

22382, 28782, 37000, 37664

Ministry of Energy, Mines & Petroleum Resources Mining & Minerals Division BC Geological Survey

BC Geological Survey Assessment Report 38460

Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Geological, Geochemica	TOTAL COST: \$6800	
AUTHOR(S): Helgi Sigurgeirson	SIGNATURI	E(S):
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): n/a		YEAR OF WORK: 2019
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DA	ATE(S): 5747735	
PROPERTY NAME: Tom Cat		
CLAIM NAME(S) (on which the work was done): 1068885		
COMMODITIES SOUGHT: Cu		
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092HN	E166, 257, 167, 087, 089,	088, 086
MINING DIVISION: Nicola	NTS/BCGS: 092	2H/087 & 088
LATITUDE: 49 ° 53 ' " LONGITUDE:	120 ° 35	" (at centre of work)
OWNER(S): 1) Sierra Iron Ore Corporation	2)	
MAILING ADDRESS: 13236 Cliffstone Court		
Lake Country, BC		
OPERATOR(S) [who paid for the work]: 1) Sierra Iron Ore Corporation	2)	
MAILING ADDRESS: 13236 Cliffstone Court		
Lake Country, BC		
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, st Nicola Group, Triassic, Central Belt, Andesite, Basalt, Lal		

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 5908, 6761, 6821, 9491,14141, 20393, 20551,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping 0.9 Ha at 1	:1000 & 6 Ha at 1:2000		4000
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil	2		600
Silt			
Rock	6		1000
Other			
DRILLING (total metres; number of holes, size) Core			
Management			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic	2		\$1200
Mineralographic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			
Legal surveys (scale, area)			
Road, local access (kilometres)/			
Trench (metres)			
Other			
		TOTAL COST:	\$6800
Geological, Geochemical	& Petrographic Report on the Tom	-	· · · · · · · · · · · · · · · · · · ·

Geological, Geochemical & Petrographic Assessment Report on the Tom Cat Property

Aspen Grove, British Columbia Nicola Mining Division

Map Sheets 092H/087 & 088

UTM 672900 E, 5528 000 N (Zone 10)

Claim 1068885

Prepared for: Sierra Iron Ore Corporation

Prepared by: Helgi Sigurgeirson, P.Geo. September 23, 2019

<u>Table of Contents</u>

Property Defin Previous Work		2
Regional Geology		5
Property Geology		5
Geological Mapping		5
Petrography		8
Geochemical Sampling	g	8
Conclusions and Reco	mmendations	12
References		13
Statement of Qualifica	itions	15
Cost Statement		16
Statement of Work		17
 Claim Map Property Geology N AM Showing Map Portland to Bluey M 	Map	1 3 4 6 7 9
List of Tables 1. Lithogeochemical S 2. Geochemical Sampl 3. Soil Sample Descrip	•	10 10 10

<u>Appendices</u>

Appendix I – Petrographic Report Appendix II - Certificates of Analysis & QC Documents

- 1. Whole Rock Samples
- 2. Geochemical (rock) Samples
- 3. Soil

Introduction

Location, Access and Physiography

The property is about 25 km southeast of Merritt in south-central British Columbia (Figure 1). It is accessed by taking highway 5A southeast from Merritt to Bates Road, then east along Bates Road until 674290 E, where a logging road heads south onto the property. The property is covered by forest on the higher ground, with grassland at lower elevations to the west. Slopes are generally gentle to moderate. The property ranges in elevation from about 1285 m in the area of high ground in the central to northwest of the property, to about 1040 m in the north-south trending valley on the east side of the property.

Snow can be expected from November to April.

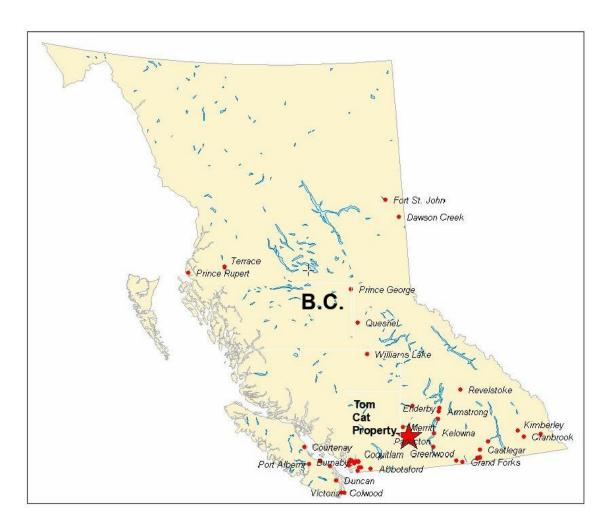


Figure 1 – Location Map

Property Definition

The Tom Cat Property consists of claim 1068885, shown in Figure 2. The claims are 100% held by Sierra Iron Ore Corporation. A Statement of Work (EV#5747735) was filed for the work described in this report on July 12, 2019. The claim covers 603.77 ha and is good to August 30, 2020. Six mineral claim crown grants are shown on the property (Figure 2). All but the southernmost Crown Grant (Edith, DL 1553) have reverted to the crown. The exact status of the Edith is unclear ("converted"), but Mineral Titles Online indicates that the ground is held by the crown. A private lot overlies a small part of the northwest corner of the property.

Previous Work

Old workings, including pits, trenches, short adits and shafts, are encountered frequently on the property. Some of these date back to at least the early 1900's.

Approximately 15 – 20 diamond drill holes were drilled on the property up to 1967, but are poorly documented. A hole drilled by Pyramid Mining Company Ltd. in 1965 assayed an average of 0.32% from select samples taken every 1.5 m over two 15.2 m sections in a 45.7 m interval (McKechnie, 1965). Scope Development Ltd. and Alscope Consolidated Ltd. conducted geologic mapping, geophysics, geochemistry and trenching over most of the showing areas (Carr, 1964).

Between 1975 and 1981? the Bluey claim group in the central part of the current property was held by Fred Gingell, who conducted various geochemical and geophysical surveys (Yorke-Hardy, 1976 and Morrison, 1981)

In 1978 geophysics and soil surveys were conducted on adjacent properties covering the north part of current property for Belmont Resources Ltd. (Mark, 1978a) and Silver Acorn Developments Ltd. (Mark, 1978b).

In 1985 Vanco Explorations Ltd. conducted geological mapping over the area west of the Tom Cat Prospect as well as soil and rock sampling(Lisle, 1985).

In 1990, geological mapping, over essentially the same area as that mapped by Vanco, was conducted by MineQuest Exploration Associates Ltd (Richards, 1990). Limited rock sampling was also done (Gourley, 1990).

In 2006, Bold Ventures Inc. Carried out an IP survey and soil sampling over most of the property (Kerr, 2007).

Bold Ventures Inc. drilled 6 holes in 2007, four of which were drilled on the current property and totalled 754.1 m. One of the holes drilled at the Tom Cat Prospect returned 0.54% Cu over 5.6 m (Garrow, 2010).

Sierra Iron Ore Corporation did geological mapping over the area of the Tom Cat Prospect in 2017 (Sigurgeirson, 2017), and geological mapping of the Portland Showing and prospecting in the area of the Bloo Showing in 2018 (Sigurgeirson, 2018).

The following Minfiles (locations shown on Figure 3) are on the property:

Tom Cat (092HNE086)

AM (092HNE166)

Bloo (092HNE257)

Bluey (092HNE167)

Boomerang (092HNE087)

Bunker Hill (092HNE089)

Portland (092HNE088)

Figure 2: Claim Map

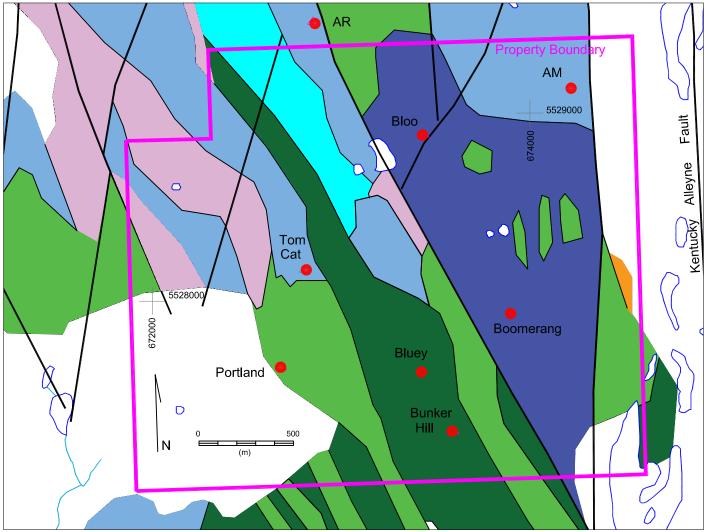
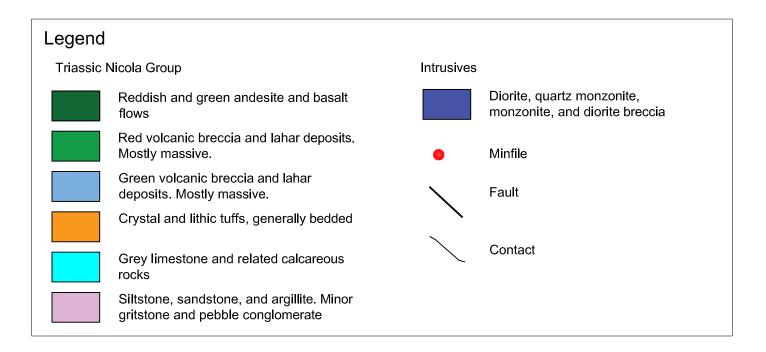



Figure 3 - Property Geology Scale = 1:20 000

Work Program Summary

The purpose of the 2019 work program was to locate and produce a geologic map of the AM Showing, to locate the Bluey, Boomerang and Bunker Hill Showings, and to map the area of an IP anomaly reported in assessment report 28782 (Kerr, 2007). Three days of fieldwork were done from May 27 to 29, 2019. 0.9 hectares were mapped at a 1:1000 scale at the AM showing and 6 hectares were mapped at a 1:2000 scale between the Portland and Bluey Showings. Six rock samples, 2 soil samples and 2 petrographic samples were submitted for analysis.

Regional Geology

The property is underlain by volcanic and sedimentary rocks of the central belt of the Upper Triassic Nicola Group (Preto, 1979). Most Nicola rocks are massive, non-foliated, and weakly metamorphosed to sub-greenschist facies. Dioritic intrusives (possibly comagmatic with the volcanics) occur throughout the central belt.

Property Geology

The property geology (Figure 3) is after Preto (1979). The basemap is from MapPlace (2019). The volcanic rocks on the property consist of andesite and basalt flows, red and green volcanic breccias and lahars, and bedded crystal and lithic tuffs. The sedimentary rocks consist of grey limestones and related calcareous rocks, siltstone, sandstone, argillite, and minor gritstone and pebble conglomerate. A diorite to quartz monzonite body dominates the east side of the property. The north-south trending Summer Creek / Kentucky Lake Fault passes a few hundred meters to the east of the property (Figure 3), and marks the boundary between the central and eastern zones of the Nicola Group. Bedding in the area of the property is generally NNW striking and moderately to steeply east dipping.

