BRITISH COLUMBIA The Best Place on Earth	BC Geological Survey Assessment Report 39321	Total and
Ministry of Energy and Mines BC Geological Survey	Assessn Title Pa	ent Report ge and Summary
TYPE OF REPORT [type of survey(s)]: Geological, Geochemical	TOTAL COST : 230,675	5.79
AUTHOR(S): Spencer Postman, Manuele Lazzarotto	SIGNATURE(S):	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR C	of work: 2020
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5829	9150	
PROPERTY NAME: Golddigger		
CLAIM NAME(S) (on which the work was done): Golddigger, Gold digger, H	iho, Mojo, Vimy Ridge 1 and 2, Lotto	
COMMODITIES SOUGHT: <u>Au, Ag, Cu, Pb, Zn</u> MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: <u>103P 013, 103P 10</u> MINING DIVISION: <u>Skeena</u> LATITUDE: <u>55</u> ^o <u>39</u> <u>'00</u> "LONGITUDE: <u>-129</u> ^o OWNER(S): 1) <u>J2 Syndicate Holdings Ltd.</u> 2)	08, 103P 279, 103P 266, 103P 267, 103P 27 NTS/BCGS: <u>103P/12</u> <u>46</u> ['] 49 (at centre of work)	<u>1</u>
MAILING ADDRESS: 303-10090 152nd Street		
Surrey, BC V3R 8X8 OPERATOR(S) [who paid for the work]: 1) Goliath Resources Limited 2)		
MAILING ADDRESS: 25 Adelaide Street East, Suite 1614		
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alternational Stiking Terrange Coast Plutonic Complex Rowser Rasin Stewart Co	ation, mineralization, size and attitude):	
Triassic, Epithermal, Volcanic-Hosted Massive Sulfides		

16299, 20024, 23952, 24743, 24746, 25328, 28438, 31206, 31418, 37089, 37783

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			56,775.00
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic		-	
Electromagnetic		- -	
Induced Polarization		- -	
Radiometric		- -	
Seismic		- -	
Other			
Airborne orthophotos			4,800.00
GEOCHEMICAL (number of samples analysed for)			
Soil		- -	
Silt		- -	
Rock 230		- -	14,903.40
Other		- -	
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying		- -	
Petrographic		- -	34,780.00
Mineralographic		-	
Metallurgic		- -	
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)	/trail		
Trench (metres)			
Underground dev. (metres)			
Other fieldwork logistics			119,417.39
		TOTAL COST:	230,675.79

GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT FOR THE GOLDDIGGER PROPERTY

Skeena Mining Division, British Columbia 50° 39' 0"N/129° 46' 49"W NTS Map Sheet: 103P 12

Event #: 5829150

Prepared for: Goliath Resources Ltd. Toronto, ON

Prepared by: Spencer Postman, BSc, Canmore, AB Manuele Lazzarotto, PhD, Calgary, AB

> February 25, 2021 Reviewed March 5, 2021

Table of Contents:

1.	Sun	nmai	ry 4
2.	Intr	oduo	ction and Terms of Reference4
2.	.1	Prop	perty Description and Ownership 4
2.	.2	Acce	essibility and Infrastructure8
2.	.3	Clim	nate and Physiography9
2.	.4	Hist	ory10
3.	Geo	ologi	cal Setting
3.	.1	Reg	ional Setting14
3.	.2	Loca	al/Property Geology
3.	.3	Min	eralization and Alteration18
3.	.4	Dep	osit Types
4.	Exp	lorat	ion 20
4.	.1	Roc	k Geochemistry
	4.1	.1	Sampling Method and Approach 21
	4.1	.2	Sample Preparation, Analyses, and Security21
	4.1	.3	Data Verification
4.	.2	Geo	logical Mapping22
	4.3	Gold	ldigger Orthophotos
	4.4	Resu	ılts
5.	Cor	nclusi	ions and Recommendations
6.	Stat	teme	ent of Costs
7.	Ref	eren	ces
8.	Stat	teme	ent of Qualifications
9.	Арр	bend	ices
I.	Fi	eld N	Notes
II.	. G	eoch	emical Maps55
Ш	Ι.	Geo	logical Mapping Notes61
١V	/.	Assa	ay Certificates

Tables:

Table 1. Mineral tenure details	5
Table 2. Summary of previous work (*conversion assumption: original oz/t values were troy	
ounces per short ton). From Benz, 2017, updated	11
Table 3. Channel Sampling highlights from 2020 sampling program (Goliath, 2020)	29

Table of Figures:

Figure 1. Tenure map of Golddigger property	6
Figure 2. Location map of Golddigger property	7
Figure 3. Regional geology of Golddigger area	15
Figure 4. Property geology of Golddigger	17
Figure 5. Geological Map of the Surebet Zone	23
Figure 6. Geological Map of the Cloud 9 Zone	24
Figure 7. 2020 Orthophotos	26
Figure 8. LiDAR Imagery Highlighting NW-SE Structures	28

1. Summary

From August 15th- Aug 31st and September 7-8th, 2020 a field program which included prospective sampling, channel sampling and geological mapping was carried out on the Golddigger property. A total of 52 chip and grab samples along with 184 channel samples were collected on the property with primary focus on the Surebet Zone. In addition, the Surebet Zone was mapped out to detail lithologies, structures and alteration to aid in future drill programs.

Located approximately 35km southeast of Stewart, BC, the property transects the unconformity between Lower Hazelton and Stuhini rocks ("the Red Line"). This setting is known to host many prolific deposits within close proximity to this contact (Ledwon, 2019). The 2020 field program was operated by Goliath Resources.

2. Introduction and Terms of Reference

In 2017, J2 Syndicate and Goliath engaged Diana Benz, Ph.D. of Takom Exploration Ltd. to prepare a comprehensive report on the Golddigger property, including work done during the 2017 field season. This 2018 assessment report quotes extensively from that in-depth research, as noted in References (see Benz, 2017).

This report relies on data and information provided by J2 Syndicate and Goliath Resources, and the author is grateful for the efforts of Manuele Lazzarotto, PhD. of Goliath Resources in assisting with the collection of said information.

For this report and because the property is so large, the property has been divided into numerous sections to show sampling data, all of which are described in map form in Appendix II.

2.1 Property Description and Ownership

The Golddigger property consists of 30 contiguous mineral tenures (Table 1), covering 18,587 hectares in the Skeena mining division. The tenures center around 50° 39' 0"N/129° 46' 49"W in map sheet 103P 12 (Figures 1 and 2). Issue dates and current good-to dates are also listed in Table 1 and will change pending the approval of this report.

The property is 100% owned by J2 Syndicate Holdings Ltd. and Goliath Resources Ltd. is the optionee and operator of the claims. In 2020, field work was performed on tenure numbers 1046274 and 1046643 highlighted (red font) in Table 1.

Tenure Number	Claim Name	Issue Date	Good To Date	Hectares	Client Number	Owner Name	Percent Owner
1046028	LOTTO	20160817	20220915	1022.72	283406	J2 SYNDICATE HOLDINGS LTD	100
1046273	ніно	20160827	20220915	877.784	283406	J2 SYNDICATE HOLDINGS LTD	100
1046274	OIOM	20160827	20230612	1643.71	283406	J2 SYNDICATE HOLDINGS LTD	100
1046463	LOTTO	20160903	20220915	292.068	283406	J2 SYNDICATE HOLDINGS LTD	100
1046641	LOTTO	20160912	20220915	1717.29	283406	J2 SYNDICATE HOLDINGS LTD	100
1046642	LOTTO	20160912	20220915	219.004	283406	J2 SYNDICATE HOLDINGS LTD	100
1046643	OLOW	20160912	20230612	1607.61	283406	J2 SYNDICATE HOLDINGS LTD	100
1046651	OIOM	20160913	20220915	73.116	283406	J2 SYNDICATE HOLDINGS LTD	100
1046652	LOTTO	20160913	20220614	109.674	283406	J2 SYNDICATE HOLDINGS LTD	100
1046654	LOTTO	20160913	20200823	54.8062	283406	J2 SYNDICATE HOLDINGS LTD	100
1046663	OLOW	20160914	20220915	164.382	283406	J2 SYNDICATE HOLDINGS LTD	100
1046665	LOTTO	20160914	20220915	328.561	283406	J2 SYNDICATE HOLDINGS LTD	100
1051775	GOLDDIGGER	20170503	20200823	1823.6	283406	J2 SYNDICATE HOLDINGS LTD	100
1051776	GOLDDIGGER	20170503	20200823	437.331	283406	J2 SYNDICATE HOLDINGS LTD	100
1051777	GOLDDIGGER	20170503	20220915	1604.72	283406	J2 SYNDICATE HOLDINGS LTD	100
1053255	GOLDDIGGER	20170719	20220915	364.74	283406	J2 SYNDICATE HOLDINGS LTD	100
1053256	GOLDDIGGER	20170719	20220915	291.918	283406	J2 SYNDICATE HOLDINGS LTD	100
1054410	GOLDDIGGER	20170831	20220915	1222.84	283406	J2 SYNDICATE HOLDINGS LTD	100
1054413	VIMY RIDGE 1	20170831	20220915	109.429	283406	J2 SYNDICATE HOLDINGS LTD	100
1054414	VIMY RIDGE 2	20170831	20220915	54.7261	283406	J2 SYNDICATE HOLDINGS LTD	100
1054421	GOLDDIGGER	20170831	20220915	200.631	283406	J2 SYNDICATE HOLDINGS LTD	100
1059029	GOLDDIGGER	20180302	20230101	1350.27	283406	J2 SYNDICATE HOLDINGS LTD	100
1068349	GOLD DIGGER	20190506	20230101	402.154	283406	J2 SYNDICATE HOLDINGS LTD	100
1071828	GOLDDIGGER	20191016	20201016	1316.69	283406	J2 SYNDICATE HOLDINGS LTD	100
1072962	GOLDDIGGER	20191126	20201126	932.243	283406	J2 SYNDICATE HOLDINGS LTD	100
1072963	GOLDDIGGER	20191126	20201126	364.98	283406	J2 SYNDICATE HOLDINGS LTD	100
1079829	GOLDDIGGER	20201130	20211130	1333.81	283406	J2 SYNDICATE HOLDINGS LTD	100
1079830	GOLDDIGGER	20201130	20211130	1775.52	283406	J2 SYNDICATE HOLDINGS LTD	100
1079831	GOLDDIGGER	20201130	20211130	403.105	283406	J2 SYNDICATE HOLDINGS LTD	100
1079947	GOLDDIGGER	20201208	20211208	1759.07	283406	J2 SYNDICATE HOLDINGS LTD	100
Total				23858.5			

Golddigger Regional Physiography

Figure 1. Tenure map of Golddigger property.

Golddigger Property Physiography

Figure 2. Location map of Golddigger property.

2.2 Accessibility and Infrastructure

From Benz, 2017:

The Golddigger Property is located within the Skeena Mining Division of the Coast Mountain Boundary Ranges in north-western British Columbia (BC) [Figure *]. The Property is approximately 35 kilometres south of Stewart (BC), 150 kilometres northeast of Prince Rupert (BC) and 182 kilometres northwest of Terrace (BC). The nearest infrastructure includes the Stewart West Harbour with a mineral concentrate deep sea port export terminal and railway access (35 kilometres north) and the Prince Rupert Bulk Export Ridley Coal Terminal (182 km south). A deep-water docking facility at the mouth of Granby Bay, approximately 20 km south, is owned and maintained by the Anyox Hydro Corporation. Access to this facility is via Observatory Inlet, two to three nautical hours north from Prince Rupert. The property is accessible via a 35 kilometre helicopter flight from Stewart. Several watercourses and waterbodies within the vicinity of Golddigger may also accommodate float-equipped aircraft. Traces of a tramway built in the late 1920's had also served the Saddle Group area workings as access to deep-sea shipping within Hastings Arm (Di Spirito et al., 1987). Nearby accommodations can be found in all-season hotels in Stewart.

Helicopter access is available via a number of charter companies based in Stewart and Terrace. Stewart is located at the head of Portland Canal and is accessible via Highway 37A. Stewart's population is approximately 700 and has an airport with a 1,189 metre long runway. Basic supplies can be found in town. Prince Rupert is at the western terminus of the Trans-Canada Highway 16 (Yellowhead Highway) and is situated on Kaien Island at the mouth of the Skeena River. Prince Rupert has a district population in excess of 12,000. Most services and supplies are available in this resource-based community including an airport with a 1,829 metre long by 61 metre wide runway.

The closest road access is the restricted service Alice Arm service road, 7 kilometres east of Golddigger, off the Nass Forest District Road. The Nass Forest District Service Road is accessible from Nisgaa Highway 37 and joins the tidewater community of Kitsault to the past-producing Kitsault Mine. The nearest BC hydro network is the Long Lake Generation Station 31 MW hydroelectric project located on Cascade Creek near Stewart. The 138 kV transmission line connects to the BC Hydro grid with an option to interconnect with other projects within the region.

2.3 Climate and Physiography

From Benz, 2017:

The Golddigger Property is located at the confluence of the Sutton and Kshwan Rivers at the north end of Hastings Arm. The Property is within the Boundary Ranges physiographic region of the west-central Coastal Mountains of British Columbia. The Boundary Ranges were extensively glaciated resulting in high peaks, with matterhorn forms created by well-developed cirque glaciation (Holland, 1976). Below 6,500 feet (1,981 metres) elevation, however, the peaks and ridges are typically rounded and subdued due to ice-sheet erosion whereas valley walls are steepened with truncated spurs producing typical U-shaped valley profiles. A large percentage of this area remains under the cover of glacial ice through which peaks (or nuntaks) may project.

Elevations on the Property range from 200 metres above sea level within valley bottoms to over 6,200 metres at Mount Guanton in the west and Mount Fowler in the east. The most notable topographic features on the Property are Sutton River that runs through the centre of the Property, Mount Gaunton in the northwest, Mount Ashby in the west and Mount Fowler in the east. The climate of this region is characterized by long, cool and wet winters with cool, wet summers although hot dry spells can be frequent.

The biogeoclimactic zones found on the Property are Coastal Western Hemlock at lower elevations, Mountain Hemlock at mid-elevations and Coastal Mountain-Heather Alpine at higher elevations (Meidinger and Pojar, 1991). Mid- to lower elevations are well forested by western hemlock (Tsuga heterophylla) and western redcedar (Thuja plicata) (Pojar et al., 1991a). At dry or very boggy sites shore (lodgepole) pine can be found whereas, grand fir, western white pine and bigleaf maple occur within warmer and drier southern areas. Red alder is common in disturbed areas and black cottonwood can be found on the extensive floodplains of large rivers. Understories consisting of a sparse herb layer and the predominance of moss can be found in this region. At lower elevations mountain hemlock (Tsuga mertensiana), amabilis fir (Abies amabilis) and yellow-cedar (Cupressus nootkatensis) dominate with the shrubs from the family Ericaceae (e.g., blueberry and huckleberry, copperbush and false azalea) (Pojar et al., 1991b). Many species of wildlife can be found in this area including black and grizzly bears, mountain goats, black-tailed deer, Roosevelt elk, cougar and many small mammals and a variety of birds including the marbled murrelet (Meidinger et al., 1991).

The Golddigger Property is located within the North Coast, Marmot, Kshwan, Kitsault, Ohl and Anyox Biodiversity, Mining and Tourism Areas within the Great Bear Rainforest Biodiversity, Mining and Tourism Area Land-use Zone. The purpose of this land-use zone is for the maintenance of biodiversity and the natural environment; the preservation and maintenance of social, ceremonial and cultural uses; for use in mineral exploration and mining; and for tourism and recreation. The Golddigger Property is within the FADM-Special Protection Area Coastal First Nations (CFN) & BC Grizzly Bear Memorandum of Understanding (MOU) Area which is set aside for special protection by legislation. Within the southern portion of the Property, Great Bear Rainforest Grizzly Bear Class 2 zones can be found [Figure *]. These zones involve the documentation of grizzly and black bear dens with a minimum reserve zone of 50 metres. Special alteration or removal conditions outside the winter hibernation season may be considered under certain circumstances. Marbled Murrelet Critical Habitat zones are also located along the river to the east that flows from the Varden Glacier [Figure *]. These critical habitat zones typically consist of old growth forests and can extend upward of 50-60 kilometres inland.

Mineral exploration may be conducted on a year round basis, although at higher elevations, the season may be dependent on the snow pack levels and/or stability. The climate is typical of north-western British Columbia. Summer temperatures average a daytime high in the 15°C range with occasional higher temperatures reaching the low 20°C range. December through February sees average sub-zero temperatures with lows reaching -6.2°C from November through March. The annual precipitation is, on average, 1,842 mm including winter snowfall. Significant snowfalls can occur between November and February where snowpack can linger into late August. Clouds and fog can often shroud the local mountain tops in this humid continental climate.

2.4 History

From Benz, 2017:

Prospecting in the Hastings Arm region centres upon the Anyox Cypress massive sulfide (copper-zinc) mining camp approximately 15 km south of the Golddigger Property. Anyox was discovered in 1889 and brought into production in 1914 by the Granby Consolidated Mining, Smelting and Power Co., Ltd (Sherlock and Domvile, 2008). Infrastructure was built around the mine to accommodate, and care for, their large workforce and their families totalling over 2,500 persons. Two electrical generating powerhouses were built, one coal fired and another hydroelectric, to power the mine, mill and smelter complex that produced ~99 % pure copper. In total, 321,546 tonnes of copper, 206,309 kilograms of silver and 3,773 kilogram of gold were produced between 1914 and 1935. The operation was closed and dismantled during the Great Depression due to a decimated copper market. Since this time, the Hasting Arm area has seen a number of exploration activities (Sherlock and Domvile, 2008), including a slag quarrying permit for the Anyox smelter heaps (Owsiacki, 2012a).

Exploration within Hastings Arm area has led to the discovery of the Saddle hydrothermal, epigenetic silver-lead-zinc±gold veins occurrence in 1926 (separately owned claims enclosed within the Golddigger boundary) (deGroot, 2014a); the Dolly Varden Noranda/Kuroko massive sulfide copper-lead-zinc with associated silver-leadzinc±gold mine approximately eight kilometres west in 1910 (Owsiacki, 2011); the La Rose silver-lead-zinc±gold deposit seven kilometres southeast in 1916 (Owsiacki, 2012b); the hydrothermal, epigenetic silver-leadzinc± gold veins of the Esperanza Mine in 1908 (Owsiacki, 2012c) and the silver-leadzinc± gold veins of the Wolf Mine in 1925 (Owsiacki, 2012d), both 15 kilometres southeast; the Tidewater low F-type molybdenum porphyry and silver-lead-zinc±gold vein deposit 14 kilometres southeast; and the Larcom Island silica + silver-lead-zinc±gold vein occurrence 11 kilometres south which served primarily as a source of silica flux for the Anyox Mine circa 1914 to 1935 (Owsiacki, 2012e). Based on historical MINFILE inventories of these listed past producers, a total of approximately 3.5 tonnes of molybdenum, 47.7 tonnes of silver, 9 kilograms of gold, 11 kilograms of lead, 2 kilograms of zinc and 1.5 kilograms of copper [Table *] have been produced within an approximately 15 kilometre radius outside of the Golddigger Property. The historical work performed on the Golddigger Property is summarized in Table 2. A map of the historical workings is shown in [Figure *].

