

Ministry of Energy and Mines BC Geological Survey

BC Geological Survey Assessment Report 39243

Assessment Report
Title Page and Summary

AUTHOR(S): Ted VanderWart NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): Event PROPERTY NAME: Sikanni CLAIM NAME(S) (on which the work was done): 1067285, 1067286, 1067287 COMMODITIES SOUGHT: Copper, silver MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094D 093, 094D 076, MINING DIVISION: Omineca N LATITUDE: 56 17 20 "LONGITUDE: 126 2 OWNER(S): 1) Theodore W.F. Vander Wart 2) MAILING ADDRESS: PO Box 3914 Smithers, BC, VOJ 2NO OPERATOR(S) [who paid for the work]: 1) Teako Gold Corp. 2)	No. :5815086 Date: October 15,-2020
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): Event PROPERTY NAME: Sikanni CLAIM NAME(S) (on which the work was done): 1067285, 1067286, 1067287 COMMODITIES SOUGHT: Copper, silver MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094D 093, 094D 076, MINING DIVISION: Omineca Number of the work of the w	No. :5815086 Date: October 15, 2020 , 1071087
PROPERTY NAME: Sikanni CLAIM NAME(S) (on which the work was done): 1067285, 1067286, 1067287 COMMODITIES SOUGHT: Copper, silver MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094D 093, 094D 076, MINING DIVISION: Omineca N LATITUDE: 56 17 20 LONGITUDE: 126 2 COWNER(S): 1) Theodore W.F. Vander Wart 2) MAILING ADDRESS: PO Box 3914 Smithers, BC, V0J 2N0 DPERATOR(S) [who paid for the work]:	, 1071087 , 094D 108, 094D 106, 094D 124
CLAIM NAME(S) (on which the work was done): 1067285, 1067286, 1067287 COMMODITIES SOUGHT: Copper, silver MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094D 093, 094D 076, MINING DIVISION: Omineca N LATITUDE: 56 ° 17 '20 " LONGITUDE: 126 ° 2: OWNER(S): 1) Theodore W.F. Vander Wart 2) MAILING ADDRESS: PO Box 3914 Smithers, BC, V0J 2N0 OPERATOR(S) [who paid for the work]:	, 094D 108, 094D 106, 094D 124
COMMODITIES SOUGHT: Copper, silver MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094D 093, 094D 076, MINING DIVISION: Omineca Note	, 094D 108, 094D 106, 094D 124
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 094D 093, 094D 076, MINING DIVISION: Omineca N' LATITUDE: 56 O 17 '20 " LONGITUDE: 126 O 2: OWNER(S): 1) Theodore W.F. Vander Wart 2) MAILING ADDRESS: PO Box 3914 Smithers, BC, V0J 2N0 OPERATOR(S) [who paid for the work]:	
MINING DIVISION: Omineca LATITUDE: 56	
LATITUDE: 56 ° 17 '20 " LONGITUDE: 126 ° 2: OWNER(S): 1) Theodore W.F. Vander Wart 2) MAILING ADDRESS: PO Box 3914 Smithers, BC, V0J 2N0 OPERATOR(S) [who paid for the work]:	TS/BCGS: NTS 094D08
OWNER(S): 1) Theodore W.F. Vander Wart 2) MAILING ADDRESS: PO Box 3914 Smithers, BC, V0J 2N0 OPERATOR(S) [who paid for the work]:	
OWNER(S): 1) Theodore W.F. Vander Wart 2) MAILING ADDRESS: PO Box 3914 Smithers, BC, V0J 2N0 OPERATOR(S) [who paid for the work]:	3 '24 " (at centre of work)
PO Box 3914 Smithers, BC, V0J 2N0 OPERATOR(S) [who paid for the work]:	
OPERATOR(S) [who paid for the work]:	·
MAILING ADDRESS: 2976 Thacker Avenue	
Coquitlam, BC V3C 4N7	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration Lower Jurassic Hazelton Group volcanics and volcaniclastics, upper Tr	
Volcanic red-bed style copper mineralization, moderate to steeply-dipple	ing stratigraphically controlled mineralization
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT I	NUMBERS: 04878, 04879, 05229, 05569, 18175,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Induced Polarization			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil		_	
Silt			
Rock 14 (Au and multieleme	nt ICP)	1067285	4435.26
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric			
(scale, area)		_	
Legal surveys (scale, area)		_	
Road, local access (kilometres)/t	rail	_	
Trench (metres)		_	
Underground dev. (metres)			
Other			
		TOTAL COST:	\$4435.26

ASSESSMENT REPORT GEOCHEMICAL REPORT on the

Sikanni Property (1067285, 1067286, 1067287, 1071087)

(106/285, 106/286, 106/28/, 10/108/) Omineca Mining Division, British Columbia, Canada

> Owner: Theodore Vander Wart Operator: Teako Gold Corp.

NTS: 094D08 TRIM: 094D028, 094D029 Latitude: 56° 17' 30" N Longitude: 126° 23' 21"W

November 30, 2020

Report prepared by:
Ted VanderWart, P.Geo.

VANDERWART
CONSULTING INC.

TABLE OF CONTENTS

1 0 D	VED O DAYOTAON	page
	NTRODUCTION	
	PHYSIOGRAPHY AND ACCESS	
	TITLEEOLOGICAL SETTING	
	REGIONAL GEOLOGY	
	PROPERTY GEOLOGY	
	VORK HISTORY	
	VORK PROGRAM	
-	ROCK SAMPLING	
	.1.1 Observations and Results	
	HISTORICAL DRILLING VERIFICATION	
6.0 C	ONCLUSIONS AND RECOMMENDATIONS	17
	EFERENCES	
	ERTIFICATE	
9.0 S	TATEMENT OF COSTS	22
	LIST OF SOFTWARE USED	
	LIST OF TABLES	
Table	e 1: Claim Status	page
	2: Selected rock sample results, Mar Prospect, NW Showing Area	
	e 3: Selected rock sample results, Mar Prospect, SE Showing Area	
	LIST OF FIGURES	
		page
Figur	re 1: Location Map Sikanni Property (1:9,000,000)	3
Figur	e 2: Claim Map, Sikanni Property (1:125,000)	5
Figur	re 3: Regional Geology Map, Sikanni Property (1:125,000)	7
Figur	re 4: Geology Map, Mar Prospect, NW Showing (1:2,000)	12
Figur	re 5: Geology Map, Mar Prospect, SE Showing (1:2,000)	13
Figur	re 6: Trench location map with 2020 sample locations, Mar Prospect	16
	LIST OF PHOTOGRAPHS	
Photo	o 1: Mar Prospect looking northwest from the lake and trench area	2
	2: Mar Prospect looking west in SE Showing area	
	3: Malachite stained boulder in trench area	
	4: Historical 1975 Pechiney drill core	
	LIST OF APPENDICES	
I.	Sample Propagation and Analytical Methods	
	Sample Preparation and Analytical Methods	
II.	Certificates of Analysis	
III.	Rock Sample Descriptions	

1.0 INTRODUCTION

The Sikanni Property (the "Property") is located in the Omineca Mining Division in north-central British Columbia, Canada, centred at latitude 56°17'30"N and longitude 126°23'21"W, approximately 170 km north-northeast of Smithers, BC (Figure 1). The Property is located on NTS 1:50,000 mapsheet 094D08, and BC TRIM 1:20,000 map-sheets 094D028 and 094D029.

This report discusses the observations and results of the Property visit on August 22, 2020.

1.1 PHYSIOGRAPHY AND ACCESS

The Property is located along the east flank of the Sikanni Range of the Omineca Mountains, characterized by steep mountainous terrain. Elevations range from approximately 1,500 metres to 2,000 metres above sea level. Numerous small tarns are found in the many cirques. Drainage on the Property is dendritic with creeks flowing northeast into Carruthers Creek. Carruthers Creek, in turn, flows into the Omineca River which continues eastward into Williston Lake.

There is no road access to the Property. The nearest road appears to be a logging road approximately 27 kilometres south-southeast of the Property. This road would be accessed from Fort St James via Takla Landing. An assessment report by Tait (1988) includes a map which shows a generally north-south trail passing through a valley crossing of the Property. This report also notes that this trail was difficult to locate and was partly reblazed at the same time. Another east-west trail is noted following the Omineca River further south. The current status of these trails is not known. An airstrip is noted at the north end of Bear Lake approximately 30 kilometres west of the Property, along the BC Rail right-of-way. The condition and capabilities of this airstrip for fixed-wing aircraft is not known. Helicopter charters are available from various towns including Smithers, Fort St. James, and Mackenzie.

