BRITISH COLUMBIA	BC Geological Survey Assessment Report	Barton Colump
The Best Place on Earth	38516	Re Cart
Ministry of Energy, Mines & Petroleum Resources	Acces	sment Report
BC Geological Survey	Title	Page and Summary
TYPE OF REPORT [type of survey(s)]: Geochemical (MMI)	TOTAL COST: \$6,13	8.00
AUTHOR(S): Greg R. Thomson, P.Geo.	SIGNATURE(S): SIGNATURE(S):	omson
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAF	R OF WORK: 2019
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 57	48687	
PROPERTY NAME: Astro		
CLAIM NAME(S) (on which the work was done): Astro (Tenure # 1061096	6)	
	1	
COMMODITIES SOUGHT: Au, Ag, Mo		
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 82ESW190		
MINING DIVISION: Osoyoos	NTS/BCGS: 082E05W.	
LATITUDE: 49 ° 22 '21 " LONGITUDE: 119	° 46 '30 " (at contro of work)	<u> </u>
OWNER(S):	(at centre of work)	
1) <u>G.D. Brown</u> 2)	
MAILING ADDRESS: #201-461-16th Street		
North Vancouver, BC V7M 1V1		
OPERATOR(S) [who paid for the work]: 1) same as above 2		
MAILING ADDRESS: same as above		
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, all Eocene age Marron Formation (andesite) and Springbrook Formation	eration, mineralization, size and attitude): ation (conglomerate),	
Triassic or older age Shoemaker Fomation (chert)		
low sulphidation epithermal style mineralization/alteration, anomal	ous Au, Ag, Mo	
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPO	ORT NUMBERS: 13199, 14062, 16674, 18251	, 18284, 18257
27469, 34734, 35642		

Г

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON	WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)				
Ground, mapping				
Photo Interpretation				
GEOPHYSICAL (line-kilometres)				
Ground				
Magnetic		-		
Electromagnetic		-		· · · · · · · · · · · · · · · · · · ·
Induced Polarization		-		
Radiometric	- in the second s	-		
Seismic		_		
Other		_		
Airborne				
GEOCHEMICAL (number of samples analysed for)				
Soil 24 MMI soil samples - multi-e	lement	Tenure No. 10610	96	6138.00
Silt				1
Rock		_		
Other		_		
DRILLING (total metres; number of holes, size)				
Core		-		
Non-core	· · · · · · · · · · · · · · · · · · ·			
RELATED TECHNICAL				
Sampling/assaying	· · · ·	-		
Petrographic		-		
Mineralographic		_		
Metallurgic		_		
PROSPECTING (scale, area)				
PREPARATORY / PHYSICAL				
Line/grid (kilometres)	,			
Topographic/Photogrammetric (scale, area)			-	-
Legal surveys (scale, area)				
Road, local access (kilometres)/t	rail			
Trench (metres)				
Underground dev. (metres)				
Other				
			TOTAL COST.	\$6138.00
			IUTAL COST:	

GEOCHEMICAL REPORT

on the

ASTRO PROPERTY

Mineral Tenure Numbers 1061096, 1061974, 1061975, 1063166, 1063167 Event Number: 5748687

KEREMEOS AREA, B.C.

Osoyoos Mining Division NTS: 082E05W (082E032)

Lat: 49° 22' 21" N Long: 119° 46' 30"W UTM: 11: 5472570 N, 298559E

Owner:

G.D. Brown North Vancouver, British Columbia Canada

Author: Greg Thomson, P. Geo.

October 13, 2019

TABLE OF CONTENTS

1.0	Summary	1
2.0	Introduction and Terms of Reference	2
3.0	Property Description and Location	4
4.0	Access, Physiography, Climate and Infrastructure	6
4.1	Access	7
4.2	Physiography	7
4.3	Climate and Vegetation	7
4.4	lnfrastructure	8
5.0	History and Previous Work	9
5.1	Geochemical Surveys	
5.2	Geophysics Surveys	
5.3	8 Trenching	15
5.4	Drilling	17
6.0	Geological Setting and Mineralization	
6.1	Regional Geology	
6.2	Property Geology	21
7.0	Deposit Types	25
8.0	MMI Survey Description	27
9.0	Discussion of Survey Results and Conclusions	29
10.0	Recommendations	
11.0	Cost of Current Exploration Survey	35
12.0	REFERENCES	
CERT	TIFICATE OF CONSULTANT	

FIGURES

Figure 1	General Location Map for the Astro Property	
Figure 2	Regional Location Map of the Astro Property	5
Figure 3	Astro Property Claim Map	6
Figure 4	Historical Claim Map of the PDL-Astro Property (1988)	10
Figure 5	Regional Geology Map	
Figure 6	Astro Zone - Historical Trenching and Drilling Map	
Figure 7	Epithermal Deposit Model	
Figure 8	Astro Zone Orientation (Sample Location) Map	
Figure 9	Astro Zone Soil Sample Results Map (Au)	33

TABLES

TABLE 1: Astro Property Tenure Information	4
TABLE 2: Astro Zone Anomalous Soil Results (Trench 2 and Trench 3 area)	30
TABLE 3: Astro Zone Anomalous Soil Results (gully/fault area)	30

PHOTO: Astro Zone roadside outcrop29

APPENDICES

APPENDIX 1: Soil Sample Locations and Sample Results (Au, Ag, Mo)

APPENDIX 2: Soil Sample Analytical Certificates

A. 2019 MMI soil sample results (SGS Labs)

B. 2014 Soil Sample Results (Acme Labs)

APPENDIX 3: MMI Analysis Procedures (SGS Labs)

1.0 Summary

The Astro property lies in the south Okanagan region of Southern British Columbia, approximately 17 kilometres north of the town of Keremeos. The property area is comprised of five mineral tenures covering an area of approximately 252.5 hectares. This report summarizes historical and recent MMI soil sampling exploration work carried out on the Astro Property, on behalf of G.D. Brown.

In 1984 and 1985 exploration work was carried out on the PDL claim by Placer Dome Development Ltd (PDL), In 1987-89, QPX Minerals Limited conducted extensive exploration programs on the PDL claim as well as the adjoining optioned, Astro 1 claim and Astro 34 claim. Most pertinent to this current report, is the 1988 exploration work was carried out on the Astro 34 claim by QPX Minerals. The 1988 work consisted of geological mapping, geophysics (Mag,EM), trenching (5 trenches) and 5 reverse circulation drill holes (Assessment Report 18527, Lee, 1989). No soil geochemical surveys were carried out on the Astro Zone, as part of the QPX Mineral exploration program.

In 2003, A. Travis staked 6 claims to cover the previous Astro 34 claim area, carrying out prospecting and minor rock and soil sampling.

The Astro property is primarily underlain by the western margin of a fault-bounded, basin of Eocene, Penticton Group volcanic rocks; particularly the Kitley Member of the Marron Formation. At the base of the Marron volcanics is found the Eocene age Springbrook Formation approximately a 200m to 300m band of massive unsorted polymictic conglomerate with lesser sandstone and tuff.

The Springbrook Formation is underlain by Permian to Triassic age Shoemaker formation, consisting of blue-grey chert, minor limestone and greenstone.

To the west of the present Astro Property, near Ford Lake and the valley bottom of Keremeos Creek, there is evidence of previous work in the Pre-Tertiary rocks but no published record of this work exists. The mineralization has been described as narrow massive lenses of pyrrhotite-pyrite + minor chalcopyrite. A short (< 10 m) adit at the base of the cliffs cross cuts a small massive sulphide lens. According to a local prospector (L.Reichert) this was dug in the 1930's. An old cased diamond drill hole and several bulldozer trenches are believed to have been completed in 1971, although no work was filed. This mineralization does not show continuity and is not a focus for further exploration as described in this report.

In 2014 and 2015, the author made several visits to the Astro mineral zone to carry some minor rock sampling, as well as a minor soil sampling survey, covering an area above the road exposure of the Astro alteration zone. This sampling survey is illustrated on Figure 8 and Figure 9 in this report.

Although recent geochemical surveys and rock sampling have not yet discovered economic mineralization at the Astro Zone, the results have been useful, adding to the geological data and overall understanding of the current Astro Property. The anomalous values returned for rock and soil samples collected from the Astro zone are indicative of the upper levels of a low-sulphidation epithermal gold deposit type, which warrants further investigation.

The author recommends a program of a close-spaced geochemical survey to better define the extent of the presently known Astro alteration and mineral zone. Following interpretation of the results of the soil sampling program, a diamond drill program should be carried out on previously untested or partially tested anomalous geochemical areas and historical geophysical (Mag, EM) anomalies.

2.0 Introduction and Terms of Reference

This report briefly outlines the history of exploration, geology and new work conducted for the Astro property. Consulting geologist, Mr. Greg Thomson is the author of this assessment report, describing a recent geochemical exploration program carried out on behalf of the property owner, Mr. G.D. Brown. The current work was funded by G.D. Brown to maintain in good standing the Astro Property (Property) as per Province of British Columbia exploration work credits and to further advance the exploration and geological understanding of the Property.

The Property consists of five mineral tenures, situated in the Osoyoos Mining District of British Columbia and is located in the southern Okanagan region of British Columbia, Canada, southwest of the city of Penticton, BC (Figure 1).

The current work program involved a one-day (July 10, 2019) MMI soil-sampling program, supervised by the author, Mr. Greg Thomson P.Geo., accompanied by two field assistants. The MMI sampling program was employed to test the applicability of the MMI sampling procedure over the known Astro alteration zone, previously explored by QPX Minerals in the late 1980's. The roadside outcrop area of the Astro alteration zone contains anomalous gold, associated with silicification +/- chalcedonic quartz veinlets within an envelope of limonitic-argillically altered Marron volcanic rocks, as first discovered by QPX Minerals in the late 1980's. In 2015, the author collected five rock samples from the Astro roadside outcrop area. Anomalous gold values up to 1.52 g/t Au were obtained with associated anomalous values in silver, up to 35.14 ppm Ag and molybdenum, up to 342.2 ppm Mo (Assessment Report 35642, Thomson, 2015).

The recommendations in this report are based upon the author's familiarity with the Astro showing area as well as his interpretation of published data and various assessment reports related to the Astro mineral/alteration Zone.

Figure 1General Location Map for the Astro (PDL) Property

3.0 Property Description and Location

The Astro property is comprised of five mineral tenures located within the Osoyoos Mining Division and is located approximately 15 km west of Okanagan Falls, British Columbia and 17 kilometres north of the town of Keremeos and approximately 20 kilometres southwest of the city of Penticton. The Astro mineral tenures were staked online (MTO) in 2018, covering an area of 252.5 hectares (Figure 3).

The claim is located on N.T.S Map sheet 82E/5W or alternatively B.S.G.S sheet 82E 032. The center of the current claim block is at UTM (Nad 83, Zone 11) coordinates: 5472570m North and 298559 m East or alternatively at Latitude: 49° 22'21" N and Longitude: 119°46' 30"W.

The Astro Property is 100 % owned by G. D. Brown, with the property covering areas of pre-existing claims explored by QPX Minerals Inc. in the late 1980's. Specifically, the current Astro Property covers portions of the pre-existing Astro 1 claim and the Astro 34 claim, held under option by QPX Minerals Inc. (see Figure 4)

The configuration of the current Astro Property is illustrated on Figure 3 and title details follow:

MTO Number	Туре	Claim Name	Good Until	Area (ha)
1061096	Mineral	Astro	June 11/21	42.08
1061974	دد	Astro 2	July 27/21	42.07
1061975	"	Astro 3	July 27/21	42.08
1063166	"	Astro 4	Sept. 18/21	63.11
1063167	دد	Astro 5	Sept. 18/21	63.11

 Table 1
 Astro Property Tenure Information

Source: http://www.mtonline.gov.bc.ca

There are no known physical or environmental concerns regarding any future ongoing exploration programs for the PDL property area. There are, however, several privately owned lots within the claim area. There are no known claims or concerns with any First Nations groups for the area of the PDL claim.

Please note that the Astro showing was named after the earlier PDL claim, staked by Placer Dome Development Ltd in 1983. The early exploration work on the original PDL claim was mainly focused on the undocumented mineral showing along the eastern side of Green Mountain road, north of Ford Lake. The PDL Minfile occurrence (082ESW190) should be more properly referred to as the Astro or Astro 34 occurrence as the 082ESW190 Minfile location was located on the previous Astro 34 claim and not on the previous PDL claim. The area of the historic PDL claim, Astro 1 claim, and Astro 34 claim are frequently referred to in this report, although only the Astro 34 claim is pertinent to this report. The Astro mineral zone is found within the boundaries of the current Astro tenure *#* 1061096.

As far as can be reasonably ascertained, the property appears to be free of any environmental liabilities associated with previous exploration activities. Permits necessary for any exploration activities recommended in this report have yet to be acquired.

There are no known factors or risks that might affect access, rights and/or the ability to perform work on the Property beyond those inherent to the local topography, private land ownership and/or title (beyond on-going provincial treaty negotiations with First Nations).

The claims are classed as designated uranium ground under the Uranium Moratorium. Since the termination of the Moratorium in February of 1987, the claims remain classed as designated uranium ground even though exploration is presently directed towards precious metals. As a result, all exploration on the current Astro property is governed by the Exploration Regulation - Uranium and Thorium (Order in Council No. 335).

Figure 2 Regional Location Map of the Astro Property

4.0 Access, Physiography, Climate and Infrastructure

4.1 Access

To reach the Astro property, Highway 3A is followed northerly from Keremeos for a distance of approximately 20 kilometres to reach the Sheep Creek Forest Service road turnoff located at the east end of Yellow Lake. This road is then followed north-westerly approximately 7 kilometres to reach the private house of a local landowner. Permission is required from the landowner to pass through a fence gate to drive the final 2 kilometres of road access to reach the Astro showing area. Several other gravel roads traverse the Astro Property

Alternately the Astro showing may be accessed via Hwy 3A by driving westward from Kaleden, on Skaha Lake for about 12 kilometres to the Sheep Creek Forest Service road turnoff located at the east end of Yellow Lake.

4.2 Physiography

The Astro Property area lies in an area of moderate sloped topography rising to a low-relief hilltop at 1400 metres in elevation. The southern portion of the Property (tenure #1061975) lies at around 1200 m elevation, in the area of the private landowner and Sheep Creek Road. Steeper slopes are found on the southeast corner of the property (tenure 1063166), where slopes reach down to 1100 m asl. Small bluffs and steeper slopes occur locally throughout the Property.

There are no known running creeks on the Astro property, however, two known swampy areas occur on the property area.

4.3 Climate and Vegetation

The Astro property is situated in the southern-Okanagan region of southern British Columbia. The region has a relatively dry climate, and snow cover in winter is generally moderate. The climate in the area is semi-arid with moderately warm summers and cold dry winters. Typical temperature ranges are from mid 20's to mid 30's °C in summer and -5 to -10 °C in winter.

For the most part vegetation consists of Jackpine forest, some of which has been infected with pine beetles.

4.4 Infrastructure

Several small communities such as Olalla, Keremeos, and Okanagan Falls surround the Astro property area. The economies of these small communities are generally focused on agriculture and tourism and are popular as retirement communities. Olalla is located 11.5 kms SSW of the Astro property on Highway 3A, while Keremeos is located 20 kilometres SSW of the Astro property at the junction of Highway 3 and Highway 3A. Okanagan Falls at the southern end of Skaha Lake is located 15 kms east of the Astro property.

The nearest larger city to the Astro property is Penticton (pop 33,000), at the south end of Okanagan Lake, and is located 18 kilometres northeast of the Astro property.

The largest city in the region is Kelowna (population 107,000) on the west side of Okanagan Lake, is located 70 kms north of Penticton. Kelowna is the main industrial, service, and supply center for this region.

The writer is not aware of any First Nations heritage claim, private surface rights, or environmental concerns covering the Astro Property that may affect mining, exploration or prospecting operations. The author is not aware whether or not the Astro property area is used for cattle range

5.0 History and Previous Work

.

The earliest record of work in the area dates back to the late 1800's with the discovery of the Giant Mascot and Hedley deposits to the west of the PDL property. Gold was also discovered on the nearby Dividend and Apex Mountains in the early 1900's. Several deposits, from which a significant amount of gold, silver, and molybdenum was shipped, were discovered at Olalla (Golconda) in the 1920's.

In the late 1960's there was renewed interest in the area for copper exploration. On the historic PDL claim located to the west of the current Astro Property, there is evidence of previous work in the Pre-Tertiary rocks but no published record of this work exists. A short (< 10 m) adit at the base of the cliffs cross-cuts a small massive sulphide lens. According to a local prospector (L. Reichert) this was dug in the 1930's. An old cased diamond drill hole and several bulldozer trenches were believed to have been completed in 1971, although no work was filed and no documentation exists for the early work on the showing area. In 1977 and 1979, the former Astro claim group was staked by Pacific Petroleum Ltd. (Petro Canada) focussing on uranium exploration

Figure 4 Historic Claim Map of PDL-Astro Property (1988)

In 1984 Placer Development Ltd. took a number of soil samples (Assessment Report 13199) on the PDL claim along the Keremeos Creek valley. Soil samples were anomalous in Au, As, Cu and Mo, which indicated a source on the east wall of the valley upstream of an alluvial fan.

