

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: 2019 GEOCHEMICALL ASSESSMENT REPORT ON THE TRAIL PEAK PROPERTY

TOTAL COST: \$19076.70

AUTHOR(S): Lindinger, Leopold SIGNATURE(S): Leopold J. Lindinger

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): MX-4-615, 2011. STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5773679, Feb 10, 2020

YEAR OF WORK: 2019

PROPERTY NAME: TRAIL PEAK

CLAIM NAME(S) (on which work was completed): 1038356, 1041947

COMMODITIES SOUGHT: COPPER, GOLD, SILVER

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 093M-011

MINING DIVISION: OMENICA NTS / BCGS: 093M08W LATITUDE: 55° 25' LONGITUDE: 126° 20 (at centre of work) UTM Zone: 9U EASTING: 668400 NORTHING: 6143800

OWNER(S): RICHARD J. BILLINGSLEY

MAILING ADDRESS: 11114 147A ST. SURREY, BC, CANADA, V3R 3W2

OPERATOR(S) [who paid for the work]: RICHARD J. BILLINGSLEY

MAILING ADDRESS: AS ABOVE

REPORT KEYWORDS Babine Intrusion, Newman Formation, Ashman Formation, porphyry copper

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: 1672, 5706, 19557, 22719, 24783, 30159, 30686

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOCHEMICAL (number of sam 63 Soil	ples analysed for …) 6 KM	1038356, 1041947	14076.70
Silt			
6 Rock	1 KM	1038356,	3000
MOSS MAT 2	250 M	1041947	1000
PROSPECTING (scale/area)	1:5000		1000
		TOTAL COST	19076.70

GEOCHEMICAL ASSESSMENT REPORT

on the TRAIL PEAK PROPERTY

OMINECA MINING DIVISION BRITISH COLUMBIA, CANADA

NTS MAP SHEET 093M/08W

55°25' North Latitude and 126°20' West Longitude

OWNER and OPERATOR:

Richard J. Billingsley, FMC 139085

Title #s: 549962, 1038356, 1041947

SOW 5773679 February 10, 2020

April 23, 2020 Amended October 1, 2020

Prepared by:

Leopold J. Lindinger, P.Geo

TABLE OF CONTENTS

SUMM.	ARY	3
1.0	INTRODUCTION AND TERMS OF REFERENCE	5
1.1	Introduction	5
1.2	Terminology and Units	5
1.3	RGSI Qualifications	
2.0	PROPERTY LOCATION AND DESCRIPTION	6
2.1	Location	6
2.2	Description and Ownership	
3.0	ACCESSIBILITY, PHYSIOGRAPHY AND INFRASTRUCTURE	8
3.1	Access	8
3.2	Physiography	9
3.3	Infrastructure and Local Resources	9
4.0	EXPLORATION HISTORY	10
5.0	GEOLOGICAL SETTING	17
5.1	Regional Geology	
5.2	Property Geology	
6.0 DEF	POSIT TYPE	
7.0	MINERALIZATION	19
8.0	EXPLORATION	19
8.1	Exploration Programme	
9.0	INTERPRETATION AND CONCLUSIONS	24
10.0	RECOMMENDATIONS	24
10.1	Proposed Work Program	
11.0	2019 EXPLORATION EXPENDITURES	
13.0	REFERENCES	

LIST OF FIGURES

Figure 2-1. Location of the Trail Peak Property within B.C	7
Figure 2-2. Mineral Tenures and Report Figures Index Plan of the Trail Peak Property	
Figure 4-1. Physical Work Completed on the Trail Peak Property	
Figure 4-2. 2008 Chargeability Plan	
Figure 4-3. 2008 Ground Magnetics Plan	
Figure 4-4. 2008 ppm Copper in Soils Plan	
Figure 5-1. Schematic representation of geological units in the Skeena Arch	
Figure 8-2. PPM Moss Mat Copper Results	
Figure 8-3. PPM Rock Sample Geochemistry	

LIST OF TABLES

Table 2-1. List of the mineral claims that comprise the Trail Peak Property	6
Table 4-1. Summary of exploration history on the Trail Peak Property.	
Table 4-2. Summary of the statistical analysis for selected elements, 2007 and 2008 soil ge	eochemical surveys.
Table 6-1. Summary of deposits located near Trail Peak Property	
Table 8.1 – Moss Mat Location and Copper Results	20
Table 8.3 – Rock Sample Locations and Geochemical Results	21
Table 11-1. Statement of Exploration Expenditures for 2019 programme	25
Table 8.2 Soil Sample Locations and Geochemical Results	В

LIST OF APPENDICES

APPENDIX A - Analytical Certificates	Α
APPENDIX B – Rock Sample Descriptions and Table 8.1 Soil Sample Locations and Geochemical Results	В
APPENDIX C – 2019 Trail Peak Rock and Core Sample Images	С
APPENDIX D – Figure 8-1	D

SUMMARY

The Trail Peak Property (the "Property") is owned by Richard J. Billingsley of Surrey, B.C. Leopold J. Lindinger of Renaissance Geoscience Services Inc (RGSI) has prepared this Assessment Report (the "Report") to provide a summary of scientific and technical data on the Trail Peak (Cu-Au) Property, including historic and recent exploration activities.

This report is based on exploration and property information and from a review of public domain geological and exploration data for the Property (primarily BC Assessment Reports), incorporation of relevant mining and geological literature and data generated by a September 2019 programme consisting of soils, silts and rocks sampling and prospecting surveys.

The property was worked on from September, 06 to 07, 2019.

The Trail Peak Property is located approximately 90 km northeast of Smithers, British Columbia, Canada, in the Omineca Mining Division, at 55°25' N and 126°20' W (NAD83, Zone 9; 668800 m E and 6144120 m N). The Property currently consists of 4 MTO mineral claims covering approximately 294 hectares. It partially protects the Trail Peak Minfile Occurrence 083M011.

The Town of Smithers, located about 90 km southwest of the Property, is the nearest significant population centre with about 5,500 people. Other close population centres are Granisle (approximately 60 km southwest of the Property with approximately 300 people) and Topley (approximately 100 km south of the Property with approximately 120 people). The workforce in the area is generally employed by the forestry and tourism industries. As many as 230 people work at the Huckleberry Mine live in the Houston area. People in the area are generally supportive of potential mining employment and a local supply of unskilled labour is readily available.

The Granisle Highway and a high-tension electric transmission line were originally built to service the Town of Granisle; and the Bell Cu and Granisle Cu-Au-Ag mines. These mines operated from 1972-1992 and 1966-1982, respectively. Some of the mining infrastructure is still located on the Bell Cu mine site.

A summary of work completed by in previous years on the Property are shown below.

Year	Company	Exploration Activity
1968-1975	Texas Gulf Sulphur Company	EM Survey
		Mag Survey
		Geochemical Survey-Soil
		Trenching- 3600 m
		Drilling-12 long, 10 short holes
		Prospecting
1975	Texasgulf Inc.	Drilling-2 holes
1989-1995	N. Carter and Teck Exploration	Mapping
	Inc.	Rock Sampling
		Re-sampling of old drill core
1996	Hera Resources	IP Survey
		Mag Survey
		Geochemical Survey-Soil
2007	NXA Inc.	Line cutting
		Geochemical Survey-Soil
2009	NXA Inc.	Geophysical Survey Soil
		Geophysical IP

The Trail Peak Property is located in Intermontane Belt of British Columbia on the Stikine volcanic arc Terrane. The terrane consists of the Asitka Group, Takla Group, and Hazelton Group. Post-accretionary rocks overlying the Stikine terrane include the Late Jurassic Bowser Lake and the Early Cretaceous Skeena Groups (fluvial and deltaic sedimentary rocks) in the northwest; the Late Cretaceous to Early Eocene Kasalka Group (porphyritic andesite, basalt, rhyolite and related pyroclastic rocks) and the Bulkley plutonic suite in the west. In the Babine Lake area where the Trail Peak Property is located, the Early Eocene Newman Formation volcanic rocks overlie Stikine Terrane rocks which are also cut by Eocene age Babine Igneous Suite plutons. The Ashman Formation, consisting mainly of fine-grained shale of the Bowser Lake Group is cut by Babine Igneous Suite dykes and hosts the porphyry copperstyle mineralization at the Trail Peak Property. Eocene Babine Igneous Suite is described as small plugs and dykes of crowded biotite ±hornblende feldspar porphyry, quartz±biotite feldspar porphyry and equigranular hornblende-biotite granodiorite to quart diorite. They occur as multi- phased intrusive centres along a northwest trending belt that extends from the south in the Fulton Lake area and to the north to Trail Peak.

The area of the Skeena Arch is one of the best mineralized areas of British Columbia. It hosts a plethora of deposit types including polymetallic base and precious metal veins, porphyry, epithermal and skarn deposits; sedimentary exhalative ("SEDEX") and volcanogenic massive sulphide ("VMS") deposit types.

The Trail Peak prospect appears to be the northern-most exposed Babine Porphyry copper mineralized intrusion in the Belt. Several notable examples of Babine Porphyry deposits include the Granisle and Bell Porphyry deposits totaling ~ 130 MT of 0.40% Cu, 0.15 g/t Au and 0.75 g/t Ag as well as the Morrison Deposit which has ~ 86 MT of 0.45% Cu and 0.26 g/t Au.

The 2019 field programme on the Property totalling \$19077 in exploration expenditures, began on September 06, 2019 and was completed on September 07, 2019. The program included approximately 6 km of geochemical soil survey, 1 km of rock sampling-prospecting and 2 moss mat samples.

The geochemical surveys confirmed multi element Cu plus indicator element soil geochemical anomaly coinciding with previously defined soil, ground magnetic and chargeability high within a drift covered are west of the main Trail Peak zone, and on the East Target a zinc anomaly. Both anomalies are interpreted to represent parts of the distal metal signature of buried porphyry copper deposits of unknown size and grade. For the western anomaly, a drill programme is recommended. This programme should consist of a minimum of 2,000 m (ten 200 m drill holes). The estimated cost to complete the 2,000 m programme is \$500,000.

Prospecting and mapping should also be completed over the eastern zinc target. An estimated field budget of approximately \$20,000 is recommended.

1.0 INTRODUCTION AND TERMS OF REFERENCE

1.1 Introduction

This Report is based on public domain geological and exploration data for the Property (primarily BC Assessment Reports), relevant mining and geological literature and data generated by the 2019 field programme consisting of soils, silts and rock sampling and prospecting.

1.2 Terminology and Units

The Metric System or SI System is the primary system of measure used in this Report with distance generally expressed in kilometres (km), metres (m) and centimetres (cm), volume expressed as cubic metres (m³), and mass expressed as metric tonnes (t). Conversions from the SI or Metric System to the Imperial System are provided below and quoted where practical. Many of the geologic publications and more recent work assessment files now use the SI system but older work assessment files almost exclusively refer to the Imperial System.

Conversion factors utilized in this report include: 1 troy ounces/ton = 34.29 gram/tonne; 0.029 troy ounces/ton = 1 gram/tonne; 1 troy ounces/ton = 31.1035 gram/ton; 0.032 troy ounces/ton = 1 gram/ton; 1 gram = 0.0322 troy ounces; 1 troy ounce = 31.104 grams; 1 pound = 0.454 kilogram.1 foot = 0.3048 metres; 1 mile = 1.609 kilometres; 1 acre = 0.405 hectares; and, 1 sq mile = 2.59 square kilometres. The term gram/tonne or g/t is expressed as "gram per tonne" where 1 gram/tonne = 1 ppm (part per million) = 1000 ppb (part per billion). Other abbreviations include ppb = parts per billion; ppm = parts per million; opt or oz/t = ounce per short ton; Moz = million ounces; Mt = million tonne; t = tonne (1000 kilograms); SG = specific gravity.

Dollars are expressed in Canadian Dollar currency (CAD\$) unless otherwise noted. Gold (Au) and silver (Ag) are stated in US\$ per troy ounce (US\$/oz). Gold and silver values are reported as grams per tonne (ppm) symbolized g/t or troy ounces per short ton.

Unless otherwise mentioned, all Universal Transverse Mercator (UTM) coordinates in this Report are provided in the datum of Canada, NAD83 Zone 9.

1.3 RGSI Qualifications

Renaissance Geoscience Services Inc. (RGSI) is an international consulting company based in Kamloops, British Columbia, Canada. RGSI provides a wide range of geological services to the mineral industry.

RGSI's mandate is to provide professional geological services to the mineral exploration and development industry at competitive rates and without compromise. RGIS services that include:

- 1. Exploration Project Generation, Design and Management
- 2. Data Compilation and Exploration Target Generation
- 3. Property Évaluation and Due Diligence Studies
- 4. Independent Technical Reports (43-101)/Competent Persons' Reports
- 5. Mineral Resource Modelling and Estimation
- 6. 3D Geological Modelling, Visualization and Database Management

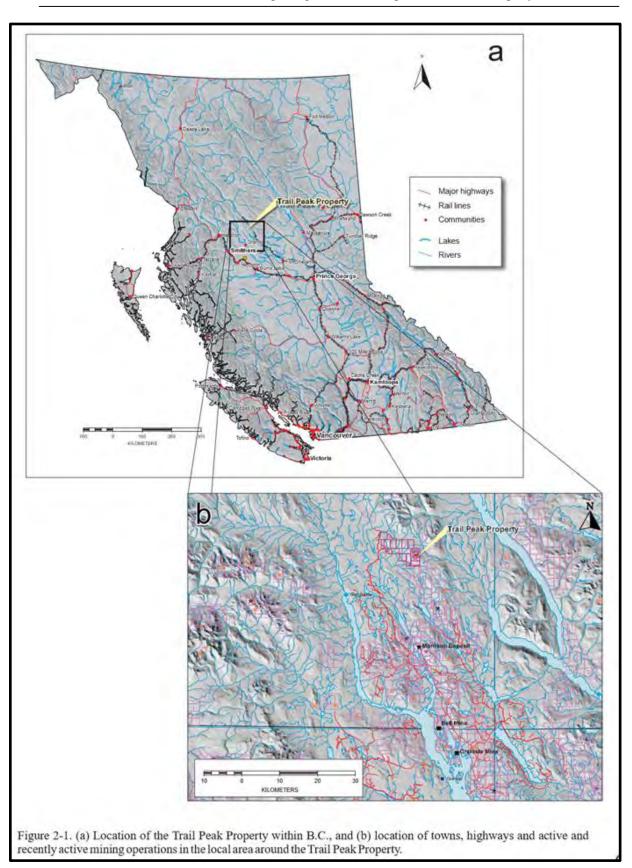
Authoring this Report is Mr. Leopold J. Lindinger, P.Geo., owner of RGSI. Mr. Lindinger is a geologist in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC #19155) and has been for 28 years. Mr. Lindinger has 40 years experience in the mineral exploration industry as an exploration and mine geologist, and has written or co-written numerous property review reports, work assessment reports and NI43-101 compliant Independent Technical Reports. Certificate of the Author applicable for assessment reports is presented in Appendix 1.

2.0 PROPERTY LOCATION AND DESCRIPTION

2.1 Location

The Property is located approximately 90 km northeast of Smithers, British Columbia, Canada in the Omineca Mining Division, at 55°25' N and 126°20' W (NAD83, Zone 9: 668800 m E and 6144120 m N; Figures 2-1 and 2-2).

2.2 Description and Ownership


The Trail Peak Property consists of 3 contiguous mineral claims covering an area of approximately 5,287 hectares (Table 2-1; Figure 2-2).

Title Number	Claim Name	Owner	Issue Date	Good To Date	Status	Area (ha)
549962		139085 (100%)	2007/JAN/21	2025/JUL/31	GOOD	18.365
1036523	TRAIL PEAK 2	139085 (100%)	2015/JUN/03	2020/DEC/06	PROTECTED	18.3651
1038356	TRAIL PEAK	139085 (100%)	2015/SEP/03	2025/JUL/31	GOOD	73.475
1041947	TRAIL PEAK 1	139085 (100%)	2016/FEB/11	2025/JUL/31	GOOD	183.6894
					TOTAL AREA	293.895


 Table 2-1. List of the mineral claims that comprise the Trail Peak Property.


- New expiry date once work applied from 2019 programme has been accepted

The entire area covered by the Property is Crown Land and as such landowner permission to access the area is not required.

2019 Geochemical and Prospecting Assessment Report - Trail Peak Property

Figure 2-2. Mineral Tenures and Report Figures Index Plan of the Trail Peak Property. Light grey solid tenures owned by Billingsley, light grey vertical hatched owned Amarc Resources Ltd. Also showed is property area topography, streams 1 km UTM grid and government geology.

3.0 ACCESSIBILITY, PHYSIOGRAPHY AND INFRASTRUCTURE

3.1 Access

The Property is located approximately 90 km northeast of Smithers BC, at approximately at 55°25' N and 126°20' W (NAD83, Zone 9: 668800 m E and 6144120 m N; Figures 2-1 and 2-2) on National Topographic System ("NTS") map sheets 93M/08 W (Figure 2-1). It is about 45 km north of the Bell Copper Mine and within an area of active logging which extends northeast of Morrison Lake to the south and into the Nilkitwa River valley north of the claims. Vehicle access to the Property is via the Granisle Highway #118, from the Yellowhead Highway #16 at the Town of Topley. Approximately 45 km north of the town of Topley, and just a few kilometres north of Topley Landing, is the turnoff to the ferry to cross Babine Lake. The ferry is operated by a forestry-based private company. On the northeastern side of Babine Lake, a series of logging roads provides access to the western portion of the claims. A historical cat trail can be used as a very rough and currently overgrown 4x4 road to access

the area of the 2019 work program. Access for the 2019 was provided by helocpters based out of Smithers, and an out a 45 minute one way trip using an Astar 350.

Trail Peak is immediately north of the historic Hudson's Bay trail linking Hazelton with the Omineca gold fields, and this route has been used in the past to walk bulldozers into the area from Fort Babine. A power line between Fort Babine and Takla Landing essentially parallels this route. All services required for any exploration programme or more advanced development work is readily available in Smithers, located about 90 km to the southwest. Recent logging roads provide road/trail access to within 4 km of the Property and trails can be established to take heavy machinery and drills into the Property.

3.2 Physiography

The Trail Peak Property is located on the Nechako Plateau at an elevation of approximately 1,300 m above sea level ("ASL"). The terrain in the Nechako Plateau is hilly with elevations ranging from approximately 1,000 m to 1,500 m ASL; however, the Skeena Range, located about 5 km north of Trail Peak, is mountainous with elevations up to 1,700 m AMSL.

3.3 Infrastructure and Local Resources

The Town of Smithers, located about 90 km southwest of the Property, is the nearest significant population centre with about 5,500 people. Services in Smithers include hospital and medical facilities, dentists, pharmacy, restaurants, grocery stores, hotels, service stations and major automobile dealerships, banks, building supply centers and other small businesses. Other close population centres are Granisle (approximately 60 km southwest of the Property with approximately 300 people) and Topley (approximately 100 km south of the Property with approximately 120 people).

The workforce in the area is generally employed by the forestry and tourism industries. As many as 230 people work at the Huckleberry Mine live in the Houston area. People in the area are generally supportive of potential mining employment and a local supply of unskilled labour is readily available.

Currently, three operating or dormant mines are found in the region:

- 1. Huckleberry, Cu-Mo, Au Porphyry Mine: operated by Imperial Metals Corp., is approximately 123 road kilometres from Houston or 153 km from Topley. Most of its work force lives in the Bulkley Valley communities' of Houston, Smithers, Topley and Burns Lake.
- 2. Endako Mo Porphyry Mine: approximately 100 km east-southeast of Topley and serviced by the towns of Fraser Lake and Prince George, BC.
- 3. Mt. Milligan Cu-Au porphyry mine 90 kilometres NW of Prince George and operated by Centerra Gold.

These mining operations have operating mills and ship most of their concentrates through the deep water port in Stewart, BC, located approximately 400 km west-northwest of Topley, along paved roads, to smelters in Asia.

The Granisle Highway and a high-tension electric transmission line were originally built to service the Town of Granisle, located approximately 60 km south of the Property: and the Bell Cu and Granisle Cu-Au-Ag mines. These mines operated from 1972-1992 and 1966-1982, respectively. Some of the mining infrastructure still exists on the Bell Cu mine site.

4.0 EXPLORATION HISTORY

Previous work on the Trail Peak property was first completed by Texas Gulf Sulphur Company in 1968. Several geophysical and geochemical surveys were completed on the property by previous operators from 1968-1996. Table 4-1 summarizes the exploration activity completed on the property as reported in BC assessment reports.

Year	Company	Exploration Activity
1968-1975	Texas Gulf Sulphur Company	EM Survey Mag Survey
		Geochemical Survey-Soil
		Trenching- 3600 m
		Drilling-12 long, 10 short holes
		Prospecting
1975	Texasgulf Inc.	Drilling-2 holes
1989-1995	N. Carter and Teck Exploration Inc.	Mapping
		Rock Sampling
		Re-sampling of old drill core
1996	Hera Resources	IP Survey Mag Survey
		Geochemical Survey-Soil
2007	NXA Inc.	Line cutting
		Geochemical Survey-Soil
2009	NXA Inc.	Geophysical Survey Soil
		Geophysical IP

Table 4-1. Summary of exploration history on the Trail Peak Property.

1968 Texas Gulf Sulphur Company

In 1968 a reconnaissance vertical loop electromagnetic survey on the CAVZ claims was completed by Texas Gulf Sulphur Company. The purpose of the survey was to see if conductors were present on the property. Results yielded one Northwest- Southeast conductor of medium strength between 288E and 304E grid lines (Watson and Russell, 1968).

A geochemical survey was also completed in 1968. A grid totaling 35 line miles with 400 ft line spacing was cut. Soil sampling was completed at 200ft intervals in areas of high priority and at 400ft in areas of low priority. A total of 679 soil samples were sent to Barringer Research Ltd. in Toronto for analysis. Due to the variation in the soil conditions the copper distribution was erratic (McLeod and Russell, 1968).

Prospecting and a detailed geological report were completed by C. McLeod and JR Loudon. They concluded area showed favorable rock types and structures but the Copper anomaly source was yet to be determined. The noted the occurrence of pyrite, pyrrhotite and minor chalcopyrite. Magnetite and hematite were also observed. Chalcopyrite was observed along a north-easterly fault (McLeod and Russell, 1968).

A magnetometer survey was completed by Texas Gulf Sulphur Company. The magnetic anomalies were concluded to be due to a series of narrow dykes generally trending northwest and a large intrusive mass, likely a diorite. The only correlation between magnetic survey and geology is the biotite-hornblende-feldspar porphyry unit that is a nearly continuous magnetic trend continuing from 240N on line 356E in a northwestern direction to 296N on line 300E (Podolsky and Russell, 1968).

In 1969, ten shallow inclined holes approximately 60-75 m in length were drilled in the western trench area (Carter, 1990).

Between 1969 and 1975 the Texas Gulf Company completed 3600 m of trenching and 12 diamond drill holes totaling 1086 m (Lisle, 1996).

1975 Texasgulf Inc.

Two diamond drill holes were drilled by Texasgulf Inc in 1975 in the East Trench area. Diamond drill hole 11-75 was 1118' and hole 12-75 was 432' in length. Biotite-feldspar-porphyry was the main rock type encountered. Mineralized sections showed chalcopyrite as fracture filling and fine disseminations in the assayed range of 0.15% copper (DeLancy, 1975).

1989-1995 N. Carter

During the 1989 field season N. Carter (then the current claim owner) and Teck Explorations Ltd completed a geological mapping and rock sampling program. Samples taken from the 1969 trenches including bedrock and drill core samples. The results showed widespread copper mineralization associated with the Babine porphyry intrusions. The samples collected marginal to the east-northeast tournaline-rich fault zone reported interesting gold values (Carter, 1990).

Re-sampling of the limited portions of old drill core was completed in 1992 field season. A total of 38 non representative samples were collected from holes containing good copper grades and were assayed for gold and 31 major and trace elements (Lisle, 1996). During this field season two 450 m lines approximately 150 m apart were completed. A total of 19 soil samples taken at 50m intervals and 2 rock samples (Carter, 1993). Results indicated a northwest trending zone of undetermined size containing +100 ppm Cu and +10 ppb Au values (Carter, 1993). In 1994, a soil sampling programme was completed to follow up the 1992 anomalous zone. No results were reported (Lisle, 1996).

1996 Hera Resources

In 1996 Hera Resources cut 25.8 line-km to provide a grid for geophysical IP and magnetic surveys and geochemical soil survey. The results suggested an area of alteration in the southwest part of the grid resulting in a high amount of pyrite and magnetite. The central grid area hosted in less intense alteration with lower magnetite and pyrite mineralization. The soil survey totaling 1096 samples showed high values of copper and gold that were associated with areas of tourmaline and silica alteration (Lisle, 1996).