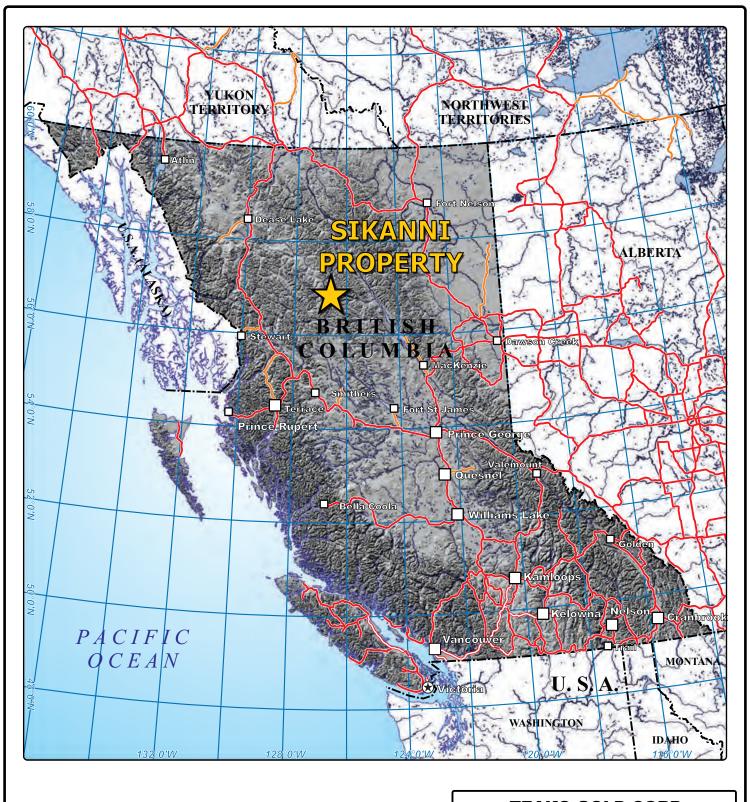

Access for the 2020 field visit was by helicopter from an exploration camp located approximately 60 km WSW of the Property.

Photo 1: Mar Prospect looking northwest from the lake and trench area.

Photo 2: Mar Prospect looking west in SE Showing area

0 250km

TEAKO GOLD CORP.

LOCATION MAP Sikanni Property

Sikanni Project Omineca Mining Division, British Columbia, Canada

 Figure No.:
 1
 By:
 TV

 Scale:
 1:9,000,000
 Drawn:
 TV

 Project No.:
 P08B
 Date:
 November 2020

Web bush or this bush of the

VANDERWART

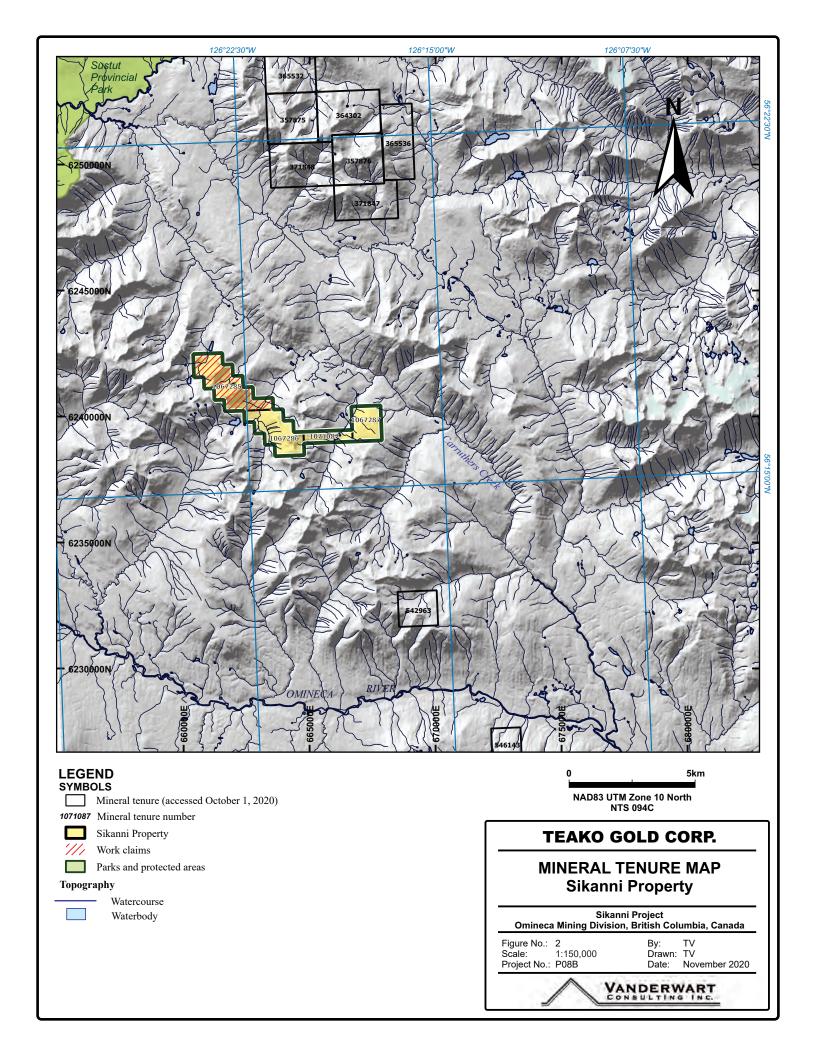
1.2 TITLE

The Property consists of four MTO cell claims covering a total of 880.2 hectares (Figure 2). The tenures are 100% owned by the author. All costs associated with the current work program have been provided by Teako Gold Corp. as the operator of the Property.

Table 1: Claim Status

Tenure Number	Area (ha)	Owner (100%)	Good To Date*	Claim Type	Worked On
1067285	359.17	T.W.F. VanderWart	2021/sep/15	Mineral	Yes
1067286	269.50	T.W.F. VanderWart	2021/sep/15	Mineral	
1067287	161.69	T.W.F. VanderWart	2021/sep/15	Mineral	
1071087	89.84	T.W.F. VanderWart	2021/sep/15	Mineral	

^{*} good to date pending acceptance of report for assessment credit


2.0 GEOLOGICAL SETTING

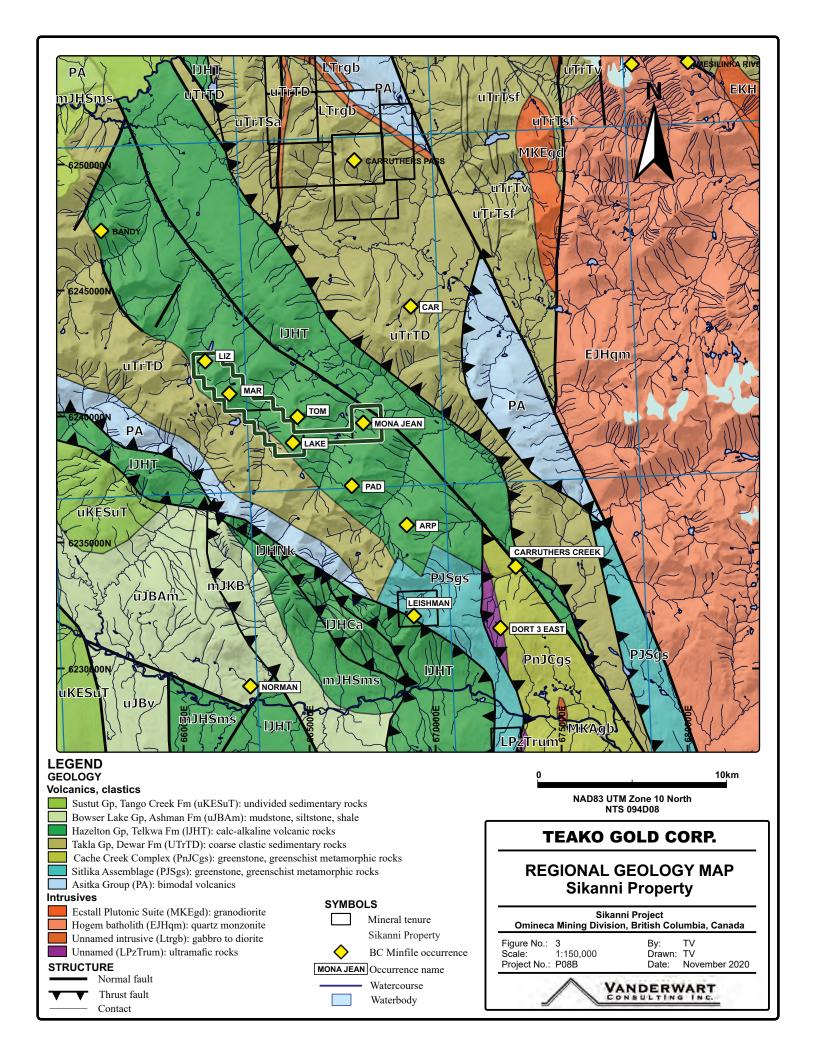
Regional and property geology descriptions have been summarized from Naas and Vanderwart (2013).

