BRITISH		BC Geolo	ogical Su	rvey	STISH COLUMA
COLUMBIA		Assessr	nent Rep	ort	T
The Best Place on Earth		3	8808		Ste OGICAL SURIC
Ministry of Energy and Mines BC Geological Survey				Assessme Title Pag	ent Report e and Summary
TYPE OF REPORT [type of survey(s)]: Geochemical, Geological, Geop	physic	al, Preparatory	TOTAL COST:	\$30,596.6	50
AUTHOR(S): Delbert W. Ferguson		SIGNATURE(S):			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):				_ YEAR OF	work: 2019
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5	57637	12			
PROPERTY NAME: BACON LAKE					
CLAIM NAME(S) (on which the work was done): 511635					
COMMODITIES SOUGHT: Fe, Cu, Au, Zh		den en e			
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092F256, 092F	038, 0	92F097, 092F124			
MINING DIVISION: Nanaimo	N	т s/вссs: <u>092</u> F/13Е			
LATITUDE: <u>49</u> [•] <u>57</u> <u>52</u> [•] LONGITUDE: <u>125</u>	<u>° 3</u>	7'35" (at centre of work	:)	
OWNER(S):					
1) <u>VESTERN GATEVVAY MINERALS INC.</u>	2)		an a		
MAILING ADDRESS: SITE 41, COMP 12, RR #2 GALIANO ISLAND, B.C.					
VON 1P0					
OPERATOR(S) [who paid for the work]: 1) WESTERN GATEWAY MINERALS INC.	2)		Ma A.		
MAILING ADDRESS:					
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, a MAGNETITE SKARN, IOCG, PORPHYRY CU	alteratio	on, mineralization, size	and attitude):		
	ato a				
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REF	PORT	NUMBERS: 16321, 1	7395, 18946, 2	21193, 313	321, 31508,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)	1		
Ground, mapping 1:5,000		511635	7395.00
Photo interpretation		-	
GEOPHYSICAL (line-kilometres) Ground			
Magnetic 1:5,000		511635	12,738.00
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other ROCK SAMPLING	3	511635	2641.60
Airborne			
GEOCHEMICAL (number of samples analysed for)			
soil 0		-	
Silt 0		-	
Rock 20 - Au, Cu, Fe, Ag, Zn, N	lo,W,Rb,Sr,Y,Zr,Nb,Cd,Co	511635	2302.00
Other Sn, Sb, As,Ca,Ti,V,C	r,Mn,Se,Mg,Si,Al,P,S,K		
DRILLING (total metres; number of holes, size)			
Core 0		-	····
Non-core		· · · · · · · · · · · · · · · · · · ·	
RELATED TECHNICAL			
Sampling/assaying As Fire As	say, XRF Geochemical		
Petrographic	11. /		
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres) 14.6 km	georeferenced	511635	2125.00
Topographic/Photogrammetric (scale, area) 1:5000, 1:5500, 1:20,000		511635	1000.00
Legal surveys (scale, area)			
Road, local access (kilometres)/t	rail 770 m	511635	2395.00
Trench (metres)	-		
Underground dev. (metres)			· · · · · · · · · · · · · · · · · · ·
Other			
		TOTAL COST:	30,596.60

Aztec File #1911-BL-WGM

Report on 2019 Exploration

Mineral Tenure # 511635 Bacon Lake Property

Nanaimo Mining Division, BC

NTS 092F/13E Latitude 49°57'52"N / Longitude 125°37'35"W

Prepared for:

Western Gateway Minerals Inc.

Prepared by:

Del W. Ferguson, P.Geo.

Aztec Geoscience Inc. E-mail: <u>dferguson@aztecgeo.ca</u>

January 2020 Amended_April 12, 2020

Executive Summary

The Bacon Lake Property, is currently being explored by Western Gateway Inc. Minerals (WGM), who is also the Mineral Tenure holder of 511635, totaling a landmass of 1,413.25 hectares, located west of Campbell River on Vancouver Island, British Columbia.

The known property mineralization is primarily contained in massive magnetite pods or ribbon-like lenses, coursing through limestone, granodiorite intrusives and andesite volcanic rocks. These are classified as calcic iron skarns, a deposit type that occurs in several areas throughout Vancouver Island. These occurrences are generally developed on or near limestone/marble and contacts with later phase intrusive rocks.

Historical records indicate interest for minerals in the area staring in 1916 and focused on copper mineralization along Elk River (now Upper Campbell Lake). Further documented exploration work was performed by a number of different operators starting from the early 1950's through into the 1960's and again during the late 1980's, focusing mainly on magnetite deposits on the east side of Bacon Lake. In the following years the property underwent small-scale exploration and prospecting that continued into 2000. In 2010 a helicopter aeromagnetic survey covering the current property surrounding Bacon Lake was completed for WGM. This survey identified numerous magnetic high anomalies across the property. Work in early 2012 consisted of 7 diamond drill holes totaling 588m all of which were located along the Bacon Lake East road, on the southeast side of Bacon Lake.

The 2019 exploration program focused on aeromag-highs of Pods 1, 2, 3, 4, 5, 6 & 7 and has determined that there is limited surface exposure of magnetite bands and associated skarns along the east side of Bacon Lake. These bands are limited to Pod 1, Pod 2 and a very small exposure in Pod 4. Combined, these do not support a feasible economic size potential for magnetite as the sole commodity.

Past exploration efforts in the Bacon Lake area have focused largely on magnetite as a commodity, but a common feature within many skarn-type deposits is the presence of base and precious metals. The magnetite deposits along the east side of Bacon Lake display a presence of both zinc-copper and minor gold values (±Co and REE), as sampled in previous trench work, the 2012 drill core analysis and in the 2019 rock sampling. Thus far, sampling does not display continuity of mineralized zones (other than Fe). The Bacon Lake Property does show potential for base and precious metal deposits, being in contact terrane and containing known Cu, Zn and Au mineralization. Future exploration programs on the property should be focused on identifying areas of interest through prospecting, mapping and geochemical sampling of rock, soil and streams.

Table of Contents

1.0	Introduction	1		
	1.1 Terms of Reference / Objectives	1		
	1.2 Location, Access & Infrastructure	1		
	1.3 Legal Property Description & Ownership	2		
	1.4 Physiography	5		
	1.5 Climate and Vegetation	5		
	1.6 Acknowledgements	5		
	1.7 Property History	5		
2.0	Property Geology & Mineralization	15		
3.0	2019 Exploration Program	16		
	3.1 Geological Mapping	17		
	3.2 Ground Magnetometer Confirmation Survey	18		
	3.3 Rock Sampling and Analysis	24		
4.0	Interpretation and Conclusions	28		
5.0	Recommendations	29		
Refe	erences	32		
Cert	Certificate of Qualifications			
Stat	ement of Costs	37		

Appendices

- 1) APPENDIX 1 GRID 3 MAGNETOMETER RESULTS
- 2) APPENDIX II GRID 2 MAGNETOMETER RESULTS
- 3) APPENDIX III GRID 1 MAGNETOMETER RESULTS
- 4) APPENDIX IV ROCK SAMPLE DATA
- 5) APPENDIX V ROCK SAMPLE FIRE ASSAY RESULTS
- 6) APPENDIX VI ROCK SAMPLE WHOLE ROCK XRF ANALYSIS
- 7) APPENDIX VII ROCK SAMPLE PULP XRF ANALYSIS

Figures			
		Page	
Figure 1	Bacon Lake Location Map	2	
Figure 2	Mineral Tenure Map	3	
Figure 3	Location / Access Map	4	
Figure 4	Generalized Geology & Showings	14	
Figure 5	Bacon Lake Grid 3	21	
Figure 6	Bacon Lake Grid 2	22	
Figure 7	Bacon Lake Grid 1	23	
Figure 8	Rock Sampling Map Grid 3	26	
Figure 9	Rock Sampling Map Grid 2	27	
Figure 10	AeroMag Highs & Geo Interpretation	30	

Tables

		Page
Table 1	Bacon Lake Mineral Tenure	2
Table 2	1951 Drill results (East Bacon Lake Area)	6
Table 3	1961 Drill Results (Bacon Hill)	7
Table 4	Magnetite as a Percentage of Total Fe	12
Table 5	Anomalous Elements in 2012 DDH Sampling	12
Table 6	Pod 1: 2012 DDH Results Summary	13
Table 7	Pod 2: 2012 DDH Results Summary	13
Table 8	Ground Magnetometer Survey Statistics	19
Table 9	Rock Sample Geochemical Highlights	25

Massive Magnetite, Pyrrhotite and Chalcopyrite/Malachite (Pod 1)

1.0 Introduction

1.1 Terms of Reference / Objectives

This is a report on physical, geological, geochemical and geophysical works carried out on Tenure #511635 in the central area of Western Gateway Minerals Inc.'s Bacon Lake Claims from May 6, 2019 to November 4, 2019. Rock analysis and report compilation was done in November through January 2020. Works were completed by the author with assistance from Mitch Garrison, GIT and Cory MacNeill, Geologist. A discussion of results is included in this report.

1.2 Location, Access & Infrastructure

The claims are accessed via Highway #28 (Gold River Highway, which heads west from Campbell River) onto Strathcona Dam Rd., which crosses over the Campbell Lake hydro dam, before joining Bacon Lake Main which proceeds westward before heading south along the west side of Bacon Lake. It is approximately 40 kilometres into the heart of the property from Campbell River, BC. There are several other forestry roads belonging to TimberWest Forest Company ("TimberWest") that provide good access throughout the remaining 1413 ha property area, whilst some of these are overgrown.

Travel directions by GPS: Zone 10

Junction Hwy #19Å/Hwy #28, Campbell River 337033 m E 5544840 m N follow Hwy #28 westward to Strathcona Dam Rd 315748 m E 5538540 m N turn right and follow Strathcona Dam Rd across dam to314564 m E 554162 m N turn left onto Bacon Lake Main and follow westward past Becher Lake entering the northern region of the property.

The City of Campbell River (Pop 31,000) is Vancouver Island's third largest city providing ample services that facilitate the resource sectors of mining, logging and fishing. The city currently is the chosen location for many who work at Nyrstar's Myra Falls Mine operation, the nearby Quinsam Coal and other mine related services. The Bacon Lake property location falls within a reasonable commute from the Campbell River community. Concentrates originating from the Myra Falls and Quinsam operations are shipped using the Campbell River sea-loading terminals. BC Hydro's double 138,000 volt transmission line to Gold River passes through the Bacon Lake Property.

FIGURE 1: Bacon Lake Location Map

1.3 Legal Property Description & Ownership

The surface rights are held by TimberWest Forest Company, currently administrated by Mosaic Forest Management, who also maintains the road networks throughout the area. The Bacon Lake Property (Table 1) held by Western Gateway Minerals Inc. covers an area 1,413.25 ha (3,490.7 acres) bordered by Upper Campbell Lake to the south and east and Ranald Creek on the west. The mineral holder must maintain a road use and access agreement with Mosaic Forest Management.

Table 1 – Bacon Lake Mineral Tenure as of Nov 30, 2019

Tenure #	Ownership	Hectares	Expiry Date
511635	Western Gateway Minerals	1413.25	Dec. 15, 2021

Western Gateway Minerals Inc. is a privately held BC corporation the major shareholders who are David Fawcett (Vancouver) and Joseph Paquet (Campbell River).

There are no apparent Indian Reserves, First Nations Treaty Lands or First Nations Treaty Related Lands indicated within the immediate map region and claim boundaries. However, the area is classified under the Hamatla Treaty Society and designated as part of the K'omoks First Nations land claim. It is also with the consultative areas of Wei Wai Kum First Nation, We Wai Kai Nation, K'omoks First Nation, Laich-kwil-tach Treaty Society and Nanwakolas.

1.4 Physiography

Vancouver Island is the largest island along North America's western shoreline, being 451 km long and a maximum of 126 km wide. Most of its area is mountainous with peaks rising to 2000 m elevation. Central valleys often contain finger-lakes and the west coast is largely fiord-ridden. Most of the east coast along the Strait of Georgia consists of lowland plains of the Georgia Depression.

The Bacon Lake Property is in the eastern foothills of the Vancouver Island Range Mountains, just west of the planar lowlands. Elevations of this rolling landscape range from 220m (adjacent to Upper Campbell Lake) to 630m above sea level, on a hilltop NE of Bacon Lake (Bacon Hill). Bacon Lake (390 m ASL) rests in a wide plateau valley stretching north-northeast towards Becher Lake. Google Earth[™] imagery shows recent logging on the hill northeast of Bacon Lake and active logging is current on the property both east and west of Bacon Lake. An extensive road network exists over the claim area and more roads are being constructed. Some former access structures are overgrown. Bedrock outcrops are abundant and the surficial mantle of glacial origin varies greatly over the property occurring as pockets between bedrock hillocks and as thick blankets in valleys and on lower ridge sides.

1.5 Climate and Vegetation

The property is predominantly covered by second growth and regenerating Douglas Fir, Western Hemlock and Western Red Cedar forests of the Coastal Western Hemlock Biogeoclimatic Zone. The climate is dry maritime, with an annual precipitation of 1516 mm mostly in the form of rainfall, (Climatewna.com_Normal_1981-2010) and mean annual temperatures of 7.9°C. Summer temperatures average 15°C and winter temperatures average 1.4°C. Seasonal precipitation patterns are typical of coastal British Columbia. Precipitation is lowest in spring and summer seasons, averaging 215 mm over the six months. It jumps up to an average of 543 mm over the six months comprising fall and winter. Precipitation is expected to increase by approximately 100 mm in this region by 2055 (CanESM2_rcp45_2055). Snow accumulations of up to 1 metre are normal throughout the region during winter months.

1.6 Acknowledgements

The author would like to acknowledge field and mapping support provided by geologists Mitch Garrison and Cory MacNeill in contributing to this report.

1.7 Property History

The first recorded work in the Bacon Lake area was the Sumpter workings (Minfile # 092F 124) consisting of a 5m shaft on the western shore of Upper Campbell Lake in 1916. The shaft was sunk into a garnet-epidote skarn at the contact of granodiorite and limestone. Mineralization was reported as disseminated bornite, chalcopyrite and magnetite. A sample from the bottom of the shaft assayed 96 gm/tonne Ag, 3% Cu and trace Au. The mineralized zone extends for 23m along a 040° bearing from the shaft.

Also early on, a magnetite-pyrrhotite-chalcopyrite skarn exposed in Greenstone Creek (north of Bacon Lake Property) – Minfile # 092F 237 was worked from 1916 to 1917,

resulting in the mining of 83 tonnes of ore producing 14, 018 kgs of copper, 4,074 gms of silver and 31 gms of gold. Workings consisted of several large open-cuts and two adits, with possibly three more adits driven in the years following (pre-1955).

Apart from some non-documented mining exploration that occurred during the 1930's recorded work commenced in the 1950s, when the Bacon Lake area was roaded and logged by Elk River Timber Co. In 1951, B.C. Iron Ore Development Co. Ltd. carried out a magnetometer survey, mapping, pitting and channel sampling and a 19-hole diamond drilling on magnetite skarn deposits in the area. Drilling took place on the southeast side of Bacon Lake (East Bacon Lake Road), and most drill locations were confirmed in the field during the Minland Project in 1997. Partial drill logs show drill holes intersecting interbanded crystalline limestone, garnetite and epidote, magnetite, volcanics and diorite. Assays from twelve x-ray drill holes were reported on in a 1952 report by A.H. Upton.

Drill Hole #	^Magnetite Pod #	I otal Hole Depth	Intersection	Results
DDH 1	Pod 1	35 feet (10.67m)	35 feet (10.67m)	52.8% Fe
DDH 2	Pod 1	80 feet (24.39m)	3 feet (0.9m)	57% Fe
			7.5 feet (2.3m)	52.9% Fe
			2.25 feet (0.69m)	61% Fe
			14.5 feet (4.42m)	57.3% Fe
DDH 3	Pod 1	30 feet (9.15m)	7.5 feet (2.3m)	58.93% Fe
DDH 4	Pod 1	39 feet (11.89m)	5 feet (1.52m)	52.95% Fe
			3 feet (0.9m)	56.15% Fe
			2 feet (0.61m)	58.5% Fe
DDH 5	Pod 2	61 feet (18.6m)	11 feet (3.35m)	54.7% Fe
			16.5 feet (5.03m)	47.52% Fe
DDH 6	Pod 2	80 feet (24.39m)	2 feet (0.61m)	60.7% Fe
			4 feet (1.22m)	38.8% Fe
DDH 7	Pod 2	56 feet (17.07m)	16 feet (4.88m)	58.93% Fe
			5.5 feet (1.68m)	57.25% Fe
			3 feet (0.9m)	30.95% Fe
DDH 8	Pod 2	71 feet (21.65m)	17 feet (5.18m)	32.47% Fe
			4.5 feet (1.37m)	28.8% Fe
			1.5 feet (0.45m)	57.9% Fe
			2 feet (0.61m)	41.3% Fe
DDH 9	Pod 2	38.5 feet (11.73m)	3.5 feet (1.07m)	58.1% Fe
			6 feet (1.83m)	27% Fe
			2 feet (0.61m)	25.5% Fe
DDH 10	Pod 1	61 feet (18.6m)	6 feet (1.83m)	14.07% Fe
DDH 14	Pod 1	27 feet (8.23m)	2.5 feet (0.76m)	47.6% Fe
			10 feet (3.05m)	33% Fe
DDH 15	Pod 1	79 feet (24.08m)	5 feet (1.52m)	48.75% Fe
			1.5 feet (0.46m)	48% Fe
			5 feet (1.52m)	42.4% Fe
			2.5 feet (0.76m)	16.2% Fe

Table 2. 104	51 Iron Ore Develo	nment Co. Drill Results	(East Bacon Lake	Road Area)
		pineni Co. Din Nesuls	Lasi Dacun Lake	Nuau Alea)

*Pod Numbers are newly assigned in this report based on 2010 distinct aero magnetic anomalies

Most of these drill holes cluster around or over the main showing, extending westward from East Bacon Lake Road toward the lake. Drill Holes 5 through 9 were located on the east side of East Bacon Lake Road, several hundred metres north of the main showing. A map drawn by J. Rutherford in 1951 indicates these as two separate known areas of ore. These areas are confirmed by several magnetometer surveys over subsequent years. A channel sample along 350 feet (106.7m) of the main showing (Pod 1) averaged 62.8% Fe).

The area of the main showing drilled and channel sampled is approximately 100m in length (north-south trend), with the magnetic anomaly of this area (Pod 1) being approximately 200m long by 100m wide. Magnetite intersections occurring from surface to 17.5m depths ranged from 2m to 10.5m wide in the seven drill holes, with average width of 4.8m grading average values of 45% Fe.

Five drill holes in Pod 2, north up East Bacon Lake Road from the "main showing", showed magnetite intersections occurring from surface to 17.5m depths; ranging from 2m to 8m wide, with average width of 5.7m grading average values of 45% Fe. The magnetic anomaly of this area (Pod 2) is approximately 500m long by 100m wide.

