ASSESSMENT REPORT TITLE PAGE AND SUUVIVIARI

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude do not use abbreviations or codes)
Middle to Upper Triassic augite porphyry basaltic greenstone and sedimentary rocks of the Nicola Group, ultramafic rocks of the Slide Mountain terrane as fault slices; orogenic gold bearing quartz veins and quartz-carbonate-pyrite replacement style mineralization; mineralization includes native gold, native silver, galena, sphalerite, chalcopyrite, molybdenite, arsenopyrite, pyrrhotite and pyrite; Main zone consists of a network of quartz veins over a northwest trending, $70^{\circ} \mathrm{NE}$ dipping, 40 m wide by 140 m long and 190 m deep zone with up to 29 quartz veins; East zone, 25 m northeast of Main zone consists of a northwesterly trending quartz vein zone apparently dipping northeast and stratiformly hosted by greenstone and traced over a length of 90 m , open to the northwest; other zones include Raven, North, Cayenne, Pioneer.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS

\#03484: Geochemistry (Anderson, R.E., 1972)
\#08343, 09322 Geology, geophysics, geochemistry (Fox, 1980, 1981); \#12129 geochemistry (Allan, 1984)
\#25689: Prospecting \& trenching (Javorsky, 2004); \#27776: Diamond drilling (Javorsky and Briden, 2005)
\#28644: Geochemistry (Briden, H. Alex, 2006)
\#29467: Diamond drilling (Simmons, B., 2007)
\#34649, 35568, 36159: SP Geophysics; Geochemistry; SP Geophysics (Justason A., 2014, 2015 \& 2016)
\#37247: SP Geophysics (Justason A., 2018); \#37641: IP/Resistivity Geophysics (Mark, D., 2018)
\#37910 : Geochemistry and remote sensing (Justason A., 2019)

Mineral Titles Online

Mineral Claim Exploration and Development Work/Expiry Date

Change

Recorder: GOLDEN CARIBOO RESOURCES
LTD. (143177)
Recorded: 2019/NOV/14
D/E Date: 2019/NOV/14

Submitter: GOLDEN CARIBOO RESOURCES
LTD. (143177)
Effective: 2019/NOV/14

Confirmation
If you have not yet submitted your report for this work program, your technical work report is due in 90 days. The Exploration and Development Work/Expiry Date Change event number is required with your report submission. Please attach a copy of this confirmation page to your report. Contact Mineral Titles Branch for more information.

Event Number:
5763699

Work Type:
 Technical Items:

Technical Work Geochemical, Geological, PAC Withdrawal (up to 30% of technical work required)

Work Start Date: 2019/OCT/15
Work Stop Date: 2019/NOV/07
Total Value of Work: \$ 81866.28
Mine Permit No: MX-11-277
Summary of the work value:

Title Number	Claim Name/Property	Issue Date	$\begin{aligned} & \text { Good } \\ & \text { To } \\ & \text { Date } \end{aligned}$	New Good To Date	\# of Days Forward	Area in Ha	Applied Work Value	Submission Fee
1011635	HIXON GOLD	2012/AUG/01	2019/NOV/15	2022/MAY/31	928	250.34	\$ 12720.12	\$ 0.00
1011669	HIXON GOLD	2012/AUG/01	2019/NOV/15	2022/MAY/31	928	38.51	\$ 1956.81	\$ 0.00
1011717	HIXON GOLD	2012/AUG/02	2019/NOV/15	2022/MAY/31	928	115.56	\$ 5871.59	\$ 0.00
1011719	HIXON GOLD	2012/AUG/02	2019/NOV/15	2022/MAY/31	928	57.77	\$ 2935.36	\$ 0.00
1013059	HIXON GOLD	2012/AUG/02	2019/NOV/15	2022/MAY/31	928	19.26	\$ 978.74	\$ 0.00
1013060	HIXON GOLD	2012/AUG/02	2019/NOV/15	2022/MAY/31	928	19.26	\$ 978.74	\$ 0.00
1021404	HIXON GOLD	2013/AUG/02	2019/NOV/15	2022/MAY/31	928	173.35	\$ 8190.02	\$ 0.00
1042906	HIXON GOLD	2016/MAR/18	2019/NOV/15	2022/MAY/31	928	96.29	\$ 3026.36	\$ 0.00
1045189	GOLD RIDGE 1	2016/JUL/07	2019/NOV/15	2022/MAY/31	928	269.62	\$ 8061.70	\$ 0.00
1045190	GOLD RIDGE 2	2016/JUL/07	2019/NOV/15	2022/MAY/31	928	346.72	\$ 10366.91	\$ 0.00
1045191	GOLD RIDGE 3	2016/JUL/07	2019/NOV/15	2022/MAY/31	928	365.89	\$ 10940.29	\$ 0.00
1045192	GOLD RIDGE 4	2016/JUL/07	2019/NOV/15	2022/MAY/31	928	288.86	\$ 8636.97	\$ 0.00
1045193	GOLD RIDGE 5	2016/JUL/07	2019/NOV/15	2022/MAY/31	928	231.21	\$ 6913.15	\$ 0.00
1045195	GOLD RIDGE 6	2016/JUL/07	2019/NOV/15	2022/MAY/31	928	327.56	\$ 9793.98	\$ 0.00
1045196	GOLD RIDGE 7	2016/JUL/07	2019/NOV/15	2022/MAY/31	928	327.34	\$ 9787.53	\$ 0.00
1057679	GOLD RIDGE 8	2018/JAN/15	2019/NOV/15	2022/MAY/31	928	96.25	\$ 1882.73	\$ 0.00
1061281	Gold Ridge 10	2018/JUN/18	2019/NOV/15	2022/MAY/31	928	96.39	\$ 1682.68	\$ 0.00
1061283	Gold Ridge 9	2018/JUN/18	2019/NOV/15	2022/MAY/31	928	115.63	\$ 2018.68	\$ 0.00
1061284	Gold Ridge 11	2018/JUN/18	2019/NOV/15	2022/MAY/31	928	443.38	\$ 7740.42	\$ 0.00
1061285	Gold Ridge 12	2018/JUN/18	2019/NOV/15	2022/MAY/31	928	115.67	\$ 2019.38	\$ 0.00

Financial Summary:
Total applied work value:\$ 116502.16
PAC name: \quad Golden Cariboo Resources Ltd.
Debited PAC amount: $\$ 34635.88$
Credited PAC amount: \$ 0
Total Submission Fees: \$ 0.0
Total Paid: $\mathbf{\$ 0 . 0}$
Please print this page for your records. The event was successfully saved.

GEOLOGICAL, GEOCHEMICAL and TRENCHING ASSESSMENT REPORT on the QUESNELLE GOLD QUARTZ MINE PROPERTY, Hixon, British Columbia

NTS: 93G/07 \& 08
Latitude $53^{\circ} 26.5^{\prime} \mathrm{N} \quad$ Longitude $122^{\circ} 31^{\prime} \mathrm{W}$
Cariboo Mining Division, British Columbia

Claims: Hixon Gold, Gold Ridge 1-12
(Tenure Numbers: 1011635, 1011669, 1011717, 1011719, 1013059, 1013060, 1021404, 1042906, 1045189-93, 1045195-96, 1057679, 1061281, 1061283-85)

Event Number: 5763699
Work performed between October 15 and November 7, 2019

For:
Golden Cariboo Resources Ltd. 804-750 West Pender St, Vancouver, British Columbia V6C 2T7

By:

Jean Pautler, P.Geo.
JP Exploration Services Inc.
\#103-108 Elliott Street
Whitehorse, Yukon
January 15, 2020
Y1A 6C4

1.0 Executive Summary

The approximately 3775 hectare Quesnelle Gold Quartz Mine Property (the "Property"), NTS map sheets 93G/07 \& 08, is located in the Cariboo Mining Division, British Columbia, 4 km northeast of Hixon approximately 721 km north of Vancouver, British Columbia by paved highway at a latitude of $53^{\circ} 26.5^{\prime} \mathrm{N}$ and longitude of $122^{\circ} 31^{\prime} \mathrm{W}$. The Property comprises the Hixon Gold and Gold Ridge Mineral Tenure Online claims owned by Golden Cariboo Resources Ltd., subject to the terms of a Property and Sale agreement, dated May 25, 2019. This report was prepared to support assessment requirements of Golden Cariboo Resources Ltd. with respect to the Property.

The Property is primarily underlain by Middle to Upper Triassic augite porphyry basaltic greenstone and sedimentary rocks of the Nicola Group at the boundary between the Quesnel and Kootenay terranes; the latter represented by the Barkerville subterrane in this region. Ultramafic rocks of the Slide Mountain terrane locally occur along the Eureka thrust, which marks this terrane boundary. The Quesnelle Gold Quartz Mine Property covers the historical Pioneer and Cayenne showings, the Quesnel Quartz deposit and part of the North Hixon showing as documented by the British Columbia Geological Survey Branch as Minfile Numbers 093G 013, 093G 014, 093G 015 and 093G 082, respectively (British Columbia Minfile, 2019).

The deposit model for the Property is the orogenic (also known as mesothermal, gold quartz, greenstone, Mother Lode) type, consisting of gold bearing quartz veins and quartz-carbonate-pyrite replacement style mineralization such as at Barkerville Gold Corporation's Bonanza Ledge, Cariboo Gold Quartz, and Island Mountain mines at Wells, 75 km to the southeast of the Quesnelle Gold Quartz Mine Property.

Historical work on the Property between 1866 and 2018 has included: about 1250 m of early underground development; prospecting, mapping and sampling; about 20 line km of soil sampling; less than 30 line km of ground magnetic, minor IP and 7.64 line km of self potential geophysical surveying; hand trenching and over 500 m of excavator trenching; road construction and maintenance; a LiDAR and orthoimagery survey: an airborne magnetic and electromagnetic survey on adjacent ground which overlaps the Property area; and 2863m of diamond drilling in 22 holes.

The most significant mineralization to date has been found at the Quesnel Quartz deposit. Historically, at least three main northwest trending gold-silver zones were identified crossing Hixon Creek over a distance of 500 m at the Quesnel Quartz deposit. From east to west the zones were the Washburn, the Stewart, and the Morrison ledges, which were explored by: the Main shaft, associated workings and the Mason shaft; the Stewart shaft and possibly the Raven adit and; the Morrison and Hercules shafts, respectively. The mineralization at the Mason shaft is probably a separate zone from the Washburn (Main) and explored the East zone, which was identified as a separate zone by Noranda in 1987 to 1988.

The gold-silver mineralization was found to occur primarily in quartz \pm carbonate veins, but also in the quartz-carbonate-pyrite altered greenstone, and less commonly in phyllite, but proximal to and following the contact between the greenstone and phyllite. The latter two types are referred to as replacement ore. The veins, which vary from a few centimetres up to about 1.8 m in width, generally terminate against the contact. Mineralization includes native gold, native silver, galena, sphalerite, chalcopyrite, molybdenite, arsenopyrite, pyrrhotite and pyrite. Both quartz vein hosted and replacement style mineralization was documented, with replacement mineralization within the pyritized and carbonatized greenstone more prevalent at depth. The pyrite is fine grained, commonly with other sulphide, and can comprise 30\% of the rock.

The Main zone was intersected in DDH 83-1, 83-3, 87-1, 87-2, 88-4, 88-5, 88-6 and 071 , and is stratiform (essentially parallel to the volcanic-sedimentary contact). Quartz veins occur almost exclusively in greenstone. A second vein system within the zone strikes northeast and generally dips steeply southeast and occurs proximal to the contact. Diamond drill results from the Main zone include $5.72 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 20.6 \mathrm{~g} / \mathrm{t}$ Ag over 1.5 m in DDH 83-1, $13.3 \mathrm{~g} / \mathrm{t}$ Ag over 6.1m in DDH 83-3, $5.1 \mathrm{~g} / \mathrm{t}$ Au over 1.5m in DDH 87$1,4.8 \mathrm{~g} / \mathrm{t}$ Au over 3.0 m in DDH $88-5$ and $6.75 \mathrm{~g} / \mathrm{t}$ Au and $54.5 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ over 3 m from DDH 07-1.

The East zone lies $25 m$ northeast of the Main zone and consists of a northwesterly trending quartz vein zone apparently dipping northeast and stratiformly hosted by greenstone. It was traced over a length of 90 m in seven drill holes (DDH 83-1, 87-1, 87-$2,88-4,88-5,88-6,07-3$) and remains open to the northwest. Diamond drill results include $7.3 \mathrm{~g} / \mathrm{t}$ Au over 1.5 m from sludge in DDH 83-1, $3.3 \mathrm{~g} / \mathrm{t}$ Au over 2.8 m in DDH 88$4,5.2 \mathrm{~g} / \mathrm{t}$ Au over 2.75 m in DDH $88-5$ and $11.8 \mathrm{~g} / \mathrm{t}$ Au and $12.9 \mathrm{~g} / \mathrm{t}$ Ag over 1.5 m in DDH 07-3.

The Main zone comprises the principal gold zone at the Quesnel Quartz deposit and consists of a network of quartz veins over a northwest trending, $70^{\circ} \mathrm{NE}$ dipping, 40 m wide by 140 m long and 190 m deep zone. Twenty-nine quartz veins were recorded in the mine workings which extend 120 m vertically beneath the surface. The Main zone was explored by the Main and Koch shafts, and the Clarke and Koch adits, which have since been buried by placer and other debris, but uncovered in the 2019 program.

The 2019 exploration program, which was funded by Golden Cariboo Resources Ltd., consisted of $487 \mathrm{~m}^{3}$ of excavator trenching and pitting, with geological mapping and sampling, minor property mapping and sampling and improving 2 km of the south access road. A total of $263 \mathrm{~m}^{3}$ of trenching was completed in 9 trenches covering a cumulative length of 210 m , and $224 \mathrm{~m}^{3}$ of pitting was completed in 25 pits. A total of 120 samples were collected from the pits and trenches, 3 of which were soil samples, and an additional 1 stream sediment and 30 rock samples were collected during mapping/sampling. The program focussed on the Main zone, the accessible portion of the East zone, and the Raven zone with a preliminary evaluation of the Hixon North showing.

TR19-01 and -02, excavated in the Main shaft area which constituted the principal working of the Quesnel Gold Quartz deposit on the south side of Hixon Creek,
intersected a number of quartz veins with significant results. Quartz vein boulders from a vein trending $045-050^{\circ} / 60^{\circ} \mathrm{W}, 80^{\circ} \mathrm{W}$ and $75^{\circ} \mathrm{E}$ exposed in the upper level of the start of TR19-01 yielded: $16.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 54 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$; and $5.73 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $14.8 \mathrm{~g} / \mathrm{t}$ Ag. Quartz boulders, with 30% pyrite layers and seams and minor carbonate further towards Hixon Creek returned $8.44 \mathrm{~g} / \mathrm{t}$ Au with $7.1 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. Possible silicified limestone at this location returned $5.24 \mathrm{~g} / \mathrm{t}$ Au with $4.5 \mathrm{~g} / \mathrm{t}$ Ag. A grab of pyritic silicified limestone float from the ore bin yielded $2.00 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ with $4.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and 2190 ppm As. The source of the silicified limestone appears to be from underground on the Main shaft, since it was not encountered on surface.

Quartz veins in TR19-02 returned: $6.96 \mathrm{~g} / \mathrm{t}$ Au over 0.3m; $1.93 \mathrm{~g} / \mathrm{t}$ Au over 0.5 m and $4.41 \mathrm{~g} / \mathrm{t}$ Au over 1 m from the hanging wall; and $7.65 \mathrm{~g} / \mathrm{t}$ Au over 1.7 m . Quartz float in Pit 8 , which lies 16 m southerly $\left(195^{\circ}\right)$ along trend from the latter vein zone, yielded $3.69 \mathrm{~g} / \mathrm{t}$ Au.

An oxidized highly pyritic, $020^{\circ} / 80^{\circ} \mathrm{W}$ trending, possible listwanite zone yielded $16.2 \mathrm{~g} / \mathrm{t}$ $\mathrm{Au}, 10.1 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ with 1980 ppm As and $>30 \%$ Fe over 0.4m in TR19-01 and contained $1.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 4.5 \mathrm{~g} / \mathrm{t}$ Ag over 1.4 m in TR19-02, 18 m along strike to the south. The hanging wall in TR19-01 yielded $4.95 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 9.4 \mathrm{Ag}$ and 8.3% Fe from a 1 by 1 m panel sample, indicating the more representative results from panel sampling in this setting. Panel samples are recommended in future sampling programs.

The Clarke adit and Koch adit and shaft constituted the principal workings of the Quesnel Gold Quartz deposit on the north side of Hixon Creek. A pit at the Clarke adit exposed a 37 cm quartz vein, trending $222^{\circ} / 85^{\circ} \mathrm{NW}$ and containing $6.0 \mathrm{~g} / \mathrm{t}$ Au and $10 \mathrm{~g} / \mathrm{t}$ Ag, at the phyllite/greenstone contact. The hanging wall and footwall returned gold values of $0.24 \mathrm{~g} / \mathrm{t}$ over 0.4 m and $0.44 \mathrm{~g} / \mathrm{t}$ Au over 1 m , respectively. A sample across the contact yielded $0.57 \mathrm{~g} / \mathrm{t}$ Au over 0.9 m .

At the Koch adit a 1.75 m wide quartz vein trending $225^{\circ} / 75^{\circ} \mathrm{NW}$ was intersected, hosted by the more competent greenstone. The vein may represent the extension of, or a subparallel vein to, the vein intersected in the Clarke adit. Due to poor ground conditions only 0.6 m of the footwall side of the vein could be sampled, which returned $17.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $61.5 \mathrm{~g} / \mathrm{t}$ Ag over the 0.6 m and the footwall yielded $1.94 \mathrm{~g} / \mathrm{t}$ Au over 0.5 m . A grab of highly pyritic vein material from quartz vein boulders within the pit returned $45.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ with >100 g/t Ag.

The Raven adit and surroundings, extending 200 m to the east of the adit, were explored by TR19-04, -08 and -09 , and Pits $19-13,-14,-16$ and -17 but no significant results were obtained. The Raven zone lies 270 m westerly from the Main zone near the site of an old adit. A chip sample collected in 1981 from a quartz vein exposed by a trench 20 m above the Raven adit assayed $5.28 \mathrm{~g} / \mathrm{t}$ Au over 3 m . Drilling has not been successful on this zone, possibly due to the extremely poor core recoveries encountered. The area appears to be strongly faulted, with extensive black graphitic argillaceous phyllite accounting for IP Anomalies B and C, and only a narrow band of the favourable more competent greenstone unit exposed. No further work is proposed here at present.

IP Anomalies 660 and D may be related to a thick deposit of the clay rich OligocenePliocene clastic sedimentary rocks in this area. Anomaly A still appears to be related to the east zone, which was not significantly explored in 2019.

Preliminary investigation of the North Hixon showing resulted in the discovery of intensely silicified float with strongly pyritized clasts and fine dark magnetite carrying $9.85 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. Previous trenches in the area yielded $1-2 \mathrm{~g} / \mathrm{t}$ Au values from quartz veins in four trenches in sampling by Noranda, and grab samples taken from veins in two other trenches assayed $6.36 \mathrm{~g} / \mathrm{t}$ and $1.38 \mathrm{~g} / \mathrm{t}$. The zone lies 1.2 km northwest (possibly along trend?) of the Cayenne working.

There is excellent potential on the Quesnelle Gold Quartz Mine Property to discover an orogenic gold \pm silver deposit consisting of gold \pm silver bearing quartz veins and quartz-carbonate-pyrite replacement style mineralization similar to those within the WellsBarkerville mining camp, about 75 km to the southeast. Significant gold \pm silver mineralization was previously delineated on the property in old workings, trenches and drill holes at the Quesnelle Quartz deposit.

The 2019 trenching program uncovered many of the old workings, with significant gold
 of part of the North Hixon showing resulted in a new discovery of silicified, pyritic and magnetite bearing float carrying $9.83 \mathrm{~g} / \mathrm{t}$ Au. Other showings on the Property with anomalous gold values have not been evaluated.

A contingent two phase exploration program is recommended to consist of a Phase 1 program of compilation and integration with the preparation of a 3D model, sections and plans, followed by a differential GPS survey, detailed mapping and sampling, and excavator trenching with a budget of $\$ 200,000$. Contingent on positive results from Phase 1, a Phase 2 diamond drill program with a $\$ 500,000$ budget is proposed to follow up results from Phase 1.

Table of Contents

Page
Assessment Report Title Page and Summary 1
Mineral Claim Exploration and Development Work 3
Title Page 4
1.0 Executive Summary 5
Table of Contents 9
List of Illustrations 10
List of Tables 10
List of Appendices 10
2.0 Introduction and Terms of Reference 11
2.1 Qualified Person, Participating Personnel and Scope 11
2.2 Terms, Definitions and Units 12
2.3 Source Documents 12
2.4 Limitations, Restrictions and Assumptions 13
3.0 Reliance on Other Experts 13
4.0 Property Description and Location 13
4.1 Location 13
4.2 Land Tenure 14
5.0 Accessibility, Climate, Local Resources, Infrastructure \& Physiography 15
5.1 Access, Local Resources and Infrastructure 15
5.2 Physiography, Climate and Infrastructure 17
6.0 History 17
6.1 Geophysics 24
6.2 Remote Sensing. 25
7.0 Geological Setting and Mineralization 28
7.1 Regional Geology 28
7.2 Property Geology 31
7.3 Mineralization 33
8.0 Deposit Type 35
$9.0 \quad 2019$ Exploration 36
9.1 2019 Sample Preparation, Analyses and Security 54
10.0 Drilling 55
11.0 Drill Sample Preparation, Analyses and Security 63
12.0 Data Verification 63
13.0 Mineral Processing and Metallurgical Testing. 63
14.0 Mineral Resource Estimates 63
23.0 Adjacent Properties 63
24.0 Other Relevant Data and Information 65
25.0 Interpretation and Conclusions 65
26.0 Recommendations 68
26.1 Budget 68
Signature Page 70
27.0 References 71
Certificate of Qualified Person 75
Appendices 76

List of Illustrations

Page
Figure 1: Location Map 13
Figure 2: Claim and Access Map 16
Figure 3: Plan of main workings of the Quesnel Quartz deposit 19
Figure 4: Main workings of the Quesnel Quartz deposit \& mineralized zones 20
Figure 5: Historical plan - Quesnel Quartz deposit and Cayenne workings 21
Figure 6: 2017 IP and Resistivity Section 26
Figure 7: 2017 IP and Resistivity Pseudosection 27
Figure 8: Digital Elevation Model 27
Figure 9: Regional Geology Map 29
Legend for Figure 9 30
Figure 10: Property Geology Map 32
Figure 11: 2019 Exploration and Index Map 38
Legend for Figures 11 to 14 39
Figure 11a: Quesnelle Gold Quartz Detail and Index Map 40
Figure 12: Main Shaft Detail 42
Figure 12a: Main Shaft Detail sample results 43
Figure 12b: Main Shaft Detail SW 44
Figure 13: Raven Detail 48
Figure 13a: Raven Detail sample results 49
Figure 14NW: Clarke-Koch Detail NW 50
Figure 14NWa:Clarke-Koch Detail NW sample results 51
Figure 14SE: Clarke-Koch Detail SE 52
Figure 14SEa: Clarke-Koch Detail SE sample results 53
Figure 15: Drill Plan 60
Figure 16: Drill Hole Section 2007-1 and -2 61
Figure 17: Drill Hole Section 2007-3 62
List of Tables
Table 1: Claim data summary 14
Table 2: Underground development specifications 19
Table 3: Comparison of old survey versus LiDAR elevations 25
Table 4: $\quad 2019$ trench and pit specifications 37
Table 5: Summary of drill programs 55
Table 6: Drill hole specifications 57
Table 7: \quad Significant drill results 59
List of Appendices
Appendix I: Statement of Expenditures 76
Appendix II: Sample Descriptions with Select Results 77
Appendix III: Assay Certificates 84
Appendix IV: Photographs digital file

2.0 INTRODUCTION AND TERMS OF REFERENCE

2.1 Qualified Person, Participating Personnel and Scope

Ms. Jean M. Pautler, P.Geo. of JP Exploration Services Inc. ("JPEx") was commissioned by Golden Cariboo Resources Ltd. ("Golden Cariboo"), Vancouver, British Columbia, a company duly incorporated under the laws of the Province of British Columbia, to participate in and report on the 2019 exploration program on the Quesnelle Gold Quartz Mine Property (the "Property"). Recommendations are made for the next phase of exploration work in order to test the resource potential of the property. An estimate of costs has been made based on current rates for drilling, trenching, geochemical and geophysical surveys and professional fees in British Columbia.

The Property comprises the Hixon Gold and Gold Ridge Mineral Tenure Online claims owned by Golden Cariboo Resources Ltd., subject to the terms of a Property and Sale agreement, dated May 25, 2019. The road accessible Property is located in the Cariboo Mining Division, British Columbia, 4 km northeast of Hixon on NTS map sheets 93G/07 \& 08. It lies within the Fraser Basin and Plateau of central British Columbia and is characterized by a gentle rolling topography cut by the incised drainages of Hixon and Terry Creeks and part of the upland between them.

This report was prepared to comply with Golden Cariboo Resources Ltd.'s obligations pursuant to the November 14, 2019 assessment filing to maintain the Property in good standing.

The 2019 exploration program, which was funded by Golden Cariboo Resources Ltd., consisted of $487 \mathrm{~m}^{3}$ of excavator trenching and pitting, with geological mapping and sampling, and minor property mapping and sampling.

Previous work on the Property between 1866 and 2018, has included: about 1250 m of early underground development; prospecting, mapping and sampling; about 20 line km of soil sampling; less than 30 line km of ground magnetic, minor IP and 7.64 line km of self potential geophysical surveying; hand trenching and over 500 m of excavator trenching; road construction and maintenance; a LiDAR and orthoimagery survey: an airborne magnetic and electromagnetic survey on adjacent ground which overlaps the Property area; and 2863m of diamond drilling in 22 holes.

The Property covers the historical Pioneer and Cayenne showings, the Quesnel Quartz deposit and part of the North Hixon showing as documented by the British Columbia Geological Survey Branch as Minfile Numbers 093G 013, 093G 014, 093G 015 and 093G 082, respectively (British Columbia Minfile, 2019). There is excellent potential to discover an orogenic gold \pm silver deposit on the Property, consisting of gold \pm silver bearing quartz veins and quartz-carbonate-pyrite replacement style mineralization, similar to those within the Wells-Barkerville mining camp, about 75 km to the southeast. Significant gold \pm silver mineralization has been delineated on the Property in old workings, trenches and drill holes. The 2019 trenching program delineated significant mineralization and other showings with anomalous gold values have not been evaluated.

2.2 Terms, Definitions and Units

All costs contained in this report are denominated in Canadian dollars. Distances are primarily reported in metres (m) and kilometres (km) and in feet (ft) when reporting historical data. GPS refers to global positioning system, with UTM co-ordinates reported in Nad 83, Zone 10 projection. Minfile showing refers to documented mineral occurrences on file with the British Columbia Geological Survey. DDH refers to diamond drill hole. IP refers to induced polarization and SP to self potential, types of geophysical surveys. MMI refers to a type of soil survey utilizing mobile metal ions, useful in detecting mineralization beneath glacial till and younger cover rocks.

The term ppm refers to parts per million, which is equivalent to grams per metric tonne (g / t) and ppb refers to parts per billion. The abbreviation oz/ton and oz/t refers to troy ounces per imperial short ton. The symbol \% refers to weight percent unless otherwise stated.

Element abbreviations used in this report include: gold (Au), silver (Ag), lead (Pb), zinc (Zn), copper (Cu), molybdenum (Mo), and arsenic (As). Minerals found on the Hixon Property include pyrite and pyrrhotite (iron sulphides), galena (lead sulphide), sphalerite (zinc sulphide), chalcopyrite (copper sulphide), molybdenite (molybdenum sulphide), arsenopyrite (iron, arsenic sulphide) and native gold and silver. Tennantite (copper, iron-zinc, arsenic sulphide is documented in early reports (Minister of Mines, 1886).

2.3 Source Documents

Sources of information are detailed below and include available public domain information and personally acquired data.

- Research of Minfile data at http://minfile.gov.bc.ca/searchbasic.aspx on December 21, 2019.
- Research of mineral titles at https://www.mtonline.gov.bc.ca/mtov/isp/searchTenures.jsp on December 21, 2019.
- Review of annual assessment and company reports filed with the Ministry of Energy and Mines as documented under section 27.0, "References".
- Review of the news releases, website and public data of Golden Cariboo Resources Ltd. and of other companies in the regional area.
- Various historical newspaper archives at http://historicalnewspapers.library.ubc.ca and http://pgnewspapers.lib.pg.bc.ca .
- Review of geological maps and reports completed by the British Columbia Geological Survey or its predecessors and the Geological Survey of Canada.
- Published scientific papers on the geology of the region, gold quartz deposits, and mineral deposits.
- Work conducted by the author between October 15 and November 7, 2019, a site visit by the author on May 23, 2018, and a review of previous exploration programs on the Property.

Title documents and option agreements were reviewed for this study as identified above. The title and option information were relied upon to describe the ownership of the property and claim and option summaries in Section 4.2, "Land Tenure".

2.4 Limitations, Restrictions and Assumptions

The author has relied in part upon work and reports completed by others in previous years in the preparation of this report as identified under Section 2.3, "Source Documents" and Section 27.0, "References". The author has assumed that the previous documented work on the properties and in the region is valid and has not encountered any information to discredit such work. Thorough checks to confirm the results of such work and reports have not been done. Unless otherwise stated the author has not independently confirmed the accuracy of the data. Exploration assessment reports, listed in Section 27.0, "References", were completed by competent professionals and/or reputable prospectors and have been accepted by the Mining Recorder.

3.0 RELIANCE ON OTHER EXPERTS

This section is not relevant to this report since there is no reliance on other experts.

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 Location (Figures 1 to 2)

The Quesnelle Gold Quartz Mine Property, NTS map sheets 93G/07 \& 08 (BCGS map sheets 93G 048 \& 049) is located 4 km northeast of Hixon, British Columbia, approximately 721 km north of Vancouver, British Columbia by paved highway (Figures 1 and 2). It encompasses the drainage of Hixon Creek and the uplands between Hixon and Terry Creeks (Figure 2). The property is centred at a latitude of $53^{\circ} 26.5^{\prime} \mathrm{N}$ and longitude of $122^{\circ} 31^{\prime} \mathrm{W}$.

4.2 Land Tenure

(Figure 2)
The Quesnelle Gold Quartz Mine Property comprises the Hixon Gold and Gold Ridge Mineral Tenure Online (MTO) claims consisting of 20 contiguous claims covering an area of 3794.8702 hectares in the Cariboo Mining Division, British Columbia (Figure 2). The 20.1 ha survey parcel District Lot 9545 (Washburn Lateral) is not part of the Property area, reducing the size to 3774.7702 hectares. The claims were acquired in accordance with Mineral Titles Online on NTS map sheets 93G/07 \& 08 available for viewing at http://www.mtonline.gov.bc.ca. The claims are registered in the name of Golden Cariboo Resources Ltd. Client Number 143177. A table summarizing pertinent claim data follows.

TABLE 1: Claim data summary

Title No.	Claim Name	Claims	Issue Date	Expiry Date*	Area (ha)				
1011635	HIXON GOLD	1	$2012 / \mathrm{AUG} / 01$	$2022 / \mathrm{MAY} / 31$	250.3449				
1011669	HIXON GOLD	1	$2012 / \mathrm{AUG} / 01$	$2022 / \mathrm{MAY} / 31$	38.512				
1011717,19	HIXON GOLD	2	$2012 / \mathrm{AUG} / 02$	$2022 / \mathrm{MAY} / 31$	173.3302				
$1013059-60$	HIXON GOLD	2	$2012 / \mathrm{AUG} / 02$	$2022 / \mathrm{MAY} / 31$	38.5254				
1021404	HIXON GOLD	1	$2013 / \mathrm{AUG} / 02$	$2022 / \mathrm{MAY} / 31$	173.3533				
1042906	HIXON GOLD	1	$2016 / \mathrm{MAR} / 18$	$2022 / \mathrm{MAY/31}$	96.2917				
$1045189-93,95-96$	GOLD RIDGE 1-7	7	$2016 / \mathrm{JUL} / 07$	$2022 / \mathrm{MAY/31}$	2157.1921				
1057679	GOLD RIDGE 8	1	$2018 / \mathrm{JAN} / 15$	$2022 / \mathrm{MAY/31}$	96.2462				
$1061281,83-85$	Gold Ridge 10, 9, 11 - 12	4	$2018 / \mathrm{JUN} / 18$	$2022 / \mathrm{MAY/31}$	771.0744				
TOTAL	20 claims						$\mathbf{2 0}$		$\mathbf{3 7 9 4 . 8 7 0 2}$

The Hixon Gold claims are subject to a Property and Sale agreement, dated May 25, 2019 whereby Golden Cariboo can purchase the Hixon Gold claims from Standard and Engineering Ltd. ("Standard Drilling") for a total consideration of \$567,000 consisting of $\$ 267,000$ in cash and $\$ 300,000$ in shares $(6,000,000$ at $\$ 0.05)$. Included in the cash total are annual payments of $\$ 80,000$ due in each of 2019,2020 and 2021 to fulfil the original option to purchase agreement between Standard Drilling and the original vendors.

The Property is situated within the traditional territory of the Lheidli T'enneh First Nation. There are no lands within the Property area that are withdrawn from staking and exploration. The mineral claims are situated on Crown Land and fall under the jurisdiction of the British Columbia Government. Under the provision of Section 14 of the Mineral Tenure Act, a claim grants the holder the right to use the surface for mining exploration purposes, but this is not a "surface right" such as on privately owned land. The claim holder has the right to enter onto the surface subject to the provisions in Section 11(2) of the Act which excludes this right under certain conditions, none of which encumber the Property.

A mineral claim holder is required to perform assessment work and is required to document this work to maintain the title as outlined in the regulations of the British Columbia Ministry of Energy and Mines. The amount of work required is $\$ 5.00$ per hectare for the first two years, $\$ 10.00$ per hectare for the third and fourth years, $\$ 15.00$ per hectare for the fifth and sixth, and $\$ 20.00$ per hectare thereafter. Alternatively, the
claim holder may pay twice the equivalent amount to the British Columbia Government as "Cash in Lieu" to maintain title to the claims.

Preliminary exploration activities do not require permitting, but significant drilling, trenching, blasting, cut lines, excavating and induced polarization geophysical surveys may require a permit, obtained by filing a Notice of Work and Reclamation with the British Columbia Ministry of Energy and Mines. A permit is currently in place for the Quesnelle Gold Quartz Mine Property, Permit Number MX-11-277 and Mine Number 1101942, valid to December 31, 2020. To the author's knowledge, the Quesnelle Gold Quartz Mine Property area is not subject to any environmental liability. Reclamation of the old workings at the Quesnel Quartz deposit was completed in 2000. The author does not foresee any significant factors and risks that may affect access, title, or the right or ability to perform work on the property.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY (Figures 1 and 2)

5.1 Access, Local Resources and Infrastructure

The Property is accessible via Highway 1 to 97 from Vancouver (Figure 1). From Hixon the property is accessible via the Lake Creek Road by turning left just past the railway bridge south of Hixon to the 3800 Forest Service Road (FSR) (Pedley Lake Road) on the left at km 1.8, which is followed to road junctions at km 5 (accesses southern Gold Ridge claims), and Pedley Lake at km 7 (left junction accesses the northern Gold Ridge claims and right junction connects to the Hixon Creek road) (Figure 2). Continue straight (north) for 3.2 km to a turn off on the left to access the Hixon Gold claims or continue to the north and east to access the northern Gold Ridge claims.

