

BC Geological Survey Assessment Report 38498

Ministry of Energy and Mines

BC Geological Survey

Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Geological, Geochemical,	, Drilling, Geophysical TOTAL COST: \$ 31,003.16
AUTHOR(S): Laurence Sookochoff, PEng	SIGNATURE(S): Laurence Sookochoff
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR OF WORK: 2019
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE	E(S) : 5746042 June 26, 2019, 5746351 June 30, 2019
PROPERTY NAME: Comstock	
CLAIM NAME(S) (on which the work was done): 905612, 1014834	4, 1014839, 1019819
COMMODITIES SOUGHT: Gold, copper, silver, lead, zinc	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092ISE02	22, 092ISE052, 0921SE053, 0921SE156
MINING DIVISION: Nicola	NTS/BCGS: 0921.007
LATITUDE:50 °02'_25 " LONGITUDE:	120 ° 47 ' 17 " (at centre of work)
OWNER(S):	
1) Ken Ellerbeck	2)
MAILING ADDRESS: 255 Battle Street West	
Kamloops BC V2C 1G8	
OPERATOR(S) [who paid for the work]:	
1) Lodge Resources Inc.	2)
MAILING ADDRESS:	
Suite 1500 789 West Pender Street	
Vancouver BC V6C 1H2	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, struc Triassic, Nicola Group, rhyolite, andesite, pyroclastics, lime	
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMEN	ENT REPORT NUMBERS: 1735, 2757, 10114, 13114, 16058, 17721,
18888, 28719, 30354, 32153, 34187, 34963, 35284, 36197	

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres) Ground			
Electromagnetic	4	1019819	\$ 7,700.00
			Ψ 1,100.00
GEOCHEMICAL (number of samples analysed for)			
Soil	102	1019819	2,487.89
Rock		1019819	227.49
Other Drill o		1019819	717.78
DRILLING (total metres; number of holes, size)			
Core Packsack drill; 7.92	2 metres; 7 holes; BQ core	1019819	7,100.00
Non-core			
RELATED TECHNICAL			
Sampling/assaying	428 samples taken	1019819	12,770.00
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)			
Other			
		TOTAL COST:	\$ 31,003.16

Kenneth Ellerbeck

(Owner)

Geological, Geochemical, Geophysical, and Drilling Assessment Report

(Event No's 5746042 & 5746351) on the

Comstock Property

Nicola Mining District, British Columbia, Canada BCGS: 0921.007

for

Lodge Resources Inc.

(Operator)

Work done on Tenures 905612, 1014834, 1014839, 1019819

> **Centre of Work** 10U 654434E, 5545455N

> > Author

Laurence Sookochoff, PEng.

Sookochoff Consultants Inc.

Submitted
October 7, 2019

Amendment Submitted March 4, 2020

TABLE OF CONTENTS

Summary	
Introduction	
Property Description and Location	
Description	
Location	
Accessibility, Climate, Local Resources, Infrastructure	
and Physiography	
History	
History: Comstock Property	
Geological Setting and Mineralization	
Regional	
Property	
Diane – Minfile 09ISE022	
Leadville – Minfile 09ISE052	
Charmer – Minfile 09ISE053	
LD – Minfile 09ISE156	
Deposit Types	
Volcanogenic massive sulphide (VMS)	
Auriferous quartz - Lode gold deposits	
Sedex	
Potential mineral deposit types	
Porphyritic copper-gold	
Epithermal	
Skarn	
2019 Exploration Program	
Geochemical	
Geophysical VLF-EM	
Geological	
Packsack drilling	
Sample Preparation, Analyses and Security	
Geology: Adjacent properties	
Geo – Minfile 09ISE016	
Chatko – Minfile 09ISE130	
Dot – Minfile 09ISE159	
Westhaven/Shovelnose property	
Geology and Mineralization:: Adjacent Properties	
Interpretation and Conclusions	
Interpretation	
Conclusions	
Recommendations	
Statement of costs	
References	
Certificate	
JUI TIIICATE	

•

Table of Contents (cont'd)

FIGURES	
Figure 1. Location Map	5.
Figure 2. Location to producing mines and past producers	8.
Figure 3. Claim Map	8.
Figure 4. Comstock Property: 1987 map showing workings	13.
Figure 5. Index Map to mineralized zones on the Comstock property	14.
Figure 6. Geology showing Original (Diane; Aberford) zone, Charmer zone & Comstock (LD) shaft	15.
Figure 7. Charmer zone: Trenches shafts & 1987 exploration area	16.
Figure 8. Aberford (Diane; Original) mineral zone: trenches & 1988	
diamond drill hole locations	17.
Figure 9. Geology, claims, and Minfiles	18.
Figure 10. Detailed Geology showing the mineral zones	19.
Figure 11.Geological model of mineral occurrence types	24.
Figure 12. Geological model of a gold bearing epithermal vein system	25.
Figure 13. Antimony (Sb) in soils	26.
Figure 14. Arsenic (As) in soils	27.
Figure 15. Copper (Cu) in soils	28.
Figure 16. VLF-EM survey: Dip angle	29.
Figure 17. VLF-EM survey: Fraser Filtered data	30.
Figure 18. Rock sample locations and selected assays	31.
Figure 19. Drill-hole UTM locations on Garmin field grid	33.
TABLES-	
Table 1. Table of Abbreviations	6.
Table 2. Tenures Comprising the Comstock Property	7.
Table 3. Summary of Exploration History on ground covered	
by the Comstock Property	12.
Table 4. Rock sample locations and descriptions	31.
Table 5. Selected rock sample assays	32.
Table 6. Drill-hole data	33.
Table 7. Drill-hole logs	34.
Table 8. Drill-hole selected assays	35.

Appendices

- 1. Certificates of Assay
- 2. Lat Long and UTM coordinates of Trenches
- 3. Garmin Field Grid
- 4. Photos
- 5. Grid and Soil Assay Data
- 6. VLF-EM Data
- 7. Packsack Drill-Hole Sections

Summary

The 12 claim 664 hectare Comstock property ("Property"), located within the Nicola Volcanic Belt of south-central British Columbia is located between two producing mines; the Copper Mountain porphyry copper-gold mine 80 kilometres to the south, with a reported production of 40,000 tonnes per day; and Canada's largest open-pit mine, the Highland Valley Copper mine 53 kilometres northwest with a reported production of 147,000 tonnes per day.

Recently, Westhaven Ventures Inc., in exploring the Shovelnose gold property located 25 kilometres south of the Comstock property, reported (July 8, 2019) that substantial epithermal quartz veining was traced over a strike length of 720 metres and a vertical range of 320 metres. A diamond drill hole intersection reportedly (July 29, 2019) returned an assay of 5.13 g/t gold (Au) and 17.32 g/t silver (Ag), over 52.22 metres.

On the Comstock property, of seven designated mineral areas, one main area of mineralization is a volcanogenic sulphide (VMS) zone within a two kilometre, rhyolite/pyroclastic flow which hosts the LD and the Comstock volcanogenic massive sulphide (VMS) showings. The second main area of mineralization is a zone of mineral bearing quartz veins within a 2,800 metre northwesterly trending structure hosting the Charmer and Diane mineral zones.

A 2019 exploration program of geological, geochemical, and geophysical surveys in addition to limited packsack drilling, was completed on the Aberford mineral zone; also referred to as the Original and the Diane zones.

The 102 of 418 soil samples assayed in the geochemical survey resulted in the delineation, by anomalous copper values, of a 200 metre by 75 metre open-ended anomaly. An arsenic anomaly that would be adjacent to the westerly projection of the anomaly indicates that the anomaly continues westward.

The geophysical (VLF-EM) survey indicated a correlative conductive anomaly which is indicated to trace the Aberford mineralized structure from which historical gold assays returned up to nine metres of anomalous gold values which included 5136 ppb (5.136 grams) gold across six metres. This may correlate with a 1988 drill intersected gold zone at 59 metres which assayed 15.56 grams per tonne gold and 16.43 grams per tonne silver over a 1.38 metre section of core.

The seven grab rock samples taken in the geological survey all revealed anomalous copper values ranging from 2490 ppm to 5190 ppm copper. The location, description, and selected assays are shown in Tables 4 & 5 and Figure 18.

The seven short drill holes totalling 7.92 metres, were drilled at the Aberford mineralized zone. The results reveal copper values ranging from 889 to 2690 ppm copper within both breccia and non-brecciated meta-andesite.

The Aberford mineral zone, with the hydrothermal brecciation, the banded layers of fine to very fine grained quartz (Nelles, 1988), and the intersection of a 15.56 gold zone in a 1988 drill hole STR-88-1, has all the indications of an epithermal type deposit.

A continuing exploration program on the Aberford mineral zone should be comprised of the analysis of additional soil samples that were taken and to conduct additional soil sampling along and adjacent to the indicated structure. Additional exploration should be completed at VLF-EM indicated cross-structural localities and an Induced Potential program over the main copper anomalous location at the indicated cross-structure.

INTRODUCTION

From May 15, 2019 to June 30, 2019 geological, geochemical, and geophysical surveys were completed on the Aberford Zone which is one four mineral zones within the Comstock property, The purpose of the surveys was to provide additional information to the general geological and geochemical historical exploration results in a progressive surface exploration and to determine a localized area for an Induced Potential survey to test for a concealed epithermal or porphyry type mineral deposit.

There are mineral zones/showings reported historically which are the same area of mineralization. Some of these are:

Original Zone = Diane Zone = Aberford Zone LD Comstock = Comstock

Figure 1. Location Map

Information for this report was obtained from assessment reports as listed in the References section and from the results of the current exploration programs as detailed in this report.

Term	Abbreviation
Arsenic	As
Atomic Absorption	AA
Calcium Carbonate	CaCO ₃
Canadian Dollars	CDN \$
Canadian National Instrument 43-101	NI 43-101

Table 1. Table of Abbreviations

Table 1 Table of Abbreviations (cont'd)

Centimetre(s) cm Copper Cu Degree(s) °C Degrees Celsius °C Diamond Drill Hole DDH East E Electro-magnetic EM Foot (feet) ft Global Positioning System GPS Gold Au Gram(s) g Grams per tonne g/t Hectare(s) ha	
Degree(s) Degrees Celsius C Diamond Drill Hole East E Electro-magnetic Foot (feet) Global Positioning System Gram(s) Grams per tonne C C DDH EB E E E E E E E E E E E E	
Degrees Celsius C Diamond Drill Hole DDH East Electro-magnetic Foot (feet) Global Positioning System Gold Gram(s) Grams per tonne C C DDH EAST E E E E E E E E E E E E E	
Diamond Drill Hole East E Electro-magnetic Foot (feet) Global Positioning System Gold Gram(s) Grams per tonne DDH E E E E E E E E E E E E E	
East E Electro-magnetic EM Foot (feet) ft Global Positioning System GPS Gold Au Gram(s) g Grams per tonne g/t	
Electro-magnetic EM Foot (feet) ft Global Positioning System GPS Gold Au Gram(s) g Grams per tonne g/t	
Foot (feet) ft Global Positioning System GPS Gold Au Gram(s) g Grams per tonne g/t	
Global Positioning System GPS Gold Au Gram(s) g Grams per tonne g/t	
Gold Au Gram(s) g Grams per tonne g/t	
Gram(s) g Grams per tonne g/t	
Grams per tonne g/t	
Hectare(s) ha	
Inductively Coupled Plasma Spectrometry ICP	
Inductively Coupled Plasma Mass Spectrometry ICP-MS	
Kilometre(s) km	
Leadville LD	
Lead Pb	
Litre(s)	
Metre(s) m	
Metres East (Easting) mE	
Metres North (Northing) mN	
Metres Above Mean Sea Level m amsl	
Million tonnes Mt	
Minister of Mines MoM	
National Topographic System NTS	
North N	
North American Datum of 1983 NAD83	
Pound Ib	
Ounces per ton oz/T	
Qualified Person QP	

Table 1 Table of Abbreviations (cont'd)

Silver	Ag
Tonne(s) [metric ton]	t
Universal Transverse Mercator coordinate system	UTM
VMS	Volcanogenic massive sulphide
United States Dollars	US\$
West	W
Zinc	Zn

Property Description and Location

Description

The Comstock Property is comprised of 12 contiguous mineral claims covering an area of 664.0111 hectares centred at 10U 5545455N 658434 E (NAD 83).

Location

The Property is located 181 kilometres northeast of Vancouver and seven kilometres south of Merritt within BCGS map 092I.007 in the Nicola Mining District.

A permit for exploration and reclamation activities for the Comstock Property was issued by the BC Government on June 05, 2018 (MX-15-503) which is valid to June 04, 2023.

Table 2. Tenures Comprising the Comstock Property(from MT Online)

		(J. o. i. i.i.)		
Tenure Number	Туре	Claim Name	Good Until	Area (ha)
905597	Mineral	PB1	20211101	83.0148
905612	Mineral	PB2	20211101	20.7547
1014834	Mineral	РВ	20211101	186.7831
1014839	Mineral	ОМС	20211101	20.7564
1019819	Mineral	LUCKY 7	20211101	20.7531
1051454	Mineral	LD-COMSTOCK	20211101	124.4921
1055700	Mineral	Northno	20211101	41.4854
1055701	Mineral	LD	20211101	62.2337
1055702	Mineral	Northnot	20211101	20.7427
1055703	Mineral	LD	20211101	20.7444
1059694	Mineral	NEWSHOWCOMSTOCK	20211101	41.4978

Figure 2. Location of Producing Mines and/Past Producers

(Base map from MapPlace & Google)

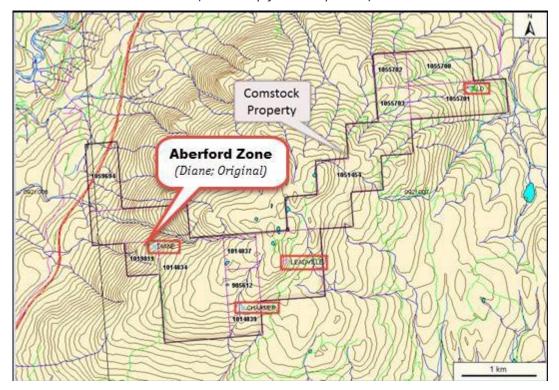



Figure 3. **Claim Map** (Base map from MapPlace)

Accessibility, Climate, Local Resources, Infrastructure and Physiography

Access

Access from Merritt is southward via the paved Coldwater road that departs from the eastern edge of Merritt and parallels the Coquihalla Highway. At approximately two km on the Coldwater road the Fox Farm road branches to the east, passes under the Coquihalla Highway, and follows the valley of Godey Creek. Gravel and dirt roads pass through much of the property.

Climate

The Property is located within the dry belt of British Columbia with rainfall between 25 and 30 cm per year. Temperatures during the summer months could reach a high of 35°C and average 25°C with the winter temperatures reaching a low of -10°C and averaging 8°C. On the Comstock Property, moderate snow cover on the ground could be from December to April and should not hamper a year-round exploration program.

Local Resources

Sufficient basic resources for an initial or an advanced exploration and development program would be available at Merritt or alternatively at Kamloops, one hour's drive from Merritt northeastward on the Coquihalla (#5) Highway.

Kamloops is the hub for the provision of most resources to the operating New Afton mine and is serviced daily by commercial airlines from Vancouver.

Logan Lake, one-hour north of Merritt is a smaller centre for available resources. It is the hub for the provision of some resources to the Highland Valley Copper mine, the largest open-pit mine in Canada.

Power requirements for the initial exploration and development at the Comstock Property would be fuel generated. Commercial power sources may be available from a transmission line three kilometres to the southeast.

Water for all phases of the exploration and development program may be available from water courses on or adjacent to the Comstock Property. Water, if required during the dry or freezing periods, would have to be transported from lower elevations.

Infrastructure

Merritt and Kamloops are on the Trans-Canada Highway with rail service from Kamloops provided by the Canadian Pacific Railroad and the Canadian National Railroad, the two largest railroad transportation systems in Canada.

Physiography and Vegetation

The Comstock property is situated within the Interior Plateau of south-central British Columbia. Topography is of moderately forested, locally steep slopes with elevations ranging from 868 metres in the west within the Coldwater River valley, progressively rising to 1,700 metres centrally at Iron Mountain, and decreasing to 1,075 metres within a valley at the northeastern boundary.

The Property is moderately forested with fir, spruce, and pine with commercial stands generally restricted to lower elevations and grassy slopes at higher elevations.

HISTORY

History: Comstock Property

The exploration history of ground covered by the Comstock property stemmed from 1896 when three shafts, the Charmer, the Islander, and the Victoria No's 1, 2, and 3 were completed.

Table 3 includes the exploration and the results of the exploration that was completed on the ground covered by the Comstock property.

