BRITISH COLUMBIA The Best Place on Earth	BC Geological Survey Assessment Report 39197
Ministry of Energy and Mines BC Geological Survey	Assessment Report Title Page and Summary
TYPE OF REPORT [type of survey(s)]: Geochemical, Geophysical	TOTAL COST: \$3,773.85
AUTHOR(S): Andris Kikauka	SIGNATURE(S): A. Kikanta
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR OF WORK: 2020
PROPERTY NAME: Bay 56	
CLAIM NAME(S) (on which the work was done): 1069793	
COMMODITIES SOUGHT: Cu, Mo, Au, Ag	NTE/PCCE: 0921 063
MINING DIVISION: Manaimo LATITUDE: 50 ° 37 '52 " LONGITUDE: 127 OWNER(S): 1) William Pfaffenberger	
MAILING ADDRESS: 4-4522 Gordon Point Dr	3
Victoria, BC V8N 6L4 OPERATOR(S) [who paid for the work]: 1) same	2)
MAILING ADDRESS: same	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, a Northwest-trending belts of basaltic volcanics and carbonate sedi	alteration, mineralization, size and attitude): imentary rocks of the Upper Triassic Karmutsen and Quatsino
Fm. Mafic volcanics, sediments Upper Triassic-Lower Jurassic B	Sonanza Group (Holberg volcanic & Parson Bay Formation)
pyrite-garnet-magnetite skarn horizons hosts chalcopyrite and mo	olybdenite mineralization in altered limestone (marble)
skarn zones underlain by mafic porphyry hosting disseminated ch	nalcopyrite/molybdenite, rhenium values associated with MoS2
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT RE	PORT NUMBERS: 710, 738, 9305, 11366, 12271, 13346,
13536, 14084, 14169, 14170, 14777, 15707, 16152, 16687, 1758	30, 17581, 18805, 37001

1

.

Ν	ext	t P	a	je	

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic 1.9 line-km		1069793	1,325.50
Electromagnetic			
Induced Polarization			
Radiometric			·····
Seismic	`_`		
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			
Slit			
Rock 6 samples prep & 1D, A	Actlabs QOP INAAGEO	1069793	2,248.35
Other 1 rock sample 1F2 Act	labs QOP Total	1069793	200.00
DRILLING (total metres: number of holes, size)			
Core			
Non-core			
Sampling/assaving			
Petrographic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)	· · · · - · · · · · · · · · · · · · · ·		
Road, local access (kilometres)/t	rail		
Trench (metres)			
Underground dev. (metres)	· · · ·		
Other			,
		TOTAL COST:	3,773.85
		I	

NTS 92 L 12/E, TRIM 092L.063

.

LAT. 50 37' 52" N

LONG. 127 31'18" W

GEOCHEMICAL & GEOPHYSICAL REPORT ON MINERAL TENURE 1069793 BAY 56 MINERAL CLAIM COAL HARBOUR, B.C.

.

Nanaimo Mining Division

by

•

Andris Kikauka, P.Geo. 4199 Highway 101, Powell R, B.C. V8A 0C7

39,197

September 2, 2020

TABLE OF CONTENTS AND LIST OF FIGURES

1.0	SUMMARY	1
2.0	Introduction	4
3.0	Location, Access, & Physiography	4
4.0	Property Status	4
5.0	Bay 56 (& Area) Property History	4
6.0	General Geology	16
7.0	Property Geology	17
8.0	2020 Fieldwork (Rock Geochemistry & Magnetometer Geophysics)	17
8.1	Methods and Procedures	17
8.2	Rock Geochemistry	18
8.3	Ground Magnetometer Geophysics	19
8.0	Discussion of Results	20
9.0	Conclusions & Recommendations	20
	References	21
	Certificate and Date	

Itemized Cost Statement

ı.

.

LIST OF FIGURES

- Fig.1 Bay 56 Claim General Location Map
- Fig.2 Bay 56 Claim Mineral Tenure Location Map
- Fig.3 Regional Geology 1:40,000 scale
- Fig. 4 Bay 56 Claim Rock Chip Samples (Angular Float) Google Earth
- Fig. 5 Bay 56 North-South Magnetometer Grid Lines Google Earth
- Fig. 6 Bay 56 East-West Magnetometer Grid Lines Google Earth
- Fig 7 Magnetometer Survey N-S Line 04700E, 04800E
- Fig 8 Magnetometer Survey E-W Line 08900N, 09000N
- Fig 9 Bay 56 Rock Chip Sample Geochemistry
- APPENDIX A Geochemical Rock Chip Analysis Certificates (1D & 1F2)
- APPENDIX B Actlabs Geochemical Methods and Procedures
- APPENDIX C Rock Chip Sample Descriptions & Geochemistry
- APPENDIX D Magnetometer Survey Readings

APPENDIX E Minfile Description

APPENDIX F Select DDH Highlights (& Aeromag) & DDH Plan Maps

1.0 SUMMARY

The Bay 56 mineral claims are comprised of 1 MTO mineral tenure (total area = 443.65 hectares), situated in the Nanaimo Mining Division:

Title	Claim		Title			
Number	Name	Owner	Туре	Issue Date	Good To Date	Area (ha)
1069793	BAY 56	143363 (100%)	Mineral	2019/JUL/22	2023/DEC/12	225.5

The Bay 56 Property is located approximately 15 kilometers southwest of Port Hardy, an icefree, deep water sea port (Fig 1). All weather gravel roads offer year-round access to the claims. The property is well situated with respect to logistics and infrastructure for possible future development and exploitation.

Regionally, the area is underlain by northwest-trending belts of basaltic volcanics and carbonate sedimentary rocks of the Upper Triassic Karmutsen and Quatsino formations (Vancouver Group) and mafie volcanics and sediments of the Upper Triassic to Lower Jurassic Bonanza Group (Holberg volcanic unit, and Parson Bay Formation). These volcanic and sedimentary rocks have been intruded by granodioritic rocks of the Early to Middle Jurassic Island Plutonic Suite. Northern Vancouver Island is underlain by Mesozoic volcanic and sedimentary rocks intruded by Jurassic to Tertiary felsic plutons. It forms part of the Insular Belt tectonic terrain. In the area north of Rupert and Holberg Inlets the succession consists of the Upper Triassic Vancouver Group basal tic volcanic rocks of the Karmutsen formation and the calcareous sedimentary rocks of the Quatsino and Parson Bay formations overlain by the Lower Jurassic Bonanza volcanic rocks. Middle Jurassic granodiorite and quartz-feldspar (rhyodacite) porphyries cut these formations. The Island Copper porphyry copper - molybdenum - gold mineralization occurs mainly in the volcanic wall rocks adjacent to one such quartz - feldspar porphyry. Skarn alterations of the Quatsino limestone and Parson Bay calcareous shales develop adjacent to the dykes. Copper mineralization occurs in some of the skarn.

Locally, at the common boundary between the Bay 56 and 59 claims (central portion of Bay 56 MTO mineral claim 1069793), disseminated pyrite and a small amount of chalcopyrite are present in felsite and andesite tuffs. Molybdenite is also present as a thin coating along fractures. Propylitic alteration is common. To the north, on the Bay 68 claim (north portion of Bay 56 MTO mineral claim 1069793), and as identified by drilling, a 42.7 metre interval of pyrite-garnet-magnetite skarn horizons hosts chalcopyrite and nuinor molybdenite mineralization in altered limestone (marble) of the Quatsino Formation and a 3.5-metre thick banded garnet-magnetite skarn interpreted as part of the Parson Bay Formation. An unidentified, soft, black, disseminated, metallic mineral, possibly enargite(?), is also reported. The skarn zones are underlain by a mafic porphyry hosting disseminated ehalcopyrite and molybdenite. Further mineralized skarns and tuffs have been identified by previous drilling.

Surface mapping, geochem soil sampling, ground magnetometer surveys and drilling were carried ont in the mid-sixties as part of the exploration effort that led to the discovery of the Island Copper deposit. The Bay 56 area has since undergone intermittent investigation. It has been recognized as having a porphyry system with characteristics similar to the Island copper deposit, such as its association with a strong magnetometer anomaly (approximately 600 X 1,200

m area, elongated N-S). Work conducted from 1980 to present includes additional mapping, geochem, IP, and ground mag surveys, aeromag survey, percussion and diamond drilling. Most of the work conducted sine 1970 has been reported in various assessment reports. The drilling targets have been a porphyry copper deposit in the Parson Bay formation and a copper skarn deposit in the Quatsino formation. Ore grade copper-skarn intercepts had been encountered in holes E-69 and W-5, and disseminated copper grading 0.25% Cu over 134 meters (440 feet) had been encountered in hole E-64.

In 1983, drilling yielded intercepts of 0.13 per cent copper over 54.0 metres in hole W-5 on the Bay 69 claim (central portion of Bay 56 MTO mineral claim 1069793), and 0.16 per cent copper over 91.2 metres in hole W-7 on the Bay 57 claim (south-central portion of Bay 56 MTO mineral claim 1069793) reported in Assessment Report 12271. In 1984, drillhole WP-6 (central portion of Bay 56 MTO mineral claim 1069793) yielded 0.14 per cent copper and 0.017 per cent molybdenum over 69.0 metres (Assessment Report 13536). In 1985, drillhole E-64, located on the Bay 59 claim (east-central portion of Bay 56 MTO mineral claim 1069793), yielded 0.24 per cent copper over 171.0 metres (Assessment Report 14084). In 1986, drillhole E-069, located near the Bay 68 and Bar claims boundary (north-west portion of Bay 56 MTO mineral claim 1069793), yielded up to 2.45 per cent copper and 19.5 grams per tonne silver over 3.0 metres from the upper Quatsino Formation skarn zone, whereas samples from the lower skarn zone yielded up to 2.93 per cent copper over 3.0 metres with molybdenite occurring variably with values up to 0.48 per cent molybdenum over 3.0 metres (Assessment Report 15707). Samples of the mafic porphyry varied from 0.2 to 0.3 per cent copper and 0.010 to 0.050 per cent molybdenum (Assessment Report 15707). Another drillhole (W-5), located a short distance west of E-069 (north portion of Bay 56 MTO mineral claim 1069793), intercepted horizons of massive garnet skarn yielding 0.73 per cent copper over 36.0 metres, including 2.04 per cent copper, 0.31 per cent zinc and 11.95 grams per tonne silver over 3.0 metres from the lower skarn horizon (Assessment Report 16687). Drillhole E-65, located on the Bay 70 claim (north-central portion of Bay 56 MTO mineral claim 1069793), intercepted epidote-garnet-carbonate skarn and tuff hosting sphalerite and minor chalcopyrite mineralization yielding 1.56 per cent zinc over 0.6 metre, 6.56 per cent zinc and 0.45 per cent copper over 1.2 metres, 0.76 per cent copper over 1.8 metres and 0.88 per cent copper over 2.4 metres (Assessment Report 14777). In 1989, diamond drilling of mineralized skarn horizons yielded intercepts of 0.44 per cent copper over 12.3 metres in hole E-88, located on the Bar claim (north-central portion of Bay 56 MTO mineral claim 1069793); 0.35 per cent copper and 0.024 per cent molybdenum over 42.7 metres in hole E-95, also located on the Bar claim; 0.83 per cent copper, 0.022 per cent molybdenum and 4.1 grams per tonne silver over 24.4 metres in hole E-90, located on the Bay 68 claim; 0.40 per cent copper over 6.6 metres in hole E-91, located on the Bay 85 claim; 0.34 per cent copper over 12.2 metres in hole E-94, located on the Bay 69 claim; 0.34 per cent copper over 15.2 metres in hole E-96, located on the Bay 59 claim and 0.44 per cent copper over 6.1 metres in hole W-6, located on the Bay 56 claim (Assessment Report 18805). In 1983 and 1984, programs of geological mapping, seven drillholes, totalling 646.0 metres, and six percussion drill holes, totalling 481.7 metres, were completed on the area. In 1985, BHP-Utah Mines completed a ground geophysical survey, six diamond drill holes, totalling 1182.7 metres, and four percussion drill holes, totalling 358.2 metres, on the Bay and Cove claims. In 1986, two drillholes, totalling 475.1 metres, were completed on the Bay claims. In 1988 and 1989, BHP-Utah Mines completed programs of soil

sampling, a 390.0 line-kilometre airborne geophysical survey and nine drillholes, totalling 2704.5 metres.

Fieldwork in 2020 consisted of rock chip geochemistry (6 samples), and a total of 1.9 line-km of ground magnetometer geophysics on the south-central portion of Bay 56 MTO 1069793. Rock samples consisted of 6 angular float samples (no outcrop). Highlights of rock sampling include: 20BAY-3 with 3.69% Cu, 60.2 ppm Ag, >1% Zn, 64 ppm Mo 20BAY-5 with 0.28% Cu, 12.1 ppm Ag, 0.36% Zn, 18 ppm Mo 20BAY-6 with 0.07% Cu, 10.6 ppm Ag, 0.09% Zn, 91 ppm Mo (note-Au not analyzed).

Anomalous Cu-Mo-Ag values in rock chips are located along roadcuts that expose large boulders of angular float that appears to be part of a Bonanza Group calc-alkaline volcanic rocks that are intruded by Jurassic rhyodaeitic porphyries. The rhyodacite is a high level, mineral-bearing intrusive associated with Island Copper open pit deposit which reported pre-production resource of 257,000,000 tonnes @ 0.52% Cu, 0.017% Mo, with cutoff of 0.3% Cu.

Magnetometer geophysical readings were taken using GEM Systems GSM19T v 7.0, vertical component (absolute values) of total field (measured in nano-Teslas), and was recorded at 12.5 m intervals. Two 600 m long survey lines were oriented N-S and two 350 meter long E-W oriented lines also. A total of 1.9 line-kilometers were surveyed measuring vertical component of total field. Diurnal variation was corrected by looping to a common station and comparing the readings over time intervals, as well as comparing variations with NRCanada magnetic observatory data for the date and time of the survey

From a total of 152 readings, the highest reading 56,342.22 nT and lowest reading 53,824.91 nT, giving a range of 2,517.31.7 nT. This range is comparable to the strength of the aeromagnetic anomaly, see Appendix D & F). The 2020 magnetometer survey identified relatively high strength (750-1,500 nT) positive magnetometer readings in the central portion of the property (Fig 5 & 7). The high strength positive magnetometer anomaly on N-S oriented grid lines, likely correlates with 115 degree trending rhyodacitic porphyry dyke and/or intramineral-breccia, high magnetite content, intrusive-country rock zone. E-W oriented magnetometer grid line results suggest relatively weak strength (50-150 nT), relatively poorly defined positive anomaly trend that roughly traces N-S trending, local lineaments (Fig 6 & 8). The results suggest the strong positive anomalies may be caused by increased magnetite contained in underlying bedrock.

Bay 56 mineral claim has potential for a large-scale porphyry and skarn deposit type Cu-Mo-An-Ag-Re bearing mineralization (with coincident magnetic geophysical anomalies), requires detailed mapping of veining (cross-fault structures), ground magnetometer and 3D-IP geophysical surveys, and geochemical sampling to determine future drill targets. Budget total for completing approximately 1,000 meters core drilling (follow-up drilling to extend Cu-Mo bearing mineralization recorded in historic high grade 1980's drill holes, e.g. 1984 DDH WP-6, 1985 DDH E-64, 1986 DDH E-69, W-5, 1989 DDH E-88), as well as geophysical surveys, geochemical sampling would total approximately \$350,000.00.

2.0 INTRODUCTION

This report was prepared by Andris Kikauka, P.Geo, to describe and evaluate the results of geochemical surveys, and prior mineral exploration work by other companies on the Bay 56 mineral property. In preparing this report, the writer has reviewed the geological, geophysical and geochemical reports, maps and miscellaneous papers listed in references section. Numerous sources of information have been cited in this report and all sources are listed in References. Cited reports are usually found in public websites of the Energy, Mines & Petroleum Resources British Columbia (EMPR). Specific website names accessed include Minfile, Aris, Property File, Publications EMPR Bulletins, Mineral Geology (EMPR Fieldwork), Mineral Deposits Profile, Mapplace, Metallic Minerals, Mineral Exploration and Mining, Mineral Statistics, and Mineral Titles. Reports that were examined include assessment reports and various other publications containing technical data regarding geology, geophysics and geochemistry on or in close proximity to Bay 56.

3.0 ACCESS, PHYSIOGRAPHY, CLIMATE, & INFRASTRUCTURE

The Bay 56 property is easily accessed by a series of paved (Harbour Road) and gravel roads (Port Hardy Main), branching from Provincial Highway No 19. An extensive network of active and deactivated forest access and logging/mining roads exist within the mineral claim. The terrain consists of moderate sloping mountains with gentler topography in river valleys and areas of relatively flat (swampy) benches in the southwest portion of the property. Elevations range from 40 to 400 metres. The property is covered by a mixed forest of coniferous prime timber interspersed with second growth forests and scattered clear-cut logged areas, with abundant streams and creeks in valleys. The climate is temperate coastal, cool and wet, with windstorms in late fall, and thick intermittent snow cover in the higher elevations from November to March. Temperatures range from highs of 25°C in the summer to lows of -10°C in the winter.

Port Hardy is a resource-based community of approximately 4,132 people with a sheltered deep sea port accessing the Pacific Ocean, and a paved highway accessing the rest of Vancouver Island. Various companies are actively logging near the mineral property. Main haul roads and forest access roads throughout the property are maintained by various logging companies and the BC Ministry of Forests, Lands and Natural Resource Operations. Aboriginal bands based in Port Hardy with interests and unsettled land claims for traditional territories that may cover portions of the mineral property, including the Gwa'sala-'Nakwaxda'xw First Nations.

4.0 PROPERTY STATUS

The Bay 56 Property consists of 1 mineral tenures (Fig. 2) and covers an area of 225.5 hectares (557 acres). The Bay 56 group of mineral tenures are within the Nanaimo Mining Division and

registered owners of the mineral tenures are William Pfaffenberger (FMC 143363, Bay 56 claims). The mineral claims have not been legally surveyed as they are BC Government established mineral title cell claims. Tenure data for each claim are listed below: The Bay 56 mineral claims are comprised of 1 MTO mineral tenure:

Title	Claim		Title			
Number	Name	Owner	Туре	Issue Date	Good To Date	Area (ha)
			Minera			
1069793	BAY 56	143363 (100%)	I	2019/jul/22	2023/dec/12	225.5

The author undertook a search of the tenure data on the British Columbia government's Mineral Titles Online (MTO) web site which confirms the geospatial locations of the claims boundaries. Details of the status of tenure ownership for the Bay 56 property were obtained from the Mineral-Titles-Online (MTO) electronic staking system managed by the Mineral Titles Branch of the Province of British Columbia. The mineral tenures comprising the Bay 56 property shown in Figure 2 were generated from GIS spatial data downloaded from the Government of BC GeoBC website. Spatial layers are generated by Mineral-Titles-Online (MTO) electronic staking system used to record mineral tenures in British Columbia. Proposed fieldwork on the Bay 56 property that involves surface disturbance, such as drilling or temporary access roads requires Notice of Work Applications submitted to Front Counter BC and an MX permit number must be issued before disturbance proceeds. MX permits issued are subject to concerns that affect numerous stakeholders including First Nations, and other mining projects in the area. At this time, MX permit applications have not been filed with respect to future development work on the Bay 56 property.

5.0 PROPERTY HISTORY

Surface mapping, geochem soil sampling, ground magnetometer surveys and drilling were carried out on Bay 56 area in the mid-sixties as part of the exploration effort that led to the discovery of the Island Copper deposit. The Bay 56 area has since undergone intermittent investigation. It has been recognized as having a porphyry system with characteristics similar to the Island copper deposit, such as its association with a strong magnetometer anomaly (approximately 600 X 1,200 m area, elongated N-S). Work conducted from 1980 to present includes additional mapping, geochem, IP, and ground mag surveys, aeromag survey, percussion and diamond drilling. Most of the work conducted sine 1970 has been reported in various assessment reports. The drilling targets have been a porphyry copper deposit in the Parson Bay formation and a copper skarn deposit in the Quatsino formation. Ore grade copper-skarn intercepts had been encountered in holes E-69 and W-5, and disseminated copper grading 0.25% Cu over 134 meters (440 feet) had been encountered in hole E-64.

In 1983, drilling yielded intercepts of 0.13 per cent copper over 54.0 metres in hole W-5 on the Bay 69 claim (central portion of Bay 56 MTO mineral elaim 1069793), and 0.16 per cent copper over 91.2 metres in hole W-7 on the Bay 57 claim (south-central portion of Bay 56 MTO mineral

claim 1069793) reported in Assessment Report 12271. In 1984, drillhole WP-6 (central portion of Bay 56 MTO mineral claim 1069793) yielded 0.14 per cent copper and 0.017 per cent molybdenum over 69.0 metres (Assessment Report 13536). In 1985, drillhole E-64, located on the Bay 59 claim (east-central portion of Bay 56 MTO mineral claim 1069793), yielded 0.24 per cent copper over 171.0 metres (Assessment Report 14084). In 1986, drillhole E-069, located near the Bay 68 and Bar claims boundary (north-west portion of Bay 56 MTO mineral claim 1069793), yielded up to 2.45 per cent copper and 19.5 grams per tonne silver over 3.0 metres from the upper Quatsino Formation skarn zone, whereas samples from the lower skarn zone yielded up to 2.93 per cent copper over 3.0 metres with molybdenite occurring variably with values up to 0.48 per cent molybdenum over 3.0 metres (Assessment Report 15707). Samples of the mafic porphyry varied from 0.2 to 0.3 per cent copper and 0.010 to 0.050 per cent molybdenum (Assessment Report 15707). Another drillhole (W-5), located a short distance west of E-069 (north portion of Bay 56 MTO mineral claim 1069793), intercepted horizons of massive garnet skarn yielding 0.73 per cent copper over 36.0 metres, including 2.04 per cent copper, 0.31 per cent zinc and 11.95 grams per tonne silver over 3.0 metres from the lower skarn horizon (Assessment Report 16687). Drillhole E-65, located on the Bay 70 claim (north-central portion of Bay 56 MTO mineral claim 1069793), intercepted epidote-garnet-carbonate skarn and tuff hosting sphalerite and minor chalcopyrite mineralization yielding 1.56 per cent zinc over 0.6 metre, 6.56 per cent zinc and 0.45 per cent copper over 1.2 metres, 0.76 per cent copper over 1.8 metres and 0.88 per cent copper over 2.4 metres (Assessment Report 14777). In 1989, diamond drilling of mineralized skarn horizons yielded intercepts of 0.44 per cent copper over 12.3 metres in hole E-88, located on the Bar claim (north-central portion of Bay 56 MTO mineral claim 1069793); 0.35 per eent copper and 0.024 per cent molybdenum over 42.7 metres in hole E-95, also located on the Bar claim; 0.83 per cent copper, 0.022 per cent molybdenum and 4.1 grams per tonne silver over 24.4 metres in hole E-90. located on the Bay 68 claim: 0.40 per cent copper over 6.6 metres in hole E-91, located on the Bay 85 claim; 0.34 per cent copper over 12.2 metres in hole E-94, located on the Bay 69 claim; 0.34 per cent copper over 15.2 metres in hole E-96, located on the Bay 59 claim and 0.44 per cent copper over 6.1 metres in hole W-6, located on the Bay 56 claim (Assessment Report 18805). In 1983 and 1984, programs of geological mapping, seven drillholes, totalling 646.0 metres, and six percussion drill holes, totalling 481.7 metres, were completed on the area. In 1985, BHP-Utah Mines completed a ground geophysical survey, six diamond drill holes, totalling 1182.7 metres, and four percussion drill holes, totalling 358.2 metres, on the Bay and Cove claims. In 1986, two drillholes, totalling 475.1 metres, were completed on the Bay claims. In 1988 and 1989, BHP-Utah Mines completed programs of soil sampling, a 390.0 line-kilometre airborne geophysical survey and nine drillholes, totalling 2704.5 metres.

