		1.7.2	00000
COLUMBLA	BC Geologica	al Survev	
The Box Plan on Earth	-		
Ministry of Energy, Mines & Petroleum Resources	Assessment	кероп	Sun 1
Mining & Minerals Division	3832	1	Assessment Report
BC Geological Survey			Title Page and Summar
TYPE OF REPORT (type of survey(s)): Prospecting, Ge	ological	TOTAL COS	ST: \$13,132.00
AUTHOR(8): Laurence Sockochoff, PEng	SIGNAT	URE(8): Laurence	x Sookockoff
NOTICE OF WORK PERMIT NUMBER(SYDATE(S):			YEAR OF WORK: 2019
STATEMENT OF WORK - CASH PAYNENTS EVENT NUMB	ER(ByDATE(B): 5733643, March	9, 2019	
PROPERTY NAME: Nahmint			
CLAIM NAME(8) (on which the work was done): 105921	1 1055823 1057021		1
10321	1, 1000020, 1007021		
COMMODITIES SOUGHT: Copper, Gold, Silver			
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:	092C 007 / 008 / 009 / 086 / 23	31/232/233/621/	622
MINING DIVISION:	NTERCORI I	092C.096, 092F.006	
A CONTRACTOR OF A CONTRACTOR O			
LATITUDE: 48 ° 55 00 LONG	ITUDE: 124 54 1	8 (at centre of w	ork)
OWNER(S):			
1) Bil McKinney	2)		
Letter and an and a second sec			
MAILING ADDRESS:			
11751 Shell Road			1
Richmond BC V7A 3W7			
OPERATOR(S) (who paid for the work):	2)		
John Bakus			
#3 1572 Lorne Street East			
Kamloops BC V2C 1X6			
PROPERTY GEOLOGY KEYWORDS (Ithology, ego, stratig		and the second second second	
Triassic, Jurassic, Vancouver Group, Quatsino Lin			
Limestone, Marble, Basalt, Sedimentary Rocks, G		2.000 and 1.000 and 1.000 and	
		100000000000000000000000000000000000000	
REFERENCES TO PREVIOUS ASSESSMENT WORK AND A	SSESSMENT REPORT NUMBERS:	15199, 17714, 1948	34, 19485, 29252, 29660,
30799, 31708			

E OF WORK IN S REPORT	(IN METRIC ULITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (Incl. support)
LOGICAL (scale, area)			
Ground, mapping			
Photo Interpretation	890 hectares	1059211	\$ 6,600.00
PHYSICAL (line-kilometres) Ground			
Nagnetic			
Electromagnetic			
Induced Polarization			
Radiometric		-	
Selsmic			
Other			
Airbome			
CHENICAL iber of samples analysed for)		2	
Boll			
Silt			
Rock			
Other			
LING I metres; number of holes, size) Core			
Non-core			
ATED TECHNICAL			
Samplinglassaying		1059211, 1056823, 1067021	3,266.00
Petrographic			120
Mineralographic			
Metallurgio			
SPECTING (scale, area) 1:86	42 10 hectares	1059211, 1056823, 1067021	3,266.00
PARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)		-	
Legal surveys (scale, area)			
Road, local access (kilometres)/trail			
Trench (metres)			
Underground dev. (metres)			
Other			
21 July 2		TOTAL COST:	\$ 13, 132.00
		TOTAL COST:	5

Geological & Prospecting Report

(Event 5733643)

Bill McKinney

(Owner)

John Bakus

(Operator)

Work done on Tenures

1059211, 1056823, 1067021

of the 15 claim

Nahmint Property

Alberni Mining Division

BCGS Maps 092C.096, 092F.006

Centre of Work

5,420,016N, 360,445E (Zone 10U NAD 83)

work done from

March 6, 2019 to March 9, 2019

Author & Consultant

Laurence Sookochoff, PEng Sookochoff Consultants Inc.

Original Report Submitted June 23, 2019

Amended Report submitted December 3, 2019

Sookochoff Consultants Inc.

TABLE OF CONTENTS	page
Summary	4.
Introduction	5.
Property Location and Description	5.
Accessibility, Climate, Local Resources,	
Infrastructure and Physiography	6.
Water and Power	8.
History: Nahmint Property Area	9.
092C 007– MONITOR	9.
History: Nahmint Property	10.
092C 008– HAPPY JOHN	10.
092C 009– DEFIANCE	10.
092C 086– BLACK PRINCE	10.
092C 231– HAPPY JOHN 2	11.
092C 232– HAPPY JOHN 4	11.
092C 233– GREEN MOUNTAIN	11.
092C 621-WASP	11.
092C 622– GOLD VEIN	12.
Geology: Nahmint Property Area	13.
092C 007– MONITOR	12.
Geology: Nahmint Property	13.
092C 008– HAPPY JOHN	14.
092C 009– DEFIANCE	14.
092C 086– BLACK PRINCE	14.
092C 231– HAPPY JOHN 2	14.
092C 232– HAPPY JOHN 4	14.
092C 233– GREEN MOUNTAIN	15.
092C 475– HANDY CREEK	15.
092C 621- WASP	15.
092C 622– GOLD VEIN	15.
Mineralization: Nahmint Property Area	15.
092C 007– MONITOR	16.
Mineralization: Nahmint Property	16.
092C 008– HAPPY JOHN	16.
092C 009– DEFIANCE	17.
092C 086– BLACK PRINCE	17.
092C 231– HAPPY JOHN 2 092C 232– HAPPY JOHN 4	17.
092C 232– HAPPY JOHN 4	18. 18.
092C 233- GREEN MOONTAIN	18.
092C 622– GOLD VEIN	18.
2019 Exploration Program:	18.
Interpretation, Conclusions, and Recommendations	19. 24.
Selected References	24. 26.
Statement of Costs	20.
Certificate	28.
Field Crew Qualifications	29.

TABLES

Table 1. Tenures of the Nahmint Property	6.
Table 2. Approximate Location of Cross-Structures	23.

ILLUSTRATIONS

Figure 1. Location Map	5.
Figure 2. Nahmint property location from Port Alberni	7.
Figure 3. Aerial view of Port Alberni	8.
Figure 4. Nahmint Property Claims	9.
Figure 5. Minfiles in area of and on Nahmint Property	9.
Figure 6. Nahmint Property Geology	13.
Figure 6a. Index Map	19.
Figure 7. West Sample Locations	20.
Figure 8. Southwest Sample Locations	20.
Figure 9. Mid Sample Locations	21.
Figure 10. Northeast Sample Locations	21.
Figure 11. North Sample Locations	22.
Figure 12. Indicated Lineaments	23.
Figure 13. Rose Diagram	23.

APPENDICES

- Appendix 1 Sample Assays
- Appendix 2 Sample Locations and Descriptions
- Appendix 3 Photos

Bill McKinney SUMMARY

The 2018 exploration program of sampling, and prospecting exploration program on the Nahmint Property was successful in that samples were obtained from locations that may indicate the surficial geological expression of a mineral potential skarn, or related mineral resource as a porphyry which may have been the source of the mineralizing fluids which form the seven skarn zones on the Nahmint property.

The sample results from sample N-22 within the Southwest zone, samples N-02 and N-07 from the Northeast zone, and samples N-27, N-28, N-29 from the North zone, with the elevated copper values and sporadically elevated gold, arsenic, and molybdenum values, possibly indicate the surficial migration of hydrothermal fluids from a developing porphyry.

An example of a skarn to porphyry mine is in one of the largest porphyry copper mines in Mexico, the Cananea, which was mined as a skarn at the surface and developed to a porphyry mine to depth. "The Cananea mine in Sonora is Mexico's largest open pit copper mine, one of the largest in the world and – having opened in 1899 – one of the oldest on the North American continent" (https://www.mining-technology.com/projects/cananaeacoppermine/

https://ca.images.search.yahoo.com/search/images?p=cananea+copper+mine&fr=crmas&imgurl=ht tp%3A%2F%2Fgeo-mexico.com%2Fwp-content%2Fuploads%2F2014%2F09%2Fsonora-cananeamina_de_cobre.jpg#id=1&iurl=http%3A%2F%2Fgeo-mexico.com%2Fwpcontent%2Fuploads%2F2014%2F09%2Fsonora-cananea-mina_de_cobre.jpg&action=click

The one cross-structure area is a location where surficial indications of a deep-seated porphyry may be revealed in the geology, alteration, and pathfinder minerals. In addition, the sample locations of elevated copper, gold, molybdenum, and arsenic should be prospected to determine the causative source of these anomalous mineral values.

Bill McKinney

INTRODUCTION

From March 6, 2019 to March 9, 2019, a structural analysis in addition to a prospecting and sampling program were completed on the Nahmint Property ("Property"). The purpose of the structural analysis was to locate any cross-structures which may be surficial indicators of a potential concealed mineral resource.

The purpose of the prospecting and sampling program was to prospect and take samples within any prospective mineralized zone in order to gather geological information for future exploration.

Information for this report was obtained from sources as cited under Selected References and from information on the procedures and results on the prospecting and sampling program given the author.

Figure 1. Nahmint Property Location

(Base Map from MapPlace)

PROPERTY LOCATION & DESCRIPTION

Location

The Nahmint Property is located 134 kilometres west of Vancouver, 74 kilometres west of Nanaimo, and 28 kilometres south-southwest of Alberni within BCGS Maps 092F.006 and 092C.096 of the Alberni Mining Division.

Description

The Nahmint Property is comprised of 15 contiguous mineral claims covering an area of 2408.7654 hectares. Particulars are as follows:

Table 1. Tenures of the Nahmint Property

Tenure Number	<u>Type</u>	Claim Name	<u>Good Until</u>	<u>Area</u> (ha)
<u>1056328</u>	Mineral		20200630	35.4637
<u>1059211</u>	Mineral	NAHMINT HAPPY JOHN	20200701	890.1421
<u>1059212</u>	Mineral	NAHMINT HEGATE MTN	20200701	360.1505
<u>1059213</u>	Mineral	NAHMINT HANDY CREEK	20200701	21.179
<u>1059215</u>	Mineral	NAHMINT SOUTH EAST	20200701	466.1664
1059216	Mineral	NAHMINT GOLD NUGGET	20200701	21.1912
1067015	Mineral		20200701	42.3619
1067016	Mineral		20200701	84.741
1067017	Mineral		20200701	21.1879
1067018	Mineral		20200701	21.1937
1067019	Mineral		20200701	21.1955
1067020	Mineral		20200701	21.1974
1067021	Mineral		20200701	42.3977
1067100	Mineral	Nahmint Black Prince Wasp	20200701	296.6309
<u>1067101</u>	Mineral	Nahmint Cascade	20200701	63.5665

*Upon the approval of the assessment work filing Event Number 5733643.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND

PHYSIOGRAPHY

Access

Access: Richmond to Tsawwassen Ferry Terminal to Duke Point, Duke Point Hwy 19 north to Hwy 4 then east to Port Alberni, Rented boat aprox. 50kms south by Alberni Inlet to northern boundary of property.

Climate

(from https://en.wikipedia.org/wiki/Port Alberni)

Port Alberni's dry July gives it a warm-summer Mediterranean climate, although it is much wetter than most such places. Although the summer months do see a relatively small amount of precipitation, the vast majority of it comes during the winter months as cool, moist air flows from the Pacific Ocean over the much colder B.C. coast. Despite its location on the relatively dryer east side of Vancouver Island, the resulting weak rain shadow is not enough to keep the city dry.

The highest temperature ever recorded in Port Alberni was 106 F (41.1 °C). The coldest temperature ever recorded was 7 F (-21.7 C).

Accessibility, Climate, Local Resources, Infrastructure and Physiography (cont'd)

Local Resources

Port Alberni is a resource community of about 17,000 people with abundant skilled labour, housing, services, hospital, airport and a deep sea port. Port Alberni Airport is located 11 km north west of the city (Houle, 2009).