Table 3. Summary of exploration history on ground covered by of the Comstock Property

Year	Owner (1) Operator (2)	Exploration area, type, amount, quantity	Results
1927-28	Emmitt Todd (1)	Leadville; 32 metre shaft on a galena-sphalerite-barite vein.	Shaft vein strikes north-south within a shear zone; copper reportedly found disseminated in andesite, rhyolite, and quartz calcite veinlets
1929	Comstock of B.C. (1)	1000 acres of claims staked	
1947	George Hunter (2)	LD-Comstock; Leadville shaft rehabilitated .	36 tons ore shipped to Trail yielding 67 oz Ag, 11,819 lb Pb, and 484 lb Zn
1951	Granby Consolidated (2)	LD-Comstock; Dewatered the shaft	
1958	New Jersey Zinc (1)	Leadville; staked claims and diamond drilling north of "Leadville"	
1961		Charmer; trenching, stripping, and sampling	
1966	Manor Mines	Diamond drilling: Two holes drilled near the Leadville shaft	
1968-74	Acaplomo Mining and Development (2)	Staked the Makelstin claims; LD-Comstock; Magnetometer surveys: >24 miles. EM (VLF?): >24 miles. Soil surveys:180 samples. Diamond Drilling; 586 feet in two holes	Possible dioritic intrusive; copper anomalies on the flanks of the magnetic peaks and valleys;
1976	Quintana Minerals (1)	LD; staked the one-sixty-one and the one-sixty-two claims; geological mapping; claims dropped.	
1977	C.J. Robertson (1) Quintana Minerals (2)	Geologic mapping	A tilted, partly eroded, volcanic center of probable Upper Triassic age exists in the vicinity
1980	K.W. Livingston (1) W.A. Howell (1) Chevron Standard (2)	LD shaft area; 217 soil samples analyzed for Cu, Pb, Zn, and Ba	Barite at LD shaft; geochemical results are inconsistent; possibly more than one centre of mineralization may be present

Table 3. Summary of exploration history on ground covered by of the Comstock Property (cont'd)

Year	Owner (1) Operator (2)	Exploration area, type, amount, quantity	Results
1981	Gordon Richards (1) Chevron Canada (2).	PEM Survey Geochemical survey: 1,191 soil samples and 55 rock samples	Scattered low values for lead, zinc, copper, and barium
1981	Gordon Richards (1) Chevron Canada (2).	Diane (Stirling Group) Gyproc Group (LD-Comstock); 1219 soil samples;.81 pulps	Scattered low values for Pb, Zn, Cu, and Ba with correlated and enhanced values near the Todd shaft and over very limited areas in the nearby sediments. Geophysical time-domain survey: Produced no response
1983	Aberford Resources (1)	Stakes the Stirling Group (Diane) of claims	
1984	Aberford Resources (1) Kidd Creek Mines Ltd.(2).	Diane (Stirling Group): 529 pulps analyzed for gold; 296 soil samples; 67 rock samples; 83 rock chip channel samples from 13 trenches; 3.5 miles magnetic survey.	2 anomalous gold soil samples of 55 ppb and 10 ppb; rock channel samples indicated up to 52,886 ppm Cu , 10.3 ppm Ag , and 7,810 ppb Au; shear zones and mineralized quartz vein systems are discontinuous and narrow but cover an extensive area
1986	Aberford Resources (1) International Maple Leaf Resources (1)	Diane: Geological mapping, 342 soil samples, 52 rock samples; trenching; magnetic survey; 15 trenches	Andesite-rhyolite sequence similar to that of VMS system; mineralization in andesite flows and lithic tuffs; northwest and northeast trending faults confirmed; new zones of mineralization discovered; one to two-kilometre-wide magnetic high trending northeast/southwest across Iron Mountain
1987	K.W. Livingston (1) Golden Dynasty Resources Ltd. (2)	Charmer Zone: Lucky Todd- Comstock Zone	Defined: a Au bearing vein on the Charmer Zone; stratabound conductive zones in the Lucky Todd- Comstock Zone
1988	Abermin Corporation (1) Merlin Resources (2).	Diane (Original Zone): Diamond drilling: Nine diamond drill holes; 9 channel samples	Assays of intersections ranged from 0.07 g/t Au over 0.91 m to 24.70 g/t Au across 0.76 m.
1989	K.W. Livingston (1) Golden Dynasty Resources Ltd. (2)	LD showing Diamond drilling: Lucky Todd- Comstock Zone	Possible sulphide environment indicated by base metal soil geochemical anomaly. Significant drill intersections below Shaft 3 in the Charmer Zone.
2005	W.A. Howell (1) Del Exploration (2)	Lucky Todd (Comstock or Leadville:	The Comstock horizon has the appearance of a classic "Kuroko" style Volcanogenic Sulphide deposit.
2006	N.G. Luckman (1) West Range Exploration (2) Charmer Zone: 3 rock sample		Diane Zone: best gold assay was 2.69 g/T over six metres. Rock sample assays averaged 0.04 g/T Au, 0.3 g/T Ag, and 2,360 ppm Cu.

Table 3. Summary of exploration history on ground covered by of the Comstock Property (cont'd)

Year	Owner (1)	Exploration area, type,	Results			
	Operator (2)	amount, quantity	11.03411.0			
2008	C. Brookes (1) North Bluff Exploration (2) LD Zone; 1350 metre induced Potential (IP); 88 soil samples. Soil results suggest the mineralization extends for minimum 275 m NE and SW. IP indicates that the LD showing increases to a soil of at least 115 m at depth. Second IP anomaly indicates an unknown zone of mineralization at depth					
2008	Paget Minerals (1) Pembrook Mining (2)	Charmer Zone: 16 rock samples Diane Zone: 24 rock samples	Charmer Zone: 4 g/t Au, 3 g/t Ag, and 2.9 % Cu over 1.2 m. Diane Zone: 3.41 g/t Au and 0.12% Cu over 1.5 m.			
2010	Navigo Ventures (1) (2).	LD Zone;22.1 kilometres IP survey	Results indicate that the two mineralized horizons continue down dip and along strike			
2013	Ken Ellerbeck(1) (2)	LD-Comstock, Diane; Structural analysis	Indicated that two of the structural directions coincide with the reported favourable northeast and northwest mineral controlling structures.			
2014	Ken Ellerbeck(1) (2)	Charm, Leadville; Prospecting; 9 rock samples	Elevated values of Cu, Pb, Zn, and Au in rock samples			
2015	Ken Ellerbeck(1) (2)	L D Zone; Prospecting; 4 rock samples:	Elevated values of Pb, Zn, and Mo were confirmed in limestone outcrops			
2016	Ellerbeck(1 Ken) (2)	Diane Zone: Prospecting; 8 rock samples	The 2.8 km distance between mineral discoveries in 1034277 and similar mineralization in the Diane /Charmer Zones should be examined			
2017	Ellerbeck(1 Ken) (2)	LD and Comstock Zone; 8 rock samples	Elevated Zn values in all samples; confirmed mineralization within rhyolite unit			
2018	Ellerbeck(1 Ken) (2)	New zone 1.8 km NNW of Diane zone; 9 rock samples	Mineralization is present in the rhyolite outcrops between the LD and COMSTOCK showings			

Geological Setting and Mineralization

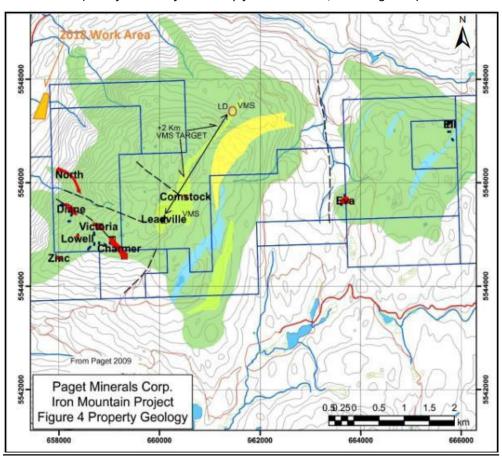
Regional Geology and Mineralization

The Comstock property is located on the southern Intermontane Belt of British Columbia at the southern extent of the Quesnel Trench. The central geological features of this region are the Late Triassic islandarc volcanic rocks of the Nicola Group which are comprised of a variety of volcanic and sedimentary facies and at least partly comagmatic with the Late Triassic-Early Jurassic intrusions.

Major batholiths in the area of the Property include the Guichon Creek Batholith to the west, the Wild Horse Batholith to the east, and the Iron Mask Batholith to the north northeast. The Guichon Creek batholith is a large, composite intrusion with a surface area of about 1,000 square kilometers. A cluster of nine major porphyry copper deposits, including the world-class Highland Copper Mine, lie within a 15 square kilometer zone in the center of the batholith.

Two younger volcanic-dominated successions are important in the area. First, a northwest trending belt of Cretaceous continental volcanic and sedimentary rocks of the Spences Bridge Group unconformably overlie both the Nicola Group and intrusive rocks along the southwest flank of the batholith.

Regional Geology and Mineralization (cont'd)


Distribution of the Spences Bridge Group rocks was locally controlled by reactivation of older faults that were important mineralization conduits for the batholith, such as the Lornex fault which in part was a mineral controlling cross-fault conduit for the Highland Valley and the Lornex porphyry mineral deposits.

Within the Merritt area are many types of mineral deposits including the porphyry copper/molybdenum type deposits of the Highland Valley, the copper rich skarn type deposit of the formerly productive Craigmont mine, the volcanogenic polymetallic massive sulphide type deposits at the Gitennes property and at Iron Mountain, the epithermal to mesothermal gold vein type deposits at Stump Lake, and the polymetallic skarn type mineralization, lead-zinc-silver bearing quartz veins and replacements, and polymetallic precious-metal quartz veins in Nicola rocks of the Swakum Mountain area.

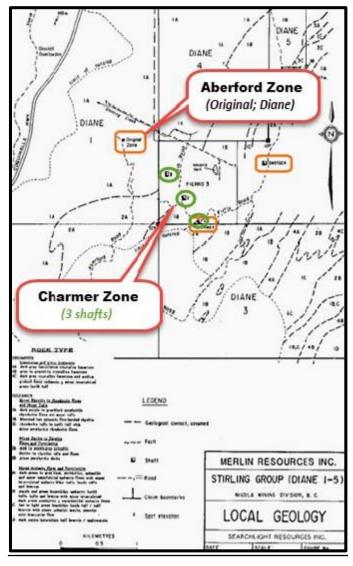
Property Geology and Mineralization

The Comstock property is predominantly underlain by the Western Volcanic Facies of the Nicola Group volcanics which consists of mafic to felsic pyroclastics, argillite, sandstone and local carbonate rocks. These rocks are in a regional northerly trending regional fault contact with the Central Volcanic Facies to the east which are comprised of intermediate, plagioclase, augite plagioclase porphyry pyroclastics, and local pillowed and plagioclase porphyry flows.

Figure 4. Iron Mountain Property (Comstock Property*) 1987 map showing workings. (Modified size of base map from Ellerbeck, 2018 Figure 8)

^{**} See Figure 3 for mineral zones location within the Comstock property

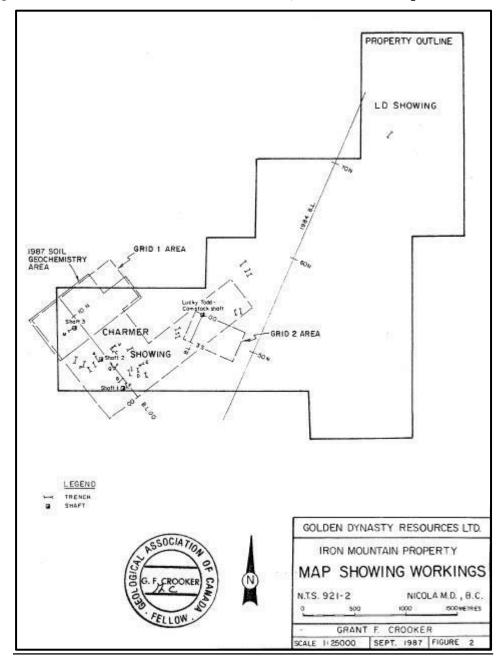
The Property includes a variety of rock types as evidenced at the LD (Lucky Todd)-Comstock shaft and at the Charmer mineral zones. At the LD-Comstock, rhyolite and andesitic to dacitic flows and flow breccias host volcanogenic massive sulphide lead-zinc-silver-barite, sedimentary exhalative (Sedex) or replacement mineralization.


At the Charmer mineral zone andesitic flows and basaltic andesite host mineralization consisting of fracture controlled quartz veins with chalcopyrite, specularite, and grey sulphides. A number of trenches and three shafts expose auriferous quartz-specularite veins over a discontinuous strike length of 800 metres. The three shafts which appear be on the same fault controlled mineral zone striking at 315°.

657861 Legend Shafts River Unpaved Roads North Zone Contours (feet above sea level) Aberford Mineralized Zone Zone Major Highway Trenches 2016 Work Area Diane/Orginal Zone Victoria Adit Island Adit Lowell Trench Charmer Area Charmer Adit Pembrook Mining Corp. Iron Mountain Project Figure 4 Mineralized Areas 657861 658361

Figure 5. Index Map to mineralized zones on the Comstock property (Base map from Pembrook Mining Corp.)

At the Aberford (Diane; Original) mineral zone, auriferous quartz veining has been defined within a trend of mineralization over a length of 250 metres, varying up to several metres wide, and to a depth of up to 59 metres based on a drill hole intersection of the mineral zone. A 1.38 metre section of core averaged 15.56 grams per tonne gold and 16.43 grams per tonne silver. The Diane mineral zone is indicative of auriferous, possibly epithermal, veins adjacent to, or at the upper portion of a porphyry.


Figure 6. Geology showing Original (Diane; Aberford)* Zone, Charmer Zone (shafts),**
& Comstock (LD) Shaft
(Base map from AR 17721)

^{*} See Figure 3 for the Charmer, Comstock (LD shaft), and Aberford (Original; Diane) mineral zones location within the Comstock property.

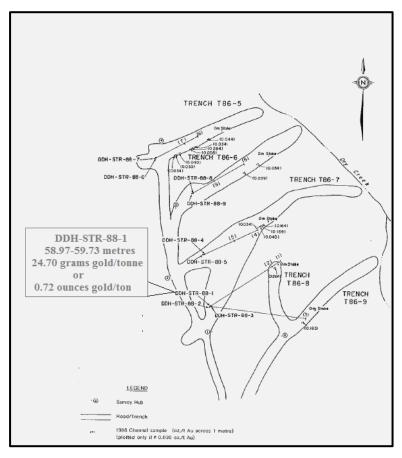

^{**}see Figure 7 for Charmer Zone shaft locations

Figure 7. Charmer* Mineral Zone: Trenches, shafts & 1987 exploration areas

^{*} See Figure 3 for Charmer, Lucky Todd-Comstock, and LD mineral zones location within the Comstock property

Figure 8. Aberford (Diane; Original)* Mineral Zone: Trenches & 1988 diamond drill hole locations (Map from AR 17721)

^{*} See Figure 3 for Aberford (Diane Original) mineral zone location within the Comstock property

At the LD (Leadville)-Comstock mineral zone, the Leadville shaft was sunk on a zone of banded veins and bedded lead-zinc-barite in sheared, flow banded potassic rhyolite indicative of a volcanic massive sulphide or a Sedex zone of mineralization. The shear strikes 025° and dips at 80° west.

At the LD mineral zone, some two kilometers northeast of the LD-Comstock, float and outcrop of baritic massive sulphide occurs. Both mineral zones are shown be located within a continuous two kilometre band of rhyolite, which is a primary exploration area for a volcanogenic massive sulphide or a Sedex mineral deposit.

As the area is segmented by northeasterly, northwesterly and northerly trending faults, this fault orientation is typical of the structures on the Comstock property and are, or are, indicated to be mineral controlling structures. A major northeast trending fault mapped on Iron Mountain is of several major shear zones trending northeasterly and northwesterly. These trends are indicated on Figure 10 which shows the correlation of most mineral zones with structures.

Figure 9. Geology, Claims, and Minfiles

(Base map from MapPlace)

LEGEND

Pleistocene to Holocene

Qvk

Unnamed alkalic volcanic rocks

Eocene

EPrb: Princeton Group

andesitic volcanic rocks

Cretaceous

Ks

unnamed undivided sedimentary rocks

Lower Jurassic to Middle Jurassic

lmJA: Ashcroft Formation

mudstone, siltstone, shale, fine clastic sedimentary rocks

Upper Triassic: Nicola Group

Eastern Volcanic Facies

uTrNW

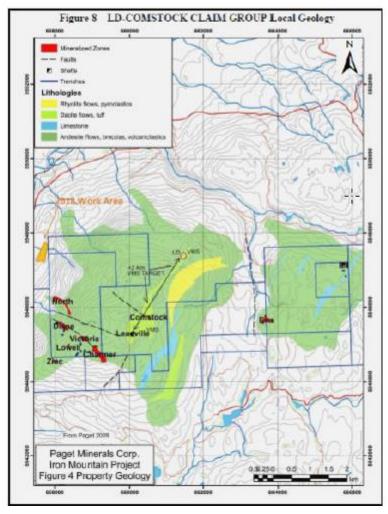
undivided volcanic rocks; minor limestone and argillite

Central Volcanic Facies

andesitic volcanic rocks

uTtNsf

mudstone, siltstone, shale, fine clastic sedimentary rocks


Late Triassic to Early Jurassic

LTrJdr

unnamed dioritic intrusive rocks

Figure 10. Detailed Geology showing Diane/Charmer mineralized zone and LD Comstock volcanogenic sulphide (VMS) zone*

{Map from Ellerbeck, 2018}

DIANE prospect (Polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092ISE022 Within Tenure 1019819

The Diane occurrence is underlain by a complex basal package of aphanitic, amygdaloidal and porphyritic flows and pyroclastic rocks of intermediate composition. These rocks are overlain by a transitional sequence of intermediate to felsic flows and pyroclastics with local fossiliferous limestone and limy sediment interbeds and minor lenses of banded jasper. These sequences form part of the Upper Triassic Nicola Group and have been subdivided into four units. The first unit is comprised of limestones and limy sediments, the second is mixed rhyolite to rhyodacite flows and minor tuffs, the third is mixed dacite to rhyolite flows and pyroclastics and the fourth is mixed andesite flows and pyroclastics. The rocks exposed on the property have undergone lower greenschist facies metamorphism (chlorite, epidote, sericite and carbonate alteration mineralogy). The Nicola Group rocks strike north-northeast with variable southeast dips. Gentle large scale folding is apparent. Two sets of northeast and northwest trending faults are evident.

Massive hematite, controlled and localized in fractures and occurring in association with limonite and malachite, is the predominant mineralization. Both the limonite and malachite appear to be secondary after pyrite and chalcopyrite, which occurs locally. Fracture intensity appears to determine both the distribution of hydrothermal mineralization and the amount of alteration in the host rock. At present, seven mineralized zones have been located and the majority of these zones follow northwest fractures. In several locations, late-stage quartz-hematite-limonite veining has been superimposed on the massive hematite mineralization. The width and continuity of this veining varies along strike, but appear to be strongest where fracturing in the volcanics is most intense. The emplacement of this mineralization, which is locally auriferous, has not had an effect on the massive hematite, but has resulted in intense alteration of the surrounding rocks.

The Original zone, where trenching has exposed fault-controlled hematite-limonite +/- malachite mineralization over a distance of approximately 250 metres, is the only location where gold values occur. This mineralization is hosted by andesitic flows and pyroclastics and strikes between 133 and 143 degrees, with steep southwest dips. The mineralized trend varies up to several metres in width and appears to splay into several thinner zones to the north. A discontinuous zone of auriferous quartz veining hosting iron oxides with lesser chlorite and sericite has been defined within this trend and appears to have resulted in the pervasive silicification of the host volcanics. Rock samples have assayed up to 9.73 grams per tonne gold (Assessment Report 17721). Recent diamond drilling has intersected extensions of the Original zone at a depth of 59 metres and averaged 15.56 grams per tonne gold and 16.43 grams per tonne silver across 1.38 metres. Values of over 1 per cent copper have also been recorded (Assessment Report 17721).

