



# ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2019 Geological and Geochemical Report on the Stock Property

## TOTAL COST: \$27,507.41

AUTHOR(S): Daniel Guestrin SIGNATURE(S):

Jacotha

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5751479, 13/08/2019

YEAR OF WORK: 2019 PROPERTY NAME: Stock

CLAIM NAME(S) (on which work was done): Stock 2, Stock 3, Rope Burn

COMMODITIES SOUGHT: Au, Ag, Cu, Pb, Zn

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

MINING DIVISION: Skeena NTS / BCGS: 104B01 LATITUDE: \_\_\_\_\_56\_°\_8 ' \_27.5 " N LONGITUDE: 130 ° 7 ' 16.9 " W (at centre of work) UTM Zone: 9 EASTING: 430300 NORTHING: 6222300

OWNER(S): Scottie Resources Corp.

MAILING ADDRESS: PO Box 48202 Bentall Vancouver, British Columbia V7X 1H8

OPERATOR(S) [who paid for the work]: Scottie Resources Corp.

MAILING ADDRESS: PO Box 48202 Bentall Vancouver, British Columbia V7X 1H8

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**)

Mudstone, siltstone, diorite, granodiorite, intermediate volcanics, Unuk River andesite unit, Jurassic, Eocene, Hazelton, intrusion-related, epithermal, mesothermal, galena, sphalerite, chalcopyrite, pyrite

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 8909, 28070, 37446

| TYPE OF WORK IN<br>THIS REPORT          | EXTENT OF WORK<br>(in metric units) | ON WHICH CLAIMS | PROJECT COSTS<br>APPORTIONED<br>(incl. support) |
|-----------------------------------------|-------------------------------------|-----------------|-------------------------------------------------|
| GEOLOGICAL (scale, area)                |                                     |                 |                                                 |
| Ground, mapping                         |                                     |                 |                                                 |
| Photo interpretation                    |                                     |                 |                                                 |
| GEOPHYSICAL (line-kilometres)           |                                     |                 |                                                 |
| Ground                                  |                                     |                 |                                                 |
| Magnetic                                |                                     |                 |                                                 |
| Electromagnetic                         |                                     |                 |                                                 |
| Induced Polarization                    |                                     |                 |                                                 |
| Radiometric                             |                                     |                 |                                                 |
| Seismic                                 |                                     |                 |                                                 |
| Other                                   |                                     |                 |                                                 |
| Airborne                                |                                     |                 |                                                 |
| GEOCHEMICAL (number of samples and      | alysed for …)                       |                 |                                                 |
| Soil                                    |                                     |                 |                                                 |
| Silt                                    | 40                                  | Ctock 2 Stock 2 | ¢07507.44                                       |
| Rock                                    | 40                                  | Rope Burn       | \$27307.41                                      |
| Other                                   |                                     |                 |                                                 |
| DRILLING (total metres, number of holes | , size, storage location)           |                 |                                                 |
| Core                                    |                                     |                 |                                                 |
| Non-core                                |                                     |                 |                                                 |
| RELATED TECHNICAL                       |                                     |                 |                                                 |
| Sampling / Assaying                     |                                     |                 |                                                 |
| Petrographic                            |                                     |                 |                                                 |
| Mineralographic                         |                                     |                 |                                                 |
| Metallurgic                             |                                     |                 |                                                 |
| PROSPECTING (scale/area)                |                                     |                 |                                                 |
| PREPATORY / PHYSICAL                    |                                     |                 |                                                 |
| Line/grid (km)                          |                                     |                 |                                                 |
| Topo/Photogrammetric (scale, a          | rea)                                |                 |                                                 |
| Legal Surveys (scale, area)             |                                     |                 |                                                 |
| Road, local access (km)/trail           |                                     |                 |                                                 |
| Trench (number/metres)                  |                                     |                 |                                                 |
| Underground development (metr           | res)                                |                 |                                                 |
| Other                                   |                                     |                 | ¢07507.44                                       |
|                                         |                                     | TOTAL COST      | \$27507.41                                      |

# 2019 Geological and Geochemical Report on the Stock Property

Skeena Mining Division, British Columbia, Canada NTS Mapsheet 104B/01 56° 8' 27.5'' N Latitude; 130° 7' 16.9'' W Longitude

Prepared by Daniel Guestrin, B. Sc.

Scottie Resources Corporation PO Box 48202 Bentall Vancouver, British Columbia V7X 1H8



November 30, 2019

## TABLE OF CONTENTS

| SUMMARY                                                                   | 1  |
|---------------------------------------------------------------------------|----|
| 1.0 INTRODUCTION                                                          | 2  |
| 2.0 PROPERTY DESCRIPTION AND LOCATION                                     | 2  |
| 3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY | 2  |
| 4.0 HISTORY                                                               | 5  |
| 4.1 EXPLORATION HISTORY                                                   | 5  |
| 4.2 2019 EXPLORATION PROGRAM                                              | 5  |
| 5.0 REGIONAL GEOLOGY AND MINERALIZATION                                   | 6  |
| 5.1 REGIONAL GEOLOGY                                                      | 6  |
| 5.2 REGIONAL MINERALIZATION                                               | 9  |
| 6.0 PROPERTY GEOLOGY AND MINERALIZATION                                   | 11 |
| 7.0 RESULTS                                                               | 11 |
| 8.0 RECOMMENDATIONS                                                       | 12 |
|                                                                           |    |



### LIST OF APPENDICES

Appendix A: References Appendix B: Statement of Expenditures Appendix C: Rock Sample Descriptions Appendix D: Rock Sample COAs Appendix E: Certificate of Qualifications Appendix F: Figures

## LIST OF TABLES

| Table 1: Stock property claims                            | 2  |
|-----------------------------------------------------------|----|
| Table 2: Significant Past-producers in the Stewart Region | 10 |
| Table 3: Significant Resources in the Stewart Region      | 10 |
| Table 4: 2019 Significant Rock Samples                    | 12 |

## LIST OF FIGURES

| Figure 2: Tenure Map<br>Figure 3: Regional Geology              | 4  |
|-----------------------------------------------------------------|----|
| Figure 3: Regional Geology                                      | 7  |
|                                                                 | /  |
| Figure 4: Stratigraphic Column for the Stewart-McTagg-Snip Area | 8  |
| Figure 5: Sample Locations Appendi                              | хF |
| Figure 6a: Sample Geochemistry - Ag Appendi                     | хF |
| Figure 6b: Sample Geochemistry - Au Appendi                     | хF |
| Figure 6c: Sample Geochemistry - Cu Appendi                     | хF |
| Figure 6d: Sample Geochemistry - Pb Appendi                     | хF |
| Figure 6e: Sample Geochemistry - Zn Appendi                     | хF |



#### SUMMARY

The Stock property is 100% owned by Scottie Resources Corp. and consists of three mineral claims for a total of 2866.7 hectares. The property is centered at 56° 8' 27.5 N, 130° 7' 16.9" W, located approximately twenty-three kilometres north-northeast of the town of Stewart, British Columbia and five kilometres northwest of the Premier Mine.

The 2019 exploration program at Stock was carried out over four days from late-July to mid-August. The property was accessed daily by helicopter from a staging area on the Granduc Road just north of the Salmon Glacier viewpoint. The focus of the program was prospecting of recently exposed outcrops around glacial ablation zones and steep areas that have likely never been assessed. A total of 40 rock samples were collected.

The Stewart region is underlain by rocks of the Stikine volcanic island-arc terrane, situated within the Intermontane belt at the eastern edge of the Coast Plutonic Complex. The Stikine represents a multistage arc terrane, composed of three uncomformably bounded successions, developed in an intraoceanic setting isolated from the North American Margin. Upper Triassic sedimentary strata of the Stuhini Group, upper-most Triassic to Lower Jurassic volcano-sedimentary units of the Hazelton Group, and Upper Jurassic to Lower Cretaceous sedimentary units of the Bowser Lake Group are present in the region. Intruding these groups are Jurassic to Eocene intrusions of the Texas Plutonic Suite and Coast Plutonic Complex.

The Stock property is mostly underlain by volcanics and sedimentary rocks of the Unuk River andesite unit of the Lower Hazelton Group. The northern half of the property is primarily thinly bedded siltstone and mudstone. Intermediate volcaniclastics dominate the southern half of the property with thinly bedded tuffs to more massive ash-lapilli tuff. Several intrusions are present on the property. Biotite-rich diorite to granodiorite stocks regionally mapped as Texas Creek Plutonic Suite intrude stratified rocks. A series of Tertiary dykes, with at least five generations observed, are part of the regionally termed Portland Canal Dyke Swarm. Dykes are generally porphyritic and range in composition from diorite to granodiorite late felsic quartz porphyry to dark-green andesite.

Several gossanous zones are found on the property. Silica and quartz-sericite-pyrite alteration associated with intrusions host mainly pyrite with occasional occurrences of pyrrhotite, magnetite, sphalerite, and chalcopyrite mineralization. Galena and chalcopyrite mineralization were also observed in narrow quartz-chlorite veins within a granodiorite stock.

Results from the 2019 field program returned anomalous Ag-Cu-Pb-Zn with weak to moderately elevated Au values. A majority of the anomalous samples were hosted in bleached and silicified intrusive rocks with pyrite-pyrrhotite-sphalerite-chalcopyrite mineralization. The best assay results returned up to 333.0 g/t Ag, 0.943 g/t Au, 3.77% Cu, 2.06% Pb, and 1.83% Zn.



## **1.0 INTRODUCTION**

The Stock Property is located approximately twenty-three kilometres north-northwest of Stewart, British Columbia (Figure 1). Stock is 100% owned by Scottie Resources Corp.

This report summarizes the results of the 2019 surface exploration program, consisting of prospecting and rock sampling. The program was carried out over four days from late-July to mid-August and the author is intimately familiar with the property and results.

## 2.0 PROPERTY DESCRIPTION AND LOCATION

The Stock property is 100% owned by Scottie Resources Corp. and consists of three mineral claims for a total of 2866.7 hectares. The property is centered at 56° 8' 27.5 N, 130° 7' 16.9" W, located approximately twenty-three kilometres north-northeast of the town of Stewart, British Columbia and five kilometres northwest of the Premier Mine. The property lies within the Skeena Mining Division and claim boundaries were obtained from government claim maps (Figure 2).

Expenditures related to the work described in this report have been applied as Exploration and Development Work to the claims, and filed as Statement of Work event number 5751479 with the BC Ministry of Energy and Mines.

| Title<br>Number | Claim Name | Owner         | Title<br>Type | Title<br>Sub<br>Type | Issue Date  | Good to Date | Status | Area<br>(ha) |
|-----------------|------------|---------------|---------------|----------------------|-------------|--------------|--------|--------------|
| 1050102         | STOCK 2    | 245541 (100%) | Mineral       | Claim                | 2017/Feb/17 | 2020/Nov/30  | GOOD   | 1802.75      |
| 1050104         | STOCK 3    | 245541 (100%) | Mineral       | Claim                | 2017/Feb/17 | 2020/Nov/30  | GOOD   | 703.36       |
| 1069452         | ROPE BURN  | 245541 (100%) | Mineral       | Claim                | 019/Jul/03  | 2020/Nov/30  | GOOD   | 360.59       |

## Table 1: Stock property claims

## 3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY

The Stock claims were originally accessed by horse trails from the town of Hyder, Alaska that ran up the Salmon River Valley and crossed the Salmon Glacier. Currently, the closest road to the property is the well-maintained Granduc Road that is located two kilometres east of the property across the Salmon Glacier. Access is now by helicopter from Stewart, BC or from a staging area just north of the Salmon Glacier viewpoint on the Granduc Road. The town of Stewart, population of approximately 500, provides a paved airstrip, an ice-free deep-water port, and basic amenities. The town of Smithers and city of Terrace are both approximately four hours by vehicle from Stewart and provide commercial airports with daily flights from Vancouver and most services required to support mineral exploration projects.









The property is located on the south side of the Salmon Glacier within the Boundary Ranges of the Coast Mountains. The southern portion of the property is situated along the United States – Canada border. Elevations on the property range from 700 to 2150 metres above sea level.

Topography ranges from heavily glaciated terrain where the claim boundaries on the north and east side of the property overlies the Salmon Glacier to gentle heather-covered alpine slopes to steep rocky terrain. The climate is classified as humid continental, with 1866 mm of precipitation per year and an average annual temperature of 6.1°C in Stewart. Field work can be carried out on the property from June to October.

#### 4.0 HISTORY

#### 4.1 Exploration History

Exploration began around Stewart in 1898 with the first arrival of prospectors exploring the area while passing through to join the Klondike gold rush. The earliest known workings proximal to the Stock Property is the past-producing Outland Silver Bar claims with reports of exploration dating back to 1921.

In 1979-1980, Outland Resources Corp. carried out a trenching, sampling, and geological mapping program on the Silver Bar Property. A total of 201 rock samples were collected from trenching of existing tunnels with grab samples returning up to 4.52 oz/t Ag and chip samples returning 2.09 oz/t over 4 metres. It appears as though a portion of the trenching and geological mapping may lie within the Stock property, however most of the work completed was outside of the current claim boundaries (DeLeen, 1980).

In 2005, Rick Kasum carried out a series of prospecting traverses on the Outland Silver Property which partially covered the eastern edge of the Stock property adjacent to the receding Salmon Glacier. The only two areas of mineralization noted were outside of the current claim boundaries (Stevens, 2006).

In the winter of 2018, Jaxon Mining Inc. collected four rock samples and two stream sediment samples on the Stock property. One sample from a gossanous diorite to granodiorite outcrop protruding from the snow returned 1.04 g/t Au (Strickland, 2018).

#### 4.2 2019 Exploration Program

The 2019 exploration program at Stock was carried out over four days from late-July to mid-August. The property was accessed daily by helicopter from a staging area on the Granduc Road just north of the Salmon Glacier viewpoint. The focus of the program was prospecting of recently exposed outcrops around glacial ablation zones and steep areas that have likely never been assessed. Mountaineering equipment accompanied by a mountain guide certified by the Association of Canadian Mountain Guides was used to safely access steep, precipitous portions of the property.

A total of 40 rock samples were collected (Figure 5). Sample sites were marked with orange or pink flagging tape and metallic tags etched with the sample number. Locations and observations were recorded in a tablet with a built-in GPS unit.