2007-8 NXA Inc.

The following description is excerpted and modified from Assessment Report 30686

... "In 2007, NXA Inc. completed line cutting and soil sampling along seven 400 m spaced grid lines for a total of 12 line km. A discussion of the 2007 results are combined with the 2008 programme. A summary of the 2008 exploration activities is as follows:

1. Property visit by Erin O'Brien (P.Geo.) to complete cursory prospecting of the outcrop and old workings.

- 2. Line cutting of 25 line km.
- 3. Soil sampling along the exploration grid (315 samples collected for analyses).
- 4. IP and magnetometer geophysical surveys each 37.2 km.

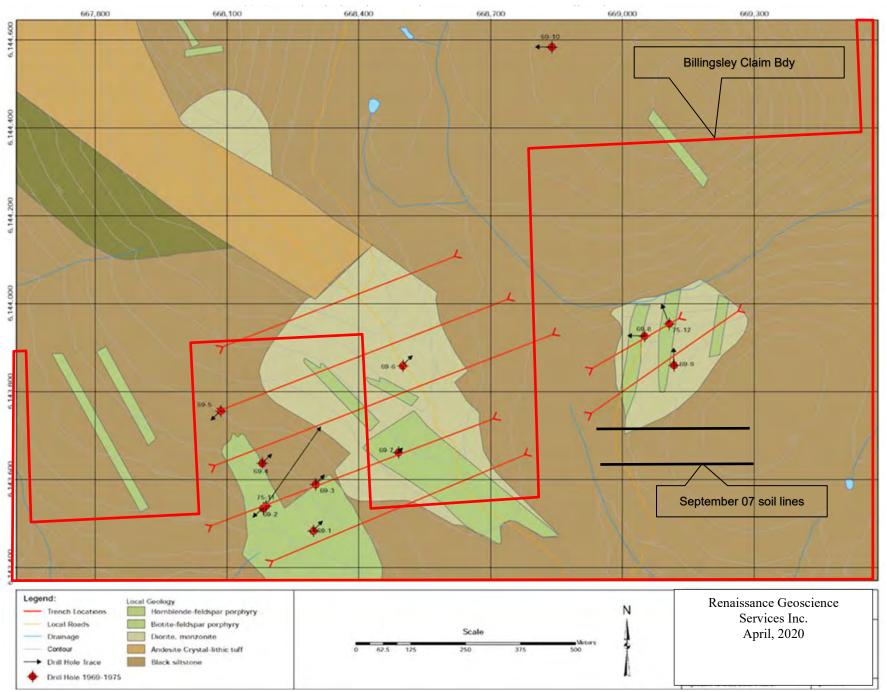


Figure 4-1. Physical Work Completed on the Trail Peak Propertyy (Source, AR 30686)

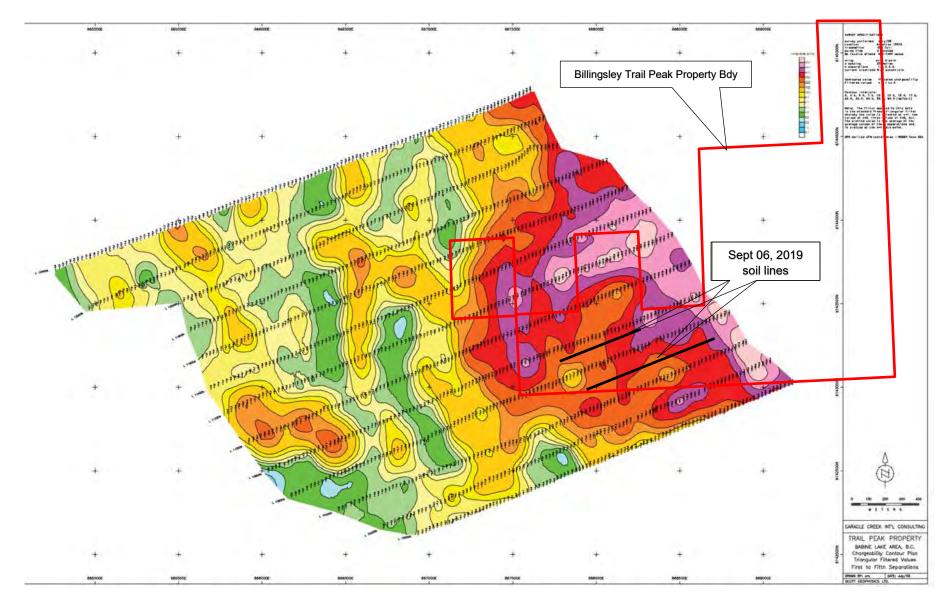


Figure 4-2. 2008 Chargeability Plan (Source, AR 30686)

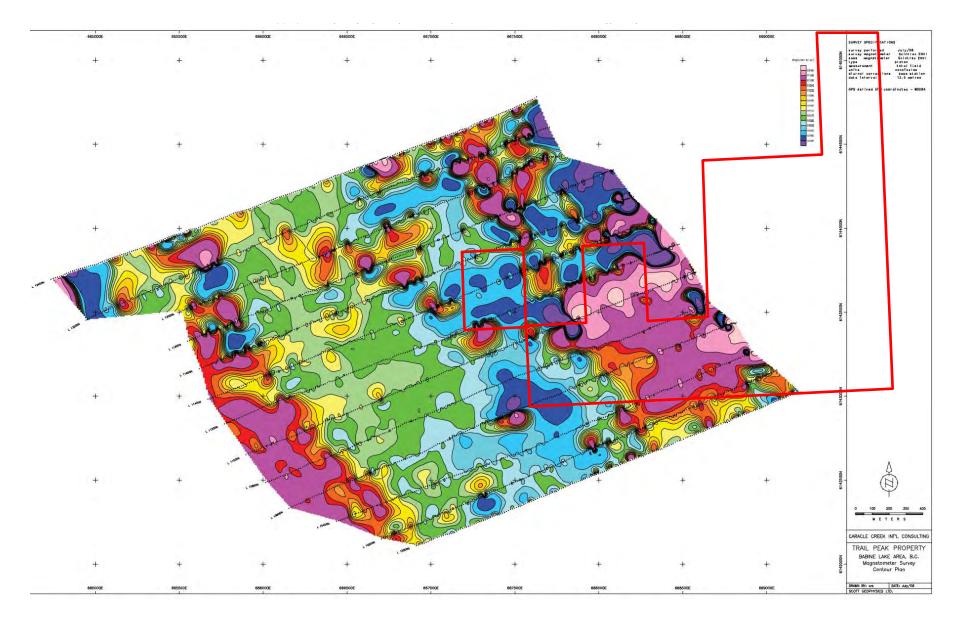
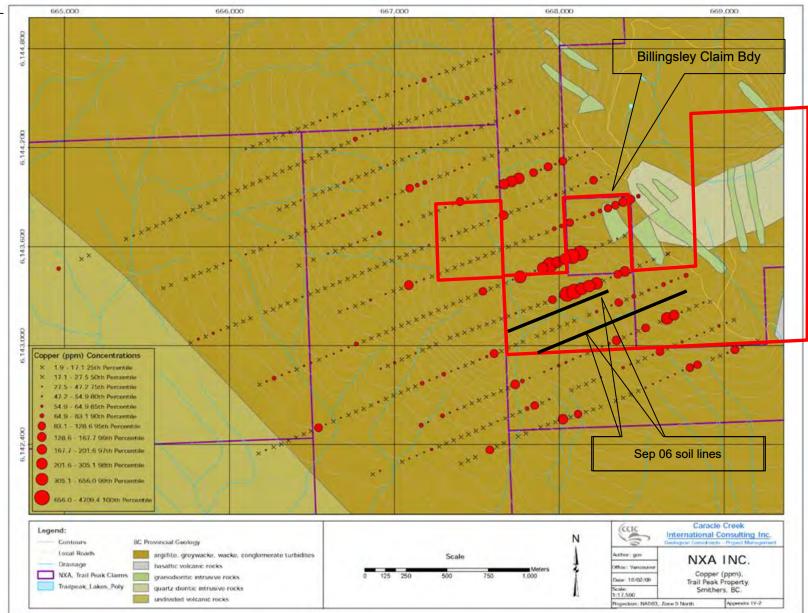



Figure 4-3. 2008 Ground Magnetics Plan (Source, AR 30686)

.....

Figure 4-4. 2008 ppm Copper in Soils Plan (Source, AR 30686)

The IP and magnetic survey was completed in June and July 2008 by Scott Geophysics Inc. The survey covered thirteen ENE striking grid lines spaced 200 m apart and stations spaced ever 25 m. A total of 37.2 line km of IP and mag were completed.

The magnetometer survey results showed a northwest trending magnetic high measuring approximately 900 m by 800 m in the area of the known mineralization and extending to the north and west. It was interpreted that the mag high may indicate the presence of intrusive porphyries (i.e., biotite or hornblende feldspar porphyries) or granitic to dioritic stocks. The mag high extends about 800 m north and west from the known mineralization. This indicates the potential for mineralization to occur in these areas.

Partially coincident with the known zones of mineralization, is a large chargeable high measuring approximately 2 km north-south and 1.5 km east-west. This large chargeability high suggests sulphide mineralization extending north and west of the known mineralization.

A weak resistivity low (conductive high) measuring 700 m by 300 m also coincides with the centre of the mag and chargeability high and may also indicate the presence of sulphide mineralization.

In conclusion the geophysical survey has identified several geophysical targets that merit additional investigation."...

... "Geochemical soil sampling programs previously completed by others in the late 1960s and in 1996 over the peak area showed that anomalous Cu in soils values occur on the west side of the grid area. An orientation geochemical soil sampling programme was completed in 2007 over the areas known to contain mineralization, and several hundred metres to the west to characterize the soil geochemical signature of the mineralization. A total of 186 samples were collected during the 2007 programme. The overburden on the Property is dominantly basal till, so some glacial dispersion will occur in the down-ice direction (southeasterly).

The 2008 soil sampling program was completed along the exploration grid lines with "B-horizon" soil samples collected every 50 metres along six grid lines from L102N to L122N between stations base line 100W to a maximum of 130W. A total of 315 samples were collected over 24 line km."...

... "The 2007 and 2008 geochemical soil surveys identified a suite of metals which are mobile in the soil and are indicative of bedrock mineralization at depth. This survey extended the anomalous area westward of the known mineralization into an area which is completely covered by glacial overburden and has yet to be tested by historical exploration programs. The soil survey appears to have been successful at identifying bedrock mineralization and a drilling programme is advised to test coinciding geophysical and geochemical anomalies."...

Summary U	i the statistical	analysis for	sciette ciel	menus, 2007	anu 2000 su	in geoeneini
	Mo (ppm)	Cu (ppm)	Zn (ppm)	Pb (ppm)	Ag (ppb)	Au (ppb)
Max	17.4	4709.4	153.4	2069	5121	631.3
Min	0.5	1.9	0.8	10	0.05	0.1
Mean	1.72	59.48	16.78	160.88	253.45	3.55
Std Dev.	1.61	279.16	9.97	160.07	497.36	29.44
95 %ile	2.9	113	29.104	358.45	1296.2	5.64
90 %ile	2.323	76.103	23.851	263.3	679.4	3.3
75 %ile	1.72	42.6	18.82	172	315	1.7
50 %ile	1.4	24.2	15.2	121.9	1	0.9
25 %ile	1.14	16.4	12.025	93.15	0.3	0.3

Table 4-2. Summary of the statistical analysis for selected elements, 2007 and 2008 soil geochemical surveys.

No additional exploration has taken place on the property since

5.0 GEOLOGICAL SETTING

5.1 Regional Geology

The Regional Geology is dominated by the Stikine volcanic arc Terrane within the Intermontane Belt physiographic region of British Columbia. The Terrane consists of the following groups (MacIntyre *et al.*, 1987):

Hazelton Group (Early to Middle Jurassic): volcaniclastic rocks and related marine sedimentary rocks	Island arc provenance andesitic volcanic and
Takla Group (Middle to Late Triassic): related marine sedimentary rocks	Island arc provenance augite basalt, andesite, and
Asitka Group (Carboniferous to Permian):	Island arc metavolcanic rocks and limestone

The accretion of the Stikine terrane to ancestral North America began in the Middle Jurassic. Postaccretionary rocks overlying the Stikine terrane include the Late Jurassic Bowser Lake and the Early Cretaceous Skeena Groups (fluvial and deltaic sedimentary rocks) in the northwest; Late Cretaceous to Early Eocene Kasalka Group (porphyritic andesite, basalt, rhyolite and related pyroclastic rocks); and the Bulkley plutonic suite in the west. In the Babine Lake area where the Trail Peak Property is located, the Early Eocene Newman Formation (porphyritic andesite flows) overlies the older rocks and the Babine Lake suite plutons intrude all. In the south, the Nanika plutonic suite intruded all.

The Bowser Group is sub-dived into two formations:

Ashman Formation: (a) fine-grained shale

(b) lesser amounts of feldspathic to quartzose siltstone Trout Creek Formation: coarse sandstone and conglomerate beds.

Intruding the older rocks are the Eocene Babine Igneous Suite, described as small plugs and dikes of crowded biotite \pm hornblende feldspar porphyry, quartz \pm biotite feldspar porphyry and equigranular hornblende-biotite granodiorite to quart diorite (MacIntyre, 1998). They occur as multi-phased intrusive centres along a northwest trending belt that extends from the south in the Fulton Lake area and to the north to Trail Peak.

Structurally, the area is part of basin-and-range type horst and graben structures. Westward imbricate faulting marks terrane boundaries and is offset by complex Late Cretaceous to Eocene high-angle faults. In addition, broad open folds occur in the area.

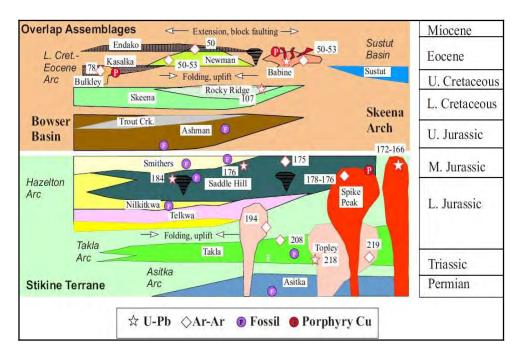


Figure 5-1. Schematic representation of geological units in the Skeena Arch (MacIntyre, 2005).

5.2 Property Geology

The geology under the property is pyritic siltstone, sandstone and andesitic crystal lithic tuff of the Middle to Upper Jurassic Ashman Formation (Bowser Lake Group). The bedded rocks are intruded by granodiorite and diorite plugs and dikes of the Late Cretaceous Bulkley Intrusions, and northwest-striking dikes and plugs of biotite feldspar and biotite hornblende feldspar porphyry of the Eocene Babine Intrusions. The largest of the Babine Intrusions on the property is a biotite-feldspar porphyry stock that covers an area of 500×800 m. There are several areas of Eocene Newman Group volcanic rocks in the vicinity which are considered the extrusive equivalents of the Babine Igneous Suite.

The Babine Igneous Suite are of primary economic interest as these commonly host porphyry Cu-Au-Mo mineralization and the Trail Peak area appears to be the northern-most of the Babine Igneous Suite, although the presence of Newman volcanic rocks to the north suggest there may be more unroofed Babine Intrusions to the north.

The regional geology for the claims area is shown in Figure 2-2. A schematic generalized geological plan map showing the Property geology is provided in Figure 4-1.

6.0 DEPOSIT TYPE

The region is one of the best mineralized areas of British Columbia (MacIntyre, 2006). It hosts a plethora of deposit types including polymetallic base and precious metal veins; porphyry, epithermal and skarn deposits; sedimentary exhalative ("SEDEX") and volcanogenic massive sulphide ("VMS") deposit types.

The most common deposit types in the area are porphyry deposits, polymetallic base metal veins and the subvolcanic Cu-Ag-Au (As-Sb) deposit type. These and other deposit types are described by the British Columbia Mineral Deposit Profiles

Intrusions on the Trail Peak Property are thought to be Eocene in age and appear very similar to intrusions belonging to the Babine Igneous Suite intrusions. Furthermore, on the Property and in the immediate area Newman Formation volcanic rocks occur which are interpreted to be the extrusive counterparts of the Babine Suite due to their similar Eocene age and geochemical signatures. Hence, the Trail Peak prospect appears to be the northernmost known Babine Porphyry mineralized system in the Babine Porphyry Belt. Several notable examples of Babine Porphyry deposits and include the Granisle and Bell Porphyry deposits totaling ~ 130 MT of 0.40% Cu, 0.15 g/t Au and 0.75 g/t Ag as well as the Morrison Deposit which has ~ 86 MT of 0.45% Cu and 0.26 g/t Au.

Trail Peak is surrounded by several similar developed prospects; the most noteworthy are the Hearne Hill and Morrison Properties. A summary of the near-by properties can be found in Table 6-1 below.

Hearne Hill

Hearne Hill is approximately 70 km northeast of Smithers. The property is underlain by northwest-trending massive andesite flows, tuffs and epiclastic sedimentary rocks of the Lower to Middle Jurassic Telkwa Formation (Hazelton Group). These are in fault contact with greywacke, argillite and conglomerate of the Jurassic to Cretaceous Ashman Formation (Bowser Lake Group). A small diorite to quartz diorite stock of the Triassic to Early Jurassic Topley Intrusions has intruded the layered rocks and is in turn intruded by a small biotite feldspar porphyry plug and associated northeast- trending dike swarm of the Eocene Babine Intrusions.

Porphyry copper-style, fracture- controlled and disseminated chalcopyrite, bornite and minor molybdenite mineralization, estimated to average 0.2 per cent copper (Assessment Report 20084), is found in highly fractured "hybrid diorite" and in the porphyry plug. A breccia pipe, approximately 50 by 60 metres in size, cuts the porphyry copper mineralization and is mineralized with chalcopyrite. One drill hole in the breccia pipe assayed 2.75 per cent copper across 22.9 m.

The Bland and Chapman zones contain an indicated resource of 4,230,000 tonnes grading 0.6 per cent copper and 0.186 grams per tonne gold, at a 0.3 per cent copper cut-off; and an inferred resource of 947,000 tonnes grading 0.408 per cent copper and 0.183 grams per tonne gold, at a 0.3 per cent copper cut-off.

Morrison

The Morrison deposit is located 21 km north of the Bell mine (093M 001), north Babine Lake, and 86 km east of Hazelton. The Morrison is a strongly zoned, annular porphyry copper deposit that is largely within the multiphase porphyry plug. The Morrison deposit, and its concentric sulphide-silicate alteration zones, was formed during a single hydrothermal episode that followed the emplacement and crystallization of most of the phases of the biotite-hornblende-plagioclase porphyry plug (<u>http://minfile.gov.bc.ca/Summary.aspx?minfilno=093M++007</u>). Measured plus indicated reserves were determined by E. Kimura, P.Geo., to be 12.4 million tonnes at 0.53 per cent copper, 0.26 grams per tonne gold (at 0.3 per cent copper cut-off and 0.75 strip ratio) in a starter pit, within an ultimate pit with 62.1 million tonnes grading 0.46 per cent copper, 0.22 grams per tonne gold (at 0.3 per cent copper cut-off and 1.15 strip ratio) (Wojdak, 2003).

Deposit Name	Deposit Type	Status
Morrison	Porphyry Cu +/- Mo +/- Au	Developed Prospect
Fireweed	Sedimentary exhalative Zn- Pb-Ag and Subaqueous hot spring Ag-Au	Developed Prospect
Hearne Hill	Porphyry Cu +/- Mo +/- Au	Developed Prospect
Dorothy	Porphyry Cu +/- Mo +/- Au	Developed Prospect
French Peak	Subvolcanic Cu-Ag-Au (As- Sb) and Polymetallic veins Ag-Pb-Zn+/-Au	Developed Prospect
Nak	Porphyry Cu +/- Mo +/- Au	Developed Prospect
Wolf	Porphyry Cu +/- Mo +/- Au	Prospect
MR	Cu+/-Ag quartz veins	Prospect

Table 6-1. Summary of deposits located near Trail Peak Property.

7.0 MINERALIZATION

Previous work on the property has shown that copper (chalcopyrite) mineralization is disseminated or as fracture filling and in quartz veinlets with or without chlorite and magnetite. The copper mineralization of potential interest is associated with the biotite-(hornblende)-feldspar porphyry dykes of the Babine Igneous Suite. Pyrite, chalcopyrite and minor bornite \pm magnetite is present within and near the dykes. Some mineralized areas are marked by secondary biotite, less potassic feldspar and locally by clay and silica alteration (Lisle, 1996).

Sedimentary rocks in the area are commonly mineralized (trace to locally 10%) with finely disseminated and fracture controlled pyrite and very fine disseminated pyrrhotite.

8.0 EXPLORATION

8.1 Exploration Programme

The 2019 exploration programme was implemented and managed by RGSI and included soil, silt and rock sampling prospecting surveys. The work commenced on September 06, 2019 and was completed on Sept 07 2019. Figure 8-1, 2 and 3 present the locations of the geochemical surveys. The samplers were Lindinger and technician CJL Contracting trainee Cole Bouvier.

The September 6 program comprised an infill soil sampling of the southern lines completed by NXA IN 2008. The lines completed were 10500 N and 10700 N. Station spacing was 50 metres. Station location was by previously input GPS values using the 2008 data.

<u>2019 Geochemical and Prospecting Assessment Report – Trail Peak Property</u> The September 07 program covered the east part of the property south of historic trench 3. Lines 600 and 700 N were completed. Station spacing was 50 metres. Station location was derived from the UTM values at that area. The soil samples were taken by CJL field technician employees Cole Bouvier and Brandon Barendregt. Also completed were selective rock sampling by Lindinger from mineralized portions of trenches 3 and 4. Lindinger also recovered several pieces of mineralized drill core from the 1968 drilling.

8.2 Exploration Results

The results of the 2019 work are presented in Figures 8-1 (Appendix D), 8-2 and 8-3 below, Analytical affidavits in Appendix A below, rock descriptions in Appendix B below, and rock and core sample images in Appendix C below.

8.2.1 Soil Results (Figure 8-1)

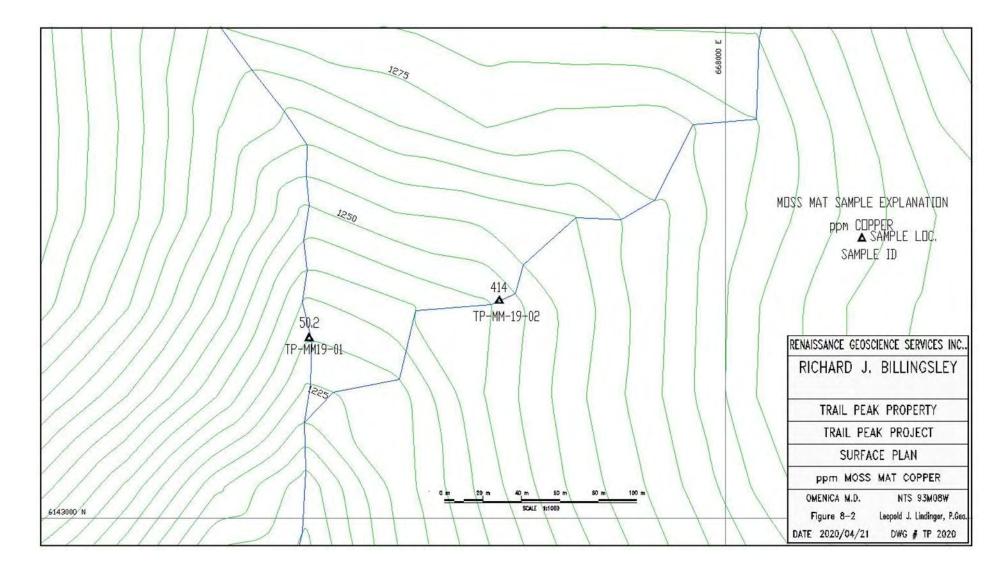
The western infill grid somewhat confirmed the anomalous copper results obtained earlier by NXA. The only copper value reporting over 100 ppm were midway on both lines. Also, partially coincidentally anomalous were zinc, arsenic, cadmium, silver, lawrencium, and cerium. A stronger coincident arsenic, bismuth, cadmium, cobalt, lawrencium, and cerium anomaly is present near the western end of Line 10500N and where Late felsic volcanics outcropping were observed. The anomaly extends although much weaker to the NW.