The South and Lowell zones, 225 and 500 metres south of the Original zone respectively, contain malachite, chalcopyrite, pyrite and quartz-specularite veins or stockwork along narrow shears and fractures in mixed porphyritic and aphanitic andesite flows and lithic tuffs. Trench samples from the South zone returned assays of up to 0.45 per cent copper over 2 metres and from the Lowell zone, up to 0.20 per cent copper over 7 metres (Assessment Report 16058). Fracture sets in the Lowell zone appear to strike 040 degrees and dip steeply to the southeast.

LEADVILLE past producer (Polymetallic veins Ag-Pb-Zn+/-Au) MINFILE 092ISE052 Within Tenure 905597

In the vicinity of the Leadville deposit are brown to pink potassium feldspar-rich dacitic to rhyolitic flows and flow breccias, and white to green rhyolite. Primary flow structures strike north- northwest and dip very steeply eastward. These units are interbedded with amygdaloidal andesite agglomerate, lapilli to ash flow tuff and andesitic to dacitic breccia.

The regional fault system defining the Nicola Group belts strike north to northeast. A major northeast trending fault is mapped on Iron Mountain. Nicola Group volcanic and sedimentary rocks are intruded to the north by Lower Jurassic granitic batholiths; diorite outcrops are evident.

Mineralization in the volcaniclastic units consists of specularite and chalcopyrite in irregular fractures which are scattered randomly in a 600 metre diameter zone. Malachite and azurite staining is present. Average copper grade is estimated to be less than 0.1 per cent.

The felsic units host galena and sphalerite mineralization in barite veins. The Leadville shaft was sunk on a zone of banded veins and bedded lead-zinc-barite in sheared, flow banded potassic rhyolite. The shear zone strikes 025 degrees and dips 80 degrees west. The mineralized zone is over 50 metres long and less than one metre wide.

CHARMER prospect (Stockwork)
MINFILE 092ISE053
Within Tenure 1014839

Near the Charmer shaft, lithologic contacts and primary flow structures indicate the volcanic rocks dip steeply eastward. Mineralization consists of fracture controlled quartz veins with chalcopyrite, specularite, hematite and grey sulphides and are hosted in andesitic flows and basaltic andesite. Scattered stringers and blebs of chalcopyrite also occur in sheared lapilli tuffs, and to a lesser extent in overlying rhyolitic tuffs. Hematite occurs as veinlets in fractures and as blebs.

A number of trenches and three shafts expose quartz-specularite veins over a discontinuous strike length of 800 metres. At shaft one, quartz-specularite veinlets with malachite assayed up to 0.64 grams per tonne gold (Assessment Report 16817). A random dump sample at shaft two assayed 2.35 grams per tonne gold and 1.8 per cent copper. At shaft three, three quartz veins varying from 5 to 25 centimetres in width occur within a two-metre-wide zone in basaltic andesite. The veins strike 160 degrees and dip 50 to 55 degrees west and are mineralized with chalcopyrite, malachite and grey sulphides. Specular hematite occurs in patches. One metre chip samples assayed up to 10.11 grams per tonne gold (Assessment Report 16817). A trench exposed a 10-centimetre-wide quartz vein mineralized with chalcopyrite and pyrite exhibiting malachite and azurite staining. A rock chip sample assayed 341.8 grams per tonne silver (Assessment Report 16817).

LD showing (Stratiform; Vein) MINFILE 092ISE156 Within Tenure 1055701

The LD showing is underlain by volcanic sandstone to siltstone and tuff. Bedding strikes northwest to northeast and dips steeply to the south. Old workings expose silver-lead-copper-zinc mineralization. Rock chip samples of baritic massive sulphide float and outcrop assayed copper ranging from 10 to 3240 parts per million, silver 0.4 to 59.4 parts per million and gold 1 to 2960 parts per billion (Assessment Report 16817).

Deposit Types

The mineral deposit types being investigated or being explored for on the Comstock property are:

Volcanogenic massive sulphide (VMS)

Massive sulphides deposits are currently forming in undersea locations characterized by "Black Smokers". These Black Smokers are plumes of sulphide-rich fluids and represent the venting of hydrothermal fluids, rich in base and precious metals, onto the ocean floor. In contrast to other volcanic-hosted deposits, many Besshi-type deposits (named after a the Besshi Copper Mine in Japan) form thin, laterally extensive sheets of pyrrhotite- and (or) pyrite-rich massive sulfide rock; however, the characteristics of Besshi-type deposits vary considerably. Besshi deposits are notable for their ore concentrations of copper and cobalt and only minor concentrations of zinc (S. Master, 1997 and 1998).

Auriferous quartz - Lode Gold deposits

Gold may occur as deposits called lodes, or veins, in fractured rocks. Lode deposits are considered primary gold deposits because they are bedrock deposits that have not been moved. They come in a range of shapes and sizes and can form tabular cross-cutting vein deposits but also may be breccia zones, irregular replacement bodies, pipes, stockworks, and other shapes.

Sedex

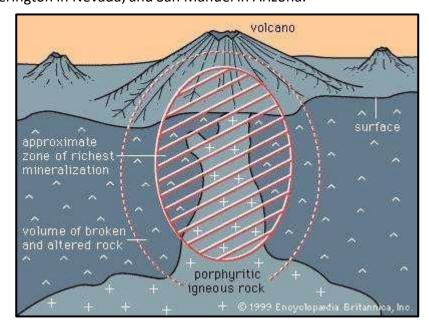
Sedex Deposits are formed when ore bearing fluids discharge onto a seafloor and mix with seawater. When the two fluids mix, a variety of chemical processes take place that result in the precipitation of minerals on the seafloor. These deposits are lain down congruent with the stratigraphy of the seafloor and are fine grained and finely laminated characteristics of "sedimentary deposits."

Concentrated amounts of minerals can be found in "trap sites," which are depressed areas of the ocean floor where the minerals may settle. Occasionally, mineralization develops in the faults and feeder conduits that fed the mineralizing system. There are a few different mechanisms that may create the mineralizing fluids that form Sedex deposits. They may be from magmatic fluids from sub seafloor magma chambers and hydrothermal fluids generated by the heat of a magma chamber intruding into saturated sediments.

Fluids that come from a shallow depth are rich in iron and manganese, fluids that penetrate deeper pick up lead and zinc. Copper is picked up by fluids that reach an even greater depth. The Sullivan Pb-Zn Mine in British Columbia was worked for 105 years and produced 16,000,000 tonnes of lead and zinc, as well as 9,000 tonnes of silver. It was Canada's longest lived continuous mining operation and produced metals worth over \$20 billion in terms of 2005 metal prices. Grades were in excess of 5% Pb and 6% Zn.

Deposit Types (cont'd)

Sedex (cont'd)

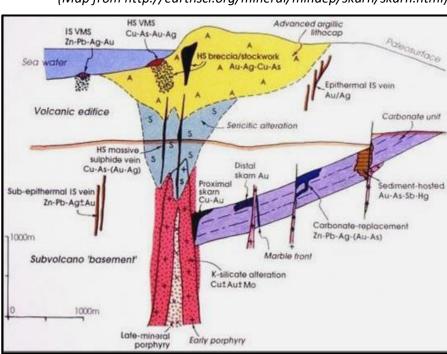

The ore genesis of the Sullivan ore body is summarized by the following process: Sediments were deposited in an extensional second-order sedimentary basin during extension; Earlier, deeply buried sediments devolved fluids into a deep reservoir of sandy siltstones and sandstones; Intrusion of dolerite sills into the sedimentary basin raised the geothermal gradient locally; Raised temperatures prompted over-pressuring of the lower sedimentary reservoir which breached overlying sediments, forming a breccia diatreme; Mineralizing fluid flowed upwards through the concave feeder zone of the breccia diatreme, discharging onto the seafloor; Ore fluids debouched onto the seafloor and pooled in a second-order sub-basin's depocentre, precipitating a stratiform massive sulfide layer from 3 to 8 m thick, with exhalative chert, manganese and barite (www.en.wikipedia.org; Lyons, W. et al., 2006; Lydon, 1996; Taylor et al., 2000).

Potential mineral deposit types

Porphyritic copper-gold

Porphyry copper deposits contain disseminated mineralization, meaning that a large volume of shattered rock contains a ramifying network of tiny quartz veins, spaced only a few centimetres apart, in which grains of the copper ore occur with pyrite. The shattered rock serves as a permeable medium for the circulation of a hydrothermal solution, and the volume of rock that is altered and mineralized by the solution can be huge: porphyry coppers are among the largest of all hydrothermal deposits, with some giant deposits containing many billions of tons of ore. Although in most deposits the ore averages only between 0.5 and 1.5 percent copper by weight, the tonnages of ore mined are so large that more than 50 percent of all copper produced comes from porphyry coppers. (Summary excerpt from britannica.com).

Porphyry coppers are often associated with stratovolcanoes. As a result of the volcanism that rings the Pacific Ocean basin, porphyry coppers are conspicuous features of mineralization along the western borders of North and South America and in the Philippines. Among the major deposits are El Teniente, El Salvador, and Chuquicamata in Chile, Cananea in Mexico, and, in the United States, Bingham Canyon in Utah, Ely and Yerington in Nevada, and San Manuel in Arizona.



Potential mineral deposit types (cont'd)

Epithermal

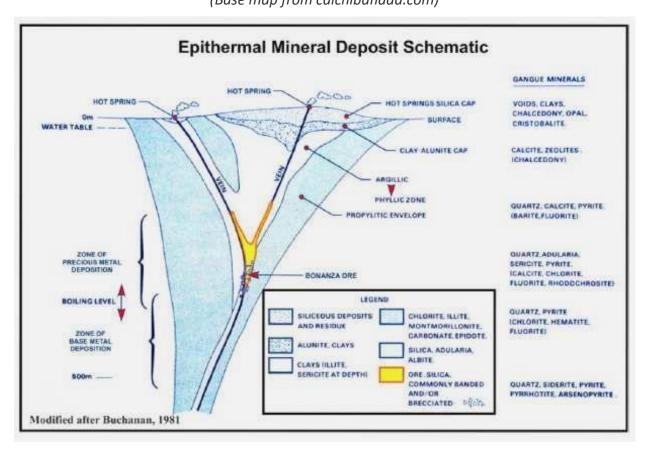
Epithermal gold deposits are a type of lode deposit that contain economic concentrations of gold, silver and in some cases base metals including copper, lead and zinc. Gold is the principal commodity of epithermal deposits, and can be found as native gold, or alloyed with silver. As a lode deposit, epithermal deposits are characterized as having minerals either disseminated through the ore-body or contained in a network of veins. Epithermal deposits are distinctive from low-grade bulk tonnage deposits such as porphyries in that they are typically high-grade, small size deposits. A few characteristics distinguish epithermal deposits. These deposits are found near the surface and mineralization occurs at a maximum depth of 1 km, but rarely deeper than 600 m. These deposits represent a high-grade, easily mineable source of gold (excerpt from 'an overview of Epithermal Gold Deposits'; www.nasdaq.com).

Figure 11. Geological model of types of mineral occurrences* that may be occur in a volcanic environment

(Map from http://earthsci.org/mineral/mindep/skarn/skarn.html)

* Note the location of the types of mineral occurrences that occur on the Comstock property such as massive sulphide (polymetallic) veins (LD-Comstock, Diane), volcanogenic massive sulphide (VMS) (LD, LD-Comstock), auriferous veins (Charmer), and the potential type of mineralization/deposit on the Comstock property (porphyry, skarn, sediment hosted (Sedex) (LD, LD-Comstock).

Potential mineral deposit types (cont'd)


Skarn

Skarns or tactites are hard, coarse-grained metamorphic rocks that form by a process called metasomatism. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or shear zones that intrude into a carbonate layer such as a dolomite or limestone. Skarns can form by regional, or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from either magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on the original composition of both the hydrothermal fluid and the original composition of the protolith.

If a skarn has a respectable amount of ore mineralization that can be mined for a profit, it can therefore be classified as a skarn deposit.

Figure 12. Geological model of a gold-bearing epithermal vein system.

(Base map from calchibahada.com)

2019 Exploration Programs

Geochemical

A soil sampling program was completed over a portion of the Aberford (formerly designated as the Original and the Diane) Zone of the Comstock property where soil, rock, and trench sampling had previously been completed (Baronowski, 1984 AR 13114). Where a few anomalous gold values were reported in assays of gold in soils. However, one metre trench chip samples returned up to nine metres of anomalous gold values which included six metres of 5136 ppb gold per tonne in Trench J, one of nine trenches on the Aberford Zone.

The Diane was reportedly the only location where gold values occur (Minfile).

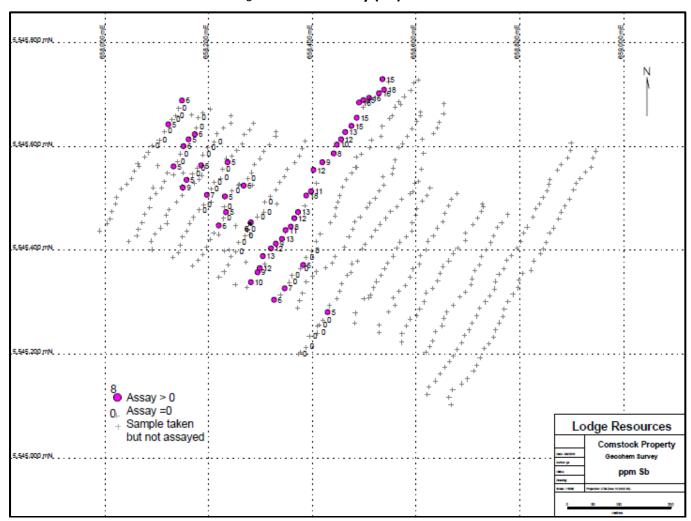


Figure 13. Antimony (Sb) in soils.

^{*}see ALS Assay Certificates KL 19156269 and KL19156276 in Appendix 1 for complete assay results.

Geochemical (cont'd)

Method

The soil survey grid lines were spaced at 50 metres with samples taken at 15 metre intervals along the grid lines which were oriented at 030 degrees. The soil samples were taken from the "B" horizon, which ranges in depth from 20 to 35 cm and placed in gussetted kraft paper bags. The area covered was approximately four hectares.

Of the 418 soil samples taken, only 102 selected soil samples, mainly over the trenched area, were submitted for analysis to ALS Canada Ltd. in Kamloops. The remainder of the soil samples will be for a copper analysis.

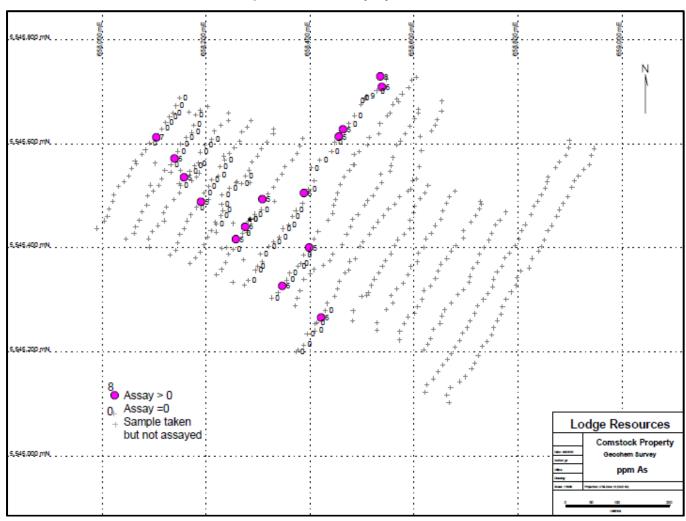
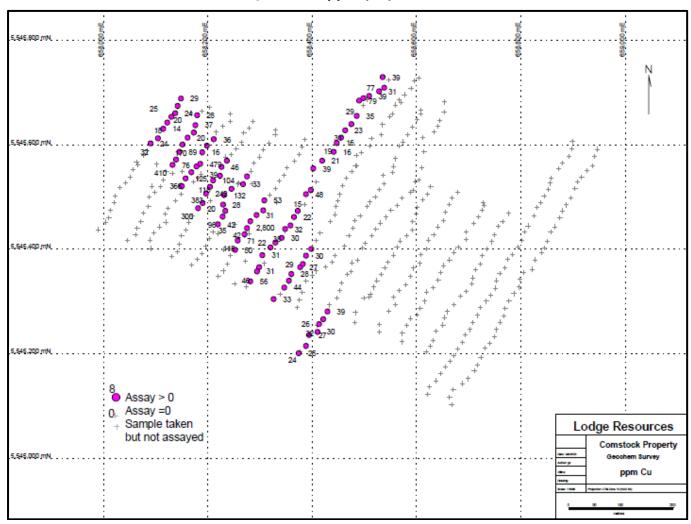


Figure 14. Arsenic (As) in soils.


^{*}see ALS Assay Certificates KL 19156269 and KL19156276 in Appendix 1 for assay results.

Geochemical (cont'd)

Results

The results are addressed in the Interpretation and Conclusions section.

Figure 15. Copper (Cu) in soils.

^{*}see ALS Assay Certificates KL 19156269 and KL19156276 in Appendix 1 for complete assay results.

Geophysical: VLF-EM

Purpose

The purpose of the VLF-EM survey was to detect and/or trace the northwesterly trending structure hosting the anomalous gold and copper values contained in the Aberford trenches.

Theory

(from Hodges, 1987)

The VLF (Very Low Frequency) electromagnetic system is a frequency domain system which uses military transmitters designed to communicate with submarines as a source. The system measures the response of conductors to these time varying electromagnetic fields.

The transmitted, or primary EM field is a sinusoidally varying field in the range of 15.0 to 30.0 KHz, dependent on the source station used. This field induces an electromotive force (emf), or voltage in any conductor through which the field passes. This emf causes a "secondary" current to flow in the conductor in turn creating a secondary electromagnetic field, which is measured by the receiver. The VLF transmitting antennae are vertically oriented, thus the primary field is horizontal perpendicular to the transmission direction.

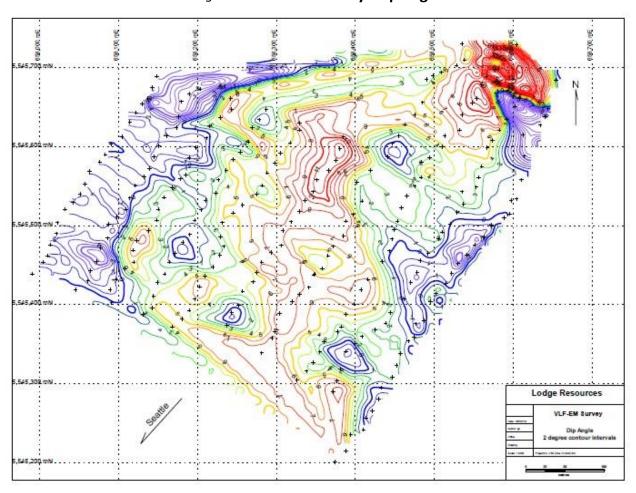


Figure 16. VLF-EM Survey: Dip angle.