2.1 REGIONAL GEOLOGY

The Property is situated on the eastern edge of the Stikinia Terrane, part of the Intermontane Belt of the Canadian Cordillera (Figure 3). The Stikinia Terrane Takla Group rocks that are regionally dominant consist of three main formations: the basal Dewar Formation; the Savage Mountain Formation; and, the overlying Moosevale Formation.

- The basal Dewar Formation is formed of fine-clastics deposited in a back-arc or continental margin environment, and is more specifically, composed of submarine calcalkaline volcaniclastic rocks, sandstone, siltstone and graphitic shale. It reaches a maximum thickness of approximately 1,500 metres in the Sikanni ranges, thinning to about 400 metres in the Sustut Peak area.
- The Savage Mountain Formation is composed mainly of augite and bladed-feldspar porphyry volcanic flows and pyroclastics. Locally, thick successions of pillow basalts are common. The volcanic component is both dominant and subaerial to the north where the formation reaches its maximum thickness of approximately 4,000 metre in the Sustut Peak area. The Savage Mountain Formation overlies the Dewar Formation in this area but is co-extensive with the Dewar Formation in the south where it is largely composed of tuff, siltstone and shale.
- The overlying Moosevale Formation is composed of subaerial volcanoclastic rocks to a maximum thickness of 1,600 metres in the Savage Mountain area.

The Ingenika Fault lies to the east of the Property, marking the boundary with the Quesnellia Terrane to the east. There, Upper Triassic to Lower Jurassic volcano-sedimentary sequences that include the Takla, Nicola and Stuhini groups are intruded by the Cretaceous Hogem multiphase batholith, a very large elongate granodioritic to monzonitic intrusion which is located approximately 7 kilometres east of the property.


Rocks of the lower Jurassic Hazelton Group Telkwa Formation are also found through this area and cover much of the Property. This formation is described as maroon, green and purple subaerial andesitic to dacitic feldspar phyric flows, pyroclastic and epiclastic rocks, augite phyric to aphyric basalt, breccia, welded tuff (BCGS Geo File 2005-1).

2.2 PROPERTY GEOLOGY

The Property is predominantly underlain by calc-alkaline volcanics and volcaniclastics of the Hazelton Group (Figure 3). The contact with the Takla Group volcanics and volcaniclastics is mapped less than a kilometre west of the Property.

The Hazelton Group is a complex assemblage of lavas, pyroclastic rocks, rare sedimentary lenses and rare metamorphic rocks.

- Andesites: Typically, purple, red or reddish green coloured, fine grained to porphyritic andesite lavas. The purplish red colour of the Hazelton lavas is due to hematite in the groundmass. The phenocrysts tend to be plagioclases rather than amphiboles or pyroxenes. These lavas are slightly brecciated as noticed on weathered surfaces. Epidote, carbonate and less frequently quartz are the fracture filling material. Minor basaltic flows and dacitic rocks have been noted in the area of the ARP Minfile occurrence (Sonnedrucker 1974a).
- Tuffs: Red to purplish-red in colour, these fine-grained tuffs and argillaceous andesite tuffs are extremely oxidized. Lithic fragments of reddish andesite lavas and occasionally of purplish red argillites are found in the tuffs. They are usually thinly bedded and often interbedded with purplish red argillites. Fine grained tuffs frequently grade into coarse tuffs which in turn may grade into agglomerates. Crystal lapilli tuffs have been noted in the area of the ARP Minfile occurrence (Sonnedrucker 1974a).
- **Agglomerates:** The agglomerates are usually fine grained, containing lithic fragments ranging from 0.7 centimetres to 2.5 centimetres in size. The fragments are reddish finegrained to slightly porphyritic andesite lavas.
- Sediments: Sedimentary rocks of the Hazelton Group include argillites and a few beds of conglomerate. The purplish-red, strongly oxidized argillites are usually thinly bedded. They often exhibit strong chloritization and/or epidotization. The conglomerates are characterized by pebbles ranging from 1 centimetre to 2.5 centimetres in size. The material of these pebbles is usually Hazelton andesite lavas, but pebbles and subangular fragments of grey to red chert are also frequent. Some of the chert pebbles show rhythmic deposition of silica.

Geological mapping of the Property was carried out by Pechiney (Mistry, 1974). The map supplied in Pechiney's report could be generally reconciled to the topography of the area, although there was some significant distortion in the map that did not allow for a satisfactory georeferencing. The map was subsequently redrawn using identifiable topographic features (i.e. lake, creeks, ridge lines) with additional interpretation of the unit contacts (Figure 4).

Mapping by Pechiney assigned the identified geological units to the Takla Group while regional mapping compiled by BCGS suggests the area is underlain by the Hazelton Group. The geological legend provided by Pechiney on their map does appear more consistent with the Hazelton Group rocks of the area (described above). Mapping of the Liz areas by Serem (Sonnendrucker, 1974) notes both Hazelton and Takla Group rocks. The general location of the contact between the Takla and Hazelton also appears to support that the Property lithologies should be assigned to the Hazelton Group. Historical mapping has identified 10 units, comprising mainly volcanic and volcaniclastic units (Figure 4).

Units 1 to 4 are all identified as agglomerates differentiated by colour and/or clast size. Units 1 and 2 are both reddish; with the former noted as 'coarse' having clast sizes greater than ½ inch (~0.6 cm) and the latter noted as 'medium' having clast sizes less than ½ inch. Unit 3 is identified as greenish, and Unit 4 is a metamorphosed variety.

Units 5 and 6 are identified as porphyritic volcanic flows, the former with augite phenocrysts and the latter with both augite and feldspar phenocrysts. Mineralization of disseminated chalcopyrite and pyrite is noted within Unit 5, particularly along the northeastern ridge of the cirque.

Unit 7 is a tuffaceous argillite unit of possible andesitic composition and hosts the more notable copper mineralization on the Property. Mineralization of chalcocite, bornite, and chalcopyrite is generally located near the contact with the Unit 1 or 2 agglomerates. The relationship of the contact to mineralization, if any, is unknown.

Units 8, 9 and 10 are noted as porphyritic tuff, conglomerate and dacite porphyry. These are more localized units. The dacite porphyry is mainly located around the lake and hosts copper mineralization (chalcopyrite, chalcocite and pyrite) as identified by historical trenching.

Structurally, bedding is generally striking 310° and 50° to 60° to the northeast.

3.0 WORK HISTORY

The Property covers a portion of the Sikanni Range which has been subject to periods of exploration, including regional silt surveys, prospecting, geochemical surveys, trenching and diamond drilling. Several occurrences throughout the area are included in the BC Minfile database. The Property covers the Mar prospect (BC Minfile 094D 093) and the Liz showing (BC Minfile 094D 076) in the northwest corner of the Property. Both are classified as volcanic red-bed copper occurrences. South, and along strike of these showings is the Lake showing. This showing is based on limited sampling although the observations indicate a similar style as at the Mar and Liz showings. East of the Lake showing is the Mona Jean showing. This is also a classified as a volcanic red-bed copper showing. The following summary of history of exploration of the Property was taken and modified from Naas and Vanderwart (2013).

Little exploration on the Property and surrounding area is recorded prior to 1973 when Interior Syndicate conducted a reconnaissance geological and geochemical survey over two groups of claims (ANI and CAR) just south of Quenada Creek. The ANI claims were tested for potential copper-lead-zinc-silver mineralization. Only three of the soil samples were anomalous in copper with results noted as being "three to four times average background of 55 to 60 ppm". The results at that time were deemed discouraging and no further work was conducted (Dawson, 1974a). The CAR claims were tested for copper potential, and "to determine whether or not the property might support a large-scale exploration program". Vein mineralization was encountered on the eastern CAR claims and were reported as being narrow (0.5 to 5 cm), widely separated and discontinuous. Galena and pyrite are the main sulphide minerals in a gangue of quartz. With the widely spaced, discontinuous, narrow vein widths, mineralization was deemed not to be economic and these claims lapsed (Dawson, 1974b).

At the same time, on the south side of Carruthers Creek, SEREM Ltd. (Serem) was conducting reconnaissance mapping and soil geochemistry work on three groups of claims: the ARP group of claims, encompassing the current Arp Minfile occurrence (094D 066), the PAD group, encompassing the Pad Minfile occurrence (094D 086), and the LIZ group, encompassing the Liz Minfile occurrence (094D 076). Mineralization identified on all three of the Serem properties was noted as being stratabound and a series of short drill holes were proposed for the following season (Sonnendrucker, 1974).