In 1985, Placer completed EM/Mag geophysics and line cutting on their PDL claim (Assessment Report 14062). The claim is underlain by Triassic Shoemaker Formation cherts, some tuffs and greenstone

intruded by Cretaceous granite and overlain by the Palaeocene-Eocene volcanics. A well-defined fracture/fault set trending about N20E is evident from airphotos.

In 1986 QPX Minerals Inc. explored the PDL and Ford 1 claims located to the west of the current Astro property (Assessment Report 16674). A total of 496 soils and 164 rock samples were taken. Minor gold-bearing pyrite-arsenopyrite stringers were noted in cherts of the Shoemaker Formation on the eastern side of the PDL claim.

In 1987 QPX Minerals completed 3 NQ drill holes (524 m), took 301 rock samples, 3005 soil samples and 50 line kilometres of ground magnetics and EM, mainly on the Astro 1 claim, located immediately east of the PDL claim. A portion of this work was carried out the eastern side of the PDL claim (Assessment Report 18251). In 1988 QPX Minerals completed 23 trenches totalling 650 metres to test areas of anomalous geochemistry and geophysics (Assessment Report 18284).

Also during the 1988 exploration, an argillic-altered and silicified system in a biotite porphyritic andesite of the Marron volcanics was discovered on the Astro34 claim, which was optioned from Pacific Petroleum. The Astro alteration zone is located on the central tenure # 1061096 of the current Astro Property.

Later in 1988 and early 1989 QPX Minerals completed five reverse-circulation holes totalling approximately 250 metres and 5 trenches totalling 150 metres in the new showing area on their Astro 34 claim (Assessment Report 18527). Anomalous gold (up to 0.705 g/t Au), silver (up to 14.8 g/t Ag) and molybdenum (up to 0.15 %) values were obtained over a 3-metre interval from drill hole PDL-89-RC-2. The anomalous values were found to be associated with chalcedonic veinlets in argillically altered Kitley Member volcanics of the Marron Formation.

Magnetometer and VLF-EM surveys on 25-50 m spaced lines were completed over a 400 m x 400 m area. Three very well defined conductive lineaments with corresponding magnetic lows were identified, with only a small (50 m x 100 m area) portion of one of these anomalies tested by trenching and/or reverse circulation drilling.

In 1993 the claim database indicates that Petro Canada was owner of the Astro 34 claim and that the Company allowed the claim to lapse.

No significant recorded work has occurred in the area of the current Astro claims since the 1989 RC drilling program, even though the last recorded work recommended extensions of grid coverage for additional VLF-EM +/- Magnetometer surveys as well as a test soil survey over the showing area. Further trenching and diamond drilling of the current geophysical anomalies were also recommended.

In 2004, A. Travis carried out some minor reconnaissance rock and soil sampling around the Astro alteration zone. This work was carried out on the 6-unit claim Astro property, which was staked to surround the Astro alteration zone, explored by QPX Minerals in 1989. Some weakly anomalous values for gold, silver, arsenic and molybdenum were returned from several of the rock samples taken in and around the Astro alteration zone (Assessment Report 27469).

The following sections describe in greater detail the various exploration surveys carried out previously on the area of the Astro 34 claim. The author notes that the majority of exploration surveys since 1984 were focussed on the 1.5 km by 2.5 km PDL claim staked by Placer Dome Development Ltd in 1983. The original PDL claim mainly occupied the valley bottom of Keremeos Creek. Although the author provide details of work programs on the earlier PDL claim, it should be emphasized that the main focus of this report is to describe the economic potential of the Astro showing/alteration zone, previously situated on the pre-existing Astro 34 claim. The Astro showing area is situated in the center of the current Astro Property, currently held by G.D. Brown.

5.1 Geochemical Surveys

In 1984, Placer Dome Development Ltd. carried out a reconnaissance geochemical soil-sampling program on the original PDL claim, which measured 2.5 km N-S by 1.5 km E-W. A sinuous grid line was sampled for 2.1 km along the toe of a steep slope along the eastern stream bank of Keremeos Creek. A total of 69 soils samples were collected for analysis. The soils were weakly to moderately anomalous in gold, arsenic, copper, molybdenum, and cobalt, possibly indicating a mineral source originating in the steep valley wall above Keremeos Creek. The majority of the more anomalous values were obtained around the mid-point of the 2.0 km long sample line, in the area of an alluvial fan formed from detritus originating from the steep valley side. (Assessment Report # 13199)

In 1985 Placer Dome Development Ltd. carried out a more expanded soil sampling program on the PDL claim, consisting of a 1.7 km N-S baseline with 13.05 m of cross-lines, resulting in the collection of 244 soil samples submitted for analysis. Cross-lines were established on 100 m spacings and were located where topography would allow.

As with the previous soil-sampling program; geochemical values were generally low for most elements tested (Au, Cu, Mo, As, and W). One isolated soil sample ran 1.08 ppm Au, while several other soil samples ran 0.1 ppm Au to 0.3 ppm Au, along the eastern portion of the grid, where steeper topography terminated the eastern extent of grid lines. Anomalous arsenic values were associated with the higher gold values.

During the soil sampling survey two massive sulphide showings consisting of massive pyrrhotite and /or pyrite plus minor chalcopyrite were located in the southeast area of the PDL claim. This showing had

been tested in the past by a short adit (approx. 10 m long). Two drill collars were located as well as several cat trenches. It is believed that the original work on the showing area was carried out in the 1930's, but none of the early physical work (adit, drilling, trenching) was ever documented. Some of the later work at this location was believed to have been carried out in the early 1970's (Assessment Report # 14062).

In 1987, further geochemical soil and rock sampling was carried out on the PDL and the adjoining southerly Ford 1 claim. Minequest Exploration Associates Ltd., on behalf of QPX Minerals Inc, carried out the sampling work. A total of 490 soil samples and 164 rock samples were collected for analysis, with the majority of soil and rock sampling done on the old PDL claim. A small northerly portion of the previous Ford 1 claim lies on a minor portion of the southwest part of the current PDL claim, however, no anomalous results for either soil or rock sampling were found on the Ford 1 claim.

Of the 490 samples taken by Minequest, 285 soils were taken from a detailed grid established to cover the area of the known massive sulphide occurrence at the southeast corner of the earlier PDL claim. The detailed grid was established on 20 metre east-west cross-lines and 20 metre sample spacings, with the grid area covering approximately 320 metres by 320 metres, with variable cross-line lengths dependent on topographical features. Moderately anomalous coincident gold-arsenic soil values were found to occur within 20 metres to 40 metres of the known massive sulphide showing, but soil results did not demonstrate extensions or continuity to the known mineralized area.

Massive sulfides exposed at Trench 1 near the old adit, are anomalous in gold, arsenic and copper with maximum values of 490 ppb Au, 1439 ppm Cu, and 778 ppm As. The northern contact of the massive sulfide lens is faulted. The fault zone is about 1 m wide, with the fault gouge returning values up to 6920 ppb Au in a grab sample and 6650 ppb Au in a one-metre channel sample. The gouge was also anomalous in arsenic.

A number of east-west trending very narrow pyrite/arsenopyrite stringers with highly anomalous gold values (to 31,300 ppb Au) also occur. These stringers do not exceed widths of 5 cm and generally much narrower than this. The stringers were found along the base of the cliffs at the eastern side of the main grid area, specifically between the historical grid lines 107 N and 108 N.

Other than sample 556, which assayed 31,300 ppb Au, 2543 ppm Cu, 22.5 ppm Ag and 37,434 ppm As, five other samples taken in the near vicinity of sample 556 returned negligible values in gold, but were generally moderately to strongly anomalous in arsenic (Assessment Report 16674).

In 1988, the PDL property was expanded to include a number of Astro claims, optioned from Petro-Canada Ltd. The majority of the Astro claims were located north of the PDL claim. Immediately east and adjoining the PDL claim was the optioned Astro 1 claim, measuring 1.5 km (E-W) and 2.0 km (N-S), which was extensively explored during the 1988 QPX Minerals exploration program.

During the 1988 exploration period, an extensive 50 km grid was established covering the entire Astro 1 claim and a portion of the eastern side of the PDL claim. Grid lines were established on 100 m line-spacings, with 10m soil sample station intervals. A total of 2,776 soil samples were collected from the grid area as well as an additional 229 soils collected from other traverses. A total of 72 rock samples were collected during the grid surveys as well as a further 64 rocks collected from other traverses.

Geochemical soil sample located eight areas of anomalous gold both on the Astro 1 claim and the eastern side of the PDL claim. These anomalous areas were based on a background value of 6 ppb Au with > 17 ppb Au considered anomalous with a maximum soil value of 780 ppb Au.

The anomalous soil areas trended NW-SE with moderate to strong correlation between anomalous gold in soil values and fault zones. Six of the eight anomalous gold areas were subsequently trenched with generally negligible results.

The best gold values for rock samples on the PDL and Astro 1 claims were obtained from the massive sulphide showing exposed in an old trench on the PDL claim. Although values up to 6,920 ppb gold (Lee, 1987) are associated with a fault bounding the showing, it is believed to have very limited extent and does not represent the current target sought on the current Astro property (Assessment Report 18251).

5.2 Geophysics Surveys

On the area of the historic PDL property, three geophysics surveys have been carried out. The first survey was carried out on the original PDL claim by Placer Dome Development Ltd in 1985. The Placer Dome geochemical-geophysics grid consisted of a 1.7 km N-S baseline with 13.05 km of E-W cross-lines. Magnetometer and VLF-EM surveys were carried out on 5.32 kilometres of the grid lines. Survey results were generally inconclusive with no magnetic response and four VLF-EM conductors attributed to topographic effects (Assessment Report 14062).

In 1988, Minequest personnel ran approximately 50 line kilometres of magnetometer survey over the Astro 1 claim and eastern portions of the PDL claim using a Scintrex IGS-2 proton magnetometer. Measurements of total magnetic field were recorded at 10 metre intervals on lines spaced 50 metres apart over the grid area.

The magnetic data was successful in distinguishing between the Marron volcanics and the Springbrook conglomerate and confirmed geological mapping. A number of north-south and east-west trending faults were also outlined.

MineQuest personnel, using a Scintrex IGS-2 machine, ran approximately 50 line kilometres of a VLF-EM survey over the same grid area. Measurements of tilt angle and quadrature were made at 10 metre intervals on lines spaced 50 metres apart over the grid area. The VLF-EM data supports the interpretation from magnetic data, as well as outlining a number of poorly conductive lineations (Assessment Report 18251).

In the late fall of 1988 a small grid was established over the Astro 34 showing. A 400 metre long baseline was run at azimuth 360 degrees with 4.6 kilometres of cross-lines spaced 25-50 metres apart. Lloyd Geophysics of Vancouver B.C using an EDA Omni Plus combination unit conducted the magnetometer and VLF-EM surveys.

Three very well defined, north-south trending conductors were identified by the VLF-EM Survey. The Astro showing area has received limited testing by trenching and reverse circulation drilling over only the central portion of the western most of the three well-defined conductive lineaments. Further follow up of these conductors is strongly recommended. Along portions of the strike length of the VLF-EM conductors there is excellent correlation with magnetic lows. These zones probably represent zones of alteration, likely silicification, related to N-S regional faulting and warrant deeper testing by diamond drilling (Assessment Report 18527).

5.3 Trenching

In 1988, a program of backhoe trenching was carried out in 6 areas of geochemically anomalous gold as determined by the earlier Minequest (QPX) soil sampling work, mainly on the Astro 1 claim and partially on the eastern part of the PDL claim. Twenty-three trenches, for a total of about 650 metres, were dug using a Case 580 backhoe (Assessment Report 18251). All trenches were mapped and sampled with a total of 202 channel samples taken for analysis.

The 1988 summer geochemical program outlined eight major geochemical anomalies testing for gold, silver, arsenic and copper. Six of these anomalies (1, 3, 4, 5, 6 and 7) were evaluated by trenching during this program. The remaining two anomalies, labelled as Anomalies 2 and 8, could not be trenched with the equipment available because of very steep topography.

The majority of the trenching work was carried out on the Astro 1 claim, east of the PDL claim. Anomaly 6 straddled the PDL-Astro 1 claim boundary, while Anomaly 7 tested the area of the known massive sulphide occurrence on the southeast corner of the PDL claim

The most westerly trenches (anomalies 6 and 7) exposed rocks of the Triassic age Shoemaker (chert) Formation, while the more easterly trenches exposed rocks belonging to the lower Eocene age Springbrook (conglomerate) Formation as well as post Eocene conglomerates. The most easterly trenches exposed either Springbrook conglomerates or Marron Formation volcanics. Several of the trenched areas encountered mainly north-south faulting.

Trench sampling on Anomaly 6, straddling the PDL-Astro 1 claim boundary, produced some localized anomalous gold to 280 ppb Au, likely originating from the Shoemaker chert unit. Trenching on Anomaly 6 exposed east-west faulting along the Shoemaker-Springbrook contact. This area of trenching was carried out immediately north of drill holes 88-001, 88-002, drilled earlier in 1988 (Assessment Report 18251)

Trenching on Anomaly 7 around the known massive sulphide showing on the PDL claim did not produce any positive results, further substantiating the limited extent of the mineralization at this location.

None of the 1988 trenched areas produced any areas of significant alteration or mineralization. In all, the 1988 trenching program did not demonstrate any prospective areas of alteration or mineralization, suggesting that the several areas of soil anomalies (Au +/-As, Cu) have been derived or concentrated through glacial depositional processes.

A further backhoe-trenching program was carried by QPX Minerals Inc. in late 1988 to early 1989 at the Astro alteration zone, within the then existing Astro 34 claim. The trenching program was carried out along a north-south strike distance of 140 metres (see figure 6).

Assessment report (# 18527) indicates that 5 trenches totalling approximately 150 metres were dug in 1989 near the Astro showing area exposing a silicified zone within an argillically altered zone. Of the 150 metres of trenching only 112 metres achieved full bedrock exposure, mainly in trench 1 and trench 3, which were able to cross the full zone of argillic and locally silicified volcanics (18.0m to 20.0m wide). Deep overburden however made it impossible to follow the zone along strike with the equipment available. Only weakly anomalous gold values (to 235 ppb Au) and silver (to 7.8 ppm Ag) were obtained from trench samples. Several anomalous arsenic values were associated with the higher anomalous gold values.

Previous rock chip sampling on the Astro alteration zone had returned values to 1030 ppb Au (PDL 88-075) and 34.1 ppm Ag (PDL 88-077).

5.4 Drilling

In 1988, QPX Minerals Inc. carried out the drilling of three NQ diamond drill holes, two near the western boundary of the Astro 1 claim and one near the eastern boundary of the pre-existing PDL claim. The drill-holes totalling 524 metres were drilled to test the contact of the Springbrook conglomerate Formation with the underlying Shoemaker (chert) Formation. All three drill-holes crossed the Springbrook-Shoemaker contact; however, the drilling did not encounter economic gold values.

Drill-hole 88-001 1 was drilled vertically to a depth of 179.1 metres to test the depth to the Pre-Tertiary basement contact. The hole was located about 170 metres east of the chert/conglomerate contact marking the edge of the Tertiary basin. Drill-hole 88-002 was drilled from the same location as 88-001, at azimuth 280° and dip of -45, drilled to a depth of 181.5 metres.

Both drill holes crossed the Springbrook-Shoemaker contact, demonstrating that weak to moderately higher gold values occur in the Springbrook Formation, immediately above the Shoemaker (chert) contact. The vertical drill hole 88-001 returned anomalous gold values in two-3 metre sample intervals immediately above the contact. The respective values down the hole were 145 ppb Au from 153m to 156m and 320 ppb Au from 156m to 159m. The higher 320 ppb Au value (with 420 ppm As.) was at the immediate Springbrook-Shoemaker contact.

Drill-hole 88-003 was drilled approximately 100 metres west of the 88-001 and 88-002 drill site location. Drill-hole 88-003 was drilled to 162.9m on an azimuth of 270° and dip of -70°. Faulting between 59.7 m to 67.1 m complicated the contact between the Springbrook Formation and the Shoemaker Formation.

Drilling of these three drill holes was difficult with much of the drilling carried out in the Springbrook conglomerates. There were extensive areas of faulting in the drill holes, resulting in poor or missing recovery as well as loss of water circulation due to the high rock porosity and faulting.

Although no economically significant gold values were found, the fact that anomalous values occur in the Springbrook Formation confirms a Tertiary mineralizing event, near the contact with the underlying Shoemaker Formation. It is particularly interesting to note that the highest values encountered occurred immediately above the basement contact in highly altered tuff. This is consistent with the hypothesis that fluids travelled up major faults and fractures in the basement rocks, moving out along overlying porous units and contacts.