Geophysical: VLF (cont'd)

Theory (cont'd)

The secondary field from a conductor is different in amplitude from the primary, and shifted in phase. Because both fields are sinusoidal, the resultant electromagnetic vector traces an ellipse. The receiver measures two of the following properties of the ellipse: orientation of the minor axis (tilt), ratio of minor to major axis (ellipticity), or amplitude of the minor axis (field strength).

The receiver has two receiving coils built in, one coil with a normally vertical axis and the other horizontal. The signal from the vertical axis coil is first minimized by tilting the instrument. The remaining signal in this coil is finally balanced out by a measured percentage of a signal from the horizontal coil, after being shifted in phase by 90 °.

Assuming the secondary signal is small compared to the primary field, the mechanical tilt angle is an accurate measure of the vertical real (in phase) component of the secondary, and the 90° compensation signal from the horizontal coil is a measure of the quadrature vertical signal.

Method

A VLF- EM Ronka 16 unit was used for the survey with Seattle as the transmitting station. The eastern 10 grid lines of the soil grid were surveyed with the completion of four line kilometres. As the area contained an above average of iron (Iron Mountain), the VLF-EM results were noticeably erratic as shown on the field grid map in Appendix 3.

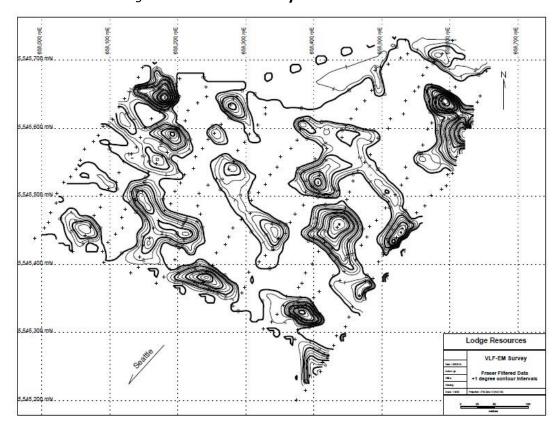
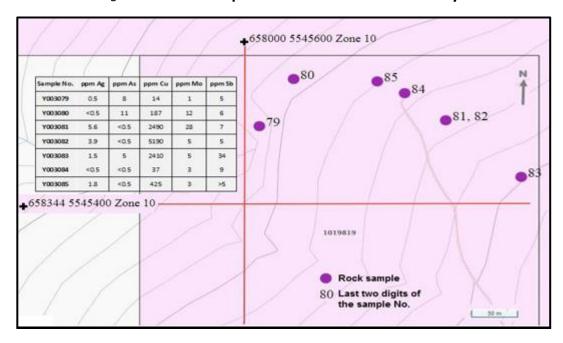


Figure 17. VLF-EM Survey: Fraser Filtered data

Geological


Seven rock samples were submitted for analysis. The locations and descriptions of the rock samples are shown on Table 4.

The locations of the rock samples are shown on Figure 18.

Table 4. Rock sample locations and descriptions

Sample No.	Way- point	Location	UTM E	UTM N	Elevation (metres)	Description	ppm As	ppm Cu	ppm Mo
Y003079	470	Trench 1-3	658020	5545490	1411	Breccia. Heavy specularite	8	14	1
Y003080	403	L8W 198N	658056	5545553		Red jasper in blackish andesite	11	187	12
Y003081	248	L4W 225N	658231	5545504	1365	Breccia. Multi lithological angular frags <1.5 cm	<0.5	2490	28
Y003082	487	Trench 6-1	658230	5545504	1324	Breccia. Qtz veinlets. Rare sphalerite, malachite	<0.5	5190	5
Y003083	484	Trench 5-1	658315	5545435	1340	Breccia. Vuggy. Qtz veinlets obscurely banded	5	2410	5
Y003084	471	Trench 1-4	658181	5545538	1413	Breccia. Vuggy. Qtz veinlets. Limonitic	<0.5	37	3
Y003085	408	L8W 210N	658150	5545551	1302	Local breccia in andesite. Heavy specularite. Blackish	<0.5	425	3

Figure 18. Rock sample locations and selected assays*

^{*}see ALS Certificate KL191156262 in Appendix 1 for complete assays

Geological (cont'd)

Table 5. Selected rock sample* assays**

Sample No.	ppm Ag	ppm As	ppm Cu	ppm Mo	ppm Sb
Y003079	0.5	8	14	1	5
Y003080	<0.5	11	187	12	6
Y003081	5.6	<0.5	2490	28	7
Y003082	3.9	<0.5	5190	5	5
Y003083	1.5	5	2410	5	34
Y003084	<0.5	<0.5	37	3	9
Y003085	1.8	<0.5	425	3	>5

^{*}All samples are grab samples

Packsack Drilling

Purpose

The purpose of the drilling was to test a mineralized zone exposed in or near the Aberford trenches.

Method

Seven short drill holes for 7.92 metres were completed with a BQ sized core. The location on the field grid, the UTM location, the logs of the core, and selected assays of one foot (0.305 metre) sections of the core are shown in Tables 5, 7 & 8.

The entire core was assayed.

Results

The results reveal that the mineralization is confined to the structure which is indicated primarily by copper mineralization.

^{**}see ALS Certificate KL19161262 in Appendix 1 for complete assays.

Packsack drilling (cont'd)

Figure 19. Drill-hole UTM location on Garmin field grid.

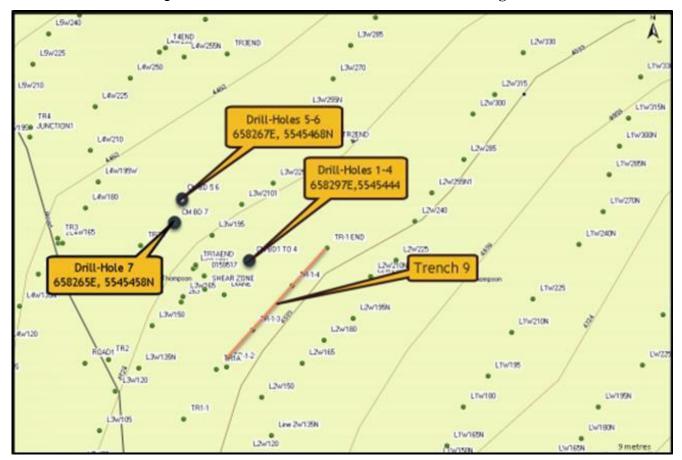


Table 6. Drill-hole data

Drill Hole	UTM East	UTM North	Strike	Dip	Depth (m)
1	658297	5545444	320	-60	0.45
2	658297	5545444		90	1.83
3	658297	5545444	360	-60	1.22
4	658297	5545444	045	-60	0.30
5	658267	5545468	345	-50	1.53
6	658267	5545468		90	1.98
7	658265	5545458	050	-55	0.61
					7.92

Table 7. Drill-hole logs and selected assays*

Sample No.	Hole #	From-To (Feet)	From-To (Metres)	Description		ppm Cu	ppm Mo
Y003052	1	0-1	0-0.30	Meta-andesite; heavily chloritized; brown stained fracture		792	12
Y003053		1-1.5	0.30-0.45	Andesite with pervasive limonitic stain		1720	6
Y003054	2	0-1.0	0-0.30	Limonitic andesite; coarse breccia	52	889	4
Y003055		1-2.0	0.3-0.61	Dark green chloritic andesite; vuggy; limonitic stain		2380	11
Y003056		2-3.0	0.61-0.91	Meta-andesite; heavy limonite on surface	5	2240	6
Y003057		3-4.0	0.91-1.22	Ankeritic andesite; coarse breccia	20	2130	11
Y003058		4-5.0	1.22-1.52	Coarse andesitic breccia; 75% fragments; vuggy quartz stringers		1600	16
Y003059		5-6.0	1.52-1.83	Breccia; < 1cm sub-rounded fragments; heavy specularite		2690	8
Y003060	3	0-1.0	0-0.30	Coarse breccia and meta-andesite; lightly ankeritic		1400	7
Y003061		1-2.0	0.30-0.61	Obscure andesite breccia; limonitic fractures		1160	4
Y003062		2-3.0	0.61-0.91	Meta-andesite breccia; heavily vugged; light quartz stringers		1320	6
Y003064	4	0-1.0	0-3.0	Meta-andesite; light limonitic surface		1220	2
Y003065	5	0-1.0	0-0.30	Meta-andesite; random quartz blebs and stringers		1830	2
Y003066		1-2.0	0.30-0.61	Obscure meta-andesite breccia; rare quartz blebs; heavy limonite on surface		1120	1
Y003067		2-3.0	0.61-0.91	Same as 1-2		870	3
Y003068		3-4.0	0.91-1.22	Obscure coarse andesite breccia; heavy limonite on surface		1210	2
Y003069		4-5.0	1.22-1.52	Same as 3-4		1340	3
Y003070	6	0-1.0	0-0.30	Ankeritic coarse breccia; 30% vuggy; 30% ankerite		2220	2
Y003071		1-2.0	0.30-0.61	Coarse andesite breccia lightly vuggy; moderate limonite		1650	2

Table 7. Drill-hole logs and selected assays*(cont'd)

Y003072		2-3.0	0.61-0.91	Tight ankeritic breccia; sub-rounded fragments <1cm	16	1250	3
Y003073		3-4.0	0.91-1.22	Ankeritic breccia; quartz-carbonate veinlets	17	1260	3
Y003074		4-5.0	1.22-1.52	Obscure coarse breccia	16	2240	4
Y003075		5-6.0	1.52-1.83	Ankeritic breccia; moderate vugs	15	2870	4
Y003076		6-6.5	1.83-1.98	Obscure meta-andesitic breccia; stringers specularite	5	1920	3
Y003077	7	0-1.0	0-0.30	Obscure meta-andesitic breccia; vuggy; random quartz-calcite stringers; heavy limonite	5	1820	7
Y003078		1-2.0	0.30-0.61	Obscure meta-andesitic breccia: rare vugs; limonite on fractures	-5	1110	6

^{*}see ALS Certificate KL19156261 in Appendix 1 for complete assays.

Sample Preparation, Analyses and Security

The sample preparation and analysis is reported in the ALS Certificates of Assay included in Appendix I. The samples were secured at all times by the author and delivered by the author to the ALS laboratory in Kamloops BC.

Geology: Adjacent Properties

GEO showing (Polymetallic veins Ag-Pb-Zn+/-Au; Porphyry Cu+/-Mo+/-Au) MINFILE 092ISE016

Two kilometres southwest

The Geo showings lie in the western belt of the Upper Triassic Nicola Group. The slopes of Selish Mountain are underlain by generally green, massive to layered dacitic flows, breccias and local tuffs, interbedded with massive grey fossiliferous limestone and minor greywacke. Bedding strikes east and dips moderately to the south. Nicola Group rocks exhibit widespread weak chlorite-epidote alteration and occasional quartz veining. A large dioritic stock and isolated small plugs intrude the volcanics. A 1.5-metre-wide fault zone strikes 125 degrees and dips 75 degrees north.

In the northeast portion of the property, jasper and silica with minor chalcopyrite and galena occur along fractures which parallel the main fault zone. To the southwest the intrusive contact is marked by potassium feldspar and more intense chlorite-epidote alteration. Chalcopyrite and pyrite comprise the minimal copper mineralization.

CHATKO showing (Cu skarn)
MINFILE 092ISE130
Two kilometres north

The western belt of the Upper Triassic Nicola Group is comprised of a northeast trending sequence of calc-alkaline flows grading upward into pyroclastics, epiclastic sediments and limestone.

The property is underlain primarily by andesitic, dacitic and to a lesser extent, rhyolitic flows and breccia. Flow rocks vary from massive to porphyritic and/or amygdaloidal.

They are cut by intermediate to felsic intrusions and intercalated with limestone, volcanic sandstone and tuff. The carbonate unit is comprised of light grey massive limestone lenses and bands parallel to primary bedding. Its contacts with wall rocks are sharp. Bedding strikes north to northeast and dips gently southeast. A major fault zone trends northwest along Godey Creek, 400 metres west of the Chatko showing. On the property, faulting, fracturing and silicification are evident.

The principal mineral showing consists of a semi-concordant, northeast trending skarn zone 65 by 35 metres. It is hosted by limestone and calc-silicate units and is underlain directly by rhyolitic pyroclastic rocks. Mineralization consists of massive and disseminated magnetite, with veins and seams of chalcopyrite and hematite. Chalcopyrite occurs as blebs along contacts, in irregular magnetite masses, or disseminated in host rock adjacent to the veins. Other skarn minerals are epidote, specular hematite, pyrite, quartz and calcite.

Geology: Adjacent Properties (cont'd)

DOT showing (Cu skarn; disseminated, Stockwork) MINFILE 092ISE159 One kilometre east

The western belt of the Upper Triassic Nicola Group consists of a sequence of calc-alkaline flows, pyroclastics, epiclastic sediments and abundant limestone. The western and central Nicola Group belts are separated by a northeast trending regional fault.

Rocks on the property exhibit extensive fracturing. The most prominent orientations of fractures are 035 degrees and 345 degrees with highly variable dips. Locally the showing is underlain by red to purple andesitic breccia and tuff, plagioclase porphyritic andesite, massive to poorly bedded grey fossiliferous limestone and associated limy sediments. Alteration minerals are chlorite and/or epidote.

Copper mineralization occurs in skarns and in the Nicola Group rocks. The skarn zones are 0.6 to 3 metres wide, consist primarily of magnetite and carry chalcopyrite and very minor bornite. In the volcanic flows and limestone, these sulphides occur as fine fracture linings and sparse disseminations. Sphalerite, pyrite, pyrrhotite and specular hematite also occur.

Westhaven / Shovelnose Property

25 kilometres south

Westhaven reports (July 29th, 2019 News Release) that from the recent diamond drill Hole SN19-10 on Vein Zone 2, assays returned 52.22 metres (m) of 5.13 g/t gold (Au) and 17.32 g/t silver (Ag), including 18.50m of 11.39 g/t Au and 40.21 g/t Ag in

Assays from drill results on the parallel Vein Zone 1 approximately 125 metres from Vein Zone 2 returned 2.98m of 176.33 g/t Au and 131.43 g/t Ag, including 1.00m of 521 g/t Au and 381 g/t Ag from Hole SN19-11.

In addition, Westhaven reports that

"Hole SN19-10 confirms the potential for bonanza grades in Vein Zone 2. Such grades were first encountered in Zone 2 last year in SN18-18. Hole SN19-10 also indicates that significant gold grades can occur over broader widths, like those encountered in Vein Zone 1 as seen in hole SN18-15".

Interpretation and Conclusions

The geological, geophysical, geochemical, and the limited packsack drilling program provided the information required to establish the location and the confirm the historical results of the Aberford mineral zone.

Interpretation

Geochemical Survey

The historical geochemical survey revealed the mineralized shear zone in primarily the copper values. Although in historical exploration gold values of up to 5136 ppb were found to be hosted in a breccia zone of the shear zone, gold was noticeably undetected in the soils of the 1988 exploration program reportedly due to its low mobility and was detected in the soils in association with an outcrop with gold mineralization. Consequently, the few historical gold in soil anomalies may warrant further exploration.

Interpretation (cont'd) Geochemical Survey (cont'd)

In the current geochemical survey, 102 of 418 soil samples analyzed were from an area over the Aberford trenches and along the indicated strike of the mineralized zone. The anomalous copper in soil results indicated the northwesterly portion of the mineralized structure. The southern sampled assay extent of the westernmost gridline was short of determining the continuation of the indicated anomaly to the northwest. Additional southerly samples on this grid line will be assayed in addition to southerly samples on three easterly grid lines to delineate the anomaly.

The results indicate a 200 metre open-ended anomaly to the northwest and a open-ended 75 metre anomaly to the southwest (south). An arsenic anomaly at the southern end of the westernmost gridline provides an indication for the mineralized structure to extend the west (Figure 14).

Anomalous antimony values in most of a northerly gridline which terminates the structure to the east may indicate a northerly trending mineralized structure on the north side of Sterling Creek. The northernmost assays are also anomalous in arsenic and is at the North Zone where a mineralized structure was indicated in historical exploration.

Geophysical Survey

The VLF-EM survey delineated a number of discontinuous conductive Fraser Filtered anomalies.

The anomalous 200 metre copper anomaly correlates with a 200 metre northwesterly trending VLF anomaly which wanes to the west and diverges southward where soil were not assayed but on the edge of the southernmost arsenic anomaly.

A significant 100 metre open ended to the east anomaly originates 50 metres east of the anomalous arsenic-antimony anomaly at the North Zone. The anomaly may indicate the North Zone structure is more prominent to the east where samples were taken and will be submitted for analysis in addition to samples at other VLF anomalies where cross-structures are indicated.

Geological Survey

The seven rock samples revealed highly anomalous copper values from 2490 ppm to 5190 ppm copper within a breccia with or without quartz veining. As the high copper values are often indicative of gold mineralization, it can be presumed that the anomalous copper values may be indicative of a gold bearing zone.

Packsack Drilling

As all the drilling was within the shear zone in the Aberford trench area, the core assay results were all anomalous in copper as would be expected. Copper values ranged from 621 ppm, with anomalous molybdenum and silver, to 2690 ppm with anomalous arsenic.

The 621 ppm copper was a 0.03 metre (1foot) core section of gray clay gouge from the end of the 1.22 metre drill-hole 3; whereas the 2690 ppm copper was a 0.03 metre (1foot) core section of breccia with rounded fragments from the end of the 1.83 metre drill-hole 2.

All the core assays from drill-hole 2 returned anomalously high copper values ranging from 889 to 2690 ppm copper with the highest value at the end of the drill hole. The core sections were of both breccia and non-brecciated meta-andesite.

Conclusions

The Aberford mineralized structure has been delineated for 250 metres and is open-ended to the west. Whereas the Aberford structure was the prime exploration target of the 2019 program, other structures as cross-structures were delineated which could be the location for surficial geological features of migrating hydrothermal fluids from a depth defined of a waning concealed porphyritic intrusive. The breccia and some obscure banding of quartz are epithermal features which could relate to significant gold zones as at the Westhaven Shovelnose property, which may be the bonanza gold zone of a gold enriched epithermal vein.