In 1974, Pechiney Development Ltd. (Pechiney) conducted exploration on the MAR and LEN group of claims, located approximately halfway between the LIZ and the PAD groups. Work consisted of geological mapping, geochemical sampling and surface trenching. Copper mineralization was noted as being readily visible on both the southeast and northwest ridges of the cirque area, with the host rock being fine-grained tuffaceous argillite. Alteration minerals include epidote, calcite, chlorite and sericite which are often associated with bornite, chalcocite, covellite, chalcopyrite and malachite.

Soil geochemical sampling was conducted in the lower elevations of the cirque. A total of 143 samples were collected from the B horizon using a 4-foot steel auger. Samples were analyzed for copper and manganese, but no significant results are noted by Mistry (1974).

Seven trenches of varying dimensions we excavated around the small lake, and subsequent chip samples were assayed for copper, silver and gold although no sample descriptions or sample results have been reported. Mineralization in the trenches is noted as occurring in shattered, jointed dacite porphyry (Mistry, 1974).

The MAR Group was revisited in the 1975 field season by Pechiney with a short drill program. Three BQ diamond drill holes were drilled totaling 1,500 feet (457.46 metres) (Mistry, 1975). While drill logs and geological descriptions are included in the assessment report, no geochemical results or cross sections are available. Drill hole collar locations are only plotted at a very large scale and can only be estimated as to their actual location, most probably in the vicinity of the SE Ridge Showings. No further work is recorded at the MAR occurrence.

In 1994, a provincial regional geochemical survey (RGS) was completed for the 94D map-area with the collection of 1,031 stream sediment samples. Three samples were collected from creeks that are at least partially sourced from the Property. The highest copper value is 155 ppm Cu from a creek draining the area of the Liz showing.

In 2005, Geoscience BC sponsored a program of increasing the ASTER imagery dataset for the BC Ministry of Mines, Energy and Petroleum Resources. Four alteration images for each scene were prepared using combinations of the standard ASTER bands. The images are designed to map the relative abundances of siliceous rocks, iron oxides, sericite and illite, and alunite and/or kaolinite (Kilby and Kilby, 2006). This work includes coverage over the Property.

In 2018, Geoscience BC released the results of the SEARCH III project, completing additional geophysical surveys including magnetics and radiometrics.

In 2019, a geological compilation and geophysical interpretation of the Property was carried out also examining characteristics of nearby comparable deposits at the Sustut deposit to the northwest and Fred/North Star prospect to the southeast (Vander Wart, 2020).

From 2018 to 2020 the Property was included as part of a larger regional mapping effort by the BC Geological Survey (Ootes *et al*, 2020). No significant changes in the earlier regional mapping other than some minor classification modifications of certain lithological units (i.e. lJHT to lJHTvs) and slight adjustments to contacts. These are not yet reflected in the regional geological map (Figure 3).

4.0 WORK PROGRAM

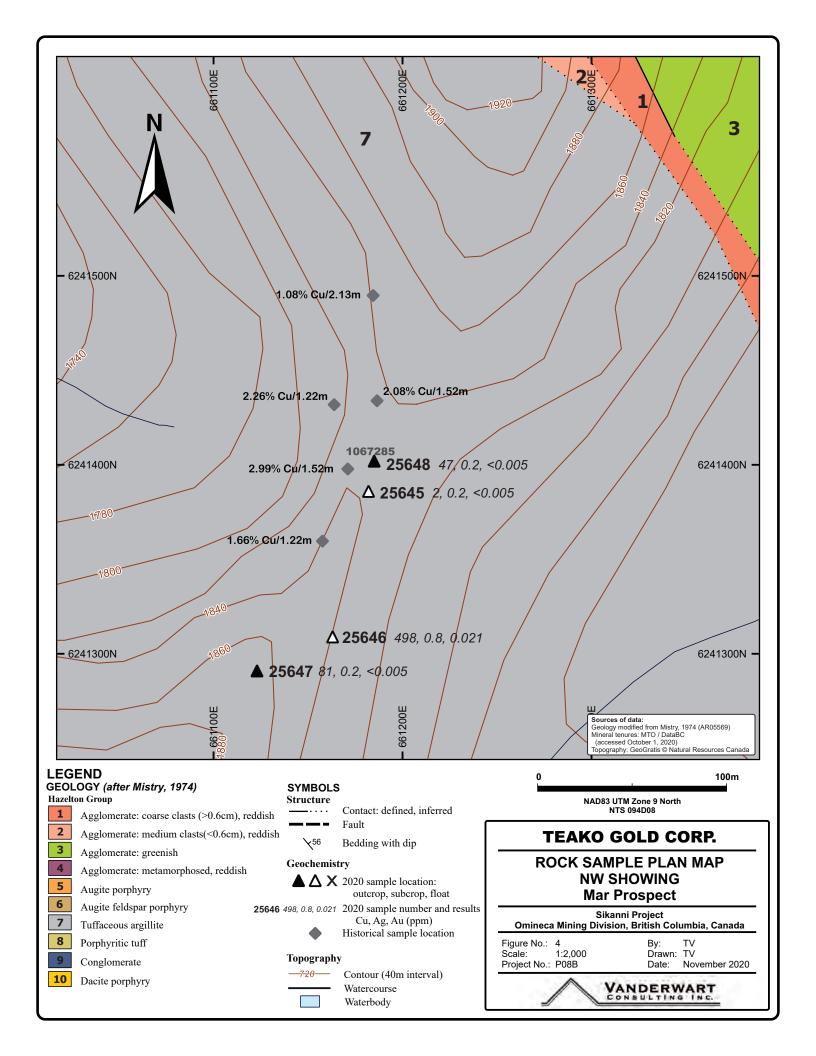
A Property visit was carried out on August 22, 2020 by the author and Mr. Tom Bell.

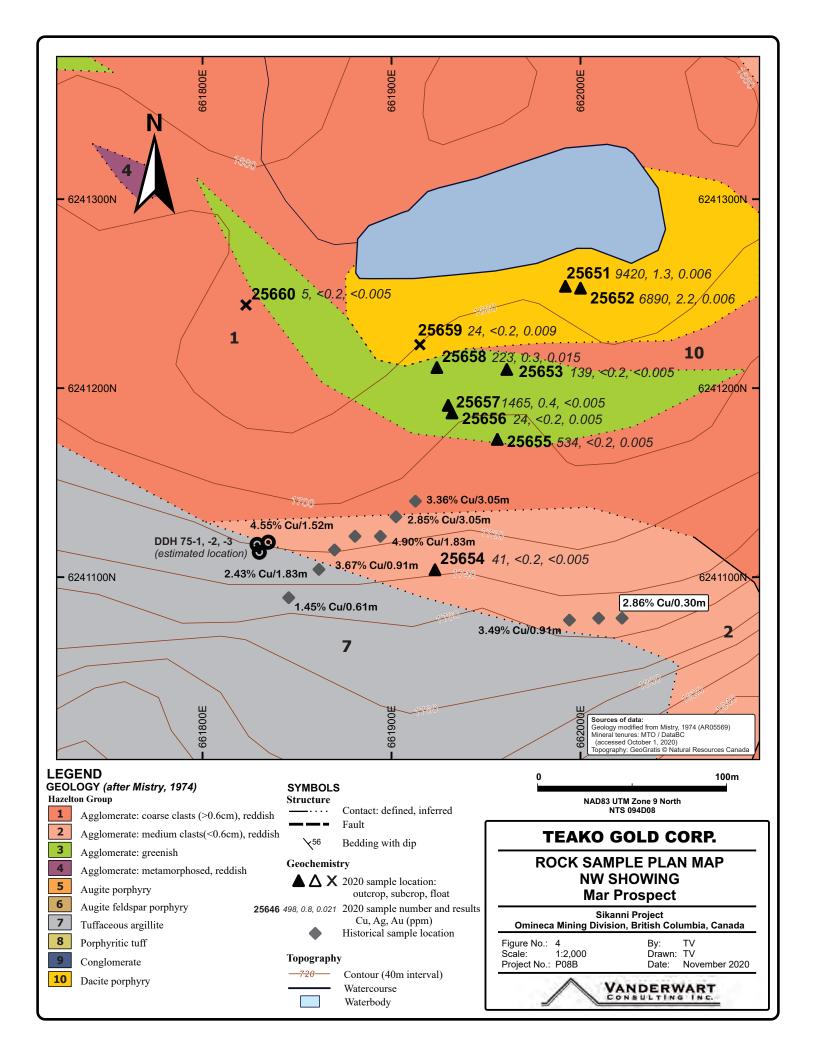
Access was from Thane Minerals Inc.'s exploration camp located some 60 km east-southeast of the Property utilizing a Eurocopter AStar B2 helicopter operated by Canadian Helicopters of Smithers, BC. Due to weather constraints only one-half of a day was available for the Property visit.