QPX Minerals drilled a total of 5 reverse-circulation holes totalling approximately 250 metres in 1989 along 50 metres of strike (see figure 6). These drill holes tested the general area of the Astro showing/alteration zone, but only to relatively shallow depths. The first hole (PDL-RC-1) was drilled approximately 25 metres north of the main access road, while drill hole PDL-RC-2 was drilled at a location approximately 25 metres north of drill hole PDL-RC-1, and drilled easterly at -65 degrees. Three of the holes (PDL-RC-3, RC- 4 and RC-5) were drilled on the main access road, with holes angled easterly at -45, -80 and -90 respectively.

Drillhole PDL-RC-2, drilled on a westerly azimuth, contained the most significant results, which included an interval of 12.2 metres of 414 ppb Au, which included 6.1 metres of 650 ppb Au. The anomalous values in this drillhole occur approximately 10 metres below surface. Sample 89022 from drill hole PDL-RC-2 contained a 3.1 m interval from 13.7 m to 16.8 m, returning 705 ppb Au, 14.8 ppm Ag and 1543 ppm Mo. The stronger values in drill hole PDL-002 are associated with zones of silicification within argillically-altered volcanics. Zones of silicification were found in other drill holes but without significantly anomalous gold associated with the silicification. It also interesting to note that drill hole PDL-RC-02 was located at the north end of the five holes drilled, possibly indicating a strengthening of the mineral system towards the north.

It is noted that one of the more prominent structures represented as a well-defined gully in the area of the Astro zone occurs approximately 80 metres east of the area tested by the 1989 drilling and remains untested. As this area may represent a faulted channel-way for mineralizing solutions, it should be further investigated for its exploration potential. The 1989 drill testing was restricted to a small portion of one of three well defined conductive VLF-EM lineaments with corresponding magnetic lows.

6.0 Geological Setting and Mineralization

6.1 Regional Geology

The western half of the Penticton map area was first mapped by Bostock (1940, 1941a, 1941b). At this time massive and ribboned chert was referred to as the Shoemaker Formation and meta-andesite (greenstone) was known as the Old Tom Formation. Later, Rice (1947) found that the Shoemaker, Old Tom, Bradshaw and Independence formations could not be readily distinguished as distinct, mappable, regional-scale lithological units in the western-neighbouring Princeton map area. The informal name Apex Mountain Group (Complex), which includes the Old Tom, Shoemaker, Bradshaw and Independence formations, was adopted by Milford (1984). The Apex Mountain Group was divided into five major lithofacies: massive and bedded chert, greenstone, chert breccia, argillite and limestone. The depositional environment is interpreted to be generally deep ocean basin. Microfaunal ages in chert of the Shoemaker Formation provide unambiguous mid-Carboniferous ages. However, a much older maximum Late Devonian (Famennian) age has been obtained from several radiolarian and conodont

fauna in chert. Ordovician and Triassic (Ladinian-Carnian) conodonts have been found in limestone near Olalla. The conspicuous absence of Permian and Lower Triassic microfossils may indicate a period when rocks were fully subducted. The youngest Apex Mountain Group rocks and oldest Nicola Group rocks are interpreted to represent a transitional succession, based on their marked similarity in lithologies, spatial distribution and orientation. These rocks have been unconformably overlain by sedimentary and volcanic rocks of the Eocene Penticton Group. This succession forms the White Lake Basin, at least 2400 metres thick and bounded by normal faults. At the base, the Springbrook Formation forms a discontinuous basal conglomerate and breccia unit, locally up to 700 metres thick, derived from the underlying upper Paleozoic and older basement rocks. A rough estimate of fragments composition is: 70 per cent feldspar-rich andesite, 20 per cent grey and black chert, and 10 per cent chlorite schist and other unidentified fragments. The Springbrook Formation is overlain by more than 2100 metres of alkaline and calcalkaline lavas and related breccias of the Marron Formation. These volcanics are unconformably overlain by up to 1000 metres of rhyolite and rhyodacite of the Marama Formation. The overlying White Lake Formation consists of up to 1000 metres of interdigitated volcanic sandstone and conglomerate with feldspar porphyry lavas, lahars, pyroclastic rocks and volcanic breccias. The top of the succession consists of up to 900 metres of conglomerate and epiclastic volcanic breccia that are interpreted to be slide deposits dominantly of nearby Eocene volcanics and lesser pre-Eocene rock. These form the Skaha Formation.

Astro Property

Regional Geology

Figure 5 Astro Property Regional Geology Map

6.2 Property Geology

To the west of the current Astro Property, in the valley bottom of Keremeos Creek, the area is underlain by rocks of the Triassic or older Shoemaker, Old Tom and Independence Formations which consist mainly of cherts and greenstones. Minor small limestone bodies are also present which may locally be skarnified. In the area of the historic PDL and Astro 1 claims, the basement rocks are predominately cherts. Commonly, these cherts are brecciated and may contain minor disseminated pyrite.

The Paleozoic rocks, exposed to the west of the Astro Prperty are in contact with overlying rocks of the Lower Eocene Springbrook Formation. In Pre-Tertiary time, the Paleozoic cherts and greenstones formed a large basin which was later in-filled by Tertiary volcanics and sediments. The Pre-Tertiary/Tertiary contact is near vertical and striking north to northeast where exposed near the historical PDL-Astro 1 claim boundary. At this point the contact, which may be in part fault controlled, marks the western margin of the Pre-Tertiary basin. Drilling has indicated that east of here the basement contact dips shallowly to the east (Lee, 1988). The Springbrook Formation is composed of talus, alluvium and tuffaceous materials that accumulated in the Pre-Tertiary basin before deposition of the Eocene Marron volcanics. The Springbrook Formation consists mainly of a polymictic pebble to boulder conglomerate with clasts composed primarily of Paleozoic cherts and greenstones in a sandy, locally tuffaceous matrix. Locally the matrix may be bleached or altered to clays. Narrow carbonate stringers are common cutting both clasts and matrix of the conglomerate. Minor narrow sandstone and tuffaceous sandstone interbeds also occur. Where intersected by diamond drilling, the Springbrook Formation exceeds 100 metres in thickness (Lee, 1988).

A number of narrow medium to coarse grained dykes of quartz diorite, diorite or porphyritic latite composition cut the Triassic or older cherts and greenstones (Lee 1987). Clasts of these intrusives are also contained in the Springbrook conglomerate. A single outcrop exposure was mapped where a narrow dyke of similar composition intruded rocks of the Springbrook Formation. Whether the dykes represent a single intrusive episode, coeval with the deposition of the Springbrook Formation, or whether two episodes of intrusion occurred is unclear.

Overlying the Springbrook Formation un underlying the entirety is a series of phonolitic basaltic and andesitic Flows of the Marron Formation. The lowermost four members of the Marron Formation, the Yellow Lake, Kitley Lake, Kearns creek and Nimpit Lake members are exposed on the property. Church (1973, 1982) describes each of these members in detail.

A conglomerate of uncertain age, but at least post-Marron is exposed in a number of trenches on the Astro 1 claim (Lee, 1989). This conglomerate consists of sub-rounded pebbles and rare boulders of Marron volcanics, Post Triassic intrusions and Triassic and older basement rocks.

The matrix is very fine grained with minor euhedral biotite and pyroxene crystals and up to 5 per cent rounded quartz pebbles. The origin of this unit is somewhat uncertain. Topographically and stratigraphically, the conglomerates occur several hundred metres above the basement Triassic rocks. The conglomerates are always in close proximity to a fault of regional importance, suggesting that the chert content of the conglomerates was derived through the exhumation of the chert fragments along fault structures.

Finally, narrow coarse-grained granodiorite dykes have been exposed in several trenches (Lee, 1989). These dykes are strongly weathered and crosscut the post-Marron conglomerate with the dykes trending north-south. Narrow quartz stringers may occur in these dykes.

A series of north to northeast trending near vertical block faults occur on the PDL property. Information obtained from drilling suggests that movement on these faults is down to the east. Trenching has also intersected a number of east-west faults. Faults up to 17 metres wide, are commonly marked by extensive zones of clay gouge (Lee, 1988).

Other than the known massive sulphide (Pyrrhotite, pyrite +/- chalcopyrite) occurrence located at the southeast portion of the historical PDL, the only other known mineralization is found at the Astro alteration zone where anomalous values of gold silver and molybdenum occur associated with fine chalcedonic veining. The style of alteration and geochemistry at the Astro zone (Minfile No 82ESW-190) is indicative of a low sulphidation epithermal gold environment.

The Kitley Lake Member of the Marron Formation underlies the area trenched and drilled during the 1988-1989 QPX MINERALS LTD. programs on the Astro 34 claim. The Kitley Lake Member consists of brown to reddish coloured feldspar biotite porphyritic andesite, commonly containing zeolite filled amygdules. The Astro 34 showing (Astro zone) is locally exposed in outcrop and consists of argillic alteration and silicification of these volcanics, with narrow chalcedonic veinlets. Previous sampling (Lee, 1989) returned values to 1229 ppb gold associated with these chalcedonic veinlets. Locally, very narrow quartz stringers are seen in the volcanics.

Trenching at the Astro zone exposes a north-south trending belt of clay alteration up to 20 metres wide over a strike length of 140 metres. The alteration zone is still strong where lost due to thick overburden. Minor amounts of propyllitic alteration occurs both marginal to, and within the clay-altered zone. Clay alteration surrounds a silicified core, up to three metres wide, well exposed in Trench 1. The core consists of brecciated clay-altered volcanics cut by a network of hairline chalcedonic veinlets with weak pervasive silicification. Extensive limonite staining of altered rock and local pyrite boxwork indicate the presence of pyrite in the un-weathered rock.

This was confirmed by drilling, where quantities of 1%-5% pyrite were observed in drill chips.

Figure 6 Trenching and Drilling Map (1988) of Astro Zone

7.0 Deposit Types

Other than the known Astro zone, there are no mineral deposits or mineral showings in the immediate area of the Astro Property. There are certain geological attributes on the property that suggest potential for the discovery of an epithermal gold type deposit. Such mineral properties as the Vault (Minfile 082ESW-173) and Dusty Mac (Minfile 082ESW-078) situated within several kilometres to the east of the Astro property are typical epithermal deposits and share certain characteristics and geological features as are found on the Astro property.

"An epithermal gold deposit is one in which the gold mineralization occurs within 1 to 2 km of surface and is deposited from hot fluids. The fluids are estimated to range in temperature from less than 100C to about 300C and, during the formation of a deposit, can appear at the surface as hot springs, similar to those found in Yellowstone National Park (in north-western Wyoming, southern Montana and eastern Idaho). The deposits are most often formed in areas of active volcanism around the margins of continents.

Epithermal gold mineralization can be formed from two types of chemically distinct fluids -- "low sulphidation" (LS) fluids, which are reduced and have a near-neutral pH (the measure of the concentration of hydrogen ions) and "high sulphidation" (HS) fluids, which are more oxidized and acidic. LS fluids are a mixture of rainwater that has percolated into the subsurface and magmatic water (derived from a molten rock source deeper in the earth) that has risen toward the surface. Gold is carried in solution and, for LS waters, is deposited when the water approaches the surface and boils. HS fluids are mainly derived from a magmatic source and deposit gold near the surface when the solution cools or is diluted by mixing with rainwater. The gold in solution may come either directly from the magma source or it may be leached out of the host volcanic rocks as the fluids travel through them. In both LS and HS models, fluids travel toward the surface via fractures in the rock, and mineralization often occurs within these conduits. LS fluids usually form large cavity-filling veins, or a series of finer veins, called stockworks, that host the gold. The hotter, more acidic HS fluids penetrate farther into the host rock, creating mineralization that may include veins but which is mostly scattered throughout the rock. LS deposits can also contain economic quantities of silver and minor amounts of lead, zinc and copper, whereas HS systems often produce economic quantities of copper and some silver. Other minerals associated with LS systems are quartz (including chalcedony), carbonate, pyrite, sphalerite and galena, whereas an HS system contains quartz, alunite, pyrite and copper sulphides such as enargite. Geochemical exploration for these deposits can result in different chemical anomalies, depending on the type of mineralization involved. LS systems tend to be higher in zinc and lead, and lower in copper, with a high silver-to-gold ratio. HS systems can be higher in arsenic and copper with a lower silver-to-gold ratio." (Northern Miner Mineral Deposit)

Webpage (http://www.northernminer.com/resources/tools/geology101/)

Many countries have epithermal gold deposits, including Japan, Indonesia, Chile and the western U.S., each of which occupies a portion of the "Rim of Fire," the area of volcanism that rings the Pacific Ocean from Southeast Asia to western South America. Epithermal gold is also found in British Columbia at the Baker mine, in the Toodoggone district, and near the Taseko River.

Figure 7 Epithermal Deposit Model

The following excerpt from the online Minfile geological description for map area 082ESW provides geological descriptions of the Vault and Dusty Mac mineral properties, lying 10 to 15 kilometres east of the Astro property, respectively:

"Production from the **Dusty Mac (082ESW078)** epithermal gold and silver deposit was carried out intermittently between 1969 and 1976. The Penticton Group volcanics has been an exploration target for epithermal-style, precious metal mineralization. The hostrocks of the Dusty Mac are part of the White Lake Formation of the Penticton Group, which consists of light coloured pyroclastic rocks, thick feldspathic andesite lahar deposits, minor andesitic lavas, and minor sandstones and carbonaceous shales. Mineralization appears to be structurally controlled by a system of reverse faults. The deposit consists of a lens-like zone of silicified volcanic rocks and sedimentary debris containing disseminated pyrite, native silver, chalcopyrite, galena, sphalerite with minor bornite and tetrahedrite. Silicification was multi-episodic, varying from discrete laminated chalcedony veins to quartz breccia bodies. Distal propyllitic and proximal sericitic, argillic and potassic alteration completes vein alteration types. The Dusty Mac produced 93,295 tonnes of ore from which 10,552,750 grams of silver, 606,006 grams of gold, 2432 kilograms of copper, 2312 kilograms of lead and 242 kilograms of zinc were recovered.

The Vault (082ESW173) epithermal deposit, near Skaha Lake, was subsequently discovered 5.5 kilometres to the northwest of Dusty Mac. Principally, the Marama Formation underlies the Vault property. Drill-hole information indicates that alteration is dominated by an elongate zone of intense silicification (chalcedony) and multi-stage stockwork veining, near the Kitley Lake Member contact. Veins in the main mineralized zone have typical adularia-sericite-type epithermal textures. Argillic (clay) alteration is also present along faults. Higher precious metal grades generally correlate with the increasing intensity of silicification. The sulphide content associated with precious metal mineralization is typically low. Gold and silver are not visible with the naked eye but likely occur as native elements or possibly electrum. Native gold is found associated with pyrrhotite. Indicated reserves for the North zone are 152,000 tonnes grading 14 grams per tonne gold. On a regional and vein scale, mineralization at the Dusty Mac and Vault is structurally controlled by major northeast and east-trending faults and parallel fracture systems. In part, mineralization is also lithologically controlled by brecciation in the lower Marama Formation where the porosity and permeability of volcanic breccias and tuffs is highest".

Also in the general area is the historic Olalla mining camp, located approximately 11.5 kilometres SSW of the Astro zone. Past exploration has focused on mineralization related to the Olalla alkalic complex. The main producers from this mining camp and the surrounding area were the **Dolphin** (082ESW012), **Sunrise** (082ESW015), **Golconda** (082ESW016) and **Olalla** (082ESW096). Total production from these four mines was 1842 tonnes from which 41,677 grams of silver, 4977 grams of gold, 45,502 kilograms of copper, 765 kilograms of lead, and 2660 kilograms of molybdenum were recovered. All deposits occur as narrow quartz vein and/or shear-hosted deposits along the contact or adjacent to the Olalla alkalic complex, within rocks of the Shoemaker Formation or Old Tom Formation.

8.0 MMI Survey Description

The current exploration work program consisted of a one-day property visit to the Astro property on July 10, 2019. The author, in the company of two assistants collected 24 MMI soil samples over the area of the Astro alteration and mineral zone. The MMI sample sites were, flagged and locations were recorded using a hand-held GPS device. All soil samples were collected using strict MMI sampling procedures and placed in plastic bags labeled with an identifying code. The samples were kept in the possession of the author and were personally delivered by him to the lab of SGS Canada Ltd., Burnaby, BC, on July 15, 2019. The MMI samples were analyzed for a multi-element suite of elements, with analytical results provided in Appendix 2 and MMI analytical procedures described in Appendix 3, at the back of this report

The 2019 MMI sampling program was carried out in area previously soil sampled by the author in 2014. In 2014, a former mineral claim containing the area of the current Astro Property was under option to Victory Ventures Inc. On behalf of Victory Ventures, the author in the company of geologist, Mr. A.B. Hemingway carried out a small soil-sampling program with sampling work done on two separate

property visits (June, 2014, August, 2014). A total of 41 soil samples were collected and analyzed, however the costs associated with the soil-sampling program were never used for assessment credits.

The 2014 soil-sampling program was carried out over several short lines, mainly on 20-metre sample-spacings, to test areas of possible interest within and near to the known Astro alteration zone.