The 1988 drill intersection of 15.56 grams per tonne gold and 16.43 grams per tonne silver over a 1.38 metre section of core at 59 metres (Nelles, 1988 AR 17721) at the Aberford may be an indication of gold mineralization increasing to depth.

The highest copper anomalous copper values are at an indicated northwesterly-northeasterly cross-structure which may be the indication of hydrotherally mineralized fluids reaching the surface.

Epithermal structurally hosted veins are commonly associated with, and which may have, originated from an underlying mineralized porphyry systems.

RECOMMENDATIONS

Although the Comstock property offers many areas to be explored for a mineral resource, the results of the 2019 exploration program, correlated with information from historic exploration results, the Aberford mineral zone is the prime area for a continuing exploration program.

The program should be comprised of:

- 1. Submitting the pertinent soil samples collected in the 2019 exploration program for an assay analysis of copper;
- Conduct additional soil surveys at the open-ended soil and/or VLF-EM anomalies primarily to the west of the Aberford structure and to the east along the indicated North mineral zone structure;
- 3. Examine the cross-structural locations for geological indications of a concealed mineralized intrusive;
- 4. Conduct an Induced Potential program over the main copper anomalous location at the indicated cross-structures.

Respectfully submitted

Laurence Sookochoff

Sookochoff Consultants Inc.

STATEMENT OF COSTS

The exploration on the Comstock Property was done from May 15 to June 30, 2019 to the value as follows:

Road Clearing June 6, 7, 9, 2019	e Ironi May 13 to June	: 30, 2019 to the va
M. Behrens: 3 days @ \$250,	\$ 750.00	
C. Delorme: 3 days @ \$350.	1,050.00	
G. Delorme: 3 days @ \$225.	<u>675.00</u>	\$ 2,475.00
Geochemical Survey		
June 11-13, 15-19. 27-30, 2019		
G. Delorme: 8 days @ \$225.	\$ 1,800.00	
C. Delorme: 12 days @ \$350.	4,200.00	
M. Behrens: 12 days @ \$250,	<u>3,000.00</u>	9,000.00
Geophysical Survey		
June 23-26, 2019		
C. Delorme: 4 days @ \$350.	\$ 1,400.00	
M. Behrens: 4 days @ \$250,	<u>1,000.00</u>	2,400.00
Packsack Drilling		
June 20-22, 2019		
C. Delorme: 3 days @ \$ 350/day	\$ 1,050.00	
Drill rental: 3 days @ \$ 460/day	<u>1,380.00</u>	2,430.00
Expenses		
Truck rental: 23 days @ \$ 125.00/day	\$ 2,875.00	
Room and board 25 man days @ \$50.	1,250.00	
Sample shipment: Merritt to Kamloops	55.00	
Chain saw rental	100.00	
Consumables	50.00	
Soil sample bags	100.00	
Assays	<u>3,433.16</u>	7,869.16
Engineering and Supervision		
L. Sookochoff, PEng:	-	
5 days @ \$1,000.00	\$ 5,000.00	
Travel	1,250.00	
Room and board	<u>585.00</u>	<u>6,835.00</u>
		\$ 31,003.16

=======

REFERENCES

Allis, R.G., 1990: Geophysical anomalies over epithermal systems: Journal of Geochemical Exploration, v. 36, p. 339-374

Boronowski, A. – 1984 Geochemical and Geophysical Report on the Diane Group for Kidd Creek Mines Ltd. October, 1984. AR 13114.

Boronowski, A. Hendrickson, G. 1984 Final Report on the Iron Mountain. October, 1984. Aberford Project 948. Fierro Project 953. JMT Project 954. Property Files.

Bradford, J. - Rock Geochemistry and Petrography on the Iron Mountain Mineral Claim for West Range Exploration Ltd. December, 2006. AR 28719.

Buchanan, L.J. Precious metal deposits associated with volcanic environments in the southwest, in Dickenson, W.R. and Payne, W.D. editors. Relations of tectonics to ore deposits in the southern Cordillera: Arizona Geological Society, Digest, v. XIV. p. 237-252.

Cavey, G. et al – Report on Detailed Geological, Geochemical, and Geophysical Surveys for International Maple Leaf Resource Corporation. December 30, 1986. AR 16058A

Christopher, P.A. – Geochemical, Geological, Geophysical and Diamond Drilling Assessment Report on the Iron Mountain Property for Golden Dynasty Resources Ltd. July 1989. AR 18888.

Cockfield, W.E. – Geology and Mineral Deposits of the Nicola Map-Area, British Columbia. Geological Survey of Canada Memoir 249. 1948.

Crooker, G.F. – Geochemical and Geophysical Assessment Report on the Iron Mountain Property for Golden Dynasty Resources Ltd. December 4, 1987.

Corbett, G., Leach, T. - Fluid mixing as a mechanism for bonanza grade epithermal gold formation. Australian Institute of Geoscientists Bulletin 48, pages 83-92.

http://corbettgeology.com/wp-content/uploads/2016/07/Mixing-and-bonanza-Au-2008.pdf

Corbett, G. - Epithermal Gold for Explorationists. AIG Journal Paper 2002-1, April 2002.

http://aigjournal.aig.org.au/epithermal-gold-for-explorationists/

Dick, B. J.A. – Report - Nicola project. March 1981 – Iron Mountain property. Chevron Property File 841851. http://propertyfile.gov.bc.ca/PDFTemp/fileid_65888.pdf.

Ellerbeck, K. - Technical Exploration Report on Prospecting and Exploring on the LD-Comstock Claim Group. April 10, 2018.

Ellerbeck, K. - Technical Exploration Report on Prospecting and Exploring on the LD-Comstock Claim Group. November 27. 2017.

Ellerbeck, K. - Technical Exploration Report on Prospecting and Exploring on the LD-Comstock Claim Group. September 26,2016. AR 36197.

Ellerbeck, K. - Technical Exploration Report on Prospecting and Exploring on the LD-Comstock Claim Group. March 3, 2015. AR 35284.

Ellerbeck, K. - Technical Exploration Report on Prospecting and Exploring on the IM-Comstock-LD Claim Group. July 05, 2014. AR 34963

References (cont'd)

Epithermal Vein Photos

 $https://www.google.com.ph/search?rlz=1C1ASUT_enCA720CA720\&tbm=isch\&q=epithermal+gold+deposits+styles+characteristics+and+exploration+pictures\&chips=q:epithermal+gold+deposits+styles+characteristics+and+exploration+pictures,online_chips:epithermal+vein\&sa=X\&ved=0ahUKEwjf&e-b9s_aAhUB_WMKHUR6BqEQ4lYIKSgE\&biw=1600\&bih=794\&dpr=1$

Goldsmith, L. B. - Geological Report with Interpretation of IP Geophyical Survey on the LD Property for Navigo Ventures Inc. October 6, 2011. AR 32183

Guilbert, J.M., Park, C.F. 2007: The Geology of Ore Deposits. Waveland Press Inc.

Hodges, G. 1987 – Report on Geophysical Surveys (VLF & Mag) on Sewell Creek Property for Goldrock Resources Inc. January 7, 1987.

Holcombe, R. – 2009: GEOrient, ver 9.4.4. Stereographic Projections and Rose Diagram Plots.

Kelly, S. – Report to Acaplomo Mining and Development Co. Ltd. (N.P.L.) on Geophysical & Geochemical Surveys on the Makelstin Claim Group. December 28, 1968. AR 1735.

Kelly, S. – Report to Acaplomo Mining and Development Co. Ltd. (N.P.L.) on a Geophysical Survey of the Makelstin Claim Group. December 4, 1970. AR 2757.

LaForme, G.W. – Assessment Report. 1981 Program. Geophysical, Geochemical, Geological on the Gyproc I Group Claims for Chevron Canada Limited. January 1982. AR 10114

McMillan, W.J. – Nicola Project – Merritt Area. Ministry of Mines and Petroleum Resources. 1978.

MapPlace – Map Data downloads

Mark, D. - Exploration Report on IP and Resistivity Surveys on the LD Property for North Bluff Exploration Inc. July 25, 2008. AR 30354.

MtOnline - MINFILE downloads.

Nelles, D.M. - Diamond Drilling Report on the Stirling Group (Diane 1-5 Mineral Claims) for Abermin Corporation. July 20, 1988. AR 17721.

Oshima, T., et al, 1974. Geology of the Kosaka Mine, Akita Prefecture. In Ishihara, S., et al, eds., Geology of Kuroko deposits. Mining Geology Spec. Issue, no 6, pp 89-100.

Panteleyev, A. – Ore Deposits #10. A Canadian Cordilleran Model for Epithermal Gold-Silver Deposits. Geoscience Canada Volume 13, Number 2. pp 101 -111.

Preto, V.A. – Geology of the Central Part of the Nicola Group, British Columbia. Preliminary Map 18. Ministry of Mines and Petroleum Resources. 1975.

Preto, V.A. – Geology of the Nicola Group between Merritt and Princeton Ministry of Mines and Petroleum Resources Bulletin 69. 1979.

Ralph, C. - Epithermal Gold and Silver Deposits. ICMJ;s Prospecting and Mining Journal. History & Geology, April 2017.

https://www.icmj.com/magazine/print-article/epithermal-gold-and-silver-deposits-3618/

Sookochoff, L. - Geological Assessment Report on a Structural Analysis for Ken Ellerbeck. July 5, 2013. AR 34187.

CERTIFICATE

I, Laurence Sookochoff, of the City of Vancouver, in the Province of British Columbia, do hereby certify:

That I am a Consulting Geologist and principal of Sookochoff Consultants Inc. with an address at 120 125A-1030 Denman Street, Vancouver, BC V6G 2M6.

- I, Laurence Sookochoff, further certify that:
- 1) I am a graduate of the University of British Columbia (1966) and hold a B.Sc. degree in Geology.
- 2) I have been practicing my profession for the past fifty-four years.
- 3) I am registered and in good standing with the Engineers and Geoscientists British Columbia.
- 4) The information for this report is based on information as itemized in the Selected Reference section of this report and from the engineering and supervision of the 2019 Comstock exploration program as described herein.
- 5) I have no interest in the Comstock Property.

Laurence Sookochoff, PEng.

Appendix 1

Certificates of Assay

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-JUL-2019 This copy reported on 3-MAR-2020

Account: CONSOK

CERTIFICATE KL19156276

Project: Comstock

This report is for 30 Soil samples submitted to our lab in Kamloops, BC, Canada on 26-JUN-2019.

The following have access to data associated with this certificate:

LAURENCE SOOKOCHOFF

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
SCR-41	Screen to -180um and save both							

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 2 - A
Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 12-JUL-2019
Account: CONSOK

(763									C	ERTIFIC	CATE O	F ANA	LYSIS	KL191	56276	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME-ICP61 K % 0.01
L2W-70N		0.14	<0.5	8.37	<5	830	0.9	<2	2.21	<0.5	12	48	43	4.06	20	1.79
L2W-90N		0.19	< 0.5	8.61	<5	700	1.3	<2	2.18	<0.5	10	28	56	3.24	20	1.41
L2W-105N		0.10	< 0.5	7.17	<5	790	0.9	<2	2.13	< 0.5	10	24	31	2.70	20	1.21
L2W-120N		0.19	< 0.5	9.07	<5	940	1.2	<2	2.32	< 0.5	14	39	46	3.80	20	1.36
L2W-135N		0.25	<0.5	8.36	6	790	1.0	<2	2.17	<0.5	14	67	73	4.67	20	1.55
L2W-150N		0.15	<0.5	8.05	<5	880	0.9	<2	2.43	<0.5	11	53	31	3.61	20	1.61
L2W-165N		0.14	<0.5	7.52	<5	790	0.9	<2	2.40	<0.5	11	47	20	3.13	20	1.45
L2W-180N		0.12	<0.5	7.71	<5	920	1.1	<2	2.31	0.7	10	31	22	2.83	20	1.41
L2W-195N		0.15	<0.5	8.51	<5	960	1.1	2	2.36	0.5	13	50	30	3.78	20	1.47
L2W-210N		0.17	<0.5	8.74	<5	850	1.1	<2	2.43	<0.5	12	43	32	3.48	20	1.42
L2W-225N		0.09	0.9	7.41	<5	1050	1.2	<2	2.37	2.1	10	20	38	2.31	20	1.63
L2W-240N		0.12	<0.5	7.41	<5	730	0.9	2	2.29	<0.5	12	44	22	3.09	20	1.45
L2W-255N		0.19	<0.5	7.20	<5	680	8.0	<2	2.35	<0.5	10	45	22	3.33	20	1.52
L2W-300N		0.21	<0.5	7.53	6	600	8.0	<2	2.12	<0.5	16	43	48	4.83	20	1.44
L2W-315N		0.15	<0.5	6.98	<5	600	8.0	2	2.21	<0.5	10	41	15	2.99	10	1.34
L2W-345N		0.12	<0.5	8.86	<5	650	1.3	<2	2.13	0.7	14	30	39	3.73	20	1.26
L2W-360N		0.11	<0.5	8.21	<5	570	1.3	<2	2.24	<0.5	13	23	21	3.38	20	1.39
L2W-375N		0.14	<0.5	8.73	5	770	1.2	<2	2.09	<0.5	14	47	58	3.69	20	1.35
L2W-390N		0.11	<0.5	7.42	<5	570	1.0	4	2.16	0.5	8	23	16	2.69	20	1.16
L2W-405N		0.13	0.9	7.51	<5	640	1.0	<2	2.27	<0.5	10	33	16	2.81	20	1.45
L2W-420N		0.16	<0.5	7.70	5	670	0.9	<2	2.39	<0.5	12	43	19	3.25	20	1.45
L2W-435N		0.13	<0.5	7.86	5	660	0.9	<2	2.32	0.5	9	35	23	3.34	20	1.47
L2W-450N		0.17	<0.5	7.43	<5	630	0.9	<2	2.13	<0.5	12	33	31	3.71	20	1.39
L2W-465N		0.18	0.6	7.57	<5	570	8.0	<2	2.13	<0.5	14	35	35	3.98	20	1.38
L2W-480N		0.17	<0.5	7.79	<5	710	0.9	<2	2.39	<0.5	15	49	79	4.27	20	1.49
L2W-495N		0.14	<0.5	7.67	<5	740	0.9	<2	2.38	<0.5	14	50	29	3.66	20	1.61
L2W-510N		0.20	<0.5	7.98	9	760	0.9	<2	2.45	<0.5	13	57	39	3.99	20	1.67
L2W-525N		0.13	<0.5	7.75	<5	760	0.9	<2	2.57	<0.5	11	57	31	3.86	20	1.63
L2W-540N		0.15	<0.5	8.31	6	750	1.0	<2	2.35	<0.5	15	62	77	4.57	20	1.67
L2W-555N		0.21	< 0.5	8.05	8	750	1.0	<2	2.54	<0.5	11	59	39	3.89	20	1.62

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-JUL-2019 Account: CONSOK

(763	,								C	ERTIFI	CATE O	F ANAI	LYSIS	KL191	56276	
Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	Th	Ti	TI
	Units	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOD	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20	0.01	10
L2W-70N		10	1.07	1275	<1	2.38	12	410	7	0.01	<5	17	386	<20	0.55	<10
L2W-90N		10	0.82	1755	1	2.55	15	1000	11	0.01	<5	10	377	<20	0.42	<10
L2W-105N		10	0.73	3700	1	2.08	10	640	9	0.02	<5	9	347	<20	0.36	<10
L2W-120N		10	0.90	3330	<1	2.23	17	850	16	0.01	<5	12	381	<20	0.48	<10
L2W-135N		10	1.11	683	<1	2.44	22	640	6	0.01	<5	16	407	<20	0.56	<10
L2W-150N		10	0.90	1245	<1	2.66	16	350	10	0.01	<5	13	448	<20	0.53	<10
L2W-165N		10	0.85	1155	1	2.62	11	330	5	0.01	<5	12	443	<20	0.49	<10
L2W-180N		10	0.74	1920	1	2.39	12	800	11	0.01	<5	9	381	<20	0.40	<10
L2W-195N		10	0.92	1995	<1	2.42	18	1090	7	0.02	<5	13	402	<20	0.50	<10
L2W-210N		10	0.90	1125	<1	2.61	17	650	9	0.01	<5	11	422	<20	0.49	<10
L2W-225N		10	0.63	3110	1	2.58	11	1540	11	0.02	<5	8	383	<20	0.34	10
L2W-240N		10	0.84	1320	<1	2.64	12	840	9	0.01	<5	12	435	<20	0.47	<10
L2W-255N		10	0.85	829	<1	2.64	11	400	7	0.01	<5	13	427	<20	0.49	<10
L2W-300N		10	1.11	658	<1	2.69	13	400	12	0.01	7	18	347	<20	0.57	<10
L2W-315N		10	0.76	863	<1	2.48	10	260	8	0.01	5	11	396	<20	0.46	<10
L2W-345N L2W-360N L2W-375N L2W-390N L2W-405N		10 10 10 10 10	0.87 0.79 0.93 0.74 0.76	1945 2210 964 1735 1160	<1 1 1 1	2.29 2.58 2.31 2.31 2.51	18 9 21 8 12	1440 1530 2390 1000 1440	11 10 10 11 6	0.01 0.02 0.01 0.01 0.01	<5 <5 <5 <5 <5	12 9 13 8 10	350 383 370 372 401	<20 <20 <20 <20 <20	0.42 0.42 0.48 0.39 0.42	<10 <10 <10 <10 <10
L2W-420N		10	0.88	571	1	2.75	14	700	6	0.01	<5	12	436	<20	0.47	<10
L2W-435N		10	0.90	862	<1	2.68	12	670	7	0.01	<5	13	403	<20	0.48	<10
L2W-450N		10	0.86	1015	<1	2.50	12	1000	7	0.01	<5	15	340	<20	0.50	<10
L2W-465N		10	0.92	712	<1	2.50	16	1080	9	0.01	<5	15	331	<20	0.50	<10
L2W-480N		10	1.05	740	1	2.60	16	1150	8	0.01	<5	16	397	<20	0.51	<10
L2W-495N		10	0.94	951	1	2.60	17	610	7	0.01	<5	15	439	<20	0.50	<10
L2W-510N		10	1.02	658	<1	2.81	16	340	8	0.01	<5	16	477	<20	0.53	<10
L2W-525N		10	0.98	899	1	2.83	19	230	5	0.01	<5	16	481	<20	0.53	<10
L2W-540N		20	1.20	746	<1	2.38	27	600	6	0.01	<5	18	424	<20	0.50	<10
L2W-555N		10	0.98	573	<1	2.83	19	490	11	0.01	<5	15	489	<20	0.53	<10

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-JUL-2019 Account: CONSOK

	,					
(ALS)						CERTIFICATE OF ANALYSIS KL19156276
	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	
	Analyte	U	V	W	Zn	
Cample Description	Units	ppm	ppm	ppm	ppm	
Sample Description	LOD	10	1	10	2	
L2W-70N		<10	130	<10	105	
L2W-90N		<10	76	<10	214	
L2W-105N		<10	64	<10	210	
L2W-120N		<10	95	<10	190	
L2W-135N		<10	154	<10	74	
L2W-150N		<10	117	<10	91	
L2W-165N		<10	105	<10	97	
L2W-180N		<10	68	<10	348	
L2W-195N		<10	105	<10	286	•
L2W-210N		<10	96	<10	211	
L2W-225N		<10	50	<10	327	
L2W-240N		<10	103	<10	86	
L2W-255N		<10	112	<10	76	
L2W-300N		<10	157	<10	60	
L2W-315N		<10	96	<10	78	
L2W-345N		<10	89	<10	182	
L2W-360N		<10	72	<10	164	
L2W-375N		<10	95	<10	199	
L2W-390N		<10	60	<10	264	
L2W-405N		<10	75	<10	208	
L2W-420N		<10	102	<10	80	
L2W-435N		<10	103	<10	131	
L2W-450N		<10	115	<10	120	
L2W-465N		<10	122	<10	89	
L2W-480N		<10	135	<10	84	
L2W-495N		<10	122	<10	73	
L2W-510N		<10	144	<10	58	
L2W-525N		<10	142	<10	57	
L2W-540N		<10	144	<10	70	
L2W-555N		<10	140	<10	61	
1						
		l				

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12-JUL-2019 Account: CONSOK

CERTIFICATI	OF ANALYSIS	KI 19156276
TENTIFICATI	TOP AINALLININ	NI 19130270

T	CERTIFICATE OF AUACETSIS RE13130270
	CERTIFICATE COMMENTS
	LABORATORY ADDRESSES
Applies to Method:	Processed at ALS Kamloops located at 2953 Shuswap Drive, Kamloops, BC, Canada. LOG-22 SCR-41 WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. ME-ICP61

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 1 Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 12-JUL-2019 This copy reported on

3-MAR-2020 Account: CONSOK

CERTIFICATE KL19156269

Project: Comstock

This report is for 72 Soil samples submitted to our lab in Kamloops, BC, Canada on 26-JUN-2019.