The Mar prospect area was selected for the visit as it is one of the more prospective areas of the property and the site of historical drilling. No formal mapping was completed during the visit. Visually, and based on rock samples collected, the property geology is consistent with the historically described lithology, alteration, and mineralization, where encountered.

The diamond drill core from the 1975 drilling program was located on the Property as described in the associated assessment report. Unfortunately, the core boxes have degraded to the point where they have collapsed and broken such that the core is unlikely to be salvageable. No box tags or other identifying markings were noted either. It may still be worthwhile to spend some time looking at the core in a future visit.

4.1 ROCK SAMPLING


Field work was focused toward examining the area of the historical chip sampling which returned significant grades of copper mineralization, as well the area of trenching around the small lake. One person was dropped on the saddle near the NW Showing (Figure 4)to attempt the locate the area of historical samples and collect confirmation samples while another visited the SE Showing area, site of historical drilling, trenching and chip sampling. (Figure 5).


Fourteen (14) rock samples were collected, four from the NW Showing area and 10 from the SE Showing area. Samples were collected from float, subcrop and outcrop sources. All samples were located using a handheld Garmin eTrex10 GPS unit. Sample locations are accurate to +/-3 metres in easting and northing. Sample locations were marked in the field using flagging tape.

All samples were placed in labelled and sealed polyethylene bags in the field. Samples were taken to the author's home for completion of rock sample descriptions and then resealed in the bags with plastic tie-locks prior to delivery to the analytical laboratory. A small example of each sample was retained for reference and testing with a magnetic susceptibility meter. Magnetic susceptibility was measured with an Exploranium KT-10 meter.

Maps of sample locations with selected elements are presented in Figure 5 (copper and silver)

All samples were delivered to ALS Canada Ltd. (ALS) of North Vancouver BC for preparation and geochemical analysis. Rock samples were prepared by crushing, followed by a 250-gram split and then pulverization to 200 mesh (ALS code (PREP-31).

Multi-element analysis was performed by aqua regia digestion and induced coupled plasma/atomic emission spectrometry (ICP-AES) finish (ALS code ME-ICP41). Sample decomposition was by using a modified aqua regia digestion (HNO₃-HCl) and analyzed for 35 elements by spectrometry (ICP-AES). This method is useful for mobile and easily soluble species such as sulphides. Depending on the element, results are reported in parts per million (ppm), parts per billion (ppb) or percent (%).

Gold was analyzed by lead collection fire assay fusion (ALS code Au-ICP21). Total gold content is determined by digesting a silver dore bead and then analysing by ICP-ES.

ALS quality control measures consisted of routine use of standards, blanks and duplicates and are considered adequate for this stage of exploration.

Further details of sample preparation and analytical techniques are presented in Appendix I. Certificates of analysis are included in Appendix II. Rock sample location details and sample descriptions are presented in Appendix III.

4.1.1 Observations and Results

NW Showing Area

In the area visited (Figure 4), little copper mineralization was noted although with the limited time available, only a small portion of the area was traversed. The uncertainty in the historical maps also made it difficult to determine the exact area of historical samples. Regardless, the saddle area was scouted out with four samples collected from subcrop and outcrop. Samples consisted of finer grained mainly green and maroon volcaniclastics. The samples contained variable amounts of quartz-carbonate veinlets vaiable epidote alteration or stringers. Sample 25645 exhibited a black sooty mineral on several fracture surfaces as well as earthy hematite alteration. Sample 25646 demonstrated minor spotty malachite along several fracture surfaces but no sulphides were noted. Sample 25648 contained a speck of limonite altered sulphide with a blue metallic sheen – possibly bornite. Several epidote-coated or -replaced pyrite cubes were also present.

Table 2: Selected rock sample results, Mar Prospect, NW Showing Area

Comm1a	Campla	Results					
Sample ID	Sample Type	Au (ppm)	Ag (ppm)	Cu (ppm)	Other		
25645	Grab	< 0.005	0.2	2			
25646	Composite						
	Grab over						
	2 metres	0.021	0.8	498			
25647	Composite						
	Grab over						
	2 metres	< 0.005	0.2	81			
25648	Grab	< 0.005	0.2	47			

Magnetic susceptibility measurements of hand specimens ranged from 0.190 to 0.530. A moderate magnetic high from the SEARCH III airborne geophysical survey appears to pass

through the area of samples 25646 and 25467 but this is not clearly reflected in the samples although of the four samples these do have the highest susceptibility values (0.277, 0.530).

SE Showing Area

The area of historical trenching was located near the small lake east of the landing spot. Not all the trenches noted in the historical maps could be identified but three were still quite evident and were located by GPS (Figure 6). The trenches noted were oriented approximately 340° and ranged from 2 to 5 metres in length. The presence of distinctive green malachite staining on the rocks was evident in several locations. Fresh surfaces of the malachite stained rock demonstrated strong chalcopyrite mineralization (up to 10%) disseminated through the rock. The host rock was historically identified as a dacite, which does appear consistent with observations made during the current visit. Two samples (25651, 25652) were selected from sub-crop in the trenches or immediately surrounding it. These two samples returned the best copper grades from the program: 9420 ppm Cu and 6890 ppm Cu, respectively.

Photo 3: Malachite stained boulder in trench area

From the trench area, the traverse moved upslope along a small low ridge. The outcrop area consisted of mostly green and lesser maroon fine-grained volcanics to coarse agglomerates Several sample locations yielded fine-grained sulphides of chalcopyrite, pyrite and possible bornite. Some fracture surfaces showed a black earthy mineral occurring as small 1-2 mm patches. Sample results from this area were low in copper, with a best sample value of 1465 ppm Cu (sample 25657). Sample 25658 returned anomalous copper of 223 ppm Cu.

Further upslope, near a waterfall are very distinct maroon volcaniclastics often with very strong epidote alteration on surfaces, or as stringers and veins. Carbonate (mainly calcite) veins are also present, from veinlets to larger >20 cm veins.

Precious metal results are uniformly low with maximum values of 0.015 ppm Au (25658) and 2.2 ppm Ag (25652).

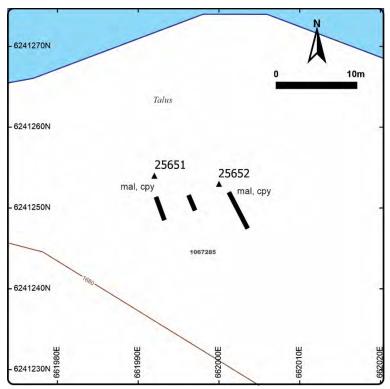


Figure 6: Trench location map with 2020 sample locations, Mar Prospect

Table 3: Selected rock sample results, Mar Prospect, SE Showing Area

Comm1a	Commla	Results					
Sample ID	Sample Type	Au (ppm)	Ag (ppm)	Cu (ppm)	Other		
25651	Grab	0.006	1.3	9420	14 ppm Mo		
25652	Grab	0.006	2.2	6890	26 ppm Mo		
25653	Grab	< 0.005	< 0.2	139			
25654	Grab	< 0.005	< 0.2	41			
25655	Grab	0.005	< 0.2	534			
25656	Grab	0.005	< 0.2	24			
25657	Grab	< 0.005	0.4	1465			
25658	Grab	0.015	0.3	223			
25659	Grab	0.009	< 0.2	24			
25660	Grab	< 0.005	< 0.2	5			

Magnetic susceptibility measurements of non-carbonate vein hand specimens ranged from 0.062 to 2.326. The SEARCH III airborne geophysical survey shows a circular magnetic low through this area. Sample 25655 returned the highest susceptibility measurement (2.326). This sample showed less carbonate alteration, and this may be reflective in the magnetic susceptibility reading.

4.2 HISTORICAL DRILLING VERIFICATION

Diamond drilling in 1975 was reportedly undertaken in the SE Showing area (Figure 5). The drill site area was not accessed during the field visit traverse. From the air, no evidence of drill pad or cribbing was observed in the area.

The historical drill core storage was located from the air and briefly visited to GPS locate its position (661732E, 6241380N) and ascertain its usefulness. Unfortunately, the boxes observed have generally degraded to the point where core has been spilled or jumbled together. Some boxes were mostly intact although no tags or other identifying notations were noted on the visible boxes and no effort to go through all the boxes was made at this time. If more time is available in subsequent visits it would be worth going through the boxes to determine if there is anything salvageable.

Photo 4: Historical 1975 Pechiney drill core

6.0 CONCLUSIONS AND RECOMMENDATIONS

The Sikanni Property is centred at latitude 56°21'N and longitude 126°17'W, approximately 170 kilometres northeast of Smithers and 225 km northwest of Mackenzie.