Alternatively, the Hixon Creek road can be taken on the right from the north end of Hixon to Pedley Lake, a distance of 9 km , then turning left to access the northern claims or right to access the southern Gold Ridge claims. At km 4 on the Hixon Creek road a branch road on the left extends for 2.4 km to the Hixon Gold claim boundary (Figure 2).

Hixon is the closest town with a population of approximately 280. Facilities include two service stations, limited grocery store, restaurant (closed in winter) and accommodation with main industries of forestry, construction, transportation and tourism. Hixon is located along BC Highway 97 about 60 km south of Prince George (population of 74,000) and 45 km north of Quesnel (population of 9,300), where more complete facilities, including the availability of heavy equipment, and mining oriented labour forces. Prince George is the major service and supply centre and transportation hub for northern British Columbia with an international airport, hospital and college. Main industries include forestry, mining, services, manufacturing, construction and transportation.

5.2 Physiography, Climate and Infrastructure (Figure 2)

The Property lies within the Fraser Basin and Plateau, part of the Interior Plateau of central British Columbia and is characterized by a gentle rolling topography with incised streams (Figure 2).

Elevations on the Property range from about 635 m along Hixon Creek in the southwestern Property area to about 1465 m above sea level on the eastern Gold Ridge claims. Vegetation in the area consists of fir and spruce forest, much of which has been logged within the Property area. Thick brush, including alder and devil's club occur within the creek valleys. Water is available year round from Hixon and Terry Creek, and their tributaries, which flow southwesterly into Naver Creek, part of the Fraser River watershed (Figure 2).

The area has warm summers and cool winters with high precipitation. Highs of 20 to $25^{\circ} \mathrm{C}$ are common in summer with lows of 5 to $10^{\circ} \mathrm{C}$, while winter highs average 3 to $5^{\circ} \mathrm{C}$ with lows of -5 to $-10^{\circ} \mathrm{C}$, although $-20^{\circ} \mathrm{C}$ and below is not uncommon. The exploration season extends from May to November.

Although there do not appear to be any topographic or physiographic impediments, and suitable lands appear to be available for a potential mine, including mill, tailings storage, heap leach and waste disposal sites, engineering studies have not been undertaken and there is no guarantee that such areas will be available within the subject property. The nearest source of power is at Hixon.

6.0 HISTORY
 (Figures 2 to 5)

The Quesnelle Gold Quartz Mine Property covers the Pioneer and Cayenne showings, the Quesnel Quartz deposit and most of the North Hixon showing as documented by the British Columbia Geological Survey Branch as Minfile Numbers 093G 013, 093G 014, 093G 015 and 093G 082, respectively (British Columbia Minfile, 2019) (Figure 2). Most of the historical work has been undertaken on the Quesnel Quartz gold-silver deposit, which produced 2,048 tonnes grading $3.14 \mathrm{~g} / \mathrm{t}$ Au and $4.18 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ in 1932 and 1939, with an additional 217 tonnes of unknown grade reported in 1878 (British Columbia Minfile, 2019). The Cayenne gold-silver showing lies 1 km east of the Quesnel Quartz deposit; some historical exploration was completed on it in conjunction with work on the Quesnel Quartz deposit. The Pioneer showing is a silver-lead-zinc occurrence with anomalous values in gold, which produced 4 tonnes of ore in 1927 grading $202 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, $3.15 \% \mathrm{~Pb}$ and $0.05 \% \mathrm{Zn}$ from a galena-sphalerite bearing quartz vein, but no recent documented exploration (British Columbia Minfile, 2019). An occurrence of mica (Hixon Mica), hosted in mica schists of the Snowshoe Group, is also reported 1 km upstream of the Cayenne showing along Hixon Creek, but no additional information is available.

Hixon Creek, which dissects the Hixon Gold claims, is a placer creek which has seen limited, small-scale placer production since the mid 1860's. From Ministry of Mines Reports prior to 1945 , estimates of up to $\$ 2,000,000$ worth of placer gold was mined from Hixon Creek.

A summary of the historical work completed by various operators on the individual occurrences, as documented in British Columbia Minfile, reports on file with the government (e.g. Annual Reports of, and assessment reports filed with, the British Columbia Ministry of Energy and Mines and publications of the Geological Survey of Canada), and various private company data, is tabulated below separately for each occurrence. Much of the work on the Quesnel Quartz deposit is documented in historical newspaper archives.
Pioneer: (work by T. Rush, J. Peters and associates)
1926 Underground development of 27.4 m consisted of an adit, winze and drift, exposing a 7.6 cm seam of galena and sphalerite which returned $21 \% \mathrm{~Pb}, 3 \% \mathrm{Zn}$ and $1423 \mathrm{~g} / \mathrm{t}$ Ag (Minister of Mines, 1927).
1927 Underground development of 21.3 m consisted of a shaft and an adit with 4 tonnes of ore grading $202 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 3.15 \% \mathrm{~Pb}$ and $0.05 \% \mathrm{Zn}$ shipped (Minister of Mines, 1928).

Cayenne:

1918 A 41m adit was driven on the Belmont group owned by McLarty and Gillis and $6.86 \mathrm{~g} / \mathrm{t}$ Au was returned from a quartz sample (Minister of Mines, 1919).
1926 The area was restaked by Hahn and Strbac as the Ceyanne group and some sampling was undertaken but no significant results were reported (Minister of Mines, 1927).
1929 The showing was optioned by Cariboo Lode Mines Limited and the adit was extended to 53 m and sampled, returning $8.23 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 13.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (Minister of Mines, 1930).
2004 Diamond drilling of 273.6 m of NQ core in 3 holes was conducted by Cayenne Gold Mines Ltd. 500 m east of the showing area in conjunction with work on the Quesnel Quartz deposit, but intersected the Oligocene to Pliocene conglomerate with no significant results (Javorsky and Briden, 2005).

Quesnel Quartz:

1865 Discovery of visible gold in quartz during ditch construction along Hixon Creek in conjunction with placer mining activities.
1866-1886 Initially underground development on the auriferous quartz veins along Hixon Creek was undertaken by individuals and then the Quesnelle Quartz Mining Co. Ltd. ("QQM Co.") was formed in the 1870's which continued the underground work. A stamp mill was built in 1878 with reported production of 217 tonnes of ore (Minister of Mines, 1878 and 1886).
1918 Minor work consisting of re-opening some workings and underground development was completed under option (Minister of Mines, 1919).
1929-30 The showing was optioned by Cariboo Lode Mines Ltd. and some underground rehabilitation work was performed (Minister of Mines, 1930 and 1931).
1932-1939 QQM Co. reorganized and dewatered the existing workings and completed additional underground development consisting of the Koch adit and shaft and Clarke adit on the north side of the creek, and continued to develop the Main shaft (-4 levels) with over 275 m of workings, including a 61 m winze from the 4th level (levels 5 \& 6), extensive drifting on the three lowest levels. In the Main shaft workings 29 quartz veins were recorded and sampled (Minister of Mines, 1934 to 1939). Production of 2,048 tonnes grading $3.14 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $4.18 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ was reported primarily in 1939, with some from 1932 (British Columbia Minfile, 2019). Work ceased abruptly in 1939, presumably because of the war.

The hoisting shaft head frames, concentrator, and mining facilities built by the QQM Co. in the 1930's are all gone. The concrete foundations of the Main Shaft head frame and remains of the ore bin are still evident.

Over 1220 m of underground workings are reported on the Quesnel Quartz deposit, with those documented in reports of the Minister of Mines, summarized in Table 2 with the workings from the Cayenne and Pioneer showings. A plan of the central underground workings at the Quesnel Quartz deposit is shown in Figure 4, and Figure 5 depicts the showings over the entire Property area.

TABLE 2: Underground development specifications

Working	Location	Easting	Northing	Elev. (\mathbf{m})	Az. $\left(\mathbf{(}^{\circ}\right)$	Length $\mathbf{(m)}$	Comments
Main Shaft	Quesnel Quartz	531802	5921644	745		63	=Washburn, Senator Reid
Main workings	Quesnel Quartz	531802	5921644	745		$600+$	drifts at 6 levels
Koch Shaft	Quesnel Quartz	531745	5921685	744		$21+$	and drifts
Koch Adit	Quesnel Quartz	531751	5921686	745		53	
Clarke Adit	Quesnel Quartz	531735	5921685	747		61	
Mason Shaft	Quesnel Quartz	531765	5921690			$12+$	and drifts
Raven Adit	Quesnel Quartz	531533	5921680	738		35	$=$ Stewart, Alvensleben
Stewart Shaft	Quesnel Quartz	~ 531610	~ 5921647				
Colgrove	Quesnel Quartz	~ 531950	~ 5921685	763			shaft \& 3 adits
Morrison Shaft	Quesnel Quartz	~ 531340	~ 5921560				
Johnson Shaft	Quesnel Quartz	531084	5921416				
Hercules Shaft	Quesnel Quartz	~ 531460	~ 5921480				
Belmont Adit	Cayenne	~ 532806	~ 5921518	777		41	location approximate
Rush Workings	Pioneer	~ 531353	~ 5923517	739		48.7	2 adits, shaft

FIGURE 3: Plan of main workings of the Quesnel Quartz deposit

Files of Newton Ker, the past president of the Quesnelle Quartz Mining Company, were recently (circa. 2016) released by the family, including many assay certificates, cross sections and mine plan maps and assay plans. Justason has been compiling this data and has depicted the mineralized zones on the longitudinal section in Figure 4 on the following page. The mineralized zones will be discussed under section 7.3, "Mineralization".

FIGURE 4: Main workings of the Quesnel Quartz deposit showing mineralized zones

FIGURE 5: Historical plan map - Quesnel Quartz deposit and Cayenne workings

The Property area remained dormant from 1939 until 1971 at which time Bethlehem Copper Corporation Ltd. ("Bethlehem") optioned the four claims over the Main Shaft area and staked a large block of claims surrounding them. About 60\% of the property (northern portion) lies within the current Property area. Bethlehem's exploration programs are summarized below:
1971 A reconnaissance geochemical soil survey (579 B-horizon soils at 152 m stations on lines 213 m apart from a 320° trending baseline), geological mapping, sampling and a photogeological study were completed. A 0.5 km by $>3 \mathrm{~km}$ northwest trending arsenic-gold anomaly was delineated despite the grid being oriented near-parallel to the regional geological strike. Only samples returning >8 ppm As and/or 1.5 ppm Ag (10\%) were analyzed for gold.
1972 The soil geochemical anomaly was tested with a 449 m diamond drill program in 4 holes, but only 2 holes were drilled in the current Property area, located northeast of the Main shaft. The holes intersected the Oligocene to Pliocene conglomerate with no significant gold or silver values and the property was allowed to lapse.
In 1979 Esperanza Explorations Ltd. optioned six claims over the old workings from Victor Guinett and Andrew Harman and added a larger block of claims surrounding them. They completed an initial evaluation program and collected 11 rock samples returning 0.03 to $2.88 \mathrm{~g} / \mathrm{t}$ Au (Jenks, 1979). The property was optioned to Golden Rule Resources Ltd. ("Golden Rule") of Calgary, Alberta, which contracted Taiga Consultants Ltd. ("Taiga") to complete their 1980 to 1983 work programs as summarized below. About 40% of the grid (northwest portion) lies within the current Property area. The work from 1980 to 1983 appears to have been completed for Calpetro Resources under option from, or joint venture with, Golden Rule.
1980-81 Ground magnetic and VLF-EM geophysical surveys (25 m readings), B-horizon soils at 25 m stations (957 samples for multi-element analyses) and mapping was conducted over a 30.5 km blazed-and-flagged grid over the central portion of the property (Fox, 1981). The northern 40% of the grid area, but 60% of the lines (15 $\mathrm{km})$ and about 574 samples lie within the current Property area, since lines over a $1 \mathrm{~km}^{2}$ area around the old workings were at a 100 m line spacing rather than 200 m .

The soil survey returned a value of 2650 ppb Au at the Koch zone with other values of 460 and 930 ppb Au away from the known workings. The magnetic survey outlined a $150-300 \mathrm{~m}$ wide by 3.6 km magnetic high anomaly, open to the south, with offsets suggestive of a northwest trending dextral fault regime, and a series of strong, northerly trending conductors (A to S) parallel to formational geologic contacts interpreted from the ground magnetic survey (Allan, 1984).
About 500m of bulldozer trenching, primarily in 3 trenches (91 samples) was also completed over the favourable greenstone-phyllite contact and 27 rock samples collected in the Quesnel Quartz area with trench results of $5.28 \mathrm{~g} / \mathrm{t}$ Au over 3m from 20 m above the Raven adit (Allan, 1984).
1983 Diamond drilling totaling 354 m in 4 holes was completed in the Raven adit and Main shaft areas with poor recovery in 2 holes, one of which was lost before target depth (Allan, 1984). Results include $5.72 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 20.6 \mathrm{~g} / \mathrm{t}$ Ag over 1.5 m in DDH 83-1 and $1.28 \mathrm{~g} / \mathrm{t}$ Au, $13.3 \mathrm{~g} / \mathrm{t}$ Ag over 6.1m in DDH 83-3 (Allan, 1984).

In 1984 Noranda Exploration Company Ltd. ("Noranda") commissioned Questor Surveys Ltd. to conduct an airborne electromagnetic and magnetic survey over the Yardley Lake and Hixon mineral claims of Gabriel Resources Inc. and surrounding area, which included the Quesnelle Gold Quartz Mine Property area (Konings, 1984). The INPUT survey was successful in delineating a large number of conductors in favourable stratigraphy in the Hixon area. The Property area and surroundings was acquired by Hixon Gold Resources Inc. in 1986, which jointly optioned the property to Noranda (operator) and Gabriel Resources. The 1987 and 1988 programs consisted of 1835 soil and 215 rock chip samples in 1987, 486 samples in 1988, ground magnetic (66.35 line km) and IP (8.5 km) geophysical surveys over a 57.3 line km grid, only about 30% of which covers the current Property area. Anomalies were followed up with 34 bulldozer trenches, with 916.5 m of diamond drilling in 8 holes on the Quesnel Quartz deposit (Simmons, 2008b). The soil geochemistry outlined anomalies in the vicinity of the mine workings, but the IP response was weak. The magnetic survey was useful in delineating geological contacts.

The property was subsequently allowed to lapse and the area of the current Quesnelle Gold Quartz Mine Property was acquired by prospector Dave Javorsky who in 1997 to 1998 completed a program of research, prospecting, road rehabilitation, and 2 trenches (which successfully uncovered the Clarke and Koch workings), and 6 samples were collected and assayed for gold and silver with no significant results (Javorsky, 1998).
In 2000, reclamation work was completed near the Briscoe pit and at the Quesnelle Gold Quartz Mine and Mill site, carried out under Section 17 of the Mines Act.
Javorsky optioned the ground to Cayenne Gold Mines Ltd. ("Cayenne Gold"), which carried out the following programs on their ground, which now included the current Quesnelle Gold Quartz Mine Property and ground near Pedley Lake (not part of the current Property area). The work discussed below only includes the work undertaken on the current Property area. (* denotes that all assay certificates are not included in the indicated reports.)
2004 Prospecting, line cutting, sampling and diamond drilling of 273.6m of NQ core in 3 holes 500m east of Cayenne showing area; the latter intersected the Oligocene to Pliocene conglomerate with no significant results (Javorsky and Briden, 2005).
2006 Prospecting, trenching (34 m in 2 trenches) and sampling was conducted across the Main shaft area (15m) and east of the Raven adit (19m), targeting a greenstone/phyllite contact zone for gold mineralization. The Main shaft was relocated with $68.8 \mathrm{~g} / \mathrm{t}$ Au over $1 \mathrm{~m} *$ about 5 m to the west and $2.70 \mathrm{~g} / \mathrm{t}$ Au over 5m, including $8.83 \mathrm{~g} / \mathrm{t}$ Au over 1 m from 3 m to the northeast. The Raven trench returned $0.41 \mathrm{~g} / \mathrm{t}$ Au over 6 m , centred 10 m east of the adit (Briden, 2006*).
2007 Prospecting and diamond drilling of 596 m of NQ core in 3 holes from one pad at the Main shaft area with $6.75 \mathrm{~g} / \mathrm{t}$ Au and $54.5 \mathrm{~g} / \mathrm{t}$ Ag over 3 m from DDH 07-1 and $11.8 \mathrm{~g} / \mathrm{t}$ Au and $12.9 \mathrm{~g} / \mathrm{t}$ Ag over 1.5 m from DDH 07-3 (Simmons, 2008*). A rock sample from the Landing outcrop (North Hixon showing), 700 m north of the Main shaft, assayed $3.62 \mathrm{~g} / \mathrm{t}$ Au (Simmons, 2008a).
2008 Prospecting and diamond drilling of 583 m of BQ core in 2 holes from one pad between the Main shaft and Raven adit, but no significant results were obtained (Simmons, 2008c).

The Property was acquired by Angelique Justason and Tom Hatton in 2012, 2013 and 2016 to cover the known mineral occurrences discussed above. Exploration by Justason and Hatton, conducted between 2012 and 2016, has included self potential ("SP") geophysical surveying (locations shown on Figure 2) and rock geochemistry as summarized below:

2012-13 Completion of 3.14 line km of SP geophysical surveying over the Quesnel Quartz deposit area detected known mineralized zones and suggested an open 500 m extension to the northwest (Justason, 2014).
2014 Exploration of historical showings of the Quesnel Quartz deposit with the collection of 9 rock samples (4 acid digestion-ICP-AES finish for multi-element analysis and metallic screen for Au), which returned $7.25 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 30.1 \mathrm{~g} / \mathrm{t} \mathrm{Ag} ; 6.96$ $\mathrm{g} / \mathrm{t} \mathrm{Au}, 14.9 \mathrm{~g} / \mathrm{t} \mathrm{Ag} ; 5.75 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 30.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ from the Main shaft dump with associated $\mathrm{Pb}(0.1-0.5 \%)$, As (0.1%) and $\mathrm{Ca}(3-4 \%)$ values from replacement style mineralization consisting of highly pyritic, carbonate altered rock (greenstone?) (Justason, 2015).
2016 A 2.5 line km SP geophysical survey was completed along on old mining road along Hixon Creek to crosscut veins, geological trends and structures associated with the Quesnel Quartz deposit and the Cayenne showing. Two main targets were highlighted and several anomalous areas, which correlate to previous soil and geophysical anomalies (Justason, 2016).
The following programs were completed on the Property by Frank Callaghan in 2017 and Standard Drilling in 2018, under option from Justason and Hatton.
2017 A 2.0 line km SP geophysical survey was completed, extending the 2016 survey to the east and west, and highlighted possible fault zones, conductive and narrow rock units, or contacts (Justason, 2018).
A one line 1.14 line km induced polarization and resistivity geophysical survey line was completed by Geotronics Consulting Inc. along a road across the Quesnel Quartz deposit (Mark, 2018). Results will be discussed in section 9.1, below. Location of the survey line is shown in Figure 2.
2018 A 750 hectare LiDAR and orthoimagery survey was completed and 3 rock samples were collected for geochemical analysis (Justason, 2019). Results will be discussed in section 9.2, below.

6.1 Geophysics

 (Figures 2 and 6 to 7)The survey outlined four anomalies, marked A to D (Figures 6 and 7), which generally correspond to the Mason (East) zone, between the Washburn (Main) and Raven, the Stewart/Raven and the Morrison-Hercules mineralized zones at the Quesnel Quartz deposit. The response was encouraging particularly for anomalies C and D, since drilling of the Raven zone has not been successful, but hampered by extremely low core recovery, and no documentation of mineralization encountered at the Morrison and Hercules adits has been found. A summary of the anomalies from Mark (2018) follows.

Anomaly A occurs at the extreme eastern end of the survey line at station 1090E, appears to be vertically dipping, averages about 20 m in width and probably reflects mineralization at the Mason shaft (probably correlative to Noranda's East zone). Anomaly B is centered at about 980E, averages about 70 m in width, is dipping
vertically, and appears to consist of two parts. Either one of these parts, or both, may be reflecting the Washburn (Main) mineral zone within the Quesnel Quartz mine. In addition, the IP and resistivity inversion sections suggest a thrust fault dipping at a shallow angle to the west through the mineralization. Anomaly C is centered at 780E, is about 110 m in width, appears to be dipping vertically as well and is very likely reflecting the Stewart/Raven mineral zone or possible faulting. Anomaly D is centered at 520E, is about 100 m wide, dips about -60° to the east and may reflect the Morrison-Hercules mineral zone.

The IP inversion section shows that all four mineral zones may extend to at least 40 m deep, open to depth. In addition, the widths of the anomalies given above are probably close to true width since the historical maps show a northwest strike to the mineralization and the average direction of the line was east-northeasterly.

6.2 Remote Sensing

(Figure 8)
LiDAR and orthoimagery were flown over the Property by Eagle Mapping Services Ltd. of Port Coquitlam, British Columbia on October 5, 2018 for Standard Drilling (Justason, 2019). A total of 750 hectares was flown over the entire property, using a Piper Navajo aircraft and a Riegl 1560 laser. Orthoimagery was acquired using an 80 megapixel Timble camera at a resolution of 15 cm . LiDAR (Light Detection and Ranging) is a remote sensing technology that measures distance by illuminating a target with a laser and analyzing the reflected light. LiDAR uses laser light to measure distance rather than radio waves as in RADAR. The result is the ability to produce accurate, detailed surface models quickly at reduced costs over conventional photogrammetric mapping.

The LiDAR survey was flown to provide a digital elevation model ("DEM") for draped contour maps and a bare-earth view of the ground below the canopy of vegetation in order to enhance structural and stratigraphic interpretation, and identify old workings and outcrop exposures (particularly in areas of poor exposure). An orthoimage was prepared to provide an accurate base for future surveys. A Trimble RTX system was used during the survey so that no ground control or base stations were required to be set up on site. The accuracy of the data was better than 15 cm vertically and 30 cm horizontally.

The LiDAR data clearly identifies the true elevation of several of the old workings in the digital elevation model ("DEM") which can be used in subsequent 3D modelling (Figure 8). A table of key elevations are noted below and as certain features are groundtruthed, additional data may be provided, including updating historical drill hole collars.

Table 3: Comparison of old survey versus LiDAR elevations

LOCATION	QQM Co. Elevation in feet	LiDAR DEM Elevation in feet (ft)
Main Shaft Collar	2395	$2350 \mathrm{ft}(730 \mathrm{~m})$
Stewart Adit	nil	$2401.57 \mathrm{ft}(732 \mathrm{~m})$
Clarke Adit	2365	$2411.42 \mathrm{ft}(735 \mathrm{~m})$
Clarke Raise	2417	$2467.2 \mathrm{ft}(752 \mathrm{~m})$

FIGURE 6: IP and RESISTIVITY 2D INVERSION PLOT (Mark, 2018)

FIGURE 7: IP and RESISTIVITY PSEUDOSECTION PLOT (Mark, 2018)

All drill programs completed in the area encompassing the Property are discussed under section 10.0, "Drilling".

7.0 GEOLOGICAL SETTING

7.1 Regional Geology

(Figure 9)
The regional geology of the Quesnelle Gold Quartz Mine Property is primarily summarized from Logan et al. (2010), Geoscience BC (2009) and Moynihan and Logan (2009).

The Property lies within the Quesnel, Slide Mountain and Kootenay (Barkerville subterrane in this area) terranes (Figure 9). The Quesnel terrane represents an extensive ($>2000 \mathrm{~km}$) west-facing calcalkaline-alkaline Late Triassic to Early Jurassic arc that developed outboard or proximal to the western margin of North America. It is characterized by Mesozoic volcano-sedimentary arc rocks of the Nicola, Takla and Stuhini groups and coeval plutonic rocks. Within the regional area of the Property the western Nicola Group includes augite porphyry tuffs, breccias and minor flows and sedimentary rocks, followed by forearc volcaniclastic dominated successions that grade eastward across the arc into backarc Middle to Late Triassic fine grained clastic rocks (Black Phyllite unit).

The eastern margin of the Quesnel terrane is marked by a discontinuous belt of variably sheared mafic and ultramafic rocks of the Crooked amphibolite, which are assigned to the Slide Mountain terrane, a Late Paleozoic marginal basin of oceanic basalt and chert that separated Quesnellia from North America.

The Eureka thrust, an east-verging thrust fault, marks the eastern boundary of the Slide Mountain terrane. The footwall to the Eureka thrust comprises Proterozoic-Paleozoic Snowshoe Group rocks of the Barkerville subterrane, which are pericratonic and likely represent distal sedimentation off ancestral North America. In this region, a conglomerate near the base of the Nicola Group contains foliated clasts derived from the Snowshoe Group and the Crooked amphibolite, suggesting that the western Slide Mountain/Quesnel terrane boundary, and where Slide Mountain is absent, the Kootenay/Quesnel terrane boundary, is or was initially an unconformity. The Eureka thrust is shown to transect the Quesnelle Gold Quartz Mine Property at the Hixon Mica showing in the eastern Property area.

Younger rocks in the area include Early to Middle Jurassic and mid-Cretaceous granitic plutons, Cenozoic sedimentary and volcanic sequences, including Miocene flood basalt. The Early Cretaceous Naver pluton underlies the eastern Property area.

FIGURE 9: REGIONAL GEOLOGY Legend on following page from Thomas, 2009

Miocene - Pleistocene
\square Chilcotin Group, basaltic volcanic rocks (M)
Oligocene - Pliocene
\square Conglomerate, coarse clastic sedimentary rocks (M)
Upper Eocene
\square Bowron River Coal Beds, sedimentary rocks (M)

Mid Cretaceous

Bayonne Plutonic Suite, granite, alkali feldspar granite (M)

Early Cretaceous

$\square \mathrm{N}$Naver Pluton, granite, quartz monzonite, monzonite, granodiorite; minor aplite, pegmatite; some screens of country rock (S)
Jurassic or Younger
\square Ultramafic intrusion (S85)
Jurassic
\square Gabbro, pyroxenite, hornblendite; lesser quartz diorite \& felsic segrations (ML)

Middle Jurassic
Ste. Marie Plutonic Suite, quartz monzonite, granodiorite, granite (S)
Early Jurassic
Syenite to monzonite (M)
Middle - Upper Triassic (S)
Nicola Group, augite porphyry basalt tuff, breccia, minor flows, tuffaceous argillite \& siltite; local andesitic basalt (S)
\square Nicola Group, limestone, quartz sandy limestone, slate (S)
b Nicola Group, basaltic tuff, tuffaceous siltite \& argillite, greywacke, slate; minorbasalt breccia \& agglomerate (S)
a Nicola Group, slate, argillite, phyllite, minor greywacke; lesser tuff, tuffaceous siltite \& argillite (S)

Middle - Late Triassic (ML)

\square Nicola Group (black phyllite unit), metapelitic phyllite, banded metasiltstone, calcareous phyllite (ML)
Nicola Group (volcaniclastic unit), conglomerate with volcanic \& subvolcanic clasts, lithic \& crystal sandstone \& siltstone, lesser cherty sedimentary rocks; interlayered with pyroxene-bearing basaltic breccia flows \& hyaloclastite deposits (ML)
Permian - Triassic
\square Cache Creek Complex, chert, siliceous argillite, siliciclastic rocks (M)
Mississippian - Permian
Slide Mountain Group
Crooked Amphibolite, serpentinite, sheared ultramafic rock, amphibolite, talc (S)
\square Antler Formation, basalt pillows \& breccia, diorite, minor serpentinite (S)

Ordovician - Lower Mississippian

 Black Stuart Group, sedimentary rocks (M)
Lower Cambrian

\square Gog Group, Mural Formation, sedimentary rocks (M)
Palaeozoic
\square Snowshoe Group, greenschist, greenstone (M)
Proterozoic (?) \& Palaeozoic (?)
d Snowshoe Group, orthoquartzite, schistose quartzite, schist, phyllite (S)
c Snowshoe Group, schistose quartzite, schist, phyllite, marble, amphibolite, siltite, minorquartzite (S)

	Thrust fault
	Fault (some are strike-slip)
	Northwest limit of mapping by Moynihan and Logan (2009)

7.2 Property Geology

(Figure 10)
Property scale mapping has been greatly hampered by the paucity of outcrop (<0.5\%). Recent mapping has not been undertaken, but historically more regional mapping was initially undertaken by Bethlehem in 1972 with more property scale mapping by Taiga for Golden Rule in 1980 to 1983. The Taiga mapping was completed at a 1:2500 scale within a $1 \mathrm{~km}^{2}$ grid over the Quesnel Quartz deposit and at a 1:5000 scale along trend, with detailed 1:1000 scale mapping of trenches, old workings and roads. Much of this area is overgrown, sloughed and disturbed by later placer, logging and exploration activity and was completed prior to GPS control. The geology map used in Figure 7 is modified from the British Columbia Geological survey website (http://www.empr.gov.bc.ca/Mining/Geoscience/MapPlace) and is a generalization for the geology of the property area.

The Hixon Gold claims, in the western Quesnelle Gold Quartz Mine Property area, are primarily underlain by Middle to Upper Triassic volcanic and sedimentary rocks of the Nicola Group. In the far western property area the Nicola Group is dominated by basalt augite porphyry of the Witch Lake succession (uTrNpbb). These are interlayered with transitional sedimentary rocks of the Inzana Lake succession (uTrNvs) around the Quesnel Quartz deposit further east, which include phyllitic volcanic sandstone and siltstone, siltstone and sedimentary breccia, and minor basalt breccia and conglomerate. The Black Phyllite unit, which includes sandstone, siltstone, shale, slate and phyllite, bioclastic limestone, minor felsic tuff and tuffaceous argillite, occurs further east (uTrNbp), with minor porphyritic basalt breccia even further east (uTrNv). The Spanish thrust appears to separate the Inzana Lake succession from the Black Phyllite unit within the Nicola Group.

The eastern Hixon Gold and western Gold Ridge claims are underlain by the Proterozoic-Paleozoic Snowshoe Group (uPPs) consisting of schistose quartzite, schist, phyllite and gneiss, with minor marble, quartzite and amphibolite. At the Hixon Mica showing gneiss and mica schists are documented. The Eureka thrust fault separates the Snowshoe Group of the Barkerville subterrane from the Nicola Group of the Quesnel terrane with local exposures of ultramafic rocks of the Slide Mountain terrane along its extent.

Quartz-carbonate-mariposite (listwanite) occurs at the Quesnel Quartz deposit and as float at the Main shaft dump suggestive of the presence of ultramafic rocks. The observed listwanite is commonly associated with north-northwesterly trending shear zones, which may represent splays related to the Spanish thrust. Minor serpentinized shear zones have also been observed in the greenstones. Ultramafic rocks may also occur in the Hixon Mica area and/or along trend along the Eureka thrust.

The Nicola Group is intruded by a syenite-diorite/gabbro body, assigned to the Early Jurassic Polaris Ultramafic suite (EJmum), along the western Property boundary, exposed along Hixon Creek. The Snowshoe Group is intruded by the Early Cretaceous Naver pluton (KNa) to the east, with compositions ranging from granite to alkali feldspar granite and minor granodiorite. The eastern Gold Ridge claims are shown to be underlain by the foliated equivalents along the margin of the pluton.

The above units are locally overlain by Oligocene to Pliocene conglomerate and clastic sedimentary rocks (OIPicg). The conglomerate was intersected in the 2004 drilling just east of the Cayenne showing and a conglomerate was intersected in the two Bethlehem drill holes. There is a discrepancy related to the actual position of the Bethlehem holes and they may also have been drilled in the area east of the Cayenne showing. However two old drill holes were documented by Taiga in 1983 to the northeast of the Main shaft at the Quesnel Quartz deposit.

A table of formations for the Property follows:
Oligocene to Pliocene OIPing: conglomerate and clastic sedimentary rocks
Early Cretaceous KNa: Bayonne plutonic suite: Naver pluton: granite, alkali feldspar granite, foliated along west margin

Early Jurassic EJmum: Polaris Ultramafic suite: syenite and diorite/gabbro

Middle to Upper Triassic

Nicola Group:

uTrNv: porphyritic basalt breccia
uTrNbp: Black Phyllite unit: sandstone, siltstone, shale, slate and phyllite, bioclastic limestone, minor felsic tuff and tuffaceous argillite
uTrNvs: Inzana Lake succession: volcanic sandstone and siltstone, siltstone and sedimentary breccia, and minor basalt breccia and conglomerate
uTrNpbb: Witch Lake succession: basalt augite porphyry

Mississippian-Permian

Slide Mountain Group: Crooked Amphibolite, serpentinite, sheared ultramafic rock, amphibolite and talc

Proterozoic-Paleozoic

Snowshoe Group: schistose quartzite, schist, phyllite and gneiss, with minor marble, quartzite and amphibolite

7.3 Mineralization (Figures 2 to 10)

The Quesnelle Gold Quartz Mine Property covers the historical Pioneer and Cayenne showings, the Quesnel Quartz deposit and part of the North Hixon showing as documented by the British Columbia Geological Survey Branch as Minfile Numbers 093G 013, 093G 014, 093G 015 and 093G 082, respectively (British Columbia Minfile, 2019) (Figures 2 and 10). The most significant mineralization to date has been found at the Quesnel Quartz deposit. The following discussion on the mineralization is primarily summarized from Allan (1984), Adamson (1988) via Simmons (2008b), reports of the Minister of Mines (1878 to 1939) and miscellaneous reports and maps of the Quesnelle Quartz Mining Company (1930's).

Historically, at least three main northwest trending gold-silver zones were identified crossing Hixon Creek over a distance of 500 m at the Quesnel Quartz deposit. From east to west the zones were the Washburn, the Stewart, and the Morrison ledges, which
were explored by: the Main shaft, associated workings and the Mason shaft; the Stewart shaft and possibly the Raven adit and; the Morrison and Hercules shafts, respectively. The mineralization at the Mason shaft is probably a separate zone from the Washburn (Main) and explored the East zone, which was intersected in Noranda's 1987 to 1988 drill programs.

The gold-silver mineralization was found to occur primarily in quartz \pm carbonate veins, but also in the quartz-carbonate-pyrite altered greenstone, and less commonly in phyllitic sedimentary rocks, but proximal to and following the contact between the greenstone and phyllite. The latter two types are referred to as replacement ore. The veins, which vary from a few centimetres up to about 1.8 m in width, generally terminate against the contact. Mineralization includes native gold, native silver, galena, sphalerite, chalcopyrite, molybdenite, arsenopyrite, pyrrhotite and pyrite. Both quartz vein hosted and replacement style mineralization was documented, with replacement mineralization within the pyritized and carbonatized greenstone more prevalent at depth. The pyrite is fine grained, commonly with other sulphide, and can comprise 30% of the rock.