During the 2019 MMI sampling program, a number of the flagged soil sample sites from the 2014 sampling program were located and tied into the MMI sample survey. For the purpose of this report, the results of the 2014 soil-sampling program have been combined with results from the 2019 MMI soil-sampling program. The 2014 soil sample lines/sites have been superimposed on figures 8 and 9 with the MMI sample sites, using a best-fit placement for the 2014 soil sample locations. The gold values (in ppb) for the 2014 sample surveys, along with the 2019 MMI sample results, are shown on Figure 9,.

One of the 2014 soil sample lines (Line 1N) is not included in the discussion of this report. Line 1 N was located south and downslope from the roadside exposure of the Astro zone. The soil samples collected From Line 1 N, contained excessive angular rock talus and were not considered a reliable sampling medium. However, the results of samples collected from Line 1N are reported in Appendix 2(B).

Comparisons can now be made between the two types of sampling procedures and their respective results can be used to determine their applicability in further sampling work for the Astro mineral zone.

The two sampling programs, from 2014 or 2019 returned anomalous results for various metallic elements, particularly for gold, silver and molybdenum. These elements present a geochemical signature indicative of a low-sulphidation epithermal mineral system. The most strongly anomalous values occur within the area of the historic (1988) Astro zone trenches (Trench 2 and Trench 3). In the area of the trenches, higher gold values are associated with higher anomalous values in silver and molybdenum (see results summary tables in Appendix 1)

It was recognized that the second set of soil samples taken in September, 2014 reported considerably lower values than those of the June, 2014 set of soil samples, particularly for silver values, although a number of these samples were taken in a similar area as that of the July 2014 set of samples. The author suggests that analyses procedures between the two sets of samples may have undergone a variation in the analyses procedures, thus creating a disparity between the two sets of sample results.

Photo: Astro Roadside Showing Area: (View looking North)

9.0 Discussion of Survey Results and Conclusions

The current MMI sampling program at the Astro zone reported elevated values in gold, silver and molybdenum. These anomalous values as well as associated weakly anomalous arsenic and zinc are commonly associated with the upper levels of a low sulphidation epithermal system.

As the two sampling surveys use different analytical procedures, the interpretation of results between the two survey types cannot be compared directly. For the 2014 soil sampling survey, gold values between 3-5 ppb Au are considered moderately anomalous, while values exceeding 5 ppb Au are considered strongly anomalous. For the 2019 MMI soil survey, gold values of 0.3 ppb Au to 0.5 ppb Au are considered moderately anomalous, while gold values exceeding 0.5 ppb Au are considered strongly anomalous. Silver and molybdenum values between the two survey types must also be interpreted separately to determine significant anomalous levels between the two survey procedures

The following table shows comparisons between anomalous soil sample results from both the 2014 soil sampling survey and the 2019 MMI soil sampling survey. The table shows a comparison between several sample results taken in the area of Trench 2 and Trench 3, which show a clear association for anomalous values in gold, silver and molybdenum. Values indicated in **bold** print are considered significantly anomalous.

Sample	Sample Type	Gold (ppb)	Silver (ppb)	Mo (ppm/ppb)
Number				
L 3N, 0+20 E	Standard ICP	9.4	411	6.06 ppm
GA 1	MMI	1.0	34.3	6.0 ppb
GA 2	MMI	0.6	47.7	15 ppb
GA 3	MMI	0.3	14.7	10 ppb
GA 12	MMI	0.5	28.3	Negligible
GA 13	MMI	0.7	17.7	٠٠
GA 14	MMI	0.2	32.2	دد

Table 2 Astro Zone Anomalous Soil Results

During the soil sampling programs a well-defined gully feature was located approximately 80 metres east of the known Astro epithermal alteration zone. This gully is interpreted to represent a N-S fault structure. Detailed sampling in the area of the gully/fault structure has returned weak to moderately anomalous values in gold and/or silver.

The table below summarizes anomalous results of several soil samples taken from the gully/fault zone, lying approximately 80 metres east of the known Astro alteration zone. No anomalous values for molybdenum were returned from the gully sampling area.

Sample Number	Sample Type	Gold (ppb)	Silver (ppb)
L 3N, 1+00 E	Standard ICP	2.2	471
L3N, 1+20E	Standard ICP	76.4	120
L2+60 N, 1+20E	Standard ICP	9.2	-
GA 17	MMI	0.2	33.9
GA 18	MMI	0.4	74.4
GA 23	MMI	0.3	39.0

Table 3 Astro Zone Anomalous Soil Results (gully area)

Figure 8 Astro Zone Orientation (Soil Sample Location) Map

Figure 9 Astro Zone Results Map (Au)

10.0 Recommendations

The Astro mineral zone has seen no significant exploration work carried out since the QPX Minerals Inc. program of 1988/89. The QPX work consisted of geological mapping and rock sampling, geophysical surveys (Mag, EM) trenching and the drilling of 5 reverse-circulation drill holes. The exploration work carried out by QPX Minerals in 1988 was useful in providing a 'first-look' evaluation for the geological understanding of the Astro zone, but to date the overall mineral potential of the Astro epithermal zone has yet to be adequately evaluated.

The current MMI soil-sampling program was carried out to better evaluate the geochemical signature of the Astro alteration/showing area. The Astro showing area lies within a zone of alteration, which bears the geochemical signature of epithermal-style mineralization, probably associated with a deep-seated regional north south fault system. Geophysics and limited shallow reverse-circulation drilling of the Astro zone, in 1988/89, suggests that the associated hydrothermal alteration zone is open to depth and along strike, but the nature or extent of the Astro zone is currently not well understood.

The results of the 2014 soil sampling program and the 2019 MMI soil-sampling program indicate the presence of low-sulphidation epithermal style mineralization at the Astro zone. This mineralization is contained within a zone of slicification containing fine chalcedonic veinlets. It is within this zone of slicification/veining where anomalous gold +/- silver, molybdenum values are most strongly associated.

The 2014 soil sampling survey results and the 2019 MMI soil sampling results indicate that anomalous values for gold, silver and molybdenum are present at the Astro mineral zone. The comparisons between the two types of surveys suggest that further soil sampling on the property area use only one sampling procedure, rather than creating confusion between two types of procedures. It appears unnecessary to continue the use of the more expensive MMI sampling method for the Astro Property, as the non-MMI soil sampling method, as used in the 2014 soil-sampling program, appears to be an adequate method for detecting anomalous levels of gold and other metals.

The author recommends that a more consistent and expanded soil-sampling program be carried out for the immediate area of the Astro mineral zone. Where topography allows, a small soil grid should be established northward from the road exposure of the Astro zone, for a distance of at least 400 metres. The soil grid lines need only be 200 metres to 300 metres long, avoiding steep drop-off topography to the east. Grid lines should be close-spaced at 25 metres apart, with sample stations established on 20-metre spacings.

Based on results from the soil sampling survey, a diamond drill program is recommended to test the areas of strongest anomalous soil values, mainly focussing on coincident Au +/- Ag, Mo values. Results of previous magnetic and VLF-EM surveys should also be taken into consideration in combination with the results of future geochemical surveys, when planning for drill targets. It may be argued that a diamond-drilling program should not be carried out based primarily on the results of a soil geochemical survey. Possibly another geophysical program such as IP may be justified in the future, but such a program should be driven by some encouragement and added geological context, as would be provided by an initial small program of diamond drilling.

In total, it is anticipated that six drill holes should be drilled from approximately 250-metres to 350- metres depth in each hole, at least to reach the Shoemaker contact with the overlying Springbrook Formation. Previous operators (QPX Minerals) have partially tested a small area of the Astro showing/alteration zone, using reverse circulation drilling to shallow depths. This drilling did not penetrate through the Kitley Lake member of the Marron formation and fell short of the prospective horizon at the Springbrook-Shoemaker contact; nevertheless the drilling showed encouraging gold values at shallow depth, with suggested downward widening of the zones of silicification, as determined in the 1989 reverse-circulation drill holes.

Finally, it is recognized that results obtained to date at the Astro mineral zone have not returned economically high results for either rock or soil samples. The highest known values for rock samples analyzed, to date, range between 1 g/t Au to 1.5 g/t Au. It is however important to recognize that such anomalous gold values and associated anomalous values in other elements are providing geochemical signatures indicative of the upper levels of an epithermal mineral system. This mineral system has never been adequately evaluated to what could be a more prospective mineral environment, at greater depth.

11.0 Cost of Current MMI Exploration Survey

Wages: July 13 (1/2 day)15, 16 (1/2 day), 2019

	G. Thomson, P.Geo.	2.0 days @ \$600/day	\$	1200.00
	G. Brown	2.0 days @ \$300/day	\$	600.00
	G. Davidson	2.0 days @ \$300/day	\$	600.00
Trans	portation:			
	Transportation: (4x4 ve	hicle) 2 days	\$	200.00
	Gas		\$	336.67
Motel			2	164.46
WIUTCI			Φ	104.40
Meals			\$	121.82
Analy	tical Costs			
·	SGS Minerals Ltd		\$	1064.70
Repor	t Costs:			
-1	Reporting writing: 3.0 c	lays @ \$500/day	\$	1500.00
	Drafting		\$	350.00
			=	
Total Cost of	Current Exploration S	urvey	\$	6,138.18

12.0 REFERENCES

Bostock, H.S., 1941, Olalla (Similkameen, Osoyoos, and Kamloops Districts-British Columbia) Canada Department of Mines and Resources – Map 628A

Church, B.N., 1973, Geology of the White Lake Basin B.C. Department of Mines and Petroleum Resources, Bulletin 61

Church, B.N., 1982, Geology of the Penticton Tertiary Outlier B.C. Ministry of Energy, Mines and petroleum Resources, Revised Preliminary Map 35

Hemingway, A.B., 2013, Geochemical Report on the PDL Property, *for* Wangton Capital Corporation (co-authored G. Thomson, P. Geo) Assessment Report 34734

Lee, L.J., 1987, Geology and Geochemistry of the PDL Property *for* QPX Minerals Inc., Assessment Report 16674

Lee, L.J., 1988, Geology, Geochemistry, Geophysics and Diamond Drilling on the PDL Property *for* QPX Minerals Inc., Assessment Report 18251

Lee, L.J., 1989, Trenching and Rock Chip Sampling on the PDL and Astro Groups *for* QPX Minerals Inc., Assessment Report 18284

Milford, J.C., 1984, Geology of the Apex Mountain Group, North and East of the Similkameen River, South-Central British Columbia; *unpublished M.Sc. thesis*, University of British Columbia, 108 pages.

Nasmith, H., 1962, Late Glacial History and Surficial Deposits of the Okanagan Valley, BC BC Department of Mines and Petroleum Resources, Bulletin 46

Rice, H.M.A., 1947, Geology and Mineral Deposits of the Princeton Map Area, British Columbia, Geological Survey of Canada Memoir 243 (pg. 8, 9)

*Sandberg, T. Lee, L.J., 1989, Geophysics, Trenching and Percussion Drilling on the Astro 34 Claim *for* QPX Minerals Inc., Assessment Report 18527

Thomson, G.R., 2015, Geochemical Report on the PDL Property *for* Victory Ventures Inc., Assessment Report 35642

Travis, A., 2004, Prospecting and Geology Report on the Astro Project Assessment Report 27469

Young, R.J., 1984, Geochemical Report on the PDL Claim *for* Placer Development Limited, Assessment Report 13199

Young, R.J., 1985, Report on Grid Construction, Geochemistry and Geophysics on the PDL Mineral Claim *for* Placer Development Limited, Assessment Report 14062

CERTIFICATE OF CONSULTANT

I, Gregory R. Thomson, P.Geo, am the author of this report entitled "Geochemical Report on the Astro Property", do hereby certify that:

I am a consulting geologist of:

Thomson Geological: 40 - 21928-48th Avenue, Langley, British Columbia, Canada, V3A 8H1.

This certificate applies to the report entitled "Geochemical Report on the Astro Property", Osoyoos Mining Division, British Columbia, Canada; NTS Map 082E032, Northing: 49° 22' 21", Easting: 119° 46' 30", UTM Zone 11 (NAD83)", Dated: October 13, 2019

I have B.Sc. degree in Geology from the University of British Columbia, Vancouver, Canada, 1970.

I am registered as a Professional Geologist in British Columbia, Canada (License #: 20649). I have been practicing my profession continuously since 1970, and have over forty years of experience in mineral exploration for gold and base metals.

I have visited the Astro Property area on four previous property visits, to carry out minor rock and soil sampling on behalf of a previous optionee of the Property area. I supervised the MMI sampling program carried out on the Astro mineral zone on July 10, 2019.

I personally submitted the MMI samples for analysis to SGS Labs on July 15, 2019 and received the said analytical results for these samples directly from SGS.

SIGNATURE

G. R. THOMSON

Greg R Thomson B.Sc. P. Geo

Dated: October 13, 2019

Langley, British Columbia, Canada

Appendix 1 Sample Locations and Results

Astro Property 2014 soil sampling						
Northing	Easting	Easting	Northing	Au ppb	Ag ppb	Mo ppm
L3N	0+00E	298444	5472500	1.8	212	1.62
L3N	0+20E	298465	5472504	9.4	411	6.06
L3N	0+40E	298483	5472508	0.7	112	1.5
L3N	0+60E	298505	5472505	2.9	74	1.44
L3N	0+80E	298525	5472505	0.5	56	1.18
L3N	1+00E	298545	5472505	2.2	471	0.74
L3N	1+10E	298555	5472505	0.9	-	-
L3N	1+20E	298565	5472505	76.4	120	1.17
L3N	1+30E	298575	5472505	1.5	-	-
L3N	1+40E	298585	5472505	<0.2	72	0.91
L3N	1+60E	298605	5472505	1.4	74	1.24
L3N	1+80E	298625	5472505	0.3	49	1.0
L3N	2+00E	298645	5472505	0.4	58	0.73
L3N	2+20E	298665	5472505	0.3	56	1.27
L3+20N	1+00E	298545	5472522	3.6	Negligible	Negligible
L3+20N	1+10E	298555	5472522	2.8	u	"
L3+20N	1+20E	298565	5472522	2.1	u	"
L3+20N	1+30E	298575	5472522	<0.5	u	"
L3+20N	1+40E	298585	5472522	2.6	u	"
L2+80N	1+00E	298545	5472485	2.9	Negligible	Negligible
L2+80N	1+10E	298555	5472485	3.1	"	"
L2+80N	1+20E	298565	5472485	1.6	u	"
L2+80N	1+30E	298575	5472485	0.9	u	"
L2+80N	1+40E	298585	5472485	1	u	"
L2+60N	1+00E	298545	5472462	0.5	Negligible	Negligible
L2+60N	1+10E	298555	5472462	4.4	u	"
L2+60N	1+20E	298565	5472462	2.4	u	"
L2+60N	1+30 E	298575	5472462	9.2	u	"
L2+60N	1+40E	298585	5472462	1.3	"	"

Astro Property 2019 MMI Soil Samples

Sample Number	Easting	Northing	Au ppb	Ag ppb	Mo ppb
GA1	298463	5472508	1.0	34.3	6
GA2	298477	5472513	0.6	47.7	15
GA3	298483	5472513	0.3	14.7	10
GA4	298500	5472513	0.1	22.2	5
GA5	298522	5472506	0.1	12.7	3
GA6	298548	5472498	0.2	15.1	5
GA7	298553	5472500	<0.1	15.9	2
GA8	298567	5472483	<0.1	18.6	5
GA9	298586	5472496	0.1	13.9	4
GA10	298590	5472493	<0.1	11.6	6
GA11	298459	5472510	0.1	10.5	5
GA12	298466	5472523	0.5	28.3	2
GA13	298474	5472524	0.7	17.7	7
GA14	298493	5472522	0.2	32.2	<2
GA15	298502	5472526	<0.1	15	<2
GA16	298525	5472522	0.2	23.6	<2
GA17	298553	5472525	0.2	33.9	2
GA18	298572	5472525	0.4	74.4	6
GA19	298581	5472523	<0.1	10.7	5
GA20	298588	5472466	<0.1	14.6	5
GA21	298576	5472466	<0.1	24.6	3
GA22	298567	5472467	<0.1	16.5	2
GA23	298555	5472479	0.3	39.0	<2
GA24	298550	5472483	<0.1	7.6	2

APPENDIX 2

Analytical Results – Part A

2019 MMI Multieliment Soil Sample Results

Analytical Results – Part B

2014 Multieliment Soil Sample Results

To COD SGS MINERALS - GEOCHEM VANCOUVER THOMSON GEOLOGICAL - GREG THOMSON SGS CANADA INC 3260 PRODUCTION WAY BURNABY V5A 4W4 BC CANADA

Order Number	THOMSON GEOLOGICAL/ GG AND	Date Received	15-Jul-2019
GA/ 57 MMI		Date Analysed	02-Aug-2019 - 08-Aug-2019
Submission Number	THOMSON GEOLOGICAL/ GG AND	Date Completed	08-Aug-2019
GA/ 57 MMI		SGS Order Number	BBM19-00491
Number of Samples	24		
Methods Summary			

Number of Sample	Method Code
24	G_LOG
24	G_WGH_KG
24	GE_DIGMMI
24	GE_MMIM

Description Sample Registration Fee Weight of samples received Mobile Metal ION analyses, ICP-MS Mobile Metal ION standard package, ICP-MS

Comments

This Report cancels and supersedes the Report No. BBM_U0000850065 dated 8-Aug-2019 issued by SGS Canada (Production Way).