Mineralization on the property commonly occurs as fracture coatings, disseminations and stringers of Chalcopyrite, chalcocite and rare bornite in shear zones, though the extents of the zones are generally poorly defined. Samples have been taken from a number of areas which assay up to several % Cu. Malachite staining is common in these areas. The mineralizations occurs in both the volcanics and the intrusives. Rare galena and native copper have also been reported. Magnetite, hematite, calcite, dolomite and epidote are associated with the mineralization.

Geological Mapping

The AM Showing area was mapped at a 1:1000 scale (Figure 4). The showing is immediately south of a large north trending cliff outcrop. A winze, a pit an an open cut were mapped within an area about 30 m across. The back of the winze was inaccessible, but malachite stained float with occasional chalcopyrite was found in the dump. Malachite stained fracture zones occur at several locations within the trench. They are up to 30 cm wide and are hosted by green basaltic-andesite conglomerate. Two of the fracture zones dip moderately to the SE and the third dips steeply to the NE.

Outcrop along the main slope break was clearly volcaniclastic (ie. conglomerate), but elsewhere lithological assignments were uncertain. Future mapping in this area should collect handsamples for slabbing as well as petrography.

Assessment report 6821 (Mark, 1978b) shows a shaft at approximately the location shown on Figure 4. This area was not examined carefully during this program.

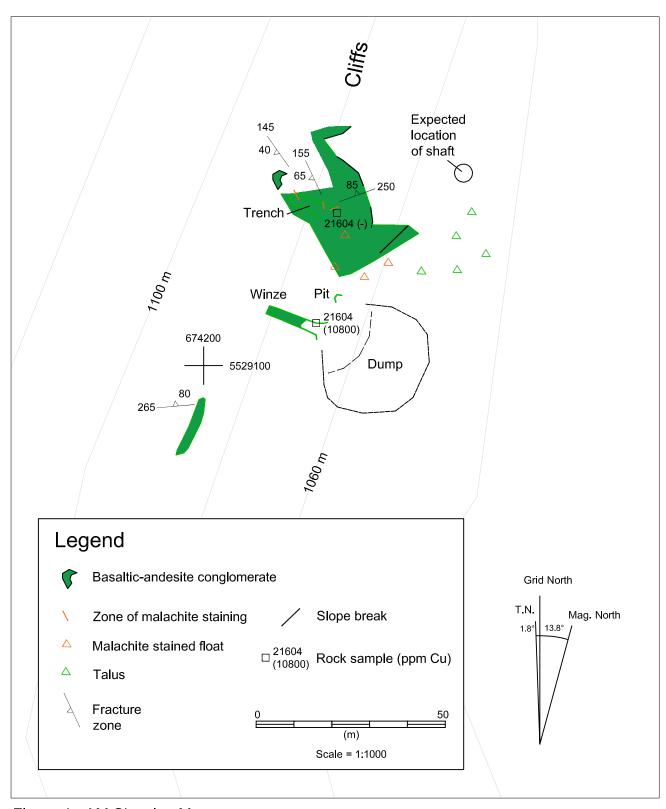


Figure 4 - AM Showing Map

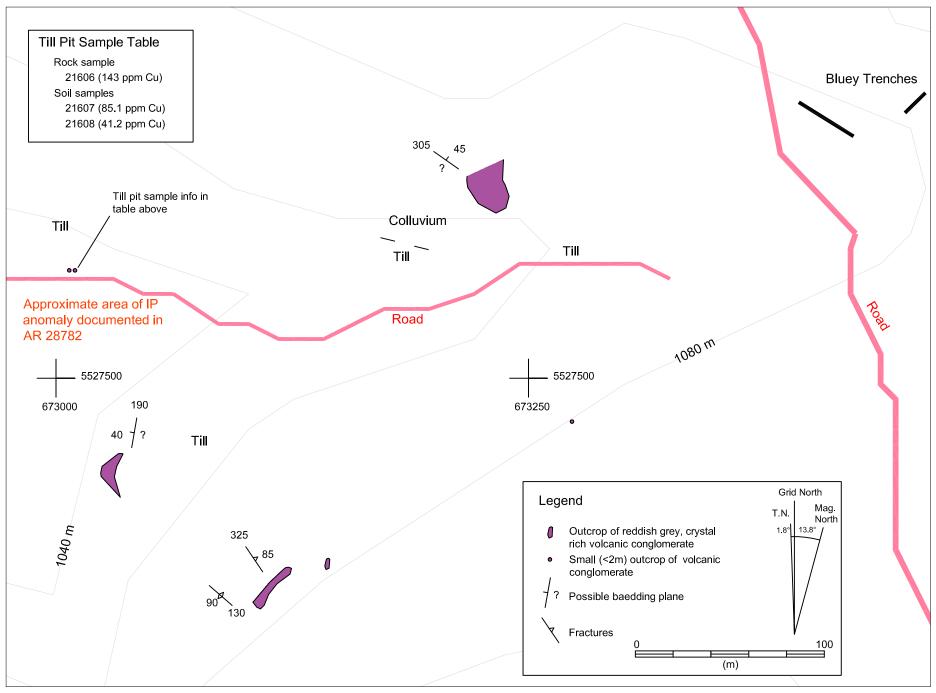


Figure 5: Portland -Bluey Map

The area of an IP anomaly reported in assessment report 28782 (Kerr, 2007) was mapped at a 1:2000 scale (Figure 5). The IP anomaly is shown as a broad NNW trending band between the Bluey and Portland showings. No significant alteration or mineralization was noted in an area of sparse outcrop. Variably crystal rich, usually reddish grey, volcanic conglomerates were the only rock type seen. Till was the dominant surficial material, especially to the NE and E.

The area of the Bluey and Boomerang Showings was not geologically mapped, but the locations of several trenches associated with these showing was plotted on the rock sample location map of the area (Figure 6). A pit with malachite staining was found in the approximate area indicated in assessment report 28782 (Kerr, 2007), but the Bunker Hill Showing described in the Minfile (from assessment Report 14141) should be in or near the area circled at the bottom edge of Figure 6. Another area of interest that should be examined is "Zone 3" which is described in assessment report 9491 (Morrison, 1981). The approximate area of this zone is shown near the top of Figure 6.

Petrography

Two samples were submitted for petrographic examination. The purpose of the sampling was to identify the host rock and type of alteration at the Bluey and Boomerang Showings. The locations of the samples is shown on Figure 6. Both were taken from outcrops featuring frequent malachite staining. The Bluey sample (28.3) is a hornblende diorite with moderate dolomite-limonite alteration, while the Boomerang sample (28.10) is a moderately epidote-dolomite-magnetite altered gabbro. The results are surprising, as the Boomerang is reportedly hosted by diorite and the Bluey is within a unit of mafic flows. Note that in handsample the Bluey sample is brown, appears granular, and is not obviously an intrusive. It may correspond to the "limy-andesitic volcanic sandstone" described in assessment report 9491 (Morrison, 1981).

The complete petrographic report can be found in Appendix I.

Geochemical Sampling

Lithogeochemical Sampling

3 samples were collected and submitted for lithogeochemical analysis. The main purpose of the sampling was to clarify the nature of the diorites reported by previous mappers.

Rock samples were collected at the locations shown on Figures 4 and 6. Samples were crushed to 75% less than 2 mm, 250 g were split off and pulverized to 85% passing 75 microns. The samples were subjected to a Lithium Metaborate fusion followed by ICP-AES and ICP-MS analysis for major and trace elements. Sample descriptions are given in Table 1. Appendix II contains the assay and QA/QC certificates.

The samples plotted in the alkaline field (Figure 7) on a TAS plot (LeMaitre, 1989). Sample 21602 plots as a trachyandesite which agrees with it's petrographic assignment as a diorite. Sample 21603 plots as a basaltic trachyandesite, which again agrees with it's petrographic assignment as a gabbro. On a Zr/T vs Nb/Y plot (Pearce, 1996) the samples plot in the basalt to andesite fields (Figure 8). Again, the diorite plots as and andesite and the gabbro a basalt. The remaining sample (21601), which is tentatively considered a tuff (or fine grained intrusive?), plots in the same area as the other samples, but less consistently. It plots as a trachyandesite on a TAS plot and a basalt on the Zr/T vs Nb/Y plot.

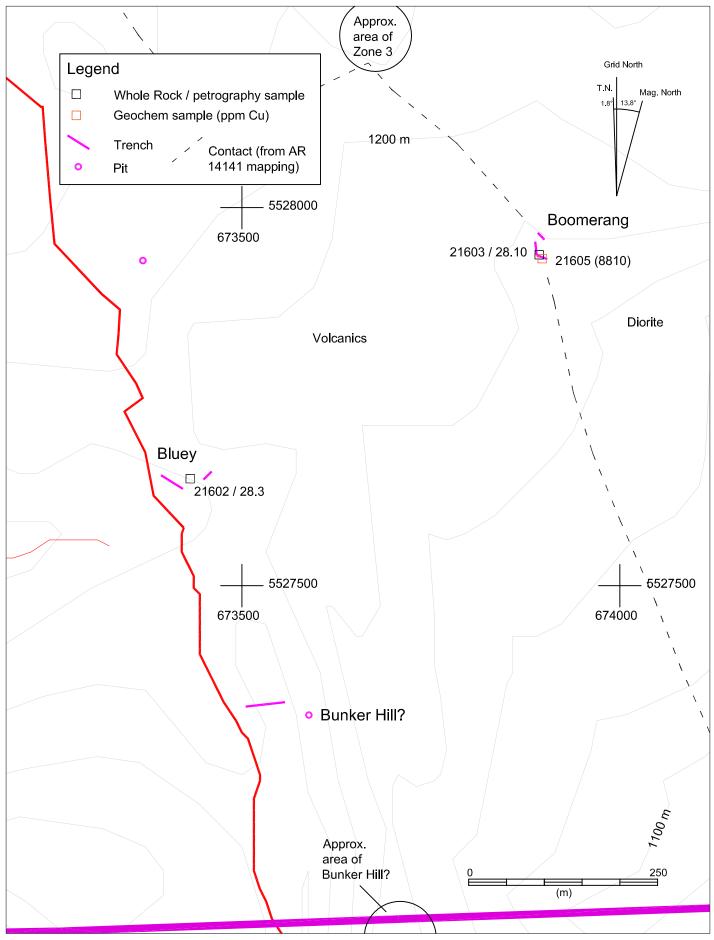


Figure 6 - Rock sample map (Bluey - Boomerang area)

Table 1 – Lithogeochemical Samples

ID	Easting	Northing	Lithology	Description	Petrography?
21601	674232	5529109		Medium grey, very fine grained crystal tuff? With 15% white, subhedral feldspar crystals. Hematite speckling.	no
21602	673433	5527641		Medium orange-brown, indistinctly fine grained intrusive or tuff with about 5% anhedral white feldspar granules or crystals.	Sample 28.3
21603	673890	5527937	Gabbro	Dark Green, indistinctly fine grained GBR with about 50% white feldspar phenocrysts (<1 mm). Patchy epidote and pervasive chlorite alteration.	Sample 28.10