During 1960 Falconbridge discovered a new magnetite zone on Bacon Hill, approximately 1km northeast of the main showing, while "running air mag over a geologically favourable area" in 1960. There were no known outcrops of magnetite on this claim at the time, but overburden was considered to be less than 3m. In 1961 three diamond drill holes (sharing the same collar location) and one packsack drill hole, located approximately 30m to the east, all penetrated magnetite sections (Bacon Showing – Rock Minfile #092F 038) on the hill to the NE of Bacon Lake in 1961.

Drill Hole #	Total Depth	Intersection	Results
1	102 feet (31.09m)	17 feet (2.65m)	17.66% Fe
		4 feet (1.22m)	36.8% Fe
		2 feet (0.61m)	41.66% Fe
2	206 feet (62.8m)	8.5 feet (2.59m)	14.19% Fe
		21.5 feet (6.55m)	19.05% Fe
3	85 feet (25.9m)	12 feet (3.66m)	17.46% Fe
		2.5 feet (0.76m)	16.85% Fe
		14.5 feet (4.42m)	53.57% Fe
4	unknown	10 feet (3.05m)	45.15% Fe

Table 3: 1961 Drill Results (Bacon Hill)

This drilling falls approximately within the (Pod 4) magnetic anomaly, but the exact location has not been verified. Magnetite intersections occurring from 1m to 19m depths ranged from 3.5m to 9m wide in the four drill holes, with average width of 6.5m grading average values of 30% Fe.

Minfile #092F 098 (Greenstone Creek) outlines a 1.5km wide by 8km long band of Upper Triassic Quatsino Formation limestone striking NW from Greenstone Creek immediately north of the Bacon Lake Property. The limestone bed dips NE, bounded to the east by Bonanza Group volcanics and sediments and to the west by Karmutsen basaltic volcanics. The band is truncated to the south by a NE trending fault. Chip samples taken by Gunnex Mines in 1965 along a 45m length of canyon wall on Greenstone Creek (main showing) returned an average of 1.18% Cu (trace Au and Ag) largely from the magnetite-pyrrhotite skarn band. In 1967, underground and surface drilling (>1000 feet) was conducted on the Greenstone Creek Property by Georgia Mines Ltd. This work showed high grade lenses (up to 4% Cu and up to 5m intersections) within a diopsidegarnet skarn approximately 5m lower than the main surface showing. A follow-up airborne geophysical and ground geochemical surveys on the Greenstone Creek Showing, Crown Grants 1215 and 1216, northwest of Becher Lake was conducted in 1969. Airborne geophysical maps show that a north trending aeromag high trends southward west of Becher Lake onto the Bacon Lake Property. More geological data collection was recommended in a compilation report undertaken by E.A. Lawrence in 1998 (ARIS Report #25809), but no further work has been reported.

Minfile #092F 097 (Upper Campbell Lake) specifies a report by the Geological Survey of Canada 1968 of a 1.75km long by 500m wide trace of Upper Triassic Quatsino Formation limestone striking NW from the western shores of Upper Campbell Lake to the SW side of Bacon Lake. This limestone band dips NE and is bounded by granodiorite on the east and Karmutsen basalts on the west.

In the late 1980s renewed work in the area by Sawiuk, Brownlee and Gosse targeted magnetite, copper, gold and cobalt skarn resources primarily on the east side of Bacon Lake (Bacon Claim – ARIS Reports #16321, 17395, 18946 and 21193) and west of Becher Lake (Julia Claim – ARIS Reports # 17405 and 18947). Results of this work are summarized as follows:

- Spring 1987 SE side of Bacon Lake (ARIS# 16321): prospecting and 4 grab samples from magnetite skarn were analyzed for Cu, Co, Fe, Ag, and Au. Results showed 1.08% Co and 0.67 oz/ton Au in 1 sample; elevated Cu in 2 samples, elevated Au in 2 samples and Fe ranging from 16.4 to 36.5%.
- Fall 1987 East side of Bacon Lake on west side of old logging road (ARIS# 17395): geological mapping and 8 rock samples analyzed for Cu, Co, Fe, Ag and Au. Results were focused on skarns forming at contacts between granodiorite/quartz diorite intrusives and limestone and andesitic volcanics of Bonanza Group. Skarns consisted of epidote-diopside-chlorite assemblages and massive magnetite with minor pyrite and chalcopyrite; up to 1.08% Co and 0.456 oz /ton Au. There were good correlations between Au and Co and between Cu and Ag. The Fe content of the massive magnetite ranged between 25% and 55%.
- Fall 1987 sampling of the Steller Showing exposed by recent road construction (Aris # 17405). Cu, Zn, Ag and Au mineralization hosted in 1 metre wide shear zone consisting of fractured gabbro, andesitic tuffs and flows and extensive quartz-sericite-chlorite alteration. Au and Ag elevated values are closely associated with elevated Zn and lesser elevated Cu. Magnetite at the north end of the showing had no Au or Ag values.
- Spring 1989 prospecting, geological mapping, rock sampling and magnetometer survey over Willie Showing area, SE Bacon Lake (ARIS# 18946). The program extended known magnetite skarn showings and located two

previously unknown skarns. Limestone and calcareous shales are overlain by andesitic breccia, lava and tuff with interbeds of argillite, siltstone and limestone. Volcanics and sedimentary rocks are intruded by granodiorite and quartz diorite. The volcanics have been silicified and in part skarnified along the contact. Disseminated and vein magnetite occur in several areas. In two areas the limestone is totally skarnified and contains semi-massive to patchy magnetite and associated pyrite with lesser chalcopyrite and malachite.

- Spring 1989 geological mapping, VLF-EM and magnetometer survey over Steller Showing (ARIS# 18947). Medium to coarse crystalline diorite and coarse crystalline magnetic gabbros intrude moderately silicified andesitic volcanics, which is often bleached and cut by epidote-calcite veinlets. Mineralization occurs in a 1m wide silicified-carbonate shear structure in a 6m wide Fe-stained zone. All this is contained in a 10-15m wide zone of chlorite-magnetite replacement occurring as irregular shapes in the host rock. VLF-EM survey showed a north trending conductor approximately 75m to the west of the Steller shear zone. A north trending magnetic low appears to signify the Steller Showing with a magnetic high to the west.
- Spring 1991 ground magnetometer survey over area SE of Bacon Lake (ARIS# 21193). Four 100 to 250m long by 10 to 100m wide subparallel linear magnetic anomalies strike N25W conforming to the strike of the geology. Two smaller (10-30m wide by 50-75m long) subparallel anomalies are open in both directions. Magnetite skarns occur along three of the anomalies. Carbonate units are preferentially replaced with magnetite. Anomalies are asymmetric width variable widths suggesting podiform magnetite mineralization over 100 to 300m strike lengths, dipping to the east-northeast. The property can be considered a magnetite prospect as well as a precious metal prospect.

In 1997 the Minland Project under the guidance of C.C. Rennie, P.Eng., undertook prospecting, stripping, hand trenching and channel sampling over the old road and showings along the SE side of Bacon Lake (ARIS # 25513A). Samples were sent to Chemex Labs in North Vancouver for fire assay with AA finish, acid soluble iron and 32 element ICP analyses for minor elements. Mineral exposures and surrounding geology were mapped at a scale of 1:5,000. A summary report (CC Rennie, Dec. 1997) reiterated that the Bacon Lake Property hosts a large area of magnetite and sulphidebearing skarn in limestone and altered volcanics intruded by granodiorite. Magnetite is the most obvious mineral target with bands up to 3m thick. Gold assays were interesting, yet variable possibly due to the nugget effect. No free gold has been detected to date. There appears to be a strong gold correlation (up to 61gm/t gold) with cobalt (erythrite and cobaltite) but this has not been confirmed in petrography. One sample of massive magnetite (sample 38) revealed 8.6gm/t gold. Four quadrants over known showings on either side of East Bacon Lake Road were channel sampled. From 67 samples analyzed (0.5 to 5m lengths), magnetite sections ranged from 20 to 65% Fe, whereas silicified volcanics containing magnetite showed commonly lower Fe content.

In May 2008 an internal geological evaluation of the Bacon Lake Property was undertaken by Finley Bakker, P.Geo. This included one day on the property and a documentation review. He concluded that magnetite was visible on surface in a half dozen possibly isolated outcrops over lengths up to 300m and widths of up to 10m and heights of 8m. At most exposures magnetite is massive and at some it is disseminated throughout the volcanics. His summary focused on the proximal location of the Bacon Lake property to a regional "Mag high" which includes several other magnetite occurrences such as Camp Lake, Argonaut Mine and the Iron River deposit. The largest single outcrop to date at Bacon Lake has potential tonnage of >100,000 tonnes. Similar outcrops on the property are of unknown size due to overburden.

In 2009 a second ground magnetometer survey was undertaken over an established cut grid. Stations were at 10m intervals and at intervals along East Bacon Lake Road, the power line road and along the southern edge of the power line right-of-way. Resulting interpretations showed a strongly defined northwest-trending anomaly following the known main showings and a second weaker anomaly approximately 50m to the east. The main anomaly remains open to the south. Isolated highs exist along East Bacon Lake Road to the northeast of the main showings.

Aeromagnetic Survey

On February 16th, 2010 a helicopter-borne magnetic survey was conducted over the Bacon Lake Property by Aeroquest Limited (Job #10-022). The principal geophysical sensor was a helicopter stinger mounted cesium vapour magnetometer. Ancillary equipment included a GPS navigation system, radar altimeter, digital video acquisition system, and a base station magnetometer. The total survey coverage was 180.5 line kilometres, of which 165.6 line kilometres fell within the defined project area. The survey was flown in a 90°/270°line direction.

Results of this survey corresponded with former on-the-ground smaller surveys and indicated the strongest magnetic anomaly trending northward along the ridge side east of Bacon Lake, where most of the known showings exist.

In addition, the survey outlined several other north trending anomalies which serve to provide potential targets for further exploration efforts on the Bacon Property. Areas of particularly high Calculated Vertical Magnetic Gradient in addition to known showings are:

- 1. extending from the peninsula on Upper Campbell Lake northwestward along the series of ridges east of Ranald Creek and west of Bacon Lake (skarn or porphyry copper target?)
- 2. extending off the main showing trend north and south along east side of Bacon Lake (magnetite and sulphide skarn target)
- 3. areas thought to be underlain by intrusives along the east side of the property (porphyry copper target).

Soil Geochemical Survey

A 2011 roadside soil sampling program was conducted over Western Gateway Mineral's Bacon Lake Property (ARIS # 32805). Samples were collected at 50m spacing on the upside of selected roads on the Bacon Lake Property and sent to Acme Labs in Vancouver for ICP-ES analysis of 32 elements. Basic statistical analysis of the results showed the strongest element association of potentially economic value to be the Cu-Ni-Co-Fe-Cr-Mg-Ti (±Zn) trend. This trend denoted one new large-sized exploration target for the Bacon Lake Property and confirmed other target areas:

Mid Western Sector of the Bacon Lake Property: extensive moderate to highly anomalous soil values in Cu-Ni-Co-Fe-Cr-Mg-Ti (±Zn) over Lines B-1, B-2, B-3 and B-5. This area corresponds with strong un-prospected and un-tested "Mag-High" trends identified in the 2010 aero-magnetometer survey over the Bacon Lake Property.

Line B-4 which follows the trend of the main known magnetite showing on the property showed sporadic moderately anomalous Cu-Zn-Ni-Co-Fe-Cr-Mg-Ti along its length, with highest values of Cu-Ni-Co-Mg along the southern 200 m of the line. This area corresponds with a strong "Mag-High" trend identified in the 2010 aero-magnetometer survey over the Bacon Lake Property.

Two isolated Cu-Ni-Co-Fe-Cr-Mg-Ti anomalies occur along the initial 300 m of Line B-6 southeast of Bacon Lake and one highly anomalous Cu-Zn anomaly occurs at the end of Line B-9 in association with moderately anomalous Ni-Co-Fe-Cr-Mg-Ti values. This area is thought to be within the intrusive rocks, near the contact with Karmutsen volcanics and corresponds with a strong "Mag-High" trend identified in the 2010 aero-magnetometer survey over the Bacon Lake Property.

2012 Diamond Drill Program

In February 2012, 7 diamond drill holes, totaling 423 m, were drilled to test the mineralization located within aeromag anomaly Pod 1 and Pod 2 (ARIS # 33963). These zones had corresponding ground and aerial magnetic, anomalies that were north trending, in conjunction with several sampled trenches and showings that had recorded magnetite mineralization. Four dill sites were established along the existing East Bacon Lake Road, thereby minimizing site disturbance. Sites were specifically chosen to be proximal to near-surface bedrock, thereby avoiding excessive overburden depths.

From surface to 100 m depths, varying thicknesses of granodiorite, andesite porphyry, limestone, and calc-silicate skarn with massive magnetite horizons were intersected. Granodiorite and andesite porphyry, often intercalated, showed varying degrees of epidote-chlorite alteration and zones of silicification, bleaching and K-spar flooding. These lithologies were often cut by pyrite, chalcopyrite, pyrrhotite, magnetite stringers, veinlets and fractures as well as disseminations. Major alteration minerals within calc-silicate skarns were epidote and chlorite, with garnet-flooded zones. Massive magnetite sections within the calc-silicate skarns ranged from 1 m to 11 m intersections also carried pyrite, pyrrhotite ± chalcopyrite and arsenopyrite.

One sample of massive magnetite from each drill hole was analysed using the Davis Tube procedure. This method separates magnetite by running the sample through a constant voltage to produce a magnetite (concentrate) portion (Fe_3O_4) and a non-magnetite portion (wustite - FeO and hematite - Fe_2O_3). Results of this analysis show the following:

J	1 3		
DDH #	Sample #	Fe %	Magnetite %
BL-12-1	BL1-18	54.16	72.8
BL-12-2	BL2-9	65.06	90.9
BL-12-3	BL3-5	53.18	65.3
BL-12-4	BL4-11	40.03	54.3
BL-12-5	BL5-17	51.79	66.7
BL-12-6	BL6-12	64.80	92.4
BL-12-7	BL7-3	55.39	68.6

Table 4: Magnetite as a percentage of Total Fe

From Table 4 it is apparent that magnetite content is between 54 and 93% of the total Fe in the samples selected for Davis Tube analysis (average of 73%).

Although elevated values were obtained for several elements, including Rare Earth Elements (REE) a cursory view of the most anomalous results can best be summed up in the following table. Most of these values are spotty throughout the drill hole.

Drill Hole #	Anomalous Element
BL-12-1	Cu, Au, Co, Sr, Zr, La, Ce
BL-12-2	Cu, Sr
BL-12-3	Sr
BL-12-4	Cu, Au, Zn, Sr
BL-12-5	Au, Zn, Sr
BL-12-6	Cu, Zn, Co, Sr
BL-12-7	Cu, Co, Sr, Zr

Table 5: Anomalous Elements in 2012 DDH Sampling

Three of the eleven aeromagnetic anomalies are related to magnetite skarns as determined from current drilling and historic channel sampling, trenching and drilling efforts. As the geometries of the other eight anomalies are similar and they occur along the same NE trend, it is reasonable to suggest they are also related to magnetite mineralization. The apparent northerly strike of the pods conforms to the strike of the regional geology and suggests preferential replacement of certain units. It is likely that these units are carbonate-rich sediments known to be exposed in the area and they are the potential host-rock of magnetite skarn deposits. The shape of the anomalies suggest the skarns are podiform but continuous over several hundreds of metres along strike.

Drill Hole No.	Magnetite	Intersection	Grade	Accessories
	Lense Depth			
DDH 12-1	10-32m	6.55	±29%	Cu, Au
DDH 12-2	15-35m	12m	±30% Fe	Cu
DDH 12-3	20-28m	7m	±50% Fe	
DDH 12-7	26-36m	6.3m	±33% Fe	Cu
Average		8m	35% Fe	Cu

Table 6: Pod 1 2012 DDH Results Summary

Table 7: Pod 2 2012 DDH Results Summary:

Drill Hole No.	Magnetite Lense Depth	Intersection	Grade	Accessories
DDH 12-4	20-52m	22m	±30% Fe	Cu, Zn, Au
DDH 12-5	8-48m	23m	±30% Fe	Au, Zn
DDH 12-6	15-44m	20m	±30% Fe	Cu, Zn
Average		21m (10m	30% Fe	Cu, Zn
		true width)		

Further work was recommended to be directed towards creating a comprehensive inventory including Pods #10, #3, #4, #5, #6, and #7. Some of these appear to have greater size and fall within a distinctive 4 kilometre long, north trending, arc-shaped, strong anomalous signature and have no exploration records and appear unexplored.

2.0 Property Geology & Mineralization

Most work done on the property to date (Dr. H.C. Gunning, 1931; Dr. J.E. Muller, 1964) indicates that the Bacon Lake Property is underlain by Mid to Upper Triassic (230 to 210 mya) Vancouver Group Karmutsen Formation basaltic volcanics throughout its western half. Historical property work also indicates that Upper Triassic Vancouver Group Quatsino Formation limestone bands trend northwesterly and northerly through the centre of the property near the contact with an Early to Middle Jurassic (200 to 170 mya) Island Intrusive Complex granodiorite which underlies much of the area east of Bacon Lake. Lower Jurassic (210 to 190 mya) Bonanza Group of calc-alkaline volcanics and associated metasedimentary rocks (limestone, argillite, siltstone etc.) underlies the northeast corner of the claim. In general, this geology has only been determined by scant regional mapping efforts and to the author's knowledge no past efforts have attempted to map the outcrops beyond known mineral occurrences. The 2019 exploration efforts succeeded in further geological definition throughout the ridge east of Bacon Lake.

Magnetite-pyrrhotite-pyrite-chalcopyrite skarn mineralization is generally confined to limestone and volcanic lenses (pods) adjacent to intrusive contact areas. These skarns host sporadic but significant values of iron, copper, silver, cobalt and gold as veinlets, stringers, fracture coatings and disseminations and massive lenses. Skarns (otherwise know as Tactites) are most often formed at contact areas between granitic intrusions and carbonate sedimentary rocks. The word "Skarn" is an old Swedish mining term describing a type of silicate gangue associated with iron-ore bearing sulphide deposits. In more modern usage it refers to calcium-bearing silicates. Skarns are formed by silica, iron, aluminium and magnesium-rich hot geothermal waters off the granitic magma mixing and dissolving portions of the calcium-rich carbonate rocks (limestone). The carbonate host rocks and sometimes adjacent rock types (i.e. volcanics) are converted to skarns in a process referred to as "metasomatism". Locally alteration and mineralization may also occur within the intrusive rock and is referred to as "endo skarn".

As a general rule, skarn deposits are irregular, difficult to trace and variable in mineral type and content. They often contain pockets of very high grade mineralization and occasionally have sufficient low grade surrounding mineralization for larger bulk tonnage reserves. Often contacts between limestone, intrusives and associated volcanic rocks are irregular with arms or "apophyges" of intrusives invading the surrounding rock. There are commonly abrupt boundaries between altered and unaltered rock and high grade mineralization is often noted along contacts of these alteration differences or between rock types. Typical skarn-related minerals include garnet, actinolite, epidote, magnetite, wollastonite and clinopyroxene.