The total population of Port Alberni and surrounding suburbs consisting of both Cherry and Beaver Creek districts is 26,569 (as of the 2004 census conducted by Statistics Canada,

Infrastructure

The local infrastructure is good with extensive logging roads over most of the Nahmint property, and the sheltered Alberni and Uchucklesit Inlets along two sides. Exploration programs can be mobilized and serviced by road, air or water as required to different portions of the property. Upgraded and expanded roads and the installation of deep sea wharfs could provide excellent access for potential future mining operations on the property.

The airport has a 4,000-foot runway with another 2,500 plus feet of taxiways and apron. The airport is home to a number of key tenants, including Coulson Aircrane, Canadian Aero Technologies, Alberni Valley Flying Club and Vancouver Island Helicopters.

Physiography

Topographically, the property resembles a squat dome, and topography consists of terraced, flattopped mountains incised by steep cliffs and valleys with fast-flowing, often seasonal creeks and rivers fed by small lakes. Elevations range across the Property from sea level to about 1000 metres. Overburden on the property consists of thin, poorly developed soils with local pockets of thicker glacial till, and rock exposure averages about 10%.

Vegetation is dense, second growth coniferous forest and fast growing alders along variably overgrown logging roads, with occasional patches of old growth hemlock, balsam, fir and cedar. Abundant fresh water sources occur throughout the property, available through appropriate permits for exploration or mining purposes (Houle, 2009).



Figure 2. Nahmint Property Location from Port Alberni (Base Map from MapPlace & Google)

Sookochoff Consultants Inc.

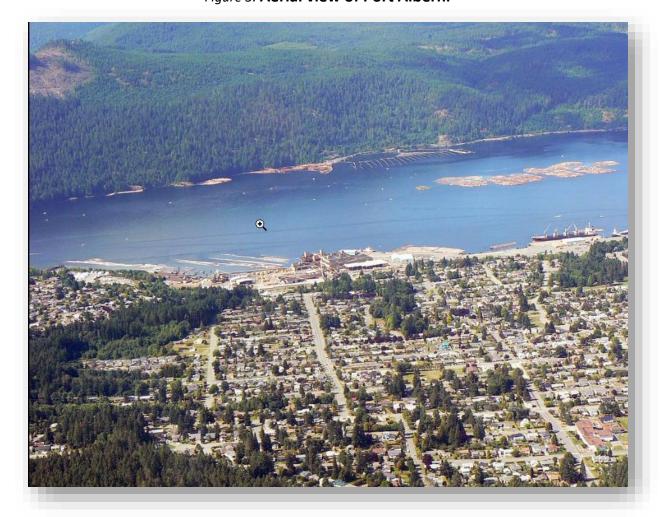
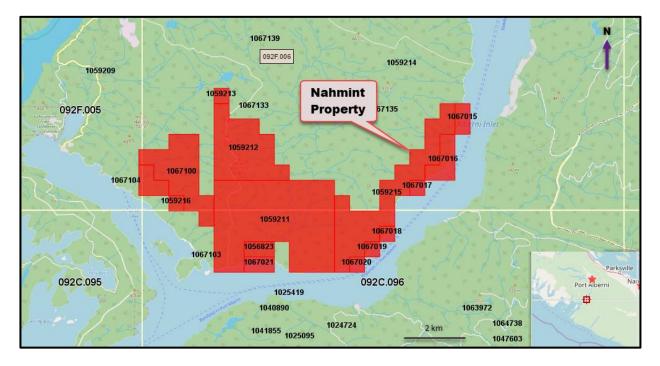
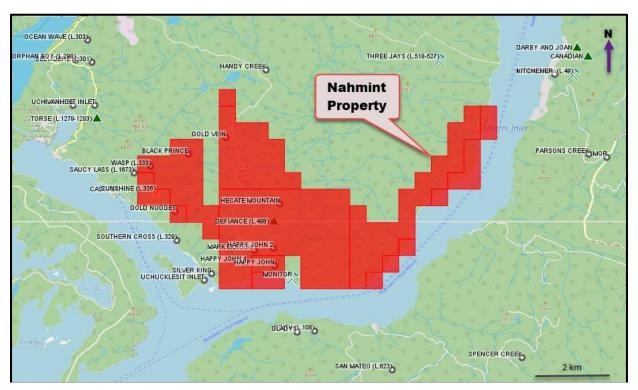



Figure 4. Nahmint Property Claims (Base map from MapPlace)



HISTORY: NAHMINT PROPERTY AREA

Work in the area of the Nahmint property dates back to the late 1890's with the discovery of mineralization at many locations along the nearby portions of the Alberni Inlet, Uchucklesit Inlet and Henderson Lake. Considerable exploration and development work was carried out on the property in the early 1900s, particularly on the Three Jays area, including underground workings on twelve different occurrences. (Pezzot, 2012)

Figure 5. Minfiles in area of and on Nahmint Property

Nahmint Property

(Base map from MapPlace)

Minfile reports on the history of past producers adjacent to the Nahmint property area as follows.

MONITOR past producer (Skarn) Minfile 092C 007

200 metres south

The Monitor mine is located on the north shore of the Alberni canal, just at the entrance. The mineralized zones extend back from the shore several hundreds of metres. The property was discovered in 1898 and during 1900 and 1901 steadily produced ore. The mine was reconditioned in 1916 and produced ore again from then until 1918.

In 1986 through 1989, Chelan Resources completed programs of geochemical sampling, geological mapping and ground geophysical surveys on the area as the Liquid Sunshine project.

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, a part of the Nahmint property. In 2008, two grab samples, 362676 and 362677, of oxidized skarn from a former trench assayed 0.68 and 5.0 per cent copper, 3.7 and 0.13 per cent zinc with 12 and 23 grams per tonne silver, respectively (Assessment Report 29660). In 2009, a select grab sample (2009012) from a 0.2-metre-thick exposure of skarn in the shaft assayed 3.41 per cent copper, 0.223 per cent lead, 58.2 grams per tonne silver and greater than 1 per cent zinc. Another sample (200914), taken approximately 100 metres to the east of the shaft, from a 0.2-metre-thick exposure of pyritic quartz containing chlorite, jarosite, chalcopyrite and hematite assayed 1.02 per cent copper, 45.6 grams per tonne silver and greater than 1 per cent lead and zinc (Assessment Report 31248).

HISTORY: NAHMINT PROPERTY

The history on some of the mineral MINFILE reported showings and prospects within the Nahmint property is reported as follows. The descriptions herein are copied from Minfile.

HAPPY JOHN showing (Skarn, Hydrothermal)

Minfile 092C 008

Within Tenure 1056823

The Happy John 1 showing is located on the western side of Cass Creek, a few hundred metres north of the creek mouth. The Monitor mine (092C 007) adjoins the property. A number of old workings occur on the Happy John #1, #2 and #4 claims.

In 1986, Chelan Resources completed a program of geochemical sampling, geological mapping and ground geophysical surveys on the area as the Liquid Sunshine project. A 1.2 metre chip sample (LSC 21) of mineralized skarn material from the adit 1 portal assayed 10.8 grams per tonne gold. Other samples assayed up to 4.36 per cent copper (Assessment Report 15199).

In 1989, Chelan Resources and Nitro Resources completed a program of prospecting.

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, a part of the Nahmint property. In 2009, a select grab sample (200915) from a trench adjacent to the adit assayed 8.1 per cent copper and 35.1 grams per tonne silver (Assessment Report 31248). In 2010, a select grab sample (17305) from the fourth adit, located at 88 metres elevation, assayed 8.98 per cent copper, 0.126 per cent zinc and 19.5 grams per tonne silver (Assessment Report 31708).

DEFIANCE prospect (Skarn)

Minfile 092C 009

Within Tenure 1059211

The Defiance (L.498) occurrence is located on an east flowing tributary of Handy Creek, approximately 1.3 kilometres north- north west of the creek mouth. The deposits were developed in the early 1900's by considerable stripping, and by open-cutting and by two tunnels 30 metres and 11 metres in length, respectively.

In 1986 through 1989, Chelan Resources completed programs of geochemical sampling, geological mapping and ground geophysical surveys on the area as the Liquid Sunshine project.

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, a part of the Nahmint property.

BLACK PRINCE showing

Minfile 092F 086

Within Tenure 1067100

The Black Prince occurrences are located on the western slopes of Hecate Mountain, approximately 2.5 kilometres north- north east of the mouth of Cass Creek.

In 1988 and 1989, Barona Resources completed programs of soil and rock sampling, geological mapping and ground geophysical surveys on the area as the Gold Nugget claim. Two chip samples (C4858 and C4865) assayed up to 19.7 grams per tonne silver and greater than 1 per cent copper (Assessment Report 17714).

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, a part of the Nahmint property. In 2009, a select outcrop grab sample (813568) from a 0.25-metre-thick mineralized skarn assayed 1.85 per cent copper, 7 grams per tonne silver and 48 per cent iron (Assessment Report 31248).

History: Nahmint Property (cont'd)

HAPPY JOHN 2 showing (Skarn)

Minfile 092C 231

Within Tenure 1059211

The Happy John 2 showing is located on the southern slopes of Hecate Mountain, approximately 700 metres north of the creek mouth of Handy Creek.

In 1986, Chelan Resources completed a program of geochemical sampling, geological mapping and ground geophysical surveys on the area as the Liquid Sunshine project. Samples (LSN 31 to LSN 33) from the vicinity of the shaft assayed 1.6 per cent copper, 4.1 grams per tonne silver and 0.56 gram per tonne gold (Assessment Report 15199). Previously reported samples assayed up to 7.2 per cent copper and 20.6 grams per tonne silver (Assessment Report 15199).

In 1989, Chelan Resources and Nitro Resources completed a program of prospecting.

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, part of the Nahmint property.

HAPPY JOHN 4 showing (Skarn)

Minfile 092C 232

Within Tenure 1059211

The Happy John 4 showing is located on the southern slopes of Hecate Mountain, approximately 1 kilometre north west of the creek mouth of Handy Creek.

In 1986, Chelan Resources completed a program of geochemical sampling, geological mapping and ground geophysical surveys on the area as the Liquid Sunshine project. Samples from the adit and trench assayed up to 5.46 per cent copper and 57.8 grams per tonne silver; while samples from the siliceous volcanic assayed up to 0.66 per cent copper, 13.5 grams per tonne silver and 9.9 grams per tonne gold (Assessment Report 15199).

In 1989, Chelan Resources and Nitro Resources completed a program of prospecting and geochemical sampling of 4 bulk samples. A 7.8-kilogram bulk sample (#201), taken from above the portal and containing partially banded pyrrhotite-marcasite-garnet skarn, assayed 0.12 gram per tonne gold, 6.5 grams per tonne silver and 0.09 per cent copper. The three other bulk samples collected assayed up to 0.265 per cent copper with lower results in gold and silver (Assessment Report 19484).

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, part of the Nahmint property. In 2010, a select grab sample (17238) yielded 8.2 per cent copper and 71.8 grams per tonne silver from a trench near the adit (Assessment Report 31708).

GREEN MOUNTAIN showing (Skarn)

Minfile 092C 233

Within Tenure 1059211

The Mark Murray (former Green Mountain (L.96) crown grant) occurrence is located on the Sing Main Road, west of Handy Creek at an elevation of approximately 400 metres.

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, part of the Nahmint property.

WASP showing (Skarn) Minfile 092F 621 Within Tenure 1067100

History: Nahmint Property (cont'd)

Wasp (cont'd)

The Wasp (L.333) occurrence is located on a tributary of Cass Creek, approximately 1 kilometre northwest of the creek mouth.

In 1988 and 1989, Barona Resources completed programs of soil and rock sampling, geological mapping and ground geophysical surveys on the area as the Gold Nugget claim. Chip samples C4898 and C4900 assayed 66.8 and 65.2 grams per tonne silver, respectively, with greater than 1 per cent copper (Assessment Report 17714).