Table 2 - Geochemical Samples

ID	Easting	Northing	Lithology	Description	Cu ppm
21604	674236	5529140	Tuff?	Medium grey, fine grained epidote-chlorite-hematite altered tuff or intrusive. Moderately limonitic fractures with frequent Malachite patches.	10800
21605	673890	5527937		Dark Green, indistinctly fine grained GBR with about 50% white feldspar phenocrysts (<1 mm). Patchy epidote alteration and speckled hematite. Malchite common and associated with a dark grey mineral (chalcocite?).	8810
21606	673010	5527557	Tuff	Medium grey to reddish grey (fine hematite) very fine grained crystal tuff with 15% subangular white feldspar crystals (up to 1 mm). Limonitic fractures.	143

Table 3 - Soil Samples

ID	Easting	Northing	Type	Description	Cu ppm
21607	673010	5527557	soil	Moderately dense, matrix supported diamicton with polymictic, subangular volcanic clasts. Sandy silt matrix. Sample taken from pit at base of roadcut, just above bedrock at a depth of about 1 m below the original surface.	85.1
21608	673010	5527557	soil	Loose, light brown, subangular to round cobble supported diamicton with a silty matrix. Sample take from 30 cm below surface (same roadcut profile as sample #21607).	41.2

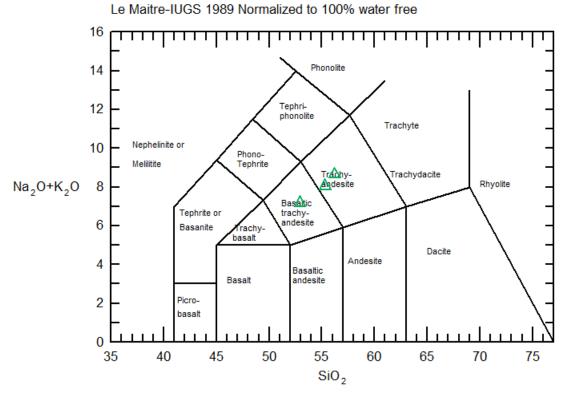


Figure 7: TAS plot of whole rock samples.

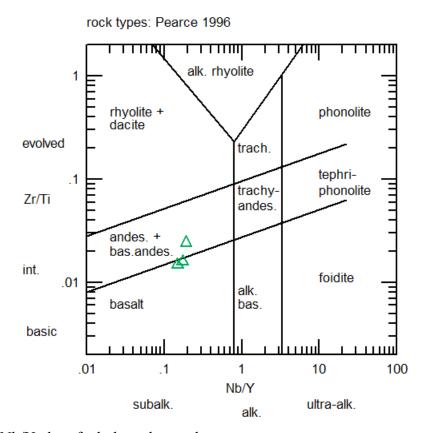


Figure 8: Zr/Ti vs Nb/Y plot of whole rock samples.

Geochemical Sampling

Three rock samples were submitted for geochemical analysis. Rock samples were collected from outcrop at the locations shown on Figures 4, 5 & 6. Samples were crushed to 75% less than 2 mm, 250 g were split off and pulverized to 85% passing 75 microns. Samples were subjected to fire assay for Au with ICP-AES finish. They were also subjected to aqua regia digestion and ICP-AES analysis. Sample descriptions are given in Table 2. Appendix II contains the assay and QA/QC certificates. Samples 21604 and 21605 returned values of 10800 and 8810 ppm Cu respectively. Both were from outcrops featuring significant malachite staining. The lack of an obvious primary copper mineral suggests that chalcocite is present in these samples.

Overburden Sampling

Two overburden samples were collected and submitted for analysis. One sample (21607) was collected from a pit at the base of a road cut, approximately one meter below the original surface. The second sample (21608) was taken about 30 cm below the crest of the road cut at about the depth of a regular soil sample. The purpose of the sampling to see if the lower (possible basal till) sample returned different results from the upper (possible ablation till) sample, which would suggest that regular soil sampling would be unreliable in this area.

The overburden samples were taken at the locations shown on Figure 5. The samples were screened to -80 mesh. A 25 gram split was then subjected to aqua regia digestion followed by ICP-MS analysis for 49 elements including Au. Sample descriptions are given in Table 3. Appendix II contains the assay and QA/QC certificates.

The possible basal till sample returned a value of 85.1 ppm Cu, which is over twice the value of the near surface sample (41.2 ppm Cu). This suggests that regular soil sampling may be sampling non-local material and therefore reporting false negatives. Opportunistic sampling of the till profile in roadcuts at various points on the property would be a way to test this theory.

Conclusions and Recommendations

Mineralization seen by the author on the property mainly occurs in narrow, northwest trending zones featuring malachite staining with chalcocite and lesser chalcopyrite as the primary copper minerals. Alteration (especially dolomite and epidote) is generally of limited extent, but appears strongest in the Bluey-Boomerang area.

The limited petrography done during this program suggests that past mapping of the intrusives should be considered provisional. As the occurence of (at least locally) mineralized diorite on the property is central to the exploration model (ie. an alkalic porphyry target) future work should include better defining the nature and extents of this rock on the property.

Detailed maps should be made of the Bluey, Boomerang, Bunker Hill and Zone 1 Showings, along with geochemical, lithogeochemical and petrographic sampling of these areas. Work should focus on determining with certainty the lithology and alteration types associated with mineralized intrusives on the property. The altered hornblende diorite at the Bluey showing is of particular interest if the exploration target is an alkalic porphyry.

References

Carr, J.M. (1964) Kentucky (Scope Development Ltd.); in Minister of Mines Annual Report 1964, *BC Ministry of Energy, Mines and Petroleum Resources*, page 96.

Garrow, T. (2010) NI 43-101 Technical Review for the Tom Cat Property. Sierra Iron Ore Corporation.

Gourley, A.W. (1990) Ken claims Preliminary Geochemistry. Assessment Report 20551.

Kerr, J.R. (2007) Geophysical and Geochemical Report on the Kentucky Lake Property. Assessment Report 28782.

Le Maitre, R. W. (editor), Bateman, P., Dudek, A., Keller, J. Et al. (1989) A Classification of Igneous rocks and Glossary of Term: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. *Blackwell Scientific Publications*, Oxford.

Lisle, T.E. (1985) Geological and Geochemical Report on the BLOO, CLIMAX, THOR, AND THOR 2 TO 16 MINERALS CLAIMS; THOR NORTH GROUP (BLOO, CIJMAX, THOR Z, 3, 4, 6); THOR CENTRAL GROUP (THOR 5, 8, 9); THOR SOUTH GROUP (THOR 7, 10, 11, 12, 13, 14, 15, 16). Assessment Report 14141.

MapPlace (2019) BC Map UTM Zone 10 showing parts of Map Sheets 092H/087 & 088. *B.C. Ministry of Energy, Mines and Petroleum Resources* http://webmap.em.gov.bc.ca/mapplace/minpot/BC UTM.cfm?zone=10> (May 15, 2019).

Mark, D.G. (1978a) Geophysical-Geochemical Report on VLF-EM and soil sample surveys AR claim. Assessment Report 6761.

Mark, D.G. (1978b) Geophysical-Geochemical Report on VLF-EM and soil sample surveys AM claim. Assessment Report 6821.

McKechnie, N.D. (1965) Pyramid (Pyramid Mining Co. Ltd.); in Minister of Mines Annual Report 1965, *BC Ministry of Energy, Mines and Petroleum Resources*, pages 156-157.

Morrison, M. (1981) Report on an economic geological appraisal of the Bluey Group of mineral claims. Assessment Report 9491.

Pearce, J. A. (1996) A user's guide to basalt discrimination diagrams. In: Wyman, D. A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. *Geological Association of Canada*, Short Course Notes 12, 79–113.

Preto, V.A. (1979) Geology of the Nicola Group between Merritt and Princeton; *B.C. Ministry of Energy, Mines and Petroleum Resources*, Bulletin 69.

Richards, J.B. (1990) Geological Report on the Ken claims. Assessment Report 20393.

Sigurgeirson, H. (2017) Geological Assessment Report on the Tom Cat Property. Assessment Report 37000.

Sigurgeirson, H. (2018) Geological and Prospecting Assessment Report on the Tom Cat Property. Assessment Report 37664.

Yorke-Hardy, R.W. (1976) Geochemical Report covering the Bluey Group of claims. Assessment Report 5908.

Statement of Qualifications

I certify the following:

- 1. I graduated in 1995 from the University of British Columbia with a B.Sc. in the Geological Sciences.
- 2. I have worked in mining and mineral exploration continuously since graduation.
- 3. I have worked on VMS, porphyry, epithermal and mesothermal Au vein, anorthosite hosted Ti, nephrite and other exploration programs in Canada, Mexico and China. I have developed and operated 3 dimension stone quarries on the BC coast.
- 4. I am a professional geoscientist in the Association of Professional Engineers and Geoscientists of British Columbia, and have been a member in good standing (member #28920) since 2004.
- 5. I carried out the work program described herein and wrote this report.

H. Sigurgeirson, P.Geo

SERT. 73, 2019

Date

This document represents an electronic version of the original hard copy document, sealed, signed and dated by Helgi Sigurgeirson, P.Geo and retained on file. The content of the electronically transmitted document can be confirmed by referring to the original hard copy and filed

Cost Statement

Consultant	Description	Rate	Amount	Total
H. Sigurgeirson, P.Geo.	Fieldwork: May 27–29, 2019	\$530.00	3	\$1,590.00
	Travel (half rate)	\$265.00	2	\$530.00
	Report	\$1,500.00	1	\$1,500.00
	Sample slabbing (\$75/hr)	\$70.00	1	\$70.00
	Data compilation (\$50/hr)	\$50.00	3	\$150.00
	Sample handling (\$50/hr)	\$50.00	2	\$100.00
				\$3,940.00
Vahiolog				
Vehicles		#0.00	050	ф г 70 00
Pickup truck	per kilometer (fuel included)	\$0.60	950	\$570.00
quad	per day	\$120.00	3	\$360.00
				\$930.00
Expenses				
Accommodations	per day	\$120.00	4	\$480.00
Food/meals	per day	\$60.00	5	\$300.00
		·		\$780.00
Sampling	6 rock and 2 soil samples			\$530.00
Petrography	2 petrographic samples			\$620.00

Total = \$6,800.00

Appendix I

Petrographic Report

Report 190260
Helgi Sigurgeirson,
Saxifrage Geological Services, Ltd.,
47312 Schooner Way,
Pender Island, BC, V0N 2M2

Hardygranite@gmail.com

tel: 604-341-7092

Samples: 28.3, 28.10

Summary:

Sample 28.3 is of hornblende diorite that contains phenocrysts of plagioclase (altered slightly to dolomite-sericite-limonite) and less abundant ones of hornblende (altered completely to dolomite-plagioclase-[limonite-kaolinite]); these are set in a groundmass of finer grained plagioclase (altered slightly to moderately to sericite-limonite) with scattered patches of limonite (possibly secondary after sulphides) and minor euhedral grains of apatite. A set of parallel veins and veinlets is of dolomite-(quartz); bordering the largest veins, plagioclase was altered moderately to strongly to dolomite.