Previous diamond drill hole geological descriptions, geochemical and geophysical work on Bay 56 is summarized as follows (for DDH locations see Appendix F):

Written log summaries for all the holes are provided below: HOLE # E-88 (Section 285) The hole was drilled in the Northwest Zone to test the eastward extent of the high grade copper metallization encountered in garnet skarn in the Quatsino Formation.

DDH E-69 and W-5, and to test for the updip extension and enhancement of a low grade copper zone encountered in the Parson Bay Formation in hole E-64. The hole encountered an upper section of sphalerite bearing, black and grey, thin bedded Parson Bay siltstones and shales about 18.3 meters (60

6

feet) thick, and a 31.7 meter (104 feet) thick lower unit of thin bedded pyroxene + garnet hornfels and interbedded tuffs separated by a 50.6 meter (166 foot) thick basalt (hornblende) porphyry dyke/sill. The contact with the Quatsino Formation at 125.3 (411 feet) is marked by a garnet skarn band and a 3.7 meter (12 foot) thick fault zone. The hole contains about 70 meters (230 feet) of partly skarnified and largely recrystallized Quatsino Formation limestone with minor interbedded tuff layers. The hole bottomed in Karmutsen basalt with a 28 meter (92 feet) thick dacite porphyry (QFP) dyke occurring from 203.6 meters (668 feet). The Karmutsen volcanic units consist of an upper fine grained, tuffaceous looking unit about 38 meters (125 feet) thick underlain by interlayered 3 - 6 meter (10 - 20) foot thick sections of amygdaloidal basalt and the above fine grained rock. Alteration in the Parson Bay is predominantly weak to moderate pyroxene + garnet hornfels of the thin bedded siltstones and shales with minor biotite alteration of the volcanic interbeds. The Parsor Bay unit above the hornblende porphyry is highly contorted, possibly due to emplacement of the porphyry, but only weakly altered with little bleaching/decarbonization and weak to moderate epidote alteration. The unit contains 2.0% Zn across an interval of 21.3 meter (70 feet) occurring as short veinlets and disseminations.

DDH E-59 north of Bay Lake has a similar occurrence of contorted black Parson Bay rocks with anomalous zinc metallization. The stronger alterations of the Parson Bay units below the hornblende porphyry suggest that the sill/dyke may have acted as a barrier to the hydrothermal fluids. The pyroxene + garnet hornfels development in the lower unit is not strong overall nor is biotite alteration of the volcanic interbeds. However, epidote (retrograde alteration after garnet?) is strong at the bottom of the Parson Bay, an increase in calcareous layers in the protolith. The QFP is weakly chlorite - sericite altered with minor pyrite. The Karmusten fine grained, tuffaceous looking unit is moderately biotite and moderately to strongly magnetite altered with moderate quartz veining. The biotite alteration is weak in the underlying mixed units. Skarn is developed over 2.7 meters (9 feet) at the top contact and over 3 meters (10 feet) at the bottom 23 meters (75 feet) of the Quatsino. The top skarn contains honey, yellow-green coloured garnets, copper grading 0.41% /6.1 meters (20 feet) and minor zinc mineralization. Total sulphide content is low. The bottom garnet skarn sections contain

DDH# E-88 the darker red-brown garnets consistent with proximity to the QFP intrusive, and copper grading 0.56% Cu / 4.7 meters (15.5 feet) with trace zinc (light coloured garnets, a high pyroxene/garnet ratio and anomalous zinc along with the copper mineralization). The total sulphide content in these sections is also low but with short (1 - 3 feet) sections of 5 - 10% pyrite. Moly grades are anomalous in most of the skarn sections with grades up to 0.56% Mo. The anomalous moly grades are not however confined to the skarn horizons. Moly occurs as fracture coatings and with late stage zeolite veins.

DDH # E-89 (Section 269W) This hole was drilled northeast of hole E-64 and east of E-88 to test for up dip continuation of low grade copper mineralization eacountered in E-64, and to determine the depth and extent of alteration/mineralization of the Quatsino formation. Due to property boundary considerations the location of the hole was not considered optimal. The units encountered are summarized as follows: Meters (Feet) 0- 6.7 (0-22) Overburden 6.7 - 21.9 (22 -72) Silicified bedded Parson Bay sediments, dominantly shales and siltstones with minor tuffs. 21.9 - 41.5 (72 - 136) Diorite - weak (primary?) magnetite disseminated throughout. Occasional xenoliths of skarnified sediments and breccia. 41.5 - 64.8 (136 - 212.5) Diorite matrix intrusive breccia with fragments of bedded Parson Bay sediments and hornblende basalt porphyry. 64.8 - 152.4 (212 - 500) Diorite - quartz diorite with included marble + skarn believed to be stoped block of Quatsino limestone.

DDH# E-89 displays moderately intense skarn alterations with re-crystallization and epidote alteration and minor chlorite. This unit is guite similar macroscopically to the guartz diorite of the Quatse stock to the northwest and to outcrop to the northeast. The unit displays moderate disseminated magnetite but it is unclear if this is primary or an alteration. The segment between 41.5 - 74.5 meters (136 - 244.5 feet) contains breccia fragments and runs to 9.8 meters (32 feet) of altered Parson Bay and Quatsino rocks. It is likely that these represent intruded and/or stoped blocks of the pre-existing formations. HOLE # E-90 (Section 309W) The hole was drilled to test the potential for high grade copper in Quatsino skarn to the west of holes E-69 and W-5. The hole collared in 9.1 meters (30 feet) of overburden. The hole contains 180.7 meters (593 feet) of Parson Bay consisting of light green, tan, white and reddish brown banded, thin bedded pyroxene - garnet hornfels and skarn with interbedded tuffs and five sections of basalt (hornblende) perphyry total ling 37.5 meters (123 feet) and 50.9 meters (167 feet) ef Quatsino consisting of garnet skarn, breccia and a central volcanic unit. The hole bottomed in coarse grained porphyry with xeonoliths and dykes of darker diorite. An 8.2 meter (27 foot) thick section of thin bedded garnet + pyroxene skarn underlain by 12.8 meters (42 feet) of green - grey crystal tuff or feldspar porphyry occurs immediately above and in sharp contact with the Quatsino. These units above the Quatsino have been noted in many of the holes in the northwest zone that penetrate through to the Quatsino and indicate continuity to the stratigraphy in the area. A multilithic breccia and a 1.2 meter (4 foot) fault occur at the contact between the Quatsino and the underlying porphyry. The alteration intensity is moderate to high in this hole. The Parson Bay sediments are selectively altered to pyroxene greater than garnet to garnet greater than pyroxene hornfels and skarn, with moderate retrograde epidote - calcite - amphibole (?) alterations and sulphides. The garnets in the Parson Bay hornfels and skarns are generally tan, green, honey-ye1 low and tan to reddish brown in the Quatsino indicating that the hole is close to the main copper-skarn zone. Moderate to strong hematite alteration of the upper Quatsino skarn occurs in veinlets cross-cutting the garnets. Similar hematite alteration in skarn occurs in holes E-66 and E-93. The QFP is weakly altered and cut by hematite.

DDH# E-90 zeolite/carbonate veins. It is not cut by the quartz - carbonate stockwork that occurs in the Quatsino volcanic unit. Weak to moderate magnetite alterations occur in the Quatsino volcanic horizon and in the lower portion of the QFP. The diorite dykes and xenoliths in the QFP are generally moderately magnetic. The upper Quatsino skarn has the best copper metallization with grades up to 2.3% / 3 meters (10 feet) and averaging 0.83% Cu / 23.4 meters (80 feet). Chalcopyrite occurs ds veins up to 20 cm thick and as a disseminations in the skarn. The lower brecciated skarn in the Quatsino and the skarn horizon above the Quatsino contact have grades of 0.72% Cu/ 3 meters (10 feet) and 0.55% Cu/ 6.1 meters (20 feet) respectively. The overall sulphide content of the Parson Bay rocks and the basalt porphyry dykes/sills is high ranging from 3 - 10% with pyrite occurring as disseminations, seams conformable with bedding and as crosscutting pyrite - epidote veins. Sphalerite occurs mainly in the upper part of the hole in amounts up to 2% associated with pyrite - epidote veins.

DDH# E-91 (Section 317W) The hole was drilled to check the westward extent of the high grade copper mineralization encountered in skarn in the Quatsino in hole E-90. The hole collared in 7.0 meters (23 feet) of overburden. A total of 321.3 meters (1054 feet) of Parson Bay occurs in the hole consisting mainly of thin bedded, green and grey siltstone, pyroxene - garnet and garnet - pyroxene bornfels and skarn, with 53.3 meters (175 feet) of interbedded layers of fine grained ash tuff beds to 6 meters (20 feet) thick, and five distinct sections of hornblende porphyry totalling 50.9 meters (167 feet). The contacts of the basalt (hornblende) porphyry is generally conformable with the bedding. The bedding attitudes are 45 - 60 degrees to the core axis above 170.7 meters (560 feet) and 60 - 75 degrees below

(182.9 meters) 600 feet with the transition marked by a pyritic, highly carbonate veined fault polymictic breccia zone. Some local steepening of the bedding occurs below another pyritic fault breccia zone at 244.9 - 250.6 meters (803.5 - 822.3 feet), but in general the bedding flattens to about 80 degrees to the core axis at the Quatsino contact. This is consistent with other holes in the area that show a flattening out of the strata in the central part of the Northwest HOLE # E-91 (cont'd) Zone. However, unlike hole E-90 in which the Quatsino contact was encountered at a shallower depth than anticipated from regional projections, the Quatsino in this hole occurs at the projected depth. The Parson Bay - Quatsino contact is gradational. The contact is taken at the first occurrence of massive garnet skarn at 328.3 meters (1077 feet). The upper part of the Quatsino contains a mix of massive to banded garnet - pyroxene skarn, tuff and amygdaloidal volcanic layers and polymictic breccia. The bulk of the Quatsino in the hole is about 46 meters (150 feet) of grey-white massive to thin bedded merble with minor breccia, garnet skarn and limestone, with minor brecciation of upper and lower contacts. The Karmutsen formation from 428.9 meters (1407 feet) consists of a weakly to moderately magnetite altered, fine grained to weakly porphyritic volcanic rock. Alterations in the Parson Bay calcareous siltstones and shales are mainly development of pyroxene - quartz + garnet hornfels, and garnet pyroxene hornfels and skarn (petrographic description for E91-703'), respectively. The proportion of garnet - pyroxene skarn increases with depth reflecting an increase in the calcareous content of the protolith. The garnet colours are predominantly tan and yellow - green in the upper portion of the Parson Bay changing with depth to ten and yellow - brown in the lower portion to reddish - brown at the Quatsino contact. This is interpreted as indicating an increase in alteration intensity down the hole. The volcanic layers are generally chlorite altered with no biotite identified. Retrograde alterations are moderate to locally strong epidote - amphibole (?) - pyrite. Pyrite is generally abundant in late stage breccias. Alteration in the Quatsino consists of conversion of all the limestone in the top 53.9 meters (177 feet) to tan and reddish-brown garnet + pyroxene skarn and of the bottom 46.6 meters (153 feet) to marble with some unaltered limestone and scattered thin skarn bands. There is no skarn at the bottom contact. Sulphide mineralization consists of pyrite +/- sphalerite +/- chalcopyrite. There is negligible chalcopyrite in the Parson Bay and Quatsino to 331.8 meters (1088.5 feet) and only two short intersections in the Quatsino grading greater than 0.20% Cu (0.98% Cu / 195 cm (6.4 feet) and 0.74% Cu / 183 (G feet). Below 331.8 meters (1088.5 feet) the copper content correlates well if not directly with the zinc. The chalcopyrite occurs as inclusions in the sphalerite. The zinc to copper ratio is greater than one throughout the Parson Bay and Quatsing and is generally high in the skarn horizons. The Parson Bay grades up to 1.0% Zn/ 3 meters (10 feet) and the Quatsino up to 3.9% Zn / 195 cm (6.4 feet) in a skarn horizon at 331.8 meters (1088.5 feet) (the same interval as the high grade copper). Pyrite content is 3 -5% in the epidote altered garnet - pyroxene skarn, lower in the altered siltstones and in amounts to at least 15% in some strong retrograde sulphide alterations bands (eg. 1105.4'). The pyrite content of the volcanic and hornblende porphyry sections is about the same as for the surrounding strata.

DDH # E-93 (Section 309W) The hole was drilled on section 309 south of E-90 to determine the extent of copper mineralization in the Parson Bay sediments and the down-dip extent of the copper bearing Quatsino garnet skarn. The hole collared in 3.7 meters (12 feet) of overburden about 150 meters (500 feet) south west of hole E-90. It contains Parson Bay to 214.6 (?) meters (704 feet) consisting mainly of thin bedded, light green, tan, white pyroxene +/- garnet hornfels and minor skarn, 11.9 meters (39 feet) of biotite altered interbedded tuffs, 98.8 meters (324 feet) of general ly reddish-brown biotite altered basalt (hornblende) porphyry and two dacite porphyry dykes totalling 12.5 meters (41 feet). The Quatsino contact is taken at 214.6 meters (704 feet) where strongly earthy hematite altered limey volcanic rock and garnet skarn are in faulted and brecciated contact with the overlying dacite porphyry.

Underlying this from 221.3 - 225.9 meters (726 - 741 feet) is an intensely sericite altered volcanic rock and/or dacite porphyry in a contact zone with the main coarse grained dacite porphyry (QFP) extending from 225.1 meters (741 feet) to the end of the hole. There is a good possibility that the skarn and volcanic material from 214.6 - 227.3 meters (704 - 726 feet) correlates with the horizons considered to lie immediately above the Quatsino. The QFP encountered in this hole and E-90 to the northeast confirms that at least one contact of the intrusive dips to the north. The QFP contains scattered xenoliths (?) of darker, magnetite altered dioritic intrusive, possibly of the Quatse Stock origin. The QFP appears to post-date the darker intrusive. The Parson Bay sediments and volcanic interbeds dip about 40 - 50 degrees to the core axis at the top of the hole and 50 - 60 degrees in the lower part indicating some flattening of the bedding as interpreted from other holes in the area. The hornblende porphyry sections correlate stratigraphically reasonably well with holes E-64, 91 and 93 in positioning above the Quatsino contact suggesting that these are sills for the most part. Alterations are similar to those encountered in the other holes in the area. The thin bedded siltstones and shales are altered to bleached to light orange - tan - green coloured pyroxene +/- garnet hornfels and skarn (hornfels) with moderate retrograde epidote, amphibole associated with quartz - pyrite +/- moly veins. volcaoic interbeds and the hornblende porphyry units are generally brown biotite altered. The brown alteration is intense in the hornblende porphyry and is associated with strongly sheeted, thin, quartz - pyrite veins cut by later pyrite veins with dark green (chlorite - amphibole?) envelopes. The porphyry is general ly moderately to strongly magnetite altered and very pyritic (+lo%) compared to the surrounding hornfels (5 - 8%). The volcanic interbeds are weakly magnetic. The dacite porphyry (QFP) is generally weakly chlorite - sericite altered with moderate to strong sericite alterations in the wall rock associated with the dyke at the top of the hole, and in the upper portion of the main porphyry from 204.2 meters (670 feet) with some banded quartz-magnetite alteration of the sediments. This quartz magnetite association with the porphyry is also evident in hole W-6. The QFP contains only minor pyrite (1%). A ten foot (3.05 m) interval of red-brown, hematite altered garnet skarn at 217.9 meters (715 feet) yielded the best copper grade in the hole at 0.41% Cu / 10 feet. The Quatsino limestone / skarn has been obliterated by the porphyry in this hole. copper grades are generally less than 0.2% Cu with slightly better grades occurring in the more garnet rich sections of the thin bedded hornfels / skarn. Copper occurs with the pyrite in veins post-dating the skarn alterations. The molybdenum grades are low above 122 meters (400 feet) with the best grades occurring immediately above the intensely silicified zone above the QFP. Molybdenum occurs only with guartz veins.

DDH# E-94 (Section 301W) The hole was drilled to test the up-dip potential of the high-grade copper intersected in garnet skarn in E-69. The hole collared in 7.3 metars (24 feet) of overburden. The hole contains about 149.4 meters (490 feet) of Parson Bay consisting of two main sections of thin bedded siltstones and shales separated by a 98 meter (320 foot) section of hornblende porphyry, 98 meters (320 feet) of marblized and weakly skarnified Quatsino limestone, and bottoms in biotite altered Karmutsen amygdaloidal basalt. Pyroxene greater than garnet skarn is developed at the bottom of the hornblende porphyry in the Parson Bay siltstones and shales (60 cm thick) at the top contact of the Quatsino (152 cm thick), several thin (less than 5 feet thick) horizons within the Quatsino and about 30 meters (100 feet) of partial to complete garnet-greater-than-pyroxene skarn replacement of the limestone at the bottom of the Quatsino. The alteration in the latter section increases in intensity down the hole and the garnets change from yellow-green at the top of the section to orangish-red at the bottom. Retrograde alteration to quartz - epidote are generally weak. Hematite alteration is moderate to strong. HOLE # E-94 The lower skarn unit contains some pyrite +/- chalcopyrite bands, lenses and veins with copper grading 0.33% Cu/ 12.2 meters (40 feet) at 231.6 - 243.8 meters (760 - 800 feet) with a maximum grade

10

of 0.48 % Cu/ 10 feet. Sulphide content above this unit is restricted to scattered veins of pyrite parallel to or crosscutting bedding, and minor sphalerite veins. The Karmutsen volcanics have about 3% pyrite and minor chalcopyrite grading 0.1 - 0.2% Cu. The hole was drilled southeast of W-5 to determine the eastward extent of the high grade copper metallization encountered in W-5 in the Quatsino Formation and to test the Parson Bay Formation for near surface, disseminated-copper metallization. The position of the hole closer to the axis of the projected main northwest porphyry intrusion was deemed to be. more favourable for occurrence of copper than that encountered in hole E-88. The hole collared in 3.5 meters (11.5 feet) of overburden. The hole contains about 198.1 meters (650 feet) of Parson Bay consisting of thin bedded pyroxene + garnet hornfels, several horizons of garnet + pyroxene skarn, biotite altered voclanic interbeds totalling 40.8 meters (134 feet) three sections of basalt (hornblende) porphyry totalling 21.3 meters (70 feet) and 22.5 meters (73 feet) of coarse grained dacite porphyry (QFP). The hole contains about 57.9 meters (190 feet) of QFP in five sections 4.3 - 22.3 meters (14 - 73 feet) thick. A volcanic unit with several garnet skarn bands occurs directly above the Quatsino that has been found in the same relative position in other holes in the northwest zone that penetrate through to the Quatsino. It has been called a crystal tuff or feldsnar porphyry. The Quatsino is about 60 meters (200 feet) thick consisting of an upper and lower red-brown garnet skarn horizon separated by a 21.0 meter (69 foot) thick volcanic core and a 11.6 meter (38 foot) thick QFP dyke. Contacts with the Parson Bay and Karmutsen are masked by the occurrence of basalt (hornblende) porphyry at the upper contact and QFP at the lower contact, respectively. The hole bottomed dut in mixed QFP and diorite, and biotite altered Karmutsen basalt. The Parson Bay siltstones and shales are moderately altered to pyroxene + garnet hornfels and lesser garnet + pyroxene skarn. The volcanic interbeds are weakly to moderately biotite altered.