Some classic skarns are associated with porphyry copper deposits (e.g. Twin Buttes, Arizona and Bingham Canyon, Utah), indicating a relatively shallow depth of emplacement (1 to 10+ km). Skarns can be associated with potentially economic accumulations of metallic ores and as they have been divided up into seven major classes (Fe, W, Au, Cu, Zn, Mo and Sn). They sometimes host rare earth minerals in significant quantities.

Fe skarn deposits are generally the largest and are typically calcic iron skarns in oceanic island arc settings, associated with Fe-rich plutons intruded into or along limestone and volcanic wall rocks. Vancouver Island skarns have been placed within this class having typical skarn mineralogy of garnet, pyroxene and epidote and ore mineralogy of dominantly magnetite (±chalcopyrite, pyrite, pyrrhotite, cobaltite, arsenopyrite and gold).

The most worked on magnetite outcrop exposed to date on the property (Pod 1) has an estimated mineral resource (Fe) of approximately 376,000 tonnes as exposed on surface. This outcrop occurs on the east side of Bacon Lake, west of East Bacon Road, and was the primary drill target of the 2012 drill program. Pod 2 magnetite exposures, east of East Bacon Road have an estimated mineral resource (Fe) of approximately 1,316,000 tonnes as exposed on surface. Pod 4, on Bacon Hill Ridge, has an estimated mineral resource (Fe) of approximately 183,300 tonnes as exposed on surface.

Much of the eastern and southern areas of the Bacon Lake Property are underlain by granodiorite intrusive rocks, part of a much larger intrusive complex. Showings of disseminated, veinlet and fracture copper mineralization occur within the intrusive rocks on the property, particularly along Elk Main paralleling the north shore of Upper Campbell Lake. New logging roads southwest of Bacon Lake have exposed strong pyrite concentrations in veinlets, disseminations and masses as well as weak chalcopyrite and malachite staining on fracture surfaces within silicified granodiorite. These areas show potential for prospective Cu-porphyry style deposits and are a relatively unexplored area of the Bacon Lake Property.

3.0 2019 Exploration Program

Exploration works on the Bacon Lake Mineral Tenure began on May 6, 2019 with a scouting day to assess potential access routes to aeromagnetic highs within the target area on the ridge east of Bacon Lake. Due to active logging in the area throughout most of May, June July and August, access was restricted, primarily to the target areas of Pods 2, 3 and 10 east and south of Bacon Lake. However, on May 10, 21 and 29, the brushing out of an old road into Pod 5 was accomplished, giving reasonable walking access into Pods 4, 5 and 6 from the north and west.

On June 26, reconnaissance geological mapping along access roads through Pods 4, 5 and 6 was initiated. Three GIS-referenced grid maps for Pod 7 (Grid 1), Pods 4, 5 and 6 (Grid 2) and Pods 2 and 3 and the northeast tip of Pod 10 (Grid 3) were prepared in August 2019. On September 10, reconnaissance geological mapping was initiated across Grid 3 (Pods 2 and 3) and mapping continued during the ground magnetometer surveys and rock sampling to November 1, 2019.

Ground magnetometer surveys in combination with reconnaissance geological surveys on the three established grids commenced on September 20 and were completed on October 1. Further geological mapping was conducted on October 11 and a rock sampling program was completed on November 1, 2019.

3.1 Geological Mapping

2019 geological mapping was accomplished over Grids 1, 2 and 3 east of Bacon Lake and along roads accessing these grids. Mapping was targeted to determine the dominant lithologies defining the sharp aero-mag anomalies Pods 1, 2, 3, 4, 5, 6 and 7 on the east side of Bacon Lake.

Grid 3 (Pods 1, 2 and 3) – Figure 5

Mapping confirmed the presence of the two previously targeted magnetite bands along the southeast side of Bacon Lake, on either side of East Bacon Road in an area of limestone karst topography.

The massive magnetite-pyrrhotite band on the west side of the road is exposed for approximately 140 m, striking northerly and contained within an epidote and chlorite altered calc-silicate skarn (Pod 1). Former drilling of this band showed that bleached intrusives and epidote-chlorite flooded andesite porphyries surround this iron-rich band. Andesite porphyry units and skarn form the dominant lithologies. True widths of massive mineralized skarn are estimated as 8 m (2012 drilling). High values of cobalt and gold occur in a pit at the southern tip of the exposed band and copper and zinc values are elevated throughout.

The massive magnetite-pyrrhotite band on the east side of East Bacon Road (Pod 2) is exposed for approximately 280 m, striking northwest through dominant limestone terrain and contained within epidote-chlorite altered calc-silicate skarns. The same alteration and stringer and disseminated mineralization extends into adjacent andesite porphyry units and narrow felsic intrusives. True widths of massive mineralized skarn are estimated as 10 m (2012 drilling), although magnetometer results indicate that this band may dip eastward, which was the direction of drilling from East Bacon Road.

Through the central region of Grid 3 an approximately 200 m wide zone of alternating limestone, calc-silicate skarn, andesite tuff and lesser bleached intrusives strike northwest. Outcrops are mostly exposed along road cuts, but most of this region is covered by till deposits of 1 to 2 m thicknesses with occasional bedrock hillocks.

The eastern region of Grid 3 (most of Pod 3) is dominated by surface exposures of altered granodiorite. Alteration consists of bleaching or silicification with epidote-chlorite-sericite altered zones and epidote-quartz-pyrite veinlets. In a few localities such as the southeast corner of Grid 3, sugary-textured granodiorite was found to be less altered. Zones of disseminated magnetite within this altered intrusive (endo-skarn) produce a moderate to strong magnetic signature, while adjacent zones appear barren of magnetite.

Grid 2 (Pods 4, 5 and 6) - Figure 6

Most of the west side of Grid 2 is covered by 1 to 2 m thick tills and very little outcrop is exposed. A large rock quarry at the north end of the road in the south end of the grid exposes a grey-green basalt with close to moderate fracturing and zones of epidote veinlets and disseminated pyrite. Abundant rock exposure occurs across upper ridge top regions in the central and eastern regions of the grid. Much of the region consists of altered granodiorite, both chloritized and silicified, with zones of unaltered, coarse crystalline granodiorite. Within the altered granodiorite siliceous and chloritized zones carry disseminated and veinlet magnetite and pyrrhotite (endo-skarn). Shear zones contain vuggy quartz veinlets and sericite-chlorite alteration. Dark green mafic dykes

were observed in bleached (chlorite-sericite-epidote alteration) granodiorite scree at the north end of the grid.

Along the ridge top road leading northward from Grid 2, chloritized granodiorite gives way to exposures of calc-silicate skarn and intermittent andesite porphyry. To the east of this and within silicified granodiorite is a narrow massive magnetite band trending southward for a length of approximately 60 m. This may be a vestige of the limestone and calc-silicate skarn exposures to the southeast, where bedding in calc-silicate and limestone outcrops were observed to strike northwest and southwest and dip shallowly to the northeast and north.

Grid 1 (Pod 7) – Figure 7

Most of Grid 1 lies within relatively planar, often boggy lowland terrain with very little bedrock exposure. A small subcrop of dark green basalt containing disseminated magnetite was noted at the end of a spur road north of Bacon Lake Main. In the south end of the grid road cuts expose altered granodiorite that is siliceous and chloritized and contain zones of disseminated magnetite and epidote-pyrite veinlets.

3.2 Ground Magnetometer Confirmation Survey

Ground Magnetometer surveys were conducted across Grids 1, 2 and 3, primarily to verify the sharp aeromag anomalies of Pods 1, 2, 3, 4, 5, 6 and 7. To accomplish ground magnetometer surveys, two roaming Scintrex ENVI magnetometers were rented from September 19 to October 3. The ENVI-MAG is a total field magnetometer, using the proton-procession technique to measure the scalar amplitude of the magnetic field vector. The local magnetic disturbance field vector adds to the earth's field vector to produce the total-field vector. The ENVI-MAG measures the projected amplitude of the total field in the direction of the dominant earth's magnetic field. This is displayed as the intensity in nanoTeslas (nT) by the instrument.

GIS-referenced grid maps were used on ipads using Avenza software for accurate locations of lines and stations. Grid lines were spaced at 80 m intervals and magnetometer readings were taken at every 40 m along lines, where practicable. No lines were cut or stations flagged for these surveys, as the maps and all locations are geo-referenced. Where roads occurred at station sites, the reading was taken approximately 10 m away from the edge of the road. Grids were located over the sharp aeromag anomalies, with lines running perpendicular to the best fit of the aeromag trends. The surveys were performed by Del Ferguson, P.Geo., Mitch Garrison, GIT and Cory MacNeill, Geologist on behalf of Western Gateway Minerals Inc. Readings were downloaded to a computer at the end of each day.

A G-856AX Memory-Mag[™] Proton Precession Magnetometer was employed as a base station so that diurnal variations could be recorded and corrected for. This magnetometer measures the scalar intensity of the local magnetic field, relying upon the proton-precession technique. This technique makes use of an induction coil to create a strong magnetic field around a hydrogen-rich fluid, causing the hydrogen protons to align or polarize their spin axis with the newly applied magnetic field. When the current producing the polarizing field is interrupted, the protons begin to align themselves with the earth's magnetic field, momentarily processing about the earth's field at a specific frequency that is proportional to the ambient magnetic field intensity. This precession generates a small magnetic field that induces an alternating voltage in the induction coil, which is the reading in nT.

Data Presentation

Corrected mag readings are presented on 1:5,000 (Grids 1 and 2) and 1:5,500 (Grid 3) scale maps (Figures 5, 6 & 7). Readings in nT (nanoTesla) are presented in Appendix I, II and III. Results were point mapped with colour coding representing 95 percentile, 85 percentile, 75 percentile and 50 percentile values. Magnetometer reading statics and percentile values are presented below in Table 8.

Results

 Table 8: Ground Magnetometer Survey Statistics

Stats	Grid 1 Survey	Grid 2 Survey	Grid 3 Survey
Max (nT)	56,661	59,505	60,000
Min (nT)	53,158	47,135	43,407
Average (nT)	55,126	54,579	54,383
95 th percentile	55,399	56,578	56,483
85 th percentile	55,069	55,887	55,807
75 th percentile	54,847	55,403	55,340
50 th percentile	54,440	54,824	54,560
Survey Point	103	126	173
Count			
No mag readings (error)	2	1	10
No location	1	0	0
Manned Point	100	125	163
Count	100	125	105
Areas of High	0	560N/120E to 280E	160N/40E to 120W
Noise	•	80N/ 320E to 400E	240N/80E to 40W

Grid 3 (Figure 5)

A small mag-high in the southwest corner of the grid mimics the northern end of the aeromag-high (Pod 1) and identifies the know surface showing directly, indicating that the magnetite band may be near vertical in orientation. Grid 3 did not have full coverage across this known magnetite band.

An approximately 320 m long by 80 m wide northwest striking mag-high lies to the east of the aeromag-high (Pod 2), east of East Bacon Road. It covers the area east of the surface exposures of the magnetite band, indicating that the band dips to the east below the surface.

An approximately 320 m long by 80 m wide northerly striking mag high exists east of the baseline on the western flanks of aeromag-high Pod 3. This mag-high appears to be along the western margins of largely chloritized and silicified granodiorite, although till covers much of this mag-high.

Two small mag-highs occur in the northeast corner of the grid and southeast corner of the grid respectively, mostly within chloritized and silicified granodiorite.

High noise was encountered sporadically throughout this grid, with larger regions in the south-central area thought to be influenced by the hydro transmission lines. In these two areas (160N/40E to 120W and 240N/80E to 40W) 10,00nT were added to some of the extremely low values received, but this did not influence the >75 percentile anomalous readings.

Grid 2 (Figure 6)

An approximately 400 m long northerly trending >75 percentile mag-high covers the central portion of this grid, somewhat reflecting the aeromag-highs outlining Pods 4 and 5 and the southern end of Pod 6. The mag-high covers an area of chloritized and silicified granodiorite with magnetite-rich zones (endo-skarn). It is noted that the mag-high does not cover the surface expression of the single magnetite band observed in the northeast corner of the grid, as the grid did not extend far enough east.

High noise was encountered sporadically throughout this grid, with larger regions in the northeast (560N/120E to 280E) and in the southeast (80N/400E to 320E) thought to be influenced by the hydro transmission lines. Noise in these areas may have influenced anomalous readings, but no corrections were made.

Grid 1 (Figure 7)

The mag-high accurately mimics the aeromag-high defining Pod 7, with a more targeted >85 percentile region striking north-northwest and open to the south. This lowland area has very little bedrock exposure, but a subcrop at the northwestern edge of the mag-high contains disseminated magnetite in a dark green basalt. The southern region of the mag-high is underlain by chloritized granodiorite with magnetite-rich zones (endo-skarn).

Grid 2 Mag Survey – October 30, 2019

0 30 60 120 180 240

FIGURE 6

Bacon Lake Survey Map - Grid 2

MAGNETOMETER

Sharp Aero-Mag Anomaly

Ground Mag Anomaly

95 percentile - point	contour 🖚 🥌 🛀
85 percentile - point 🔴	contour 🚗 🥣
75 percentile - point 🔴	contour 🦰 🥣
50 percentile - point 😑	contour 🔶 🥣

Rock Sample/#

GEOLOGY

0 30 60

SCALE 1:5,000

120

180

Metres

240

FIGURE 7

Bacon Lake Survey Map - Grid 1

3.3 Rock Sampling and Analysis

A rock sampling program was completed over targeted areas of Grids 3 and 2, mostly to confirm the mineral content of identified magnetite-pyrrhotite bands exposed on surface. Samples were collected on November 1, 2019 by Del Ferguson, P.Geo. and Mitch Garrison, GIT. Twenty grab samples were collected; sixteen from the southwest corner of Grid 3 mostly from magnetite-pyrrhotite bands and adjacent mineralized calc-silicate skarns; 3 samples from the magnetite band in silicified granodiorite in the northeast corner of Grid 2; one from Grid 2 of chloritized granodiorite with disseminated magnetite (#16316) and one from Grid 2 of silicified granodiorite. Sample locations are on Rock Sample Maps, Figures 8 and 9 and included in Appendix IV.

All samples were bagged and tagged and delivered to Comox where Del Ferguson, P.Geo. conducted a systematic XRF analysis for each rock sample. The C Series VantaTM handheld XRF (X-Ray Fluorescence) analyzer used for the sampling has superior speed, limits of detection (LODs) and elemental range. This model is equipped with a silicon drift detector (SDD) and a rhodium (Rh) anode 40kV X-ray tube. The primary method is a GeoChem (2 beam) Calibration with analysis for geochemical samples measuring Mg, Al, Si, Ca, S, P, Ti, V, Cr, Mn Fe, Co, Ni, Cu, W, Zn, Hg, As, Pb, Bi, Se, Th, U, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Au and total LE. LE = light elements with atomic # <18 (Argon), usually Mg, Al, Si, P, S and Cl. Values are reported in Appendix VI.

Quality control was achieved by:

- 1) Cleaning the sample by brushing away any soil or loose detritus;
- 2) Holding the XRF analyzer tube at the sample location for 30 seconds on Beam 1 and 15 seconds on Beam 2, resulting in averaging of values in the final readout;
- 3) Downloading geochemical results from the XRF to a hard drive via a .csv spreadsheet;
- 4) Cleaning up the spreadsheet in .xlsx format.

Samples were then delivered to Blue Coast Metallurgy and Research Labs in Parksville, B.C. for Au fire assay. At the lab, each sample was crushed, blended and screened to produce replicate test work. Ring and puck pulverization includes isolated bucking booths to minimize contamination. Three samples exhibiting higher Au values were recut for re-assay. Values are reported in Appendix V.

Pulps were picked up at the lab and brought back to Comox for geochemical re-analysis by XRF, including sample cuts. Values are reported in Appendix VII.

Analytical Results

In most samples, the whole rock XRF analysis showed higher element values than did the pulp samples. Au was not detected on the XRF analyser, but several samples expressed Au values upon fire assay. As expected, all samples of magnetite bands and magnetite-rich skarns reflected high Fe content in the range of 10 to 76% in whole rock (5 to 56% in pulps).