July 2019

Sample 28.10 is of gabbro, that is dominated by plagioclase (altered moderately to patches of epidote), with accessory diopside (fresh to altered slightly to completely to epidote) and disseminated magnetite. Several replacement patches are of epidote or epidote-dolomite-chlorite-(magnetite). One patch is of coarse grained apatite-magnetite. The rock underwent patchy, moderate cataclastic deformation and granulation and deformed zones were replaced in part by massive, slightly feathery tremolite/actinolite.

Photographic Notes:

The scanned section shows the gross textural features of the sections; these features are seen much better on the digital image than on the printed image. For the photographs, sample numbers are shown in the upper left corner, photo numbers are shown in the lower left corner, and the letter in the lower right corner indicates the lighting conditions: incident light in crossed nicols = X. Locations of photographs are shown on the scanned section.

John G. Payne, Ph.D., P.Geol. Tel: (604)-597-1080

email: jppayne@telus.net

Sample 28.3 Hornblende Diorite

Alteration: Dolomite-Limonite-(Sericite-Kaolinite)

Veins, Veinlets: Dolomite-(Quartz)

Phenocrysts of plagioclase (altered slightly to dolomite-sericite-limonite) and less abundant ones of hornblende (altered completely to dolomite-plagioclase-[limonite-kaolinite]) are set in a groundmass of finer grained plagioclase (altered slightly to moderately to sericite-limonite) with scattered patches of limonite (possibly secondary after sulphides) and minor euhedral grains of apatite. A set of parallel veins and veinlets is of dolomite-(quartz); bordering the largest veins, plagioclase was altered moderately to strongly to dolomite.

mineral	percentage	main grain size range (mm)
phenocrysts		
plagioclase	35-40%	0.7-1.5
hornblende(?)	1- 2	0.5-1; (a few 1.5-3 mm long)
groundmass		
plagioclase	45-50	0.2-0.5
semi-opaque	2-3	dusty
apatite	minor	0.1-0.15 (a few up to 0.3 mm long)
replacement		
dolomite-plagioclase	4- 5	0.05-0.3 (do), 0.05-0.1 (pl)
veinlets		
1) dolomite-(quartz)	3-4	0.05-0.15

Plagioclase forms unoriented subhedral prismatic phenocrysts that are intergrown with finer grained anhedral groundmass plagioclase. All are altered slightly to sericite and contain accessory disseminated diffuse spots (0.02-0.07 mm) of dark brown semi-opaque hematite/limonite.

Hornblende(?) forms a few subhedral to euhedral stubby prismatic phenocrysts that were altered completely to dolomite –plagioclase, with minor limonite along their margins.

Apatite forms disseminated, mainly stubby subhedral to euhedral prismatic grains.

Limonite also forms disseminated larger patches (0.1-0.3 mm) that probably are secondary after sulphides.

Dolomite with minor to moderately abundant plagioclase forms scattered replacement patches up to 2 mm across. Replacement plagioclase is free of limonite alteration spots.

Dolomite forms a set of mainly subparallel veins up to 0.4 mm wide and in veinlets from 0.02-0.05 mm wide. Bordering the veins, groundmass plagioclase was altered moderately to strongly to dolomite-(sericite-limonite).

Sample 28.10 Diorite/Gabbro

Alteration: Epidote-Magnetite-Apatite Cataclastic Deformation, Tremolite/Actinolite Replacement

The original rock is dominated by plagioclase (altered moderately to patches of epidote), with accessory diopside (fresh to altered slightly to completely to epidote) and disseminated magnetite. Several replacement patches are of epidote or epidote-dolomite-chlorite-(magnetite). One patch is of coarse grained apatite-magnetite. The rock underwent patchy, moderate cataclastic deformation and granulation and deformed zones were replaced in part by massive, slightly feathery tremolite/actinolite.

mineral	percentage	main grain size range (mm)
plagioclase	40-45%	0.3-0.7
diopside	3-4	0.3-0.5
magnetite	2-3	0.05-0.15
replacement		
1) epidote	15-17	0.05-0.2
dolomite	3-4	0.01-0.03
chlorite	2-3	0.01-0.03
magnetite	3-4	0.1-0.7
apatite	2-3	0.5-3
2) tremolite/actinolite	17-20	0.02-0.03
veinlets		
1) epidote-(quartz)	0.7	0.05-0.15 (ep), 0.02-0.03 (qz)
2) calcite	0.7	0.05-0.1

In the least altered/replaced rock, plagioclase forms anhedral to subhedral prismatic grains that range from fresh to replaced slightly to moderately by epidote.

Diopside forms scattered anhedral to subhedral stubby prismatic grains that range from fresh to altered strongly to completely to epidote and/or tremolite/actinolite

Magnetite forms disseminated anhedral grains and clusters of a few grains.

Parts of the rock were slightly to moderately cataclastically deformed, producing slightly strained and slightly to moderately crushed grains; some of these areas were replaced slightly to strongly in about half the section (Zone A) by irregular patches of massive, slightly feathery, pale green tremolite/actinolite.

In a few large patches, the rock was replaced strongly by epidote with much less abundant dolomite (Zone B).

This zone contains a few patches of magnetite, one coarser grained zone is associated with a few coarse anhedral grains of apatite.

Adjacent to the coarse patch of apatite-magnetite is a replacement zone of epidote-dolomite with abundant interstitial chlorite (Zone C).

Epidote with minor quartz forms several discontinuous veinlets (0.05-0.08 mm wide). Calcite forms a few veinlets 0.1-0.2 mm wide.

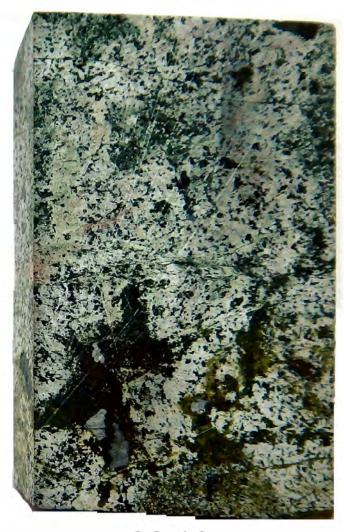
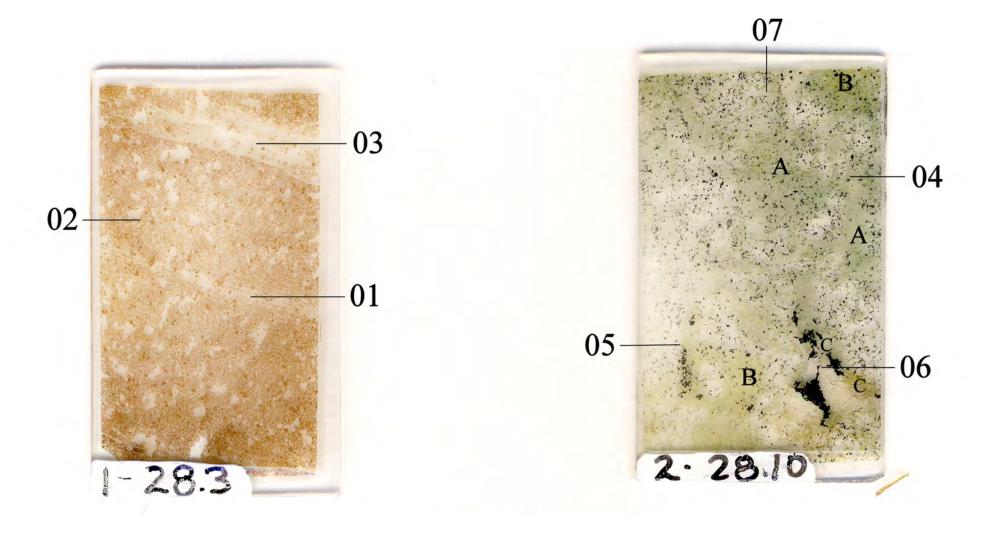
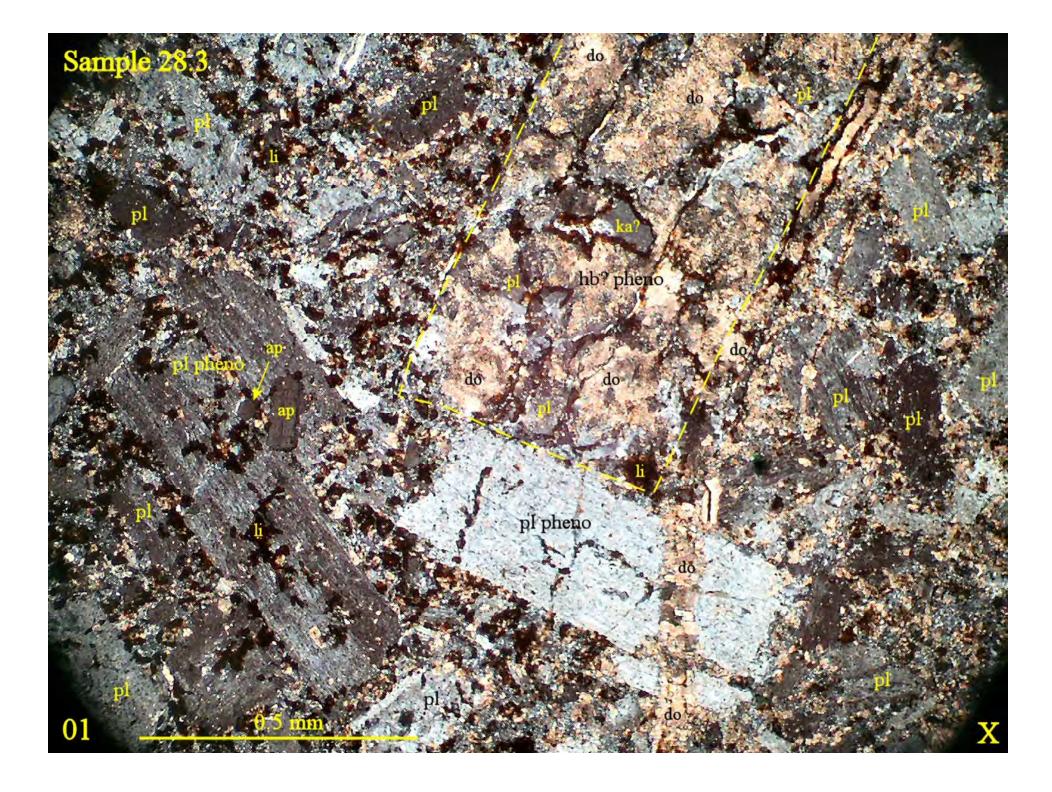
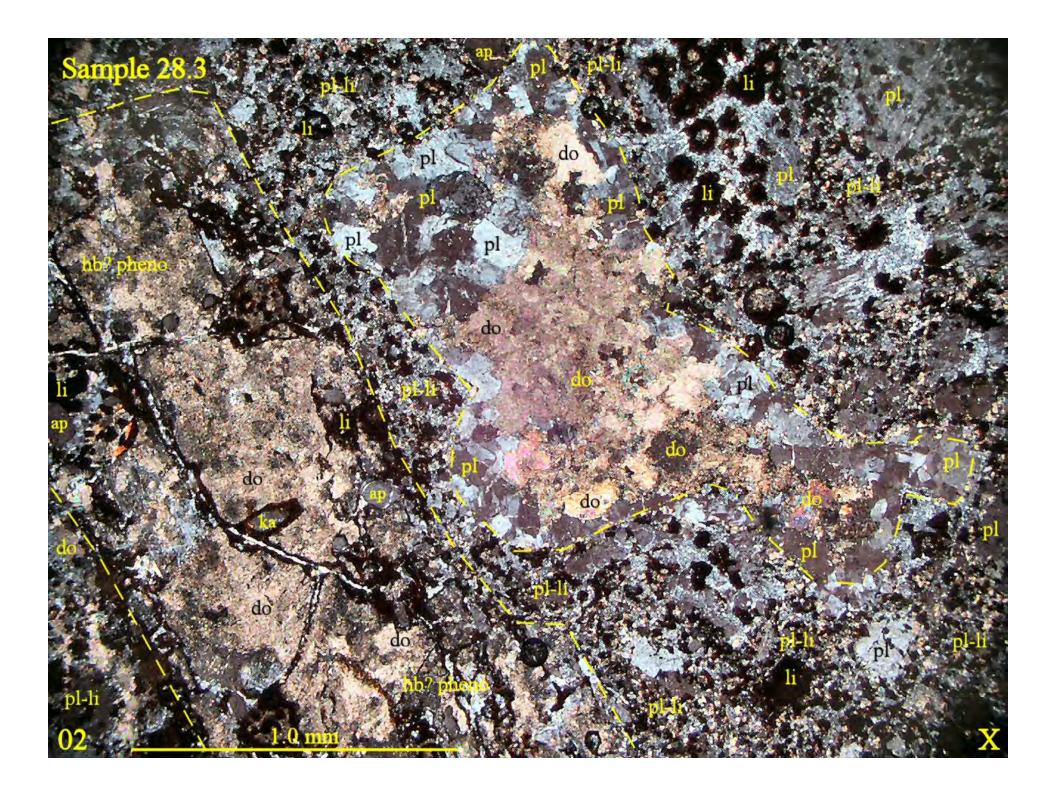