DDH# E-95 moderate random quartz +- moly +- pyrite with epidote rt amphibole (?) envelopes. Magnetite alteration is weak in the hornfels, and weak to moderate in the Parson Bay and Quatsino skarns with magnetite mainly associated with quartz-pyrite veins. Chalcopyrite occurs disseminated through the Parson Bay with grades of 0.10 - 0.22 common in the hornfels. Garnet skarn horizons with a strong quartz - pyrite - moly stockwork and associated magnetite alterations occur in the lower part of the Parson Bay with grades up to 0.77% Cu/ 10 feet. A zone of copper metallization grading 0.35%/ 42.7 meters (140 feet) at a 0.20% Cu cutoff extending from the Parson Bay skarn units to and including the upper skarn horizon in the Quatsino correlates very well with a zone grading 0.70% Cu/ 42.7 meters (140 feet) in the same horizons in hole E-69 to the north west. The higher copper grades correlate well with garnet skarn development, quartz - pyrite - moly veins and moderate to strong magnetite alterations. Garnet skarn developed at the top and bottom of the Quatsino completely replaces the limestone. There is some zonation of the garnet colours, with the upper horizon containing mainly light to medium red - brown garnets, and the lower unit medium increasing to dark red - brown towards the bottom contact. The upper unit also has better copper metallization grading 0.34% Cu/ 12.2 meters (40 feet) compared to 0.29%Cu/ 9.1 meters (30 feet) for the lower unit. This is consistent with the distribution of copper in hole E-69, but is opposite to that in M-5 where the main copper zone is in the lower skarn unit. The dark garnets and lower copper grade in the lower skarn result from the proximity to the porphyry (ie. the lower grade core zone). The QFP contains only trace amounts of copper and moly clearly post dating the main periods of metallization. Another indication that the porphyry is late is the lack of cross cutting quartz veins. The porphyry in E-96, by comparison, has weak to moderate quartz pyrite - magnetite veining and moly grades comparable to the surrounoing rock. The hole was drilled to test the Parson Bay section west of E-64 for near surface copper metallization of open pittable grade and to determine the eastward extent of the hydrothermal breccia encountered in W-6. The hole

11

contains 29.6 meters (97 feet) of overburden, 60.7 meters (199 feet) of tuffaceous volcanic rocks and minor interbedded sedimentary rocks (Bonanza - Parson Bay Transition zone) with 16.2 meters (53 feet) of weakly sericite - chlorite altered dacite porphyry (QFP) at 62.2 meters (203.5 feet), and 152.4 meters (500 feet) of Parson Bay thin bedded pyroxene + garnet hornfels with three volcanic interbeds totalling about 10.7 meters (35 feet), dykes and sills of QFP to 10 feet thick totalling 7.0 meters (23 feet), and 3.4 meters (11 feet) of basal t (hornblende) porphyry at 120.1 meters (394 feet). The alterations of the Bonanza / Parson Bay volcanics are chlorite - epidote after quartz, biotite, magnetite, and amphibole. Strong oriented sets of quartz + pyrite + moly + magnetite + chalcopyrite veins occur throughout the hole cutting all units. Chalcopyrite occurs as disseminations and veinlets associated with the biotite altered volcanic rocks immediately above and below the QFP intrusive at 62.0 - 78.1 (203.4 - 256.2) with grades up to 0.31% Cu. Molybdenum grades are high as is the case in other holes in the area (eg. W-6, E-64) with the molybdenum occurring mainly with quartz veins. The molybdenum averages 0.024% Mo. / 71.9 meters (236 feet) at the top of the hole. The QFP is weakly sericite altered and cut by quartz + pyrite a moly veins to a lesser degree than the surrounding volcanic rocks and with only weak magnetite alteration. The perphyry appears to truncate most but not all of the quartz veins in the wallrock. The copper grades are low in the porphyry while the moly grades are consistent with the surrounding rock. This appears to be an intramineral intrusive that postdates the main magnetite - quartz and copper predates the molybdenum metallization and associated guartz veins. The Parson Bay siltstones and shales are largely altered to thin bedded greenish and tan pyroxene a garnet hornfets and skam with strong cross cutting quartz - magnetite veins as above. Amphibole associated with quartz - magnetite veins is common and generally altered to chlorite. Chlorite - epidote alterations are moderate to strong. A green (pasty looking) alteration logged at 107.7 - 114.0 meters (354 - 374 feet) and elsewhere in the hole has been recognized in other holes and tentatively identified as pyroxene. Volcanic interbeds in the Parson Bay generally have some biotite alteration with chlorite after biotite. The volcanic initerbeds react with porphyry style hydrothermal alterations while the siltstones and shales alter to pyroxene + garnet hornfels and skarn depending in part on proximity to the porphyry.

DDH W-6 was drilled to test the Parson Bay and Quatsino Formations for disseminated and high-grade copper, respectively. It was originally drilled to 105.8 meters (347 feet) in 1983 to test for near-surface porphyry-cepper mineralization and deepened in 1988. Hole W-6 penetrated 14.3 meters (47 feet) of overburden and intersected 91.4 meters (300 feet) of Parson Bay consisting of thin-bedded hornfels and tuffs cut by a 56.1 meter (184 foot) thick, orange-dacite porphyry dyke. The hole below 106.1 meters (348 feet) consists mainly of a hydrothermal breccia with hornfels, skarn and porphyry fragments altered and cemented by quartz-greater-than-epidote, -magnetite and -sulphides. The garnet and pyroxene alterations predate both the brecciation and vein-control led alteration events. In general, the volcanic rocks are altered to pyroxene hornfels and the thinly bedded siltstones and shales altered to pyroxene-garnet hornfels/skarn with garnet altered to epidote and pyroxene to amphiboles. The retrograde alteration intensity increases down the hole to almost complete replacement by silica at the bottom. The breccia fragments are predominately thinly bedded pyroxene hornfels and minor garnet skarn to 307.2 meters (1008 feet) with a section of mainly basalt (hornblende) porphyry fragments with lesser hornfels and volcanic fragments from 206.0 - 256.0 meters (676 - 840 feet), red - brown skarn fragments from 310.3 - 356.6 meters (1018 - 1170 feet), and volcanic fragments from 356.6 - 381.0 meters (1170 - 1250 feet). The hole bottoms in intensely guartz-flooded breccia with breccia texture almost entirely obliterated. The highly silicified breccia is cross cut at 391.4 meters (1284 feet) by grey green, weakly altered dacite porphyry (QFP) dykes from 0.6 - 17.1 meters (2 - 56 feet) thick totalling 21.3 meters (70 feet). The main structural feature other than the complex brecciation, is a 3 meter (10 foot)

thick fault at 307.2 meters (1008 feet) that separates the thinly bedded hornfels - dominated fragment section (Parson Bay) from the garnet skarn fragment dominated section (Quatsino). The top breccia to 206.0 meters (676 feet) consists of fragments of banded siltstone / tuff, pyroxene-greater-than-gernethornfels + skarn, and minor garnet-greater-than-pyroxene skarn. Retrograde alterations are moderate to strong quartz + molybdenite veining with magnetite, and strong, random to oriented crosscutting pyrite, calcite, epidote, actinolite, + chalcopyrite veins. In the basalt porphyry section from 206.0 - 256.0 meters (676 - 840), intense metasomatic alterations to chlurite, hornblende, epidote, or pyroxene are related to a strong sheeted set of pyrite - epidote - magnetite - calcite - zeolite - amphibole (?) veins oriented at 0 - 10 degrees to the core axis. Alterations affect fragments and matrix. In the section of brecciated/stockworked pyroxene t garnet hornfels and skarn from (206.0 - 256.0 meters (840 - 1008 feet) the vein set is strongly oriented at about 50 - 80 degrees to the core axis - a distinct change in orientation of the vein set. Late stage brecciation events are indicated by quartz - moly veins occurring as fragments in some sections. The pyrite - epidote alterations are more disseminated and HOLE # W-6 microveined in the garnet-skarn dominant polymictic breccia section from 310.3 - 356.6 meters (1018 to 1170 feet) and the underlying yolcanic dominated breccia to 381 meters (1250 feet). From 381 meters (1250 feet) intense quartz flooding - stockworking obliterates most of the breccia texture. The dacite porphyry dykes have sharp contacts and clearly post -date the quartz-magnetite breccia. The total sulphide content is generally 3 - 5% above and including the basalt porphyry dominant breccia increasing to 5 - 8% below. The QFP dykes have generally greater than 3% sulphide. Pyrite 5 chalcopyrite occurs as dissemination and veins. Molybdenum is anomalously high in this hole and occurs with quartz veins. The quartz-moly vein sets are generally cut by the pyrite-epidote - etc. veins.

DDH E-88 is distal to the mineralizing porphyry intrusive effectively closing off the potential for a copper skarn ore deposit to the east in either the Parson Bay or Quatsino formations. This conclusion is based on the generally weak development of pyroxene + garnet hornfels in the Parson Bay Formation and of garnet + pyroxene skarn in Quatsino, the predominance of the light coloured garnets in the skarn except for the bottom units, and the presence of anamalous amounts of zinc. The red-brown skarn development in contact with the QFP is consistent with proximal skarn development, but appears to be a rather localized occurrence. The porphyry in this location does appear to have a strong effect on the Quatsino which may be a function of the thickness of the dyke, fairly strong biotite - magnetite alterations and quartz veining in the Karmutsen volcanics suggests that the main porphyry lies perhaps not too far below the bottom of the hole.

DDH E -89 (Section 269W) The Parson Bay and Quatsino formations have been intruded and replaced by a copper-barren diorite intrusive. This eliminates any possible aastward and up-dip continuation of the northwest zone skarn system in general and the copper mineralization in particular. Further exploration in this direction is unwarranted. E-90 (Section 3091) The skarn in the Quatsino contains good ore grades (+1.5% Cu) but over very limited thickness. This result coupled with the limited thickness of ore grade material in holes E-69 and W-5 indicate that there is little potential for nre to the east of E-90. The full Quatsino thickness is likely not present in this hole as the bottom contact is with the QFP. However, the total thickness present is close to the 61 meters (200 foot) average for the area. The relationship between the QFP and the skarn is not clear as the contact is faulted. The QFP appears to be late stage as is also the case for the QFP encountered in other holes in the area. It is possible that the QFP did not directly cause the skarnification, but is a phase of the mineralizing intrusive. (Section 317W) The weak

garnet skarn development in the Quatsino, the very limited copper mineralization, the generally high zinc to copper ratio and the absence of biotite alteration of the volcanic beds in the Parson Bay indicate that the hole is distal to the mineralizing intrusive. The hole appears to have closed off the deep skarn potential on the west side of the Northwest Zone. A favourable skarn zone could exist some 90 - 150 meters (300 - 500 feet) to the south.

DDH E-93 (Section 309W) The QFP has generated skarn (garnet - pyroxene) and porphyry (biotite quartz +/- magnetite) styles of alterations in the thin bedded sediments and the volcanic/hornblende porphyry units respectively. Copper and molybednum mineralization appear to post-date the main stage alterations. The potential for disseminated, near-surface ore grade copper mineralization appears low. Little can be said about the potential for ore in the Quatsino as porphyry replaces the Quatsino in this location. (Section 301W) The hole is clearly more distal to the source of skarn alterations and mineralization than E-69. This is shown by the weak skarnification of the Parson Bay and the Quatsino, the light coloured garnets in the lower skarn section, the low copper content of the skarn, and the occurrence of some zinc metallization up to 1% in the hole. The hole correlates well with hole E-66 suggesting they are in the same position with respect to the intrusiva. The low copper content of the lower skarn means that there is little potential for up-dip / near surface high grade copper in Quatsino skarn in the northwest zone. (Section 293W) The hole was a good test of the area as it intersected all the units of interest through to the Karmutsen. The copper grades in the Parson Bay and Quatsino Formations are anomalous but not of ore grade. The OFP intersected appears to be late stage, but as in the Island Copper deposit is probably closely tied to the mineralizing intrusive. The hole closes off the deep copper skarn potential down dip from E-69 and along strike from W-5 and eliminates a block of ground between W-5 and E-88 for near surface ore in the Parson Bay. (Section 285W) Copper grades are too spotty and weak to be of economic potential. Although the hydrothermal alterations are strong, the system appears to be weak in copper. However, as in other holes in the area, the moly grades are anomalously high. (Section 301W) The hole is caught up within an intrusive or along the margins of one. The brecciation appears to have mixed fragments but maintained the overall stratigraphic positioning of the units. The apparent Parson Bay- Quatsino contact agrees well with projections of the contact from other holes in the area. The remarkably continuous extent of high moly grades and the generally weak (0.1 - 0.2% Cu) copper grades are consistent with the other northwest holes that indicate that the area is moly dorninant.

Historic DDH Geological Data Summary:

The Karmutsen formation is represented by fine ash to lapilli tuffs rather than the amygdaloidal flows and pillow basalts which predominate elsewhere. It raises the question as to whether this is not Karmusten, but rather volconic horizons in the Quatsino. However, Hole W-5 was drilled about 75 meters into the volcanic without intersecting a lower limestone horizon. The Quatsino formation limestone and interbedded volcanic sediments overlie the Karmutsen rocks. The Quatsino has a thickness ranging from 52 to 98 meters (170 to 320 feet), considerably less than the 290 meter (950 foot) avorage indicated for the Quatsino, but well within the range of variability for the unit. The Parson Bay formation calcareous shales, siltstones and volcanic interbeds conformably overlie the Quatsino rocks. In the Northwest Zone the typically thin bedded, carbonaceous Parson Bay sedimentary rocks have been bleached and skarnified. Drilling indicates that the Parson Bay formation is about 350 - 400 meters thick in the area from the north of the mine to the Northwest Zone. It also indicates that between the Island Copper pit and the Northwest Zone the Parson Bay - Quatsino contact, defined as the first upward occurrence of thinly bedded sediments, is a remarkably planar surface dipping 28 degrees to the southwest with local deformation near the pit. This deformation may be related to the antiform mapped in the pit in the Bonanza volcanics higher up in the section. The Bonanza-Parson Bay contact, taken at the first downward occurrence of the thin bedded shaley sediments characteristic of the Parson Bay, represents a fairly reliable marker. Although volcanic interbeds occur through entire the Parson Bay section on the property, with a thick crystal tuff/basalt porphyry (?) occurring fairly consistently immediately above the Quatsino, the proportion of volcanic interbeds is greater towards the Bonanza-Parson Bay contact. Three types of intrusive rocks occur within and adjacent to the Northwest Zone. These are: 1) quartz diorite, 2) hornblende (plagioclase) basalt porphyry and 3) quartzfeldspar (dacite) porphyry. The Quatse stock exposed north of the area and in holes E-89 and E-64 to the east is a quartz diorite. This intrusive does not appear to be the intrusive causing the skarn alterations in the Northwest Zone as the intensity of the alterations decreases to the north towards the stock (eg. E-94). The hornblende porphyry occurs as dykes and/or sills through the Parson Bay section. The lack of alterations at the margins of the hornblende porphyry and the local development of biotite and sericite alterations in the porphyry indicate that it did not contribute to the hydrothermal alterations in the areas. The quartz-feldspar prophyry has been intersected in a number of drill holes in the Northwest Zone and appears to be associated with intrusive centers recognized in the Island Copper deposit, the Bay Lake area (Bay 90 report), and the May A anomaly area (between the Bay Lake area and Northwest Zone). The strong hydrothermal alterations and the sulphide mineralization in these areas are clearly associated with these intrusions. The drilling and surface mapping (current and previous assessment reports) in the Northwest Zone indicate that the Quatsino and overlying horizons are folded and/or faulted. Hole E-90 intersected the limestone higher in the section than anticipated from the regional picture, whereas hole E-91 intersected the horizon almost exactly where predicted. It is suggested that the deformation is related to the intrusion of the porphyry plugs in the Northwest Zone. Section shows that the horizons have flattened to the south possibly bringing an economic copper skarn horizon on the south side of the intrusive body closer to surface than would be predicted from the regional picture. Alteration and Mineralization: Skarn occurs in both the Quatsino and Parson Bay limestones and the Parson Bay calcareous shales. Significant mineralization occurs in both formations with 3.0 meter (10 feet) intervals of 2 - 3% Cu (holes E-69, W-5 and E-90) and up to 1.2% Cu / 12.1 meters (40 feet) in the Quatsino and 0.25% Cu /I34 meters (440 feet) (E-64) in the Parson Bay. The skarn appears to be related to the quartz-feldspar porphyry intrusive stocks and dykes intersected in holes E-90, E-93, E-95, E-96, W-4 and W-6. Skarn has been intersected in all holes that have penetrated through to the the Quatsino. Molybdenum mineralization occurs in skarn in both formations and some of the quartz-feldspar porphyry dykes. The molybdenum appears to be associated mainly with quartz veins postdating the main skarn alteration events. Hole W-6 is the best oxample of the strong molybdenum mineralization with grades of 0.047% Mo / 281 meters (922 feet) in a quartz stockwork. The broad dispersal of the molybdenum coupled with widespread low-grade copper mineralization in the Parson Bay skarn altered sediments suggests a strong mineralizing system in an open host. The alterations developed in and around the quartz-feldspar porphyry intrusives in the Quatsino and Parson Bay formations are highly variable. However, alterations can be grouped into two alteration styles that reflect the composition of the protoliths, and subdivided into alteration zones (assemblages) that mainly reflect proximity to the the intrusive, and host rock composition and permeability. Skarn-style alterations are developed in the limestone, and calcareous and volcanic sediments that fit a general porphyry-related copper-skarn model. The alteration sequence with decreasing distance from the intrusive is 1) re-crystallization of the limestone to marble (the "marble front") and siltstones to quartzite, and 2) progressive development of

pyroxene hornfels to andradite-garnet skarn. Quartz stockwork with associated molybdenum mineralization is locally strong (e.g. W-6) and retrograde alterations of pyroxene to amphibole, and garnet to epidote and pyrite +/- chalcopyrite are weak to moderate, but pervasive. Porphyry style alterations equivalent to alterations developed in the Island Copper deposit, are present in volcanic interbeds in the Quatsino and Parson Bay formations, and in some of the hornblende porphyry and Karmutsen basalts. The skarn-style a1teration zones in the more calcareous rocks may correlate with the porphyry style alteration zones in volcanic rocks as follows: 1) the copper poor, dark red, garnet-skarn zone closest to the intrusive with the copper poor guartz-magnetite +/- amphibole zone, 2) the proximal reddish-brown garnet, 1 ow pyroxene zone containing the high grade copper mineralization with the copper bearing biotite-magnetite zone, 3) the distal light green and yellowish garnet, high-zinc skarn zone with the pit chlorite-magnetite zone (Cargill's Transition Zone) and 4) the marble and/or pyroxene hornfels zone with the epidote-chlorite zone. In general, the skarn alterations in the Quatsino and Parson Bay rocks are of different styles due to the difference in composition and structure of the protoliths. The massive Quatsino limestone is generally altered to garnet skarn close to the intrusive with sharp contacts with the marble front. The Parson Bay limey sediments tend to be variably altered to garnet and pyroxene skarn and hornfels due to the compositional variability of the sediments. The alteration effects in the Parson Bay tend to extend further from the intrusive contacts due to the effect of bedding planes and permeable beds on fluid flow.

(Source: Minfile 092L 135, assessment report links 1984-1989)

6.0 GENERAL GEOLOGY

Regionally, the area is underlain by northwest-trending belts of basaltic volcanics and carbonate sedimentary rocks of the Upper Triassic Karmutsen and Quatsino formations (Vancouver Group) and mafic volcanics and sediments of the Upper Triassic to Lower Jurassic Bonanza Group (Holberg volcanic unit, and Parson Bay Formation). These volcanic and sedimentary rocks have been intruded by granodioritic rocks of the Early to Middle Jurassic Island Plutonic Suite. Northern Vancouver Island is underlain by Mesozoic volcanic and sedimentary rocks intruded by Jurassic to Tertiary felsic plutons. It forms part of the Insular Belt tectonic terrain. In the area north of Rupert and Holberg Inlets the succession consists of the Upper Triassic Vancouver Group basal tic volcanic rocks of the Karmutsen formation and the calcareous sedimentary rocks of the Quatsino and Parson Bay formations overlain by the Lower Jurassic Bonanza volcanic rocks. Middle Jurassic granodiorite and quartz-feldspar (rhyodacite) porphyries cut these formations. The Island Copper porphyry copper - molybdenum - gold mineralization occurs mainly in the volcanic wall rocks adjacent to one such quartz - feldspar porphyry. Skarn alterations of the Quatsino limestone and Parson Bay calcareous shales develop adjacent to the dykes. Copper mineralization occurs in some of the skarn.

Lithologies present within the Bay 56 mineral claims are listed as follows: LITHOLOGY LEGEND

- KQ- Cretaceous Queen Charlotte Group undivided sediments
- **EMJIgd** Early-Middle Jurassic Island Plutonic Suite, granodiorite
- IJBca Lower Jurassic Bonanza Group calc-alkaline volcanic rocks
- uTrVP Middle-Upper Triassic Vancouver Group Parson Bay Formation limestone, slate, siltstone, argillite
- uTrVK Middle-Upper Triassic Vancouver Group Karmutsen Fm basalt

7.0 PROPERTY GEOLOGY

The Bay 56 occurrences are documented in BC MINFILE 092L 135, and are interpreted as porphyry copper-molybdenum-gold-silver deposit type (e.g. Island Copper) including skarn copper deposit types (e.g. Old Sport or Little Billy copper skarn). Surface mapping, geochem soil sampling, ground magnetometer surveys and drilling were carried out in the mid-sixties as part of the exploration effort that led to the discovery of the Island Copper deposit. The Bay 56 area has since undergone intermittent investigation. It has been recognized as having a porphyry system with characteristics similar to the Island copper deposit, such as its association with a strong magnetometer anomaly (approximately 600 X 1,200 m area, elongated N-S), and Jurassic rhyodacitic intrusives. Work conducted from 1980 to present includes additional mapping, geochem, IP, and ground mag surveys, aeromag survey, percussion and diamond drilling. Most of the work conducted sine 1970 has been reported in various assessment reports. The drilling targets have been a porphyry copper deposit in the Parson Bay formation and a copper skarn deposit in the Quatsino formation. Ore grade copper-skarn intercepts had been encountered in holes E-69 and W-5, and disseminated copper grading 0.25% Cu over 134 meters (440 feet) had been encountered in hole E-64.