	Table 9:	Rock Sam	ple Geocher	nical Highlights
--	----------	----------	-------------	------------------

Sample	Description	Element Anomalies	Element Anomalies
# .		Rock (ppm)	Pulp (ppm)
16301	Massive magnetite;	Fe 604527, Co 78303,	Fe 398642, Au 11.6,
	cobalt bloom	As 109840, W 2567, Bi	Co 723, As 3328,
		2247	Ni 169
16302	Massive magnetite	Fe 508595	Fe 519334, Au 0.057
16303	Massive magnetite,	Fe 290344, Cu 757	Fe 127710, Au 0.181,
	pyrrhotite, chalcopyrite,		Cu 702
	malachite		
16304	Magnetite veining with	Fe 448318, Cu 2416	Fe 406556, Au 0.04,
	white oxide staining		Cu 2683
16305	Magnetite lenses in calc-	Fe 543601, Cu 1612,	Fe 330986
40000	silicate skarn	Zn 748	E 100010
16306	Magnetite lenses in calc-	Fe 359250	Fe 402919
40007	Silicate skarn	F- 540740	F ₂ F 40040
16307	Magnetite lenses in calc-	Fe 542749	Fe 519018
16200		Fo 627626	
10300	silicate ekern	Fe 027020	Fe 557773, Au 0.13
16200	Massive magnetite longe	Eo 761538	Eo 457275
16310	Magnetite lenses in calc	Fe 600075 Cu 413	Fe 345405
10310	silicate skarn	7n 709	1 6 343403
16311	Massive magnetite lense	Fe 714231	Fe 366146
16312	Magnetite lenses in calc-	Fe 104862	Fe 91602
10012	silicate skarn	101002	1001002
16313	Magnetite lenses in calc-	Fe 495414	Fe 467005. Au 0.07.
	silicate skarn		Zn 844
16314	Magnetite lenses in calc-	Fe 672951, Cu 856	Fe 180658
	silicate skarn		
16315	Magnetite lenses in calc-	Fe 58621	Fe 83396, Zn 19647
	silicate skarn		
16316	Disseminated magnetite	Fe 115872	Fe 57289
	in chloritized granodiorite		
16317	Massive magnetite lense	Fe 497683, Zn 968	Fe 334699
	in silicified granodiorite		
16318	Massive magnetite lense	Fe 484647, Cu 565,	Fe 433745
	in silicified granodiorite	Zn 554	
16319	Massive magnetite lense	Fe 651047	Fe 436134, Zn 715
	in silicitied		
40000	granodiorite/limestone	E 00000	5 51470
16320	Silicified granodiorite	Fe 38696	Fe 511/8

• Au values are by Fire Assay; all other values by XRF

$\begin{array}{c ccccc} & Fe \ 604527 \\ Co \ 78303 \\ As \ 109840 \\ W \ 2567 \\ Bi \ 2247 \\ \end{array} \begin{array}{c} As \ 3328 \\ Ni \ 169 \\ \end{array} \\ \hline \\ 2 & Fe \ 508595 \\ Fe \ 519334 \\ Au \ 0.057 \\ \hline \\ Au \ 0.057 \\ \end{array} \\ \begin{array}{c} Fe \ 5290344 \\ Cu \ 757 \\ Au \ 0.04 \\ Cu \ 757 \\ Au \ 0.181 \\ Cu \ 702 \\ \hline \\ Au \ 0.04 \\ Cu \ 2683 \\ \end{array} \\ \begin{array}{c} Fe \ 448318 \\ Fe \ 406556 \\ Au \ 0.04 \\ Cu \ 2683 \\ \end{array} \\ \begin{array}{c} Fe \ 543601 \\ Cu \ 1612 \\ Zn \ 748 \\ \end{array} \\ \begin{array}{c} Fe \ 330986 \\ Zn \ 748 \\ \end{array} \\ \begin{array}{c} Fe \ 330986 \\ Zn \ 748 \\ \end{array} \\ \begin{array}{c} Fe \ 330986 \\ Fe \ 359250 \\ Fe \ 402919 \\ \hline \\ 7 \\ Fe \ 542749 \\ Fe \ 519018 \\ \end{array} \\ \begin{array}{c} 8 \\ Fe \ 627626 \\ Fe \ 557773 \\ Au \ 0.13 \\ \end{array} \\ \begin{array}{c} 9 \\ Fe \ 690975 \\ 10 \\ Cu \ 413 \\ Fe \ 690975 \\ 10 \\ Cu \ 413 \\ Fe \ 345405 \\ Zn \ 709 \\ \end{array} \\ \begin{array}{c} Fe \ 104862 \\ Fe \ 91602 \\ Fe \ 467005 \\ Fe \ 467005 \\ Fe \ 467005 \\ 13 \\ Fe \ 495414 \\ Au \ 0.07 \\ Zn \ 844 \\ \end{array} \\ \begin{array}{c} Fe \ 58621 \\ Fe \ 83396 \\ Fe \ 83396 \\ 7n \ 10647 \\ \end{array}$	Sample #	Element Anomalies Rock(ppm)	Element Anomalies Pulp(ppm)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Fe 604527 Co 78303 As 109840 W 2567 Bi 2247	Fe 398642 Au 11.6 Co 723 As 3328 Ni 169
3Fe 290344 Cu 757Fe 127710 Au0.181 Cu 7024Fe 448318 Cu2416Fe 406556 Au 0.04 Cu 26835Fe 543601 Cu 1612 Zn 748Fe 330986 Fe 3309866Fe 359250Fe 4029197Fe 542749Fe 5190188Fe 627626 Fe 557773 Au0.139Fe 761538 Fe 690975 10Fe 457375 Fe 690975 To Cu 413 Zn 70911Fe 714231 Fe 36614612Fe 104862 Fe 9160213Fe 495414 Cu 856 Fe 180658 To 19647	2	Fe 508595	Fe 519334 Au0.057
4Fe 448318 Cu2416Fe 406556 Au 0.04 Cu 26835Fe 543601 	3	Fe 290344 Cu 757	Fe 127710 Au0.181 Cu 702
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	Fe 448318 Cu2416	Fe 406556 Au 0.04 Cu 2683
6 Fe 359250 Fe 402919 7 Fe 542749 Fe 519018 8 Fe 627626 Fe 557773 Au0.13 9 Fe 761538 Fe 457375 10 Cu 413 Zn 709 Fe 345405 11 Fe 714231 Fe 366146 12 Fe 104862 Fe 91602 13 Fe 495414 Fe 467005 13 Fe 672951 Au0.07 Zn 844 14 Fe 672951 Cu 856 Fe 180658 15 Fe 58621 Fe 83396 Zn 19647	5	Fe 543601 Cu 1612 Zn 748	Fe 330986
7 Fe 542749 Fe 519018 8 Fe 627626 Fe 557773 Au0.13 9 Fe 761538 Fe 457375 10 Cu 413 Zn 709 Fe 345405 11 Fe 714231 Fe 366146 12 Fe 104862 Fe 91602 13 Fe 495414 Fe 467005 14 Fe 672951 Cu 856 15 Fe 58621 Fe 83396	6	Fe 359250	Fe 402919
8 Fe 627626 Fe 557773 Au0.13 9 Fe 761538 Fe 457375 10 Cu 413 Cu 413 Fe 345405 10 Cu 413 Zn 709 Fe 345405 11 Fe 714231 Fe 366146 12 Fe 104862 Fe 91602 13 Fe 495414 Fe 467005 14 Fe 672951 Cu 856 15 Fe 58621 Fe 83396	7	Fe 542749	Fe 519018
9 Fe 761538 Fe 457375 10 Fe 690975 Fe 345405 10 Cu 413 Fe 345405 2n 709 Fe 366146 12 Fe 104862 Fe 91602 13 Fe 495414 Au0.07 2n 844 Fe 672951 Fe 180658 15 Fe 58621 Fe 83396	8	Fe 627626	Fe 557773 Au0.13
Fe 690975 Cu 413 Zn 709 Fe 345405 11 Fe 714231 Fe 366146 12 Fe 104862 Fe 91602 13 Fe 495414 Au0.07 Zn 844 14 Fe 672951 Cu 856 Fe 180658 15 Fe 58621 Fe 83396 Zn 19647	9	Fe 761538	Fe 457375
11 Fe 714231 Fe 366146 12 Fe 104862 Fe 91602 13 Fe 495414 Fe 467005 13 Fe 495414 Au0.07 2n 844 Te 672951 Fe 180658 15 Fe 58621 Fe 83396	10	Fe 690975 Cu 413 Zn 709	Fe 345405
12 Fe 104862 Fe 91602 13 Fe 495414 Fe 467005 13 Fe 495414 Au0.07 2n 844 Zn 844 14 Fe 672951 Cu 856 Fe 180658 15 Fe 58621 Fe 83396	11	Fe 714231	Fe 366146
13 Fe 495414 Fe 467005 13 Fe 495414 Au0.07 2n 844 Zn 844 14 Fe 672951 Cu 856 Fe 180658 15 Fe 58621 Fe 83396 Zn 10647 Zn 10647	12	Fe 104862	Fe 91602
14 Fe 672951 Cu 856 Fe 180658 15 Fe 58621 Fe 83396 70 19647	13	Fe 495414	Fe 467005 Au0.07 Zn 844
15 Fe 58621 Fe 83396	14	Fe 672951 Cu 856	Fe 180658
211 1 9047	15	Fe 58621	Fe 83396 Zn 19647

FIGURE 9 Bacon Lake GRID 2 Rock Sampling

Sample #	Element Anomalies Rock (ppm)	Element Anomalies Pulp (ppm)
16	Fe 115872	Fe 57289
17	Fe 497683 Zn 968	Fe 334699
18	Fe 484647 Cu 565 Zn 554	Fe 433745
19	Fe 651047	Fe 436134 Zn 715
20	Fe 38696	Fe 51178

4.0 Interpretation and Conclusions

Work done during 2019 succeeded in gaining a better understanding of most of the sharp aero-mag anomalies on the east side of Bacon Lake.

Ground magnetometer surveys over three grids confirmed the sharp aero-mag highs generated from the 2010 survey, although only in Grid 1 (Pod 7) did the ground survey closely mirror the aero-mag survey. The south end of Grid 1 has exposures of altered granodiorite, the remainder being covered by glacial till. Pod 7 plus two adjacent aero-mag-highs remain un-tested largely due to planar lowland topography and lack of bedrock exposure. This area remains a future exploration target.

Ground magnetometer surveys over Grid 2 (Bacon Ridge) reflected magnetic anomalies focused over altered granitic terrane near the ridge top and to the west, where 1-2 m thick glacial sediments mask bedrock exposures. The small magnetite band exposed in the northeast corner of Grid 2 did not reflect the strong magnetic anomaly indicated over aero-mag Pod 4.

In Grid 3 (south of Grid 2), the main showing west of East Bacon Road forms a mag high as expected. The magnetite band east of East Bacon Road is associated with a maghigh offset to the east, possibly indicating an eastward dipping structure. A similar-sized mag-high through the central region of Grid 3 lies below till cover between outcrops of limestone and skarn to the west and altered granodiorite to the east.

Geological mapping over Grids 2 and 3 indicate that the sharp aero-mag highs of Pod 3, 4, and 6 do not reflect surface expressions of magnetite bands of significant size as postulated in the 2102 diamond drilling report. Skarns and magnetite bands may occur at depth or below till cover, but surficial bedrock exposure shows largely chloritized and silicified granodiorite with zones of magnetite and pyrrhotite-pyrite mineralization (endo-skarns) in the aero-mag targets of Pods 3, 4 and 6.

Discussion

The 2019 exploration program has determined that there is limited surface exposure of magnetite bands and associated skarns along the east side of Bacon Lake. These bands are limited to Pod 1, Pod 2 and a very small exposure in Pod 4. Combined, these do not support a feasible economic size potential for magnetite as the sole commodity.

Past exploration efforts in the Bacon Lake area have focused largely on magnetite as a commodity, but a common feature within many skarn-type deposits is the presence of base and precious metals. The Bacon Lake deposits display a presence of both zinc-copper and minor gold values (±Co and REE) found within small sporadic intervals within magnetite skarns, as sampled in previous trench work, the 2012 drill core analysis and in the 2019 rock sampling. Thus far, sampling does not display continuity of mineralized zones (other than Fe).

Of importance, porphyry copper type mineralization on the Bacon Lake Property is evident, particularly in the eastern and southern areas of the claim. Disseminated pyrite and chalcopyrite was observed in granodiorite outcrops along Bacon 210 access road that have propylitic alteration and copper mineralization along veinlets and as fracture-fillings. Such occurrences were also observed along the high bluffs above Elk River Main west of Bacon Creek and along new logging roads southwest of Bacon Lake.

The Bacon Lake Property does show potential for base and precious metal deposits, being in contact terrane and containing known Cu, Zn and Au mineralization. Future exploration programs on the property should be focused on identifying areas of interest through prospecting, mapping and geochemical sampling of rock, soil and streams. A good place to start would to continue examining the numerous aeromag-highs identified throughout this large property in 2010. From the commencement of exploration in this region (Sumpter workings 1916) Cu mineralization appears to be intrinsically associated with magnetite, reflecting magnetic highs.

The 2011 road-side soil geochemical surveys have previously identified two target areas (Figure 10):

- 1. The Mid-Western sector of the Bacon Lake Property has extensive moderate to high Cu-Ni-Co-Fe-Cr-Mg-Ti (±Zn) anomalous soil values corresponding with untested aeromag-highs.
- 2. Potential Cu porphyry type mineralization has been observed in eastern and southern regions of the property. Isolated Cu-Ni-Co-Fe-Cr-Mg-Ti and Cu-Zn soil anomalies in the southeast region of the property are supported by showings of disseminated pyrite and chalcopyrite associated with propylitic-alteration in granodiorite on BAC210 and veinlet and fracture chalcopyrite-malachite on Elk River Main.

5.0 Recommendations

Proposed Exploration Program

- 1. In the spring of the year, when streams are flowing, conduct a stream sediment sampling program over the whole property.
- 2. Investigate areas of stream sediment anomalies (prospecting, mapping, soil lines).
- 3. Conduct prospecting, mapping and sampling surveys in the two target areas defined by soil geochemical analysis and corresponding aeromag-highs.

FIGURE 10

WESTERN GATEWAY MINERALS INC. BACON LAKE AEROMAG HIGHS & GEOLOGICAL INTERPRETATION - 2020

Ν

Respectfully submitted,

AZTEC GEOSCIENCE INC.

ESSIO PROVINCE OF N. FERGUSON CIEN April 12, 2020

Del W. Ferguson, P.Geo.

References

General References

Biogeoclimatic Ecosystem Classification Subzone/Variant Map for the Port McNeill Forest District, Vancouver Forest Region, Ministry of Forests, 2003.

BCGS Geoscience Map, Ministry of Energy, Mines and Natural Gas and Ministry Responsible for Housing: <u>http://www.mapplace.ca</u>

Canadian Climate Normals, Environment Canada: <u>http://www.climate.weatheroffice.ec.gc.ca</u>

Forester D., 2009, Pathways Between Skarns and Porphyry Deposits – A New South Wales Perspective, Exploration in the House.

Google Image – 2012 GeoEye, Medium Resolution Google Earth[™] Satellite Imagery - August 27, 2011.

Gunning, H.C., (1930), 1931; Buttle Lake Map Area, Vancouver Island, B.C., Geological Survey of Canada, Summary Report, p. 56-78

Meinert, L.D., 1992, Skarns and Skarn Deposits, Geoscience Canada, vol 19, no 4.

Muller, J.E., 1965, Alberni 92F Map Area, Report of Field Activities 1964, Geological Survey of Canada, Paper No. 65-1, p. 61-62

Muller, Y., 1977, Geology of Vancouver Island Guidebook, Field Trip 7, Geological Association of Canada/Mineralogical Association of Canada Joint Annual Meeting, Vancouver, BC.

Physiographic Map of the Canadian Cordillera, Map 1701A, Geological Survey of Canada, 1986.

Bacon Lake Property

Brownlee, D.J., 1987, Preliminary Reconnaissance and Lithogeochmical Survey of the Bacon Claim, ARIS Report 16321.

Brownlee, D.J., 1988, Follow-Up Lithogeochemical Survey of the Bacon Claim, ARIS Report 17395.

Brownlee, D.J., 1989, Geological and Geophysical Report on the Bacon Mineral Claims, ARIS Report 18946.

Ferguson, D.W., 2012, Helicopter-Borne Magnetic Survey Report, Bacon Lake Polymetallic Property, January 2012, ARIS Report 31508.

Ferguson, D.W., 2012, Western Gateway Minerals Inc. - Soil Geochemical Survey Report, Bacon Lake Polymetallic Property, February 2012, ARIS Report 32805.

Ferguson, D.W., 2013, Western Gateway Minerals Inc. – Diamond Drilling Report, Bacon Lake Property, January 2013, ARIS Report 33963.

Finley Bakker, 2008, Geological Evaluation of Bacon Lake (Twin Lake Resources/Western Gateway Minerals – Internal Report), May 6, 2008.

Gosse, R.R., 1991, Ground Magnetometer Survey of the Bacon Claim, ARIS Report 21193.

Hings D.L., 1951, Report on Preliminary Magnetic Survey of the East Bacon Lake Area, Geological Survey Property File, 92F256.

McDougall J.J., 1961, Report on Bacon Lake Magnetite - December 1961, Geological Survey Property File, 92F256.

McDougall J.J., 1961, Report on Bacon Lake and Willy Iron Prospects - February 1961, Geological Survey Property File, 92F256.

McDougall J.J., 1961: Report on Hiller Iron Prospects & Bacon Lake Magnetite - December 1961, Geological Survey Property File, 92F256.

MinFile No 092F 038, Rock/Bacon Showing, 1961 drilling.

MinFile No 092F 097, GSC Mapping of Limestone Trace – Upper Campbell Lake, 1968.

MinFile No 092F 124, Sumpter Workings, 1916.

Noranda Exploration Co. Ltd., 1962, A-3 Magnetometer Survey Map – Bacon Lake Property; Geological Survey Property File, 92F256.

Paquet J.L., 2009 Western Gateway Minerals Inc. – Report on Preliminary Magnetometer Survey, December 2009; ARIS Report 31321

Rennie, C.C., 1997, Summary Prospecting Report on Minland Project Comprising Bacon Lake Claims and Cobalt Star Claim, ARIS Report 25513A.

Rutherford J., 1951, Map of Outcroppings and Known Area of Ore of the Bacon Lake Iron Deposit, Geological Survey Property File, 92F256.

Upton, A.H., 1952, Bacon Lake Property Report (Drilling), B.C. Iron Ore Development Co. Ltd., Geological Survey Property File, 92F256.

North of Bacon Lake Property

Brownlee, D. J., 1988, Preliminary Reconnaissance and Lithogeochemical Survey of the Julia Claim, ARIS Report 17405.

Brownlee, D. J., 1989, Geological and Geophysical Report on the Julia Mineral Claim, ARIS Report 18947.

Cochrane, D.,1970, Geophysical Report and Magnetomer Survey of the Scott and Thelma claims, ARIS Report 02507.

Laanela, H., 1965, Report on the Geolological, Geophysical, Grochemical Surveys of the "Big G" (Gilkie Mine) Property on Greenstone Creek, ARIS Report 00699.

MinFile No 092F 098, Greenstone Creek 1969, Geochemical and Airborne Geophysics

MinFile No 092F 237, Big G, Greenstone Property – 1916-17

Lawrence, E.A., and Doiron, A., 1998, Geological Report on the Allana Property, ARIS Report 25809.

Local Showings, Prospects, Mines

Berkshire, L., 1983, Annual Assessment Report, Eagle Gorge #3 Mining Claim, ARIS Report 11461

Berkshire, L., 1984, Annual Assessment Report, Eagle Gorge #1 Mining Claim, ARIS Report 11199

Rennie, C.C., 2002, Diamond Drilling on the Blue Grouse Property, ARIS Report 26969.

Brownlee, D.J., 1985, Report on the Preliminary Rock Geochemistry, Survey of the Iron River Claims, ARIS Report 13574.

Cathro, M., 2008, Geological and Geochemical Report on the Dass Property, ARIS Report 30383.

Deleen, J.L., and McCullough, P., 1974, Geological Report on the Iron River Property, ARIS Report 05300.

Ferguson, D.W., Beavertail Claims – Diamond Drilling Report, Mineral Tenure 592276, Western Gateway Minerals Inc., Internal Report, January 2011.

Gilson, C., and Houle, J., 2005, Camp Lake Property – Technical Report, 2004 Field Exploration & 2005 Airborne Geophysical, for Bluerock Resources, August 18, 2005 Revision.

Houle, J., and Gilson, C., 2005, Technical Report for the 2004 Exploration Program on the Camp Lake Property, ARIS Report 27717A, 27717B.

MinFile No 092F 001, Brynnor Mine.

MinFile No 092F 075, Iron Hill/Argonaut Mine.

MinFile No 092F 076, Iron River.

MinFile No 092F 194, Jentin

MinFile No 092F 197, East Gorge/Upper Oyster.

MinFile No 092F 198, Sihun Creek.

MinFile No 092F 234, Bold.

MinFile No 092F 571, Camp Lake Property.

Loiselle, J.P., 1995, Geophysical Report Electromagnetic Survey over Wolf Claims, ARIS Report 24089.

Loiselle, J.P., 1996, Prospecting Report on the Wolf II and III Claims, ARIS Report 24440.

Loiselle, J.P., and Delorme, G., 1988, Prospecting Report on the Quinsam Mineral Claim, ARIS Report 18870.

Lyn, I., 1984, Bold 2 Claim Geological Assessment Report, ARIS Report 13003.

Lyn, I., 1985, Bold 3 Claim Geological Assessment Report, ARIS Report 13722.

Northcote, K., 1984, Geological Report on Eagle Gorge, 1, 2 and 3 Claims, ARIS Report 13602.

