID		0.01	LOR	0.05	0.01	0.2	0.001	10	10	0.05	0.01	0.05	0.1	1
968S076	Soil	0.29		1.09	1.58	1.8	<0.001	<10	112	0.49	0.13	0.39	4.3	9
9685077	Soil	0.28		0.64	0.92	1.3	<0.001	<10	113	0.45	0.14	0.24	3.6	8
9685078	Soil	0.22		0.70	1.48	1.2	<0.001	<10	126	2.08	0.12	0.47	3.6	6
968S079	Soil	0.40		0.42	1.84	2.0	<0.001	<10	197	0.90	0.17	0.45	4.9	8
9685080	Soil	0.24		0.92	1.53	1.0	<0.001	10	240	0.62	0.58	0.89	3.5	7
9685081	Soil	0.29		0.33	1.16	0.6	<0.001	<10	96	2.43	0.18	0.31	2.3	6
9685082	Soil	0.31		0.66	1.53	2.2	<0.001	<10	141	0.86	0.13	0.52	4.8	9
DUP 968S025				0.33	0.80	0.5	<0.001	<10	130	0.78	0.15	0.12	2.5	7
DUP 968S052				0.29	1.26	1.4	<0.001	<10	295	1.50	0.40	0.55	2.9	5
STD BLANK				<0.05	< 0.01	<0.2	<0.001	<10	<10	<0.05	< 0.01	<0.05	<0.1	<1
STD BLANK				<0.05	<0.01	<0.2	<0.001	<10	<10	<0.05	<0.01	<0.05	<0.1	<1
STD OREAS 601				49.16	0.83	307.0	0.749	<10	196	21.81	1.05	7.66	4.6	45
STD OREAS 24b				0.06	3.32	8.3	0.001	<10	148	0.68	0.46	<0.05	15.7	112

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	IMS-116													
	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Re
	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample ID	0.2	0.01	0.1	0.01	0.01	0.5	0.01	5	0.05	0.01	0.1	10	0.2	0.005
9685001	14.2	2.17	4.1	0.01	0.21	11.2	0.32	516	1.57	0.03	6.8	419	14.0	<0.005
9685002	5.2	1.27	3.5	0.01	0.08	9.0	0.13	307	0.46	0.04	4.8	1175	6.0	<0.005
9685003	7.6	1.52	3.3	0.02	0.16	7.3	0.17	670	0.83	0.04	5.0	569	8.1	<0.005
9685004	4.6	1.38	3.0	0.01	0.13	6.7	0.13	538	0.55	0.03	4.1	517	6.4	<0.005
968S005	7.5	1.63	3.6	0.02	0.15	11.9	0.20	413	0.66	0.03	4.3	647	12.1	<0.005
9685006	104.1	2.95	6.2	0.02	0.21	41.5	0.51	944	6.30	0.04	9.2	595	48.3	<0.005
968S007	11.6	1.59	4.1	0.02	0.09	6.0	0.16	746	1.88	0.03	5.5	336	8.4	<0.005
9685008	15.3	1.40	3.4	0.02	0.12	4.9	0.16	689	1.26	0.03	6.0	546	7.8	<0.005
9685009	20.2	1.88	4.7	0.03	0.16	8.1	0.27	1524	2.22	0.05	9.0	599	12.0	<0.005
968S010	11.3	1.77	4.0	0.01	0.09	7.6	0.20	263	1.49	0.02	7.0	596	7.1	<0.005
968S011	19.3	1.82	3.9	0.02	0.11	8.8	0.26	477	1.37	0.03	8.6	437	11.0	<0.005
968S012	7.4	1.76	3.5	0.01	0.09	6.0	0.19	353	0.57	0.03	7.5	748	7.0	<0.005
968S013	11.9	2.12	3.5	0.01	0.13	5.8	0.23	499	2.77	0.02	8.0	272	9.5	<0.005
968S014	6.6	1.78	3.3	0.01	0.13	6.1	0.19	240	0.51	0.02	6.0	368	7.7	<0.005
968S015	10.9	1.70	3.6	0.01	0.10	5.9	0.20	469	1.20	0.03	7.2	942	8.7	<0.005
968S016	16.6	1.87	4.4	0.02	0.14	6.9	0.27	678	1.23	0.04	10.0	935	11.7	<0.005
968S017	9.3	1.85	3.6	0.02	0.09	4.0	0.25	613	0.63	0.04	9.4	1072	8.1	<0.005
968S018	37.3	2.78	4.8	0.02	0.27	14.2	0.51	634	1.61	0.03	8.8	560	32.5	<0.005
968S019	7.7	1.38	4.7	0.05	0.06	5.8	0.17	600	1.09	0.05	5.4	945	15.2	<0.005
968S020	6.2	1.26	3.7	0.02	0.06	5.7	0.14	359	0.45	0.03	5.4	667	11.0	<0.005
968S021	7.1	1.23	3.9	0.03	0.09	5.8	0.15	785	0.80	0.05	4.4	839	14.8	<0.005
968S022	11.9	1.45	3.8	0.05	0.07	5.7	0.14	1141	1.35	0.04	5.2	860	23.4	<0.005
968S023	11.5	1.50	4.0	0.05	0.17	7.0	0.19	2478	2.09	0.08	5.4	344	25.2	<0.005
968S024	16.4	1.77	3.8	0.03	0.15	5.7	0.16	1244	4.44	0.05	5.4	595	10.8	<0.005
9685025	8.9	1.22	2.6	0.02	0.07	4.4	0.11	409	1.78	0.02	3.4	233	7.0	<0.005

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	IMS-116													
	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Mo	Na	Ni	Р	Pb	Re
	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample ID	0.2	0.01	0.1	0.01	0.01	0.5	0.01	5	0.05	0.01	0.1	10	0.2	0.005
9685026	15.3	1.21	3.1	0.02	0.09	5.3	0.14	1081	1.21	0.04	4.9	599	8.0	<0.005
968S027	22.8	2.23	4.1	0.02	0.16	5.7	0.21	1200	2.84	0.04	6.2	372	8.7	<0.005
968S028	13.4	1.32	3.1	0.03	0.07	4.5	0.13	689	1.58	0.03	5.3	677	6.3	<0.005
968S029	15.5	1.26	3.2	0.02	0.14	5.5	0.14	1104	0.83	0.05	5.5	1054	5.5	<0.005
9685030	10.1	1.21	3.8	0.03	0.05	4.3	0.11	674	0.99	0.03	5.7	1637	5.9	<0.005
968S031	15.3	1.34	3.9	0.04	0.07	3.1	0.12	910	1.17	0.03	5.5	675	7.4	<0.005
968S032	9.1	1.00	2.9	0.02	0.10	2.4	0.11	402	0.67	0.02	2.7	290	5.1	<0.005
968S033	8.5	1.09	3.4	0.02	0.08	3.1	0.11	901	0.93	0.04	4.2	456	5.5	<0.005
968S034	19.0	1.58	4.8	0.02	0.06	5.6	0.16	962	1.30	0.04	6.0	765	7.6	<0.005
968S035	23.6	1.42	2.9	0.02	0.12	10.4	0.16	351	1.25	0.03	4.3	244	8.8	<0.005
968S036	10.3	1.43	5.7	0.02	0.08	3.8	0.17	1045	1.07	0.03	7.5	1003	9.6	<0.005
968S037	19.8	1.59	4.8	0.02	0.06	7.6	0.14	216	0.91	0.03	6.3	799	9.3	<0.005
968S038	12.7	2.12	5.1	0.02	0.13	9.3	0.24	480	1.23	0.05	7.5	120	11.9	<0.005
968S039	9.7	1.40	4.7	0.02	0.09	4.6	0.15	429	0.74	0.03	5.3	1050	9.8	<0.005
968S040	12.5	1.30	3.0	0.02	0.11	4.1	0.12	481	0.64	0.03	3.9	337	6.1	<0.005
968S041	12.1	1.56	5.0	0.02	0.07	4.6	0.16	1024	1.23	0.03	6.0	660	14.3	<0.005
968S042	11.9	1.43	5.2	0.01	0.11	4.9	0.18	391	0.71	0.03	6.1	628	12.7	<0.005
968S043	25.7	1.43	5.4	0.02	0.06	7.8	0.13	242	10.11	0.04	4.9	180	9.6	<0.005
968S044	19.1	1.46	4.1	0.01	0.08	11.5	0.15	210	0.93	0.03	5.7	271	6.5	<0.005
968S045	12.2	1.57	4.4	0.02	0.07	4.6	0.13	268	0.89	0.03	6.1	610	7.0	<0.005
968S046	13.5	1.36	5.3	0.02	0.07	5.6	0.15	649	0.72	0.05	6.7	914	8.6	<0.005
968S047	7.8	1.34	4.5	0.02	0.06	3.9	0.13	634	0.69	0.03	6.0	631	7.2	<0.005
968S048	14.9	1.34	3.5	0.01	0.07	6.9	0.13	250	0.44	0.02	4.6	306	6.3	<0.005
968S049	12.8	1.12	4.6	0.03	0.06	4.6	0.12	712	1.17	0.03	6.0	710	9.2	<0.005
9685050	5.0	0.79	2.3	<0.01	0.06	3.6	0.06	109	0.40	0.01	1.8	100	3.3	<0.005