The Property is situated on the eastern edge of the Stikinia Terrane, part of the Intermontane Belt of the Canadian Cordillera. The Stikinia Terrane Takla Group rocks that are regionally dominant consist of three main formations: the basal Dewar Formation, the Savage Mountain Formation and the overlying Moosevale Formation. These rocks are in contact with the lower Jurassic Hazelton Group calc-alkaline volcanic rocks rocks of the Telkwa Formation. These rocks area characteristic maroon, green and purple subaerial andesitic to dacitic feldspar phyric flows, pyroclastic and epiclastic rocks, augite phyric to aphyric basalt, breccia, welded tuff. The copper and associated mineralization on the Property appear to be mainly associate with this formation.

The Ingenika Fault lies to the east of the Property, marking the boundary with the Quesnel Terrane further to the east. There, Upper Triassic to Lower Jurassic volcano-sedimentary sequences that include the Takla, Nicola and Stuhini groups are intruded by the Cretaceous

Hogem multi-phase batholith, a very large elongate granodioritic to monzonitic intrusion which is located approximately seven kilometres east of the Property.

Selkirk Metals Corp.'s Sustut deposit, a red bed copper-basalt deposit, is located 45 kilometres north-northwest of the Property. The Sustut deposit consists of a sulphide-rich sheet-like zone up to 76 metres thick in volcaniclastics. The zone is composed of hematite, pyrite, chalcocite, bornite, chalcopyrite, and native copper in decreasing order of abundance. All copper minerals are very fine grained and disseminated through both matrix and clasts of the volcaniclastics. Increased mineral concentrations occur in the finer-grained tuff and tuffaceous matrix fractions. Hematite is ubiquitous throughout the zone; pyrite tends to form an incomplete envelope around the copper-rich lenses. Mineral resource figures from 2003 include 5.67 Mt at 1.87% Cu and 6.1 g/t Ag of Measured and Indicated resources and 0.27 Mt at 1.67% Cu and 5.3 g/t Ag of Inferred resources (Doublestar Resources Ltd. News Release, February 3, 2003).

The 2020 program was hampered in the limited time available on site due to inclement weather. The visit also only investigated the Mar Prospect so the other known mineralized occurrences still require verification and assessment of their potential.

The current visit was successful in locating some historical features such as trenches and the 1975 drill core. The area of the trenches demonstrated copper mineralization (malachite and chalcopyrite) and grab samples returned up to 0.94% Cu. While historical records indicated the presence of copper in this area, there were no quantitative values of copper concentrations. The drill core boxes were in extremely poor shape and likely unsalvageable. It may still be worth some effort to examine the core for presence of mineralization and preferential host lithology. The historical drill sites were not located, although not enough time was available to adequately investigate further.

No high-grade mineralization was located that was comparable to those areas historically sampled in either the NW Showing or SE Showing. In the NW Showing, it is likely that the location ascertained from historical records are not properly as their position was determined from crude topographic maps.

Based on geological observations and sampling, the lithologies as previously mapped are accurately described but will be in need of revision with respect to contacts.

Additional exploration is warranted. The historical high-grade copper mineralization has yet to be relocated. The other known mineral occurrences still need to relocated and assessed for their potential.

Respectfully

Wanderwart Consulting Inc.

November 30, 2020

7.0 REFERENCES

British Columbia Department of Mines and Petroleum Resources

1975. Geology, Exploration and Mining in British Columbia, 1974.

1974. Geology, Exploration and Mining in British Columbia, 1973.

British Columbia Minfile

094D 066 Arp

094D 076 Liz

094D 086 Pad

094D 093 Mar

094D 106 Mona Jean

094D 108 Lake

094D 124 Tom

Dawson, A.H.

1974a. Report on the ANI 1-64 Mineral Claims of Interior Syndicate, Sustut Area, North Central British Columbia. Assessment Report 04878.

1974b. Report on the CAR 1-64 Mineral Claims of Interior Syndicate, Sustut Area, North Central British Columbia. Assessment Report 04879.

Doublestar Resources Ltd. News Release, February 3, 2003.

Mistry, N. J.

1975. Assessment Report MAR-LEN Claim Group, for Pechiney Development Limited NPL. Assessment Report 05569.

1974. Assessment Report on the MAR Claims, for Pechiney Development Limited NPL. Assessment Report 05229.

Naas, C.O. and Vander Wart, T.W.F.

2013. Data Compilation, Geochemistry and Prospecting of the Carruthers Minerals Claims, Omineca Mining Division, British Columbia, for Christopher O. Naas by CME Consultants Inc., October 30, 2013. Assessment Report 34368.

Ootes, L., Bergen, A.L., Milidragovic, D., Jones, G.O., Camacho, A., and Friedman, R., 2020. An update on the geology of northern Hogem batholith and its surroundings, north-central British Columbia. In: Geological Fieldwork 2019, British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey

Paper 2020-01, pp. 25-47.

Sonnendrucker, P.

1974. A geological and Geochemical Report on the Liz Claim Group 3.4 Miles Northwest of Mount Carruthers (Sikanni Range, B.C.), Omineca Mining Division, for Serem Ltd., Assessment Report 05048.

Tait, R.M.

1988. Prospecting Report on the CAR #1 - #5 Mineral Claims, Assessment Report 18175.

Vander Wart, T.

2020. Assessment Report Geology and Geophysics Compilation Report on the Sikanni Property, unpublished report for VanderWart Consulting Inc., February 16, 2020, Assessment Report 38889.

Websites:

Assessment Report Index Service http://aris.empr.gov.bc.ca/

BC Minfile http://minfile.gov.bc.ca/searchbasic.aspx

BC Mineral Titles Online https://www.mtonline.gov.bc.ca/mtov/home.do (accessed October 1, 2020)

Acknowledgments:

- The author would like to acknowledge Luke Ootes of the British Columbia Geological Survey for making available the updated regional geological spatial data.
- The author is grateful to Lorie Farrell for use of the magnetic susceptibility meter.

8.0 CERTIFICATE

I, Ted VanderWart, P. Geo., do hereby certify that:

W. F. VANDER WART # 41115

Ted/VanderWar

- I am a graduate in geology of the University of British Columbia (B.Sc., 1994); and have practiced in my profession continuously since 1996;
- I am a Professional Geoscientist in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (Licence No. 41115).
- I am President of Vanderwart Consulting Inc. with business address of 4369 Reiseter Avenue, Smithers, BC, V0J 2N0;
- Since 1996, I have been involved in mineral exploration for precious metals, base metals and rare earth elements in Canada (British Columbia, Yukon Territory), Ghana, and Democratic Republic of Congo.
- This conclusions and recommendations in this report are based upon a review of historical literature and exploration, and the results of the exploration program described herein.

Dated at Smithers, British Columbia, this 30th day of November 2020.

21

9.0 STATEMENT OF COSTS

Personnel	Units	Rate (day)	Amount	
T Vander Wart	0.50	\$ 550.00	\$ 275.00	
T Bell	0.50	\$ 400.00	\$ 200.00	
			Sub total	\$ 475.00
Disbursements	Units	Rate (day)	Amount	
Accommodation	1.00	\$ 46.00	\$ 46.00	
GPS	1.00	\$ 20.00	\$ 20.00	
	Units	Rate (hour)	Amount	
Helicopter	1.20	\$ 1,897.50	\$ 2,277.00	
Magnetic susceptibility meter	0.50	\$ 50.00	\$ 25.00	
			Amount	
Field supplies			\$ 6.98	
Analytical (14 rock samples)			\$ 656.07	
Courier			\$ 84.71	
			Sub total	\$ 3,115.76
Reporting	Units	Rate (hour)	Amount	
Field preparation (field maps, supplies)	2.00	\$ 55.00	\$ 110.00	
Report preparation - T Vander Wart	13.00	\$ 55.00	\$ 715.00	
Plotting and photocopying			\$ 19.50	
			Sub total	\$ 844.50
			Total	\$ 4,435.26

10.0 LIST OF SOFTWARE USED

In the preparation of this report the following software was used:

Microsoft Word 2016

Excel 2016

Corel CorelDraw 2019

Adobe Acrobat DC Standard QGIS QGIS version 3.10.10 Intuit Quickbooks Pro 2018

APPENDIX I SAMPLE PREPARATION AND ANALYTICAL METHODS

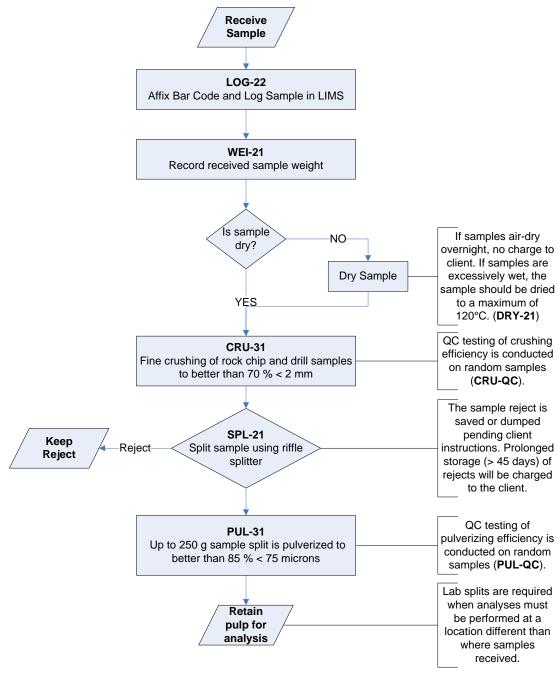
Sample Preparation Package

PREP-31 Standard Sample Preparation: Dry, Crush, Split and Pulverize

Sample preparation is the most critical step in the entire laboratory operation. The purpose of preparation is to produce a homogeneous analytical sub-sample that is fully representative of the material submitted to the laboratory.