The Main zone, which has seen the most work, comprises the principal gold zone on the Quesnelle Gold Quartz Mine Property and consists of a network of quartz veins over a northwest trending, $70^{\circ} \mathrm{NE}$ dipping, 40 m wide by 140 m long and 190 m deep zone. Up to 29 quartz veins were recorded in the mine workings which extend 120 m vertically beneath the surface.

The geological setting within the mine (Main shaft and associated workings) was mapped by the British Columbia Department of Mines in 1933 and 1934 after dewatering by the Quesnelle Quartz Mining Company (Minister of Mines 1936). The geology consisted of dark green, fine grained greenstone (meta-basalt), in contact on the southwest with quartz sericite schists (phyllite, including volcaniclastic and other clastic sedimentary rocks). Lithological contacts strike 320°. In the upper levels of the mine, dips are steeply northeast and in the lower levels, they dip moderately southwest. Moderate to intense hydrothermal alteration is pervasive. In basalts, it comprises quartz, carbonate, and pyrite; in the felsic schists, it consists of clay and pyrite. The oxidized or weathered zone in the basalt ranges from 25 to 30 m in depth.

The Main zone was intersected in DDH 83-1, 83-3, 87-1, 87-2, 88-4, 88-5, 88-6 and 071 , and is stratiform (essentially parallel to the volcanic-sedimentary contact. Quartz veins occur almost exclusively in greenstone. A second vein system within the zone strikes northeast and generally dips steeply southeast and occurs proximal to the contact.

The East zone lies 25 m northeast of the Main zone and consists of a northwesterly trending quartz vein zone apparently dipping northeast and stratiformly hosted by greenstone. It was traced over a length of 90m in seven drill holes (DDH 83-1, 87-1, 87-$2,88-4,88-5,88-6,07-3$) and remains open to the northwest.

The Raven zone lies 270 m westerly from the Main zone near the site of an old adit. A chip sample collected in 1981 from a quartz vein exposed by a trench 20 m above the Raven adit assayed $5.28 \mathrm{~g} / \mathrm{t}$ Au over 3m (Allan, 1984). Drilling has not been successful on this zone, possibly due to the extremely poor core recoveries encountered.

The North Hixon showing (Figure 10), approximately 1 km north of the Main shaft, reportedly north of an old logging landing at $531886 \mathrm{mE}, 5922319 \mathrm{mN}$, consists of numerous narrow quartz veins hosted by greenstone. Noranda obtained gold values in excess of $1 \mathrm{~g} / \mathrm{t}$ in four trenches, including $1.42 \mathrm{~g} / \mathrm{t}$ over 2 m and $1.24 \mathrm{~g} / \mathrm{t}$ over 3 m . Grab samples taken from veins in two other trenches assayed $6.36 \mathrm{~g} / \mathrm{t}$ and $1.38 \mathrm{~g} / \mathrm{t}$ (Simmons, 2008b). A sample from the landing outcrop returned $3.62 \mathrm{~g} / \mathrm{t}$ Au (Simmons, 2008a). The zone lies 1.2 km northwest (possibly along trend?) of the Cayenne working.

The Cayenne showing, 1 km east of the Main zone, covers a 0.6 to 1.2 m wide quartz vein and several smaller quartz stringers hosted by highly altered and weathered quartz sericite schist (phyllite). Gold values have been reported from both the quartz and from the phyllite. A quartz sample reportedly returned $6.86 \mathrm{~g} / \mathrm{t}$ Au in 1918 (Minister of Mines, 1919) and $8.23 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 13.7 \mathrm{~g} / \mathrm{t}$ Ag was obtained in 1930 (Minister of Mines, 1930). Gold values have been spotty, but there is no documentation of systematic sampling and the trend of mineralization has not been documented or is unknown; the adit trends 145°. No work has been documented in recent times.

The Pioneer showing, 1.9 km north of the Main zone, consists of a northerly trending, northeast dipping, narrow quartz vein with galena and sphalerite hosted by carbonaceous shale. A 7.6 cm seam returned $21 \% \mathrm{~Pb}, 3 \% \mathrm{Zn}$ and $1423 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (Minister of Mines, 1927). Anomalous gold values have also been recorded from the vein. No recent work has been documented.

The eastern Hixon Gold claims and the western and southwestern Gold Ridge claims cover prospective stratigraphy of the Barkerville subterrane, which hosts the Bonanza Ledge, Cariboo Gold Quartz, and Island Mountain mines at Wells, British Columbia. An industrial mineral showing of mica (Hixon Mica) straddles Hixon Creek within the Barkerville subterrane near the eastern margin of the Hixon Gold claims.

8.0 DEPOSIT TYPE

The main deposit model for the Quesnelle Gold Quartz Mine Property is the orogenic (also known as mesothermal, gold quartz, greenstone, Mother Lode) type, consisting of gold bearing quartz veins and quartz-carbonate-pyrite replacement style mineralization. Deposits are of post-Middle Jurassic age in the Cordillera, and appear to form immediately after accretion of oceanic terranes to the continental margin. The following characteristics of the gold-quartz vein deposit model are primarily summarized from Ash and Alldrick (1996). Associated deposit types include gold bearing sulphide mantos, silica veins and placer gold.

This type of deposit typically occurs as gold bearing quartz-carbonate veins and veinlets with minor sulphides crosscutting varied hostrocks and localized along major regional faults and related splays. The wallrock is typically altered to silica, pyrite and muscovite within a broader carbonate alteration halo. Largest concentrations of free gold are commonly at, or near, the intersection of quartz veins with serpentinized and carbonate altered ultramafic rocks.

Gold-quartz vein type mineralization commonly occurs in a system of en echelon veins on all scales. Tabular fissure veins occur in more competent host lithologies, with veinlets and stringers forming stockworks in less competent lithologies. Generally lower grade bulk-tonnage styles of mineralization may develop in areas marginal to veins with gold associated with disseminated sulphides (replacement style) and may also be related to broad areas of fracturing with gold and sulphides associated with quartz veinlet networks. Major ore controls are secondary structures at a high angle to relatively flat-lying to moderately dipping collisional suture zones, and competent host rocks.

Ore minerals include native gold, pyrite, arsenopyrite, with lesser galena, sphalerite, chalcopyrite, pyrrhotite, tellurides, scheelite, bismuth minerals, cosalite, tetrahedrite, stibnite, molybdenite and gersdorffite (nickel, arsenic sulphide) in a gangue of quartz and carbonates (ferroan-dolomite, ankerite, ferroan-magnesite, calcite and siderite), and lesser albite, mariposite (fuchsite), sericite, muscovite, chlorite, tourmaline, graphite. Host rocks are varied including mafic volcanic rocks, ultramafic and mafic intrusions, fine clastic rocks, chert, and felsic to intermediate intrusions. On the Quesnelle Gold Quartz Mine Property quartz-carbonate veins are present and mineralization is hosted by mafic volcanic, with possible ultramafic, and lesser sedimentary rocks. Native gold, pyrite, arsenopyrite galena, sphalerite, chalcopyrite and tennantite have been identified on the property.

Silicification, pyritization and potassium metasomatism generally occur adjacent to veins (usually within a metre) within broader zones of carbonate alteration, extending up to tens of metres from the veins. Carbonate alteration consists of talc and iron-magnesite in ultramafic rocks, ankerite and chlorite in mafic volcanic rocks, graphite and pyrite in sediments, and sericite, albite, calcite, siderite and pyrite in felsic to intermediate intrusions. Quartz-carbonate altered rock and pyrite are often the most prominent alteration minerals in the wallrock. Fuchsite/mariposite, sericite and scheelite are common where veins are associated with felsic to intermediate intrusions.

Elemental associations are gold, silver, arsenic, antimony, potassium, lithium, bismuth, tungsten, tellerium and boron, \pm (copper, lead, zinc and mercury). Geophysics is useful in outlining faults indicated by linear magnetic anomalies and areas of carbonate alteration indicated by negative magnetic anomalies due to destruction of magnetite.

$9.0 \quad 2019$ EXPLORATION (Figures 2, 11 to 14)

The 2019 exploration program, which was funded by Golden Cariboo Resources Ltd., consisted of $487 \mathrm{~m}^{3}$ of excavator trenching and pitting, with geological mapping and sampling, minor property mapping and sampling and improving 2 km of the south access road. A total of $263 \mathrm{~m}^{3}$ of trenching was completed in 9 trenches covering a cumulative length of 210 m , and $224 \mathrm{~m}^{3}$ of pitting (due to thick overburden) was completed in 25 pits. Trench and pit specifications are summarized on the following page. A total of 120 samples were collected from the pits and trenches, 3 of which were soil samples, and an additional 1 stream sediment and 30 rock samples were collected during mapping/sampling.

The property scale mapping, sample locations with significant gold results and an index showing the detailed areas of trenching are shown in Figure 11, with a detail of the Quesnelle Quartz Deposit area in Figure 11a. The detailed trench maps are shown in Figures 12 to 14, with sample locations and gold, silver results in Figures 12a to 14a. Complete sample descriptions and select results are shown in Appendix II with complete results in Appendix III. An additional 12 samples were inserted for quality assurance and quality control ("QAQC"), which will be discussed under section 9.1, "2019 Sample Preparation, Analyses and Security".

TABLE 4: 2019 trench and pit specifications

TRENCH/ PIT NO.	NAD 83 Zone 10		Azimuth (${ }^{\circ}$)	Length (m)	Volume $\left(\mathrm{m}^{3}\right)$	No. of Samples
	EASTING	NORTHING				
TR19-01	531788	5921665	125	42	50	19
TR19-01a	531788	5921665	205	4.8	10	5
TR19-02	531841	5921621	280	50	65	21
TR19-03	531737	5921607	50	7	7	3
TR19-04	531584	5921663	120	20.7	22	14
TR19-05	531718	5921723	220	20	30	8
TR19-06	531691	5921726	50	20.5	30	2
TR19-07	531694	5921729	325	20	30	1
TR19-08	531546	5921713	330	4	9	2
TR19-09	531528	5921690	115	21	10	9
PIT19-01	531285	5921207	4.9 m D	till	15	0
PIT19-02	531543	5921364	4.9 mD	soil	15	1 S
PIT19-03	531776	5921622	<1m D	outcrop	5	1
PIT19-04	531731	5921594	<1m D	outcrop	5	2
PIT19-05	531855	5921512	4.9 m D	grey clay	10	0
PIT19-06	531890	5921524	5.2 m D	soil, chips	10	1, 2S
PIT19-07	531791	5921583	4 mD	till	8	0
PIT19-08	531819	5921608	3.7 mD	float train	8	2
PIT19-09	531818	5921612	3.5 mD	outcrop	7	1
PIT19-10	531726	5921535	1.8 mD	outcrop	5	1
PIT19-11	531683	5921533	3.7 mD	clay, till	7	0
PIT19-12	531607	5921486	2.5 m D	mud	6	0
PIT19-13	531598	5921652	along	road	6	0
PIT19-14	531572	5921682	sample line @ 240 ${ }^{\circ}$		15	6
PIT19-15	531736	5921690	Clarke	adit	12	5
PIT19-16	531696	5921663	along	road	5.5	0
PIT19-17	531692	5921662	along	road	9	2
PIT19-18	531435	5921596	along	road	6	1
PIT19-19	531440	5921608	yellow	clay	5.5	0
PIT19-20	531465	5921655	orange	phyllite	6	0
PIT19-21	531423	5921581	red	clay	8	0
PIT19-22	531426	5921572	yellow	clay	8	0
PIT19-23	531392	5921554	grey	clay	7	0
PIT19-24	531745	5921685	Koch	shaft	15	4
PIT19-25	531751	5921686	Koch	adit	20	7
TOTAL					487	117, 3S

D denotes depth; S denotes soil sample

LEGEND for Figure 11

入 adit
回 shaft
, previous drill holes
(P) 2019 pit

- 2019 trench

D IP Anomaly
R rusty soil

- 2019 rock sample
- 2WD road
- 4WD road
trail, may be overgrown

LEGEND for Figures 12-14

_. - geological contact
1
quartz vein in place
quartz stringers, discontinuous veinlets
\triangle quartz vein float
W water

LEGEND for Figures 11-14

GEOLOGY

OIPicg: Oligocene-Pliocene clastic sediments and conglomeratePhy: phyllitic sedimentary rocksargillaceous phylliteGs: greenstone on Figure 11all Gs is carbonate altered on Figures 12-14carbonate altered greenstone on Figure 11L: listwanite
Lst: limestoneoutcrop
\triangle float

RESULTS

54929 = S054929 (5.28, 2.1)
2019 sample no. ($\mathrm{g} / \mathrm{t} \mathrm{Au}, \mathrm{g} / \mathrm{t}$ Ag)
M denotes moss mat stream sample
S as suffix denotes soil sample

The trenching/pitting, involving a total of 125.5 excavator hours, was completed by Standard Drilling of Vancouver, British Columbia with a Samsung 350 excavator. The operator was prospector Gary Polischuk of Lillooet, British Columbia, who has extensive experience (about 45 years) prospecting and as an excavator operator in the WellsBarkerville and Bralorne gold camps and regional area of Lillooet-Goldbridge. Mapping and sampling was completed by, or under the direction of, the author. A total of 35.5 man days were spent on the property (excluding excavator operator), including mobilization/demobilization within British Columbia.

Access road:

Initially the 2 km long access road into the southern workings of the Quesnel Gold Quartz deposit (Main shaft area) was improved, due to overgrowth and fallen trees, to maintain four wheel drive access to the south side of Hixon Creek (Figure 2). The Main shaft accessed the principal workings of the Quesnel Gold Quartz deposit.

Two pits were excavated along the access road on the way in and another two on the way out (Figure 11). Pit19-1 tested the strike extent of the Johnson shaft, shown on old maps about 300 m to the northwest, and Pit 19-2 tested the possible strike extent of the "660" IP anomaly (between the C and D anomalies) located about 225 m to the northwest. Neither pit intersected bedrock, despite reaching an almost 5 m depth. However, C horizon soil was sampled (S054850) from Pit 2, and small bits of sheared, heavy, dark weathering, magnetic, probable ultramafic rock was encountered in the bottom of Pit 2. The soil sample did return elevated nickel, chromium and magnesium values suggestive of mafic to ultramafic bedrock. Pits 19-11 and -12 targeted two possible southeast projections of the Raven zone in favourable locations (possible shallower overburden and lack of slide material), but did not reach bedrock.

QGQ South:

Two trenches (TR19-01 and -02) were excavated in the Main shaft area (Figure 12), exposing carbonate altered greenstone to the northeast, phyllitic metasedimentary rocks to the southwest, a lens of listwanite at the contact, and possible listwanite fault slivers. TR19-01a constitutes an extension from the start of TR19-01 to locate the greenstone-listwanite/phyllite contact. The listwanite does contain higher Ni (>300 to about 1200 ppm), Mn ($>1,000 \mathrm{ppm}$), Cr ($>500 \mathrm{ppm}$) and Mg ($>1 \%$) values than the carbonate altered greenstone, is generally harder, heavier and more siliceous, and locally contains flecks of mariposite.

At the start of TR19-01, large 0.5 by 1 m sized quartz boulders were uncovered at a depth of about $0.5-1 \mathrm{~m}$. Trends of $045-050^{\circ} / 60^{\circ} \mathrm{W}, 80^{\circ} \mathrm{W}$ and $75^{\circ} \mathrm{E}$ were obtained. Deepening of the trench for sampling intersected a vein trending $025^{\circ} / 75^{\circ} \mathrm{E}-80^{\circ} \mathrm{W}$, which appears to be a distinct vein. Significant precious metal results were not obtained from the 025° trending vein and adjacent wallrock (samples 1690201-206), but stockpiled boulders from the original vein returned 16.5 and $5.73 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, accompanied by 54 and $14.8 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$, respectively (1690249 and 1690250).

FIGURE 12: MAIN SHAFT DETAIL

FIGURE 12a: MAIN SHAFT DETAIL sample results

FIGURE 12b: MAIN SHAFT DETAIL SW
A grab from other quartz boulders, with 30% pyrite layers and seams and minor carbonate, further towards Hixon Creek, returned $8.44 \mathrm{~g} / \mathrm{t}$ Au with $7.1 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (1690245), and pyritic, possible silicified limestone at this location returned $5.24 \mathrm{~g} / \mathrm{t}$ Au with $4.5 \mathrm{~g} / \mathrm{t}$ Ag (1690246). The source of these boulders appears to be from underground on the Main shaft since similar material was not found in this area except at the ore bin, located about 60 m southwest of the Main shaft. A grab of pyritic silicified limestone float from the ore bin yielded $2.00 \mathrm{~g} / \mathrm{t}$ Au with $4.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and 2190 ppm As (S054844). The silicified limestone float varies from light grey to mauve in colour and contains 3.4 to 5.5% Ca with low nickel and chromium values.

A few veins in the first 15 m of TR19-02 returned significant gold results; a 0.3 m vein at 0 m returned $6.96 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (1690221), a 0.5 m vein at 7 m returned $1.93 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (1690224), with $4.41 \mathrm{~g} / \mathrm{t}$ Au over 1 m from the silicified carbonate altered greenstone hanging wall (1690226), and a 1.7 m wide vein zone at 13 m ran $7.65 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (1690227). A sample of a manganiferous quartz float train in overburden from the wall of Pit 8 , which lies 16 m southerly (195°) along trend from the 1690227 vein zone, yielded $3.69 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (S054914). This vein appears to lie proximal to the greenstone/phyllite contact.

A red-brown rusty highly pyritic, possible listwanite zone (moderate nickel-chromium geochemistry) at 28.6 to 30 m in TR19-02 contained $1.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 4.5 \mathrm{~g} / \mathrm{t}$ Ag over 1.4 m (1690235), but a similar 1.3 m wide zone to the east, separated by a basalt dyke, did not contain significant gold (1690234). Both samples returned anomalous arsenic (458 and 643 ppm) with high iron (6.3 and 7.5%). A similar zone that trends $020^{\circ} / 80^{\circ} \mathrm{W}$ along a fracture/fault zone was encountered at 32.1 to 32.5 m in TR19-01, returning $16.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, $10.1 \mathrm{~g} / \mathrm{t}$ Ag with 1980 ppm As and $>30 \%$ Fe over 0.4 m (1690218). A 1 by 1 m panel sample of the gougey hanging wall with quartz veins to 3 cm yielded $4.95 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 9.4 \mathrm{Ag}$ and 8.3% Fe (1690217). The rusty, pyritic listwanite exposures lie along a 010° trend 18m apart.

TR19-01a intersected a 50 cm banded quartz vein at the listwanite/phyllite contact with rusty bands and 5\% pyrite, but did not contain significant results (S054903). The listwanitic hanging wall yielded enhanced gold of $1.74 \mathrm{~g} / \mathrm{t}$ over 1 m (S054902).The contact was found to follow the foliation at $300 / 87^{\circ} \mathrm{E}$. Overall the contact trends about $315-320^{\circ}$ in this area.

Pits19-03 and -04 and TR19-03 (Figure 12b) were excavated along the main access road to explore for the strike extensions of veins encountered in TR19-01. Pit19-03 was excavated to trace the vein encountered at the start of TR19-01 but only intersected gougey, clay altered orange-grey phyllite. A sample over 1.4 m did not contain significant results. Foliation here trends $340^{\circ} / 88^{\circ} \mathrm{E}$. TR19-03 was excavated to trace the vein float encountered at a shallower depth in TR19-01, which trended 045-050 ${ }^{\circ}$. The trench intersected phyllite with fractures, gouge zones and a 3 cm quartz lens (S054846-48), but no significant values. Foliation and fault zones trend $340^{\circ} / 90^{\circ}$, and cherty cross fractures $050^{\circ} / 90^{\circ}$. Pit $19-04$ intersected a 12 cm vein along the foliation ($335^{\circ} / 77^{\circ} \mathrm{W}$) hosted by rusty orange-maroon-tan phyllite with no significant values (S054906-7).

Pits19-05 and -06 were excavated along an old road that extends to the east for about 350 m , about 70 m south of Hixon Creek, targeting the greenstone/phyllite contact (Figure 11). No bedrock was intersected but Pit19-06 uncovered orange-brown sericitic and red oxidized clayey soils (S054909-910). The former contained rusty looking chips with pyrite and minor quartz to 0.7 cm and returned elevated nickel, chromium, lead, zinc, and arsenic values with 134 ppb Au and 1.2 ppm Ag, suggestive of a mafic to listwanite source with elevated precious metals. Decomposed quartz-biotite-weak sericite-pyrite lenses were sampled that resembled the Naver granodiorite in the uplands to the east, but no significant results were obtained (S054908).

Pits19-07 to -09 were excavated along the road to the ore bin. Pit19-07 targeted the projected southern strike extension of the 010° trending rusty, pyritic listwanitic zone intersected in TR19-01 and -02, but did not reach bedrock. Pits19-08 and -09 targeted the greenstone/phyllite contact. Pit 8 did not reach bedrock, but a quartz float train was evident within the till that is described in the discussion of quartz veins, above (S054914). Pit 9 intersected relatively flat, orange and purple-mauve layered, strongly clay altered and decomposed fine clastic sedimentary rocks with wisps of Mn, which appear to be part of the younger Oligocene to Pliocene cover rocks. The same sedimentary rocks were intersected near the plotted location of the Robb shaft in Pit19$10,120 \mathrm{~m}$ southwest of Pit 9 . The sedimentary rocks were quite flat with one hard, thin red-brown layer about 2 m down trending $330^{\circ} / 35^{\circ} \mathrm{W}$, which returned $28.7 \% \mathrm{Fe}$ (S054917).

The phyllite and veins hosted by the phyllite do not contain significant gold or silver values. Banded quartz veins occur at the contact between the phyllite and greenstone or listwanite (1690240, 1690243, S054903), but do not contain significant gold.

QGQ North:

The Clarke adit and Koch adit and shaft constituted the principal workings of the Quesnel Gold Quartz deposit on the north side of Hixon Creek (Figure 14). Pits were excavated here to locate the workings and to intersect the phyllite/greenstone contact and possible quartz veins. Pit19-15 intersected the Clarke adit, as identified by the presence of timbers, exposing the phyllite/greenstone contact with the phyllite on the west and greenstone on the east side. A 0.37 m quartz vein trending $222^{\circ} / 85^{\circ} \mathrm{NW}$ is present at the contact, yielding $6.0 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $10 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ over the 0.37 m (S054963), but narrows through the phyllite. The hanging wall and footwall returned gold values of 0.24 g / t over 0.4 m and $0.44 \mathrm{~g} / \mathrm{t}$ Au over 1 m , respectively (S054962, 64). A sample across the contact yielded $0.57 \mathrm{~g} / \mathrm{t}$ Au over 0.9 m (S054966). Foliation trended $347^{\circ} / 40^{\circ} \mathrm{E}$, progressively becoming steeper to the east to $347^{\circ} / 60^{\circ} \mathrm{E}$.

Clay altered phyllite within a fault zone with quartz boulders were evident in Pit19-24 at the Koch shaft. Graphitic material was evident on the west side coating quartz (S054899). No significant results were obtained from grab samples of quartz boulders or the clay gouge wallrock (S054896-899).

Pit19-25 on the Koch adit intersected a 1.75 m wide quartz vein hosted by the more competent greenstone, trending $225^{\circ} / 75^{\circ} \mathrm{NW}$. The vein may represent the extension of, or a sub-parallel vein to, the vein intersected in the Clarke adit. Due to poor ground conditions only 0.6 m of the footwall side of the vein could be sampled, which returned $17.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $61.5 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ over the 0.6 m (S 054893). The hanging wall did not return significant results over 0.35 m (S054894), but the footwall yielded $1.94 \mathrm{~g} / \mathrm{t}$ Au over 0.5 m (S054892). A grab of highly pyritic vein material from quartz vein boulders within the pit returned $45.9 \mathrm{~g} / \mathrm{t}$ Au with $>100 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (S054891). A grab sample of a possible second vein, $30-40 \mathrm{~cm}$ wide and trending about 020°, in the floor of the pit at about a 5.5 m depth returned $0.34 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ with $17.9 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (S054890) and a grab of clay gouge with quartz fragments at this depth yielded $0.82 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ (S054889).

A lense of listwanite (possibly 5 m wide) appears to follow foliation about 6 m east of the Koch adit and may be continuous with the listwanite encountered to the southeast in TR19-01.

TR19-05 targeted the northwest strike extension of the phyllite/greenstone contact from the Clarke adit and a 1.2 m wide, visible gold bearing quartz vein, which was reportedly intersected within a raise from the Clarke adit (Figure 14NW). No significant veins were encountered at the raise, but a lensoid quartz vein up to 1.8 m wide was exposed at the phyllite/greenstone contact, pinching out in the phyllite and possibly open to the northeast through the greenstone (S054975). The exact orientation is uncertain but appears to trend $205-210^{\circ}$, possibly dipping steeply to the northwest. A $7-30 \mathrm{~cm}$ wide quartz vein, trending 200° /steep NW was traced along the trench for 4.4 m , pinching out proximal to the phyllite contact (S054972). No significant results were obtained from quartz veins, wallrock or the contact zone exposed by TR19-05.

TR19-06 and -07 targeted the northwest strike extension of the phyllite/greenstone contact, northwest from its intersection in TR19-05 and both were successful in intersecting narrow zones of banded, ribboned veins along it (S054973 in TR19-06 and S054979 in TR19-07). No significant results were obtained but the contact was found to trend parallel to foliation at $335^{\circ} / \mathrm{NE}$.

The Raven adit and surroundings, extending 200 m to the east of the adit, were explored by TR19-04, -08 and -09 , and Pits 19-13, $-14,-16$ and -17 but no significant results were obtained (Figures 13 and 11). TR19-09 was excavated across the highly decomposed Raven adit area (Figure 13) exposing a second sub-parallel phyllite/greenstone contact, with the phyllite on the west and greenstone on the east side, about 200 m west of the phyllite/greenstone contact through the Clarke adit and Main shaft. A foliation parallel banded quartz vein occurs at the contact and other minor quartz veins, ferricrete, fault zones and brecciation are evident. Folding is evident at the Raven adit and in the west end of TR19-09.

Two old drill holes in this area (DDH83-2 lies to the southwest and DDH83-4 lies to the northeast) reportedly intersected argillaceous phyllite. A band of black, graphitic argillaceous phyllite (and ferricrete) was encountered in Pit19-14, about 25m east of TR19-09. Pits 19-16 and -17 intersected black, argillaceous phyllite with dolomite bands and porphyroblasts at the strongest part of IP Anomaly B, which would account for the anomaly, a further 130 m east of Pit19-14. TR19-08, about 25 m north of TR19-09 intersected narrow crushed and brecciated quartz-iron oxide zones hosted by the phyllite.

TR19-04, 40m southeast of TR19-09 intersected phyllite with variable silicification, iron oxides, minor quartz stringers, folding and kink banding. Folds plunged 50° at 268°.

FIGURE 13: RAVEN DETAIL

FIGURE 13a: RAVEN DETAIL with samples

FIGURE 14 NW: CLARKE-KOCH DETAIL NORTHWEST

FIGURE 14 NWa: CLARKE-KOCH DETAIL NW with sample results

FIGURE 14 SE: CLARKE-KOCH DETAIL SE

FIGURE 14 SEa: CLARKE-KOCH DETAIL SE with sample results

Pit19-21 intersected the Oligocene to Pliocene conglomerate (OIPicg), consisting of a red to lesser yellowish clay rich chaotic, completely unsorted, conglomerate made up of clasts of varying proportions of phyllite. It probably represents a regolith at the base of the unit. Pit19-19, to the east of Pit19-21, intersected yellow clay and Pits 19-22 and 23 , to the west, consist of yellow and grey clay respectively, all thought to represent mud rich layers above the conglomerate (upper part of OIPicg). An outcrop of the mudstones is exposed along the north bank of Hixon Creek about 200m southwest of Pit19-23. They are unfoliated, range in colour from white to grey to orange-yellow and bedding trends $260^{\circ} / 40-50 \mathrm{~N}$. Pit19-20, 80 m westerly of the Raven adit and 50 m northeasterly from Pit19-19, intersected orange weathering phyllite, part of the older Nicola Group sedimentary unit, which is exposed at the Raven adit.

Pit19-18, between Pits 19-19 and -21 intersected quartz vein blocks originally thought to occur within a fault zone, but is probably part of the regolith (OIPicg) which includes eroded blocks of quartz here. A sample of the quartz did not contain anomalous results. The 660 and D IP anomalies are probably related to this clay rich unit.

Part of the North Hixon showing (Figure 11) was examined by the author. Only one old trench was encountered, cutting greenstone. Quartz vein boulders were sampled here and other quartz float boulders were found within an area of extensive greenstone outcroppings, some of which were carbonate altered, silicified and pyritized. A total of six samples were collected, but only one significant result of $9.85 \mathrm{~g} / \mathrm{t}$ Au was obtained from intensely silicified float with strongly pyritized clasts and fine dark magnetite (S054926). The zone lies 1.2 km northwest (possibly along trend?) of the Cayenne working.

9.1 2019 SAMPLE PREPARATION, ANALYSES AND SECURITY

All of the 2019 samples were delivered by contractors of Golden Cariboo to VanKam Freightways, Quesnel, British Columbia and shipped directly to Activation Laboratories Ltd. ("Actlabs") in Kamloops, British Columbia for preparation and analysis.

Fire assay-metallic screen analysis for gold was performed on 88 select rock samples deemed to have potential to contain native gold. In this procedure a 500 g sample split is sieved to 149 microns with gold analyzed by fire assay on the entire +149 micron fraction and two splits of the -149 micron fraction (1A4-500g). On the remaining 72 rock samples preparation involved crushing the entire sample ($<7 \mathrm{~kg}$) up to 90% passing 2 mm , riffle splitting to obtain a representative sample and then pulverizing 500 g to 95% minus 150 mesh (105 microns) (RX1-ORE+500). Gold was analyzed by fire assay with an atomic absorption finish on a 30 g aliquot (1A2B30).

Soil and stream sediment preparation involved drying the entire sample at $60^{\circ} \mathrm{C}$ then sieving to 80 mesh (177 microns) (S1). Analysis for gold was by fire assay with an atomic absorption finish on a 30 g aliquot (1A2).

All samples were also analyzed for 38 additional elements by aqua regia digestion followed by inductively coupled plasma - optical emission spectroscopy analysis on a 0.5 g aliquot (ICP-OES 1E3).

A total of 12 QAQC samples, consisting of 7 blanks and 5 duplicates, were inserted by the author for quality control in 2019. The blank used was commercially available decorative stone (<5-6 ppb Au). The duplicates consisted of coarse reject duplicates prepared at the laboratory of samples selected by the author. The duplicates and blanks returned results within acceptable limits. This indicates that the analytical results had an acceptable degree of precision and were free from contamination during sample preparation.

Actlabs is ISO 17025 accredited for the procedures performed. Quality control procedures were implemented at the laboratory, involving the regular insertion of blanks and standards and check repeat analyses and resplits (re-analysis on the original sample prior to splitting).

10.0 DRILLING

(Figures 15 to 17)
No drilling has been conducted by Golden Cariboo Resources Ltd. on the Property, but a total of 2863m of diamond drilling in 22 holes was previously completed between 1972 and 2008 in seven programs. The drilling includes 2590 m in 19 holes on the Quesnel Quartz deposit, shown in Figure 15, and 273.4 m in 3 holes near the Cayenne showing. In the drill tables "Elev." denotes elevation and "Az." azimuth. The drill programs are summarized in Table 5 below.

Table 5: Summary of diamond drill programs on Property

Year	Location	Company	Holes	Size	Depth (m)
1972	NE of Main	Bethlehem	2		140.2
1983	Main, Raven	Golden Rule	4	BQ,NQ	353.6
1987	Main, Raven	Noranda	3		276.5
1988	Main, Raven	Noranda	5		640
2004	E of Cayenne	Cayenne Gold	3	NQ	273.4
2007	Main Shaft	Cayenne Gold	3	NQ	596.4
2008	Main Shaft	Cayenne Gold	2	BQ	583
TOTAL			$\mathbf{2 2}$		$\mathbf{2 8 6 3 . 1}$

The following account of the drill programs is summarized from Fox (1980 and 1981) for Bethlehem's 1972 program, Allen (1984) for the 1983 Golden Rule program, Simmons (2008b) for Noranda's 1987 and 1988 programs and Briden (2005) and Simmons (2008a and c) for Cayenne Gold's 2004, 2007 and 2008 drill programs. All holes were road accessible.

In 1972 Bethlehem targeted a 0.5 km by $>3 \mathrm{~km}$ northwest trending arsenic-silver soil anomaly, the northern 60% of which lies on the current Property area, with a 449 m diamond drill program in 4 holes. Only 140.2 m in 2 holes were drilled on the Quesnelle

Gold Quartz Mine Property which appear to have been located northeast of the Main shaft based on Fox (1981-Map 1A). However, the locations are plotted northeast of the Cayenne workings on a regional grid location map in Fox (1980 - Figure 4). The Bethlehem drill report was not filed for assessment and could not be located by the author. Specifications are given in Fox (1980-p 21).

The 1983 drill program by Golden Rule was completed by Drilcor Ltd. of Delta, British Columbia and targeted the Raven adit with 2 holes and the Main shaft area with 2 holes. The first hole utilized BQ wireline tools, but NQ was used on the rest of the holes. Recovery averaged only about 60\% but was about 40\% in DDH 83-2 and 52\% in DDH $83-4$, with 80% recovery in DDH $83-1$ and 85% in DDH 83-3, except through weathered zones. DDH 83-4 was lost before target depth. The entire core was sampled (242 samples) and 174 sludge samples were also collected at 1.5 m intervals throughout the holes except for below 81.4 m in DDH 83-1 due to loss of circulation and above 21.9 m in DDH 83-4. Sludge samples consist of drill cuttings to aid in the evaluation of zones with poor core recovery. They do not provide qualitative results. Poor recovery can result in lower grades due to the loss of the soft sulphide portions, which tend to carry the grade.

The Noranda drill report was not filed for assessment and could not be located by the author. The only details found by the author are from the NI 43-101 report by Simmons (2008b) filed on SEDAR (website at sedar.com). Drill specifications and footage of significant results were not given. Drill recoveries are assumed to have been good in the Main shaft area, but only 15% recovery was reported from 87-3 in the Raven area.

The 2004, 2007 and 2008 drill programs by Cayenne Gold were conducted by Adam Diamond Drilling Limited of Princeton, British Columbia. The 2004 holes were all drilled from the same site located 1.5 km east of the Main shaft area about 580 m east of the Cayenne workings. All three 2007 holes were also drilled from a common site, located 72 m northeast of the Main shaft to test the validity of earlier drilling and to probe for additional gold mineralization. The hole depth of 198.8 m was limited by the drill capability, but the drill type used was not reported. The 2008 holes were also drilled from a common site located between the Main shaft and the Raven adit to test for mineralization near the phyllite/greenstone contact along a VLF-EM conductor axis identified in 1983 (Allan, 1984). The holes were collared in the phyllite and drilled towards the greenstone.