List of Photographs

Photo	Section	Description List of Thotographs
01	28.3	plagioclase phenocrysts (altered slightly to sericite with minor to accessory spots of limonite), one hornblende phenocryst (?; altered completely to dolomite-plagioclase-with irregular patches of limonite and one patch of cryptocrystalline kaolinite?); groundmass of anhedral plagioclase (altered slightly to sericite with accessory disseminated patches of limonite); two proximal euhedral grains of apatite; veinlet of dolomite with locally rims of limonite.
02	28.3	large hornblende(?) phenocryst (altered completely to dolomite-plagioclase with disseminated patches of limonite and one patch of kaolinite[?]); groundmass of plagioclase (altered slightly to moderately to sericite and spots of limonite) with minor disseminated subhedral to euhedral apatite grains; replacement patch of dolomite-plagioclase (free of limonite spots); minor dolomite veinlet.
03	28.3	one large plagioclase phenocryst and a few smaller ones in a matrix of finer grained plagioclase (altered moderately to strongly to dolomite-[limonite]); a patch of limonite/hematite; small replacement patch of dolomite-plagioclase (free of limonite spots); parallel veinlets of dolomite with minor to moderately abundant quartz.
04	28.10	plagioclase (large grain fractured and partly granulated; some smaller grains granulated) with accessory diopside (replaced moderately by epidote) and magnetite; replacement patches, probably guided by zones of cataclastic deformation are of extremely fine grained tremolite/actinolite.
05	28.10	to the left: undeformed plagioclase with scattered patches of magnetite and of diopside (altered completely to tremolite/actinolite); to the right: (Zone B) the rock was replaced strongly to completely by epidote with scattered grains of magnetite and relic patches of plagioclase.
06	28.10	replacement patch: lower left: coarse apatite with minor magnetite; upper right: (Zone C) very fine grained epidote-dolomite with abundant interstitial chlorite and a few, in part coarse patches of magnetite.
07	28.10	intergrowth of plagioclase and diopside (altered in a few smaller grains partly to epidote), accessory magnetite; irregular replacement patches of somewhat feathery tremolite/actinolite.

190260 saxifrage blocks




28.3



28.10

190260 saxifrage sections

<u>Appendix II</u>

Certificates of Analysis & QC Documents

Whole Rock Samples
 Geochemical (rock) Samples
 Soil

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-JUL-2019 This copy reported on 23-SEP-2019

Account: SAXGEO

VA19157839

This report is for 3 Rock samples submitted to our lab in Vancouver, BC, Canada on 28-JUN-2019.

The following have access to data associated with this certificate:

SAMPLE PREPARATION			
ALS CODE	DESCRIPTION		
WEI-21	Received Sample Weight		
PUL-QC	Pulverizing QC Test		
LOG-21	Sample logging - ClientBarCode		
CRU-31	Fine crushing - 70% <2mm		
SPL-21	Split sample - riffle splitter		
PUL-31	Pulverize split to 85% <75 um		
DISP-01	Disposal of all sample fractions		

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	
TOT-ICP06	Total Calculation for ICP06	
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ
ME-MS81	Lithium Borate Fusion ICP-MS	ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-JUL-2019 **Account: SAXGEO**

									C	ERTIFIC	CATE O	F ANAI	LYSIS	VA191	57839	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.1	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.1	ME-MS81 Lu ppm 0.01	ME-MS81 Nb ppm 0.2
021601 021602 021603	LOD	0.02 0.98 1.00 0.80	0.5 1850 271 625	0.1 20.5 29.2 26.9	10 20 10	0.01 0.70 1.20 0.21	0.05 3.75 3.26 4.24	0.03 2.36 1.90 2.51	0.03 1.12 1.14 1.31	0.1 18.5 23.9 16.0	0.05 3.81 3.68 4.36	2.0 2.2 2.1	0.01 0.70 0.61 0.88	9.6 14.4 12.9	0.01 0.32 0.30 0.35	0.2 3.0 3.3 4.0

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-JUL-2019 Account: SAXGEO

CERTIFICATE OF ANALYSIS VA19157839

									С	ERTIFIC	CATE O	F ANAI	LYSIS	VA191	57839	
Sample Description	Method Analyte Units LOD	ME-MS81 Nd ppm 0.1	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.1	ME-MS81 Yb ppm 0.03
021601 021602 021603	LOD															

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-JUL-2019 **Account: SAXGEO**

CERTIFICATE OF ANALYSIS	VA19157839
-------------------------	------------

									С	ERTIFIC	CATE O	F ANAI	LYSIS	VA191	57839	
Sample Description	Method Analyte Units LOD	ME-MS81 Zr ppm 2	ME-ICP06 SiO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01
021601 021602 021603	LOD	71 78 74	52.5 49.9 50.0	0.01 17.15 15.90 16.20	8.24 6.57 10.60	5.00 5.57 6.63	3.80 2.64 3.78	0.01 4.31 5.35 4.75	0.01 3.31 2.31 2.02	0.002 <0.002 <0.002 <0.002	0.01 0.80 0.54 0.78	0.01 0.16 0.17 0.31	0.01 0.48 0.48 0.49	0.01 0.12 0.05 0.13	0.01 0.19 0.03 0.07	3.48 10.20 3.39

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 10-JUL-2019 Account: SAXGEO

CERTIFICATE OF ANALYSIS VA19157839

			l	
Sample Description	Method Analyte Units LOD	TOT-ICP06 Total % 0.01		
021601 021602 021603		99.54 99.71 99.15		

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 10-JUL-2019 Account: SAXGEO

		<u> </u>									
	CERTIFICATE COMMENTS										
		LABORA	TORY ADDRESSES								
	Processed at ALS Vancou	ıver located at 2103 Dollarton Hwy, Noi	rth Vancouver, BC, Canada.								
Applies to Method:	CRU-31 ME-MS81	DISP-01 OA-GRA05	LOG-21 PUL-31	ME-ICP06 PUL-QC							
	SPL-21	TOT-ICP06	WEI-21								

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10-JUL-2019 This copy reported on 23-SEP-2019

Account: SAXGEO

VA19157839

This report is for 3 Rock samples submitted to our lab in Vancouver, BC, Canada on 28-JUN-2019.

The following have access to data associated with this certificate:

ALS Canada Ltd.

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
PUL-QC	Pulverizing QC Test
LOG-21	Sample logging - ClientBarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um
DISP-01	Disposal of all sample fractions

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	
TOT-ICP06	Total Calculation for ICP06	
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ
ME-MS81	Lithium Borate Fusion ICP-MS	ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2

Page: 2 - A
Total # Pages: 3 (A - C)
Plus Appendix Pages
Finalized Date: 10-JUL-2019

								<u> </u>								
Sample Description	Method Analyte Units LOD	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.1	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.1	ME-MS81 Lu ppm 0.01	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1
							STAN	DARDS								
AMIS0167 Target Range - Lower E Upper AMIS0286 Target Range - Lower E	Bound Bound															
Upper AMIS0304 Target Range - Lower E Upper	Bound	2700 2340 2860	8470 7280 8900	90 70 120	0.43 0.35 0.45	131.0 119.0 145.5	33.3 30.6 37.4	142.0 135.0 165.0	40.3 47.8 58.7	327 309 377	26.2 25.0 31.0	16.20 16.20 19.80	3480 3250 3970	1.98 1.84 2.27	>2500 4670 >2500	3900 3610 4410
AMIS0461 Target Range - Lower E Upper OREAS 146 Target Range - Lower E Upper	Bound Bound Bound															
OREAS-105 Target Range - Lower B		762 632	123.0 105.0	120 40	2.73 1.96	13.20 10.95	8.26 6.72	1.67 1.32	40.8 24.3	13.40 11.65	6.7 5.6	2.57 2.19	52.0 45.8	1.17 0.88	42.2 36.9	66.1 57.8
Upper		774	129.0	80	2.42	13.45	8.28	1.68	29.9	14.35	7.2	2.69	56.2	1.10	45.6	70.8
							BL/	ANKS								
BLANK Target Range - Lower E Upper BLANK		<0.5	0.1	<10	0.02	<0.05	<0.03	<0.03	0.1	<0.05	<0.2	<0.01	<0.1	<0.01	<0.2	<0.1
Target Range - Lower E		<0.5	<0.1	<10	<0.01	<0.05	<0.03	<0.03	<0.1	<0.05	<0.2	<0.01	<0.1	<0.01	<0.2	<0.1
Upper BLANK Target Range - Lower B Upper	Bound	1.0	0.2	20	0.02	0.10	0.06	0.06	0.2	0.10	0.4	0.02	0.2	0.02	0.4	0.2