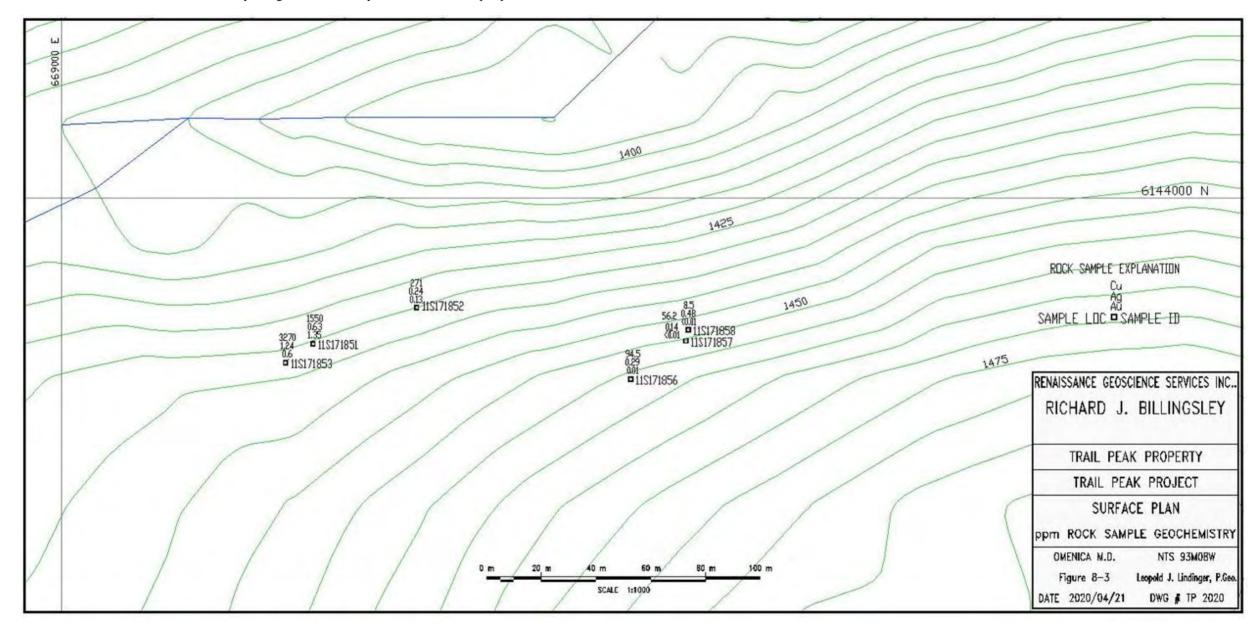
The eastern grid produced a very strong zinc anomaly near the eastern end of the grid. Bracketing these anomalous samples were anomalous silver, cerium, and lawrencium results. Elsewhere are a few scattered weak (>1 ppm) silver anomalies.

8.2.2 **Moss Mat Anomalies (Figure 8-2)**

Two moss mat samples were taken near the western end of Line 10700N from a south and southwestern draining pups. Only copper returned anomalous values in only for sample TP-MM19-02 which reported 414 ppm copper. The pup draining this source is the southern part of the main Trail Peak mineralized area.

8.2.3 Rock sample anomalies (Figure 8-3), Appendix B, Appendix D


Of the six rock samples taken only samples 11S17151, 2 and 3 in the western part of historic trench 4 returned anomalous copper values. All of these samples had visual indications of copper mineralization in the form of malachite, azurite, and chalcopyrite. Sample 11S171858 of a strongly clay altered and stockwork veined tourmaline intrusive failed to report any anomalous elements including gold and silver.


Table 8.1 – Moss Mat Location and Copper Results					
SAMPLE ID	UTM EAST	UTM NORTH	ELEV	Cu ppm	
TP-MM19-01	667765	6143101	1229	50.2	
TP-MM-19-02	667864	6143125	1246	414	

2019 Geochemical and Prospecting Assessment Report – Trail Peak Property

SAMPLE ID	UTM EAST	UTM NORTH	ELEV	AG	AU	CU
11S171851	669092	6143947	1442	0.63	1.33	1550
11S171852	669130	6143961	1437	0.24	0.013	271
11S171853	669082	6143940	1438	1.24	0.6	3270
11S171854	669126	6143864	1448	NA	NA	NA
11S171855	669141	6143880	1451	NA	NA	NA
11S171856	669208	6143934	1453	0.29	0.01	94.5
11S171857	669228	6143948	1447	0.14	<0.01	56.2
11S171858	669229	6143952	1446	0.48	<0.01	8.5
NOTE ALL R	ESULTS IN P	PM, NA - Not	Analy	zed		

 Table 8.3 – Rock Sample Locations and Geochemical Results

<u>2019 Geochemical and Prospecting Assessment Report – Trail Peak Property</u> **INTERPRETATION AND CONCLUSIONS**

RGSI completed an exploration programme that included soil, moss mat and rock sampling, and reconnaissance prospecting.

The geochemical soil survey over the southwestern part of the part of the property has confirmed the multi-element Cu soil and distal porphyry copper indicator elements and thus successfully verified portions of the previous surveys. The overlying moss matt samples also confirm copper from a steam draining the southern part of the main western historic copper mineralized area. These results confirmed the conclusions that Wetherup and O'Brian there is an as yet undrill tested mineralized area west of the known western Trail Peak area.

The soil sample results from south of the eastern grid trenches 3 and 4 area similarly produced, at its eastern end distal porphyry copper indicator element anomalies from zinc, silver, and some rare earth elements. Rock sampling of visually copper mineralized rocks confirmed that low grade copper mineralization is present in historic trench 4. Late tourmaline stockwork veining failed to report any anomalous gold. The very strong zinc in soil anomaly may indicate deeper copper mineralization at depth.

10.0 RECOMMENDATIONS

10.1 Proposed Work Program

The geochemical and geophysical surveys completed by NXA and partially confirmed by part of the 2019 program west of the known mineralized Trail Peak area defined a multi element porphyry copper deposit indicator element soil geochemical anomaly coinciding with a magnetic and chargeability high. A drill programme is recommended to test the anomaly. This programme should consist of a minimum of 2,000 m (ten 200 m drill holes). The estimated cost to complete the 2,000 m programme is \$500,000.

Prospecting and mapping should also be completed over the eastern portions of the current property to determine the significant of the zinc anomaly. An estimated field budget of approximately \$20,000 is recommended.

11.0 2019 EXPLORATION EXPENDITURES

The 2019 exploration programme cost approximately \$19,000 as summarized in Table 11-1 presented below.

Exploration Work type					
Exploi ation work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days		Subtotal*	
Lindinger	Sept 15-20, 2019	2		\$1,760.00	
Barendregt	Sept 15-20, 2019	1.1.1.1.1.1	1.1.1.1.1.1.1		
Bouvier	Sept 15-20, 2019	2	\$400.00	1	
					\$2,960.00
Office Studies	List Personnel (note - Office only, c				
Database compilation	Lindinger	0.3			
Computer modelling	Lindinger	0.5	\$880.00		
General research	Lindinger	1.0	\$880.00	\$880.00	
Report preparation	Lindinger	2.0	\$880.00	\$1,760.00	
Rock descriptions	Lindinger	0.7	\$880.00	\$616.00	
				\$3,960.00	\$3,960.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Reconnaissance	Lindinger, Barendregt, Bouvier 5000 ha				
Prospect	Lindinger, Barendregt, Bouvier 5000 ha				
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Stream sediment	moss mat	2.0	\$52.00	\$104.00	
Soil		65.0	\$54.00	\$3,510.00	
Rock		6.0	\$66.00	\$396.00	
				\$4,010.00	\$4,010.00
Transportation		No.	Rate	Subtotal	
Airfare	Kamloops-Smithers-Kamloops prorated		\$0.00		
Тахі	Smithers airport to hotel		\$0.00		
helicopter	3.6 hours at \$2000/hr	3.60	\$1,984.50		
fuel			\$0.00		
					\$7,514.20
Accommodation & Food	Rates per day			¢7,011120	\$7,01 HZ
Hotel	3 PERSON NIGHTS @\$105/NIGHT	3.00	\$105.00	\$315.00	
Meals	3.3 MANDAYS @ 75/DAY	3.30			
illeris		0.00	¢70.00	\$562.50	\$562.50
Equipment Rentals				\$002.00	\$002.0V
Field Gear (Specify)	2 garmin rino GPS for 5 days/\$5/day ea	2.00	\$10.00	\$20.00	
Iridium Sat Phone	5 days @\$25/day	2.00			
		2.00	Ψ25.00	\$70.00	\$70.00
				\$70.00	ψ/0.00

 Table 11-1. Statement of Exploration Expenditures for 2019 programme.

CERTIFICATE

Leopold Joseph Lindinger, P.Geo. 680 Dairy Road, Kamloops, B.C. V2B-8N5 Tel/text. 250-319 0717 Email: leojolindinger@gmail.com

HEREBY DO CERTIFY THAT:

- 1. I, Leopold Joseph Lindinger, P.Geo. of 680 Dairy Road, Kamloops, B.C..
- 2. I graduated in 1980 from the University of Waterloo, Ontario with a Bachelor of Sciences (BSc) in Honours Earth Sciences.
- 3. I am a member in good standing as a Professional Geoscientist (#19155) with the Association of Professional Engineers and Geoscientists of the Province of British Columbia since 1992.
- 4. I have worked continuously as a geoscientist since graduating.
- 5. I am responsible for presenting the exploration results, conclusions and recommendations made for the "2019 Geochemical and Prospecting Assessment Report on the TRAIL PEAK Property".

Dated this 23rd day of April, 2020 and amended Oct 1, 2020

Leopold J. Lindinger, P.Geo.

13.0 REFERENCES

- Carter, N. (1990): Geological and Geochemical Report on the Trail Peak Claims: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 19,557, 25p.
- Carter, N. (1993): Geological and Geochemical Report- Sampling of the diamond drill core and soil sampling on the Trail Peak Claims: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 22,719, 31p.
- DeLancey, P. (1975): Drilling Report on the Cavz Claims: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 5706, 37p.
- Lisle, T. (1996): Geological, Geochemical, Geophysical and Linecutting Report on the Trail Peak Porphyry Copper Prospect: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 24,783, 17p.
- MacIntyre, D.G., Brown, D., Desjardins, P., and Mallett, P. (1987), Babine Project (93L/10,15): BC Ministry of Energy and Mines, Geological Fieldwork 1986, Paper 1987-1, p. 201-222.
- MacIntyre, D.G. (1998), Babine porphyry belt project: Bedrock geology of the Nakinilerak Map Sheet (93M/8), British Columbia. BC Ministry of Energy and Mines, Geological Fieldwork 1997, Paper 1998-1, p. 2-1 to 2-18.
- MacIntyre, D.G. (2001), Geological compilation map Babine porphyry copper district, Central British Columbia, 1:100,000: BC Geological Survey Open File 2001-3.
- MacIntyre, D.G. (2005), Geology and mineral deposits of the Skeena Arch, West-Central British Columbia: A geosciences BC digital data compilation project: BC Ministry of Energy and Mines, Geological Fieldwork 2005, Paper 2006-1, p. 303-321.
- McLeod, C. and J. Russell (1968): Geochemical Report: Geochemical survey- Part 2: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 1672, 10p.
- McLeod, C. and J. Russell (1969): Geological Report: Geological Survey on the Cavz Claims- Part 3: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 1672, 17p.
- Podolsky, G. and J. Russell (1968): Geophysical Report: Magnetometer survey- Part 4: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 1672, 12p.
- Watson, D. and J. Russell (1968): Geophysical Report: EM survey- Part 1: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 1672, 10p.
- Wetherup, S. and E. O'Brien (2008): Assessment Report: Trail Peak Property: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 30159, 68 p.
- Wetherup, S. and E. O'Brien (2009): Assessment Report: Trail Peak Property: B.C. Ministry of Energy, Mines and Petroleum Resources Assessment Report 30686, 27 p.

<u>2019 Geochemical and Prospecting Assessment Report – Trail Peak Property</u> Wojdak, P. (2003): Exploration and Mining in BC 2002, Mines and Minerals Division, Mining Operations Branch, BC Ministry of Energy and Mines, page 6.

APPENDIX A - Analytical Certificates

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

AuME-TL43

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO

CERTIFICATE TR19232974

Project: TRAIL PEAK

This report is for 2 Sediment samples submitted to our lab in Terrace, BC, Canada on 16-SEP-2019.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
DRY-22	Drying - Maximum Temp 60C							
SCR-41	Screen to -180um and save both							
DISP-01	Disposal of all sample fractions							
	ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION							

25g Trace Au + Multi Element PKG

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as

Signature: Saa Traxler, General Manager, North Vancouver

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

A		Phone: +1	rton Hwy couver BC V7 (604) 984 02	7H 0A7 221 Fax: 'geochemis	+1 (604) 98 try	4 0218		680	AISSANC DAIRY R ILOOPS B	Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO							
Sample Description							Project: TRAIL PEAK CERTIFICATE OF ANALYSIS							TR19232974			
	WEI-21 Recvd Wt, kg 0.02	AuME-TL43 Au ppm 0.001	AuME-TL43 Ag ppm 0.01	AuME-TL43 Al % 0.01	AuME-TL43 As ppm 0.1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0.01						AuME-TL43 Cs ppm 0.05		
ТРММ-19-01 ТРММ-19-02		0.70 0.76	0.021 0.022	0.23 0,29	1.43 1.67	26.9 22.1	10 10	170 200	0.43 0.62	0.22 0.27	0.61 0.59	1.19 1.21	19.80 25.7	12.3 23.3	21 27	0.58 0.89	

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO

Sample Description LOD								C	ERTIFI	CATE O	F ANAI	YSIS	TR192	32974	2	
	Analyte Units	Analyte Units	AuME-TL43 Cu ppm 0.2	AuME-TL43 Fe % 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0.05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0.01	AuME-TL43 La ppm 0.2	AuME-TL43 Li ppm 0.1	AuME-TL43 Mg % 0.01	AuME-TL43 Mn ppm 5	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01
	50.2 414	3.52 3.61	4.36 5.42	0.06 0.07	0.03 0.02	0.12 0.08	0.037 0.036	0.09 0.18	11.0 12.6	10.8 13.3	0.48 0.67	793 1200	1.71 3.75	0.02	0.24 0.42	
	1															
	Method Analyte Units	Method Analyte Units LOD 0.2 50.2	Method Analyte Units LOD 50.2 3.52	Method Analyte AuME-TL43 AuME-TL43 AuME-TL43 Cu Fe Ga Units ppm % ppm LOD 0.0 0.05 0.43	Method Analyte AuME-TL43 AuME-TL43 AuME-TL43 AuME-TL43 Units Cu Fe Ga Ge Units ppm % ppm ppm LOD 0.0 0.05 0.05	Method Analyte AuME-TL43 AuME-TL43 AuME-TL43 AuME-TL43 AuME-TL43 Units Cu Fe Ga Ge Hf Units ppm % ppm ppm ppm LOD 50.2 3.52 4.36 0.06 0.03	Method Analyte AuME-TL43 AuME-TL43 AuME-TL43 AuME-TL43 AuME-TL43 AuME-TL43 Units Cu Fe Ga Ge Hf Hg Units ppm % ppm ppm ppm ppm ppm LOD 50.2 3.52 4.36 0.06 0.03 0.12	Method Analyte Units AuME-TL43 AuME-TL43	Method Analyte Units AuME-TL43 AuME-TL43	Method Analyte Units AuME-TL43 AuME-TL43	Method Analyte Units AuMETL43 AuMETL43<	Method Analyte Units AuMETL43 AuMETL43<	Method Analyte Units AuMETL43 AuMETL43<	Method Analyte Units AuMETL43 AuMETL43<	Method Analyte Units AuMETL43 AuMETL43<	

***** See Appendix Page for comments regarding this certificate *****

ALS		Phone: +1	ouver BC V7 604) 984 02 lobal.com/		+1 (604) 98 try	4 0218			ALOOPS B		5			Finalized	us Appen I Date: 4- Account	OCT-201
ALS	,										CATE O	FANA	LYSIS	TR192	32974	
Sample Description	Method Analyte Units LOD	AuME-TL43 Ni ppm 0.2	AuME-TL43 P ppm 10	AuME-TL43 Pb ppm 0.2	AuME-TL43 Rb ppm 0.1	AuME-TL43 Re ppm 0.001	AuME-TL43 S % 0.01	AuME-TL43 Sb ppm 0.05	AuME-TL43 Sc ppm 0.1	AuME-TL43 Se ppm 0.2	AuME-TL43 Sn ppm 0.2	AuME-TL43 Sr ppm 0,2	AuME-TL43 Ta ppm 0.01	AuME-TL43 Te ppm 0.01	AuME-TL43 Th ppm 0,2	AuME-TL43 Ti % 0.005
FPMM-19-01 FPMM-19-02		20.1 31.0	880 930	12.6 13.4	4.6 10.7	0.002 0.006	0.04 0.06	1.37 1.43	5.2 5.9	0.9 1.4	0.4 0.4	72.3 58.0	<0.01 <0.01	0.09 0.10	0.5 0.8	0.030 0.052

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO

Project: TRAIL PEAK

(723	·								CERTIFICATE OF ANALYSIS TR19232974
Sample Description	Method Analyte Units LOD	AuME-TL43 TI ppm 0.02	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0.05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5	
TPMM-19-01 TPMM-19-02		0.10 0.21	0.36 0.63	62 69	0.12 0.10	14.40 15.50	141 131	0.6 <0,5	
				_					

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 4-OCT-2019 Account: RENGEO

Project: TRAIL PEAK

CERTIFICATE OF ANALYSIS TR19232974

	CERTIFICATE COMMENTS	
	LABORATORY ADDRESSES	
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. AuME-TL43 DISP-01 DRY-22 SCR-41 WEI-21	LOG-22

CERTIFICATE TR19232976

Project: TRAIL PEAK

This report is for 65 Soil samples submitted to our lab in Terrace, BC, Canada on 16-SEP-2019.

The following have access to data associated with this certificate: RICHARD BILLINGSLEY LEOPOLD LINDINGER To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

SAMPLE PREPARATION

ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
SCR-41	Screen to -180um and save both	
DISP-01	Disposal of all sample fractions	
		_

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	
AuME-TL43	25g Trace Au + Multi Element PKG	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Saa Traxler, General Manager, North Vancouver

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

ALS	/							-	C	EDTIEN	CATEO	EANA	VEIC	TP107	32976	_
		_			_	100			C	CKTIFN	CATEO	r ANA	1313	TRI92	52970	
Sample Description	Method	WEI-21	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL4
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.001	0.01	0.01	0.1	10	10	0,05	0.01	0.01	0.01	0.02	0.1	1	0.05
10700N-750W		0.28	0.005	0.20	1.75	65.8	10	240	0,47	0.37	0.32	0.94	12.45	12.1	23	0.73
10700N-800W		0.30	0.002	0.15	1.69	52.8	10	140	0,41	0.53	0.26	0.65	11.90	9.1	20	0.80
10700N-150W		0.32	0.002	0.48	3.02	23.0	10	270	0,81	0.56	0.61	0.76	17.20	14.8	33	1.64
10700N-200W		0.28	0.004	1.21	2.60	90.5	10	180	1,30	1.12	0.37	1.08	42.5	10.7	20	1.38
10700N-250W		0.26	0.004	0.68	2.94	112.5	20	220	0,55	1.10	0.48	0.92	14.80	10.7	31	2.55
10700N-300W		0.34	0.009	0.41	3.61	141.5	10	210	0.95	1.33	0.29	0.69	40.0	39.1	34	1.51
10700N-350W		0.30	0.006	2.30	2.21	51.8	10	170	0.53	0.75	0.41	0.55	24.3	10.8	25	1.12
10700N-400W		0.24	0.008	1.95	2.68	68.3	10	200	0.95	0.96	0.63	0.90	28.0	39.0	24	1.12
10700N-450W		0.32	0.006	0.51	2.18	22.8	10	150	0.52	0.83	0.41	0.67	16.10	9.4	23	1.13
10700N-500W		0.30	0.001	0.27	2.63	17.0	10	180	0.51	0.29	0.15	0.59	11.45	10.0	27	0.61
10700N-550W		0.34	0.002	0.30	2.19	18.8	10	130	0.46	0.20	0.20	0.71	9.78	8.6	20	0.90
10700N-600W		0.32	0.009	0.28	1.72	24.2	10	180	0.45	0.43	0.44	0.58	15.35	9.2	21	0.84
10700N-650W		0.32	0.002	0.27	1.89	18.1	10	190	0.47	0.20	0.39	0.50	18.05	12.0	22	0.56
10500N-050E		0.32	0.004	0.36	2.13	18.1	10	170	0.43	0.52	0.54	1.39	11.55	12.9	41	0.64
10500N-100E		0.32	0.006	0.80	2.64	32.0	30	270	0.85	0.73	0.31	0.68	26.7	13.8	37	1.95
10500N-150E		0.26	0.002	0.50	1.26	22.7	10	120	0.24	0.42	0.14	0.42	9.08	5.3	15	0.45
10500N-200E		0,20	0.001	0.88	2.24	19.9	20	230	2.40	0.22	0.40	1.38	91.3	15.6	19	1.19
10500N-0W		0,30	0.001	0.76	2.45	85.0	10	300	0.75	0.82	0.41	1.40	23.5	19.0	29	1.03
10500N-050W		0.36	0.003	1.48	2.60	22.8	20	190	1.53	0.28	0.51	1.27	33.8	10.3	31	1.13
10500N-050W		0.30	0.003	1.60	3.06	35.4	10	210	1.49	0.40	0.40	1.19	53.0	8.1	29	1.84
10500N-150W 10500N-200W 10500N-250W 10500N-300W 10500N-350W		0.28 0.24 0.28 0.30 0.30	0.003 0.001 0.001 0.001 0.001	1.78 0.59 0.75 0.40 0.16	1.96 1.29 1.92 1.59 1.74	25.8 14.9 10.9 9.6 13.9	40 10 10 10	190 140 140 160 140	0.90 0.16 0.25 0.22 0.29	0.40 0.23 0.23 0.23 0.23	0,50 0,09 0,09 0,12 0,16	0.83 0.32 0.41 0.36 0.28	27.7 8.26 8.35 10.20 9.30	7.5 4.1 4.9 5.6 5.4	20 14 16 17 17	1.81 0.38 0.64 0.66 0.56
0500N-400W		0.36	0.003	0.31	2.01	36.0	10	210	0,40	0.25	0.38	0.74	12.55	11.6	23	0.92
0500N-450W		0.30	0.001	0.55	2.33	16.4	20	170	0,49	0.15	0.90	1.26	17.65	14.2	25	1.29
0500N-500W		0.26	0.001	0.74	1.52	469	10	140	0,75	2.13	0.19	1.23	38.5	19.9	32	3.64
0500N-550W		0.36	0.002	0.32	1.47	31.4	20	240	0,50	0.29	0.26	1.46	20.9	8.6	17	0.77
0500N-600W		0.30	<0.001	0.49	1.14	42.6	10	180	0,26	0.34	0.24	0.26	18.65	5.2	25	1.26
0500N-650W		0.34	0.003	0.12	0.92	47.2	10	110	0.15	0.23	0.08	0.23	11.05	3.7	12	0.70
0500N-700W		0.38	0.001	0.45	2.08	15.4	10	130	0.63	0.13	0.21	0.65	10.80	10.0	20	0.72
00N-1000E		0.36	0.002	0.34	2.33	14.9	10	120	0.64	0.23	0.36	0.50	17.50	19.0	38	1.65
00N-1050E		0.26	0.001	1.18	1.86	9.3	10	70	0.21	0.22	0.17	0.26	7.66	7.3	30	0.76
00N-1100E		0.24	0.008	1.21	2.87	24.7	10	90	0.53	0.82	0.08	0.24	11.15	5.3	23	0.74
00N-1150E 00N-1200E 00N-1250E 00N-1300E 00N-1350E		0.24 0.26 0.26 0.26 0.28	0.003 0.001 0.001 0.002 0.013	1.64 0.25 0.43 0.27 0.79	3.53 3.32 2.84 3.45 2.29	11.2 15.3 13.2 17.9 12.9	10 10 10 10	70 70 120 100 130	0.52 0.40 0.51 0.61 0.61	0.23 0.13 0.24 0.19 0.24	0.15 0.17 0.21 0.18 0.17	0.48 0.43 0.72 0.55 0.44	18.60 8.26 14.95 13.20 15.05	9.4 10.3 14.9 20.5 14.2	35 44 43 55 32	1.22 1.40 1.93 2.03 1.42