Drill recoveries: were good in 2004, averaging approximately 80% despite the friable nature of the rock; were reported to be good in 2007, even in the highly altered/weathered upper portions of the holes; and recoveries were not reported in 2008. Ten samples of core and/or sludge were collected in 2004 with 258 samples in 2007 and 82 in 2008, amounting to about 75% of the core in the 2007 and 2008 programs.

Drill hole specifications are outlined in Table 6, below. Drill specifications are not known for specific holes in the Noranda program, but all holes drilled in the Main zone (DDH $87-1$ and -2 , and DDH 88-4 to -6 , and -8) appear to be at 240°. DDH 87-3 and 87-7 targeted the Raven zone.

TABLE 6: Drill hole specifications

$\begin{aligned} & \text { DDH } \\ & \text { No. } \end{aligned}$	UTM Nad 83, Easting	Zone 10 Northing	Elev. (m)	Az. (${ }^{\circ}$)	Dip ${ }^{\circ}$)	Depth (m)
72-3^	531920	5921733	-	176	-60	91.44
72-4^	531905	5921670	-	356	-60	48.77
83-1*	531833	5921690	-	228	-45	131.7
83-2*	531587	5921712	-	257	-45	82.9
83-3*	531812	5921630	-	313	-45	101.2
83-4*	531520	5921675	-	032	-45	37.8
87-3*V				~152		
87-7*V				~245?		
04-1*	533410	5921640	795	270	-45	121.92
04-2*	533410	5921640	795	090	-45	88.39
04-3*	533410	5921640	795	-	-90	63.09
07-1	531860	5921682	733	240	-55	198.8
07-2	531860	5921682	733	240	-85	198.8
07-3	531860	5921682	733	280	-50	198.8
08-4	531645	5921660	752	040	-50	282
08-5	531645	5921660	752	040	-70	301

^ location as per old drill sites in Fox (1981); * location is approximate
v location as per Simmons (2008b) but only partially legible
Both drill holes in Bethlehem's 1972 program were drilled east of the main vein structures and reportedly intersected oxidized and faulted (or sheared) OligocenePliocene conglomerate with no significant gold or silver values (Fox, 1980).

DDH 83-1 and 83-3 partially targeted the phyllite/greenstone contact near the Main shaft, with marginally encouraging results. Exceptionally poor core recovery hampered the evaluation of the potential of this zone, and particularly low recoveries were encountered within mineralized intervals. DDH 83-2 and 83-4 targeted a possible extension of the Raven adit quartz vein and significant trench results to the north. DDH 83-2 intersected a continuous section of black graphitic argillaceous phyllite. It was subsequently assumed that the hole had been drilled down-dip but DDH 83-4 also intersected the graphitic argillaceous phyllite and had to be abandoned (due to stuck rods) at 37.8 m . No anomalous assays were obtained from the Raven zone.

Noranda drilled two more holes on the Raven zone in 1987 and 1988, encountering poor recovery and no significant results despite the fact that DDH 87-4 targeted an 8.2 g / t Au over 6 m trench intercept and DDH 87-3 intersected altered greenstone. Drilling on the Main zone was more promising with two separate zones identified, separated by 25 m . The Main zone proper, as exposed in the Main shaft and intersected in DDH 87-1, $-2,88-4,88-4$ and $88-6$, as well as previously in DDH $83-1$ and -3 , was found to consist of two vein systems; one strikes northwest and dips 70° degrees to the northeast, essentially paralleling the volcanic-sedimentary contact in a stratiform fashion, and the other strikes northeast and usually dips steeply southeast.

The East zone lies 25 m northeast of the Main zone and consists of a northwesterly trending quartz vein zone apparently dipping northeast and stratiformly hosted by greenstone. It was traced over a length of 90 m in six drill holes (DDH 83-1, 87-1, 87-2, $88-4,88-5,88-6)$ and remains open to the northwest. Values appear to weaken to the southeast. The zone has generally been intersected in weathered rocks where the core recovery is poorer.

All three drill holes in the 2004 program in the Cayenne area intersected the Oligocene to Pliocene conglomerate for their entire length. The conglomerate is described as chaotic, completely unsorted, clastic, angular and made up of clasts of varying proportions of schist and greenstone indicating a local origin. The matrix is composed of small fragments and a high proportion of clay and probably represents a mud flow which has been deposited on an irregular weathered surface. The three 2007 drill holes were essentially drilled in greenstone with only the bottom of DDH 07-3 intersecting metasedimentary rocks (phyllite). The top vertical 30 m of core in the 2007 holes was generally intensely altered and/or weathered such that the original rock type could not be determined.

The phyllite/greenstone contact was intersected in the 2008 drill holes with a dip to the southwest and is consistent with the dip of the contact found in the lower underground levels of the Main shaft (Quesnelle Quartz Mining Company, 1930's).

The 2007 drill holes encountered multiple zones of gold and silver mineralization and ended in sulphide mineralization (Simmons, 2008a). Results are shown in Table 7, and in Figures 16 and 17. The 2008 drill holes reportedly encountered multiple zones of mineralization in both the phyllite and greenstone, but results were low with maximum values of $0.046 \mathrm{~g} / \mathrm{t}$ Au over 15.5 m in DDH 08-4 and $1.41 \mathrm{~g} / \mathrm{t}$ Au over 0.5m in DDH 08-5. These holes would have been drilled in the wrong direction to intersect the northeast dipping Main zone.

Significant drill results are summarized in Table 7 on the following page. True widths of the zones cannot be calculated at this stage due to the uncertainty of the actual orientations and/or correlations of the mineralized zones. A drill plan and sections are shown in Figures 15 to 17.

Drill sampling methods are discussed under Section 11.0, "Sample Preparation, Analyses and Security".

TABLE 7: Significant drill results

DDH No.	Zone	From (m)	To (m)	Length (m)	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	Ag (g/t)
83-1	East	22.0	23.5	1.5	7.3	sludge
and	Main	81.4	82.9	1.5	2.24	4.3
and*	Main	87.5	90.5	3.0	1.88	6.8
and	Main	96.6	97.5	1.5	2.20	4.0
and	Main	104.2	105.7	1.5	3.60	4.9
and	Main	108.8	110.3	1.5	5.72	20.6
and	Main	119.3	121.0	1.7	1.88	1.5
83-3*	Main	20.4	25.0	4.6	1.28	3.7
and*	Main	40.2	46.3	6.1	1.28	13.3
incl.*	Main	40.2	43.5	3.3	1.93	21.9
and	Main	64.6	65.8	1.2	1.94	6.3
87-1	Main			1.5	5.1	
and	Main			1.5	1.0	
and	East			3.0	1.0	
87-2	Main			1.0	2.6	
and*	East			4.0	0.48	
87-4	East			1.0	1.6	
and*	East			2.8	3.3	
88-5*	Main			3.0	4.8	
and	Main			1.0	2.5	
and	Main			1.0	2.2	
and	Main			1.9	1.6	
and*	Main			3.0	1.1	
and*	East			2.75	5.2	
and*	East			2.8	2.2	
88-6*	East			3.5	0.55	
and*	Main			3.0	1.1	
07-1*	?	128.6	133.2	4.6	0.78	<2
and*	Main	151.8	159.1	7.3	0.62	2.3
and	Main	179.3	182.3	3.0	6.75	54.5
and	Main	198.0	198.8 EOH	0.8	2.13	<2
07-2	East?	182.8	183.7	0.9	1.80	0.4
07-3	East?	60.1	61.6	1.5	11.8	12.9
and*	East?	66.9	69.2	2.3	2.23	3.9
and*	Main	190.4	198.8 EOH	8.4	0.51	1.5

true widths cannot be determined since orientations of the mineralized zones are not definitively known

11.0 DRILL SAMPLE PREPARATION, ANALYSES AND SECURITY

Complete details of the drill programs are not in the public record and only limited second hand data was found for the Bethlehem and Noranda programs. In general, the core would be measured and marked with core box start and core box finish at the upper left (start) and lower right (finish) of each box and core recovery measured or approximated in percent. Geologists would then log core and measure out sample intervals. Typical sample intervals were 0.76 to 1.7 m , but were reduced across significant vein or mineralized intercepts and at significant lithological boundaries. Core was split in half with a mechanical core splitter and half sent to the laboratory for assay and the remaining half put back in the core box as a record.

The 2008 diamond drill program was supervised by Brian Simmons and logged by Alex Briden and Alison Dueck and/or Brian Simmons. The 2007 diamond drill core and rock samples were taken by or under the supervision of Brian Simmons P. Geo and Alex Burton P.Geo., P.Eng. The sulphide/quartz sections of the diamond drill core were split and sampled on a daily basis using a six inch core splitter. Half of the core was sent for analysis. After the initial assay results were received, additional sampling was done in 2007 on non-split sections of core. In both 2007 and 2008, the core sample length was typically 2.5 feet (0.76 m). The sample bags were tied with plastic zip locks and samples were kept in a locked vehicle until delivery to the assay lab. In 2004 H.A. Briden spotted the drill holes, logged the core, split some of it and handed it in for assay; no additional information is reported.

In 2008 the 82 drill core samples were sent to ALS Chemex in Vancouver, British Columbia and analyzed for gold and silver by fire assay and ICP- atomic emission spectroscopy (AES) techniques for the gold analysis and aqua regia digestion with an atomic absorption (AAS) finish for silver. In 2007 the 258 samples were sent to ALS Chemex and ACME Analytical Laboratories ("ACME") Vancouver, British Columbia and were analyzed for gold and silver using fire assay with an AAS finish, and a gravimetric finish on results $>1,000 \mathrm{ppb}$ Au. The 2004 samples were analyzed for gold by fire assay and ICP- emission spectroscopy by ACME. Sample preparation in 2004, 2007 and 2008 involved drying, fine crushing to better than 70% passing minus 2 mm , then pulverizing a 150 g split to better that 85% passing 75 microns.

In 1983 all core recovered (242 samples) was logged by project geologist, C. Aussant, split and sampled. Sample intervals were generally at 1.0 to 1.5 m intervals, but varied based on mineralization and geological contacts. In addition, 174 sludge samples were collected at 1.5 m intervals where possible. All samples were assayed for gold and silver by Terrain Research Labs Ltd. in Calgary, Alberta. Analytical techniques consisted of a fire assay with an atomic absorption (AA) finish on a 25 gram sample aliquot.

In the 2004 to 2008 drill programs quality control procedures were implemented at the laboratories involving the regular insertion of blanks and standards and check repeat analyses and resplits (re-analyses on the original sample prior to splitting). No documented quality assurance and quality control (QAQC) samples were inserted by
the companies. There is no evidence of any tampering with or contamination of the samples during collection, shipping, analytical preparation or analysis. All sample preparation was conducted by the laboratories. The laboratory is entirely independent from the issuer. ALS Chemex and ACME Analytical Laboratories in Vancouver, British Columbia were ISO 9001:2000 accredited facilities and certified for the procedures performed. In the author's opinion, the sample preparation, analysis and analytical procedures are adequately reliable for the purposes of this technical report.

A sampling protocol should be implemented involving the routine and regular insertion of blanks, standards and duplicates sent to the primary laboratory, and re-assaying of selected mineralized pulps at a second independent laboratory in future trenching and drill programs on the Property.

12.0 DATA VERIFICATION

The geochemical data was verified by sourcing original analytical certificates and digital data, where available. Analytical data quality assurance and quality control was indicated by the favourable reproducibility obtained in laboratory inserted standards, blanks and duplicates (repeats). There does not appear to have been any tampering with or contamination of the samples during collection, shipping, analytical preparation or analysis. Quality control procedures are outlined under Section 11.0, "Sample Preparation, Analyses and Security". In the author's opinion, the data provided in this report is adequately reliable for its purposes.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

The Quesnelle Gold Quartz Mine Property is at an early exploration stage and no metallurgical testing has been carried out.

14.0 MINERAL RESOURCE ESTIMATES

There has not been sufficient drilling on the Quesnelle Gold Quartz Mine Property to undertake a resource calculation.

23.0 ADJACENT PROPERTIES

The Quesnelle Gold Quartz Mine Property is adjoined to the northwest and southeast by the 22,892 hectare Cayenne Project of Barkerville Gold Mining Ltd. ("BGM"), which owns the Bonanza Ledge, Cariboo Gold Quartz, and Island Mountain mines at Wells,

British Columbia, 75 km to the southeast of the Quesnelle Gold Quartz Mine Property. The Cayenne claims were staked by BGM in 2016 for their exploration potential based on regional setting, local geology, historical mineral occurrences and gold in stream sediment anomalies (Layman, 2017b). The Cayenne property area was explored intermittently since the 1970s with geological mapping, geochemical sampling, diamond drilling and geophysics.

Numerous historical placer operations and six hardrock Minfile occurrences are noted within the bounds of the Cayenne Project: the Jo (Minfile 093G 004), the Government (Minfile 093 067), the Tom/Yardley Lake (Minfile 093G 068) and the Ped (Minfile 093G $070)$ gold, \pm silver, \pm copper showings; the Ice molybdenum showing within the Naver pluton (Minfile 093G 006); and the Quartz silica showing (Minfile 093G 029). Mineralization within the first four showings generally consists of pyrite and chalcopyrite in orogenic style quartz veins with results of $0.65 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $106.8 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ reported from the Government showing (Kowalchuk and Newton, 1987) and $0.82 \mathrm{~g} / \mathrm{t}$ Au from drilling on the Tom showing which did not reach the favourable sulphide bearing dyke contact (Kowalchuk and Newton, 1987). In addition, visible gold has been reported from the Ped showing with a value of $23.69 \mathrm{~g} / \mathrm{t}$ Au from quartz veinlets hosted by gabbroic rocks within the Nicola Group volcanic package (Yorkston, 1997).

In 2016, BGM conducted a more than 1350 line kilometre airborne VTEM and magnetic geophysical survey across and adjacent to the Cayenne Project. A northwest trending geophysical magnetic high anomaly with associated VTEM conductors was found to coincide with mapped fault structures along the contact between the volcaniclastic and metasedimentary units and known mineralized zones. The estimated depth to the top of the conductors is approximately near surface to 200m (Layman, 2017a and b).

The author is not able to verify the above information on the adjacent property and the information is not necessarily indicative of the mineralization on the Quesnelle Gold Quartz Mine Property.

24.0 OTHER RELEVANT DATA AND INFORMATION

To the author's knowledge, there is no additional information or explanation necessary to make this report understandable and not misleading.

25.0 INTERPRETATION AND CONCLUSIONS

There is excellent potential on the Quesnelle Gold Quartz Mine Property to discover an orogenic gold \pm silver deposit consisting of gold \pm silver bearing quartz veins and quartz-carbonate-pyrite replacement style mineralization similar to those within the WellsBarkerville mining camp, about 75 km to the southeast.

Significant gold \pm silver mineralization was previously delineated on the Property in old workings, trenches and drill holes at the Quesnelle Quartz deposit. The 2019 trenching program uncovered many of the old workings, with significant gold \pm silver results from quartz veins and silicified and pyritized zones. An initial examination of part of the North Hixon showing resulted in a new discovery of silicified, pyritic and magnetite bearing float carrying $9.83 \mathrm{~g} / \mathrm{t}$ Au. Other showings on the Property with anomalous gold values have not been evaluated.

The Quesnelle Gold Quartz Mine Property covers the historical Pioneer and Cayenne showings, the Quesnel Quartz deposit and part of the North Hixon showing as documented by the British Columbia Geological Survey Branch as Minfile Numbers 093G 013, 093G 014, 093G 015 and 093G 082, respectively (British Columbia Minfile, 2019). The most significant mineralization to date has been found at the Quesnel Quartz deposit, which provided the focus of the 2019 program. The Main zone comprises the principal gold zone at the Quesnel Quartz deposit and consists of a network of quartz veins over a northwest trending, $70^{\circ} \mathrm{NE}$ dipping, 40 m wide by 140 m long and 190 m deep zone. Twenty-nine quartz veins were recorded in the mine workings which extend 120 m vertically beneath the surface. The Main zone was explored by the Main and Koch shafts, and the Clarke and Koch adits, which have since been buried by placer and other debris, but uncovered in the 2019 program.

The 2019 exploration program, which was funded by Golden Cariboo Resources Ltd., consisted of $487 \mathrm{~m}^{3}$ of excavator trenching and pitting, with geological mapping and sampling, minor property mapping and sampling and improving the south access road. A total of $263 \mathrm{~m}^{3}$ of trenching was completed in 9 trenches covering a cumulative length of 210 m , and $224 \mathrm{~m}^{3}$ of pitting (due to thick overburden) was completed in 25 pits. A total of 120 samples were collected from the pits and trenches, 3 of which were soil samples, and an additional 1 stream sediment and 30 rock samples were collected during mapping/sampling.

TR19-01 and -02, excavated in the Main shaft area which constituted the principal working of the Quesnel Gold Quartz deposit on the south side of Hixon Creek, intersected a number of quartz veins with significant results. Quartz vein boulders from a vein with trends of $045-050^{\circ} / 60^{\circ} \mathrm{W}, 80^{\circ} \mathrm{W}$ and $75^{\circ} \mathrm{E}$ in the upper level of the start of TR19-01 yielded: $16.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 54 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$; and $5.73 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $14.8 \mathrm{~g} / \mathrm{t}$ Ag. Quartz boulders, with 30% pyrite layers and seams and minor carbonate, further towards Hixon Creek returned $8.44 \mathrm{~g} / \mathrm{t}$ Au with $7.1 \mathrm{~g} / \mathrm{t}$ Ag. Possible silicified limestone at this location returned $5.24 \mathrm{~g} / \mathrm{t}$ Au with $4.5 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. A grab of pyritic silicified limestone float from the ore bin yielded $2.00 \mathrm{~g} / \mathrm{t}$ Au with $4.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ and 2190 ppm As. The source of the silicified limestone appears to be from underground on the Main shaft, since it was not encountered on surface.

Quartz veins in TR19-02 returned: $6.96 \mathrm{~g} / \mathrm{t}$ Au over $0.3 \mathrm{~m} ; 1.93 \mathrm{~g} / \mathrm{t}$ Au over 0.5 m and $4.41 \mathrm{~g} / \mathrm{t}$ Au over 1 m from the hanging wall; and $7.65 \mathrm{~g} / \mathrm{t}$ Au over 1.7 m . Quartz float in Pit19-08, which lies 16 m southerly $\left(195^{\circ}\right)$ along trend from the latter vein zone, yielded 3.69 g/t Au.

An oxidized, highly pyritic, $020^{\circ} / 80^{\circ} \mathrm{W}$ trending, possible listwanite zone yielded $16.2 \mathrm{~g} / \mathrm{t}$ $\mathrm{Au}, 10.1 \mathrm{~g} / \mathrm{t}$ Ag with 1980 ppm As and $>30 \%$ Fe over 0.4m in TR19-01 and contained $1.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 4.5 \mathrm{~g} / \mathrm{t}$ Ag over 1.4 m in TR19-02, 18m along strike to the south. The hanging wall in TR19-01 yielded $4.95 \mathrm{~g} / \mathrm{t} \mathrm{Au}, 9.4 \mathrm{Ag}$ and 8.3% Fe from a 1 by 1 m panel sample suggesting that more representative results are obtained from panel sampling in this setting. Panel samples are recommended in future sampling programs.

The Clarke adit and Koch adit and shaft constituted the principal workings of the Quesnel Gold Quartz deposit on the north side of Hixon Creek. A pit at the Clarke adit exposed a 37 cm quartz vein, trending $222^{\circ} / 85^{\circ} \mathrm{NW}$ and containing $6.0 \mathrm{~g} / \mathrm{t}$ Au and $10 \mathrm{~g} / \mathrm{t}$ Ag, at the phyllite/greenstone contact. The hanging wall and footwall returned gold values of $0.24 \mathrm{~g} / \mathrm{t}$ over 0.4 m and $0.44 \mathrm{~g} / \mathrm{t}$ Au over 1 m , respectively. A sample across the contact yielded $0.57 \mathrm{~g} / \mathrm{t}$ Au over 0.9 m .

At the Koch adit a 1.75 m wide quartz vein was intersected hosted by the more competent greenstone, trending $225^{\circ} / 75^{\circ} \mathrm{NW}$. The vein may represent the extension of, or a sub-parallel vein to, the vein intersected in the Clarke adit. Due to poor ground conditions only 0.6 m of the footwall side of the vein could be sampled, which returned $17.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $61.5 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ over the 0.6 m and the footwall yielded $1.94 \mathrm{~g} / \mathrm{t}$ Au over 0.5 m . A grab of highly pyritic vein material from quartz vein boulders within the pit returned $45.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ with > $100 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$.

The Raven zone lies 270 m westerly from the Main zone near the site of an old adit. The Raven adit and surroundings, extending 200 m to the east of the adit, were explored by TR19-04, -08 and -09 , and Pits 19-13, $-14,-16$ and -17 but no significant results were obtained. A chip sample collected in 1981 from a quartz vein exposed by a trench 20 m above the Raven adit assayed $5.28 \mathrm{~g} / \mathrm{t}$ Au over 3 m . Drilling has not been successful on this zone, possibly due to the extremely poor core recoveries encountered. The area appears to be strongly faulted, with extensive black graphitic argillaceous phyllite accounting for IP Anomalies B and C, and only a narrow band of the favourable more competent greenstone unit exposed. No further work is proposed here at present.

IP Anomalies 660 and D may be related to a thick deposit of the clay rich OligocenePliocene clastic sedimentary rocks in this area. Anomaly A still appears to be related to the east zone, which was not significantly explored in 2019.

Preliminary investigation of the North Hixon showing resulted in the discovery of intensely silicified float with strongly pyritized clasts and fine dark magnetite carrying $9.85 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. Previous trenches yielded gold values in excess of $1 \mathrm{~g} / \mathrm{t}$ in four trenches in sampling by Noranda and grab samples taken from veins in two other trenches assayed $6.36 \mathrm{~g} / \mathrm{t}$ and $1.38 \mathrm{~g} / \mathrm{t}$. The zone lies 1.2 km northwest (possibly along trend?) of the Cayenne working.

Overburden depth has been found to be quite extensive away from Hixon Creek, except for in the North Hixon showing and Briscoe pit (northwest of TR19-06 and -07) areas. Based on this, additional trenching is proposed to investigate these areas.

26.0 RECOMMENDATIONS

The Quesnelle Gold Quartz Mine Property is a property of merit and warrants continued exploration. There is excellent potential on the Quesnelle Gold Quartz Mine Property to discover an orogenic gold \pm silver deposit consisting of gold \pm silver bearing quartz veins and quartz-carbonate-pyrite replacement style mineralization similar to those within the Wells-Barkerville mining camp, about 75 km to the southeast.

The reports on the Noranda and Bethlehem drill programs should be located and complete results from these and the old data recently released from the Quesnelle Quartz Mining Company require compilation to plot detailed plans and sections of the workings and mineralized zones and construct a 3D model using the recently acquired data from the LiDAR survey.

This should be followed by: a differential GPS survey of the 2019 trenches and pits, old workings and infrastructure that were uncovered during the 2019 program, including old trenches; detailed mapping and sampling of the property, including the Pioneer mine and Cayenne showings, the North Hixon zone and the Morrison-Hercules adit areas; and groundtruthing of specific features from the LiDAR survey that require verification or confirmation. Excavator trenching is recommended along strike to the northwest of the Main and East zones and at the North Hixon showing due to potential and shallower overburden cover. Depending on an initial evaluation of the Cayenne and Pioneer showings, some of the proposed trenching may be directed here. Drill pads and additional access required can be completed at this time.

A contingent Phase 2 diamond drill program is recommended to follow up significant results from Phase 1.

26.1 Budget

Based on the above recommendations, the following contingent two phase exploration program with corresponding budget is proposed. Phase 2 is entirely contingent on results from Phase 1.

Phase 1

- Data compilation, integration, 3D model \$20,000
- differential GPS survey
- property mapping and sampling (geologist, prospector)
- trenching and sampling 5,000
- drill pads and access
- geochemistry (200 samples @ \$50/ea., plus freight \& QAQC) 35,000
- meals and accommodation 60,000
- transportation, communication 15,000
- preparation, report and drafting
- contingency

11,000

TOTAL:
10,000
9,000

TOTAL:
15,000
20,000

Phase 2 (contingent on results from Phase 1) diamond drilling

- diamond drilling (2500 m in 7-9 holes)

350,000

- geochemistry (500 samples @ \$40/ea., incl. freight) 20,000
- geologist, sampler 30,000
- transportation, communication 15,000
- meals and accommodation
- preparation, report and drafting 20,000
- contingency

20,000
TOTAL:
45,000
$\$ 550,000$
PHASE 1 \& 2 TOTAL
\$700,000

SIGNATURE PAGE

Respectfully submitted,

Signing Date: January 15, 2020
Jean Pautler, P.Geo.

27.0 REFERENCES

Adamson, Robert S., 1988. Summary report on the Hixon Creek property. Report by Noranda Exploration Company Ltd.

Allan, James Rupert, 1984. 1983 summary report, Hixon Creek Gold Project. Report by Taiga Consultants Ltd. for Calpetro Resources. British Columbia Ministry of Energy, Mines and Petroleum Resources (BCMEMPR) Assessment Report \#12129.

Allan, M.M., Rhys, D.A. and Hart, C.J.R., 2017, Orogenic gold mineralization of the eastern Cordilleran gold belt, British Columbia: Structural ore controls in the Cariboo (093A/H), Cassiar (104P) and Sheep Creek (082F) mining districts. Geoscience BC Report 2017-15, 108 p.

Anderson, R.E., 1972. Summary report, geochemical survey on mineral claims Hixon Quartz 1 to 4 and "K" 1 to 84, Hixon Creek, B.C. Report for Bethlehem Copper Corporation Ltd. BCMEMPR Assessment Report \#03484.

Ash, C.H., 2001. Ophiolite related gold quartz veins in the North American Cordillera. British Columbia Ministry of Energy and Mines, Bulletin 108.

Ash, C. H. and Alldrick, D. 1996. Au-quartz veins, in Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits, Lefebure, D.V. and Hõy, T, Editors, British Columbia Ministry of Employment and Investment, Open File 1996-13, pages 53-56.

Barkerville Gold Corp., 2018. Website at barkervillegold.com/.
Bowman, Amos, M.E., 1920. Report on the Mining district of Cariboo, British Columbia. Geological and Natural History Survey of Canada.

Briden, H. Alex, 2006. Exploration and sampling program on the Hixon Creek property in the Cariboo Minining Division. Cayenne Gold Mines Ltd. BCMEMPR Assessment Report \#28644.

British Columbia Minfile, 2019. British Columbia Ministry of Energy and Mines.
Fox, Michael, 1981. Geological, geophysical and geochemical report, Hixon Creek Gold Project, Cariboo Mining Division, British Columbia. Report for Golden Rule Resources Ltd. by Taiga Consultants Ltd. BCMEMPR Assessment Report \#09322.
1980. Geophysical survey and geological and geochemical evaluation, Hixon Creek Gold Project, Cariboo Mining Division, British Columbia. Report for Golden Rule Resources Ltd. by Taiga Consultants Ltd. BCMEMPR Assessment Report \#08343.

Galloway, J.D., 1932. Lode gold deposits of British Columbia. British Columbia Department of Mines Bulletin 1932-1.

Geoscience BC, 2009. QUEST Project - Geology; Geoscience BC, Map 2009-4-1, scale 1:500 000.
Gonzalez, R.A., 1986. Geochemical survey report on the Yardley Lake (Hixon) mineral claims, Cariboo Mining Division. Report for Gabriel Resources Inc. BCMEMPR Assessment Report \#15085.

Hedley, M.S. and Watson K., 1945. Part III: Lode-gold Deposits, Central-southern British Columbia. British Columbia Geological Survey Bulletin 20.

Holland, S.S., 1950. Placer gold production of British Columbia. Ministry of Energy, Mines and Petroleum Resources Bulletin 28.

Javorsky, David, 2004. Prospecting and trenching report of the Hixon \#5 mineral claims, Quesnel Gold Quartz Mine. BCMEMPR Assessment Report \#25689.

Javorsky, David and Briden, H. Alex, 2005. Exploration and preliminary diamond drilling on the Hixon Creek Project situated on Hixon Creek in the Cariboo Mining Division, British Columbia. Cayenne Gold Mines Ltd. BCMEMPR Assessment Report \#27776.

Jenks, John D., 1979. Report on rock assays and geology of the Hixon Creek prospect. Report for Esperanza Explorations Limited. Assessment Report \#07787.

Justason, Angelique, 2019. Rock geochemistry and remote sensing at the Quesnelle Gold Quartz property.
2018. Self potential geophysical survey at the Hixon Gold mineral claims. BCMEMPR Assessment Report \#37247.
2017. Compilation of assay plans, maps from
2016. Reconnaissance self potential geophysical survey at the Hixon Gold mineral claims. BCMEMPR Assessment Report \#36159.
2015. Rock geochemistry at the Quesnelle Gold Quartz Mine. BCMEMPR Assessment Report \#35568.
2014. Reconnaissance self potential geophysical survey Quesnelle Gold Quartz Mine. BCMEMPR Assessment Report \#34649.

Konings, M., 1984. Gabriel Resources Inc. airborne electromagnetic and magnetic survey report on the Yardley Lake (Hixon) mineral claims Cariboo Mining Division. Report by Questor Surveys Ltd. for Noranda Exploration Company Ltd. BCMEMPR Assessment Report \#13212.

Kowalchuk, J.M. and Newton, D.C., 1987. Diamond drilling report on the Yardley Lake property, Hixon area, British Columbia. Report for Gabriel Resources Inc. BCMEMPR Assessment Report \#15926C \& D.

Layman, Maggie, 2017b. Report on the helicopter borne aeromagnetic geophysical survey on the Cayenne property. BCMEMPR Assessment Report \#36966.

2017a. Report on the helicopter borne versatile time domain electromagnetic (VTEM ${ }^{\text {™ }}$ Plus) and horizontal magnetic gradiometer geophysical survey on the Cayenne property. BCMEMPR Assessment Report \#36734.

Logan, J.M. Schiarizza, P., Struik, L.C., Barnett, C., Nelson, J.L., Kowalczyk, P., Ferri, F., Mihalynuk, M.G., Thomas, M.D., Gammon, P., Lett, R., Jackaman, W., and Ferbey, T., 2010. Bedrock Geology of the QUEST map area, central British Columbia. British Columbia Geological Survey Geoscience/Map 2010-1 Geoscience BC Report 2010-5 and Geological Survey of Canada Open File 6476.

Mark, D.G., 2018. Geophysical report on IP and resistivity surveys on the Hixon Gold property, Creek, Hixon area, Cariboo Mining Division, British Columbia. Report by Geotronics Consulting Inc. BCMEMPR Assessment Report \#37641.

Miller, D.C., 1972. Geological report on the Hixon Property. Report for Bethlehem Copper Corp. Ltd.

Minister of Mines, 1940. Annual Report of the Minister of Mines, British Columbia 1939, p.A108.
1938. Annual Report of the Minister of Mines, British Columbia - 1937, p.C33.
1937. Annual Report of the Minister of Mines, British Columbia - 1936, p.C38.
1936. Annual Report of the Minister of Mines, British Columbia - 1935, p.G44.
1935. Annual Report of the Minister of Mines, British Columbia - 1934, p.C19.
1934. Annual Report of the Minister of Mines, British Columbia-1933, p. 119.
1931. Annual Report of the Minister of Mines, British Columbia - 1930, p. 161.
1930. Annual Report of the Minister of Mines, British Columbia - 1929, p. 189.
1928. Annual Report of the Minister of Mines, British Columbia - 1927, p. C165.
1927. Annual Report of the Minister of Mines, British Columbia - 1926, p. A166.
1919. Annual Report of the Minister of Mines, British Columbia - 1918, p. A128.
1887. Annual Report of the Minister of Mines, British Columbia - 1886, p. 236-7.
1879. Annual Report of the Minister of Mines, British Columbia - 1878, p. 374.

Moynihan, D.P. and Logan, J.M., 2009. Geological relationships of the western margin of the Naver pluton, central BC. EMPR Geological Fieldwork 2008 and Paper 2009-1.

Netolitzky, R.K., 1984. Review of the Hixon Creek Gold Project. Report by Taiga Consultants Ltd. Calpetro - Golden Rule Joint Venture.

Panteleyev, A, Bailey, D.G., Bloodgood, M.A., Hancock, K.D. (1996): Geology and mineral deposits of the Quesnel River-Horsefly map area, central Quesnel Trough, British Columbia. British Columbia Geological Survey, Bulletin 97.

Peterson, P.E., 1933-1937. Reports on the mining property of the Quesnelle Quartz Mining Company Ltd., Vancouver, British Columbia.

Quesnelle Quartz Mining Company Ltd., 1930's. Maps and plans of the Main shaft area.
Rhys, D. and Ross, K., 2001. Evaluation of the geology and exploration potential of the Bonanza Ledge zone, and adjacent areas between Wells and Barkerville, eastcentral British Columbia. Report by Panterra Geoservices Inc., for International Wayside Gold Mines Ltd.

Reinecke, Leopold, 1920. Mineral deposits between Lillooet and Prince George, British Columbia. Geological Survey of Canada Memoir 118, p101.

Ridley, J.C. and Troupe, A., 1982. Geological, geophysical and physical report, G South mineral groups, Cariboo Mining Division. Report by Gabriel Resources Inc. BCMEMPR Assessment Report \#10153.

Schiarizza, P. and Ferri, F., 2002. Barkerville terrane, Cariboo Lake to Wells: A new look at stratigraphy, structure and regional correlations of the Snowshoe Group. Geological Fieldwork 2002, Paper 2003-1.

Simmons, B.G., 2008c. Technical assessment report of the Hixon Creek mineral claims. Report by Rodell Enterprises Ltd. for Cayenne Gold Mines Ltd. BCMEMPR Assessment Report.

2008b. Report on the Hixon Creek Gold Project. Report for Cayenne Gold Mines Ltd.

2008a. Technical assessment report of the Hixon Creek mineral claims. Report by Rodell Enterprises Ltd. for Cayenne Gold Mines Ltd. BCMEMPR Assessment Report \#29467.

Struik, L.C., 1988. Structural geology of the Cariboo gold mining district, east-central British Columbia. Geological Survey of Canada, Memoir 421.

Struik L.C., et al., 1990. Geology of Prince George (East Half), map area (93G/E). Geological Survey of Canada, Open File 2172.

Thomas, M.D., 2009. Geological significant of new aeromagnetic data from the Quesnel survey area (portions of NTS 93G E half and 93H W half, central BC: a mountain pine beetle program contribution. Geological Survey of Canada Open File 6225.

Yorkston, R., 1997. Assessment report geology and geochemistry on the Ped 1 and 2 claims. Report by Guinet Management. BCMEMPR Assessment Report \#25000.

