	BC Geological Survey Assessment Report 38550
BRITISH COLUMBIA The Best Place on Earth	
Ministry of Energy and Mines BC Geological Survey	Assessment Report Title Page and Summ
TYPE OF REPORT [type of survey(s)]: Mapping, geochemistry and pr	ospecting TOTAL COST: \$23,255.63
AUTHOR(S): Francois Berniolles, Kaesy Gladwin	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): N/A	YEAR OF WORK: 201
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	5750223 / August 5th, 2019
CLAIM NAME(S) (on which the work was done): 1062341, 1055183, 10	067846
LATITUDE: <u>51</u> ° <u>42</u> ' <u>00</u> " LONGITUDE: <u>124</u>	^o 22 <u>'43</u> " (at centre of work)
owner(s): 1) Francois Berniolles	2)
AILING ADDRESS: 2-17 Amyot, Rivière-du-Loup, QC, G5R 3E6	
OPERATOR(S) [who paid for the work]: 1) Francois Berniolles	2)
AAILING ADDRESS: 2-17 Amyot, Rivière-du-Loup, QC, G5R 3E6	
MAILING ADDRESS: 2-17 Amyot, Rivière-du-Loup, QC, G5R 3E6 PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, Mt. Skinner complex, quartz diorite, tonalite, quartz-feldspar por	alteration, mineralization, size and attitude): ohyry, Yalakom Fault, Jurassic, gold, pyrite, alteration. sericit
MAILING ADDRESS: 2-17 Amyot, Rivière-du-Loup, QC, G5R 3E6 PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, Mt. Skinner complex, quartz diorite, tonalite, quartz-feldspar por silicification.	alteration, mineralization, size and attitude): ohyry, Yalakom Fault, Jurassic, gold, pyrite, alteration, sericite

Next Page

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
BEOLOGICAL (scale, area)			
Ground, mapping 1.2 sq. km		1062341, 1055183, 1067846	\$19,457.34
Photo interpretation 1.2 sq. km	(lineaments only)	1062341, 1055183, 1067846	\$24.68
EOPHYSICAL (line-kilometres)			
Ground			
Magnetic		- · · · · · · · · · · · · · · · · · · ·	
Electromagnetic		-	
Induced Polarization		-	
Radiometric		-	
Seismic		-	
Other		-	
Airborne			
EOCHEMICAL			
Soil			
Silt			
Rock 24 samples		1062341 1055183 1067846	\$1507.3
Other			\$1001.00
RILLING total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying Sampling St	pplies + labour sampling	1062341, 1055183, 1067846	\$104,29 + \$1,080,96
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area) 1/1000,	1.2 sq. km	1062341, 1055183, 1067846	\$1,080.97
REPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			
(scale, area)			
Legal surveys (scale, area)	A		
Road, local access (kilometres)/tra	ail	×	
Trench (metres)			
Underground dev. (metres)			
Other			
			600 0FF 01

Report on Geological Mapping, Prospecting and Geochemical work, Mt Skinner Claims (1062341, 1055183 & 1067846)

Clinton Mining Division NTS sheet 92N/9 51° 42' 0" N, 124° 22' 43" W

Owner/Operator: Francois Berniolles Authors: Francois Berniolles & Kaesy Gladwin

Fieldwork conducted: May 15th-June 15th, 2019

Date Submitted: 27th October, 2019

Index

1.0	Introduction	1
2.0	Location and Access	1
3.0	Physiography, Vegetation & Climate	2
4.0	Claim Status	2
5.0	History and previous work	3
6.0	General Geology	4
7.0	Detailed geology	5
7.1	Program design	5
7.2	Lithology	5
7.3	Structural features & Deformation	7
8.0	Alteration & Mineralization	11
8.1	Alteration mineralogy	11
8.2	Geochemistry	12
8.3	Mineralization relationships	15
9.0	Consultant Activities	17
10.0	Conclusions and Recommendations	18
Refere	nces	19
ITEMIZ	ZED COST STATEMENT	20
STATE	MENT OF QUALIFICATIONS – F. BERNIOLLES	21
STATE	MENT OF QUALIFICATIONS – K. GLADWIN	22
APPEN	IDIX I: Selected photographs	23
APPEN	IDIX II: Geochemistry results	27
APPEN	IDIX III: Selected Geochemistry spatial relationships	41
APPEN	IDIX IV: Alteration Mapping	47

1.0 Introduction

The Mount Skinner claims are located within the West Chilcotin area of British Columbia, 5 km north of Tatlayoko Lake. The claims are underlain by diorite and quartz diorite of the Coast Plutonic complex, which intrude predominantly Jurassic sedimentary rocks. No sedimentary rocks are exposed within the claims.

The work reported herein consisted of mapping, prospecting and geochemical sampling, with a particular focus on alteration characterization, identification of broad lithological packages and late offsets, and the possibility of alternate deposit models to the historically predominant concept of mesothermal vein-hosted gold mineralization, such as is found at the adjacent Victoria Vein (see Assessment Reports 21396, 22007, 22342 and 23527).

The Mount Skinner claims consist of 6 cells, divided into 3 claims: 1067846 (1 cell); 1055183 (4 cells) and 1062341 (1 cell). See Figure 2.

Program consisted of one person for 24 days, between May 15th, 2019 and June 15th, 2019, with a consultant field visit from June 5th to 10th. Program outcomes included the collection of 24 grab samples, which were subjected to fire assay and ICP multielement analysis, and the development of a lithological and structural map database to support current and future exploration efforts.

Outcrop data were collected using a Trimble Juno 5D SBAS-enabled handheld running ArcPad 10.2, and field data was checked in to the master database in ArcMap 10.4 every night. Outcrops margins were digitized by walking their perimeters in the field, while point data collection was via time-averaged GNSS. As the Juno 5D is SBAS-capable, expected spatial accuracy is 1-2 m where the SBAS satellites are visible (i.e. high points, south-facing slopes) and 2-4m where not visible (north-facing slopes, gully bottoms, etc.).

While every effort was made to describe a well-distributed subset of available outcrops, the coverage is not exhaustive. Some small outcrops were not included, and some large outcrops in areas of sufficient existing coverage were prospected but not included in the map database.

Where topography prevented GPS demarcation of all sides of an outcrop polygon, such as at bluffs or steep drainages, the accessible side was digitized in the field, and the inaccessible sides addressed with an approximate polygonal shape; these were left as-is in the database, except where a clear airphoto expression was available, to adjust the shape during editing.

All maps presented in this report are in GCS North American 1983 datum, projected into NAD1983 UTM zone 10N.

Stereonets and histograms were prepared using Orient 3.5.1 (Vollmer, 2015).

All samples were submitted to ALS Minerals in Kamloops, B.C., for multielement analysis and fire assay. Analytical results are presented in Appendix II.

2.0 Location and Access

The Mount Skinner claims are located 5 km north-northeast of the north end of Tatlayoko Lake, approximately 250 km west of Williams Lake, BC, along highway 20 (see Figure 1), and 30 km

south of Tatla Lake along the Tatlayoko Lake road. Access to the claims is by a rough 5 km-long access road directly to the claims from the Tatlayoko lake road. Tatla Lake is the local supply hub, with local businesses and services that include a hotel, restaurant, general store, nursing station, and gasoline and propane supply. Diesel may be available periodically.