Report of all GA samples.

Authorised Signatory

Gerald Chik Laboratory Manager

This document is issued by the Company under its General Conditions of Service accessible at http://www.aga.com/uniTerms-and-Conditions.aspx. Attention is drawn to the limitation of lability, indemnification and jurisdiction issues defined therein. Any holder of this document is advance that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clerif's instructions, if any. The Company's sole responsibility is to its Clent and this document does not econemic parties to a transaction from evencing all their rights and obligations under the transaction documents. Any unsufforted attention, forgery or fairlification of the content or appearance of this document is unlevel and offenders may be prosecuted to the tailest edent of the lime. WARNING: The sample(s) to which the findings representativeness of any goods and strictly relate to the eample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) laters and to be extracted. The findings reported by the Clerif at an orbited by the Clerif or ontractual settlement puppees.

- not analysed | - element not determined | LS. insufficient sample | L.N.R. listed not received 25-Sep-2019 11:32AM BBM_U0001062037 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019 Page 1 of 12 808 Canada CA MIN Burnaby, BC 3250 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (504) 638 2349 f www.sgs.com +

Member of the SGS Group (SGS SA)

Order Number	THOMSON GEOLOGICAL/ GG AND
Submission Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI Number of Samples	24

ANALYSIS REPORT BBM19-00491

Aq	A	Aa	Au	Ba	Bi
GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM
0.5	1	10	0.1	10	0.5
-	-	-	-	-	-
ppb	ppm m / m	ppb	ppb	ppb	ppb
34.3	19	<10	1.0	5330	<0.5
47.7	15	<10	0.6	4660	<0.5
14.7	45	<10	0.3	4740	<0.5
22.2	22	<10	0.1	3000	<0.5
12.7	45	<10	0.1	4290	<0.5
15.1	45	<10	0.2	5450	<0.5
15.9	63	<10	<0.1	3730	<0.5
18.6	27	<10	<0.1	5040	<0.5
13.9	75	<10	0.1	3590	<0.5
11.6	50	<10	<0.1	3190	<0.5
10.5	27	<10	0.1	4480	<0.5
28.3	15	<10	0.5	6690	<0.5
17.7	16	<10	0.7	4550	<0.5
32.2	17	<10	0.2	4840	<0.5
15.0	33	<10	<0.1	3960	<0.5
23.6	33	<10	0.2	5420	<0.5
33.9	16	<10	0.2	2290	<0.5
74.4	10	<10	0.4	2150	<0.5
10.7	108	<10	<0.1	2870	<0.5
14.6	22	<10	<0.1	5240	<0.5
24.6	56	<10	<0.1	2590	<0.5
16.5	17	<10	<0.1	3180	<0.5
39.0	9	<10	0.3	5890	<0.5
7.6	37	<10	<0.1	3470	<0.5
<0.5	<1	<10	<0.1	<10	<0.5
6.9	48	<10	0.4	1060	<0.5
28.4	16	<10	0.2	4340	<0.5
<0.5	<1	<10	<0.1	<10	<0.5
6.8	42	10	0.4	1010	<0.5
	Ag GE_MMIM 0.5 - ppb 34.3 47.7 14.7 22.2 12.7 15.1 15.9 18.8 13.9 11.8 13.9 11.8 13.9 18.8 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	Ag Al GE_MMIM 0.5 - - ppb 1 - - ppb 34.3 14.7 15 14.7 45 22.2 22 12.7 45 15.1 45 15.9 63 18.6 27 13.9 75 11.8 50 10.5 27 28.3 15 17.7 16 32.2 17 15.0 33 22.3.6 33 33.9 16 74.4 10 10.7 108 24.8 56 16.5 17 30.0 9 7.6 37 30.0 9 7.6 37 6.9 48 26.4 16 5	Ag OE_MMIM 0.5 Ai OE_MMIM 1 Aa OE_MMIM 10 - - - ppb 34.3 19 <10	Ag GE_MMIM 0.5 Al OE_MMIM 1 As GE_MMIM 10 Au GE_MMIM 0.1 Au GE_MMIM 0.1 Au GE_MMIM 0.1	Aq OE_MMIM 0.5 AI OE_MMIM 1 Aa OE_MMIM 1 Aa OE_MMIM 10 Au OE_MMIM 0.1 Ba OE_MMIM 0.1 OE_MMIM 0.1 OEMMIM 0.1 OEMMIM 0.1 <thoemmim 0.1 <</thoemmim

- not analysed | - element not determined | I.S. insufficient sample | L.N.R. listed not received

25-Sep-2019 11:32AM BBM_U0001062037

_

Page 2 of 12

MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

SOS Canada CA MIN Barnaby, BC 3250 Production Way, Barnaby, BC V5A 4W4 Barnaby CANADA t +1 (504) 538 2340 f

www.sgs.com

Member of the SGS Group (SGS SA)

Order Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI	
Submission Number	THOMSON GEOLOGICAL/ GG AND
GAV 57 MMI	
Number of Samples	24

Element Ca Cd Ce Co Cr Ca Method GE_MMIM GE_MMIM GE_MMIM GE_MMIM GE_MMIM GE_MMIM Lower Limit 100 2 1 2 1 0.2 Upper Limit _ _ ---Unit ppm m / m ppb ppb ppb ppb ppb GA1 821 5 442 22 <100 0.6 GA2 759 6 271 15 <100 0.8 542 18 4410 86 GA3 <100 2.5 GA4 639 11 731 13 <100 0.7 587 6 1860 82 <100 0.6 GAS GAS 545 6 2100 73 <100 1.5 GA7 570 25 1930 <100 1.5 14 GAS 608 12 1910 137 <100 3.2 GAR 406 5 3200 42 <100 3.3 516 14 2250 19 <100 GA10 4.8 GA11 590 8 1330 27 <100 4.7 777 7 89 27 1.2 <100 GA12 GA13 352 1.3 654 10 17 <100 GA14 707 9 405 24 <100 0.8 508 11 1470 15 <100 GA15 1.2 GA16 613 9 375 13 <100 <0.2 709 13 302 36 GA17 <100 0.9 GA18 783 19 120 1.8 24 <100 294 13 2650 90 1.9 <100 GA19 GA20 548 9 1060 28 <100 0.6 GA21 495 8 1070 37 <100 0.5 642 6 486 17 GA22 <100 0.5 GA23 800 10 88 53 <100 0.9 GA24 665 13 1310 21 <100 1.2 'BIR BLANK <2 <1 4 <1 <100 <02 74 "Std AMISO169 34 1 729 <100 6.1 'Rep GA14 674 10 486 25 <100 0.8 'BIR BLANK <2 <1 3 <1 <100 <0.2

- not analysed | - element not determined | 1.8. insufficient sample | L.N.R. listed not received

Page 3 of 12

MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

25-Sep-2019 11:32AM BBM_U0001062037

SOS Canada CA MIN Barnaby, BC 3260 Production Way, Barnaby, BC V5A 4W4 Barnaby CANADA t +1 (504) 538 2340 f

Member of the SSS Group (SSS SA)

WWW.SQS.COM

Order Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI	
Submission Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI	
Number of Samples	24

Element Method Lower Limit	Ca GE_MMIM 2	Cd GE_MMIM 1	Ce GE_MMIM 2	Co GE_MMIM 1	Cr GE_MMIM 100	Ca GE_MMIM 0.2
Upper Limit Unit	ppm m / m	ppb	ppb	ppb	ppb	ppb
"Std AMISO169	33	1	628	77	<100	5.9

Element	Cu	Dy	Er	Eu	Fe	Ga
Method	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM
Lower Limit	10	0.5	0.2	0.2	1	0.5
Upper Limit	-	-	-	-	-	-
Unit	ppb	ppb	ppb	ppb	ppm m / m	ppb
GA1	760	49.1	25.5	13.3	16	1.3
GA2	750	45.8	23.9	12.3	19	0.5
GA3	550	180	91.1	55.7	30	0.8
GM	570	92.5	45.1	28.6	22	<0.5
GAS	360	117	51.8	32.9	30	<0.5
GAS	320	135	69.7	38.7	26	<0.5
GA7	610	133	73.4	37.7	48	1.5
GAS	360	83.6	40.9	28.3	25	<0.5
GAS	290	191	94.8	57.6	39	0.9
GA10	190	138	67.5	42.2	36	<0.5
GA11	610	98.4	47.4	29.2	13	0.9
GA12	1260	32.5	18.9	6.5	12	<0.5
GA13	820	68.7	35.6	21.2	14	1.0
GA14	920	81.2	43.6	22.8	17	1.0
GA15	330	167	83.0	48.9	23	1.3
GA15	390	96.7	46.0	27.3	15	1.5
GA17	930	60.0	31.6	18.7	16	0.6
GA18	1420	138	70.1	45.4	12	1.5
GA19	290	188	102	42.3	77	5.3
GA20	500	96.9	48.1	29.7	17	1.4
GA21	440	73.4	37.3	20.6	42	2.2

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received
25-Sep-2019 11:32AM BBM_U0001052037 Page 4 of 12 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019
808 Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (804) 638 2340 f www.spa.com
Member of the 366 Grap (265 34)

Order Number	THOMSON GEOLOGICAL/ GG AND
Submission Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI Number of Samples	24

Element	Cu	Dy	Er	Eu	Fe	Ca
Method	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM
Lower Limit	10	0.5	0.2	0.2	1	0.5
Upper Limit	-	-	-	-	-	-
Unit	ppb	ppb	ppb	ppb	ppm m / m	ppb
GA22	370	38.3	16.6	12.3	20	1.6
GA23	970	36.7	19.6	10.3	8	<0.5
GA24	460	54.3	26.8	19.0	25	3.8
"BIK BLANK	<10	<0.5	<0.2	<0.2	<1	<0.5
"Std AMISO169	3040	24.7	10.7	10.2	33	9.7
'Rep GA14	750	85.5	43.2	24.9	16	0.7
"BIK BLANK	<10	<0.5	<0.2	<0.2	<1	<0.5
"Std AMISO169	3040	22.1	9.3	8.8	31	10.0

Element	Gd	Hg	in	к	La	u
Method	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM
Lower Limit	0.5	1	0.1	0.5	1	1
Upper Limit	-	-	-	-	-	-
Unit	ppb	ppb	ppb	ppm m / m	ppb	ppb
GA1	81.5	ব	<0.1	77.2	179	9
GA2	66.7	<1	<0.1	113	119	4
GAS	287	<1	<0.1	46.8	1440	9
GM	150	<1	<0.1	116	456	3
GAS	157	<1	<0.1	47.4	860	4
GAS	209	<1	<0.1	61.0	842	9
GA7	184	<1	<0.1	34.9	872	11
GAS	135	<1	<0.1	27.2	918	5
GAS	271	<1	<0.1	31.7	1510	5
GA10	208	<1	<0.1	37.6	1010	3
GA11	155	<1	<0.1	29.9	479	9
GA12	41.7	<1	<0.1	65.3	29	2
GA13	115	<1	<0.1	140	222	4
GA14	128	<1	<0.1	71.3	249	3

- not analysed | - element not determined | 1.8. insufficient sample | L.N.R. listed not received 25-Sep-2019 11:32AM BBM_U0001062037

MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

Page 5 of 12

www.sgs.com

SOS Canada CA MIN Burnaby, BC 3250 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (504) 638 2340 ff

Member of the SSS Group (SSS SA)

THOMSON GEOLOGICAL/ GG AND

24

THOMSON GEOLOGICAL/ GG AND

ANALYSIS REPORT BBM19-00491

GA/ 57 MMI
Submission Number
GAV 57 MMI
Number of Samples

Order Number

Element Method Lower Limit Upper Limit Unit	Gd GE_MMIM 0.5 -	Hg GE_MMIM 1 pob	In GE_MMIM 0.1 - pob	K GE_MMIM 0.5 	Le GE_MMIM 1 pob	LI GE_MMIM 1
GA15	257	<1	<0.1	79.0	888	3
GA15	140	<1	<0.1	122	368	<1
GA17	96.6	<1	<0.1	38.4	227	20
GA18	238	<1	<0.1	36.2	355	18
GA19	226	<1	0.2	44.4	916	13
GA20	157	<1	<0.1	83.2	569	4
GA21	113	<1	<0.1	66.3	562	7
GA22	63.6	<1	<0.1	54.1	236	4
GA23	58.4	<1	<0.1	40.1	65	30
GA24	88.9	<1	<0.1	28.2	551	4
*BIK BLANK	<0.5	<1	<0.1	<0.5	2	<1
"Std AMISO169	37.3	<1	<0.1	40.1	448	2
'Rep GA14	131	<1	<0.1	65.6	283	2
*BIK BLANK	0.7	<1	<0.1	<0.5	1	<1
"Std AMISO169	35.0	<1	<0.1	37.2	394	1

Element Method Lower Limit	Mg GE_MMIM 0.5	Mn GE_MMIM 100	Mo GE_MMIM 2	Nb GE_MMIM 0.5	Nd GE_MMIM 1	NI GE_MMIM 5
Upper Limit	-	-	-	-	-	_
Unit	ppm m / m	ppb	ppb	ppb	ppb	ppb
GA1	114	3000	6	1.2	310	249
GA2	90.9	1100	15	1.4	235	275
GA3	99.3	10300	10	1.7	1700	745
GA4	90.7	3200	5	0.9	714	318
GAS	105	1300	3	1.0	895	241
GAS	123	4600	5	1.3	1100	296
GA7	102	2600	2	1.4	1020	394

 not analysed 	 element not determined 	I.S. insuff
----------------------------------	--	-------------

Icient sample | L.N.R. listed not received

25-Sep-2019 11:32AM BBM_U0001062037

SOS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC VSA 4W4 Burnaby CANADA t +1 (504) 638 2340 f

Page 6 of 12

www.sgs.com

MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

Member of the SGS Smap (SGS SA)

Order Number	THOMSON GEOLOGICAL/ GG AND
GAV 57 MMI	
Submission Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI	
Number of Samples	24

Element Mn Mo Nb Nd Ni Mg GE_MMIM GE_MMIM GE_MMIM GE_MMIM Method GE_MMIM GE_MMIM 0.5 Lower Limit 100 0.5 5 2 1 Upper Limit -----Unit ppmm/m ppb ppb ppb ppb ppb 944 GAS 122 16800 5 1.5 396 GAR 4 1670 72.0 2900 264 1.2 GA10 6 96.9 4100 1.6 1190 468 3400 5 GA11 114 1.1 727 505 GA12 115 2700 2 1.0 71 305 7 434 2100 91.1 1.0 GA13 453 GA14 86.8 2400 2 0.6 440 367 2 1230 303 99.6 2200 0.6 GA15 GA15 129 1300 2 <0.5 575 191 GA17 176 2300 2 1.2 378 326 206 5800 6 0.8 751 GA18 763 GA19 54.8 12000 5 2.0 1170 533 GA20 101 4700 5 0.9 808 314 GA21 75.8 2200 3 680 221 1.7 1300 2 351 168 GA22 112 1.0 GA23 2 210 2700 1.4 151 260 GA24 65.1 2900 2 200 1.6 590 <0.5 <100 2 <0.5 **'Bik BLANK** <1 <5 "Std AMISO169 27.7 3300 3 340 312 1.8 85.4 3100 2 0.6 508 392 'Rep GA14 **'Bik BLANK** <0.5 <100 2 <0.5 <1 <5 "Std AMISO169 26.2 3300 2 2.0 307 320

ANALYSIS REPORT BBM19-00491

Element	Р	РЬ	Pd	Pr	Pt	Rb
Method	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM
Lower Limit	0.1	5	1	0.5	0.1	1
Upper Limit	-	-	-	-	-	-
Unit	ppm m / m	ppb	ppb	ppb	ppb	ppb

- not analysed | - element not determined | L.S. insufficient sample | L.N.R. listed not received
25-Sep-2019 11:32AM BBM_U0001062037 Page 7 of 12 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019
808 Ceneda CA MIN Burnety, BC 3250 Production Way, Burnety, BC VSA 4W4 Burnety CANADA t +1 (804) 638 2340 f www.spa.com
Henter of the 300 Grave (305 50)

Order Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI	
Submission Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI	
Number of Samples	24