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	IMS-116													
	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Mo	Na	Ni	Р	Pb	Re
	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample ID	0.2	0.01	0.1	0.01	0.01	0.5	0.01	5	0.05	0.01	0.1	10	0.2	0.005
968S051	8.7	0.97	4.1	0.05	0.09	3.6	0.11	1015	1.12	0.04	4.7	505	7.7	<0.005
968S052	9.9	1.12	5.3	0.08	0.10	3.2	0.13	2016	1.52	0.05	4.7	639	9.9	<0.005
968S053	21.4	1.42	4.3	0.01	0.09	4.3	0.13	289	0.66	0.02	4.0	238	5.7	<0.005
968S054	9.5	1.23	4.7	0.02	0.07	3.2	0.11	691	0.84	0.03	5.5	660	5.6	<0.005
968\$055	19.7	1.54	6.4	0.03	0.10	3.0	0.15	410	0.80	0.03	7.5	998	6.4	<0.005
968S056	8.9	1.45	4.6	0.02	0.08	4.1	0.14	526	1.07	0.03	6.0	459	6.7	<0.005
968S057	9.1	1.15	3.7	0.01	0.07	4.9	0.14	166	1.04	0.02	3.7	148	8.9	<0.005
968S058	10.5	1.52	5.5	0.03	0.05	5.5	0.15	341	5.11	0.02	6.1	1032	11.8	<0.005
968S059	15.4	1.77	5.7	0.02	0.10	5.2	0.32	318	5.32	0.03	10.3	665	9.6	<0.005
9685060	11.9	1.56	6.2	0.03	0.06	4.7	0.26	583	4.34	0.03	10.1	646	13.3	<0.005
968S061	7.4	1.43	5.1	0.02	0.11	4.8	0.22	685	3.01	0.04	5.7	377	9.9	<0.005
9685062	8.0	1.39	5.9	0.02	0.07	5.5	0.15	390	4.72	0.03	5.1	152	21.6	<0.005
968S063	75.3	1.92	6.1	0.03	0.12	12.2	0.29	502	11.07	0.04	10.0	229	16.2	<0.005
968S064	11.2	1.56	5.3	0.02	0.06	5.4	0.18	176	7.52	0.03	6.2	306	10.3	<0.005
968S065	7.6	1.25	4.6	0.02	0.05	4.7	0.12	128	3.34	0.02	4.1	436	7.4	<0.005
9685066	9.0	1.31	4.7	0.02	0.08	4.4	0.16	434	5.28	0.03	4.9	319	9.1	<0.005
968S067	11.9	1.56	4.8	0.01	0.11	5.0	0.21	601	4.51	0.04	5.1	496	16.4	<0.005
9685068	13.5	1.55	6.3	0.02	0.06	5.9	0.15	455	11.15	0.03	4.8	542	15.7	<0.005
968S069	8.7	1.42	5.6	0.03	0.04	4.2	0.13	99	7.13	0.03	4.0	177	16.2	<0.005
968S070	11.0	1.41	3.8	0.02	0.08	4.0	0.13	122	4.60	0.02	3.7	192	9.5	<0.005
968S071	9.9	1.51	4.5	0.03	0.06	5.4	0.14	278	2.11	0.03	5.1	450	13.0	<0.005
968S072	10.3	1.25	3.4	0.02	0.07	6.3	0.17	250	1.43	0.03	4.9	242	10.7	<0.005
968S073	107.9	2.19	6.4	0.05	0.08	18.9	0.23	985	40.81	0.08	9.8	536	21.7	<0.005
968S074	6.4	1.45	4.8	0.02	0.04	5.2	0.14	178	1.77	0.02	4.7	450	12.4	<0.005
968S075	7.4	1.42	4.9	0.03	0.03	5.1	0.13	210	0.89	0.02	4.8	637	13.0	<0.005

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

2916 29th Street Vernon, BC, V1T 5A6 Canada

Discovery Consultants

To:

	IMS-116													
	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Re
	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample ID	0.2	0.01	0.1	0.01	0.01	0.5	0.01	5	0.05	0.01	0.1	10	0.2	0.005
968S076	14.5	1.52	5.8	0.04	0.05	4.5	0.14	538	3.27	0.03	6.1	681	13.3	<0.005
968S077	7.7	1.34	3.6	0.03	0.05	6.2	0.15	369	2.82	0.02	4.1	617	15.0	<0.005
968S078	13.7	1.38	5.1	0.02	0.06	5.0	0.12	655	3.63	0.03	4.6	963	10.8	<0.005
968S079	11.8	1.54	6.4	0.03	0.08	5.1	0.18	1206	2.93	0.04	7.0	741	17.4	<0.005
9685080	30.4	1.49	5.0	0.02	0.40	7.0	0.19	1757	7.65	0.14	4.4	1888	12.2	<0.005
9685081	7.3	1.09	4.6	0.02	0.06	6.9	0.08	122	7.09	0.02	2.9	161	36.9	<0.005
9685082	10.9	1.61	5.3	0.05	0.05	5.5	0.16	1080	4.07	0.03	5.5	960	19.7	<0.005
DUP 968S025	9.0	1.31	2.7	0.01	0.07	4.3	0.11	397	1.66	0.03	3.5	221	6.2	<0.005
DUP 968S052	9.8	1.19	5.4	0.08	0.10	3.4	0.13	1943	1.47	0.05	4.7	620	9.6	<0.005
STD BLANK	<0.2	<0.01	<0.1	<0.01	<0.01	<0.5	<0.01	<5	<0.05	<0.01	<0.1	<10	<0.2	<0.005
STD BLANK	<0.2	<0.01	<0.1	<0.01	<0.01	<0.5	<0.01	<5	<0.05	<0.01	<0.1	<10	<0.2	<0.005
STD OREAS 601	995.0	2.18	4.8	0.29	0.26	20.9	0.19	458	3.70	0.09	23.8	375	289.9	<0.005
STD OREAS 24b	37.0	3.99	11.1	<0.01	1.18	31.9	1.37	362	3.80	0.12	57.9	658	9.1	<0.005