8.0 2020 FIELDWORK ROCK SAMPLE GEOCHEMISTRY & MAGNETOMETER GEOPHYSICS

8.1 METHODS AND PROCEDURES

Rock samples, ranging from 0.75-1.5 kilograms in weight, of acorn sized rock chips were taken with rock hammer and moil, and placed in marked poly bags and shipped to ActLabs Ltd, Ancaster, BC for standard rock prep & QOP Total (Total Digestion ICPOES, & INAAGEO) 1F2 & 1D multi-element ultra-trace geochemical analysis, (Appendix A). Methods and procedures for analysis are described in Appendix B. Location was aided by maps from <u>www.Mapplace</u> and Google Earth. Locations were marked by waypoints generated by Garmin 60Cx GPS receiver and considered accurate to within 3-5 meter accuracy for northing and easting (elevations are considered rough estimates, and can not be relied upon). Geological descriptions of rock samples were noted (Appendix C). Magnetometer geophysical readings were taken using GEM Systems GSM19T v 7.0, vertical component (absolute values) of total field (measured in nano-Teslas), and was recorded at 12.5 m intervals. Two 600 m long survey lines were oriented N-S and two 350 meter long E-W oriented lines also. A total of 1.9 line-kilometers were surveyed measuring vertical component of total field. Diurnal variation was corrected by looping to a common station and comparing the readings over time intervals, as well as comparing variations with NRCanada magnetic observatory data for the date and time of the survey

8.2 ROCK GEOCHEMISTRY

Fieldwork in 2020 consisted of rock chip (6 samples), targeting Cu-Mo-Au-Ag-Re bearing mineralization related to Jurassic rhyodacitic porphyry (and related hydrothermally altered, brecciated, and faulted Bonanza Group volcanic host rocks). A total of six rock chip samples were taken in the central part of Bay 56 MTO mineral claim 1069793 (Fig 4 & 9). Rock samples consisted of 6 angular float samples. Rock chip samples were shipped to Actlabs Canada Ltd, Ancaster ON for standard rock prep & QOP Total (Total Digestion ICPOES, & INAAGEO) 1F2 & 1D multi-element ultra-trace geochemical analysis. Sample descriptions and geochemical analysis results from rock chips are listed as follows: Source: Actlabs Certificate A20-05987-IF2 (& 8-4-ACID)

-	±	-	•		
Sample ID	Zone name	Easting NAD 83	Northing NAD 83	Elev (m)	Sample Type
20BAY1	Main road	604811	5609505	66	angular float
20BAY2	Main road	604752	5609302	41	angular float
20BAY3	Main road	604757	5609294	37	angular float
20BAY4	Main road	604677	5609018	40	angular float
20BAY5	Spur road	604566	5608935	64	angular float
20BAY6	Spur road E	604920	5609013	59	angular float

Rock chips samples taken in 2020 on Bay 56 (MTO 1069793) are described as follows:

Sample		
ID	Lithology	Alteration
20BAY1	marble (indurated Quatsino)	carbonate, epidote, quartz, brecciated, grey-white colour
20BAY2	marble (indurated Quatsino)	carbonate, quartz, brecciated, grey-white colour
20BAY3	andesite (indurated Karmutsen)	quartz, brecciated & 1-4 cm whispy veins, grey-green colour
20BAY4	andesite (indurated Karmutsen)	quartz, brecciated & 1-4 cm whispy veins, grey-green colour
20BAY5	andesite (indurated Karmutsen)	quartz-carbonate, brecciated & 0.1-0.5 cm veins, 0.2% limonite
20BAY6	andesite (indurated Karmutsen)	quartz-carbonate, brecciated & 0.1-0.5 cm veins, 0.2% limonite
Sample ID	Mineralization	

20BAY1	0.2% disseminated pyrite, 0.1% galena, tr chalcopyrite, 0.1% limonite
20BAY2	0.2% disseminated pyrite, tr chalcopyrite, 0.1% limonite
20BAY3	12% pyrite, 5% chalcopyrite, 0.4% limonite, 2% sphalerite, 0.05% MoS2
20BAY4	0.5% pyrite, 0.1% chalcopyrite, 0.1% limonite
20BAY5	0.5% chalcopyrite, 15% pyrite, 0.1%, 3% magnetite, 1.5% pyrolusite
20BAY6	1% chalcopyrite, 15% pyrite, 0.075% MoS2 (molybdenite)

Sample	Cu	%	Ag	Zn	Pb	Мо		
ID	ppm	Cu	ppm	ppm	ppm	ppm		
20BAY1	221	0.02	0.4	1640	1220		3	
20BAY2	118	0.01	0.3	128	18		4	
20BAY3	36900	3.69	60.2	10000	129	(64	
20BAY4	115	0.01	0.4	140	45		9	
20BAY5	2790	0.28	12.1	3610	102	:	18	
20BAY6	676	0.07	10.6	849	235	9	91	
Sample	Bi	As	Ва	Mn	Fe	%	%	
Sample ID	Bi ppm	As ppm	Ba ppm	Mn ppm	Fe %	% Ca	% Mg	% S
Sample ID 20BAY1	Bi ppm 2	As ppm 17	Ba ppm 216	Mn ppm 4610	Fe % 8.35	% Ca 5.24	% Mg 2.41	% S 0.75
Sample ID 20BAY1 20BAY2	Bi ppm 2 2	As ppm 17 7	Ba ppm 216 177	Mn ppm 4610 1540	Fe % 8.35 7.89	% Ca 5.24 3.64	% Mg 2.41 2.22	% S 0.75 1.36
Sample ID 20BAY1 20BAY2 20BAY3	Bi ppm 2 2 199	As ppm 17 7 262	Ba ppm 216 177 26	Mn ppm 4610 1540 5990	Fe % 8.35 7.89 28.2	% Ca 5.24 3.64 1.3	% Mg 2.41 2.22 1.84	% S 0.75 1.36 20
Sample ID 20BAY1 20BAY2 20BAY3 20BAY4	Bi ppm 2 2 199 2	As ppm 17 7 262 147	Ba ppm 216 177 26 53	Mn ppm 4610 1540 5990 5690	Fe %) 8.35) 7.89) 28.2) 8.35	% Ca 5.24 3.64 1.3 3.47	% Mg 2.41 2.22 1.84 3.16	% S 0.75 1.36 20 3.25
Sample ID 20BAY1 20BAY2 20BAY3 20BAY4 20BAY5	Bi ppm 2 199 2 15	As ppm 17 7 262 147 157	Ba ppm 216 177 26 53 43	Mn ppm 4610 1540 5990 5690 7150	Fe % 8.35 7.89 28.2 8.35 8.35 19.3	% Ca 5.24 3.64 1.3 3.47 0.68	% Mg 2.41 2.22 1.84 3.16 1.72	% S 0.75 1.36 20 3.25 9.64

Rock samples taken on the Bay 56 mineral claim consisted of 6 angular float samples (no outcrop). Highlights of rock sampling include:

```
20BAY-3 with 3.69% Cu, 60.2 ppm Ag, >1% Zn, 64 ppm Mo
```

20BAY-5 with 0.28% Cu, 12.1 ppm Ag, 0.36% Zn, 18 ppm Mo

20BAY-6 with 0.07% Cu, 10.6 ppm Ag, 0.09% Zn, 91 ppm Mo

(note-Au not analyzed). Anomalous Cu-Mo-Ag values in rock chips are located along roadcuts that expose large boulders of angular float. Cu-Mo-Ag-Zn bearing mineralization appears to be part of a Bonanza Group calc-alkaline volcanic rocks that are intruded by Jurassic rhyodacitic porphyries. The rhyodacite is a high level, mineral-bearing intrusive associated with Island Copper open pit deposit (reported pre-production resource of 257,000,000 tonnes @ 0.52% Cu, 0.017% Mo, with cutoff of 0.3% Cu).

8.3 GROUND MAGNETOMETER GEOPHYSICS

Magnetometer geophysical readings were taken using GEM Systems GSM19T v 7.0, vertical component (absolute values) of total field (measured in nano-Teslas), and was recorded at 12.5 m intervals. Two 600 m long survey lines were oriented N-S and two 350 meter long E-W oriented lines also. A total of 1.9 line-kilometers were surveyed measuring vertical component of total field. Diurnal variation was corrected by looping to a common station and comparing the readings over time intervals, as well as comparing variations with NRCanada magnetic observatory data for the date and time of the survey

From a total of 152 readings, the highest reading 56,342.22 nT and lowest reading 53,824.91 nT, giving a range of 2,517.31.7 nT. This range is comparable to the strength of the aeromagnetic anomaly, see Appendix D & F). The 2020 magnetometer survey identified relatively high strength (750-1,500 nT) positive magnetometer readings in the central portion of the property (Fig 5 & 7). The high strength positive magnetometer anomaly on N-S oriented grid lines, likely correlates with 115 degree trending rhyodacitic porphyry dyke and/or intramineral-breccia, high

magnetite content, intrusive-country rock zone. E-W oriented magnetometer grid line results suggest relatively weak strength (50-150 nT), relatively poorly defined positive anomaly trend that roughly traces N-S trending lineaments (Fig 6 & 8). The results suggest the strong positive anomalies may be caused by increased magnetite contained in underlying bedrock.

9.0 DISCUSSION OF RESULTS

Bay 56 claims Cu-Mo mineralization is associated with Jurassic calc-alkaline porphyry Cu+/-Mo+/-Au, and exhibits similar geological features as Island Copper and Hushamu porphyry deposits. The Bay 56 claims also exhibit potential for Late Jurassic age skarn deposits.

Copper-molybdenum bearing mineralization appear to be associated with phases of widespread pyrite. This suggests that IP geophysics would be an effective tool for future exploration for porphyry type mineralization with Cu-Mo values, and gold-silver (Au-Ag) are considered a potential valuable by-product as well as rhenium (Re). Previous work on the claims led to widespread drilling of a 1 X 2 kilometer area, which effectively mapped the lithology, alteration and identified several disseminated Cu-Mo bearing mineral zones. These Cu-Mo zones contain potential precious and rare metal by-products that are economically attractive.

10.0 CONCLUSIONS AND RECOMMENDATIONS

Anomalous Cu-Mo-Ag-Zn values in rock chips are located in the central portion of the mineral property. Rock sample geochemistry (and previous diamond drilling results) suggest the area is widely mineralized and appears to be part of a large-scale hydrothermal system. There is potential for a large-scale structure, e.g. antiform fold hinge associate with deep-seated major fault and rhydocitic porphyry intrusives (with coincident magnetic geophysical anomalies). Rhyodacitic intrusives and related structures requires detailed mapping of veining/jointing/fracturing/cross-fault structures, and follow-up ground magnetometer, 3D-IP geophysical surveys, and geochemical sampling to determine future drill targets. For completing approximately 1,000 meters core drilling (follow-up drilling to extend Cu-Mo bearing mineralization recorded in historic high grade 1980's drill holes, e.g. 1984 DDH WP-6, 1985 DDH E-64, 1986 DDH E-69, W-5, 1989 DDH E-88), core drilling, geophysical surveys, geochemical sampling, the total budget would be approximately \$350,000.00.

11.0 REFERENCES

British Columbia Ministry of Energy and Mines websites including: Mineral Titles Online (https://www.mtonline.gov.bc.ca/mtov/home.do) MapPlace (http://www.empr.gov.bc.ca/Mining/Geoscience/MapPlace/Pages/default.aspx) MINFILE (http://www.empr.gov.bc.ca/Mining/Geoscience/MINFILE/Pages/default.aspx) ARIS (http://www.empr.gov.bc.ca/Mining/Geoscience/ARIS/Pages/default.aspx)

Northisle Copper and Gold Inc. website: http://www.northisle.ca/s/Home.asp

EMPR AR 1966-65; 1967-68; 1968-84,88

EMPR ASS RPT 710, 738, 9305, 11366, 12271, 13346, 13536, 14084, 14169, 14170, 14777, 15707, 16152, 16687, 17580, 17581, 18805, 37001

EMPR EXPL 1983-336; 1985-C234; 1987-C222

EMPR GEM 1969-204; 1970-254

GSC BULL 242

GSC MAP *4-1974

GSC OF 9; 170; 463; 722

CJES 18, page 1; 20, page 1 (January 1983)

Carson, D.J.T., (1968): Metallogenic Study of Vancouver Island with

emphasis on the Relationship of Plutonic Rocks to Mineral Deposits,

Ph.D. Thesis, Carleton University, Ottawa

Sangster, D.F., (1964): The Contact Metasomatic Magnetite Deposits

of Southwestern British Columbia, Ph.D. Thesis, University of

British Columbia

EMPR

PFD 12527, 12528, 12529, 12530, 810379, 883204, 826852, 673346, 673347, 502970, 502971, 502972, 502973, 50 2974, 502975, 502976, 502985, 502986, 503018, 503022, 503023, 503042

CERTIFICATE AND DATE

I, Andris Kikauka, of 4199 Highway, Powell River, BC am a self-employed professional geoscientist. I hereby certify that:

1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.

2. I am a Fellow in good standing with the Geological Association of Canada.

3. I am registered in the Province of British Columbia as a Professional Geoscientist.

4. I have practiced my profession for thirty five years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., Mexico, Central America, and South America, as well as for three years in uranium exploration in the Canadian Shield.

5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject property during which time a technical evaluation consisting of geochemical sampling, and geophysical surveying carried during May 27-29, 2020

6. I do not have a direct interest in the Bay 56 mineral claim, however the recommendations in this report are intended to serve as a guideline, and cannot be used for the purpose of public financing.

7. I am not aware of any material fact or material change with respect to the subject matter of this Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

8. This technical work report supports requirements of BCEMPR for Exploration and Development Work/Expiry Date Change.

Andris Kikauka, P. Geo.,

A. Kikanka

September 2, 2020

ITEMIZED COST STATEMENT-CLAIM NAME: BAY 56 (LOCATED BETWEEN PORT HARDY & COAL HARBOUR) MINERAL TENURE NUMBER 1069793 GEOPHYSICAL & GEOCHEMICAL FIELDWORK DONE MAY 27-29, 2020 WORK PERFORMED ON MINERAL TENURE 1069793 NANAIMO MINING DIVISION, NTS 92L 12E (TRIM 092L 063)

FIELD CREW:

A. Kikauka (Geologist) 3 days (surveying, mapping) \$ 1,890.00

FIELD COSTS:

Mob/demob/preparation	105.90
Meals and accommodations	235.50
Truck mileage & fuel (680 km @ \$0.55/km)	374.00
Magnetometer rental (3 days)	195.00
Equipment and Supplies (bags, flags, tags, field gear)	31.85
Actlabs INAA Neutron Activation analysis (6 rock samples)	291.60
Report	650.00

Total= \$ 3,773.85

Quality Analysis ...

Report No.:	A20-05987-1F2
Report Date:	05-Aug-20
Date Submitted:	10-Jun-20
Your Reference:	Bay 56

Geofacts Consulting 2233 E 12th Street Vancouver BC V5N 2B2 Canada

ATTN: Andris Kikauka

CERTIFICATE OF ANALYSIS

6 Rock samples were submitted for analysis.

The following analytical package(s) were requested	:	Testing Date:
1F2	QOP Total (Total Digestion ICPOES)	2020-07-31 12:11:17

REPORT A20-05987-1F2

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme, Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Results

.

.

۰.

Activation Laboratories Ltd.

_

Report: A20-05987

Analyte Symbol	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	К	Mg	LI	Mn	Мо	Na	NI	Р	Pb
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	%	ppm
Lower Limit	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	1	0.01	1	0.001	3
Method Code	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TDJCP	TD-ICP	TD-ICP	TD-ICP	TDJCP	TD-ICP	TD-ICP	TD-ICP	TD-JCP	TD-ICP									
20Bay 1	0.4	7.83	17	216	<1	<2	5.24	6.9	25	- 82	227	8.35	17	<1	0.42	2.41	25	4610	3	0.44	42	0.074	1220
20Bay 2	0.3	8.96	7	177	<1	<2	3.64	0.4	18	29	118	7.89	17	1	0.26	2.22	28	1540	4	1.87	15	0.125	18
20Bay 3	60.2	5.38	262	26	<1	199	1.30	263	132	212	> 10000	28.2	24	6	0.06	1.84	17	5998	64	< 0.01	130	0.096	129
20Bay 4	0.4	8.22	147	53	<1	<2	3.47	< 0.3	27	140	115	8.35	17	<1	0.38	3.16	20	5690	9	1.38	40	0.079	45
20Bay 5	12.1	7.21	157	43	<1	15	0.68	25.2	23	46	2790	19.3	19	4	0.91	1.72	19	7150	18	0.08	28	0.130	102
20Bay 6	10.6	4.03	458	18	<1	33	0.26	4.9	42	34	676	30.5	19	4	0.27	0.94	16	4690	91	< 0.01	26	0.041	235

şî,

-0

Results

Activation Laboratories Ltd.

Report: A20-05987

Analyte Symbol	Sb	s	Sc	Sr	Te	Ti	TI	Ú	٧	W	Y	Zn	Zr
Unit Symbol	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5
Method Code	TD-ICP	TD-JCF											
20Bay 1	< 5	0.75	21	368	4	0.36	< 5	< 10	213	< 5	14	1640	60
20Bay 2	< 5	1.36	19	465	2	0.45	< 5	< 10	205	< 5	16	128	6
20Bay 3	< 5	> 20.0	21	24	28	0.33	< 5	< 10	176	< 5	10	> 10000	46
20Bay 4	< 5	3.25	27	523	12	0.41	< 5	< 10	222	< 5	17	140	60
20Bay 5	6	9.64	17	28	8	0.36	< 5	< 10	171	< 5	13	3610	63
20Bay 6	< 5	> 20.0	9	7	15	0,21	< 5	< 10	86	10	6	849	48

QC

Activation Laboratories Ltd.

Report: A20-05987

Analyte Symbol	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	Mg	LI	Mn	Мо	Na	NI	P .	Pb
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ррт	ppm	%	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	%	ppm
Lower Limit	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	Ţ	1	1	0.01	1	0.001	3
Method Code	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-JCP	D-ICP	TD-ICP	TD-ICP	TD-JCP	TD-ICP	TD-ICP	TD-ICP	TD-JCP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP
SDC-1 Meas		8.24	< 3	616	3		1.07		18	-44	28	4.82	21	<1	1.22	1.02	34	878		1.56	36	0.064	21
SDC-1 Cert		0.34	0.220	630	3.00		1.00		18.0	64.00	30.000	4.82	21.00	0.20	2.72	1.02	34	880.00		1.52	38.0	0.0690	25.00
SDC-1 Meas		8.17	< 3	630	3		1.00		17	40	30	4.75	22	<1	1.11	1.01	35	874		1.54	35	0.061	22
SDC-1 Cert		8.34	0.220	630	3.00		1.00		18.0	64.00	30,000	4.82	21.00	0.20	2.72	1.02	34	.880.00		1.52	38.0	0.0690	25.00
Oreas 72a (4 Acid Digest) Meas			3						149	156	315	9.68									6320		
Oreas 72a (4 Acid Digest) Cert			14.7						157	228	316	9.63									6930.0 00		
Oreas 72a (4 Acid Digest) Meas			5						150	236	319	9.67									6380		
Oreas 72a (4 Acid Digest) Cert		_	14.7						157	228	316	9.63									6930.0 00		
OREAS 101b (4 Acid) Meas									45		411	10.6			1.67	1.24		906	17		9	0.117	20
OREAS 101b (4 Acid) Cert									45		412	10.7			2.36	1.23		927	20.1		8.2		23
OREAS 101b (4 Acid) Meas									44		408	10.2			1.50	1.21		914	18		8	0.113	16
OREAS 101b (4 Acid) Cert					[45		412	10.7			2.36	1.23		927	20.1		8.2		23
OREAS 98 (4 Acid) Meas	43.6					54			118		> 10000										-		292
OREAS 98 (4 Acid) Cert	45.1					97.2			121		14800 0.0												345
OREAS 98 (4 _ Acid) Meas	43.8					23			118		> 10000												286
OREAS 98 (4 Acid) Cert	45.1					97.2			121		14800 0.0				<u> </u>								345
DNC-1a Meas				103			7.33		55	127	103	7.32	14				5			1.53	253		< 3
DNC-1a Cert	_			118	·		8.21		57	270	100	6.97	15				5.2			1.40	247		6.3
DNC-1a Meas				99			7.11		54	116	95	6.96	14	L			5.			1.48	245		< 3
DNC-1a Cert				118			8.21		57	270	100	6.97	15				5.2	<u> </u>		1.40	247		6.3
OREAS 13b (4-Acid) Meas	0.9		43						74	8650	2350								8		2170		
OREAS 13b (4-Acid) Cert	0.86		57						75	8650.0 00	2327.0 000								9.0		2247.0 000		
OREAS 13b (4-Acid) Meas	0.8		45						73	9110	2310								9		2110		
OREAS 13b (4-Acid) Cert	0.86		57						75	8650.0 00	2327.0 000								9.0		2247.0 000		
OREAS 904 (4 ACID) Meas	0.3	6.64	77	207	9	<2	0.05		93	52	6180	6.91	18		2.11	0.60	16	432	<1	0.02	44	0.103	8
OREAS 904 (4 ACID) Cert	0.551	6.30	98.0	194	7.86	4.05	0.0460		83.0	54.0	6120	6.68	16.7		3.31	0.556	16.7	410	2.12	0.0340	40.1	0.0980	10.6
OREAS 904 (4 ACID) Meas	0.9	6.37	90	199	9	2	0.05		90	56	5990	6.68	15		4.05	0.57	16	434	1	0.02	42	0.111	6
OREAS 904 (4 ACID) Cert	0.551	6.30	98.0	194	7.86	4.05	0.0460		83.0	54.0	6120	6.68	16.7		3.31	0.556	16.7	410	2.12	0.0340	40.1	0.0980	10.6
SBC-1 Meas			22	496	3	< 2		0.4	23	94	31	 	28				160	ļ	2		84		27
SBC-1 Cert			25.7	788.0	3.20	0.70		0.40	22.7	109	31.0	ļ	27.0	ļ	<u> </u>		163	<u> </u>	2		83		35.0
SBC-1 Meas			26	739	3	<2	ļ	0,6	22	91	30	 	27	ļ		<u> </u>	157		18		84		28
SBC-1 Cert			25.7	788.0	3.20	0.70		0.40	22.7	109	31.0		27.0	ļ			163	<u>-</u>	2,4		83	0.045	35.0
OREAS 45d (4-Acid) Meas		7.85	8	183	<1	<2	0.19		31	534	376	14.7	25		0.39	0.25	22	517	<1	0.09	238	0.040	18
OREAS 45d (4-Acid) Cert		8.150	13.8	183.0	0.79	0.31	0.185		29.50	549	371	14.5	21.20		0.412	0.245	21.5	490.000	2.500	0.101	231.0	0.042	21.8
IOREAS 45d	l	I 8.19	I < 3	183	1 <1	1 < 2	I 0.20	1	I 29	i 448	I 363	14.4	26	1	0.38	0.25	22	491	<1	0.09	234	0.038	18