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, part of the Nahmint property.

In 1988 and 1989, Barona Resources completed programs of soil and rock sampling, geological mapping and ground geophysical surveys on the area as the Gold Nugget claim. Chip samples C4898 and C4900 assayed 66.8 and 65.2 grams per tonne silver, respectively, with greater than 1 per cent copper (Assessment Report 17714).

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, part of the Nahmint property.

GOLD VEIN showing (Skarn)

Minfile 092C 622

Within Tenure 1059212

The Gold Vein occurrence is located on the northern slopes of Hecate Mountain, at approximately 760 metres elevation.

In 1988 and 1989, Barona Resources completed programs of soil and rock sampling, geological mapping and ground geophysical surveys on the area as the Gold Nugget claim. Two chip samples (D2754 and D2755) assayed 94.5 and 17.9 grams per tonne silver, greater than 1 per cent zinc and 0.26 per cent zinc with greater than 1 per cent copper, respectively (Assessment Report 17714).

In 2007 through 2012, Nahminto Resources completed a program of prospecting, geological mapping, geochemical sampling, a ground magnetometer survey and airborne geophysical surveys on the area as the TJM claims, part of the Nahmint property.

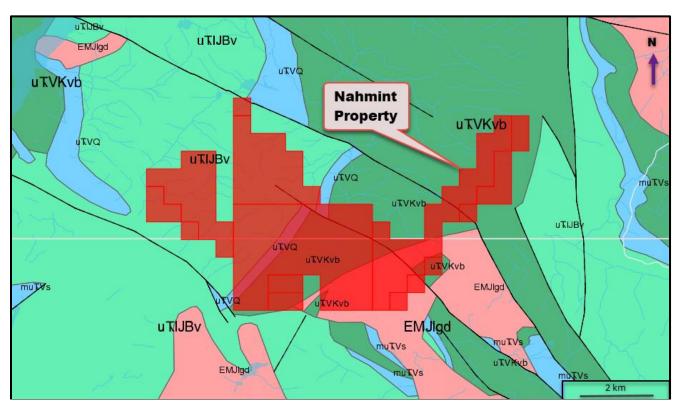
GEOLOGY: NAHMINT PROPERTY AREA

Minfile reports on the geology of a past producer adjacent to the Nahmint property area as follows.

MONITOR past producer (Skarn)

Minfile 092C 007

200 metres south


This skarn deposit occurs in a bed of limestone, probably related to the Upper Triassic Quatsino Formation (Vancouver Group), interbedded with mafic basalts of the Upper Triassic Karmutsen Formation (Vancouver Group). The bedding strikes 115 degrees and dips 20 degrees to the southwest. These rocks are bounded on the east by a large body of granodiorite of the Early to Middle Jurassic Island Plutonic Suite (formerly the Island Intrusions). The rocks are intruded by a body of granodiorite porphyry, probably a dyke, lying west of the deposits and striking in a northerly direction.

GEOLOGY: NAHMINT PROPERTY

The Nahmint property geology consists of a flat-lying sequence of layered rocks consisting of Karmutsen volcanics, Quatsino limestone, Parson Bay volcanics and sediments, and LeMare Lake volcanics. These layered rocks have been intruded from the southeast and domed from beneath by a large batholith or sill of Island Intrusive granodiorite and porphyritic stocks and dikes, in part along the Karmutsen-Quatsino contact. Steeply-dipping, northwest-trending faults have deformed and offset the layered and intrusive rocks both vertically and horizontally (Houle, 2008).

Figure 6. Nahmint Property Geology

(Base map from MapPlace)

GEOLOGY LEGEND

uTrVQ

Middle to Upper Triassic Vancouver Group-Quatsino Formation limestone, marble, calcareous sedimentary rocks

muTrVs

Middle to Upper Triassic Vancouver Group-Undivided sedimentary rocks

uTrVKvb

Upper Triassic Vancouver Group-Karmutsen Formation basaltic volcanic rocks

uTrlJBv

Upper Triassic to Lower Jurassic Bonanza Group undivided volcanic rocks

EMJlgd

Early Jurassic to Middle Jurassic Island Plutonic Suite granodioritic intrusive rocks

Geology: Nahmint Property (cont'd)

Descriptions of the geology on reported showings and past producers within the Nahmint Property are reported as follows. The descriptions herein are copied from Minfile.

Geology: Nahmint Property (cont'd)

HAPPY JOHN showing (Skarn, Hydrothermal)

Minfile 092C 008

Within Tenure 1056823

The area is underlain by rocks of the Upper Triassic Vancouver Group, comprising Karmutsen Formation volcanics and Quatsino Formation sediments, and Lower Jurassic Bonanza Group volcanics. At the showings, these sheared and fractured rocks comprise limestone, argillite, andesite and a hornblende granodiorite plug.

DEFIANCE prospect (Skarn)

Minfile 092C 009

Within Tenure 1059211

The area is underlain by Upper Triassic Vancouver Group rocks consisting of basalts of the Karmutsen Formation, which are in intrusive contact, or interbedded with limestone of the Quatsino Formation. A large body of granodiorite of the Early to Middle Jurassic Island Plutonic Suite (formerly the Island Intrusions) has intruded the strata within a few kilometres to the east.

Lenses of magnetite, intimately mixed with garnet, siderite and calcite, occur in a number of isolated pockets and lenses, strung out in northeast direction on a relatively flat bench. Two of the occurrences are cut by a small creek, while the third covers a flat about 5 metres square. The deposits are variably reported to occur at the contact of limestone and either Vancouver Group igneous rock (Karmutsen?) or hornblende diorite (Island Plutonic Suite?).

BLACK PRINCE showing (Skarn)

Minfile 092F 086

Within Tenure 1067100

Volcanics of the Lower Jurassic Bonanza Group overlie Upper Triassic Vancouver Group rocks consisting of Karmutsen Formation volcanics and Quatsino Formation limestone. The strata may be intruded locally by diorite and granodiorite of the Early to Middle Jurassic Island Plutonic Suite. The limestone of this skarn deposit may be from the Quatsino Formation or from beds found in the upper part of the Karmutsen Formation.

Locally, six separate masses of pure and rocky magnetite occur along a northeast trend for about 60 metres. The largest of these masses has an exposure of about 23 square metres. They are irregular in shape and occur in association with a fine grained, cherty, porphyritic andesite or tuff, near its contact with intrusive hornblende diorite. Limestone is reported to occur within a few hundred metres.

HAPPY JOHN 2 showing (Skarn)

Minfile 092C 231

Within Tenure 1059211

The area is underlain by rocks of the Upper Triassic Vancouver Group, comprising Karmutsen Formation volcanics and Quatsino Formation sediments, and by Lower Jurassic Bonanza Group volcanics. At the showings, these sheared and fractured rocks comprise limestone, argillite, andesite and a hornblende-granodiorite plug.

HAPPY JOHN 4 showing (Skarn)

Minfile 092C 232

Within Tenure 1059211

The area is underlain by rocks of the Upper Triassic Vancouver Group, comprising Karmutsen Formation volcanics and Quatsino Formation sediments, and by Lower Jurassic Bonanza Group volcanics. At the showings, these sheared and fractured rocks comprise limestone, argillite, andesite and a hornblende- granodiorite plug.

Geology: Nahmint Property (cont'd)

GREEN MOUNTAIN showing (Skarn) Minfile 092C 233

Within Tenure 1059211

The area is underlain by Upper Triassic Quatsino Formation (Vancouver Group) limestone in contact with andesite of the Lower Jurassic Bonanza Group. The strata is intruded by diorite of the Early to Middle Jurassic Island Plutonic Suite. The intrusive has altered the limestone to masses of garnet and epidote, while the andesite is intensely fractured and metamorphosed, containing bunches and stringers of garnet, epidote and tremolite.

HANDY CREEK showing (Skarn)

Minfile 092F 475

Within Tenure 1067133

A west dipping limestone lens of the Upper Triassic Vancouver Group, Quatsino Formation trends north for 3 kilometres to the headwaters of Handy Creek, 23 kilometres south-southwest of Port Alberni. The Handy Creek lens is terminated by a fault to the south and pinches out to the north between overlying Lower Jurassic Bonanza Group volcanics and sediments and underlying basalts and andesites of the Upper Triassic Karmutsen Formation, Vancouver Group. Exposed widths vary up to 1500 metres.

WASP showing (Skarn) Minfile 092F 621 Within Tanana 10(7100

Within Tenure 1067100

The area is underlain by Upper Triassic Quatsino Formation (Vancouver Group) limestone in contact with andesite of the Lower Jurassic Bonanza Group. The strata is intruded by diorite of the Early to Middle Jurassic Island Plutonic Suite. The intrusive has altered the limestone to masses of garnet and epidote, while the andesite is intensely fractured and metamorphosed, containing bunches and stringers of garnet, epidote and tremolite.

GOLD VEIN showing (Skarn) Minfile 092C 622

Within Tenure 1059212

The area is underlain by Upper Triassic Quatsino Formation (Vancouver Group) limestone in contact with andesite of the Lower Jurassic Bonanza Group. The strata is intruded by diorite of the Early to Middle Jurassic Island Plutonic Suite. The intrusive has altered the limestone to masses of garnet and epidote, while the andesite is intensely fractured and metamorphosed, containing bunches and stringers of garnet, epidote and tremolite.

MINERALIZATION: NAHMINT PROPERTY AREA

Descriptions of copper-gold-silver mineralization in the Nahmint property area are based primarily on historical data compiled in the B.C. Minister of Mines reports from 1898 to 1918, when all sixteen documented skarn occurrences were discovered by prospecting, many were explored by shallow excavations and a few selectively mined. Only six assessment reports exist of work by explorationists from 1965 to 1989.

Since most of the work was done long ago on crown granted mineral claims which did not require assessment work, details of the deposits and excavations are largely unknown. In the modern context of mineral deposits models, descriptions of the sulphide mineralogy of these skarn occurrences appear to represent mixed variations of three end-member types as follows:

Bill McKinney

Mineralization: Nahmint Property Area (cont'd)

• Copper Skarns – mainly chalcopyrite with minor pyrrhotite, pyrite, magnetite, bornite (Monitor, Happy John, Southern Cross, Torse, Sunshine, Three Jays, Ocean Wave, Saucy Lass, Cascade, Ivanhoe, Orphan Boy, Rainy Day)

• Gold Skarns – mainly pyrrhotite with minor bornite, chalcopyrite, pyrite, magnetite (Silver King)

• Iron Skarns – mainly magnetite with minor chalcopyrite, pyrrhotite, pyrite, bornite (Defiance, Black Prince, J & S).

These may actually represent mineral zonation variations within individual deposits or deposit clusters, which is also typical of skarns. Early workers appeared to target primarily visible and high grade copper skarns as direct shipping ore, so pyrrhotite-rich gold skarns may have received less attention, similar to the iron skarns. Gangue mineralogy and deposit shapes are also highly variable, and are dependent on whether they are endoskarns (within the intrusives) or exoskarns (within the host rocks).

Mineralization of past producers adjacent to the Nahmint property area are reported by Minfile as follows.

MONITOR past producer (Skarn)

Minfile 092C 007

200 metres south

The orebodies are found at three points and known as the Maynard, Hedley and Leonard showings. The Maynard is about 600 metres from the canal and is where development occurred from 1900 to 1902. The Hedley is about 300 metres from the canal and was partly developed after it was discovered in 1910, with development occurring in 1916. The Leonard orebody, located about 500 metres southeast of the Hedley showing and at a lower elevation, was developed after its discovery in 1916. The ore consists of pyrrhotite and chalcopyrite with small amounts of magnetite and pyrite. It occurs chiefly in the altered limestone, which consists of calcite, quartz, garnet, epidote and actinolite. Some ore is found in the metamorphosed volcanic rocks which are altered to epidote, chlorite and hematite. The strike of the Leonard orebody is reported to conform with the country rock outside the portal of the adit. An average sample taken from a crosscut in the adit across 0.6 metres assayed 6.1 per cent copper, 17.14 grams per tonne silver and a trace of gold (Minister of Mines Annual Report 1919, page 253).