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	IMS-116													
	S	Sb	Sc	Se	Sr	Те	Th	Ti	TI	U	V	W	Y	Zn
	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	0.05	0.1	0.2	0.5	0.05	0.2	0.005	0.05	0.05	1	0.05	0.5	2
968S001	0.01	0.14	2.8	<0.2	31.2	<0.05	3.4	0.078	0.14	0.85	53	0.37	4.9	102
9685002	<0.01	0.05	1.6	<0.2	19.5	<0.05	3.1	0.056	0.06	0.67	29	0.58	2.8	93
9685003	0.01	0.09	1.7	<0.2	29.8	<0.05	2.5	0.059	0.08	0.55	36	0.68	2.7	113
9685004	<0.01	0.07	1.4	<0.2	27.4	<0.05	2.4	0.055	0.06	0.35	33	0.27	2.0	106
968S005	0.02	0.10	1.7	<0.2	40.8	<0.05	2.4	0.060	0.09	0.72	38	0.52	3.4	83
9685006	0.01	0.19	4.7	<0.2	47.1	0.29	8.0	0.057	0.18	34.28	53	0.51	39.2	174
968S007	0.01	0.09	1.5	<0.2	28.8	<0.05	1.9	0.061	0.08	1.17	32	0.27	2.8	113
968S008	0.01	0.09	1.6	<0.2	33.5	<0.05	2.8	0.061	0.06	0.70	28	0.20	2.4	119
968S009	0.02	0.14	2.2	<0.2	41.0	0.17	1.8	0.078	0.10	1.10	41	0.39	4.5	199
968S010	<0.01	0.10	1.9	<0.2	19.2	<0.05	2.4	0.070	0.08	1.10	42	0.27	3.2	83
968S011	0.02	0.14	2.2	<0.2	54.2	<0.05	2.2	0.067	0.09	1.73	42	0.40	4.8	87
968S012	<0.01	0.11	1.6	<0.2	21.0	<0.05	2.0	0.063	0.07	0.41	46	0.38	2.3	103
968S013	<0.01	0.12	2.0	<0.2	25.2	<0.05	2.5	0.071	0.09	1.69	58	0.25	3.0	100
968S014	<0.01	0.09	1.8	<0.2	20.2	<0.05	2.4	0.065	0.08	0.45	46	0.31	2.5	94
968S015	<0.01	0.08	2.0	<0.2	25.0	<0.05	2.4	0.067	0.08	1.26	41	0.38	2.7	134
968S016	0.01	0.14	2.6	<0.2	25.1	<0.05	2.0	0.081	0.11	0.80	48	0.26	3.9	143
968S017	<0.01	0.10	2.0	<0.2	20.9	<0.05	1.2	0.072	0.11	0.33	51	0.18	2.1	142
968S018	0.01	0.23	4.0	<0.2	36.5	<0.05	4.1	0.064	0.16	1.44	64	0.51	9.4	157
968S019	0.01	0.10	1.6	<0.2	18.8	<0.05	1.5	0.064	0.08	0.74	28	0.16	3.2	332
968S020	<0.01	0.09	1.3	<0.2	10.8	<0.05	1.3	0.050	0.08	0.46	30	0.19	2.1	369
968S021	0.01	0.09	1.3	<0.2	19.3	<0.05	1.3	0.049	0.09	0.54	26	0.18	2.5	504
968S022	0.02	0.10	1.3	<0.2	14.7	<0.05	1.0	0.046	0.11	0.63	31	0.44	2.4	349
968S023	0.02	0.10	1.4	<0.2	29.2	<0.05	2.3	0.048	0.15	0.50	28	0.19	2.4	451
968S024	0.04	0.08	1.2	<0.2	23.1	0.09	1.9	0.053	0.12	0.56	27	0.43	1.7	217
9685025	<0.01	0.07	0.9	<0.2	13.3	0.11	1.0	0.038	0.07	0.36	27	0.42	1.4	107

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	IMS-116													
	S	Sb	Sc	Se	Sr	Те	Th	Ti	TI	U	V	W	Y	Zn
	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	0.05	0.1	0.2	0.5	0.05	0.2	0.005	0.05	0.05	1	0.05	0.5	2
9685026	0.01	0.07	1.1	<0.2	20.1	<0.05	1.2	0.045	0.08	0.56	23	0.30	2.2	144
968S027	0.02	0.07	1.6	<0.2	19.4	0.29	3.5	0.066	0.14	0.83	35	0.36	2.1	250
968S028	0.01	0.10	1.2	<0.2	15.7	0.07	1.9	0.050	0.08	0.75	26	0.37	2.4	137
968S029	<0.01	0.07	1.1	<0.2	30.2	0.07	1.3	0.049	0.06	0.71	26	0.32	2.6	96
968S030	<0.01	0.08	1.3	<0.2	14.6	0.07	2.0	0.062	0.06	0.62	24	0.31	2.1	137
968S031	0.01	0.07	1.1	<0.2	13.3	0.12	2.5	0.056	0.09	0.61	25	0.65	1.6	174
968S032	<0.01	0.06	1.0	<0.2	10.8	0.12	1.8	0.040	0.10	0.57	19	0.55	1.3	93
968S033	<0.01	0.06	1.0	<0.2	12.6	<0.05	1.3	0.050	0.08	0.45	21	0.29	1.5	152
968S034	0.01	0.08	1.4	<0.2	12.1	0.14	2.3	0.076	0.10	0.78	32	0.47	2.8	121
968S035	0.01	0.08	1.3	<0.2	21.7	0.07	2.0	0.051	0.08	2.48	30	0.28	6.9	89
9685036	<0.01	0.07	1.2	<0.2	12.6	<0.05	1.7	0.062	0.10	0.35	30	0.27	1.2	179
968S037	<0.01	0.08	1.3	<0.2	11.3	0.09	4.5	0.051	0.07	1.80	34	0.32	3.6	153
9685038	0.01	<0.05	2.6	0.2	38.2	<0.05	5.0	0.080	0.11	4.51	32	0.33	3.9	142
968S039	<0.01	0.07	1.2	<0.2	17.4	<0.05	2.5	0.052	0.07	0.65	29	0.32	1.6	162
968S040	<0.01	0.08	1.1	<0.2	20.3	0.05	1.8	0.040	0.06	0.46	31	0.27	1.5	109
968S041	<0.01	0.07	1.1	<0.2	13.8	<0.05	2.2	0.051	0.11	0.54	34	0.25	1.6	197
968S042	<0.01	0.05	1.1	<0.2	11.5	<0.05	3.3	0.048	0.12	0.94	28	0.21	1.7	238
968S043	0.01	0.09	1.4	<0.2	77.1	0.07	1.6	0.055	0.06	5.73	30	0.21	4.6	288
968S044	<0.01	0.06	1.1	<0.2	16.9	0.11	1.9	0.054	0.07	1.58	32	0.33	5.1	113
968S045	<0.01	0.06	1.1	<0.2	15.6	0.05	2.5	0.047	0.07	0.54	34	0.31	1.6	92
968S046	<0.01	0.06	1.3	<0.2	18.3	<0.05	2.0	0.060	0.08	0.70	28	0.21	2.5	176
968S047	<0.01	<0.05	0.9	<0.2	14.7	<0.05	2.0	0.049	0.06	0.57	30	0.28	1.4	178
968S048	<0.01	0.06	1.0	<0.2	13.9	<0.05	1.7	0.050	0.07	0.99	30	0.26	2.7	114
968S049	0.01	0.07	1.0	<0.2	15.2	<0.05	1.9	0.056	0.07	0.81	24	0.27	2.1	244
9685050	< 0.01	<0.05	0.4	<0.2	9.1	< 0.05	7.7	0.023	0.08	0.78	18	0.34	1.1	53