QC

_

Analyte Symbol	Aq	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Нg	ĸ	Mg	Li	Mn	Мо	Na	Ni	P	Pb
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	%	ppm
Lower Limit	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	1	0.01	1	0.001	3
Method Code	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-JCP	TD-ICP	TD-ICP	TD-ICP	TD-JCP	TD-ICP	TD-ICP	TD-ICP	TD-JCP	TD-ICP	TD-ICP	TD-ICP	TiDrICP	TD-ICP	TD-ICP	TD-ICP	TiDrICP	TD-ICP	TD-ICP
(4-Acid) Meas																							
OREAS 45d (4-Acid) Cert		8.150	13.8	183.0	0.79	0.31	0.185		29.50	549	371	14.5	21.20		0.412	0.245	21.5	490.000	2.500	0.101	231.0	0.042	21.8
OREAS 45d (4-Acid) Meas		8.16	5	183	<1	₹2	0.20		30	473	370	14.4	25		0.39	0.25	22	507	<1	0.09	239	0.039	18
OREAS 45d (4-Acid) Cert		8.150	13.8	183.0	0.79	0.31	0.185		29.50	549	371	14.5	21.20		0.412	0.245	21.5	490.000	2.500	0.101	231.0	0.042	21.8
OREAS 96 (4 Acid) Meas	11.5	<u> </u>				18			50		> 10000												90
OREAS 96 (4 Acid) Cert	11.5					26.3			49.9		39300												101
OREAS 93 (4 Acid) Meas	12.0					28			50		> 10000												90
OREAS 96 (4 Acid) Cert	11.5					26.3			49.9		39300												101
OREAS 923 (4 Acid) Meas	1.7	7.40	5	420	2	18	0.50	0.4	23	67	4240	6.47	20		1.73	1.74	31	971	<1	0.32	37	0.070	75
OREAS 928 (4 Acid) Cert	1.60	7.29	7.61	434	2.42	21.4	0.473	0.420	23.1	71.0	4230	6.43	20.3		2.51	1.69	31.4	950	0.930	0.324	35.8	0.0630	83.0
OREAS 923 (4 Acid) Meas	2.5	7.54	5	313	2	13	0.51	0.4	23	63	4290	6.61	20		1.76	1.77	31	964	< 1	0.33	36	0.071	74
OREAS 523 (4 Acid) Cert	1:60	7.29	7,61	434	2.42	21.4	0.473	0.420	23.1	71.0	4230	6.43	20.3		2.51	1.69	31.4	950	0.930	0.324	35.8	0.0630	83.0
OREAS 621 (4 Acid) Meas	70.5	6.74	65		2	< 2	2.10	281	30	30	3670	3.85	24		1.54	0.53	14	530	13	1.38	30	0.041	> 5000
OREAS 621 (4 Acid) Cert	69.0	6.40	77.0		1.69	3.93	1.97	284	29.3	37.1	3630	3.70	24.6		2.20	0.507	14.2	532	13.6	1.31	26.2	0.0359	13600
OREAS 821 (4 Acid) Meas	66.9	4.93	63		2	<2	1.82	269	29	41	3480	3.52	25		1.38	0.47	13	541	12	1.29	28	0.038	> 5000
OREAS 621 (4 Acid) Cert	69.0	6.40	77.0		1.69	3.93	1.97	284	29.3	37.1	3630	3.70	24.6		2.20	0.507	14.2	532	13.6	1.31	26.2	0.0359	13600
OREAS 522 (4 Acid) Meas	1.5	4.03	274		<1	10	3.56		521	32	8690	24.4	20		2.56	1.16	16	3760	166	0.64	66	0.090	5
OREAS 522 (4 Acid) Cert	1.31	3.95	490		0.700	8.72	3.65		550	29.6	9160	24.6	16.0		2.83	1.12	16.2	3970	206	0.633	70.0	0.0890	12.5
OREAS 522 (4 Acid) Meas	1.5	4.12	434		< 1	5	3.66		536	32	9030	24.9	21		2.68	1.19	17	3900	200	0.66	68	0.097	4
OREAS 522 (4 Acid) Cert	1.31	3.95	490		0.700	8.72	3.65		550	29.6	9160	24.6	16.0		2.83	1.12	16.2	3970	206	0.633	70.0	0.0890	12.5
Method Blank	< 0.3	< 0.01	< 3	<7	<1	<2	< 0.01	< 0.3	<1		<1	< 0.01	<1	<1	< 0.01	< 0.01	<1	2	< 1	< 0.01	<1	< 0.001	< 3
Method Blank	< 0.3	< 0.01	< 3	< 7	<1	< 2	< 0.01	< 0.3	<1	1	5	< 0.01	<1	<1	< 0.01	< 0.01	<1		<1	< 0.01	<1	< 0.001	< 3
Method Blank	< 0.3	< 0.01	< 3	<7	< 1	<2	< 0.01	< 0.3	<1		1	< 0.01	<1	<1	< 0.01	< 0.01	<1	ļ	<1	< 0.01	<1	< 0.001	< 3
Method Blank	< 0.3	< 0.01	< 3	<7	<1	<2	< 0.01	< 0.3	<1	<u> </u>	<1	< 0.01	<1	<1	< 0.01	< 0.01	<1	<u> </u>	· <1	< 0.01	< 1	< 0.001	< 3
Method Blank	< 0.3	< 0.01	< 3	< 7	<1	< 2	< 0.01	< 0.3	<1		<1	< 0.01	<u> <1</u>	<u><1</u>	< 0.01	< 0.01	<1	<u> </u>	<1	< 0.01	<1	< 0.001	< 3
Method Blank	< 0.3	< 0.01	< 3	<7	<1	<2	< 0.01	< 0.3	<1		<u><1</u>	< 0.01	<u><1</u>	<u> <1</u>	< 0.01	< 0.01	<1		<1	< 0.01	<1	< 0.001	< 3
Method Blank	< 0.3	< 0.01	< 3	<u> <7</u>	<1	<2	< 0.01	< 0.3	<1	I	<1	< 0.01	<1	<1	< 0.01	< 0.01	<1	<u> </u>	<1	< 0.01	<1	< 0.001	< 3
Method Blank	< 0.3	< 0.01	<3	<7	<1	<2	< 0.01	< 0.3	<1		<1	< 0.01		<u></u>	< 0.01	< 0.01	<1	<u> </u>	<1	< 0.01	<1	< 0.001	< 3
ivietriod Blank	1 < 0.3	< 0.01	<3	1 </td <td> <1</td> <td> <2</td> <td>< 0.01</td> <td> < 0.3</td> <td>< 1</td> <td>2</td> <td> <1</td> <td> < 0.01</td> <td> < </td> <td>1 <1</td> <td> < 0.01</td> <td> < 0.01</td> <td>< </td> <td></td> <td> < </td> <td>< 0.01</td> <td>< </td> <td>< 0.001</td> <td>< 3</td>	<1	<2	< 0.01	< 0.3	< 1	2	<1	< 0.01	<	1 <1	< 0.01	< 0.01	<		<	< 0.01	<	< 0.001	< 3

Activation Laboratories Ltd.

Analyte Symbol	Sb	S	Sc	Sr	Тө	Ti	TI	Ū	٧	W	Y	Zn	Zr
Unit Symbol	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5
Method Code	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-JCP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-JCP
SDC-1 Meas	< 5	-	15	165		0.25	< 5	< 10	62	< 5		105	41
SDC-1 Cert	0.54		17.00	160.00		0.606	0.70	3.10	102.00	0.80		103.00	290.00
SDC-1 Meas	< 5		15	167		0.09	< 5	< 10	38	< 5		106	38
SDC-1 Cert	0.54		_17.00	180.00		0.606	0.70	3.10	102.00	0.80		103.00	290.00
Oreas 72a (4 Acld Digest) Meas		1.70											
Oreas 72a (4 Acid Digest) Cert		1.74											
Oreas 72a (4 Acld Digest) Meas		1.71											
Oreas 72a (4 Acid Digest) Cert		1.74											
OREAS 101b (4 Acid) Meas						0.33		350	76		128		
OREAS 101b (4						0.35		387	77		133		
OREAS 101b (4						0.34		350	78		124		
OREAS 101b (4						0.35		387	77		133		
OREAS 98 (4 Acid) Meas	8	15.4										1250	
OREAS 98 (4 Acid) Cert	20.1	15.5				[1360	
OREAS 98 (4	7	15.7										1270	
OREAS 98 (4	20.1	15.5										1360	······
DNC-1a Meas	-5		30	136		0.28			151		16	62	38
DNC-1a Cert	0.96		31	144		0.29			148		18.0	70	38.0
DNC-1a Meas	< 5		29	129		0.26		<u> </u>	139		15	61	36
DNC-1a Cert	0.96		31	144		0.29			148		18.0	70	38.0
OREAS 13b (4-Acid) Meas		1.20										124	
OREAS 13b (4-Acid) Cert		1.2										133	
OREAS 13b		1.18										137	
OREAS 13b		1.2										133	
OREAS 904 (4	< 5	0.06	11	27			< 5	< 10	76	< 5	33	27	22
OREAS 904 (4	1.48	0.0630	11.2	27.2			0.520	8.43	76.0	2.12	31.5	26.3	171
OREAS 904 (4	< 5	0.06	11	27			< 5	< 10	82	< 5	32	26	182
OREAS 904 (4 ACID) Cert	1.48	0.0630	11.2	27.2			0.520	8.43	76.0	2.12	31.5	26.3	171
SBC-1 Meas	< 5		20	175		0.49	< 5	< 10	225	< 5	32	202	121
SBC-1 Cert	1.01		20.0	178.0		0.51	0.89	5.76	220.0	1.60	36.5	186	134.0
SBC-1 Meas	< 5		20	174		0.49	< 5	< 10	224	< 5	31	196	119
SBC-1 Cert	1.01		20.0	178.0		0.51	0.89	5.76	220.0	1.60	36.5	186	134.0
OREAS 45d (4-Acid) Meas	< 5	0.05	49	30		0.28	< 5	< 10	159	< 5	11	45	126
OREAS 45d (4-Acid) Cert	0.82	0.049	49.30	31.30		0.773	0.27	2.63	235.0	1.62	9.53	45.7	141
OREAS 45d	6	0.04	49	30		0.09	< 5	< 10	86	< 5	11	43	45

Page 6/7

QC

•

Analyte Symbol	Sb	S	Sc	Sr	Te	Ti	TI	U	V	W	Y	Zn	Zr
Unit Symbol	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5
Method Code	TD-ICP	TD-JCP											
(4-Acid) Meas				1								1	i — — —
OREAS 45d (4-Acid) Cert	0.82	0.049	49.30	31.30		0.773	0.27	2.63	235.0	1.62	9.53	45.7	141
OREAS 45d (4-Acid) Meas	< 5	0.04	51	31	-	0.16	< 5	< 10	109	'5	11	44	75
OREAS 45d (4-Acid) Cert	0.82	0.049	49.30	31.30		0.773	0.27	2.63	235.0	1.62	9.53	45.7	141
OREAS 96 (4 Acid) Meas	< 5	4.43										448	
OREAS 96 (4 Acid) Cert	5.09	4.19							•			457	
OREAS 93 (4 Acid) Meas	< 5	4.39										453	
OREAS 96 (4 Acid) Cert	5.09	4.19										457	
OREAS 923 (4 Acid) Meas	< 5	0.70	13	40		0.39	< 5	< 10	94	10	26	350	126
OREAS 923 (4 Acid) Cert	1.29	0.691	13.1	43.0		0.405	0.860	3.06	91.0	4.85	26.4	345	116
OREAS 923 (4 Acid) Meas	< 5	0.71	13	42		0.40	< 5	< 10	96	8	26	359	129
OREAS 923 (4 Acid) Cert	1.29	0.691	18.1	43.0		0.405	0.860	3.06	91.0	4.85	26.4	345	116
OREAS 621 (4 Acid) Meas	16	4.63	7	62		0.18	< 5	< 10	35	< 5	13	> 10000	181
OREAS 621 (4 Acid) Cert	139	4.48	6.24	91.0		0.149	1.96	2.83	31.8	2.35	11.1	52200	168
OREAS 621 (4 Acid) Meas	20	4.30	5	52		0.18	< 5	< 10	34	< 5	8	> 10000	168
OREAS 621 (4 Acid) Cert	139	4.48	6.24	91.0		0.149	1.96	2.83	31.8	2.35	11.1	52200	168
OREAS 522 (4 Acid) Meas	6	2.43	10	63	< 2	0.23	< 5	40	145	23	17	28	112
OREAS 522 (4 Acid) Cert	7.93	2.50	10.9	199	1.14	0.344	0.290	42.2	164	135	18.5	30.2	112
OREAS 522 (4 Acid) Meas	< 5	2.52	11	55	7	0.35	< 5	50	174	127	17	30	119
OREAS 522 (4 Acid) Cert	7.93	2.50	10.9	199	1.14	0.344	0.290	42.2	164	135	18.5	30.2	112
Method Blank	< 5	< 0.01	< 4	<1	< 2	< 0.01	< 5	< 10	< 2	< 5	<1	<1	< 5
Method Blank	< 5	< 0.01	< 4	< 1	< 2	< 0.01	< 5	< 10	<2	< 5	< 1	<1	< 5
Method Blank	< 5	< 0.01	< 4	<1	< 2	< 0.01	< 5	< 10	<2	< 5	<1	<1	< 5
Method Blank	< 5	< 0.01	< 4	<1	< 2	< 0.01	< 5	< 10	<2	< 5	<1	<1	< 5
Method Blank	< 5	< 0.01	< 4	<1	< 2	< 0.01	< 5	< 10	< 2	< 5	< 1	< 1	< 5
Method Blank	< 5	< 0.01	< 4	<1	< 2	< 0.01	< 5	< 10	<2	< 5	<1	<1	< 5
Method Blank	< 5	< 0.01	< 4	<1	< 2	< 0.01	< 5	< 10	< 2	< 5	<1	< 1	< 5
Method Blank	< 5	< 0.01	< 4	<1	< 2	< 0.01	< 5	< 10	<2	< 5	<1	<1	< 5
Method Blank	< 5	< 0.01	< 4	<1	<2	< 0.01	< 5	< 10	<2	< 5	<1	<1	< 5

Quality Analysis ...

Innovative Technologies

Report No.:	A20-05987-8-4Acid
Report Date:	19-Aug-20
Date Submitted:	10-Jun-20
Your Reference:	Bay 56

Geofacts Consulting 2233 E 12th Street Vancouver BC V5N 2B2 Canada

ATTN: Andris Kikauka

CERTIFICATE OF ANALYSIS

6 Rock samples were submitted for analysis.

The following analytical package(s) were requested:		Testing Date:
1D	QOP INAAGEO (INAA)	
1F2	QOP Total (Total Digestion ICPOES)	

REPORT A20-05987-8-4Acid

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

For values exceeding the upper limits we recommend assays.

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

٠

Activation Laboratories Ltd.

.

•

Report: A20-05987

Analyte Symbol	Cu
Unit Symbol	%
Lower Limit	0.001
Method Code	4Acid ICPOE S
20Bay 3	3.69

.

QC
QC

.....

Activation Laboratories Ltd.

.

.

Analyte Symbol	Cu
Unit Symbol	%
Lower Limit	0.001
Method Code	4Acid ICPOE S
PTM-1a Meas	24.7
PTM-1a Cert	24.96
OREAS 14P Meas	1.01
OREAS 14P Cert	0.997
GBW 07239 (NCS DC 70007) Meas	0.005
GBW 07239 (NCS DC 70007) Cert	0.005
GBW 07238 (NCS DC 70006) Meas	0.009
GBW 07238 (NCS DC 70006) Cert	0.00936
MP-1b Meas	3.06
MP-1b Cert	3.07
OREAS 97 (4 Acid) Meas	6.47
OREAS 97 (4 Acid) Cert	6.31
OREAS 13b (4-Acid) Meas	0.238
OREAS 13b (4-Acid) Cert	0.2327
CPB-2 Meas	0.117
CPB-2 Cert	0.1213
CZN-4 Meas	0.403
CZN-4 Cert	0.403
PTC-1b Meas	7.99
PTC-1b Cert	7.97
CCU-1e Meas	22.4
CCU-1e Cert	22.9
OREAS 96 (4 Acid) Meas	3.90
OREAS 96 (4 Acid) Cert	3.93
Method Blank	< 0.001

.

.

Appendix B Actlabs Methods & Procedures

Sample Preparation Packages

To obtain meaningful analytical results, it is imperative that sample collection and preparation be done properly. Actlabs can advise on sampling protocol for your field program if requested. Once the samples arrive in the laboratory, Actlabs will ensure that they are prepared properly. As a routine practice with rock and core, the entire sample is crushed to a nominal -2 mm, mechanically split to obtain a representative sample and then pulverized to at least 95% -105 microns (µm). All of our steel mills are now mild steel and do not introduce Cr or Ni contamination. Quality of crushing and pulverization is routinely checked as part of our quality assurance program. Samples submitted in an unorganized fashion will be subject to a sorting surcharge and may substantially slow turnaround time. Providing an accurate detailed sample list by e-mail will also aid in improving turnaround time and for Quality Control purposes.

Rock, Core and Drill Cuttings

Code RX1	Crush (< 7 kg) up to 80% passing 2 mm, riffle split (250 g) and pulverize (mild steel) to 95% passing 105 µm included cleaner sand	\$11.75
Code RX1-ORE	Crush up to 90% passing 2 mm	add \$2.10
Code RX1+500	500 grams pulverized	add \$1.25
Code RX1+800	800 grams pulverized	add \$2.25
Code RX1+1000	1000 grams pulverized	add \$2.75
Code RX1-SD	Crush (< 7 kg) up to 80% passing 2 mm, rotary split (250 g) and pulverized (mild steel) to 95% passing 105µm	\$10.75
Code RX1-SD-ORE	Crush up to 90% passing 2 mm	add \$2.10
Code RX3	Oversize charge per kilogram for crushing	\$1.25
Code RX4	Pulverization only (mild steel)	\$7.50
	(coarse pulp or crushed rock) (< 800 g)	
Code RX5	Pulverize ceramic (100 g)	\$18.75
Code RX6	Hand pulverize small samples	\$18.75
	(agate mortar & pestle) (<5g)	
Code RX7	Crush and split (< 5 kg)	\$5.50
Code RX8	Sample prep only surcharge, no analyses	\$4.75
Code RX9	Compositing (per composite) dry weight	\$2.75
Code RX10	Weight (kg) as received	\$2.25
Code RX11	Checking quality of pulps or rejects prepared by other labs and issuing report	\$10.00
Code RX12	Ball Mill preparation	on request
Code RX13	Rod Mill preparation	on request
Code RX14	Core cutting	on request
Code RX15	Special Preparation/Hour	\$68.25
Code RX16	Specific Gravity on Core	\$14.00
Code RX16-W	Specific Gravity (WAX) on friable samples	\$18.00
Code RX17	Specific Gravity on the pulp	\$17.00
Code RX17-GP	Specific Gravity on the pulp by gas pychometer	\$18.00

Note: Larger sample sizes than listed above can be pulverized at additional cost.

Soils, Stream and Lake Bottom Sediments, and Heavy Minerals

Code S1	Drying (60°C) and sieving (-177 µm) save all portions	\$4.25
Code S1 DIS	Drying (60°C) and sieving (-177 µm), discard oversize	\$3.75
Code S1-230	Drying (60°C) and sieving (-63 µm), save oversize	\$5.75
Code S1-230 DIS	Drying (60°C) and sieving (-63 µm), discard oversize	\$5.50
Code S2	Lake bottom sediment preparation crush & sieve (-177 µm)	\$9.00
Code S3	Alternate size fractions and bracket sieving, add	\$2.75
Code S4	Selective Extractions or SGH drying (40°C) & sieving (-177 µm)	\$4.25
Code S5	Wet or damp samples submitted in plastic bags, add	\$2.10
Code S6	Separating -2 micron material	\$28.25
Code S7mi	Methylene iodide heavy mineral separation	\$73.75
	specific gravity can be customized (100 grams)	
Code S7w	Sodium polytungstate heavy mineral separation	\$73.75
	specific gravity can be customized (100 grams)	
Code S8	Sieve analysis (4 sieve sizes) coarser than 53 µm	\$40.00
Code S9	Particle size analysis (laser)	\$102.00

Our Sample Preparation pricing is all-inclusive including: sorting, drying, labeling, new reject bags, using cleaner sand between each sample and crushing samples up to 7 kg (for RX1 and RX1-SD).

Ē

Trace Element Geochemistry & Digestion Specific Assays

INAA

	(1D)
Aq	5 - 100.000 ppm
As	2 - 10,000 ppm
Au	5 - 30,000 ppb
Ba	100 - 500,000 ppm
Br	1 - 1,000 ppm
Ca	1 - 50 %
Ce	3 - 10,000 ppm
Co	5 - 5,000 ppm
Cr	10 - 100,000 ppm
Cs	2 - 10,000 ppm
Eu	0.2 - 2,000 ppm
Fe	0.02 - 75 %
Hf	1 - 500 ppm
Hg	1 - 1,000 ppm
Ir	5 - 10,000 ppb
La	1 - 10,000 ppm
Lu	0.05 - 1,000 ppm
Mo	5 - 10,000 ppm
Na	0.05 - 10 %
Nd	5 - 10,000 ppm
Ni	50 - 10,000 ppm
Rb	30 - 10,000 ppm
Sb	0.2 - 10,000 ppm
Sc	0.1 - 200 ppm
Se	5 - 10,000 ppm
Sm	0.1 - 10,000 ppm
Sn	0.05 - 10 %
Sr	0.1 - 40 %
Та	1 - 10,000 ppm
Tb	0.5 - 1,000 ppm
Th	0.5 - 10,000 ppm
U	0.5 - 10,000 ppm
W	4 - 10,000 ppm
Yb	0.2 - 1,000 ppm
Zn	50 - 100,000 ppm
Price:	\$25.00

IN	IAA		
1D Enhanced	5B -		
5 - 100,000 ppm	As		
0.5 - 10,000 ppm	Au		
2 - 30,000 ppb	Ba		
50 - 500,000 ppm	Br		
0.5 - 1,000 ppm	Ce		
1 - 50 %	Co		
3 - 10,000 ppm	Cr		
1 - 5,000 ppm	Cs		
5 - 100,000 ppm	Eu		
1 - 10,000 ppm	Fe		
0.2 - 2,000 ppm	Hf		
0.01 - 75 %	La		
1 - 500 ppm	Lu		
1 - 1,000 ppm	Mo		
5 - 10,000 ppb	Na		
0.5 - 10,000 ppm	Nd		
0.05 - 1,000 ppm	Rb		
1 - 10,000 ppm	Sb		
0.01 - 10 %	Sc		
5 - 10,000 ppm	Se		
20 - 10,000 ppm	Sm		
15 - 10,000 ppm	Ta		
0.1 - 10,000 ppm	Th		
0.1 - 200 ppm	U		
3 - 10,000 ppm	W		
0.1 - 10,000 ppm	Yb		
0.02 - 10 %	One Eler		
0.05 - 40 %	Each Ad		
0.5 - 10,000 ppm	Each Ad		
0.5 - 1,000 ppm	Element		
0.2 - 10,000 ppm			
0.5 - 10,000 ppm			
1 - 10,000 ppm			
0.2 - 1,000 ppm			
50 - 100,000 ppm			

\$28.25

Ag As

Au

Ba

Br

Ca

Ce

Co

Сг

Cs

Eu Fe

Hf

Hg

Ir

La

Lu Mo

Na

Nd

Ni

Rb

Sb

Sc

Se Sm

Sn

Sr

Та

Tb Th U Yb Zn

Price:

5B - Other Eler	nents
1 - 10.00	mgg 0
5 - 30.00	d ppb
100 - 10	mqq 000.0
0.5 - 1.0	00 ppm
3 - 10.00	0 ppm
0.5 - 10.0	mag 000
1 - 100.0	mqq 00
0.5 - 10.0	mqq 000
0.2 - 2.0	mgg 00
0.01 - 75	%
0.5 - 500	ppm
0.1 - 10.0	000 ppm
0.05 - 1,	000 ppm
2 - 10,00	0 ppm
100 - 10	0,000 ppm
5 - 10,00	0 ppm
20 - 10,0	00 ppm
0.1 - 10,	000 ppm
0.1 - 200) ppm
2 - 10,00	0 ppm
0.01 - 10	,000 ppm
0.5 - 10,	000 ppm
0.2 - 10,	000 ppm
0.1 - 10,	000 ppm
2 - 10,00	0 ppm
0.2 - 1,0	00 ppm
Element	\$24.00
Additional	\$3.25

AI	1 - 100.0	000 ppm
Br	5 - 10,00	00 ppm
CI	100 -100	0,000 ppn
Cu	5 - 2,500) ppm
Dy	0.5 - 5,0	00 ppm
Ga	5 - 10,00	mqq 00
	0.5 - 5,0	00 ppm
n	0.1 - 5,0	00 ppm
Мg	0.05 - 50)%
Mn	0.1 - 10,	000 ppm
Na	50 - 200	,000 ppm
Re	1 - 5,000) ppm
Ti	50 - 100	,000 ppm
/	0.1 - 10,	000 ppm
One Ele	ment	\$45.5
ach Ad	ditional	\$8.0

INAA: Instrumental Neutron Activation Analysis - Samples are encapsulated and irradiated in a nuclear reactor. After a suitable decay, samples are measured for the emitted gamma ray fingerprint. INAA is very good for Au, Co, As, Sb, W, Ta, U, Th, Cs, In, Re, Cl and lower levels of most LREE.