The following have access to data associated with this certificate:

LAURENCE SOOKOCHOFF

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21 Received Sample Weight								
LOG-22	Sample login - Rcd w/o BarCode							
SCR-41	Screen to -180um and save both							

	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Hg-MS42	Trace Hg by ICPMS	ICP-MS
ME-ICP61	33 element four acid ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 2 - A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 12-JUL-2019 Account: CONSOK

CERTIFICATE OF ANALYSIS KL19156269

							CERTIFICATE OF ANALTSIS RE19130209
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Hg-MS42 Hg ppm 0.005	ME-ICP61 As ppm 5	ME-ICP61 Cu ppm 1	ME-ICP61 Sb ppm 5	
	LOD						
LOW-0N		0.16	0.010	<5	25	<5	
LOW-15N		0.11	0.014	<5	24	<5	
LOW-30N		0.13	0.010	<5	27	<5	
LOW-45N		0.12	0.013	<5 -	30	<5 -	
LOW-60N		0.15	0.009	<5	26	<5	
LOW-75N		0.12	0.005	6_	32	<5	
LOW-90N		0.12	0.019	<5	39	5	
LOW-105N		0.10	0.023	<5	33	6	
LW-75N		0.15	0.018	<5 .F	71	< 5	
LW-90N		0.07	0.010	<5	10	5	
LW-105N		0.11	0.015	<5	35	5	
LW-120N		0.14	0.016	<5	33	5	
LW-135N		0.13	0.031	6	32	< 5	
LW-150N		0.06	0.052	<5 .F	27 29	5	
LW-165N		0.11	0.042	<5		<5	
LW-180N		0.09	0.073	<5	25	<5	
LIW-90N		0.14	0.060	9	89	<5 -	
LIW-105N		0.17	0.024	6	44	7	
LIW-120N		0.10	0.023	<5 -	32	< 5	
LIW-135N		0.09	0.031	<5	28	<5	
LIW-150N		0.16	0.018	<5	27	<5	
LIW-165N		0.13	0.021	<5	29	5	
LIW-180N		0.13	0.021	<5 -	30	< 5	
LIW-195N		0.18	0.011	5	36	< 5	
L3W-135N		0.19	0.022	<5	50	<5	
L3W-150N		0.24	0.028	5	71	<5	
L3W-165N		0.16	0.058	<5	118	<5	
L3W-180N		0.30	0.045	6	2800	<5	
L3W-195N		0.20	0.026	<5 -	42	6	
L3W-210N		0.15	0.029	<5	31	<5	
L3W-225N		0.19	0.016	<5	48	<5	
L3W-240N		0.15	0.019	5_	53	<5	
L4W-165N		0.16	0.024	<5	42	6	
L4W-180N		0.22	0.020	<5	35	<5 -	
L4W-195N		0.17	0.018	<5	96	5	
L4W-210N		0.10	0.026	<5	28	<5	
L4W-225N		0.20	0.015	<5	132	5	
L4W-240N		0.22	0.011	<5	26	<5	
L4W-255N		0.21	0.008	<5	33	6	
L4W-270N		0.23	0.008	<5	33	<5	

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6

CERTIFICATE OF ANALYSIS KL19156269

Page: 3 - A Total # Pages: 3 (A) Plus Appendix Pages Finalized Date: 12-JUL-2019 Account: CONSOK

							CERTIFICATE OF ANALISIS RE19130209
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Hg-MS42 Hg ppm 0.005	ME-ICP61 As ppm 5	ME-ICP61 Cu ppm 1	ME-ICP61 Sb ppm 5	
L5W-180N L5W-195N L5W-210N L5W-225N L5W-240N		0.16 0.22 0.20 0.14 0.14	0.009 0.025 0.024 0.007 0.015	<5 5 <5 <5 <5	20 300 242 27 104	<5 <5 7 <5 <5	
L5W-255N L5W-270N L5W-285N L6W-210N L6W-225N		0.15 0.17 0.21 0.20 0.16	0.020 0.017 0.011 0.019 0.025	<5 <5 <5 <5 5	118 46 39 383 125	<5 <5 5 9 5	
L6W-240N L6W-255N L6W-270N L6W-285N L6W-300N		0.14 0.16 0.24 0.13 0.18	0.019 0.033 0.028 0.012 0.013	<5 <5 <5 <5 <5	366 170 479 16 30	<5 <5 5 <5 <5	
L6W-315N L7W-240N L7W-255N L7W-270N L7W-285N		0.18 0.13 0.18 0.17 0.13	0.011 0.013 0.020 0.026 0.020	<5 <5 6 <5 <5	36 76 410 89 60	<5 5 <5 <5 6	
L7W-300N L7W-315N L7W-330N L7W-345N L8W-270N		0.13 0.22 0.22 0.25 0.12	0.005 0.011 0.008 <0.005 0.016	<5 <5 <5 <5 <5	20 34 37 28 24	5 6 <5 <5 <5	
L8W-285N L8W-300N L8W-315N L8W-330N L8W-345N		0.18 0.15 0.20 0.21 0.24	0.009 0.012 0.010 0.007 0.011	7 <5 <5 <5 <5	32 14 25 18 24	<5 <5 5 <5 <5	
L8W-360N L8W-375N		0.17 0.21	0.009 0.013	<5 <5	20 29	<5 6	

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12-JUL-2019 Account: CONSOK

CERTIFICA	TE OF	ANALYSIS	KI 19	156269
	3 I I \ /F	AIVAL LIDID	1 1 1 7	1 101/07

	CERTIFICATE COMMENTS
	LABORATORY ADDRESSES
	Processed at ALS Kamloops located at 2953 Shuswap Drive, Kamloops, BC, Canada.
Applies to Method:	LOG-22 SCR-41 WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Hg-MS42 ME-ICP61

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 9-JUL-2019 This copy reported on 3-MAR-2020

Account: CONSOK

CERTIFICATE KL19156261

Project: Comstock

This report is for 27 Drill Core samples submitted to our lab in Kamloops, BC,

Canada on 26-JUN-2019.

The following have access to data associated with this certificate:

LAURENCE SOOKOCHOFF

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
CRU-QC	Crushing QC Test							
LOG-21	Sample logging - ClientBarCode							
PUL-QC	Pulverizing QC Test							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize up to 250g 85% <75 um							

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 9-JUL-2019 Account: CONSOK

(ALS)									С	ERTIFIC	CATE O	F ANAI	LYSIS	KL191	56261	
Sample Description	Method	WEI-21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	K
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%
	LOD	0.02	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	10	0.01
Y003052		0.38	28.7	6.23	<5	310	0.6	<2	0.28	<0.5	30	10	792	12.85	20	3.26
Y003053		0.21	4.5	6.40	10	290	0.7	2	0.28	<0.5	54	11	1720	14.10	20	2.78
Y003054		0.47	1.9	6.73	52	320	0.7	<2	0.29	<0.5	35	9	889	12.00	20	3.24
Y003055		0.62	26.5	6.24	6	270	0.7	<2	0.24	<0.5	48	15	2380	11.70	10	2.74
Y003056		0.66	2.2	6.10	5	280	0.8	<2	0.23	<0.5	71	9	2440	12.15	10	2.80
Y003057		0.64	3.5	5.05	20	310	0.9	<2	0.09	<0.5	128	10	2130	13.30	10	2.74
Y003058		0.64	5.6	3.13	12	190	0.6	3	0.03	0.6	61	6	1600	27.0	10	1.75
Y003059		0.40	12.9	3.40	29	130	<0.5	6	0.03	<0.5	41	13	2690	26.9	10	1.85
Y003060		0.27	3.9	4.90	8	380	0.7	<2	0.08	0.7	45	12	1400	17.00	10	2.63
Y003061		0.41	14.7	3.15	7	150	<0.5	3	0.03	<0.5	15	37	1160	12.90	10	1.72
Y003062		0.22	14.4	3.39	13	140	<0.5	3	0.04	<0.5	31	70	1320	13.05	10	1.81
Y003063		0.15	49.6	5.71	6	240	0.5	<2	0.08	<0.5	13	173	621	6.37	10	2.96
Y003064		0.30	<0.5	7.67	5	610	<0.5	2	0.26	<0.5	34	30	1220	12.45	20	3.25
Y003065		0.46	3.1	6.21	<5	430	<0.5	3	0.15	<0.5	44	60	1830	9.55	20	2.21
Y003066		0.63	3.0	8.63	6	570	0.6	2	0.20	<0.5	39	90	1120	12.75	20	3.14
Y003067 Y003068 Y003069 Y003070 Y003071		0.63 0.56 0.52 0.51 0.77	2.6 1.5 3.6 5.6 3.5	7.78 7.27 8.51 5.68 5.67	10 9 12 11 5	540 490 530 290 370	0.6 0.6 0.6 0.5	<2 <2 <2 3 <2	0.29 0.21 0.20 0.11 0.14	0.5 0.5 <0.5 <0.5 <0.5	31 37 44 65 28	77 68 75 55 58	870 1210 1340 2220 1650	12.00 18.00 13.30 12.90 9.92	20 20 20 10 20	3.12 2.72 3.15 2.69 2.47
Y003072		0.49	4.4	3.79	16	220	<0.5	4	0.13	<0.5	22	46	1250	8.30	10	1.71
Y003073		0.75	7.5	6.19	17	360	0.6	7	0.16	<0.5	16	59	1260	12.15	20	2.90
Y003074		0.57	6.8	5.06	16	200	0.6	7	0.06	<0.5	55	51	2240	19.95	10	2.46
Y003075		0.69	4.9	6.85	15	200	0.8	<2	0.07	<0.5	78	69	2870	18.25	10	2.60
Y003076		0.43	1.9	6.51	5	200	0.6	<2	0.13	<0.5	98	72	1920	14.50	20	1.74
Y003077 Y003078		0.56 0.35	0.8 0.7	7.14 7.15	5 <5	300 280	1.1 1.0	<2 <2	0.34 0.34	<0.5 <0.5	26 28	4 3	1820 1110	9.81 8.79	20 20	3.20 3.25

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6

CERTIFICATE OF ANALYSIS KL19156261

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 9-JUL-2019 Account: CONSOK

											CALL	7 (1 (7 ()			30201	
Sample Description	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61										
	Analyte	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	Th	Ti	TI
	Units	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOD	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20	0.01	10
Y003052		<10	0.41	182	12	0.03	3	1360	<2	0.01	6	16	6	<20	0.37	<10
Y003053		<10	0.65	426	6	0.03	6	1640	<2	<0.01	<5	15	6	<20	0.25	<10
Y003054		<10	0.58	291	4	0.03	3	1380	2	0.02	<5	15	5	<20	0.32	<10
Y003055		<10	0.67	345	11	0.02	6	1240	4	0.02	8	14	7	<20	0.30	<10
Y003056		<10	0.57	325	6	0.02	3	1390	<2	0.03	10	15	7	<20	0.27	<10
Y003057		<10	0.28	231	11	0.02	2	1110	<2	0.03	8	15	6	<20	0.21	<10
Y003058		40	0.16	120	16	0.02	2	650	6	0.02	5	9	5	<20	0.21	<10
Y003059		<10	0.17	111	8	0.01	2	730	6	0.03	10	13	4	<20	0.29	<10
Y003060		10	0.21	233	7	0.03	1	1050	4	0.22	5	12	28	<20	0.28	<10
Y003061		80	0.15	121	4	0.01	5	530	5	0.04	9	11	8	<20	0.20	<10
Y003062		150	0.16	231	6	0.01	10	660	7	0.04	6	12	10	<20	0.19	<10
Y003063		60	0.26	136	17	0.02	45	300	3	0.06	<5	21	9	<20	0.36	<10
Y003064		10	1.79	988	2	0.03	10	1070	<2	<0.01	7	18	10	<20	0.37	<10
Y003065		<10	0.81	448	2	0.02	8	750	<2	0.07	<5	19	26	<20	0.20	<10
Y003066		<10	1.12	572	1	0.02	13	870	<2	0.13	<5	32	30	<20	0.34	<10
Y003067		<10	0.84	305	3	0.02	7	730	2	0.09	<5	32	39	<20	0.37	<10
Y003068		<10	0.91	428	2	0.02	8	750	<2	0.10	5	28	26	<20	0.36	<10
Y003069		<10	1.03	451	3	0.02	13	910	3	0.12	7	33	35	<20	0.37	<10
Y003070		<10	0.30	328	2	0.02	3	1070	5	0.03	7	23	10	<20	0.14	<10
Y003071		<10	0.39	205	2	0.02	4	800	3	0.05	<5	23	13	<20	0.19	<10
Y003072		<10	0.23	134	3	0.01	3	590	7	0.03	<5	14	9	<20	0.12	10
Y003073		<10	0.32	145	3	0.03	2	1090	5	0.20	<5	25	24	<20	0.19	<10
Y003074		<10	0.20	179	4	0.02	1	1030	5	0.12	10	19	13	<20	0.20	<10
Y003075		<10	0.83	547	4	0.02	12	790	3	0.03	12	24	6	<20	0.28	<10
Y003076		<10	1.38	901	3	0.02	20	640	<2	0.01	12	22	4	<20	0.32	<10
Y003077		10	0.75	421	7	0.03	3	1580	<2	<0.01	6	18	6	<20	0.34	<10
Y003078		10	0.69	566	6	0.03	3	1640	3	<0.01	<5	18	7	<20	0.40	<10

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6

CERTIFICATE OF ANALYSIS KL19156261

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 9-JUL-2019 Account: CONSOK

Sample Description Method Analyte Units LOD 1 1 10 2	
Y003052 <10 73 110 26	
Y003053 <10 67 50 67	
Y003054 <10 70 50 48	
Y003055 <10 61 70 59	
Y003056 <10 59 30 51	
Y003057 <10 58 50 32	
Y003058 <10 69 170 16	
Y003059 <10 92 200 17	
Y003060 <10 63 80 37	
Y003061 <10 69 80 15	
Y003062 <10 82 70 35	
Y003063 <10 109 120 15	
Y003064 <10 140 <10 129	
Y003065 <10 130 <10 67	
Y003066 <10 213 <10 75	
Y003067 <10 216 10 35	
Y003068 <10 228 70 48	
Y003069 <10 220 10 56	
Y003070 <10 144 10 44	
Y003071 <10 148 <10 35	
Y003072 <10 102 <10 18	
Y003073 <10 155 10 26	
Y003074 <10 153 50 40	
Y003075 <10 179 10 96	
Y003076 <10 184 20 122	
Y003077 <10 65 <10 82	
Y003078 <10 63 <10 76	

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 9-JUL-2019 Account: CONSOK

CERTIFICATE OF ANALYSIS KL19	156261
------------------------------	--------

		CERTIFICATE CO	MMENTS	
		LABOR	RATORY ADDRESSES	
Applies to Method:	Processed at ALS Kamloops CRU-31 PUL-QC	located at 2953 Shuswap Drive, K CRU-QC SPL-21	amloops, BC, Canada. LOG-21 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouver ME-ICP61	located at 2103 Dollarton Hwy, N	lorth Vancouver, BC, Canada.	

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 15-JUL-2019 This copy reported on 3-MAR-2020

Account: CONSOK

CERTIFICATE KL19161262

Project: Comstock

This report is for 7 Rock samples submitted to our lab in Kamloops, BC, Canada on

2-JUL-2019.