Table 2. Summary of previous work (*conversion assumption: original oz/t values were troy ounces per short ton).From Benz,2017, updated.

Year-ARIS-	<u>Claim Name-</u>	Exploration Activities
1929,1934, 1987, 1995; ARIS 16299, ARIS 23952; MINFILE 103P 013	Elkhorn, Sad- Ministry of Mines; Winspear Resourced Ltd.; Lorne B. Warren – Galloway, 1930; Pearson, 1935; Di Spirito et al., 1987; Carter, 1995; deGroot, 2014b	Free gold was first discovered in a silicified zone of andesite. This zone was altered by epidote, garnet and mica schist and was mineralized with fine- grained pyrite, pyrrhotite, galena and zinc. Streaks of finely divided gold, . to 1 inch wide (0.6 to 2.5 cm), was found in isolated patches with nonvisible-gold selected rocks carrying 0.16 oz/t* Au (4.46 ppm) and 0.5 oz/t* (14 ppm) Ag. Parallel zones were also located at 50 (15.24 m) and 100 feet (30.48 m) high in elevation where the higher zone assayed 0.04 oz/t* (1.12 ppm) Au and 0.2 oz/t* (5.58 ppm) Ag. Work on Elkhorn continued in 1934 in the form of hand trenches and open-cuts for ~600 feet to reveal some silicification and pyrite mineralization with trace amounts of Au and Ag. In 1987, the Elkhorn Showing was within the Saddle-Shakti claim group. This showing was not investigated at this time due to the rugged topography. In 1994, a search for the Elkhorn showing was conducted with no success.
MINFILE 103P 108	Vimy Ridge - deGroot, 2014c	The Vimy Ridge Showing was investigated in 1922 for polymetallic mineralization. They found a 0.6 to 1.8 m wide quartz breccia vein hosted in Hazelton Group andesite(?) that was traced for ~30 m. Mineralization within the quartz vein included galena, sphalerite, pyrite, chalcopyrite with andesite and quartz diorite breccia fragments. In the fall of 1990, a total of 40 stream sediment sample were collected.
1996, 1997; ARIS 24743, ARIS 25328; MINFILE 103P 279	Hopeful, Genesis, Genney – International Northair Mines Ltd. – Wilkins, 1996a; Visagie, 1997; Owsiacki, 2012f	In 1996, a fourteen man-day stream sediment, prospecting, geological mapping and rock sampling program was conducted. A total of 39 stream sediment and 13 rock samples were collected. Creeks within the southeast returned gold values up to 520 ppb Au, 27.2 ppm Ag, 2280 ppm Cu, 898 ppm Pb, 173 ppm Mo and 402 ppm Zn. In the northwest three creeks returned up to 150 ppb Au but upstream samples taken on the same creeks did not return high Au values indicating the Au is located within the lower elevations. Three locations in the southeast returned mineralized rock samples that were generally associated with dioritic phases. Chalcopyrite and malachite was found in quartz veins, up to 10 cm wide, with clots of chlorite and epidote. The samples yielded up to 216.1 ppm Ag, 0.583 ppm Au, 2460 ppm Cu 1025 ppm Bi, 1130 ppm Zn, 461 ppm Mo and 220 ppm W. In 1997, a two-

		person crew collected 16 chip samples as a follow- up to the 1995 anomalous precious and base metal stream sediment samples. This program lead to the discovery of the Hill Showing: a 100 m long, up to 3 m wide, quartz vein with minor, disseminated, chalcopyrite and pyrite. Chip samples values returned 968 ppm Cu over 0.5 m.
ARIS 24746; MINFILE 103P 266	Rocket - Wilkins, 1996b; Owsiacki, 2012g	In 1995, eight man days were spent stream sediment sampling, prospecting, geological mapping and rock sampling. A total of 18 stream sediment and 13 rock samples were collected to evaluate similarities with the Clone and Red Mountain gold deposits to the north. Samples taken upstream of a 73 ppb Au RGS stream sediment sample did not yield prospective Au results. In the north, one stream sediment sample returned 50 ppb Au, 54 ppm Pb with scattered Ag (up to 1.8 ppm), Pb (up to 36 ppm) anomalies throughout the Property. Within the southeast, small gossanous zones occurred as fractured hornblende-biotite diorite with epidote + sericite + pyrite alteration. Rock samples taken in this area returned 0.45 ppm Au, 83.6 ppm Ag , 6160 ppm Cu and 3330 ppm Zn.
2009; ARIS 31206 & ARIS 31418; MINFILE 103P 267	BF – Max Minerals Ltd. – Jones, 2009; Jones, Owsiacki, 2012h	In 2009, a total of 22 silt samples were collected on the BF Block which returned comparative values to the RGS stream sediment survey results. The sample from the upper areas of the western tributary to Ohl Creek returned up to 9.48 ppm Au, 12.8 ppm Ag and 190 ppm Pb. These samples were taken in proximity to the contact between Hazelton Group sedimentary/volcanic rocks and a large granodiorite pluton that lies along the western edge of the Property.
1989; ARIS 20024; MINFILE 103P 271	Mount Gaunton, Horsemeat 2 – Visagie, 1990; Owsiacki, 2012i	In 1989, eighteen rock chip samples were collected. A gossan zone with intense quartz-sericite-pyrite alteration and quartz veining was discovered in proximity to Outram Lake. The results were not considered significant for Au but some samples returned values up to 1.8 ppm Au, 660 ppm As, 52 ppm Sb and 304 ppm Cu.
2005; ARIS 28438	Tonga – Teuton Resources Corp. – Cremonese, 2006	In late 2005, an airborne AeroTEM II electromagnetic and magnetic survey was conducted. The southeast corner of this survey overlaps slightly with the current northeast and eastern border of the Golddigger Property. In the southeast corner of the survey, east across the valley from Mount Fowler, a 1.5 km series of geophysical anomalies occur.
2017; ARIS 36903	Golddigger-J2 Syndicate Holdings –	A reconnaissance exploration program was conducted over two days in August of 2016. A total of 53 rock grab samples and 4 silt samples were

	Geoppel and Turna, 2017	collected to identify three new zones: the 3 m wide Lotto/Anaconda Quartz Vein hosted in biotitegranite/granodiorite with values up to 14.6 ppm Au, 2890 ppm Ag, 1.04 % Cu, 1.415 % Pb and 3040 ppm Zn; the New Gold Zone of 1.7 ppm Au, 83 ppm Ag, 1.55 % Cu, 969 ppm Pb and 2710 ppm Zn typically at the intrusive contact or in breccia; and the Southeast Showing with a float sample returning 3.63 ppm Au, 52.29 ppm Ag, 506 ppm Cu, 9380 ppm Pb and 156 ppm Zn from a cockscomb quartz-galena rock.
2017;	Golddigger-J2	The 2017 field program continued the 2016
To be released	Syndicate Holdings – Benz, 2017	exploration of areas newly uncovered by receding glaciers and snow packs. Thirteen days, spread across July and August, consisted of reconnaissance, prospecting, mapping, and channel, silt, and rock sampling. A total of 335 samples were collected. Channel samples all came from the Anaconda Vein (identified in 2016). See Benz, 2017 for detailed assay results.
2019	Golddigger-J2 Syndicate Holdings – Ledwon,2019	Follow up and reconnaissance were based on discoveries in 2019 field season. Several weeks were spent collecting a total of 52 chip and grab samples, 184 channel samples, and mapping both the Surebet and Cloud 9 zones

3. Geological Setting

From Benz, 2017:

The metallogeny of British Columbia is primarily linked to the tectonic evolution of the Canadian Cordillera (Mineral Development Office, 2017). The sequence of events for its formation includes the welding of allochthonous (derived at a distance) terranes to the western margin of ancestral North America resulting in deformation and post-accretionary tectonism and magmatism (Nelson et al., 2013). The Northwest Region of British Columbia intersects with the Cordilleran orogeny and is comprised of: 1) the autochthonous (formed at present position) and parautochthonous (intermediate character between auto- and allochthonous) carbonate and siliciclastic strata of ancestral North America; 2) Intermontane terranes including the Slide Mountain back-arc basin, Yukon-Tanana rifted pericratonic arc, Quesnel and Stikine volcanic arcs, as well as the Cache Creek oceanic terrane; 3) Alexander Terrane (a large composite crustal fragment); 4) postaccretionary rocks; and 5) younger overlying rocks (Mineral Development Office, 2017). The accretion of the allochthonous terranes to each other and North America occurred within the Jurassic. Post-accretion plutonic suites as well as Jurassic, and younger, syn- to post-accretionary siliciclastic deposits mosaic this area.

3.1 Regional Setting

From Benz, 2017:

The Golddigger property lies within the Hastings Arm area at the contact between the Coast Plutonic Complex and the west-central margin of the successor Bowser Basin. This area is collectively called the Stewart Complex (Grove. 1986). In the west the Stewart Complex is bounded by the intrusive margin of the Coast Plutonic Complex and by high angle tectonic faults in the remaining directions. The Complex has been inert along the eastern margin for a long period of time while the remainder of the Complex has been described by Grove (1986), Alldrick et al. (1986) and Greig et al. (1994) and the following paragraphs are a summary of their work.

The Stewart Complex is generally comprised of Palaeozoic Stikine Assemblage of volcanic and carbonate successions, Upper Triassic to Lower Jurassic island arc complexes, a Middle to Upper Jurassic overlap assemblage and the Tertiary Coast Plutonic Complex. The Stikine Assemblage is primarily comprised of three, strongly deformed volcanic-carbonate successions: Devonian limestones and intermediate felsic volcanic rocks, Mississippian limestone, as well as Permian fragmental volcanic rocks and limestone. The Upper Triassic to Lower Jurassic island arc complexes are comprised of the Triassic Stuhini Group overlain by the Jurassic Hazelton Group. The Stuhini Group consists of thin-bedded siltstone, wacke, impure limestone, andesitic flows and tuff, whereas the Hazelton Group is primarily comprised of intermediate to felsic volcanic rock, volcaniclastic rock, interbedded conglomerate, greywacke, siltstone and black shale. The Hazelton Group can be further refined into the Jack Formation consisting of basal conglomerates and debris flows with siliciclastic rocks, the Betty Creek Formation with porphyritic andesitic flows, breccia and related volcaniclastic rocks, and the Salmon Formation consisting of bimodal subaerial to submarine volcanic rocks with intercalated mudstone. The Coast Plutonic Complex is one of the most extensively exposed plutonic rocks in the Canadian Cordillera. The eastern margin is subdivided into a number of intrusive phases including the Texas Creek Pluton, the Hyder Pluton and an undivided group consisting of a portion of the Central Gneiss Complex. The Texas Creek Pluton is a foliated, medium-grained, porphyritic granodiorite, whereas the Hyder Pluton is a zone of quartz monzonite and granodiorite that extends through the Portland Canal to Observatory Inlet and Alice Arm.

See Figure 3 for the map of regional geology across the Golddigger property.

Golddigger Regional Geology

500000

3.2 Local/Property Geology

From Benz, 2017:

Property geology mapping of the Golddigger Property is mainly centered on the Rocket and Hopeful showings, within the current Golddigger claims, and was completed by Wilkins (1996a) at Hopeful and Wilkins (1996b) at Rocket. He found that the Hopeful and Rocket areas are primarily underlain by the granodioritic to dioritic Coast Plutonic Complex with minor feldspar porphyry. Towards the southwest of Hopeful there are hornfelsed siltstone and argillite with minor gossan.

The Golddigger Property is a rugged area with high alpine peaks and glaciers and deep cutting river valleys (Holland, 1976). The land was heavily loaded with ice during the Pleistocene and the current coastline was submerged beneath the sea. Marine deposits occur up to an elevation of 100 feet along the major rivers with terrace and benches up to 500 feet above current sea level. During this time, the major rivers were antecedent and their valleys served as the main drainages for the westward flow of glacial ice. These valleys were greatly deepened by the passage of the large amounts of ice resulting in the formation of the many hanging valleys typical of this region. Cirque erosion played a major role in the formation of the current landscape by creating large, well-developed cirque basins carved into the north and northeast sides of peaks and ridges (Holland, 1976).

The Sure bet zone consist of lenses within highly deformed and silica flooded sediments containing extensive galena, sphalerite and pyrite. The Sure Bet Zone is characterized by a series of NW-SE trending faults that occurs within a package of highly folded and faulted Hazelton group sediments. The eastern side of the Golddigger property is underlain by coarse clastic sedimentary rocks of the Stuhini Group that are unconformably overlain by inter-fingered volcanics as well as sedimentary rocks of the Hazelton Group. This contact is known as the red line and thought to be a key marker in the Golden Triangle when exploring for significant mineralizing systems. The Sure Bet Zone is located within the Hazelton group sedimentary rocks.

See Figure 4 for a map of the property geology.

Golddigger Property Geology

Figure 4. Property geology of Golddigger.

6160000

6150000

3.3 Mineralization and Alteration

From Benz, 2017:

Alteration and mineralization of the Golddigger Property was not been extensively mapped. Mineralization within the quartz vein found at Vimy Ridge included galena, sphalerite, pyrite and chalcopyrite with andesite and quartz diorite breccia fragments (deGroot, 2014c). At Hopeful, mineralized rock samples that were generally associated with dioritic phases consisting of chalcopyrite and malachite found within quartz veins, up to 10 cm wide, and containing clots of chlorite and epidote (Wilkins, 1996a). Within the southeast Rocket area, small gossanous zones occurred as fractured hornblende-biotite diorite with epidote + sericite + pyrite alteration (Wilkins, 1996b). Near the BF area anomalous silt samples were taken in proximity to the contact between Hazelton Group sedimentary/volcanic rocks and a large granodiorite pluton that lies along the western edge of the Property (Jones, 2009). At the Lotto/Anaconda Quartz Vein large gold, silver, copper, lead and zinc values were found hosted in biotite-

granite/granodiorite whereas the New Gold Zone mineralization was found at the intrusive contact or in breccia (Geoppel and Turna, 2017).

Alteration within the Sure bet zone consists of structurally controlled massive sulphide lenses with extensive silica alteration in the sedimentary host rock. Alteration zones have been observed to be in excess of 40m surrounding the sulphide lenses and consists of silica flooded shale and siltstone siltstones with disseminated sulphides.

3.4 Deposit Types

From Benz, 2017:

The mineral deposits within the Hastings Arm Region may be classified into four main types: hydrothermal, epigenetic silver-lead-zinc±gold veins occurrences such as Saddle, La Rose, Esperanza Mine, Wolf Mine and Larcom Mine; the Noranda/Kuroko massive sulfide copper-lead-zinc with associated silver-lead-zinc±gold at the Dolly Varden mine; and the Tidewater low F-type molybdenum porphyry and silver-lead-zinc±gold vein deposit. There are three possible types of mineralization that are thought to occur on the Golddigger Property: epithermal, massive sulfide and intrusion-related lode gold deposits.

Epithermal Deposits

Epithermal gold deposits are created after the formation of its host rock in the shape of mineral replacements, veins, pore-infilling or breccia (Robb, 2005). These deposits form close to the Earth's surface at temperatures ranging from 50 to 200°C (Robb, 2005), for example the Esperanza Mine (Owsiacki, 2012c). They range from narrow, high-grade vein systems to large, low-grade disseminated mineralization (Robb, 2005). Their formation is associated with extensional or transtensional tectonics and include: volcanic island arc, oceanic arc, continental arc and back arc basins. The geochemical signature of epithermal deposits is typically dominated by gold, copper and arsenic (± silver, zinc and lead) with notable concentrations of silver, zinc, lead, antimony, molybdenum, bismuth, tin, tellurium, tungsten, boron and mercury (Panteleyev, 1996a; Panteleyev, 1996b).

Still forming today, volcanic-hosted massive sulfide (VHMS) deposits form at, or near, the bottom of a waterbody through the focused discharge of hot, metal-rich hydrothermal fluid (Robb, 2005). VHMS deposits typically form during the rifting event of the constructive development of an island arc complex (Hoy, 1995). Hydrothermal fluid commonly travels along faults and is driven outwards by the heat from an underlying or nearby igneous body (Robb, 2005). The hot hydrothermal fluid enters the cold sea water as a plume of 'black smoke' due to the fine sulfide minerals that crystallize out of the solution upon contact. These minerals gradually build up a sulfide 'chimney' around the hydrothermal plume which eventually collapses to form a mound or lens of massive sulfides. VHMS deposits differ from sedimentary exhalative (SEDEX) deposits by their formation: hydrothermal circulation and exhalation independent of sedimentary processes (Galley et al., 2007). In addition, VHMS deposits are formed in close temporal association with submarine volcanism (e.g. Eskay Creek silver deposit, BC) (Roth, 2002). The geochemical signature of VHMS deposits, like the Noranda/Kuroko massive sulfide deposit at Dolly Varden, includes zinc, mercury and magnesium halos with larger potassium contents as well as smaller Na and Ca concentrations within the footwall rocks (Hoy, 1995). Proximal halos of copper, silver, arsenic, and lead concentrations occur at VHMS deposits whereas larger copper, zinc, lead, barium, arsenic, silver, gold, selenium, tin, bismuth and arsenic contents occur within the deposit.

Intrusion-Related

Intrusion-related deposits are typically found in well-preserved, moderate to hightemperature Mesozoic collisional belts of the North American Cordillera (Hart et al., 2005). These types of deposits typically emplace into the region behind an accretionary orogen and into rocks of the deformed continental backstop. Intrusionrelated deposits are typically concentrated in relatively un-metamorphosed, shallow levels of orogens. The intrusive magmas are typically metaluminous, silica-rich, alkalic and form quartz-monzonite, monzonite, monzodiorite and quartz-syenite. Intrusion-related deposits will typically have intrusion-hosted goldbismuth± tungsten, molybdenum and arsenic; proximal gold-arsenic±tungsten and distal gold-arsenicantimony±silver, lead and zinc geochemical signatures. An example of intrusion-related gold mineralization is the Sulphurets District in northwestern BC (Febbo, et al., 2015).

4. Exploration

The 2019 season where field crews channel cut 8.4m grading 7.37 g/t AuEq and sampled 33 chip or grab samples of which 23 (or 70%) were greater than 1.40g/t Au provided a good foundation for the 2020 field season (Goliath,2019) . Many of the areas with high-grade gold samples in the Surebet zone were channel cut allowing for a more detailed geochemical analysis on areas of interest. The 2020 field program led to the discovery of numerous high-grade gold and silver showings along a shear zone measuring 1000m along strike with 500m of vertical relief (Goliath, 2020). The gold mineralization contained in the broad alteration halo confirms the significance of this zone that remains open.

The primary focus of the 2020 field season was to follow-up on the high-grade discoveries on the Surebet zone from the 2019 field season. This included channel sampling areas of known mineralization, including the host rock that contained the massive sulphide lenses. Infill sampling along the major NW-SE linear that defines the main Surebet zone. Prospectively sample to the NW and SE of the known showings on the Surebet zone aiming to increase the strike and vertical relief of the shear zone. Finally, detailed geological mapping was executed to define the lithologies, alterations, structures which host the high-grade mineralization. The mapping also assisted in highlighting potential drill targets for the 2021 inaugural drill program. Much of the same work was performed on the newly defined "Cloud 9" zone which lies approximately 1 km to the W of the Surebet zone.