![](_page_9_Picture_11.jpeg)

All samples were sent to be analyzed at ALS Minerals in Vancouver after being prepped at the ALS prep lab in Terrace, BC. Rock samples underwent standard crushing and pulverizing to prepare the sample for analysis. Samples were analyzed for gold via fire assay fusion with an atomic absorption spectroscopy finish and a multi-element suite of 41 elements via aqua regia digestion followed by inductively coupled plasma-atomic emission spectrometry analysis. Where metal values exceeded the upper detection limits, the appropriate over-limit ore grade analysis was run.

#### **5.0 REGIONAL GEOLOGY AND MINERALIZATION**

#### 5.1 Regional Geology

The following is summarized from Nelson et. al (2018) and outlines the geology of the Stewart - McTagg - Snip map area:

The Stewart region is underlain by rocks of the Stikine volcanic island-arc terrane, situated within the Intermontane belt at the eastern edge of the Coast Plutonic Complex. The Stikine represents a multistage arc terrane developed in an intraoceanic setting isolated from the North American Margin, and is composed of three uncomformably bounded successions: the Stikine Assemblage, the Stuhini Group, and the Hazelton Group. Upper Triassic sedimentary strata of the Stuhini Group, upper-most Triassic to Lower Jurassic volcano-sedimentary units of the Hazelton Group, and Upper Jurassic to Lower Cretaceous sedimentary units of the Bowser Lake Group are present in the region. Intruding these groups are Jurassic to Eocene intrusions of the Texas Plutonic Suite and Coast Plutonic Complex.

The Stuhini Group (Middle to Upper Triassic) is regionally comprised of augite-phyric volcanic and volcaniclastic rocks, sedimentary rocks, and minor felsic volcanic rocks (Cutts et al., 2015). In the Stewart area, common lithologies consist of dark grey, laminated to thickly bedded, silty mudstone and fine- to medium-grained to locally coarse-grained sandstone. Less abundant lithologies include heterolithic pebble to cobble conglomerate, massive tuffaceous mudstone and thick-bedded sedimentary breccia and conglomerate.

A regional uncomformity, marking a period of tectonic quiescence, forms the boundary between the Stuhini Group and Hazelton Group. The lower Hazelton Group, divided into the Jack and Betty Creek Formations, consists of volcanic and sedimentary rocks related to volcanism generated by the subduction of two opposing oceanic plates. At the base of the Hazelton Group, Jack Formation (latest Triassic to early Jurassic) is discontinuously found in the region and is composed of conglomerate, sandstone, and siltstone with limey interbeds. This siliciclastic unit represents a significant break from Stuhini Group volcanic and volcaniclastic accumulation. Within this formation is the informal Snippaker Unit, a dull green greywacke with pebbles of hypabyssal diorite that increase up-section.

Overlying the Jack Formation, is the Betty Creek Formation (Lower Jurassic), consisting of the Unuk River andesite unit, Johnny Mountain dacite unit and Brucejack Lake felsic unit. The Unuk River andesite unit consists of subaerial and epiclastic deposits with a paraconformable to uncomfortable contact with the underlying Jack Formation. The Johnny Mountain dacite unit is a succession of bedded dacite lapilli tuff and breccia and in some areas unconformably overlies the Stuhini Group. The Brucejack Lake felsic

![](_page_10_Picture_8.jpeg)

![](_page_11_Figure_0.jpeg)

unit overlies the Unuk River andesite unit and includes potassium feldspar-, plagioclase-, and hornblende-phyric flows, breccias, and bedded welded to non-welded felsic tuffs.

The upper Hazelton Group represents a period of arc demise, regional subsidence, and local development of the Eskay Rift. The Spatsizi Formation is the regional basal unit of the Upper Hazelton and is comprised of a siliclastic sequence of shale, siltstone, and sandstone with minor volcanic components.

The Iskut River Formation is a several kilometre- thick succession and occupies the Eskay rift, a narrow, elongate north-trending belt extending from Kinaskan Lake in the north to Anyox in the south, running west of the Salmon River Valley and town of Stewart. It comprises a highly variable succession of mafic and felsic volcanic and sedimentary units that is subdivided into the Willow Ridge mafic unit, Bruce Glacier felsic unit, Eskay Rhyolite Member, and Mount Madge sedimentary unit.

Outside of the Eskay Rift, the Mount Dilworth Formation overlies the Spatsizi Formation, and is a felsic unit distinguished by its tabular geometry, regional extent, and lack of interfingering with mafic units. The uppermost unit in the Hazelton Group is the Quock Formation and is informally known as the 'pyjama beds' unit. This aerially extensive layer is comprised of a 50-100 m thick sequence of thinly bedded, dark grey siliceous argillite with pale felsic tuff laminae.

Overlying the Hazelton Group is the Upper Jurassic to Middle Cretaceous Bowser Lake Group. Occupying a large area of the central Stikine, it is comprised of marine to non-marine sedimentary rocks, with the most widely occurring lithologies including sandstone and siltstone with lesser abundances of conglomerate.

![](_page_12_Figure_5.jpeg)

Figure 4 – Stratigraphic column for the Stewart – McTagg – Snip area. Modified from Nelson et. al (2018)

![](_page_12_Picture_7.jpeg)

Several late Triassic to Early Tertiary intrusions exist in the region. Late Triassic to Early Jurassic plutons are coeval and cogenetic with lower Hazelton volcanism and include the Tatogga suite, Texas Creek Suite, and Brucejack Lake Suite. The Texas Creek Suite, comprising of diorite, monzonite, and syenite porphyry intrusions, is the most widespread in the Stewart area and interpreted to be the subvolcanic equivalent of the Betty Creek Formation.

Early to Middle Eocene intrusions of the Hyder Plutonic Suite are found in the Stewart area and are associated with the northwest trending Lower Cretaceous to Eocene Coast Plutonic Complex that lies on the western edge of the Stikine Terrane. In comparison to Early Jurassic intrusions, the calc-alkaline granite to tonalite to quartz monzonite plutons of the Hyder Plutonic Suite are biotite rich, more siliceous, and less altered. An extensive array of Tertiary granodiorite porphyry, aplite, microdiorite, and lamprophyre dykes and dyke swarms are hosted in the region (Alldrick, 1993).

During the Late Triassic to Early Jurassic, intense ductile deformation occurred in Stuhini Group rocks. This was followed by the Late Jurassic to Late Cretaceous development of Skeena Fold and Thrust Belt. During this period, east-west crustal shortening from collision of the Stikine terrane with the western margin of North America produced north-northwest trending folds and development of a penetrative cleavage, affecting Stuhini Group to Bowser Lake Group rocks. Rocks in the area were subjected to lower greenschist facies regional metamorphism during this time (Febbo et. al, 2019; Alldrick, 1993). Sinistral shearing was active in the Coast Plutonic Complex between 110Ma – 87 Ma (Febbo et. al, 2019).

Faults are abundant at both local and regional scales in the Stewart area. Alldrick (1993) described five major groups: (1) regional-scale north-striking, subvertical, ductile to brittle faults, (2) northerly-striking moderately west-dipping normal and reverse faults, (3) southeast to northeast striking brittle, subvertical "cross" faults with strong but narrow foliation envelopes and up to a kilometre of lateral offset, (4) decollement surfaces or bedding plane slips near the base of the Upper Hazelton Group, and (5) mylonite bands at various orientations and up to a few metres wide at most.

#### **5.2 Regional Mineralization**

The Stewart region hosts numerous precious and base metal deposits in a variety of geological settings. Currently in production is the low-sulphidation epithermal Brucejack Mine, approximately 30 kilometres to the north. Past-producing mines such as Anyox, Eskay Snip, Scottie Gold, Granduc, and Premier-Big Missouri are all within 80 kilometres of the property (Table 2). In addition, several ore reserves have been calculated on a number of properties such as Kerr-Sulphurets-Mitchell, Snowfield, and the Red Mountain (Table 3).

In the immediate vicinity of the Stock property, the Outland Silver Bar produced 3328 grams of silver, 13 kilograms of copper, and 507 kilograms of lead from 4 tonnes of ore from 1926 to 1929 (Minfile, 1988).

![](_page_13_Picture_7.jpeg)

|              | -                  | Production |          |             | Average Grade |          |        |  |
|--------------|--------------------|------------|----------|-------------|---------------|----------|--------|--|
| Mine         | Deposit Type       | Au (Moz)   | Ag (Moz) | Cu (tonnes) | Au (g/t)      | Ag (g/t) | Cu (%) |  |
| Eskay Creek  | VMS                | 3.3        | 160      |             | 51.4          | 2267     |        |  |
| Granduc      | Beshi-type VMS     | 0.07       | 4.4      | 190143      | 0.13          | 8        | 1.23   |  |
| Anyox        | VMS                | 0.14       | 8        | 340000      | 0.17          | 12.4     | 1.4    |  |
| Snip         | Shear-hosted veins | 1.13       | 0.43     | 249         | 26.7          | 10.15    | 0.02   |  |
| Premier-     |                    |            |          |             |               |          |        |  |
| Dilworth     | Epithermal         | 2.26       | 50.1     |             | 10.6          | 227      |        |  |
| Scottie Gold | Shear-hosted veins | 0.095      | 0.057    |             | 16.2          | 0.01     |        |  |

## Table 2: Significant Past-producers in the Stewart Region (Minfile)

Table 3: Significant Resources in the Stewart Region

| Deposit                | Туре          | Resource <sup>1</sup> | Tonnage<br>(Mt) | Au (g/t) | Ag (g/t) | Cu (%) | Mo (ppn) | Reference       |
|------------------------|---------------|-----------------------|-----------------|----------|----------|--------|----------|-----------------|
|                        | Au-Cu         |                       |                 |          |          |        |          |                 |
| KSM <sup>2</sup>       | poprhyry      | P&P                   | 2198            | 0.55     | 2.6      | 0.21   | 42.6     | Seabridge, 2019 |
| Snowfield <sup>3</sup> | Porphyry      | M&I                   | 1370            | 0.59     | 1.72     | 0.1    | 85.5     | Pretivm, 2011   |
| Bronson                |               |                       |                 |          |          |        |          |                 |
| Slope                  | Porphyry      | M&I                   | 187             | 0.36     | 2.19     | 0.12   |          | Seabridge, 2019 |
| Brucejack              | LS Epithermal | P&P                   | 16              | 12.6     | 59.3     |        |          | Pretivm, 2019   |
| Premier-               |               |                       |                 |          |          |        |          | Rennie and      |
| Dilworth               | Epithermal    | I                     | 93.5            | 0.82     | 6.9      |        |          | Simpson, 2018   |
| Red                    | Intrusion     |                       |                 |          |          |        |          | Arseneau and    |
| Mountain               | Related       | M&I                   | 2.8             | 7.9      | 22.8     |        |          | Hamilton, 2018  |
| Eskay Creek            | VMS           | I                     | 13.5            | 4.6      | 118      |        |          | Skeena, 2015    |
|                        | Beshi-type    |                       |                 |          |          |        |          | Morrison et al, |
| Granduc                | VMS           | M&I                   | 11.3            | 0.17     | 12.4     | 1.47   |          | 2013            |
|                        |               |                       |                 |          |          |        |          | Higgs and       |
| Dolly Varden           | VMS           | I                     | 3.1             |          | 322      |        |          | Giroux, 2015    |

1. P&P – Probable and Proven, M – Measured, I – Indicated

2. Kerr-Sulphurets-Mitchell

3. Includes 0.51 ppm RE

![](_page_14_Picture_7.jpeg)

#### 6.0 PROPERTY GEOLOGY AND MINERALIZATION

The Stock property is mostly underlain by volcanics and sedimentary rocks of the Unuk River andesite unit of the Lower Hazelton Group. The northern half of the property is primarily thinly bedded siltstone and mudstone. Intermediate volcaniclastics dominate the southern half of the property with thinly bedded tuffs to more massive ash-lapilli tuff. Bedding generally trends northeast and dips steeply to the southeast. Several intrusions are present on the property. Light grey, massive, equigranular to porphyritic, diorite to granodiorite stocks were observed intruding stratified rocks. The granodiorite is biotite-rich with several occurrences of garnets observed. These intrusions have been regionally mapped as Jurassic in age, belonging to the Texas Creek Plutonic Suite. A series of Tertiary dykes, with at least five generations observed, are part of the regionally termed Portland Canal Dyke Swarm (Strickland, 2018). Dykes are generally porphyritic and range in composition from diorite to granodiorite late felsic quartz porphyry to dark-green andesite.

The stratified rocks on the property are foliated and were folded in a single event. Some minor folds, with the foliation fanning about the hinge or sub-parallel to the axial plane, are locally developed. The strike of the foliation averages east-northeast. The axes of minor folds are consistently west-southwesterly trending with moderate plunge. The major structure of the area is a large east-west trending syncline, based on a change in bedding attitude, tops direction, and symmetry of minor folds. Major faults in the area trend northeast and have a small breccia zone along fault trace.

Several gossanous zones are found on the property. Silica and quartz-sericite-pyrite alteration associated with intrusions host mainly pyrite with occasional occurrences of pyrrhotite, magnetite, sphalerite, and chalcopyrite mineralization. Galena and chalcopyrite mineralization were also observed in narrow quartz-chlorite veins within a granodiorite stock.

#### 7.0 RESULTS

Table 4 highlights significant rock samples from the 2019 field season. Rock geochemical results for Ag, Au, Cu, Pb, and Zn are plotted on Figures 6a-e. Rock sample descriptions can be found in Appendix C.

Results from the 2019 field program returned anomalous Ag-Cu-Pb-Zn with weak to moderately elevated Au values. A majority of the anomalous samples were hosted in gossanous intrusive rocks located within a steep east-facing rocky drainage above the Salmon Glacier. Samples Y610844-Y610847 were collected from float on a bench at the toe of a small glacier. In this area, abundant sub-angular to sub-rounded float with semi-massive pyrite-pyrrhotite-sphalerite-chalcopyrite was observed. Of the float that was sampled, assays returned anomalous Ag-Cu-Au. Rope-access was used to thoroughly inspect the terrain above the bench, however its source was not found. Several hundred metres downslope and to the east of the mineralized float, silicified and bleached mafic to felsic intrusives (Y610848-Y610851) hosting pyrite +/- pyrrhotite, chalcopyrite returned anomalous Ag-Pb-Zn-Au.