The claims are centred at $51^{\circ} 42' 0'' N$, $124^{\circ} 22' 43'' W$.

Figure 1. Property location map.

3.0 Physiography, Vegetation & Climate

The topography of the claims consists of swampy lowland areas with numerous rocky ridges, increasingly becoming steep and dry to the east and north. The eastern edge of the claims comprises rocky bluffs and scree slopes. Altitudes range from 1200 m to 1650 m, increasing from west to east.

Vegetation consists primarily of lodgepole pine lowlands, with pine and Douglas fir on sidehills. Small sections of Sitka spruce occur in the west-central and northernmost part of the claims. The property is located entirely below tree-line.

The climate of the area is generally dry, with moderate temperatures, rarely reaching below -20° C in winter or above +30° C in summer. Moderate snowfall can be expected most years, starting to accumulate in December, and typically melting off by April.

4.0 Claim Status

The claims worked in the 2019 season consist of 6 cells (see Figure 2) in three claims:

<u>Claim</u>	<u>No. Cells</u>
1062341	1
1055183	4
1067846	1

All claims are modern cells; no inherited claim structure has been retained.

Claims are 100% owned by the lead author of this report.

Figure 2. Claim boundaries.

5.0 History and previous work

The general area has a lengthy history of prospecting and mining, with several prospectors working in the area from around 1915 until the 1960s. Placer gold has been reported from Lingfield creek, which drains the Jurassic sedimentary package intruded by the Skinner intrusive complex, about 12km southeast of the current claim block. Several small past-producing mines occur in the region, including the Morris mine, Feeney's Langara mine, the Blackhorn mine, and further to the northwest, the more recently active Perkins Peak operation. The current claims are adjacent to the Victoria Vein, which produced 1295 oz Au as part of a 700-tonne bulk-sampling program between 1992 and 1996 (L. Berniolles, pers. comm., 2019).

The first known work on the current claims took place in 1990, when Ottarasko Mines Ltd. discovered the Victoria Vein gold-bearing quartz vein system currently covered by Mining Lease 1040638, to the southwest of the claims discussed in this report. During the same field season, the company carried out prospecting and limited geochemical (bedrock, float, stream, and soil) sampling on the current claims.

In 1991, the core Victoria Vein claims and an area including the entirety of the current claims were optioned to Northair Mines Ltd., who carried out drilling, trenching and geophysical work on the Victoria vein, and stream-sediment, soil Geochem surveys, and general prospecting over the area including the Claims.

In 1994, Cheni Gold Mines Ltd. optioned the claims. Their work was entirely focussed on the Victoria Vein and did not have a regional exploration component.

6.0 General Geology

As shown in Figure 3, the claims cover a portion of a tonalitic to quartz-dioritic pluton which intrudes Triassic to Jurassic clastic sediments and contains small panels of mid to upper Triassic basalts. The prominent, regionally significant, northwest-trending Yalakom fault passes approximately 5 km to the northeast of the property. Numerous subparallel splays are interpreted to control much of the fault-block development that dictated post-emplacement geometries of the local lithological packages.

Figure 3. General geology of the claim area, after Schiarizza, 2018.

7.0 Detailed geology

7.1 Program design

The principal goal of the 2019 field program was to develop a surface geology dataset of lithological, mineralogical, and alteration observations for the purposes of constructing a property-scale lithological map; developing a fault-order sequence; and characterizing the nature and spatial distribution of alteration features.

Previous exploration efforts in the area have mostly focussed on the nearby Victoria Vein high-grade gold deposit, and on the discovery of other, similar features. Less attention has been paid to the potential for large, lower-grade, bulk-tonnage deposit types, which was the focus of the 2019 exploration program.

7.2 Lithology

Broadly, the lithologies represented within the claims are consistent with the tonalite-todiorite suite to which the Mt. Skinner intrusion is attributed. However, in detail, a number of smaller subdivisions can be mapped out.

Three major lithologies are present– tonalite, quartz diorite and diorite – and the order of intrusion cannot be categorically stated for any of them. The main mass of tonalite occurs further from the core of the intrusion, and locally contains abundant basaltic xenoliths. No xenoliths of either quartz diorite or diorite were noted within the tonalite, which suggests that the tonalite was emplaced earlier than the other lithologies. This interpretation is supported by slightly overlapping published ages of these units; however, it conflicts with the expected progression of single-source magmatic differentiation, whereby progressively more quartz-rich material is emplaced over time. Small dykes of apparently tonalitic material were observed to cut quartz diorite. However, there is considerable textural overlap between these dykes and ubiquitous small aplitic dykes observed across the property, and unequivocal attribution of dykes to one set or the other is problematic.

Quartz diorite constitutes by far the largest volume of rock on the claims. For mapping purposes, this unit can be subdivided based on amphibole percentage (breaks chosen were <15%, 15-25%, and >25%), coarseness, and the presence or absence of amphibole phenocrysts. In practice, it was found that the proportion of amphibole was a more reliable, consistent mapping criterion than either overall grain size or phenocryst development.

Diorite represents only a small fraction of the exposed rocks on the property, and is generally subequigranular and amphibole-rich.

The principal lithologies described here generally form consistent trends and packages which can be linked in interpretation, or broken at fault boundaries. In addition, a later series of porphyritic intrusions occurs in the eastern portion of the claims, at least one of which cross-cuts other intrusive lithologies at shallow angles.

From oldest to youngest, these subordinate lithologies include:

 fine grained to aphanitic intermediate intrusions (which are arguably parallel to the boundaries of the major lithological features), with interpreted widths in plan view of up to 50m.

- 2) aphanitic-groundmass feldspar-phyric porphyries, with interpreted widths of over 100m locally, and actual, mapped widths of over 60m.
- 3) clearly cross-cutting, late-stage quartz-feldspar porphyry with interpreted widths of approximately 50m.

These three units cut the surrounding quartz diorite, and are of significant interest, as they host broad packages of weak alteration (see Alteration section, below) and sulphide mineralization.

Fine-grained mafic dykes on the property are interpreted to represent two generations: fine grained northeast-trending mafic dykes, up to 10 m wide, cut all lithologies except perhaps for the quartz-feldspar porphyry; and narrow, roughly east-trending, 1-4 m wide fine-grained mafic dykes cross-cut all observed lithologies. The east-trending dykes are interpreted to represent the most recent magmatic event recorded on the property.

The interpreted geology map is shown in Figure 4, below, and is included in the accompanying map pocket.

Figure 4. Interpreted and mapped outcrop distribution.

In general, the principal lithologies (tonalite, quartz diorite and diorite) display black to dark greenish amphiboles, white to light greenish, rarely grey plagioclases, and grey quartz. Phenocrysts of amphibole are typically accompanied by a groundmass amphibole phase (see Figure 5). Biotite, where present, can be either euhedral and pristine, or ratty and going to chlorite.

Figure 5: typical amphibole phenocryst-bearing quartz diorite (6shp)

Xenolith-bearing rocks (Figure 6) are common on the western and northwestern edges of the claims, with rare exceptions that likely represent autoliths rather than xenoliths. These features are mafic in composition, and are interpreted to represent dissected portions of unit muTrCVvb (see Figure 3).

A selection of photographs of the different lithologies represented on the property is included in Appendix I.