The sample is logged in the tracking system, weighed, dried and finely crushed to better than 70 % passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen. A split of up to 250 g is taken and pulverized to better than 85 % passing a 75 micron (Tyler 200 mesh, US Std. No. 200) screen. This method is appropriate for rock chip or drill samples.

Method Code	Description
LOG-22	Sample is logged in tracking system and a bar code label is attached.
CRU-31	Fine crushing of rock chip and drill samples to better than 70 % of the sample passing 2 mm.
SPL-21	Split sample using riffle splitter.
PUL-31	A sample split of up to 250 g is pulverized to better than 85 % of the sample passing 75 microns.


Revision 03.03 March 29, 2012

Sample Preparation Package

Flow Chart -

<u>Sample Preparation Package - PREP-31</u> <u>Standard Sample Preparation: Dry, Crush, Split and Pulverize</u>

Revision 03.03 March 29, 2012

ME-ICP41 - Trace Level Methods Using Conventional ICP-AES Analysis

Sample Decomposition:

HNO3- HCl Aqua Regia Digestion (GEO-AR01)

Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (0.50 g) is digested with aqua regia for 45 minutes in a graphite heating block. After cooling, the resulting solution is diluted to 12.5 mL with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. The analytical results are corrected for inter element spectral interferences.

NOTE: In the majority of geological matrices, data reported from an aqua regia leach should be considered as representing only the leachable portion of the particular analyte.

List of Reportable Analytes:

Analyte	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Silver	Ag	ppm	0.2	100	Ag-OG46
Aluminum	Al	%	0.01	25	
Arsenic	As	ppm	2	10000	
Boron	В	ppm	10	10000	
Barium	Ва	ppm	10	10000	
Beryllium	Be	ppm	0.5	1000	
Bismuth	Bi	ppm	2	10000	
Calcium	Ca	%	0.01	25	
Cadmium	Cd	ppm	0.5	1000	
Cobalt	Со	ppm	1	10000	
Chromium	Cr	ppm	1	10000	
Copper	Cu	ppm	1	10000	Cu-OG46
Iron	Fe	%	0.01	50	
Gallium	Ga	ppm	10	10000	
Mercury	Hg	ppm	1	10000	
Potassium	K	%	0.01	10	
Lanthanum	La	ppm	10	10000	
Magnesium	Mg	%	0.01	25	
Manganese	Mn	ppm	5	50000	
Molybdenum	Мо	ppm	1	10000	
Sodium	Na	%	0.01	10	
Nickel	Ni	ppm	1	10000	
Phosphorus	Р	ppm	10	10000	
Lead	Pb	ppm	2	10000	Pb-OG46
Sulfur	S	%	0.01	10	
Antimony	Sb	ppm	2	10000	
Scandium	Sc	ppm	1	10000	
Strontium	Sr	ppm	1	10000	
Thorium	Th	ppm	20	10000	
Titanium	Ti	%	0.01	10	

Analyte	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Thallium	TI	ppm	10	10000	
Uranium	U	ppm	10	10000	
Vanadium	V	ppm	1	10000	
Tungsten	W	ppm	10	10000	
Zinc	Zn	ppm	2	10000	Zn-OG46

Elements Listed below are available upon request:

Analyte	Symbol	Units	Lower Limit	Upper Limit	Default Overlimit Method
Cerium	Ce	ppm	10	10000	
Hafnium	Hf	ppm	10	10000	
Indium	In	ppm	10	10000	
Lithium	Li	ppm	10	10000	
Niobium	Nb	ppm	10	10000	
Rubidium	Rb	ppm	10	10000	
Selenium	Se	ppm	10	10000	
Silicon	Si	ppm	10	10000	
Tin	Sn	ppm	10	10000	
Tantalum	Ta	ppm	10	10000	
Tellurium	Te	ppm	10	10000	
Yttrium	Y	ppm	10	10000	
Zirconium	Zr	ppm	5	10000	

<u>Au-ICP21/Au-ICP22 - Fire Assay Fusion - ICP-AES Finish</u>

Sample Decomposition:

Fire Assay Fusion (FA-FUSPG1 & FA-FUSPG2)

Analytical Method:

Inductively Couple Plasma - Atomic Emission Spectrometry

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven. 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by inductively coupled plasma atomic emission spectrometry against matrix-matched standards.

Method Code	Element	Symbol	Units	Sample	Lower	Upper	Default
				Weight (g)	Limit	Limit	Overlimit
							Method
Au-ICP21	Gold	Au	ppm	30	0.001	10	Au-GRA21
Au-ICP22	Gold	Au	ppm	50	0.001	10	Au-GRA22

APPENDIX II CERTIFICATES OF ANALYSIS

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: VANDERWART, TED
PO BOX 3914
4369 REISETER AVE.
SMITHERS BC BC VOJ 2NO

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 10-OCT-2020 This copy reported on

11-OCT-2020 Account: VANTED

CERTIFICATE VA20194594

Project: Sikanni

This report is for 14 Rock samples submitted to our lab in Vancouver, BC, Canada on 3-SEP-2020.

The following have access to data associated with this certificate:

BARRY MILLER

TED VANDERWART

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
CRU-QC	Crushing QC Test	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	
DISP-01	Disposal of all sample fractions	

·	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Au-AA23	Au 30g FA-AA finish	AAS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: VANDERWART, TED PO BOX 3914 4369 REISETER AVE. SMITHERS BC BC VOJ 2NO Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 10-OCT-2020 Account: VANTED

CERTIFICATE OF ANALYSIS VA20194594

Project: Sikanni

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm I	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
25645		1.16	<0.005	0.2	1.10	<2	<10	10	<0.5	<2	8.6	<0.5	6	4	2	1.98
25646		1.62	0.021	8.0	1.66	<2	<10	10	< 0.5	<2	4.47	< 0.5	16	38	498	3.55
25647		2.00	< 0.005	0.2	2.55	2	10	20	<0.5	2	2.67	<0.5	22	39	81	3.93
25648		1.08	< 0.005	0.2	0.97	2	<10	10	<0.5	<2	5.02	<0.5	6	6	47	2.07
25651		0.90	0.006	1.3	1.69	3	<10	10	<0.5	<2	1.04	<0.5	. 10	8	9420	3.65
25652		1.04	0.006	. 2.2	2.24	6	<10	10	<0.5	<2	1.27	<0.5	13	2	6890	4.47
25653		1.00	< 0.005	< 0.2	3.17	2	10	70	<0.5	<2	1.37	< 0.5	20	7	139	4.57
25654		0.72	< 0.005	<0.2	2.37	4	<10	70	< 0.5	3	2.53	<0.5	25	33	41	6.03
25655		1.06	0.005	< 0.2	2.21	<2	<10	20	<0.5	<2	1.10	<0.5	22	. 2	534	4.89
25656		1.08	0.005	<0.2	2.22	4	<10	50	< 0.5	<2	2.47	<0.5	14	10	24	3.66
25657		0.94	<0.005	0.4	1.96	2	10	40	<0.5	<2	3.25	<0.5	11	3	1465	3.37
25658		1.06	0.015	0.3	1.85	3	<10	30	<0.5	<2	0.95	<0.5	12	4	223	4.48
25659		1.30	0.009	< 0.2	0.31	<Ź	<10	<10	< 0.5	<2	>25.0	< 0.5	2	1	24	0.72
25660		0.80	< 0.005	<0.2	0.25	<2	<10	10	<0.5	<2	>25.0	<0.5	1	4	5	0.49