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

	IMS-116													
	S	Sb	Sc	Se	Sr	Те	Th	Ti	TI	U	V	W	Y	Zn
	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	0.05	0.1	0.2	0.5	0.05	0.2	0.005	0.05	0.05	1	0.05	0.5	2
968\$051	0.02	0.08	0.6	<0.2	19.8	<0.05	1.3	0.044	0.07	0.44	22	0.15	1.4	207
968S052	0.02	0.12	1.0	<0.2	18.7	<0.05	1.5	0.056	0.12	0.42	22	0.18	1.4	470
968S053	<0.01	0.07	1.1	<0.2	12.4	0.17	5.8	0.056	0.08	1.07	30	0.28	2.3	352
968S054	<0.01	0.06	0.9	<0.2	12.1	0.11	1.7	0.050	0.07	0.45	25	0.30	1.2	163
968S055	0.01	0.06	1.2	<0.2	12.7	0.17	2.9	0.069	0.11	0.56	33	0.40	1.5	148
968S056	<0.01	0.07	1.0	<0.2	17.5	0.08	1.6	0.054	0.08	0.45	29	0.50	1.4	125
968S057	<0.01	0.06	0.9	<0.2	8.8	<0.05	1.7	0.046	0.09	0.45	27	0.28	1.5	86
968S058	0.01	0.08	1.4	<0.2	10.6	<0.05	1.8	0.056	0.08	0.52	36	0.28	2.0	174
968S059	<0.01	0.11	1.9	<0.2	24.0	<0.05	1.7	0.080	0.08	0.58	41	0.18	2.0	309
9685060	<0.01	0.09	1.5	<0.2	16.8	<0.05	1.5	0.077	0.09	0.39	36	0.17	1.9	280
9685061	<0.01	0.07	1.3	<0.2	17.6	<0.05	2.1	0.067	0.12	0.63	30	0.14	1.6	211
9685062	<0.01	0.05	1.0	<0.2	9.5	<0.05	1.9	0.041	0.18	0.35	29	0.21	1.2	322
9685063	0.01	0.16	3.3	<0.2	77.6	<0.05	2.7	0.071	0.12	6.77	38	0.20	11.8	740
9685064	<0.01	0.07	1.4	<0.2	21.3	0.05	1.8	0.058	0.08	0.59	35	0.29	2.0	203
968S065	<0.01	0.06	0.9	<0.2	18.2	<0.05	1.2	0.048	0.07	0.42	30	0.21	1.5	108
9685066	<0.01	0.07	1.1	<0.2	23.1	<0.05	1.0	0.061	0.08	0.79	28	0.15	1.7	170
968S067	<0.01	0.07	1.2	<0.2	26.7	<0.05	1.2	0.052	0.12	0.51	34	0.19	1.7	289
968S068	<0.01	0.06	1.1	<0.2	10.3	<0.05	1.4	0.049	0.11	1.05	32	0.25	2.1	254
9685069	0.01	0.08	0.9	<0.2	14.3	<0.05	0.8	0.053	0.08	0.63	30	0.19	1.2	524
968S070	<0.01	0.06	0.8	<0.2	16.6	0.08	1.1	0.042	0.07	0.34	31	0.30	1.2	288
968S071	<0.01	0.13	1.3	<0.2	15.3	<0.05	2.0	0.053	0.08	0.41	35	0.38	1.9	249
968S072	<0.01	0.10	1.3	<0.2	15.5	<0.05	1.4	0.046	0.08	0.58	31	0.20	2.7	135
968S073	0.04	0.19	3.8	0.7	116.0	<0.05	1.9	0.071	0.15	20.46	42	0.35	17.0	2999
968S074	<0.01	0.10	1.2	<0.2	8.7	<0.05	1.7	0.053	0.07	0.43	35	0.21	1.8	227
968S075	< 0.01	0.10	1.1	<0.2	9.2	< 0.05	2.5	0.054	0.07	0.49	34	0.25	2.0	158

CERTIFICATE OF ANALYSIS:

An A2 Global Company

YVR1811037

Project Name:	958
Job Received Date:	19-Oct-2018
Job Report Date:	06-Dec-2018
Report Version:	Final

								·	r			· · · · · · · · · · · · · · · · · · ·		·
	IMS-116	IMS-116	IMS-116											
	S	Sb	Sc	Se	Sr	Те	Th	Ti	TI	U	V	W	Y	Zn
	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	0.05	0.1	0.2	0.5	0.05	0.2	0.005	0.05	0.05	1	0.05	0.5	2
9685076	0.01	0.10	1.3	<0.2	13.8	<0.05	1.6	0.078	0.08	0.57	35	0.24	2.2	463
968S077	0.01	0.10	1.1	<0.2	13.3	<0.05	1.5	0.041	0.08	0.41	33	0.27	2.1	209
9685078	<0.01	0.06	1.2	<0.2	11.4	<0.05	1.5	0.059	0.11	0.62	28	0.23	2.2	562
9685079	0.01	0.08	1.3	<0.2	16.1	<0.05	1.8	0.079	0.13	0.57	33	0.18	2.0	458
9685080	<0.01	0.09	1.8	<0.2	94.0	<0.05	2.8	0.041	0.10	2.99	31	0.22	3.8	627
9685081	<0.01	0.06	0.7	<0.2	16.4	<0.05	1.4	0.027	0.15	1.28	26	0.16	1.7	506
9685082	0.01	0.12	1.4	<0.2	11.9	<0.05	1.9	0.064	0.11	0.71	35	0.28	2.4	389
DUP 968S025	<0.01	0.07	0.9	<0.2	13.7	0.09	1.0	0.040	0.07	0.35	29	0.40	1.4	110
DUP 968S052	0.02	0.12	1.0	<0.2	18.5	<0.05	1.9	0.058	0.12	0.45	24	0.17	1.4	468
STD BLANK	<0.01	<0.05	<0.1	<0.2	<0.5	<0.05	<0.2	< 0.005	<0.05	< 0.05	<1	<0.05	<0.5	<2
STD BLANK	<0.01	<0.05	<0.1	<0.2	<0.5	<0.05	<0.2	< 0.005	<0.05	< 0.05	<1	<0.05	<0.5	<2
STD OREAS 601	1.02	19.43	1.7	11.5	33.8	14.29	7.0	0.008	0.70	1.86	10	1.03	6.0	1339
STD OREAS 24b	0.20	0.43	9.9	<0.2	29.0	0.05	15.2	0.211	0.63	1.77	83	1.21	11.8	95
														1
														1

APPENDIX III

Aeroquest and IP Interpretation and Comments Mikalya Property

by

Ken Sweet, geophysicist

for CBLT Inc January 12, 2019

TO:	Eugene Spiering
CC:	Bill Gilmore
Subject:	Mikayila Aeroquest and IP interpretation comments
Date:	12 Jan 2019

Introduction:

I was asked to review the Aeroquest airborne EM data flown in 2012. There is a significant area of low resistivity mapped by the Aeroquest survey. It is not known if it is a geologic feature of interest or glacial cover.

As part of the evaluation I quickly reviewed the IP data and the magnetic data that was collected with the Aeroquest survey and reviewed the IP data collected in the past.

I am writing this as if we were looking at the data together with my interpretation and processing software. Thus there are perhaps more figures than would be in a normal interpretation report. Maps are only provided at a fit to page scale, because the information is in my GIS system it is easy to generate full size maps to any scale desired.