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10-JUL-2019

OC CERTIFICATE OF ANALYSIS VAT915/839		C CERTIFICATE OF ANALYSIS	VA19157839
---------------------------------------	--	---------------------------	------------

A Samuela Danavintian	Method Analyte Units LOD	ME-MS81 Pr ppm 0.03	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.1	ME-MS81 Yb ppm 0.03	ME-MS81 Zr ppm 2
							STAN	DARDS								
AMIS0167 Target Range - Lower Bot Upper Bot AMIS0286 Target Range - Lower Bot Upper Bo	ound und															
AMIS0304 Target Range - Lower Bou		>1000 925	10.5 9.3	571 543	24 22	3470 3060	12.1 11.1	32.3 30.8	443 406	3.19 3.14	21.8 21.6	389 331	5 3	408 369	15.65 15.25	1190 1005
Upper Bot AMISO461 Target Range - Lower Bot Upper Bot OREAS 146 Target Range - Lower Bot Upper Bo	ound und ound und	>1000	11.8	664	29	3740	13.8	37.7	496	3.86	26.5	415	7	451	18.75	1230
OREAS-105		15.80	110.0	15.55	9	308	4.4	2.13	386	1.21	554	340	3	69.7	7.90	253
Target Range - Lower Bou Upper Bo		14.35 17.65	94.8 116.5	13.30 16.30	8 13	85.3 104.5	4.3 5.5	1.95 2.41	332 406	1.02 1.26	479 585	19 43	<1 5	58.3 71.5	6.54 8.06	208 259
							BL	ANKS								
BLANK Target Range - Lower Bou Upper Bo BLANK		<0.03	<0.2	<0.03	<1	0.1	<0.1	<0.01	<0.05	0.01	<0.05	< 5	<1	<0.1	<0.03	3
Target Range - Lower Bou		<0.03	<0.2	<0.03	<1	<0.1	<0.1	<0.01	<0.05	<0.01	<0.05	<5	<1	<0.1	<0.03	<2
Upper Bo BLANK Target Range - Lower Bo Upper Bo	und	0.06	0.4	0.06	2	0.2	0.2	0.02	0.10	0.02	0.10	10	2	0.2	0.06	4

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10-JUL-2019

(ALS)	,								QC	CERTIF	ICATE	OF AN	ALYSIS	VA1	9157839
Sample Description	Method Analyte Units LOD	ME-ICP06 SiO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01
							STAN	DARDS							
AMIS0167 Target Range - Lower Upper	Bound Bound	94.3 89.6 93.3	2.43 2.29 2.55	3.34 3.28 3.62	0.13 0.10 0.16	0.24 0.21 0.27	0.08 0.06 0.12	0.50 0.45 0.55	0.059 0.049 0.067	0.15 0.12 0.18	0.02 <0.01 0.04	0.02 <0.01 0.05	<0.01 <0.01 0.02	0.01 <0.01 0.02	
AMIS0304 Target Range - Lower	Bound Bound														7.71 7.25 8.03
AMIS0461 Farget Range - Lower	Bound Bound Bound	20.5	2.99	28.1	17.35	6.97	0.31	1.30	0.026	1.41	2.47	0.55	0.39	1.54	39.0 36.9 40.9
OREAS-105 Target Range - Lower	Bound	19.50 20.7	2.82 3.12	27.5 29.1	16.75 17.85	6.59 7.15	0.26 0.34	1.19 1.37	0.017 0.031	1.35 1.53	2.30 2.56	0.49 0.59	0.33 0.41	1.39 1.59	
							BLA	ANKS							
BLANK Target Range - Lower	Bound	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.002 <0.002 0.004	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	
BLANK Target Range - Lower															0.02 <0.01 0.02

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10-JUL-2019

									QC	CERTIF	ICATE	OF AN	ALYSIS	VA1	915783	9
Sample Description	Method Analyte Units LOD	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.1	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03	ME-MS81 Eu ppm 0.03	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.2	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.1	ME-MS81 Lu ppm 0.01	ME-MS81 Nb ppm 0.2	ME-MS81 Nd ppm 0.1
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	66.8 76.5 67.6 75.7	4.0 4.7 4.0 4.7	70 80 60 90	0.42 0.48 0.42 0.48	1.08 1.14 1.00 1.22	0.67 0.79 0.66 0.80	0.34 0.32 0.28 0.38	14.8 15.8 14.4 16.2	0.83 0.97 0.81 1.00	0.4 0.5 <0.2 0.7	0.22 0.25 0.21 0.26	1.8 2.2 1.8 2.2	0.10 0.12 0.09 0.13	0.3 0.3 <0.2 0.4	2.3 2.7 2.3 2.7

Upper Bound

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

0.64

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 3 - B Total # Pages: 3 (A - C) **Plus Appendix Pages** Finalized Date: 10-JUL-2019

0.77

Account: SAXGEO

									QC	CERTII	ICATE	OF AN	ALYSIS	VA1	915783	9
Sample Description	Method	ME-MS81														
	Analyte	Pr	Rb	Sm	Sn	Sr	Ta	Tb	Th	Tm	U	V	W	Y	Yb	Zr
	Units	ppm														
	LOD	0.03	0.2	0.03	1	0.1	0.1	0.01	0.05	0.01	0.05	5	1	0.1	0.03	2
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
ORIGINAL	Bound	0.54	4.9	0.64	<1	195.0	0.1	0.15	0.18	0.09	0.05	310	<1	6.0	0.61	13
DUP		0.62	5.5	0.80	<1	233	0.1	0.16	0.22	0.11	0.05	343	<1	6.8	0.79	14
Target Range - Lower		0.52	4.7	0.65	<1	203	<0.1	0.14	0.14	0.09	<0.05	305	<1	6.0	0.64	11

0.26

0.12

0.10

0.2

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10-JUL-2019

() ()									QC	CERTIF	FICATE	OF AN	ALYSIS	VA1	9157839
Sample Description	Method Analyte Units LOD	ME-ICP06 SiO2 % 0.01	ME-ICP06 AI2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01
							DUPL	ICATES							
ORIGINAL DUP Farget Range - Lower Upper	Bound Bound														2.37 2.30 2.27 2.40
DRIGINAL DUP Farget Range - Lower Upper	Bound Bound	50.8 49.5 48.9 51.4	15.55 15.20 15.00 15.75	11.35 11.10 10.95 11.50	11.70 11.30 11.20 11.80	7.86 7.69 7.57 7.98	2.04 2.00 1.96 2.08	0.23 0.23 0.21 0.25	0.011 0.010 0.008 0.013	0.43 0.41 0.40 0.44	0.17 0.16 0.15 0.18	0.01 0.01 <0.01 0.02	0.03 0.03 0.02 0.04	0.01 0.01 <0.01 0.02	
															•

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 10-JUL-2019 Account: SAXGEO

		CERTIFICATE COM	MENTS										
	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.												
Applies to Method:	Processed at ALS Vancouver locate CRU-31 ME-MS81 SPL-21	ed at 2103 Dollarton Hwy, Nor DISP-01 OA-GRA05 TOT-ICP06	th Vancouver, BC, Canada. LOG-21 PUL-31 WEI-21	ME-ICP06 PUL-QC									

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019 This copy reported on 23-SEP-2019

Account: SAXGEO

VA19157842

This report is for 3 Rock samples submitted to our lab in Vancouver, BC, Canada on 28-JUN-2019.

The following have access to data associated with this certificate:

ALS Canada Ltd.

	SAMPLE PREPARATION									
ALS CODE	DESCRIPTION									
WEI-21	Received Sample Weight									
LOG-21	Sample logging - ClientBarCode									
DISP-01	Disposal of all sample fractions									
PUL-QC	Pulverizing QC Test									
CRU-31	Fine crushing - 70% <2mm									
SPL-21	Split sample - riffle splitter									
PUL-32	Pulverize 1000g to 85% < 75 um									
BAG-01	Bulk Master for Storage									

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41a Au-ICP21	High Grade Aqua Regia ICP-AES Au 30g FA ICP-AES Finish	ICP-AES ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019 Account: SAXGEO

CERTIFICATE OF ANALYSIS VA19

									C	EK I IFIO	LAILO	F ANAI	<u> </u>	VA191	5/842	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
021604 021605 021606		1.28 0.98 0.44	0.007 2.24 0.006	6 4 <1	1.33 2.53 2.42	10 10 30	110 350 160	<5 <5 <5	<10 10 <10	1.66 2.52 2.59	<5 <5 <5	9 33 20	<5 8 15	10800 8810 143	2.02 6.94 6.00	<50 <50 <50

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019 Account: SAXGEO

										CKIIFI	CAILU	ו אוא	- 1 313	VAISI	3/042	
Sample Description	Method Analyte Units LOD	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Th ppm 100
021604 021605 021606	Units	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019 Account: SAXGEO

								CERTIFICA	TIL OI ANALIS	J.U	VA13137072	
Sample Description	Method Analyte Units LOD	ME-ICP41a Ti % 0.05	ME-ICP41a TI ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10					
021604 021605 021606		0.56 0.26 0.38	<50 <50 <50	<50 <50 <50	146 220 260	<50 <50 <50	50 140 100					

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 16-JUL-2019 Account: SAXGEO

-			CERTIFICATE OF AIVA	121313 VA13137042							
		CERTIFICATE COM	MENTS								
	LABORATORY ADDRESSES										
Applies to Method:	Processed at ALS Vancouve Au-ICP21	er located at 2103 Dollarton Hwy, No BAG-01	rth Vancouver, BC, Canada. CRU-31	DISP-01							
, ipplies to method.	LOG-21	ME-ICP41a WEI-21	PUL-32	PUL-QC							
	SPL-21	WEI-ZI									

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019 This copy reported on 23-SEP-2019

Account: SAXGEO

VA19157842

This report is for 3 Rock samples submitted to our lab in Vancouver, BC, Canada on 28-JUN-2019.

The following have access to data associated with this certificate:

ALS Canada Ltd.