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: VANDERWART, TED PO BOX 3914 4369 REISETER AVE. SMITHERS BC BC VOJ 2NO Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 10-OCT-2020 Account: VANTED

Project: Sikanni

									C	ERTIFIC	CATE O	F ANAI	LYSIS	VA201	94594	
Sample Description	Method Analyte Units LOD	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm I	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
25645 25646		10 10	1 1	0.02 0.02	<10 <10	0.82 1.58	880 971	<1 <1	0.05 0.05	2 20	940 770	<2 <2	<0.01 0.01	<2 3	2 9	82 97
25647 25648		10 10	1 1	0.02 0.02	<10 <10	2.16 0.65	976 618	<1 <1	0.03	18	830 1200	2	0.01 0.01	3 <2	6	184 30
25651		10	1	0.03	10	1.24	762	14	0.09	4	940	3	1.03	<2	3	12
25652 ⁻ 25653		10 10	<1 1	0.05 0.23	10 <10	1.57 2.21	876 1115	26 <1	0.07 0.09	2 6	1080 470	13 <2	0.86 <0.01	2 <2	3 5	29 46
25654 25655		10 10	1 1	0.11 0.02	<10 10	2.53 1.79	1160 1225	1 <1	0.06 0.08	21 5	880 1400	4 <2	<0.01 <0.01	<2 <2	12 8	18 95
25656		10	1	0.11	<10	1.56	887	<1	0.09	8	990	3	0.41	<2	3	51
25657 25658		10 10	1 <1	0.21 0.05	<10 <10	1.03 1.55	901 1000	1 ,2	0.06 0.08	5 3	950 1010	2 9	0.25 1.43	<2 <2	3 4	32 24
25659 25660		<10 <10	1 .	<0.01 0.03	<10 <10	0.26 0.13	1045 490	<1 1	0.01 0.01	3 5	140 160	<2 4	<0.01 0.01	<2 3	1	79 33

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry To: VANDERWART, TED PO BOX 3914 4369 REISETER AVE. SMITHERS BC BC VOJ 2NO Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 10-OCT-2020 Account: VANTED

Project: Sikanni

									CERTIFICATE OF ANALYSIS	VA20194594
Sample Description	Method Analyte Units LOD	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 Tl ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
25645 25646 25647 25648 25651		<20 <20 <20 <20 <20	0.11 0.13 0.34 0.17 0.17	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	37 113 122 54 103	<10 <10 <10 <10 <10	36 56 87 27 51	:	
25652 25653 25654 25655 25656		<20 <20 <20 <20 <20	0.25 0.18 0.37 0.30 0.18	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	102 55 163 149 81	<10 <10 <10 <10 <10	54 85 91 73 76	•	
25657 25658 25659 25660		<20 <20 <20 <20	0.14 0.33 0.02 0.05	<10 <10 <10 <10	<10 <10 <10 <10	60 130 16 18	<10 <10 <10 <10	72 99 12 13		

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: VANDERWART, TED
PO BOX 3914
4369 REISETER AVE.
SMITHERS BC BC VOJ 2N0

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 10-OCT-2020 Account: VANTED

Project: Sikanni

CERTIFICATE OF ANALYSIS VA20194594

		CERTIFICATE COMM	ENTS	
			DRY ADDRESSES	
Applies to Method:	Processed at ALS Vancouver locat Au-AA23 LOG-21 WEI-21	ed at 2103 Dollarton Hwy, North CRU-31 ME-ICP41	Vancouver, BC, Canada. CRU-QC PUL-31	DISP-01 SPL-21

APPENDIX III ROCK SAMPLE DESCRIPTIONS

Rock Sample Descriptions

Sample	Location (NA	D 83 UTM Zc	ne 9 North)	Sample	Description	Magnetic	Sampling	Sampled
ID	Easting	Northing	Elevation (m)	Туре		Susceptibility	Date	Ву
25645	661182	6241386	1835	Grab (over 0.25m)	Outcrop of green fine to medium-grained volcanoclastic with quartz-carbonate veinlets along fractures, minor epidote veinlets, some dark grey to black sooty material along several fracture surfaces; some hematite association with veinlets.	0.190	2020-08-22	ТВ
25646	661163	6241309	1840	•	Outcrop of maroon medium-grained volcaniclastic (agglomerate or lithic tuff) with quartz-carbonate veinlets; one quartz-carbonate vein ~3cm thick with strong epidote and spotty malachite on numerous fracture surfaces; minor earthy hematite	0.277	2020-08-22	ТВ
25647	661123	6241291	1865	Composite Grab (over 2.00 m)	Outcrop of maroon medium-grained volcaniclastic (agglomerate or lithic tuff) with lesser quartz-carbonate veinlets and fracture infill than 25646; strong laminar epidote alteration or veinlets; lithic fragments include strong spotty hematite clasts; zone is 095/70	0.530	2020-08-22	ТВ
25648	661185	6241402	1830	Grab	Outcrop of medium green-grey volcaniclastic; strong carbonate alteration (calcite) and veinlets; fracture surface with soft talc slickensides; minor very fine-grained hematite stringers; one speck of limonite alteration on sulphide - possible bornite (blue metallic sheen) <<1%; pyrite cubes coated/replaced(?) by epidote <<1%	0.253	2020-08-22	ТВ
25651	661992	6241254	1671	Grab	Subcrop from area of historical trenches. Mapped as a dacite historically - quartz rich volcanic rock with strong disseminated chalcopyrite >5% and associated malachite staining on weathered surfaces as well as on fresh surfaces; possible bornite and chalcocite (black earthy mineral around chalcopyrite)	0.082	2020-08-22	TV
25652	662000	6241253	1670	Grab	Subcrop from area of historical trenches. Probably dacite, quartz-rich, very hard and some surface pitted and leached out. Chalcopyrite locally very strong >10% fracure-filling and disseminated. Malachite staining on fracture surfaces; carbonate infill on fracture surfaces as well; possible chalcocite - black earthy mineral coating around chalcopyrite.	0.062	2020-08-22	TV
25653	661961	6241210	1684	Grab	Outcrop of green fine-grained volcaniclastic; moderate to strong epidote alteration in vleints and stringers; moderate carbonate alteration associated with the epidote; trace chalcopyrite with fine black disseminated blotches (chalcocite?)	0.181	2020-08-22	TV

Rock Sample Descriptions

Sample	Location (NA	D 83 UTM Zc	ne 9 North)	Sample	Description	Magnetic	Sampling	Sampled
ID	Easting	Northing	Elevation (m)	Туре		Susceptibility	Date	Ву
25654	661923	6241104	1728	Grab	Outcrop of maroon fine-grained volcaniclastic with some green chloritericj fragments up to 1cm(?); strong hematite-chlorite-epidote; no carbonate alteration; some dark grey to black spotted surface coating mineral; no sulphides visible	0.071	2020-08-22	TV
25655	661956	6241173	1697	Grab	Outcrop of dark green-grey, fine-grained volcaniclastic; abundant black sooty fracture coatings; no carbonate, possible sericitte(?); epidote and some very fine clear to white needly crystals.	2.326	2020-08-22	TV
25656	661932	6241187	1690	Grab	Outcrop of medium green medium to fine-grained volcaniclastic fragmental - small drak green fragments within fine-grained lighter green matrix; minor epidote strongers with carbonate on fractures; pyrite 5% disseminated, chalcopyrite and possible bornite (some blue shimmer off sulphides when wet).	0.178	2020-08-22	TV
25657	661930	6241191	1688	Grab	Outcrop; similar to 25656; increased carbonate alteration; lesser pyrite (1%); trace chalcopyrite, though locally abundant along several fractures and dark earthy mineral on fracture surfaces	0.188	2020-08-22	TV
25658	661924	6241211	1686	Grab	Outcrop of medium green-grey, medium-grained crystal lithic to lapilli tuff; strong but very finely and evenly disseminated pyrite +/-chalcopyrite 3-5%; includes 1cm thick quartz-carbonate-epidote-pyrite-chalcopyrite veinlet with some larger 1-2mm chalcopyrite grains	0.078	2020-08-22	TV
25659	661915	6241223	1680	Grab	Float carbonate-quartz vein, estimated at least 20 cm thick; mainly white calcite with some additional euhedral honey-brown carbonate; associated with chlorite and epidote and possibly green sericite	0.064	2020-08-22	TV
25660	661823	6241244	1667	Grab	Float carbonate vein with some attached wallrock of red volcanic polylithic crystal (feldspar) tuff/agglomerate (hematite and epidote altered) minor magnetite crystals (<1%); very strong sulphur smell when sample broken, but likely due to carbonate - no sulphides visible.	0.067 (wallrock); 0.000 (vein)	2020-08-22	TV