Pressed Pellet XRF

	XRF	
	4C1	
Ва	* 5 - 10	,000 ppm
Co	** 5 - 1,	000 ppm
Cr	** 5 - 10	0,000 ppm
Cu	** 5 - 2,	500 ppm
Ga	* 5 - 10	,000 ppm
Nb	* 1 - 10	,000 ppm
Ni	** 4 - 4,	000 ppm
Pb	** 5 - 1,	000 ppm
Rb	* 2 - 10	,000 ppm
Sn	5 - 10,0	00 ppm
Sr	* 2 - 10	,000 ppm
V	** 5 - 10	0,000 ppm
Y	* 2 - 10	,000 ppm
Zn	** 5 - 1,	000 ppm
Zr	* 5 - 10	,000 ppm
One Ele	ment	\$12.50
Each Ac	ditional	\$4.00
Element		***
tt lat		\$24.00
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Hg add-on by cold vapour FIMS Code 1G (5 ppb) add \$10.25 Trace Element Geochemistry & Digestion Specific Assays

Multi-Method Analyses

4-Acid "Near Total" Digestion + Total Determinations of Resistive Elements by INAA

	INAA+ICP-OES	INAA, ICP-OES, ICP-MS	INAA+ICP-MS
Package	1H	Ultratrace 3	Ultratrace 5
Ag Al	0.3 - 10,000 ppm 0.01 -50 %	0.05 - 10,000 ppm 0.01 - 50 %	0.05 - 100.000 ppm
As	0.5 - 10,000 ppm	0.5 - 10,000 ppm	0.5 - 10,000 ppm
Au	2 - 30,000 ppb	2 - 30,000 ppb	2 - 30,000 ppb
Ba	50 - 500,000 ppm	1 - 100,000ppm	1 - 100,000 ppm
Be	1 - 10,000 ppm	0.1 - 1,000 ppm	0.1 - 1,000 ppm
Bi	2 -10,000 ppm	0.02 - 10,000 ppm	0.02 - 2,000 ppm
Br	0.5 -5,000 ppm	0.5 - 5,000 ppm	0.5 - 5,000 ppm
Ca	0.01 - 70 %	0.01 - 70 %	0.01 - 50 %
Cd	0.3 - 2,000 ppm	0.1 - 2,000 ppm	0.1 - 1,000 ppm
Ce	3 - 10,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm
Co	1 - 5,000 ppm	1 - 5,000 ppm	0.1 - 5,000 ppm
Cr	2 - 100,000 ppm	1 - 10,000 ppm	1 - 100,000 ppm
Cs	1 - 10,000 ppm	0.05 - 5,000 ppm	0.05 - 5,000 ppm
Qu	1 - 10,000 ppm	0.2 - 10,000 ppm	0.2 - 10,000 ppm
Dy		0.1 - 5000 ppm	0.1 - 5000 ppm
Er	-	0.1 - 1,000 ppm	0.1 - 1,000 ppm
Eu	0.2 - 10,000 ppm	0.05 - 1,000 ppm	0.05 - 100 ppm
Fe	0.01 - 70 %	0.01 - 70 %	0.01 - 50 %
Ga	-	0.1 - 500 ppm	0.1 - 500 ppm
Gđ		0.1 - 500 ppm	0.1 - 5,000 ppm
Ge	-	0.1 - 500 ppm	0.1 - 500 ppm
Hr	1 -5,000 ppm	0.1 - 5,000 ppm	1 - 5,000 ppm
Hg	1 - 10,000 ppm	10 - 10,000 ppb	10 - 10,000 ppb
Ho		0.1 - 1,000 ppm	0.1 - 1,000 ppm
In	- E 10.000 mmb	0.1 - 100 ppm	0.1 - 100 ppm
II K	5 - 10,000 ppb	5 - 10,000 ppb	-
La.	0.01 - 10 %	0.5 10.000 ppm	0.1 10.000 ppm
La	1. 10.000 ppm	0.5 - 10,000 ppm	0.1 - 10,000 ppm
Lu	0.05 - 10.000 ppm	0.1 - 100 ppm	0.5 - 400 ppm
Ma	0.01 - 50 %	0.01 - 50 %	0.01 - 10 %
Mo	1 - 100 000 ppm	1 - 100 000 ppm	1 - 10 000 ppm
Mo	1 - 10 000 ppm	0.2 - 10.000 ppm	0.05 - 10.000 ppm
Na	0.01 - 50 %	0.01 - 20 %	0.01 - 20 %
Nb		0.1 - 500 ppm	0.1 - 500 ppm
Nd	5 - 10,000 ppm	0.01 - 10.000 ppm	0.1 - 10.000 ppm
Ni	1 - 100,000 ppm	0.5 - 100,000 ppm	0.5 - 100,000 ppm
P	0.001 - 10 %	0.001 - 10 %	-
Pb	3 - 5,000 ppm	0.5 - 5,000 ppm	0.5 - 5.000 ppm
Pr	-	0.1 - 1.000 ppm	0.1 - 1,000 ppm
Rb	15 -10,000 ppm	0.2 - 5,000 ppm	0.2 - 5,000 ppm
Re	-	0.001 - 100 ppm	0.001 - 100 ppm
S +	0.01 - 20 %	0.01 - 20 %	
Sb	0.1 - 10,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm
Sc	0.1 - 1,000 ppm	0.1 - 1,000 ppm	0.1 - 1,000 ppm
Se	3 - 10,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm
Sm	0.1 - 10,000 ppm	0.1 - 100 ppm	0.1 - 100 ppm
Sn	0.02 - 20 %	1 - 200 ppm	1-200 ppm
Sr	1 - 10,000 ppm	0.2 - 1,000 ppm	0.2 - 1,000 ppm
Та	0.5 - 10,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm
Tb	0.5 - 10,000 ppm	0.1 - 5,000 ppm	0.1 - 100 ppm
Te		0.02 - 500 ppm	0.1 - 500 ppm
Th	0.2 - 10,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm
TI	0.01 - 10 %	0.01 - 10 %	-
T		0.05 - 500 ppm	0.05 - 500 ppm
Im	-	0.1 - 1,000 ppm	0.1 - 1,000 ppm
U	0.5 - 10,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm
V	2 - 10,000 ppm	2 - 10,000 ppm	1 - 1,000 ppm
VV	1 - 10,000 ppm	1 - 10,000 ppm	1 - 10,000 ppm
Yh	0.2 10 000 ppm	0.01 = 10,000 ppm	0.1 - 10,000 ppm
70	1. 100.000 ppm	0.1 - 5,000 ppm	0.1 - 5,000 ppm
Zr	- 100,000 ppm	1 - 5 000 ppm	1 - 5 000 ppm
21	and the second second	1 - 0,000 ppm	- 9,000 ppm
Price.	\$30.00	\$53.00	\$40.00

Extraction of each element by 4-Acid Digestion is dependent on mineralogy + Sulphide sulphur and soluble sulphates are extracted

Aqua Regia "Partial" Digestion + Total Determinations of Resistive Elements by INAA

Geochemical Exploration for Epithermal Deposits

	INAA+ICP-OES	INAA, ICP-OES, ICP-MS
Package	Code 1EPI	Code 1EPI/MS
Ag	0.2 - 10,000 ppm	0.2 - 10,000 ppm
As	2 - 10,000 ppm	2 - 10,000 ppm
Au	5 - 30,000 ppb	5 - 30,000 ppb
Ba	50 - 100,000 ppm	100 - 100.000 ppm
Bi	-	0.1 - 1,000 ppm
Ca	-	0.01 - 50 %
Cd	0.5 - 5,000 ppm	0.5 - 5,000 ppm
Cs	-	2 - 10,000 ppm
Cu	1 - 10,000 ppm	1 - 10,000 ppm
Fe	0.02 - 75%	0.02 - 75 %
Ga		1 - 10,000 ppm
Ge		0.1 - 1.000 ppm
Hg	1 - 10,000 ppm	0.01 - 1.000 ppm
ĸ	-	0.01 - 20 %
Mn	2 - 20,000 ppm	2 - 20,000 ppm
Mo	2 - 10,000 ppm	2 - 10,000 ppm
Na	-	0.01 - 50 %
Ni	1 - 10,000 ppm	1 - 10,000 ppm
Pb	2 - 5,000 ppm	2 - 5,000 ppm
S +	0.001 - 20 %	0.001 - 20 %
Sb	0.2 - 10,000 ppm	0.2 - 10,000 ppm
Se		0.1 - 1,000 ppm
Te	2	0.1 - 1,000 ppm
TI		0.1 - 1,000 ppm
w	4 - 10,000 ppm	4 - 10,000 ppm
Zn	1 - 10,000 ppm	1 - 10,000 ppm
Price:	\$29.00	\$40.00

Extraction of each element by Aqua Regia is dependent on mineralogy

Bold elements are reported by INAA (total elements)

Hg add-on by cold vapour FIMS Code 1G (5 ppb) add \$10.25

(CP-OES and ICP-MS analyses by 4-acid (hydrochloric, nitric, perchloric and hydrofluoric) digestion are "near total" digestions, INAA analysis yields total metals

NOTE: Results from acid digestions may be lab dependent or lab operator dependent. Actiable has automated this aspect of digestion using a microprocessor designed holbox to accurately reproduce digestion conditions every time.

Appendix C - Rock Chip Sample Descriptions & Geochemistry

Sample ID	Zone name	Easting NAD 83	Northing NAD 83	Elev (m)	Sample Type
20BAY1	Main road	604811	5609505	66	angular float
20BAY2	Main road	604752	5609302	41	angular float
20BAY3	Main road	604757	5609294	37	angular float
20BAY4	Main road	604677	5609018	40	angular float
20BAY5	Spur road	604566	5608935	64	angular float
20BAY6	Spur road E	604920	5609013	59	angular float

Sample

ID	Lithology			Altei	Alteration				
20BAY1	marble (indurated Quatsino)			carb	onate, epi	dote, qu	iartz, bre	cciated, grey-	-white colour
20BAY2	marble (indurated Quatsino)			carb	onate, qu	artz, bre	cciated,	grey-white co	lour
20BAY3	andesite (i	ndurated I	(Karmutsen)	quar	tz, breccia	ted & 1	-4 cm wh	ispy veins, gr	ey-green colour
20BAY4	andesite (i	ndurated I	(armutsen)) quar	tz, breccia	ted & 1	-4 cm wh	nispy veins, gr	ey-green colour
20BAY5	andesite (i	ndurated I	(Karmutsen)	quar	tz-carbon	ate, bred	ciated 8	0.1-0.5 cm v	eins, 0.2% limonite
20BAY6	andesite (i	nd urate d l	(Karmutsen)	quar	tz-carbon	ate, bred	ciated &	0.1-0.5 cm v	eins, 0.2% limonite
Sample ID) Mii	neralizat	ion						
20BAY1	0.2	% disser	ninated p	oyrite, 0.1	% galen	a, tr ch	alcopy	rite, 0.1% li	monite
20BAY2	0.2	% dissen	ninated p	oyrite, tr o	halcopy	rite, 0.	1% lim	onite	
20BAY3	129	% pyrite,	5% chalo	opyrite, (0.4% lim	onite, i	2% sph	alerite, 0.0	5% MoS2
20BAY4	0.5	% pyrite	, 0.1% ch	alcopyrite	e, 0.1% l	imonit	е		
20BAY5	0.5	% chalco	pyrite, 1	5% pyrite	, 0.1% , 3	3% mag	gnetite,	1.5% pyro	lusite
20BAY6	1%	chalcop	yrite, 15%	% pyrite, (D.075% I	VioS2 (molybd	lenite)	
Sample	Cu	%	Ag	Zn	Pb	Мо			
מו	nnm	Cu	nnm	nnm	nnm	nnm			
	bb iii	Cu	hhiu	ppm	hhiii	hhiii			
20BAY1	221	0.02	0,4	1640	1220	hhiu	3		
20BAY1 20BAY2	221 118	0.02 0.01	0,4 0.8	1640 128	1220 18	ррш	3 4		
20BAY1 20BAY2 20BAY3	221 118 36900	0.02 0.01 3.69	0,4 0.8 60.2	1640 128 10000	1220 18 129	þþiu	3 4 64		
20BAY1 20BAY2 20BAY3 20BAY4	221 118 36900 115	0.02 0.01 3.69 0.01	0,4 0.8 60.2 0.4	1640 128 10000 140	1220 18 129 45	(bhu	3 4 64 9		
20BAY1 20BAY2 20BAY3 20BAY4 20BAY5	221 118 36900 115 2790	0.02 0.01 3.69 0.01 0.28	0,4 0.8 60.2 0.4 12.1	1640 128 10000 140 3610	1220 18 129 45 102	, , ,	3 4 54 9 18		
20BAY1 20BAY2 20BAY3 20BAY4 20BAY5 20BAY6	221 118 36900 115 2790 676	0.02 0.01 3.69 0.01 0.28 0.07	0,4 0,8 60.2 0,4 12.1 10.6	1640 128 10000 140 3610 849	1220 18 129 45 102 235	, , , ,	3 4 64 9 18 91		
20BAY1 20BAY2 20BAY3 20BAY4 20BAY5 20BAY6	221 118 36900 115 2790 676	0.02 0.01 3.69 0.01 0.28 0.07	0,4 0,8 60.2 0,4 12.1 10.6	1640 128 10000 140 3610 849	1220 18 129 45 102 235		3 4 54 9 18 91		
20BAY1 20BAY2 20BAY3 20BAY4 20BAY5 20BAY6 Sample	221 118 36900 115 2790 676 Bi	0.02 0.01 3.69 0.01 0.28 0.07 As	0,4 0,8 60.2 0,4 12.1 10.6 Ba	1640 128 10000 140 3610 849 Mn	1220 18 129 45 102 235 Fe	ррш : : : : : : : : : : : : : : : :	3 4 54 9 18 91 %		·
20BAY1 20BAY2 20BAY3 20BAY4 20BAY5 20BAY6 Sample ID	221 118 36900 115 2790 676 Bi ppm	0.02 0.01 3.69 0.01 0.28 0.07 As	0,4 0,8 60.2 0.4 12.1 10.6 Ba ppm	1640 128 10000 140 3610 849 Mn ppm	1220 18 129 45 102 235 Fe %	ррш ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	3 4 9 18 91 % Mg	% S	
20BAY1 20BAY2 20BAY3 20BAY3 20BAY4 20BAY5 20BAY6 Sample ID 20BAY1	221 118 36900 115 2790 676 Bi ppm 2	0.02 0.01 3.69 0.01 0.28 0.07 As ppm 17	0,4 0,8 60.2 0.4 12.1 10.6 Ba ppm 216	1640 128 10000 140 3610 849 Mn ppm 4610	1220 18 129 45 102 235 Fe % 8.35	% Ca 5.24	3 4 9 18 91 % Mg 2.41	% S 0.75	
20BAY1 20BAY2 20BAY3 20BAY4 20BAY5 20BAY6 Sample ID 20BAY1 20BAY2	221 118 36900 115 2790 676 Bi ppm 2 2 2	0.02 0.01 3.69 0.01 0.28 0.07 As ppm 17 7	0,4 0,8 60.2 0,4 12.1 10.6 Ba ppm 216 177	1640 128 10000 140 3610 849 Mn ppm 4610 1540	1220 18 129 45 102 235 Fe % 8.35 7.89	% Ca 5.24 3.64	3 4 9 18 91 % Mg 2.41 2.22	% S 0.75 1.36	
20BAY1 20BAY2 20BAY3 20BAY3 20BAY4 20BAY5 20BAY5 20BAY6 Sample ID 20BAY1 20BAY1 20BAY2 20BAY3	221 118 36900 115 2790 676 Bi ppm 2 2 199	0.02 0.01 3.69 0.01 0.28 0.07 As ppm 17 7 262	0,4 0,8 60.2 0,4 12.1 10.6 Ba ppm 216 177 26	1640 128 10000 140 3610 849 Mn ppm 4610 1540 5990	1220 18 129 45 102 235 Fe % 8.35 7.89 28.2	% Ca 5.24 3.64 1.3	3 4 9 18 91 % Mg 2.41 2.22 1.84	% S 0.75 1.36 20	
20BAY1 20BAY2 20BAY3 20BAY4 20BAY5 20BAY5 20BAY6 Sample ID 20BAY1 20BAY1 20BAY2 20BAY3 20BAY4	221 118 36900 115 2790 676 Bi ppm 2 2 199 2	0.02 0.01 3.69 0.01 0.28 0.07 As ppm 17 7 262 147	0,4 0,8 60.2 0,4 12.1 10.6 Ba ppm 216 177 26 53	1640 128 10000 140 3610 849 Mn ppm 4610 1540 5990 5690	1220 18 129 45 102 235 Fe % 8.35 7.89 28.2 8.35	% Ca 5.24 3.64 1.3 3.47	3 4 9 18 91 % Mg 2.41 2.22 1.84 3.16	% S 0.75 1.36 20 3.25	
20BAY1 20BAY2 20BAY3 20BAY4 20BAY5 20BAY5 20BAY6 Sample ID 20BAY1 20BAY1 20BAY2 20BAY3 20BAY4 20BAY5	221 118 36900 115 2790 676 Bi ppm 2 2 199 2 15	0.02 0.01 3.69 0.01 0.28 0.07 As ppm 17 7 262 147 157	0,4 0,8 60.2 0,4 12.1 10.6 Ba ppm 216 177 26 53 43	1640 128 10000 140 3610 849 Mn ppm 4610 1540 5990 5690 7150	Fe % 8.35 7.89 28.2 8.35 19.3	% Ca 5.24 3.64 1.3 3.47 0.68	3 4 9 18 91 % Mg 2.41 2.22 1.84 3.16 1.72	% S 0.75 1.36 20 3.25 9.64	

Appendix D - Magnetometer Survey (1.9 line-km total)

Magnetometer Survey (N-S Line 04700E,

Bay 56 2020 Magnetumeter Data (2×600m N-Slines, 2× 350m E-Wlines)

/Gem Systems GSM-19T 6112151 v7.0 7 XI 2006 M t-e2.v7 /ID 1 file Olsurvey.m 20 V 28 /X Y nT sq cor-nT time 04700E 09000.00N 253884.40 99 000000.00 000438.0 09012.50N 2 53953.85 99 000000.00 000510.0 04700E 54109.78 99 000000.00 000546.0 04700E 09025.00N 000000.00 000618.0 09037.50N 54231.08 99 04700E 04700E 09050.00N 54456.16 99 000000.00 000654.0 09062.50N 54585.90 99 000000.00 000722.0 04700E 04700E 09075.00N 54796.44 99 000000.00 000750.0 04700E 09087.50N 4 55023.29 99 000000.00 000818.0 04700E 09100.00N 🐝 55503.84 99 000000.00 000926.0 04700E 09112.50N 🔆 55746.32 99 000000.00 001010.0 04700E 09125.00N 🐝 55854.77 99 000000.00 001358.0 04700E 09137.50N 🚻 56186.31 99 000000.00 001530.0 09150.00N **H** 56342.22 99 09162.50N **H** 56210.56 99 000000.00 001758.0 04700E 04700E 000000.00 001826.0 04700E 09175.00N 🏵 55970.07 99 000000.00 001854.0 04700E 09187.50N 🎪 55839.45 99 000000.00 001934.0 04700E 09200.00N 🏠 55628.74 99 000000.00 001954.0 04700E 09212.50N mr 55343.13 99 000000.00 002018.0 04700E 09225.00N M 55215.92 99 000000.00 002054.0 04700E 09237.50N / 55333.06 99 000000.00 002142.0 04700E 09250.00N 😽 55411.71 99 000000.00 002214.0 04700E 09262.50N 髅 55400.95 99 000000.00 002246.0 09275.00N 54955.38 99 04700E 000000.00 002326.0 09287.50N 54430.79 99 04700E 000000.00 002414.0 04700E 09300.00N 54625.47 99 000000.00 002546.0 04700E 09312.50N 54672.93 99 000000.00 002634.0 09325.00N 54725.20 99 000000.00 002726.0 04700E 54772.94 99 04700E 09337.50N 000000.00 002806.0 04700E 09350.00N 54928.69 99 000000.00 002858.0 04700E 09362.50N 54921.19 99 000000.00 002942.0 04700E 09375.00N 54730.59 99 000000.00 003022.0 09387.50N 54332.17 99 000000.00 003054.0 04700E 04700E 09400.00N 54007.26 99 000000.00 003134.0 09412.50N 🛲 53878.25 99 04700E 000000.00 003310.0 09425.00N 🕿 53874.46 99 04700E 000000.00 003322.0 04700E 09437.50N 🚔 53876.77 99 000000.00 003338.0 09450.00N 🚘 53946.06 99 04700E 000000.00 003438.0 04700E 09462.50N 54005.91 99 000000.00 003506.0 04700E 09475.00N 54078.45 99 000000.00 003526.0 04700E 09487.50N 54415.90 99 000000.00 003638.0 04700E 09500.00N 54507.44 99 000000.00 003702.0 09512.50N 04700E 54586.81 99 000000.00 003730.0 04700E 09525.00N 54635.16 99 000000.00 003754.0 04700E 09537.50N 54667.78 99 000000.00 003818.0 04700E 09550.00N 54667.95 99 000000.00 003846.0 09562.50N 54731.49 99 04700E 000000.00 003914.0 04700E 09575.00N 54836.14 99 000000.00 003946.0