7.3 Structural Features & Deformation

The property has not undergone any significant regional-scale foliation-forming event, and tectonic fabrics are extremely rare. Foliations are only developed within small shear zones (dm scale widths or less) and are not a significant feature at property scale. Local occurrences of weak alignment of amphiboles in quartz diorite are interpreted as primary features, rather than being tectonic in origin.

The only measurable features which may approximate a regional fabric are east-northeasttrending spaced fractures or partings, with moderate to steep dips. These are common throughout the eastern half of the property, but tend to be absent or extremely irregular and poorly developed in the west. These features appear to have been locally exploited by very small-displacement faults, with epidotized slickenlineations in various orientations (Figure 7).

Figure 6. Typical pale-weathering tonalite with large, irregular, discontinuous mafic masses. These xenoliths can reach up to 1.5 m diameters.

The principal deformational events appear to have been late, and brittle in nature. Local evidence of brittle shears or cataclastic zones is recorded, but mostly this takes the form of faulting.

Faults have been extensively interpreted from aerial photography (image BCC06087_008), with the photo-interpreted traces refined by direct observation and measurement of small-scale faults proximal to the main lineaments. No major fault surfaces were observed directly.

Two principal families of major faults can be broken out. An early group of interpreted Yalakom-related features is either parallel to the main northwest-trending Yalakom fault or diverges from it at shallow angles. A subsequent generation of northeast-trending faults has much smaller displacements. A number of "linking" faults, at various orientations, display ambiguous cross-cutting relations, and may represent other generations of faulting, or complexly reactivated features.

The Yalakom fault is a regionally significant northwest-trending feature with dextral offset, with earliest activity in the late Cretaceous to early Eocene (see Umhoefer & Schiarizza, 1996, Tipper, 1978; see also Miller, 1988 for alternate reconstructions). Although the principal fault trace is off the property, numerous lineaments subparallel to it are present within property boundaries. The most significant of these lineaments crosses the property near the centre, and displays 200-400 m dextral apparent offsets, depending on the reconstruction of surrounding geology. Slightly more north-trending probable equivalents, in the western portion of the claims, appear to form the boundary

between predominantly tonalitic and predominantly quartz-dioritic zones of the Skinner Complex. Displacements across these features could not be constrained.

Figure 7: well-developed spaced fractures, on intermediate intrusives (4nb). Stereonet shows the clustering of spaced fracture measurements; red dot represents maximum eigenvector, blue dot the intermediate (i.e. the hinge of any related folding).

"Second-generation", northeast-trending faults have traces that extend (in airphoto interpretation) up to 900 m; however, most are in the 100-300 m length range. These generally display only small offsets (<10 m of apparent motion), and may locally cut or be cut by the northwest-trending faults. These faults mimic the orientation of the lineament hosting the nearby Victoria Vein (Berniolles, 1991; Visagie, 1992, and Hitchins, 1994), and should therefore be considered prospective for similar styles of high-grade, vein-hosted mineralization. Most of the small fault surfaces measured during the 2019 field season have orientations consistent with this latter "second generation" of faults, as shown in Figure 8.

Numerous intermediate-age, or "linking" faults occur in easterly and east-northeast to northeast orientations, and truncate northwest-trending (i.e. Yalakom-subparallel) lineaments.

These linking faults display complex, and potentially mutually-offsetting relationships to the northeast-trending faults, and may well represent one or more sets of coeval features.

A map of recorded structural features is presented in Figure 9.

Figure 8. Left - histogram of measured fault trends. Circular grid interval =2. **n**=27. Right – stereonet showing poles to faults. Black dots: movement unknown; blue triangles: reverse motion; red triangles: normal motion; green dots: dextral; red dot represents only sinistral displacement noted. Black great circle represents average of the "unknown motion" category (i.e. maximum eigenvector)

Figure 9. Measured structural features, 2019 field season.

8.0 Alteration & Mineralization

As previously mentioned, most historical exploration efforts have focussed on the discovery of Victoria Vein -style high grade occurrences, with less work directed at the potential represented by large, lower-grade targets.

The principal focus of work in the 2019 field season was the characterization, both visually and by multielement geochemistry, of altered rock packages of the property.

8.1 Alteration mineralogy

A relatively consistent sequence of alteration minerals can be defined across the property, generally (but with local exceptions) organized as follows:

- unaltered or saussuritized
- unaltered, with some epidotization
- chlorite
- chlorite + epidote
- local Fe-carbonate
- silicification or sericitization, not both, with no systematic sulphide component.
- silicification AND sericitization
- sericite + pyrite (typically gossanous)

The epidote-only facies develops as an overprint of unaltered rock, whereas chlorite-epidote develops is interpreted to develop as an epidote overprint on chloritized rocks. This may represent two discrete epidote-bearing events, or a single event where the epidote forms more extensive halos than the chlorite. Epidote typically occurs as veinleting or, in mafic rocks, as pods. It does also occur locally as "free-floating" individual grains in tonalite/quartz diorite.

No apparent lithological control on the more distal facies was noted, but some lithological control (quartz-feldspar porphyries, notably) was observed on the core alteration facies. Mafic rocks, however, take only chlorite and epidote, and are not observed to display either sericite or silicification. They do locally take on a gossanous character and can carry sulphide.

Numerous southwest-trending offsets carry chlorite + epidote, suggesting a possible late generation of these minerals. Alternatively, these are also part of the main generation of alteration features, and all are late. However, textures and offsets of altered packages suggest that this is not the case.

All of the alteration facies described here are relatively weak. Chlorite content reaches perhaps 10% of rock mass in exceptional cases (usually developed on amphibole), while sericite/white mica is typically only as trace to 5% of rock mass. Silicification is locally quite strong, representing up to 50% of rock mass, but is typically much less.

An interpreted alteration map, derived from field notes, is presented in Figure 10. Raw data derived from mapping is presented in Appendix IV.

The spatial mismatch (as interpreted) between lithologies and alteration zones on either side of faults, particularly the significant central fault, suggests that while largely focussed on the QFP unit on the east of the property, alteration facies are in fact oblique to lithological boundaries at large scale. It is evident at outcrop-scale that alteration boundaries do not coincide perfectly with any lithological boundary.

Figure 10: interpreted alteration features.

8.2 Geochemistry

A suite of 24 samples was collected during the 2019 field season, and subjected to fire assay and multielement ICP analysis. The purpose of this geochemical work was to characterize the distribution of key elements, including low-grade gold, with relation to altered, gossanous units.

The distribution of samples is suboptimal (due to terrain and exposure) with respect to the most altered zones in the east of the claims. Nonetheless, a general view of the distribution of typically gold-related elements can be derived from this dataset.

Although many metals show no spatial relationship to alteration, several do, notably gold, tellurium, silver, and mercury.

Another feature of interest in the geochemical data is the difference in geochemical affinities between the large, altered, porphyry-related features in the east, and the westernmost samples, which are in the "mine suite" of xenolithic tonalites. These western tonalitic rocks display only epidote and/or chlorite as alteration minerals at property scale, and the sampled locations there are thought to represent the Victoria Vein style of mineralization (where narrow 1-5 m scale argillic halos and wider, 5-25 m scale, chloritic halos are associated with the mineralization and veining). It is worth noting that no argillic alteration was noted in the westernmost claim. Selected elements are presented on the interpreted alteration map, in Figures 11a through 11d, below. Sample descriptions and assay certificates are presented in Appendix II.