Rennie, C.C., 2000, Geophysical and Geochemical Summary Report on Blue Grouse Property, ARIS Report 26293A.

Sheppard, E.P., 1982, Geological Report Nioby Group 1, Nioby Group 2 and Jentin 1 and 2, ARIS Report 10866.

Sheppard, E.P., 1984, Drilling and Geological Report, Upper Quinsam Lake, Jentin and Nibby Claims, ARIS Report 12637.

Certificate of Qualifications

I, Del (Delbert) W. Ferguson, of 918 Highwood Drive, Comox, BC, Canada V9M 3R5, hereby certify that:

- 1. I am a practicing Geoscientist.
- 2. I graduated with an Honours Bachelor of Science degree in Geology from the University of Western Ontario, Canada in 1979.
- 3. I am the Principal Geologist with Aztec Geoscience Inc.
- 4. I have been employed in my profession since 1979.
- 5. I am a Registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC), registration number: 19893.
- 6. I am a Fellow of the Geological Association of Canada (F4782) and a Fellow of Geoscientists Canada.
- 7. This report was prepared by myself, based on researched historical data, field visits and supervision, monitoring and reporting on the 2019 exploration program.
- 8. I most recently visited the subject property on November 1, 2019.

Dated this 12th day of April, 2020

Del W. Ferguson, P.Geo., Eng.L., FGAC, FGC

Statement of Costs

BACON LAKE 2019 EXPLORATION COST SUMMARY

		Days	per Day	
May 6-Scouting Access Routes	Geologist	0.60	0 1000	600.00
May 10, 21 - Brushing out access roads	Tech	1.60	500	800.00
May 29 - Brushing out access road + mapping	Geologist	1.00	0 1000	1,000.00
June 26 - Mapping Bacon Hill	Geologist	0.90	0 1000	900.00
Aug 22, 23 - Grid Map preparation	Geologist	1.00	0 1000	1,000.00
Sept 9 - GIS services for georeferencing Grid maps (Cory's Quarry)	C C			325.00
Sept 10 - Mapping across Grid 3 (Pod 2, 3)	Geologist	0.60	0 1000	600.00
Sept 12 - Office mapping of collected geo data	Geologist	0.80	0 1000	800.00
May 6 to Sept 12: Travel to property-return (1650 km @ 0.60/km)				990.00
Sept 20 - Grid 1 Mag Survey	Geologist + GIT	1.00	0 1500	1,500.00
Sept 21 -Mag Downloads	Geologist	0.20	0 1000	200.00
Sept 24 - Grid 1 Mag Survey	Geologist + GIT	1.00	0 1500	1,500.00
Sept 25 - Mag Downloads	Geologist	0.20	0 1000	200.00
Sept 27 - Grid 2 Mag Survey + Mapping	Geologist + 2 GITs	1.00	2000	2,000.00
Sept 28 - Mag Downloads	Geologist	0.20	0 1000	200.00
Sept 30 - Grid 2, 3 Mag Survey	Geologist + GIT	1.00	0 1500	1,500.00
Sept 31 - Mag Downloads	Geologist	0.20	0 1000	200.00
Oct 1 - Grid 3 Mag Survey	2 GITs	1.00	0 1000	1,000.00
Oct 2 - Mag Downloads	Geologist	0.20	0 1000	200.00
Oct 4 - Grid 1, 2 Diurnal Corrections	Geologist	0.40	0 1000	400.00
Oct 5 - Grid 2 Diurnal Corrections	Geologist	0.20	0 1000	200.00
Oct 7 - Grid 2, 3 Diurnal Corrections + geology	Geologist	0.80	0 1000	800.00
Oct 11 - Mapping - Grid 2, 3	Geologist	0.90	0 1000	900.00
Sept 20 to Oct 11: Travel to property-return (1355 km @ 0.60/km)				813.00
Nov 1 - Rock Sampling	Geologist + GIT	1.00	0 1500	1,500.00
Nov 2 - XRF Analysis of Rocks	Geologist	0.40	0 1000	400.00
Nov 4 - Rock Delivery to Blue Coast Labs	Geologist	0.20	0 1000	200.00
Nov 25 - Pick Pulps up at Labs	Geologist	0.20	0 1000	200.00
Nov 26 - XRF Analysis of Pulps	Geologist	0.40	0 1000	400.00
Nov 27 - Jan 15 - Exploration Report	Geologist	6.00	0 1000	6,000.00
G856 Mag Rental (12 days @ 50/day)				600.00
ENVI Mag Rentals (15 days @ 80/day				1,200.00
GIS Mapping of Mag Results (Cory's Quarry)				225.00
Au Fire Assay (Blue Coast) - 20 samples @ 45.50				910.00
Nov 1 - Travel to property-return (236 km @ 0.60/km)				141.60
Nov 4 & 25 - Travel to Blue Coast-return (320 km @ 0.60/km)				192.00

TOTAL PROJECT COSTS

30,596.60

APPENDIX I - GRID 3 MAGNETOMETER RESULTS

Title	Date Create: Latitude	Longitude	Northing	Easting	Grid Loc	Diurnal Corrected
Placemark 19	2019-10-017 49.967	4 -125.624	5538307	311810.3	240N 320W	43407
Placemark 27	2019-10-017 49.9651	6 -125.625	5538061	311720.1	0N400W	44526
Placemark 12	2019-10-017 49.9673	9 -125.62	5538296	312090.1	240N 40W	45204
Placemark 11	2019-10-017 49.9674	1 -125.62	5538297	312129.4	240N 0	45801
Placemark 10	2019-10-017 49.9673	7 -125.619	5538292	312166.2	240N 40E	47526
Placemark 49	2019-10-017 49.9681	1 -125.624	5538384	311855.4	320N280W	47649
Placemark 12	2019-10-017 49.9666	5 -125.62	5538214	312087.7	160N40W	48271
Placemark 26	2019-09-307 49.9688	7 -125.616	5538449	312416.5	400N280E	50255
Placemark 21	2019-10-017 49.9666	3 -125.625	5538225	311725	160N400W	50559
Placemark 7	2019-10-017 49.967	4 -125.618	5538290	312289.4	240N 160E	50776
Placemark 8	2019-10-017 49.9673	9 -125.618	5538290	312246.7	240N 120E	51027
Placemark 6	2019-10-017 49.967	4 -125.617	5538288	312329.2	240N 200E	52523
Placemark 2	2019-09-307 49.9695	7 -125.624	5538549	311823.7	480n,320w	52681
Placemark 28	2019-10-017 49.9651	9 -125.625	5538063	311762.3	0N360W	52727
Placemark 1	2019-10-017 49.9673	9 -125.617	5538287	312355	Base stn	52971
Placemark 26	2019-10-017 49.9651	8 -125.626	5538065	311680.8	0N440W	53070
Placemark 19	2019-09-307 49.9696	2 -125.615	5538530	312499.7	480n,360e	53134
Placemark 3	2019-09-307 49.9695	5 -125.624	5538545	311853.1	480n,280w	53139
Placemark 18	2019-09-307 49.9696	3 -125.615	5538532	312458.9	480n,320e	53193
Placemark 5	2019-10-017 49.9673	9 -125.616	5538287	312368.2	240N 240E	53514
Placemark 6	2019-09-307 49.9695	9 -125.622	5538545	311972.9	480n,160w	53631
Placemark 37	2019-09-307 49.9688	6 -125.622	5538464	311974.3	400N160W	53710
Placemark 24	2019-09-307 49.968	1 -125.616	5538365	312375.7	320n,240e	53775
Placemark 22	2019-10-017 49.965	9 -125.626	5538145	311687.6	80N 440W	53792
Placemark 24	2019-10-017 49.9658	8 -125.625	5538140	311766.4	80N 360W	53820
Placemark 7	2019-09-307 49.9695	8 -125.622	5538542	312015	480n,120w	53847
Placemark 32	2019-09-307 49.9681	1 -125.621	5538378	312052.6	320n,80w	53854
Placemark 25	2019-09-307 49.9688	8 -125.615	5538449	312456.6	400N320E	53854
Placemark 25	2019-10-017 49.9651	6 -125.627	5538064	311640.6	0N480W	53885
Placemark 13	2019-10-017 49.967	4 -125.621	5538298	312050.6	240N 80W	53901
Placemark 8	2019-09-307 49.9695	7 -125.621	5538540	312055.3	480n,80w	53970
Placemark 31	2019-10-017 49.9659	4 -125.621	5538136	312042.8	80N 80W	53972
Placemark 33	2019-10-017 49.965	9 -125.62	5538129	312126	80N 0	54003
Placemark 25	2019-10-017 49.9659	1 -125.624	5538141	311805.7	80N 320W	54016
Placemark 35	2019-10-017 49.9659	3 -125.619	5538130	312206.2	80N 80E	54022
Placemark 31	2019-09-307 49.9681	3 -125.62	5538379	312093.3	320n,40w	54033
Placemark 35	2019-09-307 49.9688	6 -125.621	5538461	312055.7	400N80W	54040
Placemark 5	2019-09-307 49.9695	8 -125.623	5538545	311935.1	480n,200w	54056
Placemark 9	2019-09-307 49.9695	8 -125.62	5538539	312097.7	480n,40w	54059
Placemark 38	2019-09-307 49.9688	7 -125.623	5538466	311934	400N200W	54059
Placemark 36	2019-09-307 49.9688	6 -125.621	5538463	312015.5	400N120W	54082
Placemark 14	2019-10-017 49.9674	1 -125.621	5538301	312011.3	240N 120W	54101
Placemark 48	2019-10-017 49.9681	3 -125.624	5538388	311812.3	320N320W	54106
Placemark 3	2019-10-017 49.9674	2 -125.615	5538287	312450.6	240N 320E	54109
Placemark 43	2019-10-017 49.9688	4 -125.624	5538467	311814.9	400N 320W	54109
Placemark 2	2019-10-017 49.9674	3 -125.615	5538286	312489.4	240N 360E	54113
Placemark 5	2019-10-017 49.9666	6 -125.616	5538205	312368.5	160N240E	54125
Placemark 22	2019-09-307 49.9703	7 -125.614	5538611	312579.4	560N440E	54136
Placemark 7	2019-09-307 49.9703	1 -125.622	5538624	312018.9	560N120W	54139
Placemark 6	2019-09-307 49.9703	1 -125.622	5538625	311978.6	560N160W	54146
Placemark 8	2019-09-307 49.9703	2 -125.621	5538624	312059.1	560N80W	54147
Placemark 4	2019-09-307 49.9695	7 -125.623	5538546	311894.5	480n,240w	54153
Placemark 27	2019-09-307 49.9688	9 -125.616	5538453	312375.9	400N240E	54176
Placemark 25	2019-09-307 49.9681	6 -125.617	5538373	312335.5	320n,200e	54197
Placemark 36	2019-10-017 49.9659	3 -125.618	5538128	312244	80N 120E	54213
Placemark 34	2019-09-307 49.9688	7 -125.62	5538460	312096.5	400N40W	54216

Placemark 11	2019-10-017	49.96663	-125.62	5538210	312127.5 160N0E	54220
Placemark 19	2019-10-017	49.96659	-125.624	5538217	311808.9 160N320W	54240
Placemark 20	2019-10-017	49.96739	-125.625	5538308	311767.6 240N 360W	54244
Placemark 24	2019-09-307	49.9689	-125.615	5538449	312498.2 400N360E	54276
Placemark 22	2019-09-307	49.96814	-125.615	5538366	312453.8 320n.320e	54287
Placemark 23	2019-09-307	49.96888	-125.614	5538446	312534.3 400N400E	54327
Placemark 32	2019-10-017	49.96519	-125.623	5538057	311919.9 0N200W	54360
Placemark 21	2019-09-307	49.97034	-125.614	5538608	312538.3 560N400E	54366
Placemark 24	2019-10-017	49.96519	-125.627	5538068	311599.4 0N520W	54384
Placemark 35	2019-10-017	49 96517	-125 621	5538051	312042 6 0N80W	54394
Placemark 21	2019-09-307	49 96812	-125 615	5538363	312491 1 320n 360e	54424
Placemark 23	2019-10-017	49 96518	-125 628	5538068	311564 4 0N560W	54436
Placemark 16	2019-10-011	49 96741	-125 623	5538304	311928 6 240N 200W	54447
Placemark 6	2019-10-011	49 96666	-125.625	5538206	312329 7 160N200F	54455
Placemark 38	2019-10-011	49.96519	-125.619	5538048	312160 5 0N40F	54464
Placemark 20	2019 10 011	40.06063	-125.015	5528520	312539 4 480p 400e	54488
Placemark 31	2019-00-001	49.90505	-125.014	5538057	311881 6 0N240W/	54400
Placemark 30	2019-10-011	49.90518	-125.025	55380/18	312201 7 ON80E	54492
Placemark 30	2019-10-011	49.90519	125.015	5520276	212122 9 220p 0w	54492
Placemark 27	2019-09-301	49.90012	125.02	5520052	212122 1 0NOW	54450
Placemark 37	2019-10-011	49.9052	-125.02	5556052	211060 2 0N160W	54529
Placemark 22	2019-10-011	49.9032	125.022	5330037	212419 2200 2800	54552
Placemark 10	2019-09-301	49.90015	125.010	5556509	312418 3201,280e	54541
Placemark 10	2019-09-301	49.90959	-125.02	5556559	212216 480m 80c	54547
Placemark 12	2019-09-301	49.9090	-125.019	2220220	312210 4800,80e	54550
Placemark 34	2019-10-011	49.90521	-125.022	5538050	311999.5 UNI20W	54560
Placemark 4	2019-10-011	49.9074	-125.010	5538280	312412.0 240N 280E	54507
Placemark 40	2019-10-011	49.96519	-125.018	5538040	312240.5 UN120E	54611
Placemark 8	2019-10-011	49.96665	-125.018	5538208	312247.8 16UN12UE	54616
Placemark 26	2019-10-011	49.96592	-125.624	5538141	311846.2 80N 280W	54652
Placemark 2	2019-09-301	49.97033	-125.624	5538633	311818.6 560N320W	54656
Placemark 7	2019-10-011	49.96667	-125.618	5538209	312287.5 160N160E	54665
Placemark 9	2019-10-011	49.96665	-125.619	5538210	312209.5 160N80E	54676
Placemark 9	2019-09-301	49.97033	-125.62	5538623	312101.8 560N40W	54682
Placemark 13	2019-10-011	49.96666	-125.621	5538217	312047.5 160N80W	54706
Placemark 36	2019-10-017	49.96521	-125.62	5538053	312081.9 0N40W	54722
Placemark 34	2019-09-301	49.96813	-125.622	5538383	311971.1 320n,160w	54761
Placemark 10	2019-09-301	49.97031	-125.62	5538620	312138.7 560N0W	54781
Placemark 20	2019-10-017	49.96665	-125.625	5538225	311768.1 160N360W	54828
Placemark 14	2019-09-307	49.96961	-125.618	5538536	312295.3 480n,160e	54835
Placemark 10	2019-10-017	49.96664	-125.619	5538210	312168.7 160N40E	54842
Placemark 27	2019-09-307	49.96814	-125.618	5538374	312256.5 320n,120e	54865
Placemark 39	2019-09-307	49.96885	-125.623	5538466	311896.7 400N240W	54868
Placemark 17	2019-09-301	49.9696	-125.616	5538531	312415.8 480n,280e	54883
Placemark 3	2019-09-307	49.9703	-125.624	5538628	311858.4 560N280W	54935
Placemark 5	2019-09-307	49.97032	-125.623	5538628	311938.4 560N200W	54964
Placemark 29	2019-10-017	49.96517	-125.624	5538059	311800.1 0N320W	54971
Placemark 17	2019-10-017	49.96741	-125.623	5538305	311880.4 240N 240W	55015
Placemark 18	2019-09-307	49.97038	-125.616	5538617	312419.4 560N280E	55068
Placemark 41	2019-10-017	49.96522	-125.618	5538048	312281.7 ON160E	55099
Placemark 45	2019-10-017	49.96886	-125.623	5538466	311898.9 400N 240W	55107
Placemark 18	2019-10-017	49.96738	-125.624	5538303	311849.9 240N 280W	55108
Placemark 37	2019-10-017	49.96595	-125.618	5538129	312285.3 80N 160E	55137
Placemark 29	2019-09-307	49.96887	-125.618	5538453	312297.2 400N160E	55144
Placemark 40	2019-10-017	49.96593	-125.616	5538122	312405 80N 280E	55147
Placemark 18	2019-10-017	49.96666	-125.624	5538223	311849.6 160N280W	55172
Placemark 32	2019-09-307	49.96889	-125.619	5538460	312176.5 400N40E	55188
Placemark 15	2019-09-307	49.96959	-125.617	5538532	312337.2 480n,200e	55196
Placemark 30	2019-10-017	49.96522	-125.624	5538064	311839.9 0N280W	55197