54657.88 79

000000.00 004038.0

04700E

09587.50N

Instrument used: GEM GSMT-19T v7 Vertical component of field measured Diurnal variation corrected by looping \$56,000 nT

- 55,400-56,000 nT
- 47 54,800-55,400 nT
- 🖹 <54,000 nT

Magnetometer Survey (N-S Line 04700E, 04800E)

-	04700E	09600.00N	54598.08	99	000000.00	004058.0		
	04800E	09600.00N	54515.40	99	000000.00	010402.0		
	04800E	09587.50N	54505.93	99	000000.00	011326.0		Instrument used: GEM GSMT-19T v7
	04800E	09575.00N	54763.44	99	000000.00	011446.0		Vertical component of field measured
	04800E	09562.50N 🗰	54920.84	99	000000.00	011554.0		Diurnal variation corrected by looping
	04800E	09550.00N 🕷	•55005.70	99	000000.00	011630.0	-	
	04800E	09537.50N 🖇	54849.26	99	000000.00	011802.0	H	>56,000 h1
	04800E	09525.00N	54784.93	99	000000.00	011842.0	111	55,400-56,000 n l
	04800E	09512.50N	54741.67	99	000000.00	011918.0	an	54,800-55,400 nT
	04800E	09500.00N	54712.97	99	000000.00	011946.0		<54,000 nT
	04800E	09487.50N	54745.90	99	000000.00	012006.0	_	
	04800E	09475.00N	54646.94	99	000000.00	012114.0		
	04800E	09462.50N	54504.46	99	000000.00	012150.0		
	04800E	09450.00N	54420.11	99	000000.00	014014.0		
	04800E	09437.50N Ξ	53966.69	99	000000.00	014138.0		
	04800E	09425.00N	54176.31	99	000000.00	014814.0		
	04800E	09412.50N	54473.54	99	000000.00	014906.0		
	04800E	09400.00N 배	54844.62	99	000000.00	015014.0		
	04800E	09387.50N 🗰	54932.24	99	000000.00	015118.0		
	04800E	09375.00N 📣	55055.17	99	000000.00	015210.0		
	04800E	09362.50N 🕎	54949.97	99	000000.00	015350.0		
	04800E	09350.00N 🚸	54865.68	99	000000.00	015438.0		
	04800E	09337.50N 👋	54820.94	99	000000.00	015502.0		
	04800E	09325.00N	54746.89	99	000000.00	020646.0		
	04800E	09312.50N	54722.02	99	000000.00	021950.0		
	04800E	09300.00N	54719.55	99	000000.00	022210.0		
	04800E	09287.50N	54684.08	99	000000.00	022438.0		
	04800E	09275.00N	54628.61	99	000000.00	022506.0		
	04800E	09262.50N	54569.83	99	000000.00	022526.0		
	04800E	09250.00N 🕪	54925.59	99	000000.00	023342.0		
	04800E	09237.50N 🖤	55278.63	99	000000.00	024210.0		
	04800E	09225.00N Ŵ	55029.96	99	000000.00	024318.0		
	04800E	09212.50N 繜	55684.19	99	000000.00	024358.0		
	04800E	09200.00N 🏢	56188.17	99	000000.00	024746.0		
	04800E	09187.50N 🗇	55974.58	99	000000.00	024814.0		
	04800E	09175.00N 🥠	55738.79	99	000000.00	024842.0		1
	04800E	09162.50N 🏈	55787.86	99	000000.00	025214.0		
	04800E	09150.00N 🌾	54966.79	99	000000.00	025626.0		
	04800E	09137.50N	54700.50	99	000000.00	025754.0		
	04800E	09125.00N	54641.70	99	000000.00	025810.0		
	04800E	09112.50N	54325.51	99	000000.00	025918.0		
	04800E	09100.00N	54315.11	99	000000.00	025934.0		
	04800E	09087.50N	54269.60	99	000000.00	030002.0		
	04800E	09075.00N	54189.87	99	000000.00	030030.0		
	04800E	09062.50N	54073.62	99	000000.00	030058.0		
	04800E	09050.00N	54004.00	99	000000.00	030118.0		
	04800E	09037.50N	53937.75	89	000000.00	030202.0		
	04800E	09025.00N 🚍	53946.88	79	000000.00	030346.0		
	04800E	09012.50N 🖻	53917.02	99	000000.00	030406.0		
	04800E	09000.00N 📻	53872.92	99	000000.00	030426.0		
	09000N	04650.00E 🎟	54097.31	99	000000.00	033658.0	Ma	gnetometer Survey (E-W Line 09000N,
	09000N	04637.50E	53910.28	99	000000.00	033722.0		
	09000N	04625.00E	53902.28	99	000000.00	033750.0	1	nstrument used: GEM GSMT-19T v7
	09000N	04612.50E	53854.67	99	000000.00	033826.0	V	ertical component of field measured
							C	Diurnal variation corrected by looping

💹 >54,000 nT

Magnetometer Survey (E-W Line 09000N, 08900N)

								Verti
	09000N	04600.00E	53892.50	99	000000.00	033854.0		Diur
	09000N	04587.50E	53861.11	99	000000.00	033926.0	-111	>54 (
	09000N	04575.00E	53933.94	99	000000.00	033954.0	an.	53 0
	09000N	04562.50E	53949.35	99	000000.00	034106.0		52.0
	09000N	04550.00E	53983.90	99	000000.00	034134.0	lar	55,93
	09000N	04537.50E	53949.37	99	000000.00	034154.0		<53,8
	09000N	04525.00E	53912.01	39	000000.00	034342.0		
	09000N	04512.50E	53936.27	99	000000.00	034414.0		
	09000N	04500.00E	53906.44	99	000000.00	034442.0		
	08900N	04500.00E	53899.13	99	000000.00	034702.0		
	08900N	04512.50E	53957.88	99	000000.00	034750.0		
	08900N	04525.00E	53952.61	99	000000.00	034826.0		
	08900N	04537.50E W	53953.13	99	000000.00	034842.0		
	08900N	04550.00E V	53970.00	09	000000.00	034910.0		
	08900N	04562.50E	53964.30	99	000000.00	034940.0		
	08900N	04575.00E V	52060.43	99	000000.00	040126 0		
	08900N	04587.50E	53969.12	99	000000.00	040128.0		
	08900N	04600.00E	53940.95	99	000000.00	040438.0		
	08900N	04612.JUE V	52052 00	99	000000.00	040334.0		
	08900N	04623.00E	53850 76	99	000000.00	040708.0		
	08900N	04657.50E	53002 52	99	000000.00	040714.0		
	08900N	04650.00E	53902.52	99	000000.00	040850 0		
	08900N	04602.JOE	54037 54	99	000000.00	040830.0		
	08900N	04687 50E	54129 91	99	000000.00	041002 0		
	08900N	04700 00F W	53964 98	aa	000000.00	042222 0		
	08900N	04712 50E	53956 91	99	000000.00	042530 0		
	08900N	04725 00E W	53959 27	99	000000.00	042730 0		
	08900N	04737 50E	53918 53	99	000000.00	042806.0		
	08900N	04750 00E	53900 09	99	000000.00	042922 0		
	08900N	04762.50E	53946.59	99	000000.00	043014.0		
	08900N	04775.00E	53943.23	99	000000.00	043034.0		
	08900N	04787.50E	53985.25	99	000000.00	043058.0		
	08900N	04800.00E	53920.34	99	000000.00	043126.0		
	08900N	04812.50E	53908.94	99	000000.00	043146.0		
	08900N	04825.00E 🛷	53984.45	99	000000.00	043222.0		
	08900N	04837.50E 🛷	53978.54	99	000000.00	043246.0		
	08900N	04850.00E 🐲	53999.18	99	000000.00	043306.0		
10	09000N	04850.00E	53967.47	99	000000.00	043502.0		-
	09000N	04837.50E	53988.40	99	000000.00	043526.0		
	09000N	04825.00E	53974.58	99	000000.00	043546.0		
	09000N	04812.50E	53940.90	99	000000.00	043606.0		
	09000N	04800.00E	53896.83	99	000000.00	043626.0		
	09000N	04787.50E	53896.73	99	000000.00	043646.0		
	09000N	04775.00E	53908.78	99	000000.00	043706.0		
	09000N	04762.50E 🚸	.53966.85	99	000000.00	043722.0		
	09000N	04750.00E	53996.00	99	000000.00	043742.0		
	09000N	04737.50E 🗰	54005.07	99	000000.00	043758.0		
	09000N	04725.00E 🚧	53978.58	99	000000.00	043814.0		
	09000N	04712.50E 🚝	53777.75	99	000000.00	043838.0		
	09000N	04700.00E	53824.91	99	000000.00	043854.0		
	09000N	04687.50E 🌉	54143.67	99	000000.00	043930.0		
	09000N	04675.00E 🗰	54039.52	99	000000.00	043950.0		
	09000N	04662.50E	54060.96	99	000000.00	044006.0		

Instrument used: GEM GSMT-19T v7 Vertical component of field measured Diurnal variation corrected by looping >54,000 nT 53,975-54,000 nT 53,950-53,975 nT <53,850 nT

Ministry of Energy, Mines and Petroleum Resources

News | The Premier Online | Ministries & Organizations | Job Opportunities | Main Index

Appendix E - Minfile Descriptions

MINFILE Home page ARIS Home page MINFILE Search page Property File Search

MINFILE Record Summary

MINFILE No 092L 135

XML Extract / Inventory Report

SUMMARY Summary Help

✓ - SELECT REPORT - ✓ File Created: 24-Jul-1985 by BC Geological Survey (BCGS)

07-Nov-2019 by Karl A. Flower (KAF) Last Edit:

PDF

Print Preview

NMI 092L12 Cu5 **Mining Division** BAY 56, SUNSET, ISLAND COPPER, NORTHWEST, Name Nanaimo BAY 59, BAY 68, BAR **BCGS Map** 092L063 NTS Map 092L12E Prospect Status UTM 09 (NAD 83) 050° 37' 52' Latitude 127º 31' 18' Northing 5609847 Longitude 604552 Easting L04 : Porphyry Cu +/- Mo +/- Au **Deposit Types** Commodities Copper, Molybdenum, Zinc, Silver K01 : Cu skarn K02 : Pb-Zn skarn **Tectonic Belt** Terrane Wrangell Insular

Capsule Geology

The Bay 56-59 occurrence is located approximately 2.2 kilometres east of the eastern end of Quatse Lake.

Regionally, the area is underlain by northwest-trending belts of basaltic volcanics and carbonate sedimentary rocks of the Upper Triassic Karmutsen and Quatsino formations (Vancouver Group) and mafic volcanics and sediments of the Upper Triassic to Lower Jurassic Bonanza Group (Holberg volcanic unit, Nahwitti River wacke and Parson Bay Formation). These volcanic and sedimentary rocks have been intruded by granodioritic rocks of the Early to Middle Jurassic Island Plutonic Suite.

Locally, at the common boundary between the Bay 56 and 59 claims, disseminated pyrite and a small amount of chalcopyrite are present in felsite and andesite tuffs. Molybdenite is also present as a thin coating along fractures. Propylitic alteration is common.

To the north, on the Bay 68 claim and as identified by drilling, a 42.7 metre interval of pyrite-garnet-magnetite skarn horizons hosts chalcopyrite and minor molybdenite mineralization in altered limestone (marble) of the Quatsino Formation and a 3.5-metre thick banded garnet-magnetite skarn interpreted as part of the Parson Bay Formation. An unidentified, soft, black, disseminated, metallic mineral, possibly enargite(?), is also reported. The skarn zones are underlain by a mafic porphyry hosting disseminated chalcopyrite and molybdenite. Further mineralized skarns and tuffs have been identified by drilling on the Bay 69, Bay 70, Bay 85, Bay Fr. and Bar claims.

In 1983, drilling yielded intercepts of 0.13 per cent copper over 54.0 metres in hole W-5 on the Bay 69 claim and 0.16 per cent copper over 91.2 metres in hole W-7 on the Bay 57 claim (Assessment Report 12271).

In 1984, drillhole WP-6 yielded 0.14 per cent copper and 0.017 per cent molybdenum over 69.0 metres (Assessment Report 13536).

In 1985, drillhole E-64, located on the Bay 59 claim, yielded 0.24 per cent copper over 171.0 metres (Assessment Report 14084).

In 1986, drillhole E-069, located near the Bay 68 and Bar claims boundary, yielded up to 2.45 per cent copper and 19.5 grams per tonne silver over 3.0 metres from the upper Quatsino Formation skarn zone, whereas samples from the lower skarn zone vielded up to 2.93 per cent copper over 3.0 metres with molybdenite occurring variably with values up to 0.48 per cent molybdenum over 3.0 metres (Assessment Report 15707). Samples of the mafic porphyry varied from 0.2 to 0.3 per cent copper and 0.010 to 0.050 per cent molybdenum (Assessment Report 15707).

Another drillhole (W-5), located a short distance west of E-069, intercepted horizons of massive gamet skarn yielding 0.73 per cent copper over 36.0 metres, including 2.04 per cent copper, 0.31 per cent zinc and 11.95 grams per tonne silver over 3.0 metres from the lower skarn horizon (Assessment Report 16687).

Also at this time, drillhole E-65, located on the Bay 70 claim, intercepted epidote-garnet-carbonate skarn and tuff hosting sphalerite and minor chalcopyrite mineralization yielding 1.56 per cent zinc over 0.6 metre, 6.56 per cent zinc and 0.45 per cent copper over 1.2 metres, 0.76 per cent copper over 1.8 metres and 0.88 per cent copper over 2.4 metres (Assessment Report 14777)

In 1989, diamond drilling of mineralized skarn horizons yielded intercepts of 0.44 per cent copper over 12.3 metres in hole E-88, located on the Bar claim; 0.35 per cent copper and 0.024 per cent molybdenum over 42.7 metres in hole E-95, also located on the Bar claim; 0.83 per cent copper, 0.022 per cent molybdenum and 4.1 grams per tonne silver over 24.4 metres in hole E-90, located on the Bay 68 claim; 0.40 per cent copper over 6.6 metres in hole E-91, located on the Bay 85 claim; 0.34 per cent copper over 12.2 metres in hole E-94, located on the Bay 69 claim; 0.34 per cent copper over 15.2 metres in hole E-96, located on the Bay 59 claim and 0.44 per cent copper over 6.1 metres in hole W-6, located on the Bay 56 claim (Assessment Report 18805).

In 1965 and 1966, BHP-Utah Mines completed programs of geological mapping, soil sampling and ground geophysical programs on the area as the Bay and Cove claims.

In 1983 and 1984, programs of geological mapping, seven drillholes, totalling 646.0 metres, and six percussion drill holes, totalling 481.7 metres, were completed on the area. In 1985, BHP-Utah Mines completed a ground geophysical survey, six diamond drill holes, totalling 1182.7 metres, and four percussion drill holes, totalling 358.2 metres, on the Bay and Cove claims. In 1986, two drillholes, totalling 475.1 metres, were completed on the Bay claims. In 1988 and 1989, BHP-Utah Mines completed programs of soil sampling, a 390.0 line-kilometre airborne geophysical survey and nine drillholes, totalling 2704.5 metres, on the area.

In 2016, the area was prospected by Tech-X Resources Ltd.

Bibliography

EMPR AR 1966-65; 1967-68; 1968-84,88

EMPR ASS RPT 710, *738, 9305, 11366, *12271, 13346, *13536, *14084, 14169, 14170, *14777, *15707, 16152, *16687, 17580, 17581, *18805, 37001

	EMPR EXPL 1983-336; 1985-C234; 1987-C222
	EMPR GEM 1969-204; 1970-254
	GSC BULL 242
	GSC MAP *4-1974
	GSC OF 9; 170; 463; 722
A	CJES 18, page 1; 20, page 1 (January 1983)
0	Carson, D.J.T., (1968): Metallogenic Study of Vancouver Island with
	emphasis on the Relationship of Plutonic Rocks to Mineral Deposits,
	Ph.D. Thesis, Carleton University, Ottawa
	Sangster, D.F., (1964): The Contact Metasomatic Magnetite Deposits
	of Southwestern British Columbia, Ph.D. Thesis, University of
	British Columbia
	EMPR PFD <u>12527, 12528, 12529, 12530, 810379, 883204, 826852, 673346, 673347, 502970, 502971, 502972, 502973, 502974,</u> 502975, 502976, 502985, 502986, 503018, 503022, 503023, 503042

COPYRIGHT | DISCLAIMER | PRIVACY | ACCESSIBILITY

Bay 56 Aeromag Colour Contours

Appendix F - Select DDH Highlights (¿Aeromag) & DDH plan maps

HOFF E-61

ASSAY TAG.	FLOTAL	illag.	R.GP	% Cu	%Mo	%Рь	%Zn	% Fe	%.C.	125	ppm il.	epa A.					
192	105-110	1.77	36.7	.14	.007	.001	.01	5.3	1.79	1.14							
191	110-120	1,20	9.2	.14	.008	.001	.01	5.1	1.83	1.38							
190	120-130	.86	16.9	,19	,008	. 002	.01	5.1	1.97	1.87		Ron	7 = %	OF	COR	E IN	
189	130-140	2.10	37.8	, 30	,008	1002	.01	6.0	1.20	2.56		Ler	GTHS	2	4"		
188	140-150	.74	80.0	.28	.016	.011	,01	5.0	1.47	2.15							
(87	150-160	.76	60.2	.26	,009	,002	.01	5,4	1.64	2.01		MAG	= 50	san	TIBIL	min	
186	160-170	1.18	24.3	,21	.013	1002	. 01	5.4	1.65	1.67			10-	30	\$5	UNITS	
185	170-180	,98	49.1	.18	.008	1002	,01	5.8	1.61	1.81							
184	180-190	.56	47.5	,15	,010	,002	,01	5.4	1.93	1.98							
183	190-200	.44	40.6	.18	1008	1002	,01	5.5	1.40	1.99							
182	200-210	.50	52.9	:20	1026	1002	, 01	5,3	1.40	1.89	1						
181	210-270	.04	51.3	1,27	,010	100 2	.01,	5.1	1.24	2.54	1	_					
180	270 - 230	.30	45.6	.34	.021	1002	. 01	5.4	1.64	2,26							
179	230-740	.08	56.2	.28	,016	.002	. 01	6.1	1.39	3.15							
178	240-250	.72	49.0	,16	.011	1024	. 03	6.6	1.68	2.59							
177	255-260	.86	38.3	,15	.009	1002	.01	6.7	1.52	2.48							
176	260-270	1.4-8	42.0	,15	,008	1003	101	6.4	1.62	2.29							
175	270-250	.54	54.6	.16	,007	,002	,01	6.5	1.64	3.08	1						
174	280-290	.80	70.3	,18	. 026	,.01	.01	.7.2	1.38	3.95							
173	290-300	1.02	66.1	.12	,007	,001	,01	6.7	1.52	2.07							
172	300-310	.62	74.0	.16	,009	. 001	.01	6.7	1.40	2.68			_				
(71	310-310	.96	77.3	,13	,010	.001	. 01	6.3	1.63	2.44							
170	320-130	1.22	68.2	,10	.008	1001	.01	6.2	1.66	2.20					1.00		
169	33-340	.86	48.8	.15	.013	.001	.01	6.Z	1.48	2.50							
168	340-350	.56	58.8	.17	.010	,001	.01	5.9	1.61	2.20							
167	350-20	. 46	75.9	.11	,006	,001	,01	5.9	1.81	2.49							
166	360-370	.22	70.6	,15	,012	.001	.01	6.0	1.37	2.94							
165	320-250	.10	75.6	.11	.,004	.002	.01	6.3	1.36	4.15							
164	380 .370	48	62.8	.09	.003	,001	.01	6.6	1.48	3.73							

DDH E-61

	!	
i	Hair	E-61
	Provide Contractor	

Assar Tag.	FLORAC	MAG	RAD	%Cu	% Mo	12Pb	12Zn	% Fe	7.Ca	XS	pp. Fin	leen An	T	1		T
- 163	390-400	,20	41.2	, 11	.006	.001	, 01	6.8	1.04	3.04			 			
162	700-410	.16	56.3	. 13	,012	,005	. 01	6.0	1.47	3.85						1
161	410-420	.04	66.0	.08	,005	1002	.01	6.0	1.60	4.27					-	
160	420-430	.16	69.6	. 06	,004	.004	. 01	5.8	1.46	4.40			 -			
159	430-440	.16	57.1	.07	,002	,002	.01	6.3	1.48	6.60						
158	440 450	1.20	40.8	.08	,003	,002	, 01	6.7	1.41	3.22						
157	450-460	.38	50.0	.07	,002	,004	1	6.9	1.30	3.63						
156	460 470	.64	70.1	.11	.006	,003	.01	6.0	1.82	3.93						
155	42-430	.18	57.9	,06	.004	,002	.01	5.9	2.16	3.53						
154	480-490	,32	32.0	.08	,016	.002	.01	5.8	2,40	4.77						
153	490.500	1.42	47.8	,07	.011	1003	.01	5.3	2.10	2.94			 			
Greys Grabs	120			.16	.019			5.0					 			
	130			.64	.043			5.3								
	140			,36	,015			5.0								
	150			, 34	,007			6.5								
	162			,18	,008			5.7		12.14						
	171			.17	, 009			6.4								
	183			. 13	.006			5.5								
	191			.17	.005			6.1								
	200			, 23	.015			5.0								
	210			, 24	,023			4.8					_			
	220			, 33	.014			4.6								
	230			.25	,010			5.2								
	242			.13	,006			6.7				~				
	290			.16	.028			5.8								
	260			, 23	,005			6.1	-							
	270			.14	,019			5.8								
	280			.10	,007	24		5.6								