4.1 Rock Geochemistry

4.1.1 Sampling Method and Approach

Forty-nine (49) chip and grab samples along with 180 channel samples were collected during the 2020 field season (details in Appendix I: Field Notes and Appendix IV: geochemical Assay Maps).

Rock grab and chip samples were collected by foot with helicopter assistance. The rock sampling locations were chosen by geologists based on potential source areas of MINFile locations, placer creek occurrences, regional soil anomalies, and potential gossans based on high-resolution satellite imagery. The rock sample sites in the field were chosen by geologists based on alterations and/or the potential for mineralization, along with areas of visible mineralization.

Rock grab and chip samples were extracted using a rock hammer, or hammer and chisel, to expose fresh surfaces and to liberate a sample of approximately 0.5 to 6.0 kilograms. All sample sites were flagged with biodegradable flagging tape and marked with the sample number. All sample sites were recorded using hand-held GPS units (accuracy 1-10 meters) and the following information was recorded on all-weather paper: sample ID, easting, northing, elevation, type of sample (outcrop, subcrop, float, talus, chip, grab, etc.), chip length, and a description of the rock.

Channel samples were collected by foot with helicopter assistance. The channel sample locations were chosen based on anomalous gold samples from previous work. Channel samples were cut using rock saw to extract a sample 5 to 7.5 centimetres in width and approximately 0.2-1 metres in length. A chisel and rock hammer were used to ensure the material within the channel was extracted. The sample weights varied between approximately 1-10 kilograms.

All samples sites were flagged with biodegradable flagging tape and marked with the sample number. The coordinates for each sample where recorded using hand-held Trimble GPS units and the following information was recorded on all weather paper: sample ID, easting, northing, elevation, chip length, and a description of the rock. The channel sample locations were corrected using Trimble GPS Pathfinder software. The resulting vertical and horizontal accuracy was approximately 0.10 metres.

4.1.2 Sample Preparation, Analyses, and Security

All rock and channel samples were crushed and pulverized at MSA labs in Terrace, BC. MSA is either Certified to ISO 9001:2008 or Accredited to ISO 17025:2005 in all its locations. The resulting sample pulps were analyzed for gold by fire assay in Langley, BC. The pulps were also assayed using multi-element aqua regia digestion at MSA labs in Langley, BC. The coarse reject portions of the rock samples, as well as the pulps, were shipped to DSM Syndicate's storage facility in Terrace, BC. All samples were analyzed using MSA labs assay procedure ME-ICP41, a 1:1:1 aqua regia digestion with inductively coupled plasma atomic emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) finish for 35 elements as well as the Au-AA24 lead-collection fire assay fusion procedure with atomic absorption spectroscopy (AAS) finish. Any results greater than 100 ppm for silver or 10,000 ppm copper, lead and zinc were additionally assayed using MSA's OG46 method particular to each element. This method used an HNO3-HCl digestion followed by ICP-AES (or titrimetric and gravimetric analysis). Gold values of greater than 10 ppm Au were assayed by the Au-GRA22 method which includes a fireassay fusion procedure with a gravimetric finish. Due to the reconnaissance nature of the program, no independent blanks, standards or duplicates were inserted into the sample stream.

4.1.3 Data Verification

Review of the provided assay certificates (encrypted) from MSA Labs show that MSA employs standard QA and QC protocols; as such, the verification methods are recognized as being adequate for the current program (Ledwon, 2019).

4.2 Geological Mapping

Several geological maps were compiled throughout the 2020 field season on the Golddigger property. Detailed maps were produced for several of the high-grade showings throughout the Surebet main zone and Cloud 9 zone. Mapping was completed on a 1:100 scale over approximately 1km of defined silicification and mineralization on the Surebet zone. An area of approximately 120m by 100m was also mapped in the Cloud 9 zone which lies approximately 1km to the west of the Surebet main zone (Refer to figure 6). Structural measurements noting the bedding of sedimentary units, faults, folds, and cleavages of integral structures throughout these areas. Potential drill pad locations were also noted on these maps highlighting areas that are low-angle and feasible for lumber collection. Furthermore, streams and water sources were added to the maps defining locations where water may be pumped to a drill site. The maps were then digitized and compiled using QGIS software. (Refer to figure 5)

Mapping of the Surebet zone further delineated a large shear zone that crosscuts the Surebet ridge and is exposed at the surface for one (1) km along strike and over 500m of vertical relief (Goliath,2020). The shear zone is defined by an area of strongly silicified Hazelton Group sediments which hosts several polymetallic veins with a wide array of sulphide mineralization. Large amounts of galena, pyrite and pyrrhotite were noted with lesser amounts of chalcopyrite, arsenopyrite and local tetrahedrite were observed in both the grab and channel samples within the Surebet zone. The sediments are noted to be a highly folded and faulted package of sandstones and siltstones with local argillite crosscut by aphanitic felsic dykes. Structural measurements along several surface expression indicate this shear zone is dipping shallowly to the west. Several smaller splays are observed marginally to this larger shear zone, with more variability in their attitudes.

Preliminary analysis of the mapping along the Cloud 9 zone indicates this area may be a steeper dipping secondary structure to the larger Surebet zone. The Cloud 9 zones exhibits many similarities in lithology, mineralization, and alteration to the Surebet zone described in the previous paragraph.

Figure 5. Geological Map of the Surebet Zone

Figure 6. Geological Map of the Cloud 9 Zone.

4.3 Golddigger Orthophotos

Late summer orthophotos captured by McElhanney in 2018, were purchased and re-processed during the 2020 field season. An area to the North and to the West of the Surebet zone were acquired to aid in future prospecting endeavours in this area of the Golddigger property. This high-quality imagery compliments the LiDAR imagery and visually details many of the lineaments highlighted by the LiDAR data. Furthermore, many veins, contacts and rock types can be inferred from these photos. This allows field crews to vector into areas of interest based off this imagery which is not provided by open-sourced satellite imagery. Plotting grab and channel samples over this imagery has also allowed Goliath Resources to create multiple new prospecting targets for the 2021 field season. (Refer to figure 7)

Since this imagery was taken during the 2018 field season there was not a separate report provided through McElhanney only the raw data was acquired during the 2020 season.

Golddigger Othophotos -2020

Figure 7. Orthophotos purchased by Goliath Resources during the 2020 season.

4.4 Results

All geochemical assay maps, including sample locations, may be found in Appendix II: Geochemical Maps. Assay highlights from the property may be found in Table 3 and 4.

The work performed during the 2020 field season further confirmed the presence of a highgrade polymetallic shear zone within the Surebet Zone on the Golddigger property. The mineralization is contained within a broad alteration halo of strongly silicified Hazelton Group sediments up to 43.5 meters wide containing mineralization assaying less than 0.5 gpt gold equivalent (Ledwon, 2019). Multiple high-grade polymetallic gold-silver targets have been identified along 1 kilometer (1000 meters) of strike and a half a kilometer (500 meters) of vertical relief with an average true width of 9.33 meters assaying 10.66 gpt gold equivalent (AuEq) and 7.58 grams per tonne gold (gpt Au) based on extensive channel sampling taken and remains open (Goliath, 2020). These targets are contained within a shear zone that is exposed at the surface for 1 kilometer (1000 meters) where 14 areas of interest are planned to be tested in the inaugural 2021 drill program (Goliath, 2020)

The Surebet area is demarked by a series of large NW - SE trending structures that host several other high grade polymetallic massive sulphide lenses within a gold mineralized alteration halo. (Refer to figure 7)

In the Cloud 9 zone a 2019 grab sample yielded 33.48 gpt gold equivalence in this area of the Golddigger property. Channel cutting in the 2020 season as a follow-up to this anomalous sample further confirmed the presence of gold mineralization with gold values varying from 0.1 gpt to 2.9 grams per tonne gold. Channel sample A0600681 grading 2.9 grams per tonne gold and 432 grams per tonne silver ended in permanent snow cover and overburden preventing field crews from sampling the main linear structure in the Cloud 9 zone. This is a testament to the untapped potential yet to be discovered in this area of the Golddigger property.

Figure 8. LiDAR Imagery Highlighting NW-SE Structures and High-Grade Gold Mineralization

Table 1 - Channel samples highlights

Location	Sample Type	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt) ²	Comment
Waterfall Zone	Waterfall Zone								
Lower Waterfall	Channel	10.00	10.41	226.26	0.05	1.00	1.20	14.11	Drill target, remains open to the west
including	Channel	8.00	12.99	281.71	0.06	1.30	1.50	17.60	
including	Channel	6.00	16.00	315.03	0.07	1.55	1.94	21.32	
including	Channel	4.00	23.55	417.53	0.08	2.06	2.46	30.55	
Main Waterfall	Channel	11.80	4.57	360.50	0.03	0.73	0.49	10.91	Drill target, remains open
Including	Channel	6.80	7.37	516.03	0.04	0.73	0.43	16.64	
Including	Channel	4.80	9.85	553.13	0.04	0.69	0.38	20.54	
Upper Waterfall	Channel	3.00	6.22	161.43	0.02	0.56	0.50	8.65	Drill target, remains open
Main Zone									
Main	Channel	10.90	4.58	130.24	0.01	0.01	0.93	6.64	Drill target
Including	Channel	9.50	5.25	148.87	0.02	1.06	0.33	7.60	
Including	Channel	8.40	5.37	144.80	0.01	1.10	0.28	7.66	
North Zone									
Upper North	Channel	5.30	3.31	900.60	0.09	0.82	0.25	15.09	Drill target, remains open
Including	Channel	4.70	3.73	1014.95	0.11	0.92	0.27	17.01	
Lower North	Channel	12.30	0.95	308.08	0.02	0.56	0.25	5.13	Drill target, remains open to the west
Including	Channel	3.10	2.75	1138.39	0.08	1.96	0.30	17.86	
South Zone									
South	Channel	3.00	10.49	71.20	0.01	0.20	0.03	11.48	Drill target
Central Zone									
Upper Central	Channel	8.00	2.77	70.07	0.00	0.75	0.38	4.04	Drill target
Including	Channel	7.70	3.09	68.35	0.00	0.74	0.39	4.10	
Including	Channel	3.80	5.16	108.45	0.00	1.25	0.60	7.16	
Lower Central	Channel	6.10	0.68	268.27	0.04	0.85	0.93	4.75	Drill target, remains open to the east
Including	Channel	2.90	0.48	329.90	0.06	0.97	1.05	5.43	
East Splay Zone									
East Splay Zone	Channel	2.50	3.54	945.00	0.12	1.70	6.84	18.96	Drill target, remains open to the east
Cloud 9 Zone									
Cloud 9	Channel	5.00	0.61	129.24	0.02	0.17	0.18	2.39	Remains open to the west
Including	Channel	1.00	2.90	432.00	0.04	0.77	0.76	8.94	

Table 4. Grab and Chip Sampling highlights from 2020 sampling program (Goliath, 2020).

Sample ID	Sample Type ¹	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt) ²
Cliff Zone								
W387967	Float		924.40	3023.00	0.05	12.59	4.11	967.99
W387966	Chip	3	4.30	47.90	0.01	0.76	0.77	5.47
W389911	Grab		0.22	79.10	0.05	0.21	0.66	1.61
Lower Cliff Zone								
A0600862	Chip	1	7.10	16.10	0.02	0.14	006	7.39
A0600863	Grab		6.10	9.00	0.02	0.06	0.06	6.29
Waterfall Zone								
A0600706	Grab		9.597	847.00	0.02	6.38	0.41	22.36
A0600705	Grab		3.50	306.00	0.08	1.39	1.03	8.29
A0600707	Grab		7.90	22.10	0.01	0.02	0.04	8.22
East Splay Zone								
W387862	Grab		1.30	1958.00	0.08	5.13	10.82	32.13
North Zone								
W387867	Grab		4.10	1597.00	0.06	1.49	0.20	24.80
Cloud 9								
A0600637	Grab		4.20	2.70	0.06	0.00	0.00	4.30
A0600702	Grab		1.30	10.80	0.01	0.16	0.23	1.59
Other areas								
A0600636	Grab		0.29	42.10	0.01	0.47	0.41	1.15
A0600703	Grab		1.00	0.60	0.00	0.00	0.01	1.01

Table 2 - Chip and Grab samples highlights

¹ Grab samples are selective in nature and collected to determine the presence or absence of mineralization and are not intended to be representative of the material sampled. ² AuEq metal values are calculated using Au USD/oz 1894.909, Ag USD/oz 23.841, Cu USD/lb 3.074, Pb USD/lb 0.826, Zn USD/lb 1.166 (2020/11/04). All values are reported in USD and do not consider metal recoveries.

5. Conclusions and Recommendations

The 2021 inaugural drill program will test the polymetallic shear zone in 14 different locations defined by the 2020 geological map(refer to figure 5). This drill program is designed to test mineralized structures both at surface and at depth with a total meterage of approximately 5000m. Further mapping of the Surebet Zone is highly recommended between Cloud 9 and the Surebet North Zone. This extended map should help define structures and lithologies that may be controlling mineralization between these two key zones. Mapping and sampling on the North side of the Surebet ridge is also a high priority for the 2021 field season. The inferred shear zone measures an additional 1km along strike and is a prominent feature on LiDAR and orthophoto imagery, but this structure has yet to be tested in the field.

A bulk sample is also recommended on the Surebet Main Zone, which will give insight into the continuity of the mineralization across the shear zone. A bulk sample will provide important geochemical data for any future resource estimates on the Surebet Zone.

Further regional prospecting will also take place during the 2021 field season. Property wide sampling programs during 2017 and 2018 field seasons has identified several other areas on the property with anomalous gold values. Anomalous gold samples were plotted in conjunction with existing LiDAR imagery which has highlighted several areas of high interest.

6. Statement of Costs

Exploration Work type	Comment	Days			Totals
		_			
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Jamis Stanton (geologist, prospecto	Aug 15-31/Sept 7-8	19	\$500.00	\$9,500.00	
Specer Postman (geologist, GIS, Dr	Aug 15-31/ Sept 7-8	19	\$475.00	\$9,025.00	
Manuele Lazzarotto (project geolog	Aug 15-31/Sept 7-8	19	\$625.00	\$11,875.00	
Off the Grid Outfitters	Sept 5,7-8,11-12	5	\$400.00	\$2,000.00	
Austin Winters (labourer)	Aug 15-31	17	\$400.00	\$6,800.00	
Jason Chornobay (propsector)	Aug 15-19	5	\$475.00	\$2,375.00	
Kevin Frezell (labourer)	Aug 15-31/Sept 7-8	19	\$400.00	\$7,600.00	
Nicholas Begg (labourer)	Aug 15-13/Sept 7-8	19	\$400.00	\$7,600.00	
				\$56,775.00	\$56,775.00
Office Studies	List Personnel (note - Office or	ily, do no	t include	field days	
	Spencer Postman, Manuele				
Literature search	Lazzarotto		\$0.00	\$3,400.00	
Field season planning (targets,	Spencer Postman, Manuele				
logistics,)	Lazzarotto		\$0.00	\$7,800.00	
Historic data compilation into					
database (digitizing maps,	Spencer Postman, Manuele				
geophisycal surveys,)	Lazzarotto		\$0.00	\$6,320.00	
Interpretation of geological and					
geophysical data and target/map	Spencer Postman, Manuele				
generation	Lazzarotto		\$0.00	\$8,100.00	
Generation of 3D model of	Spencer Postman, Manuele				
property including all historic data	Lazzarotto		\$0.00	\$5,880.00	
Computer modelling			\$0.00	\$0.00	
Reprocessing of data			\$0.00	\$0.00	
General research	Spencer Postman		\$0.00	\$1,080.00	
Assessment Report preparation	Spencer Postman		\$0.00	\$2,200.00	
Other (specify)					
				\$34,780.00	\$34,780.00
Airborne Exploration Surveys	Line Kilometres / Enter total invoic	ed amoun	1		
Aeromagnetics			\$0.00	\$0.00	
Radiometrics			\$0.00	\$0.00	
Electromagnetics			\$0.00	\$0.00	
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Remote Sensing	Area in Hectares / Enter total invoid	ed amour	t or list pe	rsonnel	
Aerial photography			\$0.00	\$0.00	
LANDSAT			\$0.00	\$0.00	
Orthophotos	McElhanney		\$0.00	\$4,800.00	
				\$4,800.00	\$4,800.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Geological mapping					
Regional		note: ex	penditures	here	
Reconnaissance		should b	ne captured	l in Personnel	
Prospect		field exp	enditures a	above	
Underground	Define by length and width				
Trenches	Define by length and width			\$0.00	\$0.00
Ground geophysics	Line Kilometres / Enter total amou	nt invoiced	l list persor	nnel	
Radiometrics					
Magnetics					
Gravity					
Digital terrain modelling					
Electromagnetics	note: expenditures for your crew in	n the field			
SP/AP/EP	should be captured above in Person	nnel			
IP	field expenditures above				
AMT/CSAMT					
Resistivity					
Complex resistivity					
Seismic reflection					
Seismic refraction					
Well logging	Define by total length				
Geophysical interpretation					
Petrophysics					
Other (specify)					
				\$0.00	\$0.00

Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Drill (cuttings, core, etc.)			\$0.00	\$0.00	
Stream sediment			\$0.00	\$0.00	
Soil			\$0.00	\$0.00	
Rock	180 channel samples, 49 chip and g	229	\$65.10	\$14,903.40	
Water			\$0.00	\$0.00	
Biogeochemistry			\$0.00	\$0.00	
Whole rock			\$0.00	\$0.00	
Petrology			\$0.00	\$0.00	
Other (specify)			\$0.00	\$0.00	
				\$14,903.40	\$14,903.40
Drilling	No. of Holes, Size of Core and Metres	NO.	Rate		
			\$0.00	\$0.00	
Reverse circulation (RC)			\$0.00	\$0.00	
Rotary air blast (RAB)			\$0.00	\$0.00	
Ouner (specify)			\$0.00	\$0.00	+0 00
Other Operations	Clauifer	Nie	Data	\$U.UU Subtotal	\$0.00
	Clarify	NO.	Rate		
Pulk compling			\$0.00 ¢0.00	\$0.00 ¢0.00	
Durk Sampling			\$0.00 ¢0.00	\$0.00 ¢0.00	
Other (creativ)			\$0.00 ¢0.00	\$0.00 ¢0.00	
Ouner (specify)			\$0.00	\$0.00	¢0.00
Padamation	Clarify	No	Data	ŞU.UU Subtotal	ŞU.UU
		NO.	Rale		
After unling Menitering			\$0.00	\$0.00	
Monitoring Other (creative)			\$0.00	\$0.00 ¢0.00	
Ouner (specify)			\$0.00	\$0.00	
Transportation		No.	Rate	Subtotal	
Airfare			\$0.00	\$2,350.86	
Taxi			\$0.00	\$0.00	
truck rental			\$0.00	\$7,000.00	
kilometers			\$0.00	\$0.00	
ATV			\$0.00	\$0.00	
fuel			\$0.00	\$1,377.31	
Helicopter (hours)	Mustang, 19 days + 8 weather days		\$0.00	\$68,737.32	
Fuel (litres/hour)			\$0.00	\$0.00	
Other					
				\$79,465.49	\$79,465.49
Accommodation & Food	Rates per day		+0.00	+7 540 04	
Hotel	King Edward Hotel, Stewart		\$0.00	\$7,513.31	
Camp	der unter en entrel sente en sife		\$0.00	+C 1CC 22	
Meals	day rate or actual costs-specify		\$0.00	\$0,100.32	*12 (70 (2
Missellenseus				\$13,679.63	\$13,079.03
Miscellaneous	Spot and InPoach				
Coll/Eat/Carmin	Spot and incedent		¢0.00	¢4 040 79	
	subscriptions+Sat Frione Tental		φ 0.00	۹۲,049 .70 311 75	
				¢4 361 53	\$4 361 53
Fauinment Rentals				φ1,501.55	φ+,301.33
	sampling equipment (hammers	for			
	augers chisels) DII Phantom 4	duratio			
	pro drone DII Mavic Air drone	n of			
	GPS units Trimble DGPS High	project			
	Resolution Canon Camera, safety	(includi			
	gear chain saws nower	na			
	generators Rock saws numps	weathe			
Field Gear (Rentals)	hozes	r davs	\$0.00	\$17 400 00	
	sample bags tags stationary	i days	φ0.00	<i>417,100.00</i>	
Field Gear (Disposables)	COVID safety gear		\$0.00	\$1 150 00	
Office trailer			\$0.00	\$3 245 00	
	· · · · · · · · · · · · · · · · · · ·		φ0.00	\$21.795.00	\$21,795.00
Freight, rock samples				+,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ţ== / ,
	Shipment of rental GPS unit and dro	nes	\$0.00	\$115.74	
			\$0.00	\$0.00	
				\$115.74	\$115.74
TOTAL Expenditures					\$230,675.79

7. References

Alldrick, D. J., G. L. Dawson, et al. (1986). Geology of the Kitsault River Area NTS 103P, British Columbia Ministry of Energy, Mines and Petroleum Resources Open File Map 1986/2.