Placemark 26	2019-09-307	49.96824	-125.618	5538384	312293.2	320n,160e	55207	
Placemark 2	2019-10-017	49.96667	-125.615	5538202	312487.1	160N360E	55213	
Placemark 16	2019-09-307	49.96959	-125.616	5538531	312376.7	480n,240e	55238	
Placemark 28	2019-09-307	49.96889	-125.617	5538455	312335.8	400N200E	55242	
Placemark 16	2019-09-307	49.97032	-125.617	5538614	312338.7	560N200E	55286	
Placemark 38	2019-10-017	49.96594	-125.617	5538127	312325.7	80N 200E	55321	
Placemark 42	2019-10-017	49.96593	-125.615	5538120	312485.5	80N 360E	55340	
Placemark 31	2019-09-307	49.96886	-125.619	5538456	312215.3	400N80E	55352	
Placemark 33	2019-09-307	49.96887	-125.62	5538459	312135.3	400N0E	55356	
Placemark 45	2019-10-017	49.9652	-125.615	5538041	312443.2	0N320E	55374	
Placemark 13	2019-09-307	49.96959	-125.618	5538535	312255	480n,120e	55377	
Placemark 13	2019-09-307	49.97035	-125.618	5538619	312260	560N120E	55377	
Placemark 29	2019-09-307	49.96812	-125.619	5538374	312174.3	320n,40e	55384	
Placemark 1	2019-10-017	49.96741	-125.617	5538289	312356.2	Base stn	55478	
Placemark 39	2019-10-017	49.96593	-125.616	5538124	312363.8	80N 240E	55490	
Placemark 23	2019-10-017	49.96588	-125.625	5538141	311725.4	80N 400W	55521	
Placemark 46	2019-10-017	49.96522	-125.615	5538041	312481.5	0N360E	55538	
Placemark 3	2019-10-017	49.96666	-125.615	5538203	312450.4	160N320E	55552	
Placemark 15	2019-09-307	49.97034	-125.618	5538617	312297.2	560N160E	55708	
Placemark 4	2019-10-017	49.96666	-125.616	5538203	312408.8	160N280E	55724	
Placemark 17	2019-10-017	49.96665	-125.623	5538221	311890.8	160N240W	55729	
Placemark 30	2019-10-017	49.96593	-125.622	5538136	312003	80N 120W	55770	
Placemark 44	2019-10-017	49.96522	-125.616	5538043	312404.4	0N280E	55777	
Placemark 28	2019-09-307	49.96813	-125.619	5538374	312214.2	320n,80e	55807	
Placemark 9	2019-10-017	49.96739	-125.619	5538292	312214.3	240N 80E	55956	
Placemark 36	2019-09-307	49.96811	-125.623	5538383	311894.5	320n,240w	55960	
Placemark 35	2019-09-307	49.96813	-125.623	5538384	311933.5	320n,200w	55995	
Placemark 20	2019-09-307	49.97035	-125.615	5538611	312499.1	560N360E	56010	
Placemark 43	2019-10-017	49.96521	-125.616	5538044	312359.3	0N240E	56055	
Placemark 50	2019-10-017	49.96811	-125.623	5538383	311894.2	320N240W	56063	
Placemark 11	2019-09-307	49.97034	-125.619	5538621	312179.3	560N40E	56065	
Placemark 15	2019-10-017	49.96737	-125.622	5538299	311968.9	240N 160W	56104	
Placemark 42	2019-10-017	49.9652	-125.617	5538044	312323.9	0N200E	56166	
Placemark 12	2019-09-307	49.97032	-125.619	5538618	312220.4	560N80E	56188	
Placemark 41	2019-10-017	49.96598	-125.615	5538127	312443.1	80N 320E	56227	
Placemark 28	2019-10-017	49.96591	-125.623	5538137	311925.7	80N 200W	56300	
Placemark 11	2019-09-307	49.96962	-125.619	5538541	312174.7	480n,40e	56350	
Placemark 22	2019-10-017	49.96594	-125.627	5538150	311642	80N480W	56454	
Placemark 15	2019-10-017	49.96666	-125.622	5538219	311968.9	160N160W	56469	
Placemark 14	2019-09-307	49.96891	-125.618	5538459	312265.9	Base station 405N,	56483	
Placemark 30	2019-09-307	49.96887	-125.618	5538455	312255.5	400N120E	56499	
Placemark 4	2019-09-301	49.9703	-125.623	5538627	311900.1	560N240W	56518	
Placemark 14	2019-10-017	49.96668	-125.621	5538220	312007.7	160N120W	56557	
Placemark 19	2019-09-307	49.97035	-125.615	5538612	312460.5	560N320E	56715	
Placemark 21	2019-10-017	49.9659	-125.626	5538145	311644.8	80N 480W	56936	
Placemark 1/	2019-09-307	49.97037	-125.616	5538617	3123/9.3	50UN24UE	57232	
Placemark 27	2019-10-017	49.96589	-125.623	5538136	311885.7	80N 240W	57399	
Placemark 16	2019-10-011	49.96668	-125.622	5538222	311946.7	160N200W	57805	
Placemark 44	2019-10-011	49.96884	-125.624	5538465	311856.8	400N 280W	60020	
							8864424	
Average							5004424 51292 07	
Average							J4302.97	
95%ile							154.85	56483
85%ile							138.55	55807
75%ile							122.25	55340
50%ile							81.5	54560

APPENDIX II - GRID 2 MAGNETOMETER RESULTS								
Title	Date Createc	Latitude	Longitude	Northing	Easting	Grid Loc	Diurnal Corrected	
Placemark 14	2019-09-27T	49.97618	-125.6171	5539265	312361.8881	560N 200E	47135	
Placemark 3	2019-09-30T	49.97108	-125.6148	5538693	312506.5924	0n,360e	48721	
Placemark 4	2019-09-30T	49.97106	-125.6154	5538691	312463.763	0n,320e	49161	
Placemark 6	2019-09-30T	49.97108	-125.6165	5538697	312378.4348	0n,240e	49336	
Placemark 3	2019-09-30T	49.97179	-125.6143	5538770	312542.8616	80N400E	49349	
Placemark 5	2019-09-30T	49.97103	-125.6159	5538690	312421.2607	0n,280e	49522	
Placemark 16	2019-09-27T	49.97619	-125.6161	5539263	312432.0377	560N 280E	50397	
Placemark 17	2019-09-27T	49.97588	-125.6162	5539230	312423.0754	Random 1	50458	
Placemark 4	2019-09-30T	49.97182	-125.6148	5538775	312504.9694	80N360E	50775	
Placemark 2	2019-09-301	49.9/18	-125.6137	5538769	312584.2796	80N440E	50857	
Placemark 2	2019-09-30T	49.9711	-125.6142	5538693	312544.517	0n,400e	50978	
Placemark /	2019-09-301	49.9/106	-125.61/	5538696	312342.3676	0n,200e	52252	
Placemark 13	2019-09-271	49.97621	-125.61//	5539270	312314.0519	560N 120E	52748	
Placemark 17	2019-09-301	49.97103	-125.6226	5538/0/	311943.1974	00,200W	52981	
Placemark 18	2019-09-271	49.97473	-125.61/1	5539103	312355.91	400N 200E	53298	
Placemark 1	2019-09-301	49.97181	-125.0132	5538//0	312622.1728	80IN480E	53360	
Placemark 16	2019-09-301	49.97105	-125.022	5538707	311985.5897	00,160W	53591	
Placemark 39	2019-09-271	49.97324	125.0198	5538945	312152.8287		53040	
Placemark 40	2019-09-301	49.9710	125.0154	5556774	212110 4604		53029	
Placemark 1	2019-09-271	49.97525	-125.0204	5528687	312110.4004	24011 4000 On 440e	53905	
Placemark 18	2019-09-301	49.97100	-125.0157	5528788	312382.1120	8012001	54028	
Placemark 45	2019-09-301	49.97170	-125.0220	5538052	211011 6586	240N 240W	5/100	
Placemark 18	2019-09-271	49.97322	-125.0252	5539021	312388 6936	320N240F	54204	
Placemark 17	2019-09-30T	49 97175	-125.6221	5538785	311983 2793	80N180W	54207	
Placemark 1	2019-09-27T	49 97613	-125 6243	5539277	311844 5399	560N 320W	54211	
Placemark 30	2019-09-271	49 97467	-125 6238	5539114	311873 7813	400N 280W	54214	
Placemark 33	2019-09-27T	49.97324	-125.6166	5538937	312386 1472	240N 240F	54218	
Placemark 15	2019-09-30T	49.97106	-125.6215	5538707	312024.6436	0n.120w	54219	
Placemark 39	2019-09-27T	49.97251	-125.6204	5538865	312104.9054	160N40W	54219	
Placemark 46	2019-09-27T	49.97323	-125.6237	5538953	311871.5274	240N 280W	54226	
Placemark 31	2019-09-27T	49.97468	-125.6244	5539116	311832.7995	400N 320W	54242	
Placemark 24	2019-09-27T	49.97396	-125.6198	5539025	312152.9636	320N0E	54260	
Placemark 7	2019-09-30T	49.97178	-125.6165	5538775	312384.6805	80N240E	54278	
Placemark 44	2019-09-27T	49.97324	-125.6226	5538952	311951.7907	240N 200W	54302	
Placemark 13	2019-09-30T	49.97104	-125.6204	5538702	312100.1629	0n,40w	54344	
Placemark 6	2019-09-27T	49.97613	-125.6215	5539271	312044.6059	560N 120W	54368	
Placemark 43	2019-09-27T	49.97322	-125.622	5538948	311992.8488	240N 160W	54419	
Placemark 2	2019-09-27T	49.97616	-125.6238	5539280	311876.7134	560N 280W	54466	
Placemark 45	2019-09-27T	49.97249	-125.6238	5538872	311867.4135	160N280W	54488	
Placemark 16	2019-09-30T	49.97175	-125.6215	5538784	312026.4597	80N120W	54514	
Placemark 41	2019-09-27T	49.97251	-125.6215	5538868	312025.5947	160N120W	54533	
Placemark 8	2019-09-27T	49.97616	-125.6205	5539271	312117.7576	560N 40W	54543	
Placemark 44	2019-09-27T	49.9725	-125.6232	5538871	311905.3065	160N240W	54553	
Placemark 41	2019-09-27T	49.97324	-125.621	5538948	312068.0091	240N 80W	54570	
Placemark 32	2019-09-27T	49.9/395	-125.6243	5539035	311833.958	320N320W	54570	
Placemark 10	2019-09-30T	49.9/1/9	-125.6182	5538779	312264.8333	SUN12UE	545/3	
Placemark 43	2019-09-2/T	49.9/25	-125.6227	5538869	311945.8431		54590	
	2019-09-271	49.9754	-125.6238	2232122	3118/3.0445		54052	
Placemark 5	2019-09-271	49.97015	125.0221	5539274	312000.9808		540/3	
Placemark 15	2019-09-301	49.97177	125.0209	5530/04	211072 1722	2200128010/	54076	
Placemark 29	2019-09-271	49.97397	-125.0258	5539115	311073.1732	400N 240W	54687	
Placemark 17	2019-09-271	49 97397	-125 616	5539016	312431 8732	320N280F	54690	
Placemark 10	2019-09-271	49,97616	-125,6193	5539269	312199 2812	560N 40F	54717	
Placemark 11	2019-09-277	49,97617	-125.6188	5539268	312237 399	560N 80E	54727	
Placemark 8	2019-09-27T	49.97542	-125.6204	5539189	312116.8644	480N40W	54745	
Placemark 11	2019-09-30T	49.97105	-125.6193	5538700	312184.2312	0n,40e	54757	
Placemark 28	2019-09-27T	49.97468	-125.6227	5539112	311954.8106	400N 200W	54760	
Placemark 30	2019-09-27T	49.97396	-125.6232	5539033	311911.9471	320N240W	54814	
Placemark 19	2019-09-27T	49.97395	-125.6171	5539017	312349.4779	320N200E	54824	
Placemark 38	2019-09-27T	49.97252	-125.6199	5538865	312145.8829	160N0E	54843	
Placemark 14	2019-09-30T	49.97177	-125.6204	5538783	312104.4489	80N40W	54850	
Placemark 11	2019-09-30T	49.97178	-125.6187	5538780	312225.6185	80N80E	54859	
Placemark 9	2019-09-30T	49.97105	-125.6181	5538697	312264.6529	0n,120e	54861	
Placemark 7	2019-09-27T	49.97619	-125.621	5539276	312079.6414	560N 80W	54862	

Placemark 14	2019-09-30T	49.97106	-125.6209	5538706	312063.7797	0n.80w	54871
Placemark 9	2019-09-27T	49.97615	-125.6199	5539269	312157.4172	560N 0	54897
Placemark 42	2019-09-27T	49.97249	-125.6221	5538867	311985.9389	160N160W	54900
Placemark 4	2019-09-27T	49.97615	-125.6227	5539276	311959.5437	560N 200W	54902
Placemark 3	2019-09-27T	49.97619	-125.6232	5539282	311919.4593	560N 240W	54913
Placemark 42	2019-09-27T	49.97322	-125.6215	5538947	312029.0368	240N 120F	54919
Placemark 29	2019-09-27T	49.97398	-125.6226	5539034	311952,9247	320N200W	54976
Placemark 34	2019-09-27T	49 97324	-125 617	5538938	312355 0173	240N 200F	54983
Placemark 40	2019-09-27T	49.97924	-125 621	5538864	312065 2496	160N80W/	54986
Placemark 26	2019-09-27T	49 97466	-125 6216	5539107	312003.2490	400N 120W	55042
Placemark 32	2019-09-27T	10 072/17	-125.6172	5528852	312338 4005	160N 200F	55125
Placemark 25	2019-09-27T	49.97469	-125 621	5539109	312073 8446	400N 80W	55194
Placemark 12	2019-09-27T	10 075/1	-125 6182	5520182	312274 6046	480N120F	55209
Placemark 12	2019-09-271	10 07/7	-125.0182	5520112	311007 3718	400N120L	55210
Placemark 12	2019-09-271	49.9747	125.0221	5535113	2121/15 9660		55210
Placemark 20	2019-09-301	49.97177	125.0150	5520022	212210 2620	22011605	55244
Placemark 16	2019-09-271	49.97399	125.0177	5555025	312310.2039	420N100L	55244
Placemark 10	2019-09-271	49.97544	-125.010	5559160	312435.0072	400N20UE	55296
Placemark 20	2019-09-271	49.97473	125.0182	5539107	312270.3328	400N 120E	55318
Placemark 8	2019-09-301	49.97106	-125.6176	5538697	312305.8///	Un,160e	55322
Placemark 12	2019-09-301	49.97106	-125.6199	5538703	312140.5909	Un,UW	55325
Placemark 3	2019-09-271	49.97543	-125.6232	5539197	311915.9442	480N240W	55330
Placemark 10	2019-09-30T	49.9/103	-125.6187	5538697	312226.3236	UN,8UE	55342
Placemark 34	2019-09-271	49.9725	-125.61/6	5538857	312307.1476	160N160E	55361
Placemark 19	2019-09-27T	49.97468	-125.6176	5539100	312314.324	400N 160E	55362
Placemark 33	2019-09-27T	49.97247	-125.6171	5538852	312343.718	160N200E	55368
Placemark 12	2019-09-30T	49.97179	-125.6193	5538782	312185.9632	80N40W	55369
Placemark 28	2019-09-27T	49.97395	-125.6221	5539029	311989.9357	320N160W	55403
Placemark 23	2019-09-27T	49.97468	-125.6199	5539106	312151.1812	400N 0	55410
Placemark 22	2019-09-27T	49.9747	-125.6193	5539106	312193.2655	400N 40E	55443
Placemark 10	2019-09-27T	49.97542	-125.6193	5539186	312196.6158	480N40E	55443
Placemark 36	2019-09-27T	49.97326	-125.6182	5538944	312268.7746	240N 120E	55447
Placemark 35	2019-09-27T	49.97324	-125.6176	5538940	312310.9797	240N 160E	55479
Placemark 21	2019-09-27T	49.97472	-125.6188	5539108	312231.1641	400N 80E	55511
Placemark 12	2019-09-27T	49.9762	-125.6182	5539270	312277.172	560N 120E	55524
Placemark 25	2019-09-27T	49.97398	-125.6204	5539029	312110.2243	320N40W	55579
Placemark 15	2019-09-27T	49.97619	-125.6165	5539264	312400.897	560N 240E	55655
Placemark 7	2019-09-27T	49.97545	-125.621	5539194	312074.1255	480N80W	55756
Placemark 36	2019-09-27T	49.97252	-125.6188	5538862	312225.1937	160N80E	55786
Placemark 6	2019-09-30T	49.9718	-125.616	5538775	312423.4551	80N280E	55887
Placemark 4	2019-09-27T	49.97542	-125.6227	5539194	311957.8024	480N200W	55971
Placemark 38	2019-09-27T	49.97324	-125.6193	5538943	312192.0974	240N 40E	56000
Placemark 13	2019-09-27T	49.97543	-125.6177	5539183	312315.1415	480N160E	56003
Placemark 24	2019-09-27T	49.97473	-125.6205	5539112	312110.3791	400N 40W	56054
Placemark 6	2019-09-27T	49.97543	-125.6216	5539193	312036.2322	480N120W	56062
Placemark 9	2019-09-27T	49.97545	-125.6199	5539191	312154.758	480N0W	56072
Placemark 11	2019-09-27T	49.97544	-125.6188	5539187	312233.6279	480N80E	56145
Placemark 9	2019-09-30T	49.97176	-125.6176	5538775	312303.1663	80N160E	56196
Placemark 27	2019-09-27T	49.97397	-125.6215	5539030	312032.2353	320N120W	56211
Placemark 37	2019-09-27T	49.97324	-125.6187	5538942	312230.2153	240N 80E	56231
Placemark 8	2019-09-30T	49.97179	-125.6171	5538776	312345.0252	80N200E	56561
Placemark 5	2019-09-27T	49.97541	-125.6221	5539192	311994.3732	480N160W	56577
Placemark 21	2019-09-27T	49.97398	-125.6182	5539023	312270.6083	320N120E	56578
Placemark 37	2019-09-27T	49.9725	-125.6193	5538861	312185.9784	160N40E	56658
Placemark 35	2019-09-27T	49.9725	-125.6182	5538858	312267.0516	160N120E	56774
Placemark 23	2019-09-27T	49.97395	-125.6194	5539023	312187.7721	320N40E	56920
Placemark 14	2019-09-27T	49.97544	-125.6171	5539183	312355.2378	480N200E	56945
Placemark 22	2019-09-27T	49.97397	-125.6188	5539024	312230.0715	320N80E	57420
Placemark 15	2019-09-27T	49.97544	-125.6165	5539182	312395.7745	480N240E	57548
Placemark 26	2019-09-27T	49.97396	-125.621	5539028	312071.0091	320N80W	59505
							6822405
Average							54579.24
95%ile							118.75
							100.05