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

ALS	·								C	ERTIFIC	CATE O	F ANA	LYSIS	TR192	32976	
Sample Description	Method	AuME-TL43														
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0.2	0.01	0.05	0,05	0,02	0.01	0,005	0.01	0.2	0,1	0.01	S	0.05	0.01	0.05
10700N-750W		28.4	3.99	6.65	<0.05	<0.02	0.05	0.052	0.10	5.9	9.7	0.34	1110	1.78	0.01	0.42
10700N-800W		19.1	3.88	6.44	<0.05	0.04	0.04	0.047	0.07	5.9	10.6	0.36	281	1.76	0.01	0.71
10700N-150W		58.0	4.84	10.30	<0.05	0.08	0.06	0.059	0.09	9.3	15.2	0.63	1700	2.51	0.01	0.64
10700N-200W		66.6	4.06	8.34	0.06	0.06	0.10	0.071	0.06	27.7	11.8	0.36	812	2.46	0.01	1.08
10700N-250W		60.3	6.55	12.85	<0.05	0.02	0.07	0.076	0.10	7.3	22.6	0.60	845	3.41	0.01	1.12
10700N-300W		104.0	6.83	9.02	<0.05	0.10	0.06	0.087	0.10	9.3	22.4	0.74	1510	5.85	0.02	0.66
10700N-350W		65.1	4.22	6.37	<0.05	<0.02	0.08	0.053	0.08	10.8	12.2	0.56	823	2.31	0.02	0.22
10700N-400W		69.2	6.40	6.82	0.06	0.08	0.16	0.056	0.11	15.5	17.7	0.52	3740	4.01	0.01	0.35
10700N-450W		55.3	3.32	6.93	<0.05	<0.02	0.09	0.042	0.06	10.3	16.3	0.52	524	1.74	0.02	0.34
10700N-500W		46.9	4.59	8.59	<0.05	0.05	0.06	0.051	0.05	4.9	14.8	0.47	521	1.83	0.01	0.99
10700N-550W		19.5	3.93	6.45	<0.05	0.02	0.06	0.046	0.05	4.5	14.1	0.42	328	1.60	0.01	0.88
10700N-600W		46.2	3.48	5.76	<0.05	<0.02	0.05	0.042	0.09	7.3	11.4	0.54	731	2.32	0.01	0.18
10700N-650W		32.1	3.83	6.39	<0.05	0.02	0.05	0.043	0.06	7.1	10.7	0.46	776	1.60	0.02	0.30
10500N-050E		28.0	4.67	10.25	<0.05	<0.02	0.04	0.050	0.05	5.8	8.4	0.56	876	1.59	0.01	0.93
10500N-100E		85.2	5.63	11.55	0.07	0.03	0.05	0.069	0.10	11.8	16.6	0.67	1390	2.74	0.02	0.46
10500N-150E		18.1	3.73	9.16	<0.05	<0.02	0.05	0.035	0.04	4.8	3.9	0.15	311	1.44	0.01	0.66
10500N-200E		83.0	3.39	7.67	0.23	0.09	0.08	0.046	0.05	58.8	10.3	0.29	1960	2.94	0.01	0.42
10500N-0W		45.5	5.45	11.50	0.05	0.03	0.08	0.073	0.10	9.0	18.5	0.51	2800	1.89	0.01	0.73
10500N-050W		104.5	3.72	9.06	0.08	0.04	0.12	0.049	0.05	21.2	24.2	0.45	763	2.25	0.01	0.50
10500N-100W		115.0	3.68	9.10	0.10	0.07	0.13	0.069	0.07	32.3	15.1	0.39	496	2.39	0.02	0.65
10500N-150W		91.0	2.49	7.27	0.05	0.03	0.09	0.047	0.07	18.3	6.4	0.30	574	2.10	0.02	0.30
10500N-200W		12.9	3.11	9.29	<0.05	<0.02	0.05	0.028	0.04	4.2	3.8	0.13	201	1.36	0.01	0.55
10500N-250W		17.0	3.03	8.62	<0.05	0.02	0.08	0.037	0.03	4.3	9.8	0.24	269	1.34	0.01	0.77
10500N-300W		12.2	3.60	10.85	<0.05	<0.02	0.05	0.032	0.04	5.2	9.4	0.22	380	1.23	0.01	0.73
10500N-350W		12.5	3.47	9.41	<0.05	0.02	0.04	0.036	0.06	4.9	10.5	0.23	187	1.29	0.01	0.96
10500N-400W		26.7	4.00	8.24	<0.05	0.02	0.04	0.047	0.05	5.2	15.3	0.45	731	1.70	0.01	0.59
10500N-450W		41.7	4.31	7.92	<0.05	0.03	0.05	0.054	0.06	7.6	16.0	0.46	805	1.81	0.01	0.99
10500N-500W		39.2	5.50	6.68	0.05	0.04	0.07	0.112	0.06	18.2	5.4	0.07	1930	2.03	0.01	0.67
10500N-550W		19.1	3.43	7.96	0.05	0.02	0.05	0.041	0.05	19.0	11.8	0.23	412	1.46	0.01	1.03
10500N-6500W		7.5	3.06	4.95	<0.05	<0.02	0.03	0.030	0.03	10.3	8.0	0.06	176	1.74	0.01	0.29
10500N-650W		9.6	2.57	6.31	<0.05	<0.02	0.02	0.023	0.04	5.4	2,3	0.12	159	1.68	0.01	0.55
10500N-700W		21.0	3.82	6.66	<0.05	0.09	0.10	0.043	0.04	4.5	13.4	0.37	300	1.61	0.01	0.98
600N-1000E		90.5	5.21	11.80	0.05	0.02	0.07	0.056	0.06	7.4	25.4	0.73	1560	5.59	0.01	0.78
600N-1050E		24.0	4.90	12.75	<0.05	<0.02	0.07	0.043	0.03	3.8	6.3	0.32	355	1.98	0.01	0.99
600N-1100E		32.5	6.22	11.60	<0.05	0.04	0.14	0.054	0.05	5.6	13.9	0.33	278	4.83	0.01	2.13
600N-1150E		34.0	4.45	10.60	0.05	0.06	0.15	0.055	0.05	9.0	17.0	0.53	279	2.03	0.01	1.69
600N-1200E		30.8	5.50	11.85	<0.05	0.03	0.09	0.071	0.05	3.8	20.3	0.68	419	1.44	0.01	1.32
600N-1250E		35.5	5.91	16.50	<0.05	<0.02	0.07	0.058	0.06	7.3	15.6	0.72	658	1.63	0.01	2.19
600N-1300E		45.2	7.10	15.95	0.05	0.03	0.05	0.087	0.05	6.0	22.4	1.06	784	2.06	0.01	1.34
600N-1350E		36.4	5.21	12.10	<0.05	0.02	0.06	0.056	0.05	7.0	13.4	0.42	986	1.92	0.01	1.14

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

(ALS	·							-	C	ERTIFIC	CATE O	F ANA	LYSIS	TR192	232976	
Sample Description	Method	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL4
	Analyte	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Šr	Ta	Te	Th	Ti
	Units	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0.2	10	0,2	0,1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	Q.01	0.2	0.005
10700N-750W		17.1	1020	15.1	10.3	<0.001	0.04	1.87	2.6	0.2	0.6	40.1	<0.01	0.12	0.2	0.020
10700N-800W		14.5	760	15.6	9.1	<0.001	0.03	1.53	4.3	0.4	0.6	39.3	<0.01	0.16	0.8	0.027
10700N-150W		23.2	1850	12.9	10.7	0.001	0.06	0.73	4.6	0.9	0.9	54.9	0.01	0.17	0.3	0.017
10700N-200W		15.2	1540	20.7	8.0	<0.001	0.07	2.17	2.7	1.0	0.7	47.5	0.01	0.30	0.2	0.014
10700N-250W		22.1	1340	22.3	15.3	<0.001	0.07	2.08	3.6	0.8	1.0	50.2	<0.01	0.36	<0.2	0.020
10700N-300W		36.1	950	43.5	8.8	0.002	0.06	3.62	6.7	2,9	0.6	46.6	<0.01	0.41	0.6	0.023
10700N-350W		21.1	530	19.0	6.8	0.001	0.05	3.21	4.6	1,0	0.5	63.1	<0.01	0.24	0.3	0.024
10700N-400W		25.9	1620	18.2	10.7	0.003	0.05	1.57	5.1	2,0	0.5	63.8	<0.01	0.21	0.5	0.011
10700N-450W		18.1	770	13.7	7.4	0.002	0.05	1.19	1.9	0.5	0.6	55.8	<0.01	0.13	<0.2	0.017
10700N-500W		17.0	860	15.2	3.9	<0.001	0.05	0.71	3.7	0,4	0.7	27.1	<0.01	0.07	0.3	0.013
10700N-550W		14.2	730	14.3	5.1	<0.001	0.03	0.82	3.9	0.4	0.5	24.8	<0.01	0.09	0.3	0.023
10700N-600W		15.8	1060	14.7	6.5	0.001	0.06	1.29	3.8	0.3	0.5	56.2	<0.01	0.15	0.3	0,014
10700N-650W		15.7	1080	17.2	4.5	0.001	0.03	0.92	2.7	0.2	0.5	49.7	<0.01	0.06	<0.2	0.021
10500N-050E		19.1	1010	13.2	5.2	<0.001	0.02	0.78	4.5	0.3	0.8	27.6	<0.01	0.16	0.2	0,049
10500N-100E		25.0	1570	14.9	15.2	<0.001	0.08	1.62	4.2	1.2	1.2	57.4	<0.01	0.37	<0.2	0.038
10500N-150E 10500N-200E 10500N-0W 10500N-050W 10500N-100W		8.1 14.5 21.2 22.2 19.9	1340 920 2180 1040 1750	17.1 13.5 31.8 14.0 20.5	4.5 6.3 9.2 7.3 10.1	<0.001 0.001 <0.001 <0.001 0.001	0.03 0.05 0.06 0.04 0.06	1.13 1.31 1.85 0.81 0.93	1.2 2.3 2.3 3.2 3.4	0.4 1.5 0.5 1.1 1.2	0.9 0.7 0.8 0.8 0.8	19.9 59.5 51.0 56.4 60.0	<0.01 0.02 0.01 0.01 0.01	0.16 0.08 0.27 0.09 0.10	<0.2 <0.2 <0.2 <0.2 <0.2 0.2	0.016 0.014 0.015 0.025 0.012
10500N-150W 10500N-200W 10500N-250W 10500N-300W 10500N-350W		14.6 7.1 8.7 9.1 9.5	1390 1000 730 1690 770	20.0 13.1 12.9 13.4 14.1	12.0 4.1 5.1 5.2 7.0	<0.001 <0.001 <0.001 <0.001 <0.001	0.05 0.02 0.02 0.01 0.02	0.85 0.74 0.68 0.52 0.54	1.9 0.9 1.9 2.8 3.5	1.2 0.3 0.2 0.2	1.1 0.8 0.7 1.0 0.8	62.0 21.2 20.1 21.8 19.4	0.01 <0.01 <0.01 <0.01 <0.01	0.09 0.06 0.06 0.04 0.06	<0.2 <0.2 <0.2 0.2 0.2 0.4	0.019 0.013 0.012 0.029 0.016
0500N-400W		16.9	570	16.9	8.7	<0.001	0.02	0.97	3.9	0.3	0.6	35.4	<0.01	0.10	0.2	0.021
0500N-450W		20.3	870	15.0	7.6	<0.001	0.04	0.63	3.4	0.7	0.7	50.7	<0.01	0.07	0.2	0.023
0500N-500W		18.5	1750	25.9	9.9	<0.001	0.03	6.11	2.6	0.4	0.8	21.8	0.01	0.09	0.6	0.007
0500N-550W		9.3	800	15.7	5.8	<0.001	0.03	1.16	2.9	0.3	1.0	32.1	0.02	0.09	0.2	0.028
0500N-600W		9.6	360	6.5	6.6	<0.001	0.01	1.42	1.1	<0.2	0.4	21.0	<0.01	0.03	1.0	<0.005
1 0500N-650W		7.8	610	17.7	5.3	<0.001	0.03	3.03	1.9	0.2	0.7	16.5	<0.01	0.06	0.4	0.027
1 0500N-700W		17.4	1000	13.2	5.9	<0.001	0.02	0.80	4.4	0.4	0.6	28.1	<0.01	0.06	0.7	0.019
600N-1 000E		24.7	1210	13.3	15.0	<0.001	0.06	0.82	2.6	0.5	0.9	26.8	<0.01	0.11	<0.2	0.029
600N-1 050E		11.4	1240	11.2	5.7	<0.001	0.03	0.86	2.4	0.4	1.0	7.6	<0.01	0.09	<0.2	0.050
600N-1 1 00E		8.4	1270	12.2	5.8	<0.001	0.07	1.82	2.6	1.2	1.2	9.3	0.01	0.35	0.4	0.020
600N-1150E 600N-1200E 600N-1250E 500N-1300E 500N-1350E		18,2 21.0 20.7 29.0 14.4	650 810 680 810 1030	12.0 18.7 16.5 16,6 15,9	5.4 5.1 8.1 7.2 8.9	<0.001 <0.001 <0.001 <0.001 <0.001	0.06 0.04 0.03 0.04 0.03	1.07 1.16 1.02 0.95 0.86	5.9 5.3 5.8 9.7 5.4	1.0 0.6 0.4 0.5 0.4	0.7 0.7 1.4 1.0 1.0	10.4 6.9 13.5 8.7 16.2	<0.01 <0.01 <0.01 <0.01 <0.01	0.10 0.08 0.08 0.08 0.08 0.06	0.3 0.2 0.2 0.8 0.2	0.052 0.050 0.057 0.112 0.039

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

								Project.	TRAIL PEAK	
(ALS))								CERTIFICATE OF ANALYSIS	TR19232976
ample Description	Method Analyte Units LOD	AuME-TL43 Tl ppm 0.02	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0.05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5		
10700N-750W 10700N-800W 10700N-150W 10700N-200W 10700N-250W		0.09 0.07 0.15 0.11 0.16	0.27 0.22 0.81 0.79 0.57	75 74 85 62 102	0.08 0.08 0.07 0.10 0.14	3.54 3.35 13.35 31.6 9.65	143 102 173 110 174	<0.5 1.9 2.2 1.5 0.8		
10700N-300W 10700N-350W 10700N-400W 10700N-450W 10700N-500W		0.21 0.15 0.21 0.13 0.09	0.76 0.47 0.61 0.49 0.39	91 69 69 60 88	0.14 0.07 0.07 0.09 0.07	13.75 12.05 21.0 11.15 3.08	206 125 136 101 112	2.8 <0.5 1.8 <0.5 1.4		
10700N-550W 10700N-600W 10700N-650W 10500N-050E 10500N-100E		0.07 0.10 0.09 0.08 0.16	0.28 0.38 0.31 0.28 0.69	74 63 76 116 102	0.07 0.05 0.06 0.08 0.19	3.56 6.68 6.47 5.83 16.75	105 106 115 94 175	0.8 <0.5 <0.5 <0.5 0.8		
10500N-150E 10500N-200E 10500N-0W 10500N-050W 10500N-100W		0.08 0.16 0.12 0.14 0.16	0.19 0.75 0.40 1.19 1.36	83 73 85 76 62	0.09 0.19 0.09 0.14 0.16	2.10 85.4 8.95 30.1 41.9	83 108 189 134 119	<0.5 <0.5 1.0 <0.5 0.9		
10500N-150W 10500N-200W 10500N-250W 10500N-300W 10500N-350W		0.15 0.06 0.08 0.08 0.07	0.79 0.18 0.22 0.18 0.20	52 77 62 78 79	0.16 0.08 0.09 0.08 0.08	22.7 1.66 2.21 2.05 2.47	87 53 70 87 73	<0.5 <0.5 0.5 <0.5 0.8		
10500N-400W 10500N-450W 10500N-500W 10500N-550W 10500N-600W		0.08 0.09 0.11 0.07 0.05	0.26 0.43 0.97 0.30 0.47	80 75 77 67 69	0.09 0.12 0.26 0.17 0.16	4.50 9.53 8.96 14.60 0.95	125 140 153 122 72	0.5 0.6 1.0 <0.5 0.8		
10500N-650W 10500N-700W 600N-1000E 600N-1050E 600N-1100E		0.08 0.07 0.11 0.07 0.12	0.13 0.26 0.96 0.21 0.59	64 70 106 136 92	0.08 0.15 0.05 0.07 0.12	1.66 4.39 10.70 2.34 4.13	47 108 152 63 66	<0.5 2.5 <0.5 <0.5 1.2		
600N-1150E 600N-1200E 600N-1250E 600N-1300E 600N-1350E		0.12 0.11 0.13 0.12 0.12	0.52 0.34 0.44 0.51 0.47	97 119 150 157 128	0.11 0.09 0.07 0.09 0.08	11.10 3.28 5.86 7.00 9.18	87 120 146 154 118	2.0 1.0 <0.5 1.4 <0.5		

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

Analyte Sample Description Analyte Units LOD Recvd Wt. kg Au Ag Al As B Ba Be Bi Ca 600N-1400E 0.02 0.001 0.01 0.01 0.01 10 10 0.05 0.01 0.01 600N-1400E 0.24 0.002 0.53 2.13 18.0 10 90 0.26 0.24 0.15 600N-1450E 0.38 0.002 0.72 2.33 13.6 10 80 0.30 0.20 0.14 600N-1550E 0.26 0.018 0.50 2.44 25.5 10 100 0.30 0.37 0.16 600N-1650E 0.26 0.022 0.31 3.67 10.4 10 80 0.37 0.19 600N-1700E 0.22 <0.011 0.59 2.35 19.0 10 70 0.23 0.17 0.13	JME-TL43 AuME-TL43 Cd Ce ppim ppm 0.01 0.02 0.35 8.93 0.39 9.66 0.51 20.8 0.53 8.85	Co	IME-TL43 AUME-TL4 Cr Cs ppm ppm 1 0.05 30 1.18 29 0.97
600N-1450E 0.38 0.002 0.72 2.33 13.6 10 80 0.30 0.20 0.14 600N-1550E 0.22 0.012 1.17 2.95 18.0 10 130 0.81 0.18 0.37 600N-1600E 0.26 0.018 0.50 2.44 25.5 10 100 0.30 0.37 0.15 600N-1650E 0.26 0.002 0.31 3.67 10.4 10 80 0.37 0.10 0.19 600N-1700E 0.22 <0.01 0.59 2.35 19.0 10 70 0.23 0.17 0.13	0.39 9.66 0.51 20.8 0.25 9.02	7.7 7.5	29 0.97
		11.9	33 1.54 34 1.01 42 1.56
600N-1800E 0.26 0.001 0.55 2.40 7.6 10 80 0.24 0.13 0.18 600N-950E 0.28 0.008 1.34 3.48 15.4 40 160 1.48 0.23 0.93	0.55 11.50 1.98 16.45 1.01 8.97 1.35 38.5 0.78 28.4	8.6 11.8 7.3 22.3 20.3	30 1.48 38 2.53 28 1.10 44 5.11 50 2.40
700N-1050E 0.30 0.002 0.63 2.14 17,9 10 90 0.24 0.23 0.19 700N-1100E 0.22 0.001 0.31 1.50 8.4 10 170 0.27 0.26 0.26 700N-150E 0.26 0.002 0.67 2.34 6.7 10 110 0.57 0.21 0.24 700N-1200E 0.32 <0.001	0.97 8.80 0.21 10.70 0.55 11.60 0.30 9.83 0.34 7.78	8.0 8.0 15.3 15.5 9.2	28 1.12 32 0.72 47 1.73 46 1.57 44 1.62
700N-1300E 0.32 <0.001 0.31 2.02 7.7 10 80 0.20 0.25 0.17 700N-1350E 0.34 0.002 0.57 1.76 12.9 10 100 0.23 0.26 0.16 700N-1400E 0.20 0.001 0.66 2.10 12.9 20 230 0.77 0.29 0.21 700N-1450E 0.30 0.003 1.10 4.02 15.9 10 170 0.88 0.27 0.17	0.24 8.91 0.27 8.97 0.54 21.4 0.65 20.4 0.85 9.39	6.1 9.4 54.4 11.7 13.8	28 1.01 27 1.27 34 1.97 41 1.29 37 1.72
700N-1600E 0.46 0.002 1.59 2.69 33.1 10 110 2.04 0.19 0.47 700N-1650E 0.22 0.013 1.80 3.88 31.5 10 170 1.62 0.20 1.14 700N-1700E 0.32 0.001 0.25 2.41 13.9 10 140 0.48 0.14 0.47 700N-1700E 0.32 0.001 0.71 2.83 12.4 10 120 0.74 0.11 1.22	0.82 29.5 2.27 44.3 6.61 13.45 4.61 22.2 0.63 8.65	9.3 23.2 16.6 19.5 8.2	25 3.36 50 4.12 40 3.46 42 3.32 30 1.79

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

			-			2 200 20	-				V. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ALCO STATES	n that so far	and the second second	A State State	
	Method	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43 Hf	AuME-TL43	AuME-TL43 In	AuME-TL43 K	AuME-TL43 La	AuME-TL43 Li	AuME-TL43 Mg	AuME-TL43 Mn	AuME-TL43 Mo	AuME-TL43 Na	AuME-TL43 Nb
	Analyte	Cu	Fe %	Ga	Ge	ppm	Hg	ppm	%	ppm	ppm	%	ppm	ppm	*	ppm
Sample Description	Units	ppm 0,2	0.01	ppm 0.05	ppm 0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01	0.05
00N-1400E		33.5	4,88	11,90	<0.05	<0.02	0.07	0.054	0.05	4.6	11.2	0.51	485	1.61	0.01	0.75
500N-1450E		25.0	5.41	14.10	<0.05	0.02	0.09	0.050	0.04	4.8	12.6	0.38	284	1.64	0.01	2.22
500N-1550E		410	3.64	11.25	0.05	0.03	0.14	0.062	0.05	15.8	24.5	0.48	332	1.94	0.01	1.68
00N-1600E		50.1	5.92	12.25	<0.05	<0.02	0.09	0.063	0.04	4.3	10.6	0.42	577	1.89	0.01	1.15
00N-1650E		36.4	5.23	10,75	<0.05	0.03	0.10	0,066	0.05	4.1	21.7	0,80	563	1,45	0.01	0.91
00N-1700E		25.3	6.50	13.20	<0.05	<0.02	0.07	0.063	0.05	4.1	18.5	0.44	524	2.75	0.01	1.72
00N-1750E		29.3	6.15	12.10	<0.05	< 0.02	0.08	0.073	0.05	4.4	35.4	0.77	593	2.00	0.01	1.19
500N-1800E		23.3	5.07	12.90	<0.05	<0.02	0.08	0.051	0.04	4.4	11.7	0.40	318	1.84	0.01	1.01
500N-950E		363	4.68	9.96	0.18	0.09	0.12	0.067	0.10	41.5	24.4	0.88	2370	51.0	0.02	0.37
700N-1000E	-	111.0	6.13	13.25	0.07	0.07	0.07	0.092	0.08	13.5	25.9	0.92	1770	27.1	0.01	1.78
00N-1050E		37.8	4.86	10.20	< 0.05	< 0.02	0.07	0.042	0.05	3.9	8.7 5.0	0.44	478 563	13.80 5.44	0.01	1.05
700N-1100E		21.5	5.42	13.80	< 0.05	<0.02	0.10	0.042	0.04	5.2			1700	2.44	0.01	0.91
700N-1150E		30.6	5.30	11.15	<0.05	< 0.02	0.07	0.052	0.04	4.6	14.1	0.56	704	1.66	0.01	1.64
700N-1200E 700N-1250E		27.6 23.7	5.31	12.90 12.65	<0.05	<0.02	0.05	0.052	0.05	4.9	10.0	0.03	394	1.63	0.01	1.75
		18.8	4.31	12.70	<0.05	<0.02	0.05	0.038	0.04	4.5	5.5	0.32	475	1.19	0.01	1,55
00N-1300E		24.5	4.94	11.20	<0.05	<0.02	0.05	0.042	0.04	4.5	7.4	0.42	701	1.27	0.01	0.59
700N-1350E		49.1	4.68	9.75	<0.05	<0.02	0,08	0.053	0.06	7.7	9.6	0.42	5640	1.52	0.01	0.30
700N-1400E 700N-1450E		83.2	5.25	13.00	<0.05	0.06	0.08	0.080	0.05	10.7	20.8	0.72	427	1.97	0.02	1.90
700N-1450E		28.2	4.82	9.99	<0.05	<0.02	0.08	0.049	0.05	4.6	9.7	0.43	3670	1.27	0.02	0.35
00N-1600E		118.5	2.71	9.15	0.12	0.04	0.15	0.063	0.04	41.5	31.7	0.34	306	2.36	0.02	0.76
700N-1650E		143.0	6.13	12.05	0.08	0.11	0.08	0.089	0.06	26.1	47.2	1.05	1760	4.67	0.02	1.65
00N-1700E		31.2	4.45	8.54	<0.05	< 0.02	0.04	0.056	0.04	5.0	30.7	0.86	2680	1.60	0.01	0.47
700N-1750E		45.6	4.58	8.00	<0.05	0.10	0.07	0.055	0.05	9.4	41.7	0.92	2470	1.70	0.02	0.85
700N-1800E		23.5	5.91	11.20	<0.05	< 0.02	0.08	0.059	0.04	4.0	10.7	0.39	563	2.12	0.01	1,12