MINERALIZATION: NAHMINT PROPERTY

Copper, Gold and Iron Skarn mineralization as well as marble deposits on the Nahmint property appear to have formed where the Island intrusives occur along the lower contact of the Quatsino limestone with the underlying Karmutsen volcanics. Evidence of this lithologic relationship is both geological through regional mapping and geophysical through aeromagnetics. No mention of porphyry copper mineralization has been documented on the Nahmint property to date, but neither have such deposits been targeted by explorationists. Sedimentary limestone deposits consist of the extensive exposures of the Quatsino limestone unit itself. (Houle, 2008).

The mineralization on the MINFILE reported past producers and showings within the Nahmint Property area are reported as follows. The descriptions herein are copied from Minfile.

HAPPY JOHN showing (Skarn, Hydrothermal) Minfile 092C 008 Within Tenure 1056823

Mineralization: Nahmint Property (cont'd)

Happy John (cont'd)

There are several mineral occurrences in the area; these occur in skarns, in areas of shearing and in areas of silicification. The geology and mineralization is very similar to that of the Monitor mine and may actually be the extension of the Monitor zones. One zone on this property, if extended along strike, would intersect near the Hedley orebody and if projected to the shore of the canal would terminate near the portal of the main adit on the Leonard orebody.

There are 4 adits and opencuts on the Happy John #1 claim. These are centered on an area of altered limestone and volcanics containing pyrite and chalcopyrite. A sample from the workings assayed 12 per cent copper, 2.06 grams per tonne gold and 36.67 grams per tonne silver.

DEFIANCE prospect (Skarn)

Minfile 092C 009

Within Tenure 1059211

Lenses of magnetite, intimately mixed with garnet, siderite and calcite, occur in a number of isolated pockets and lenses, strung out in northeast direction on a relatively flat bench. Two of the occurrences are cut by a small creek, while the third covers a flat about 5 metres square. The deposits are variably reported to occur at the contact of limestone and either Vancouver Group igneous rock (Karmutsen?) or hornblende diorite (Island Plutonic Suite?).

At the first lens the adit was caved but the dump material showed magnetite mixed with chalcopyrite. A sample of this material assayed 52.6 per cent iron, 3.3 per cent copper, 41.14 grams per tonne silver, 4.2 per cent sulphur, 12.1 per cent silica and a trace of gold (Minister of Mines Annual Report 1917, page 288).

The second lens is reported to show a width of about 3.7 metres and a length of 18 metres. The magnetite shows very little impurities; the only gangue material is garnetite in small quantities. The deposit strikes northwest and dips vertically. A sample of this material graded 66.0 per cent iron, 3.3 per cent silica and a trace of sulphur (Minister of Mines Annual Report 1917, page 289).

The other lens, located about 45 metres to the northwest of the second, is about 1.2 metres wide and has been prospected by an opencut.

BLACK PRINCE showing (Skarn)

Minfile 092F 086

Within Tenure 1067100

Two bodies of high-grade, lustrous, granular magnetite occur. These are strongly sheeted, with sheets from about 4 to 5 centimetres thick, having a sugary texture. Pyrrhotite, pyrite, copper minerals and garnet are also reported. A sample assayed 70.2 per cent iron, 1.4 per cent silica and traces of phosphorous and sulphur (Minister of Mines Annual Report 1916).

HAPPY JOHN 2 showing (Skarn)

Minfile 092C 009

Within Tenure 1059211

There are several mineral occurrences in the area; these occur in skarns, in areas of shearing and in areas of silicification. The geology and mineralization is very similar to that of the Monitor mine and may actually be the extension of the Monitor zones. One zone on this property, if extended along strike, would intersect near the Hedley orebody and, if projected to the shore of the canal, would terminate near the portal of the main adit on the Leonard orebody.

On the Happy John #2 claim a gossan or iron capping can be traced in a south east direction for 122 metres. Mineralization at the workings, a 12 metre adit and an 8 metre shaft, consists of chalcopyrite, magnetite, pyrrhotite and pyrite in garnetite gangue. The mineralization occurs at the limestone-volcanic contact.

Mineralization: Nahmint Property (cont'd)

HAPPY JOHN 4 showing (Skarn)

Minfile 092C 232

Within Tenure 1059211

There are several mineral occurrences in the area; these occur in skarns, in areas of shearing and in areas of silicification. The geology and mineralization is very similar to that of the Monitor mine and may actually be the extension of the Monitor zones. One zone on this property, if extended along strike, would intersect near the Hedley orebody and, if projected to the shore of the canal, would terminate near the portal of the main adit on the Leonard orebody.

The Happy John #4 workings consist of a 15-metre-long adit and a 5 metre trench near the portal of the adit, exposing limestone and skarn. An outcrop of siliceous volcanics hosting chalcopyrite and pyrite occurs 80 metres northwest of the adit.

In 1986, Chelan Resources completed a program of geochemical sampling, geological mapping and ground geophysical surveys on the area as the Liquid Sunshine project. Samples from the adit and trench assayed up to 5.46 per cent copper and 57.8 grams per tonne silver; while samples from the siliceous volcanic assayed up to 0.66 per cent copper, 13.5 grams per tonne silver and 9.9 grams per tonne gold (Assessment Report 15199).

GREEN MOUNTAIN showing (Skarn)

Minfile 092C 233

Within Tenure 1059211

Locally, a weakly foliated iron-copper skarn, oriented at 60 degrees strike and 30 degrees dip to the south east, is exposed over 2 by 2 metres and is least 20 centimetres thick. This is located 1 to 2 metres west of a diorite intrusive contact, striking 150 degrees and dipping vertically. The skarn zone contains chalcedonic quartz and garnet with sulphide mineralization of magnetite, chalcopyrite, pyrrhotite and pyrite. In 2007, two select outcrop grab samples, 364601 and 364651, assayed 4.49 and 1.91 per cent copper, 0.046 and 0.259 per cent zinc, 14.9 and 4.1 grams per tonne silver and 36.3 and 28.5 per cent iron, respectively (Assessment Report 29252). In 2010, a select grab sample (17333) assayed 4.64 per cent copper, 31.8 per cent iron and 10.6 grams per tonne silver (Assessment Report 31708).

A former shaft exposes another skarn zone, approximately 100 metres to the east. The zone is 0.2 metre wide and contains epidote-chlorite-actinolite-garnet alteration with chalcopyrite, pyrite and magnetite hosted by basalt and limestone. In 2009, a sample assayed 7.05 per cent copper, 41.2 per cent iron and 25.3 grams per tonne silver (Assessment Report 31248).

WASP showing (Skarn)

Minfile 092F 621

Within Tenure 1067100

Locally, a diopside-epidote-tremolite altered limestone and volcanics host massive sulphide mineralization consisting of copper (chalcopyrite?) and pyrite mineralization.

GOLD VEIN showing (Skarn)

Minfile 092C 622

Within Tenure 1059212

Locally, siliceous and altered limestone in or near contact with volcanic and intrusive rocks hosts copper (chalcopyrite?) mineralization.

2019 EXPLORATION PROGRAM

Prospecting and Rock Sampling

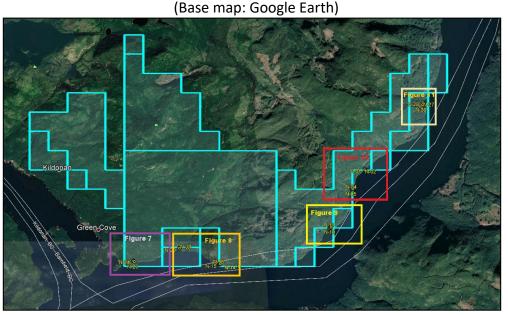
Purpose

The purpose of the program was to locate any location of a geological prospect that may have the potential to be developed to an economic resource. Any indication of mineralization may indicate a potential concealed mineral resource.

Prospecting and sampling

Prospecting of area; orange flagging and marking of sample sites. Multiple photos taken of samples and areas. GPS coordinates were taken, and all samples recorded and mapped. Prospecting notes, operating with equipment (Truck, GPS, Tools and sampling).

Thirty samples were taken from various locations throughout the property area with 27 samples assayed. All the sample locations are shown on the Index Map (*Figure 6.*) which also shows the coverage of the samples by five maps with a scale of 1:8464. Selected assays are shown on the five sample location maps. Complete assays of the samples are shown in Appendix 1 as Certificate of Analysis VAN 19000784.1 and VAN 19000908.1. Descriptions of the samples are reported in Appendix 2.


Three types of samples were collected; float, heavy metal, and in-situ.

A float (FB) sample is a loose piece of rock that is not connected to an outcrop. This type of a sample was selected for the contained minerals, alteration, and/or any other geological feature to serve as a guide in future sampling or exploratory work

An in-situ (IS) sample is a sample taken from its natural or original place. The methodology of sample retrieval was to select a geologically featured site and take a hand-sized rock sample.

The term heavy metal (HM) refers to any metallic chemical element that has a relatively high density and is toxic or poisonous at low concentrations. In the taking of a heavy metal sample, a soil or stream sediment sample is panned in order to concentrate the high density minerals, which would include gold, and reveal potential pathfinder minerals that would not revealed in an unpanned sample assay.

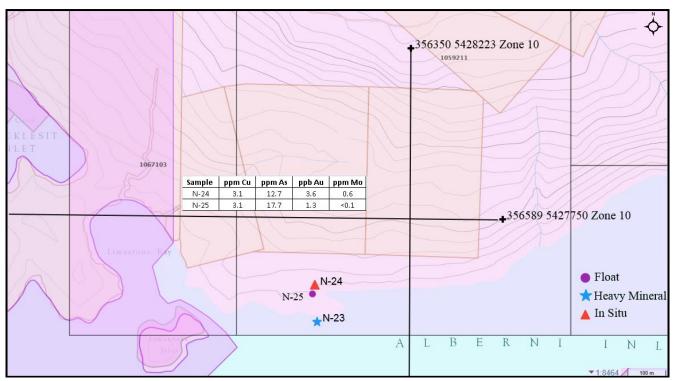

All the samples taken were described by Stewart Jackson, PhD, PGeo who also was a consultant to the project.

Figure. 6a. Index Map showing location of five sample maps

Sookochoff Consultants Inc.

Figure 7. West sample locations* (Base map from MapPlace)

*see Figure 6a for location on Nahmint Property. See Appendix 1 for all assay values.