Samples Y610050, Y610770, Y611021, and Y611028 produced isolated Ag anomalies on different portions of the property, all of which were also collected from altered granodiorite apart from Y610770, which was collected from a small Fe-oxidized zone within intermediate volcanics.

![](_page_15_Picture_8.jpeg)

| Sample Number | Sample Material             | Ag<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Au<br>(ppm) |
|---------------|-----------------------------|-------------|-------------|-------------|-------------|-------------|
| Y610844       | Semi-massive sulphide float | 5.5         | 2230        | 21          | 177         | 0.017       |
|               | Float with 10% sulphides +  |             |             |             |             |             |
| Y610846       | quartz                      | 333.0       | 37700       | 847         | 883         | 0.943       |
| Y610847       | Semi-massive sulphide float | 38.4        | 11550       | 41          | 855         | 0.227       |
| Y610848       | Gossanous granodiorite      | 305.0       | 533         | 14050       | 5180        | 0.158       |
|               | Bleached and silicified     |             |             |             |             |             |
| Y610849       | granodiorite                | 146.0       | 302         | 20600       | 8060        | 0.243       |
|               | Bleached and silicified     |             |             |             |             |             |
| Y610850       | granodiorite                | 12.8        | 248         | 165         | 5380        | 0.092       |
| Y610851       | Gossanous mafic intrusive   | 79.5        | 365         | 11700       | 9550        | 0.07        |
| Y610650       | Py-gn vein in granodiorite  | 39.0        | 1250        | 4490        | 2010        | 0.135       |
|               | Gossanous int volc with 5-  |             |             |             |             |             |
| Y610770       | 10% ру                      | 20.5        | 1590        | 169         | 358         | 0.053       |
|               | Po-py-sph mineralization in |             |             |             |             |             |
| Y611021       | felsic intrusion            | 17.8        | 472         | 6500        | 18250       | 0.272       |
|               | Po-py-cpy mineralization in |             |             |             |             |             |
| Y611028       | felsic intrusion            | 11.6        | 569         | 71          | 1020        | 0.029       |

#### Table 4: Significant 2019 Rock Samples

## **8.0 RECOMMENDATIONS**

The Stock property remains to be a relatively underexplored area within a region with abundant known mineral occurrences. With geochemical results from the 2019 field program returning anomalous economic elements, further work is recommended.

Follow-up work is warranted for finding the source of float samples Y610844-Y610847. It is recommended that the granodiorite outcrops to the north be investigated as valley glaciers may have played a role in transporting the mineralized float.

It is recommended that a reconnaissance traverse be completed on the northeastern corner of the property to determine if any mineralized trenches and tunnels exist within the claim boundaries.

The area around sample S18-04 that returned 1.04 g/t Au during the 2018 field program should be thoroughly investigated.

Further prospecting is recommended around recently exposed outcrop in areas of glacial retreat that were not investigated in the 2019 field program.

![](_page_16_Picture_8.jpeg)

Appendix A: References

![](_page_17_Picture_1.jpeg)

Alldrick, D.J., 1993. Geology and Metallogeny of the Stewart Mining Camp, Northwestern British Columbia. British Columbia Geological Survey Bulletin 85.

Arseneau, G., Hamilton, A., 2018. Mineral resource update for the Red Mountain gold project, Northwestern BC, Canada, Technical report prepared for IDM Mining Ltd.

Cui, Y., Miller, D., Schiarizza, P., and Diakow, L.J., 2017. British Columbia digital geology. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File 2017-8, 9p

Cutts, J.A., McNicoll, V.J., Zagorevski, A., Anderson, R.G., and Martin, K., 2015. U-Pb geochronology of theHazelton Group in the McTagg anticlinorium, Iskut River area, northwestern British Columbia. In: Geological Fieldwork 2014, British Columbia Geological Survey Paper 2015-1, pp. 87-101.

DeLeen, J., 1980. 1980 Trenching and Sampling Undertaken on the Silver Bar Property, BCMEM assessment report ARIS 08909.

Febbo, G.,Kennedy, L., Nelson, J., Savell, M., Campbell, M., Creaser, R., Friedman, R., van Straaten, B., Stein, H. 2019. The Evolution and Structural Modification of the Supergiant Mitchell Au-Cu Porphyry, Northwestern British Columbia, in: Economic Geology, v.114, no.2, pp. 303-324

Greig, C.J., Anderson, R.G., Daubeny, P.H., Bull, K.F., and Hinderman, T.K., 1994: Geology of the Cambria Icefield: regional setting for Red Mountain gold deposit, northwestern British Columbia; Current Research 1994-A; Geological Survey of Canada, p. 45-56.

Higgs, A.A., Giroux, G., 2015. 2015 technical report for the Dolly Varden property, NI 43-101 technical report prepared for Dolly Varden Silver Corp.

Minfile, 1988, Outland Silver Bar Minfile Report, MINFILE# 104B030, British Columbia Ministry of Energy, Mines, and Petroleum Resources' Minfile website.

Minfile, 2008, Eskay Creek Minfile Report, MINFILE# 104B008, British Columbia Ministry of Energy, Mines, and Petroleum Resources' Minfile website.

Minfile, 2012a, Anyox Minfile Report, MINFILE# 103P021, British Columbia Ministry of Energy, Mines, and Petroleum Resources' Minfile website.

Minfile, 2018b, Granduc Minfile Report, MINFILE# 104B021, British Columbia Ministry of Energy, Mines, and Petroleum Resources' Minfile website.

Minfile, 2018c, Premier-Dilworth Minfile Report, MINFILE# 104B046, British Columbia Ministry of Energy, Mines, and Petroleum Resources' Minfile website.

Minfile, 2018d, Scottie Gold Minfile Report, MINFILE# 104B034, British Columbia Ministry of Energy, Mines, and Petroleum Resources' Minfile website.

Minfile, 2018e, Snip Minfile Report, MINFILE# 104B250, British Columbia Ministry of Energy, Mines, and Petroleum Resources' Minfile website.

![](_page_18_Picture_15.jpeg)

Morrison, R., McKinnon, C., Liukko, G., Kesavanathan, D., Gagnon, A., Hafez, S.A., Danon-Schaffer, M., McLaughlin, M., Ouellet, J., 2013. Preliminary economic assessment for the Granduc copper project, northern British Columbia, NI 43-101 report for Castle Resources Inc

Nelson, J., Waldron, J., van Straaten, B., Zagorevski, A., Rees, C., 2018. Revised stratigraphy of the Hazelton Group in the Iskut River region, northwestern British Columbia, in: Geological Fieldwork 2017, British Columbia Geological Survey Paper 2018-1. British Columbia Ministry of Energy, Mines and Petroleum Resources, pp. 15–38

Pretivm Resources, 2011. Snowfield Mineral Resource Summary February 2011. Snowfield Project overview on www.pretivm.com

Pretivm Resources, 2019. Brucejack Reserve Summary April 2019. Brucejack Project overview on www.pretivm.com

Rennie, D.W., Simpson, R.G., 2018. Technical report on the Premier-Dilworth project, Stewart, British Columbia, Canada, NI 43-101 report for Ascot Resources Ltd.

Seabridge Gold, 2018. Mineral reserves and resources March 2019. Reserve/resource statement on www.seabridgegold.net.

Skeena Resources, 2015. Eskay Creek. Project overview on www.skeenaresources.com.

Stevens, G., 2006. Outland Silver-Prospecting Report, BCMEM assessment report ARIS 28070.

Strickland, D., 2018. Assessment Report on the Stock Property, BCMEM assessment report ARIS 37446.

![](_page_19_Picture_9.jpeg)

Appendix B: Statement of Expenditures

![](_page_20_Picture_1.jpeg)

| Exploration Work Type                   | Comment                   | Days | 5   |            |             | Totals      |
|-----------------------------------------|---------------------------|------|-----|------------|-------------|-------------|
| Personnel (Name) / Position             | Field Days                | Davs | ;   | Rate       | Subtotal*   |             |
| Ben Stanley - Geologist                 | Aug 6, 12, 13             | 24,5 | . 3 | \$500.00   | \$1.500.00  |             |
| Drew Dochstader - Field Assistant       | Aug 6, 12, 13             |      | 3   | \$300.00   | \$900.00    |             |
| Thomas Mumford - Geologist              | July 23. August 13        |      | 2   | \$750.00   | \$1.500.00  |             |
| Klemen Mali - Mountain Guide            | July 23                   |      | 1   | \$550.00   | \$550.00    |             |
| Conny Amelunxen Mountain Guide          | August 12, 13             |      | 2   | \$850.00   | \$1.700.00  |             |
| Daniel Guestrin - Rope Access Geologist | August 12, 13             |      | 2   | \$875.00   | \$1,750.00  |             |
|                                         | 0,                        |      |     |            | \$7,900.00  | \$7,900.00  |
| Office Studies                          | List Personnel            |      |     |            |             |             |
| Report Preparation                      | Daniel Guestrin           |      | 5   | \$450.00   | \$2,250.00  |             |
|                                         |                           |      |     |            | \$2,250.00  | \$2,250.00  |
| Geological Mapping and Sampling         |                           | No.  |     | Rate       | Subtotal*   |             |
| Rock Samples                            | ALS Lab - 41 Element      |      | 39  | \$38.66    | \$1,507.74  |             |
|                                         |                           |      |     |            | \$1,507.74  | \$1,507.74  |
| Transportation                          |                           | No.  |     | Rate       | Subtotal*   |             |
| Truck Rentals                           | 1 truck, 3 days           |      | 4   | \$86.00    | \$344.00    |             |
| Helicopter (hours)                      | Bell 206                  |      | 1   | \$1,300.00 | \$1,300.00  |             |
|                                         | Astar                     |      | 4   | \$2,000.00 | \$8,000.00  |             |
| Fuel for Truck                          |                           |      |     |            | \$150.00    |             |
| Airfare (Vancouver to Smithers)         | split with other projects |      |     |            | \$1,000.00  |             |
|                                         |                           |      |     |            | \$10,794.00 | \$10,794.00 |
| Accomodation and Food                   | Rates (man days)          | No.  |     | Rate       | Subtotal*   |             |
| Camp costs                              |                           |      | 13  | \$150.00   | \$1,950.00  |             |
|                                         |                           |      |     |            | \$1,950.00  | \$1,950.00  |
| Miscellaneous                           | Rates                     | No.  |     | Rate       | Subtotal*   |             |
| Satellite Phone                         | # units * # days          |      | 4   | \$10.00    | \$40.00     |             |
| Field Supplies/Safety Equipment         |                           |      | 1   | \$250.00   | \$250.00    |             |
| Shipping                                |                           |      | 1   | \$100.00   | \$100.00    |             |
| Radios                                  | # units * # days          |      | 13  | \$5.00     | \$65.00     |             |
| Climbing Equipment Rental               | # days                    |      | 3   | \$50.00    | \$150.00    |             |
|                                         |                           |      |     |            | \$605.00    | \$605.00    |
| Total Expenditures                      |                           |      |     |            |             | \$25,006.74 |
| Administration 10%                      |                           |      |     |            |             | \$2,500.67  |
| <u>Grand Total</u>                      |                           |      |     |            |             | \$27,507.41 |

![](_page_21_Picture_1.jpeg)

Appendix C: Rock Sample Descriptions

![](_page_22_Picture_1.jpeg)

| Texture Abbreviations |  |
|-----------------------|--|
|-----------------------|--|

| abx | autobreccia     | Dk   | Dike           | Lam  | Laminated    | sstk | Stockwork      |
|-----|-----------------|------|----------------|------|--------------|------|----------------|
| amy | Amydaloidal     | Dr   | Drusy          | Lpt  | Lapilli tuff | Sw   | swarm          |
| aph | Aphanitic       | Eq   | Equigranular   | Μ    | Massive      | Un   | undulatory     |
| bd  | Bedded/banded   | Fb   | Flow banded    | Msp  | Matrix       | Vcl  | Volcaniclastic |
|     |                 |      |                |      | supported    |      |                |
| bu  | Budinaged       | Fbx  | Flow breccia   | Ool  | Oolitic      | Vg   | Vuggy          |
| bx  | Brecciated      | Frag | Fragmental     | Plw  | Pillowed     | Vlt  | Veinlets       |
| cl  | Cuspate-lobate  | Frc  | Fracture       | Por  | Porphyritic  | Vsc  | Vesicular      |
|     |                 |      | controlled     |      |              |      |                |
| clv | Cleavage        | Fs   | Fossiliferous  | Qtze | Qtz eyes     | Wrc  | Contains wall  |
|     |                 |      |                |      |              |      | rocks          |
| crn | Crenulated      | Fz   | Fault zone     | Shr  | Sheared      | Ws   | Well sorted    |
| со  | Colloform       | Gbd  | Graded         | Sht  | Sheeted      | Xbd  | Cross-         |
|     |                 |      | bedding        |      |              |      | bedded         |
| cr  | Crustiform      | Ibd  | Interbedded    | SS   | Soft sed     | Xnl  | Xenoliths      |
|     | banding         |      |                |      | struct       |      |                |
| csp | clast supported | Ineq | inequigranular |      |              | xph  | Multi-phase    |
| dis | disarticulated  |      |                |      |              |      |                |

## **Mineralization and Alteration Abbreviations**

| а   | aggregates                 | pchy | patchy                      | 1 | trace    |
|-----|----------------------------|------|-----------------------------|---|----------|
| b   | banded                     | rc   | clast replacement           | 2 | weak     |
| bl  | blebs                      | rm   | mottled replacement         | 3 | wk-mod   |
| blv | blebs in vein              | rmx  | matrix replacement          | 4 | moderate |
| by  | blotchy                    | rp   | pervasive replacement       | 5 | mod-str  |
| с   | clots                      | rv   | vein associated replacement | 6 | strong   |
| cl  | clot                       | rx   | phenocryst replacement      | 1 | trace    |
| d   | disseminated               | str  | stringers                   | 2 | <0.5%    |
| dn  | dendritic                  | v    | lining/filling vugs         | 3 | 0.5-2%   |
| f   | fracture                   | vb   | banded in veins             | 4 | 2-5%     |
|     | coating/controlled         |      |                             |   |          |
| 1   | acid-leached               | vd   | disseminated in veins       | 5 | 5-10%    |
| os  | open space crystallization | VS   | vein selvages               | 6 | 10-20%   |
|     |                            |      |                             | 7 | >20%     |