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

Method Analyte Sample Description LOD	AuME-TL43							C	ERTIFIC	CATE O	F ANAL	YSIS	TR192	32976	-
	Ni ppm 0.2	AuME-TL43 P ppm 10	AuME-TL43 Pb ppm 0.2	AuME-TL43 Rb ppm 0.1	AuME-TL43 Re ppm 0.001	AuME-TL43 S % 0.01	AuME-TL43 Sh ppm 0.05	AuME-TL43 Sc ppm 0,1	AuME-TL43 Se ppm 0.2	AuME-TL43 Sn ppm 0.2	AuME-TL43 Sr ppm 0.2	AuME-TL43 Ta ppm 0.01	AuME-TL43 Te ppm 0.01	AuME-TL43 Th ppm 0.2	AuME-TL Ti % 0.005
600N-1400E	13.2	1030	16.1	6.5	<0.001	0.03	0.92	2.0	0.4	0.8	10.1	<0.01	0.05	<0.2	0.027
600N-1450E	11.5	1080	13.1	4.8	<0.001	0.03	0.83	4.2	0.4	0.9	9.5	<0.01	0.05	0.2	0.061
600N-1550E	17.6	810	15.9	4.5	0.002	0.07	1.15	2.1	1.8	0.9	16.3	0.01	0.06	<0.2	0.019
600N-1600E	12.9	860	17.3	3.8	<0.001	0.03	1.63	3.1	0.5	0.9	7.0	<0.01	0.14	<0.2	0.042
500N-1650E	22.8	780	11.6	5.3	<0.001	0.03	0.61	6.5	0.5	0.9	7.4	<0.01	0.06	0.3	0.060
500N-1700E	14.7	1870	17,3	5.6	<0.001	0.03	2.16	4.4	0.5	0.9	8.2	<0.01	0,07	0.3	0.050
500N-1750E	24.2	740	25,2	5.2	<0.001	0.03	1.15	4.4	0.7	0.8	12.3	<0.01	0.08	<0.2	0.042
500N-1800E	12.6	660	13,1	4.3	<0.001	0.04	0.61	1.9	0.5	0.9	10.0	<0.01	0.06	<0.2	0.025
500N-950E	27.2	2140	15,5	26.0	0.014	0.09	3.12	6.5	2.7	1.2	67.2	0.01	0.10	0.2	0.037
700N-1000E	28.7	1200	17,8	11.0	0.001	0.04	1.66	6.1	0.9	1.4	32.4	0.01	0.11	0.3	0.023
700N-1050E	13.9	720	17.2	6.2	<0.001	0.05	1.30	2.3	0.3	0.7	11.6	<0.01	0.11	<0.2	0.045
700N-1100E	11.9	1380	11,7	4.8	<0.001	0.03	0.61	3.7	0.3	1.9	11.7	<0.01	0.08	0.2	0.095
700N-1150E	18.1	700	10.8	6.9	<0.001	0.03	0.68	5.0	0.4	0.8	10.1	<0.01	0.07	0.2	0.081
700N-1200E	17.0	1250	10.2	5.8	<0.001	0.03	0.76	6.3	0.3	1.1	7.8	<0.01	0.05	0.4	0.095
700N-1250E	16.0	1130	12,9	5.3	<0.001	0.03	0.65	6.0	0.5	1.0	6.5	<0.01	0.05	0.4	0.086
700N-1300E 700N-1350E 700N-1400E 700N-1450E 700N-1500E	10,2 12,0 17,3 22,2 15,1	830 950 1350 820 1560	11,4 13.5 17.7 24,2 18.7	4.4 6.3 10.1 4.3 7.2	<0.001 <0.001 <0.001 0.001 <0.001	0.04 0.03 0.06 0.05 0.04	0.59 0.74 1.16 0.55 1.10	2.1 1.9 1.9 4.9 2.8	0.3 0.3 0.6 0.6 0.5	1.2 0.9 1.0 1.1 0.7	8.4 10.5 19.9 18.4 9.2	<0.01 <0.01 <0.01 <0.01 <0.01	0.04 0.03 0.06 0.04 0.11	<0.2 <0.2 <0.2 0.2 <0.2 <0.2	0.049 0.040 0.027 0.020 0.042
700N-1600E	14.7	750	19.6	5.0	0.001	0.07	1.58	3.1	1.4	0.8	22.9	0.01	0.07	<0.2	0.012
700N-1650E	40.6	1350	19.5	6.1	0.004	0.08	2.62	7.8	2.1	1.0	35.2	0.01	0.08	0.4	0.040
700N-1700E	24.2	760	18.9	6.9	0.001	0.03	1.42	7.1	0.8	0.6	16.9	<0.01	0.07	0.3	0.066
700N-1750E	32.9	1250	15.2	6.4	0.001	0.08	1.98	6.6	2.1	0.7	35.3	0.01	0.04	0.3	0.045
700N-1800E	12.6	1270	28.6	4.2	<0.001	0.04	2.01	2.6	0.6	0.8	6.8	<0.01	0.14	<0.2	0.032

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

					AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	
	alyte	AuME-TL43 TI	AuME-TL43 U	AUME-IL45	W W	Y	Zn	Zr	
11	Inits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
	OD	0.02	0.05	1	0.05	0.05	2	0.5	
00N-1400E		0.08	0.33	130	0,09	2.78	109	0.5	
00N-1450E		0.07	0.36	128	0.11	3.14	90	0.8	
00N-1550E		0.08	1.21	83	0.08	19.50	206	0.5	
00N-1600E		0.09	0.30	134	0.07	3.17	77	<0.5	
00N-1650E		0.13	0.33	116	0.08	3.88	129		
00N-1700E		0.13	0.26	129	0.10	2.87	268	0.7	
00N-1750E		0.14	0.32	119	0.07	4.38	653	<0.5	
00N-1800E		0.11	0.31	126	0.07	3.01	108	<0.5	
00N-950E		0.47	8.03	109	0.16	72.9	230 227	0.8	
00N-1000E		0.21	2.03	123	0.17	16.35			
00N-1050E		0.09	0.35	122	0.08	2.75	90	<0.5	
00N-1100E		0.10	0.29	163	0.17	2.22	71	0.8 <0.5	
00N-1150E		0.10	0.65	134 137	0.08	3.54	80	0.6	
00N-1200E	_	0.11	0.34	137	0.08	2.39	83	0.9	
00N-1250E				138	0.06	1.94	57	<0,5	
00N-1300E		0.12	0.24	144	0.05	2.93	95	<0.5	
00N-1350E 00N-1400E		0.24	0.76	120	0,08	8.28	133	<0.5	
00N-1450E		0.11	1.03	116	0,07	15.55	175	1.5	
00N-1500E		0.20	0.28	131	0.05	3.11	120	<0.5	
00N-1600E		0.12	2.51	57	0.08	120.0	208	<0.5	
00N-1650E		0.13	2.27	114	0.08	41.3	859	2.7	
00N-1700E		0.17	0.33	102	0.06	6.93	1050	0.5	
00N-1750E		0.15	0.48	94	0.06	22.6	1720	2.5	
00N-1800E		0.12	0.29	135	0.09	2.88	122	<0.5	
		0.12	0.29	135	0.09	2.88	122	<0.5	

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-OCT-2019 Account: RENGEO

Project: TRAIL PEAK

CERTIFICATE OF ANALYSIS TR19232976

	CERTIFICATE COMM	IENTS	
Processed at ALS Vancouver AuME-TL43 WEI-21	SCR-41		
	AuME-TL43	LABORAT Processed at ALS Vancouver located at 2103 Dollarton Hwy, North AuME-TL43 DISP-01	CERTIFICATE COMMENTS LaBORATORY ADDRESSEs Aume-TL43 DISP-01 VEI-21

CERTIFICATE TR19235917

Project: Trail Peak

This report is for 7 Rock samples submitted to our lab in Terrace, BC, Canada on 20-SEP-2019.

The following have access to data associated with this certificate:

To: RENAISSANCE GEOSCIENCE
680 DAIRY RD
KAMLOOPS BC V2B 8N5
KAMLOUPS BC V2B 8NS

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
DISP-01	Disposal of all sample fractions	
CRU-QC	Crushing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	
ME-MS41	Ultra Trace Aqua Regia ICP-MS	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

ALS	·								C	ERTIFI	CATE O	F ANA	LYSIS	TR192	35917	-
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0,001	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0,01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0,1	ME-MS4 Cr ppm 1
115171851 115171852 115171853 115171855 115171855 115171856		0.74 0.76 1.00 Not Recvd 0.92	1.350 0.013 0.600 0.010	0.63 0.24 1.24 0.29	0.43 2.47 0.70 2.30	12.2 1.9 7.7 27.6	1.54 <0.02 0.33 <0.02	<10 10 <10 <10	20 30 50 70	0.14 0.14 0.17 0.27	0.43 0.15 0.67 0.79	0.72 1.42 0.66 0.35	0.10 0.16 0.22 0.14	14.35 45.6 21.4 16.65	1.9 4.0 3.6 11.8	23 53 44 12
115171857 115171858		0.42 0.68	0.002	0.14	2.09 0.17	35.8 8.4	<0.02 <0.02	<10 90	120 10	0.30 0.17	0.26	0.83	0.26	16.50 3.05	16.6 0.3	31 4

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: Trail Peak

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

(ALS)										CERTIFICATE OF ANALYSIS					TR19235917		
Sample Description	Method Analyte Units LOD	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0,01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0,2	ME-MS41 U ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01	
115171851 115171852 115171853 115171855 115171855		0.17 0.64 0.46	1550 271 3270 94.5	1.24 0.59 1.91 5.20	1.62 2.46 3.21 10.60	0.05 <0.05 <0.05 0.08	0.13 0.08 0.11 0.14	<0.01 <0.01 <0.01 <0.01	0.093 0.020 0.025 0.043	0.03 0.23 0.14 0.22	7.2 26.8 10.8 6.4	2.3 5.1 3.6 17.6	0.16 0.27 0.33 1.99	262 259 244 887	4.43 3.35 10.05 3.34	0.09 0.14 0.09 0.06	
115171857 115171858		1.58 0.12	56.2 8.5	4.32 0.32	8.00 0.34	0.09 <0.05	0.19 0.03	<0.01 0.01	0.036 0.005	0.48 0.02	7.5 1.3	20.6 0.3	2.00 0.03	909 46	2.46 1.75	0.10 0.07	

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: Trail Peak

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

(ALS)	·								C	ERTIFI	CATE O	F ANA	LYSIS	TR192	235917	
Sample Description	Method Analyte Units LOD	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0,05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0,2	ME-MS41 Ta ppm 0,01	ME-MS41 Te ppm 0.01	ME-MS4 Th ppm 0.2
115171851 115171852 115171853 115171855		0.49 0.05 0.34	7.2 9.8 18.0	1730 90 1520	10.7 9.0 6.2	1.1 4.9 9.3	0.002 0.001 0.020	0.04 0.02 0.03	2.00 1.44 1.60	1.2 2.9 1.3	1.1 <0.2 0.6	1.4 0.3 0.6	37.5 52.4 44.7	<0.01 <0.01 <0.01	0.13 0.02 0.12	3,8 2.6 5,0
115171856 115171857 115171858		0.06 0.15 <0.05	15.9 24.4 0.5	1280 1780 50	3.5 5.2 20.2	11.1 30.6 0.8	0.001 0.001 0.001	1.11 0.39 0.03	1.28 1.74 3.63	8.6 9.6 0.3	1.2 0.4 0.7	0.5 0.9 <0.2	13.2 28.9 4.2	<0.01 <0.01 <0.01	0.47 0.04 0.29	3.0 4.5 1.3

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

Project: Trail Peak

	10,122.01	000000000	AND IN ALCOME.							
Method Analyte Units LOD	ME-MS41 TI % 0.005	ME-MS41 TI ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS4T Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5		
	0.134 0.030 0.123	0.04 0.08 0.05	1.19 0.98 0.77	57 26 66	0.49 0.14 0.55	7.41 3.93 7.27	53 39 52	2.9 2.9 3.1		
	0.101	0.14	1.01	165	0.14	11.00	113	3.8		
	0.181 0.008	0.23 0.02	0.75 0.24	121 3	0.22 0.05	10.80 1.24	134 12	4.9 1.0		
	Analyte Units	Analyte Ti Units % LOD 0.005 0.134 0.300 0.123 0.101 0.181	Analyte TI TI Units % ppm LOD 0.005 0.02 0.134 0.04 0.030 0.123 0.05 0.05 0.101 0.14 0.181	Analyte Units Ti % Ti ppm U LOD 0.005 0.02 0.05 0.134 0.04 1.19 0.030 0.08 0.98 0.123 0.05 0.77 0.101 0.14 1.01	Analyte Units Ti % Ti ppm U V LOD 0.005 0.02 0.05 1 0.0134 0.04 1.19 57 0.030 0.08 0.98 26 0.123 0.05 0.77 66 0.101 0.14 1.01 165 0.181 0.23 0.75 121	Analyte Units Ti % Ti ppm U V W LOD 0.005 0.02 0.05 1 0.05 0.0134 0.04 1.19 57 0.49 0.030 0.08 0.98 26 0.14 0.123 0.05 0.77 66 0.55 0.101 0.14 1.01 165 0.14	Analyte Units Ti % Ti ppm U ppm V ppm W ppm Y ppm Ppm ppm 0.005 0.005 0.05 1 0.05 0.05 0.134 0.04 1.19 57 0.49 7.41 0.030 0.08 0.98 26 0.14 3.93 0.123 0.05 0.77 66 0.55 7.27 0.101 0.14 1.01 165 0.14 11.00 0.181 0.23 0.75 121 0.22 10.80	Analyte Units Ti % Ti ppm U ppm V ppm W ppm Y ppm ppm ppm ppm pm p	Analyte Units Ti N Ti pp Ti pp U V W Y Zn Zr Units N ppm pm ppm </td <td>Analyte Units Ti % Ti ppm Ti ppm V W Y Zn Zr Units % ppm ppm</td>	Analyte Units Ti % Ti ppm Ti ppm V W Y Zn Zr Units % ppm ppm

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25-OCT-2019 Account: RENGEO

Project: Trail Peak

CERTIFICATE OF ANALYSIS TR19235917

		CERTIFICATE COM	MMENTS	
		ANALY	TICAL COMMENTS	
Applies to Method:	Gold determinations by th ME-MS41	is method are semi-quantitative due	to the small sample weight used (0.5g)	L.
		LABOR	ATORY ADDRESSES	
	Processed at ALS Vancouv	er located at 2103 Dollarton Hwy, N	orth Vancouver, BC, Canada.	
Applies to Method:	Au-ICP21	CRU-31	CRU-QC	DISP-01
	LOG-22	ME-MS41	PUL-31	SPL-21
	WEI-21			

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO

QC CERTIFICATE TR19232974

Project: TRAIL PEAK

This report is for 2 Sediment samples submitted to our lab in Terrace, BC, Canada on 16-SEP-2019.

The following have access to data associated with this certificate: RICHARD BILLINGSLEY LEOPOLD LINDINGER

ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
DRY-22	Drying - Maximum Temp 60C
SCR-41	Screen to -180um and save both
DISP-01	Disposal of all sample fractions

	ANALT TICAL PROCEDURES	
ALS CODE	DESCRIPTION	
AuME-TL43	25g Trace Au + Multi Element PKG	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Saa Traxler, General Manager, North Vancouver

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO

Sample Description	Method	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL4
ample Description	Analyte	Au	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units LOD	ppm 0.001	0.01	% 0.01	ppm 0.1	ppm 10	ppm 10	0.05	0.01	% 0.01	ppm 0.01	ppm 0.02	ppm 0,1	ppm 1	ppm 0.05	ppm 0.2
							STAN	DARDS		1.00						
OREAS 905	-	0.410	0.53	0.73	35.6	10	230	1.00	5.82	0.32	0.35	73.6	14.5	17	1.04	1560
Target Range - Lower Bo Upper Bo		0.331 0.451	0.45	0.67 0.84	29.9 36.7	<10	190	0.78	4.97	0.27	0.30	68.2	12.4	15	1.02	1450
OREAS-45e	sound	0.044	0.26	3.22	13.4	20	280 140	1.08	6.10 0.22	0.35	0.38	83.4 17.30	15.4 51.1	20 778	1.36	1670 791
Target Range - Lower Bo	ound	0.042	0.21	2,98	11.2	<10	110	0.29	0.19	<0.01	<0.01	15.90	46.7	763	0.62	659
Upper Bo	Bound	0.059	0.28	3.66	13.9	20	170	0.53	0.25	0.05	0.04	19.50	57.3	935	0,83	759
							BLA	ANKS								
BLANK		<0.001	<0.01	<0.01	<0.1	10	<10	<0.05	<0.01	<0.01	< 0.01	<0.02	<0.1	<1	<0.05	<0.2
Farget Range - Lower Bo		<0.001	<0.01	<0.01	<0.1	<10	<10	<0.05	<0.01	<0.01	< 0.01	<0.02	<0.1	<1	<0.05	<0.2
Upper Bo	sound	0.002	0.02	0.02	0.2	20	20	0.10	0.02	0.02	0.02	0.04	0.2	2	0,10	0,4
							DUPL	ICATES								
SCS-006		0.006	2.08	0.67	2.2	<10	180	0.20	6.08	0.17	0.88	12.40	2.8	1	0.60	85.9
DUP Farget Range - Lower Bo	ound	0.003	2.14	0.64	2.3	<10 <10	180	0.20	6.16	0.16	0.90	11.70	2.7	1	0.57	84.7
Upper Bo		0.006	2.23	0.70	2.5	20	200	0.14	5.80 6.44	0.15	0.84	11.45 12.65	2,5 3.0	<1 2	0.51 0.66	82.1 88.5

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO

A	lethod AuME-TL43							QC	CERTI	FICATE	OF AN	ALYSIS	TR1	923297	4
	nalyte Fe Units % LOD 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0.05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0,01	AuME-TL43 La ppm 0.2	AuME-TL43 Li ppm 0.1	AuME-TL43 Mg % 0.01	AuME-TL43 Mn ppm S	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01	AuME-TL43 Nb ppm 0.05	AuME-TL43 Ni ppm 0.2
						STAN	DARDS								
DREAS 905 arget Range - Lower Bou		5.65 5.37	0.09 <0.05	0.48 0.38	0.02 <0.01	0.595 0.517	0.29	36.4 33.9	4.1 4.0	0.14 0.11	323 289	3.03 2.65	0.09	0.10	8.8 7.8
Upper Bou DREAS-45e arget Range - Lower Bou	25.8 20.4	6.67 13.75 11.20	0.19 0.18 0.24	0.50 0.54 0.68	0.04 0.01 <0.01	0.643 0.090 0.076	0.32 0.06 0.03	41.9 6.6 5.7	5.1 2.2 2.2 2.9	0.17 0.08 0.07 0.12	365 279 324 408	3.35 1.91 1.59 2.05	0.11 0.03 <0.01 0.05	0.21 0.06 0.11 0.33	10.0 404 321 393
Upper Bot	und 25.0	13.80	0.48	0.88	0.03	0.105	0.08 ANKS	7.4	2.8	0.12	400	2.00	0.05	0.33	393
BLANK Farget Range - Lower Bou Upper Bou		<0.05 <0.05 0.10	<0.05 <0.05 0.10	<0.02 <0.02 0.04	<0.01 <0.01 0.02	<0.005 <0.005 0.010	<0.01 <0.01 0.02	<0.2 <0.2 0.4	<0.1 <0.1 0.2	<0.01 <0.01 0.02	<5 <5 10	<0.05 <0.05 0.10	<0.01 <0.01 0.02	<0.05 <0.05 0.10	<0.2 <0.2 0.4
						DUPL	ICATES								
Target Range - Lower Bou		3.95 3.78 3.62	0.05 0.05 <0.05	<0.02 <0.02 <0.02	0.03 0.03 0.02	0.194 0.199 0.182	0.12 0.11 0.10	6.7 6.4 6.0 7.1	6.9 6.6 6.3	0.41 0.39 0.37	295 288 272	137.0 138.0 130.5	0.01 0.01 <0.01	0.32 0.31 0.25 0.38	0.8 0.8 0.6 1.0
SCS-006 DUP Target Range - Lower Bou Upper Bou	2.78 2,64	3.78	0.05	<0.02	0.03	0.199	0.11	6.4	6.6	0.39	288	138.0	0.01	0.31	

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO

AuME-TL43 AuME-TL Ti Ti X ppm 0.005 0.02 0.015 0.09 <0.005 0.05 0.026 0.15 0.075 0.05 0.075 0.05 0.090 <0.02 0.122 0.10
<0.005 0.05 0.026 0.15 0.075 0.05 0.090 <0.02
<0.005 0.05 0.026 0.15 0.075 0.05 0.090 <0.02
0,122 0.10
<0.005 <0.02 <0.005 <0.02 0.010 0.04
0.052 0.06 0.048 0.05
0.043 0.03 0.058 0.08
0.052 0.048 0.043