The following have access to data associated with this certificate:

LAURENCE SOOKOCHOFF

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
CRU-QC	Crushing QC Test							
LOG-21	Sample logging - ClientBarCode							
PUL-QC	Pulverizing QC Test							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize up to 250g 85% <75 um							

ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION	INSTRUMENT					
ME-ICP61	33 element four acid ICP-AES	ICP-AES					

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6

Page: 2 - A
Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 15-JUL-2019
Account: CONSOK

Method Analyte Meth	(ALS	FTOJ	Project. Constock														
Name Column Col			CERTIFICATE OF ANALYSIS				LYSIS	KL19161262									
Y003080 1.15 <0.5 1.34 11 360 <0.5 2 0.06 <0.5 6 68 187 10.10 <10 0.32 Y003081 1.12 5.6 7.57 <5 380 0.7 <2 0.03 <0.5 85 85 2490 16.25 20 4.07 Y003082 0.55 3.9 5.30 <5 260 0.6 4 0.13 <0.5 36 16 5190 3.88 10 3.06 Y003083 0.48 1.5 5.85 5 130 0.8 4 0.10 0.6 43 18 2410 7.52 10 2.89 Y003084 0.67 <0.5 0.40 <5 740 <0.5 2 0.05 1.3 9 24 37 3.38 <10 0.12	Sample Description	Analyte Units	Recvd Wt. kg	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Со	Cr	Cu	Fe %	Ga ppm	K %
	7003080 7003081 7003082		1.15 1.12 0.55	<0.5 5.6 3.9	1.34 7.57 5.30	11 <5 <5	360 380 260	<0.5 0.7 0.6	2 <2 4	0.06 0.03 0.13	<0.5 <0.5 <0.5	6 85 36	68 85 16	187 2490 5190	10.10 16.25 3.88	<10 20 10	0.32 4.07 3.06
											_	9 7		-			

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 15-JUL-2019 Account: CONSOK

									С	ERTIFI	CATE O	F ANA	LYSIS	KL191	61262	
Sample Description	Method Analyte Units LOD	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01	ME-ICP61 TI ppm 10
Y003079		<10	0.34	116	1	0.02	1	750	<2	0.01	5	17	5	<20	0.28	<10
Y003080		<10	0.42	293	12	0.02	3	190	4	0.02	6	4	16	<20	0.09	<10
Y003081		<10	0.25	141	28	0.04	4	1000	<2	0.06	7	26	5	<20	0.26	<10
Y003082		<10	0.26	73	5	0.03	2	680	4	0.05	5	13	4	<20	0.31	<10
Y003083		10	0.17	307	5	0.05	4	670	25	0.03	34	15	17	<20	0.30	<10
Y003084		<10	0.03	1445	3	0.01	3	260	5	0.02	9	4	11	<20	0.02	<10
Y003085		20	0.10	42	3	0.01	1	380	<2	0.05	<5	8	19	<20	0.11	<10

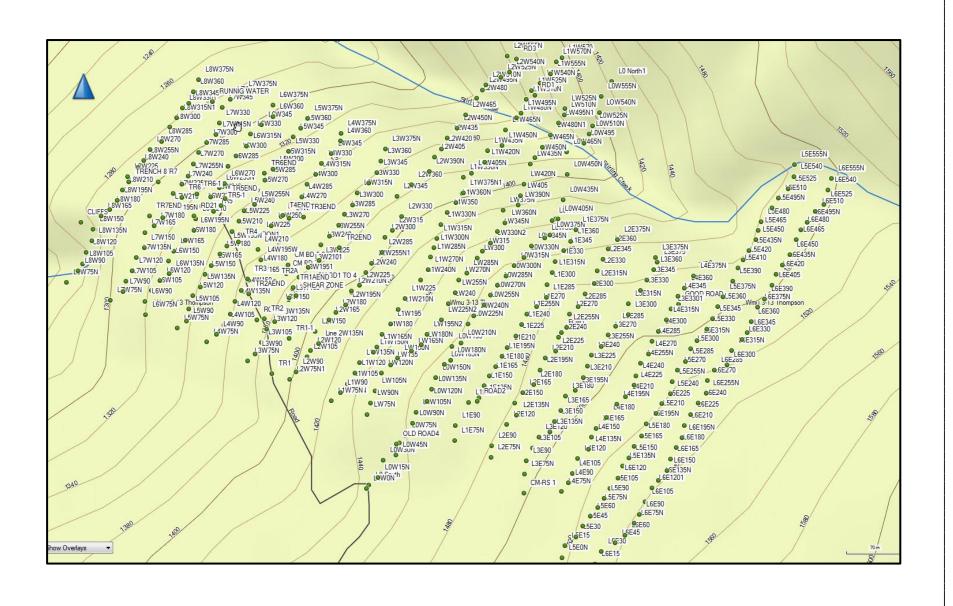
To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 15-JUL-2019 Account: CONSOK

						- J
(ALS)	,					CERTIFICATE OF ANALYSIS KL19161262
Sample Description	Method Analyte Units LOD	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
7003079 7003080 7003081 7003082 7003083		<10 <10 <10 <10 <10	210 84 199 47 68	80 <10 90 <10 10	42 27 67 13 225	
/003084 /003085		<10 <10	77 164	<10 200	118 6	

To: SOOKOCHOFF CONSULTANTS 503-1771 NELSON STREET VANCOUVER BC V6G 1M6 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-JUL-2019 Account: CONSOK

CERTIFICATE OF ANALYSIS	KI 19161262

		CERTIFICATE COM	IMENTS								
	LABORATORY ADDRESSES										
Applies to Method:	Processed at ALS Kamloops loo CRU-31 PUL-QC	cated at 2953 Shuswap Drive, Ka CRU-QC SPL-21	mloops, BC, Canada. LOG-21 WEI-21	PUL-31							
Applies to Method:	Processed at ALS Vancouver lo ME-ICP61	cated at 2103 Dollarton Hwy, No	rth Vancouver, BC, Canada.								


Appendix 2

Lat Long and UTM coordinates of trenches

Garmin Field WP	Lat	Long	UTM E	UTM N	Elev (m)	Trench No.	
467	50.04098897	-120.789769	658259.251	5545528.338	1355.981567	T4END	658259
468	50.04026704	-120.788827	658329.071	5545450.076	1412.18396	TR-1 END	658329
469	50.03983696	-120.789407	658288.959	5545401.034	1410.177002	TR-1-2	658289
470	50.03997099	-120.789257	658299.258	5545416.252	1411.796631	TR-1-3	658299
471	50.040131	-120.78903	658314.984	5545434.522	1413.303101	TR-1-4	658315
472	50.03926297	-120.789965	658250.894	5545336.042	1405.49646	TR1	658251
473	50.03964803	-120.789658	658271.609	5545379.499	1407.577393	TR1-1	658272
474	50.03982799	-120.789466	658284.764	5545399.912	1408.96875	TR1A	658285
475	50.040204	-120.789588	658274.792	5545441.455	1395.434204	TR1AEND	658275
476	50.03986102	-120.790094	658239.691	5545402.254	1385.531982	TR2	658240
477	50.04027299	-120.789909	658251.582	5545448.445	1379.464722	TR2A	658252
478	50.04013301	-120.790368	658219.179	5545431.911	1372.271851	TR2AEND	658219
479	50.04063701	-120.78878	658333.314	5545420.488	1389.33313	TR2END	658333
480	50.04029897	-120.790392	658216.915	5545450.31	1367.116211	TR3	658217
481	50.04096801	-120.789408	658285.167	5545526.772	1366.159058	TR3END	658285
482	50.04069996	-120.79055	658204.284	5545494.554	1354.452026	TR4	658204
483	50.04103398	-120.790983	658172.185	5545530.771	1339.3573	TR5	658172
484	50.04109299	-120.790856	658181.084	5545537.6	1340.978882	TR5-1	658181
485	50.04116801	-120.790786	658185.849	5545546.088	1340.845215	TR5END	658186
486	50.04118502	-120.791539	658131.881	5545546.385	1324.529541	TR6	658132
487	50.04122299	-120.791273	658150.8	5545551.169	1324.373291	TR6-1	658151
488	50.04144796	-120.790099	658234.115	5545578.665	1329.544922	TR6END	658234
489	50.04135501	-120.791952	658101.753	5545564.409	1314.968262	TR7	658102
490	50.04098101	-120.792106	658091.956	5545522.505	1318.090332	TR7END	658092
491	50.04135098	-120.792466	658064.965	5545562.874	1302.125854	TRENCH 8	658065

Appendix 3

Garmin Field Grid showing locations of 418 soil samples

page 48

Appendix 4

Photos

Sample C6 assayed 7590 ppm Cu, 1.07 ppm Au (from AR 36197)

Typical breccia from shear zone (from AR 36197; no assay)

Aberford shear zone showing brecciation and obscure banding in quartz vein (from AR 36197; no assay)

Appendix 5

Grid and Soil Assay Data

UTM E	UTM N	As	Cu	Sb	Grid East	Grid North	Lat	Long	Elev	Grid Pt
658374	5545201	0	25	0	0	0	50.038015	-120.78831	1450.7279	LOWON
658388	5545215	0	24	0	0	15	50.038135	-120.7881	1455.1171	LOW15N
658394	5545236	0	27	0	0	30	50.038325	-120.78801	1458.9872	LOW30N
658410	5545242	0	30	0	0	45	50.038378	-120.78779	1463.0393	LOW45N
658413	5545257	0	26	0	0	60	50.038509	-120.78773	1465.5814	LOW60N
658421	5545266	6	32	0	0	75	50.03859	-120.78763	1471.3862	LOW75N
658429	5545281	0	39	5	0	90	50.038723	-120.7875	1477.2552	LOW90N
658326	5545305	0	33	6	0	105	50.0389668	-120.78893	1425.0547	L1W075N
658346	5545327	6	44	7	-100	105	50.039152	-120.78864	1445.0166	L1W105
658355	5545340	0	32	0	-100	120	50.03927	-120.78851	1444.9506	L1W120
658360	5545353	0	28	0	-100	135	50.039383	-120.78843	1449.5305	L1W135N
658377	5545366	0	27	0	-100	150	50.039497	-120.78819	1447.7216	L1W150N
658382	5545372	0	29	5	-100	165	50.039554	-120.78813	1448.4447	L1W165N
658388	5545388	0	30	0	-100	180	50.039695	-120.78803	2110.1117	L1W180
658398	5545401	5	36	0	-100	195	50.039807	-120.78789	1445.6542	L1W195
658281	5545339	0	56	10	-200	90	50.039284	-120.78955	1416.2285	L2W90
658294	5545358	0	31	9	-200	105	50.039449	-120.78935	1418.4352	L2W105
658298	5545366	0	46	12	-200	120	50.03952	-120.78929	1418.2528	L2W120
658304	5545389	0	31	13	-200	150	50.039727	-120.7892	1416.5641	L2W150
658320	5545404	0	20	12	-200	165	50.039851	-120.78897	1419.2209	L2W165
658329	5545413	0	22	9	-200	180	50.039933	-120.78884	1418.5024	L2W180
658341	5545422	0	30	13	-200	195	50.0400134	-120.78867	1408.1641	L2W195N
658348	5545439	0	32	11	-200	210	50.040165	-120.78857	1416.1959	L2W210N
658358	5545446	0	38	8	-200	225	50.040225	-120.78843	1415.4631	L2W225
658365	5545462	0	22	12	-200	240	50.0403638	-120.78832		L2W240
658372	5545474	0	22	13	-200	255	50.0404677	-120.78822	1396.7539	L2W255N1
658388	5545506	6	48	18	-200	300	50.040752	-120.78798	1410.4601	L2W300
658397	5545514	0	15	11	-200	315	50.040822	-120.78785	1412.3619	L2W315
658402	5545555	0	39	12	-200	345	50.041194	-120.78777	1405.4817	L2W345
658419	5545570	0	21	9	-200	360	50.041324	-120.78752	1400.2393	L2W360
658441	5545587	0	16	8	-200	390	50.0414649	-120.78721	1376.8477	L2W390N
658447	5545604	0	16	10	-200	405	50.041622	-120.78712	1405.3434	L2W405
658455	5545614	5	19	12	-200	420	50.04171	-120.787	1399.4619	L2W420
658463	5545628	5	23	13	-200	435	50.041832	-120.78689	1395.635	L2W435
658475	5545640	0	31	15	-200	450	50.0419395	-120.78672	1343.875	L2W450N
658485	5545656	0	35	15	-200	465	50.04208	-120.78657	1379.671	L2W465
658490	5545685	0	79	16	-200	480	50.042335	-120.78649	1364.863	L2W480
658498	5545690	0	29	15	-200	495	50.042382	-120.78637	1360.5673	L2W495N
658509	5545694	9	39	16	-200	510	50.0424073	-120.78622	1334.4375	L2W510N
658528	5545703	0	31	16	-200	525	50.042491	-120.78595	1374.0236	L2W525N

UTM E	UTM N	As	Cu	Sb	Grid East	Grid North	Lat	Long	Elev	Grid Pt
658538	5545710	6	77	18	-200	540	50.042547	-120.7858	1377.6152	L2W540N
658535	5545730	8	39	15	-200	555	50.0427253	-120.78584	1360.0176	L2W555N
658252	5545399	0	50	0	-300	135	50.0398325	-120.78992	1382.8984	L3W135N
658257	5545417	5	71	0	-300	150	50.039986	-120.78984	1392.4655	L3W150
658270	5545429	0	118	0	-300	165	50.04009	-120.78966	1393.7563	L3W165
658275	5545441	6	2800	0	-300	180	50.040198	-120.78959	1393.7279	L3W180
658281	5545454	0	42	6	-300	195	50.040313	-120.78949	1393.3096	L3W1951
658293	5545466	0	31	0	-300	210	50.040423	-120.78932	1396.8787	L3W2101
658306	5545475	0	48	0	-300	225	50.0405	-120.78914	1394.8699	L3W225
658308	5545494	5	53	0	-300	240	50.04067	-120.7891	1387.924	L3W240
658219	5545448	0	42	6	-400	165	50.040281	-120.79036	1371.4113	L4W165
658228	5545463	0	35	0	-400	180	50.040409	-120.79023	1370.2459	L4W180
658233	5545474	0	96	5	-400	195	50.0405034	-120.79016	1361.8672	L4W195W
658229	5545486	0	28	0	-400	210	50.040617	-120.7902	1366.3263	L4W210
658231	5545504	0	132	5	-400	225	50.040775	-120.79018	1365.7014	L4W225
658245	5545516	0	26	0	-400	240	50.040878	-120.78997	1365.186	L4W250
658267	5545525	0	33	6	-400	255	50.0409551	-120.78966	1352.5469	L4W255N
658275	5545540	0	33	0	-400	270	50.041091	-120.78954	1360.0951	L4W270
658181	5545479	0	20	0	-500	180	50.040569	-120.79088	1347.9008	L5W180
658190	5545489	5	300	0	-500	195	50.0406571	-120.79075		L5W195N
658196	5545507	0	242	7	-500	210	50.0408111	-120.79067		L5W210
658204	5545520	0	27	0	-500	225	50.040928	-120.79054	1349.2592	L5W225
658210	5545532	0	104	0	-500	240	50.041038	-120.79045	1350.1392	L5W240
658223	5545541	0	118	0	-500	255	50.0411089	-120.79027		L5W255N
658226	5545558	0	46	0	-500	270	50.041268	-120.79022	1343.1561	L5W270
658236	5545570	0	39	5	-500	285	50.041372	-120.79008	1337.8938	L5W285
658150	5545521	0	383	9	-600	210	50.040949	-120.7913	1340.3583	L6W210
658157	5545536	5	125	5	-600	225	50.041089	-120.7912	1340.1171	L6W225
658168	5545548	0	366	0	-600	240	50.041189	-120.79104	1339.537	L6W240
658178	5545559	0	170	0	-600	255	50.0412895	-120.79089		L6W255N
658185	5545564	0	479	5	-600	270	50.041332	-120.79079	1340.1782	L6W270
658189	5545586	0	16	0	-600	285	50.041524	-120.79073	1336.0043	L6W285
658198	5545599	0	30	0	-600	300	50.041639	-120.7906	1329.8593	L6W300
658211	5545611	0	36	0	-600	315	50.0417423	-120.79041		L6W315N
658132	5545562	0	76	5	-700	240	50.041327	-120.79154	1328.8236	L7W240
658139	5545572	6	410	0	-700	255	50.0414164	-120.79143		L7W255N
658145	5545587	0	89	0	-700	270	50.041551	-120.79134	1321.0277	L7W270
658151	5545601	0	60	6	-700	285	50.041675	-120.79125	1317.6355	L7W285
658161	5545614	0	20	5	-700	300	50.041782	-120.7911	1316.0673	L7W300
658173	5545624	0	34	6	-700	315	50.0418691	-120.79094		L7W315N
658176	5545638	0	37	0	-700	330	50.041994	-120.79089	1304.1993	L7W330

UTM E	UTM N	As	Cu	Sb	Grid East	Grid North	Lat	Long	Elev	Grid Pt
658179	5545657	0	28	0	-700	345	50.042164	-120.79083	1301.3629	L7W345
658090	5545603	0	24	0	-800	270	50.041707	-120.79209	1298.8942	L8W270
658104	5545613	7	32	0	-800	285	50.041792	-120.79189	1297.9758	L8W285
658114	5545631	0	14	0	-800	300	50.041951	-120.79175	1294.457	L8W300
658122	5545643	0	25	5	-800	315	50.0420526	-120.79163		L8W315N1
658130	5545654	0	18	0	-800	330	50.0421567	-120.79153		L8W3301
658137	5545661	0	24	0	-800	345	50.04221	-120.79142	1287.2225	L8W345
658142	5545675	0	20	0	-800	360	50.042335	-120.79134	1286.0612	L8W360
658148	5545689	0	29	6	-800	375	50.0424665	-120.79125		L8W375N