75%ile 50%ile 56578 55887

55403

54824

93.75

62.5

APPENDIX III - GRID 1 MAGNETOMETER RESULTS

Title	Date Created	Latitude	Longitude	Northing	Easting	Grid Loc	Diurnal Corrected
Placemark 35	2019-09-24T	49.98078	-125.622	5539787	312059.1757	0n,40e	53158
Placemark 33	2019-09-24T	49.98263	-125.622	5539994	312055.7076	160n,160e	53168
Placemark 32	2019-09-24T	49.98238	-125.622	5539967	312020.4418	160n,120e	53714
Placemark 13	2019-09-24T	49.9842	-125.622	5540170	312010.9493	32on,240e	53788
Placemark 12	2019-09-24T	49.98442	-125.622	5540193	312044.3913	320n,280e	53867
Placemark 24	2019-09-24T	49.9805	-125.626	5539766	311769.7906	160n,200w	53894
Placemark 51	2019-09-24T	49.97974	-125.625	5539681	311790.0856	80N240W	53900
Placemark 23	2019-09-24T	49.98028	-125.626	5539743	311738.5343	160n,240w	53937
Placemark 52	2019-09-24T	49.97993	-125.625	5539702	311821.8295	80N200W	54025
Placemark 61	2019-09-24T	49.97912	-125.624	5539611	311844.7247	0N240W	54031
Placemark 46	2019-09-24T	49.98317	-125.622	5540055	312003.1041	240N160E	54042
Placemark 13	2019-09-24T	49.98543	-125.625	5540315	311800.8053	560N160E	54053
Placemark 50	2019-09-24T	49.97947	-125.626	5539652	311758.7799	80N280W	54053
Placemark 14	2019-09-24T	49.98393	-125.623	5540141	311982.3404	320n,200e	54081
Placemark 3	2019-09-24T	49.98277	-125.629	5540027	311566.9509	480n,200w	54087
Placemark 47	2019-09-24T	49.98341	-125.622	5540082	312034.409	240N200E	54090
Placemark 15	2019-09-24T	49.98453	-125.623	5540209	311933.0612	400N200E	54102
Placemark 37	2019-09-24T	49.98107	-125.626	5539832	311721.805	240N200W	54104
Placemark 4	2019-09-24T	49.98312	-125.628	5540064	311603.484	480n,160w	54121
Placemark 12	2019-09-24T	49.98518	-125.626	5540288	311766.9009	560N120E	54163
Placemark 26	2019-09-24T	49.98193	-125.628	5539932	311585.1848	400N240W	54179
Placemark 60	2019-09-24T	49.97887	-125.625	5539583	311810.3339	0N280W	54191
Placemark 36	2019-09-24T	49.98081	-125.627	5539804	311687.8548	240N240W	54219
Placemark 45	2019-09-24T	49.98292	-125.623	5540029	311968.2728	240N120E	54220
Placemark 40	2019-09-24T	49.97962	-125.624	5539663	311903.4803	0n,160w	54221
Placemark 38	2019-09-24T	49.98128	-125.626	5539854	311749.1413	240N160W	54223
Placemark 4	2019-09-24T	49.98331	-125.629	5540088	311519.1097	560N200W	54225
Placemark 10	2019-09-24T	49.9844	-125.626	5540200	311787.1632	480n,80e	54229
Placemark 14	2019-09-24T	49.98478	-125.623	5540236	311965.8334	400N240E	54252
Placemark 15	2019-09-24T	49.98369	-125.623	5540115	311947.7358	320n, 160 e	54258
Placemark 11	2019-09-24T	49.98462	-125.625	5540223	311818.1494	480n, 120e	54265
Placemark 1	2019-09-24T	49.98261	-125.63	5540013	311423.874	560N320W	54271
Placemark 41	2019-09-24T	49.97941	-125.624	5539641	311875.8459	0n,200w	54282
Placemark 11	2019-09-24T	49.98491	-125.626	5540258	311738.6807	560N80E	54289
Placemark 32	2019-09-24T	49.98188	-125.627	5539922	311694.0608	320N160W	54290
Placemark 2	2019-09-24T	49.98284	-125.63	5540038	311453.8561	560N280W	54295
Placemark 22	2019-09-24T	49.98003	-125.626	5539716	311708.9985	160n,280w	54298
Placemark 28	2019-09-24T	49.98088	-125.628	5539816	311571.4857	320N320W	54305
Placemark 16	2019-09-24T	49.98429	-125.624	5540184	311893.2411	400N160E	54314
Placemark 25	2019-09-24T	49.98072	-125.625	5539790	311802.552	160n,160w	54319
Placemark 21	2019-09-24T	49.98234	-125.626	5539972	311759.0637	320n,80w	54338
Placemark 3	2019-09-24T	49.9831	-125.63	5540066	311487.8062	560N240W	54372
Placemark 39	2019-09-24T	49.98154	-125.625	5539882	311780.4467	240N120W	54377
Placemark 7	2019-09-24T	49.98398	-125.628	5540160	311613.0223	560N80W	54405
Placemark 27	2019-09-24T	49.98172	-125.629	5539910	311556.9668	400N280W	54415
Placemark 6	2019-09-24T	49.9838	-125.628	5540140	311581.3731	560N120W	54427
Placemark 5	2019-09-24T	49.98356	-125.629	5540115	311551.7029	560N160W	54430
Placemark 31	2019-09-24T	49.98162	-125.627	5539895	311663.1963	320N200W	54435
Placemark 49	2019-09-24T	49.9792	-125.626	5539623	311721.3029	80N320W	54440
Placemark 25	2019-09-24T	49.98217	-125.628	5539958	311615.608	400N200W	54448
Placemark 2	2019-09-24T	49.98252	-125.629	5540000	311542.6052	480n,240w	54478
Placemark 34	2019-09-24T	49.98236	-125.626	5539974	311759.315	320N80W	54506
Placemark 39	2019-09-24T	49.97985	-125.623	5539688	311936.4211	0n,120w	54529

Placemark 5	2019-09-24T	49.98318	-125.628	5540070	311629.2983 480n,120w	54530	
Placemark 62	2019-09-24T	49.97938	-125.624	5539639	311871.9186 0N200W	54543	
Placemark 29	2019-09-24T	49.98115	-125.628	5539845	311602.7915 320N280W	54547	
Placemark 9	2019-09-24T	49.98417	-125.626	5540175	311752.9226 480n,40e	54589	
Placemark 33	2019-09-24T	49.9821	-125.626	5539946	311727.128 320N120W	54590	
Placemark 35	2019-09-24T	49.9806	-125.627	5539781	311653.4654 240N280W	54600	
Placemark 17	2019-09-24T	49.98404	-125.624	5540157	311870.0108 400N120E	54606	
Placemark 53	2019-09-24T	49.98017	-125.624	5539727	311853.5749 80N160W	54608	
Placemark 8	2019-09-24T	49.98391	-125.626	5540147	311725.9373 480n .0w	54615	
Placemark 31	2019-09-24T	49.98212	-125.623	5539939	311988.0409 160n.80e	54615	
Placemark 10	2019-09-24T	49.98471	-125.627	5540237	311709.1404 560N40E	54665	
Placemark 40	2019-09-24T	49.98174	-125.625	5539903	311810.4277 240N80W	54693	
Placemark 26	2019-09-24T	49 98097	-125 625	5539817	311834 1882 160n 120w	54723	
Placemark 44	2019-09-241	49.90097	-125.623	5540006	311940 9361 240N80F	54729	
Placemark 20	2019-09-241	49.9027	-125.625	5539996	311798 5995 320n 40w	54753	
Placemark 7	2019-09-241	49.98257	-125.025	55/0110	311694 3413 480p 40w	54766	
Placemark 57	2019-09-241	49.98303	-125.027	5520820	211077 4712 80NOF	54700	
Placemark 22	2019-09-241	49.90113	125.025	2222020	211700 5211 400N80W	54774 E4921	
Placemark 16	2019-09-241	49.90200	125.027	5540052	211010 082 220p 120p	54621	
Placemark 16	2019-09-241	49.98346	-125.024	5540091	311919.082 3200,1200	54827	
Placemark 27	2019-09-241	49.98119	-125.024	5539841	311861.9604 1600,80W	54843	
Placemark 28	2019-09-241	49.98143	-125.624	5539866	311895.9955 160n,40W	54847	
Placemark 24	2019-09-241	49.98242	-125.627	5539985	311648.6763 400N160W	54894	
Placemark 17	2019-09-241	49.98327	-125.624	5540071	311879.8062 320n, 80e	54903	
Placemark 8	2019-09-241	49.98423	-125.627	5540186	311644.768 560N40W	54918	
Placemark 6	2019-09-241	49.98343	-125.627	5540096	311661.4058 480n,80w	54922	
Placemark 30	2019-09-241	49.9814	-125.627	5539871	311637.1818 320N240W	54927	
Placemark 19	2019-09-24T	49.98275	-125.625	5540015	311825.2094 320n, 0e	55012	
Placemark 23	2019-09-24T	49.98267	-125.627	5540011	311679.9812 400N120W	55012	
Placemark 21	2019-09-24T	49.9831	-125.626	5540056	311741.2663 400N40W	55013	
Placemark 9	2019-09-24T	49.9845	-125.627	5540215	311674.3103 560NOW	55015	
Placemark 59	2019-09-24T	49.98158	-125.622	5539877	312043.1652 80N80E	55069	
Placemark 30	2019-09-24T	49.98188	-125.623	5539913	311959.8276 160n,40e	55125	
Placemark 18	2019-09-24T	49.98305	-125.625	5540047	311853.6557 320n, 40e	55143	
Placemark 38	2019-09-24T	49.98007	-125.623	5539712	311968.5171 On,80w	55146	
Placemark 18	2019-09-24T	49.9838	-125.625	5540132	311837.8247 400N80E	55161	
Placemark 43	2019-09-24T	49.98246	-125.624	5539979	311907.4271 240N40E	55206	
Placemark 29	2019-09-24T	49.98169	-125.623	5539894	311924.9465 160n,0e	55275	
Placemark 42	2019-09-24T	49.98221	-125.624	5539953	311873.0367 240N0W	55278	
Placemark 19	2019-09-24T	49.98358	-125.625	5540108	311803.8758 400N40E	55307	
Placemark 58	2019-09-24T	49.98136	-125.622	5539854	312010.0979 80N40E	55399	
Placemark 41	2019-09-24T	49.98199	-125.625	5539930	311843.0551 240N40W	55494	
Placemark 54	2019-09-24T	49.98043	-125.624	5539755	311880.4722 80N120W	55533	
Placemark 37	2019-09-24T	49.98032	-125.622	5539739	311993.5758 0n,40w	55604	
Placemark 56	2019-09-24T	49.9809	-125.623	5539804	311947.0483 80N40W	55797	
Placemark 55	2019-09-24T	49.98066	-125.624	5539780	311915.7438 80N80W	56126	
Placemark 36	2019-09-24T	49.98052	-125.622	5539760	312031.3018 0n,0e	56150	
Placemark 20	2019-09-24T	49.98335	-125.626	5540083	311772.1305 400N0E	56661	
						5457517	
Average						55126.43	
95%ile						95	55399
85%ile						85	55069
75%ile						75	54847
50%ile						50	54440

APPENDIX IV - ROCK SAMPLE LOCATION & DESCRIPTION

Rock Sampling Grid 3

Title	Date Create Latitude	Longitude	Northing	Easting	Description
Placemark 1	2019-11-01 49.9662	-125.626	5538179	311650.3	16301; massive magnetite with cobalt bloom in pit
Placemark 2	2019-11-01 49.96681	-125.627	5538248	311634.4	16302; massive magnetite-pyrrhotite
Placemark 3	2019-11-01 49.96669	-125.627	5538234	311640.6	16303 pit; massive magnetite, pyrrhotite, cpy and mal stain
Placemark 4	2019-11-01 49.96701	-125.626	5538269	311660.4	16304 white oxide staining
Placemark 5	2019-11-01 49.96714	-125.624	5538278	311819.8	16305 mag lenses in cs skarn
Placemark 6	2019-11-01 49.9673	-125.624	5538296	311810.3	16306 >0.5 m wide mag lense in cs skarn
Placemark 7	2019-11-01 49.96733	-125.624	5538299	311811.3	16307 vertcal contact of mag lense w cs sksrn
Placemark 8	2019-11-01 49.96785	-125.624	5538357	311817.1	16308 mag lenses in cs skarn, med green andes tuff
Placemark 9	2019-11-01 49.96804	-125.624	5538377	311821.5	16309 msv mag subcrop
Placemark 10	2019-11-01 49.96839	-125.624	5538417	311825.9	16310 msv mag + cs outcrop exposed over 5 m length
Placemark 11	2019-11-01 ⁻ 49.96854	-125.624	5538433	311820.5	16311 msv mag bluff
Placemark 12	2019-11-01 49.96672	-125.623	5538229	311882.1	16312 mag, cs skarn, lstone, bleached granite contact zone
Placemark 13	2019-11-01 49.96717	-125.623	5538280	311865.6	16313 msv mag lenses in cs skarn outcrop below road on top of bleached gd bluff
Placemark 14	2019-11-01 49.96745	-125.623	5538308	311935	16314 mag lenses in cs skarn in contact with limestone
Placemark 15	2019-11-01 ⁻ 49.96756	-125.623	5538323	311877.5	Bleached gd bluff set with till cover below and to north, limestone approx 40 m NW of this, no sample
Placemark 16	2019-11-01 ⁻ 49.96779	-125.624	5538349	311852.9	Mag lenses in cs skarn, 16315

Rock Sampling Grid 2

Title	Date Create Latitude	Longitude	Northing	Easting	Description
Placemark 1	2019-11-01 49.97308	-125.614	5538911	312594.7	Layered Istone strikes 298, dips 24NE with 0.4 m thick concordant med green tuff
Placemark 2	2019-11-01 49.9735	-125.614	5538959	312582.2	Silicified gd oc
Placemark 3	2019-11-01 49.9742	-125.618	5539047	312313.2	Diss mag zones in chlor gd, 16316
Placemark 4	2019-11-01 49.97608	-125.616	5539252	312413	16317 msv mag in sil & chlor gd, at base of gd bluff
Placemark 5	2019-11-01 49.97604	-125.616	5539247	312412.5	massive magnetite lense in silicified gd 16318
Placemark 6	2019-11-01 49.97582	-125.616	5539223	312405	16319 msv mag below gd, above Istone
Placemark 7	2019-11-01 49.97463	-125.616	5539091	312396	silicified granodiorite (weakly magnetic) 16320
Placemark 8	2019-11-01 49.97284	-125.614	5538886	312541.5	Bleached gd + limestone

Sample Tracking				
Date:	20-Nov-19			
BCR Project:	PJ 5139 VIX - AztecGeoscience			
Project Name:	AztecGeoscience			
Secondary Identifier:	Magnetite Rich			
Total Samples	20 Rock Samples			

		Sample Description		Au FA/AA
			Sample #	g/t
1	PJ 5139 Aztec	Rock	16301	11.24
2	PJ 5139 Aztec	Rock	16302	0.05
3	PJ 5139 Aztec	Rock	16303	0.18
4	PJ 5139 Aztec	Rock	16304	0.04
5	PJ 5139 Aztec	Rock	16305	<0.03
6	PJ 5139 Aztec	Rock	16306	<0.03
7	PJ 5139 Aztec	Rock	16307	<0.03
8	PJ 5139 Aztec	Rock	16308	0.13
9	PJ 5139 Aztec	Rock	16309	<0.03
10	PJ 5139 Aztec	Rock	16310	<0.03
11	PJ 5139 Aztec	Rock	16311	<0.03
12	PJ 5139 Aztec	Rock	16312	<0.03
13	PJ 5139 Aztec	Rock	16313	0.07
14	PJ 5139 Aztec	Rock	16314	<0.03
15	PJ 5139 Aztec	Rock	16315	<0.03
16	PJ 5139 Aztec	Rock	16316	<0.03
17	PJ 5139 Aztec	Rock	16317	<0.03
18	PJ 5139 Aztec	Rock	16318	<0.03
19	PJ 5139 Aztec	Rock	16319	<0.03
20	PJ 5139 Aztec	Rock	16320	<0.03

Sample Tracking	
Date:	20-Nov-19
BCR Project:	PJ 5139 VIX - AztecGeoscience
Project Name:	AztecGeoscience
Secondary Identifier:	Magnetite Rich
Total Samples	20 Rock Samples

		Au Fa/aa			
			Sample #	g/t	
1	PJ 5139 Aztec	Rock	16301	11.600	new cut in reassay
2	PJ 5139 Aztec	Rock	16302	0.057	new cut in reassay
3	PJ 5139 Aztec	Rock	16303	0.181	new cut in reassay
4	PJ 5139 Aztec	Rock	16304	0.04	
5	PJ 5139 Aztec	Rock	16305	<0.03	
6	PJ 5139 Aztec	Rock	16306	<0.03	
7	PJ 5139 Aztec	Rock	16307	<0.03	
8	PJ 5139 Aztec	Rock	16308	0.13	
9	PJ 5139 Aztec	Rock	16309	<0.03	
10	PJ 5139 Aztec	Rock	16310	< 0.03	
11	PJ 5139 Aztec	Rock	16311	< 0.03	
12	PJ 5139 Aztec	Rock	16312	< 0.03	
13	PJ 5139 Aztec	Rock	16313	0.07	
14	PJ 5139 Aztec	Rock	16314	<0.03	
15	PJ 5139 Aztec	Rock	16315	<0.03	
16	PJ 5139 Aztec	Rock	16316	<0.03	
17	PJ 5139 Aztec	Rock	16317	<0.03	
18	PJ 5139 Aztec	Rock	16318	<0.03	
19	PJ 5139 Aztec	Rock	16319	<0.03	
20	PJ 5139 Aztec	Rock	16320	< 0.03	

APPENDIX VI-Whole Rock XRF	Geochemical Anal	ysis
----------------------------	------------------	------

Notes	Operator	Project No.	Sample ID	Sample Type	Reading #	Date	Lat	Long	Mg ppm	Al ppm	Si ppm	P ppm	S ppm	К ррт
Mag skarn	df	BL-19	16301	1 Rock	1	2019-11-02	49.9662	-125.626	63995	29322	63368	0	1968	0
Mag skarn	df	BL-19	16302	2 Rock	2	2019-11-02	49.96681	-125.627	44585	20100	199134	0	763	0
Po/Mag skarn	df	BL-19	16303	3 Rock	3	2019-11-02	49.96669	-125.627	0	26833	30889	6286	52247	325
Po/Mag skarn	df	BL-19	16304	4 Rock	4	2019-11-02	49.96701	-125.626	0	22367	41376	778	15918	0
Mag skarn	df	BL-19	16305	5 Rock	5	2019-11-02	49.96714	-125.624	39680	62897	97385	2261	796	0
Mag skarn	df	BL-19	16306	6 Rock	6	2019-11-02	49.9673	-125.624	0	29802	192411	1069	911	0
Mag skarn	df	BL-19	16307	7 Rock	7	2019-11-02	49.96733	-125.624	0	30993	62522	0	1009	0
Mag skarn	df	BL-19	16308	8 Rock	8	2019-11-02	49.96785	-125.624	50200	51058	77031	1045	884	0
Mag skarn	df	BL-19	16309	9 Rock	9	2019-11-02	49.96804	-125.624	62620	39928	59309	4079	1393	222
Mag skarn	df	BL-19	16310	0 Rock	10	2019-11-02	49.96839	-125.624	0	33672	69102	1519	1007	442
CS skarn	df	BL-19	16312	1 Rock	11	2019-11-02	49.96854	-125.624	51373	52185	65356	839	1098	371
Mag skarn	df	BL-19	16312	2 Rock	12	2019-11-02	49.96672	-125.623	0	33188	107375	1965	364	0
Mag skarn	df	BL-19	16313	3 Rock	13	2019-11-02	49.96717	-125.623	0	33100	81025	1964	1029	256
CS skarn	df	BL-19	16314	4 Rock	14	2019-11-02	49.96745	-125.623	39648	26928	145582	557	1804	0
Chlor GD	df	BL-19	16315	5 Rock	15	2019-11-02	49.96779	-125.624	0	28339	138054	0	0	0
Mag skarn	df	BL-19	16316	6 Rock	16	2019-11-02	49.9742	-125.618	78092	79199	178982	0	457	610
Mag skarn	df	BL-19	16317	7 Rock	17	2019-11-02	49.97608	-125.616	0	34834	86038	1721	661	0
Mag skarn	df	BL-19	16318	8 Rock	18	2019-11-02	49.97604	-125.616	0	37491	72231	789	1031	0
Mag skarn	df	BL-19	16319	9 Rock	19	2019-11-02	49.97582	-125.616	45601	29636	78977	1801	1221	0
Sil GD	df	BL-19	16320	0 Rock	20	2019-11-02	49.97463	-125.616	0	100736	181750	1532	639	4236

LE = light elements with atomic # <18 (Argon)....usually Mg, Al, Si, P, S and Cl Elements not reported were not detectable by XRF

APPENDIX VI-Whole Rock XRF	Geochemical Anal	ysis
----------------------------	------------------	------