![](_page_23_Picture_4.jpeg)

| Comple # | Fasting | Northing | Sample | Longth (m) | Course  | Sampled   | Data      | 1:46                     | Tautura | A   6 1    | Alt 1     |            | A   + 2 | Alt 2     |            |
|----------|---------|----------|--------|------------|---------|-----------|-----------|--------------------------|---------|------------|-----------|------------|---------|-----------|------------|
| Sample # | casting | Northing | туре   | Length (m) | Source  | Бу        | Date      | Lith                     | Texture | AILI       | intensity | AIL I FORM | AIL Z   | intensity | AIL 2 FORM |
| Y610844  | 431893  | 6220981  | Float  | 0          | Float   | TMumford  | 23-Jul-19 | Mafic Volcanic           | m       | ser-sil-py | 3         | Rp         |         |           |            |
| Y610845  | 431891  | 6220989  | Float  | 0          | Float   | TMumford  | 23-Jul-19 | Mafic Volcanic           | m       | ser-sil-py | 3         | Rp         | carb    | 2         | Pchy       |
| Y610846  | 432025  | 6221058  | Float  | 0          | Float   | TMumford  | 23-Jul-19 | Mafic Intrusion          | eq      | ser-sil-py | 3         |            |         |           |            |
| Y610847  | 432068  | 6221386  | Float  | 0          | Float   | TMumford  | 23-Jul-19 | Mafic Intrusion          | ea      | hem        | 4         | Rp         |         |           |            |
| Y610848  | 432199  | 6220973  | Grab   | 0          | Outcrop | TMumford  | 23-Jul-19 | Mafic Intrusion          | m       | ser-sil-nv | 5         | Rn         | hem     | 4         | Pchy       |
| V610849  | 422252  | 6221014  | Grab   | 0          | Outcrop | TMumford  | 22-Jul-19 | Mafic Intrusion          |         | ser-sil-py | 2         | Pn         | hem     | 2         | Pchy       |
| 1010849  | 432232  | 6221014  | Grab   | 0          | Outcrop |           | 23-Jul-19 |                          |         | ser-sii-py | 5         | κp<br>D    | nem     |           | PCIIy      |
| ¥610850  | 432284  | 6221004  | Grab   | 0          | Outcrop | TNumford  | 23-Jul-19 | Matic Intrusion          | trag    | ser-sil-py | 6         | кр         |         |           |            |
| Y610851  | 432298  | 6221002  | Grab   | 0          | Outcrop | TMumford  | 23-Jul-19 | Mafic Dyke               | m       | hem        | 4         | Pchy       |         |           |            |
| Y611003  | 427614  | 6222072  | Grab   | 0.15       | Outcrop | BStanley  | 08-Aug-19 |                          | lam     | sil        | 1         | v          |         |           |            |
| Y610650  | 431411  | 6221570  | Grab   | 0          | Outcrop | Dguestrin | 13-Aug-19 | Felsic Intrusion         | eq      |            |           |            |         |           |            |
|          |         |          |        |            |         |           |           | Intermediate             |         |            |           |            |         |           |            |
| Y610651  | 431192  | 6222587  | Grab   | 0          | Outcrop | Dguestrin | 13-Aug-19 | Volcanic                 |         | sil        | 3         | Pchy       |         |           |            |
| Y610765  | 431592  | 6220802  | Grab   | 0          | Outcrop | Dguestrin | 12-Aug-19 | Intermediate<br>Volcanic |         | ser        | 2         | Rp         |         |           |            |
| Y610766  | 431504  | 6220847  | Grab   | 0          | Outcrop | DGuestrin | 12-Aug-19 | Sandstone                |         | chl        | з         | Rmx        |         |           |            |
| V610767  | 421459  | 622001/  | Grah   | 0          | Outcrop | Dauostrin | 12 Aug 10 | Sandstone                |         |            |           |            |         |           |            |
| 1010707  | 431436  | 0220694  | Glab   | 0          | Outcrop | Dguestini | 12-Aug-19 | Sanustone                |         |            |           |            |         |           |            |
| Y610768  | 431525  | 6220802  | Grab   | 0          | Outcrop | DGuestrin | 12-Aug-19 | Mudstone                 |         |            |           |            |         |           |            |
| Y610769  | 431558  | 6220795  | Grab   | 0          | Outcrop | Dguestrin | 12-Aug-19 | Intermediate<br>Volcanic |         | sil        | 4         | Rp         |         |           |            |
|          |         |          |        |            |         | - 8       |           | Intermediate             |         |            |           |            |         |           |            |
| Y610770  | 431556  | 6220669  | Grab   | 0          | Outcrop | DGuestrin | 12-Aug-19 | Volcanic                 |         | sil        | 4         | Rp         |         |           |            |
|          |         |          |        |            |         |           |           | Intermediate             |         |            |           |            |         |           |            |
| Y610771  | 431566  | 6220531  | Grab   | 0          | Outcrop | Dguestrin | 12-Aug-19 | Volcanic                 |         | +          |           |            |         |           |            |
| Y610856  | 431498  | 6220914  | Grab   | n          | Outcrop | TMumford  | 13-Aug-19 | Intermediate             | ea      | hem        | ٦         | Rn         |         |           |            |
| .010000  | -51-50  | 5220514  | 5100   |            | Succop  | uninoru   | 10,006 10 | Intermediate             | ~4      |            | 5         | 4          |         |           |            |
| Y610857  | 431085  | 6221160  | Grab   | 0          | Outcrop | TMumford  | 13-Aug-19 | Intrusion                | m       | sil        | 4         | Rp         | hem     | 2         | Pchy       |

| Min 1       | Min 1<br>Intensity | Min 1<br>Form | Min 2     | Min 2<br>Intensity | Min 2<br>Form | Min 3 | Min 3<br>Intensity | Min 3<br>Form | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ag<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Au<br>(ppm) |
|-------------|--------------------|---------------|-----------|--------------------|---------------|-------|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|
|             |                    |               |           |                    |               |       |                    |               | Angular float piece, toaster sized - with other similar pieces around. Semi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |             |             |             |
|             |                    |               |           |                    |               |       |                    |               | massive sulphide, with pyrr + py + qtz, possible sphalerite. Gossanous areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |             |             |             |
| ро          | 5                  | A             | ру        | 4                  | D             | sph   | 2                  | A             | above glacier could be source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.50        | 2230        | 21          | 177         | 0.017       |
| ро          | 5                  | А             | sph       | 4                  | А             | ру    | 3                  | D             | Torso sized boulder, angular similar to prev sample but more sphalerite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.80        | 758         | 47          | 130         | 0.014       |
| <b>D</b> 1/ | 4                  | D             | cnv       | 2                  | D             |       |                    |               | Fict sized float high 10+ % sulphides + atz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222.00      | 27700       | 847         | 002         | 0 9/3       |
| ру          | 4                  | U             | сру       | 2                  | D             |       |                    |               | Cat sized houlder one of many in area directly below gossanous cliff 20-30%+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 333.00      | 37700       | 047         | 005         | 0.943       |
| po          | 5                  | А             | pv        | 5                  | D             | cpv   | 3                  | А             | sulphides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38.40       | 11550       | 41          | 855         | 0.227       |
|             |                    |               |           |                    |               |       |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |             |             |             |
| ру          | 5                  | D             |           |                    |               |       |                    |               | Gossanous granodiorite, diss py rich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 305.00      | 533         | 14050       | 5180        | 0.158       |
|             |                    | De            |           |                    |               |       |                    |               | Considered and a second s | 146.00      | 202         | 20000       | 0000        | 0.242       |
| ру          | 4                  | кр            |           |                    |               |       |                    |               | Sample of gossanous zone, 5-10% py, silicitied and bleached                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 146.00      | 302         | 20600       | 8060        | 0.243       |
| ρv          | 5                  | D             |           |                    |               |       |                    |               | Bleached and silicified granodiorite with 5-10% py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.80       | 248         | 165         | 5380        | 0.092       |
|             |                    |               |           |                    |               |       |                    |               | At the heart of the rusty stain on the wall is this sampled unit- Fg dark grey mafic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |             |             |             |
| ро          | 4                  | D             | ру        | 4                  | D             | sph   | 4                  | V             | intrusive, well mineralized with 10-15 (possibly more, py+pyrr+sph+/- cpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79.50       | 365         | 11700       | 9550        | 0.07        |
|             |                    |               |           |                    | -             |       |                    |               | - "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |             |             |             |
| ро          | 3                  | D             | ро        | 1                  | F             |       |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.90        | 233         | 33          | 76          | 0.005       |
|             |                    |               |           |                    |               |       |                    |               | Sampled granodiorite with quartz vein in sample. Irregular quartz vein more or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |             |             |             |
|             |                    |               |           |                    |               |       |                    |               | discem py in bost rock. Voining is sporadic in area. Provimal to sample abundant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |             |             |             |
| <b>DV</b>   | 2                  | D             | an        | 2                  | D             |       |                    |               | on and garnets observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.00       | 1250        | 1100        | 2010        | 0 125       |
| ру          | 5                  | U             | 511       | 5                  | D             |       |                    |               | Sampled int volcaniclastics - sequence of hedded mud to siltstones to int ash tuff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33.00       | 1250        | 450         | 2010        | 0.155       |
|             |                    |               |           |                    |               |       |                    |               | with subangular to rounded clasts in vfg matrix. Py appears as fine dissem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |             |             |             |
| py          | 4                  | D             |           |                    |               |       |                    |               | Sample from dark purple oxidized area. Gossans are patchy in area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.70        | 245         | 9           | 29          | 0.165       |
|             |                    |               | 1         |                    |               |       |                    |               | Green non-descript int volc. Sample from one of many patchy gossans beneath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |             |             |             |
| ро          | 3                  | D             | ру        | 4                  | D             |       |                    |               | small pocket glacier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.60        | 680         | 261         | 445         | 0.014       |
|             |                    |               |           |                    |               |       |                    |               | Fg well sorted sandstone with chloritic mafic grains. Py appears as fine dissem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |             |             |             |
| ру          | 4                  | D             |           |                    |               |       |                    |               | Abundant gossans in area but only py mineralization observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.10        | 711         | 48          | 78          | 0.126       |
|             |                    |               |           |                    |               |       |                    |               | Sampled bedded siltstone-sandstone with patchy gossans. Sample at this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |             |             |             |             |
|             |                    |               |           |                    |               |       |                    |               | location contains very finely disseminated magnetite. Very magnetic but difficult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |             |             |             |             |
|             |                    | _             |           |                    | _             |       |                    |               | to determine percentage due to fine grained nature. Outcrop in contact with int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |             |             |             |
| mag         | 6                  | D             | ру        | 3                  | D             |       |                    |               | dyke of Portland canal dyke swarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00        | 353         | 43          | 202         | 0.005       |
|             |                    |               |           |                    |               |       |                    |               | From 1m wide foliated structure on top of gully on ridge top, sampled a purple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |             |             |             |             |
| nv          | 2                  | D             | <b>no</b> | 2                  | D             | CDV   | 2                  | D             | unit outside of ovidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 00        | 120         | 21          | 110         | 0.016       |
| LA<br>A     | 5                  | 5             | μυ        | 5                  | 5             | сру   | 3                  | 0             | Sample of reworked int tuff provimal to 30cm wide east west shear with yery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00        | 433         | 21          | 119         | 0.010       |
| mag         | 5                  | D             | pv        | 3                  | D             | cpv   | 3                  | D             | finely dissem mag mineralization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.90        | 420         | 20          | 88          | 0.005       |
|             |                    | 5             | P7        |                    | 5             | οργ   |                    | 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50        | .20         | 20          | 00          | 0.005       |
| ру          | 5                  | D             |           |                    |               |       |                    |               | 3x2m oxidized zone hosting py mineralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.50       | 1590        | 169         | 358         | 0.053       |
|             |                    |               |           |                    |               |       |                    |               | 10cm wide semi massive sulphides structure hosted in green and grey mottled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |             |             |             |
|             |                    |               |           |                    |               |       |                    |               | int volc. Sulphides traced on surface for only 75 cm. Could not trace further. 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |             |             |             |
| mag         | 7                  | D             |           |                    |               |       |                    |               | mag in sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.10        | 706         | 18          | 123         | 0.005       |
| ру          | 1                  |               |           |                    |               |       |                    |               | Mg, intrusive mixed with mafic volcanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50        | 155         | 15          | 55          | 0.005       |
|             | _                  |               |           | -                  |               |       |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00        | 4.60        |             | 45          | 0.01        |
| ру          | 3                  | ט             | pyar      | 2                  | ט             |       |                    |               | Gossanous matic volcanics in proximity to Eocene int dykes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.80        | 160         | 11          | 43          | 0.01        |