	SAMPLE PREPARATION									
ALS CODE	DESCRIPTION									
WEI-21	Received Sample Weight									
LOG-21	Sample logging - ClientBarCode									
DISP-01	Disposal of all sample fractions									
PUL-QC	Pulverizing QC Test									
CRU-31	Fine crushing - 70% <2mm									
SPL-21	Split sample - riffle splitter									
PUL-32	Pulverize 1000g to 85% < 75 um									
BAG-01	Bulk Master for Storage									

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41a Au-ICP21	High Grade Aqua Regia ICP-AES Au 30g FA ICP-AES Finish	ICP-AES ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2

Page: 2 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019

(· ()									QC	CERTIF	ICATE	OF AN	ALYSIS	VA19	915784	2
Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50	ME-ICP41a Hg ppm 5
							STAN	DARDS								
OREAS 602 Target Range - Lower Upper OREAS 684 Target Range - Lower Upper OREAS-218 Target Range - Lower Upper PK2 Target Range - Lower	Bound Bound Bound Bound Bound Bound Bound Bound	0.253 0.534 0.498 0.564 4.91 4.50 5.07	25 21 27 121 109 127	0.78 0.67 0.91 0.77 0.66 0.90	350 290 350 710 590 700	<50 <50 100 6340 5560 6520	<5 <5 10 <5 <5 10	<10 <10 20 60 40 80	0.79 0.66 0.90 0.54 0.41 0.64	8 <5 17 27 15 36	47 37 59 9 <5 20	77 65 88 31 20 41	29700 27500 30400 5260 4910 5430	4.10 3.63 4.29 2.17 1.97 2.37	<50 <50 100 <50 <50 110	<5 <5 10 <5 <5 11
							BL	ANKS								
BLANK Target Range - Lower	Bound	<0.001 <0.001 0.002	<1 <1 2	<0.05 <0.05 0.10	<10 <10 20	<50 <50 100	<5 <5 10	<10 <10 20	<0.05 <0.05 0.10	<5 <5 10	<5 <5 10	<5 <5 10	12 <5 10	<0.05 <0.05 0.10	<50 <50 100	<5 <5 10
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.046 0.143 0.089 0.100														

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019

(ALS)	,								QC	CERTI	ICATE	OF AN	ALYSIS	VA19	915784	-2
Sample Description	Method Analyte Units LOD	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Th ppm 100	ME-ICP41a Ti % 0.05
							STAN	DARDS								
GBM903-13 Target Range - Lower B Upper E OREAS 602 Target Range - Lower B Upper E OREAS 684 Target Range - Lower B	ound ound Bound ound	0.20 0.07 0.28 0.12 <0.05 0.20	<50 <50 100 <50 <50 110	0.59 0.46 0.68 0.12 <0.05 0.21	230 140 270 220 160 280	352 316 374 <5 <5	0.07 <0.05 0.18 <0.05 <0.05 0.13	24700 22600 26100 61 50 72	120 <50 230 260 140 350	21800 19950 23000 900 790 930	2.57 2.23 2.67 2.32 1.83 2.21	<10 <10 30 80 40	<5 <5 16 <5 <5	12 <5 20 87 79 103	<100 <100 200 <100 <100 200	0.05 <0.05 0.14 <0.05 <0.05 0.11
Upper E OREAS-218 Target Range - Lower B Upper E PK2 Target Range - Lower B Upper E	ound Bound ound						DI.	ANKS								
DI ANIZ							BLA	ANKS								
BLANK Target Range - Lower B Upper E BLANK Target Range - Lower B Upper E	Sound ound	<0.05 <0.05 0.10	<50 <50 100	<0.05 <0.05 0.10	<30 <30 60	<5 <5 10	<0.05 <0.05 0.10	<5 <5 10	<50 <50 100	<10 <10 20	<0.05 <0.05 0.10	<10 <10 20	<5 <5 10	<5 <5 10	<100 <100 200	<0.05 <0.05 0.10
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower B Upper E																

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - C Total # Pages: 3 (A - C) **Plus Appendix Pages** Finalized Date: 16-JUL-2019

Account: SAXGEO

Method Analyte Units LOD	ME-ICP41a TI ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	
						STANDARDS
GBM903-13 Target Range - Lower Bound Upper Bound OREAS 602 Target Range - Lower Bound	<50 <50 100 <50 <50	<50 <50 100 <50 <50 100	29 17 38 11 <5	<50 <50 110 <50 <50	9450 8670 10000 4300 3790 4390	
Upper Bound OREAS 684 Target Range - Lower Bound Upper Bound OREAS-218 Target Range - Lower Bound Upper Bound PK2 Target Range - Lower Bound Upper Bound Upper Bound	100	100	21	100	4390	
						BLANKS
BLANK Target Range - Lower Bound Upper Bound BLANK Target Range - Lower Bound Upper Bound	<50 <50 100	<50 <50 100	<5 <5 10	<50 <50 100	<10 <10 20	DET HTKS
						DUPLICATES
ORIGINAL DUP Target Range - Lower Bound Upper Bound						

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2

Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019

		QC CERTIFICATE OF ARALISIS VATSTS7642														
Sample Description	Method Analyte Units LOD	Au-ICP21 Au ppm 0.001	ME-ICP41a Ag ppm 1	ME-ICP41a AI % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50	ME-ICP41a Hg ppm 5
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.069 0.122 0.090 0.101														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.053 0.057 0.051 0.059														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound		39 37 36 40	0.08 0.07 <0.05 0.10	2830 2660 2640 2850	80 90 <50 100	<5 <5 <5 10	480 470 450 500	0.14 0.14 0.09 0.19	30 28 23 35	104 98 92 110	97 92 86 103	46500 44500 44400 46600	41.0 39.3 38.7 41.6	<50 <50 <50 100	6 <5 <5 10

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-JUL-2019

QC CERTIFICATE OF ANALYSIS	VA19157842
	V/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

								ļ								
Sample Description	Method Analyte Units LOD	ME-ICP41 a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Th ppm 100	ME-ICP41a Ti % 0.05
ORIGINAL DUP Target Range - Lower Upper	Bound Bound						DUPL	ICATES								
	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	<0.05 <0.05 <0.05 0.10	<50 <50 <50 100	0.06 0.05 <0.05 0.10	140 140 110 170	18 17 12 23	<0.05 <0.05 <0.05 0.10	12 <5 <5 10	<50 <50 <50 100	3410 3200 3180 3430	>10.0 >10.0 9.60 10.00	240 230 220 250	<5 <5 <5 10	7 5 <5 10	<100 <100 <100 200	<0.05 <0.05 <0.05 0.10

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 3 - C Total # Pages: 3 (A - C) **Plus Appendix Pages** Finalized Date: 16-JUL-2019

Account: SAXGEO

Method Analyte Units LOD	ME-ICP41a ME-ICP41a TI U ppm ppm 50 50	ME-ICP41a ME-ICP41a V W ppm ppm 5 50	ME-ICP41a Zn ppm 10	
				DUPLICATES
ORIGINAL				
DUP Target Range - Lower Bound Upper Bound				
ORIGINAL DUP				
Target Range - Lower Bound Upper Bound				
ORIGINAL DUP	<50 <50 <50 <50	<5 <50 <5 <50	8930 8330	
Target Range - Lower Bound Upper Bound	<50 <50 100 100	<5 <50 10 100	8310 8950	

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 16-JUL-2019 Account: SAXGEO

		CERTIFICATE COM	MENTS									
	LABORATORY ADDRESSES											
Applies to Method:	Processed at ALS Vancouve Au-ICP21 LOG-21 SPL-21	r located at 2103 Dollarton Hwy, No BAG-01 ME-ICP41a WEI-21	rth Vancouver, BC, Canada. CRU-31 PUL-32	DISP-01 PUL-QC								

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019 This copy reported on 23-SEP-2019

Account: SAXGEO

VA19157843

This report is for 2 Soil samples submitted to our lab in Vancouver, BC, Canada on 28-JUN-2019.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
SCR-41	Screen to -180um and save both	
DISP-01	Disposal of all sample fractions	

	ANALYTICAL PROCEDURES
ALS CODE	DESCRIPTION
AuME-TL43	25g Trace Au + Multi Element PKG

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019 Account: SAXGEO

		CERTIFICATE OF ANALYSIS							L 1 313	VA19137043						
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	AuME-TL43 Au ppm 0.001	AuME-TL43 Ag ppm 0.01	AuME-TL43 Al % 0.01	AuME-TL43 As ppm 0.1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0.01	AuME-TL43 Ca % 0.01	AuME-TL43 Cd ppm 0.01	AuME-TL43 Ce ppm 0.02	AuME-TL43 Co ppm 0.1	AuME-TL43 Cr ppm 1	AuME-TL43 Cs ppm 0.05
021607 021608		0.76 0.66	0.006 0.009	0.07 0.10	1.26 1.72	19.1 4.5	10 10	100 120	0.42 0.50	0.05 0.08	1.71 0.52	0.18 0.10	16.80 15.40	13.6 7.9	24 21	1.43 1.50

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019

CERTIFICATE OF ANALYSIS VA1	9157843
-----------------------------	---------

								<u>J</u>	CERTIFICATE OF ANALYSIS					VA1915/843			
Sample Description	Method Analyte Units LOD	AuME-TL43 Cu ppm 0.2	AuME-TL43 Fe % 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0.05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0.01	AuME-TL43 La ppm 0.2	AuME-TL43 Li ppm 0.1	AuME-TL43 Mg % 0.01	AuME-TL43 Mn ppm 5	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01	AuME-TL43 Nb ppm 0.05	
021607 021608	LOD																
ı																	

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019 Account: SAXGEO

											CAILO	1 /11//1		VAIJI	37073	
Sample Description	Method Analyte Units LOD	AuME-TL43 Ni ppm 0.2	AuME-TL43 P ppm 10	AuME-TL43 Pb ppm 0.2	AuME-TL43 Rb ppm 0.1	AuME-TL43 Re ppm 0.001	AuME-TL43 S % 0.01	AuME-TL43 Sb ppm 0.05	AuME-TL43 Sc ppm 0.1	AuME-TL43 Se ppm 0.2	AuME-TL43 Sn ppm 0.2	AuME-TL43 Sr ppm 0.2	AuME-TL43 Ta ppm 0.01	AuME-TL43 Te ppm 0.01	AuME-TL43 Th ppm 0.2	AuME-TL43 Ti % 0.005
021607 021608	LOD															0.005 0.073 0.091

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019

Account: SAXGEO

									CERTIFICATE OF ANALYSIS VAT915/843
Sample Description	Method Analyte Units LOD	AuME-TL43 Tl ppm 0.02	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0.05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5	
O21607 O21608	LOD			96 62			46 45	0.5 2.7 7.5	

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 11-JUL-2019 Account: SAXGEO

		CERTIFICATE OF ANALYSIS	VA19137643
	CERTIFICATE CO	OMMENTS	
	LABO	ORATORY ADDRESSES	
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, AuME-TL43 DISP-01 WEI-21	, North Vancouver, BC, Canada. LOG-21	SCR-41

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019 This copy reported on 23-SEP-2019

Account: SAXGEO

VA19157843

This report is for 2 Soil samples submitted to our lab in Vancouver, BC, Canada on 28-JUN-2019.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
SCR-41	Screen to -180um and save both	
DISP-01	Disposal of all sample fractions	

	ANALYTICAL PROCEDURES
ALS CODE	DESCRIPTION
AuME-TL43	25g Trace Au + Multi Element PKG

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. **47312 SCHOONER WAY** PENDER ISLAND BC VON 2M2