Notes	Operator	Project No.	Sample ID	Ca ppm	Ti ppm	V ppm	Cr ppm	Mr	ר ppm	Fe ppm	Co ppm	Ni ppm	C	Cu ppm	Zn ppm	As ppm	Se ppm
Mag skarn	df	BL-19	16301	35332	0		0	0	8430	604527	78303		0	103	0	109840	0
Mag skarn	df	BL-19	16302	22864	0		0	0	1071	508595	0		0	0	53	28	0
Po/Mag skarn	df	BL-19	16303	16597	0		0	0	566	290344	0		0	757	61	140	0
Po/Mag skarn	df	BL-19	16304	2132	0		0	0	1123	448318	0		0	2416	49	34	0
Mag skarn	df	BL-19	16305	26481	1232		0	0	4175	543601	0		0	1612	748	57	0
Mag skarn	df	BL-19	16306	12072	902		0	0	3688	359250	0		0	0	244	86	0
Mag skarn	df	BL-19	16307	54144	0		0	0	2480	542749	0		0	0	73	336	0
Mag skarn	df	BL-19	16308	27198	0		0	0	3749	627626	0		0	0	595	44	0
Mag skarn	df	BL-19	16309	4853	0		0	0	1662	761538	0		0	211	64	154	0
Mag skarn	df	BL-19	16310	19239	0		0	0	3900	690975	0		0	413	709	115	0
CS skarn	df	BL-19	16311	10271	0		0	0	4974	714231	0		0	0	506	64	0
Mag skarn	df	BL-19	16312	60721	871		0	0	14225	104862	0		0	57	165	52	0
Mag skarn	df	BL-19	16313	41018	945		0	0	8543	495414	0		0	0	154	117	0
CS skarn	df	BL-19	16314	12546	0		0	0	1473	672951	0		0	856	280	173	0
Chlor GD	df	BL-19	16315	164013	605		0	0	18725	58621	0	2	25	19	384	15	0
Mag skarn	df	BL-19	16316	27913	3027	8	3	0	2068	115872	0	:	28	0	138	0	0
Mag skarn	df	BL-19	16317	40112	0		0	0	2981	497683	0		0	0	968	63	0
Mag skarn	df	BL-19	16318	38312	0		0	0	6580	484647	0		0	565	554	76	0
Mag skarn	df	BL-19	16319	17421	0		0	0	1827	651047	0		0	0	231	59	0
Sil GD	df	BL-19	16320	57966	3864	12	5	0	1879	38696	0	2	22	15	85	6	0

LE = light elements with atomic # <18 (Argon)....usually N

Elements not reported were not detectable by XRF

APPENDIX VI-Whole Rock XRF Geochemical Analysis

Notes	Operator	Project No.	Sample ID	Rb ppm	Sr ppm	Y ppm	Zr ppn	n Nb ppn	n	Mo ppm	Ag ppm	Cd ppm	Sn ppm	Sb ppm	۷	V ppm	Au ppm
Mag skarn	df	BL-19	16301		0	0	0	0	0	()	0	0	0	0	2567	11.6
Mag skarn	df	BL-19	16302	2	0	0	0	0	0	C)	0	0	0	0	0	0.057
Po/Mag skarn	df	BL-19	16303	}	0 25	4	0	97	0	94	Ļ	0	0	0	0	45	0.181
Po/Mag skarn	df	BL-19	16304	Ļ	0	0	0	0	0	C)	0	0	0	0	0	0.04
Mag skarn	df	BL-19	16305	ò	0	0	0	0	0	C)	0	0	0	0	0	0
Mag skarn	df	BL-19	16306	5	0 11	3	0	9	0	C)	0	0	0	0	0	0
Mag skarn	df	BL-19	16307	7	0	0	0	0	0	C)	0	0	0	0	0	0
Mag skarn	df	BL-19	16308	3	0 1	3	0	0	0	C)	0	0	0	0	0	0.13
Mag skarn	df	BL-19	16309)	0	0	0	0	0	C)	0	0	0	0	67	0
Mag skarn	df	BL-19	16310)	0	0	0	0	0	C)	0	0	0	0	0	0
CS skarn	df	BL-19	16311	L	0	0	0	0	0	C)	0	0	0	0	0	0
Mag skarn	df	BL-19	16312	<u>)</u>	0 1	6	12	65	6	C)	0	0	0	0	0	0
Mag skarn	df	BL-19	16313	}	0 1	2	0	0	0	C)	0	0	0	0	97	0.07
CS skarn	df	BL-19	16314	Ļ	0	0	0	0	0	C)	0	0	0	0	0	0
Chlor GD	df	BL-19	16315	5	0 56	4	15	24	8	20)	0	0	0	0	0	0
Mag skarn	df	BL-19	16316	5	0 48	7	10	29	0	C)	0	0	0	0	0	0
Mag skarn	df	BL-19	16317	7	0 2	0	0	19	0	C)	0	0	0	0	0	0
Mag skarn	df	BL-19	16318	3	0 4	6	0	21	0	C)	0	0	0	0	0	0
Mag skarn	df	BL-19	16319)	0 9	8	0	29	0	C)	0	0	0	0	0	0
Sil GD	df	BL-19	16320) 1	9 78	0	16	68	0	C)	0	0	33	0	0	0
																	Fire Assay

LE = light elements with atomic # <18 (Argon)....usually $\ensuremath{\mathsf{N}}$

Elements not reported were not detectable by XRF

APPENDIX VI-Whole Rock XRF Geochemical Analysis

Notes	Operator	Project No.	Sample ID	Hg ppm	Pb ppm	I	Bi ppm	Th ppm	LE	E ppm	
Mag skarn	df	BL-19	16301	()	0	2247		0		
Mag skarn	df	BL-19	16302	. ()	0	90		0	202717	
Po/Mag skarn	df	BL-19	16303	()	0	48		0	574417	
Po/Mag skarn	df	BL-19	16304	. ()	0	157		0	465331	
Mag skarn	df	BL-19	16305	()	0	110		0	218966	
Mag skarn	df	BL-19	16306	()	0	44		0	399397	
Mag skarn	df	BL-19	16307	()	0	102		0	305594	
Mag skarn	df	BL-19	16308	()	0	156		0	160401	
Mag skarn	df	BL-19	16309	()	0	259		0	63641	
Mag skarn	df	BL-19	16310	()	0	236		0	178670	
CS skarn	df	BL-19	16311	. ()	0	201		0	98533	
Mag skarn	df	BL-19	16312	. ()	7	0	1	16	676032	
Mag skarn	df	BL-19	16313	()	0	107		0	336220	
CS skarn	df	BL-19	16314	. ()	0	217		0	96984	
Chlor GD	df	BL-19	16315	() 2	25	0	2	26	590517	
Mag skarn	df	BL-19	16316	()	0	0		0	513006	
Mag skarn	df	BL-19	16317	()	0	95		0	334804	
Mag skarn	df	BL-19	16318	()	0	137		0	357521	
Mag skarn	df	BL-19	16319	()	0	208		0	171845	
Sil GD	df	BL-19	16320	() 1	10	0		0	607522	

LE = light elements with atomic # <18 (Argon)....usually N Elements not reported were not detectable by XRF

APPEINDIA VII-PUID ARF Geochennical Analysis	APPENDIX	VII-Pulp XR	- Geochemical	Analysi
--	----------	-------------	---------------	---------

Operator	Project No.	Sample ID	Sample Type	Reading #	Mg ppm	Al ppm	Si ppm	P ppm	S ppm		К ррт	Ca ppm	Ti ppm	V ppm	Cr ppm	Mn ppm
DF	BL19	16301	L Pulp	1	30508	13784	15342		0 1	630	248	98963	0	()	0 821
DF	BL-19	16301-2	Pulp	2	26059	13443	12864		0 1	592	261	98056	0	()	0 805
DF	BL-19	16302	2 Pulp	3	28974	16778	17227		0 1	569	312	82464	0	()	0 520
DF	BL-19	16302-2	Pulp	4	C	22323	20200		0 1	663	568	28649	0	()	0 702
DF	BL-19	16303	3 Pulp	5	C	10241	18857		0 6	5757	582	93541	242	()	0 815
DF	BL-19	16303-2	Pulp	6	C	10793	12458		0 2	2002	386	112533	0	()	0 675
DF	BL-19	16304	1 Pulp	7	C	20501	24782		0 10)392	473	50996	0	()	0 1436
DF	BL-19	16305	5 Pulp	8	51786	18950	30224	47	5 3	8884	600	68598	559	() 12	5 3282
DF	BL-19	16306	5 Pulp	9	29000	15815	16395		0 1	531	191	101285	0	()	0 1035
DF	BL-19	16307	7 Pulp	10	42938	25086	18710	31	0 1	260	725	29075	0	()	0 1859
DF	BL-19	16307-2	Pulp	11	35717	26595	21048		0 1	119	695	29501	0	()	0 1784
DF	BL-19	16308	3 Pulp	12	42672	27380	18195	59	1 1	.315	712	19983	0	()	0 2058
DF	BL-19	16309) Pulp	13	40693	18509	16214	46	3 2	2356	472	59193	0	()	0 1368
DF	BL-19	16310) Pulp	14	37331	19092	30269		0 2	2433	608	64152	875	()	0 4671
DF	BL-19	16311	L Pulp	15	C	14925	15427		0 1	638	238	102702	0	()	0 2270
DF	BL-19	16312	2 Pulp	16	C	14535	38988		0	457	0	111133	721	() 5	2 8809
DF	BL-19	16313	8 Pulp	17	44295	25925	28408	51	9	838	702	36232	0	()	0 4424
DF	BL-19	16314	1 Pulp	18	21542	16200	37319		0 1	581	127	133463	0	()	0 3529
DF	BL-19	16315	5 Pulp	19	25203	10308	40902		0 3	828	97	117478	631	()	0 26435
DF	BL-19	16316	5 Pulp	20	C	15214	41087		0 1	293	1753	46839	3786	70	5 4	9 1177
DF	BL-19	16317	7 Pulp	21	32035	16686	24399	64	3 1	800	439	85156	0	()	0 3161
DF	BL-19	16318	3 Pulp	22	49253	23778	24539	34	8 1	569	503	53077	0	()	0 3192
DF	BL-19	16319) Pulp	23	28810	20253	24539		0 1	444	578	50154	0	()	0 2882
DF	BL-19	16320) Pulp	24	C	13811	42470		0	871	7476	37467	3569	112	2 6	1 1242

LE = light elements with atomic # <18 (Argon)....usually Mg, Al, Si, P, S and Cl Elements not reported were not detectable by XRF

|--|

Operator	Project No.	Sample ID	Sample Type	Reading #	Fe ppm	Co ppm	Ni ppm	Cu ppm	Zn ppm	As ppm	Se ppm	Rb ppm	Sr ppm	Y ppm	Zr ppm
DF	BL19	16301	L Pulp	1	391188	758	147	<mark>7</mark> () () 3198	. ()	0 ()	0 0
DF	BL-19	16301-2	Pulp	2	398642	. 723	169	<mark>)</mark> () 21	l 3328	<mark>.</mark> (כ	0 5		0 0
DF	BL-19	16302	2 Pulp	3	424114	- C	()) 27	7 64	. (כ	0 0)	0 0
DF	BL-19	16302-2	Pulp	4	519334	. 0	() 3) () 116	. ()	0 0)	0 0
DF	BL-19	16303	8 Pulp	5	127710	<mark>)</mark> C	0) <mark>70</mark>	<mark>2</mark> 49	9 58	. ()	0 330) 1	2 60
DF	BL-19	16303-2	Pulp	6	115596	<mark>;</mark> 0	0) <mark>56</mark>	<mark>)</mark> 31	L 51	. (כ	0 312	. 1	0 58
DF	BL-19	16304	l Pulp	7	406556	<mark>;</mark> 0	0) <u>268</u>	<mark>3</mark> 67	7 157	' (כ	0 0)	0 0
DF	BL-19	16305	5 Pulp	8	330986	<mark>;</mark> 0	0	6	5 76	5 59) ()	95 0	;	0 12
DF	BL-19	16306	5 Pulp	9	402919	<mark>)</mark> 0	0) (0 67	7 35	()	D 6	5	0 0
DF	BL-19	16307	7 Pulp	10	515894	. 0	0) () 97	7 111	. ()	0 0)	0 0
DF	BL-19	16307-2	Pulp	11	519018	<mark>s</mark> C	0) () 90) 111	. ()	0 ()	0 0
DF	BL-19	16308	8 Pulp	12	557773		0) () 6 <u>5</u>	5 91	. ()	0 ()	0 0
DF	BL-19	16309) Pulp	13	457375	<mark>,</mark> C	0) () 34	1 87	' ()	0 0)	0 0
DF	BL-19	16310) Pulp	14	345405	<mark>,</mark> C	0) 12	5 365	5 48	. ()	0 199)	0 18
DF	BL-19	16311	L Pulp	15	366146	<mark>;</mark> C	0) () 124	1 24	. ()	0 36	5	0 6
DF	BL-19	16312	2 Pulp	16	91602	0	0) 4	2 86	5 21	. ()	38 C	8 1	2 77
DF	BL-19	16313	8 Pulp	17	467005	<mark>,</mark> C	0) 12	5 <mark>84</mark> 4	<mark>1</mark> 84	. ()	0 86	5	0 0
DF	BL-19	16314	l Pulp	18	180658	s C	0) 17	4 <mark>415</mark>	<mark>5</mark> 144	. ()	0 25	i i	5 7
DF	BL-19	16315	5 Pulp	19	83396	; O	30) 12	7 <mark>19647</mark>	<mark>7</mark> 47	' ()	0 117	,	4 31
DF	BL-19	16316	5 Pulp	20	57289	0	32	2 5	5 125	5 C) ()	2 540) 1	1 19
DF	BL-19	16317	7 Pulp	21	334699	<mark>)</mark> 0	0) 3	3 <mark>47(</mark>	<mark>)</mark> 43	()	D 16	5	0 19
DF	BL-19	16318	3 Pulp	22	433745	<mark>,</mark> C	0) 10	3 <mark>547</mark>	<mark>7</mark> 64	. ()	0 0)	0 14
DF	BL-19	16319) Pulp	23	436134	. 0	0) () 71 <u>9</u>	<mark>5</mark> 87	, (כ	0 0)	0 7
DF	BL-19	16320) Pulp	24	51178	s 0	29	8	3 122	2 5	() 1	6 616	i 1	5 57

LE = light elements with atomic # <18 (Argon)....usually Mg, Al, Si, P Elements not reported were not detectable by XRF

APPENDIX VII-Pulp XRF Geochemical Analysis
--

Operator	Project No.	Sample ID	Sample Type	Reading # Nb ppm	Mo ppm	Ag ppm	Cd ppm	Sn ppm	Sb ppm	W ppr	n A	Au ppm	Hg ppm	Pb ppm	Bi ppm
DF	BL19	16301	Pulp	1	0	0	0	0	0	0	78	11.57	() () 147
DF	BL-19	16301-2	Pulp	2	0	0	0	0	0	0	0		() () <mark>148</mark>
DF	BL-19	16302	Pulp	3	0	0	0	0	0	0	0	0.057	() () 121
DF	BL-19	16302-2	Pulp	4	0	0	0	0	0	0	57		() () <mark>188</mark>
DF	BL-19	16303	Pulp	5	0 5	4	0	0	0	0	0	0.181	() (0
DF	BL-19	16303-2	Pulp	6	0 <mark>6</mark>	<mark>60</mark>	0	0	0	0	0		() 14	0
DF	BL-19	16304	Pulp	7	0	0	0	0	0	0	0	0.04	() () <mark>151</mark>
DF	BL-19	16305	Pulp	8	0	0	0	0	0	0	0	0	() (62
DF	BL-19	16306	Pulp	9	0	0	0	0	0	0	<mark>40</mark>	0	() () 75
DF	BL-19	16307	Pulp	10	0	0	0	0	0	0	<mark>62</mark>	0	() () <mark>160</mark>
DF	BL-19	16307-2	Pulp	11	0	0	0	0	0	0	0		() () <mark>182</mark>
DF	BL-19	16308	Pulp	12	0	0	0	0	0	0	<mark>44</mark>	0.13	() () <mark>199</mark>
DF	BL-19	16309	Pulp	13	0	0	0	0	0	0	0	0	() () <u>109</u>
DF	BL-19	16310	Pulp	14	0	0	0	0	0	0	0	0	() (66
DF	BL-19	16311	Pulp	15	0	0	0	0	0	0	<mark>39</mark>	0	() () 70
DF	BL-19	16312	Pulp	16	0	0	0	0	0	0	24	0	() 7	22
DF	BL-19	16313	Pulp	17	0	0	0	0	0	0	<mark>53</mark>	0.07	() () <mark>129</mark>
DF	BL-19	16314	Pulp	18	0	0	0	0	0	0	0	0	() 9	20
DF	BL-19	16315	Pulp	19	0	0	0 !	57	0	61	0	0	() 75	24
DF	BL-19	16316	Pulp	20	0	0	0	0	0	0	0	0	() (8 0
DF	BL-19	16317	Pulp	21	0	0	0	0	0	0	0	0	() (66
DF	BL-19	16318	Pulp	22	0	0	0	0	0	0	<mark>66</mark>	0	() () <mark>113</mark>
DF	BL-19	16319	Pulp	23	0	0	0	0	0	0	0	0	() () <mark>124</mark>
DF	BL-19	16320	Pulp	24	0	0	0	0	0	0	0	0	(3 (3 16
											F	ire Assay			

LE = light elements with atomic # <18 (Argon)....usually Mg, Al, Si, P Elements not reported were not detectable by XRF

APPENDIX VII-Pulp XRF Geochemical Analysis

Operator	Project No.	Sample ID	Sample Type	Reading # Th ppm	LE	ppm
DF	BL19	16301	Pulp	1	0	443186
DF	BL-19	16301-2	Pulp	2	0	443884
DF	BL-19	16302	Pulp	3	0	427830
DF	BL-19	16302-2	Pulp	4	0	406171
DF	BL-19	16303	Pulp	5	0	739991
DF	BL-19	16303-2	Pulp	6	0	744461
DF	BL-19	16304	Pulp	7	0	481806
DF	BL-19	16305	Pulp	8	0	490162
DF	BL-19	16306	Pulp	9	0	431605
DF	BL-19	16307	Pulp	10	0	363713
DF	BL-19	16307-2	Pulp	11	0	364139
DF	BL-19	16308	Pulp	12	0	328923
DF	BL-19	16309	Pulp	13	0	403128
DF	BL-19	16310	Pulp	14	0	494342
DF	BL-19	16311	Pulp	15	0	496354
DF	BL-19	16312	Pulp	16	0	733326
DF	BL-19	16313	Pulp	17	0	390331
DF	BL-19	16314	Pulp	18	0	604780
DF	BL-19	16315	Pulp	19	0	671502
DF	BL-19	16316	Pulp	20	0	830643
DF	BL-19	16317	Pulp	21	0	501124
DF	BL-19	16318	Pulp	22	0	409091
DF	BL-19	16319	Pulp	23	0	434274
DF	BL-19	16320	Pulp	24	0	840774

LE = light elements with atomic # <18 (Argon)....usually Mg, Al, Si, P Elements not reported were not detectable by XRF