DDH E-61

	Co-	OLDINATES: 15,26	6.0 N; 14,	999.7E	In	CLINATIO	N: -90	· (ORE: NQ		HOLE	: W-7	Prepared By	Initia
	Gnoo	~ ELEV: 1234.	7 STER-	UP: 0.5	B	ALING	:	DEPTH: 357			Rg	OFZ	Approved By	Z
	TAGE	FOOTAGE	%Cu	8 Mo	Am Au	PPM Ag	%Fe	75Pb	%Zn ×103	sus.	Beno+	BENCH ZG	96 Min	Ī
1	37726	53-57	0.21	0.038	0.06	0.60	6.5	0.002	0.01				1111	T
2	1 27	57-67	0.13	0.068	0:05	0.50	6.0	0.003	1.20		1160	0.16	0.046	T
3	38	67-77	0.17	0.023			6.6	1111 A.P.		11	(75.2)			1
4	29	77-87	0.11	0.010			6.5				11111	THEFT	let M	T
5	30	87-97	0.16	0.007			7.6			111	1120	0.17	0.016	T
6	31	97-107	0.21	0.000	0.06	0.67	6.3	0.002	0.01	111		T	1	T
7	32	107-117	0.22	0.018	0.02	0.78	6.7	0.001	0.01	111	(15.2)			T
8	33	117-127	0.18	0.014			6.5			111				T
9	34	127-137	0.12	0.91			6.7				1090	0.16	0.014	
10	35	137 - 147	0.17	0.011	0.02	0.74	6.4	0.001	0.01	111			TUT	T
11	36	147-157	0.17	0.018			6.5				15:05			I
12	37	157-167	0.12	0.011			6.1			11			1 1 1 1	T
13	38	167-177	0.18	0.012	0.02	0.70	6.5	0.007	0.49	1	1040	0.16	0.013	T
14	39	177-187	0.18	0.016			6.1				101111	TUT		T
15	40	187-197	0.15	0.011			6.5		1 11 11 11 11		(185.2)			T
16	41	197-207	0.28	0.021	0.04	1.01	4.8	0.001	4001	11	11:11:			T
17	42	207-217	0.15	0.013			5.9				1000	0.22	0014	T
18	43	217-227	0.17	0.011			4.9			11				T
19	44	227-237	0.33	0.013	0.08	1.16	5.1	ami	40.01	11	(335.3)			T
20	45	237-247	0.20	0.014	0.04	0.78	5.6	0.001	50.01	11	13-111	11.11		T
21	46	247-257	0.10	0.011		1 111	5.2			11	960	014	000	T
22	47	257-267	0.13	0.009			5.8			TT	100	1.1	10.010	T
23	40	267-277	0.11	0.006.	0.03	034	5.4	0.001	2001	111	(325.2)			
24	49	277-287								11				T
25	50	287-297	0.13	0.012			57			11	920	111111		T
26	V 51	297-307	0.12	0.012			58			11		THE		T
						1:11	111.1.			11				T
GR	AND & TOY	L16-84210	1	1		and and								-
1	37 7 50	307-317	0.22	0.011	0.03	0.66	4.9	,001	.01-		(35.5)			
2	53	3/7-307	0-14	0.009			5.0			11				
3	54	307-337	0.11	0.007		1.1.111	51	Hill			880	0.13	0.006	
4	55	337-347	0.12	0.007	0.03	0.36	5.2	0.00/	< 0.01					T
5	56	347-357	0.12	0.001	TIT	IIII	5.9				655-2)			T
-	1					6	11.11.11	11 11 11		155	1111111	11.11.1		T

1987 87/12/15

re-assay E-64 x. ASSAY REPORT

DRILL CORE ASSAYS

PASE: 2

FROM	TO	CV X	MD X	FE %	AU PPM	AG PPM	P8 2	ZN 2
480.00	490.00	0.120	0.0150	9.60	-0.010	0.960	0.003	0.015
490.00	500.00	0.150	0.0120	8.60	0.010	0.620	0.002	0.011
500.00	510.00	0.140	0.0130	7.20	0.010	0.610	0.006	0.006
510.00	520.00	0.090	0.0130	5.10	0.010	0.350	0.009	0.019
520.00	530.00	0.130	0.0170	4.90	-0.010	1.160	0,001	0.004
530.00	540.00	0.140	0.0200	4.60	0.010	0.700	0.002	0.007
540.00	550.00	0.110	0.0130	4.40	0.010	0.510	0.002	0.007
550.00	560.00	0.230	0.0110	5.20	0.010	1.060	0.002	0.006
560.00	570.00	0.110	0.0190	3.40	-0.010	1.000	0,001	0.006
570,00	580.00	0.160	0.0140	4.60	0.010	0.780	0.002	0.006
580,00	590.00	0.150	0.0130	4.40	0.010	1.020	0.003	0.007
590,00	600.00	0.140	0.0190	4.20	-0.010	1.010	0.003	0.011
500.00	610.00	0.180	0.0160	4.00	-0.010	1.490	0,002	0.008
610.00	620.00	0.210	0.0080	10.00	0,010	1.690	0.004	0.014
620.00	630.00	0.190	0.0110	8.90	0.020	1.530	0.004	0.012
630.00	640.00	0.320	0.0120	8.10	0.010	1.720	0.004	0,018
640.00	650.00	0.140	0.0720	4.20	-0.010	1.350	0.001	0.005
650.00	640.00	0.370	0.0120	4.50	0.030	1.800	0.003	0.016
660.00	670,00	0.190	0.0370	5.70	0.020	1.170	0.003	0.011
670.00	680.00	0.210	0.0340	4.70	0.020	1.010	0.004	0.009
680.00	690.00	0,120	0.0740	4.10	-0.010	1.050	0.003	0.010
690.00	700.00	0.100	0.0120	4.90	-0.010	0.910	0.001	0.006
700.00	710.00	0.090	0.0120	6.00	-0.010	0.470	0.002	0.007
710 00	720.00	0.120	0.0190	6.40	-0.010	0.990	0.002	0.011
720.00	730.00	0.100	0.0150	10.00	0.010	0.970	0.003	0.011
730 00	735.00	0 110	0 0120	10.20	0.050	0.860	0.005	0.022
730.00	740 00	0.110	0.0090	10 30	-0.010	0.710	0.004	0.011
740.00	745.00	0 110	0.0020	10 90	-0.010	0 900	0.005	0.012
745.00	750 00	0 140	0.0000	17 40	0.010	0 940	0.005	0.021
750.00	760.00	0 140	0 0170	9 00	-0.010	0.970	0.004	0.014
740.00	770.00	0 240	0.0250	4 40	-0.010	1 490	0.007	0.010
770 00	780.00	0 190	0.0280	1.10	-0.010	1.130	0.002	0.005
70.00	700.00	0.150	0.0180	3.30	-0.010	1 430	0.002	0.005
700.00	200.00	0.170	0.0410	4 30	-0.010	1 120	0.002	0.000
770.00 PAG 00	B10.00	0.170	0.0410	4.00	-0.010	0.740	0.001	0.004
800.00	BIV. 00	V. 1.JV	0.0000	4.00	-0.010	0.740	0.001	0.004
510.00	820.00	0.130	0.0210	J. 10	-0.010	0.870	0.001	0.002
820.00	850.00	0.100	0.0990	5.80	0.010	1.320	0.003	0.000
830.00	840.00	0.490	0.0200		-0.065	4.040	-0.010	0.020
840.00	850.00	2.040	0.0050		-0.065	11.300	-0.010	0.510
850.00	850.00	0.710	0,0240		~0.065	0.430	~0.010	0.020
850.00	870.00	1.330	0.0120		-0.085	11.730	-0.010	0.040
8/0.00	880.00	1.130	0.0070		-0.063	5.370	0.010	0.040
880.00	890.00	9.639	0.0170		-0.083	6.130	-0.010	0.020
840.00	900,00	0.610	0.0650		~0.065	5.160	-0.010	0.020
900.00	910.00	0.500	0.0180		-0.063	4,840	-0.010	0.020
910.00	920,00	0.280	0.0840		-0.065	2.910	-0.010	0,010
920.00	930.00	0.250	0.0470		-0.065	3.870	-0.010	0.020
430	940	•41	0.022					
941)	950	-35	0-038Hb-	UIRN MIN	25 L 10.			
L'IN								
	1	~						

110

3

110' 0,8% Cu 0.04 Mo

FILE: E04

ſ

*

E-64

TC J.FLEMING FRCM J.STFVERSUN SUB. D.D. CORE E-64

DEC. 10 1985

	TAG#	FOOTAGE	CU%	XO%	FE %	AU PPM	AG PPM	
	2453	60-70	.10	.C03	6.9	<.01	<.01	
	2454	70-80	.10	.002	5.9	<.01	0.05	
	2455	80-90	•12	.003	4.8	<.01	<.01	
	2456	90-100	.10	.003	4.6	<.01	<.01	
	2457	100-110	.10	.CO3	4.8	<.01	<.01	
	2458	110-120	.13	.003	0.1	0.02	<.01	
	2459	120-130	.13	.002	5.0	<.01	0.08	
	2460	130-140	.12	.003	4.9	<.01	0.01	
	2461	140-145	.13	.003	5.2	<.01	2.15	
	2462	145-150	.74	.005	11.3	0.01	1.50	
	2463	150-160	.15	.004	5.5	<.01	0.39	
	2464	160-170	-12	.004	5.0	<.01	0.03	
	2465	170-180	. 1.1	.003	5.2	<.01	C.49	
	2466	180-190	.17	.004	6.7	0.02	C.38	
	2467	190-200	.17	.033	6.7	0.01	0.32	
	2468	200-210	-15	- 005	5.5	0.01	0.05	the second design of the second s
	2469	210-220	-13	.004	7.0	2.01	<.01	
	2470	220-230	.13	.005	5.5	0.01	2.11	
	2470	230-230	.19	-004	5.9	0.01	1.36	
	2471	250-240	- 1 4	- 004	5.5	0.01	0.32	
	2472	250-260	15	.004	5.9	0.01	0.32	
	2413	260-270	14	004	5 6	0.01	0.35	
	2414	200-210	.14	.004	9.2	0.01	1.39	
	2415	270-280	• 2 2	.004	7 4	0.01	0 71	
	2410	280-290	• 1 7	.007	7.0	0.01	2.25	
	2411	290-300	• 1 2	.007	0.0	0.01	0 27	
	2418	300-310	•13	.003	0.0	0.01	0.25	
	2419	310-320	-16	004	7 3	0.01	0.36	
	2480	320-330	•14	.004	0 2	0.01	0.27	
	2461	330-340	• 1 2	.005	0.1	0.01	0 37	
	2482	340-350	• 1 1	.010	9.1	0.01	0 21	
	2483	350-360	• 1 1	.000	0.2	0.01	0.21	
	2484	360-370	• 12	•005	0.1	0.01	9.20	
	2485	370-380	•14	.039	8.6	0.01	0.20	
	2486	380-390	•12	.007	7.0	0.01	0.25	
	2487	390-400	•13	.005	1.1	0.01	0.00	
	2488	400-410	• 1 1	.005	6.1	0.01	0.43	
	2489	410-420	• 1 1	.006	7.0	0.01	0.0	
	2490	420-430	• 12	.005	1.0	0.01	0 34	
-	2491	430-435	• 11	.0.14	7.0	0.01	0.40	
	2492	435-440	• 14	.006	1.5	0.01	0.47	
	2493	440-450	•17	.009	0.4	0.01	1.00	-
	2494	450-450	• 30	.013	0.1	0.03	1.00	
	2495	460-470	.19	.008	6.9	0.02	0.91	
				A 1 -	e e	0 0 1	0 0 5	

	FILE: E64	MAIL	A 1	E.	-64	V % / 9	SP CONVERSATIONAL MOVITOR SYST
	2497	480-480	•17	. 629	3.9	2.02	· . 7.
	2495	480-495	•20	.Cll	6.3	0.00	1.00
	2499	495-506	.25	.CO5	8 . C	0.04	2.13
	2500	500-505	.19	.008	5.0	2.02	1.25
	2620	500-510	.20	. 624	10.5	2.0.	1.31
	2627	510-517	.10	.000	t . 1	0.04	1.09
	2028	517-520	.22	.009	7.5	0.02	1.18
2	2629	526-524	.19	.C14	7.5	0.02	0.40
	2030	524-530	.17	.CC7	7.2	2.04	2.90
	2031	534-540	.23	.007	7.4	C.02	1.17
1	2632	540-543	.21	.024	6.4	0.02	0.73
1	2633	543-545	-24	.007	7.6	0.03	1.33
i	2634	545-550	-19	.015	6.0	0.03	0.91
1	2635	550-560	.23	-042	6.3	0.03	1.01
1	2636	560-570	.26	. 623	5.1	0.04	1.24
	2637	570-580	.20	.017	5.9	0.04	1.14
1	2637	580-530	22	C1.	- 7	0 0	1 02
	2000	580-590	• 2 3	.010	7 2	0.04	1 2.
	2039	590-000	•20	• 017	1.2	0.04	1.20
	2040	600-510	• 2 4	.029	4+2	0.03	1.27
	2641	610-620	• 26	•017	2.3	0.03	1.27
	2642	626-635	• 5 1	.015	1.1	0.05	1.03
1	2643	630-640	•39	• 008	9.1	0.000	2.30
	2644	640-650	• 22	•C12	6.t	0.00	1.42
	2045	650-665	.25	.007	7.3	0.03	1.90
	2646	660-670	•22	•C09	0.0	0.03	1.57
	2647	670-680	.28	.023	6.3	0.05	1.55
	2048	680-690	.29	•C14	6.3	0.02	1.40
	2649	690-700	•21	.012	5.8	0.01	1.27
	2650	700-710	•22	•C17	4.t	n. ri	1.00
	2680	710-720	•28	.015	5.5	0.00	1.30
	2681	720-730	.18	.020	5.0	0.02	0.00
t	2682	730-740	.21	.009	6.1	0.02	1.13
	2683	740-750	.27	.013	6.9	0.04	1.34
	2684	750-760	.29	.032	6.4	0.04	1.54
	2685	760-770	.20	.010	5.3	0.02	. 1.02
	2686	770-780	.23	.C09	5.6	0.01	1.04
1	2687	780-790	.29	.016	5.6	0.02	1.44
	2688	790-800	.22	.021	5.0	C.03	0.96
1	2689	800-810	.28	.022	5.9	0.03	1.33
1	2690	810-820	.23	·C23	5.0	0.02	1.16
1	2691	820-830	.29	.012	8.7	0.03	1.37
1	2692	830-840	.29	•C13	10.1	0.05	1.38
I	2693	840-850	.28	.012	9.9	0.03	1.49
1	2694	850-860	.26	-031	6.1	0.04	0.76
1	2695	850-870	-16	.023	6.0	0.02	0.72
1	2695	870-880	-19	- 040	6.0	0.03	0.67
1	2690	690-890	17	.025	6.0	0-02	0.76
1	2691	890-900	-18	- 020	6-1	0.02	0-64
1	2070	600-910	- 24	.017	6.1	0.03	1.31
1	2099	900-910	-20	011	7 7	0.0	1.55
3	2700	910-920	.50			0.07	1 10
l	2702	920-930	.20	.012	0.9	0.01	1.00
1	2103	930-940	• 22	.015	5.0	0.02	1.00
4	2704	940-950	• 29	.013	9.1	0.01	1.20
	2705	950-960	• 34	•013	11.8	0.06	1.29
	3/ 53	C/0 0/0	27	0.00	11 /	1 1 1 H	

•

)	FILE: E64	MAIL	A 1	E-	-64	V.47	SP CONVERS	ATIONAL	MONITOR	SYSTE
	2653	968-970	.11	.000	3.1	0.02	0.27			
1	2654	984-290	.24	.005	. 0.7	J. 06	2.72		-	
1	2655	990-1000	.20	.013	0.1	0.02	0.92			
	2656	1013-1020	• 36	.C10	9.5	2.03	1.28			
) :	2657	1020-1030	.07	.005	2.7	<.01	0.04			
1	2658	1060-1070	.07	.CO7	2.7	<.01	2.05			
100	2659	1100-1110	.08	.005	3.1	0.01	0.09			
	2660	1140-1150	.09	.005	3.2	<.01	2.11			
1	2661	1180-1190	.09	.005	3.9	<.01	0.07			
. 1	2662	1220-1230	.07	.004	3.2	<.01	2.10			
)	2663	1260-1270	.08	.005	3.0	<.01	2.12			
	2664	1295-1305	.07	.006	2.9	<.01	80.C			
	2701	1320-1330	.14	.062	0.7	0.02	. 2.66			
	2665	1340-1350	.15	.039	6.4	0.01	0.93			
	2060	1280-1290	.07	.CO4	2.9	<.01	0.10			
	2667	1350-1360	.14	.013	8.2	<.01	2.87			
)	2668	1360-1370	.16	.015	8.9	<.01	1.25			
1	2669	1370-1380	.13	.012	8.9	<.01	0.00			
	2670	1380-1390	.11	.038	8.8	0.02	2.11			
	2671	1390-1400	.10	.011	4.9	0.02	0.55			
i	2672	1400-1410	.07	.006	4.0	0.03	0.22			
i	2673	1450-1460	.07	.004	4.2	0.04	0.20			
<u>)</u> i	2674	1470-1480	.08	.004	4.1	2.02	0.13			
	2675	1480-1485	. 37	.004	3.9	2.02	C.13			

10

) [|]_____

× .

)

1

)

Fig 1 Bay 56 MTO Claim General Location

Fig 3 Bay 56 MTO Claim General Geology

Fig 4 Rock Chip (Angular Float) Samples

BCGS 092L.063, NTS 092L 12/E, Nanaimo Mining Division MTO 1069793

Statement and statements									
Sample ID	Zone	name	Easting N	AD 83	Northin	g NAD	83 E	lev (m)	Sample Type
20BAY1	Main	road	1	604811		56095	05	66	angular float
20BAY2	Main	road		604752		56093	02	41	angular float
20BAY3	Main	road		604757		56092	94	37	angular float
20BAY4	Main	road		604677		56090	18	40	angular float
20BAY5	Spur r	oad		604566		56089	35	64	angular float
20BAY6	Spur r	oad E		504920		56090	13	59	angular float
Sample									
ID	Lithology			Alte	ration				
20BAY1	marble (in	durated ((uatsino)	cart	bonate, ep	idote, qu	artz, br	ecciated, s	grey-white colour
20BAY2	marble (in	durated C	(uatsino)	cart	bonate, qu	artz, bre	cciated,	grey-whit	e colour
20BAY3	andesite (i	ndurated	Karmutsen	ans (rtz, brecci	ated & 1	4 cm w	hispy vein	s, grey-green colo
20BAY4	andesite (i	ndurated	Karmutsen) qua	rtz, brecci	ated & 1	4 cm w	hispy vein	s, grey-green colo
20BAY5	andesite (i	ndurated	Karmutsen	dna	rtz-carbon	ate, bree	ciated i	§ 0.1-0.5 c	m veins, 0.2% lim
20BAY6	andesite (i	ndurated	Karmutsen	i) qua	rtz-carbon	ate, bree	ciated	& 0.1-0.5 c	m veins, 0.2% lim
Sample ID	Mi	neraliza	tion						
20BAY1	0.2	% disse	minated	pyrite, 0.1	1% galen	a, tr ch	alcopy	rite, 0.1	% limonite
20BAY2	0.2	% disse	minated	pyrite, tr	chalcopy	rite, 0.	1% lim	onite	
208AY3	12	% pyrite	, 5% chal	copyrite,	0.4% lim	onite,	2% spł	alerite,	0.05% MoS2
20BAY4	0.5	% pyrite	e, 0.1% cł	alcopyrit	te, 0.1%	imonit	e		
20BAY5	0.5	% chalc	opyrite, 1	5% pyrite	e, 0.1%, i	3% mag	netite	, 1.5% p	yrolusite
20BAY6	1%	chalcop	oyrite, 15	% pyrite,	0.075%	MoS2 (molyb	denite)	
Sample	Cu	%	Ag	Zn	Pb	Mo			
ID	ppm	Cu	ppm	ppm	ppm	ppm			
208AY1	221	0.02	0.4	1640	1220		3		
20BAY2	118	0.01	0.3	128	18		4		
208AY3	36900	3.69	60.2	10000	129		54		
20BAY4	115	0.01	0.4	140	45		9		
208AY5	2790	0.28	12.1	3610	102	- 3	18		
20BAY6	676	0.07	10.6	849	235	9	91		
Sample	Bi	As	Ba	Mn	Fe	%	%		
ID	ppm	ppm	ppm	ppm	%	Ca	Mg	% S	
208AY1	2	17	216	4610	8.35	5.24	2.41	0.75	
20BAY2	2	7	177	1540	7.89	3.64	2.22	1.36	
208AY3	199	262	26	5990	28.2	1.3	1.84	20	
20BAY4	2	147	53	5690	8.35	3.47	3.16	3.25	
20BAY5	15	157	43	7150	19.3	0.68	1.72	9.64	
20BAY6	33	33	18	4690	30.5	0.26	0.94	20	
PRINCIPAL OF	COLUMN ST	-		-				-	

Legend Rock Sample 2 20BAY1 20BAY2 20BAY3 20BAY4 20BAY6 20BAY5

boogle Earth

Fig 5 North-South Magnetometer Grid Lines

BCGS 092L.063, NTS 092L 12/E, Nanaimo Mining Division MTO 1069793

Legend

North & south end of grid line

L4800E N end

L4700E N end

Magnetometer Survey (N-S Line 04700E, 04800E) Instrument used: GEM GSMT-19T v7 Vertical component of field measured Diurnal variation corrected by looping >56,000 nT

oogle Earth

2020 CNES / Airb

L4800E S end

Fig 6 East-West Magnetometer Grid Lines

BCGS 092L.063, NTS 092L 12/E, Nanaimo Mining Division MTO 1069793

Legend

west & east end of grid line

*L9000N W end

4L8900N W end

L9000N E end

L8900N E end

Google Earth

Image © 2020 CNES / Airbus

Magnetometer Survey (E-W Line 09000N, 08900N) Instrument used: GEM GSMT-19T v7 Vertical component of field measured Diurnal variation corrected by looping >54,000 nT

Fig 8 Magnetometer Survey E-W Line 08900N, 09000N

Fig 9 Bay 56 Rock Chip Sample Geochemistry