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019

Account: SAXGEO

									QC	CLKIII	IC/ \ I L	01 / (14)	, <u> </u>	V/ (1)	713704	
Sample Description	Method Analyte Units LOD	AuME-TL43 Au ppm 0.001	AuME-TL43 Ag ppm 0.01	AuME-TL43 Al % 0.01	AuME-TL43 As ppm 0.1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0.01	AuME-TL43 Ca % 0.01	AuME-TL43 Cd ppm 0.01	AuME-TL43 Ce ppm 0.02	AuME-TL43 Co ppm 0.1	AuME-TL43 Cr ppm 1	AuME-TL43 Cs ppm 0.05	AuME-TL43 Cu ppm 0.2
							STAN	DARDS								
OREAS-218 Target Range - Lower	Bound	0.004 0.002 0.006 0.540 0.450 0.612	4.57 4.00 4.92 0.16 <0.01 0.02	2.54 2.23 2.75 3.31 <0.01 0.02	36.1 29.6 36.4 5.4 <0.1 0.2	10 <10 30 30 <10 20	130 100 160 20 <10 20	0.81 0.67 0.95 0.19 <0.05 0.10	0.73 0.60 0.76 0.06 <0.01 0.02	0.97 0.86 1.08 2.04 <0.01 0.02	2.33 2.01 2.47 0.09 <0.01 0.02	73.5 66.2 81.0 6.62 <0.02 0.04	19.5 17.0 21.0 32.3 <0.1 0.2	87 79 98 71 <1 2	10.25 9.45 11.65 0.12 <0.05 0.10	641 587 675 160.0 <0.2 0.4
BLANK Target Range - Lower Upper	Bound Bound	0.001 <0.001 0.002	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.1 <0.1 0.2	10 <10 20	<10 <10 20	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.01 <0.01 0.02	<0.02 <0.02 0.04	<0.1 <0.1 0.2	<1 <1 2	<0.05 <0.05 0.10	<0.2 <0.2 0.4
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	>1.00 >1.00 0.924 1.000	2.75 2.71 2.58 2.88	0.72 0.68 0.66 0.75	17.8 17.8 16.8 18.8	10 10 <10 20	150 140 120 170	0.55 0.56 0.48 0.63	2.86 2.82 2.69 2.99	0.35 0.35 0.32 0.38	9.62 9.61 9.12 10.10	30.0 28.7 27.9 30.8	8.5 8.4 7.9 9.0	14 14 12 16	0.73 0.69 0.62 0.80	127.5 127.0 122.5 132.0

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019

QC CERTIFICATE OF ANALYSIS	VA19157843
----------------------------	------------

Sample Description	Method Analyte Units LOD	AuME-TL43 Fe % 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0.05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0.01	AuME-TL43 La ppm 0.2	AuME-TL43 Li ppm 0.1	AuME-TL43 Mg % 0.01	AuME-TL43 Mn ppm 5	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01	AuME-TL43 Nb ppm 0.05	AuME-TL43 Ni ppm 0.2
							STAN	IDARDS								
MRGeo08		3.62	9.79	0.14	0.53	0.07	0.160	1.27	35.7	34.6	1.16	379	15.90	0.31	0.44	718
Target Range - Lower	Bound	3.22	8.73	< 0.05	0.41	0.03	0.137	1.12	32.4	29.1	1.01	336	13.05	0.27	0.22	622
	Bound	3.96	10.80	0.24	0.55	0.09	0.179	1.40	40.0	35.7	1.25	422	16.10	0.35	0.46	761
OREAS-218		5.79	11.00	0.17	0.25	0.04	0.024	0.03	2.4	10.0	1.97	610	0.69	0.07	<0.05	67.6
Target Range - Lower	Bound	<0.01	< 0.05	< 0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	< 0.05	<0.01	< 0.05	<0.2
Upper	Bound	0.02	0.10	0.10	0.04	0.02	0.010	0.02	0.4	0.2	0.02	10	0.10	0.02	0.10	0.4
								ANKS				_				
BLANK		<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	< 5	<0.05	<0.01	<0.05	<0.2
Target Range - Lower		<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	<0.01	<0.05	<0.2
Upper	Bound	0.02	0.10	0.10	0.04	0.02	0.010	0.02	0.4	0.2	0.02	10	0.10	0.02	0.10	0.4
							DUPL	ICATES								
ORIGINAL		3.70	2.17	0.07	< 0.02	0.66	0.022	0.27	13.6	6.1	0.17	961	16.90	0.01	< 0.05	11.8
DUP		3.67	2.04	0.07	< 0.02	0.64	0.022	0.25	13.0	6.0	0.17	945	16.75	0.01	< 0.05	11.7
Target Range - Lower	Bound	3.49	1.95	<0.05	<0.02	0.59	0.016	0.24	12.4	5.6	0.15	900	15.95	<0.01	<0.05	11.0
Upper	Bound	3.88	2.26	0.10	0.04	0.71	0.028	0.28	14.2	6.5	0.19	1005	17.70	0.02	0.10	12.5

ALS Canada Ltd.

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019 Account: SAXGEO

	Method	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43
	Analyte	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
	LOD	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2	0.005	0.02
							STAN	DARDS								
MRGeo08 Target Range - Lower B Upper B		1010	1075 946 1155	145.0 132.0 162.0	0.008 0.005 0.009	0.29 0.27 0.35	2.80 2.10 2.96	7.6 6.5 8.1	0.8 0.6 1.5	3.3 2.8 4.0	73.8 66.6 81.8	0.01 <0.01 0.03	0.03 <0.01 0.04	21.0 19.1 23.8	0.328 0.277 0.349	0.85 0.64 0.92
OREAS-218		420	2.5	1.2	0.001	0.15	0.18	6.5	0.5	0.4	19.3	<0.01	0.03	0.3	0.227	<0.02
Target Range - Lower B		<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005	<0.02
Upper B		20	0.4	0.2	0.002	0.02	0.10	0.2	0.4	0.4	0.4	0.02	0.02	0.4	0.010	0.04
							BLA	ANKS								
BLANK		<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005	<0.02
Target Range - Lower B		<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005	<0.02
Upper B		20	0.4	0.2	0.002	0.02	0.10	0.2	0.4	0.4	0.4	0.02	0.02	0.4	0.010	0.04
							DUPL	ICATES								
ORIGINAL		410	953	12.3	<0.001	0.05	1.39	1.4	0.5	0.4	30.2	<0.01	0.44	3.1	<0.005	0.10
DUP		400	933	11.6	<0.001	0.05	1.40	1.3	0.5	0.4	28.8	<0.01	0.41	3.0	<0.005	0.09
Target Range - Lower B		370	896	11.3	<0.001	0.04	1.24	1.2	0.3	<0.2	27.8	<0.01	0.39	2.7	<0.005	0.07
Upper B		440	990	12.6	0.002	0.06	1.55	1.5	0.7	0.6	31.2	0.02	0.46	3.4	0.010	0.12

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 11-JUL-2019

QC CERTIFICATE OF ANALYSIS	VA19157843
----------------------------	------------

Method Analyte Sample Description Units Units Units Dumble Description Units Units Dumble Description Units Units Dumble Description Units Units Dumble Description Description Units Dumble Description Description Units Dumble Description D	
STANDARDS STAN	
MRGeo08	
MRGeo08 Target Range - Lower Bound Upper Bound OREAS-218 Target Range - Lower Bound Upper Bound OREAS-218 Target Range - Lower Bound Upper Bound OREAS-218 Target Range - Lower Bound Upper Bound OREAS-218 Target Range - Lower Bound Upper Bound OREAS-218 DUPPLICATES See Super Bound OREAS-218 A.93 B.8 B.4.179 B.93 B.8 B.3 B.93 B.95 B.4.1 B.4.1.67 B.93 B.4.1 B.4.1.67 B.93 B.4.1 B.93 B.4.1 B.4.4 B.4.4 B.4.5 B.4.5 B.4.4 B.4.5 B.4.5 B.4.5 B.4.6 B.4.5 B.4.6 B.4 B.4.6 B.4 B.4.6	
Target Range - Lower Bound Upper Bound OREAS-218 Target Range - Lower Bound OREAS-218 Target Range - Lower Bound Upper Bound Upper Bound A.93 B8 1.79 16.90 678 13.5 20.8 B33 19.5 0.06 131 0.50 12.55 66 10.2	
Upper Bound OREAS-218 6.13 109 2.53 20.8 833 19.5 Target Range - Lower Bound Upper Bound 0.06 131 0.50 12.55 66 10.2 BLANKS BLANK 0.10 2 0.10 0.10 4 1.0 BLANKS Target Range - Lower Bound Upper Bound <0.05 <1 <0.05 <0.05 <2 <0.5 Target Range - Lower Bound Upper Bound 0.10 2 0.10 0.10 4 1.0 DUPLICATES ORIGINAL DUP 0.83 14 1.67 8.93 686 <0.5 Target Range - Lower Bound 0.74 12 1.52 8.41 645 <0.5	
OREAS-218 0.06 131 0.50 12.55 66 10.2 Target Range - Lower Bound 0.05 <1 <0.05 <2 <0.5 BLANK BLANKS BLANK <0.05 <1 <0.05 <0.05 <2 <0.5 Target Range - Lower Bound 0.10 2 0.10 0.10 4 1.0 DUPLICATES ORIGINAL DUP 0.83 14 1.67 8.93 686 <0.5 Target Range - Lower Bound 0.74 12 1.52 8.41 645 <0.5	ŀ
Target Range - Lower Bound Co.05	
Second Content of the content of	
BLANK SBLANK SBLANK SITARGET Range - Lower Bound Upper Bound Upper Bound ORIGINAL DUP ORIGINAL DUP Target Range - Lower Bound ORIGINAL DUP Target Range - Lower Bound ORIGINAL DUP ORIGINAL OR	ŀ
BLANK Target Range - Lower Bound Upper Bound Upper Bound ORIGINAL DUP 0.83 14 1.67 8.93 686 677 0.5 Target Range - Lower Bound 0.74 12 1.52 8.41 645 - 0.05 - 0	
Target Range - Lower Bound Upper Bound	
Upper Bound 0.10 2 0.10 0.10 4 1.0 DUPLICATES ORIGINAL 0.83 14 1.67 8.93 686 <0.5 DUP 0.83 14 1.73 8.88 677 0.5 Target Range - Lower Bound 0.74 12 1.52 8.41 645 <0.5	
DUPLICATES ORIGINAL 0.83 14 1.67 8.93 686 <0.5 DUP 0.83 14 1.73 8.88 677 0.5 Target Range - Lower Bound 0.74 12 1.52 8.41 645 <0.5	
ORIGINAL 0.83 14 1.67 8.93 686 <0.5 DUP 0.83 14 1.73 8.88 677 0.5 Target Range - Lower Bound 0.74 12 1.52 8.41 645 <0.5	ŀ
DUP 0.83 14 1.73 8.88 677 0.5 Target Range - Lower Bound 0.74 12 1.52 8.41 645 <0.5	
Target Range - Lower Bound 0.74 12 1.52 8.41 645 <0.5	
Target Range - Lower Bound 0.74 12 1.52 8.41 645 <0.5 Upper Bound 0.92 16 1.88 9.40 718 1.0	
Upper Bound 0.92 16 1.88 9.40 718 1.0	
	ļ
	ŀ
	ļ
	ļ

To: SAXIFRAGE GEOLOGICAL SERVICES LTD. 47312 SCHOONER WAY PENDER ISLAND BC VON 2M2 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 11-JUL-2019 Account: SAXGEO

		CERTIFICATE COMM	ENTS	
	Processed at ALS Vancouver located		ORY ADDRESSES	
Applies to Method:	AuME-TL43 WEI-21	DISP-01	LOG-21	SCR-41