Figure 11a. Gold values across the study area, in ppm.

Certain metals, including Hg, Sn, Te and arguably Ag, appear to display a moderate zonation with respect to the interpreted alteration halos, supporting the contention that these alteration features are related to mineralizing events. Distinguishing between styles of mineralization in the west (largely vein and veinlet-hosted mineralization in tonalites) and in the east (weakly altered, gossanous, multistage felsic-intermediate intrusions) is largely precluded by the small sample population. However, a number of elements, notably W, Ba, Sr and Sb, show apparently significant, systematic divergences in concentration between the eastern and western zones of the property.

Gold results, specifically, were generally low, but it must be noted that no systematic attempt was made to locate and resample veins which were sampled previously (see assessment reports 22007 and 21396), which would broaden the dataset as that data is available. The areas, if not specific veins, that were historically prospected were mapped and additional samples were taken in 2019.

As the main purpose of the geochemical aspect of this project was to characterize broadscale halos of mineralization, the low gold grades encountered are fully expected.

Figure 11b. Mercury values, ppm. Note distribution with respect to sericite-pyrite domain.

Figure 11c. Silver values, ppm. Note variable, but generally higher values in west.

8.3 Mineralization relationships

Various types of mineralized features have been identified during this and previous programs, in vein, veinlet, and altered granitoid hosts. Broadly, these can be subdivided into two target categories:

- gold, silver +/- copper -bearing quartz veins, steeply dipping, with minimal sulphide.
- broad, 300-400 m-wide alteration zones, locally with veinleting at variable orientations, large zones of <1% pyrite, a good spatial association with late quartz-feldspar porphyries, and a distinct geochemical element association.

The Mt Skinner complex was dated at 226.7 +8.1/-0.5 Ma for quartz diorite and 230 +/-6 Ma for tonalite (Schiarizza & Riddell, 1997); thus, these are likely the approximate ages of the principal lithologies (tonalite, quartz diorite, and diorite) that constitute the main volume of rocks exposed on the claims. Although these ages overlap, they support the observed field relationships as described above in Section 7.2, with tonalite older than quartz diorite.

The timing of the fine-grained intermediate intrusions and the feldspar-phenocryst-only intrusions, in the east of the claims, clearly postdates the main complex, although by how much cannot be estimated from field methods alone. Mafic dykes cut these lithologies, and appear to display complex relationships to quartz-feldspar porphyries, which are the final felsic-intermediate phase of intrusion.

Mineralization at the Victoria Vein, south of the west end of the property, has been reported at 50-54 Ma (Schiarizza & Riddell 1997), a timing which they suggest is coeval with late motion on the Yalakom Fault, with the host structure (an east-northeast-trending lineament) consisting of an antithetical splay from the main fault. On the assumption that porphyry-related mineralization would be close in age to the emplacement of the Skinner Complex, this suggests that a significant time gap exists between the two styles of mineralization. This conclusion is supported by the significant apparent offset of the porphyries and spatially associated alteration halos along the major central fault, which cuts through the SE corner of claim 1055183, and which, being subparallel to the main Yalakom fault, is thought to represent a first-order splay of the fault system, and would therefore be of the same age as the Victoria Vein.

Direct exploration for analogues of the high-grade Eocene vein-type mineralization of the Victoria Vein is hampered on the claims by heavy overburden cover in the gully bottoms which coincide with all of the significant lineaments in the area. This overburden consists of clayey diamicton with subrounded clasts of quartz diorite, granitoid, basalt, clastic sediments, and, in rare occurrences, gneissic granitoids. This varied source indicates that local tills are derived from a wide area, which in turn suggests that till sampling may be of limited value in furthering exploration efforts on the covered areas, except where topography is sufficiently steep that mass-wasting processes may have uncovered/mobilized local material.

Figure 11d. Tellurium values, ppm. Note generally higher values in east.

Figure 11e. Barium, ppm. Note apparent distal distribution with respect to eastern alteration halo.

9.0 Consultant Activities

An external consultant, Mr. K. Gladwin, P.Geo., was retained for a three-day field visit and to contribute to the production of this report. The field visit took place from June 6 to June 8, 2019, towards the end of the field program. The purpose of the consultant's work was to help characterize alteration styles, examine various styles of mineralization exposed, and discuss general geological features & setting.

During the visit, both significant mineralization types (western vein-type and eastern porphyry-related type) were reviewed in the field, and traverses were undertaken to examine the types and distributions of alteration.

Mr. Gladwin also contributed to the preparation and editing of this report.

10.0 Conclusions and Recommendations

Detailed mapping shows that the Skinner intrusive complex contains sufficient lithological variability to interpret broad lithological packages and their trends, if not their detailed attitudes. Complex, multi-stage intrusion history is evident, although only relative timings can be estimated.

Mineralization can be divided into two classes: an interpreted early, porphyry-associated, large, low-grade style in the east of the claims, and a potentially high-grade, vein-hosted style analogous to the nearby Victoria Vein in the west.

Alteration mapping has proven successful in characterizing, at least in a preliminary fashion, regular, progressive alteration envelopes associated with the eastern style of mineralization.

The apparent presence of two styles (and probably two ages) of mineralization on the property is encouraging, as is the potential for the existence of both high-grade and bulk-tonnage mineralization styles, overlapping or within close proximity.

Definitively establishing the age relationship of eastern, porphyry-related mineralization with the high-grade, vein-hosted style of mineralization to the southwest would provide significant guidance to future exploration efforts, as the distinction between one extensive hydrothermal system and two overlapping systems would alter exploration approach and methods. Therefore, further detail should be collected in the field regarding the cross-cutting relationships of the latest granitoid phases (intermediate intrusive, feldspar porphyry and quartz-feldspar porphyry). A geochronology sample should be collected and analyzed from the best-established last feature.

To assist in developing a more refined assessment of possible mineral zonation halos, integration of all available geochemical data, particularly multielement data, from pre-existing assessment reports should be carried out. This should be supplemented by further sampling and geochemical analysis of background lithologies, even where unaltered and not visibly mineralized, on a coarse pattern approximating a grid (as allowed by exposure). Such data may enable the determination of whether the two mineralization styles are spatially, temporally, and/or genetically related, and therefore whether there exists mineralization potential linking the eastern and western areas.

Acquisition of fine-scale airborne magnetics should also be undertaken, as it is expected, from the variable magnetite content noted in various units, that robust magnetic contrast should be present. Some of the magnetite observed was debatably alteration-related, so it may also be possible that certain magnetic features could be linked directly to alteration.

Finally, the potential for carrying out a detailed grid of basal till sampling should be investigated, to better address the high-grade vein potential in NE-trending lineaments without bedrock exposure.

References

Berniolles, L. (1991) Prospecting Report, Skinner Group. BC Assessment Report 22007. 44pp.

Berniolles, L. (2019) Mount Skinner website. <u>http://mountskinner.com/</u> Accessed September 20th, 2019.

Hitchins, A. (1994) 1994 Mt. Skinner Exploration Report, Mount Skinner Property. 60 pp.

Miller, M.G. (1988) Possible pre-Cenozoic left-lateral slip on the Yalakom fault, southwestern British Columbia. Geology, vol. 16, No. 7; pp 584-587.