Conclusions and recommendations:

I interpret the strong EM response as being due to glacial cover. The modeling and inversion data indicate a flat lying resistivity layer of less than 100 ohm-meters. The thickness in the deepest part would be on the order of 100 meters. Most of the survey has little to no glacial cover, it is too thin to see with the Aeroquest system. Probably 10 meters or less.

Drill hole 97-2, see page 12, matches with the inverted section. Hole 97-2 also encounters mineralization.

Other reasons for a surface low resistivity low such as alteration do not seem plausible.

I was not able to do much with the IP data. Only one page size plan map of the chargeability data was available. There was no map of the resistivity data, it would have likely mapped the interpreted glacial cover. The chargeability data maps the region into a northern moderate IP response and a southern lower response. I am sure that with a better map there would have been isolated areas of higher chargeability.

The gradient array that was used for the survey has little resolution for narrow features, and provides little information on the depth. It is a good method for a large area, it is fast and thus relatively cheap. Even though we don't have the data I believe from reading the reports the geophysicist working with the data was competent and they followed up the data well. I would like to see the data, but it would likely add little to the evaluation of the property.

The magnetic response has little correlation with the IP data. The inferred change in lithology from north to south on the IP data is not seen in the magnetic data. The interpreted faults are obvious in the magnetic data, particularly in the plot of the vertical gradient.

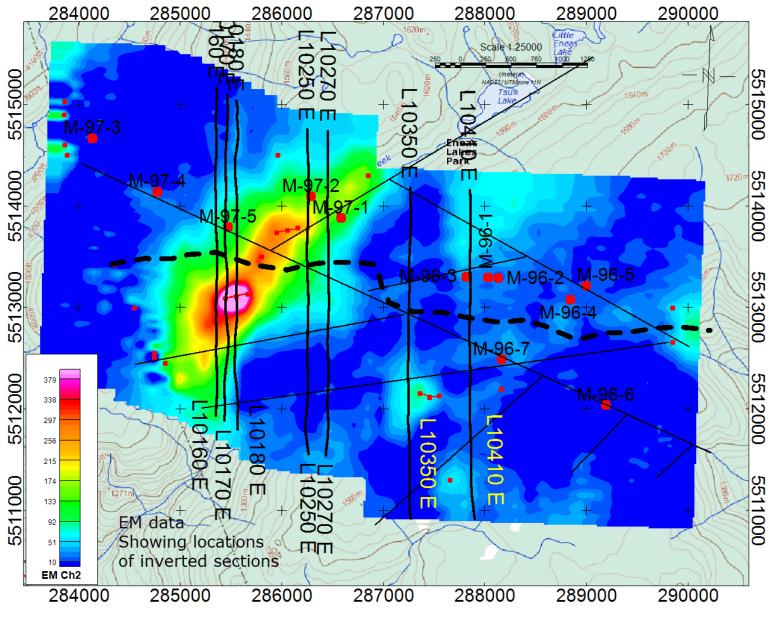
The area near drill holes 97-1 and 97-2 is recommended for a more detail look based on the magnetic response. There is an interpreted NE fault here associated with a magnetic low. The magnetic low may be due to alteration and thus magnetite destruction. Both drill holes indicated alteration with a little mineralization. The low resistivity zone on the surface is not related to the mineralization.

Comments on the Aeroquest electromagnetic survey

The Aeroquest survey was flown in November 2012, logistics and details of the survey are included in their report. "AQ120214_Green Swan Capital Corp._report.pdf". They did not include any interpretation.

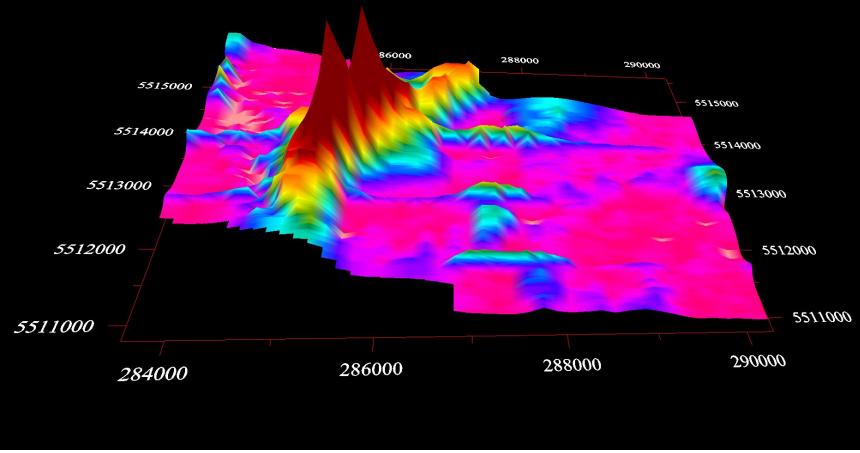
This survey was perhaps one of the last surveys conducted by Aeroquest prior to their bankruptcy. The quality was not as good as their earlier surveys.

EM Conductors


Aeroquest auto picked about 60 EM picks. In some environments the auto-picks work OK, in areas of discrete massive sulfides. Here the auto-picks did not work well. I re-picked the EM conductors. A few poor conductors were selected, only three had any continuity between survey lines. All are given a low priority for follow up, they are related to the increasing depth of the glacial till.

The conductor picks are show on the following map, the small red dots.

Airborne amplitude map


The amplitude of the response depends on the resistivity. A high amplitude relates to a low resistivity such as alteration, change in rock units, or glacial cover. The reason for the high amplitude response is a conductive zone on the order of 75 meters thick. Selected inverted sections are shown in the next section. All of the lines were inverted, only selected lines are shown. A few other areas had a thin conductive layer, in most cases the thickness of the surface layer was too thin to see with the electromagnetic system.

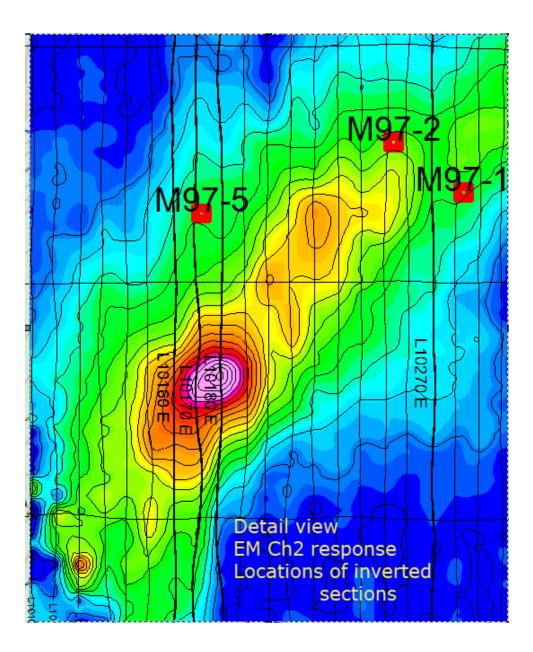
The map below shows selected drill holes, EM picks, and the electromagnetic channel 2 map. It also shows the interpreted faults and the contact between the low chargeability and the moderate chargeability.