CERTIFICATE OF QUALIFIED PERSON

1) I, Jean Marie Pautler of 103-108 Elliott Street, Whitehorse, Yukon Territory am selfemployed as a consultant geologist, authored and am responsible for all sections of this report entitled "Geological, geochemical and trenching report on the Quesnelle Gold Quartz Mine Property", dated January 15, 2020.
2) I am a graduate of Laurentian University, Sudbury, Ontario with an Honours B.Sc. degree in geology (May, 1980) and 39 years mineral exploration experience in the North American Cordillera. Pertinent experience includes the evaluation of, and exploration for, orogenic type deposits in the Bralorne, Cassiar, Atlin and Wells-Barkerville gold camps.
3) I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC Registration Number 19804).
4) I have visited the subject mining property of this report and am a "Qualified Person" in the context of and have read and understand National Instrument 43-101. This report was not prepared in compliance with $\mathrm{NI} 43-101$.
5) This report is based upon work conducted on the project area between October 15 and November 7, 2019 and a review of pertinent data.
6) As of the date of this report, to the best of my knowledge, information, and belief, the report contains all scientific and technical information required to make the report not misleading.
7) I am entirely independent, as defined in section 1.5 of National Instrument 43-101, of Golden Cariboo Resources Ltd., Standard Drilling, any associated companies and the Quesnelle Gold Quartz Mine Property. I do not have any agreement, arrangement or understanding with Golden Cariboo Resources Ltd., Standard Drilling or any affiliated companies to be or become an insider, associate or employee. I do not own securities in Golden Cariboo Resources Ltd., or any affiliated companies and my professional relationship is at arm's length as an independent consultant, and I have no expectation that the relationship will change.

Dated at Carcross, Yukon Territory this $15^{\text {th }}$ day of January, 2020.
"Signed and Sealed"

"Jean Pautler"

Jean Pautler, P.Geo. (APEGBC Reg. No. 19804)

16.0 APPENDICES APPENDIX I: Statement of Expenditures

Work on tenures 1011635, 1011637 and 1013059					
Wages in field		unit	rate	\# units	Total \$
Jean Pautler	Oct 15-Nov 7	days	\$700	24	16,800.00
Gary Polischuk, without hoe	between Oct 15 and Nov 6	days	\$570	5.5	3,135.00
J.F. Callaghan	Oct 24, Nov 5-6	days	\$500	2	1,000.00
A. Justason	Oct 24, 26 Nov 2-3	days	\$600	4	2,400.00
				35.5	23,335.00
Geochemistry	Act Labs				
met screen Au, ICP	rock	samples	92.50	88	8,140.00
Au, ICP	rock	samples	45.60	72	3,283.20
Au, ICP	soil	samples	34.25	4	137.00
shipping	VAN-KAM	samples	875 lbs	164	400.00
					11,960.20
Mobilization, demobilization					
truck 1 GPP		km	\$0.68	1768	1,202.24
truck 2 JP		km	\$0.68	150	102.00
truck 3 AJ		km	\$0.60	600	360.00
airline flight JP	Oct 14-15				622.91
airline flight JP	Nov 7				495.85
airline flight JFC	Oct 24, Nov 5-6				1,268.48
lowbed excavator					2,000.00
					6,051.48
Use of truck on site					
truck 1 Standard Drilling		days	23	100	2,300.00
truck 2 GPP		days	5	100	500.00
truck 2 JFC		days	3	100	300.00
fuel					650.00
					3,750.00
Equipment Rental					
Radios, phones		days	\$20	20	400.00
Saw			\$30	1	30.00
					430.00
Room and Board					
JP, GPP, JFC		mandays	\$100	42	4,200.00
					4,200.00
Excavator	Oct17-25,Nov2-6	hours	\$183.10	125.5	22,979.05
Standard Drilling	includes GPP as ope	or, fuel			22,979.05
Field Supplies		mandays	\$15.00	42	630.00
spray paint, bear spray, measuring tapes, bags, flagging, tags, markers					630.00
Preparation	JP, JFC				1,950.00
Permitting	AJ - Tenorex	hrs	60	10	600.00
Report \& Drafting					7,000.00
SUBTOTAL					\$82,885.73
Debited Pac (Golden Cariboo)				30\%	34,635.88
TOTAL					117,521.61
TOTAL APPLIED WORK VALUE:					\$116,502.16

Appendix II: 2019 Sample Descriptions with Select Results

SAMPLE	LOCATION (m)		NAD 83 Zone 10		interval			Au	Au	Ag	As
NUMBER	FROM	то	EASTING	NORTHING	(m)	Lithology	DESCRIPTION	ppb	ppm	ppm	ppm
TR19-01	Az 035	0-6	531788	5921663			N.B. GPS is for start of interval	FA+AA	screen		
1690201	0	0			0.65	listwanite	orange-brown weathering listwanite with Mn-limonite fracture fillings, local claysericite alteration; footwall of 1690202; collected along 305 line in trench	44		1.7	367
1690202	0	0			0.6	quartz	60 cm white quartz vein with minor Mn \& limonite fracture fillings, trace oxidized cubic pyrite,some fresh pyrite along vugs and wallrock inclusions; trend 025/75E to 80W; collected along 305 line in trench		< 0.03	1.1	16
1690202a	0	0			0.6	CRD	coarse reject duplicate of 1690202	8		1.4	18
1690203	0	0			1	listwanite	orange-brown weathering listwanite with Mn-limonite fracture fillings, local claysericite alteration; hanging wall of 1690202; collected along 305 line in trench	9		1.9	368
1690204	2	2			0.6	listwanite	orange-brown weathering listwanite with Mn-limonite fracture fillings, local claysericite alteration; footwall of 1690205 ; collected along 305 line in trench	170		2.9	761
1690205	2	2			0.5	quartz	50 cm white quartz vein on trend of 1690202 with minor Mn \& limonite fracture fillings, trace oxidized cubic pyrite,some fresh pyrite along vugs and wallrock inclusions; trend 025/75E to 80W; collected along 305 line in trench		0.44	4.2	53
1690206	2	2			0.85	listwanite	orange-brown weathering listwanite with Mn-limonite fracture fillings, local claysericite alteration; hanging wall of 1690205 ; collected along 305 line in trench	330		3.8	926
1690207	5.4	6.8			1.5	listwanite	orange-brown weathering listwanite with Mn-limonite fracture fillings, local claysericite alteration across rusty fractures trending 027/40W: foliation trends 340173W; collected along 285 line in trench	107		8.9	628
1690208	3.9	5.4			1.5	listwanite	orange-brown weathering listwanite with Mn-limonite fracture fillings, includes 20 cm of quartz from incomplete extension of 1690202 vein; adjoins 1690207 to E ; collected along 285 line in trench		< 0.03	5.7	609
TR19-01	Az 125	6-20									
1690209	8.5	9.2			0.6	listwanite	orange-brown weathering listwanite with Mn-limonite fracture fillings at 040/80W at hump in trench; taken along 290 degree line	18		3.5	290
1690210	7.3	8.5			1	listwanite	orange-brown weathering hard silicified listwanite with Mn-limonite fracture fillings and few cm wide drusy quartz veins at 040/80W at hump in trench; taken along 290 degree line		<0.03	3.1	498
1690211	6.6	7.3			0.75	listwanite	orange-brown weathering hard silicified listwanite with Mn-limonite fracture fillings at 040/80W at hump in trench; taken along 290 degree line		< 0.03	9.2	204
1690212	18	19.5			1.5	greenstone	bit faulted orange carbonate altered greenstone with 2 quartz veins at either end trending 040/90 then along foliation; collected along trench	373		5.6	124
TR19-01	Az 140	20-42	531805	5921658							
1690213	21.5				grab	quartz	grab of quartz pods to 2 cm at about 340 and 040-050 trends in orange carbonate altered greenstone	198		5.9	16
1690214	24	24			1.6	fault	fault zone with strong clay gouge, mariposite, Mn \& limonite fracture fillings, minor quartz clasts to 1 cm ; chip across width of trench	484		1.6	226
1690215	26.5			pic	1.8	greenstone, quartz	orange carbonate altered greenstone with a through going, few cm wide foliation parallel (320) quartz vein which offsets a cross vein trending 040/90 by 50 cm ; collected along 090 line in trench	88		1.4	94
1690216	30				1	greenstone, quartz	orange carbonate altered greenstone with several quartz veins to 10 cm , some foliation parallel; collected along 050 line in trench	410		1.5	92
1690217	31.1	32.1		panel	1	fault, quartz	1 by 1 m panel sample of fault gouge zone with discontinuous quartz veins to 3 cm		4.95	9.4	225
1690217a	31.1	32.1			1	CRD	coarse reject duplicate of 1690217	5810		3	221
1690218	32.1	32.5			0.4	pyritic listwanite	40 cm wide intensely rusty zone trending 020/80W, highly oxidized, probable pyritic, highly siliceous listwanite, arsenopyrite		16.2	10.1	1980
1690218a						blank	commercially available decorative stone	6		<0.2	11
1690219	39		531817	5921643	0.35	basalt	basalt feldspar porphyry dyke trending about 320/80W, but curves - flatter	24		0.7	4
TR19-01	42	end	531819	5921642							
TR19-02	Az 300	0-10	531838	5921621							

SAMPLE	LOCATION (m)		NAD 83 Zone 10		interval			Au	Au	Ag	As
NUMBER	FROM	то	EASting	NORTHING	(m)	Lithology	DESCRIPTION	ppb	ppm	ppm	ppm
1690220	0				0.6	greenstone	orange carbonate altered greenstone with Mn fracture fillings; collected along 270 line in trench	24		0.8	117
1690221					0.3	quartz	30 cm white quartz vein with minor pyrite; trend 340/steep; collected along 270 line in trench		6.96	1.7	51
1690222		2			0.7	greenstone	orange carbonate altered greenstone with Mn fracture fillings; collected along 270 line in trench	415		1.6	188
	3						old shallow trench cuts through, starts 5 m to S				
1690223	6	7			1	greenstone	rusty orange carbonate altered greenstone with Mn fracture fillings; collected along trench	357		2.8	139
1690224	7	7.5			0.5	quartz	50 cm white quartz vein; trend 020/90 but bulges out in S wall along foliation @ 340; narrows to 30 cm to N ; collected along trench		1.93	2.9	51
1690225						blank	commercially available decorative stone	5		<0.2	4
1690226	7.5	8.5			1	greenstone	orange carbonate altered greenstone with Mn fracture fillings, bit gougey margin at vein contact, with 10 cm moderate silicification; collected along trench	4410		2.9	129
TR19-02	Az 280	10-50	531832	5921626							
1690227	12.8	14.5			1.7	quartz	quartz veins +/-carbonate with Mn fracture fillings in gouge zone with mariposite; trend 015/90-85W, but locally along foliation (305)		7.65	5.3	250
1690228						CRD	coarse reject duplicate of 1690227	2010		6.4	280
1690229	15	17			1.65	quartz	quartz veins +/-carbonate with Mn fracture fillings to $15-20 \mathrm{~cm}$ in orange carbonate altered greenstone which is strongly silicified in centre, some strong clay gouge; vein trend 050/steep and foliation trends 325/90; collected along 300 line in trench		0.2	2.4	141
1690230	17	19.2			2	greenstone	well fractured orange carbonate altered greenstone with Mn fracture fillings and some strong clay gouge; collected along 300 line in trench	398		2.2	92
1690231	20.7	22			1.3	greenstone	orange carbonate altered greenstone with Mn fracture fillings	588		2	93
1690232	23.8	24.3			0.5	clay	white clay seam with specks of mariposite, some limonite, occasional quartz stringers to $3-4 \mathrm{~mm}$; clay seam widens to 1.5 m in in S wall; trend 160	26		3	31
1690233	25.3	26.5			1.2	greenstone	orange carbonate altered greenstone with trace quartz	89		3.8	241
1690234	26.5	27.8			1.3	listwanite	rusty red - dark brown oxidized (after pyrite) listwanite with mariposite and 15% quartz		< 0.03	4.5	643
	27.8	28.6			0.8	basalt	basalt feldspar porphyry dyke trending about 050				
1690235	28.6	30			1.4	listwanite	rusty red - dark brown oxidized (after pyrite) listwanite with mariposite and 15% quartz		1.2	4.5	458
1690236						CRD	coarse reject duplicate of 1690235	1390		4.3	455
1690237	28.6	30			grab	quartz	grab of quartz from 1690235	79		4	252
1690238	30	31.2			1.2	greenstone	carbonate altered greenstone? or orange weathering, less siliceous listwanite? similar chemistry to 1690241 (in between listwanite and greenstone)	108		2.4	252
1690239						blank	commercially available decorative stone	<5		<0.2	5
1690240	34.7	35.2			0.5	contact with phyllite	Mn stained patchy strongly silicified contact zone trending 305, with local white clay alteration; foliation trends 315/55NE		0.35	3.4	186
TR19-02							deepen contact zone interval				
1690241	30	31.75			1.75	greenstone	dark limonitic carbonate altered greenstone with quartz lenses	806		4.8	282
1690242	31.75	32.75			1	fault	rusty orange gougey zone with minor quartz, remnant pyrite		<0.03	1.1	334
1690243	32.75	33.75			1	quartz	banded quartz at contact zone with phyllite 293/62NE, 280/ 70NE on W side		< 0.03	1.8	261
1690244	33.75	34.75			1	fault in phyllite	buff to tan fault gouge with limonite fracture fillings, minor weathered out pyrite,as rusty blebs	81		3	358
TR19-02	end		531790	5921632							
Grabs											
1690245	S creek bank		531780	5921657	grab	quartz	10 cm rusty weathering quartz float near creek with 30% coarse pyrite as layers, to 3 cm wide, and seams		8.44	7.1	719
1690246	S creek bank		531780	5921657	grab	listwanite	mauve-grey intensely silicified limestone (?- Ca , low $\mathrm{Ni} \& \mathrm{Cr}$) float with seams of pyrite to 0.5 cm ,		5.24	4.5	530
1690247	S creek bank		531780	5921657	grab	quartz	quartz vein float to 30 cm with minor ankerite blebs, 5% oxidized cubic pyrite		< 0.03	2.3	37
1690248						CRD	coarse reject duplicate of 1690247	137		1.8	33

SAMPLE	LOCATION (m)		NAD 83 Zone 10		interval			Au	Au	Ag	As
NUMBER	FROM	то	EASTING	NORTHING	(m)	Lithology	DESCRIPTION	ppb	ppm	ppm	ppm
1690249	start of TR1		531790	5921653	grab	quartz	white quartz vein float to 50 cm from digging start of Tr19-01 with pyrite, cubic pyrite, VG observed in boulders but not put in sample		16.5	54	8
1690250	start of TR1		531790	5921653	grab	quartz	white quartz vein float to 50 cm from digging start of Tr19-01 with pyrite, cubic pyrite, trace sphalerite \& chalcopyrite		5.73	14.8	22
S054843	$\begin{gathered} \text { ore loading } \\ \text { deck } \end{gathered}$		531762	5921624	grab	quartz	white quartz weak carbonate vein float with drusy fractures, $+/$ - limonite, 0.5% oxidized cubic pyrite to 5 mm ,		< 0.03	<0.2	10
S054844	S creek bank		531759	5921643	grab	listwanite	rusty to dark weathering, grey strongly silicified limestone (?- Ca, low Ni \& Cr) with a few cm ribboned quartz veins with 10% pyrite, Mn , limonite fracture fillings;		2	4.7	2190
S054845	S creek bank		531759	5921643	grab	quartz	quartz		0.1	<0.2	28
TR19-03	Az 050	7 m	531737	5921607							
S054846	2	3			1	grab	grab from 2-3m of hard, grey moderate to strongly silicified phyllite black, cherty cross fractures and veinlets and 5% limonite blebs		< 0.03	0.4	123
S054847	4.5	5			0.5	phyllite	intense rusty brown banded zone with central 3 cm quartz lense along foliation, rusty blebs after pyrite		< 0.03	0.8	111
S054848	6.5	7			0.5	phyllite	tan to limonitic gouge in phyllite with 3\% oxidized pyrite cubes	21		0.3	119
S054849	Pit 3		531776	5921622	1.4	phyllite	orange-grey, moderately clay altered gougey phyllite; foliation 340/88E	19		0.9	91
S054850	Pit 2		531546	5921390		soil	medium orange-brown C horizon soil, sandy clay, sheared dark weathering, heavy, magnetic ultramafic? pieces in bottom; pit 1.5 by 2 m by 4.9 m deep	24		< 0.2	6
TR19-01a	Az 205	0 to -4.8	531788	5921663			TR19-01 extension				
S054901	1.3	2.3			1.0	listwanite	rusty brown weathering listwanite with 10\% oxidized pyrite		<0.03	2.9	320
S054902	2.3	3.3			1.0	listwanite	rusty brown weathering listwanite with 10% oxidized pyrite, minor mariposite, minor white quartz to 10 cm wide		1.74	1.6	358
S054903	3.3	3.8			0.5	quartz	banded quartz vein zone with 5\% pyrite, rusty bands, along foliation 300/87E		< 0.03	1.3	203
S054904	3.8	4.8			1.0	phyllite	rusty orange-beige phyllite		< 0.03	1.1	143
S054905					grab	listwanite	grab of strongly silicified listwanite with mariposite, rusty bands and knots of oxidized pyrite		< 0.03	4.5	339
S054906	Pit 4		531731	5921594	grab	quartz	12 cm quartz vein with strong Mn , as lense along foliation in rusty clay gougey phyllite; foliation trends $150 / 77 \mathrm{~W}$		< 0.03	14	20
S054907	Pit 4		531731	5921594	1	phyllite	orange-grey clay gougey phyllite footwall, east side of S054906	90		5.9	109
S054908	Pit 6		531890	5921524	grab	granodiorite?	quartz-biotite-weak sericite pods with minor pyrite	6		<0.2	7
S054909	Pit 6		531890	5921524		soil	orange-brown colour clayey C horizon	134		1.2	133
S054910	Pit 6		531890	5921524		soil	red oxidized clayey C horizon	38		<0.2	6
S054911			532107	5921534		moss mat	moss mat from boulders in mid creek from creek draining northerly into Hixon Creek, 1 m wide, slow, orange carbonate rusty seep, good silt	35		<0.2	8
S054912	ore bin		531763	5921587	grab	listwanite	grey silicified limestone (?- Ca, low Ni \& Cr) with 15% coarse grained pyrite, lots cubic, crosscut by irregular quartz veinlets and veins to 3 cm (fine pyrite in quartz, some cubes), trace galena, sphalerite		17.2	99.9	377
S054913	ore bin		531763	5921587	grab	quartz	quartz with 3% fresh \& oxidized cubic pyrite, and some pyrrhotite		< 0.03	5.3	64
S054914	Pit 8		531819	5921608	grab	quartz	well fractured white quartz vein with Mn on fractures some pyrite and possible Mn smeared on quartz		3.69	1	5
S054915	Pit 8		531819	5921608	grab	quartz	quartz with red hematite as fracture fillings , Mn and sulphide wisps, minor oxidized cubic pyrite		0.19	0.4	4
S054916	Pit 9		531818	5921612	grab	PG seds	clay altered possibly younger PG sediments with Mn wisps, hematitic and limonitic layers	20		0.8	9
S054917	Pit 10		531726	5921535	grab	PG seds	narrow, hard red-brown Fe rich sandstone type layer with minor sericite, 330/35W bedding, but generally flatter	35		0.4	55
S054918	Raven area		531552	5921710	grab	quartz	quartz weak carbonate vein grab from 30 cm float boulder with pyritic wisps and seams	112		1.1	6
S054919	Raise area		531701	5921709	grab	quartz	white quartz vein with irregular fine sulphide stringers, minor oxidized cubic pyrite, some wallrock		< 0.03	0.3	10
S054920	Raise area		531743	5921712	grab	hornfels	dense, rusty, silicified, hematite-potassic altered hornfels? at contact, minor oxidized cubic pyrite		< 0.03	0.7	41
S054921	Raise area		531743	5921712	grab	quartz	quartz veins with smectite, oxidized cubic pyrite, fresh pyrite +/- cubic, pyrite wisps, altered listwanite clasts to 2 cm , some replaced by massive cubic pyrite with limonite and hematite		< 0.03	2.5	12

Page 3 of 7

SAMPLE	LOCATION (m)		NAD 83 Zone 10		interval			Au	Au	Ag	As
NUMBER	FROM	то	EASTING	NORTHING	(m)	Lithology	DESCRIPTION	ppb	ppm	ppm	ppm
S054922	above Clarke adit		531744	5921716	0.08	quartz	quartz vein trending 040/80E, minor oxidized cubic pyrite and pyrite wisps, originally a cross vein, locally along foliation			1.9	12
S054923	above Clarke adit		531742	5921708	0.7	quartz	quartz vein along foliation trending 320/80E, in carbonate altered greenstone; cross vein, locally along foliation		< 0.03	1	32
S054924						blank	commercially available decorative stone	< 5		<0.2	5
S054925	N zone		531869	5922307	grab	silicified	almost white, intensely silicified and pyritized with 7% fine disseminated, cubic and some coarser pyrite, and as fracture fillings, cut by few cm quartz-minor carbonate veinlets		0.27	0.5	67
S054926	N zone		531869	5922307	grab	silicified	silicified with heavily pyritized clasts to 10 cm with $30-40 \%$ pyrite, many are cubes and oxidized, locally fine dark magnetite		9.85	3	71
S054927	N zone		531869	5922307	grab	greenstone	orange weathering carbonate altered greenstone with 3% cubic pyrite, +/- oxidized		< 0.03	0.7	7
S054928	N zone		531839	5922377	grab	quartz	white quartz-carbonate vein float to 40 cm from old hand trench at North zone which returned $3.62 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, with sulphide wisps and minor oxidized cubic pyrite		< 0.03	1	8
S054929	N zone		531889	5922310	grab	quartz	vuggy and drusy white quartz-carbonate vein float, $30-40 \mathrm{~cm}$ wide from below old hand trench at North zone which returned $3.62 \mathrm{~g} / \mathrm{t}$ Au, with sulphide wisps and minor oxidized cubic pyrite		< 0.03	0.8	8
S054930	N zone		531888	5922317	1.5	silicified greenstone	strongly silicified carbonate altered greenstone with pyrite cubes and few cm wide quartz-carbonate veins at $045 / 90$, perpendicular to foliation		0.45	2.1	92
S054931	E zone at creek		531794	5921705	grab	quartz	$3-5 \mathrm{~cm}$ smoky quartz veins follow 043/83NW fracture then along foliation		0.04	<0.2	5
S054932	E zone at creek		531782	5921713	grab	greenstone	15 cm pod along foliation (338/83W) of epidote-chlorite-quartz-feldspar with blebby magnetite in carbonate altered greenstone		< 0.03	<0.2	4
S054933	below Koch adit		531767	5921702	grab	greenstone	two 2 cm quartz veins along foliation (303/60NE) in clay altered orange weathering greenstone?; antiform to west		0.43	0.6	82
S054934	above Koch adit		531746	5921712	0.7	greenstone	orange weathering intense clay-carbonate altered greenstone with Mn and lesser limonite fracture fillings, ankerite, minor pyrite; hanging wall to west/above S054935		< 0.03	0.3	60
S054935	above Koch adit		531746	5921712	0.5	greenstone	orange weathering intense clay-carbonate altered greenstone with Mn and lesser limonite fracture fillings, ankerite, minor pyrite; to east/below S054934		< 0.03	1.5	27
S054936	above Koch adit		531751	5921713	0.5	qfp	strong clay-sericite altered and possibly silicified quartz feldspar porphyry? along foliation (310-320/steep E \& W) with 10% oxidized cubic pyrite, some pyrite stringers		< 0.03	1	170
S054937	above Koch adit		531746	5921717	0.2	greenstone	quartz-vuggy carbonate vein with minor oxidized cubic pyrite and surrounding claycarbonate altered greenstone? with minor pyrite cubes; 040/85E		< 0.03	<0.2	87
S054938	Koch shaft		531747	5921699	grab	silicified	rusty weathering intensely silicified limestone or listwanite? with ribboned quartz and silicified patches with 2% cubic pyrite and fine disseminated cubic pyrite, as float from dump		0.22	2.1	20
S054939	Koch shaft		531747	5921699	grab	quartz	chips across larger quartz boulders 50 by 50,60 by 40 and 50 by 60 cm , with limonite vugs and druses, some Mn fracture fillings, pyrite and other sulphide? wisps, trace arsenopyrite		< 0.03	0.4	7
S054940						blank	commercially available decorative stone	< 5		<0.2	3
S054941	Pit 14		531572	5921682	1.05	phyllite	orange-brown clayey phyllite with minor hard sections; sample line at 240	89		0.3	59
S054942					0.4	argillite	black graphitic argillaceous phyllite with calcite blebs generally few mm but up to 1 cm ; hard for 30 cm on east side then soft clayey; foliation $330 / 70 \mathrm{E}-90$; line at 240	28		15	6
S054943					0.6	phyllite	orange, hard phyllite with rusty limonite stringers at contact with black phyllite	36		2.1	144
S054944					1	Fecrete	hard Mn-limonite cemented ferricrete; along foliation; line at 240	42		0.5	150
S054945					0.6	phyllite	pale grey to bit orange clayey phyllite, minor oxidized cubes after pyrite; line at 240	19		<0.2	47
S054946					grab	Fecrete	reddish phyllite breccia to ferricrete, clasts of phyllite in Mn-Fe cement	84		<0.2	90
TR19-04	Az 120	20.2m	531584	5921663							
S054961	0	-0.5			0.5	phyllite	hard, silicified? red-tan phyllite trend 080/80N, 070/87S with goethite knots trending 240/65N; similar to S054957, but less extensive alteration, fine $3-4 \mathrm{~mm}$ quartz bands along foliation	25		0.2	69
S054947	0	2			1.5	phyllite	hard, silicified? red-tan phyllite trend 080/80N, 070/87S, 2nd half is along foliation at 327/70SW	36		0.3	89
S054948	2	2.5			0.3	phyllite	as above but harder and more contorted	23		0.9	126

SAMPLE	LOCATION (m)		NAD 83 Zone 10		interval (m)	Lithology	DESCRIPTION	$\begin{aligned} & \hline \mathrm{Au} \\ & \hline \mathrm{ppb} \end{aligned}$	$\begin{aligned} & \mathrm{Au} \\ & \hline \mathrm{ppm} \end{aligned}$	$\frac{\mathrm{Ag}}{\mathrm{ppm}}$	$\begin{array}{\|c\|} \hline \text { As } \\ \hline \text { ppm } \\ \hline \end{array}$
NUMBER	FROM	то	EASTING	NORTHING							
S054949	2.5	3.7			0.6	phyllite	tan phyllite with strong brown goethite veinlets, fracture fillings, boxwork, silicified zones; grey, fine grained quartz veins and pods to 10 cm ; trend N/60W	13		0.2	128
S054950	3.7	7.3			0.8	phyllite	mauve hematitic phyllite foliation in east half trending 310/80SW, west half $330 / 60 \mathrm{SW}$	36		0.4	103
S054951	7.3	9			0.45	phyllite	light orange, soft clay altered phyllite with dark brown bands of goethite and limonite along foliation (330/60SW) and as fracture fillings to 0.5 cm	27		0.4	108
S054952	9	9.5			0.35	phyllite	hard, silicified phyllite? with dark brown goethite with quartz along foliation and quartz fragments		0.08	<0.2	383
S054953	9.5	11			0.7	phyllite	tan phyllite with dark brown goethite bands and fracture fillings with soft clay altered intervals		< 0.03	<0.2	128
S054954	11	12.5			0.8	phyllite	orange weathering, some black Mn stained generally tan phyllite with some limonite, goethite crusts to 2 cm , hard siliceous sections, cross fractures at 356/72SW; folds plunging 50 at 268 ; foliation $330 / 55 \mathrm{NE}$	26		<0.2	74
S054955	12.5	15.2			1.4	phyllite	tan phyllite, bit orange with limonite \& Mn fracture fillings along foliation but some crosscutting fractures and joints at 334/90, Mn staining along foliation at 304/90 on face of trench	126		0.2	197
S054956	15.2	17.7			1	phyllite	tan to lesser pale greenish, bit orange phyllite, with lots small limonite \& Mn fracture fillings, some larger, kink bands, minor weak grey clay gouge zone along foliation at start; 304/65NE foliation	142		0.6	84
S054957	17.7	19			1.3	phyllite	super hard, intensely deformed and kinked, Mn and limonite stained silicified? phyllite?; at corner in trench; foliation generally 285/50NE	47		2.9	406
S054958	19	20.2			1.2	phyllite	softer phyllite with some hard lenses as in S054957 with foliation generally $305 / 45 \mathrm{NE}$, but twisted to 200/88NW	57		1.8	185
S054959	18.3				grab		grab of harder, dense, heavy, more siliceous material from S054957; purplish hematite stained, highly foliated and kinked with lots Mn \& goethite fracture fillings		< 0.03	2.4	278
S054960						blank	commercially available decorative stone	< 5		<0.2	4
Pit 15	Clark		531736	5921690			at contact	25		0.2	69
S054962	Clark				0.4	listwanite?	listwanite or carbonate altered greenstone with mariposite in hanging wall of S054963	243		0.4	299
S054963	Clark				0.37	quartz	quartz vein trending 222/85NW, 37 cm wide but narrows in phyllite, moderate limonite \& Mn fracture fillings, some sulphide wisps, minor pyrite and arsenopyrite	6000		10	45
S054964	Clark				1	phyllite	decomposed carbonate altered greenstone grading into phyllite in footwall	436		1.6	316
S054965	Clark				grab	quartz	quartz with sulphide wisps, Mn and some limonite fracture fillings, minor ankerite pockets, especially along margins, minor black Mn stained quartz crystals in vugs		0.11	1.1	39
S054966	Clark				0.9	contact	contact zone from carbonate altered greenstone to phyllite with bands of quartz; foliation ranges progressively from 347/40E in W to 347/60E to E		0.57	0.6	233
Pit 16	no sample		531696	5921663		argillite	hard, competent black argillaceous phyllite with thin dolomitic bands and porphyroblasts; 1.5 by 1.5 by 2.4 m deep within start of the strongest part of IP Anomaly B				
Pit 17	no sample		531692	5921662	0.5-1	argillite, phyllite	hard, competent black argillaceous phyllite with thin dolomitic bands and porphyroblasts; 1.5 by 1.5 by 4 m deep within strongest part of IP Anomaly B, 10 m westerly from Pit 16 along road				
S054967	Pit 17		531692	5921662	0.3	quartz	weakly orange rusty quartz vein with some crushed quartz and clayey phyllite and dark brown goethite grunge; along foliation at 327/70SW		< 0.03	0.2	67
S054968	Pit 17		531692	5921662	2	phyllite	grey to pale green phyllite with limonite, Mn \& greenish clay (smectite) fracture fillings, commonly foliation parallel - folded from 327/70SW to 035 trend to E	8		3.6	76
TR19-05	Az 206 to14.5m then 257		531718	5921723			end of trench at 20 m				
S054969	0	face, S side			1.1	greenstone	orange weathering carbonate altered greenstone with few cm quartz veinlets, 2% oxidized cubic pyrite	82		0.6	199
S054970	0	face, N side			0.3	phyllite	small slice of decomposed white phyllite? locally with irregular 3 cm quartz veinlets trending 020 to 030 , with 3% pyrite cubes, adjoining raise	337		0.6	147
S054971	0	face, N side			0.2	quartz	10 cm white quartz vein and rusty wallrock	24		0.4	138
S054972	12.5		531711	5921711	0.3	quartz	quartz- weak carbonate vein along trench from $7 \mathrm{~m}(7 \mathrm{~cm}$ wide) to $14.3 \mathrm{~m}(30 \mathrm{~cm})$, locally with graphitic margins from 8.7 to 12.3 m , minor sulphide wisps	13		0.2	29

SAMPLE	LOCATION (m)		NAD 83 Zone 10		interval (m)	Lithology	DESCRIPTION	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{aligned} & \mathrm{Au} \\ & \mathrm{ppm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Ag} \\ & \mathrm{ppm} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { As } \\ \hline \text { ppm } \\ \hline \end{array}$
NUMBER	FROM	то	EASTING	NORTHING							
S054975	16		531705	5921709	1.8	quartz	quartz- weak carbonate lense with red margins along trench from 13.2 m to 18 m , minor sulphide wisps; trend 208/steep NW		< 0.03	0.5	28
S054976	16				0.8	phyllite	soft, white to bit orange (limonitic) clay altered phyllite; footwall of S054975	103		<0.2	111
5054977	16				0.8	phyllite	soft, white clay altered phyllite; hanging wall of S054975	78		0.2	128
S054978	13.3	14.8	531710	5921710	1.5	greenstone	orange weathering carbonate altered greenstone at contact	25		<0.2	376
TR19-06	Az 040 to14.5m then 060		531691	5921726			end of trench at 20.5m				
S054973	3	4.5	531694	5921729	1.5	contact	80 cm of tan - white phyllite then 70 cm of rusty, carbonate altered greenstone with 23 cm quartz veins and fine ribboned veins		< 0.03	1.6	214
S054974	2.4		531693	5921728	0.3	quartz	dark Mn stained quartz pod		< 0.03	4.3	96
S054979	TR19-07		531687	5921740	1.3	phyllite at contact	white phyllite with quartz-weak carbonate veins, commonly ribboned, very minor oxidized cubic pyrite and sulphide wisps; trend 335/NE		0.29	0.8	78
5054980	TR19-08		531543	5921712	grab	quartz	goethite, limonite, Mn cemented quartz float		<0.03	0.2	170
S054983	TR19-08	Az 330	531546	5921712	0.2	quartz	20 cm wide rusty zone with crushed quartz in limonite, goethite \& Mn cement trend about 080; another 1.5 m N with limonite-goethite \& Mn but no quartz (previous sample S 054980 above on surface; trench is 1.5 m wide by 1.5 m deep by 4 m long		< 0.03	<0.2	117
S054984	Pit 18		531435	5921596		quartz	quartz vein and brecciated quartz vein boulders to 30 cm and quartz zones through pit to 60 cm , graphitic margins, blebs of minor galena, in fault zone with red to orange oxidation; at 660 IP Anomaly		< 0.03	1.4	6
TR19-09	Az 105 to 12m then 117		531528	5921690			end at 21 m at 531547E 5921680N				
S054981	1.2	2.5			0.7	quartz	broken up and lensey quartz with rusty and Mn stained sections with boxwork after pyrite		< 0.03	2.2	49
S054982	2.5	2.7			0.3	phyllite	silicified greenish-brown phyllite with rusty zones; foliation at 340/78NE; hanging wall of S054981		0.29	9.1	121
S054985	5.7	7.3			0.7	ferricrete	Mn and limonite cement with light coloured phyllite clasts, trend along foliation at 373/78NE		< 0.03	2.9	280
S054986	7.3	8			0.7	quartz	quartz vein zone with $2-5 \mathrm{~cm}$ veins along foliation at $373 / 73 \mathrm{NE}$, few perpendicular up to $10-15 \mathrm{~cm}$ wide in fault zone in phyllite near but west of contact, minor oxidized cubic pyrite, +/-graphitic, margins and ribbons, some grev quartz		< 0.03	3.4	62
S054987	10.8	12			1	phyllite	light coloured clay altered phyllite at contact with minor quartz veins and brecciated quartz in limonite-goethite cement with limonite-goethite fracture fillings and oxidized knots after pyrite		< 0.03	0.3	98
S054988	12	12.4			0.25	quartz	well broken quartz vein at contact with lots rusty fractures and banded limonitegoethite		< 0.03	0.2	77
S054989	12.4	14			1.2	greenstone	orange weathering carbonate altered greenstone with minor quartz veins at contact; brecciated quartz at east end	23		0.4	107
S054990	15.6				0.15	quartz	white quartz, minor carbonate vein with limonite fracture fillings and vugs; trend 080/85-88N	12		0.5	31
S054991	15	16.7			1	greenstone	combined 50 cm hanging wall and 50 cm footwall of orange weathering, rusty 7 Mn stained clay-carbonate altered greenstone with limonite \& Mn fracture fillings ; foliation at 330/70NE	19		8.5	160
S054889	Koch adit				grab	gouge/quartz	goey fault gouge with quartz fragments, some limonitic; deeper level	821		2.1	296
S054890	Koch adit		531751	5921695	grab	quartz	quartz-weak carbonate vein float from bucket, minor Mn, trace limonite fracture fillings, 020 trend?; deeper level		0.34	17.9	12
S054891	Koch adit		531751	5921695	grab	quartz	high grade grab of tarnished pyrite with trace galena, malachite stain from quartz float from bucket; pyrite constitutes 35% of vein in places; deeper level		45.9	$\begin{gathered} \hline> \\ 100 \\ \hline \end{gathered}$	415
S054892	Koch adit		531751	5921695	0.5	greenstone	clay altered carbonate altered greenstone with limonite fracture fillings and veinlets to 0.5 cm , minor quartz to 2 cm ; footwall of S054893		1.94	1.3	286
5054893	Koch adit		531751	5921695	0.6	quartz	1.75 m wide quartz vein (wider to NE but could access only 0.6 m) trending 225/75NW		17.5	61.5	97
S054894	Koch adit		531751	5921695	0.35	greenstone	orange weathering decomposed carbonate altered greenstone or listwanite hanging wall with minor quartz veins at contact; brecciated quartz at east end		< 0.03	0.4	363
S054895	Koch adit		531751	5921695	grab	quartz	grab of quartz blocks to 40 by 70 cm from Koch vein with 10% pyrite, minor galena, malachite		< 0.03	6	27
S054896	Koch shaft		531745	5921685	grab	quartz	quartz-carbonate vein grab with lots of carbonate, some drusy and vuggy, quartzsulphide seams		< 0.03	0.5	30

SAMPLE	LOCATION (m)		NAD 83 Zone 10		interval			Au	Au	Ag	As
NUMBER	FROM	то	EASTING	NORTHING	(m)	Lithology	DESCRIPTION	ppb	ppm	ppm	ppm
S054897	Koch shaft		531745	5921685	grab	quartz	grab of banded quartz vein boulders in goey phyllite, appear to be foliation parallel, fine pyrite and gorthite knots after pyrite		< 0.03	0.2	57
S054898	Koch shaft		531745	5921685	grab	phyllite in fault	faulted clay altered, goey tan to light green to white phyllite with oxidized cubes and limonite stringers after pyrite	26		0.2	160
S054899	Koch shaft		531742	5921693	grab	quartz	black, graphitic coated quartz-carbonate veins, Mn \& weak limonite-goethite fracture fillings, trace sulphide, minor sphalerite, carbonate vugs; 60 cm float	27		3.6	16
S054900	Koch shaft					blank	commercially available decorative stone	<5		<0.2	5

Appendix III:

Assay Certificates

Report No.:
Report Date:
Date Submitted:
Your Reference:
Golden Cariboo Resources
A19-14761
13-Nov-19
29-Oct-19
Quesnelle Gold Quartz Mine \#1

P.O. Box 48778 Stn. Bentall Center

Vancouver BC V7X 1A6

Canada

ATTN: Frank Callaghan

CERTIFICATE OF ANALYSIS

75 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2B-30-Kamloops	QOP AA-Au (Au-Fire Assay AA)	2019-11-06 20:04:01
1A4 (100mesh)-Kamloops	QOP AA-Au (Au-Fire Assay-Metallic Screen-500g)	$2019-11-07$ 16:02:18
1E3-Kamloops	QOP AquaGeo (Aqua Regia ICPOES)	2019-11-06 21:08:21
Sieve Report-Kamloops Internal	Sieve Report Internal	$2019-11-12$ 15:00:35

REPORT A19-14761

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 500 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

ACTIVATION LABORATORIES LTD.