Schiarizza, P. (2017) Chicotin-Bonaparte map compilation. <u>http://www.em.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/Maps/geosciencemaps/Pages/</u> 2002-3.aspx Accessed March 1st, 2019.

Schiarizza, P., & Riddell, J. (1997) Geology of the Tatlayoko Lake – Beece Creek area; in INTERIOR PLATEAU GEOSCIENCE PROJECT: SUMMARY OF GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL STUDIES; Diakow, L.J., Newell, J.M. and Metcalfe, P., eds. Geological Survey of Canada Open File 3448, pp. 63-102.

Tipper, HW. (1978) Geology of Taseko lakes map-area, British Columbia. Geological Survey of Canada, Open File 534, 1 sheet.

Umhoefer, P.J., & Schiarizza, P. (1996) Latest Cretaceous to early Tertiary dextral strike-slip faulting on the southeastern Yalakom fault system, southeastern Coast Belt, British Columbia. Bull. GSA, vol. 108, No. 7; pp 768-785.

Visagie, D. (1991) Geochemical Report on the Skinner Group. BC Assessment Report No. 21396. 39 pp.

Visagie, D. (1992) Drilling Report, Skinner Property. BC Assessment Report No. 22342. 40 pp.

Vollmer, F.W. (2015) Orient 3: a new integrated software program for orientation data analysis, kinematic analysis, spherical projections, and Schmidt plots. Geol. Soc. of America, Abstracts with Programs, v. 47, n. 7, p. 49.

ITEMIZED COST STATEMENT

Transportation:	
Air travel, Vancouver-Williams Lake, return	\$366.71
Truck rental, 1 month	.\$2,382.34
Gasoline	.\$134.22

Food & Accommodation:

Motel (Williams Lake)	\$90.00
Food @\$50/day X 24 days	\$1,200

Geochemistry:

Sampling supplies	\$104.29
Sample analyses, 24 samples	\$1507.39

Geology:

Air Photo	\$24.68
Consultant fees	\$3 <i>,</i> 000.00
Labour, mapping & prospecting, @\$500/day X 24 days	.\$12,000.00
Labour, interpretation & reporting, @\$500/day X 5 days	\$2,500.00

Grand Total: \$ 23,255.63

I, Francois Berniolles, of 2-17 Amyot street, Rivière-du-Loup, QC, do hereby declare that:

- 1) I graduated from the Université de Montréal with a B.Sc. in Geology in 1998.
- 2) I have been steadily employed in the mineral exploration industry since then.
- 3) The work described in this report was carried out by myself, or under my supervision. The interpretations and conclusions are my own.

Francois Berniolles

Dated at Rivière-du-Loup, QC, this 20th day of October, 2019.

I, Kaesy Gladwin, indicate the following:

- 1) I am a consulting geologist residing at 2145 Queen Street, PO Box 2052, Rossland, British Columbia V0G1Y0.
- 2) I have a Bachelor of Science (Honours) in Geology degree from Acadia University (2001) and Master of Science in Geology degree from University of Victoria (2004).
- 3) I have continuously practiced my profession in mining and exploration in Ontario, Nunavut, and British Columbia since 2004.
- 4) I am a Practicing Professional Geoscientist and a member in good standing with the Engineers & Geoscientists of British Columbia, License 49373.
- 5) I visited the Skinner property from 6-8 June, 2019, and contributed to this report and to the work detailed herein.

Signed, GLADWIN 49373 r.S. UMB Kaesy Gladwin, P. Geo. CIEN

EGBC license 49373

Dated at Rossland, British Columbia, 27 October 2019

APPENDIX I: Selected photographs

Basaltic xenoliths in pale grey tonalite

Quartz-feldspar porphyry, rusty, altered, cutting epidote-bearing mafic dyke (eastern edge of claims)

Example of feldspar-phyric porphyry (4naf)

Gossanous, weakly altered quartz-feldspar porphyry.

Strongly bimodal amphibole distribution in amphibole-phyric quartz diorite. Note pencil tip for scale.

Exposure of strongly gossanous, weakly sericitic quartz-feldspar porphyry.

Gossanous, weakly sericitic quartz-feldspar porphyry.

APPENDIX II: Geochemistry results

SampleID	Analysis	Sulphides	SulphidePCT	Lithology	Alteration	Alteration Strength	Alteration Style	Vein Strike	Vein Dip
19SK01	FA_ICP	ру	0	quartz diorite	chl-ep	strong	patchy	256	48
19SK02	FA_ICP	ру	0.5	quartz diorite	sil	mod	pervasive	0	0
19SK03	FA_ICP	сру	2	quartz vein	chl	mod	fracture-controlled	135	44
19SK04	FA_ICP	ру	0.01	tonalite	sil	mod	pervasive	0	0
19SK05	FA_ICP	ру	1	quartz diorite	sil	weak		0	0
19SK06	FA_ICP	ру	0.5	feldspar porphyry	sil+ser	mod	fracture-controlled	0	0
19SK07	FA_ICP	ру	0.5	feldspar porphyry	ser+py			0	0
19SK08	FA_ICP	ру	0.01	feldspar porphyry	sil+ser	weak	fracture-controlled	290	0
19SK09	FA_ICP	ру	0.5	quartz-feldspar porph	. ser+py	weak	patchy	0	0
19SK10	FA_ICP	ру	0.5	feldspar porphyry	sil+ser	weak	pervasive	0	0
195K11	FA_ICP	ру	0.5	feldspar porphyry	ser	mod	patchy	0	0
19SK12	FA_ICP	ру	1	quartz-feldspar porph	. ser	weak	pervasive	0	0
19SK13	FA_ICP	ру	1	quartz diorite	sil+ser	strong	pervasive	0	0
19SK14	FA_ICP	ру	1	quartz-feldspar porph	. gos	mod	pervasive	0	0
19SK15	FA_ICP	ру	0.5	quartz-feldspar porph	. ser	weak	pervasive	0	0
19SK16	FA_ICP	ру	0.1	quartz diorite	chl	weak	pervasive	0	0
19SK17	FA_ICP		0	quartz diorite	Fe-carbonate	weak	veinlet-controlled	0	0
19SK18	FA_ICP		0	Fe-carbonate vein	Fe-carbonate	strong	veinlet-controlled	0	0
19SK19	FA_ICP	ру	0.25	feldspar porphyry	chl	weak		0	0
19VVP01	FA_ICP	ру	1	mafic dyke	chl	weak	fracture-controlled	0	0
19VVP02	FA_ICP	ру	1	tonalite	ер	mod	patchy	0	0
19VVP03	FA_ICP	ру	0.1	quartz diorite	chl-ep	mod	fracture-controlled	0	0
19VVP04	FA_ICP		0	quartz vein	chl	mod	veinlet-controlled	164	69
19VVP05	FA_ICP	ру	0.5	tonalite	chl	weak	veinlet-controlled	260	68