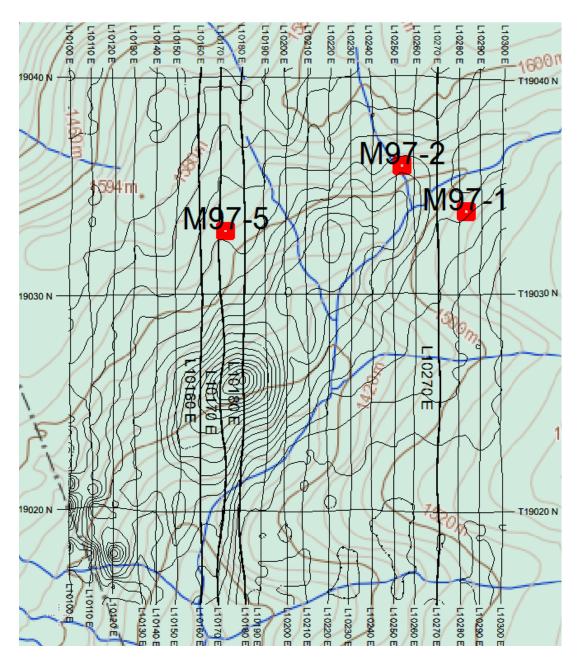
mikayila aeroquest comments 2018-01-12.docx Page 3 of 19

3D view of EM channel 2 amplitude

mikayila aeroquest comments 2018-01-12.docx Page 4 of 19

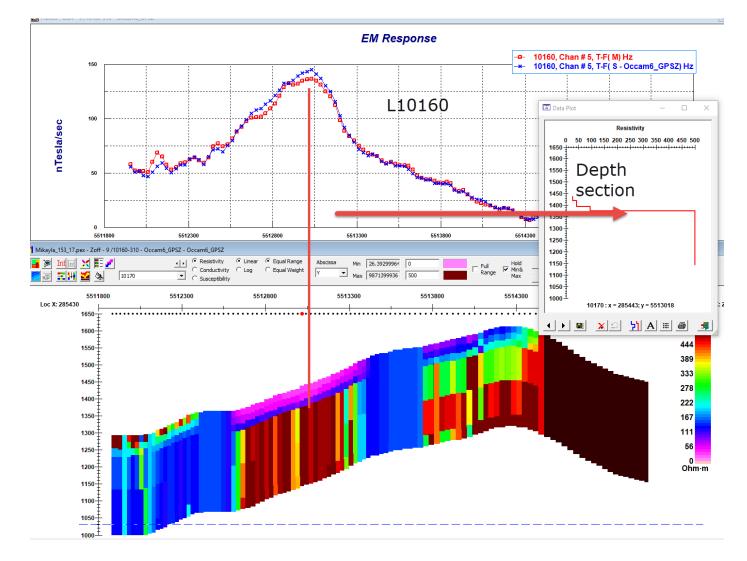
The map below shows the second channel, shallow response. The larger values are due to low resistivity. The chart above shows the thickness of the glacial cover. DH 97-02 is on the edge of the low resistivity, and has by far the deepest glacial till. See detail plan map below.

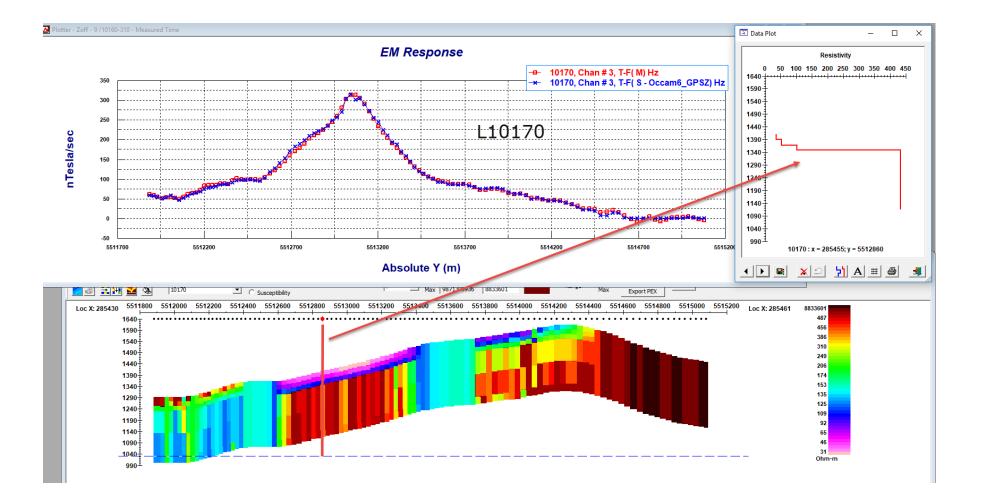

Selected drill holes plotted on the map. Thickness of the glacial till is show for several of the drill holes.

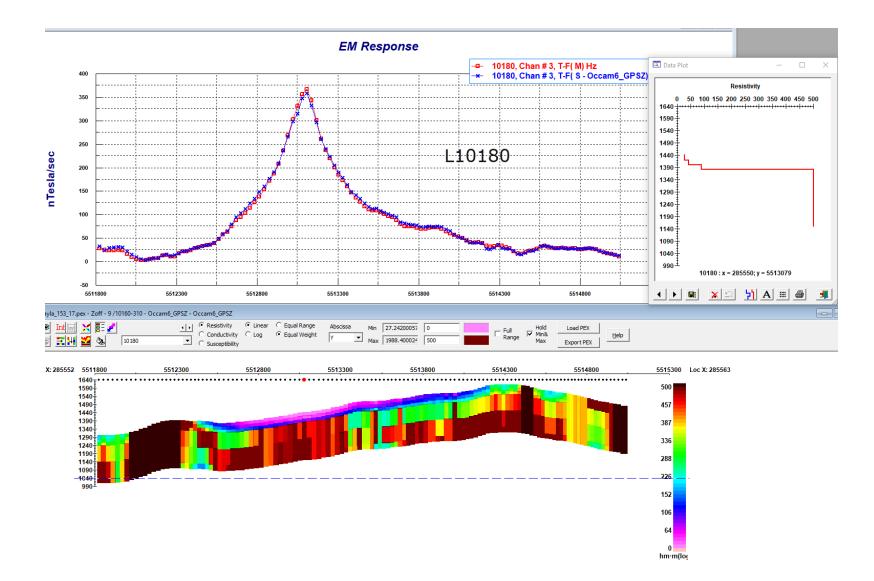

Hole	E_KMZ	N_KMZ	Azimuth	Dip	Line	Length	Sta	QUAL
M-96-1	288028	5513299	180	-70	9700	251.5	-3172	6.1
M-96-2	288127	5513295	180	-60	9700	284.4	-3294	86.8
M-96-3	287816	5513303	180	-70	9600	250.2	-3538	12.9
M-96-4	288842	5513082	0	-90	9490	243.8	-2562	3
M-96-5	288993	5513217	180	-70	9600	251.5	-2440	25
M-96-6	289190	5512041	180	-70	8640	259.1	-2196	
M-96-7	288162	5512491	180	-60	8935	239.3	-3090	
M-97-1	286583	5513885	180	-55	10050	376.7	-400	
M-97-2	286286	5514099	180	-55	10250	425.2	-700	
M-97-3	284133	5514670	180	-60	10770	432.8	-2650	
M-97-4	284774	5514141	0	-55	9900	390.7	-2090	
M-97-5	285469	5513795	0	-55	9900	416.7	-1400	

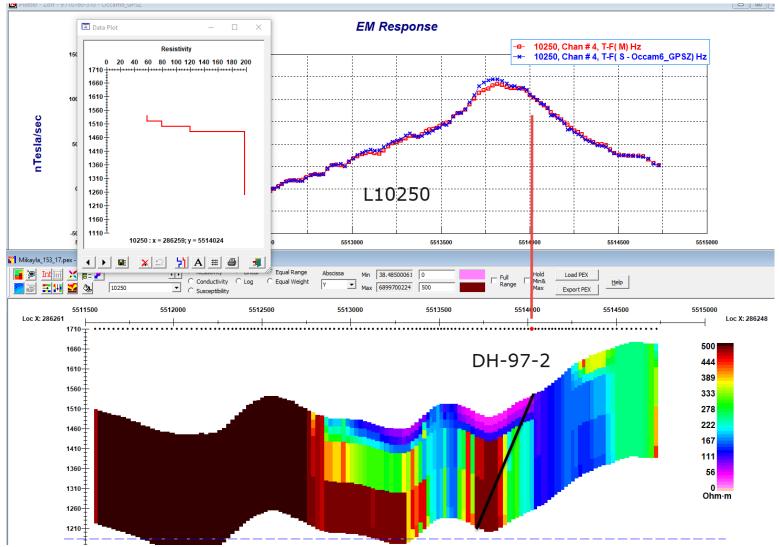
The drill hole locations came from a Google Earth KMZ file provided by Mr. Spiering.