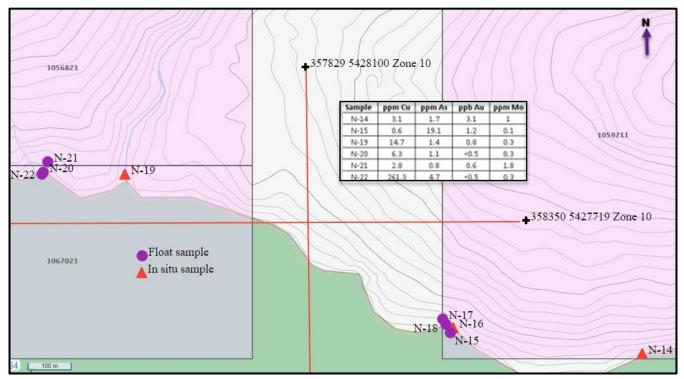
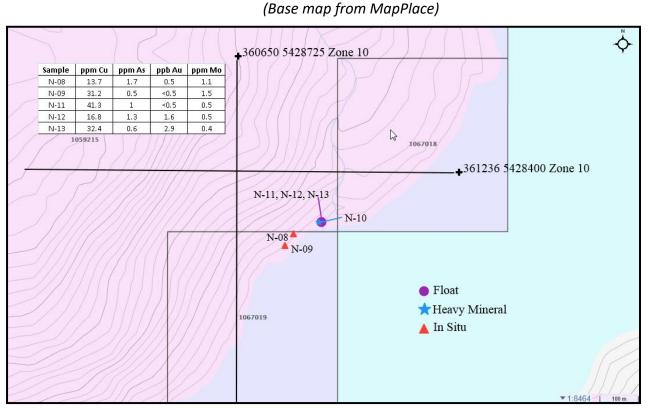
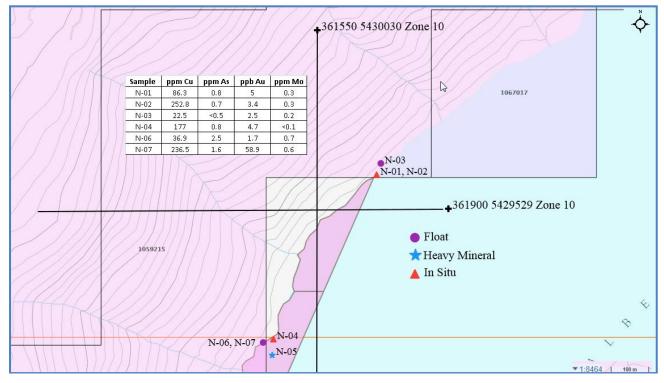



Figure 8. Southwest sample locations* (Base map from MapPlace)

*see Figure 6a for location on Nahmint Property. See Appendix 1 for all assay values.


Figure 9. Mid Sample locations*

2018 Exploration Program (cont'd)


*see Figure 6a for location on Nahmint Property. See Appendix 1 for all assay values.

*see Figure 6a for location on Nahmint Property. See Appendix 1 for all assay values.

Figure 11. North sample locations* (Base map from MapPlace)

*see Figure 6a for location on Nahmint Property. See Appendix 1 for all assay values.

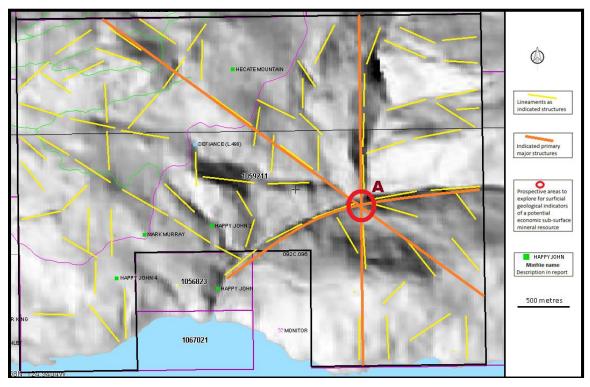
STRUCTURAL ANALYSIS

a) Purpose

The purpose of the structural analysis was to delineate any area of relative major fault intersections that could be the centre of maximum brecciation and be depth intensive to provide the most favourable feeder zone to any residual fluids from a potentially mineral laden reservoir source.

b) Method

A shaded relief image for Tenure 1059211 of the Nahmint property was obtained from MapPlace2. The shaded relief image provided by MapPlace2 uses a single direction of light oriented at 325°N to create its shading and does not represent a composite image composed of multiple light directions. The DEM image was examined and lineaments were delineated manually. The manually defined lineaments defined from a shaded relief image can represent joints, faults or shear zones. Professional experience was used to define all lineaments, primary structures and prospective areas shown in Figure 12.


c) Results

One cross-structural location A, was delineated from indicated northerly, northwesterly, and northeasterly trending structures.

2018 Exploration Program (cont'd)

Figure 12. Indicated lineaments on Tenure 1059211

(Base map: MapPlace & Google)

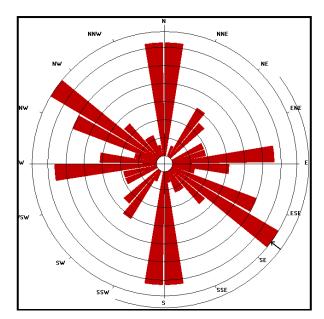


Table 2. Approximate location of the cross-structure

(UTM-10U NAD 83)

Cross-structure	UTM East	UTM North	Elevation (m)
А	358,651	5,428,762	85

Figure 19. Rose Diagram from lineaments

STATISTICS

Axial (non-polar) data No. of Data = 80 Sector angle = 10° Scale: tick interval = 2% [1.6 data] Maximum = 13.8% [11 data] Mean Resultant dir'n = 126-306 [Approx. 95% Confidence interval = ±73.4°] (valid only for unimodal data)

Mean Resultant dir'n = 126.4 - 306.4 Circ.Median = 126.0 - 306.0 Circ.Mean Dev.about median = 39.0° Circ. Variance = 0.38 Circular Std.Dev. = 56.15° Circ. Dispersion = 19.12 Circ.Std Error = 0.4888 Circ.Skewness = -0.74 Circ.Kurtosis = -1.28 kappa = 0.30 (von Mises concentration param. estimate)

Resultant length = 11.72 Mean Resultant length = 0.1465

'Mean' Moments: Cbar = -0.0436; Sbar = -0.1399 'Full' trig. sums: SumCos = -3.4848; Sbar = -11.1917 Mean resultant of doubled angles = 0.1793 Mean direction of doubled angles = 021

(Usage references: Mardia & Jupp, 'Directional Statistics', 1999, Wiley; Fisher, 'Statistical Analysis of Circular Data', 1993, Cambridge University Press) Note: The 95% confidence calculation uses Fisher's (1993) 'large-sample method'

INTERPRETATION, CONCLUSIONS, and RECOMMENDATIONS

The 2018 exploration program of sampling, and prospecting exploration program on the Nahmint Property was successful in that samples were obtained from locations that may indicate the surficial geological expression of a mineral potential skarn, or related mineral resource as a porphyry which may have been the source of the mineralizing fluids which form the seven skarn zones on the Nahmint property.

The sample results from sample N-22 within the Southwest zone, samples N-02 and N-07 from the Northeast zone, and samples N-27, N-28, N-29 from the North zone, with the elevated copper values and sporadically elevated gold, arsenic, and molybdenum values, possibly indicate the surficial migration of hydrothermal fluids from a developing porphyry.

An example of a skarn to porphyry mine is in one of the largest porphyry copper mines in Mexico, the Cananea, which was mined as a skarn at the surface and developed to a porphyry mine to depth,

"The Cananea mine in Sonora is Mexico's largest open pit copper mine, one of the largest in the world and – having opened in 1899 – one of the oldest on the North American continent"

(https://www.mining-technology.com/projects/cananaeacoppermine/

https://ca.images.search.yahoo.com/search/images?p=cananea+copper+mine&fr=crmas&imgurl=http%3 A%2F%2Fgeo-mexico.com%2Fwp-content%2Fuploads%2F2014%2F09%2Fsonora-cananeamina_de_cobre.jpg#id=1&iurl=http%3A%2F%2Fgeo-mexico.com%2Fwpcontent%2Fuploads%2F2014%2F09%2Fsonora-cananea-mina_de_cobre.jpg&action=click

The one cross-structure area is a location where surficial indications of a deep-seated porphyry may be revealed in the geology, alteration, and pathfinder minerals. In addition, the sample locations of elevated copper, gold, molybdenum, and arsenic should be prospected to determine the causative source of these anomalous mineral values.

Respectfully submitted Sookochoff Consultants Inc.

Laurence Sookochoff, PEng

SELECTED REFERENCES

Borovic, I. 1988 - Report on the Mineral Exploration of the Gold Nugget Property for Barona Resources Limited. April 20, 1988. AR 17714.

Coffin, D. 1989 - Assessment Report on the Gold Nugget Property for Barona Resources Ltd. November 25, 1989. AR 19485.

Coffin, D. 1989 - Assessment Report on the Liquid Sunshine Property for Nitro Resources Ltd. November 25, 1989. AR 19484.

Falconer, J.S., Graham, J.C., et al. 1986 - Reconnaissance Surveys on the Liquid Sunshine Group of Mineral Claims for Chelan Resources Incorporated. 16 July 1986. AR 15199.

Houle, J. 2010 - Technical Report on the Nahmint Property for Nahminto Resources Ltd. October 15, 2010. AR 31708.

Houle, J. 2009 - Technical Report on the Nahmint Property for Torch River Resources Ltd. February 9, 2009. AR 30799.

Houle, J. 2008 - Prospecting, Rock Sampling and Geochemistry on the Nahmint Property for Nahminto Resources Ltd. January 22, 2008. AR 29660.

Houle, J. 2007 - Prospecting, Geological Mapping, Rock Sampling and Geochemistry on Portions of the Nahmint Property for Nahminto Resources Ltd. August 15, 2007. AR 29252.

Lenntech-Heavy Metals:

https://www.lenntech.com/processes/heavy/heavy-metals/heavy-metals.htm

MapPlace – Map downloads

MtOnline - MINFILE downloads.

STATEMENT OF COSTS

Field work was performed on the Nahmint Property between March 6, 2019 and March 9, 2019 to the value as follows:

Structural Analysis L. Sookochoff, PEng March 6-9, 2019 3 days @ \$1,200.00		\$ 3,600.00
Prospecting and Sampling		
Labour L. Bradshaw: March 7-8, 2019 2 days @ \$300.00/day B. McKinney: March 7-9, 2019 3 days @ \$450.00/day	600.00 <u>1,350.00</u>	1,950.00
Travel/Transportation Vancouver to Port Alberni 1,1600 kilometres @ \$0.68		788.80
Exploration Equipment GPS, clinometer, electronics VHF radios, etc Spot Locator's safety equipment and supplies - Bear spray, axes, mallets, pry bars, etc Chainsaw	40.00 40.00 40.00 <u>40.00</u>	160.00
Food/Lodging		
4 man days @ \$ 125.00		500.00
Assays		734.00
Ferry and Boat Charter		749.20
Consulting and Sample Description		
S. Jackson PhD, PGeo	750.00	
Report		
L. Sookochoff, PEng	<u>3,400.00</u>	4,150.00
Maps		<u>500.00</u>
		\$ 13,132.80
		=======

CERTIFICATE

I, Laurence Sookochoff, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and principal of Sookochoff Consultants Inc. with an address at 120 125A-1030 Denman Street, Vancouver, BC V6G 2M6.

I, Laurence Sookochoff, further certify that:

1) I am a graduate of the University of British Columbia (1966) and hold a B.Sc. degree in Geology.

2) I have been practicing my profession for the past fifty-three years.

3) I am registered and in good standing with the Engineers and Geoscientists British Columbia.

4) The information for this report is based on information as itemized in the Selected Reference section of this report, from exploration work done in the Nahmint Property area.

5) I have no interest in the Nahmint Property as described herein.

Laurence Sookochoff, P. Eng.

FIELD CREW QUALIFICATIONS

Bill McKinney: 10 years prospecting experience.

Lance Bradshaw: five years prospecting experience.