SampleID	Comments
	strong alteration fully obfuscating original igneous textures . small zone in gully . associated with mm-cm scale white or pink quartz veinlets .
19SK01	trace sulphide only .
	silicified , weakly sericitized quartz diorite porphyry . 0.5% fine blebby pyrite . minor hematite staining and hairline quartz veinlets .1*2m zone
19SK02	with poor exposure , open all directions except west . adjacent mafics heavily bluish chlorite alt.
	altered chlorite wallrock : intense in vein margin . 5cm rusty quartz vein , vuggy , extensional but low angle opening (growth fibres parallel to
19SK03	margin) chalcopyrite knots , minor pyrite , malachite staining . in fine amphibole rich tonalite/4n
	one of several large 5-10m scale bodies of fine , amphibole poor , slightly quartz phyric tonalite with weak to moderate sericite and silicification
19SK04	. trace very fine pyrite . rusty weathering .
	silica sericite +/-epidote alteration, weak to moderate. fine weakly plagioclase phyric tonalite or similar, little to no mafic component. fine,
19SK05	blebby , silvery pyrite . gossan . footwall of local fault . 10*10m zone at least .
	very fine grained , white fresh , gossanous , plagioclase and possibly quartz phyric felsic . abundant irregular cracks with slickenlines appear to
19SK06	control mineralization , although it is largely pervasive . silicification sericitization present .
	3*3 m gossanous zone at intersection of several faults in variably porphyritic felsic with very fine , siliceous groundmass . pyrite fine , blebby .
19SK07	possible minor sericite .
	5m wide zone trending 290 of weakly plagioclase phyric fine to aphanitic material. away from gossanous zone, same material is chloritic, but
19SK08	silica and sericite overprint chlorite and form gossan . trace fine blebby pyrite .
	2m wide zone of gossanous, weakly sericite altered quartz and plagioclase phyric very fine grained to aphanitic groundmass material. identical
19SK09	to surrounding unit, alteration control unclear, gossan trends 290.
	strongly gossanous, weakly sericite altered +/- silicification, plagioclase phenocryst bearing fine felsic. near margin of epidote bearing fine
19SK10	grained mafic dyke.
	fine grained locally gossanous plagioclase quartz groundmass, minor quartz phenocrysts, and 5% amorphous black masses of unidentified
195K11	matic mineral, well sericitized. blebby fine pyrite.
	extensive 20*20m ++ gossanous zone of sericite altered , rusty plagioclase - quartz phyric aphanitic to very fine grained unit . some quartz
195K12	flooding (hairline venifeting) locally. The blebby pyrite.
4051/42	tine graned bsh or bse. obfuscated by silicification . distal mineralization fracture controlled , pervasive in main 10*20m zone . tine blebby
195K13	
100//14	variably rusty, vuggy quartz plagioclase porpnyry, plagioclase partially eaten away. acid etched appearance. trace fine pyrite but 1%pyritic
195K14	Vugs.
192812	ngru green, non gossanous dip, pragiociase >quariz, narinne pyrite venients. I near margin of manc dyke.
1001/10	Time grained light greenish quartz diorite, 10% quartz, 10% amphibole, 80% light greenish plaglociase, accessory biobby pyrite. minor epidote
195K10	vennetng.
195817	rusty zone, mm scare quartz iron carbonate veniets, various orientations, no suppliede noted .
100//10	composite sample from altered subcrop zone - quartz -iron carbonate vein material and qtz-re carb veinieted chioritic quartz diorite sampled -
195818	re carb overprints chloritic phase . Dest zones recessive weathering .
192419	Weakly gossanous me to apriantic, nocally porphytic resiscing a notativity to 1% prepared by steel out pyrite, some remaining .
10\/\/D01	The graned dark grey to greenish grey manc material. I minor quarte visible, proportion not estimatable : possibly andesitic rather than basalloc
190000	Composition . Such Azim rusty zone at contact with tonaite , controlled by margin parallel parting.
1900002	The sivery pyrite bearing, pervasively epidotized zone, so south, at intersection of 400m whole devices and an innor radii zone.
10\/\/D02	The graned dark grey, high amphibole, tohaite or quartz diorite composition intrusion with screens or low amphibole tohaite. Tare dim scale
1900503	Tasy pacies with tace supplies.
10\//004	25cm whe quartz verily exposed in 5 m your on by radii surface to sourt, loss under overbander to north. Toch chiorite alteration halo, with black managanase train trained by interview and footwall alteration package.
1900004	unanging een nue and black manganese stall (yptical of victoria vein footwain alteriation package . madium grained amphibola basing tonalitie, nust, slightly chordin, baiding subst price valuets, malachite stained, subst price face, blacking
10\/\/D05	incours graned anymore searing tonance, rusty, signay chorace, namine quartz pyrite vennets, inalacinte stalled . pyrite fille, blebby . along rusty fault lineament
TEALET	along rusty raut incarient.

SampleID	Occurrence	UTM East	UTM North
19SK01	outcrop	404216.214	5728370.88
19SK02	subcrop	404748.546	5728128.23
19SK03	outcrop	404791.649	5728199.56
19SK04	outcrop	404801.013	5728188.97
19SK05	outcrop	405064.404	5728572.55
19SK06	outcrop	405097.843	5728904.55
19SK07	outcrop	404785.76	5728339.92
19SK08	outcrop	404792.632	5728323.66
19SK09	outcrop	404824.507	5728104.68
19SK10	outcrop	404731.318	5728176.36
19SK11	outcrop	405090.506	5728632.75
19SK12	outcrop	405191.824	5728641.97
19SK13	outcrop	405246.725	5728722.43
19SK14	outcrop	405238.502	5728745.93
19SK15	outcrop	405224.894	5728829.81
19SK16	outcrop	404057.347	5728284.52
19SK17	outcrop	404666.436	5728308.04
19SK18	subcrop	404675.761	5728318.6
19SK19	outcrop	405281.717	5729346.46
19VVP01	outcrop	403572.193	5728174.95
19VVP02	outcrop	403570.18	5728179.76
19VVP03	outcrop	403576.244	5728283.02
19VVP04	outcrop	403591.517	5728308.63
19VVP05	outcrop	403622.369	5728271.64

Assay Certificates

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-JUL-2019 This copy reported on 2-JUL-2019 Account: COISLES

CERTIFICATE KL19147733

Project: Skinner

This report is for 24 Rock samples submitted to our lab in Kamloops, BC, Canada on 18-JUN-2019.

The following have access to data associated with this certificate: FRANCOIS BERNIOLLES

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
DISP-01	Disposal of all sample fractions	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
Cu-OG46	Ore Grade Cu - Aqua Regia	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS41	Ultra Trace Aqua Regia ICP-MS	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-JUL-2019 Account: COISLES