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 4-OCT-2019 Account: RENGEO

Project: TRAIL PEAK Г

Method Analyte Units LOD AuME-TL43 U AuME-TL43 V AuME-TL43 W AuME-TL43 V AuME-TL43	Method Analyte Dtlon AuME-TL43 U AuME-TL43 V AuME-TL43 W AuME-TL43 V AuME-TL43 V </th <th>(ALS)</th> <th>)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>FIOJECT.</th> <th>TRAIL PEAK</th> <th></th>	(ALS))							FIOJECT.	TRAIL PEAK	
Method Units LOD V V V V Zr Zr Sample Description Units LOD 0.05 1 0.05 0.05 2 0.5 OREAS 905 2.14 5 0.53 6.29 9 23.0 Target Range - Lower Bound Upper Bound 1.83 3 0.40 5.85 53 16.8 OREAS 905 1.62 270 <0.05 9.9 23.0 16.8 OREAS 45e 1.62 270 <0.05 9.9 23.1 16.8 Target Range - Lower Bound Upper Bound 1.84 317 0.21 6.13 38 32.6 BLANK <0.05 <1<<<0.05 <0.05 <2 <0.5 <0.5 Target Range - Lower Bound Upper Bound 0.10 2 0.10 4 1.0 BLANK <0.05 <1<<<0.05 <0.05 <2 <0.5 Greet Range - Lower Bound Upper Bound 0.10 2 0.10 4 1.0	Method Analyse U V W Y Zn Zr ppm	(ALS,	,								QC CERTIFICATE OF ANALYSIS	TR19232974
Analyte Units U V W Y Zn Zr Sample Description Units LOD 0.05 1 0.05 20.5 OREAS 905 2.14 5 0.53 6.29 59 23.0 Target Range - Lower Bound Upper Bound 1.83 3 0.40 5.85 53 16.8 0REAS 905 2.14 5 0.53 6.29 59 23.0 Target Range - Lower Bound Upper Bound 1.82 2.70 <0.05 5.93 25 23.1 Target Range - Lower Bound Upper Bound 1.84 317 0.21 6.13 38 32.6 BLANK <0.05 <1< <0.05 <22 <0.5 <0.5 <2 <0.5 Target Range - Lower Bound Upper Bound 0.10 2 0.10 <4 1.0 SCS-006 1.89 28 5.02 1.37 134 <0.5 <0.5 DUP 1.73 27 4.98 1.2	Method ppm U V W Y Zn Zr Dation Units LOD ppm		Mathod	AuME-TL43	AuME-TL43	AuME-TL43	AuME-TL43					
Sample Description Units LOD ppm 0.05 ppm 1 ppm 0.05 ppm 0.05 ppm 0.05 ppm 0.05 ppm 0.05 ppm 0.05	Dation Units LOD ppm 0.05 ppm 1 ppm 0.05 ppm 2 ppm 2 ppm 0.5 Lower Bound 1.83 3 0.40 5.85 53 16.8 Upper Bound 1.83 3 0.40 5.85 53 16.8 Upper Bound 1.62 270 <0.05 4.93 27 23.2 Lower Bound 1.84 317 0.21 6.13 38 32.6 Lower Bound 0.10 2 0.05 <2 <0.5 Upper Bound 1.84 317 0.21 6.13 38 32.6 Lower Bound 0.10 2 0.10 0.10 4 1.0 Upper Bound 1.84 317 0.21 6.13 38 32.6 Lower Bound 0.10 2 0.10 0.10 4 1.0 Upper Bound 1.27 4.98 1.34 130 <0.5 Lower Bound 1.57 25 4.58 <td< th=""><th></th><th></th><th></th><th></th><th>w</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>					w						
LOD LOD LOD STANDARDS OREAS 905 2.14 5 0.53 6.29 59 23.0 Target Range - Lower Bound 1.83 3 0.40 5.85 53 16.8 OREAS 905 2.14 5 0.53 6.29 59 23.0 Target Range - Lower Bound 1.83 3 0.40 5.85 53 16.8 OREAS-45e 1.62 270 <0.05 5.93 25 23.1 Target Range - Lower Bound 1.41 257 <0.05 4.83 27 23.2 BLANK 317 0.21 6.13 38 32.6 BLANK <0.05 <1 <0.05 <2 <0.5 Target Range - Lower Bound 0.10 2 0.10 0.10 4 1.0 Upper Bound 0.10 2 1.37 134 <0.5 SCS-006 1.69 28 5.02 1.37 134	Lower Bound 2.14 5 0.53 6.29 59 23.0 Lower Bound 1.83 3 0.40 5.85 53 16.8 Upper Bound 2.35 8 0.72 7.27 69 23.9 1.62 270 <0.05 5.93 25 23.1 Lower Bound 1.41 257 <0.05 4.93 27 23.2 Upper Bound 1.84 317 0.21 6.13 38 32.6 Lower Bound 1.84 317 0.21 6.13 38 32.6 Lower Bound 0.10 2 0.10 0.10 4 1.0 Upper Bound 0.10 2 0.10 0.10 4 1.0 Lower Bound 0.10 2 0.10 0.10 4 0.5 Lower Bound 1.57 2.5 1.37 134 <0.5 Lower Bound 1.57 2.5 4.58 1.24 123 <0.5<		Units									
OREAS 905 2.14 5 0.53 6.29 59 23.0 Target Range - Lower Bound Upper Bound 1.83 3 0.40 5.85 53 16.8 OREAS-45e 1.82 270 <0.05 5.93 25 23.1 Target Range - Lower Bound Upper Bound 1.41 257 <0.05 5.93 27 23.2 BLANK <0.05 <1 <0.015 <0.05 <2 <0.5 Target Range - Lower Bound Upper Bound 1.84 317 0.21 6.13 38 32.6 BLANK <0.05 <1 <0.05 <0.05 <2 <0.5 Target Range - Lower Bound Upper Bound 1.84 317 0.21 6.13 38 32.6 BLANK <0.05 <1 <0.05 <0.05 <2 <0.5 <0.5 <0.5 Target Range - Lower Bound 0.10 0.10 4 1.0 DUPLICATES SCS-006 1.69 28 5.02 1.37 134	Lower Bound 2.14 5 0.53 6.29 59 23.0 Upper Bound 1.83 3 0.40 5.85 53 16.8 Upper Bound 2.35 8 0.72 7.27 69 23.9 1.62 270 <0.05	Sample Description	LOD	0.05	1	0.05	0.05	2	0.5			
Check 303 Check 303 <thcheck 303<="" th=""> <thcheck 303<="" th=""> <thc< td=""><td>Lower Bound Upper Bound 1.83 2.35 1.62 2.77 4.05 1.62 2.77 4.93 1.63 1.64 2.35 1.62 2.7 4.93 2.7 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.4 2.5 2.1 2.5 2.1 2.5 2.1 2.5 2.1 2.5 2.5 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>STAND</td><td>ARDS</td><td></td><td></td></thc<></thcheck></thcheck>	Lower Bound Upper Bound 1.83 2.35 1.62 2.77 4.05 1.62 2.77 4.93 1.63 1.64 2.35 1.62 2.7 4.93 2.7 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.4 2.5 2.1 2.5 2.1 2.5 2.1 2.5 2.1 2.5 2.5 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5								STAND	ARDS		
Bilder Lower Bound 2.35 8 0.72 7.27 69 23.9 OREAS-45e 1.62 270 <0.05	Lower Bound 2.35 8 0.72 7.27 69 23.9 Upper Bound 1.62 270 <0.05	OREAS 905										
OREAS-45e 1.62 270 <0.05 5.93 25 23.1 Target Range - Lower Bound Upper Bound 1.41 257 <0.05 4.93 27 23.2 BLANK BLANKS BLANKS BLANK <0.05 <1 <0.05 <0.05 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Upper Bound 1.62 270 <0.05	Target Range - Lower	Bound									
CRCASH 36 Concernment Target Range - Lower Bound 1.41 1.44 317 0.21 6.13 38 32.6 BLANKS 8LANK <0.05	Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound 1.89 28 5.02 1.37 134 <0.5 1.69 28 5.02 1.37 134 <0.5 1.73 27 4.99 1.34 130 <0.5 Lower Bound 1.57 25 4.58 1.24 123 <0.5		r Bound									
BLANK BLANK <0.05	Cover Bound 1.84 317 0.21 6.13 38 32.6 BLANKS <0.05				270							
Opper Bound Iter Iter Iter BLANK <0.05	Cover Bound CO.05 <1 <0.05 <2 <0.5 Lower Bound 0.05 <1	Target Range - Lower	Bound		257							
BLANK <0.05 <1 <0.05 <2 <0.5 Target Range - Lower Bound <0.05 <1 <0.05 <2 <0.5 Upper Bound 0.10 2 0.10 0.10 4 1.0 SCS-006 1.89 28 5.02 1.37 134 <0.5 DUP 1.73 27 4.99 1.34 130 <0.5 Target Range - Lower Bound 1.57 25 4.58 1.24 123 <0.5	cover Bound c0.05 <1 <0.05 <2 <0.5 c0.05 <1	Upper	r Bound	1.04	317	0.41	0,10			and the second		
BLANK Co.05 <1 <0.05 <2 <0.5 Target Range - Lower Bound 0.05 <1 <0.05 <2 <0.5 Upper Bound 0.10 2 0.10 0.10 4 1.0 DUP 1.69 28 5.02 1.37 134 <0.5 DUP 1.73 27 4.99 1.34 130 <0.5 Target Range - Lower Bound 1.57 25 4.58 1.24 123 <0.5	Lower Bound 0.05 <1 <0.05 <2 <0.5 Upper Bound 0.10 2 0.10 0.10 4 1.0 DUPLICATES 1.69 28 5.02 1.37 134 <0.5								and the second	IKS		
Target Range - Lower Bound Upper Bound <0.05 <1 <0.05 <2 <0.5 0.10 2 0.10 0.10 4 1.0 DUPLICATES SCS-006 1.69 28 5.02 1.37 134 <0.5	Upper Bound 0.10 2 0.10 0.10 4 1.0 DUPLICATES 1.69 28 5.02 1.37 134 <0.5	BLANK		<0.05	<1							
Upper Bound 0.10 2 0.10 0.10 4 1.0 DUPLICATES SCS-006 1.69 28 5.02 1.37 134 <0.5	Upper Bound 0.10 2 0.10 0.10 4 1.0 DUPLICATES 1.69 28 5.02 1.37 134 <0.5 1.73 27 4.99 1.34 130 <0.5 Lower Bound 1.57 25 4.58 1.24 123 <0.5	Target Range - Lower	Bound									
SCS-006 1.69 28 5.02 1.37 134 <0.5 DUP 1.73 27 4.99 1.34 130 <0.5	1.69 28 5.02 1.37 134 <0.5 1.73 27 4.99 1.34 130 <0.5	Upper	r Bound	0.10	2	0.10	0.10	4	1.0			
SLS-000 1.73 27 4.99 1.34 130 <0.5 DUP 1.73 27 4.99 1.24 123 <0.5	Lower Bound 1.57 25 4.58 1.24 123 <0.5								DUPLIC	ATES		
Scyolo 1.73 27 4.99 1.34 130 <0.5 DUP 1.73 25 4.58 1.24 123 <0.5	Lower Bound 1.57 25 4.58 1.24 123 <0.5	CCC 005		1.60	28	5.02	1.37	134	<0.5			
Target Range - Lower Bound 1.57 25 4.58 1.24 123 <0.5	Lower Bound 1.57 25 4.58 1.24 123 <0.5				27							
		Target Pange - Lower	Round		25			123				
SM Second Se		Upper	r Bound			5.43	1.47	141	1.0			

A	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry	680 D	NSSANCE GEOSCIENCE DAIRY RD LOOPS BC V2B 8N5	Page: Appendi Total # Appendix Pages Finalized Date: 4-0CT-20 Account: RENG
LS)		Projec	CT: TRAIL PEAK	LYSIS TR19232974
	CERT	IFICATE COMM		
Applies to Method:	Processed at ALS Vancouver located at 2103 AuME-TL43 DISP-C SCR-41 WEI-2	Dollarton Hwy, North 1	ORY ADDRESSES Vancouver, BC, Canada. DRY-22	LOG-22

QC CERTIFICATE TR19232976

Project: TRAIL PEAK

This report is for 65 Soil samples submitted to our lab in Terrace, BC, Canada on 16-SEP-2019.

The following have access to data associated with this certificate: RICHARD BILLINGSLEY LEOPOLD LINDINGER

To: RENAISSANCE GEOSCIENCE
680 DAIRY RD
KAMLOOPS BC V2B 8N5

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

SAMPLE PREPARATION ALS CODE DESCRIPTION WEI-21 Received Sample Weight LOG-22 Sample login - Rcd w/o BarCode SCR-41 Screen to -180um and save both DISP-01 Disposal of all sample fractions

1 million and the	ANALYTICAL PROCEDURES	-
ALS CODE	DESCRIPTION	
AuME-TL43	25g Trace Au + Multi Element PKG	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Saa Traxler, General Manager, North Vancouver

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

(ALS)	-								QC	CERTI	FICATE	OF AN	ALYSIS	TR19	923297	' 6
Sample Description	Method Analyte Units LOD	AuME-TL43 Au ppm 0.001	AuME-TL43 Ag ppm 0.01	AuME-TL43 Al % 0.01	AuME-TL43 As ppm 0,1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0.01	AuME-TL43 Ca % 0.01	AuME-TL43 Cd ppm 0.01	AuME-TL43 Ce ppm 0.02	AuME-TL43 Co ppm 0,1	AuME-TL43 Cr ppm 1	AuME-TL43 Cs ppm 0.05	AuME-TL4 Cu ppm 0.2
							STAN	DARDS								
MRGeo08		0.005	4.54	2.66	35.0	10	160	0.82	0.70	1.01	2.27	69.7	20.1	89	10.45	670
Target Range - Lower I	Bound	0.002	4.00	2.23	29.6	<10	100	0.67	0.58	0.86	2.01	66.2	17.0	79	9.45	587
Upper	Bound	0.006	4.92	2.75	36.4	30	160	0.95	0.73	1.08	2.47	81.0	21.0	98	11.65	675
OREAS 252		0.649	0,19	1.58	16.7	10	70	0.71	0.11	0.96	0.18	37.8	33.4	57	0.68	51.2
Target Range - Lower i		0.564	0.16	1.48	14,4	<10	40	0.57	0.08	0.89	0.15	36.0	29.5	52	0.57	47.3
	Bound	0.766	0.22	1.83	17.8	30	100	0.84	0.14	1.11	0.21	44.0	36.3	66	0.85	64.9
OREAS 905		0.443	0.53	0.69	36.7	10	220	0.97	5.91	0.31	0.36	75.2 69.1	14.2	16 16	1.02	1525 1535
OREAS 905	Cound .	0.384	0.52	0.71	34.5 29.9	10	220	1.04	5.91 4.97	0.32	0.32	69.1	14.2	16	1.05	1535
Target Range - Lower	Bound	0.331 0.451	0.45	0.84	36.7	20	280	1.08	6,10	0.35	0.38	83.4	15.4	20	1.36	1670
OREAS-45e	Bound	0.050	0.26	3,09	13,1	10	140	0.50	0.21	0.03	0.02	16,95	50,4	760	0,59	766
OREAS-45e		0.043	0.26	3.18	13.5	10	140	0.50	0.25	0.03	0.02	16,10	51.6	761	0.64	742
Target Range - Lower	Bound	0.042	0.21	2.98	11.2	<10	110	0.29	0,19	< 0.01	<0.01	15,90	46.7	763	0.56	659
	Bound	0.059	0.28	3.66	13.9	20	170	0.53	0.25	0.05	0.04	19.50	57.3	935	0.83	759
							BL	ANKS								
BLANK		<0.001	<0.01	<0.01	<0.1	10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<0.1	<1	<0.05	<0.2
BLANK		<0.001	<0.01	<0.01	<0.1	10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<0.1	<1	<0.05	<0.2
BLANK		<0.001	<0.01	<0.01	<0.1	10	<10	<0.05	<0.01	<0.01	<0.01	<0.02	<0.1	<1	< 0.05	<0.2
Target Range - Lower	Bound	< 0.001	<0.01	<0.01	<0.1	<10	<10	<0.05	<0.01	< 0.01	<0.01	<0.02	<0.1	<1	<0.05	<0.2
	Bound	0.002	0,02	0.02	0.2	20	20	0.10	0.02	0.02	0.02	0.04	0.2	2	0.10	0.4
							DUPL	ICATES								
10500N-300W		0.001	0.40	1.59	9.6	10	160	0.22	0.23	0.12	0.36	10.20	5.6	17	0.66	12.2
DUP		<0.001	0.39	1.48	9.0	10	150	0.20	0.22	0.11	0.35	9.53	5.2	16	0.61	11.1
Target Range - Lower	Bound	<0.001	0.37	1,45	8,7	<10	130	0.15	0.20	0.10	0.33	9.35	5.0	15	0.55	11.0
	Bound	0.002	0.42	1.62	9,9	20	180	0.27	0.25	0.13	0.38	10.40	5.8	18	0.72	12.3
700N-1600E		0.002	1.59	2.69	33.1	10	110	2.04	0.19	0.47	0.82	29.5	9.3	25	3.36	118.5
DUP		0.002	1.60	2.54	32.2	10	110	1.90	0.20	0.46	0.80	29.0	8.7	24	3.12	116.5
Target Range - Lower		< 0.001	1.51	2.47	30.9	<10	90	1.82	0.18	0.43	0.76	27.8	8.5	22	3.03	113.0
Unner	Bound	0.003	1.68	2.76	34.4	-20	130	2.12	0.21	0.50	0.86	30.7	9.6	27	3.45	122.0

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

							QC	CERTI	ICATE	OF AN	ALYSIS	TRIS	923297	6
AuME-TL43 Fe % 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0,05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0.01	AuME-TL43 La ppm 0.2	AuME-TL43 U ppm 0,1	AuME-TL43 Mg % 0.01	AuME-TL43 Mn ppm S	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01	AuME-TL43 Nb ppm 0.05	AuME-TL4 Ni ppm 0.2
					STAN	DARDS								
3.78	9.59	0.10	0.50	0.06	0.151	1.30	34.3	34.7	1.19	385	14.80	0.33	0.27	745
	8.73	<0.05	0.41	0.03	0.137	1.12	32.4	29.1	1.01	336	13.05	0.27	0.22	622
	10.80	0.24	0.55	0.09	0.179	1.40	40.0	35.7	1.25	422	16.10	0.35	0.46	761
4.90	4.96	0.06	0.02	0.02	0.027	0.13	16.3	6.6	1.66	486	1.56	0.25	0.09	123.5
4.41	4.62	<0.05	<0.02	<0.01	0.017	0.11	15.4	5,6						111.0
5.41	5.76	0.17	0.06	0.04	0.039	0.17	19.2	7.0	1.85					136.0
3.37	5.93	0.09	0.73	0.02	0.610	0.28	36.3	4.6	0.14					8.8
3.40	5.63	0.05	0.68	0.01	0.559	0.28			22.2.2					9.3
3.14	5.37	<0.05	0.38	< 0.01										7.8
3.86	6.67	0.19	0.50	0.04	0.643									10.0
25.0	14.50	0.22	0.56	0.01	0.091									390
24.8	13.05	0.14												390
20.4										seere at				321
25.0	13.80	0.48	0.88	0.03	0.105	0.08	7.4	2.9	0.12	408	2.05	0.05	0.33	393
					BLA	ANKS								
-0.05	-0.05	-0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	<0.01	<0.05	<0.2
														<0.2
														<0.2
											<0.05	< 0.01	< 0.05	<0.2
0.02	0.10	0.10	0.04	0.02	0.010	0.02	0.4	0.2	0.02	10	0.10	0.02	0.10	0.4
					DUPL	ICATES								
3.60	10.85	<0.05	<0.02	0.05	0.032	0.04	5.2	9.4	0.22	380	1.23	0.01	0.73	9.1
										368		0.01	0.79	8.4
										350	1.10	<0.01	0.67	8.1
				and the second			5.5	9,2	0.24	398	1.33	0.02	0.85	9.4
		and the second se				0.04	41.5	31.7	0.34	306	2.36	0.02	0.76	14.7
2.59	8.47	0.10	0.04	0.15	0.058	0.04	41.7	27.2	0.32	298	2.33	0.01	0.73	13.6
2.51	8.32	<0.05	<0.02	0.13	0.052	0.03	39.3	27.9	0.30	282	2,18	<0.01	0.66	13.2
	9.30	0.17	0.06	0.17	0.069	0.05	43.9	31.0	0.36	322	2.51	0.02	0.83	15.1
	Fe % 0.01 3.78 3.22 3.96 4.90 4.41 5.41 3.37 3.40 3.14 3.86 25.0 24.8 20.4 25.0 24.8 20.4 25.0	Fe Ga % ppm 0.01 0.05 3.76 9.59 3.22 8.73 3.966 10.80 4.90 4.96 4.41 4.62 5.41 5.76 3.37 5.93 3.40 5.63 3.14 5.37 3.86 6.67 25.0 13.80 20.4 11.20 25.0 13.80 <0.01	Fe Ga Ge % ppm ppm 0.01 0.05 0.05 3.78 9.59 0.10 3.22 8.73 <0.05	Fe Ga Ge Hf % ppm ppm ppm ppm 0.01 0.05 0.05 0.02 3.78 9.59 0.10 0.50 0.02 3.78 9.59 0.10 0.50 0.02 3.78 9.59 0.10 0.50 0.41 3.86 10.80 0.24 0.55 4.90 4.90 4.96 0.06 0.02 4.41 4.62 4.055 4.05 4.02 5.41 5.76 0.17 0.06 3.37 5.93 0.09 0.73 3.40 5.63 0.05 0.68 3.14 5.37 <0.05	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe Ga Ge Hf Hg In % ppm 0.01 0.005 0.022 0.01 0.005 0.015 0.022 0.01 0.005 0.015 0.022 0.021 0.023 0.113 3.98 1.080 0.24 0.55 0.09 0.179 4.90 4.96 0.06 0.02 0.02 0.027 4.41 4.62 <0.05	Fe Ga Ge Hf Hg In K % ppm ppm ppm ppm ppm ppm ppm stot 0.01 0.05 0.05 0.02 0.01 0.005 Stot 3.78 9.59 0.10 0.50 0.06 0.151 1.30 3.22 8.73 <0.05	Fe Ga Ge Hf Hg In K La % ppm ppm ppm ppm ppm ppm ppm s ppm 0.01 0.05 0.05 0.02 0.01 0.001 0.2 STANDARDS 3.78 9.59 0.10 0.50 0.06 0.151 1.30 34.3 3.22 8.73 <0.05	Fe Ga Ge Hf Hg In K La U % ppm 0.01 0.2 0.1 3.78 9.59 0.10 0.50 0.06 0.151 1.30 34.3 34.7 3.22 8.73 <0.05	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe Ga Ge Hf Hg In K La Li Mg Mn N ppm ppm ppm ppm ppm X X X X X X X X X X X X X X X X <	Print Class Class Part Pprint Pprint Pprint Pprint Pprint Pprint Pprint Pprint Pprint N Pprint Pprint N Pprint Pprint N Pprint N Pprint Pprint N N Pprint N N Pprint N N Pprint N	Ref Ga Ge Hf Hg In K La Li Mg Mn Mo Na X ppm ppm ppm S 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.02 0.01 0.03 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.01 0.03 0.03	Fe Ga Ga Ga Hf Hg In K La U Mg Mn Mo Na Nb X ppm ppm S ppm S

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

(ALS)								QC	CERTI	FICATE	OF AN	ALYSIS	TRIS	923297	6
Methoo Analyte Sample Description LOD		AuME-TL43 Pb ppm 0,2	AuME-TL43 Rb ppm 0.1	AuME-TL43 Re ppm 0.001	AuME-TL43 S % 0.01	AuME-TL43 Sb ppm 0.05	AuME-TL43 Sc ppm 0.1	AuME-TL43 Se ppm 0.2	AuME-TL43 Sn ppm 0.2	AuME-TL43 Sr ppm 0.2	AuME-TL43 Ta ppm 0.01	AuME-TL43 Te ppm 0.01	AuME-TL43 Th ppm 0.2	AuME-TL43 Ti % 0.005	AuME-TL4 TI ppm 0.02
						STAN	DARDS								
MRGeo08	990	1095	140.5	0.008	0.30	2.64	7,4	0.8	3.3	73.7	<0.01	0.03	21.4	0.340	0.84
Target Range - Lower Bound		946	132.0	0.006	0.27	2.10	6.5	0.6	2.8	66.6	<0.01	<0.01	19.1	0.277	0.64
Upper Bound		1155	162.0	0.010	0.35	2.96	8.1	1.5	4.0	81.8	0.03	0.04	23.8	0.349	0.92
OREAS 252	820	11.3	10.5	< 0.001	0.02	0.48	5.5	0.2	0.8	78.1	< 0.01	0.02	3.4	0.122	0.08
arget Range - Lower Bound	<10	10.1	10.0	< 0.001	<0.01	0.31	5.0	<0.2	0,3	74.9	<0.01	<0.01	2.8	0.104	<0.02
Upper Bound	20	12.7	12,4	0.003	0.04	0.61	6.4	0.6	1.1	91.9	0.03	0.04	4.0	0,138	0.12
OREAS 905	220	15.5	16.2	< 0.001	0.06	1.16	1.5	2.7	1.3	12.2	<0.01	0.08	8.2	0.014	0.10
DREAS 905	220	14.7	16.4	< 0.001	0.06	1.16	1.5	2.2	1.2	11.4	< 0.01	0.08	7.8	0.015	0.10
Farget Range - Lower Bound		14.2	15.7	< 0.001	0.04	0.94	1,3	1.8	0.8	10,9	<0.01	0.04	7.2	<0.005	0.05
Upper Bound		17.8	19.4	0.002	0.09	1.40	1.9	2.8	1,7	13.7	0.02	0.09	9.2	0.026	0.15
OREAS-45e	270	13.2	7.6	<0.001	0.04	0.53	83.9	1.8	1.0	4.0	<0.01	0.15	10.3	0.077	0.05
OREAS-45e	270	12.9	7.3	< 0.001	0.04	0.55	82.9	1.5	1,0	3.7	< 0.01	0.14	10.2	0.080	0.06
Farget Range - Lower Bound		11.7	6.7	<0.001	0.02	0,39	70.1	1.3	0,4	3,4	<0.01	80.0	8.3	0.090	<0.02
Upper Bound		14.8	8.4	0.002	0.07	0.70	85.9	2.3	1.3	4,6	0.03	0.13	10.6	0,122	0.10
						BL	ANKS								
BLANK	<10	<0.2	<0.1	<0.001	< 0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005	<0.02
BLANK	<10	<0.2	<0.1	< 0.001	0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005	<0.02
BLANK	<10	<0.2	<0.1	<0.001	0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005	<0.02
Target Range - Lower Bound	<10	<0.2	<0.1	< 0.001	< 0.01	< 0.05	<0.1	<0.2	<0.2	<0.2	< 0.01	<0.01	<0.2	< 0.005	<0.02
Upper Bound	20	0.4	0.2	0.002	0.02	0.10	0,2	0.4	0.4	0.4	0.02	0.02	0.4	0.010	0.04
						DUPL	ICATES								
10500N-300W	1690	13.4	5.2	<0.001	0.01	0.52	2.8	0.2	1.0	21.8	<0.01	0.04	0.2	0.029	0.08
DUP	1640	13.1	4.7	<0.001	0.01	0.52	2.3	0.2	1.0	20.6	<0.01	0.05	0.2	0.025	0.07
Farget Range - Lower Bound	1570	12.4	4.6	< 0.001	<0.01	0.43	2.3	<0.2	0.8	19.9	<0.01	0.03	<0.2	0.021	0.05
Upper Bound	1760	14.1	5.3	0.002	0.02	0,61	2.8	0.4	1.3	22.5	0.02	0.06	0.4	0.033	0.10
700N-1600E	750	19.6	5.0	0.001	0.07	1.58	3.1	1.4	0.8	22.9	0.01	0.07	<0.2	0.012	0,12
DUP	740	19.4	4.4	0.001	0.07	1.70	2.7	1.6	0.8	21.9	0.01	0.05	<0.2	0.010	0.11
Target Range - Lower Bound	700	18.3	4.4	< 0.001	0.06	1.47	2.7	1.2	0.6	21.1	< 0.01	0.05	<0.2	< 0.005	0.09
Upper Bound	790	20.7	5.0	0.002	0.08	1.81	3.1	1.8	1.0	23.7	0.02	0.07	0.4	0.017	0.14