9989 Dallas Drive Kamloops, British Columbia, Canada, V2C 6T4 TELEPHONE $+250573-4484 \mathrm{or}+1.888 .228 .5227$ FAX +1.905 .648 .9613 E-MAIL Kamloops@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Emmanuel Eseme, Ph.D Quality Control Coordinator

Results

Analyte Symbol	Au	$\begin{array}{\|l} \mathrm{Au}+ \\ 100 \\ \text { mesh } \end{array}$	$\begin{array}{\|l} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (A) } \\ \hline \end{array}$	$\mathrm{Au}-$ 100 mesh (B)	Total Au	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l} -100 \\ \text { mesh } \end{array}$	$\begin{aligned} & \text { Total } \\ & \text { Weight } \end{aligned}$	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca
Unit Symbol	ppb	g / mt	g / mt	g / mt	g/mt	g	g	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%							
Lower Limit	5	0.03	0.03	0.03	0.03				0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	R	0.01
Method Code	FA-AA	FA-MeT	AR-ICP																				
1690201	44								1.7	5.2	115	1560	2	339	93	589	1.02	367	<10	79	<0.5	<2	0.08
1690202		<0.03	<0.03	<0.03	<0.03	21.71	479.06	500.80	1.1	<0.5	8	222	1	15	31	17	0.04	16	<10	13	<0.5	<2	0.02
1690202a	8								1.4	<0.5	10	240	<1	18	40	23	0.05	18	<10	14	< 0.5	<2	0.02
1690203	9								1.9	4.4	67	2030	2	360	36	401	0.92	368	<10	77	<0.5	<2	0.07
1690204	170								2.9	11.9	72	2680	1	1010	368	868	2.65	761	<10	64	< 0.5	<2	0.21
1690205		9.44	0.20	0.23	0.44	11.02	444.67	455.69	4.2	0.6	4	160	9	50	54	59	0.16	53	<10	13	<0.5	<2	0.02
1690206	330								3.8	12.4	28	1540	<1	1180	451	946	3.24	926	<10	27	<0.5	3	0.28
1690207	107								8.9	4.0	16	1820	2	1040	36	167	2.76	628	<10	49	<0.5	<2	0.17
1690208		<0.03	<0.03	<0.03	<0.03	46.62	405.67	452.29	5.7	8.9	46	1110	<1	917	121	804	2.84	609	<10	20	<0.5	<2	0.24
1690209	18								3.5	<0.5	36	938	<1	1200	18	73	4.35	290	<10	23	<0.5	3	0.12
1690210		0.08	<0.03	< 0.03	< 0.03	26.16	287.85	314.01	3.1	1.6	29	995	<1	876	322	262	2.86	498	<10	33	< 0.5	<2	0.22
1690211		<0.03	<0.03	<0.03	<0.03	33.94	351.30	385.24	9.2	1.0	74	932	<1	1130	4	64	4.18	204	<10	28	<0.5	<2	0.66
1690212	373								5.6	2.6	94	1520	2	90	40	215	1.80	124	< 10	76	<0.5	<2	0.33
1690213	198								5.9	<0.5	9	143	1	9	5	13	0.15	16	<10	17	<0.5	<2	0.06
1690214	484								1.6	1.7	85	1210	1	132	37	134	2.43	226	<10	86	0.5	<2	0.60
1690215	88								1.4	0.9	64	1180	<1	133	36	115	2.37	94	<10	98	<0.5	4	0.48
1690216	410								1.5	1.0	41	981	4	88	40	86	1.63	92	<10	79	<0.5	3	0.43
1690217		25.9	3.15	3.07	4.95	21.66	247.27	268.93	9.4	2.1	68	1210	<1	115	207	164	2.02	225	<10	96	<0.5	<2	0.55
1690217a	5810								3.0	2.1	68	1200	1	116	208	164	2.04	221	<10	93	<0.5	<2	0.57
1690218		16.1	16.3	16.2	16.2	36.47	343.88	380.35	10.1	10.1	72	823	6	102	404	675	0.36	1980	< 10	41	<0.5	13	0.18
1690218a	6								<0.2	<0.5	11	159	2	7	4	8	0.33	11	<10	174	<0.5	<2	6.00
1690219	24								0.7	0.6	92	777	<1	47	3	102	4.28	4	<10	867	0.7	<2	1.42
1690220	24								0.8	4.4	102	716	<1	48	83	318	1.45	117	<10	46	<0.5	2	0.37
1690221		158	1.11	1.01	6.96	13.93	356.77	370.70	1.7	1.0	30	276	- 1	12	24	143	0.56	51	<10	31	<0.5	<2	0.10
1690222	415								1.6	4.1	124	941	<1	48	50	451	2.01	188	<10	79	< 0.5	<2	0.44
1690223	357								2.8	3.1	89	1560	<1	51	32	331	2.41	139	<10	124	<0.5	<2	0.50
1690224		1.91	1.96	1.90	1.93	27.69	415.04	442.73	2.9	0.5	8	578	6	10	47	29	0.17	51	<10	66	<0.5	<2	0.04
1690225	5								<0.2	<0.5	6	218	<1	7	<2	11	0.57	4	<10	92	<0.5	<2	4.30
1690226	4410								2.9	3.6	127	1940	1	59	15	180	1.10	129	<10	107	<0.5	4	0.40
1690227		41.4	3.31	3.14	7.65	41.25	314.86	356.11	5.3	2.0	66	1240	<1	70	554	415	1.68	250	<10	92	< 0.5	<2	0.42
1690228	2010								6.4	2.2	72	1230	<1	75	585	430	1.73	280	<10	92	<0.5	<2	0.44
1690229		<0.03	0.20	0.23	0.20	18.27	370.67	388.90	2.4	1.7	79	1700	1	89	8	130	1.68	141	< 10	109	< 0.5	<2	0.43
1690230	398								2.2	0.9	64	1290	<1	103	19	110	2.22	92	<10	102	< 0.5	<2	0.47
1690231	588								2.0	0.9	48	903	4	43	12	83	1.10	93	<10	82	<0.5	<2	0.24
1690232	26								3.0	<0.5	21	542	1	25	129	114	1.69	31	<10	43	<0.5	<2	0.19
1690233	89								3.8	3.4	171	1670	2	152	28	229	1.23	241	<10	112	0.6	<2	0.29
1690234		<0.03	<0.03	<0.03	<0.03	27.78	438.83	466.61	4.5	5.2	40	2910	2	752	150	401	2.39	643	<10	133	1.1	<2	0.23
1690235		0.52	1.33	1.15	1.20	24.85	396.09	420.94	4.5	3.7	40	2050	2	534	451	427	2.11	458	< 10	68	< 0.5	<2	0.23
1690236	1390								4.3	3.6	39	2040	2	517	451	422	2.04	455	<10	69	<0.5	<2	0.22
1690237	79								4.0	1.6	16	1070	1	237	59	105	0.59	252	<10	48	<0.5	<2	0.06
1690238	108								2.4	2.6	84	2000	<1	258	829	574	2.56	252	<10	62	< 0.5	<2	0.33
1690239	< 5								<0.2	< 0.5	6	1260	<1	15	4	23	0.77	5	< 10	190	< 0.5	6	4.84
1690240		0.14	0.36	0.36	0.35	13.96	316.38	330.34	3.4	2.3	69	1730	2	127	7	168	0.54	186	<10	173	<0.5	4	0.03
1690241	806								4.8	2.8	83	2090	3	217	483	372	1.59	282	<10	92	<0.5	<2	0.17
1690242		<0.03	<0.03	<0.03	<0.03	20.95	281.06	302.01	1.1	3.1	92	473	2	330	20	326	1.42	334	<10	44	<0.5	<2	0.14
1690243		<0.03	<0.03	<0.03	<0.03	23.61	349.51	373.12	1.8	2.5	73	510	5	141	16	291	0.74	261	<10	71	<0.5	<2	0.07
1690244	81								3.0	4.2	123	1100	9	179	65	669	1.11	358	<10	200	0.5	2	0.09
1690245		7.35	8.75	8.28	8.44	23.00	320.91	343.91	7.1	<0.5	9	415	2	30	135	16	0.14	719	< 10	14	< 0.5	3	1.66
1690246		3.72	5.32	5.39	5.24	29.59	372.44	402.03	4.5	<0.5	35	1100	<1	34	81	24	0.53	530	<10	26	<0.5	<2	3.51

Results
Activation Laboratories Ltd.

Analyte Symbol	Au	$\begin{aligned} & \mathrm{Au}+ \\ & 100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & \text { Au- } \\ & 100 \\ & \text { mesh } \\ & \text { (A) } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ (\mathrm{B}) \\ \hline \end{array}$	Total Au	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	Total Weight	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca
Unit Symbol	ppb	g / mt	g / mt	g / mt	g / mt	9	g	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%							
Lower Limit	5	0.03	0.03	0.03	0.03				0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01
Method Code	FA-AA	FA-MeT	AR-ICP																				
1690247	137	0.17	<0.03	<0.03	<0.03	18.11	330.59	348.70	2.3	<0.5	5	131	11	6	52	50	0.07	37	<10	15	<0.5	<2	0.09
1690248									1.8	<0.5	5	134	11	6	51	47	0.06	33	<10	13	<0.5	<2	0.09
1690249		45.8	14.2	11.9	16.5	36.69	311.40	348.09	54.0	<0.5	18	108	4	7	53	44	0.01	8	<10	12	<0.5	<2	0.06
1690250		73.7	2.92	2.50	5.73	15.57	350.34	365.91	14.8	0.9	141	158	8	15	79	114	0.03	22	< 10	11	<0.5	<2	0.14
S054843		<0.03	<0.03	<0.03	<0.03	19.05	417.52	436.57	<0.2	<0.5	1	103	<1	5	4	<2	0.01	10	<10	13	<0.5	<2	< 0.01
S054844		2.82	2.06	1.85	2.00	22.69	427.21	449.90	4.7	4.8	172	1430	<1	47	262	296	0.76	2190	<10	25	<0.5	<2	5.55
S054845		<0.03	0.10	0.13	0.10	33.42	326.27	359.69	<0.2	< 0.5	5	731	<1	12	2	31	0.18	28	<10	21	<0.5	<2	3.03
S054846		<0.03	<0.03	<0.03	<0.03	15.16	295.30	310.46	0.4	2.7	154	297	15	114	17	456	0.74	123	< 10	50	1.2	<2	0.04
S054847		<0.03	<0.03	<0.03	<0.03	18.07	202.39	220.46	0.8	1.8	104	307	11	116	17	267	0.56	111	< 10	47	1.1	4	0.03
S054848	21								0.3	2.0	117	185	23	76	16	450	1.02	119	<10	53	0.8	2	0.05
S054849	19								0.9	1.5	93	130	11	92	23	303	0.66	91	<10	84	0.5	<2	0.04
S054901		<0.03	<0.03	0.03	< 0.03	38.12	355.18	393.30	2.9	4.3	128	2640	2	381	464	499	1.15	320	< 10	112	<0.5	<2	0.07
S054902		7.26	1.21	1.28	1.74	27.43	305.32	332.75	1.6	3.4	156	1350	2	323	219	373	0.70	358	<10	99	<0.5	<2	0.04
S054903		<0.03	<0.03	<0.03	<0.03	18.26	520.86	539.12	1.3	1.9	125	162	18	113	53	400	0.54	203	<10	76	<0.5	<2	0.03
S054904		<0.03	<0.03	<0.03	<0.03	29.37	365.28	394.60	1.1	1.4	111	142	10	91	64	327	0.64	143	<10	84	<0.5	<2	0.03
S054905		<0.03	<0.03	<0.03	<0.03	36.61	389.25	425.86	4.5	3.2	716	334	4	184	11	241	0.45	339	<10	23	< 0.5	3	0.07
S054906		<0.03	<0.03	<0.03	<0.03	22.39	313.91	336.30	14.0	3.5	106	9290	14	46	17	80	0.35	20	<10	703	< 0.5	<2	0.02
S054907	90								5.9	3.0	175	3880	10	76	17	187	1.22	109	<10	421	1.1	<2	0.05
S054908	6								<0.2	<0.5	27	546	1	29	4	51	1.96	7	<10	123	<0.5	<2	0.99
S054912		17.6	16.6	17.9	17.2	37.84	383.87	421.71	99.9	8.9	286	744	2	36	396	473	0.34	377	<10	27	<0.5	<2	3.43
S054913		<0.03	<0.03	<0.03	<0.03	21.05	381.04	402.09	5.3	0.5	2	127	<1	5	27	30	0.11	64	<10	15	<0.5	<2	0.04
S054914		49.4	1.26	1.38	3.69	18.13	349.96	368.09	1.0	<0.5	41	1710	7	53	3	17	0.23	5	<10	76	<0.5	<2	0.02
S054915		4.39	0.03	<0.03	0.19	16.42	406.33	422.75	0.4	<0.5	12	120	12	8	2	4	0.08	4	< 10	20	< 0.5	<2	< 0.01
S054916	20								0.8	<0.5	100	3780	<1	163	3	68	3.03	9	<10	275	1.4	2	0.10
S054917	35								0.4	5.0	67	2600	7	119	15	512	1.27	55	<10	433	4.9	5	0.05
S054918	112								1.1	<0.5	5	134	8	9	<2	7	0.10	6	<10	18	<0.5	<2	<0.01

Analyte Symbol	Co	Cr	Fe	Ga	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	ppm	\%	ppm	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	1	0.01	10	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																						
1690201	56	159	8.41	<10	<1	0.20	<10	0.12	0.049	0.083	<0.01	7	20	11	< 0.01	<20	2	<2	<10	50	<10	11	3
1690202	1	274	1.17	<10	<1	< 0.01	<10	< 0.01	0.018	0.003	<0.01	3	<1	1	< 0.01	<20	3	<2	<10	3	<10	<1	<1
1690202a	2	344	1.08	<10	<1	<0.01	<10	0.01	0.020	0.003	<0.01	3	<1	1	< 0.01	<20	<1	<2	<10	4	<10	<1	<1
1690203	61	71	9.27	< 10	<1	0.12	<10	0.10	0.064	0.079	<0.01	7	23	12	< 0.01	<20	<1	<2	< 10	55	< 10	11	3
1690204	91	1070	8.86	<10	<1	0.09	<10	2.63	0.027	0.056	<0.01	11	18	16	0.02	<20	<1	<2	<10	92	<10	9	3
1690205	6	140	1.09	<10	<1	0.01	<10	0.12	0.018	0.004	<0.01	3	1	2	< 0.01	<20	1	<2	<10	8	<10	<1	<1
1690206	86	1350	8.92	< 10	<1	0.05	<10	3.80	0.020	0.046	<0.01	14	17	16	< 0.01	<20	<1	<2	<10	105	<10	10	2
1690207	82	1280	8.17	< 10	<1	0.05	<10	3.84	0.023	0.043	<0.01	12	16	12	< 0.01	<20	3	<2	< 10	95	< 10	9	2
1690208	70	1290	7.20	< 10	<1	0.03	<10	3.63	0.020	0.044	<0.01	11	15	14	< 0.01	<20	<1	<2	< 10	87	< 10	7	2
1690209	78	1900	8.10	<10	<1	0.01	<10	6.88	0.018	0.041	<0.01	11	16	7	< 0.01	<20	<1	<2	<10	117	<10	6	2
1690210	65	1250	7.02	< 10	<1	0.05	<10	3.93	0.022	0.040	<0.01	11	14	11	0.06	<20	<1	<2	< 10	95	<10	8	3
1690211	72	1860	7.68	<10	5	<0.01	<10	7.09	0.017	0.036	<0.01	12	15	18	< 0.01	<20	<1	<2	< 10	113	< 10	6	2
1690212	34	135	8.16	<10	<1	0.08	<10	0.31	0.083	0.116	<0.01	6	22	27	< 0.01	<20	<1	<2	<10	83	<10	8	3
1690213	3	117	1.23	< 10	<1	0.02	<10	0.02	0.029	0.024	<0.01	<2	1	4	< 0.01	<20	<1	<2	<10	9	< 10	< 1	<1
1690214	36	85	8.35	< 10	<1	0.21	<10	0.51	0.033	0.180	<0.01	8	17	35	< 0.01	<20	<1	<2	<10	80	< 10	10	3
1690215	23	94	5.17	<10	<1	0.23	<10	0.40	0.040	0.128	<0.01	5	10	31	<0.01	<20	2	<2	<10	50	<10	5	3
1690216	20	82	4.80	<10	<1	0.20	<10	0.41	0.050	0.114	<0.01	3	9	27	< 0.01	<20	<1	<2	<10	71	<10	4	3
1690217	30	82	8.28	< 10	<1	0.25	<10	0.59	0.048	0.156	<0.01	7	12	37	< 0.01	<20	2	<2	<10	148	< 10	7	4
1690217a	30	84	8.31	< 10	<1	0.24	<10	0.60	0.049	0.158	<0.01	7	12	37	< 0.01	<20	5	<2	<10	146	<10	7	4
1690218	29	214	> 30.0	< 10	1	0.04	<10	0.19	0.016	0.186	0.01	23	4	25	< 0.01	<20	< 1	<2	< 10	841	< 10	11	9
1690218a	3	26	0.94	<10	<1	0.09	<10	1.09	0.044	0.026	0.05	2	<1	41	0.03	<20	7	<2	<10	13	<10	6	6
1690219	25	155	6.80	<10	<1	0.58	39	2.45	0.074	0.331	0.02	6	22	145	0.22	<20	<1	<2	<10	141	<10	15	3
1690220	40	25	11.0	<10	3	0.10	<10	0.23	0.101	0.152	<0.01	5	27	24	<0.01	<20	2	<2	<10	111	<10	15	5
1690221	10	90	2.79	< 10	<1	0.06	<10	0.10	0.027	0.031	<0.01	3	5	7	< 0.01	<20	<1	<2	<10	30	<10	3	3
1690222	44	42	10.1	<10	<1	0.22	<10	0.53	0.052	0.147	<0.01	5	24	26	< 0.01	<20	<1	<2	<10	130	<10	14	3
1690223	32	89	8.79	< 10	<1	0.22	<10	0.70	0.052	0.116	<0.01	6	21	35	< 0.01	<20	1	<2	<10	130	< 10	8	3
1690224	8	72	2.13	< 10	<1	0.04	<10	0.03	0.022	0.015	<0.01	<2	2	4	<0.01	<20	3	<2	<10	22	<10	1	<1
1690225	3	66	1.48	<10	2	0.15	11	1.81	0.070	0.025	<0.01	3	1	32	0.04	<20	<1	<2	<10	15	<10	3	4
1690226	44	24	10.1	<10	2	0.19	<10	0.21	0.057	0.179	<0.01	7	22	26	< 0.01	<20	6	<2	< 10	97	< 10	10	4
1690227	23	102	6.78	< 10	<1	0.19	<10	0.40	0.046	0.112	<0.01	6	14	28	< 0.01	<20	5	<2	< 10	86	<10	6	4
1690228	25	104	7.32	<10	1	0.17	<10	0.43	0.045	0.110	<0.01	7	14	27	< 0.01	<20	3	<2	<10	89	<10	6	4
1690229	38	43	8.57	<10	<1	0.12	<10	0.33	0.089	0.129	<0.01	5	21	28	< 0.01	<20	<1	<2	<10	79	<10	8	3
1690230	27	92	6.81	<10	<1	0.12	<10	0.53	0.096	0.108	<0.01	5	17	31	< 0.01	<20	7	<2	<10	64	<10	5	4
1690231	25	56	6.33	< 10	< 1	0.09	<10	0.18	0.064	0.075	<0.01	3	12	17	<0.01	<20	4	<2	< 10	60	<10	5	3
1690232	7	41	2.01	<10	<1	0.03	<10	0.19	0.066	0.029	<0.01	3	3	14	<0.01	<20	<1	<2	<10	19	<10	2	6
1690233	40	70	9.60	< 10	1	0.12	<10	0.18	0.080	0.158	<0.01	7	23	19	< 0.01	<20	<1	<2	< 10	106	<10	11	4
1690234	93	783	7.51	< 10	<1	0.13	<10	1.44	0.025	0.060	<0.01	10	18	18	< 0.01	<20	<1	<2	< 10	123	< 10	10	3
1690235	60	598	6.32	< 10	<1	0.07	<10	1.12	0.037	0.043	<0.01	8	15	15	< 0.01	<20	4	2	< 10	89	< 10	8	3
1690236	59	579	6.26	<10	<1	0.07	<10	1.11	0.035	0.044	<0.01	7	15	15	< 0.01	<20	5	<2	<10	88	<10	8	2
1690237	32	310	2.84	< 10	<1	0.07	<10	0.32	0.024	0.016	<0.01	5	6	5	< 0.01	<20	< 1	<2	< 10	46	< 10	4	< 1
1690238	48	246	7.72	<10	1	0.16	<10	0.61	0.042	0.086	<0.01	6	21	22	<0.01	<20	<1	<2	<10	74	<10	11	3
1690239	4	69	2.55	< 10	<1	0.29	22	2.26	0.080	0.043	0.02	3	3	50	0.08	<20	8	<2	<10	29	<10	10	7
1690240	22	22	3.68	< 10	<1	0.18	13	0.05	0.039	0.025	<0.01	3	6	7	< 0.01	<20	3	<2	<10	49	<10	5	3
1690241	34	135	6.45	< 10	<1	0.13	<10	0.28	0.042	0.061	<0.01	5	15	15	< 0.01	<20	<1	<2	<10	65	< 10	8	4
1690242	48	189	8.26	< 10	<1	0.15	10	0.33	0.045	0.059	<0.01	7	15	13	< 0.01	<20	<1	<2	< 10	62	<10	10	4
1690243	24	178	5.45	<10	<1	0.17	12	0.10	0.028	0.043	<0.01	6	6	7	< 0.01	<20	<1	<2	<10	60	<10	7	7
1690244	39	297	5.80	< 10	1	0.21	22	0.19	0.029	0.047	<0.01	6	7	14	0.02	<20	<1	<2	<10	109	< 10	6	12
1690245	26	23	10.3	<10	<1	0.05	<10	0.71	0.038	0.021	10.2	7	6	95	< 0.01	<20	<1	<2	< 10	17	< 10	3	3
1690246	25	15	9.63	< 10	<1	0.19	<10	2.21	0.058	0.073	5.64	6	17	133	< 0.01	<20	<1	<2	< 10	47	< 10	5	3
1690247	2	131	1.53	< 10	< 1	0.02	<10	0.04	0.022	0.015	0.02	2	3	5	< 0.01	<20	4	<2	<10	13	<10	< 1	<1
1690248	2	118	1.57	<10	<1	0.02	<10	0.03	0.019	0.014	0.02	2	3	5	< 0.01	<20	3	<2	<10	12	<10	<1	<1

Results

Analyte Symbol	Co	Cr	Fe	Ga	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	ppm	\%	ppm	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	1	0.01	10	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																						
1690249	1	158	0.79	<10	<1	< 0.01	<10	0.03	0.019	<0.001	0.01	3	<1	3	<0.01	<20	4	<2	<10	2	<10	<1	<1
1690250	2	90	0.97	<10	<1	<0.01	<10	0.07	0.018	0.001	0.02	2	<1	7	<0.01	<20	<1	<2	<10	4	<10	<1	<1
S054843	<1	195	0.82	<10	<1	<0.01	<10	<0.01	0.019	0.001	<0.01	<2	<1	1	<0.01	<20	<1	<2	<10	<1	<10	<1	<1
S054844	30	14	9.31	<10	<1	0.16	<10	2.58	0.052	0.086	4.60	8	14	200	<0.01	<20	<1	<2	<10	50	<10	6	3
S054845	5	128	2.91	<10	1	0.07	<10	0.89	0.033	0.255	0.48	3	7	102	< 0.01	<20	6	<2	<10	16	<10	7	<1
S054846	40	41	7.88	< 10	<1	0.09	17	0.03	0.067	0.076	0.01	9	10	15	<0.01	<20	<1	<2	<10	39	< 10	13	4
S054847	36	150	5.10	<10	<1	0.08	16	0.02	0.026	0.087	<0.01	4	4	5	< 0.01	<20	<1	<2	<10	26	<10	12	3
S054848	18	38	6.06	< 10	<1	0.12	10	0.05	0.083	0.068	<0.01	5	16	16	<0.01	<20	2	<2	<10	50	< 10	10	5
S054849	8	182	5.58	< 10	<1	0.16	24	0.04	0.028	0.075	<0.01	8	3	6	< 0.01	<20	5	3	<10	35	< 10	7	7
S054901	64	157	7.88	<10	<1	0.15	<10	0.10	0.047	0.073	<0.01	10	19	12	< 0.01	<20	7	<2	<10	60	<10	10	4
S054902	48	97	7.68	<10	<1	0.21	<10	0.05	0.039	0.061	<0.01	7	10	9	< 0.01	<20	<1	<2	<10	57	<10	9	4
S054903	10	291	5.36	<10	<1	0.19	19	0.04	0.033	0.051	<0.01	7	5	6	<0.01	<20	<1	<2	<10	65	< 10	10	11
S054904	9	229	4.52	<10	<1	0.22	28	0.05	0.032	0.038	<0.01	6	4	5	<0.01	<20	<1	<2	<10	56	<10	8	11
S054905	43	249	19.9	<10	4	0.09	55	0.10	0.091	0.093	<0.01	12	11	13	< 0.01	<20	<1	<2	<10	88	< 10	16	7
S054906	33	137	1.66	<10	<1	0.11	12	0.02	0.036	0.020	<0.01	<2	1	52	<0.01	<20	<1	<2	<10	13	< 10	4	5
S054907	38	43	5.60	<10	<1	0.24	27	0.05	0.033	0.078	< 0.01	4	4	27	< 0.01	<20	<1	<2	<10	46	<10	11	6
S054908	12	59	3.49	< 10	<1	0.26	15	1.03	0.190	0.075	<0.01	2	7	59	0.23	<20	2	<2	<10	89	< 10	10	9
S054912	24	23	7.15	<10	1	0.14	< 10	1.69	0.041	0.033	6.12	10	9	180	<0.01	<20	4	<2	<10	27	< 10	5	3
S054913	2	108	1.45	<10	<1	0.01	<10	0.03	0.025	0.011	0.08	<2	2	3	< 0.01	<20	6	<2	<10	7	<10	<1	<1
S054914	100	69	1.66	<10	<1	0.04	<10	0.01	0.031	0.011	<0.01	<2	3	4	< 0.01	<20	1	<2	<10	15	<10	2	2
S054915	3	175	1.45	<10	<1	< 0.01	<10	<0.01	0.025	0.005	<0.01	<2	1	2	< 0.01	<20	<1	<2	<10	6	< 10	- 1	<1
S054916	94	154	9.78	10	1	0.03	<10	0.11	0.061	0.127	<0.01	5	40	24	0.01	<20	<1	<2	<10	264	<10	13	5
S054917	43	81	28.7	< 10	<1	0.14	<10	0.09	0.026	0.187	<0.01	18	5	13	0.02	<20	<1	<2	<10	150	<10	43	9
S054918	2	85	1.71	<10	<1	0.02	<10	<0.01	0.023	0.007	<0.01	<2	<1	2	<0.01	<20	1	<2	<10	7	<10	1	<1

Analyte Symbol	Au	Total Au	Total Weight	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg
Unit Symbol	ppb	g / mt	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm							
Lower Limit	5	0.03		0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1
Method Code	FA-AA	FA-MeT	FA-MeT	AR-ICP																			
OREAS 904 (Aqua Regia) Meas				0.2	<0.5	5890	421	2	30	8	22	1.89	90		74	7.8	<2	0.04	83	23	6.22	<10	
OREAS 904 (Aqua Regia) Cert				0.366	0.0580	6300	410	2.02	36.6	8.49	22.4	1.25	91.0		68.0	6.54	3.74	0.0404	82.0	17.5	6.40	3.40	
OREAS 45e (Aqua Regia) Meas						714	403		371	7	28	3.76	10		110			0.03	38	775	22.1	10	
OREAS 45e (Aqua Regia) Cert						709.0	400.000		357.0	14.3	30.6	3.32	11.4		139			0.032	52	849.0	22.650	11.7	
OREAS 45e (Aqua Regia) Meas						714	372		380	12	30	3.71	9		109			0.03	42	785	22.1	10	
OREAS 45e (Aqua Regia) Cert						709.0	400.000		357.0	14.3	30.6	3.32	11.4		139			0.032	52	849.0	22.650	11.7	
SQ48 Meas		30.1																					
SQ48 Cert		30.25																					
SQ48 Meas		30.5																					
SQ48 Cert		30.25																					
SQ48 Meas		29.9																					
SQ48 Cert		30.25																					
OREAS 922 (AQUA REGIA) Meas				1.0	< 0.5	2320	779	<1	37	57	255	3.06	6		83	0.8	4	0.40	18	46	5.52	< 10	
OREAS 922 (AQUA REGIA) Cert				0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62	
OREAS 922 (AQUA REGIA) Meas				0.9	< 0.5	2280	747	< 1	33	66	254	3.00	8		78	0.8	6	0.40	18	45	5.40	< 10	
OREAS 922 (AQUA REGIA) Cert				0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62	
OREAS 923 (AQUA REGIA) Meas				1.9	< 0.5	4350	877	< 1	31	71	318	2.95	3		68	0.7	13	0.39	19	40	6.14	< 10	
OREAS 923 (AQUA REGIA) Cert				1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01	
OREAS 923 (AQUA REGIA) Meas				1.7	< 0.5	4280	837	<1	33	82	316	2.90	7		63	0.7	12	0.38	21	40	6.06	< 10	
OREAS 923 (AQUA REGIA) Cert				1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01	
$\begin{aligned} & \text { OREAS 520 } \\ & \text { (Aqua Regia) } \\ & \text { Meas } \end{aligned}$						2710	2040	51	72	7	17	1.53	140			0.6	<2	3.27	160	32	15.7	10	
OREAS 520 (Aqua Regia) Cert						2960	2280	62.0	73.0	5.22	20.7	1.56	152			0.540	2.90	3.84	196	37.4	15.74	13.7	
$\begin{aligned} & \text { OREAS 520 } \\ & \text { (Aqua Regia) } \\ & \text { Meas } \end{aligned}$						2890	1890	53	67	11	20	1.57	143			0.6	<2	3.34	165	33	16.1	10	
OREAS 520 (Aqua Regia) Cert						2960	2280	62.0	73.0	5.22	20.7	1.56	152			0.540	2.90	3.84	196	37.4	15.74	13.7	
OREAS 907 (Aqua Regia) Meas				1.2	0.6	6200	337	6	7	31	136	1.18	34		215	1.1	12	0.26	41	10	8.15	20	
OREAS 907				1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280	43.7	8.59	8.18	14.7	