Detail area

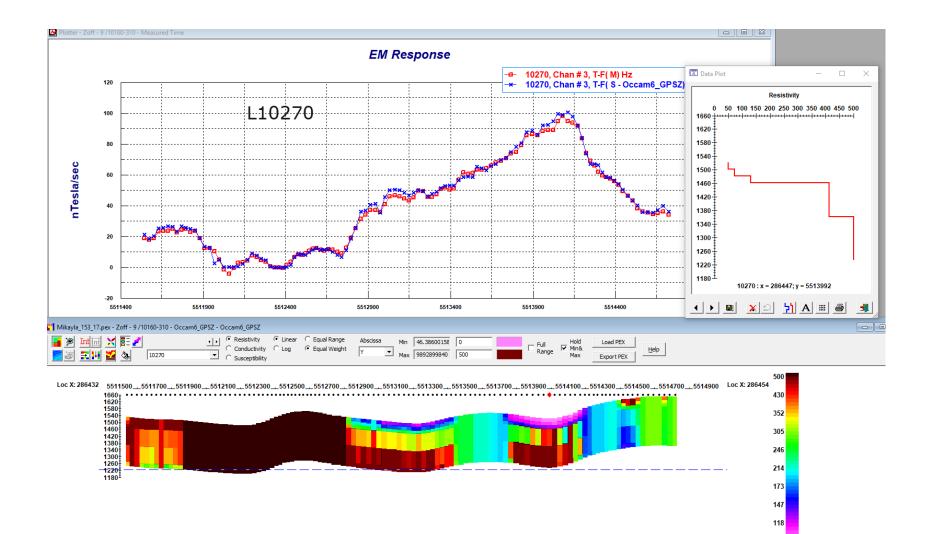

I am repeating some from above, it is easier to look at the detailed map. The response is due to a surface conductive layer that does not extend to depth, the center portion would be 75-100 meters thick. Below are a detail map and selected inverted sections showing the low resistivity surface.

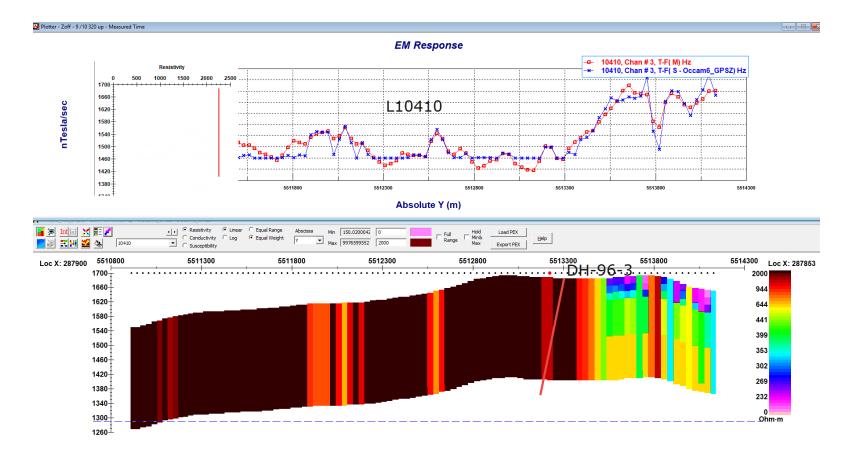



The resistivity low (high EM response) is due to a conductive surface layer. Contour lines are EM response/


Inverted Sections

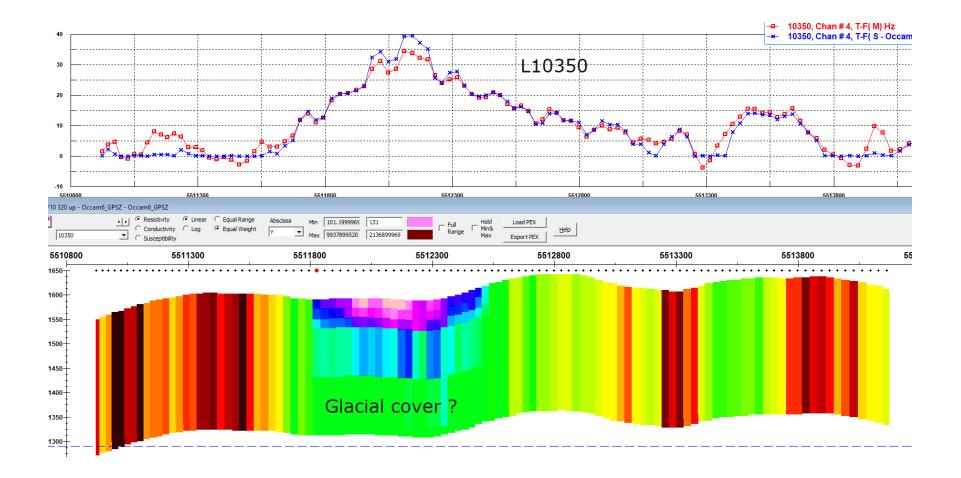
mikayila aeroquest comments 2018-01-12.docx Page 8 of 19





Line 10250 showing location of drill hole M97-1. Based on the inversion model the hole is drill into the low resistivity zone.

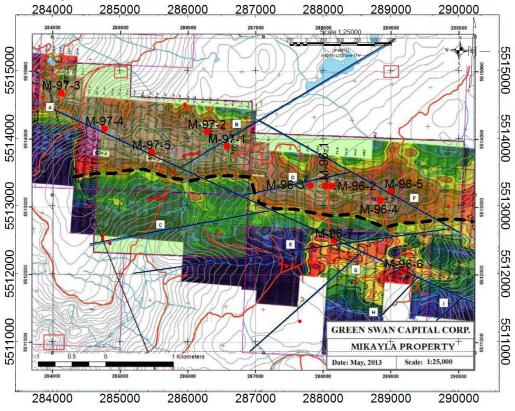
mikayila aeroquest comments 2018-01-12.docx Page 11 of 19



0 hm∙m(log

Inverted section over drill hole DH-96-3, one of the better mineralized holes. The airborne EM shows that it is very resistive and is not sensitive enough to show any changes. Airborne EM will not respond to disseminated sulfides, IP will respond to disseminated sulfides. It would respond to strong alteration or glacial cover. I interpret the lower resistivity on the north end of the line, left, as due to thin glacial cover. I do not have any geologic information to confirm this. The vertical stripes are insignificant changes in resistivity, caused by noise in the data.

mikayila aeroquest comments 2018-01-12.docx Page 13 of 19


IP Survey

Based on the IP maps and comments I believe that the IP survey was of good quality and was used extensively for the property evaluation. BUT, little of the data is available for re-evaluation.