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

Project: TRAIL PEAK

(ALS)	,							QC CERTIFICATE OF ANALYSIS TR19232976
ample Description	Method Analyte Units LOD	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0.05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5	
							STAND	ARDS
ADC and P		5.62	99	2.19	18.20	776	16.4	
MRGeo08 Target Range - Lower	Round	4.93	88	1.79	16.90	678	13.5	
	Bound	6.13	109	2.53	20.8	833	19.5	
OREAS 252	and and a	0.62	41	0.15	12.55	86	2.0	
Target Range - Lower	Bound	0.48	37	<0.05	11.50	77	0.6	
	Bound	0.74	47	0.24	14.20	99	3.0	
OREAS 905		2.10	5	0.56	6,57	57	34.7	
OREAS 905		1.93	5	0.59	6.12	59	30.5	
Target Range - Lower	Bound	1.83	3	0.40	5.85	53	16.8	
	Bound	2.35	8	0.72	7.27	69	23.9	
OREAS-45e		1.63	262	0.05	6.13	24	23.6	
OREAS-45e		1.73	268	< 0.05	5.59	24	23.7 23.2	
Target Range - Lower		1.41	257	<0.05	4.93	27 38	32.6	
Upper	Bound	1.84	317	0.21	6.13	30	32.0	
							BLAN	NKS
		1.5.45	-			-0	<0.5	
BLANK		< 0.05	<1	<0.05	<0.05	<2 <2	<0.5	
BLANK		<0.05	<1	< 0.05	<0.05 <0.05	<2	<0.5	
BLANK		< 0.05	<1	<0.05	<0.05	~	<0.5	
Target Range - Lower		<0.05	<1 2	<0.05 0.10	0.10	4	1.0	
Upper	Bound	0.10	4	0.10	0.10			
							DUPLIC	ATES
10500N-300W		0.18	78	0.08	2.05	87	<0.5	
DUP		0.17	75	0.09	1.84	82	<0.5	
Target Range - Lower	Bound	0.12	72	<0.05	1,80	78	<0.5	
Upper	Bound	0.23	81	0.10	2.09	91	1.0	
700N-1600E		2.51	57	0.08	120.0	208	<0.5	
		2.50	54	0.08	120.0	199	<0.5	
DUP	Bound	2.33	52	<0.05	114.0	191 216	<0.5 1.0	
Target Range - Lower	Bound	2.68	59	0.10	126.0	210	1.0	

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: TRAIL PEAK

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

				_					QC	CERTI	FICATE	OF AN	ALYSIS	TR1	923297	6
ample Description	Method Analyte Units LOD	AuME-TL43 Au ppm 0.001	AuME-TL43 Ag ppm 0.01	AuME-TL43 Al % 0.01	AuME-TL43 As ppm 0.1	AuME-TL43 B ppm 10	AuME-TL43 Ba ppm 10	AuME-TL43 Be ppm 0.05	AuME-TL43 Bi ppm 0.01	AuME-TL43 Ca % 0.01	AuME-TL43 Cd ppm 0.01	AuME-TL43 Ce ppm 0.02	AuME-TL43 Co ppm 0,1	AuME-TL43 Cr ppm 1	AuME-TL43 Cs ppm 0.05	AuME-TL4 Cu ppm 0.2
							DUPL	ICATES							- G12	11.9
KS-001 DUP arget Range - Lower B Upper 1		0.001 0.001 <0.001 0.002	0.35 0.37 0.33 0.39	5,49 5,47 5,20 5,76	7.7 7.5 7.1 8.1	10 10 <10 20	120 120 100 140	1.16 0.99 0.97 1.18	0.08 0.08 0.07 0.09	0.09 0.08 0.07 0.10	0.38 0.38 0.35 0.41	33.9 34.1 32.3 35.7	13.7 12.8 12.5 14.0	16 16 14 18	2.15 2.04 1.94 2.25	45.7 42.5 42.4 45.8
					and .		190	1.10	0.08	0.10	0.41	30.7	14.0	18	2.25	45.8
	- 1															

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

ALS									QC	CERTIF	ICATE	OF AN	ALYSIS	TR1	923297	6
ample Description	Method Analyte Units LOD	AuME-TL43 Fe % 0.01	AuME-TL43 Ga ppm 0.05	AuME-TL43 Ge ppm 0.05	AuME-TL43 Hf ppm 0.02	AuME-TL43 Hg ppm 0.01	AuME-TL43 In ppm 0.005	AuME-TL43 K % 0.01	AuME-TL43 La ppm 0.2	AuME-TL43 Li ppm 0.1	AuME-TL43 Mg % 0,01	AuME-TL43 Mn ppm S	AuME-TL43 Mo ppm 0.05	AuME-TL43 Na % 0.01	AuME-TL43 Nb ppm 0.05	AuME-TL4 Ni ppm 0,2
			-				DUPL	ICATES								
KS-001 UP arget Range - Lower B Upper I	Bound Bound	7.15 7.16 6.79 7.52	10.75 10.40 10.00 11.15	<0.05 <0.05 <0.05 0.10	0.36 0.34 0.31 0.39	0.16 0.17 0.14 0.19	0.108 0.106 0.097 0.117	0.03 0.03 0.02 0.04	8.8 8.9 8.2 9.5	29.0 24.6 25.4 28.2	0.32 0.32 0.29 0.35	514 519 486 547	2.56 2.57 2.39 2.74	0.01 0.01 <0.01 0.02	2.81 2.84 2.63 3.02	7.3 6.8 6.5 7.6
Upper I	Bound	7.52	11.15	0.10	0.39	0.19	0.117	0.04	9.5	28.2	0.35	241	2.14	0.02	0.02	

Project: TRAIL PEAK OC CERTIFICATE OF ANALYSIS TR19232976 Sample Description Method Analyte LOD AuME-TL43 AuME-TL43 <th colspan<="" th=""><th>Project: TRAIL PEAK OC CERTIFICATE OF ANALYSIS TR19232976 Sample Description Method Analyte Units LOD AuME-TL43 <th c<="" th=""><th>A</th><th>ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry</th><th>To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5</th><th>Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO</th></th></th></th>	<th>Project: TRAIL PEAK OC CERTIFICATE OF ANALYSIS TR19232976 Sample Description Method Analyte Units LOD AuME-TL43 <th c<="" th=""><th>A</th><th>ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry</th><th>To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5</th><th>Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO</th></th></th>	Project: TRAIL PEAK OC CERTIFICATE OF ANALYSIS TR19232976 Sample Description Method Analyte Units LOD AuME-TL43 AuME-TL43 <th c<="" th=""><th>A</th><th>ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry</th><th>To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5</th><th>Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO</th></th>	<th>A</th> <th>ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry</th> <th>To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5</th> <th>Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO</th>	A	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry	To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5	Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO
QC CERTIFICATE OF ANALYSIS TR19232976 Method Analyte Units AuME-TL43 P AuME-TL43 Rb AuME-TL43 Re AuME-TL43 S AuME-TL43 Sb AuME-TL43 Sc AuME-TL43 Se	QC CERTIFICATE OF ANALYSIS TR19232976 Method Analyte Units AuME-TL43 P AuME-TL43 Rb AuME-TL43 Re AuME-TL43 S AuME-TL43 Sb AuME-TL43 Sc AuME-TL43 Se AuME-TL43 Se	(ALS)		Project: TRAIL PEAK			
Analyte Units LOD p Pb Rb Re S Sb Sc Se Sn Sr Ta Te Th Ti Ti Sample Description Units LOD Units ppm ppm ppm st ppm ppm ppm ppm ppm st ppm st	Analyte Units LOD p Pb Rb Re 5 Sb Sc Se Sn Sr Ta Te Th Ti Ti Sample Description Units LOD Units ppm ppm ppm st ppm ppm ppm ppm ppm st ppm ppm ppm ppm st ppm st st ppm ppm ppm st ppm st st<	(·····)		QC CERTIFICATE OF ANALYSI	S TR19232976		
SKS-001 830 20.6 7.6 <0.001	B30 20.6 7.6 <0.001	Analyte Sample Description Units	P Pb Rb Re S ppm ppm ppm % p	Sb Sc Se Sn Sr Ta Te ppm ppm ppm ppm ppm ppm	Th Ti Tl ppm % ppm		
DUP 830 20.5 7.3 <0.001 0.05 0.25 10.2 0.7 10.3 <0.01 0.06 2.0 0.049 0.04 Target Range - Lower Bound 780 19.3 7.0 <0.001 0.04 0.16 10.0 0.5 9.4 <0.01 0.06 2.0 0.049 0.04 Upper Bound 780 19.3 7.0 <0.001 0.04 0.16 10.0 0.5 9.4 <0.01 0.06 1.7 0.038 <0.02	DUP 830 20.5 7.3 <0.01 0.05 0.2 1.1 0.5 0.7 10.3 <0.01 0.06 2.0 0.049 0.04 Target Range - Lower Bound 780 19.3 7.0 <0.001 0.04 0.18 10.0 0.6 0.5 9.4 <0.01 0.06 1.7 0.038 <0.02			DUPLICATES			
		DUP Target Range - Lower Bound	830 20.5 7.3 <0.001 0.05 0 780 19.3 7.0 <0.001 0.04 0	0.25 10.2 0.7 0.7 10.0 <0.01 0.08 0.18 10.0 0.6 0.5 9.4 <0.01 0.06	2.0 0.042 0.04 1.7 0.038 <0.02		

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-OCT-2019 Account: RENGEO

Project: TRAIL PEAK

									I RAIL PEAK			
(ALS)	,								QC CERTIFICA	TE OF ANALYSI	S TR1923297	6
Sample Description	Method Analyte Units LOD	AuME-TL43 U ppm 0.05	AuME-TL43 V ppm 1	AuME-TL43 W ppm 0,05	AuME-TL43 Y ppm 0.05	AuME-TL43 Zn ppm 2	AuME-TL43 Zr ppm 0.5					
							DUPLIC	ATES				
SKS-001 DUP Target Range - Lower Upper	Bound Bound	0.64 0.63 0.55 0.72	85 84 79 90	0.16 0.17 0.10 0.23	17.65 17.75 16.75 18.65	100 96 91 105	12.0 11.3 10.3 13.0					
2.4.1							1					
		1949										
	100	1000										

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-OCT-2019 Account: RENGEO

Project: TRAIL PEAK

QC CERTIFICATE OF ANALYSIS TR19232976

CERTIFICATE COMMENTS	
LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. AuME-TL43 DISP-01 LOG-22 WEI-21	SCR-41
	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. AuME-TL43 DISP-01 LOG-22

QC CERTIFICATE TR19235917

Project: Trail Peak

This report is for 7 Rock samples submitted to our lab in Terrace, BC, Canada on 20-SEP-2019.

The following have access to data associated with this certificate: RICHARD BILLINGSLEY LEOPOLD LINDINGER

To: RENAISSANCE GEOSCIENCE
680 DAIRY RD
KAMLOOPS BC V2B 8N5

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
DISP-01	Disposal of all sample fractions	
CRU-QC	Crushing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

ALS CODE	DESCRIPTION		_
ME-MS41	Ultra Trace Aqua Regia ICP-MS		
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES	
102.97 St.			-

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Saa Traxler, General Manager, North Vancouver

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: Trail Peak

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

ME-MS41 ME-MS41 B Au B ppm ppm ppm 10 STANE <0.02 <10 <0.02 <10 <0.02 <10 0.04 20 0.42 <10 0.33 <10 0.45 20	ME-M541 Ba ppm 10 DARDS 440 370 530 240 200 300	ME-M541 Be ppm 0.05 0.77 0.67 0.96 0.95	ME-MS41 Bi ppm 0.01 0.67 0.58 0.73	ME-M541 Ca % 0.01 1.08 1.00 1.24	ME-MS41 Cd ppm 0.01 2,32 2,01 2.47	ME-MS41 Ce ppm 0.02 74.9 66.2 81.0	ME-MS41 Co ppm 0.1 20.4 17.0	ME-MS41 Cr ppm 1 1 92 81	ME-MS4 Cs ppm 0.05
<0.02 <10 <0.02 <10 0.04 20 0.42 <10 0.33 <10	440 370 530 240 200	0.67 0.95	0.58 0.73	1.00	2.01	66.2	17.0		10.85
<0.02 <10 0.04 20 0.42 <10 0.33 <10	370 530 240 200	0.67 0.95	0.58 0.73	1.00	2.01	66.2	17.0		10.85
<0.02 <10 0.04 20 0.42 <10 0.33 <10	370 530 240 200	0.67 0.95	0.58 0.73	1.00	2.01	66.2	17.0		10.85
<0.02 <10 0.04 20 0.42 <10 0.33 <10	370 530 240 200	0.67 0.95	0.58 0.73	1.00	2.01	66.2	17.0		10.85
<0.02 <10 0.04 20 0.42 <10 0.33 <10	370 530 240 200	0.67 0.95	0.58 0.73	1.00	2.01	66.2	17.0		10.85
<0.02 <10 0.04 20 0.42 <10 0.33 <10	370 530 240 200	0.67 0.95	0.58 0.73	1.00	2.01	66.2	17.0		10.85
0.04 20 0.42 <10 0.33 <10	530 240 200	0.95	0.73					81	
0.42 <10 0.33 <10	240 200	0.92		1.24	2.41	01.0			9.40
0.33 <10	200						21.0	102	11.60
0.33 <10	200								
0.33 <10	200								
0.33 <10	200				1.00		- les		
			5.70 4.97	0.34	0.36	81.1 69.7	15.0	17	1.17
		1.08	6.10	0.38	0.38	85.3	12,4 15.4	15 20	1.05
				218.8	0.00	00,0	10.4	29	1.00
BLA	NKS								
12.42									
						<0.02	<0.1	<1	<0.05
									< 0.05
	20	0.10	0.02	0.02	0.02	0,04	0,2	2	0.10
<0.0	02 <10	02 <10 <10	02 <10 <10 <0.05	02 <10 <10 <0.05 <0.01	02 <10 <10 <0.05 <0.01 <0.01	02 <10 <10 <0.05 <0.01 <0.01 <0.01	02 <10 <10 <0.05 <0.01 <0.01 <0.01 <0.02	02 <10 <10 <0.05 <0.01 <0.01 <0.01 <0.02 <0.1	02 <10 <10 <0.05 <0.01 <0.01 <0.02 <0.1 <1

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

ALS)								ect: Trail F		FICATE	OF AN	ALYSIS	TRI	923591	7
Methor Analyte ample Description LOD		ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm S	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01	ME-MS4 Nb ppm 0.05
						STAN	DARDS								
(IP-19 (IP-19 'arget Range - Lower Bound Upper Bound										20.6	1,16	425	14.80	0.33	0.87
/IRGeo08	629	3.65	9.89	0.12	0.71	0.06	0.155	1.30	37.1 33.2	30.6 29.6	1.10	378	13.10	0.30	0.75
arget Range - Lower Bound	587	3.22	8.73 10.80	0.07	0.64	0.04 0.10	0.137 0.179	1.12	41.0	36.4	1.29	473	16.10	0.39	1.13
Upper Bound DREAS 684 DREAS 684 Farget Range - Lower Bound	675	3.96	10.60	0.29	0.00	-0.10	0.170								
Upper Bound DREAS 905	1550	3.51	6.43	0.07	1.04	0.02	0.598	0.31	40.9	4.2	0.15	352	3.08	0.09	0.29
Farget Range - Lower Bound	1450	3.14	5.45	<0.05	1.02	<0.01	0,517	0.28	34.7	4.0	0.13	310	2.65 3.35	0.07	0.18
Upper Bound	1670	3.86	6,77	0.22	1.29	0.04	0.643	0.36	42.9	5.2	0.19	390	3.30	0.12	0.44
Farget Range - Lower Bound Upper Bound PMP-18 PMP-18 Farget Range - Lower Bound Upper Bound						BL	ANKS								
BLANK															
BLANK						245		<0.01	<0.2	<0.1	<0.01	<5	< 0.05	<0.01	<0.05
						< 0.01	<0.005	<0.01					<0.05	<0.01	
BLANK Target Range - Lower Bound Upper Bound BLANK	<0.2	<0.01	<0.05	<0.05	<0.02				<0.2	<0.1	< 0.01	<5	-0.00	40.01	
BLANK Target Range - Lower Bound Upper Bound	<0.2 <0.2 0.4	<0.01 <0.01 0.02	<0.05 <0.05 0.10	<0.05 <0.05 0.10	<0.02 <0.02 0.04	<0.01	<0.005 0.010	<0.01 0.02	<0.2 0.4	<0.1 0.2	<0.01 0.02	<5 10	0.10	0.02	<0.05 0.10

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: Trail Peak

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

	_							QC	CERTI	FICATE	OF AN	ALYSIS	TRI	923591	7
Method Analyte Sample Description LOD	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0,2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0,1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0,2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0,2	ME-MS4 Ti % 0.005
						STAN	DARDS								
KIP-19															
KIP-19 Target Range - Lower Bound															
Upper Bound															
MRGeo08	714	1030	1095	148.5	0.008	0.32	3.39	7.1	0.9	3.4	79.9	0.01	0.01	21.7	0.388
Target Range - Lower Bound Upper Bound	622 760	900 1130	959 1175	132.0	0.006	0.27	2.80	6.7	0.6	2.8	72.1	<0.01	<0.01	19,1	0.338
OREAS 684	160	1100	11/0	162.0	0.010	0.35	3.90	8.4	1.5	4.0	88.5	0.03	0.04	23.7	0,424
OREAS 684															
Target Range - Lower Bound Upper Bound															
OREAS 905	8.8	240	16.1	18.4	<0.001	0.08	1.07	1.7	2.2	1.2	13.2	<0.01			2.0.25
Target Range - Lower Bound	7.8	610	14.4	16.3	<0.001	0.04	0.83	1.5	1.8	0.8	10.9	<0.01	0.06	9.1 7.4	0.019
Upper Bound	10.0	770	18.0	20.1	0.002	0.09	1.23	2.0	2.8	1.7	13.7	0.03	0.09	9.4	0.030
PK2 PK2															
Target Range - Lower Bound															
Upper Bound															
PMP-18 PMP-18															
Target Range - Lower Bound															
Upper Bound															
						BLA	ANKS								
BLANK															
BLANK Target Range - Lower Bound															
Upper Bound															
BLANK	<0.2	<10	<0.2	<0.1	<0.001	0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005
Farget Range - Lower Bound	<0.2	<10	<0.2	<0.1	<0.001	<0.01	<0.05	<0.1	<0.2	<0.2	<0.2	<0.01	<0.01	<0.2	<0.005
Upper Bound	0.4	20	0.4	0.2	0.002	0.02	0.10	0.2	0.4	0.4	0.4	0.02	0.02	0.4	0.010
				_	_										_

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: Trail Peak

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

)								QC CERTIFICATE OF ANALYSI	5 TR1923591
	Method	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41		
	Analyte	Π	U	v	w	Y	Zn	Zr		
ample Description	Units	ppm 0.02	ppm 0.05	ppm 1	ppm 0.05	ppm 0.05	ppm 2	ppm 0.5		
	LOD						STAN	IDARDS		
(IP-19										
(IP-19										
Target Range - Lower	Bound									
Upper	Bound	100000	0.000	1.00		20.1	786	21.1		
MRGeo08		0.78	5.38	101	2.90	17.50	786	18.1		
Farget Range - Lower	Bound	0.64	4.93	90 112	2.44 3.42	21.5	870	25.7		
	Bound	0.92	6.13	112	0,42	21.9	010	2.9.1		
DREAS 684	1000									
OREAS 684 Farget Range - Lower	Round									
arget kange - Lower	Bound									
OREAS 905	bound	0,10	2.25	5	0,62	7.47	65	40.5		
Farget Range - Lower	Bound	0.05	1.92	4	0.41	6.32	56	39.9		
Upper	Bound	0.15	2.46	8	0.73	7.84	72	55.1		
PK2										
PK2										
Target Range - Lower	Bound									
	Bound	1								
PMP-18 PMP-18										
Target Range - Lower	Round									
linner	Bound									
opper							DI	ANKS		
							DL	ANNS		
BLANK										
BLANK										
BLANK Target Range - Lower	Bound	-								
BLANK Target Range - Lower Upper	Bound Bound	<0.02	<0.05	<1	<0.05	<0.05	<2	<0.5		
BLANK Target Range - Lower Upper BLANK	Bound	<0.02	<0.05	<1 <1	<0.05 <0.05	<0.05	<2 <2	<0.5		
8LANK Target Range - Lower Upper 8LANK Target Range - Lower	Bound	<0.02 <0.02 0.04	<0.05 <0.05 0.10	<1 <1 2						

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: Trail Peak

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_							QC	CERTI	FICATE	OF AN	ALYSIS	TRI	923591	7
Method Analyte Sample Description LOD	Au-ICP21 Au ppm 0.001	ME-MS41 Ag ppm 0.01	ME-MS41 Al % 0.01	ME-MS41 As ppm 0,1	ME-MS41 Au ppm 0.02	ME-MS41 B ppm 10	ME-MS41 Ba ppm 10	ME-MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME-MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME-MS4 Cs ppm 0.05
ORIGINAL DUP Target Range - Lower Bound Upper Bound	0.042 0.041 0.038 0.045		3			DUPL	ICATES								
115171856 DUP Target Range - Lower Bound Upper Bound	0.010 0.010 0.009 0.012														
ORIGINAL DUP Target Range - Lower Bound Upper Bound	0.001 0.001 <0.001 0.002														
ORIGINAL DUP Target Range - Lower Bound Upper Bound	<0.001 0.001 <0.001 0.002	į.													
ORIGINAL DUP Target Range - Lower Bound Upper Bound	<0.001 <0.001 <0.001 0.002														
ORIGINAL DUP Target Range - Lower Bound Upper Bound	<0.001 <0.001 <0.001 0.002														
	-			-						_		-			

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: Trail Peak

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

(ALS)	'								QC		FICATE	OF AN	ALYSIS	TRI	923591	7
Sample Description	Method Analyte Units LOD	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0,01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0,1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm S	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01	ME-MS41 Nb ppm 0.05
ORIGINAL DUP Target Range - Lower I Upper	3ound Bound						DUPL	ICATES								
11S171856 DUP Farget Range - Lower H Upper	Bound Bound								2							
ORIGINAL DUP Target Range - Lower I Upper	3ound Bound															-
ORIGINAL DUP Target Range - Lower I Upper	3ound Bound												2			
ORIGINAL DUP Target Range - Lower B Upper	Sound Bound	(al														
ORIGINAL DUP Target Range - Lower F Upper	Bound Bound				4											
	-		-	-			_	-	-				-		-	-

2103 Dolla North Van Phone: +1	arton Hwy couver BC V7 (604) 984 02	221 Fax:		4 0218	To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Project: Trail Peak						Page: 3 - 0 Total # Pages: 3 (A - D Plus Appendix Page Finalized Date: 25-0CT-201 Account: RENGE					
						Proj										
				-			QC	CERTI	FICATE	OF AN	ALYSIS	TRI	923591	7		
ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0,2	ME-MS41 Rb ppm 0,1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2	ME-MS41 Ti % 0.005		
					DUPL	ICATES										
					-											
	2103 Dolk North Van Phone: +1 www.alsg ME-MS41 Ni ppm	Phone: +1 (604) 984 0; www.alsglobal.com/ ME-MS41 ME-MS41 NI P ppm ppm	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: www.alsglobal.com/geochemis ME-MS41 ME-MS41 ME-MS41 Ni P Pb ppm ppm ppm ppm	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 98 www.alsglobal.com/geochemistry ME-MS41 ME-MS41 ME-MS41 ME-MS41 Ni P Pb Rb ppm ppm ppm ppm ppm	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry ME-MS41 ME-MS41 ME-MS41 Ni P Pb Rb ppm ppm ppm ppm ppm	Z103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry ME-MS41 ME-MS41 ME-MS41 Ni P Pb Rb Re S ppm ppm ppm ppm S 0.2 1.0 0.2 0.1 0.001 0.01	2103 Dollarton Hwy North Vancouver BC V7H 0A7 680 North Vancouver BC V7H 0A7 KAM Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Proje ME-MS41 ME-MS41 ME-MS41 ME-MS41 Ni P Pb Rb Re S Sb ppm ppm ppm ppm S ppm	2103 Dollarton Hwy North Vancouver BC V7H 0A7 680 DAIRY R KAMLOOPS E Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 KAMLOOPS E www.alsglobal.com/geochemistry Project: Trail QC ME-MS41 ME-MS41 </td <td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry 680 DAIRY RD KAMLOOPS BC V2B 8N Project: Trail Peak QC CERTI ME-MS41 ME-MS41<td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Project: Trail Peak ME-MS41 ME</td><td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Project: Trail Peak ME-MS41 ME</td><td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Project: Trail Peak Project: Trail Peak Me-MS41 Me-M</td><td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized Www.alsglobal.com/geochemistry Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Pl Finalized ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Pl Finalized ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 <</td><td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Finalized Date: 25- Account Www.alsglobal.com/geochemistry Project: Trail Peak Project: Trail Peak Me-MS41 <t< td=""></t<></td></td>	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry 680 DAIRY RD KAMLOOPS BC V2B 8N Project: Trail Peak QC CERTI ME-MS41 ME-MS41 <td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Project: Trail Peak ME-MS41 ME</td> <td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Project: Trail Peak ME-MS41 ME</td> <td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Project: Trail Peak Project: Trail Peak Me-MS41 Me-M</td> <td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized Www.alsglobal.com/geochemistry Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Pl Finalized ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Pl Finalized ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 <</td> <td>2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Finalized Date: 25- Account Www.alsglobal.com/geochemistry Project: Trail Peak Project: Trail Peak Me-MS41 <t< td=""></t<></td>	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Project: Trail Peak ME-MS41 ME	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Project: Trail Peak ME-MS41 ME	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Project: Trail Peak Project: Trail Peak Me-MS41 Me-M	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized Www.alsglobal.com/geochemistry Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Pl Finalized ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Pl Finalized ME-MS41 ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 ME-MS41 Tota KAMLOOPS BC V2B 8NS Tota Pl Finalized ME-MS41 <	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Fax: +1 (604) 984 0218 Finalized Date: 25- Account Www.alsglobal.com/geochemistry Project: Trail Peak Project: Trail Peak Me-MS41 ME-MS41 <t< td=""></t<>		