Analyte Symbol	Au	$\begin{array}{\|l} \hline \begin{array}{l} \text { Total } \\ \mathrm{Au} \end{array} \\ \hline \end{array}$	Total Weight	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg
Unit Symbol	ppb	g/mt	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm							
Lower Limit	5	0.03		0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5		0.01	1	1	0.01	10	1
Method Code	FA-AA	FA-MeT	FA-MeT	AR-ICP																			
(Aqua Regia) Cert																							
OREAS 222 (Fire Assay) Meas	1170																						
OREAS 222 (Fire Assay) Cert	1220																						
$\begin{aligned} & \hline \text { OREAS } 222 \text { (Fire } \\ & \text { Assay) Meas } \end{aligned}$	1190																						
OREAS 222 (Fire Assay) Cert	1220																						
Oreas 621 (Aqua Regia) Meas				73.7	289	3540	515	13	24	> 5000	>10000	1.81	79			0.6	3	1.59	27	32	3.54	< 10	5
Oreas 621 (Aqua Regia) Cert				68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65	27.9	31.3	3.43	9.29	3.93
OREAS 257 Meas		14.3																					
OREAS 257 Cert		14.18																					
OREAS 257 Meas		13.9																					
OREAS 257 Cert		14.18																					
$\begin{array}{\|l\|} \hline \text { OREAS } 255 \text { (Fire } \\ \text { Assay) Meas } \\ \hline \end{array}$	4100																						
OREAS 255 (Fire Assay) Cert	4080																						
$\begin{array}{\|l\|} \hline \text { OREAS } 255 \text { (Fire } \\ \text { Assay) Meas } \\ \hline \end{array}$	4140																						
OREAS 255 (Fire Assay) Cert	4080																						
1690202 Orig		< 0.03	500.80																				
1690205 Orig		0.44	455.69																				
1690209 Orig				3.5	<0.5	36	947	1	1220	15	74	4.40	293	< 10	23	<0.5	3	0.13	80	1920	8.19	< 10	2
1690209 Dup				3.6	<0.5	35	930	<1	1190	21	72	4.30	287	< 10	23	<0.5	3	0.12	76	1870	8.01	< 10	< 1
1690212 Orig	401																						
1690212 Dup	344																						
1690222 Orig				1.7	4.2	125	942	<1	48	51	452	2.04	189	< 10	80	<0.5	<2	0.44	44	43	10.1	<10	<1
1690222 Dup				1.5	4.0	122	941	<1	48	49	449	1.98	186	< 10	78	<0.5	<2	0.43	44	41	9.96	<10	1
1690234 Orig		<0.03	466.61	4.5	5.6	40	2910	1	747	148	400	2.35	641	< 10	132	1.1	<2	0.23	94	786	7.47	< 10	<1
1690234 Dup				4.4	4.8	40	2910	2	757	152	401	2.42	645	< 10	134	1.1	<2	0.23	93	781	7.55	<10	1
1690246 Orig				4.5	<0.5	35	1100	<1	34	81	24	0.53	530	<10	26	< 0.5	<2	3.51	25	15	9.63	<10	< 1
$\begin{aligned} & 1690246 \text { Split } \\ & \text { PREP DUP } \end{aligned}$				4.7	<0.5	32	1020	<1	31	73	22	0.44	493	< 10	24	<0.5	3	3.55	26	12	8.72	<10	1
S054844 Orig		2.00	449.90	4.5	4.5	171	1390	1	46	261	297	0.75	2180	< 10	24	< 0.5	<2	5.60	31	13	9.25	< 10	5
S054844 Dup				4.9	5.1	174	1470	<1	48	263	296	0.77	2200	<10	26	< 0.5	<2	5.51	30	14	9.38	<10	< 1
S054906 Orig		<0.03	336.30	14.1	3.4	107	9330	14	46	17	81	0.34	21	< 10	706	<0.5	<2	0.02	33	138	1.68	< 10	<1
S054906 Dup				13.9	3.5	105	9240	14	46	17	80	0.36	20	<10	701	<0.5	<2	0.02	33	136	1.64	<10	<1
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	<5																						
Method Blank	<5																						
Method Blank				<0.2	<0.5	<1	< 5	<1	<1	<2	<2	< 0.01	<2	< 10	< 10	<0.5	<2	< 0.01	<1	<1	<0.01	< 10	<1
Method Blank				<0.2	<0.5	<1	< 5	<1	<1	<2	<2	< 0.01	<2	<10	10	<0.5	<2	<0.01	<1	<1	< 0.01	<10	<1
Method Blank		< 0.03	0.00000																				
Method Blank		< 0.03	0.00000																				
Method Blank		< 0.03	0.00000																				
Method Blank		< 0.03	0.00000																				
Method Blank		< 0.03	0.00000																				

Analyte Symbol	Au	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Total } \\ \mathrm{Au} \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Total } \\ & \text { Weight } \end{aligned}$	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg
Unit Symbol	ppb	g / mt	g	ppm	ppm	ppm	ppm	ppm	ppm	pp	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	pm
Lower Limit	5	0.03		0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1
Method Code	FA-AA	FA-MeT	FA-MeT	AR-ICP																			
Method Blank		<0.03	0.00000																				

Analyte Symbol	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																	
OREAS 904 (Aqua Regia) Meas	0.91	39	0.20		0.096	0.05	4	4	21		<20		<2	< 10	31		21	
OREAS 904 (Aqua Regia) Cert	0.603	33.9	0.143		0.0950	0.0340	0.780	3.83	16.5		7.56		0.150	5.20	21.7		17.2	
OREAS 45e (Aqua Regia) Meas	0.06		0.10	0.041	0.029	0.04		73	5		<20		<2	< 10	269		5	
OREAS 45e (Aqua Regia) Cert	0.053		0.095	0.027	0.029	0.044		78	4.05		10.70		0.072	1.73	295.0		5.74	
OREAS 45e (Aqua Regia) Meas	0.05		0.10	0.038	0.026	0.04		76	5		<20		<2	< 10	279		5	
OREAS 45e (Aqua Regia) Cert	0.053		0.095	0.027	0.029	0.044		78	4.05		10.70		0.072	1.73	295.0		5.74	
SQ48 Meas																		
SQ48 Cert																		
SQ48 Meas																		
SQ48 Cert																		
SQ48 Meas																		
SQ48 Cert																		
OREAS 922 (AQUA REGIA) Meas	0.49	40	1.41	0.042	0.065	0.38	3	4	18		<20		<2	< 10	37	< 10	24	32
OREAS 922 (AQUA REGIA) Cert	0.376	32.5	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	0.45	39	1.38	0.037	0.061	0.38	3	4	17		<20		<2	< 10	37	< 10	23	21
OREAS 922 (AQUA REGIA) Cert	0.376	32.5	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	0.43	35	1.44		0.062	0.66	<2	4	16		<20		<2	< 10	36	< 10	23	36
OREAS 923 (AQUA REGIA) Cert	0.322	30.0	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
$\begin{aligned} & \text { OREAS } 923 \\ & \text { (AQUA REGIA) } \\ & \text { Meas } \end{aligned}$	0.38	35	1.43		0.058	0.64	6	4	15		<20		<2	< 10	35	< 10	21	33
OREAS 923 (AQUA REGIA) Cert	0.322	30.0	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 520 (Aqua Regia) Meas	0.50	68	1.09	0.077	0.071	0.96	9	11	34	0.15	<20	<1	<2	10	227	30	15	34
OREAS 520 (Aqua Regia) Cert	0.506	83.0	1.14	0.0520	0.0740	1.03	1.97	11.8	36.0	0.135	8.03	0.33	0.0900	14.9	247	29.6	14.3	28.0
OREAS 520 (Aqua Regia) Meas	0.44	67	1.11	0.077	0.064	0.85	6	11	28	0.15	<20	< 1	<2	12	233	29	13	30
OREAS 520 (Aqua Regia) Cert	0.506	83.0	1.14	0.0520	0.0740	1.03	1.97	11.8	36.0	0.135	8.03	0.33	0.0900	14.9	247	29.6	14.3	28.0
OREAS 907 (Aqua Regia) Meas	0.36	38	0.23	0.129	0.024	0.07	6	2	15	0.02	<20	<1	<2	< 10	7	< 10	9	36
OREAS 907 (Aqua Regia) Cert	0.286	36.1	0.221	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7

Analyte Symbol	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																	
OREAS 222 (Fire Assay) Meas																		
OREAS 222 (Fire Assay) Cert																		
OREAS 222 (Fire Assay) Meas																		
OREAS 222 (Fire Assay) Cert																		
Oreas 621 (Aqua Regia) Meas	0.35	20	0.44	0.221	0.033	4.73	139	2	21		<20		<2	<10	13	<10	8	62
Oreas 621 (Aqua Regia) Cert	0.333	19.4	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
OREAS 257 Meas																		
OREAS 257 Cert																		
OREAS 257 Meas																		
OREAS 257 Cert																		
OREAS 255 (Fire Assay) Meas																		
OREAS 255 (Fire Assay) Cert																		
OREAS 255 (Fire Assay) Meas																		
OREAS 255 (Fire Assay) Cert																		
1690202 Orig																		
1690205 Orig																		
1690209 Orig	0.01	<10	6.97	0.018	0.041	< 0.01	10	17	8	< 0.01	<20	<1	<2	<10	119	<10	6	2
1690209 Dup	0.01	<10	6.80	0.018	0.041	<0.01	12	16	7	< 0.01	<20	3	<2	<10	116	<10	6	2
1690212 Orig																		
1690212 Dup																		
1690222 Orig	0.23	< 10	0.53	0.054	0.147	<0.01	4	24	26	< 0.01	<20	<1	<2	<10	132	<10	14	4
1690222 Dup	0.22	< 10	0.52	0.051	0.147	<0.01	6	24	26	< 0.01	<20	4	<2	<10	127	<10	14	3
1690234 Orig	0.13	< 10	1.43	0.024	0.060	<0.01	10	18	18	< 0.01	<20	<1	2	<10	122	<10	10	3
1690234 Dup	0.13	<10	1.44	0.026	0.060	< 0.01	11	18	18	< 0.01	<20	<1	<2	<10	123	<10	10	3
1690246 Orig	0.19	< 10	2.21	0.058	0.073	5.64	6	17	133	< 0.01	<20	<1	<2	<10	47	<10	5	3
$\begin{aligned} & 1690246 \text { Split } \\ & \text { PREP DUP } \\ & \hline \end{aligned}$	0.18	<10	1.92	0.046	0.072	6.62	6	15	162	< 0.01	<20	<1	<2	<10	41	<10	5	3
S054844 Orig	0.15	<10	2.57	0.051	0.083	4.50	8	13	196	< 0.01	<20	<1	<2	<10	50	<10	6	3
S054844 Dup	0.17	< 10	2.59	0.054	0.089	4.69	7	14	204	< 0.01	<20	5	<2	<10	50	<10	7	3
S054906 Orig	0.10	12	0.02	0.036	0.020	<0.01	<2	1	52	< 0.01	<20	2	<2	<10	13	<10	4	
S054906 Dup	0.11	12	0.02	0.036	0.020	<0.01	<2	1	53	< 0.01	<20	<1	<2	<10	13	<10	4	5
Method Blank																		
Method Blank																		
Method Blank																		
Method Blank																		
Method Blank	< 0.01	< 10	< 0.01	0.011	< 0.001	< 0.01	<2	< 1	< 1	< 0.01	<20	< 1	<2	< 10	< 1	< 10	<1	< 1
Method Blank	< 0.01	<10	< 0.01	0.013	< 0.001	<0.01	<2	<1	<1	< 0.01	<20	<1	<2	<10	<1	<10	<1	<1
Method Blank																		
Method Blank																		
Method Blank																		
Method Blank																		
Method Blank																		
Method Blank																		

Report No.: A19-15561
Report Date:
Date Submitted: 15-Nov-19
Your Reference: Quesnelle Gold Quartz Mine \#2
Golden Cariboo Resources
P.O. Box 48778 Stn. Bentall Center

Vancouver BC V7X 1A6

Canada

ATTN: Frank Callaghan

CERTIFICATE OF ANALYSIS

89 Rock samples were submitted for analysis.

The following analytical package(s) were requested:	Testing Date:	
1A2-Kamloops	QOP AA-Au (Au - Fire Assay AA)	2019-11-25 19:20:03
1A2B-30-Kamloops	QOP AA-Au (Au - Fire Assay AA)	$2019-11-28$ 00:49:00
1A4 (100mesh)-Kamloops	QOP AA-Au (Au-Fire Assay-Metallic Screen-500g)	2019-11-22 16:22:53
1E3-Kamloops	QOP AquaGeo (Aqua Regia ICPOES)	$2019-11-22$ 01:24:45
Sieve Report-Kamloops Internal	Sieve Report Internal	2019-11-22 18:51:53

REPORT A19-15561
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 500 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Elitsa Hrischeva, Ph.D.
Quality Control Coordinator

Analyte Symbol	$\begin{aligned} & \mathrm{Au}+ \\ & 100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l} \hline \text { Au- } \\ 100 \\ \text { mesh } \\ \text { (A) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Au- } \\ 100 \\ \text { mesh } \\ \text { (B) } \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \text { Total } \\ & \text { Au }\end{aligned}\right.$	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	Total Weight	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co
Unit Symbol	g / mt	g / mt	g / mt	g / mt	g	g	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm							
Lower Limit	0.03	0.03	0.03	0.03				0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1
Method Code	FA-MeT	AR-ICP																					
S054889								2.1	0.8	306	2510	8	379	171	220	1.15	296	<10	145	<0.5	<2	0.07	64
S054890	0.11	0.33	0.40	0.34	44.56	401.25	445.80	17.9	<0.5	13	259	11	18	38	18	0.07	12	< 10	21	<0.5	<2	<0.01	3
S054891	365	29.4	30.2	45.9	20.59	408.25	428.84	> 100	2.4	1140	51	13	20	678	227	0.01	415	< 10	12	< 0.5	<2	<0.01	< 1
S054892	5.57	1.87	1.71	1.94	16.69	412.37	429.06	1.3	0.6	134	1790	3	254	648	228	1.12	286	< 10	85	<0.5	<2	0.07	56
S054893	85.8	11.8	12.4	17.5	32.74	416.24	448.98	61.5	0.8	265	74	11	21	210	116	0.05	97	<10	12	<0.5	<2	<0.01	2
S054894	<0.03	<0.03	<0.03	<0.03	17.64	388.86	406.50	0.4	0.9	149	1910	2	419	370	287	1.15	363	<10	67	0.6	<2	0.07	61
S054895	<0.03	<0.03	<0.03	<0.03	38.42	434.65	473.07	6.0	<0.5	14	169	18	32	4	22	0.11	27	<10	44	<0.5	<2	0.02	10
S054896	<0.03	<0.03	<0.03	<0.03	34.06	427.55	461.61	0.5	<0.5	10	320	10	27	25	29	0.08	30	<10	17	<0.5	<2	0.01	5
S054897	<0.03	<0.03	<0.03	<0.03	15.17	517.56	532.73	0.2	<0.5	79	119	3	36	33	57	0.25	57	<10	60	<0.5	<2	0.02	7
S054898								0.2	0.8	179	191	5	112	99	190	0.65	160	<10	113	0.6	3	0.03	24
S054899								3.6	0.6	17	3150	12	28	88	42	0.04	16	<10	68	< 0.5	<2	0.01	4
S054900								< 0.2	<0.5	4	1500	2	5	3	12	0.34	5	<10	251	<0.5	3	5.24	2
S054919	<0.03	<0.03	<0.03	<0.03	32.62	594.24	626.86	0.3	<0.5	3	154	12	10	2	6	0.01	10	<10	17	<0.5	<2	0.01	2
S054920	<0.03	<0.03	<0.03	<0.03	36.24	512.93	549.17	0.7	<0.5	66	920	4	71	10	73	0.22	41	<10	69	<0.5	4	0.05	13
S054921	<0.03	<0.03	<0.03	<0.03	21.89	576.80	598.70	2.5	<0.5	10	115	18	21	2	11	0.09	12	<10	29	<0.5	4	0.01	5
S054922								1.9	<0.5	13	101	17	21	3	13	0.08	12	<10	23	<0.5	6	0.01	6
S054923	<0.03	<0.03	<0.03	<0.03	14.73	482.83	497.56	1.0	<0.5	16	573	7	69	3	23	0.49	32	<10	66	<0.5	<2	0.04	13
S054924								<0.2	<0.5	7	273	2	9	3	17	0.56	5	<10	150	<0.5	<2	4.98	4
S054925	0.40	0.23	0.30	0.27	37.65	543.84	581.49	0.5	<0.5	13	364	5	39	12	12	0.09	67	<10	23	<0.5	<2	0.91	7
S054926	11.3	9.72	9.90	9.85	16.50	560.00	576.50	3.0	<0.5	136	277	3	14	16	23	0.30	71	< 10	14	<0.5	<2	0.10	2
S054927	<0.03	<0.03	<0.03	<0.03	10.33	455.03	465.36	0.7	<0.5	594	1390	<1	118	17	111	1.60	7	<10	88	<0.5	3	0.24	35
S054928	<0.03	<0.03	<0.03	<0.03	38.34	543.79	582.13	1.0	<0.5	39	211	6	23	34	9	0.19	8	<10	10	<0.5	<2	0.62	3
S054929	<0.03	<0.03	<0.03	<0.03	15.72	468.59	484.31	0.8	<0.5	26	388	4	19	<2	14	0.16	8	<10	33	<0.5	<2	0.72	6
S054930	5.00	0.36	0.30	0.45	14.21	519.14	533.40	2.1	<0.5	107	1040	<1	80	<2	58	0.54	92	<10	24	<0.5	<2	5.36	27
S054931	0.14	0.03	0.03	0.04	49.74	478.88	528.62	<0.2	<0.5	8	912	6	10	<2	16	0.48	5	<10	31	<0.5	<2	0.24	6
S054932	<0.03	<0.03	<0.03	<0.03	22.90	491.40	514.30	<0.2	<0.5	14	527	2	12	<2	17	1.22	4	< 10	83	<0.5	<2	0.85	7
S054933	1.66	0.33	0.36	0.43	30.10	422.12	452.22	0.6	<0.5	67	1400	2	114	415	185	1.64	82	<10	58	<0.5	2	0.11	28
S054934	<0.03	< 0.03	<0.03	<0.03	14.70	449.76	464.46	0.3	<0.5	81	1650	2	203	6	106	0.86	60	<10	83	<0.5	<2	0.08	34
S054935	<0.03	<0.03	<0.03	<0.03	15.74	498.86	514.60	1.5	<0.5	43	338	4	41	6	46	0.15	27	< 10	44	<0.5	<2	0.04	6
S054936	0.04	<0.03	<0.03	<0.03	23.94	505.13	529.07	1.0	<0.5	168	1490	4	164	2	73	0.35	170	<10	117	<0.5	<2	0.06	22
S054937	<0.03	<0.03	<0.03	<0.03	24.87	474.68	499.55	<0.2	<0.5	21	937	4	175	<2	36	0.64	87	<10	51	<0.5	3	0.02	29
S054938	0.61	0.23	0.16	0.22	44.03	634.89	678.92	2.1	<0.5	29	222	7	14	15	20	0.08	20	<10	64	<0.5	<2	0.02	2
S054939	<0.03	<0.03	<0.03	<0.03	19.61	435.58	455.19	0.4	<0.5	5	171	9	9	7	10	0.02	7	< 10	14	<0.5	<2	<0.01	<1
S054940								<0.2	<0.5	4	321	1	5	<2	13	0.45	3	<10	103	<0.5	<2	5.94	2
S054941								0.3	5.7	213	644	21	191	19	796	1.83	59	<10	148	1.8	<2	0.07	38
S054942								15.0	12.3	239	7060	3	59	17	207	0.90	6	<10	154	0.5	<2	0.71	49
S054943								2.1	13.8	159	7430	24	291	4	747	1.45	144	<10	718	2.1	<2	0.06	149
S054944								0.5	45.4	289	8160	17	507	3	1360	1.11	150	<10	159	4.9	<2	0.09	151
S054945								<0.2	4.8	83	668	7	83	3	241	2.06	47	<10	195	1.0	<2	0.10	16
S054946								<0.2	8.6	231	1410	10	89	4	371	1.01	90	<10	120	1.3	<2	0.04	40
S054947								0.3	0.6	142	617	39	62	19	311	0.83	89	<10	159	1.0	<2	0.02	7
S054948								0.9	0.9	164	1140	23	58	10	327	0.70	126	<10	190	0.9	<2	0.02	7
S054949								0.2	0.7	135	570	15	49	10	234	0.52	128	<10	116	0.6	<2	0.02	5
S054950								0.4	2.7	75	1450	57	69	11	332	0.80	103	<10	206	0.7	<2	0.02	9
S054951								0.4	4.1	93	1300	47	98	18	408	0.82	108	<10	191	1.3	<2	0.02	9
S054952	0.05	0.07	0.10	0.08	20.28	504.24	524.52	<0.2	6.3	170	1000	49	147	29	677	0.92	383	<10	104	1.5	3	0.04	15
S054953	<0.03	< 0.03	<0.03	<0.03	12.63	412.94	425.60	<0.2	4.7	89	675	39	100	19	455	1.04	128	<10	141	1.9	<2	0.03	16
S054954								<0.2	3.0	39	747	40	53	11	258	0.84	74	<10	202	1.2	<2	0.02	18
S054955								0.2	4.6	131	571	52	134	28	652	0.96	197	<10	162	1.8	<2	0.03	25

Results
Activation Laboratories Ltd.
Report: A19-15561

Analyte Symbol	$\begin{aligned} & \mathrm{Au}+ \\ & 100 \\ & \text { mesh } \end{aligned}$	$\mathrm{Au}-$ 100 mesh (A)	$\mathrm{Au}-$ 100 mesh (B)	$\begin{array}{\|l\|} \hline \text { Total } \\ \mathrm{Au} \end{array}$	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l} -100 \\ \text { mesh } \end{array}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { Weight } \end{array}$	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co
Unit Symbol	g / mt	g / mt	g / mt	g / mt	g	g	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm							
Lower Limit	0.03	0.03	0.03	0.03				0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1
Method Code	FA-MeT	AR-ICP																					
S054956								0.6	1.7	62	1770	46	71	25	296	0.91	84	<10	271	1.0	3	0.04	22
S054957								2.9	9.4	89	11400	52	115	15	639	0.78	406	<10	1330	1.5	<2	0.04	124
S054958								1.8	6.5	108	8220	40	113	14	474	0.87	185	<10	1010	1.4	<2	0.07	146
S054959	<0.03	<0.03	<0.03	<0.03	15.54	485.23	500.77	2.4	7.1	62	8290	49	99	17	629	0.60	278	<10	1000	1.7	<2	0.03	130
S054960								<0.2	<0.5	3	632	2	7	<2	15	0.31	4	<10	200	<0.5	<2	4.57	2
S054961								0.2	0.7	149	277	20	51	12	196	0.69	69	<10	112	0.8	4	0.03	9
S054962								0.4	1.4	258	1670	3	315	369	300	1.25	299	<10	79	0.7	<2	0.07	65
S054963								10.0	<0.5	28	201	7	42	158	60	0.14	45	<10	21	<0.5	<2	0.01	6
S054964								1.6	1.1	103	1890	2	368	535	315	0.93	316	<10	103	0.8	<2	0.06	63
S054965	<0.03	0.10	0.13	0.11	37.46	550.94	588.40	1.1	<0.5	15	409	8	39	98	63	0.07	39	<10	23	<0.5	<2	< 0.01	6
S054966	0.41	0.60	0.56	0.57	24.27	426.62	450.89	0.6	1.0	65	826	4	237	408	412	0.62	233	<10	60	<0.5	<2	0.04	32
S054967	<0.03	<0.03	<0.03	<0.03	40.86	520.52	561.38	0.2	2.8	101	213	12	65	16	254	0.44	67	<10	51	<0.5	<2	0.09	10
S054968								3.6	8.1	165	2120	8	119	16	471	1.25	76	<10	249	0.8	<2	0.14	61
S054969								0.6	<0.5	50	1930	6	316	3	197	1.38	199	<10	102	<0.5	<2	0.05	53
S054970								0.6	<0.5	50	1130	5	211	<2	153	0.82	147	<10	61	<0.5	<2	0.04	37
S054971								0.4	<0.5	40	1440	5	222	<2	144	0.65	138	<10	80	<0.5	<2	0.03	48
S054972								0.2	<0.5	15	644	9	36	13	21	0.14	29	<10	36	<0.5	<2	< 0.01	9
S054973	<0.03	< 0.03	<0.03	<0.03	18.77	401.73	420.50	1.6	1.4	83	1840	6	258	13	210	0.56	214	<10	140	0.9	<2	0.02	41
S054974	<0.03	<0.03	<0.03	< 0.03	26.84	516.10	542.94	4.3	1.4	106	3550	6	134	20	110	0.43	96	<10	192	0.9	<2	0.02	41
S054975	<0.03	<0.03	<0.03	<0.03	30.88	463.33	494.21	0.5	<0.5	15	264	7	28	17	31	0.09	28	<10	20	< 0.5	<2	< 0.01	4
S054976								<0.2	0.7	70	292	2	106	58	173	0.53	111	<10	91	0.9	<2	0.02	19
S054977								0.2	<0.5	68	964	2	103	14	133	0.67	128	<10	109	0.8	<2	0.02	17
S054978								<0.2	1.2	142	840	4	353	18	265	0.82	376	<10	90	1.8	<2	0.03	36
S054979	<0.03	0.30	0.33	0.29	30.87	485.53	516.40	0.8	<0.5	39	375	5	50	11	108	0.29	78	<10	56	<0.5	<2	0.02	3
S054980	<0.03	< 0.03	<0.03	< 0.03	29.64	509.54	539.18	0.2	0.9	173	647	12	38	14	133	0.48	170	<10	42	1.3	<2	0.03	18
S054981	<0.03	<0.03	<0.03	<0.03	25.82	438.72	464.54	2.2	3.1	46	2700	17	29	17	80	0.27	49	<10	338	0.5	<2	0.01	52
S054982	<0.03	0.33	0.26	0.29	15.06	366.96	382.02	9.1	10.1	153	7190	35	87	34	333	0.86	121	<10	967	1.6	3	0.03	127
S054983	<0.03	<0.03	<0.03	<0.03	31.48	453.83	485.31	<0.2	<0.5	86	564	10	20	29	37	0.43	117	<10	97	0.9	3	0.02	7
S054984	< 0.03	<0.03	<0.03	<0.03	27.28	474.44	501.72	1.4	0.6	85	6870	6	15	26	41	0.35	6	<10	1060	<0.5	2	0.02	52
S054985	0.05	<0.03	<0.03	< 0.03	22.46	472.18	494.64	2.9	13.1	390	6790	67	193	30	815	0.93	280	<10	243	3.4	<2	0.06	88
S054986	<0.03	<0.03	<0.03	< 0.03	20.16	540.92	561.08	3.4	4.0	89	5930	15	77	18	179	0.38	62	<10	266	0.7	<2	0.03	41
S054987	0.36	<0.03	<0.03	<0.03	25.12	466.45	491.57	0.3	2.0	164	573	6	78	8	225	1.33	98	<10	105	1.6	<2	0.06	11
S054988	<0.03	<0.03	<0.03	<0.03	18.91	416.12	435.00	0.2	1.2	136	543	5	63	7	189	1.06	77	<10	105	1.3	<2	0.04	15
S054989								0.4	1.5	141	898	5	81	6	211	1.25	107	<10	123	1.5	<2	0.05	34
S054990								0.5	0.8	43	976	6	27	<2	60	0.34	31	<10	84	0.5	<2	0.02	27
S054991								8.5	5.8	270	6550	10	190	<2	289	1.74	160	<10	581	2.4	<2	0.07	194
S054850								<0.2	1.1	86	2380	1	140	13	127	4.32	6	<10	259	1.3	3	1.22	39
S054909								1.2	1.8	75	1260	2	188	149	231	2.18	133	<10	147	0.6	<2	0.54	33
S054910								<0.2	<0.5	36	571	1	48	8	67	1.98	6	<10	130	0.5	<2	0.63	13
S054911								<0.2	<0.5	26	870	1	38	3	57	1.20	8	<10	96	<0.5	<2	0.67	13

Analyte Symbol	Cr	Fe	Ga	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr	Au
Unit Symbol	ppm	\%	ppm	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm	ppb							
Lower Limit	1	0.01	10	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	5
Method Code	AR-ICP	FA-AA																					
S054889	90	9.18	<10	<1	0.23	<10	0.07	0.028	0.081	<0.01	9	14	12	<0.01	<20	8	<2	<10	79	<10	10	4	821
S054890	115	0.71	<10	<1	0.01	< 10	<0.01	0.015	0.003	<0.01	<2	<1	<1	<0.01	< 20	<1	<2	<10	5	<10	<1	<1	
S054891	313	9.27	<10	< 1	<0.01	< 10	<0.01	0.014	0.016	1.99	55	< 1	2	<0.01	<20	3	<2	<10	15	< 10	<1	2	
S054892	61	8.21	<10	<1	0.21	<10	0.06	0.052	0.079	<0.01	7	22	14	<0.01	<20	8	<2	<10	66	<10	11	3	
S054893	255	3.10	<10	<1	0.01	< 10	< 0.01	0.017	0.010	0.63	10	<1	1	<0.01	<20	<1	<2	<10	12	<10	<1	<1	
S054894	118	8.49	<10	<1	0.22	< 10	0.10	0.051	0.109	< 0.01	9	24	13	<0.01	<20	6	<2	< 10	87	< 10	13	2	
S054895	183	3.71	<10	< 1	0.02	< 10	0.02	0.024	0.015	0.59	<2	1	4	<0.01	<20	<1	<2	< 10	10	< 10	1	1	
S054896	109	1.15	<10	<1	0.01	<10	0.01	0.017	0.008	<0.01	<2	2	2	<0.01	<20	3	<2	<10	7	< 10	1	<1	
S054897	67	1.67	<10	< 1	0.12	11	0.02	0.019	0.023	<0.01	<2	2	3	<0.01	<20	1	<2	< 10	17	<10	4	1	
S054898	150	5.21	<10	<1	0.31	12	0.05	0.030	0.059	<0.01	5	8	6	<0.01	<20	6	<2	< 10	69	< 10	8	6	26
S054899	117	0.73	<10	<1	0.02	<10	< 0.01	0.016	0.004	<0.01	<2	<1	16	<0.01	<20	<1	<2	<10	10	<10	2	1	27
S054900	23	3.02	< 10	< 1	0.11	13	2.40	0.043	0.037	0.02	3	1	51	0.02	<20	4	<2	<10	12	< 10	7	10	< 5
S054919	126	0.62	<10	<1	<0.01	<10	< 0.01	0.019	0.002	<0.01	<2	<1	<1	<0.01	<20	<1	<2	<10	2	<10	1	<1	
S054920	53	4.97	<10	< 1	0.04	17	0.03	0.058	0.036	<0.01	3	5	10	<0.01	<20	<1	<2	<10	46	< 10	7	2	
S054921	149	2.99	<10	<1	0.01	<10	<0.01	0.018	0.012	0.11	2	<1	2	<0.01	<20	<1	<2	<10	14	<10	1	<1	
S054922	144	2.71	<10	< 1	0.01	< 10	< 0.01	0.015	0.011	0.21	3	<1	2	<0.01	<20	<1	<2	< 10	14	< 10	<1	<1	
S054923	84	2.18	<10	< 1	0.07	< 10	0.04	0.026	0.020	<0.01	<2	4	5	<0.01	<20	1	<2	< 10	25	<10	2	2	
S054924	40	1.26	<10	<1	0.23	12	2.93	0.052	0.027	0.01	2	2	31	0.06	<20	<1	<2	< 10	21	<10	5	6	< 5
S054925	54	2.35	<10	<1	0.02	<10	0.35	0.033	0.014	1.47	2	2	29	<0.01	<20	2	<2	<10	8	< 10	2	1	
S054926	40	13.3	<10	<1	0.02	< 10	0.09	0.016	0.021	4.09	6	1	6	<0.01	< 20	6	<2	<10	70	<10	1	3	
S054927	59	9.32	<10	<1	0.04	16	1.32	0.100	0.085	0.69	4	14	20	<0.01	<20	4	<2	< 10	100	<10	5	4	
S054928	93	1.04	<10	<1	<0.01	< 10	0.46	0.022	0.010	<0.01	<2	2	20	<0.01	<20	<1	<2	<10	11	<10	1	<1	
S054929	50	1.21	<10	<1	0.03	< 10	0.08	0.068	0.231	<0.01	<2	2	20	<0.01	<20	<1	<2	< 10	8	<10	5	<1	
S054930	33	5.96	<10	<1	0.06	< 10	2.43	0.131	0.071	0.45	6	19	117	<0.01	<20	8	<2	<10	31	<10	7	2	
S054931	67	1.50	<10	<1	0.04	<10	0.32	0.023	0.028	<0.01	<2	5	12	0.09	<20	<1	<2	<10	38	<10	6	1	
S054932	43	2.42	<10	<1	0.30	< 10	0.48	0.070	0.024	<0.01	5	7	49	0.23	<20	1	<2	< 10	102	<10	8	5	
S054933	60	4.67	<10	<1	0.16	<10	0.17	0.035	0.044	<0.01	3	16	13	<0.01	<20	<1	<2	<10	60	< 10	6	1	
S054934	35	6.77	<10	<1	0.07	16	0.07	0.103	0.071	0.02	4	16	19	<0.01	<20	<1	<2	< 10	86	< 10	8	3	
S054935	73	3.75	<10	<1	0.03	10	0.02	0.043	0.034	0.14	2	3	8	<0.01	<20	<1	<2	<10	28	<10	5	2	
S054936	136	10.6	<10	<1	0.05	24	0.06	0.078	0.070	0.01	7	10	15	<0.01	<20	5	<2	<10	100	<10	16	4	
S054937	160	3.02	<10	<1	0.07	<10	0.04	0.039	0.037	<0.01	3	10	6	<0.01	<20	- 1	<2	<10	35	<10	4	<1	
S054938	81	1.92	<10	< 1	0.02	< 10	<0.01	0.026	0.018	0.09	<2	1	6	<0.01	<20	<1	<2	< 10	12	<10	2	<1	
S054939	91	0.64	<10	<1	<0.01	< 10	<0.01	0.017	0.003	<0.01	<2	<1	< 1	<0.01	<20	<1	<2	<10	3	< 10	<1	<1	
S054940	24	1.16	<10	<1	0.14	< 10	2.25	0.049	0.029	<0.01	3	2	46	0.04	< 20	1	<2	<10	13	<10	5	7	<5
S054941	25	12.8	<10	3	0.21	112	0.06	0.024	0.146	<0.01	15	4	24	<0.01	<20	5	<2	<10	59	<10	132	5	89
S054942	17	0.56	<10	<1	0.20	178	0.60	0.028	0.039	<0.01	<2	3	54	<0.01	<20	4	<2	<10	28	<10	163	7	28
S054943	18	14.7	<10	<1	0.18	32	0.05	0.030	0.232	<0.01	11	3	36	<0.01	<20	6	<2	< 10	59	< 10	71	4	36
S054944	16	27.5	<10	<1	0.12	< 10	0.05	0.019	0.576	<0.01	13	2	53	<0.01	<20	16	<2	<10	45	<10	55	6	42
S054945	22	4.67	<10	<1	0.24	12	0.08	0.025	0.048	<0.01	4	7	19	<0.01	<20	2	<2	<10	40	<10	20	3	19
S054946	28	11.4	<10	4	0.22	<10	0.04	0.022	0.106	0.02	5	3	8	<0.01	<20	7	<2	<10	32	<10	41	4	84
S054947	24	5.94	<10	<1	0.22	11	0.03	0.023	0.065	<0.01	11	3	8	<0.01	< 20	1	<2	<10	46	< 10	21	5	36
S054948	29	6.97	< 10	<1	0.20	<10	0.02	0.024	0.072	<0.01	17	3	10	<0.01	<20	<1	<2	<10	21	<10	30	4	23
S054949	20	4.98	<10	<1	0.15	13	0.02	0.023	0.079	<0.01	6	2	14	<0.01	<20	3	<2	<10	20	<10	23	4	13
S054950	19	7.11	<10	<1	0.24	13	0.03	0.024	0.084	<0.01	13	4	18	<0.01	<20	7	<2	<10	59	< 10	18	5	36
S054951	20	7.62	<10	<1	0.27	22	0.04	0.026	0.135	<0.01	16	5	17	<0.01	< 20	<1	<2	<10	56	<10	35	3	27
S054952	22	15.3	<10	<1	0.19	13	0.04	0.021	0.290	0.01	21	4	21	<0.01	<20	4	<2	< 10	68	<10	25	4	
S054953	16	7.94	< 10	<1	0.25	18	0.05	0.023	0.181	<0.01	24	5	13	<0.01	<20	<1	<2	<10	44	<10	12	3	
S054954	15	4.77	<10	<1	0.29	20	0.04	0.026	0.106	<0.01	16	2	11	<0.01	<20	5	<2	<10	50	<10	8	3	26
S054955	24	12.6	<10	3	0.25	13	0.05	0.026	0.262	0.01	34	4	14	<0.01	<20	2	4	<10	66	<10	13	3	126
S054956	28	5.14	<10	<1	0.27	19	0.09	0.029	0.108	<0.01	17	5	24	<0.01	<20	6	<2	<10	70	<10	11	3	142
S054957	21	18.2	<10	<1	0.27	12	0.04	0.041	0.384	<0.01	16	3	54	<0.01	<20	1	<2	<10	71	<10	20	4	47