Benz, D. (2017). Geological and Geochemical Survey on the Golddigger Property. BC ARIS Report Number 37089. Goliath Resources Limited.

deGroot, L. (2014a). SADDLE. Detail MINFILE Report 103P 012. BC Geological Survey, Ministry of Energy, Mines and Natural Gas Responsible for Housing.

Di Spirito, F., Krohman, D. and Graham, J.C. (1987). Geological, Geophysical and Geochemical Report on the Saddle-Shakti Property. BC ARIS Report Number 21522. Winspear Resources Limited.

Febbo, G.E., Kennedy, L.A., Savell, M., Creaser, R.A. and Friedman, R.M. (2015). Geology of the Mitchell Au-Cu-Ag-Mo porphyry deposit, northwestern British Columbia, Canada. In: Geological Fieldwork 2014, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2015-1, pp. 59-86.

Galley, A.G., M.D. Hannington, and I.R. Jonasson (2007). "Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geologic Provinces, and Exploration Methods". In: ed. By W.D Goodfellow. Special Publication No. 5. Ottawa, ON: Geological Association of Canada, Mineral Deposits Division. Chap. Volcanogenic massive sulphide deposits, pp. 141–16.

Goeppel, N. and Turna, R. and (2017). Geological and Geochemical Assessment Report on the Golddigger Property, BC ARIS Report (in press), J2 Syndicate Holdings Ltd.

Goliath Resources Ltd. (2018, November 26). Golddigger Samples Up To 133.50 g/t Au and 249.00 g/t Ag at Newly Discovered Breccias and Stockworks Within the Golden Triangle [Press release]. Source: <u>https://goliathresourcesltd.com/wp-content/uploads/2018/11/Golddigger-samples-133.50-gt-Au-249.00-gt-Ag-in-newly-discovered-breccias-and-stockworks-within-the-Golden-Triangle-1.pdf</u>

Goliath Resources Ltd. (2019, October 22). Newly Disovered Large High-Grade Polymetallic Gold Zone in the Golden Triangle [Press Release]. Source: <u>https://goliathresourcesltd.com/wp-content/uploads/2017/10/October-22-2019-Newly-Discovered-Large-High-Grade-Polymetallic-Gold-Zone-Golden-Triangle-BC-8.4m-Channel-7.37-gpt-Gold-Eq.pdf</u>

Goliath Resources Ltd. (2020, November 25). Goliath Reports 13.05 gpt AuEq Over 15.1m, Golden Triangle B.C. -1000m Strike x 500m Vertical Relief with 1000m Inf. Down Dip Extension[Press Release]. Source: <u>https://goliathresourcesltd.com/wp-</u> <u>content/uploads/2020/11/November-25-2020-Surebet-Zone-Assays-13.05-gpt-AuEq-Over-15.1m-True-Width.pdf</u>

Greig, C. J., R. G. Anderson, et al. (1994). "Geology of the Cambria Icefield; regional setting for Red Mountain gold deposit, northwestern British Columbia." Geological Survey of Canada Current Research Current research 1994-A

Grove, E.W. (1986). Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox
Area. Province of British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 63.

Hart, C.J.R. and R. J. Goldfarb (2005). "Distinguishing intrusion-related from orogenic gold systems". In: New Zealand Minerals Conference Proceedings, pp. 125–133.

Holland, S.S. (1976). Landforms of British Columbia, a physiographic outline. British Columbia Department of Mines and Petroleum Resources. Bulletin 48, 138 p.

Hoy, T. (1995). "Noranda/Kuroko Massive Sulphide Cu-Pb-Zn, in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal". In: Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal. Ed. by D.V. Lefebure and T. Hoy. 1995-20. British Columbia Ministry of Employment and Investment, pp. 53–54.

Ledwon, A. (2019). *GEOLOGICAL AND GEOCHEMICAL ASSESSMENT REPORT FOR THE GOLDDIGGER PROPERTY* (pp. 3-27, Rep.). Smithers, BC.

Meidinger, D and Pojar, J. (1991). Special Report Series #6 Ecosystems of British Columbia (330 p.). Victoria, BC: Ministry of Forests Research Branch.

Mineral Development Office (2017). Exploration and mining in the Northwest Region, British Columbia. In: Exploration and Mining in British Columbia, 2016. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Information Circular 2017-1, pp. 149-169.

Owsiacki, G. (2011). DOLLY VARDEN. Detail MINFILE Report 103P 188. BC Geological Survey, Ministry of Energy, Mines and Natural Gas Responsible for Housing.

Owsiacki, G. (2012a). ANYOX SLAG HEAP. Detail MINFILE Report 103P 257. BC Geological Survey, Ministry of Energy, Mines and Natural Gas Responsible for Housing.

Owsiacki, G. (2012b). LA ROSE. Detail MINFILE Report 103P 170. BC Geological Survey, Ministry of Energy, Mines and Natural Gas Responsible for Housing.

Owsiacki, G. (2012c). ESPERANZA. Detail MINFILE Report 103P 126. BC Geological Survey, Ministry of Energy, Mines and Natural Gas Responsible for Housing.

Owsiacki, G. (2012d). WOLF. Detail MINFILE Report 103P 125. BC Geological Survey, Ministry of Energy, Mines and Natural Gas Responsible for Housing.

Owsiacki, G. (2012e). TIDEWATER. Detail MINFILE Report 103P 111. BC Geological Survey, Ministry of Energy, Mines and Natural Gas Responsible for Housing.

Panteleyev, A. (1996b). "Epithermal Au-Ag: Low Sulphidation". In: Selected British Columbia Mineral Deposit Profiles, Volume 2 - Metallic Deposits. Ed. by D.V. Lefebure and T. Hoy. Open File 1996-13. British Pearson, G.S. (1935). Annual Report of the Minister of Mines of the Province of British Columbia for the Year Ended 31st December 1934. Minister of Mines' Office, Victoria, BC, pp. B 14.

Pojar, J., Klinka, K. and Demarchi, D.A. (1991a). Chapter 7 Mountain Hemlock Zone. In: D. Meidinger & J. Pojar (Eds.). Special Report Series #6 Ecosystems of British Columbia (pp. 113-124). Victoria, BC: Ministry of Forests Research Branch.

Pojar, J., Klinka, K. and Demarchi, D.A. (1991b). Chapter 6 Coastal Western Hemlock Zone. In: D. Meidinger & J. Pojar (Eds.). Special Report Series #6 Ecosystems of British Columbia (pp. 113-124). Victoria, BC: Ministry of Forests Research Branch.

Robb, L.J. (2005). Ore Forming Processes. Malden, MA: Blackwell Science.

Roth, T. (2002). "Physical and chemical constraints on mineralization in the Eskay Creek deposit, northwestern British Columbia: evidence form petrography, mineral chemistry, and sulfur isotopes". PhD thesis. University of British Columbia.

Sherlock, R. and Domvile, J. (2008). The History and Geology of the Anyox Copper Camp, British Columbia. In: Great Mining Camps of Canada 2, Journal of the Geological Association of Canada, 34 (3&4)

Wilkins, A.L. (1996a). Geological and Geochemical Report on the Genney & Hopeful #1 Claim Groups. BC ARIS Report Number 24743. Tenajon Resources Corp.

Wilkins, A.L. (1996b). Geological and Geochemical Report on the Rocket #1 Claim Group. BC ARIS Report Number 24746. Camnor Resources Ltd.

8. Statement of Qualifications

I, Spencer Postman, hereby declare that:

- I am a consulting geologist, residing at 328 Canyon Close, Canmore, AB, T1W 1H4;
- I graduated from the University of British Columbia Okanagan in 2016 with a B.Sc. in Earth and Environmental Sciences and have been involved in the mineral exploration and industry since 2017;
- I consent to the use of this report by DSM Syndicate Holdings Ltd. provided that no portion is used out of contest in such a manner as to convey a meaning differing materially from that set out in the whole.

oothom

Spencer Postman, BSc, GIT February 16, 2021

I, Manuele Lazzarotto, hereby declare that:

- I am a consulting geologist, residing at 113 Capri Ave NW, Calgary, AB, T2L 0H3;
- I graduated from the University of Calgary in 2020 with a PhD in Geocience and have been involved in the mineral exploration and industry since 2018;
- I consent to the use of this report by DSM Syndicate Holdings Ltd. provided that no portion is used out of contest in such a manner as to convey a meaning differing materially from that set out in the whole.

FINAN

Manuele Lazzarotto, PhD February 11, 2021

9. Appendices

I. Field Notes

Channel Samples:

Sample_I											
D	Prospector	Date	Zone	Easting_1	Northing_1	Easting_2	Northing_2	Elevation	Length	Description	Lithology
A0600614	M. Lazzarotto	19-Aug- 20	9N	457692	6163266	457692	6163267	1640	1.1	weakly silicified grey wacke, brown FeOx weathered surface, dark-grey fresh surface, contains sparse qtz veinlets up to 1cm in width, hematite staining along fractures.	Siltstone
A0600615	J. Stanton	19-Aug- 20	9N	457692	6163267	457692	6163268	1639	1.2	strongly silicified volcanic sediment, 40% qtz bleds and veinlets hosting fg gal and py, weak hem staining along fractures,	Siltstone
A0600616	J. Stanton	19-Aug- 20	9N	457692	6163268	457693	6163269	1639	1	same as A0600615, contains a 15cm vein of qtz hosting 10-15% sulphide,	Siltstone
A0600617	J. Stanton	19-Aug- 20	9N	457693	6163269	457693	6163269	1638	1	same as A0600615, 3cm section of massive gal, 5cm wide qtz vein with no mineralization,	Siltstone
A0600618	J. Stanton	19-Aug- 20	9N	457693	6163269	457694	6163270	1638	0.9	similar to previous higher qtz content with 60%,	Siltstone
A0600619	J. Stanton	19-Aug- 20	9N	457694	6163270	457694	6163271	1639	1.1	same as A0600618.	Siltstone
A0600621	J. Stanton	19-Aug- 20	9N	457692	6163271	457693	6163272	1639	0.8	stongly silicified volcanic sediment, similar to A0600619, fg, FeOx surface, grey to dark grey fresh surface, contains blebs and veinlets of qtz, sulphide mineralization of gla and py associated with qtz, hematite staining on fracture surfaces.	Siltstone
A0600622	J. Stanton	19-Aug- 20	9N	457693	6163272	457693	6163272	1639	1	stongly silicified volcanic sediment, similar to A0600619, fg, FeOx surface, grey to dark grey fresh surface, contains blebs and veinlets of qtz, sulphide mineralization of gla and py associated with qtz, hematite staining on fracture surfaces, with abu	Siltstone
A0600623	J. Stanton	19-Aug- 20	9N	457693	6163272	457694	6163273	1639	1	stongly silicified volcanic sediment, similar to A0600619, fg, FeOx surface, grey to dark grey fresh surface, contains blebs and veinlets of qtz, sulphide mineralization of gla and py associated with qtz, hematite staining on fracture surfaces,	Siltstone
A0600624	J. Stanton	19-Aug- 20	9N	457692	6163274	457692	6163275	1640	0.9	quartz stockwork through strongly silicified volcanic sediment, second half of channel predominately qtz. FeOx weathered surface, grey fresh surface,	Siltstone
A0600625	J. Stanton	19-Aug- 20	9N	457692	6163275	457692	6163276	1639	1	weakly silicified siltstone with 0.5 cm wide qtz veinlets, hematite alteration along fracture surfaces, mild chl alteration along vein margins, grey fresh surface, brown weathered surface	Siltstone
A0600626	J. Stanton	19-Aug- 20	9N	457692	6163276	457693	6163277	1639	1.1	qtz stockwork through strongly silicified volcanic sediment, beige fresh surface with FeOx, strong chloritization,	Siltstone
A0600627	J. Stanton	19-Aug- 20	9N	457693	6163277	457693	6163277	1639	1.5	weakly silicified siltstone with 0.5 cm wide qtz veinlets, hematite alteration along fracture surfaces, mild chl alteration along vein margins, grey fresh surface, brown weathered surface	Siltstone
A0600628	S. Postman	20-Aug- 20	9N	457564	6163369	457563	6163369	1720	0.95	Dark grey siltsone/shale w/ Qtz veining throughout <3cms, oxidized fratured surfaces w/ weak silicification	Siltstone
A0600629	S. Postman	20-Aug- 20	9N	457563	6163369	457562	6163369	1720	1.1	Dark grey siltsone/shale w/ Qtz veining throughout <3cms, oxidized fratured surfaces w/ weak silicification. Minor Blebby Py <2%	Siltstone
A0600631	S. Postman	20-Aug- 20	9N	457562	6163370	457562	6163370	1721	1	Highly fractured and oxidized siltstone containing small Qtz veinlets <1cm and weak silicification. Diss Py <1%	Siltstone
A0600632	S. Postman	20-Aug- 20	9N	457562	6163370	457561	6163370	1721	0.9	Highly fractured and oxidized siltstone containing small Qtz veinlets <1cm and weak silicification. Diss Py <1 $\%$	Siltstone

A0600641	S. Postman	20-Aug- 20	9N	456668	6162771	456668	6162771	1566	0.85	Dark Grey-black gossenous shale w/ oxidized fracture surfaces, weak localized silicification	Siltstone
A0600642	S. Postman	20-Aug- 20	9N	456668	6162771	456669	6162772	1566	1	Dark Grey-black gossenous shale w/ oxidized fracture surfaces, weak localized silicification and qtz veins	Siltstone
A0600643	S. Postman	20-Aug- 20	9N	456669	6162772	456669	6162772	1566	1.2	Dark Grey-black gossenous shale w/ oxidized fracture surfaces, weak localized silicification	Siltstone
A0600644	S. Postman	20-Aug- 20	9N	456669	6162772	456669	6162773	1566	1.1	Dark Grey silicified volcanic sediments w/ Qtz veinlets and locally disseminated Py and Gal.	Intermediate Volcanic
A0600645	S. Postman	20-Aug- 20	9N	456673	6162768	456673	6162768	1561	0.95	Dark Grey silicified volcanic sediments w/ Qtz veinlets and locally disseminated Py and Gal.	Intermediate Volcanic
A0600646	S. Postman	20-Aug- 20	9N	456673	6162768	456674	6162769	1563	1	DarkGrey stsilicified volcanic sediments w/ Qtz veinlets and locally disseminated Py	Intermediate Volcanic
A0600647	S. Postman	20-Aug- 20	9N	456674	6162769	456674	6162770	1563	1	Grey strongly silicified volcanic sediments w/ Qtz veinlets and locally disseminated Py and Gal.	Intermediate Volcanic
A0600648	S. Postman	20-Aug- 20	9N	456674	6162770	456675	6162770	1564	1.05	Dark grey siltsone, oxidized fratured surfaces w/ weak silicification	Siltstone
A0600649	S. Postman	20-Aug- 20	9N	456675	6162770	456676	6162771	1563	1	Highly fractured and oxidized siltstone containing small Qtz veinlets <1cm and weak silicification. Diss Py <1%	Siltstone
A0600701	S. Postman	20-Aug- 20	9N	456691	6162733	456692	6162733	1537	1.2	Channel grab w/ locally semi-massive Py in silicified volcanic seds. Highly oxidized and fractured outcrop.	Intermediate Volcanic
A0600851	M. Lazzarotto	7-Sep-20	9N	456683	6162757	456683	6162757	1553	1	Massive silicified siltstone with grey fresh surface, orange/brown weathering. Contains disseminated py < 1%.	Siltstone
A0600852	M. Lazzarotto	7-Sep-20	9N	456683	6162757	456682	6162756	1553	1	Massive silicified siltstone with grey fresh surface, orange/brown weathering. Contains disseminated py < 1%.	Siltstone
A0600853	M. Lazzarotto	7-Sep-20	9N	456682	6162756	456681	6162756	1552	1	Strongly silicified siltstone, brown/beige weathering, grey fresh surface. Strong hematite alteration and chlorite alteration. Contains sph? Gal? and pyrite (fracture fill and blebs)	Siltstone
A0600854	M. Lazzarotto	7-Sep-20	9N	456681	6162756	456680	6162756	1552	1	Massive silicified siltstone with grey fresh surface, orange/brown weathering. Contains disseminated py < 1%.	Siltstone
A0600855	M. Lazzarotto	7-Sep-20	9N	456680	6162756	456679	6162755	1552	1	Massive silicified siltstone with grey fresh surface, orange/brown weathering. Contains disseminated py < 1%.	Siltstone
A0600856	M. Lazzarotto	7-Sep-20	9N	456688	6162751	456687	6162750	1548	1	Massive silicified siltstone with grey fresh surface, orange/brown weathering. Contains disseminated py < 1%.	Siltstone
A0600857	M. Lazzarotto	7-Sep-20	9N	456687	6162750	456687	6162750	1548	1	Massive silicified siltstone with grey fresh surface, orange/brown weathering. Contains disseminated py < 1%.	Siltstone
A0600858	M. Lazzarotto	7-Sep-20	9N	456687	6162750	456686	6162750	1548	1	Massive silicified siltstone with grey fresh surface, orange/brown weathering. Contains disseminated py < 1%.	Siltstone
A0600859	M. Lazzarotto	7-Sep-20	9N	456686	6162750	456685	6162749	1548	1	Strongly silicified siltstone with relatively strong hem and chl alteration. Contains disseminated py	Siltstone
	Μ.									Strongly silicified siltstone with vein of masive galena and lots of py (vein is about 5 cm wide). Brown beige weathering, grey fresh surface. Strong hem	
A0600861	Lazzarotto	7-Sep-20	9N	456685	6162749	456685	6162749	1547	1	alteration.	Siltstone
A0600956	J.Stanton	20-Aug- 20	9N	457592	6163446	457591	6163446	1697	1	very strongly silicified fine-grained volcanic with abundant Py, Gla. Dark- Brown-Red wethered surface from strong FeOx, milky-white anastimozing qtz and light grey volcanic on fresh surface. Abundant Py stringers associated with qtz. Hem alteration in fr	Siltstone