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5

Project: Trail Peak

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2019 Account: RENGEO

(ALS)									QC CERTIFICATE OF ANALYSIS	TR19235917
Sample Description	Method Analyte Units LOD	ME-MS41 TI ppm 0.02	ME-MS41 U ppm 0.05	ME-MS41 V ppm 1	ME-MS41 W ppm 0.05	ME-MS41 Y ppm 0.05	ME-MS41 Zn ppm 2	ME-MS41 Zr ppm 0.5		
ORIGINAL DUP Target Range - Lower B Upper B	lound Bound						DUPL	ICATES		
115171856 DUP Target Range - Lower B Upper E	lound Bound									12.1.2
ORIGINAL DUP Target Range - Lower B Upper B	lound Bound									
ORIGINAL DUP Target Range - Lower B Upper B	lound 3ound		R							
ORIGINAL DUP Target Range - Lower B Upper E	lound Bound	Å,								
ORIGINAL DUP Target Range - Lower B Upper B	lound Bound									
8.10										
359 24	-			1				11.	and the second second	AL DE LEAR AN

To: RENAISSANCE GEOSCIENCE 680 DAIRY RD KAMLOOPS BC V2B 8N5 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25-OCT-2019 Account: RENGEO

Project: Trail Peak

QC CERTIFICATE OF ANALYSIS TR19235917

		CERTIFICATE COM	IMENTS	
		ANALY	TICAL COMMENTS	
Applies to Method:	Gold determinations by t ME-MS41	his method are semi-quantitative due	to the small sample weight used (0.5g)	
		LABOR	ATORY ADDRESSES	
the second second	Processed at ALS Vancour	ver located at 2103 Dollarton Hwy, No		
Applies to Method:	Au-ICP21 LOG-22 WEI-21	CRU-31 ME-MS41	CRU-QC PUL-31	DISP-01 SPL-21

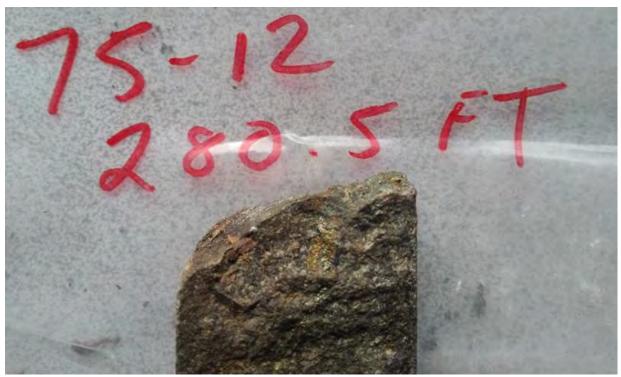
APPENDIX B – Rock Sample Descriptions and Table 8.2 Soil Sample Locations and Geochemical Results

			2019 TRAIL PEAK R	OCK DESCRIPTIONS
PROJ	ID	LITHOLOGY	STRUCTURE	ALTERATION
ТР	115171851	FG feldspar ppy diorite. ~20% 1 to 3 mm subhedral white feldspar in a greyish green fg groundmass.	moderate stockwork fracturing. Also subparallel fracture swarms. 5 to 20 mm apart.	Groundmass appears to be pervasively weakly chloritically altered.
TP	115171852	FG feldspar ppy diorite protolith?. Rock groundmass is bleached white with minor clay and crosscut with mafics? Replaced by black tourmaline. ~10-13% tourmaline as 1 to 3 mm planar cross cutting stockwork veins.	Rock is in a small annealed shear zone. See GPS comments.	Bleached white feldspars.
ТР	115171853	FG feldspar ppy diorite. ~20% 1 to 3 mm subhedral white feldspar in a greyish green fg groundmass.	moderate stockwork fracturing	Groundmass appears to be pervasively weakly chloritically altered.
TP	115171854	FG feldspar ppy diorite. ~20% 1 to 3 mm subhedral shite feldspar in a greyish green fg groundmass. Moderate FeOx stan on weathered fractures.	moderate stockwork fracturing	Groundmass appears to be pervasively weakly chloritically altered. Late minor planar 1-2 mm white calcite veinlets with hairline magnetite along margins.
ТР	115171586	FG feldspar ppy diorite. ~20% 1 to 3 mm subhedral s\white feldspar in a greyish green fg groundmass. Strong FeOx stan on weathered fractures.	Weak stockwork fracturing.	Groundmass appears to be pervasively weakly chloritically altered.

ТР	115171587	FG feldspar ppy diorite. Very dark rock. ~20% 1 to 3 mm subhedral white feldspar in a dark greyish green fg groundmass. Weak FeOx stan on weathered fractures.	Strong stockwork fracturing	Bleached white feldspars, possible pervasive chlorite.
ТР	115171858	FG feldspar ppy diorite protolith?. Rock groundmass is bleached white with minor clay and crosscut with mafics? Replaced by black tourmaline. ~10-13% tourmaline as 1 to 3 mm planar cross cutting stockwork veins.	Very strong stockwork fracturing.	Bleached white feldspars.
ТР	TR4-WE,2	FG feldspar ppy diorite. ~20% 1 to 3 mm subhedral white feldspar in a greyish green fg groundmass.	moderate stockwork fracturing	Groundmass appears to be pervasively weakly chloritically altered.


	Au	Ag	Cu
MINERALIZATION	ppm	ppm	ppm
~tr% secondary magnetite replacing mafics? 5-7 % massive 0.5 to 3 mm early curviplanar and late planar magnetite veinlets. Late chlorite carb planar factures veinlets host finely disseminated pyrite and chalcopyrite. Cpy weathers to thin malachite coatings.	1.35	0.63	1550
No magnetite or sulphides noted.	0.013	0.24	271
~3% secondary magnetite replacing mafics? 5% massive 0.5 to 3 mm early curviplanar and late planar magnetite veinlets. Late chlorite carb planar factures veinlets host finely disseminated pyrite and chalcopyrite. Cpy weathers to thin malachite coatings.	0.6	1.24	3270
3-5% secondary magnetite replacing mafics? 5-7% massive 0.5 to 3 mm early curviplanar and late planar magnetite veinlets. Late chlorite carb planar factures veinlets host finely disseminated pyrite and chalcopyrite. Cpy weathers to thin malachite coatings.			
~1-2% fine grained unevenly disseminated pale pyrite. 2-3% ~tr% secondary magnetite replacing mafics? 5-7 % massive 0.5 to 3 mm early curviplanar and late planar magnetite veinlets. Late chlorite carb planar factures veinlets host finely disseminated pyrite and chalcopyrite. Cpy weathers to thin malachite coatings.	0.01	0.29	94.5

Strong magnetite replacement of rock as very fine grained disseminations that 'stans' rock nearly black. At least 10% magnetite.	0.002	0.14	56.2
No magnetite or sulphides noted.	0.003	0.48	8.5
~3-4% fine to medium grained secondary? Magnetite.			


TABLE 8.2 - SOIL SAMPLE LOCATIONS AND GEOCHEMICAL RESULTS												
SAMPLE ID	UTM EAST	UTM NORTH	AG	AS	BI	CD	CE	СО	CU	LA	MO	ZN
10500N-050E	668444.1	6143107.7	0.36	18.1	0.52	1.39	11.55	12.9	28	5.8	1.59	94
10500N-050W	668355.9	6143072.4	1.48	22.8	0.28	1.27	33.8	10.3	104.5	21.2	2.25	134
10500N-0W	668400	6143090	0.76	85	0.82	1.4	23.5	19	45.5	9	1.89	189
10500N-100E	668488.2	6143125.3	0.8	32	0.73	0.68	26.7	13.8	85.2	11.8	2.74	175
10500N-100W	668311.8	6143054.7	1.6	35.4	0.4	1.19	53	8.1	115	32.3	2.39	119
10500N-150E	668532.4	6143142.9	0.5	22.7	0.42	0.42	9.08	5.3	18.1	4.8	1.44	83
10500N-150W	668267.7	6143037.1	1.78	25.8	0.4	0.83	27.7	7.5	91	18.3	2.1	87
10500N-200E	668576.5	6143160.6	0.88	19.9	0.22	1.38	91.3	15.6	83	58.8	2.94	108
10500N-200W	668223.5	6143019.4	0.59	14.9	0.23	0.32	8.26	4.1	12.9	4.2	1.36	53
10500N-250W	668179.4	6143001.8	0.75	10.9	0.23	0.41	8.35	4.9	17	4.3	1.34	70
10500N-300W	668135.3	6142984.1	0.4	9.6	0.23	0.36	10.2	5.6	12.2	5.2	1.23	87
10500N-350W	668091.2	6142966.5	0.16	13.9	0.17	0.28	9.3	5.4	12.5	4.9	1.29	73
10500N-400W	668047.1	6142948.8	0.31	36	0.25	0.74	12.55	11.6	26.7	5.2	1.7	125
10500N-450W	668002.9	6142931.2	0.55	16.4	0.15	1.26	17.65	14.2	41.7	7.6	1.81	140
10500N-500W	667958.8	6142913.5	0.74	469	2.13	1.23	38.5	19.9	39.2	18.2	2.03	153
10500N-550W	667914.7	6142895.9	0.32	31.4	0.29	1.46	20.9	8.6	19.1	19	1.46	122
10500N-600W	667870.6	6142878.2	0.49	42.6	0.34	0.26	18.65	5.2	7.5	10.3	1.74	72
10500N-650W	667826.5	6142860.6	0.12	47.2	0.23	0.23	11.05	3.7	9.6	5.4	1.68	47
10500N-700W	667782.4	6142842.9	0.45	15.4	0.13	0.65	10.8	10	21	4.5	1.61	108
10700N-150W	668267.7	6143267.1	0.48	23	0.56	0.76	17.2	14.8	58	9.3	2.51	173
10700N-200W	668223.5	6143249.4	1.21	90.5	1.12	1.08	42.5	10.7	66.6	27.7	2.46	110
10700N-250W	668179.4	6143231.8	0.68	112.5	1.1	0.92	14.8	10.7	60.3	7.3	3.41	174
10700N-300W	668135.3	6143214.1	0.41	141.5	1.33	0.69	40	39.1	104	9.3	5.85	206
10700N-350W	668091.2	6143196.5	2.3	51.8	0.75	0.55	24.3	10.8	65.1	10.8	2.31	125
10700N-400W	668047.1	6143178.8	1.95	68.3	0.96	0.9	28	39	69.2	15.5	4.01	136
10700N-450W	668002.9	6143161.2	0.51	22.8	0.83	0.67	16.1	9.4	55.3	10.3	1.74	101
10700N-500W	667958.8	6143143.5	0.27	17	0.29	0.59	11.45	10	46.9	4.9	1.83	112
10700N-550W	667914.7	6143125.9	0.3	18.8	0.2	0.71	9.78	8.6	19.5	4.5	1.6	105
10700N-600W		6143108.2	0.28			0.58			46.2	7.3	2.32	106
10700N-650W	667826.5	6143090.6	0.27	18.1	0.2	0.5	18.05	12	32.1	7.1	1.6	115
10700N-750W	667738.2	6143055.3	0.2	65.8	0.37	0.94	12.45	12.1	28.4	5.9	1.78	143
10700N-800W	667694.1	6143037.7	0.15	52.8	0.53	0.65	11.9	9.1	19.1	5.9	1.76	102
600N-1000E	669000	6143600	0.34	14.9	0.23	0.5	17.5	19	90.5	7.4	5.59	152
600N-1050E	669050	6143600	1.18	9.3	0.22	0.26	7.66	7.3	24	3.8	1.98	63
600N-1100E	669100	6143600	1.21	24.7	0.82	0.24	11.15	5.3	32.5	5.6	4.83	66
600N-1150E	669150	6143600	1.64	11.2	0.23	0.48	18.6	9.4	34	9	2.03	87
600N-1200E	669200	6143600	0.25	15.3	0.13	0.43	8.26	10.3	30.8	3.8	1.44	120
600N-1250E	669250	6143600	0.43	13.2	0.24	0.72	14.95	14.9	35.5	7.3	1.63	146
600N-1300E	669300	6143600	0.27	17.9	0.19	0.55	13.2	20.5	45.2	6	2.06	154
600N-1350E	669350	6143600	0.79	12.9	0.24	0.44	15.05	14.2	36.4	7	1.92	118
600N-1400E	669400	6143600	0.53	18	0.24	0.35	8.93	9.5	33.5	4.6	1.61	109
600N-1450E	669450	6143600	0.72	13.6	0.2	0.39	9.66	7.7	25	4.8	1.64	90
600N-1550E	669550	6143600	1.17	18	0.18	0.51	20.8	7.5	410	15.8	1.94	206
600N-1600E	669600	6143600	0.5	25.5	0.37	0.25	9.02	8.3	50.1	4.3	1.89	77
600N-1650E	669650	6143600	0.31	10.4	0.1	0.53	8.85	11.9	36.4	4.1	1.45	129

SAMPLE ID	UTM EAST	UTM NORTH	AG	AS	BI	CD	CE	СО	CU	LA	MO	ZN
600N-1700E	669700	6143600	0.59	19	0.17	0.55	11.5	8.6	25.3	4.1	2.75	268
600N-1750E	669750	6143600	0.77	14.4	0.13	1.98	16.45	11.8	29.3	4.4	2	653
600N-1800E	669800	6143600	0.55	7.6	0.13	1.01	8.97	7.3	23.3	4.4	1.84	108
600N-950E	668950	6143600	1.34	15.4	0.23	1.35	38.5	22.3	363	41.5	51	230
700N-1000E	669000	6143700	0.92	21	0.27	0.78	28.4	20.3	111	13.5	27.1	227
700N-1050E	669050	6143700	0.63	17.9	0.23	0.97	8.8	8	37.8	3.9	13.8	90
700N-1100E	669100	6143700	0.31	8.4	0.26	0.21	10.7	8	21.5	5.2	5.44	71
700N-1150E	669150	6143700	0.67	6.7	0.21	0.55	11.6	15.3	30.6	4.6	2.44	101
700N-1200E	669200	6143700	0.37	8.4	0.24	0.3	9.83	15.5	27.6	4.9	1.66	80
700N-1250E	669250	6143700	0.26	11.3	0.24	0.34	7.78	9.2	23.7	3.9	1.63	83
700N-1300E	669300	6143700	0.31	7.7	0.25	0.24	8.91	6.1	18.8	4.5	1.19	57
700N-1350E	669350	6143700	0.57	12.9	0.26	0.27	8.97	9.4	24.5	4.5	1.27	95
700N-1400E	669400	6143700	0.66	12.9	0.29	0.54	21.4	54.4	49.1	7.7	1.52	133
700N-1450E	669450	6143700	1.1	15.9	0.27	0.65	20.4	11.7	83.2	10.7	1.97	175
700N-1500E	669500	6143700	1.98	13.9	0.18	0.85	9.39	13.8	28.2	4.6	1.27	120
700N-1600E	669600	6143700	1.59	33.1	0.19	0.82	29.5	9.3	118.5	41.5	2.36	208
700N-1650E	669650	6143700	1.8	31.5	0.2	2.27	44.3	23.2	143	26.1	4.67	859
700N-1700E	669700	6143700	0.25	13.9	0.14	6.61	13.45	16.6	31.2	5	1.6	1050
700N-1750E	669750	6143700	0.71	12.4	0.11	4.61	22.2	19.5	45.6	9.4	1.7	1720
700N-1800E	669800	6143700	1.53	17.8	0.22	0.63	8.65	8.2	23.5	4	2.12	122
NOTE ALL RESUL	TS IN PPM											

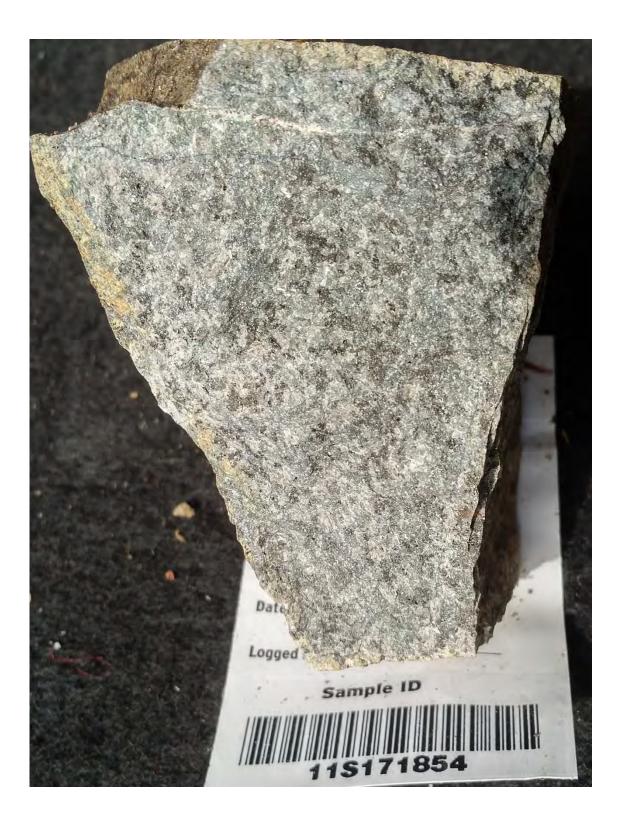
APPENDIX C – 2019 Trail Peak Rock and Core Sample Images

Py-Cpy mineralization with tourmaline

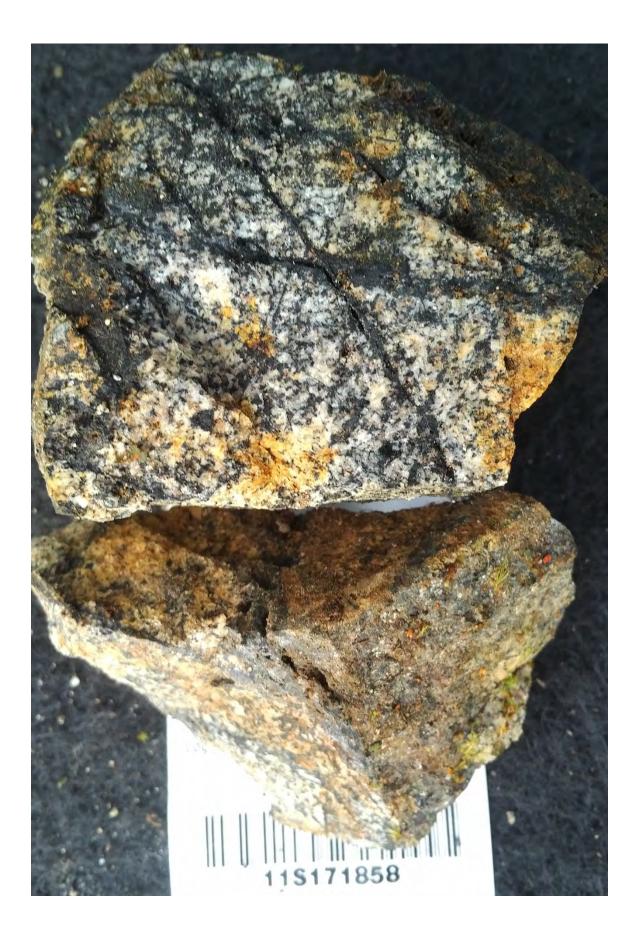
Fracture hosted cpy mineralization

Fracture hosted py-cpy mineralization within tourmaline vein

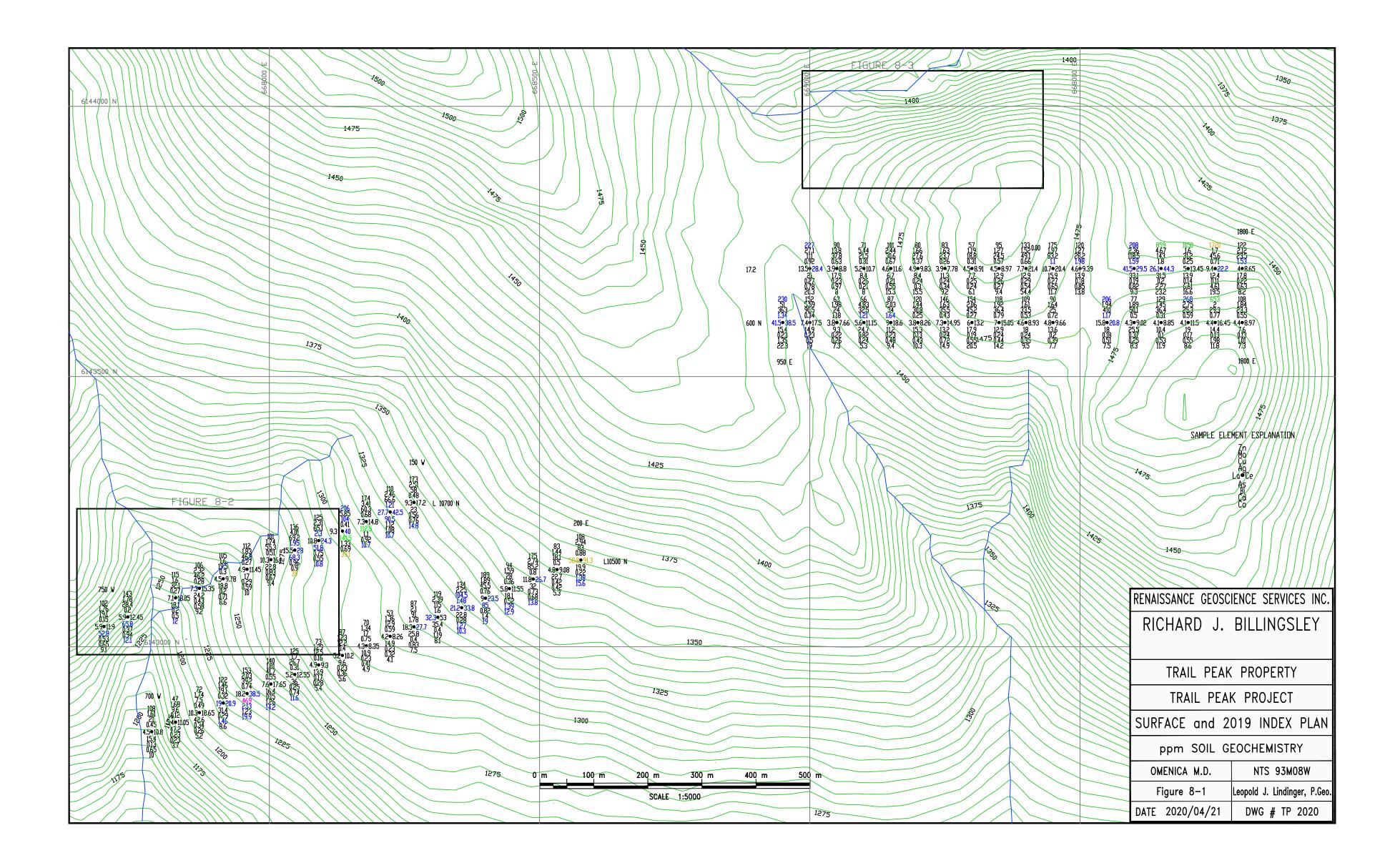
Coarse py-cpy mineralization with tourmaline


1.35 ppm Au, 1550 ppm Cu

271 ppm Cu



0.6 ppm Au, 3270 ppm Cu



APPENDIX D – Figure 8-1