Appendix I

Sample Assays

MINERAL LABORATORIES Canada

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Procedure

PRP70-250

Code

BAT01

AQ200

Batch charge of <20 samples

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Code Description

Number of

Samples

1

8

8

ADDITIONAL COMMENTS

Client:

McKinney, Bill 11751 Shell Rd. Richmond British Columbia V7A 3W7 Canada

Submitted By:	William Mckinney
Receiving Lab:	Canada-Vancouver
Received:	April 08, 2019
Report Date:	April 12, 2019
Page:	1 of 2

Crush, split and pulverize 250 g rock to 200 mesh

1:1:1 Aqua Regia digestion ICP-MS analysis

VAN19000784.1

Test

0.5

Wgt (g)

Report

Status

Completed

Lab

VAN

VAN

VAN

Project: Nahmint Shipment ID: P.O. Number Number of Samples: 8

SAMPLE DISPOSAL

DISP-PLP	Dispose of Pulp After 90 days
DISP-RJT	Dispose of Reject After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

McKinney, Bill 11751 Shell Rd. Richmond British Columbia V7A 3W7 Canada

CC:

KERRY JAY

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

				Client:	McKinney, 11751 Shell Rd. Richmond British	Bill Columbia V7A 3W7 Canada		
BUREAU VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/u	m	Project:	Nahmint			
Bureau Veritas	Commodities Canada Ltd.			Report Date:	April 12, 2019			
9050 Shaughn	essy St Vancouver British Colu	mbia V6P 6E5 Canada						
PHONE (604)	253-3158			Page:	2 of 2	P	art:	1 of 2
CERTIF	ICATE OF ANAL	YSIS				VAN19000784	1.1	
	Mathad wou							

	Method	WGHT	AQ200																		
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	1	0.01	0.001
N-19-02 Ro	ck	0.30	0.3	252.8	1.1	66	<0.1	79.7	38.7	830	6.50	0.7	3.4	0.3	84	<0.1	<0.1	<0.1	278	4.92	0.050
N-19-03 Ro	ck	0.31	0.2	22.5	0.3	56	<0.1	53.2	26.6	434	4.59	<0.5	2.5	0.4	70	<0.1	<0.1	<0.1	179	2.59	0.043
N-19-08 Ro	ck	0.26	1.1	13.7	4.8	54	<0.1	4.9	7.4	411	2.01	1.7	0.5	2.7	46	<0.1	0.1	<0.1	31	0.51	0.050
N-19-09 Ro	ck	0.43	1.5	31.2	4.1	72	<0.1	5.2	8.9	656	2.56	0.5	<0.5	3.2	22	<0.1	<0.1	0.3	25	0.49	0.067
N-19-16 Ro	ck	0.41	0.6	2.3	1.7	27	<0.1	0.6	0.7	765	0.40	18.2	2.4	<0.1	786	0.4	0.1	<0.1	3	33.40	0.030
N-19-18 Ro	ck	0.36	0.1	40.5	1.0	29	<0.1	38.8	7.6	418	2.12	0.6	1.1	0.2	67	<0.1	<0.1	<0.1	113	2.05	0.114
N-19-27 Ro	ck	0.46	0.2	270.7	0.9	73	<0.1	40.3	27.0	711	5.45	<0.5	2.5	0.3	54	<0.1	<0.1	<0.1	194	1.34	0.059
N-19-30 Ro	ck	0.49	0.8	24.8	2.0	31	<0.1	30.9	5.6	474	1.84	6.2	<0.5	0.6	35	<0.1	<0.1	<0.1	34	4.30	0.052

			Client:	McKinney, Bill 11751 Shell Rd. Richmond British Columbia	V7A 3W7 Canada		
BUREAU VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project: Report Date:	Nahmint April 12, 2019			
Bureau veritas	Commodities Canada Ltd.			•			
9050 Shaughn	essy St Vancouver British Colu	umbia V6P 6E5 Canada					
PHONE (604)	-		Page:	2 of 2	Pa	rt:	2 of 2
CFRTIF	ICATE OF ANAL	YSIS		VAN	19000784	1	

	Method	AQ200																
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	ті	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
N-19-02 Roc	k	4	114	2.78	15	0.479	<20	5.27	0.448	0.04	<0.1	0.01	20.8	<0.1	<0.05	12	<0.5	<0.2
N-19-03 Roc	k	3	44	1.63	17	0.428	<20	4.35	0.479	0.06	<0.1	<0.01	4.5	<0.1	<0.05	10	<0.5	<0.2
N-19-08 Roc	k	6	11	0.65	16	0.132	<20	1.10	0.100	0.08	0.3	0.03	3.5	<0.1	0.11	4	<0.5	<0.2
N-19-09 Roc	k	8	11	0.80	61	0.103	<20	1.20	0.063	0.20	0.2	0.02	3.3	<0.1	0.69	4	0.6	0.2
N-19-16 Roc	k	<1	<1	0.21	2	0.006	<20	0.17	0.003	0.01	<0.1	<0.01	0.5	<0.1	<0.05	<1	<0.5	<0.2
N-19-18 Roc	k	2	92	1.50	46	0.586	27	2.17	0.206	0.19	<0.1	<0.01	9.2	<0.1	<0.05	5	<0.5	<0.2
N-19-27 Roc	k	5	20	1.52	12	0.445	<20	2.60	0.122	0.05	<0.1	<0.01	6.6	<0.1	<0.05	12	<0.5	<0.2
N-19-30 Roc	k	3	5	0.30	69	0.227	<20	3.28	0.105	0.03	0.1	0.01	10.4	<0.1	<0.05	7	<0.5	<0.2

												Clien	::	11751	Shell Rd	l.	bia V7A (3W7 Can	ada		
B U R E A U VERITAS										Project: Nahmint											
Bureau Veritas	Commodities Canada Lt	d.										Report	Report Date: April 12, 2019								
-	9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158													1 of 1					Part	: 1 of	2
QUALIT	Y CONTROL											VA	N19	000	784.	1					
	Method	WGHT	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200							
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%							
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	1	0.01	0.001
Pulp Duplicates																					
N-19-16	Rock	0.41	0.6	2.3	1.7	27	<0.1	0.6	0.7	765	0.40	18.2	2.4	<0.1	786	0.4	0.1	<0.1	3	33.40	0.030
REP N-19-16	QC		0.7	2.0	1.6	26	<0.1	0.3	0.7	770	0.40	16.9	2.8	<0.1	788	0.4	0.1	<0.1	3	33.64	0.030
Reference Mate	rials																				
STD DS11	Standard		15.4	149.3	133.7	330	1.9	82.3	13.7	954	3.06	46.1	57.4	7.7	66	2.7	7.7	12.2	48	1.04	0.071
STD OREAS262	2 Standard		0.7	112.1	54.5	145	0.5	62.9	25.6	526	3.14	36.3	73.7	9.1	35	0.7	3.8	1.1	21	2.92	0.042
STD DS11 Expe	ected		13.9	149	138	345	1.71	77.7	14.2	1055	3.1	42.8	79	7.65	67.3	2.37	7.2	12.2	50	1.063	0.0701

26.9

<0.1

3.5

62

<0.1

0.8

3.284

< 0.01

1.86

530

<1

515

35.8

<0.5

<0.5

9.33

<0.1

2.4

36

<1

18

0.61

<0.1

<0.1

3.39

<0.1

<0.1

1.03

<0.1

<0.1

65

<0.5

<0.5

22.5

<1

22

0.04

<0.001

0.045

2.98

<0.01

0.56

0.68

<0.1

0.8

118

<0.1

3.6

56

<0.1

0.7

154

<1

31

0.45

<0.1

<0.1

STD OREAS262 Expected

Blank

Prep Blank

BLK

Prep Wash ROCK-VAN

			Client:	McKinney, Bill 11751 Shell Rd. Richmond British Colu	I mbia V7A 3W7 Canada	
B U R E A U V E R I T A S	MINERAL LABORATORIES Canada s Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	Nahmint April 12, 2019		
9050 Shaughr PHONE (604)	nessy St Vancouver British Columb 253-3158	ia V6P 6E5 Canada	Page:	1 of 1	Part:	2 of 2
QUALI	TY CONTROL REP	ORT		VA	AN19000784.1	

	Method	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	ĸ	w	Hg	Sc	TI	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Pulp Duplicates																		
N-19-16	Rock	<1	<1	0.21	2	0.006	<20	0.17	0.003	0.01	<0.1	<0.01	0.5	<0.1	<0.05	<1	<0.5	<0.2
REP N-19-16	QC	<1	<1	0.21	2	0.006	<20	0.17	0.004	0.01	<0.1	<0.01	0.5	<0.1	<0.05	<1	<0.5	<0.2
Reference Materials																		
STD DS11	Standard	19	60	0.83	423	0.095	<20	1.17	0.072	0.39	2.7	0.25	3.2	4.9	0.27	5	1.9	4.5
STD OREAS262	Standard	16	42	1.12	248	0.004	<20	1.22	0.067	0.30	0.1	0.17	3.3	0.6	0.26	4	<0.5	0.3
STD DS11 Expected		18.6	61.5	0.85	417	0.0976		1.129	0.0694	0.4	2.9	0.26	3.1	4.9	0.2835	4.7	2.2	4.56
STD OREAS262 Expected		15.9	41.7	1.17	248	0.003		1.204	0.071	0.312	0.13	0.17	3.24	0.47	0.253	3.73	0.4	0.23
BLK	Blank	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																		
ROCK-VAN	Prep Blank	6	4	0.51	53	0.084	<20	0.86	0.082	0.09	<0.1	<0.01	3.0	<0.1	<0.05	4	<0.5	<0.2

MINERAL LABORATORIES Canada

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

SAMPLE DISPOSAL

Received: April 24, 2019 Report Date: April 29, 2019 Page: 1 of 2

Client:

Submitted By:

Receiving Lab:

VAN19000908.1

Project: Nahmint Shipment ID: P.O. Number Number of Samples: 19

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-250	19	Crush, split and pulverize 250 g rock to 200 mesh			VAN
AQ200	19	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN

McKinney, Bill 11751 Shell Rd.

William Mckinney

Canada-Vancouver

Richmond British Columbia V7A 3W7 Canada

ADDITIONAL COMMENTS

DISP-PLP Dispose of Pulp After 90 days DISP-RJT Dispose of Reject After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To:

McKinney, Bill 11751 Shell Rd. Richmond British Columbia V7A 3W7 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