| Sample # | Easting | Northing | Sample<br>Type | Length<br>(m) | Source  | Sampled By | Date      | Lith                        | Texture | Alt 1          | Alt 1<br>Intensity | Alt 1<br>Form | Alt 2 | Alt 2<br>Intensity | Alt 2 Form |
|----------|---------|----------|----------------|---------------|---------|------------|-----------|-----------------------------|---------|----------------|--------------------|---------------|-------|--------------------|------------|
| Y610858  | 431200  | 6221165  | Grab           | 0             | Outcrop | TMumford   | 13-Aug-19 | Intermediate Intrusion      | shr     | hem            | 2                  | Pchy          | sil   | 2                  | Pchy       |
| Y610859  | 431278  | 6221664  | Grab           | 0             | Outcrop | TMumford   | 13-Aug-19 | Hydrothermal<br>Replacement |         | carb           | 3                  |               |       |                    |            |
| Y610860  | 431104  | 6221867  | Grab           | 0             | Outcrop | TMumford   | 13-Aug-19 | Mafic Volc                  | m       | hem            | 3                  | Pchy          |       |                    |            |
| Y610861  | 430987  | 6221902  | Float          | 0             | Outcrop | TMumford   | 13-Aug-19 | Mafic Volc                  | m       |                |                    |               |       |                    |            |
| Y610862  | 430737  | 6222101  | Grab           | 0             | Outcrop | TMumford   | 13-Aug-19 | Quartz Vein                 | frc     | sil            |                    |               |       |                    |            |
| Y610863  | 430620  | 6221646  | Float          | 0             | Float   | TMumford   | 13-Aug-19 | Intermediate Intrusion      | m       |                |                    |               |       |                    |            |
| Y610864  | 430417  | 6221676  | Grab           | 0             | Outcrop | TMumford   | 13-Aug-19 | Quartz Vein                 | frc     | sil            | 6                  | v             | carb  | 4                  | v          |
| Y610865  | 430327  | 6221658  | Float          | 0             | Float   | TMumford   | 13-Aug-19 | Mafic Volc                  |         |                |                    |               |       |                    |            |
| Y610866  | 430215  | 6222050  | Float          | 0             | Float   | TMumford   | 13-Aug-19 | Intermediate Intrusion      | m       | hem            | 2                  |               |       |                    |            |
| Y611020  | 428023  | 6223357  | Grab           | 0.2           | Outcrop | BStanley   | 12-Aug-19 |                             | bd      | sil            | 4                  | v             |       |                    |            |
| Y611021  | 428098  | 6223332  | Grab           | 0.1           | Outcrop | BStanley   | 12-Aug-19 |                             | bd      | ser-sil-<br>py | 2                  | Pchy          |       |                    |            |
| Y611022  | 428827  | 6223243  | Grab           | 0.15          | Outcrop | BStanley   | 12-Aug-19 | Mudstone                    | frc     |                | 4                  | D             |       |                    |            |
| Y611023  | 428795  | 6223054  | Grab           | 0.2           | Outcrop | BStanley   | 12-Aug-19 | Quartz-carb Vein            | bx      | carb           | 4                  | v             | sil   | 3                  | v          |
| Y611024  | 428831  | 6222082  | Grab           | 0.2           | Outcrop | BStanley   | 12-Aug-19 |                             | frc     | ох             | 5                  | F             |       |                    |            |
| Y611025  | 428811  | 6222030  | Grab           | 0.15          | Outcrop | BStanley   | 12-Aug-19 |                             | frc     |                | 5                  | D             |       |                    |            |
| Y611026  | 432601  | 6219933  | Grab           | 0.15          | Outcrop | BStanley   | 13-Aug-19 | Mudstone                    | frc     | sil            | 2                  | v             |       |                    |            |
| Y611027  | 432520  | 6219848  | Grab           | 0.15          | Outcrop | BStanley   | 13-Aug-19 | Mudstone                    | frc     | sil            | 2                  | D             |       |                    |            |
| Y611028  | 432308  | 6219963  | Grab           | 0.15          | Outcrop | BStanley   | 13-Aug-19 |                             | frc     | sil            | 3                  | Pchy          |       |                    |            |
| Y611029  | 432171  | 6220254  | Grab           | 0.15          | Outcrop | BStanley   | 13-Aug-19 |                             | frc     | sil            | 2                  | D             |       |                    |            |
| Y611030  | 431785  | 6220335  | Grab           | 0.2           | Outcrop | BStanley   | 13-Aug-19 |                             |         | chl            | 4                  | D             |       |                    |            |
| Y611031  | 431569  | 6220608  | Grab           | 0.2           | Outcrop | BStanley   | 13-Aug-19 |                             | frc     | sil            | 3                  | v             |       |                    |            |

| Min 1 | Min 1<br>Intensity | Min 1<br>Form | Min 2 | Min 2<br>Intensity | Min 2<br>Form | Min 3 | Min 3<br>Intensity | Min 3<br>Form | Description                                                                                                                                    | Ag<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Au<br>(ppm) |
|-------|--------------------|---------------|-------|--------------------|---------------|-------|--------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|
|       |                    | -             |       |                    |               |       |                    |               | Sheared contact between mafic volc (east) and intrusives (west), trace min in                                                                  |             |             | ar /        |             |             |
| gn    | 1                  | Pchy          | ру    | 2                  | D             |       |                    |               | shear                                                                                                                                          | 0.30        | 28          | 2           | 35          | 0.005       |
|       |                    |               |       |                    |               |       |                    |               | Skaryn peg with qtz + diopside + cal + py                                                                                                      | 0.70        | 158         | 6           | 49          | 0.005       |
| ру    | 3                  | Str           | mag   | 1                  | D             |       |                    |               | Raft of mafic volc in intrusive, 5+ m wide                                                                                                     | 0.40        | 494         | 2           | 10          | 0.017       |
| ру    | 5                  | Str           | mag   | 2                  | D             |       |                    |               | Py rich float, cm wide stringers, 5-10% py                                                                                                     | 1.70        | 388         | 8           | 27          | 0.085       |
|       |                    |               |       |                    |               |       |                    |               | Massive qtz vein, sheared margins in mafic volcanics, >50 strike, width 0.3 - 1.2 m                                                            | 0.20        | 9           | 2           | 18          | 0.005       |
| ру    | 3                  | D             | сру   | 1                  | D             |       |                    |               | Eqigranular, with disseminated py with possible cpy                                                                                            | 0.70        | 30          | 7           | 48          | 0.01        |
|       |                    |               |       |                    |               |       |                    |               | Qtz vein cut by later thin Fe-carb veins                                                                                                       | 0.20        | 5           | 16          | 39          | 0.005       |
| ру    | 4                  | Rp            | pyar  | 4                  | Str           |       |                    |               | Float with semi massive to massive py + pyrr                                                                                                   | 3.80        | 1130        | 18          | 38          | 0.006       |
| ру    | 4                  | D             |       |                    |               |       |                    |               | Abundant float in lobe of moraine has anomalous py                                                                                             | 0.40        | 103         | 2           | 10          | 0.01        |
| ро    | 3                  | В             |       |                    |               |       |                    |               | Fol bt fel intr.                                                                                                                               | 0.50        | 69          | 13          | 118         | 0.088       |
| ро    | 2                  | Pchy          | ру    | 2                  |               | sph   | 1                  |               | Discontinuous sx bearing pods irregular primary magmatic like shape see photo.                                                                 | 17.80       | 472         | 6500        | 18250       | 0.272       |
| ро    | 2                  | D             | ру    | 1                  | F             |       |                    |               | Bt alt pervasive. Wacke like text. Pervasive gossan across hillside.                                                                           | 0.90        | 88          | 13          | 155         | 0.008       |
| ро    | 3                  | D             | ру    | 2                  | F             |       |                    |               | Discontinuous metre scale pods of sx and vn anastomosing through int vol host.                                                                 | 4.00        | 1000        | 27          | 89          | 0.023       |
| ру    | 3                  | F             | ро    | 1                  |               |       |                    |               | Very strong gossanous outcrop 30m diameter. Fel intr.                                                                                          | 0.40        | 45          | 6           | 21          | 0.025       |
| ро    | 3                  | D             |       |                    |               |       |                    |               | Bt alt. Fel intr.                                                                                                                              | 0.20        | 48          | 5           | 19          | 0.006       |
| ро    | 2                  | Pchy          | ру    | 1                  | F             |       |                    |               | West striking vertical anastomosing pinch and swell gossan.                                                                                    | 1.60        | 268         | 31          | 95          | 0.011       |
| ро    | 2                  | D             | ру    | 1                  | F             |       |                    |               | Discontinuous gossan strike west up hill said. Patchy gossan up to 3m diameter.                                                                | 2.00        | 446         | 48          | 127         | 0.012       |
| ро    | 3                  | D             | сру   | 2                  |               | ру    | 1                  |               | Strong 40m striking no gossan hosted in fel intr                                                                                               | 11.60       | 569         | 71          | 1020        | 0.029       |
| ру    | 2                  | F             | ро    | 2                  | D             |       |                    |               | 40 m diameter gossan hosted in fel intr                                                                                                        | 5.10        | 528         | 17          | 37          | 0.011       |
| mag   | 2                  | D             | ро    | 2                  | D             | сру   | 1                  |               | Photos of magmatic compositional layering. Primary sx and mag. Source to<br>Danny's magnetite vns? Fg gnt dodec trc dis. Retrograde py phenos? | 1.80        | 239         | 64          | 1960        | 0.013       |
| ро    | 2                  | D             | ру    | 1                  | F             |       |                    |               | West east gossan cutting ridge approx 50m strike patchy width up to 5m. Fel intr.                                                              | 1.00        | 135         | 32          | 164         | 0.009       |

![](_page_27_Picture_1.jpeg)

Appendix D: Rock Sample COAs

![](_page_28_Picture_1.jpeg)

![](_page_29_Picture_0.jpeg)

# CERTIFICATE TR19188051

Project: SR-19-06

This report is for 97 Rock samples submitted to our lab in Terrace, BC, Canada on 31-JUL-2019.

The following have access to data associated with this certificate:

DANIEL GUESTRIN

THOMAS MUMFORD

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 1 Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13-AUG-2019 This copy reported on 14-AUG-2019 Account: SCORES

|          |                                | - |
|----------|--------------------------------|---|
|          | SAMPLE PREPARATION             |   |
| ALS CODE | DESCRIPTION                    |   |
| WEI-21   | Received Sample Weight         |   |
| LOG-22   | Sample login - Rcd w/o BarCode |   |
| CRU-QC   | Crushing QC Test               |   |
| PUL-QC   | Pulverizing QC Test            |   |
| CRU-31   | Fine crushing - 70% <2mm       |   |
| SPL-21   | Split sample - riffle splitter |   |
| PUL-31   | Pulverize split to 85% <75 um  |   |
|          |                                |   |

|          | ANALYTICAL PROCEDURE           | S       |
|----------|--------------------------------|---------|
| ALS CODE | DESCRIPTION                    |         |
| Pb-OG46  | Ore Grade Pb - Aqua Regia      |         |
| Zn-OG46  | Ore Grade Zn - Aqua Regia      |         |
| Au-AA23  | Au 30g FA-AA finish            | AAS     |
| Au-GRA21 | Au 30g FA-GRAV finish          | WST-SIM |
| ME-ICP41 | 35 Element Aqua Regia ICP-AES  | ICP-AES |
| Ag-OG46  | Ore Grade Ag - Aqua Regia      |         |
| ME-OG46  | Ore Grade Elements - AquaRegia | ICP-AES |
| Cu-OG46  | Ore Grade Cu - Aqua Regia      |         |

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

![](_page_30_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 4 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13-AUG-2019 Account: SCORES

|                    |                                   |                                   |                              |                             |                            |                            |                             |                              | C                          | ERTIFI                      | CATE C                       | OF ANA                     | LYSIS                      | TR191                      | 88051                       |                             |
|--------------------|-----------------------------------|-----------------------------------|------------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------|------------------------------|----------------------------|-----------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOD | WEI-21<br>Recvd Wt.<br>kg<br>0.02 | ME-ICP41<br>Ag<br>ppm<br>0.2 | ME-ICP41<br>Al<br>%<br>0.01 | ME-ICP41<br>As<br>ppm<br>2 | ME-ICP41<br>B<br>ppm<br>10 | ME-ICP41<br>Ba<br>ppm<br>10 | ME-ICP41<br>Be<br>ppm<br>0.5 | ME-ICP41<br>Bi<br>ppm<br>2 | ME-ICP41<br>Ca<br>%<br>0.01 | ME-ICP41<br>Cd<br>ppm<br>0.5 | ME-ICP41<br>Co<br>ppm<br>1 | ME-ICP41<br>Cr<br>ppm<br>1 | ME-ICP41<br>Cu<br>ppm<br>1 | ME-ICP41<br>Fe<br>%<br>0.01 | ME-ICP41<br>Ga<br>ppm<br>10 |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
| Y610844            |                                   | 1.26                              | 5.5                          | 2.15                        | 40                         | <10                        | 40                          | <0.5                         | <2                         | 0.51                        | <0.5                         | 44                         | 3                          | 2230                       | 32.1                        | 10                          |
| Y610845            |                                   | 0.91                              | 2.8                          | 0.49                        | 406                        | <10                        | <10                         | <0.5                         | <2                         | 7.5                         | 1.6                          | 19                         | 6                          | 758                        | 17.80                       | <10                         |
| Y610846            |                                   | 0.61                              | >100                         | 0.78                        | 478                        | <10                        | 10                          | <0.5                         | 1285                       | 0.03                        | 16.8                         | 31                         | 7                          | >10000                     | 13.15                       | <10                         |
| Y610847<br>Y610848 |                                   | 0.90                              | 38.4<br>>100                 | 1.95<br>1.71                | 24<br>585                  | <10<br><10                 | 20                          | <0.5<br><0.5                 | 523<br><2                  | 0.75                        | 15.4<br>79.5                 | 85<br>4                    | 5                          | >10000                     | 19.45<br>6.55               | 10<br><10                   |
| V610840            |                                   | 0.07                              | >100                         | 0.46                        | 1690                       | <10                        | 80                          | <0.5                         | 2                          | 0.15                        | 120.0                        | 2                          | 2                          | 302                        | 7.25                        | <10                         |
| Y610850            |                                   | 0.76                              | 12.8                         | 0.40                        | 5920                       | <10                        | 80                          | <0.5                         | 17                         | 0.17                        | 120.0                        | 9                          | 2                          | 248                        | 5.20                        | <10                         |
| Y610851            |                                   | 1.10                              | 79.5                         | 3.76                        | 147                        | <10                        | 120                         | 0.8                          | 15                         | 0.23                        | 129.0                        | 7                          | 2                          | 365                        | 12.50                       | 10                          |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |

![](_page_31_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 4 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13-AUG-2019 Account: SCORES

|                    |                                   |                            |                            |                             |                             |                            |                            |                             | C                          | ERTIFIC                    | CATE C                     | of ana                     | LYSIS                      | TR191                      | 88051                      |                             |
|--------------------|-----------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOD | ME-ICP41<br>Hg<br>ppm<br>1 | ME-ICP41<br>K<br>%<br>0.01 | ME-ICP41<br>La<br>ppm<br>10 | ME-ICP41<br>Mg<br>%<br>0.01 | ME-ICP41<br>Mn<br>ppm<br>5 | ME-ICP41<br>Mo<br>ppm<br>1 | ME-ICP41<br>Na<br>%<br>0.01 | ME-ICP41<br>Ni<br>ppm<br>1 | ME-ICP41<br>P<br>ppm<br>10 | ME-ICP41<br>Pb<br>ppm<br>2 | ME-ICP41<br>S<br>%<br>0.01 | ME-ICP41<br>Sb<br>ppm<br>2 | ME-ICP41<br>Sc<br>ppm<br>1 | ME-ICP41<br>Sr<br>ppm<br>1 | ME-ICP41<br>Th<br>ppm<br>20 |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
| Y610844            |                                   | 1                          | 0.24                       | <10                         | 0.81                        | 804                        | 4                          | 0.08                        | 3                          | 140                        | 21                         | 9.09                       | 9                          | 2                          | 19                         | <20                         |
| Y610845<br>Y610846 |                                   | <1                         | 0.02                       | <10<br><10                  | 0.17                        | 1640<br>276                | 6<br>56                    | 0.01<br><0.01               | 1<br>4                     | 60<br>40                   | 47<br>847                  | 4.22<br>>10.0              | /<br>13                    | <1<br>1                    | 11<br>2                    | <20<br><20                  |
| Y610847            |                                   | <1                         | 0.41                       | <10                         | 0.41                        | 424                        | 12                         | 0.15                        | 3                          | 300                        | 41                         | >10.0                      | 8                          | 1                          | 35                         | <20                         |
| Y610848            |                                   | 1                          | 0.31                       | 10                          | 0.76                        | 877                        | 6                          | 0.01                        | 1                          | 900                        | >10000                     | 3.45                       | 49                         | 2                          | 5                          | <20                         |
| Y610849            |                                   | 1                          | 0.31                       | <10                         | 0.08                        | 114                        | 8                          | 0.01                        | 1                          | 920                        | >10000                     | 7.23                       | 46                         | 1                          | 3                          | <20                         |
| Y610850            |                                   | <1                         | 0.46                       | 10                          | 0.16                        | 114                        | 4                          | 0.02                        | 2                          | 910<br>1020                | 165                        | 4.82                       | 6                          | 1                          | 4                          | <20                         |
| 1010831            |                                   |                            | 0.41                       | 10                          | 2.15                        | 2000                       | 20                         | 0.01                        | Z                          | 1020                       | 10000                      | 4.59                       | 45                         | I                          | 4                          | ~20                         |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |

![](_page_32_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 4 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 13-AUG-2019 Account: SCORES

Project: SR-19-06

CERTIFICATE OF ANALYSIS TR19188051

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOD | ME-ICP41<br>Ti<br>%<br>0.01           | ME-ICP41<br>TI<br>ppm<br>10     | ME-ICP41<br>U<br>ppm<br>10      | ME-ICP41<br>V<br>ppm<br>1 | ME-ICP41<br>W<br>ppm<br>10  | ME-ICP41<br>Zn<br>ppm<br>2       | Ag-OG46<br>Ag<br>ppm<br>1 | Cu-OG46<br>Cu<br>%<br>0.001 | Pb-OG46<br>Pb<br>%<br>0.001 | Zn-OG46<br>Zn<br>%<br>0.001 | Au-AA23<br>Au<br>ppm<br>0.005             | Au-GRA21<br>Au<br>ppm<br>0.05 |  |
|-----------------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------|---------------------------------|---------------------------|-----------------------------|----------------------------------|---------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------------------|-------------------------------|--|
|                                                     |                                   |                                       |                                 |                                 |                           |                             |                                  |                           |                             |                             |                             |                                           |                               |  |
| Y610844<br>Y610845<br>Y610846<br>Y610847<br>Y610848 |                                   | 0.02<br><0.01<br>0.01<br>0.04<br>0.06 | <10<br><10<br><10<br><10<br><10 | <10<br><10<br><10<br><10<br><10 | 17<br>7<br>9<br>24<br>30  | 70<br>10<br><10<br>10<br>20 | 177<br>130<br>883<br>855<br>5180 | 333<br>305                | 3.77<br>1.155               | 1.405                       |                             | 0.017<br>0.014<br>0.943<br>0.227<br>0.158 |                               |  |
| Y610849<br>Y610850<br>Y610851                       |                                   | 0.01<br>0.02<br>0.04                  | <10<br><10<br><10               | <10<br><10<br><10               | 5<br>5<br>32              | 20<br>20<br>20              | 8060<br>5380<br>9550             | 146                       |                             | 2.06<br>1.170               |                             | 0.243<br>0.092<br>0.070                   |                               |  |
|                                                     |                                   |                                       |                                 |                                 |                           |                             |                                  |                           |                             |                             |                             |                                           |                               |  |
|                                                     |                                   |                                       |                                 |                                 |                           |                             |                                  |                           |                             |                             |                             |                                           |                               |  |
|                                                     |                                   |                                       |                                 |                                 |                           |                             |                                  |                           |                             |                             |                             |                                           |                               |  |
|                                                     |                                   |                                       |                                 |                                 |                           |                             |                                  |                           |                             |                             |                             |                                           |                               |  |
|                                                     |                                   |                                       |                                 |                                 |                           |                             |                                  |                           |                             |                             |                             |                                           |                               |  |
|                                                     |                                   |                                       |                                 |                                 |                           |                             |                                  |                           |                             |                             |                             |                                           |                               |  |

![](_page_33_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 14-SEP-2019 Account: SCORES

# CERTIFICATE TR19201186

Project: SR-19-09

This report is for 44 Rock samples submitted to our lab in Terrace, BC, Canada on 14-AUG-2019.

The following have access to data associated with this certificate:

DANIEL GUESTRIN

THOMAS MUMFORD

|          | SAMPLE PREPARATION             |
|----------|--------------------------------|
| ALS CODE | DESCRIPTION                    |
| WEI-21   | Received Sample Weight         |
| LOG-21   | Sample logging - ClientBarCode |
| CRU-31   | Fine crushing - 70% <2mm       |
| SPL-21   | Split sample - riffle splitter |
| PUL-31   | Pulverize split to 85% <75 um  |
| CRU-QC   | Crushing QC Test               |
| PUL-QC   | Pulverizing QC Test            |

|          | ANALYTICAL PROCEDURE           | S       |
|----------|--------------------------------|---------|
| ALS CODE | DESCRIPTION                    |         |
| Pb-OG46  | Ore Grade Pb - Aqua Regia      |         |
| Zn-OG46  | Ore Grade Zn - Aqua Regia      |         |
| Ag-GRA21 | Ag 30g FA-GRAV finish          | WST-SIM |
| Au-AA23  | Au 30g FA-AA finish            | AAS     |
| ME-ICP41 | 35 Element Aqua Regia ICP-AES  | ICP-AES |
| Ag-OG46  | Ore Grade Ag - Aqua Regia      |         |
| ME-OG46  | Ore Grade Elements - AquaRegia | ICP-AES |
| Cu-OG46  | Ore Grade Cu - Aqua Regia      |         |

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

![](_page_34_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 2 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 14-SEP-2019 Account: SCORES

| Metho              |                                   |                                   |                              |                             |                            |                            |                             |                              | C                          | ERTIFIC                     | CATE O                       | F ANA                      | LYSIS                      | TR192                      | 01186                       |                             |
|--------------------|-----------------------------------|-----------------------------------|------------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------|------------------------------|----------------------------|-----------------------------|------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOD | WEI-21<br>Recvd Wt.<br>kg<br>0.02 | ME-ICP41<br>Ag<br>ppm<br>0.2 | ME-ICP41<br>Al<br>%<br>0.01 | ME-ICP41<br>As<br>ppm<br>2 | ME-ICP41<br>B<br>ppm<br>10 | ME-ICP41<br>Ba<br>ppm<br>10 | ME-ICP41<br>Be<br>ppm<br>0.5 | ME-ICP41<br>Bi<br>ppm<br>2 | ME-ICP41<br>Ca<br>%<br>0.01 | ME-ICP41<br>Cd<br>ppm<br>0.5 | ME-ICP41<br>Co<br>ppm<br>1 | ME-ICP41<br>Cr<br>ppm<br>1 | ME-ICP41<br>Cu<br>ppm<br>1 | ME-ICP41<br>Fe<br>%<br>0.01 | ME-ICP41<br>Ga<br>ppm<br>10 |
| Y611003            |                                   | 1.03                              | 0.9                          | 2.05                        | 2                          | <10                        | 230                         | <0.5                         | <2                         | 2.00                        | 0.7                          | 23                         | 65                         | 233                        | 3.75                        | 10                          |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |
|                    |                                   |                                   |                              |                             |                            |                            |                             |                              |                            |                             |                              |                            |                            |                            |                             |                             |

![](_page_35_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 14-SEP-2019 Account: SCORES

|                    |                                   |                            |                            |                             |                             |                            |                            |                             | C                          | ERTIFIC                    | CATE O                     | F ANA                      | YSIS                       | TR192                      | 01186                      |                             |
|--------------------|-----------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOD | ME-ICP41<br>Hg<br>ppm<br>1 | ME-ICP41<br>K<br>%<br>0.01 | ME-ICP41<br>La<br>ppm<br>10 | ME-ICP41<br>Mg<br>%<br>0.01 | ME-ICP41<br>Mn<br>ppm<br>5 | ME-ICP41<br>Mo<br>ppm<br>1 | ME-ICP41<br>Na<br>%<br>0.01 | ME-ICP41<br>Ni<br>ppm<br>1 | ME-ICP41<br>P<br>ppm<br>10 | ME-ICP41<br>Pb<br>ppm<br>2 | ME-ICP41<br>S<br>%<br>0.01 | ME-ICP41<br>Sb<br>ppm<br>2 | ME-ICP41<br>Sc<br>ppm<br>1 | ME-ICP41<br>Sr<br>ppm<br>1 | ME-ICP41<br>Th<br>ppm<br>20 |
| Y611003            |                                   | 1                          | 0.31                       | 10                          | 0.88                        | 471                        | 2                          | 0.43                        | 35                         | 1510                       | 33                         | 1.03                       | 5                          | 9                          | 132                        | <20                         |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |
|                    |                                   |                            |                            |                             |                             |                            |                            |                             |                            |                            |                            |                            |                            |                            |                            |                             |

![](_page_36_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 14-SEP-2019 Account: SCORES

|                   |                                   |                             |                             |                            |                           |                            |                            |                           | C                           | ERTIFIC                     | CATE O                      | F ANAL                     | YSIS                          | TR19201186 |
|-------------------|-----------------------------------|-----------------------------|-----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|---------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|-------------------------------|------------|
| ample Description | Method<br>Analyte<br>Units<br>LOD | ME-ICP41<br>Ti<br>%<br>0.01 | ME-ICP41<br>TI<br>ppm<br>10 | ME-ICP41<br>U<br>ppm<br>10 | ME-ICP41<br>V<br>ppm<br>1 | ME-ICP41<br>W<br>ppm<br>10 | ME-ICP41<br>Zn<br>ppm<br>2 | Ag-OG46<br>Ag<br>ppm<br>1 | Cu-OG46<br>Cu<br>%<br>0.001 | Pb-OG46<br>Pb<br>%<br>0.001 | Zn-OG46<br>Zn<br>%<br>0.001 | Ag-GRA21<br>Ag<br>ppm<br>5 | Au-AA23<br>Au<br>ppm<br>0.005 |            |
| /611003           |                                   | 0.23                        | <10                         | <10                        | 110                       | <10                        | 76                         |                           |                             |                             |                             |                            | <0.005                        |            |
|                   |                                   |                             |                             |                            |                           |                            |                            |                           |                             |                             |                             |                            |                               |            |
|                   |                                   |                             |                             |                            |                           |                            |                            |                           |                             |                             |                             |                            |                               |            |
|                   |                                   |                             |                             |                            |                           |                            |                            |                           |                             |                             |                             |                            |                               |            |
|                   |                                   |                             |                             |                            |                           |                            |                            |                           |                             |                             |                             |                            |                               |            |
|                   |                                   |                             |                             |                            |                           |                            |                            |                           |                             |                             |                             |                            |                               |            |
|                   |                                   |                             |                             |                            |                           |                            |                            |                           |                             |                             |                             |                            |                               |            |
|                   |                                   |                             |                             |                            |                           |                            |                            |                           |                             |                             |                             |                            |                               |            |
|                   |                                   |                             |                             |                            |                           |                            |                            |                           |                             |                             |                             |                            |                               |            |

![](_page_37_Picture_0.jpeg)

# CERTIFICATE TR19214506

Project: SR-19-10

This report is for 70 Rock samples submitted to our lab in Terrace, BC, Canada on 28-AUG-2019.

The following have access to data associated with this certificate:

DANIEL GUESTRIN

THOMAS MUMFORD

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 1-OCT-2019 This copy reported on 15-OCT-2019 Account: SCORES

|          | SAMPLE PREPARATION             |
|----------|--------------------------------|
| ALS CODE | DESCRIPTION                    |
| WEI-21   | Received Sample Weight         |
| LOG-21   | Sample logging - ClientBarCode |
| CRU-31   | Fine crushing - 70% <2mm       |
| SPL-21   | Split sample - riffle splitter |
| PUL-31   | Pulverize split to 85% <75 um  |
| CRU-QC   | Crushing QC Test               |
| PUL-QC   | Pulverizing QC Test            |

|          | ANALYTICAL PROCEDURES          | 5       |
|----------|--------------------------------|---------|
| ALS CODE | DESCRIPTION                    |         |
| Pb-OG46  | Ore Grade Pb - Aqua Regia      |         |
| Zn-OG46  | Ore Grade Zn - Aqua Regia      |         |
| Au-AA23  | Au 30g FA-AA finish            | AAS     |
| Au-GRA21 | Au 30g FA-GRAV finish          | WST-SIM |
| ME-ICP41 | 35 Element Aqua Regia ICP-AES  | ICP-AES |
| Ag-OG46  | Ore Grade Ag - Aqua Regia      |         |
| ME-OG46  | Ore Grade Elements - AquaRegia | ICP-AES |

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Signature: Saa Traxler, General Manager, North Vancouver

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 2 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 1-OCT-2019 Account: SCORES