A0600957	J.Stanton	20-Aug- 20	9N	457592	6163446	457592	6163446	1697	0.9	very strongly silicified fine-grained volcanic with Py, Gla. Dark-Brown-Red wethered surface from strong FeOx, milky-white anastimozing qtz and light grey volcanic on fresh surface. less abundant Py than previous, Py stringers associated with qtz less ab	Siltstone
A0600964	J. Stanton	20-Aug- 20	9N	457593	6163446	457592	6163446	1695	0.6	1 of 6 samples on channel 1 at top gun. massive plagioclase rich porphyritic dyke, beige to orange weathering, grey fresh surface, no mineralization	
40600965	l Stanton	20-Aug-	9N	457592	6163446	457592	6163446	1697	0.8	2 of 6 channel 1 top gun, strongly silicified volcanic, blow out in shear zone, brown FeOx weathered surface and white grey fresh surface, contains blebs of gla and py, possible cpy associated with qtz, sparsely vuggy, moderate chloritization	Siltstone
110000303	J. Stanton	20-Aug-	511	137352	0103110	137332	0100110	1037	0.0		Silisione
A0600966	J. Stanton	20	9N	457591	6163446	457591	6163446	1697	1	channel 5 of 6 on channel 1 top gun, similar to A0600965	Siltstone
A0600967	J. Stanton	20-Aug- 20	9N	457591	6163446	457590	6163445	1697	1	6 of 6 on channel 1 top gun, same as A0600965	Siltstone
A0600968	J. Stanton	20-Aug- 20	9N	457612	6163408	457612	6163408	1690	0.6	1 of 2 on channel 3 top gun, Strongly silicified, moderately chloritized siltstone, qtz veinlets up to 1cm, pyrite blebs and fracture fill sulphides, Fracture fill Py and Gla	Siltstone
A0600969	J. Stanton	20-Aug- 20	9N	457612	6163408	457612	6163408	1689	0.5	2 of 2 on channel 3 top gun, siltstone, moderately silicified, mod to weak sericite alteration, FeOx weathered surfaces, Py blebs	Siltstone
A0600971	M. Lazzarotto	25-Aug- 20	9N	457600	6163422	457601	6163423	1694	1	plag porphyritic intermediate dyke, massive, beige weathering, medium grey fresh surface, finegraine matrix with plag and bt? phenocrysts	Intermediate Dyke
A0600972	M. Lazzarotto	25-Aug- 20	9N	457601	6163423	457602	6163423	1694	1.1	stromgly silicified siltstone. almost looks like a hydrothermal qtz breccia. contaims stringers and blebs ofpyrite and galena. possibly some cpy. hem fracture fill.	Siltstone
A0600973	M. Lazzarotto	25-Aug- 20	9N	457602	6163423	457602	6163423	1693	1	same as A0600972 less mineralized	Siltstone
A0600974	M. Lazzarotto	25-Aug- 20	9N	457602	6163423	457603	6163423	1694	1.5	strongly silicified siltstones with up to 30% veining. hem alteration along fractures. fracture fill pyrite and disseminated pyrite.	Siltstone
A0600975	M. Lazzarotto	25-Aug- 20	9N	457603	6163423	457604	6163424	1693	1	same as A0600974	Siltstone
A0600976	M. Lazzarotto	25-Aug- 20	9N	457604	6163424	457605	6163424	1693	1.1	same as A0600975, less silicified	Siltstone
A0600977	M. Lazzarotto	25-Aug- 20	9N	457605	6163424	457606	6163425	1693	1	same as A0600976	Siltstone
A0600978	M. Lazzarotto	25-Aug- 20	9N	457605	6163426	457605	6163426	1692	0.9	silicified siltstone, massive, fewer veins rhan before, grey fresh surface, orange/brown weathering. contains disseminated pyrite	Siltstone
A0600979	M. Lazzarotto	25-Aug- 20	9N	457605	6163426	457606	6163426	1691	0.8	strongly silicified siltstones with up to 20% veining. hem alteration along fractures. strongly chloritized.	Siltstone
A0600981	M. Lazzarotto	25-Aug- 20	9N	457606	6163426	457606	6163427	1691	0.7	same as A0600979. slightly more qtz vdins. contains blebs of pyrite up tp 2 mm wide	Siltstone
A0600982	M. Lazzarotto	25-Aug- 20	9N	457606	6163427	457607	6163427	1690	0.8	same as A0600981.	Siltstone
	M.	25-Aug-									
A0600983	Lazzarotto M.	20 25-Aug-	9N	457607	6163427	457607	6163427	1690	0.9	same as AU600982	Siltstone
A0600984	Lazzarotto	20	9N	457607	6163427	457608	6163427	1690	0.5	grey massive siltstone barren looking.	Siltstone
W387209	M. Lazzarotto	6-Sep-20	9N	457730	6163113	457731	6163114	1555	1	strongly silicified sandstone with qtzveinkets and domains up to several cm wide. brown/orange weathering and grey fresh surface. contains blebs and veinlets filled with sulfides (galena, py and sph?)	Siltstone

W387211	M. Lazzarotto	6-Sep-20	9N	457731	6163114	457731	6163114	1556	1	strongly silicified sandstone with qtzveinkets and domains up to several cm wide. brown/orange weathering and grey fresh surface. contains blebs and veinlets filled with sulfides (galena, py and sph?)	Siltstone
W387212	M. Lazzarotto	6-Sep-20	9N	457731	6163114	457731	6163114	1556	1	strongly silicified sandstone with qtzveinkets and domains up to several cm wide. brown/orange weathering and grey fresh surface. contains blebs and veinlets filled with sulfides (galena, py and sph?)	Siltstone
W387213	M. Lazzarotto	6-Sep-20	9N	457730	6163106	457730	6163106	1549	0.5	silicified siltstone with a few qtz veinlets. grey fresh surface, orange brown weathering. contains disseminated pyrite and one bleab of galena 0.5 cm wide.	Siltstone
W387214	M. Lazzarotto	6-Sep-20	9N	457730	6163106	457730	6163106	1549	1	silicified siltstone with a few qtz veinlets. grey fresh surface, orange brown weathering. contains disseminated pyrite.	Siltstone
W387215	M. Lazzarotto	6-Sep-20	9N	457730	6163106	457731	6163107	1549	1	silicified siltstone with a few qtz veinlets. grey fresh surface, orange brown weathering. contains disseminated pyrite.	Siltstone
W387216	M. Lazzarotto	6-Sep-20	9N	457739	6163100	457739	6163099	1545	1.1	strongly silicified siltstones with qtz domains. grey fresh surface, orange/brown weathering. contains fractur fill sulfideand veinkets and blebs, parts of the channel are semi massive sulfide. c I ntains galena, py, and possibly sph and cpy.	Siltstone
W387217	M. Lazzarotto	6-Sep-20	9N	457739	6163099	457738	6163099	1545	1	strongly silicified siltstones with qtz domains. grey fresh surface, orange/brown weathering. contains fractur fill sulfideand veinkets and blebs, parts of the channel are semi massive sulfide. c I ntains galena, py, and possibly sph and cov.	Siltstone
W387218	M.	6-Sep-20	9N	457738	6163099	457738	6163099	1544	0.9	strongly silicified siltstones with qtz domains. grey fresh surface, orange/brown weathering. contains fractur fill sulfideand veinkets and blebs, parts of the channel are semi massive sulfide. c I ntains galena, py, and possibly sph and cpy.	Siltstone
W387219	M. Lazzarotto	6-Sep-20	9N	457739	6163090	457739	6163090	1538	1	strogly silicified siltstone with baige weathering and grey/white fresh surface.	Siltstone
W387221	M. Lazzarotto	6-Sep-20	9N	457739	6163090	457740	6163091	1539	1.1	strogly silicified siltstone with baige weathering and grey/white fresh surface. st4ong hemat it e alteration. contains blebs and disseminated pv.	Siltstone
W387222	M. Lazzarotto	6-Sep-20	9N	457740	6163091	457740	6163091	1540	1.2	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387223	M. Lazzarotto	6-Sep-20	9N	457740	6163091	457741	6163092	1541	1.2	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387224	M. Lazzarotto	6-Sep-20	9N	457741	6163092	457742	6163092	1542	1.6	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387225	M. Lazzarotto	6-Sep-20	9N	457742	6163092	457742	6163093	1543	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387226	M. Lazzarotto	6-Sep-20	9N	457742	6163093	457743	6163093	1544	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387227	M. Lazzarotto	6-Sep-20	9N	457743	6163093	457742	6163093	1545	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone

W387228	M. Lazzarotto	6-Sep-20	9N	457742	6163093	457743	6163094	1544	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387229	M. Lazzarotto	6-Sep-20	9N	457743	6163094	457744	6163095	1544	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387231	M. Lazzarotto	6-Sep-20	9N	457744	6163094	457744	6163095	1545	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387232	M. Lazzarotto	6-Sep-20	9N	457744	6163095	457745	6163095	1546	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387233	M. Lazzarotto	6-Sep-20	9N	457745	6163095	457745	6163095	1546	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387234	M. Lazzarotto	6-Sep-20	9N	457746	6163095	457746	6163095	1546	1	strongly silicified siltstone with chlorite and hematite alteration. brown/orange weathering, grey fresh surface. contains fracture fill and blebs of sulfide (pyrite, cpy, gal, sph)	Siltstone
W387235	J. Stanton	6-Sep-20	9N	457736	6163053	457735	6163053	1508	1	Moderately silicified, moderately chloritized siltstone with abundant muscovite and desseminated Py throughout. Blebs of strong silicification and chloritized halos host more concentrated Py blebs. Light grey fresh surface with moderate FeOx. 1-2% Py	Siltstone
W387236	J. Stanton	6-Sep-20	9N	457735	6163053	457734	6163052	1509	1	Moderately silicified, moderately chloritized siltstone with abundant muscovite and desseminated Py throughout. Blebs of strong silicification and chloritized halos host more concentrated Py blebs. Light grey fresh surface with moderate FeOx. 2-4% Py	Siltstone
W387237	J. Stanton	6-Sep-20	9N	457734	6163052	457733	6163052	1509	1	Quartz vein hosting massive and fracture fill of fine grained Py, Cpy, Gal and brown-grey sulphide (sphalerite?) . Strong chloritiziation in fracture. Milky- white to smokey fresh surface. Strong bright orange FeOx. Minor vugs.	Vein
W387238	J. Stanton	6-Sep-20	9N	457733	6163052	457732	6163052	1509	1	Quartz vein hosting fracture fill stringers of fine grained Py, Cpy, Gal and brown-grey sulphide (sphalerite?) . Strong chloritiziation in fracture. Milky- white to smokey fresh surface. Moderte brown-orange FeOx.	Vein
W387239	J. Stanton	6-Sep-20	9N	457732	6163052	457732	6163052	1509	1	Quartz vein hosting fracture fill stringers of fine grained Py, Cpy, Gal and brown-grey sulphide (sphalerite?) . Strong chloritiziation in fracture. Milky- white to smokey fresh surface. Moderte brown-orange FeOx.	Vein
W387241	J. Stanton	6-Sep-20	9N	457732	6163052	457731	6163052	1509	1	Quartz vein hosting fracture fill stringers of fine grained Py, Cpy, Gal and brown-grey sulphide (sphalerite?) . Strong chloritiziation in fracture. Milky- white to smokey fresh surface. Moderte brown-orange FeOx.	Vein
W387242	J. Stanton	6-Sep-20	9N	457731	6163052	457730	6163052	1510	1	Alteration zone hosting abundant lenses of brown-grey sulphide (sphalerite?) . Qtz blebs with dark sulphide halos. Strong chloritiziation. Milky-white to smokey fresh surface. Moderte brown-orange FeOx.	Vein
W387243	l Stanton	6-Sen-20	9N	457730	6163052	457729	6163052	1510	1	Alteration zone hosting fracture fill and massive brown-grey sulphide (sphalerite?) . Massive fine grained Py associated to sulphide. Abundant quartz belbs. Moderate chloritiziation strong silicification of siltstone host. Milky-white to smokey fresh sur	Siltstone
W387243	J. Stanton	6-Sep-20	9N	457729	6163052	457728	6163051	1510	1	Alteration zone hosting abundant lenses of brown-grey sulphide (sphalerite?) . Qtz blebs with dark sulphide halos. Strong chloritiziation and silicification of host. Milky-white to smokey fresh surface. Moderte brown-orange FeOx.	Siltstone

W387245	J. Stanton	6-Sep-20	9N	457728	6163051	457728	6163051	1511	1	Alteration zone hosting abundant lenses of brown-grey sulphide (sphalerite?) . Qtz blebs with dark sulphide halos. Strong chloritiziation and silicification of host. Milky-white to smokey fresh surface. Moderte brown-orange FeOx.	
W387909	M. Lazzarotto	16-Aug- 20	9N	457727	6163192	457727	6163192	1597	1.1	Dark volcanic sediment with qtz veins/stockwork. Veins are up to 2 cm wide. No visible mineralization. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387911	M. Lazzarotto	16-Aug- 20	9N	457727	6163193	457728	6163194	1597	1	Dark volcanic sediment with qtz veins/stockwork. Veins are up to 2 cm wide. No visible mineralization. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Less silicified than W387909. Veining mainly towards the end of	Siltstone
W387912	M. Lazzarotto	16-Aug- 20	9N	457728	6163194	457729	6163195	1597	0.95	Dark volcanic sediment with qtz veins/stockwork. Veins are up to 2 cm wide. Blebs of pyrite within veins. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387913	M. Lazzarotto	16-Aug- 20	9N	457729	6163195	457729	6163195	1597	0.9	Dark volcanic sediment with qtz veins/stockwork. Veins are up to 2 cm wide. Blebs of pyrite within veins. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387914	M. Lazzarotto	16-Aug- 20	9N	457729	6163195	457730	6163196	1597	1	Dark volcanic sediment with qtz veins/stockwork. Veins are up to 2 cm wide. Blebs of pyrite within veins and stringers of pyrite. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387915	M. Lazzarotto	16-Aug- 20	9N	457730	6163196	457730	6163197	1597	1.1	Dark volcanic sediment with qtz veins/stockwork. Veins are up to 2 cm wide. Blebs of pyrite within veins and stringers of pyrite. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387916	M. Lazzarotto	16-Aug- 20	9N	457730	6163197	457731	6163198	1597	1	Dark volcanic sediment with qtz veins/stockwork. Veins are up to 2 cm wide. Blebs of pyrite within veins and stringers of pyrite. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387917	M. Lazzarotto	16-Aug- 20	9N	457729	6163198	457729	6163199	1598	1	Dark volcanic sediment with few qtz veins. Veins are up to 1 cm wide. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387918	M. Lazzarotto	16-Aug- 20	9N	457729	6163199	457729	6163200	1600	1.15	Dark volcanic sediment with few qtz veins. Veins are up to 1 cm wide. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387919	M. Lazzarotto	16-Aug- 20	9N	457729	6163200	457730	6163201	1598	0.9	Dark volcanic sediment with qtz veins/stockwork. Veins are up to 3 cm wide. Blebs of pyrite within veins and stringers of pyrite. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387921	M. Lazzarotto	16-Aug- 20	9N	457730	6163201	457731	6163202	1597	0.9	Dark volcanic sediment with qtz veins. Contains veinlets of hematite and qtz. Disseminated sulfide. Very fine grained texture. Barren looking.	Siltstone
W387922	M. Lazzarotto	16-Aug- 20	9N	457731	6163202	457732	6163203	1597	1.1	Dark volcanic sediment with qtz veins. Contains veinlets of hematite and qtz. Disseminated sulfide. Very fine grained texture. Barren looking.	Siltstone
W387923	M. Lazzarotto	16-Aug- 20	9N	457732	6163203	457732	6163204	1598	1	Dark volcanic sediment with qtz veins. Contains veinlets of hematite and qtz. Disseminated sulfide. Very fine grained texture. Barren looking.	Siltstone
W387924	M. Lazzarotto	16-Aug- 20	9N	457732	6163204	457733	6163205	1598	1	Dark volcanic sediment with qtz veins/stockwork. Probably thick qtz vein. Pyrite up to 3 %. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387925	M. Lazzarotto	16-Aug- 20	9N	457733	6163205	457733	6163205	1598	1	Dark volcanic sediment with qtz veins/stockwork. Probably thick qtz vein. Pyrite up to 3 %. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone

W387926	M. Lazzarotto	16-Aug- 20	9N	457733	6163205	457734	6163206	1598	1.1	Silicified volcanic sediment (dyke?). Possibly sediment of different origin. No qtz veins/mineralization	
W387927	M. Lazzarotto	16-Aug- 20	9N	457734	6163206	457735	6163207	1598	1.2	Dark volcanic sediment with qtz veins/stockwork. Probably thick qtz vein. Pyrite up to 3 %. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387928	M. Lazzarotto	16-Aug- 20	9N	457735	6163207	457735	6163208	1598	0.9	Dark volcanic sediment with qtz veins/stockwork.Qtz veins up to 5 cm wide. Probably thick qtz vein. Pyrite up to 3 %. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387929	M. Lazzarotto	16-Aug- 20	9N	457735	6163208	457736	6163209	1597	1	Dark volcanic sediment with qtz veins/stockwork.Qtz veins up to 5 cm wide. Probably thick qtz vein. Pyrite up to 3 %. Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387931	M. Lazzarotto	16-Aug- 20	9N	457736	6163209	457736	6163210	1597	1	Dark volcanic sediment with with few qtz veins (less than 1 cm wide). Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387932	M. Lazzarotto	16-Aug- 20	9N	457736	6163210	457737	6163211	1595	1	Dark volcanic sediment with with few qtz veins (less than 1 cm wide). Host rock is fine grained, mafic?, dark colour. Relatively strong chlorite alteration. Strongly silicified.	Siltstone
W387933	M. Lazzarotto	17-Aug- 20	9N	457721	6163189	457720	6163188	1597	1.1	Rusty looking, strongly weathered, sheared volcanic sediment. Contains up to 30% sulfide. Mainly galena and pyrite, possibly some arsenpyrite.	Schist
W387934	M. Lazzarotto	17-Aug- 20	9N	457720	6163188	457719	6163187	1598	1.4	Mainly black volcanic sediment, fine grained. Contains disseminated py (less than 1%). Rock in general looks barren. Fine grained. Oxidation on fracture/cleavage surfaces.	Siltstone
W387935	M. Lazzarotto	17-Aug- 20	9N	457719	6163187	457718	6163186	1598	1.5	Mainly black volcanic sediment, fine grained. Contains disseminated py (less than 1%). Rock in general looks barren. Fine grained. Oxidation on fracture/cleavage surfaces.	Siltstone
W387936	M. Lazzarotto	17-Aug- 20	9N	457718	6163186	457718	6163185	1598	1.1	Mainly black volcanic sediment, fine grained. Contains disseminated py (less than 1%). Rock in general looks barren. Fine grained. Oxidation on fracture/cleavage surfaces. Contains one vein of qtz 2 cm wide.	Siltstone
W387937	M. Lazzarotto	17-Aug- 20	9N	457718	6163185	457717	6163184	1598	0.9	Mainly black volcanic sediment, fine grained. Contains disseminated py (less than 1%). Rock in general looks barren. Fine grained. Oxidation on fracture/cleavage surfaces.	Siltstone
W387938	M. Lazzarotto	17-Aug- 20	9N	457717	6163184	457716	6163184	1598	0.7	Mainly black volcanic sediment, fine grained. Contains disseminated py (less than 1%). Rock in general looks barren. Fine grained. Oxidation on fracture/cleavage surfaces.	Siltstone
W387939	M. Lazzarotto	17-Aug- 20	9N	457724	6163209	457725	6163210	1601	1.1	Strongly silicified volcanic sediment with pervasive chlorite alteration. Contains disseminated pyrite (<1%). Hematite staining on fracture planse and along cleavage planes.	Siltstone
W387941	M. Lazzarotto	17-Aug- 20	9N	457725	6163210	457726	6163211	1601	1.1	Strongly silicified volcanic sediment with pervasive chlorite alteration. Contains disseminated pyrite (<1%). Hematite staining on fracture planse and along cleavage planes.	Siltstone
	М.	17-Aug-								Strongly silicified volcanic sediment with pervasive chlorite alteration. Contains disseminated pyrite (<1%). Hematite staining on fracture planse and along cleavage planes. One vein up to 3 cm wide with pyrite blebs and	
W387942	Lazzarotto	20	9N	457726	6163211	457726	6163212	1601	0.95	hematite.	Siltstone
W387943	M. Lazzarotto	17-Aug- 20	9N	457726	6163212	457727	6163212	1601	1.1	Strongly silicified volcanic sediment with pervasive chlorite alteration. Contains disseminated pyrite (<1%). Hematite staining on fracture planse and along cleavage planes.	Siltstone