Element	P	Pb	Pd	Pr	Pt	Rb
Method	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM
Lower Limit	0.1	5	1	0.5	0.1	1
Upper Limit	-	-	-	-	-	-
Unit	ppm m / m	ppb	ppb	ppb	ppb	ppb
GAI	1.8	64	<1	58.3	<0.1	28
GA2	2.0	65	<1	42.6	<0.1	66
GAS	1.6	148	<1	423	<0.1	167
GA4	2.7	84	<1	150	<0.1	54
GAS	1.7	138	<1	220	<0.1	35
GAS	1.6	144	<1	247	<0.1	76
GA7	1.3	249	<1	248	<0.1	73
GAS	1.0	102	<1	240	<0.1	135
GAD	1.9	197	<1	410	<0.1	130
GA10	1.8	145	<1	280	<0.1	183
GA11	0.8	81	<1	144	<0.1	148
GA12	1.8	102	<1	10.9	<0.1	45
GA13	1.9	73	<1	75.6	<0.1	93
GA14	1.0	54	<1	84.1	<0.1	52
GA15	1.3	86	<1	274	<0.1	102
GA15	1.7	56	<1	115	<0.1	21
GA17	1.0	98	<1	72.5	<0.1	70
GA18	0.5	39	<1	133	<0.1	69
GA19	2.3	242	<1	267	<0.1	152
GA20	1.4	81	<1	175	<0.1	41
GA21	3.0	145	<1	151	<0.1	48
GA22	2.6	129	<1	74.7	<0.1	43
GA23	0.6	63	<1	26.2	<0.1	44
GA24	1.7	157	<1	148	<0.1	100
*Bik BLANK	0.2	<5	<1	0.6	<0.1	<1
"Std AMIS0169	2.1	96	<1	101	<0.1	219
*Rep GA14	0.8	56	<1	95.0	<0.1	61
*Bik BLANK	0.1	<5	<1	<0.5	<0.1	<1
"Std AMIS0169	2.0	94	<1	84.5	<0.1	225

- not analysed | - element not determined | I.S. insufficient sample | L.N.R. listed not received 25-Sep-2019 11:32AM BBM_U0001062037 Page 8 of 12 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

SOS Canada CA MIN Burnaloy, BC 3250 Production Way, Burnaloy, BC VSA 4W4 Burnaloy CANADA & +1 (504) 638 2340 # www.sgs.com _____

Menter of the SSS Group (SSS SM)

Order Number	THOMSON GEOLOGICAL/ GG AND
Submission Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI Number of Samples	24

MSON GEOLOGICAL/ GG AND

ANALYSIS REPORT BBM19-00491

Element	86	Se	Sm	Sn	Sr	Те
Method	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM
Lower Limit	0.5	5	1	1	10	1
Upper Limit	-	-	-	-	-	-
Unit	ppb	ppb	ppb	ppb	ppb	ppb
GA1	<0.5	9	75	<1	18400	<1
GA2	<0.5	12	58	<1	15300	<1
GA3	<0.5	39	327	<1	11600	<1
GAA	<0.5	15	154	ৰা	12500	<1
GAS	<0.5	41	169	ব	15000	<1
GAS	<0.5	48	222	ৰা	15700	<1
GA7	<0.5	50	207	ব	13000	<1
GAS	<0.5	26	163	<1	11000	<1
GA9	<0.5	74	311	ৰ ব	10300	<1
GA10	<0.5	45	233	ব	12500	<1
GA11	<0.5	14	158	<1	14200	<1
GA12	<0.5	8	26	ব	20000	<1
GA13	<0.5	9	112	ব	16200	<1
GA14	<0.5	14	116	ব	15800	<1
GA15	<0.5	28	268	ব	11600	<1
GA15	<0.5	15	141	<1	14200	<1
GA17	<0.5	15	89	ৰা	11500	<1
GA18	<0.5	10	203	<1	12700	<1
GA19	<0.5	176	242	ব	7580	<1
GA20	<0.5	17	170	<1	10700	<1
GA21	<0.5	31	126	ব	10100	<1
GA22	<0.5	9	72	ব	11500	<1
GA23	<0.5	10	46	<1	14400	<1
GA24	<0.5	16	109	<1	12000	<1
*BIK BLANK	<0.5	<5	<1	<1	<10	<1
"Std AMISO169	0.6	44	56	<1	80	<1
*Rep GA14	<0.5	13	124	<1	15000	<1
*BIK BLANK	<0.5	<5	1	ব	<10	<1

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

25-Sep-2019 11:32AM BBM_U0001062037

+

Page 9 of 12

MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

SOS Canada CA MIN Burnaby, BC 3350 Production Way, Burnaby, BC VSA 4W4 Burnaby CANADA t +1 (504) 538 2340 f

www.sgs.com

Member of the SSS Group (SSS SA)

Order Number	THOMSON GEOLOGICAL/ GG AND
Submission Number GA/ 57 MMI	THOMSON GEOLOGICAL/ GG AND
Number of Samples	24
5	

Element Method Lower Limit	Sb GE_MMIM 0.5	8c GE_MMIM 5	Sm GE_MMIM 1	8n GE_MMIM 1	Sr GE_MMIM 10	Te GE_MMIM 1
Upper Limit Unit	ppb	ppb	ppb	ppb	ppb	ppb
"Std AMIS0169	<0.5	43	51	<1	80	<1

Element Method	Tb GE_MMIM	Te GE_MMIM	Th GE_MMIM	TI GE_MMIM	TI GE_MMIM	U GE_MMIM				
Lower Limit	0.1	10	0.5	10	0.1	0.5				
Upper Limit	-	-	-	-	-	-				
Unit	ppb	ppb	ppb	ppb	ppb	ppb				
GA1	9.3	<10	25.9	10	0.3	152				
GA2	8.4	<10	18.5	20	0.8	118				
GA3	32.8	<10	57.4	50	1.6	126				
GM	17.3	<10	22.6	20	0.4	93.8				
GAS	20.4	<10	22.5	40	0.3	129				
GAS	24.7	<10	30.2	40	0.5	141				
GA7	23.4	<10	29.8	30	0.4	192				
GAS	15.4	<10	51.2	20	1.1	141				
GA9	34.7	<10	38.0	50	0.7	82.4				
GA10	25.6	<10	34.8	50	0.8	66.5				
GA11	17.9	<10	43.8	30	1.1	93.2				
GA12	5.4	<10	6.9	10	1.0	100				
GA13	13.4	<10	24.0	20	0.6	99.6				
GA14	14.6	<10	22.7	10	0.5	107				
GA15	30.1	<10	27.6	40	0.3	85.4				
GA15	17.2	<10	8.4	20	0.2	128				
GA17	11.2	<10	27.3	10	0.5	317				
GA18	26.5	<10	22.7	<10	1.7	673				
GA19	31.5	<10	91.6	250	0.5	92.7				
GA20	18.4	<10	28.6	40	0.3	76.8				
GA21	13.5	<10	22.5	40	0.2	93.3				

- not analysed | - element not determined | 1.8. insufficient sample | L.N.R. listed not received

ANALYSIS REPORT BBM19-00491

25-Sep-2019 11:32AM BBM_U0001062037

Page 10 of 12

MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

SOS Canada CA MIN Burnaby, BC 3350 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA & +1 (604) 638 2340 #

www.sgs.com

Member of the SSS Group (SSS SA)

Order Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI	
Submission Number	THOMSON GEOLOGICAL/ GG AND
GA/ 57 MMI	

Number of Samples 24

Element ть Те Th Т П U GE_MMIM Method GE_MMIM GE_MMIM GE_MMIM GE_MMIM GE_MMIM 0.5 Lower Limit 0.1 10 0.5 10 0.1 Upper Limit ------Unit ppb ppb ppb ppb ppb ppb 7.0 0.2 68.1 GA22 <10 19.6 20 GA23 6.6 <10 0.6 131 15.4 20 GA24 39.0 0.2 79.1 10.4 <10 20 'Bik BLANK <10 <0.5 <10 <0.1 <0.1 <0.5 "Std AMISO169 4.5 <10 58.6 310 1.3 19.3 24.6 15.6 <10 10 0.6 'Rep GA14 99.4 'BIR BLANK <0.1 <10 <0.5 <10 <0.1 <0.5 "Std AMISO169 4.2 <10 60.5 330 1.2 20.5

Element Method Lower Limit Upper Limit Unit	W GE_MMIM 0.5 - ppb	Y GE_MMIM 1 ppb	Үь GE_MMIM 0.2 – ppb	Zn GE_MMIM 10 - ppb	Zr GE_MMIM 2 - ppb
GAI	<0.5	270	16.9	290	43
GA2	<0.5	247	16.9	160	55
GAS	<0.5	943	70.5	210	181
GM	<0.5	451	32.9	210	59
GAS	<0.5	527	36.6	140	102
GAS	<0.5	813	52.9	160	116
GA7	<0.5	697	53.6	2420	89
GAS	<0.5	401	30.3	70	116
GAS	<0.5	891	67.4	50	150
GA10	<0.5	636	49.0	60	111
GA11	<0.5	531	33.1	240	79
GA12	<0.5	189	13.5	140	27
GA13	<0.5	404	24.2	250	53
GA14	<0.5	491	30.6	260	61

- not analysed | - element not determined | 1.8. insufficient sample | L.N.R. listed not received 25-Sep-2019 11:32AM BBM_U0001062037

Page 11 of 12

MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

ANALYSIS REPORT BBM19-00491

SOS Canada CA MIN Burnaby, BC 3260 Production Way, Burnaby, BC V5A 4W4 Burnaby CANADA t +1 (604) 638 2340 f

www.sgs.com

Menter of the SSS Group (SSS SH)

Order Number GA/ 57 MMI	THOMSON GEOLOGICAL/ GG AND	ANALYSIS REPORT BBM19-00491
Submission Number GA/ 57 MMI	THOMSON GEOLOGICAL/ GG AND	
Number of Samples	24	

Element	w	Y	ΥЪ	Zn	Zr
Method	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM	GE_MMIM
Lower Limit	0.5	1	0.2	10	2
Upper Limit	-	-	-	-	-
Unit	ppb	ppb	ppb	ppb	ppb
GA15	<0.5	898	62.6	180	99
GA16	<0.5	540	32.6	290	43
GA17	<0.5	381	23.7	610	35
GA18	<0.5	900	53.4	230	39
GA19	<0.5	1030	78.2	150	190
GA20	<0.5	528	32.7	370	69
GA21	<0.5	397	26.6	280	82
GA22	<0.5	172	11.6	250	45
GA23	<0.5	220	15.2	320	34
GA24	<0.5	288	20.1	440	73
*BIK BLANK	<0.5	<1	<0.2	<10	2
"Std AMISO169	1.0	94	8.3	150	41
*Rep GA14	<0.5	454	31.4	380	67
*BIK BLANK	<0.5	1	<0.2	<10	4
"Std AMISO169	0.8	92	7.0	150	38

- not analysed | - element not determined | I.S. insufficient sample | L.N.R. listed not received
25-Sep-2019 11:32AM 85M_U0001052037 Page 12 of 12 MIN-M_COA_ROW-Last Modified Date: 24-Jul-2019

SOS Canada CA MIN Burnaby, BC 3250 Production Way, Burnaby, BC VSA 4W4 Burnaby CANADA t +1 (504) 535 2340 f

Manhary Page 500 Group (500 Gil)

www.sgs.com

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

	Project: Shipment ID:	PDL	Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status
	P.O. Number		Dry at 60C	23	Dry at 60C		
	Number of Samples:	23	SS80	23	Dry at 60C sieve 100g to -80 mesh		
Number of Samples.		SVRJT	23	Save all or part of Soil Reject			
	SAMPLE DISP	OSAL	AQ250_EXT	23	1:1:1 Aqua Regia digestion Ultratrace ICP-MS analysis	0.5	Completed
			GC840	23	Trace level F by specific ion electrode	0.2	Completed
	PICKUP-PLP	Client to Pickup Pulps	DRPLP	23	Warehouse handling / disposition of pulps		
	PICKUP-RJT	Client to Pickup Rejects	DRRJT	23	Warehouse handling / Disposition of reject		

www.acmelab.com

ADDITIONAL COMMENTS

Invoice To:

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the citent. Acrone assumes the liabilities for actuatio cost of analysis only. Results apply to samples as submitted. "" asterisk indicates that an analytical result could not be provided use to unusually high levels of Interference from other elements.

VAN14001843.1

Lab VAN VAN VAN

VAN

VAN VAN VAN

Report Date: Page: 1 of 2

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

	Langley BC V3A 8H1 Canada
Submitted By:	G. Thomson
Receiving Lab:	Canada-Vancouver
Received:	luno 12, 2014

Client:

July 05, 2014

Thomson anada-Vancouver June 12, 2014

Thomson Geological 40 - 21928 48th Ave.

Bureau Veritas Commodities Canada Ltd.

www.acmelab.com

Method AQ250 AQ250

Client:

Page:

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

Project: PDL Report Date:

July 05, 2014

2 of 2

Part: 1 of 3

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158
CERTIFICATE OF ANALYSIS

			VA	N14	400 1	1843	3.1	
AQ250	AQ250	AQ250	AQ250 AQ250		AQ250	AQ250	AQ250	AQ250
Au	Th	Sr	Cd Sb		Bi	V	Ca	P

		Analyte	Mo	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P
		Unit	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
		MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.01	0.1	0.05	0.2	0.1	0.5	0.01	0.02	0.02	2	0.01	0.001
L3N 0+000E	Soil		1.62	24.79	13.97	134.2	212	13.9	6.6	557	2.88	8.4	2.76	1.8	12.7	349.9	0.15	0.30	0.19	50	0.68	0.148
L3N 0+20E	Soil		6.06	32.37	12.92	96.0	411	22.7	8.9	433	2.91	16.1	2.91	9.4	9.9	270.5	0.15	0.79	0.21	70	0.58	0.156
L3N 0+40E	Soil		1.50	26.27	16.57	107.0	112	21.6	10.5	830	2.85	6.5	2.32	0.7	8.2	204.3	0.24	0.26	0.25	67	0.50	0.110
L3N 0+60E	Soil		1.44	17.99	11.81	70.8	74	17.2	8.1	541	2.51	4.3	1.84	2.9	6.8	161.1	0.13	0.18	0.26	58	0.30	0.052
L3N 0+80E	Soil		1.18	16.27	10.76	67.0	56	16.6	7.6	457	2.45	3.6	1.18	0.5	6.3	173.9	0.10	0.18	0.22	59	0.28	0.060
L3N 1+00E	Soil		0.74	43.94	13.73	76.9	471	32.0	10.6	625	2.88	12.8	11.02	2.2	6.6	252.2	0.21	0.23	0.28	61	0.81	0.114
L3N 1+20E	Soil		1.17	22.34	11.93	64.0	120	21.3	9.7	686	2.53	5.5	1.76	76.4	6.1	212.1	0.15	0.14	0.18	61	0.46	0.136
L3N 1+40E	Soil		0.91	15.14	8.89	46.4	72	14.5	7.4	644	1.86	2.8	0.96	<0.2	4.4	146.9	0.09	0.10	0.13	42	0.34	0.068
L3N 1+60E	Soil		1.24	19.66	10.18	49.7	74	19.3	8.2	523	2.10	3.3	1.64	1.4	6.8	267.7	0.13	0.12	0.13	55	0.52	0.121
L3N 1+80E	Soil		1.06	23.11	12.16	58.0	49	34.4	10.9	359	2.72	4.6	2.09	0.3	10.7	388.3	0.08	0.11	0.12	74	0.86	0.301
L3N 2+00E	Soil		0.73	21.11	10.08	56.1	58	19.2	8.3	665	1.88	2.8	1.45	0.4	6.0	275.7	0.14	0.09	0.14	45	0.58	0.120
L3N 2+20E	Soil		1.27	21.92	10.35	66.0	56	19.5	8.3	537	2.05	3.9	1.31	0.3	6.1	300.0	0.17	0.12	0.15	51	0.66	0.196
L1N 0+00E	Soil		0.78	38.92	12.30	69.7	136	21.3	8.9	557	2.22	9.1	9.82	0.6	5.2	324.2	0.24	0.19	0.19	51	1.04	0.167
L1N 0+20E	Soil		2.48	27.55	12.35	73.4	61	17.8	8.0	716	1.98	4.0	1.86	0.6	5.9	255.3	0.18	0.16	0.15	43	0.70	0.099
L1N 0+40E	Soil		0.93	27.92	23.10	127.7	183	13.7	6.6	1035	1.72	5.2	1.65	<0.2	6.8	387.5	0.26	0.16	0.15	35	1.15	0.167
L1N 0+60E	Soil		0.94	24.85	11.20	92.4	64	23.1	9.6	748	2.61	3.4	1.67	<0.2	8.1	250.3	0.16	0.15	0.13	65	0.63	0.124
L1N 0+80E	Soil		0.84	25.87	10.95	74.8	98	25.2	8.8	476	2.78	3.8	1.79	0.3	9.4	311.5	0.13	0.16	0.12	75	0.63	0.156
L1N 1+00E	Soil		0.89	28.87	14.73	129.2	106	20.1	9.9	998	2.48	4.7	3.30	0.4	8.3	392.3	0.18	0.20	0.15	56	0.66	0.103
L1N 1+20E	Soil		0.99	25.89	11.58	71.9	68	23.4	9.4	562	2.66	3.4	1.68	0.6	7.3	290.3	0.10	0.16	0.14	70	0.56	0.131
L1N 1+40E	Soil		1.09	31.32	11.98	68.5	135	25.3	9.6	528	2.56	4.9	4.04	<0.2	7.7	301.9	0.18	0.22	0.13	66	0.87	0.125
L1N 1+60E	Soil		0.86	23.70	11.25	69.3	63	21.5	8.8	563	2.49	2.9	1.66	0.7	7.9	254.8	0.16	0.15	0.14	58	0.54	0.085
L1N 1+80E	Soil		1.03	15.61	9.00	107.9	69	14.0	7.2	910	2.00	2.6	0.93	0.2	5.6	175.4	0.16	0.12	0.13	45	0.53	0.083
L1N 2+00E	Soil		0.97	16.92	9.42	65.4	45	18.1	7.3	455	2.12	2.4	1.17	1.1	7.0	217.6	0.12	0.12	0.23	51	0.51	0.075