#### Project: SR-19-10

|                                                     |         |                                      |                                 |                                      |                          |                                 |                             |                                     | C                               | ERTIFIC                              | CATE O                            | <b>FANA</b>                | LYSIS                    | TR192                         | 14506                                 |                                |
|-----------------------------------------------------|---------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------|---------------------------------|-----------------------------|-------------------------------------|---------------------------------|--------------------------------------|-----------------------------------|----------------------------|--------------------------|-------------------------------|---------------------------------------|--------------------------------|
| Sample Description                                  | Method  | WEI-21                               | ME-ICP41                        | ME-ICP41                             | ME-ICP41                 | ME-ICP41                        | ME-ICP41                    | ME-ICP41                            | ME-ICP41                        | ME-ICP41                             | ME-ICP41                          | ME-ICP41                   | ME-ICP41                 | ME-ICP41                      | ME-ICP41                              | ME-ICP41                       |
|                                                     | Analyte | Recvd Wt.                            | Ag                              | Al                                   | As                       | B                               | Ba                          | Be                                  | Bi                              | Ca                                   | Cd                                | Co                         | Cr                       | Cu                            | Fe                                    | Ga                             |
|                                                     | Units   | kg                                   | ppm                             | %                                    | ppm                      | ppm                             | ppm                         | ppm                                 | ppm                             | %                                    | ppm                               | ppm                        | ppm                      | ppm                           | %                                     | ppm                            |
|                                                     | LOD     | 0.02                                 | 0.2                             | 0.01                                 | 2                        | 10                              | 10                          | 0.5                                 | 2                               | 0.01                                 | 0.5                               | 1                          | 1                        | 1                             | 0.01                                  | 10                             |
|                                                     |         |                                      |                                 |                                      |                          |                                 |                             |                                     |                                 |                                      |                                   |                            |                          |                               |                                       |                                |
| Y610650                                             |         | 0.93                                 | 39.0                            | 4.17                                 | 11                       | <10                             | 60                          | 1.4                                 | <2                              | 2.03                                 | 8.5                               | 5                          | 6                        | 1250                          | 3.01                                  | 10                             |
| Y610651                                             |         | 0.83                                 | 0.7                             | 1.02                                 | 3                        | <10                             | 60                          | <0.5                                | 4                               | 0.70                                 | <0.5                              | 15                         | 6                        | 245                           | 6.45                                  | 10                             |
| Y611020                                             |         | 1.21                                 | 0.5                             | 5.90                                 | 12                       | <10                             | 140                         | 1.2                                 | <2                              | 2.63                                 | <0.5                              | 11                         | 11                       | 69                            | 5.32                                  | 10                             |
| Y611021                                             |         | 1.14                                 | 17.8                            | 1.04                                 | 143                      | <10                             | 40                          | <0.5                                | 20                              | 0.57                                 | 207                               | 21                         | 11                       | 472                           | 5.70                                  | <10                            |
| Y611022<br>Y611023<br>Y611024<br>Y611025<br>Y611026 |         | 0.98<br>1.50<br>1.41<br>1.08<br>1.34 | 0.9<br>4.0<br>0.4<br>0.2<br>1.6 | 0.41<br>1.19<br>0.86<br>0.83<br>2.98 | 10<br>66<br>3<br>8<br>12 | <10<br><10<br><10<br><10<br><10 | 40<br>30<br>60<br>60<br>180 | <0.5<br><0.5<br><0.5<br><0.5<br>0.8 | <2<br>2<br><2<br><2<br><2<br><2 | 0.59<br>3.65<br>0.55<br>0.71<br>1.24 | 1.6<br>0.5<br><0.5<br><0.5<br>1.0 | 11<br>122<br>13<br>9<br>23 | 27<br>6<br>10<br>6<br>37 | 88<br>1000<br>45<br>48<br>268 | 1.63<br>19.25<br>2.12<br>3.12<br>3.81 | <10<br><10<br><10<br><10<br>10 |
| Y611027                                             |         | 1.33                                 | 2.0                             | 3.43                                 | 9                        | <10                             | 190                         | <0.5                                | 3                               | 1.30                                 | 0.7                               | 14                         | 6                        | 446                           | 5.14                                  | 10                             |
| Y611028                                             |         | 0.99                                 | 11.6                            | 1.41                                 | 22                       | <10                             | 20                          | <0.5                                | 10                              | 0.89                                 | 16.6                              | 5                          | 12                       | 569                           | 3.64                                  | <10                            |
| Y611029                                             |         | 1.13                                 | 5.1                             | 1.41                                 | 204                      | <10                             | 120                         | <0.5                                | 10                              | 0.10                                 | 1.1                               | 4                          | 5                        | 528                           | 5.32                                  | <10                            |
| Y611030                                             |         | 1.34                                 | 1.8                             | 7.12                                 | 3                        | <10                             | 570                         | 0.9                                 | 3                               | 3.58                                 | 37.5                              | 24                         | 59                       | 239                           | 4.87                                  | 10                             |
| Y611031                                             |         | 1.45                                 | 1.0                             | 4.57                                 | 7                        | <10                             | 310                         | 0.5                                 | <2                              | 1.54                                 | 0.5                               | 10                         | 10                       | 135                           | 5.31                                  | 10                             |
|                                                     |         |                                      |                                 |                                      |                          |                                 |                             |                                     |                                 |                                      |                                   |                            |                          |                               |                                       |                                |
|                                                     |         |                                      |                                 |                                      |                          |                                 |                             |                                     |                                 |                                      |                                   |                            |                          |                               |                                       |                                |
| Y610765                                             |         | 0.65                                 | 2.6                             | 1.63                                 | 6                        | <10                             | 130                         | <0.5                                | 2                               | 1.24                                 | 5.8                               | 30                         | 4                        | 680                           | 4.66                                  | 10                             |
| Y610766                                             |         | 0.70                                 | 3.1                             | 0.94                                 | 4                        | <10                             | 10                          | <0.5                                | 3                               | 1.40                                 | 1.2                               | 28                         | 5                        | 711                           | 3.88                                  | <10                            |
| Y610767                                             |         | 0.84                                 | 1.0                             | 4.93                                 | 3                        | <10                             | 200                         | <0.5                                | <2                              | 1.50                                 | 0.9                               | 23                         | 24                       | 353                           | 8.40                                  | 10                             |

![](_page_38_Picture_6.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 1-OCT-2019 Account: SCORES

#### Project: SR-19-10

|                                                     |                                   |                                  |                                      |                               |                                      |                                  |                            |                                      | C                          | ERTIFIC                             | CATE O                     | F ANAI                                | YSIS                       | TR192                      | 14506                        |                                        |
|-----------------------------------------------------|-----------------------------------|----------------------------------|--------------------------------------|-------------------------------|--------------------------------------|----------------------------------|----------------------------|--------------------------------------|----------------------------|-------------------------------------|----------------------------|---------------------------------------|----------------------------|----------------------------|------------------------------|----------------------------------------|
| Sample Description                                  | Method<br>Analyte<br>Units<br>LOD | ME-ICP41<br>Hg<br>ppm<br>1       | ME-ICP41<br>K<br>%<br>0.01           | ME-ICP41<br>La<br>ppm<br>10   | ME-ICP41<br>Mg<br>%<br>0.01          | ME-ICP41<br>Mn<br>ppm<br>5       | ME-ICP41<br>Mo<br>ppm<br>1 | ME-ICP41<br>Na<br>%<br>0.01          | ME-ICP41<br>Ni<br>ppm<br>1 | ME-ICP41<br>P<br>ppm<br>10          | ME-ICP41<br>Pb<br>ppm<br>2 | ME-ICP41<br>S<br>%<br>0.01            | ME-ICP41<br>Sb<br>ppm<br>2 | ME-ICP41<br>Sc<br>ppm<br>1 | ME-ICP41<br>Sr<br>ppm<br>1   | ME-ICP41<br>Th<br>ppm<br>20            |
|                                                     |                                   |                                  |                                      |                               |                                      |                                  |                            |                                      |                            |                                     |                            |                                       |                            |                            |                              |                                        |
| Y610650<br>Y610651                                  |                                   | <1<br><1                         | 0.32<br>0.30                         | <10<br><10                    | 0.81<br>0.60                         | 733<br>301                       | 1<br>6                     | 0.19<br>0.08                         | 2<br>7                     | 690<br>2120                         | 4490<br>9                  | 0.56<br>1.00                          | 36<br><2                   | 4<br>3                     | 158<br>73                    | <20<br><20                             |
| Y611020<br>Y611021                                  |                                   | <1<br><1                         | 1.31<br>0.10                         | <10<br><10                    | 1.12<br>0.22                         | 1190<br>367                      | 3<br>1                     | 0.47<br>0.12                         | 2<br>6                     | 890<br>240                          | 13<br>6500                 | 0.85<br>3.84                          | 3<br>3                     | 10<br>2                    | 188<br>34                    | <20<br><20                             |
| Y611022<br>Y611023<br>Y611024<br>Y611025<br>Y611026 |                                   | <1<br><1<br><1<br><1<br><1<br><1 | 0.04<br>0.05<br>0.16<br>0.14<br>0.83 | 10<br><10<br>10<br>10<br>10   | 0.06<br>0.73<br>0.43<br>0.36<br>1.23 | 106<br>781<br>183<br>167<br>700  | 6<br>1<br>2<br>4<br>4      | 0.05<br>0.03<br>0.07<br>0.06<br>0.35 | 96<br>65<br>7<br>2<br>25   | 990<br>1220<br>1000<br>1080<br>1130 | 13<br>27<br>6<br>5<br>31   | 0.79<br>>10.0<br>1.54<br>1.27<br>1.35 | <2<br>4<br><2<br><2<br><2  | 1<br>4<br>2<br>2<br>8      | 21<br>131<br>35<br>33<br>230 | <20<br><20<br><20<br><20<br><20<br><20 |
| Y611027<br>Y611028<br>Y611029<br>Y611030<br>Y611031 |                                   | <1<br><1<br><1<br><1<br><1       | 0.78<br>0.07<br>0.34<br>0.74<br>1.32 | 10<br><10<br>10<br><10<br><10 | 0.92<br>0.31<br>0.57<br>1.26<br>1.21 | 1020<br>649<br>295<br>723<br>940 | 36<br>8<br>3<br>5<br>2     | 0.32<br>0.03<br>0.02<br>0.44<br>0.47 | 2<br>1<br>1<br>26<br>3     | 1030<br>420<br>980<br>1800<br>880   | 48<br>71<br>17<br>64<br>32 | 1.40<br>0.40<br>1.02<br>0.39<br>0.82  | <2<br>4<br><2<br>2<br><2   | 6<br>1<br>3<br>7<br>10     | 102<br>52<br>5<br>915<br>120 | <20<br><20<br><20<br><20<br><20<br><20 |
|                                                     |                                   |                                  |                                      |                               |                                      |                                  |                            |                                      |                            |                                     |                            |                                       |                            |                            |                              |                                        |
|                                                     |                                   |                                  |                                      |                               |                                      |                                  |                            |                                      |                            |                                     |                            |                                       |                            |                            |                              |                                        |
| Y610765<br>Y610766<br>Y610767                       |                                   | <1<br><1<br><1                   | 0.15<br>0.06<br>0.47                 | 10<br><10<br>10               | 1.09<br>0.30<br>3.36                 | 607<br>337<br>1490               | 1<br>5<br>2                | 0.12<br>0.06<br>0.16                 | 9<br>13<br>15              | 2640<br>2240<br>1940                | 261<br>48<br>43            | 1.95<br>1.71<br>0.59                  | <2<br>3<br><2              | 5<br>4<br>8                | 59<br>86<br>241              | <20<br><20<br><20                      |

![](_page_39_Picture_5.jpeg)

![](_page_40_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 1-OCT-2019 Account: SCORES

|                                          |                                   |                                      |                                 |                                 |                           |                                 |                            |                           | C                           | ERTIFIC                     | CATE C                                    | OF ANALYSIS                   | TR19214506 |
|------------------------------------------|-----------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------|---------------------------------|----------------------------|---------------------------|-----------------------------|-----------------------------|-------------------------------------------|-------------------------------|------------|
| Sample Description                       | Method<br>Analyte<br>Units<br>LOD | ME-ICP41<br>Ti<br>%<br>0.01          | ME-ICP41<br>Tl<br>ppm<br>10     | ME-ICP41<br>U<br>ppm<br>10      | ME-ICP41<br>V<br>ppm<br>1 | ME-ICP41<br>W<br>ppm<br>10      | ME-ICP41<br>Zn<br>ppm<br>2 | Ag-OG46<br>Ag<br>ppm<br>1 | Pb-OG46<br>Pb<br>%<br>0.001 | Zn-OG46<br>Zn<br>%<br>0.001 | Au-AA23<br>Au<br>ppm<br>0.005             | Au-GRA21<br>Au<br>ppm<br>0.05 |            |
|                                          |                                   |                                      |                                 |                                 |                           |                                 |                            |                           |                             |                             |                                           |                               |            |
| Y610650<br>Y610651                       |                                   | 0.10<br>0.19                         | <10<br><10                      | <10<br><10                      | 43<br>103                 | 20<br><10                       | 2010<br>29                 |                           |                             |                             | 0.135<br>0.165                            |                               |            |
| Y611020                                  |                                   | 0.20                                 | <10<br><10                      | <10<br><10                      | 95<br>26                  | <10<br><10                      | 118<br>>10000              |                           |                             | 1 825                       | 0.088                                     |                               |            |
| Y611022<br>Y611023<br>Y611024<br>Y611025 |                                   | 0.04<br>0.08<br>0.10<br>0.14<br>0.14 | <10<br><10<br>10<br><10<br><10  | <10<br><10<br><10<br><10<br><10 | 23<br>72<br>43<br>35      | <10<br><10<br><10<br><10<br><10 | 155<br>89<br>21<br>19      |                           |                             | 1.020                       | 0.008<br>0.023<br>0.025<br>0.006<br>0.011 |                               |            |
| Y611027<br>Y611028<br>Y611029<br>Y611030 |                                   | 0.13<br>0.14<br>0.09<br>0.06<br>0.18 | <10<br><10<br><10<br><10<br><10 | <10<br><10<br><10<br><10<br><10 | 74<br>15<br>37<br>222     | <10<br><10<br>30<br><10<br><10  | 127<br>1020<br>37<br>1960  |                           |                             |                             | 0.012<br>0.029<br>0.011<br>0.013          |                               |            |
| Y011U31                                  |                                   | 0.21                                 | <10                             | <10                             | 104                       | <10                             | 164                        |                           |                             |                             | 0.009                                     |                               |            |
|                                          |                                   |                                      |                                 |                                 |                           |                                 |                            |                           |                             |                             |                                           |                               |            |
| Y610765<br>Y610766                       |                                   | 0.20<br>0.12                         | <10<br><10                      | <10<br><10                      | 129<br>50                 | <10<br><10                      | 445<br>78                  |                           |                             |                             | 0.014<br>0.126                            |                               |            |
| Y610/6/                                  |                                   | 0.13                                 | <10                             | <10                             | 185                       | <10                             | 202                        |                           |                             |                             | <0.005                                    |                               |            |