W387944	M. Lazzarotto	17-Aug- 20	9N	457727	6163212	457728	6163213	1601	1.1	Silicified volcanic sediment with pervasive chlorite alteration. Contains disseminated pyrite (<1%). Hematite staining on fracture planse and along cleavage planes.	Siltstone
W387945	M. Lazzarotto	17-Aug- 20	9N	457728	6163213	457729	6163214	1601	1.1	Strongly silicified volcanic sediment with pervasive chlorite alteration. Contains disseminated pyrite (<1%). Hematite staining on fracture planse and along cleavage planes.	Siltstone
W387946	M. Lazzarotto	17-Aug- 20	9N	457729	6163214	457729	6163215	1601	1.1	Strongly silicified volcanic sediment with pervasive chlorite alteration. Contains disseminated pyrite (<1%). Hematite staining on fracture planse and along cleavage planes.	Siltstone
W387947	M. Lazzarotto	17-Aug- 20	9N	457729	6163215	457730	6163216	1601	1.1	Strongly silicified volcanic sediment with pervasive chlorite alteration. Contains disseminated pyrite (<1%). Hematite staining on fracture planse and along cleavage planes.	Siltstone
W387948	M. Lazzarotto	17-Aug- 20	9N	457730	6163216	457731	6163217	1601	1.1	Grey Greywcke with rounded blebs of darker colour about 20 cm wide (COW ROCK).	Siltstone
W387949	M. Lazzarotto	17-Aug- 20	9N	457731	6163217	457732	6163217	1600	1.1	Grey Greywcke with rounded blebs of darker colour about 20 cm wide (COW ROCK).	Siltstone
W387956	M. Lazzarotto	19-Aug- 20	9N	457670	6163256	457669	6163256	1655	1	strongly silicified volcanic sediment. Fine grained, probably silt or mudstone. brown/beige weathering, dark grey/black fresh surface. pervasiv we chlirite alteration and localized bematite staining (fractures and veinlets)	Siltstone
W387957	M. Lazzarotto	19-Aug- 20	9N	457669	6163256	457669	6163255	1656	1	slightly silicified greywacke with a few qtz veins and hematite staining slong fracture planes	Siltstone
W387958	M. Lazzarotto	19-Aug- 20	9N	457691	6163265	457692	6163266	1640	1	greywacke with hematite staining aling fracture planes. Grey fresh surface, beige/brown weathering	Siltstone
W387959	M. Lazzarotto	19-Aug- 20	9N	457691	6163264	457691	6163265	1641	1	greywacke with hematite staining aling fracture planes. Grey fresh surface, beige/brown weathering	Siltstone
W387961	M. Lazzarotto	19-Aug- 20	9N	457691	6163263	457691	6163264	1641	1	greywacke with hematite staining aling fracture planes. Grey fresh surface, beige/brown weathering	Siltstone
W387962	M. Lazzarotto	19-Aug- 20	9N	457691	6163262	457691	6163263	1641	1	greywacke with hematite staining aling fracture planes. Grey fresh surface, beige/brown weathering	Siltstone
W387963	M. Lazzarotto	19-Aug- 20	9N	457814	6163143	457814	6163143	1553	1	Rusty weathered intermediate dyke with massive galena an pyrite at the shar zone at the contact with the sediments.	Siltstone
W387964	M. Lazzarotto	19-Aug- 20	9N	457814	6163143	457813	6163143	1553	0.8	strongly silicified and chloritized volcanic sediment with blebs and veins of quartz. brown/rysty weathering and grey fresh surface. sulfide mineralization associated with quartz.	Siltstone
W387965	M. Lazzarotto	19-Aug- 20	9N	457813	6163143	457813	6163143	1553	0.6	strongly silicified and chloritized volcanic sediment with blebs and veins of quartz. brown/rysty weathering and grey fresh surface. sulfide mineralization associated with quartz.	Siltstone
W387969	M. Lazzarotto	20-Aug- 20	9N	457747	6162986	457746	6162986	1481	1	strongly silicified volcanic sediment within shearzone. contains semi massive to massive galena. rusty beige weathering, grey metallic fresh surface. in thecentrs of the zone, galena makes up 50% of the rock.	Vein
W387971	J. Stanton	21-Aug- 20	9N	457747	6162991	457746	6162991	1482	1	moderate to strongly silicified volcanic siltstone, qtz veinlets throughout. with 30cm of milky white qtz blebs. drak grey fresh surface, brown to orange FeOx weather surface, hem alteration in fractures.	Siltstone
W387972	J. Stanton	21-Aug- 20	9N	457746	6162991	457746	6162991	1483	1	moderate to strongly silicified volcanic siltstone, qtz veinlets throughout. with 30cm of milky white qtz blebs. drak grey fresh surface, brown to orange FeOx weather surface, hem alteration in fractures,	Siltstone

14/297072	l Stanton	21-Aug-	QN	457746	6162001	457745	6162001	1484	1	moderate to strongly silicified volcanic siltstone, qtz veinlets throughout. with 30cm of milky white qtz blebs. drak grey fresh surface, brown to orange FeOx weather surface, how alteration is fractures.	Siltstone
VV367973	J. Stanton	20	911	457740	0102991	437743	0102991	1404	1	weather surface, them alteration in nactures,	Sillstone
W387974	J. Stanton	21-Aug- 20	9N	457745	6162991	457744	6162991	1484	1	meanly fractured quartz vein with sulphide, arsenicr arsenopyriter, dtz has milky white fresh surface, brown to orange FeOx weathered surface,	Vein
W387975	J. Stanton	21-Aug- 20	9N	457744	6162991	457744	6162991	1485	1	similar to W387971, more sheared, trace disseminated Py	Siltstone
		21-Aug-									
W387976	J. Stanton	20	9N	457744	6162991	457743	6162990	1485	1	similar to W387971, more sheared, trace disseminated Py	Siltstone
W/387977	L Stanton	21-Aug- 20	9N	457743	6162990	457742	6162990	1485	1	same as W387971 more silicification, trace desceminated Py	Siltstone
W387577	M.	17-Aug-	511	437743	0102550	437742	0102550	1405		Grev Grevwcke with rounded blebs of darker colour about 20 cm wide (COW	Sitstone
W491961	Lazzarotto	20	9N	457732	6163217	457733	6163218	1600	1.1	ROCK).	Siltstone
	M.	17-Aug-								Grey Greywcke with rounded blebs of darker colour about 20 cm wide (COW	
W491962	Lazzarotto	20	9N	457733	6163218	457734	6163219	1600	1.1	ROCK).	Siltstone
W491963	M. Lazzarotto	17-Aug- 20	9N	457734	6163219	457735	6163220	1599	1.1	Grey Greywcke with rounded blebs of darker colour about 20 cm wide (COW ROCK).	Siltstone
										Silicified volcanic sediment with pervasive chlorite alteration. Contains	
	M.	17-Aug-								disseminated pyrite (<1%). Hematite staining on fracture planse and along	
W491964	Lazzarotto	20	9N	457735	6163220	457736	6163220	1599	1.1	cleavage planes.	Siltstone
										Silicified volcanic sediment with pervasive chlorite alteration. Contains	
	M.	17-Aug-								disseminated pyrite (<1%). Hematite staining on fracture planse and along	
W491965	Lazzarotto	20	9N	457736	6163220	457737	6163221	1599	1.1	cleavage planes.	Siltstone
	М.	19-Aug-								strongly silicified and chloritized vilcanic sediment asjacent to shear zone. qtz	
W491966	Lazzarotto	20	9N	457713	6163240	457713	6163240	1618	0.9	veinlets. grey fresh surface/brown rusty weathering	Siltstone
W491967	M. Lazzarotto	19-Aug- 20	9N	457713	6163240	457713	6163239	1618	0.8	same as w491967, contains up to 15% galena, 2-3 % pyrite	Siltstone
										moderatley silicified siltstone, mildly chloritized, contains qtz sringers up to	
N/4010C8	M.	19-Aug-		457740	6162220	457740	6162220	1610	1	5mm wide. contains pyrite blebs asssoocieted with qtz stringers. heavy iron	Cilhatana
W491968	Lazzarotto	20	9N	457713	6163239	457712	6163239	1618	1		Slitstone
		10.4								mildly silicified and chloritized siltstone. dark purple grey fresh surface. fe	
W/101060	M.	19-Aug-	ON	157712	6162220	157711	6162229	1619	1 1	oxidation along fractures, qtz stringers up to 2mm wide, contains abundant discominated galona (10 %) fractures filled with galona and purite	Siltstono
W451505		10 Aug	511	437712	0105255	45//11	0105258	1010	1.1	came as w401060, sta stringers mere shundent loss gelone compared to	Sitstone
W/491971	IVI. Lazzarotto	19-Aug- 20	9N	457711	6163238	457711	6163238	1618	12	same as w491909. QLZ stringers more abundant less galena compered to	Siltstone
10151571	M.	19-Aug-	511	137711	0103230	137711	0103230	1010	1.2		Silistone
W491972	Lazzarotto	20	9N	457711	6163238	457710	6163237	1618	1	same as w491971, more silicified	Siltstone
	M.	19-Aug-									
W491973	Lazzarotto	20	9N	457710	6163237	457709	6163237	1619		same as w491472, vuggy in places	Siltstone
	M.	19-Aug-	0.11	453306	6463337	453300	6460000			ala di Albana da Aubaba da Aubaba da Aubaba di Aubaba	Cilian
W491974	Lazzarotto	20	9N	457709	6163237	457709	6163236	1619		dark siltstone with thin qtz veinlets, contains disseminsted pyrite	Siltstone
10/404075	M.	19-Aug-		453303	6162246	453303	C1 C22 47	4607		Strongly silicified volcanic sediment with qtz stringers.abundant galena and	Cilhata
W491975	Lazzarotto	20	9N	45//0/	6163246	45//0/	6163247	1627	1	pyrite in mactures, veins. rusty brown weathering.	Slitstone
W/101076	M.	19-Aug-	ON	457707	6162247	457700	6163340	1627	1.6	Strongly silicitied volcanic sediment with qtz stringers.abundant galena and	Siltetone
VV4919/0	LdzzarOtto	20	910	45//0/	0103247	457709	0103248	1027	1.0	pyrite in nactures, venis, rusty prown weathering.	Silisione
W//01077	M.	19-Aug-	ON	457700	6162249	157700	6162240	1676	<u>^ 0</u>	Strongly silicitied volcanic sediment with qtz stringers.abundant galena and	Siltstone
VV4313//		10 Aug	JIN	437709	0105248	437709	0105248	1020	0.8	pyrite in nactores, venis, rusty brown weathering.	Sitstone
W//Q1079	IVI.	19-Aug-	QNI	157700	6163257	157700	6163257	1622	0.6	sitistone with grey tresh surface and dark gery weathering. hematite staining	Siltstone
VV4J13/0		20	311	437700	0103237	457700	0102721	1052	0.0	מוסוום וומכנעור שעוומכרש.	SILSLOIR

										strongly silicified and moderately chloritized volcanic sediment with qtz veins	
		10.4								and blebs up to several cm wide. sulfides associated with qtz vesins/blebs.	
W/401070	M.	19-Aug-	0.01	457700	6162257	457701	6162259	1622	1	rusty/brown weathering, grey fresh surface. contains blebs and stringers of	Ciltotono
VV491979	Lazzarollo	20	910	457700	0103257	457701	0103238	1032	1	pyrite and galeria.	Sillstone
										and blebs up to several cm wide, sulfides associated with dtz vesins/blebs	
	М.	19-Aug-								rusty/brown weathering, grey fresh surface, contains blebs and stringers of	
W491981	Lazzarotto	20	9N	457701	6163258	457701	6163259	1632	1.5	pyrite and galena.	Siltstone
-										strongly silicified and moderately chloritized volcanic sediment with qtz veins	
										and blebs up to several cm wide. sulfides associated with qtz vesins/blebs.	
	M.	19-Aug-								rusty/brown weathering, grey fresh surface. contains blebs and stringers of	
W491982	Lazzarotto	20	9N	457701	6163259	457702	6163260	1631	0.8	pyrite and galena.	Siltstone
										strongly silicified and moderately chloritized volcanic sediment with qtz veins	
										and blebs up to several cm wide. sulfides associated with qtz vesins/blebs.	
	M.	19-Aug-								rusty/brown weathering, grey fresh surface. contains blebs and stringers of	
W491984	Lazzarotto	20	9N	457703	6163261	457703	6163262	1630	1.1	pyrite and galena.	Siltstone
	M.	19-Aug-								weakly silicified siltstone with sparse qtz veins up to 1 cm wide. Grey fresh	
W491985	Lazzarotto	20	9N	457703	6163262	457704	6163262	1630	1	surface, beige/brown weathering. contains disseminated pyrite.	Siltstone
										strongly silicified volcanic sediment. Fine grained, probably silt or mudstone.	
										brown/beige weathering, dark grey/black fresh surface. pervasiv we chlirite	
	M.	19-Aug-								alteration and localized hematite staining (fractures and veinlets). Contains	
W491986	Lazzarotto	20	9N	457680	6163267	457679	6163266	1650	0.8	blebs and stringers	Siltstone
										strongly silicified volcanic sediment. Fine grained, probably silt or mudstone.	
										brown/beige weathering, dark grey/black fresh surface. pervasiv we chlirite	
	M.	19-Aug-								alteration and localized hematite staining (fractures and veinlets). Contains	
W491987	Lazzarotto	20	9N	457679	6163266	457678	6163265	1651	1.1	blebs and stringers	Siltstone
										strongly silicified volcanic sediment. Fine grained, probably silt or mudstone.	
										brown/beige weathering, dark grey/black fresh surface. pervasiv we chlirite	
	M.	19-Aug-		153630	6469965	453633	<i></i>	4650		alteration and localized hematite staining (fractures and veinlets). Contains	
W491988	Lazzarotto	20	9N	457678	6163265	457677	6163264	1652	1.3	blebs and stringers	Siltstone
										strongly silicified volcanic sediment. Fine grained, probably silt or mudstone.	
	M	19-Aug-		453633	64 69 9 6 4	453633	64 699 69	1650		brown/beige weathering, dark grey/black fresh surface. pervasive chlorite and	
W491989	Lazzarotto	20	9N	457677	6163264	457677	6163263	1652	1.2	hematite alteration. Contains blebs and stringers of py up to 1mm wide.	Siltstone
										strongly silicified volcanic sediment. Fine grained, probably silt or mudstone.	
	M.	19-Aug-								brown/beige weathering, dark grey/black fresh surface. pervasive chlorite and	
W491991	Lazzarotto	20	9N	457677	6163263	457676	6163263	1652	1.2	ndmatite alteration. Contains blebs and stringers of py up to 1mm wide.	Siltstone
W/401002	IVI.	19-Aug-	ON	457676	6162262	457675	6162262	1652	1 2	cimilar to W401001 purits only present in a soction with high att contant	Siltstone
VV491992	Lazzarotto	20	911	437070	0103203	457075	0105202	1055	1.2	similar to w491991, pyrite only present in a section with high qtz content.	Sillstone
		10								weakly silicified siltstone with sparse qtz veins up to 1 cm wide. Grey fresh	
W/101002	IVI.	19-Aug-	QN	157675	6162262	157671	6162261	1652	1 1	surrace, beige/brown weathering, contains disseminated pyrite, with super chloritized section about 20 cm wide	Siltstopp
**491995		20	311	437075	0103202	43/0/4	0103201	1032	1.1		Sitstone
		10								weakly silicified siltstone with sparse qtz veins up to 1 cm wide. Grey fresh	
W/101001	IVI.	19-Aug-	QN	157671	6162761	157672	6162260	165/	0.0	surrace, beige/brown weathering, contains disseminated pyrite, with super chloritized section about 20 cm wide	Siltstopp
vv491994	M	20 19-Διισ-	311	45/0/4	0103201	43/0/3	0105200	1034	0.9		Sillstone
W491995	Lazzarotto	-13-Aug- 20	9N	457673	6163260	457673	6163260	1654	1	massive quartz vein with chlorite and hematite	Vein
		20	5		0100200		0100200	100 +	-	strongly silisified valcanic codiment. Fine grained, probably silt or mudstone	
	м	10_ <u>Au</u>								suongy sinched voicand sediment. Fille granied, probably sin or muostone.	
W491996	lazzarotto	13-Aug-	9N	457673	6163260	457672	6163250	1654	1	alteration and localized hematite staining (fractures and veinlets)	Siltstone
**+J1JJ0	Luzzai Ullu	20	511	-57075	0100200	73/0/2	0105255	+001	T	and and rocalized heritatice stanning (nactures and vennets).	SILICITE

W491997	M. Lazzarotto	19-Aug- 20	9N	457672	6163259	457671	6163258	1654	1	strongly silicified volcanic sediment. Fine grained, probably silt or mudstone. brown/beige weathering, dark grey/black fresh surface. pervasiv we chlorite alteration and localized hematite staining (fractures and veinlets).	Siltstone
W491998	M. Lazzarotto	19-Aug- 20	9N	457671	6163258	457670	6163257	1655	1	strongly silicified volcanic sediment. Fine grained, probably silt or mudstone. brown/beige weathering, dark grey/black fresh surface. pervasiv we chlirite alteration and localized hematite staining (fractures and veinlets).	Siltstone
W491999	M. Lazzarotto	19-Aug- 20	9N	457670	6163257	457670	6163256	1655	1	strongly silicified volcanic sediment. Fine grained, probably silt or mudstone. brown/beige weathering, dark grey/black fresh surface. pervasiv we chlirite alteration and localized hematite staining (fractures and veinlets).	Siltstone