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Bignature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Thomson Geological

40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

www.acmelab.com

Project: PDL Report Date: July

Client:

Page:

July 05, 2014

2 of 2

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

VAN14001843.1

Part

2 of 3

	Method	AQ250	AQ250	AQ250	AQ250	AQ250															
	Analyte	La	Cr	Mg	Ba	Ti	в	AI	Na	ĸ	w	Sc	TI	S	Hg	Se	Te	Ga	Cs	Ge	Hf
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.05	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02
L3N 0+000E Soi		88.2	28.0	0.41	295.9	0.090	<20	2.14	0.012	0.27	0.18	4.3	0.35	0.02	30	<0.1	0.06	8.4	2.98	0.1	0.30
L3N 0+20E Soi		63.8	47.3	0.47	305.3	0.120	<20	1.95	0.018	0.27	0.15	4.9	0.69	0.03	30	0.3	0.08	6.5	3.75	<0.1	0.34
L3N 0+40E Soi		59.6	44.7	0.46	306.8	0.136	<20	2.01	0.016	0.26	0.12	4.8	0.40	0.03	35	0.1	0.03	6.9	3.13	<0.1	0.45
L3N 0+60E Soi		36.1	38.2	0.41	264.5	0.142	<20	1.81	0.016	0.19	0.17	4.2	0.33	0.03	15	0.1	0.04	6.0	3.43	<0.1	0.38
L3N 0+80E Soi		29.5	40.6	0.40	268.0	0.139	<20	1.64	0.014	0.21	0.11	3.5	0.29	0.02	12	<0.1	<0.02	5.7	3.28	<0.1	0.35
L3N 1+00E Soi		66.8	45.8	0.55	304.9	0.140	<20	3.31	0.044	0.18	0.16	6.0	0.56	0.04	63	0.5	0.03	8.5	4.41	0.1	0.37
L3N 1+20E Soi		50.1	46.8	0.39	302.5	0.131	<20	2.03	0.016	0.18	0.09	4.2	0.34	0.02	18	<0.1	0.04	6.0	4.15	<0.1	0.20
L3N 1+40E Soi		29.5	30.6	0.28	227.2	0.102	<20	1.39	0.014	0.12	0.08	2.9	0.26	<0.02	20	<0.1	<0.02	4.2	5.12	<0.1	0.13
L3N 1+60E Soi		50.4	41.4	0.36	319.6	0.124	<20	1.65	0.027	0.20	0.12	3.3	0.34	<0.02	21	<0.1	<0.02	4.7	4.42	0.1	0.26
L3N 1+80E Soi		75.4	54.4	0.58	386.2	0.150	<20	2.15	0.037	0.19	0.14	3.9	0.41	<0.02	19	<0.1	0.07	6.1	4.43	<0.1	0.25
L3N 2+00E Soi		47.5	34.2	0.34	350.0	0.103	<20	1.53	0.020	0.24	0.08	2.7	0.28	<0.02	13	0.1	0.04	4.0	4.62	0.1	0.19
L3N 2+20E Soi		47.2	40.7	0.37	333.7	0.113	<20	1.68	0.029	0.20	0.09	2.9	0.30	<0.02	19	0.2	0.03	4.6	4.14	<0.1	0.30
L1N 0+00E Soi		61.7	34.9	0.51	208.9	0.102	<20	2.14	0.050	0.16	0.11	3.4	0.27	0.04	13	<0.1	0.03	6.2	5.81	0.1	0.26
L1N 0+20E Soi		66.5	32.3	0.35	234.6	0.085	<20	1.58	0.012	0.25	0.13	3.1	0.23	0.02	15	0.3	0.05	4.7	10.19	<0.1	0.24
L1N 0+40E Soi		92.2	24.8	0.33	286.0	0.072	<20	1.64	0.012	0.29	0.16	2.2	0.19	0.04	36	0.2	0.04	5.5	6.93	<0.1	0.14
L1N 0+60E Soi		56.8	53.8	0.38	260.7	0.126	<20	1.56	0.012	0.29	0.10	3.6	0.37	<0.02	22	<0.1	<0.02	5.2	4.54	<0.1	0.29
L1N 0+80E Soi		64.8	60.1	0.42	248.2	0.144	<20	1.54	0.022	0.27	0.10	3.6	0.38	<0.02	19	0.1	0.02	5.1	4.03	<0.1	0.37
L1N 1+00E Soi		79.5	41.9	0.43	319.9	0.124	<20	1.62	0.012	0.32	0.13	3.8	0.28	0.02	30	<0.1	0.07	6.1	9.39	<0.1	0.25
L1N 1+20E Soi		59.7	56.6	0.41	245.6	0.133	<20	1.43	0.015	0.27	0.10	3.9	0.34	<0.02	16	<0.1	< 0.02	5.1	5.18	0.1	0.20
L1N 1+40E Soi		64.4	52.2	0.47	219.5	0.120	<20	1.48	0.021	0.23	0.12	3.7	0.36	0.03	27	0.1	0.03	4.8	4.08	0.1	0.29
L1N 1+60E Soi		58.6	47.2	0.38	252.3	0.122	<20	1.45	0.012	0.31	0.07	3.8	0.36	0.02	14	<0.1	0.05	5.1	4.60	0.1	0.31
L1N 1+80E Soi		41.5	35.5	0.30	233.3	0.101	<20	1.10	0.011	0.23	0.08	2.7	0.31	<0.02	20	0.1	<0.02	4.0	3.12	<0.1	0.16
L1N 2+00E Soi		48.0	41.9	0.32	239.8	0.118	<20	1.13	0.011	0.31	0.10	3.1	0.30	<0.02	28	<0.1	0.03	4.0	3.87	<0.1	0.32

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Bignature indicates final approval; preliminary reports are unsigned and should be used for reference only.

www.acmelab.com

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

Project: Report Date:

Client:

Page:

PDL July 05, 2014

2 of 2

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

VAN14001843.1

Part: 3 of 3

	Method	AQ250	GC840												
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt	F
	Unit	ppm	ppb	ppm	ppm	ppb	ppb	ppm							
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2	10
L3N 0+000E Soil		5.17	17.2	0.9	<0.05	15.7	11.03	174.5	0.04	<1	2.5	23.1	24	<2	495
L3N 0+20E Soil		1.44	22.8	0.7	<0.05	19.7	13.16	118.3	0.04	<1	1.3	15.8	10	<2	564
L3N 0+40E Soil		3.08	21.5	1.1	<0.05	18.1	12.07	115.4	0.04	<1	1.4	16.3	13	<2	487
L3N 0+60E Soil		1.95	24.5	0.7	<0.05	16.5	6.40	70.4	<0.02	<1	0.9	15.4	<10	<2	347
L3N 0+80E Soil		1.29	27.2	0.6	<0.05	16.3	3.98	52.7	0.02	<1	1.0	13.3	10	2	367
L3N 1+00E Soil		3.25	22.0	0.9	<0.05	17.9	25.61	127.1	0.04	<1	1.7	49.5	<10	<2	469
L3N 1+20E Soil		3.43	22.2	0.7	<0.05	9.9	9.89	104.2	0.03	<1	1.4	14.8	<10	2	455
L3N 1+40E Soil		2.88	16.8	0.5	<0.05	6.8	5.02	63.1	0.02	<1	0.8	9.5	<10	<2	285
L3N 1+60E Soil		4.30	18.0	0.6	<0.05	14.1	9.72	100.1	0.03	<1	1.1	10.1	<10	<2	452
L3N 1+80E Soil		3.04	11.6	0.7	<0.05	14.8	15.35	135.9	0.02	<1	1.5	12.3	12	<2	810
L3N 2+00E Soil		4.35	17.3	0.5	<0.05	10.8	8.89	93.5	<0.02	<1	0.9	9.0	<10	<2	397
L3N 2+20E Soil		4.99	16.0	0.5	<0.05	13.4	8.54	92.8	0.02	<1	0.9	9.3	<10	<2	511
L1N 0+00E Soil		5.36	19.2	0.7	<0.05	11.9	13.10	104.6	0.03	1	1.5	28.7	<10	<2	560
L1N 0+20E Soil		4.10	36.1	0.6	<0.05	9.9	11.85	121.7	<0.02	<1	1.3	12.9	<10	<2	484
L1N 0+40E Soil		5.27	20.8	0.7	<0.05	6.2	10.37	183.7	0.02	<1	1.3	15.7	<10	<2	503
L1N 0+60E Soil		3.83	24.4	0.6	<0.05	14.9	11.67	112.1	0.03	<1	1.3	12.4	<10	<2	511
L1N 0+80E Soil		3.43	18.4	0.6	<0.05	18.0	12.07	115.8	0.03	<1	1.5	11.8	<10	3	615
L1N 1+00E Soil		5.87	26.7	0.6	<0.05	10.9	13.56	145.6	<0.02	<1	1.6	16.2	<10	<2	640
L1N 1+20E Soil		3.28	18.4	0.6	<0.05	11.0	11.96	109.5	0.02	<1	1.3	11.1	<10	2	609
L1N 1+40E Soil		5.31	20.3	0.6	<0.05	13.8	12.87	122.0	<0.02	<1	1.5	16.2	<10	<2	531
L1N 1+60E Soil		4.06	26.1	0.6	<0.05	13.3	12.25	114.4	0.02	<1	1.5	11.3	<10	<2	498
L1N 1+80E Soil		3.61	20.1	0.5	<0.05	7.6	6.39	85.4	<0.02	<1	0.8	7.5	<10	<2	345
L1N 2+00E Soil		4.56	20.5	0.5	<0.05	13.8	8.92	87.3	0.03	<1	0.9	9.2	<10	<2	490

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Bureau Veritas Commodities Canada Ltd.

Thomson Geological 40 - 21928 48th Ave Langley BC V3A 8H1 Canada

1 of 3

%

0.56 0.083

F

Part:

v Ca

2 0.01 0.001

65 0.63 0.124

58 0.54 0.085

62

ppm

Bi

www.acmelab.com

Project: PDL Report Date:

Client:

July 05, 2014

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 1 of 1 Page: QUALITY CONTROL REPORT VAN14001843.1 AQ250 Method Analyte Мо Cu Pb Ni Co Mn Fe U Th Sr Cd Zn Ag As Au Sb ppm ppm ppm ppm ppm ppm Unit ppm ppm ppm ppb ppm % ppb ppm ppm ppm ppm 0.01 0.05 0.02 MDL 0.01 0.01 0.1 2 0.1 0.1 1 0.01 0.1 0.2 0.1 0.5 0.01 0.02 Pulp Duplicates Soil 24.85 23.1 0.13 L1N 0+60E 0.94 11.20 92.4 64 9.6 748 2.61 3.4 1.67 <0.2 8.1 250.3 0.16 0.15 REP L1N 0+60E QC L1N 1+60E Soil 0.86 23.70 11.25 69.3 63 21.5 8.8 563 2.49 2.9 1.66 0.7 7.9 254.8 0.16 0.15 0.14 REP L1N 1+60E QC 0.87 24.34 10.71 23.0 547 2.56 1.63 7.8 257.8 0.14 0.14 0.14 72.2 65 9.2 3.1 1.1 D-6

Nelefence materials																					
STD DS10	Standard	13.47	166.65	151.80	364.3	2011	75.8	13.6	854	2.72	48.9	2.40	64.0	7.1	63.8	2.71	8.99	12.61	42	1.05	0.077
STD OREAS45EA	Standard	1.61	715.25	14.81	30.8	295	388.5	53.8	411	23.66	10.6	1.79	55.4	10.3	3.8	0.03	0.30	0.27	303	0.04	0.029
STD STSD-1	Standard																				
STD STSD-1	Standard																				
STD DS10 Expected		14.69	154.61	150.55	370	2020	74.6	12.9	875	2.7188	43.7	2.59	91.9	7.5	67.1	2.49	8.23	11.65	43	1.0625	0.073
STD OREAS45EA Expected		1.39	709	14.3	28.9	260	381	52	400	23.51	9.1	1.73	53	10.7	3.5	0.02	0.2	0.26	303	0.036	0.029
STD STSD-1 Expected																					
BLK	Blank	⊲0.01	0.03	<0.01	<0.1	<	<0.1	<0.1	<1	<0.01	0.1	<0.05	<0.2	⊲0.1	<0.5	<0.01	<0.02	⊲0.02	<2	<0.01	< 0.001
BLK	Blank																				

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

AcmeLab)S™										Clien	t:	Tho 40 - 2 Langk	mson 1928 48ti ey BC V3	Geolo h Ave. A 8H1 Ca	o gical anada				
A Bureau Veritas Group Company	-		www	.acmela	ab.com						Project	E	PDL							
Bureau Veritas Commodities Canada Lt	d.										Report	Date:	July 0	5, 2014						
9050 Shaughnessy St Vancouver BC V	6P 6E5	CANAE	A																	
PHONE (604) 253-3158											Page:		1 of 1					Part	: 2 of	3
QUALITY CONTROL	REP	OR	Г												VA	N14	001	843.	1	
Method	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250	AQ250
Analyte	La	Cr	Mg	Ba	Ti	в	AI	Na	к	w	Sc	ті	S	Hg	Se	Te	Ga	Cs	Ge	H
Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	%	ppb	ppm	ppm	ppm	ppm	ppm	ppm
MDI	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.05	0.1	0.02	0.02	5	0.1	0.02	0.1	0.02	0.1	0.02

	MDL	0.5	0.5	0.01	0.5	0.001	20	0.01	0.001	0.01	0.05	0.1	0.02	0.02	2	0.1	0.02	0.1	0.02	0.1	0.02
Pulp Duplicates																					
L1N 0+60E	Soil	56.8	53.8	0.38	260.7	0.126	<20	1.56	0.012	0.29	0.10	3.6	0.37	<0.02	22	<0.1	<0.02	5.2	4.54	<0.1	0.29
REP L1N 0+60E	QC																				
L1N 1+60E	Soil	58.6	47.2	0.38	252.3	0.122	<20	1.45	0.012	0.31	0.07	3.8	0.36	0.02	14	<0.1	0.05	5.1	4.60	0.1	0.31
REP L1N 1+60E	QC	58.3	49.5	0.38	240.6	0.126	<20	1.48	0.012	0.32	0.09	3.9	0.36	0.02	19	<0.1	0.02	5.0	4.52	0.1	0.28
Reference Materials																					
STD DS10	Standard	15.9	56.2	0.77	404.5	0.077	<20	1.01	0.067	0.33	3.17	2.8	5.31	0.29	327	2.3	5.02	4.3	2.70	<0.1	0.05
STD OREAS45EA	Standard	6.7	862.5	0.09	147.0	0.097	<20	3.14	0.024	0.05	<0.05	77.4	⊲0.02	0.04	10	0.9	0.10	12.7	0.68	0.3	0.67
STD STSD-1	Standard																				
STD STSD-1	Standard																				
STD DS10 Expected		17.5	54.6	0.775	359	0.0817		1.0259	0.067	0.338	3.32	2.8	5.1	0.29	300	2.3	5.01	4.3	2.63	0.08	0.06
STD OREAS45EA Expected		6.57	849	0.095	148	0.0875		3.13	0.02	0.053		78	0.072	0.036	10	0.63	0.07	11.7	0.63	0.26	0.57
STD STSD-1 Expected																					
BLK	Blank	<0.5	<0.5	<0.01	<0.5	<0.001	<20	< 0.01	<0.001	<0.01	<0.05	<0.1	⊲0.02	<0.02	<5	<0.1	<0.02	<0.1	< 0.02	<0.1	⊲0.02
BLK	Blank																				

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Bignature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

Part: 3 of 3

VAN14001843.1

Project: PDL Report Date:

Client:

Page:

July 05, 2014

1 of 1

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

QUALITY CONTROL REPORT

	Method	AQ250	GC840												
	Analyte	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Pd	Pt	F
	Unit	ppm	ppb	ppm	ppm	ppb	ppb	ppm							
	MDL	0.02	0.1	0.1	0.05	0.1	0.01	0.1	0.02	1	0.1	0.1	10	2	10
Pulp Duplicates															
L1N 0+60E	Soil	3.83	24.4	0.6	<0.05	14.9	11.67	112.1	0.03	<1	1.3	12.4	<10	<	511
REP L1N 0+60E	QC														485
L1N 1+60E	Soil	4.06	26.1	0.6	<0.05	13.3	12.25	114.4	0.02	<1	1.5	11.3	<10	<	498
REP L1N 1+60E	QC	3.97	28.0	0.6	<0.05	13.4	12.34	109.1	0.03	<1	1.2	10.9	<10	<	
Reference Materials															
STD DS10	Standard	1.21	28.1	1.8	<0.05	2.0	7.35	32.5	0.24	50	0.9	20.0	95	179	
STD OREAS45EA	Standard	0.09	7.3	0.9	<0.05	22.8	5.10	16.8	0.09	1	0.4	2.5	79	108	
STD STSD-1	Standard														985
STD STSD-1	Standard														990
STD DS10 Expected		1	27.7	1.6		2.8	7.77	37	0.23	50	0.63	19.4	110	191	
STD OREAS45EA Expected		0.06	7.04	0.83		20	5.09	17.7	0.08		0.41	2.37	66	108	
STD STSD-1 Expected															950
BLK	Blank	<0.02	⊲0.1	<0.1	<0.05	⊲0.1	<0.01	<0.1	<0.02	<1	<0.1	<0.1	<10	<	
BLK	Blank														<10

www.acmelab.com

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Client to Pickup Pulps

Client to Pickup Rejects

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

CLIENT JOB INFORMATION

Project:	ASTRO		
Shipment ID: P.O. Number			
Number of Samples:	18		
SAMPLE DISPOS	AL		

www.acmelab.com

Client:

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

Submitted By: Receiving Lab: Received: Report Date: Page:

G. Thomson Canada-Vancouver September 08, 2014 September 26, 2014 1 of 2

VAN14002943.2

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
SS230	18	Dry at 60C sieve 100g to -230 mesh			VAN
SVRJT	18	Save all or part of Soil Reject			VAN
AQ300_U	18	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed	VAN
DRPLP	18	Warehouse handling / disposition of pulps			VAN
DRRJT	18	Warehouse handling / Disposition of reject			VAN
AQ115	18	Acid digest, Au by ICP-MS analysis	15	Completed	VAN

ADDITIONAL COMMENTS

Version 2 : AQ115 included.