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 1-OCT-2019 Account: SCORES

| ()                                                             |                                   |                                              |                                        |                                              |                            |                                        |                                     |                                              | C                                           | ERTIFIC                                      | CATE Ο                                            | F ANA                          | LYSIS                          | TR192                                 | 14506                                        |                                             |
|----------------------------------------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------|----------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------------|--------------------------------|--------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------------|
| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | WEI-21<br>Recvd Wt.<br>kg<br>0.02            | ME-ICP41<br>Ag<br>ppm<br>0.2           | ME-ICP41<br>Al<br>%<br>0.01                  | ME-ICP41<br>As<br>ppm<br>2 | ME-ICP41<br>B<br>ppm<br>10             | ME-ICP41<br>Ba<br>ppm<br>10         | ME-ICP41<br>Be<br>ppm<br>0.5                 | ME-ICP41<br>Bi<br>ppm<br>2                  | ME-ICP41<br>Ca<br>%<br>0.01                  | ME-ICP41<br>Cd<br>ppm<br>0.5                      | ME-ICP41<br>Co<br>ppm<br>1     | ME-ICP41<br>Cr<br>ppm<br>1     | ME-ICP41<br>Cu<br>ppm<br>1            | ME-ICP41<br>Fe<br>%<br>0.01                  | ME-ICP41<br>Ga<br>ppm<br>10                 |
| Y610768<br>Y610769<br>Y610770<br>Y610771                       |                                   | 0.96<br>0.73<br>1.04<br>0.92                 | 1.0<br>0.9<br>20.5<br>4.1              | 4.31<br>2.13<br>3.30<br>2.56                 | 2<br>3<br>207<br>10        | <10<br><10<br><10<br><10               | 50<br>130<br>20<br>60               | <0.5<br><0.5<br><0.5<br><0.5                 | 5<br>5<br>119<br>6                          | 1.42<br>1.25<br>0.35<br>0.61                 | <0.5<br>0.5<br>26.3<br><0.5                       | 21<br>17<br>175<br>1           | 24<br>11<br>10<br>20           | 439<br>420<br>1590<br>706             | 10.00<br>5.78<br>24.1<br>29.1                | 10<br>10<br>10<br>10                        |
|                                                                |                                   |                                              |                                        |                                              |                            |                                        |                                     |                                              |                                             |                                              |                                                   |                                |                                |                                       |                                              |                                             |
|                                                                |                                   |                                              |                                        |                                              |                            |                                        |                                     |                                              |                                             |                                              |                                                   |                                |                                |                                       |                                              |                                             |
|                                                                |                                   |                                              | 0.5                                    |                                              | -                          |                                        |                                     | ÂE                                           |                                             | 1.00                                         |                                                   | 10                             | 10                             | 155                                   |                                              |                                             |
| Y610856<br>Y610857<br>Y610858<br>Y610859<br>Y610860<br>Y610861 |                                   | 1.74<br>0.99<br>1.10<br>0.95<br>0.95<br>1.58 | 0.5<br>0.8<br>0.3<br>0.7<br>0.4<br>1.7 | 1.19<br>2.18<br>0.48<br>1.16<br>1.51<br>0.66 | 5<br>30<br>4<br>6<br>24    | <10<br><10<br><10<br><10<br><10<br><10 | 30<br>110<br>130<br><10<br>60<br>10 | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | <2<br>2<br><2<br><2<br><2<br><2<br><2<br><2 | 1.66<br>1.88<br>0.11<br>6.52<br>0.76<br>1.11 | 0.6<br>0.5<br><0.5<br>0.6<br><0.5<br><0.5<br><0.5 | 16<br>21<br>4<br>5<br>36<br>83 | 19<br>16<br>5<br>3<br>25<br>56 | 155<br>160<br>28<br>158<br>494<br>388 | 2.43<br>3.90<br>2.32<br>7.30<br>9.42<br>6.52 | <10<br>10<br><10<br>10<br><10<br><10<br><10 |
| Y610862<br>Y610863<br>Y610864<br>Y610865<br>Y610866            |                                   | 0.72<br>1.13<br>1.09<br>1.02<br>1.08         | <0.2<br>0.7<br>0.2<br>3.8<br>0.4       | 0.24<br>1.22<br>0.25<br>0.75<br>1.03         | 4<br>3<br><2<br>7<br>3     | <10<br><10<br><10<br><10<br><10        | <10<br>50<br>30<br>10<br>50         | <0.5<br><0.5<br><0.5<br><0.5<br><0.5         | <2<br><2<br><2<br><2<br><2<br><2<br><2      | 0.15<br>0.30<br>4.14<br>2.03<br>0.80         | <0.5<br><0.5<br><0.5<br>0.6<br><0.5               | 2<br>13<br>2<br>29<br>12       | 14<br>9<br>5<br>33<br>3        | 9<br>30<br>5<br>1130<br>103           | 0.44<br>3.95<br>1.67<br>12.90<br>4.65        | <10<br>10<br><10<br><10<br><10              |
|                                                                |                                   |                                              |                                        |                                              |                            |                                        |                                     |                                              |                                             |                                              |                                                   |                                |                                |                                       |                                              |                                             |

![](_page_41_Picture_6.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 1-OCT-2019 Account: SCORES

| <b>C</b> ,                                                     |                                   |                                  |                                       |                                      |                                      |                                  |                            |                                        | C                          | ERTIFIC                           | CATE O                     | F ANAI                               | _YSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TR192                      | 14506                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------|-----------------------------------|----------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------|----------------------------------------|----------------------------|-----------------------------------|----------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-ICP41<br>Hg<br>ppm<br>1       | ME-ICP41<br>K<br>%<br>0.01            | ME-ICP41<br>La<br>ppm<br>10          | ME-ICP41<br>Mg<br>%<br>0.01          | ME-ICP41<br>Mn<br>ppm<br>5       | ME-ICP41<br>Mo<br>ppm<br>1 | ME-ICP41<br>Na<br>%<br>0.01            | ME-ICP41<br>Ni<br>ppm<br>1 | ME-ICP41<br>P<br>ppm<br>10        | ME-ICP41<br>Pb<br>ppm<br>2 | ME-ICP41<br>S<br>%<br>0.01           | ME-ICP41<br>Sb<br>ppm<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ME-ICP41<br>Sc<br>ppm<br>1 | ME-ICP41<br>Sr<br>ppm<br>1   | ME-ICP41<br>Th<br>ppm<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Y610768<br>Y610769<br>Y610770<br>Y610771                       |                                   | <1<br><1<br><1<br><1             | 0.49<br>0.24<br>0.10<br>0.13          | 10<br>10<br><10<br><10               | 2.64<br>0.98<br>1.68<br>0.69         | 983<br>659<br>900<br>1130        | 2<br>1<br>1<br><1          | 0.22<br>0.15<br>0.03<br>0.06           | 13<br>10<br>21<br>4        | 2450<br>2340<br>1180<br>960       | 21<br>20<br>169<br>18      | 3.53<br>1.78<br>>10.0<br>0.62        | <2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>9<br>11<br>5         | 174<br>123<br>16<br>48       | <20<br><20<br><20<br><20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                |                                   |                                  |                                       |                                      |                                      |                                  |                            |                                        |                            |                                   |                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                |                                   |                                  |                                       |                                      |                                      |                                  |                            |                                        |                            |                                   |                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Y610856                                                        |                                   | <1                               | 0.10                                  | 10                                   | 0.63                                 | 370                              | 2                          | 0.07                                   | 16                         | 2250                              | 15                         | 0.61                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                          | 87                           | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Y610857<br>Y610857<br>Y610859<br>Y610860<br>Y610860<br>Y610861 |                                   | <1<br><1<br><1<br><1<br><1<br><1 | 0.62<br>0.08<br><0.01<br>0.74<br>0.01 | 10<br><10<br><10<br><10<br><10<br>10 | 0.77<br>0.02<br>0.35<br>0.84<br>0.27 | 445<br>320<br>2820<br>186<br>400 | 2<br>4<br>4<br>3<br>8      | 0.16<br><0.01<br><0.01<br>0.10<br>0.01 | 16<br><1<br>1<br>24<br>89  | 1820<br>300<br>80<br>2080<br>1150 | 11<br>2<br>6<br>2<br>8     | 1.29<br>0.01<br>2.23<br>5.60<br>5.67 | <pre>     </pre> <pre>         <pre>             </pre>         </pre> <pre>             </pre> | 4<br>4<br>1<br>17<br>1     | 104<br>12<br>78<br>41<br>92  | <pre> 20   &lt;20   &lt;</pre> |
| Y610862<br>Y610863<br>Y610864<br>Y610865<br>Y610866            |                                   | <1<br><1<br><1<br>1<br><1        | 0.01<br>0.36<br>0.08<br>0.01<br>0.21  | <10<br><10<br>20<br>10<br>10         | 0.04<br>0.94<br>1.35<br>0.20<br>0.38 | 100<br>647<br>635<br>597<br>170  | 1<br>3<br>2<br>6<br>7      | <0.01<br>0.06<br>0.03<br>0.01<br>0.11  | <1<br><1<br><1<br>82<br><1 | 30<br>670<br>60<br>1850<br>1290   | <2<br>7<br>16<br>18<br>2   | 0.02<br>2.05<br>0.04<br>6.06<br>3.57 | <2<br><2<br><2<br>4<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1<br>6<br>1<br>1<br>2     | 13<br>12<br>159<br>125<br>61 | <20<br><20<br><20<br><20<br><20<br><20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                |                                   |                                  |                                       |                                      |                                      |                                  |                            |                                        |                            |                                   |                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                |                                   |                                  |                                       |                                      |                                      |                                  |                            |                                        |                            |                                   |                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

![](_page_42_Picture_6.jpeg)

![](_page_43_Picture_0.jpeg)

#### To: SCOTTIE RESOURCES CORP PO BOX 48202 BENTALL VANCOUVER BC V7X 1H8

Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 1-OCT-2019 Account: SCORES

Project: SR-19-10

# CERTIFICATE OF ANALYSIS TR19214506

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-ICP41<br>Ti<br>%<br>0.01                   | ME-ICP41<br>TI<br>ppm<br>10                   | ME-ICP41<br>U<br>ppm<br>10                   | ME-ICP41<br>V<br>ppm<br>1           | ME-ICP41<br>W<br>ppm<br>10            | ME-ICP41<br>Zn<br>ppm<br>2       | Ag-OG46<br>Ag<br>ppm<br>1 | Pb-OG46<br>Pb<br>%<br>0.001 | Zn-OG46<br>Zn<br>%<br>0.001 | Au-AA23<br>Au<br>ppm<br>0.005                         | Au-GRA21<br>Au<br>ppm<br>0.05 |  |  |
|----------------------------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------|---------------------------------------|----------------------------------|---------------------------|-----------------------------|-----------------------------|-------------------------------------------------------|-------------------------------|--|--|
| Y610768<br>Y610769<br>Y610770<br>Y610771                       |                                   | 0.22<br>0.19<br>0.14<br>0.07                  | <10<br><10<br><10<br><10                      | <10<br><10<br><10<br><10                     | 215<br>150<br>124<br>91             | 10<br><10<br><10<br><10               | 119<br>88<br>358<br>123          |                           |                             |                             | 0.016<br>0.005<br>0.053<br>0.005                      |                               |  |  |
|                                                                |                                   |                                               |                                               |                                              |                                     |                                       |                                  |                           |                             |                             |                                                       |                               |  |  |
|                                                                |                                   |                                               |                                               |                                              |                                     |                                       |                                  |                           |                             |                             |                                                       |                               |  |  |
|                                                                |                                   |                                               |                                               |                                              |                                     |                                       |                                  |                           |                             |                             |                                                       |                               |  |  |
| Y610856<br>Y610857<br>Y610858<br>Y610859<br>Y610860<br>Y610861 |                                   | 0.16<br>0.18<br><0.01<br>0.01<br>0.14<br>0.07 | <10<br><10<br><10<br><10<br><10<br><10<br><10 | <10<br><10<br><10<br><10<br><10<br><10<br>10 | 72<br>109<br>32<br>18<br>178<br>153 | <10<br><10<br><10<br>10<br><10<br><10 | 55<br>43<br>35<br>49<br>10<br>27 |                           |                             |                             | <0.005<br>0.010<br><0.005<br><0.005<br>0.017<br>0.085 |                               |  |  |
| Y610862<br>Y610863<br>Y610864<br>Y610865<br>Y610866            |                                   | <0.01<br>0.10<br><0.01<br>0.04<br>0.18        | <10<br><10<br><10<br><10<br><10               | <10<br><10<br><10<br>10<br><10               | 4<br>48<br>15<br>171<br>39          | <10<br><10<br><10<br>40<br><10        | 18<br>48<br>39<br>38<br>10       |                           |                             |                             | <0.005<br>0.010<br><0.005<br>0.006<br>0.010           |                               |  |  |
|                                                                |                                   |                                               |                                               |                                              |                                     |                                       |                                  |                           |                             |                             |                                                       |                               |  |  |
|                                                                |                                   |                                               |                                               |                                              |                                     |                                       |                                  |                           |                             |                             |                                                       |                               |  |  |

Appendix E: Certificate of Qualifications

![](_page_44_Picture_1.jpeg)

GEOLOGIST'S CERTIFICATE Daniel Guestrin Squamish, British Columbia

I, Daniel Guestrin, do hereby certify that:

- 1. I am presently a contract Project Geologist with Scottie Resources Corporation.
- 2. I am a graduate of the University of Waterloo with a Bachelor of Science degree in Earth Sciences in 2012.
- 3. I am a Geoscientist-In-Training with the Association of Professional Geoscientists of Ontario.
- 4. Since 2012, I have been involved in mineral exploration projects for gold, silver, copper, jade, nickel, and cobalt in British Columbia, Ontario, Quebec, Northwest Territories, and Dominican Republic.
- 5. I was directly involved with the field work of the 2019 exploration program at Stock.

Dated at Squamish, British Columbia, this 30th day of November, 2019.

Jacothan

Daniel Guestrin, G.I.T., B. Sc.

![](_page_45_Picture_10.jpeg)

Appendix F: Figures

![](_page_46_Picture_1.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)