Appendix 6

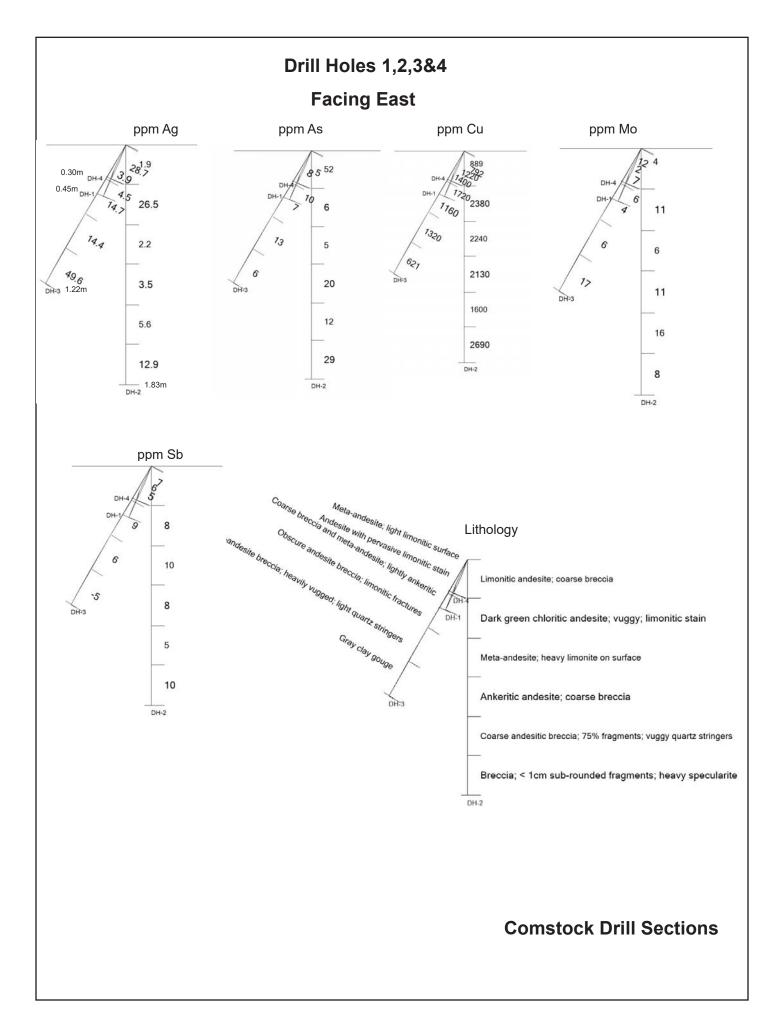
VLF-EM Data

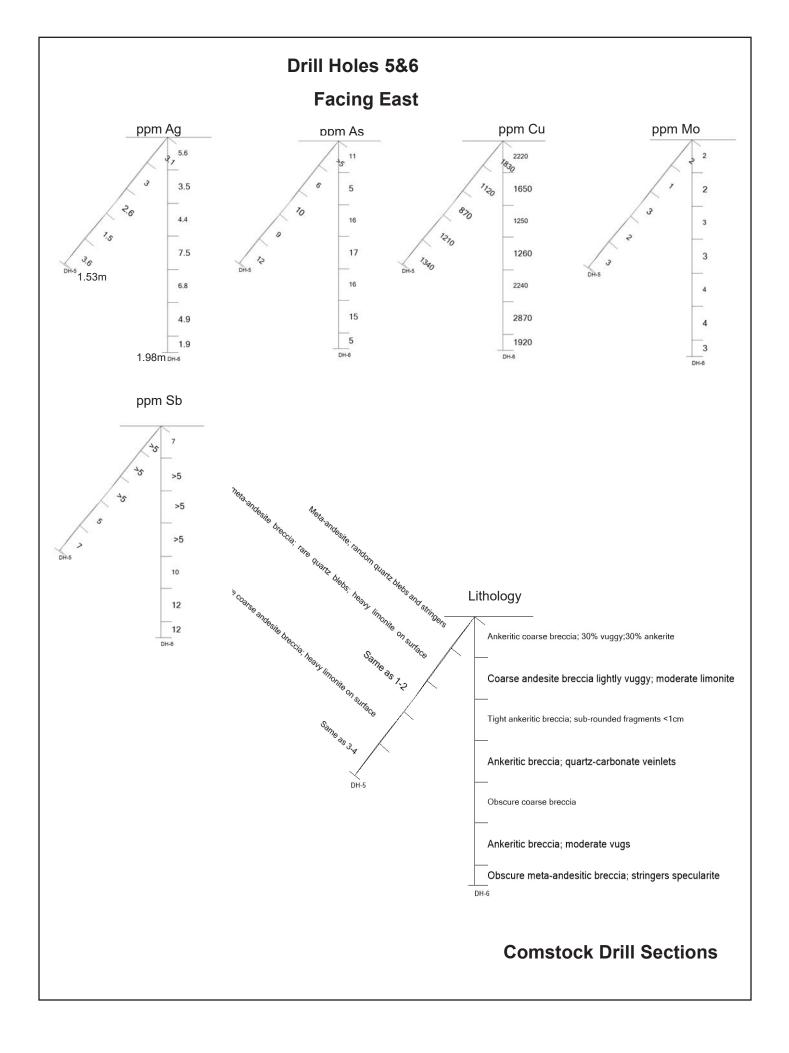
East	North	QUAD	DIP	FF	East	North
658374	5545201	30	7		0	0
658388	5545215	32	4		0	15
658394	5545236	25	2	11	0	30
658410	5545242	20	-2	10	0	45
658413	5545257	24	-2	4	0	60
658421	5545266	34	-2	0	0	75
658429	5545281	36	-2	-4	0	90
658433	5545295	38	2	-8	0	105
658447	5545308	35	2	-4	0	120
658452	5545323	35	2	0	0	135
658457	5545338	35	2	2	0	150
658467	5545354	35	0	6	0	165
658474	5545359	35	-2	6	0	180
658476	5545376	28	-2	0	0	195
658487	5545380	35	0	-8	0	210
658495	5545404	40	4	-8	0	225
658502	5545414	35	2	4	0	240
658515	5545427	30	-2	10	0	255
658522	5545440	28	-2	10	0	270
658530	5545452	25	-8	8	0	285
658541	5545463	18	-4	-2	0	300
658551	5545476	24	-4	-6	0	315
658563	5545486	24	-2	-6	0	330
658572	5545501	25	0	-6	0	345
658588	5545510	25	0	-4	0	360
658595	5545515	30	2	-2	0	375
658597	5545532	30	0	0	0	390
658604	5545534	30	2	-2	0	405
658610	5545558	35	0	12	0	435
658614	5545588	10	-8	18	0	450
658612	5545615	10	-8	7	0	465
658634	5545627	-4	-10	-1	0	495
658640	5545638	10	-4	-13	0	510
658644	5545648	20	0	-16	0	525
658654	5545684	50	0	2	0	555
658372	5545290	35	9		-50	75
658376	5545304	44	4		-50	90
658381	5545319	40	-2	17	-50	105
658388	5545341	30	-2	0	-50	120
658400	5545351	30	4	-10	-50	135

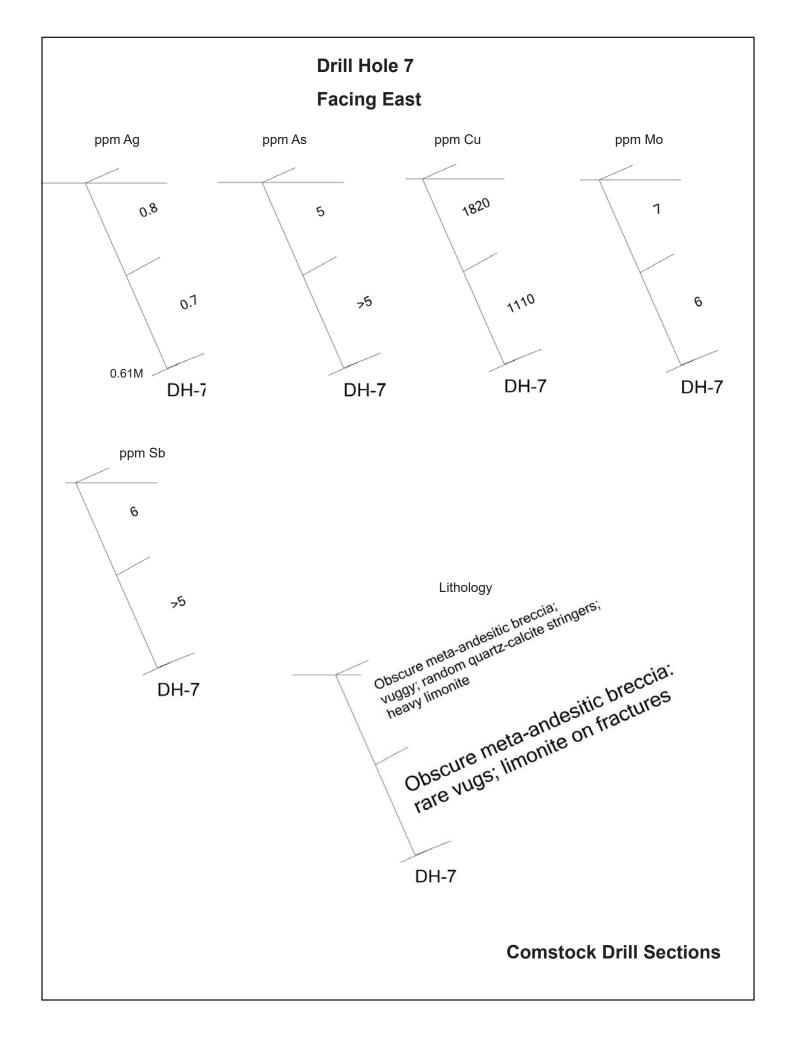
East	North	QUAD	DIP	FF	East	North
658408	5545360	30	2	-2	-50	150
658425	5545368	30	2	2	-50	165
658438	5545377	30	2	0	-50	180
658444	5545390	30	2	4	-50	195
658462	5545407	22	-2	-2	-50	225
658470	5545428	22	-4	-4	-50	240
658478	5545441	22	-2	-4	-50	255
658482	5545456	30	0	-8	-50	270
658492	5545465	30	2	-6	-50	285
658505	5545483	30	2	0	-50	300
658510	5545492	25	0	4	-50	315
658520	5545502	30	0	0	-50	330
658529	5545517	30	2	-6	-50	345
658537	5545527	30	4	-6	-50	360
658535	5545543	35	4	0	-50	375
658553	5545549	30	2	4	-50	390
658556	5545561	30	2	-1	-50	405
658560	5545575	35	5	-6	-50	420
658567	5545599	35	5	-2	-50	435
658573	5545608	35	4	-2	-50	450
658582	5545621	28	8	13	-50	465
658592	5545635	20	-12	18	-50	480
658602	5545651	15	-18	-8	-50	495
658608	5545661	20	22		-50	510
658326	5545305	40	4		-100	75
658326	5545305	40	4		-100	90
658338	5545316	35	2	2	-100	105
658346	5545327	40	4	2	-100	120
658355	5545340	30	0	2	-100	135
658360	5545353	30	4	-2	-100	150
658377	5545366	30	2	-2	-100	165
658382	5545372	30	4	-4	-100	180
658388	5545388	40	6	-8	-100	195
658398	5545401	45	8	-6	-100	210
658407	5545419	35	8	0	-100	225
658416	5545432	30	6	10	-100	240
658434	5545455	25	0	14	-100	255
658443	5545468	25	0	6	-100	270
658446	5545483	25	0	-2	-100	285

East	North	QUAD	DIP	FF	East	North
658449	5545495	25	2	-6	-100	300
658453	5545506	25	4	-6	-100	315
658458	5545523	35	4	-2	-100	330
658465	5545538	30	4	2	-100	345
658475	5545550	34	2	0	-100	360
658483	5545561	37	6	-2	-100	375
658484	5545581	35	2	4	-100	390
658494	5545586	30	2	0	-100	405
658510	5545600	32	6	-7	-100	420
658513	5545614	32	5	-5	-100	435
658532	5545621	35	8	-7	-100	450
658535	5545640	40	10	-9	-100	465
658548	5545655	37	12	-6	-100	480
658554	5545661	40	14	0	-100	495
658560	5545678	30	8	-4	-100	510
658566	5545689	20	22	-2	-100	525
658577	5545698	34	2	6	-100	540
658589	5545710	20	22	4	-100	555
658604	5545729	32	-2		-100	570
658281	5545339	40	8		-200	90
658294	5545358	37	7	-2	-200	105
658298	5545366	38	8	0	-200	120
658304	5545389	38	8	0	-200	150
658320	5545404	40	7	1	-200	165
658329	5545413	40	7	1	-200	180
658341	5545422	34	7	1	-200	195
658347	5545438	35	6	7	-200	210
658348	5545439	30	2	7	-200	225
658358	5545446	35	4	-1	-200	240
658365	5545462	34	5	-7	-200	255
658372	5545474	32	7	-6	-200	270
658385	5545487	30	7	-3	-200	285
658388	5545506	30	8	4	-200	300
658397	5545514	24	2	11	-200	315
658408	5545531	25	2	6	-200	330
658402	5545555	24	2	-2	-200	345
658419	5545570	25	4	2	-200	360
658441	5545587	20	-2	4	-200	390
658447	5545604	25	0	-2	-200	405

East	North	QUAD	DIP	FF	East	North
658455	5545614	30	2	-11	-200	420
658463	5545628	30	7	-9	-200	435
658475	5545640	30	4	-1	-200	450
658485	5545656	30	6	3	-200	465
658490	5545685	30	2	2	-200	480
658498	5545690	30	0	2	-200	495
658509	5545694	38	6	-10	-200	510
658528	5545703	35	6	-4	-200	525
658538	5545710	37	4	1	-200	540
658535	5545730	35	7		-200	555
658237	5545374	29	-1	12	-300	105
658243	5545390	29	-1	2	-300	120
658252	5545399	25	2	-8	-300	135
658257	5545417	30	4	-7	-300	150
658270	5545429	34	4	-6	-300	165
658275	5545441	34	8	-6	-300	180
658281	5545454	30	6	-2	-300	195
658293	5545466	30	8	1	-300	210
658306	5545475	30	6	1	-300	225
658308	5545494	35	7	-1	-300	240
658318	5545505	35	8	-3	-300	255
658329	5545518	35	8	-3	-300	270
658336	5545532	40	10	-6	-300	285
658346	5545543	40	12	-6	-300	300
658351	5545558	40	12	-2	-300	315
658366	5545570	40	12	-1	-300	330
658375	5545583	40	13	-1	-300	345
658380	5545598	42	12	6	-300	360
658385	5545612	40	7		-300	375
658168	5545372	38	6		-400	75
658180	5545382	36	4		-400	90
658189	5545393	35	5	-2	-400	105
658196	5545407	34	7	-6	-400	120
658202	5545423	28	7	3	-400	135
658209	5545436	32	2	8	-400	150
658219	5545448	30	3	4	-400	165
658228	5545463	32	2	-1	-400	180
658233	5545474	28	4	-3	-400	195
658229	5545486	30	4	-4	-400	210


East	North	QUAD	DIP	FF	East	North
658231	5545504	35	6	-3	-400	225
658245	5545516	37	5	-1	-400	240
658257	5545526	36	6	3	-400	255
658275	5545540	35	2	5	-400	270
658282	5545551	34	4	-2	-400	285
658288	5545567	36	6	-4	-400	300
658298	5545579	35	4	1	-400	315
658305	5545592	35	5	0	-400	330
658317	5545605	37	5	-4	-400	345
658329	5545621	40	8	-8	-400	360
658329	5545630	40	10		-400	375
658131	5545388	40	4		-500	75
658142	5545396	45	6		-500	90
658144	5545411	38	4	4	-500	105
658149	5545428	38	2	6	-500	120
658158	5545439	34	2	4	-500	135
658164	5545454	30	0	6	-500	150
658171	5545465	25	-2	4	-500	165
658181	5545479	25	0	-2	-500	180
658190	5545489	28	0	-4	-500	195
658196	5545507	28	2	-2	-500	210
658204	5545520	30	0	0	-500	225
658210	5545532	28	2	-4	-500	240
658223	5545541	30	4	-4	-500	255
658226	5545558	34	2	-2	-500	270
658236	5545570	34	6	-4	-500	285
658245	5545584	30	4	4	-500	300
658254	5545593	35	0	2	-500	315
658264	5545606	35	8	-4	-500	330
658269	5545624	35	0	8	-500	345
658278	5545634	30	0	6	-500	360
658287	5545647	30	2		-500	375
658091	5545403	25	-1		-600	75
658089	5545419	25	-1		-600	90
658097	5545432	30	0	-8	-600	105
658108	5545445	35	6	-11	-600	120
658119	5545454	30	4	-6	-600	135
658118	5545469	35	8	-6	-600	150
658123	5545481	35	8	0	-600	165


East	North	QUAD	DIP	FF	East	North
658138	5545494	35	4	9	-600	180
658148	5545507	35	3	5	-600	195
658150	5545521	34	4	-1	-600	210
658157	5545536	34	4	3	-600	225
658168	5545548	30	0	6	-600	240
658178	5545559	25	2	0	-600	255
658185	5545564	25	2	4	-600	270
658189	5545586	20	-4	10	-600	285
658198	5545599	22	-2	0	-600	300
658211	5545611	25	0	-10	-600	315
658215	5545626	25	4	-14	-600	330
658229	5545637	45	8	-12	-600	345
658243	5545647	40	8	-2	-600	360
658242	5545661	40	6		-600	375
658045	5545419	30	0		-700	75
658061	5545430	30	-4		-700	90
658064	5545443	30	-4	8	-700	105
658072	5545455	30	-8	2	-700	120
658077	5545472	30	-2	-8	-700	135
658086	5545484	30	-2	-6	-700	150
658087	5545502	35	0	0	-700	165
658098	5545511	30	-4	2	-700	180
658109	5545521	30	0	-4	-700	195
658114	5545535	35	0	-2	-700	210
658121	5545551	30	-2	2	-700	225
658132	5545562	25	0	0	-700	240
658139	5545572	25	-2	2	-700	255
658145	5545587	25	-2	2	-700	270
658151	5545601	25	-2	-2	-700	285
658161	5545614	25	0	-4	-700	300
658173	5545624	40	0	6	-700	315
658176	5545638	40	-8	18	-700	330
658179	5545657	50	-10	10	-700	345
658189	5545667	50	-8	0	-700	360
658203	5545673	50	-10		-700	375
657990	5545439	45	0		-800	75
658004	5545454	55	-4		-800	90
658010	5545462	50	0	-2	-800	105
658013	5545476	50	-2	-2	-800	120


658021	5545490	45	0	0	-800	135
658022	5545504	40	-2	0	-800	150
658032	5545521	40	0	0	-800	165
658042	5545529	40	-2	0	-800	180
658051	5545540	45	0	0	-800	195
658057	5545553	40	-2	0	-800	210
658063	5545569	55	0	0	-800	225
658076	5545581	40	-2	0	-800	240
658083	5545590	40	0	-2	-800	255
658090	5545603	45	0	0	-800	270
658104	5545613	40	-2	6	-800	285
658114	5545631	45	-4	2	-800	300
658122	5545643	45	0	2	-800	315
658130	5545654	45	-8	6	-800	330
658137	5545661	40	-2	-4	-800	345
658142	5545675	45	-2	-6	-800	360
658148	5545689	50	-2		-800	375

Appendix 7

Packsack Drill-Hole Sections