(AIS								Proje	ect: Skinn	er						
									C	ERTIFIC	CATE O	F ANAI	LYSIS	KL191	47733	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS41 Cs ppm 0.05
19VVP01 19VVP02 19VVP03 19VVP04 19VVP05		1.48 1.30 1.63 2.16 1.15	0.19 0.38 0.16 0.01 4.98	3.16 1.54 2.58 0.46 3.29	3.7 62.5 10.1 1.8 10.8	<0.02 <0.02 <0.02 <0.02 <0.02	10 20 70 10 10	40 <10 20 10 10	0.08 0.10 0.07 0.08 0.25	0.02 0.07 0.03 0.02 0.78	1.21 1.10 1.11 0.31 0.54	0.04 0.13 0.38 0.14 0.92	1.99 7.02 4.59 4.13 7.11	21.5 51.1 23.5 2.8 30.1	7 7 7 11 7	0.45 0.05 0.25 0.13 0.39
19SK01 19SK02 19SK03 19SK04 19SK05		0.63 1.44 1.50 1.25 0.90	0.02 0.05 9.45 0.05 0.04	2.11 1.54 0.42 1.57 1.02	5.9 3.7 5.6 5.4 2.8	<0.02 <0.02 2.60 <0.02 <0.02	10 <10 10 <10 <10	20 20 10 10 30	<0.05 0.14 <0.05 0.10 0.11	0.02 0.09 12.70 0.13 0.18	1.41 0.61 0.30 0.12 0.11	0.08 0.11 0.84 0.02 0.01	2.46 4.69 0.66 6.88 4.92	13.6 7.8 3.8 1.5 1.7	5 5 13 6 4	0.05 0.05 <0.05 0.10 0.24
19SK06 19SK07 19SK08 19SK09 19SK10		0.96 0.94 0.81 0.91 1.18	0.02 0.07 0.04 0.02 0.04	1.13 1.41 1.00 1.58 2.31	2.6 13.8 2.0 2.3 1.9	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	10 10 20 20 40	0.19 0.10 0.07 0.27 0.14	0.27 0.15 0.10 0.04 0.24	0.04 0.13 0.08 0.12 0.07	0.02 0.03 0.01 0.02 0.04	6.66 4.68 3.38 8.99 4.47	1.5 4.6 0.5 4.7 4.3	4 7 6 5 6	0.14 0.08 0.33 0.30 0.23
19SK11 19SK12 19SK13 19SK14 19SK15		1.19 0.91 1.16 0.83 1.47	0.05 0.13 0.20 0.11 0.02	1.51 1.70 1.35 0.80 1.12	12.7 3.9 3.7 3.2 2.1	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<10 <10 <10 <10 <10	10 10 40 30 10	0.17 0.10 0.09 0.05 0.08	0.11 0.32 0.50 0.59 0.05	0.23 0.08 0.01 0.01 0.11	0.03 <0.01 0.03 <0.01 0.07	5.14 6.25 6.93 5.68 13.85	8.1 6.2 1.3 1.8 5.2	2 6 4 5 5	0.15 0.16 0.56 0.56 0.12
195K16 195K17 195K18 195K19		0.95 0.88 0.92 0.87	0.05 0.02 0.01 0.10	2.79 1.47 0.45 1.85	3.0 1.4 29.9 1.6	<0.02 <0.02 <0.02 <0.02	10 <10 <10 <10	30 20 60 10	0.08 0.07 0.05 0.12	0.02 0.01 0.01 0.20	1.20 1.26 5.79 0.08	0.03 0.03 0.06 0.02	3.14 8.95 3.67 6.43	10.5 9.0 11.2 10.7	3 3 5 3	0.29 0.28 0.08 0.17

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-JUL-2019 Account: COISLES

(AIS)	\							Proj	ect: Skinn	er						
									C	ERTIFI	CATE O	F ANA	LYSIS	KL191	47733	
Sample Description	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41							
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01	0.05
19VVP01		159.5	7.06	9.35	0.08	0.17	0.06	0.030	0.11	0.8	10.3	1.45	1160	0.63	0.26	<0.05
19VVP02		266	8.50	4.31	0.22	0.18	0.13	0.015	0.01	2.3	3.2	0.65	392	1.48	⊲0.01	0.11
19VVP03		155.0	8.03	10.85	0.16	0.18	0.34	0.027	0.04	1.8	8.6	1.42	1120	15.50	0.06	<0.05
19VVP04		7.1	1.44	2.14	0.06	0.07	0.08	0.006	0.02	1.4	1.4	0.13	266	1.13	0.03	0.15
19VVP04		>10000	8.33	12.70	0.17	0.18	2.25	0.149	0.05	2.6	21.9	1.49	1470	17.25	0.03	0.07
19SK01		78.4	2.40	8.01	0.34	0.06	0.03	0.008	0.02	1.0	7.8	1.01	417	0.51	0.03	<0.05
19SK02		77.3	2.55	5.47	0.10	0.07	0.05	0.015	0.03	1.3	6.5	1.33	740	2.08	0.05	0.08
19SK03		2090	2.17	1.72	<0.05	<0.02	5.89	0.479	0.01	0.3	1.5	0.22	423	1.31	0.01	0.07
19SK04		12.6	2.86	9.28	0.09	0.03	0.15	0.023	0.03	2.0	11.1	1.37	743	5.18	0.05	0.20
19SK05		22.6	2.47	4.33	<0.05	0.03	0.16	0.012	0.12	1.6	5.7	0.59	247	4.80	0.05	0.12
195K06		2.8	2.65	6.06	<0.05	0.02	0.55	0.051	0.07	2.2	6.7	0.78	343	2.12	0.05	0.11
195K07		40.8	3.50	8.35	0.07	0.04	0.07	0.022	0.03	1.3	6.3	0.98	394	5.05	0.08	0.12
195K08		8.0	2.38	3.99	<0.05	0.03	0.12	0.011	0.09	1.0	5.3	0.70	377	3.90	0.05	0.12
195K09		4.1	2.59	6.69	0.05	0.02	0.07	0.018	0.09	2.6	7.8	1.24	591	2.77	0.05	<0.05
195K10		73.2	4.27	7.90	<0.05	<0.02	0.07	0.029	0.11	1.6	11.2	1.93	1220	6.76	0.02	<0.05
19SK11		9.9	3.25	8.17	0.08	0.04	0.09	0.020	0.02	1.4	7.0	1.02	555	2.42	0.07	0.20
19SK12		17.2	4.50	9.86	<0.05	<0.02	0.27	0.059	0.06	1.8	8.7	1.28	419	4.64	0.06	<0.05
19SK13		77.1	4.79	6.38	<0.05	<0.02	0.57	0.041	0.17	2.5	6.9	0.73	317	11.60	0.05	<0.05
19SK14		7.2	4.25	5.81	<0.05	<0.02	0.79	0.029	0.13	1.8	3.2	0.33	132	8.25	0.05	<0.05
19SK15		6.0	1.99	6.15	0.05	<0.02	0.02	0.013	0.02	3.4	7.4	0.93	461	9.95	0.06	<0.05
19SK16		68.8	2.28	6.28	<0.05	0.04	0.07	<0.005	0.06	1.2	7.5	0.90	349	0.26	0.22	<0.05
19SK17		8.5	2.87	6.98	<0.05	<0.02	0.01	0.019	0.06	3.5	8.3	0.85	720	0.24	0.07	<0.05
19SK18		7.6	3.43	1.18	<0.05	<0.02	0.03	0.012	0.02	1.5	1.9	0.59	1120	0.89	⊲0.01	<0.05
19SK19		4.9	3.40	7.75	<0.05	<0.02	0.06	0.022	0.07	2.2	11.0	1.37	595	2.21	0.05	<0.05