Invoice To:

PICKUP-PLP

PICKUP-RJT

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client:

Page:

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

www.acmelab.com

Project: ASTRO Report Date: September 26, 2014

2 of 2

Part: 1 of 2

CERTIFI	CATE C	F AN	IALY	′SIS	;												VA	N14	4002	2943	.2	
		Method	AQ300																			
		Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	v	Ca	P	La
		Unit	ppm	%	ppm	%	%	ppm														
		MDL	1	1	3	1	0.3	1	1	2	0.01	2	8	2	1	0.5	3	3	1	0.01	0.001	1
L2+60N 1+00E	Soil		<1	32	8	90	<0.3	27	9	594	3.13	4	<8	7	222	<0.5	<	3	60	0.70	0.071	84
L2+60N 1+10E	Soil		<1	20	21	109	<0.3	13	5	584	2.40	2	<8	9	173	<0.5	4	4	48	0.54	0.064	84
L2+60N 1+20E	Soil		<1	22	5	88	<0.3	21	7	594	2.88	2	<8	6	170	<0.5	⊲	<3	64	0.43	0.078	53
L2+60N 1+30E	Soil		<1	23	13	89	<0.3	23	7	464	3.02	<2	<8	7	167	<0.5	< ⊲	<3	67	0.38	0.069	51
L2+60N 1+40E	Soil		<1	24	<3	94	<0.3	22	8	521	3.00	3	<8	7	168	<0.5	<	<3	66	0.43	0.094	49
L2+80N 1+00E	Soil		<1	32	10	66	<0.3	29	9	293	3.18	<2	<8	7	230	<0.5	<	<3	69	0.51	0.077	60
L2+80N 1+10E	Soil		1	35	12	86	<0.3	28	9	692	2.98	5	<	5	254	<0.5	4	3	60	0.77	0.115	62
L2+80N 1+20E	Soil		<1	23	6	63	<0.3	24	8	461	2.91	5	<8	6	215	<0.5	<	<3	61	0.49	0.097	58
L2+80N 1+30E	Soil		<1	20	4	71	<0.3	22	8	703	2.74	4	<	5	164	<0.5	Q	<	56	0.42	0.097	41
L2+80N 1+40E	Soil		1	19	6	57	<0.3	21	7	404	2.62	5	<8	5	197	<0.5	<	3	57	0.37	0.084	47
L3+20N 1+00E	Soil		<1	63	6	99	<0.3	29	8	602	2.95	9	10	5	208	<0.5	\$	<3	47	0.88	0.065	85
L3+20N 1+10E	Soil		1	25	\$	84	<0.3	20	7	545	2.76	<2	<8	5	177	<0.5	Q	<3	55	0.45	0.113	50
L3+20N 1+20E	Soil		<1	18	<3	75	<0.3	19	7	615	2.64	4	<8	5	180	<0.5	<	4	54	0.43	0.132	32
L3+20N 1+30E	Soil		1	19	6	68	<0.3	17	6	716	2.29	<2	<8	5	165	<0.5	<	<3	46	0.39	0.122	29
L3+20N 1+40E	Soil		<1	20	8	61	<0.3	19	7	519	2.42	4	<8	5	199	<0.5	<	4	51	0.47	0.104	38
L3N 1+10E	Soil		<1	36	10	120	<0.3	25	10	1070	2.97	8	<8	6	260	<0.5	<	<3	64	0.67	0.175	62
3N 1+20E	Soil		<1	24	10	67	<0.3	25	9	538	2.91	5	<8	7	269	<0.5	<	<3	64	0.57	0.159	57
L3N 1+30E	Soil		<1	18	8	53	<0.3	19	7	367	2.47	5	<	4	205	<0.5	<	<3	55	0.39	0.082	43

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Client:

Page:

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

Project: ASTRO Report Date:

2 of 2

September 26, 2014

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Part: 2 of 2

CERTIFI	CATE OF	AN	IALY	′SIS													V	AN14002943.2
	м	lethod	AQ300	AQ115														
	A	nalyte	Cr	Mg	Ba	Ti	в	AI	Na	к	w	S	Hg	TI	Ga	Sc	Au	
		Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm	ppb	
+		MDL	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5	0.5	ł
L2+60N 1+00E	Soil		37	0.64	241	0.140	<20	2.76	0.03	0.26	<2	⊲0.05	<1	<5	6	6	4.4	
L2+60N 1+10E	Soil		26	0.45	301	0.110	<20	1.58	0.02	0.32	<2	⊲0.05	<1	<5	<5	<	2.4	
L2+60N 1+20E	Soil		40	0.48	293	0.142	<20	2.12	0.01	0.29	<2	⊲0.05	<1	<5	<5	<5	9.2	
L2+60N 1+30E	Soil		46	0.49	346	0.157	<20	2.31	0.02	0.30	<2	⊲0.05	<1	<5	<5	6	1.3	
L2+60N 1+40E	Soil		42	0.48	334	0.151	<20	2.35	0.01	0.30	<2	⊲0.05	<1	<5	<5	5	3.3	
L2+80N 1+00E	Soil		46	0.61	340	0.164	<20	2.89	0.03	0.25	<2	⊲0.05	<1	7	<5	6	2.9	
L2+80N 1+10E	Soil		43	0.57	310	0.135	<20	2.62	0.02	0.30	<2	⊲0.05	<1	6	\$	6	3.1	
L2+80N 1+20E	Soil		43	0.52	359	0.141	<20	2.78	0.02	0.20	<2	⊲0.05	<1	<5	<5	6	1.6	
L2+80N 1+30E	Soil		40	0.44	317	0.133	<20	2.35	0.01	0.27	<2	⊲0.05	<1	<5	<5	4	0.9	
L2+80N 1+40E	Soil		39	0.44	316	0.134	<20	2.31	0.01	0.18	<2	⊲0.05	<1	<5	<5	<	1.0	
L3+20N 1+00E	Soil		38	0.53	209	0.111	<20	3.27	0.02	0.18	<2	⊲0.05	<1	<5	7	7	3.6	
L3+20N 1+10E	Soil		35	0.42	318	0.123	<20	2.67	0.01	0.23	<2	⊲0.05	<1	<5	<	5	2.8	
L3+20N 1+20E	Soil		35	0.40	304	0.129	<20	2.58	0.01	0.25	<2	⊲0.05	1	<5	<5	<	2.1	
L3+20N 1+30E	Soil		30	0.33	327	0.113	<20	2.11	0.01	0.20	<2	<0.05	<1	<5	<5	<5	<0.5	
L3+20N 1+40E	Soil		32	0.36	335	0.121	<20	2.24	0.01	0.24	<2	⊲0.05	1	<5	<5	<5	2.6	
L3N 1+10E	Soil		43	0.49	361	0.130	<20	2.55	0.01	0.27	<2	<0.05	<1	<5	<5	5	0.9	
3N 1+20E	Soil		42	0.48	372	0.141	<20	2.83	0.02	0.21	<2	⊲0.05	<1	<5	<5	5	1.1	
L3N 1+30E	Soil		36	0.39	324	0.126	<20	2.40	0.02	0.14	<2	⊲0.05	<1	<5	<5	<	1.5	

www.acmelab.com

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Bignature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Client:

Page:

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

1 of 1

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

Project: ASTRO Report Date: September 26, 2014

Part: 1 of 2

.

QUALITY CO	UNIROL	REF	ΰR													VA	N14	002	943	.2	
	Method	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
	Analyte	Mo	Cu	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	v	Ca	P	La
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%	%	ppm							
	MDL	1	1	3	1	0.3	1	1	2	0.01	2	8	2	1	0.5	3	3	1	0.01	0.001	1
Pulp Duplicates																					
L2+60N 1+20E	Soil	<1	22	5	88	⊲0.3	21	7	594	2.88	2	<8	6	170	<0.5	<	<	64	0.43	0.078	53
REP L2+60N 1+20E	QC																				
L3+20N 1+00E	Soil	<1	63	6	99	⊲0.3	29	8	602	2.95	9	10	5	208	<0.5	< ⊲	<	47	0.88	0.065	85
REP L3+20N 1+00E	QC	<1	63	13	100	0.4	29	8	605	2.94	10	9	5	208	<0.5	4	4	47	0.89	0.065	86
Reference Materials																					
STD DS10	Standard	16	159	154	386	1.9	77	12	963	2.94	50	<8	7	69	2.5	9	14	45	1.13	0.079	17
STD OREAS45EA	Standard	2	710	15	36	<0.3	420	51	453	24.72	13	<8	9	4	<0.5	5	3	322	0.03	0.033	8
STD OREAS901	Standard																				
STD DS10 Expected		14.69	154.61	150.55	370	2.02	74.6	12.9	875	2.7188	43.7		7.5	67.1	2.49	8.23	11.65	43	1.0625	0.073	17.5
STD OREAS45EA Expect	ed	1.39	709	14.3	28.9	0.26	381	52	400	23.51	9		10.7	3.5				303	0.036	0.029	6.57
STD OREAS901 Expected	ł																				
BLK	Blank	<1	<1	<	<1	⊲0.3	<1	<1	<2	⊲0.01	<2	<8	<2	<1	<0.5	<	<	<1	<0.01	<0.001	<1
BLK	Blank																				
•																					-

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Bignature indicates final approval; preliminary reports are unsigned and should be used for reference only.

www.acmelab.com

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

QUALITY CONTROL REPORT

	Method	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ115
	Analyte	Cr	Mg	Ba	Ti	в	AI	Na	ĸ	w	S	Hg	TI	Ga	Sc	Au
	Unit	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm	ppb
	MDL	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5	0.5
Pulp Duplicates																
L2+60N 1+20E	Soil	40	0.48	293	0.142	<20	2.12	0.01	0.29	<	<0.05	<1	<5	<5	<5	9.2
REP L2+60N 1+20E	QC															2.8
L3+20N 1+00E	Soil	38	0.53	209	0.111	<20	3.27	0.02	0.18	4	<0.05	<1	<5	7	7	3.6
REP L3+20N 1+00E	QC	38	0.53	208	0.112	<20	3.28	0.02	0.19	<	<0.05	<1	<5	7	7	
Reference Materials																
STD DS10	Standard	56	0.81	448	0.077	<20	1.09	0.07	0.35	Q	0.30	<1	<5	\$	<5	
STD OREAS45EA	Standard	955	0.08	155	0.105	<20	3.56	0.02	0.06	<	<0.05	<1	<5	9	95	
STD OREAS901	Standard															405.7
STD DS10 Expected		54.6	0.775	359	0.0817		1.0259	0.067	0.338	3.32	0.29	0.3	5.1	4.3	2.8	
STD OREAS45EA Expected		849	0.095	148	0.0875		3.13	0.02	0.053		0.036			11.7	78	
STD OREAS901 Expected																363
BLK	Blank	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	4	<0.05	<1	6	<5	<5	
BLK	Blank															<0.5

www.acmelab.com

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Client:

Project:

Page:

Thomson Geological 40 - 21928 48th Ave. Langley BC V3A 8H1 Canada

ASTRO Report Date:

1 of 1

September 26, 2014

Part: 2 of 2

VAN14002943.2

64

APPENDIX 3

MMI Analytical Procedures

MMI - M: The Determination of Mobile Metal Ions (MMI): Ag, AI, As, Au, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hg, In, K, La, Li, Mg, Mn, Mo, Nb, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, TI, U, W, Y, Yb, Zn, Zr by partial extraction and ICP-MS.

1. Parameter(s) measured, unit(s):

Silver (Ag); Aluminum (Al); Arsenic (As); Gold (Au); Barium (Ba); Bismuth (Bi); Calcium (Ca); Cadmium (Cd); Cerium (Ce); Chromium (Cr); Cobalt (Co); Cesium (Cs); Copper (Cu); Dysprosium (Dy); Erbium (Er); Europium (Eu); Iron (Fe); Gallium (Ga); Gadolinium (Gd); Mercury (Hg); Indium (In); Potassium (K); Lanthanum (La); Lithium (Li); Magnesium (Mg), Manganese (Mn); Molybdenum (Mo); Niobium (Nb); Neodymium (Nd); Nickel (Ni); Phosphorus (P); Lead (Pb); Palladium (Pd); Praseodymium (Pr); Platinum (Pt); Rubidium (Rb); Antimony (Sb); Scandium (Sc); Samarium (Sm); Tin (Sn); Strontium (Sr); Tantalum (Ta); Terbium (Tb); Tellurium (Te); Thorium (Th); Titanium (Ti); Thallium (TI); Uranium (U); Tungsten (W); Yttrium (Y); Ytterbium (Yb); Zinc (Zn) and Zirconium (Zr) by partial extraction and ICP-MS: ppb.

2. Typical sample size:

50 g

3. Type of sample applicable (media): Soils

4. Sample preparation technique used:

Mobile metal ions present in soil samples are partially extracted using a concentrated MMI -M solution.

5. Method of analysis used:

The extracted sample solution is analyzed by Inductively coupled plasma Mass Spectrometer (ICP-MS). Samples are analyzed against known calibration materials to provide quantitative analysis of the original sample.

6. Data reduction by:

The results are exported via computer, on line, data fed to the SGS Laboratory Information Management System (SLIM) with secure audit trail.

7. Figures of Merit:

Element	Reporting Limit (ppb)	Element	Reporting Limit (ppb)	Elemen t	Reporting Limit (ppb)	Element	Reporting Limit (ppb)
Ag	0.5	Er	0.2	Nd	1	Та	1
AI	1.0 (ppm)	Eu	0.2	Ni	5	Tb	0.1
As	10	Fe	1.0 (ppm)	Р	0.1 (ppm)	Te	10
Au	0.1	Ga	0.5	Pb	5	Th	0.5
Ba	10	Gd	0.5	Pd	1	Ti	10
Bi	0.5	Hg	1	Pr	0.5	TI	0.1
Ca	2 (ppm)	In	0.1	Pt	0.1	U	0.5
Cd	1	K	0.5 (ppm)	Rb	1	W	0.5
Ce	2	La	1	Sb	0.5	Y	1
Co	1	Li	1	Sc	5	Yb	0.2
Cr	100	Mg	0.5 (ppm)	Sm	1	Zn	10
Cs	0.2	Mn	100	Sn	1	Zr	2
Cu	10	Мо	2	Sr	10		

SGS Minerals Services www.sgs.com Member of SGS Group (Société Générale de Surveillance)

Minerals Services METHOD SUMMARY

Dy	0.5	Nb	0.5		

8. Quality control:

Instrument calibration is performed for each batch or work order and calibration checks are analyzed within each analytical run. Quality control materials include method blanks, replicates and reference materials and are randomly inserted with the frequency set according to method protocols at ~14%. Quality assurance measures of precision and accuracy are verified statistically using SLIM control charts with set criteria for data acceptance. Data that fails is subject to investigation and repeated as necessary.