													Clier	ıt:	1175	1 Shell R		nbia V7A	. 3W7 Ca	nada		
B U R E A U V E R I T A S	MINERAL LABC Canada	ORATOR	IES		www	.bureau	veritas	s.com/u	ım				Projec	t:	Nahn	nint						
Bureau Veritas	s Commodities Ca	anada Lto	d.										Repor	t Date:	April	29, 2019						
9050 Shaughn PHONE (604)	nessy St_Vancouv 253-3158	ver Britisl	h Colum	bia V6F	° 6E5 C	Canada							Page:		2 of 2	2				Pa	rt: 1	of 2
CEDTIE	FICATE O	FAN	ΙΑΙ Υ	′SIS													VA	N19	9000	908	.1	
OLIVIII		Method	WGHT	AQ200	AQ200		AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200			AQ200
GERTI		Method Analyte	WGHT Wgt	AQ200 Mo	AQ200 Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	AQ200 P
		Method Analyte Unit	WGHT Wgt kg	AQ200 Mo ppm	AQ200 Cu ppm	Pb ppm		Ag ppm	Ni	Co ppm		Fe %	As ppm	Au ppb	Th	Sr ppm	Cd ppm	Sb	Bi ppm		Ca %	P %
		Method Analyte	WGHT Wgt kg 0.01	AQ200 Mo ppm 0.1	AQ200 Cu ppm 0.1	Pb ppm 0.1	Zn ppm 1	Ag ppm 0.1	Ni ppm 0.1	Co ppm 0.1	Mn ppm 1	Fe % 0.01	As ppm 0.5	Au ppb 0.5	Th ppm 0.1	Sr ppm 1	Cd ppm 0.1	Sb ppm 0.1	Bi ppm 0.1	V ppm 1	Ca % 0.01	P % 0.001
N-19-01	Rock	Method Analyte Unit	WGHT Wgt kg 0.01	AQ200 Mo ppm 0.1 0.3	AQ200 Cu ppm 0.1 86.3	Pb ppm 0.1 0.7	Zn ppm 1 66	Ag ppm 0.1 <0.1	Ni ppm 0.1 59.6	Co ppm 0.1 39.7	Mn ppm 1 979	Fe % 0.01 7.26	As ppm 0.5 0.8	Au ppb 0.5 5.0	Th ppm 0.1 0.3	Sr ppm 1 71	Cd ppm 0.1 0.1	Sb ppm 0.1	Bi ppm 0.1 <0.1	V ppm 1 211	Ca % 0.01 4.05	P % 0.001 0.047
N-19-01 N-19-04	Rock	Method Analyte Unit	WGHT Wgt kg 0.01 0.18 0.38	AQ200 Mo ppm 0.1 0.3 <0.1	AQ200 Cu ppm 0.1 86.3 177.0	Pb ppm 0.1 0.7 0.7	Zn ppm 1 66 93	Ag ppm 0.1 <0.1 <0.1	Ni ppm 0.1 59.6 88.6	Co ppm 0.1 39.7 45.2	Mn ppm 1 979 1225	Fe % 0.01 7.26 8.77	As ppm 0.5 0.8 0.8	Au ppb 0.5 5.0 4.7	Th ppm 0.1 0.3 0.4	Sr ppm 1 71 45	Cd ppm 0.1 0.1 <0.1	Sb ppm 0.1 0.1 <0.1	Bi ppm 0.1 <0.1 <0.1	V ppm 1 211 270	Ca % 0.01 4.05 3.71	P % 0.001 0.047 0.073
N-19-01 N-19-04 N-19-06	Rock Rock Rock	Method Analyte Unit	WGHT Wgt kg 0.01 0.18 0.38 0.32	AQ200 Mo ppm 0.1 0.3 <0.1	AQ200 Cu ppm 0.1 86.3 177.0 36.9	Pb ppm 0.1 0.7 0.7 3.3	Zn ppm 1 66 93 37	Ag ppm 0.1 <0.1 <0.1 <0.1	Ni ppm 0.1 59.6 88.6 3.7	Co ppm 0.1 39.7 45.2 9.0	Mn ppm 1 979 1225 422	Fe % 0.01 7.26 8.77 2.83	As ppm 0.5 0.8 0.8 2.5	Au ppb 0.5 5.0 4.7 1.7	Th ppm 0.1 0.3 0.4 2.9	Sr ppm 1 71 45 26	Cd ppm 0.1 0.1 <0.1 <0.1	Sb ppm 0.1 <0.1	Bi ppm 0.1 <0.1 <0.1 <0.1	V ppm 1 211 270 90	Ca % 0.01 4.05 3.71 2.15	P % 0.001 0.047 0.073 0.063
N-19-01 N-19-04 N-19-06 N-19-07	Rock Rock Rock Rock	Method Analyte Unit	WGHT Wgt kg 0.01 0.18 0.38 0.32 0.20	AQ200 Mo ppm 0.1 0.3 <0.1 0.7	AQ200 Cu ppm 0.1 86.3 177.0 36.9	Pb ppm 0.1 0.7 0.7 3.3 5.0	Zn ppm 1 66 93 37 90	Ag ppm 0.1 <0.1 <0.1 <0.1 <0.1 0.3	Ni ppm 0.1 59.6 88.6 3.7 80.0	Co ppm 0.1 39.7 45.2 9.0 49.8	Mn ppm 1 979 1225 422 1434	Fe % 0.01 7.26 8.77 2.83 8.09	As ppm 0.5 0.8 0.8 2.5 1.6	Au ppb 0.5 5.0 4.7 1.7 58.9	Th ppm 0.1 0.3 0.4 2.9 0.5	Sr ppm 1 71 45 26 49	Cd ppm 0.1 0.1 <0.1 <0.1 0.2	Sb ppm 0.1 0.1 <0.1 0.2 0.1	Bi ppm 0.1 <0.1 <0.1 <0.1 0.2	V ppm 1 211 270 90 293	Ca % 0.01 4.05 3.71 2.15 3.99	P % 0.001 0.047 0.073 0.063 0.070
N-19-01 N-19-04 N-19-06 N-19-07 N-19-11	Rock Rock Rock Rock Rock Rock	Method Analyte Unit	WGHT Wgt kg 0.01 0.18 0.38 0.32 0.20 0.18	AQ200 Mo ppm 0.1 0.3 <0.1 0.7 0.6	AQ200 Cu ppm 0.1 86.3 177.0 36.9 236.5 41.3	Pb ppm 0.1 0.7 0.7 3.3 5.0 3.0	Zn ppm 1 66 93 37 90 53	Ag ppm 0.1 <0.1 <0.1 <0.1 0.3 <0.1	Ni ppm 0.1 59.6 88.6 3.7 80.0 6.6	Co ppm 0.1 39.7 45.2 9.0 49.8 9.4	Mn ppm 1 979 1225 422 1434 555	Fe % 0.01 7.26 8.77 2.83 8.09 2.98	As ppm 0.5 0.8 0.8 2.5 1.6 1.0	Au ppb 0.5 5.0 4.7 1.7 58.9 <0.5	Th ppm 0.1 0.3 0.4 2.9 0.5 4.0	Sr ppm 1 71 45 26 49 36	Cd ppm 0.1 0.1 <0.1 <0.1 0.2 <0.1	Sb ppm 0.1 <0.1	Bi ppm 0.1 <0.1 <0.1 <0.1 0.2 <0.1	V ppm 1 211 270 90 293 48	Ca % 0.01 4.05 3.71 2.15 3.99 0.79	P % 0.001 0.047 0.073 0.063 0.070 0.063
N-19-01 N-19-04 N-19-06 N-19-07 N-19-11 N-19-12	Rock Rock Rock Rock Rock Rock Rock	Method Analyte Unit	WGHT Wgt kg 0.01 0.18 0.38 0.32 0.20 0.18 0.17	AQ200 Mo ppm 0.1 0.3 <0.1 0.7 0.6 0.5	AQ200 Cu ppm 0.1 86.3 177.0 36.9 236.5 41.3 16.8	Pb ppm 0.1 0.7 3.3 5.0 3.0 2.8	Zn ppm 1 66 93 37 90 53 53	Ag ppm 0.1 <0.1 <0.1 <0.1 0.3 <0.1 <0.1	Ni ppm 0.1 59.6 88.6 3.7 80.0 6.6 6.5	Co ppm 0.1 39.7 45.2 9.0 49.8 9.4 9.4	Mn ppm 1 979 1225 422 1434 555 587	Fe % 0.01 7.26 8.77 2.83 8.09 2.98 2.90	As ppm 0.5 0.8 0.8 2.5 1.6 1.0 1.3	Au ppb 0.5 5.0 4.7 1.7 58.9 <0.5 1.6	Th ppm 0.1 0.3 0.4 2.9 0.5 4.0 4.0	Sr ppm 1 71 45 26 49 36 45	Cd ppm 0.1 0.1 <0.1 <0.1 0.2 <0.1 <0.1	Sb ppm 0.1 <0.1	Bi ppm 0.1 <0.1 <0.1 <0.1 0.2 <0.1 <0.1	V ppm 1 211 270 90 293 48 43	Ca % 0.01 4.05 3.71 2.15 3.99 0.79 0.75	P % 0.001 0.047 0.073 0.063 0.070 0.063 0.061
N-19-01 N-19-04 N-19-06 N-19-07 N-19-11	Rock Rock Rock Rock Rock Rock	Method Analyte Unit	WGHT Wgt kg 0.01 0.18 0.38 0.32 0.20 0.18	AQ200 Mo ppm 0.1 0.3 <0.1 0.7 0.6	AQ200 Cu ppm 0.1 86.3 177.0 36.9 236.5 41.3	Pb ppm 0.1 0.7 0.7 3.3 5.0 3.0	Zn ppm 1 66 93 37 90 53	Ag ppm 0.1 <0.1 <0.1 <0.1 0.3 <0.1	Ni ppm 0.1 59.6 88.6 3.7 80.0 6.6	Co ppm 0.1 39.7 45.2 9.0 49.8 9.4	Mn ppm 1 979 1225 422 1434 555	Fe % 0.01 7.26 8.77 2.83 8.09 2.98	As ppm 0.5 0.8 0.8 2.5 1.6 1.0	Au ppb 0.5 5.0 4.7 1.7 58.9 <0.5	Th ppm 0.1 0.3 0.4 2.9 0.5 4.0	Sr ppm 1 71 45 26 49 36	Cd ppm 0.1 0.1 <0.1 <0.1 0.2 <0.1	Sb ppm 0.1 <0.1	Bi ppm 0.1 <0.1 <0.1 <0.1 0.2 <0.1	V ppm 1 211 270 90 293 48	Ca % 0.01 4.05 3.71 2.15 3.99 0.79	P % 0.001 0.047 0.073 0.063 0.070 0.063

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<1

<1

22

27

17

55

197

158

183

90

159

39.26

38.23

0.88

0.93

1.18

0.56

1.84

2.22

1.09

2.74

3.38

<0.1

<0.1

<0.1

<0.1

<0.1

0.1

<0.1

0.6

0.2

0.3

0.4

0.018

0.028

0.131

0.121

0.055

0.009 0.085

0.070

0.077

0.025

0.062

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

< 0.1

< 0.1

<0.1

0.8

3.2

0.8

1.1

1.7

22.1

23.4

67.4

46.0

26.1

101.1

<0.1

0.2

7.7

9.1

4.3

8.9

25.0

21.7

30.2

12.2

32.7

759

752

942

746

333

345

3197

1642

835

844

764

0.14

0.29

3.29

3.21

2.07

1.93

5.57

3.76

6.53

3.03

5.34

19.1

9.9

1.4

1.1

0.8

4.7

12.7

17.7

3.7

2.7

2.9

1.2

1.9

0.8

<0.5

0.6

<0.5

3.6

1.3

2.5

2.1

5.5

<0.1

<0.1

1.1

1.2

2.0

<0.1

0.5

0.3

0.4

0.2

0.5

868

893

50

53

90

23

35

276

28

154

64

<0.1

<0.1

<0.1

<0.1

<0.1

<0.1

0.1

0.9

<0.1

< 0.1

0.1

1

2

35

30

19

30

107

131

47

17

73

N-19-15

N-19-17

N-19-19

N-19-20

N-19-21

N-19-22

N-19-24

N-19-25

N-19-26

N-19-28

N-19-29

Rock

0.22

0.22

0.25

0.15

0.16

0.21

0.41

0.24

0.22

0.44

0.37

0.1

0.7

0.3

0.3

1.8

0.3

0.6

<0.1

0.5

0.5

0.2

0.6

1.5

14.7

6.3

2.8

3.1

3.1

92.3

136.8

187.2

261.3

0.4

0.4

1.2

1.2

1.8

0.6

1.7

10.6

2.2

1.9

0.6

			Client:	McKinney, Bi 11751 Shell Rd. Richmond British Col	II umbia V7A 3W7 Canada	
B U R E A U V E R I T A S	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	Nahmint		
Bureau Veritas	Commodities Canada Ltd.		Report Date:	April 29, 2019		
•	essy St Vancouver British Columbia V6	P 6E5 Canada				
PHONE (604) 2	253-3158		Page:	2 of 2	Part:	2 of 2
CERTIF	ICATE OF ANALYSIS			V	AN19000908.1	