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-JUL-2019 Account: COISLES

Project: Skinner

	,								C	ERTIFI	CATE C)F ANA	LYSIS	KL191	47733	
Sample Description	Method Analyte Units LOD	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005
Sample Description 19VVP01 19VVP02 19VVP04 19VVP05 19SK01 19SK03 19SK04 19SK05 19SK06 19SK07 19SK08 19SK07 19SK10 19SK11 19SK12 19SK14 19SK15 19SK16 19SK17 19SK18 19SK19		ppm 0.2 8.9 2.5 7.7 1.4 7.1 5.5 1.5 2.2 2.0 0.7 0.7 1.2 1.5 2.7 0.8 1.6 0.8 1.2 1.7 1.7 1.7 2.2 0.8	ppm 10 360 420 840 150 660 360 580 140 520 550 480 520 550 480 600 580 340 310 280 440 250 510	ppm 0.2 3.0 2.5 1.3 1.3 4.0 1.1 5.1 1.6 2.6 4.8 0.7 1.9 0.8 1.0 1.4 0.8 0.8 1.7 1.4 0.8 0.8 1.7 1.4 0.8 0.8 1.7 1.4 0.8 0.2 3	ppm 0.1 1.7 0.1 0.9 0.5 1.1 0.7 0.3 0.2 0.8 1.8 0.8 0.4 1.2 1.2 1.2 1.9 0.6 0.8 1.9 0.6 0.8 1.9 0.4 1.1 1.2 1.9 0.4 1.1 1.2 0.4 1.1	ppm 0.001 0.001 0.001 0.001 0.002 <0.001	% 0.01 0.26 0.37 0.05 <0.01 0.17 0.14 0.06 0.15 0.11 0.16 0.11 0.04 0.24 0.04 0.24 0.04 0.33 0.16 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ppm 0.05 2.29 1.19 0.38 3.94 0.32 0.16 0.40 0.10 0.08 0.21 0.10 0.17 0.13 0.14 0.16 0.12 0.12 0.12 0.18 0.34 0.34 0.34	ppm 0.1 13.8 3.8 12.4 1.9 20.8 3.4 5.4 2.0 9.1 4.7 6.6 10.4 4.2 4.5 5.7 0.5 7.0 2.5 2.9 4.2 1.8 5.9 3.9 6.9	ppm 0.2 0.4 0.7 0.5 <0.2 3.4 <0.2 <0.2 0.5 0.3 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ppm 0.2 0.2 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.4 0.2 0.2 0.3 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ppm 0.2 36.1 85.7 42.8 13.4 17.5 136.0 9.6 4.3 6.8 4.3 6.1 5.6 4.5 4.1 7.9 4.8 2.7 9.0 3.5 2.7 65.8 12.4 44.7 3.6	ppm 0.01	ppm 0.01 0.10 0.15 0.09 <0.01 0.14 18.30 0.26 0.66 0.23 0.26 0.66 0.23 0.26 0.66 0.23 0.25 0.34 0.57 1.06 0.98 0.98 0.98 0.01 0.02 <0.01 0.10	ppm 0.2 0.2 0.3 <0.2 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	% 0.005 0.244 0.143 0.274 0.052 0.232 0.090 0.103 0.137 0.103 0.158 0.158 0.137 0.100 0.147 0.147 0.125 0.167 0.012 0.012 0.012 0.012 0.005 0.005 <0.005 <0.005 0.027

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: -1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 1-JUL-2019 Account: COISLES

Project: Skinner

									C	ERTIFI	CATE OF ANALYSIS	KL19147733
Sample Description	Method Analyte Units LOD	ME-MS41 TI ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5	Cu-OG46 Cu % 0.001	Au-ICP21 Au ppm 0.001		
Sample Description 9VVP01 9VVP02 9VVP03 9VVP04 9VVP05 19SK02 19SK03 19SK06 19SK06 19SK07 19SK06 19SK07 19SK10 19SK11 19SK12 19SK13 19SK14 19SK15 19SK16 19SK17 19SK18 19SK18		0.02 <0.02	0.05 0.08 0.16 0.07 0.19 0.32 0.06 0.20 <0.05 0.12 0.07 0.09 0.09 0.09 0.09 0.09 0.09 0.05 0.05	1 249 26 311 13 214 52 32 28 49 17 23 54 26 27 54 26 27 54 38 47 22 24 32 37 59 35	0.05 0.15 0.27 0.20 0.18 0.46 0.13 0.17 0.14 0.12 0.07 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	0.05 5.28 11.95 8.77 9.15 15.30 1.98 10.45 1.57 15.25 9.77 5.98 11.10 8.11 8.02 5.40 15.70 3.96 3.56 1.42 11.45 1.52 6.03 3.34 5.83	2 111 59 245 35 176 49 66 69 68 27 24 51 35 50 135 77 41 37 37 37 37 37 41 37 37 59	0.5 0.7 3.2 5.2 1.2 3.9 1.1 1.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.535	0.001 0.006 0.001 4.66 0.002 0.003		

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 1-JUL-2019 Account: COISLES

Project: Skinner

		CERTIFICATE OF ANALYSIS	KL19147733
	CERTIFICATE CO	OMMENTS	
	ANA	LYTICAL COMMENTS	
Applies to Method:	Cold determinations by this method are semi-quantitative du ME-MS41	ue to the small sample weight used (0.5g).	
	LABO	RATORY ADDRESSES	
	Processed at ALS Kamloops located at 2953 Shuswap Drive.	Kamloops, BC, Canada.	
Applies to Method:	CRU-31 CRU-OC	DISP-01	LOG-22
	PUL-31 PUL-QC	SPL-21	WEI-21
	Processed at ALS Vancouver located at 2103 Dollarton Hwy,	North Vancouver, BC, Canada.	
Applies to Method:	Au-ICP21 Cu-OG46	ME-MS41	ME-OG46

37

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone:+1 (604) 984 0221 Fax:+1 (604) 984 0218 www.alsglobal.com/geochemistry To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6

Page: 1 Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 10-JUL-2019 This copy reported on 11-JUL-2019 Account: COISLES

CERTIFICATE KL19163628

Project: Skinner

This report is for 17 Pulp samples submitted to our lab in Kamloops, BC, Canada on 4-JUL-2019.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION	N
ALS CODE	DESCRIPTION	
FND-02	Find Sample for Addn Analysis	
•		
	ANALYTICAL PROCEDUR	RES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: -1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6

Page: 2 - A Total # Pages: 2 (A) Plus Appendix Pages Finalized Date: 10-JUL-2019 Account: COISLES

Project: Skinner

		CERTIFICATE OF ANALYSIS	KL19163628
Method Analyte Sample Description LOD	Au-ICP21 Au ppm 0.001		
19VVP01 19VVP02 19VVP03 19VVP04 19SK01	0.005 0.004 0.001 <0.001 <0.001		
19SK04 19SK05 19SK08 19SK09 19SK10	0.002 0.002 0.001 <0.001 <0.001		
19SK11 19SK12 19SK13 19SK14 19SK15	0.001 0.001 0.005 0.003 <0.001		
19SK16 19SK19	<0.001 <0.001		

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: FRANCOIS BERNIOLLES 2 - 17 RUE AMYOT RIVIÈRE-DU-LOUP QC G5R 3E6 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 10-JUL-2019 Account: COISLES

Project: Skinner

CERTIFICATE OF ANALYSIS KL19163628

	CERTIFICATE COMMENTS
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au-ICP21 FND-02

APPENDIX III: Selected Geochemistry spatial relationships

Antimony

Barium

Gold

Mercury

Silver

Strontium

Sulphur

Tellurium

Tin

Tungsten

Zinc