Sample_ID	Prospector	Date	Property	Zone	Easting	Northing	Elevation	Sample	Exposure	Description	Lithology
A0600633	S. Postman	21-Aug- 20	GoldDigger	9N						Dk Brown Stronlgy silicified granodiorite along contact w/ mafic dyke <10% Diss. Py	Sandstone
A0600634	S. Postman	21-Aug- 20	GoldDigger	9N	457130	6162967	1621	Grab	Outcrop	Dk Br-Gy Stronlgy Silicified Sediments w/ Qtz veins <10cms in a gossenous outcrop	Siltstone
A0600635	S. Postman	21-Aug- 20	GoldDigger	9N	456594	6162723	1613	Grab	Outcrop	Dk Gy Silicified Sediments w/ mod. Silicification, oxidized fracture surfaces.	Felsic Volcanic
A0600636	S. Postman	21-Aug- 20	GoldDigger	9N	457004	6162986	1608	Grab	Float	Dk Br-Gy Stronlgy Silicified Sediments w/ vuggy Qtz veins, sulphide stringers w/ Gal & Py	Siltstone
A0600637	S. Postman	21-Aug- 20	GoldDigger	9N	456563	6162834	1611	Grab	Outcrop	Dk Brown Stronlgy silicified granodiorite along contact w/ mafic dyke <5% Diss. Py	GranoDiorite
A0600638	S. Postman	21-Aug- 20	GoldDigger	9N	456673	6162644	1515	Grab	Outcrop	Dk grey highly oxidized fracture surfaces, strongly silicifed seds w/ Qtz veining contain fine grained Py & Gal	Siltstone
A0600639	S. Postman	21-Aug- 20	GoldDigger	9N	456725	6162666	1482	Grab	Outcrop	Sub-Horizontal Felsic Dyke cross-cutting sediments approx 30 cms width	Felsic Volcanic
A0600702	S. Postman	23-Aug- 20	GoldDigger	9N	456641	6162810	1593	Grab	Outcrop	Dk grey strongly silicified fine-grained sed. Strongly oxidized fracture surfaces. Diss. Py & Gal	Siltstone
A0600703	S. Postman	27-Aug- 20	GoldDigger	9N	459324	6164237	1455	Grab	Outcrop	Qtz vein <15cm along contact w/ seds, gossenous outcrop Moderate sil. & Chl. Alt. w/ coarse grained blebby Py <5 %	Sandstone
A0600704	S. Postman	27-Aug- 20	GoldDigger	9N	459274	6164089	1497	Grab	Outcrop	Mod. Sil. Dark gy - redish Seds along contact w/ Qtz veining, diss Py <3%	Sandstone
A0600705	S. Postman	27-Aug- 20	GoldDigger	9N	457739	6163027	1487	Grab	Outcrop	Vuggy Qtz vein <15cm w/ fracture fill sulphides w/ in highly sil. seds. Gossenous outcrop	Sandstone
A0600706	S. Postman	27-Aug- 20	GoldDigger	9N	457745	6163040	1505	Grab	Outcrop	Qtz vein w/ massive Py minor Gal. & Cpy	Sandstone
A0600707	S. Postman	27-Aug- 20	GoldDigger	9N	457731	6163055	1505	Grab	Outcrop	strongly Sil. Seds w/ Qtz veins, strongly oxidized outcrop with jarocite staining. Massive Py & Gal.	Sandstone
A0600708	S. Postman	27-Aug- 20	GoldDigger	9N	457189	6162277	1189	Grab	Outcrop	Strongly Sil. Seds w/Qtz veinlets and diss. Py < 3%	Siltstone
A0600862	M. Lazzarotto	8-Sep- 20	GoldDigger	9N	457622	6162594		Chip	Outcrop	Strongly silicified siltstone with massive sulfide vein. Rusty weathering, strongly weathered shear zone similar to 60 gpt	Siltstone
A0600863	M. Lazzarotto	8-Sep- 20	GoldDigger	9N	457625	6162579		Grab	Outcrop	Strongly silicified siltstone with semi-massive pyrite in shear zone similar to 60+ gpt sample	Siltstone

A0600951	J. Stanton	21-Aug- 20	GoldDigger	9N	457532	6163400		Grab	Outcrop	Strongly silicified moderately chloritized fine-grained volcanic sediment. Strong Orange-Brown FeOx on weathered surface. Hematite alteration, Crystalline vuggy Qtz blebs throughout, desseminated Py <1%	Siltstone
A0600952	J. Stanton	21-Aug- 20	GoldDigger	9N	457514	6163377		Grab	Outcrop	Strongly silicified moderately chloritized fg. Volcanic Sediment. Strong Orange-Brown FeOx on weathered surface. Hematite alteration, Crystalline vuggy Qtz. Veining throughout, desseminated Py <1%	
A0600953	J. Stanton	21-Aug- 20	GoldDigger	9N	458005	6163525		Grab	Outcrop	Moderately silicified moderately chloritized fine grained volcanic sediment, Qtz stockwork?, Qtz veining throughout outcrop (40% Qtz), strong FeOx on weathered surface, Hem alteration, Py and Gla associated with qtz, Py is oxidized making it difficult to	Siltstone
A0600954	J. Stanton	21-Aug- 20	GoldDigger	9N	458005	6163525		Grab	Outcrop	Strongly silicified mildly chloritized fine grained mafic volcanic sediment, strong FeOx on weathered surface, strong Hem alteration, abundant coarse-grained euhedral to subhedral Py throughout. NOTE: Outcrop extends approx. 200m striking S-SW	Siltstone
A06000EE	L Stanton	21-Aug-	ColdDiggor	ON	459092	6162497		Grah	Outcrop	Qtz vein approx. 20cm in width, milky-white to smokey-grey	Voin
A0600958	J. Stanton	26-Aug- 20	GoldDigger	9N	457530	6163480	1659	Grab	Outcrop	strongly silicified, moderately chloritized gossanous siltstone, sparse Py blebs mm scale, desseminated Py throughout 1-2%	Siltstone
A0600959	J. Stanton	26-Aug- 20	GoldDigger	9N	457498	6163444	1659	Grab	Outcrop	qtz veinin series of larger veins, approximately 25cm in width, milky-white fresh surface, mild FeOx weathered surface, 1% Gla, trace Py <1%, sph?	Vein
A0600961	J. Stanton	26-Aug- 20	GoldDigger	9N	457511	6163450		Grab	Outcrop	gossanous vuggy qtz vein, milky-white with moderate FeOx on weathered surface, <1% desseminated Py	Vein
A0600962	J. Stanton	26-Aug- 20	GoldDigger	9N	457511	6163450		Grab	Outcrop	gossanous vuggy qtz vein, milky-white with moderate FeOx on weathered surface, <1% desseminated Py	Vein
A0600963	J. Stanton	26-Aug- 20	GoldDigger	9N	457511	6163450		Grab	Outcrop	anastimozing gossanous qtz veinlets through strongly chloritized siltstone, predominantly qtz approximately 55%, moderate FeOx on weathered surface, alteration zone.	Siltstone
A0600985	J. Stanton	27-Aug- 20	GoldDigger	9N	459646	6163610		Grab	Outcrop	series of anastimozing qtz veins, sample taken from various veins/veinlets, milky-white crystalline qtz with sparse gossanous localities	Vein
A0600986	J. Stanton	27-Aug- 20	GoldDigger	9N	459646	6163610		Grab	Float	gossanous vuggy qtz, milky-white with moderate FeOx on weathered surface	Vein
A0600987	J. Stanton	27-Aug- 20	GoldDigger	9N	459632	6163651		Grab	Outcrop	anastimozing gossanous qtz veinlets through strongly chloritized siltstone, strong FeOx on weathered surface, alteration zone.	Siltstone
A0600988	J. Stanton	27-Aug- 20	GoldDigger	9N	459656	6162195		Grab	Outcrop	gossanous vuggy qtz, milky-white with strong FeOx on weathered surface, mm scale py blebs	Vein

		27-Aug-									
W387860	R. Madley	20	GoldDigger	9N	467673	6163260	1641	Grab	Outcrop	Vuggy Qtz, oxidized, desseminated Py	Vein?
		27-Aug-								Oxidized vuggy qtz, dessminated Py (more Py than W387860	
W387861	R. Madley	20	GoldDigger	9N	457643	6163284	1677	Grab	Outcrop	same strike)	Vein?
		27-Aug-								Continous gtz vein in shear zone, N-S structure, locally	
W387862	R. Madley	20	GoldDigger	9N	457819	6163142	1558	Grab	Outcrop	vuggy, QSP, Py, Gal	Vein
		27-Aug-									
W387863	R. Madley	20	GoldDigger	9N	457848	6163086	1504	Grab	Outcrop	Qtz vein on strike with W387862, QSP, Py	Vein
		27-Aug-									
W387864	R. Madley	20	GoldDigger	9N	458094	6163227	1442	Grab	Outcrop	Many small outcrops with qtz veins	Vein?
14/207065	D. Masillari	21-Aug-	CaldDianas	0.11	45 75 40	6462240	4 4 2 5	Cush	0.1	Other states in the second as NLC statility was to 4. Even this is	Main
W387865	R. Madley	20	GoldDigger	9N	457540	6163310	1435	Grab	Outcrop	Qtz vein in snear zone, N-S strike, up to 1.5m thick	vein
		21-Aug-	0 1 ISI							Large structure, 100m long x 10m wide, small qtz veins	
W387866	R. Madley	20	GoldDigger	9N	458/22	6163673	1561	Grab	Outcrop	hosted in black FeOx shale, Py, Moly?	Siltstone?
M2070C7	D. Madlay	26-Aug-	ColdDiggor	0.11	457600	6162422	1601	Crah	Outoron	Ota Calana Dy 6 7m long 1m thick	2
W38/80/	R. Madley	20	GoldDigger	91	457602	0103422	1091	Grab	Outcrop	Quz, Galeria, Py, 6-7m long, 1m thick	ſ
W387868	R Madley	20-Aug- 20	GoldDigger	9N	456804	6161803	1117	Grah	Outcrop	Fine ovidized gossenous desseminated Pv	2
1130/000	n. Waarcy	20	GOIGDIBBEI	511	430004	0101005	1117	0100	Outerop	Dyke that runs up for about 1 km. Host to the dyke is	•
										sandstone with quartz. Rusty oxidized exterior.	
		26-Aug-								Disseminated pyrite throughaut, Native copper looking	
W387869	R. Madley	20	GoldDigger	9N	458389	6163253		Grab	Outcrop	blebs.	Felsic Volcanic
		26-Aug-								lense of quartz about 10 cm thick sitting below dyke.	
W387870	R. Madley	20	GoldDigger	9N	458394	6163159		Grab	Outcrop	Contains disseminated pyrite	Vein
										Chin comple correct (0) ant comple from 2010 too difficult	
										to channel cut (steen wet) Chin encompasses barren	
										looking shale/siltstone below shear zone (1 m) Mineralized	
	м	21-Διισ-								shear zone with 30% galena and 20% pyrite within gtz vein	
W387966	Lazzarotto	217,005	GoldDigger	9N	457852	6162834		Chip	Outcrop	(possibly strongly silic	GrevWacke
										Boulder of semy massive galena and pyrite hosted in	
										strongly silicified volcanic sed? Below big wall, probably	
	М.	21-Aug-								outcrop is wall (rusty, shear related patches can be seen	
W387967	Lazzarotto	20	GoldDigger	9N	457820	6162759		Float	Float	overhead)	GreyWacke
										Shearzone in volcanic sediments Strongly silicified Brown	
										weathering grev fresh surface Fine grained Contains hlebs	
	м	21-Aug-								and stringers of pyrite. Higher up, shearzone looks better	
W387968	Lazzarotto	20	GoldDigger	9N	457737	6162765		Grab	Outcrop	(jarosite in shear zone), but not accessible.	Siltstone
		20	20.02.000			0102,00		0.00	0.000	Otz vein with chlorite and black finegrained sediment. At	
										contact with porphyritic dyke 1 m wide. Otz vein is about 15	
	M.	27-Aug-								cm wide. Contains disseminated and blebs of pyrite and	
W387978	Lazzarotto	20	GoldDigger	9N	459642	6162232		Grab	Outcrop	hematite.	Vein
		29-Aug-									
W387979	A. Winters	20	GoldDigger	9N	457753	6163257		Grab	Outcrop	Partly silicified silt/sandstone with disseminated pyrite	

W387981	M. Lazzarotto	29-Aug- 20	GoldDigger	9N	457228	6162188		Grab	Outcrop	Massive quartz vein, rusty weathering, white fresh surface. Hosted in silicified siltstone. Contains blebs of py and hematite.	Vein
W389908	S. Postman	8-Sep- 20	GoldDigger	9N	457780	6162840	1318	Grab	Outcrop	Br-Grey Sandstone w/ sulphide rich nodules containing fine- grained massive sulphides	Sandstone
W389909	S. Postman	8-Sep- 20	GoldDigger	9N	457767	6162848	1334	Grab	Outcrop	Sil. Quartz sandstone mod. Oxidized Br-Grey w/ semi- massive sulphides	Sandstone
W389911	S. Postman	8-Sep- 20	GoldDigger	9N	457756	6162856	1347	Grab	Outcrop	Massive sulphide lense ~2m wide highly oxidized w/ Jarocite staining	Sandstone
W389912	S. Postman	8-Sep- 20	GoldDigger	9N	456639	6163416	1230	Grab	Outcrop	Sil. Seds along contact w/ int. Dyke strongly silicifed w/ blebby Py & Sphal.	Siltstone
W497661	R. Madly	8-Sep- 20	GoldDigger	9N	461117	6165931	1074	Grab	Float	Oxidized, rounded	

II. Geochemical Maps

North Surebet Zone Channel Samples- Au, Ag, Cu, Pb, Zn

6163400

457700

11/20/2020

Central Surebet Zone Channel Samples- Au, Ag, Cu, Pb, Zn

South Surebet Zone Channel Samples -Au, Ag, Cu, Pb, Zn

458000

Cloud 9 Channel Samples- Au, Ag, Cu, Pb, Zn

Surebet Chip and Grab Samples- Au, Ag, Cu, Pb, Zn

III. Geological Mapping Notes

Area:	Northing	Easting	Elevation	Structure	Strike	Dip	Notes:
Surebet N. Zone	457601	6162446		Layering	162	12	Layered siltsone dipping west strongly silicified
Surebet N. Zone	457613	6163441		Cleavage	86	12	Cleavage planes within sediments perpendicular to layering
Surebet N. Zone	457607	6163430		Layering	147	14	Layered strongly silicified siltsone dipping west shallow
Surebet Ridge W	457519	6163351		Layering	350	25	Layering within sandstone marginal to antiform
W Surebet Zone	457512	6163309		Cleavage	233	73	Cleavage planes within arkosic sandstone oblique to layered seds
E Surebet Main Zone	457738	6163271		Fault	218	57	Secondary fault crosscutting alternating sediments (perpendicular to layering) no visible offset
Surebet Main Zone	457747	6163220		Cleavage	86	12	Cleavage plane observed within silicified sandstone and siltstone
Surebet Main Zone	457720	6163190		Fault	147	14	Main Fault observed along the full extent of the surebet zone strike and dip similar top to bottom generally dipping 11-15 degrees. Offset of seds visible throughout.
Upper Waterfall E	457762	6163158		Layering	327	18	Layering in silstone dipping E marginal to synform., moderate silicification
E splay of Surebet	457816	6163138		Fault	136	58	Fault along secondary shear/splay to main surebet, dipping steeper to W. On W side of major synform tending ~295 degrees. Visible to Surebet ridge. No major offset observed
Surebet S Zone	457744	6162994		Layering	143	48	Layering in strongly silicified sandstone dipping W
Surebet S Zone	457741	6162982		Cleavage	138	82	Paralleling layered seds
Surebet SE Zone (SE Cliff)	457852	6162836		Fault	176	84	Secondary fault marginal to felsic dyke, steeply dipping W no offset. Rubbly sub-outcrop and potential gauge
Central Surebet				Synform	296		Visible from the air paralleling layering
Cloud 9 (N. End)	456665	6162772		Fault	123	73	Main fault in cloud 9 defining the main drainage in this area
Cloud 9 (N. End)	456684	6162754		Fault	176	81	S extension of the same fault as above
Cloud 9 (Central)	456659	6162781		Cleavage	119	80	Cleavage plane observed within silicified sandstone
Cloud 9 (N. End)	456675	6162766		Layering	129	76	Layering within silicified sandstone
Cloud 9 (SW)	456636	6162722		Layering	180	87	Layering within sandstone
Cloud 9 (SE)	456703	61627725		Layering	167	85	Layering within silicified sandstone E side of major fault

IV. Assay Certificates

TEST REPORT:

YXT2010452-R1

Project Name:Goliath Resources-SurebetJob Received Date:11-Sep-2020Job Report Date:23-Nov-2020Numberof Samples:55Report Version:R1

COMMENTS:

The original test report YXT2010452 has been revised to include: data for samples W387218 to W387222. This report version supersedes any previous versions issued.

Test results reported relate to the tested samples only on an "as received" basis. Unless otherwise stated above, sufficient sample was received for the methods requested and all samples were received in acceptable condition. Analytical results in unsigned reports marked "provisional" are subject to change, pending final QC review and approval. The customer has not provided any information than can affect the validity of the test results. Please refer to MSALABS' Schedule of Services and Fees for our complete Terms and Conditions. Preliminary results are applicable when a portion of samples in a job is 100%. Results cannot change, but additional results or results for additional methods can be added.