Results

Analyte Symbol	Cr	Fe	Ga	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr	Au
Unit Symbol	ppm	\%	ppm	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm	ppb							
Lower Limit	1	0.01	10	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	5
Method Code	AR-ICP	FA-AA																					
S054958	36	10.9	<10	<1	0.25	16	0.09	0.039	0.237	<0.01	13	3	40	<0.01	<20	4	<2	<10	71	<10	16	3	57
S054959	13	15.7	<10	<1	0.22	< 10	0.03	0.034	0.379	<0.01	16	2	31	<0.01	<20	3	2	<10	64	< 10	19	4	
S054960	25	1.69	< 10	<1	0.12	16	1.20	0.039	0.043	0.02	3	1	51	0.03	<20	1	<2	<10	12	< 10	8	9	< 5
S054961	35	4.43	< 10	<1	0.19	13	0.03	0.023	0.044	<0.01	5	2	7	<0.01	<20	2	<2	< 10	26	< 10	17	7	25
S054962	103	6.76	< 10	<1	0.25	<10	0.06	0.036	0.091	<0.01	8	20	10	<0.01	<20	3	<2	<10	61	< 10	11	2	243
S054963	92	1.46	< 10	<1	0.05	< 10	0.01	0.020	0.013	<0.01	17	3	2	<0.01	<20	2	<2	<10	12	< 10	2	<1	6000
S054964	136	8.40	<10	<1	0.28	<10	0.07	0.039	0.091	<0.01	7	20	10	<0.01	<20	3	<2	<10	63	<10	11	2	436
S054965	90	1.19	< 10	1	0.03	< 10	<0.01	0.017	0.009	<0.01	3	2	2	<0.01	<20	5	<2	<10	9	< 10	1	<1	
S054966	119	5.46	< 10	<1	0.20	<10	0.04	0.028	0.067	<0.01	5	11	7	<0.01	<20	<1	<2	<10	42	< 10	8	2	
S054967	39	4.29	< 10	<1	0.10	<10	0.05	0.022	0.071	<0.01	3	2	9	<0.01	<20	4	<2	<10	23	< 10	6	4	
S054968	12	7.77	< 10	<1	0.26	33	0.12	0.040	0.088	<0.01	5	4	38	<0.01	<20	<1	<2	< 10	15	< 10	11	4	8
S054969	118	9.33	< 10	<1	0.13	< 10	0.07	0.097	0.127	<0.01	7	31	16	<0.01	<20	9	<2	< 10	61	< 10	8	3	82
S054970	99	7.02	<10	<1	0.09	< 10	0.05	0.082	0.084	<0.01	3	23	11	<0.01	<20	<1	<2	<10	44	<10	6	2	337
S054971	45	7.06	<10	<1	0.10	<10	0.04	0.087	0.071	<0.01	5	22	12	<0.01	<20	6	<2	<10	39	< 10	5	2	24
S054972	86	1.06	< 10	<1	0.03	< 10	< 0.01	0.020	0.009	<0.01	<2	2	2	<0.01	< 20	<1	<2	<10	7	< 10	3	<1	13
S054973	84	4.40	< 10	<1	0.21	13	0.04	0.038	0.045	<0.01	2	8	8	<0.01	<20	<1	<2	<10	37	< 10	16	6	
S054974	46	2.75	< 10	<1	0.14	11	0.03	0.025	0.030	<0.01	2	6	8	<0.01	<20	3	<2	< 10	30	< 10	24	5	
S054975	78	1.02	< 10	<1	0.02	<10	<0.01	0.016	0.008	<0.01	<2	<1	<1	<0.01	<20	3	<2	<10	8	< 10	4	2	
S054976	125	3.45	<10	<1	0.19	47	0.04	0.022	0.041	<0.01	4	4	5	<0.01	<20	2	<2	<10	47	< 10	87	7	103
S054977	29	3.35	< 10	<1	0.26	20	0.05	0.027	0.035	<0.01	3	5	4	<0.01	<20	<1	<2	<10	32	< 10	16	8	78
S054978	99	7.30	< 10	<1	0.25	14	0.05	0.042	0.091	<0.01	5	14	7	<0.01	<20	5	<2	<10	59	< 10	49	4	25
S054979	137	2.11	< 10	<1	0.09	< 10	0.03	0.022	0.024	<0.01	2	2	3	<0.01	<20	< 1	<2	<10	26	< 10	3	5	
S054980	137	13.7	< 10	<1	0.05	< 10	0.02	0.016	0.162	<0.01	7	6	4	<0.01	< 20	5	<2	<10	99	< 10	5	4	
S054981	55	1.46	< 10	<1	0.09	<10	0.01	0.026	0.026	<0.01	<2	2	13	<0.01	< 20	<1	<2	<10	18	<10	5	3	
S054982	51	4.53	< 10	<1	0.29	16	0.04	0.037	0.080	<0.01	3	5	35	<0.01	<20	3	<2	<10	116	< 10	14	4	
S054983	42	3.01	< 10	<1	0.07	< 10	0.02	0.016	0.051	<0.01	4	7	7	<0.01	<20	1	<2	<10	24	< 10	2	2	
S054984	42	3.35	<10	<1	0.04	< 10	<0.01	0.027	0.019	<0.01	4	6	8	<0.01	<20	2	<2	<10	23	<10	9	9	
S054985	118	16.2	<10	<1	0.28	<10	0.05	0.032	0.273	<0.01	9	8	70	<0.01	<20	4	<2	<10	177	< 10	23	4	
S054986	40	5.84	< 10	<1	0.16	11	0.02	0.046	0.067	<0.01	4	9	77	<0.01	<20	2	<2	<10	38	< 10	8	3	
S054987	47	7.36	<10	<1	0.20	<10	0.04	0.065	0.195	<0.01	4	22	17	<0.01	<20	<1	4	<10	93	<10	11	3	
S054988	39	6.39	< 10	<1	0.20	< 10	0.04	0.067	0.170	<0.01	4	17	17	<0.01	<20	9	<2	< 10	74	< 10	9	3	
S054989	50	7.32	< 10	<1	0.19	< 10	0.04	0.064	0.184	<0.01	3	18	16	<0.01	<20	<1	<2	<10	91	< 10	10	3	23
S054990	60	2.18	< 10	<1	0.05	< 10	0.01	0.039	0.052	<0.01	<2	9	8	<0.01	<20	<1	<2	<10	32	< 10	4	1	12
S054991	37	8.98	<10	<1	0.14	<10	0.05	0.094	0.237	<0.01	5	38	35	<0.01	<20	<1	<2	<10	147	< 10	14	3	19
S054850	83	5.99	10	<1	0.30	19	1.72	0.032	0.134	<0.01	4	12	87	0.12	<20	13	<2	<10	110	< 10	20	5	24
S054909	169	5.26	< 10	<1	0.15	14	0.85	0.027	0.083	<0.01	6	14	38	0.10	<20	2	<2	<10	90	< 10	12	5	134
S054910	64	3.09	< 10	<1	0.16	15	0.75	0.030	0.066	<0.01	4	8	46	0.15	<20	<1	<2	<10	77	< 10	11	9	38
S054911	69	3.29	<10	<1	0.10	21	0.52	0.026	0.097	0.02	<2	6	51	0.17	<20	4	<2	<10	88	<10	11	4	35

Analyte Symbol	Au	$\begin{aligned} & \mathrm{Au}+ \\ & 100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (A) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (B) } \\ \hline \end{array}$	$\begin{aligned} & \text { Total } \\ & \mathrm{Au} \end{aligned}$	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	Total Weight	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca
Unit Symbol	ppb	g / mt	g / mt	g / mt	g / mt	g	g	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%							
Lower Limit	5	0.03	0.03	0.03	0.03				0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01
Method Code	FA-AA	FA-MeT	AR-ICP																				
OREAS 45e (Aqua Regia) Meas											739	401		409	6	30	3.64	10		113			0.03
OREAS 45e (Aqua Regia) Cert											709.0	400.000		357.0	14.3	30.6	3.32	11.4		139			0.032
OREAS 45e (Aqua Regia) Meas											728	394		388	3	30	3.52	10		113			0.03
OREAS 45e (Aqua Regia) Cert											709.0	400.000		357.0	14.3	30.6	3.32	11.4		139			0.032
SQ48 Meas					30.5																		
SQ48 Cert					30.25																		
SQ48 Meas					29.9																		
SQ48 Cert					30.25																		
SQ48 Meas					30.5																		
SQ48 Cert					30.25																		
SQ48 Meas					30.5																		
SQ48 Cert					30.25																		
$\begin{aligned} & \text { OREAS 922 } \\ & \text { (AQUA REGIA) } \\ & \text { Meas } \end{aligned}$									0.7	< 0.5	2310	808	< 1	39	68	264	2.91	5		76	0.8	9	0.41
OREAS 922 (AQUA REGIA) Cert									0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324
OREAS 922 (AQUA REGIA) Meas									0.7	< 0.5	2160	780	< 1	34	54	255	2.74	11		75	0.8	5	0.39
OREAS 922 (AQUA REGIA) Cert									0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324
$\begin{aligned} & \text { OREAS 923 } \\ & \text { (AQUA REGIA) } \\ & \text { Meas } \end{aligned}$									1.5	<0.5	4220	865	< 1	32	76	317	2.78	8		65	0.7	18	0.39
$\begin{aligned} & \text { OREAS 923 } \\ & \text { (AQUA REGIA) } \\ & \text { Cert } \end{aligned}$									1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326
$\begin{aligned} & \text { OREAS 923 } \\ & \text { (AQUA REGIA) } \\ & \text { Meas } \end{aligned}$									1.6	<0.5	4290	858	< 1	32	87	321	2.72	8		58	0.7	15	0.37
OREAS 923 (AQUA REGIA) Cert									1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326
OREAS 520 (Aqua Regia) Meas											2890	2080	55	74	7	22	1.55	151			0.7	<2	3.47
OREAS 520 (Aqua Regia) Cert											2960	2280	62.0	73.0	5.22	20.7	1.56	152			0.540	2.90	3.84
OREAS 520 (Aqua Regia) Meas											2780	2040	55	66	23	22	1.50	153			0.6	<2	3.40
OREAS 520 (Aqua Regia) Cert											2960	2280	62.0	73.0	5.22	20.7	1.56	152			0.540	2.90	3.84
OREAS 907 (Aqua Regia) Meas									1.2	0.7	6180	338	6	7	31	139	1.15	35		221	1.1	22	0.26
OREAS 907 (Aqua Regia) Cert									1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280

Analyte Symbol	Au	$\begin{array}{\|l} \mathrm{Au}+ \\ 100 \\ \text { mesh } \end{array}$	$\begin{array}{\|l} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (A) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (B) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \mathrm{Au} \end{array}$	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { Weight } \end{array}$	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca
Unit Symbol	ppb	g / mt	g / mt	g / mt	g / mt	g	g	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%							
Lower Limit	5	0.03	0.03	0.03	0.03				0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01
Method Code	FA-AA	FA-MeT	AR-ICP																				
OREAS 907 (Aqua Regia) Meas									1.2	<0.5	6020	331	6	4	32	138	1.11	36		212	1.1	29	0.27
OREAS 907 (Aqua Regia) Cert									1.30	0.540	6370	330	5.64	4.74	34.1	139	0.945	37.0		225	0.870	22.3	0.280
OREAS 222 (Fire Assay) Meas	1220																						
OREAS 222 (Fire Assay) Cert	1220																						
OREAS 222 (Fire Assay) Meas	1190																						
OREAS 222 (Fire Assay) Cert	1220																						
OREAS 222 (Fire Assay) Meas																							
OREAS 222 (Fire Assay) Cert																							
OREAS 222 (Fire Assay) Meas																							
OREAS 222 (Fire Assay) Cert																							
OREAS 222 (Fire Assay) Meas																							
OREAS 222 (Fire Assay) Cert																							
Oreas 621 (Aqua Regia) Meas									74.7	286	3580	554	13	26	> 5000	10000	1.83	86			0.6	<2	1.69
Oreas 621 (Aqua Regia) Cert									68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65
Oreas 621 (Aqua Regia) Meas									66.8	262	3300	508	13	23	> 5000	10000	1.63	80			0.6	5	1.54
Oreas 621 (Aqua Regia) Cert									68.0	278	3660	520	13.3	25.8	13600	51700	1.60	75.0			0.530	3.85	1.65
OREAS 257 Meas					13.9																		
OREAS 257 Cert					14.18																		
OREAS 257 Meas					13.7																		
OREAS 257 Cert					14.18																		
OREAS 257 Meas					14.3																		
OREAS 257 Cert					14.18																		
OREAS 257 Meas					14.1																		
OREAS 257 Cert					14.18																		
OREAS 255 (Fire Assay) Meas	3940																						
OREAS 255 (Fire Assay) Cert	4080																						
OREAS 255 (Fire Assay) Meas	4010																						
OREAS 255 (Fire Assay) Cert	4080																						
OREAS 255 (Fire Assay) Meas																							
OREAS 255 (Fire Assay) Cert																							
OREAS 255 (Fire Assay) Meas																							

Analyte Symbol	Au	$\begin{aligned} & \mathrm{Au}+ \\ & 100 \\ & \text { mesh } \end{aligned}$	$\mathrm{Au}-$ 100 mesh (A)	$\begin{array}{\|l\|} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (B) } \\ \hline \end{array}$	Total Au	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	Total Weight	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca
Unit Symbol	ppb	g/mt	g / mt	g / mt	g / mt	g	g	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%							
Lower Limit	5	0.03	0.03	0.03	0.03				0.2	0.5	1	5	1	1	2		0.01	2	10	10	0.5	2	0.01
Method Code	FA-AA	FA-MeT	AR-ICP																				
OREAS 255 (Fire Assay) Cert																							
OREAS 255 (Fire Assay) Meas																							
OREAS 255 (Fire Assay) Cert																							
S054890 Orig		0.11	0.33	0.40	0.34	44.56	401.25	445.80	18.9	<0.5	14	260	11	18	37	18	0.07	14	<10	21	<0.5	<2	<0.01
S054890 Dup									16.8	<0.5	13	258	11	17	39	18	0.07	10	<10	20	<0.5	<2	< 0.01
S054891 Orig		365	29.4	30.2	45.9	20.59	408.25	428.84															
S054892 Orig		5.57	1.87	1.71	1.94	16.69	412.37	429.06															
S054893 Orig		85.8	11.8	12.4	17.5	32.74	416.24	448.98															
S054894 Orig		<0.03	<0.03	<0.03	<0.03	17.64	388.86	406.50															
S054895 Orig		<0.03	<0.03	<0.03	<0.03	38.42	434.65	473.07															
S054896 Orig		<0.03	<0.03	<0.03	<0.03	34.06	427.55	461.61															
S054897 Orig		<0.03	<0.03	<0.03	<0.03	15.17	517.56	532.73															
S054919 Orig		<0.03	<0.03	<0.03	<0.03	32.62	594.24	626.86															
S054920 Orig		<0.03	<0.03	<0.03	<0.03	36.24	512.93	549.17															
S054921 Orig		<0.03	<0.03	<0.03	<0.03	21.89	576.80	598.70															
S054923 Orig		<0.03	<0.03	<0.03	<0.03	14.73	482.83	497.56															
S054925 Orig		0.40	0.23	0.30	0.27	37.65	543.84	581.49															
S054926 Orig		11.3	9.72	9.90	9.85	16.50	560.00	576.50															
S054927 Orig		<0.03	<0.03	<0.03	<0.03	10.33	455.03	465.36	0.6	< 0.5	597	1390	<1	118	17	111	1.59	8	<10	89	< 0.5	3	0.24
S054927 Dup									0.7	<0.5	591	1400	<1	119	18	111	1.61	6	<10	87	<0.5	3	0.24
S054928 Orig		<0.03	<0.03	<0.03	<0.03	38.34	543.79	582.13															
S054929 Orig		<0.03	<0.03	<0.03	<0.03	15.72	468.59	484.31															
S054930 Orig		5.00	0.36	0.30	0.45	14.21	519.14	533.40															
S054931 Orig		0.14	0.03	0.03	0.04	49.74	478.88	528.62															
S054932 Orig		<0.03	<0.03	<0.03	<0.03	22.90	491.40	514.30															
S054933 Orig		1.66	0.33	0.36	0.43	30.10	422.12	452.22															
S054934 Orig		<0.03	<0.03	<0.03	<0.03	14.70	449.76	464.46															
S054935 Orig		<0.03	<0.03	<0.03	<0.03	15.74	498.86	514.60															
S054936 Orig		0.04	<0.03	<0.03	<0.03	23.94	505.13	529.07															
S054937 Orig		<0.03	<0.03	<0.03	<0.03	24.87	474.68	499.55															
S054938 Orig		0.61	0.23	0.16	0.22	44.03	634.89	678.92	2.2	<0.5	29	223	6	13	14	20	0.08	20	< 10	64	<0.5	<2	0.02
S054938 Dup									2.0	<0.5	29	221	7	16	16	21	0.09	19	<10	64	<0.5	<2	0.02
S054939 Orig		<0.03	<0.03	<0.03	<0.03	19.61	435.58	455.19															
S054941 Orig	87																						
S054941 Dup	90																						
S054950 Orig	35																						
S054950 Dup	36																						
S054952 Orig		0.05	0.07	0.10	0.08	20.28	504.24	524.52															
S054953 Orig		<0.03	<0.03	<0.03	<0.03	12.63	412.94	425.60	<0.2	4.7	89	672	39	99	19	453	1.04	129	<10	140	1.8	<2	0.03
S054953 Dup									<0.2	4.8	89	679	39	101	20	457	1.03	127	<10	141	1.9	<2	0.03
S054956 Orig	142								0.6	1.7	62	1770	46	71	25	296	0.91	84	<10	271	1.0	3	0.04
$\begin{aligned} & \text { S054956 Split } \\ & \text { PREP DUP } \\ & \hline \end{aligned}$	114								0.6	1.9	61	1640	46	72	28	297	0.95	81	<10	267	1.0	<2	0.04
S054959 Orig		<0.03	<0.03	<0.03	<0.03	15.54	485.23	500.77															
S054963 Orig	6290																						
S054963 Dup	5710																						
S054965 Orig		<0.03	0.10	0.13	0.11	37.46	550.94	588.40															

Analyte Symbol	Au	$\begin{array}{\|l} \mathrm{Au}+ \\ 100 \\ \text { mesh } \end{array}$	$\begin{array}{\|l} \hline \mathrm{Au}- \\ 100 \\ \text { mesh } \\ \text { (A) } \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline \text { Total } \\ \mathrm{Au} \end{array}$	$\begin{aligned} & +100 \\ & \text { mesh } \end{aligned}$	$\begin{aligned} & -100 \\ & \text { mesh } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { Weight } \end{array}$	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca
Unit Symbol	ppb	g / mt	g / mt	g/mt	g/mt	g	g	g	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%							
Lower Limit	5	0.03	0.03	0.03	0.03				0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01
Method Code	FA-AA	FA-MeT	AR-ICP																				
S054966 Orig		0.41	0.60	0.56	0.57	24.27	426.62	450.89															
S054967 Orig		<0.03	<0.03	<0.03	<0.03	40.86	520.52	561.38															
S054973 Orig		<0.03	<0.03	<0.03	<0.03	18.77	401.73	420.50															
S054974 Orig		<0.03	<0.03	<0.03	<0.03	26.84	516.10	542.94															
S054975 Orig		<0.03	<0.03	<0.03	<0.03	30.88	463.33	494.21	0.5	<0.5	15	271	7	29	16	32	0.09	29	<10	21	<0.5	<2	< 0.01
S054975 Dup									0.5	<0.5	15	258	7	28	17	31	0.09	27	< 10	19	<0.5	<2	< 0.01
S054979 Orig		<0.03	0.30	0.33	0.29	30.87	485.53	516.40															
S054980 Orig		<0.03	<0.03	<0.03	<0.03	29.64	509.54	539.18															
S054981 Orig		<0.03	<0.03	<0.03	<0.03	25.82	438.72	464.54															
S054982 Orig		<0.03	0.33	0.26	0.29	15.06	366.96	382.02															
S054983 Orig		<0.03	<0.03	<0.03	<0.03	31.48	453.83	485.31															
S054984 Orig		<0.03	<0.03	<0.03	<0.03	27.28	474.44	501.72															
S054985 Orig		0.05	<0.03	<0.03	<0.03	22.46	472.18	494.64															
S054986 Orig		<0.03	<0.03	<0.03	<0.03	20.16	540.92	561.08															
S054987 Orig		0.36	<0.03	<0.03	<0.03	25.12	466.45	491.57															
S054988 Orig		<0.03	<0.03	<0.03	<0.03	18.91	416.12	435.00															
S054989 Orig									0.5	1.4	141	903	6	81	7	213	1.25	105	< 10	124	1.5	<2	0.05
S054989 Dup									0.4	1.6	140	893	5	82	6	210	1.25	109	<10	122	1.5	<2	0.05
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank					<0.03			0.00000															
Method Blank					<0.03			0.00000															
Method Blank					<0.03			0.00000															
Method Blank					<0.03			0.00000															
Method Blank					<0.03			0.00000															
Method Blank					<0.03			0.00000															
Method Blank					<0.03			0.00000															
Method Blank					<0.03			0.00000															
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	6																						
Method Blank									<0.2	<0.5	<1	< 5	<1	<1	<2	<2	< 0.01	3	<10	< 10	<0.5	<2	< 0.01
Method Blank									<0.2	<0.5	<1	< 5	< 1	<1	<2	<2	< 0.01	<2	< 10	< 10	<0.5	<2	< 0.01
Method Blank									<0.2	<0.5	<1	< 5	< 1	<1	<2	<2	< 0.01	<2	<10	<10	<0.5	<2	< 0.01

Analyte Symbol	Co	Cr	Fe	Ga	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	ppm	\%	ppm	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	1	0.01	10	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																						
OREAS 45e (Aqua Regia) Meas	38	836	22.3	10		0.06		0.10	0.031	0.028	0.04		78	5		<20		<2	<10	285		5	
OREAS 45e (Aqua Regia) Cert	52	849.0	22.650	11.7		0.053		0.095	0.027	0.029	0.044		78	4.05		10.70		0.072	1.73	295.0		5.74	
OREAS 45e (Aqua Regia) Meas	39	815	21.9	10		0.06		0.10	0.031	0.028	0.04		76	4		<20		<2	< 10	286		5	
OREAS 45e (Aqua Regia) Cert	52	849.0	22.650	11.7		0.053		0.095	0.027	0.029	0.044		78	4.05		10.70		0.072	1.73	295.0		5.74	
SQ48 Meas																							
SQ48 Cert																							
SQ48 Meas																							
SQ48 Cert																							
SQ48 Meas																							
SQ48 Cert																							
SQ48 Meas																							
SQ48 Cert																							
OREAS 922 (AQUA REGIA) Meas	18	48	5.29	<10		0.46	32	1.46	0.032	0.064	0.38	3	4	18		<20		<2	<10	38	<10	22	18
OREAS 922 (AQUA REGIA) Cert	19.4	40.7	5.05	7.62		0.376	32.5	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 922 (AQUA REGIA) Meas	17	45	5.09	<10		0.44	31	1.38	0.028	0.063	0.37	4	4	17		<20		<2	< 10	37	<10	22	30
OREAS 922 (AQUA REGIA) Cert	19.4	40.7	5.05	7.62		0.376	32.5	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas	19	41	5.78	<10		0.39	29	1.45		0.058	0.61	<2	4	15		<20		<2	< 10	36	<10	20	33
OREAS 923 (AQUA REGIA) Cert	22.2	39.4	5.91	8.01		0.322	30.0	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 923 (AQUA REGIA) Meas	19	41	5.81	< 10		0.36	29	1.45		0.060	0.64	3	4	15		<20		<2	< 10	35	< 10	19	30
OREAS 923 (AQUA REGIA) Cert	22.2	39.4	5.91	8.01		0.322	30.0	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 520 (Aqua Regia) Meas	168	34	16.1	10		0.48	59	1.17	0.064	0.070	0.92	10	11	32	0.15	<20	4	<2	< 10	245	28	14	32
OREAS 520 (Aqua Regia) Cert	196	37.4	15.74	13.7		0.506	83.0	1.14	0.0520	0.0740	1.03	1.97	11.8	36.0	0.135	8.03	0.33	0.0900	14.9	247	29.6	14.3	28.0
OREAS 520 (Aqua Regia) Meas	164	33	15.5	10		0.47	59	1.13	0.061	0.068	0.89	11	11	32	0.14	<20	3	<2	< 10	239	27	14	32
OREAS 520 (Aqua Regia) Cert	196	37.4	15.74	13.7		0.506	83.0	1.14	0.0520	0.0740	1.03	1.97	11.8	36.0	0.135	8.03	0.33	0.0900	14.9	247	29.6	14.3	28.0
OREAS 907 (Aqua Regia) Meas	40	11	7.86	10		0.34	33	0.23	0.102	0.024	0.06	5	2	14	0.02	<20	1	<2	< 10	7	< 10	8	34
OREAS 907 (Aqua Regia) Cert	43.7	8.59	8.18	14.7		0.286	36.1	0.221	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
OREAS 907 (Aqua Regia)	43	8	7.67	10		0.33	33	0.23	0.093	0.023	0.06	6	2	14	0.02	<20	3	2	< 10	8	< 10	8	31

Analyte Symbol	Co	Cr	Fe	Ga	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	ppm	\%	ppm	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	1	0.01	10	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																						
Meas																							
OREAS 907 (Aqua Regia) Cert	43.7	8.59	8.18	14.7		0.286	36.1	0.221	0.0860	0.0240	0.0660	2.28	2.16	11.7	0.0170	8.04	0.230	0.120	2.15	5.12	0.980	6.52	43.7
OREAS 222 (Fire Assay) Meas																							
OREAS 222 (Fire Assay) Cert																							
OREAS 222 (Fire Assay) Meas																							
OREAS 222 (Fire Assay) Cert																							
OREAS 222 (Fire Assay) Meas																							
OREAS 222 (Fire Assay) Cert																							
OREAS 222 (Fire Assay) Meas																							
OREAS 222 (Fire Assay) Cert																							
OREAS 222 (Fire Assay) Meas																							
OREAS 222 (Fire Assay) Cert																							
Oreas 621 (Aqua Regia) Meas	28	34	3.52	< 10	5	0.37	17	0.47	0.179	0.034	4.80	126	3	20		<20		<2	< 10	14	< 10	9	65
Oreas 621 (Aqua Regia) Cert	27.9	31.3	3.43	9.29	3.93	0.333	19.4	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
Oreas 621 (Aqua Regia) Meas	26	28	3.21	<10	3	0.32	17	0.43	0.171	0.032	4.33	123	2	20		<20		3	<10	13	< 10	8	57
Oreas 621 (Aqua Regia) Cert	27.9	31.3	3.43	9.29	3.93	0.333	19.4	0.436	0.160	0.0335	4.50	107	2.20	18.9		5.91		0.770	1.63	10.9	1.00	6.87	55.0
OREAS 257 Meas																							
OREAS 257 Cert																							
OREAS 257 Meas																							
OREAS 257 Cert																							
OREAS 257 Meas																							
OREAS 257 Cert																							
OREAS 257 Meas																							
OREAS 257 Cert																							
OREAS 255 (Fire Assay) Meas																							
OREAS 255 (Fire Assay) Cert																							
OREAS 255 (Fire Assay) Meas																							
OREAS 255 (Fire Assay) Cert																							
OREAS 255 (Fire Assay) Meas																							
OREAS 255 (Fire Assay) Cert																							
OREAS 255 (Fire Assay) Meas																							
OREAS 255 (Fire Assay) Cert																							
OREAS 255 (Fire Assay) Meas																							

Analyte Symbol	Co	Cr	Fe	Ga	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	ppm	\%	ppm	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	1	0.01	10	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																						
OREAS 255 (Fire Assay) Cert																							
S054890 Orig	2	114	0.71	<10	<1	0.01	<10	< 0.01	0.016	0.004	<0.01	<2	< 1	<1	<0.01	<20	<1	<2	<10	5	<10	<1	<1
S054890 Dup	3	117	0.71	<10	<1	0.01	<10	<0.01	0.015	0.003	<0.01	<2	<1	<1	<0.01	<20	<1	<2	<10	5	<10	<1	<1
S054891 Orig																							
S054892 Orig																							
S054893 Orig																							
S054894 Orig																							
S054895 Orig																							
S054896 Orig																							
S054897 Orig																							
S054919 Orig																							
S054920 Orig																							
S054921 Orig																							
S054923 Orig																							
S054925 Orig																							
S054926 Orig																							
S054927 Orig	34	59	9.27	<10	<1	0.04	16	1.31	0.099	0.084	0.68	5	14	19	<0.01	<20	5	<2	<10	101	<10	4	4
S054927 Dup	35	58	9.38	<10	<1	0.04	16	1.32	0.101	0.085	0.69	4	14	20	<0.01	<20	2	<2	<10	100	<10	5	\square
S054928 Orig																							
S054929 Orig																							
S054930 Orig																							
S054931 Orig																							
S054932 Orig																							
S054933 Orig																							
S054934 Orig																							
S054935 Orig																							
S054936 Orig																							
S054937 Orig																							
S054938 Orig	2	77	1.92	<10	<1	0.02	<10	<0.01	0.025	0.018	0.09	2	1	6	<0.01	<20	<1	<2	<10	12	<10	2	<1
S054938 Dup	2	84	1.92	<10	<1	0.02	<10	<0.01	0.026	0.018	0.09	<2	1	6	<0.01	<20	<1	<2	<10	12	<10	- 2	<1
S054939 Orig																							
S054941 Orig																							
S054941 Dup																							
S054950 Orig																							
S054950 Dup																							
S054952 Orig																							
S054953 Orig	17	17	7.90	<10	<1	0.25	18	0.05	0.023	0.180	< 0.01	24	5	13	<0.01	<20	3	<2	<10	45	<10	12	3
S054953 Dup	16	16	7.98	<10	<1	0.25	18	0.05	0.023	0.182	< 0.01	24	5	13	<0.01	<20	<1	<2	<10	44	<10	12	- 3
S054956 Orig	22	28	5.14	<10	<1	0.27	19	0.09	0.029	0.108	< 0.01	17	5	24	<0.01	<20	6	<2	<10	70	<10	11	- 3
$\begin{aligned} & \text { S054956 Split } \\ & \text { PREP DUP } \end{aligned}$	21	27	5.15	<10	<1	0.29	19	0.09	0.030	0.108	< 0.01	16	5	25	< 0.01	<20	2	<2	<10	72	<10	11	3
S054959 Orig																							
S054963 Orig																							
S054963 Dup																							
S054965 Orig																							
S054966 Orig																							
S054967 Orig																							
S054973 Orig																							
S054974 Orig																							
S054975 Orig	4	80	1.05	<10	<1	0.02	<10	<0.01	0.017	0.008	<0.01	<2	<1	<1	<0.01	<20	4	<2	<10	8	<10	4	2
S054975 Dup	4	76	0.99	<10	<1	0.02	<10	<0.01	0.016	0.007	<0.01	<2	<1	<1	<0.01	<20	1	<2	<10	7	<10	4	- 2

Analyte Symbol	Co	Cr	Fe	Ga	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	ppm	\%	ppm	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	1	0.01	10	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																						
S054979 Orig																							
S054980 Orig																							
S054981 Orig																							
S054982 Orig																							
S054983 Orig																							
S054984 Orig																							
S054985 Orig																							
S054986 Orig																							
S054987 Orig																							
S054988 Orig																							
S054989 Orig	34	51	7.36	< 10	< 1	0.19	<10	0.04	0.064	0.184	< 0.01	4	18	16	< 0.01	<20	2	<2	< 10	91	<10	10	2
S054989 Dup	34	49	7.29	< 10	<1	0.19	<10	0.04	0.063	0.184	< 0.01	3	18	16	< 0.01	<20	<1	<2	< 10	91	<10	10	3
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	< 1	<1	< 0.01	< 10	< 1	< 0.01	< 10	< 0.01	0.009	< 0.001	< 0.01	<2	< 1	< 1	< 0.01	<20	<1	<2	< 10	< 1	< 10	< 1	<1
Method Blank	< 1	< 1	< 0.01	<10	<1	< 0.01	<10	< 0.01	0.009	< 0.001	< 0.01	<2	< 1	< 1	< 0.01	<20	< 1	<2	< 10	< 1	<10	< 1	< 1
Method Blank	<1	<1	< 0.01	<10	<1	< 0.01	<10	<0.01	0.012	<0.001	< 0.01	<2	<1	<1	< 0.01	<20	<1	<2	<10	<1	<10	<1	<1