Better IP and Resistivity maps could help with the project evaluation. It is probably not possible to get closer to the original data. Any effort would be time consuming and thus expensive. I don't recommend it unless we decide to a total reevaluation of the project. There was no mention of the resistivity data in the reports, the resistivity data can be useful for mapping geology.

The IP surveys were conducted with an AB spacing of 1600 meters, and a receiver spacing of MN 50 meters, the receiver was moved 25 meters for each reading. In some areas to provide better details a shorter AB spacing was used. In concept the shorter AB spacing does not look as deep. The gradient array is fast thus reasonable inexpensive. It does not do well for thin zones, veins or faults. It is a good choice for large targets, i.e. porphyries.

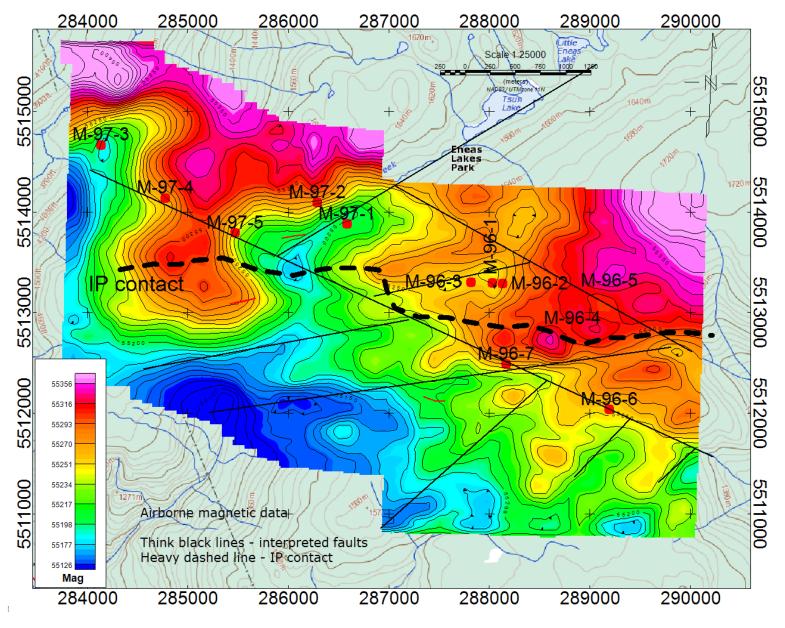
I have added the dashed EW black line which separates the lower IP response to the south and the moderate IP response to the north. This could be due to increased mineralization to the north, or more likely a change in geologic units. The map shows some square white blocks with letters, probably from an earlier interpretation. I did not see the interpretation; in the reports I had, I may have missed it.

mikayila aeroquest comments 2018-01-12.docx Page 15 of 19

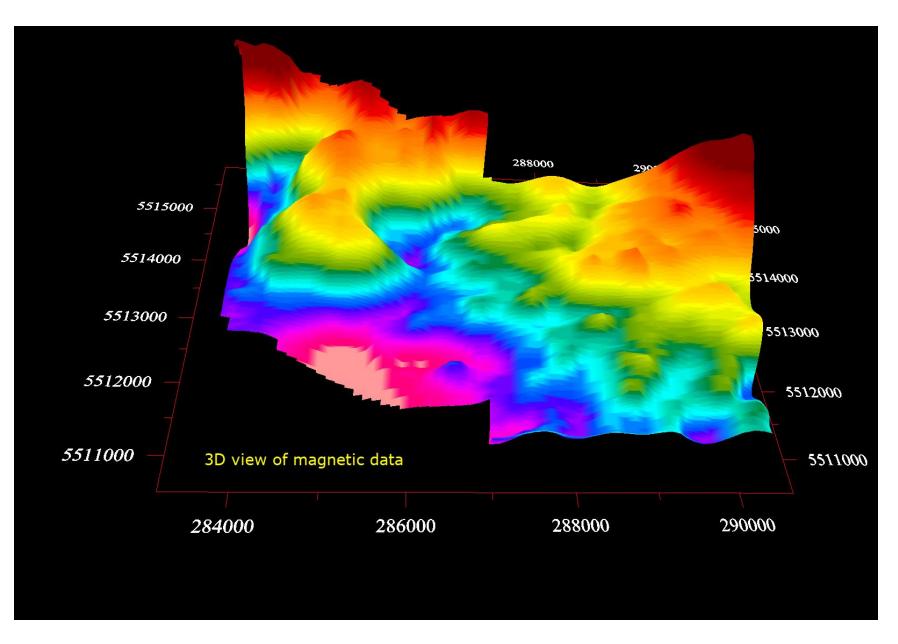
Airborne magnetic data

A total field magnetic map and a vertical gradient magnetic map are shown below. The interpreted structures are clear on the vertical gradient map.

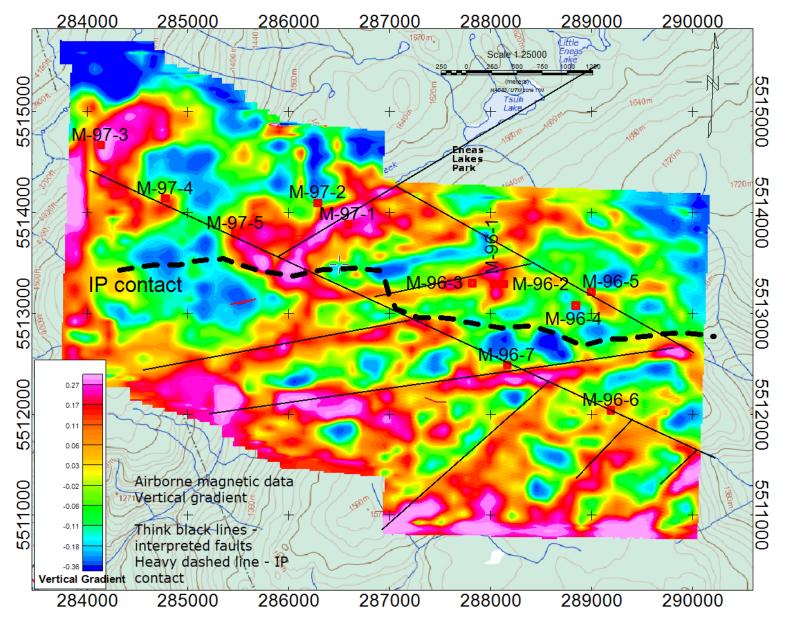
The IP contact does not correlate with the magnetic data.


Two drill holes M97-1 and M97-2 both have significant alteration.

From Spiering KML file


"M97-1 Potassic alteration associated with veining was only noted in holes M-97-1 and M-97-2, the two eastern-most holes drilled during the 1997 program. Veining is cut by late stage quartz +/- K-spar + pyrite +/- molybdenite +/- hematite veinlets. Both vein sets are crosscut by a third set of late, sparse, quartz + pyrite +/- molybdenite veinlets present in holes M-97-1 and M-97-2.

M97-2, at the northern end of this electromagnetic anomaly "... drilled due south at -55° (and) encountered a coarse-grained, potassic and sericitic altered biotite granodiorite containing a number of highly altered sections. Within the more highly altered sections, original granitic textures have been replaced by chlorite, sericite and quartz."


Both holes occur along an area of low magnetic response perhaps because of faulting, a NE fault is interpreted here. The magnetic low may be due to alteration and magnetite destruction. To test this idea a drill hole would be recommended perhaps 200 meters SW of drill hole M-97-1.

mikayila aeroquest comments 2018-01-12.docx Page 17 of 19

mikayila aeroquest comments 2018-01-12.docx Page 18 of 19

mikayila aeroquest comments 2018-01-12.docx Page 19 of 19