	M	ethod	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200
	Ar	nalyte	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Те
		Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
		MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
N-19-01	Rock		5	50	2.48	15	0.391	<20	4.18	0.396	0.06	<0.1	<0.01	22.6	<0.1	<0.05	11	<0.5	<0.2
N-19-04	Rock		7	166	3.63	3	0.058	<20	4.62	0.049	0.02	<0.1	<0.01	28.1	<0.1	<0.05	16	<0.5	<0.2
N-19-06	Rock		11	10	0.72	53	0.167	<20	2.25	0.158	0.17	0.1	0.05	5.4	<0.1	<0.05	7	<0.5	<0.2
N-19-07	Rock		6	154	3.09	6	0.342	<20	3.61	0.099	0.02	<0.1	0.22	27.8	<0.1	0.45	13	1.1	<0.2
N-19-11	Rock		9	15	0.87	40	0.163	<20	1.54	0.141	0.18	0.3	<0.01	7.3	<0.1	< 0.05	6	<0.5	<0.2
N-19-12	Rock		9	14	0.86	43	0.169	<20	1.56	0.154	0.18	0.3	<0.01	5.3	<0.1	<0.05	7	<0.5	<0.2
N-19-13	Rock		10	16	1.03	47	0.148	<20	1.63	0.085	0.19	0.2	<0.01	5.2	<0.1	<0.05	6	<0.5	<0.2
N-19-14	Rock		10	4	0.37	68	0.111	<20	0.93	0.176	0.22	0.2	<0.01	3.2	<0.1	<0.05	4	<0.5	<0.2
N-19-15	Rock		<1	<1	0.10	1	<0.001	<20	0.03	0.008	<0.01	<0.1	<0.01	0.3	<0.1	<0.05	<1	<0.5	<0.2
N-19-17	Rock		<1	<1	0.11	2	0.001	<20	<0.01	0.007	<0.01	<0.1	<0.01	0.1	<0.1	<0.05	<1	<0.5	<0.2
N-19-19	Rock		8	1	0.96	7	0.177	<20	1.80	0.169	0.03	0.2	<0.01	4.4	<0.1	<0.05	8	<0.5	<0.2
N-19-20	Rock		10	2	1.00	4	0.234	<20	1.86	0.205	0.02	0.2	0.01	5.6	<0.1	<0.05	7	<0.5	<0.2
N-19-21	Rock		10	4	0.60	782	0.201	<20	1.61	0.177	0.14	0.2	<0.01	4.2	<0.1	<0.05	6	<0.5	<0.2
N-19-22	Rock		<1	46	1.02	8	0.122	<20	1.27	0.046	0.03	<0.1	<0.01	3.4	<0.1	<0.05	3	0.5	<0.2
N-19-24	Rock		5	66	3.23	15	0.271	<20	3.40	0.093	0.03	0.3	<0.01	23.9	<0.1	0.10	8	<0.5	<0.2
N-19-25	Rock		4	80	2.99	15	0.579	<20	3.08	0.034	<0.01	0.2	<0.01	16.0	<0.1	<0.05	8	<0.5	<0.2
N-19-26	Rock		6	34	1.76	11	0.588	<20	2.63	0.158	0.08	<0.1	0.02	10.9	<0.1	0.12	12	<0.5	<0.2
N-19-28	Rock		2	30	0.72	6	0.508	<20	2.03	0.010	0.02	<0.1	<0.01	8.2	<0.1	<0.05	12	<0.5	<0.2
N-19-29	Rock		5	92	2.40	27	0.644	<20	3.79	0.171	0.05	0.2	<0.01	9.0	<0.1	<0.05	16	<0.5	<0.2

												Client	::	11751	Shell Rd ond Britis	l.	bia V7A :	3W7 Can	ada		
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www.	bureau	iveritas	s.com/u	m				Project		Nahmi	nt						
Bureau Veritas	Commodities Canada Lte	d.										Report	Date:	April 2	9, 2019						
9050 Shaughn	essy St Vancouver Britis	h Colum	bia V6F	9 6E5 C	anada																
PHONE (604)	253-3158											Page:		1 of 1					Par	t: 1 of	12
QUALIT	Y CONTROL	REP	POR [®]	Г												VA	N19	000	908	.1	
	Method	WGHT	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	1	0.01	0.001
Reference Mate	rials																				
STD DS11	Standard		14.8	153.9	137.8	348	1.9	80.8	14.1	1036	3.22	46.9	86.6	7.7	69	2.2	8.0	11.1	49	1.11	0.070

STD OREAS262

BLK

Prep Wash ROCK-VAN

ROCK-VAN

STD DS11 Expected

STD OREAS262 Expected

Standard

Blank

Prep Blank

Prep Blank

0.7

13.9

0.68

<0.1

1.5

1.6

117.5

149

118

<0.1

2.6

2.5

55.6

138

56

1.0

1.0

<0.1

148

345

154

<1

31

33

0.5

1.71

0.45

<0.1

<0.1

<0.1

63.4

77.7

<0.1

1.1

1.1

62

27.5

14.2

26.9

<0.1

4.0

4.1

536

1055

530

<1

569

562

3.35

3.1

3.284

<0.01

2.04

2.04

35.8

42.8

35.8

<0.5

1.1

0.9

64.2

79

65

<0.5

3.5

2.4

8.9

7.65

9.33

<0.1

2.9

2.3

35

36

<1

22

21

67.3

0.7

2.37

0.61

<0.1

<0.1

<0.1

3.6

7.2

3.39

<0.1

<0.1

<0.1

0.9

12.2

1.03

<0.1

<0.1

<0.1

21

50

<1

23

23

22.5

3.07

1.063

2.98

0.71

0.71

0.039

0.04 <0.01 <0.001

0.042

0.041

0.0701

			Client:	McKinney, Bi 11751 Shell Rd. Richmond British Col	II umbia V7A 3W7 Canada	
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada s Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	Nahmint April 29, 2019		
9050 Shaughn PHONE (604)	nessy St Vancouver British Columbia V6 253-3158	^D 6E5 Canada	Page:	1 of 1	Part:	2 of 2
QUALI	TY CONTROL REPOR	Т		V	AN19000908.1	

	Method	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200
	Analyte	La	Cr	Mg	Ва	Ti	В	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Те
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2
Reference Materials																		
STD DS11	Standard	18	60	0.86	426	0.096	<20	1.21	0.073	0.41	3.1	0.25	3.2	4.9	0.28	5	2.4	4.4
STD OREAS262	Standard	16	41	1.17	244	0.003	<20	1.25	0.068	0.31	0.1	0.17	3.4	0.4	0.26	4	<0.5	0.2
STD DS11 Expected		18.6	61.5	0.85	417	0.0976		1.129	0.0694	0.4	2.9	0.26	3.1	4.9	0.2835	4.7	2.2	4.56
STD OREAS262 Expected		15.9	41.7	1.17	248	0.003		1.204	0.071	0.312	0.13	0.17	3.24	0.47	0.253	3.73	0.4	0.23
BLK	Blank	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2
Prep Wash																		
ROCK-VAN	Prep Blank	6	3	0.53	62	0.083	<20	1.00	0.131	0.13	<0.1	<0.01	3.0	<0.1	<0.05	4	<0.5	<0.2
ROCK-VAN	Prep Blank	5	3	0.53	55	0.083	<20	0.98	0.123	0.12	0.1	<0.01	3.0	<0.1	<0.05	4	<0.5	<0.2

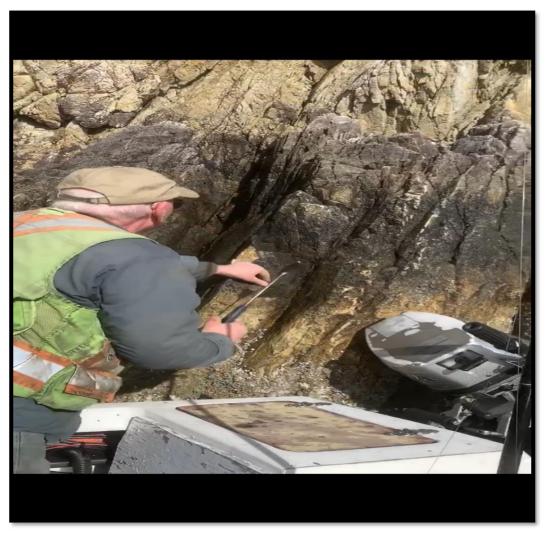
Appendix 2

Sample Locations and Descriptions

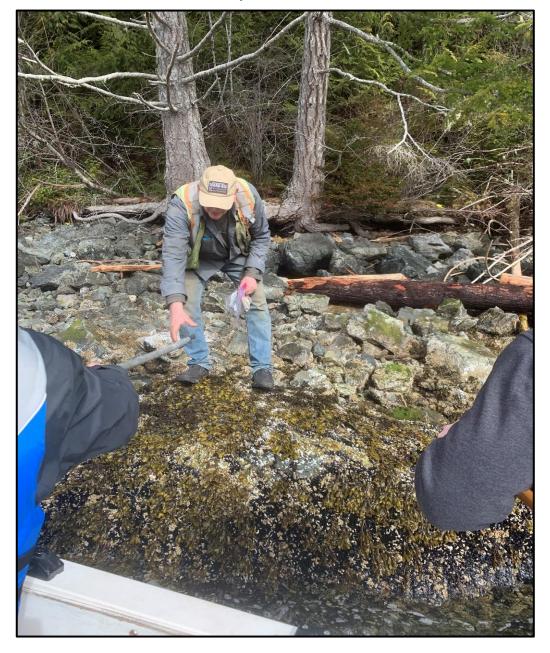
1

3/3 N-19-25 Linestone; silicified or altered Rinegrained dark grey underite or other wakeanic N-19-26 Andesite, massive i davk green-tolach, chlori Fited scratches but not soft N - 29 - 27 Andesite, massive darkgreengren i scratches southerer tochlorite, granuden appearence W - 29 - 28 Granodionite, Massive, granular, med. um grey colour few grammlar mafics, obscure. N-39-29 - Lineitore, massive, dark gray, 1-2mm. canlonate filled Fractures, overall benecies ted appearance from multiple fracture directions N-29-30 - Silicified vode, phyolite appearance but very fine grained, porallel quartz veillets 1-1,5 mm wide goving laminated structure to specimen Probately completely silicified limestime but not Positive. Weathered appearance tilu weathered limestone but is completely silicit

Nahmir	nt 2019	Event	IS:	Sample Types In Situ. HM: Heavy Mineral/Dump
		5733643		Float. POI: Point of interest/Access
Sample	10U	10U	Туре	Notes
N-19-01	361704	5429628	IS	See Jackson sample descriptions
N-19-02	361709	5429632	IS	See Jackson sample descriptions
N-19-03	361717	5429643	FB	See Jackson sample descriptions
N-19-04	361406	5429181	IS	See Jackson sample descriptions
N-19-05	361400	5429178	НМ	See Jackson sample descriptions
N-19-06	361381	5429170	FB	See Jackson sample descriptions
N-19-07	361380	5429165	FB	See Jackson sample descriptions
N-19-08	360808	5428237	IS	See Jackson sample descriptions
N-19-09	360830	5428260	IS	See Jackson sample descriptions
N-19-10	360861	5428278	НМ	See Jackson sample descriptions
N-19-11	360853	5428280	FB	See Jackson sample descriptions
N-19-12	360845	5428274	FB	See Jackson sample descriptions
N-19-13	360842	5428274	FB	See Jackson sample descriptions
N-19-14	358622	5427391	IS	See Jackson sample descriptions
N-19-15	358161	5427454	FB	See Jackson sample descriptions
N-19-16	358169	5427469	IS	See Jackson sample descriptions
N-19-17	358146	5427465	FB	See Jackson sample descriptions
N-19-18	358144	5427445	FB	See Jackson sample descriptions
N-19-19	357386	5427854	IS	See Jackson sample descriptions
N-19-20	357193	5427863	FB	See Jackson sample descriptions
N-19-21	357201	5427868	FB	See Jackson sample descriptions
N-19-22	357186	5427865	FB	See Jackson sample descriptions
N-19-23	356100	5427571	НМ	See Jackson sample descriptions
N-19-24	356079	5427585	IS	See Jackson sample descriptions
N-19-25	356076	5427595	FB	See Jackson sample descriptions
N-19-26	363177	5431202	FB	See Jackson sample descriptions
N-19-27	363149	5431204	IS	See Jackson sample descriptions
N-19-28	363138	5431195	IS	See Jackson sample descriptions
N-19-29	363190	5431143	FB	See Jackson sample descriptions
N-19-30	363139	5431155	FB	See Jackson sample descriptions


Appendix 3

Photos


Sample Site Area N-20-22

Sample Site N-02

Sample Site N23-25