	SAMPLE PREPARATION											
METHOD CODES	ADEASERIPTION To: Goliath Resources Limited											
PRP-910 Uni	Progrash or the second se											
DDD 020 METLan	pey, Groshtw2nga, split 1000g sub-sample, porveriz, comarie, verpestAD6 micron											
Pho	meshiingoudessooptain plus and minus fractionsta											
	Dry, Crush to 2mm, split 3000g sub-sample, pulverize and sieve past 106 micron											
FKF-950-IMET	mesh in order to obtain plus and minus fractions											
	Sample preparation performed by MS Analytical Terrace											

	ANALYTICAL METHODS									
METHOD CODE	DESCRIPTION									
FAS-121	Au, Fire Assay, 50g fusion, AAS, Trace Level									
MSC-150	Metallic Screening 1000g, Fire Assay, 50g Fusion									
MSC-350	Metallic Screening 3000g, Fire Assay, 50g Fusion									
FAS-428	Ag, Fire Assay, 50g fusion, Gravimetric									
ICF-6Ag	Ag, 0.2g, 4-Acid, ICP-AES, Ore Grade									
ICF-6Pb	Pb, 0.2g, 4-Acid, ICP-AES, Ore Grade									
ICF-6Zn	Zn, 0.2g, 4-Acid, ICP-AES, Ore Grade									
ICP-130	Multi-Element, 0.5g, 3:1 Aqua Regia, ICP-AES, Trace Level									

Muerrethin

Signature:

Yvette Hsi, BSc. Laboratory Manager MSALABS

TEST REPORT:

YXT2010452-R1

Project Name:
Job Received Date:
Job Report Date:
Report Version:

Goliath Resources - Surebet 11-Sep-2020 23-Nov-2020 R1 To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-350
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	total
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	g
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	1.0
Granite Blank	QC-P-BK											
Granite Blank	QC-P-BK											
A0600851	Rock	4.10										3089.9
A0600852	Rock	5.66										3004.7
A0600853	Rock	5.38										2977.0
A0600854	Rock	5.92										3001.0
A0600855	Rock	5.74										3001.5
A0600856	Rock	5.30										3023.7
A0600857	Rock	4.38										3019.3
A0600858	Rock	5.32										3013.8
A0600859	Rock	5.08										3004.9
A0600860	Pulp	0.10		1.028								
A0600861	Rock	7.70										2606.4
W387209	Rock	7.84										2930.2
W387210	Rock	0.54		0.008								
W387211	Rock	4.24										2789.2
W387212	Rock	2.82			983.2	26.9	956.3	9.0	11.1	9.13	8.73	
W387213	Rock	4.08										3072.1
W387214	Rock	4.90										3028.3
W387215	Rock	5.08										3015.7
W387216	Rock	8.76										3005.7
W387217	Rock	6.42										3039.6
W387218	Rock	4.36										3035.7
W387219	Rock	4.44										3010.4
W387220	Pulp	0.12		1.050								

TEST REPORT:

YXT2010452-R1

Project Name:
Job Received Date:
Job Report Date:
Report Version:

Goliath Resources - Surebet 11-Sep-2020 23-Nov-2020 R1 To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-350
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	total
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	g
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	1.0
W387221	Rock	9.52										2792.7
W387222	Rock	5.36										2660.9
W387223	Rock	8.36										2900.8
W387224	Rock	9.50										2975.6
W387225	Rock	6.22										2796.7
W387226	Rock	7.80										2769.1
W387227	Rock	4.42										3012.8
W387228	Rock	5.56										2936.9
W387229	Rock	5.68										3023.3
W387230	Rock	0.48		<0.005								
W387231	Rock	5.52										3211.5
W387232	Rock	4.48										2921.1
W387233	Rock	5.52										2883.6
W387234	Rock	3.38										2430.2
W387235	Rock	5.00										3012.7
W387236	Rock	9.16										3019.0
W387237	Rock	9.08										3032.0
W387238	Rock	3.30										2982.3
W387239	Rock	3.86										2974.0
W387240	Pulp	0.12		1.041								
W387241	Rock	4.32										2963.0
W387242	Rock	5.78										3055.1
W387243	Rock	5.12										2969.8
W387244	Rock	6.20										2679.7
W387245	Rock	5.86										2645.1

TEST REPORT:

YXT2010452-R1

< 0.005

Project Name:
Job Received Date:
Job Report Date:
Report Version:

STD BLANK STD BLANK

STD BLANK STD BLANK STD OREAS 601 **Goliath Resources - Surebet** 11-Sep-2020 23-Nov-2020 R1

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-350
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	total
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	g
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	1.0
W389908	Rock	2.00			1091.0	23.0	1068.0	<0.9	<0.9	0.16	0.19	
W389909	Rock	1.22			932.1	30.3	901.8	<0.9	<0.9	0.05	0.08	
W389910	Rock	0.74		< 0.005								
W389911	Rock	1.56			1013.9	28.0	985.9	<0.9	<0.9	0.22	0.30	
W389912	Rock	0.76		0.026								
A060862	Rock	1.06			782.4	27.3	755.1	7.1	58.7	5.28	5.22	
A060863	Rock	1.18			859.6	22.1	837.5	6.1	20.0	5.75	5.62	
DUP W387236												
STD BLANK												
STD BLANK									<0.9			
STD BLANK										<0.01	<0.01	
STD BLANK												

To: **Goliath Resources Limited** 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:

YXT2010452-R1

Project Name:
Job Received Date:
Job Report Date:
Report Version:

Goliath Resources - Surebet 11-Sep-2020 23-Nov-2020 R1 To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-350
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	total
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	g
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	1.0
STD OxQ115									24.6			
STD OxK160										3.69	3.69	
STD G319-9												
STD OxK160												
STD OxG141				0.918								
STD MP-1b												
STD CDN-ME-1805												
												1

TEST REPORT:

YXT2010452-R1

Project Name:
Job Received Date:
Job Report Date:
Report Version:

Goliath Resources - Surebet 11-Sep-2020 23-Nov-2020 R1

	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Pb	ICF-6Zn	ICP-130	ICP-130
	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Pb	Zn	Ag	Al
	g	g	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	%
Sample ID	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.01	0.01	0.2	0.01
Granite Blank											<0.2	1.01
Granite Blank											<0.2	1.20
A0600851	27.1	3062.8	<0.9	1.0	0.05	0.05					1.9	2.55
A0600852	23.5	2981.2	<0.9	<0.9	0.01	0.02					3.6	2.49
A0600853	18.8	2958.2	<0.9	<0.9	0.06	0.07					26.3	2.92
A0600854	20.1	2980.9	<0.9	<0.9	<0.01	<0.01					6.1	2.73
A0600855	29.3	2972.2	<0.9	<0.9	0.01	0.01					4.9	2.49
A0600856	24.5	2999.2	<0.9	<0.9	<0.01	<0.01					6.9	2.37
A0600857	26.7	2992.6	<0.9	<0.9	0.09	0.12		186			>100	1.95
A0600858	30.2	2983.6	<0.9	<0.9	0.02	0.01					6.5	3.24
A0600859	30.1	2974.8	<0.9	<0.9	0.03	0.02					14.8	4.01
A0600860											<0.2	3.01
A0600861	24.2	2582.2	2.9	19.1	2.79	2.68		432			>100	3.34
W387209	25.8	2904.4	<0.9	1.5	0.65	0.73					48.3	1.85
W387210											0.7	0.05
W387211	31.2	2758.0	9.0	43.7	8.33	8.91		247		1.10	>100	0.95
W387212								189			>100	1.36
W387213	34.1	3038.0	3.8	58.4	3.61	2.75		100	1.14		>100	3.00
W387214	22.6	3005.7	2.3	69.4	1.62	1.88		173	2.54		>100	2.58
W387215	32.0	2983.7	<0.9	<0.9	0.33	0.27					10.3	2.85
W387216	27.5	2978.2	5.2	36.5	4.82	4.91		521		1.14	>100	2.53
W387217	36.3	3003.3	2.5	20.5	2.79	1.87		204			>100	2.13
W387218	24.5	3011.2	<0.9	1.1	0.34	0.34					15.3	1.95
W387219	26.7	2983.7	<0.9	<0.9	0.14	0.13					34.7	0.78
W387220											0.8	2.81

TEST REPORT:

YXT2010452-R1

Project Name:	
Job Received Date:	
Job Report Date:	
Report Version:	

Goliath Resources - Surebet 11-Sep-2020 23-Nov-2020 R1

	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Pb	ICF-6Zn	ICP-130	ICP-130
	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Pb	Zn	Ag	Al
	g	g	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	%
Sample ID	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.01	0.01	0.2	0.01
W387221	20.9	2771.8	<0.9	<0.9	0.70	0.64					69.0	1.55
W387222	20.9	2640.0	42.5	290.0	41.48	39.57		782	2.31	1.33	>100	0.30
W387223	31.5	2869.3	4.8	33.1	7.42	1.65		193			>100	0.24
W387224	28.8	2946.8	14.2	325.7	11.07	11.14		712	1.68		>100	1.29
W387225	8.5	2788.2	24.7	509.4	23.25	23.15	1245	>1000			>100	0.28
W387226	13.0	2756.1	3.6	133.6	2.99	3.01		505			>100	0.41
W387227	16.0	2996.8	1.5	39.6	1.44	1.09		421	1.01		>100	0.65
W387228	16.0	2920.9	1.3	35.0	0.92	1.26		433			>100	0.82
W387229	22.4	3000.9	<0.9	6.1	0.23	0.25		168			>100	2.19
W387230											0.2	0.03
W387231	25.6	3185.9	<0.9	7.8	0.19	0.20		253	1.33		>100	1.55
W387232	28.2	2892.9	<0.9	2.9	0.20	0.19		196			>100	2.38
W387233	23.0	2860.6	1.0	7.9	1.00	0.98					98.1	1.39
W387234	20.7	2409.5	2.2	35.0	2.05	1.83					29.8	1.50
W387235	26.5	2986.2	<0.9	1.4	0.08	0.10					4.6	3.20
W387236	30.5	2988.5	<0.9	<0.9	0.06	0.06					4.3	2.95
W387237	27.9	3004.1	31.5	565.6	26.71	26.42	993	>1000	5.46	6.31	>100	0.26
W387238	20.1	2962.2	4.8	97.8	4.31	4.00		169			>100	0.28
W387239	29.8	2944.2	3.9	33.0	3.84	3.44					48.1	0.15
W387240											0.3	3.01
W387241	28.7	2934.3	54.0	1080.5	43.92	44.02		460	1.75	2.54	>100	0.48
W387242	21.9	3033.2	<0.9	3.0	0.28	0.22					63.1	3.86
W387243	27.7	2942.1	1.5	12.5	1.35	1.52		157		1.14	>100	2.40
W387244	23.3	2656.4	7.9	214.6	5.73	6.36		357			>100	2.50
W387245	26.2	2618.9	<0.9	<0.9	0.03	0.02					6.5	3.59

To: **Goliath Resources Limited** 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:

YXT2010452-R1

Project Name:	
Job Received Date:	
Job Report Date:	
Report Version:	

Goliath Resources - Surebet 11-Sep-2020 23-Nov-2020 R1 To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Pb	ICF-6Zn	ICP-130	ICP-130
	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Pb	Zn	Ag	AI
	g	g	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	%
Sample ID	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.01	0.01	0.2	0.01
W389908											42.4	0.80
W389909											14.2	0.85
W389910											<0.2	0.03
W389911											79.1	0.13
W389912											2.8	0.82
A060862											16.1	1.34
A060863											9.0	1.07
DUP W387236											4.5	2.94
STD BLANK											<0.2	<0.01
STD BLANK												
STD BLANK												
STD BLANK				<0.9								
STD BLANK					<0.01	<0.01						
STD BLANK												
STD BLANK								<1	<0.01	<0.01		
STD BLANK							<50					
STD OREAS 601											49.8	0.83

TEST REPORT:

YXT2010452-R1

Project Name:
Job Received Date:
Job Report Date:
Report Version:

Goliath Resources - Surebet 11-Sep-2020 23-Nov-2020 R1 To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Pb	ICF-6Zn	ICP-130	ICP-130
	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Pb	Zn	Ag	AI
	g	g	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	%
Sample ID	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.01	0.01	0.2	0.01
STD OxQ115												
STD OxK160												
STD G319-9				96.8								
STD OxK160					3.58	3.58						
STD OxG141												
STD MP-1b								49	2.10	16.55		
STD CDN-ME-1805							2148					

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130											
	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10
Granite Blank	<2	<10	58	<0.5	<2	0.72	<0.5	4	53	7	1.81	<10
Granite Blank	2	<10	83	<0.5	<2	0.77	<0.5	4	69	6	1.86	<10
A0600851	35	<10	204	0.5	<2	0.09	<0.5	19	145	54	3.95	<10
A0600852	44	<10	239	0.5	<2	0.12	<0.5	18	156	56	3.89	<10
A0600853	191	11	176	0.6	<2	0.98	3.1	13	171	218	3.53	<10
A0600854	226	<10	308	0.6	<2	0.23	1.5	16	160	53	3.68	10
A0600855	174	12	320	<0.5	<2	0.18	3.3	17	127	74	3.78	<10
A0600856	74	<10	182	<0.5	<2	0.13	<0.5	16	129	56	3.55	<10
A0600857	521	<10	132	<0.5	<2	0.28	9.0	13	153	371	3.50	<10
A0600858	127	<10	287	0.5	<2	0.41	<0.5	15	144	52	4.26	<10
A0600859	252	10	301	0.6	<2	1.14	1.7	17	245	104	4.50	10
A0600860	29	20	117	<0.5	<2	2.02	<0.5	14	116	109	2.98	<10
A0600861	661	<10	185	0.6	<2	1.46	55.6	16	168	454	3.66	11
W387209	185	<10	94	0.7	<2	0.71	41.7	14	96	140	3.54	<10
W387210	5	<10	14	<0.5	<2	>25	<0.5	<1	22	3	0.12	<10
W387211	313	13	47	<0.5	<2	1.53	273.2	11	95	274	6.31	<10
W387212	329	12	61	<0.5	<2	0.75	60.9	9	269	180	5.15	<10
W387213	127	<10	119	1.0	2	1.26	132.9	17	180	82	5.94	12
W387214	76	<10	96	1.0	<2	1.26	175.2	16	200	96	5.01	<10
W387215	323	<10	95	1.1	<2	1.53	3.0	16	232	55	3.27	<10
W387216	230	14	90	0.9	<2	1.17	238.2	13	84	257	4.74	<10
W387217	161	17	67	0.7	2	0.92	108.1	13	115	410	7.39	11
W387218	316	<10	62	0.8	<2	0.95	2.1	15	44	123	4.09	<10
W387219	471	<10	86	<0.5	3	2.36	8.4	12	33	194	4.38	<10
W387220	28	11	108	<0.5	<2	1.92	<0.5	13	114	110	2.96	<10

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130											
	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10
W387221	430	12	71	<0.5	5	0.19	4.8	6	57	366	8.91	12
W387222	453	<10	35	<0.5	8	0.04	325.2	19	12	1520	10.13	<10
W387223	1834	11	30	<0.5	<2	0.03	48.8	10	191	1085	4.23	<10
W387224	900	<10	62	<0.5	<2	0.50	194.3	11	163	484	4.88	<10
W387225	146	<10	22	<0.5	<2	0.08	157.7	4	200	231	2.30	<10
W387226	174	<10	44	<0.5	<2	0.13	106.6	7	129	178	2.33	<10
W387227	665	<10	57	<0.5	<2	0.29	282.9	17	91	531	4.62	<10
W387228	468	<10	54	<0.5	<2	0.35	61.8	9	34	286	2.68	<10
W387229	399	<10	58	0.6	<2	1.24	253.1	11	48	250	4.01	<10
W387230	<2	<10	10	<0.5	<2	>25	<0.5	<1	3	3	0.14	<10
W387231	247	<10	70	<0.5	<2	0.88	351.0	9	54	263	3.26	<10
W387232	401	10	58	0.6	<2	1.26	269.3	9	88	177	4.13	<10
W387233	262	<10	57	<0.5	<2	0.56	142.8	9	48	188	3.72	<10
W387234	375	<10	66	<0.5	<2	0.74	5.2	6	82	55	2.79	<10
W387235	138	10	166	1.1	<2	1.50	1.6	17	83	66	3.80	10
W387236	374	10	119	1.1	<2	1.60	3.0	17	61	60	3.30	<10
W387237	486	21	21	<0.5	6	0.13	1706.7	8	77	1117	14.82	12
W387238	461	11	36	<0.5	<2	0.07	249.9	6	167	426	9.28	<10
W387239	98	<10	20	<0.5	<2	0.05	19.8	4	202	207	3.90	<10
W387240	29	<10	121	<0.5	<2	2.07	<0.5	14	119	114	3.07	<10
W387241	233	11	26	<0.5	<2	0.20	705.7	8	167	1661	6.95	<10
W387242	102	<10	73	1.2	<2	2.38	176.2	13	115	239	4.07	10
W387243	257	<10	54	0.7	<2	1.42	276.8	10	147	388	6.51	11
W387244	111	<10	40	<0.5	<2	2.01	72.8	7	168	789	3.22	<10
W387245	52	<10	60	0.7	<2	2.69	15.9	11	188	104	2.48	<10

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130											
	As	В	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10
W389908	49	53	16	<0.5	11	3.24	5.7	27	146	148	40.20	36
W389909	11	53	16	<0.5	12	0.89	<0.5	46	51	189	41.28	40
W389910	3	<10	14	<0.5	<2	>25	<0.5	<1	2	1	0.14	<10
W389911	8	51	<10	<0.5	17	0.62	54.0	11	32	482	38.69	36
W389912	17	11	19	<0.5	5	0.22	0.7	97	171	976	7.84	<10
A060862	79	10	51	<0.5	3	0.57	14.0	13	189	168	5.47	<10
A060863	4	<10	93	<0.5	<2	0.14	24.1	16	146	246	5.05	<10
	075	10	440			4.04		47	50	50		
DUP W387236	375	<10	119	1.1	<2	1.61	3.0	17	58	58	3.32	10
STD BLANK STD BLANK	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1	<1	<0.01	<10
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD OREAS 601	305	<10	563	0.6	20	1.07	7.8	5	45	1036	2.21	<10

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130											
	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10
STD OxQ115												
STD OxK160												
STD G319-9												
STD OxK160												
STD OxG141												
STD MP-1b												
STD CDN-ME-1805												

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130											
	Hg	К	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb
	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
Sample ID	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2
Granite Blank	<1	0.10	<10	0.51	509	1	0.11	2	399	8	0.03	<2
Granite Blank	<1	0.15	<10	0.51	529	2	0.18	3	391	<2	0.02	<2
A0600851	<1	0.91	<10	1.37	653	3	0.06	115	313	10	0.50	5
A0600852	<1	0.83	<10	1.31	621	3	0.07	128	358	10	0.59	5
A0600853	<1	0.78	<10	0.93	559	3	0.15	88	417	437	0.83	6
A0600854	<1	0.93	<10	1.26	558	2	0.11	112	295	21	0.70	7
A0600855	<1	0.81	<10	1.38	548	3	0.07	108	460	33	0.80	5
A0600856	<1	0.77	<10	1.30	590	2	0.06	107	375	19	0.63	5
A0600857	<1	0.58	<10	0.97	495	3	0.10	97	546	656	0.96	80
A0600858	<1	1.12	<10	1.46	784	3	0.11	100	375	16	0.61	7
A0600859	<1	1.11	<10	1.45	802	4	0.22	117	720	99	0.99	9
A0600860	<1	0.24	<10	1.35	425	4	0.41	113	366	11	0.05	3
A0600861	<1	0.81	<10	1.02	835	3	0.22	107	1431	7677	1.77	83
W387209	<1	0.42	<10	0.37	484	2	0.09	62	693	1787	1.87	25
W387210	<1	0.06	<10	0.45	97	1	0.01	1	71	23	0.02	<2
W387211	<1	0.25	<10	0.27	432	1	0.03	40	370	7655	4.01	158
W387212	<1	0.23	<10	0.21	284	3	0.07	34	424	7481	2.04	126
W387213	<1	0.56	<10	0.62	805	5	0.07	90	981	>10000	3.72	70
W387214	<1	0.59	<10	0.48	738	4	0.07	81	1080	>10000	3.22	127
W387215	<1	0.53	<10	0.50	513	4	0.13	83	1194	224	1.48	7
W387216	<1	0.51	<10	0.54	542	3	0.06	64	1012	4891	2.90	165
W387217	<1	0.39	<10	0.48	649	4	0.05	74	801	6772	3.92	129
W387218	<1	0.33	<10	0.51	348	3	0.05	81	1114	103	1.61	11
W387219	<1	0.36	<10	0.84	826	2	<0.01	98	687	168	1.14	23
W387220	<1	0.21	<10	1.35	371	4	0.35	121	357	27	0.06	<2

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130											
	Hg	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb
	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
Sample ID	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2
W387221	<1	0.32	<10	0.88	506	2	<0.01	32	1275	280	1.22	35
W387222	<1	0.15	<10	0.03	99	<1	<0.01	94	109	>10000	7.03	501
W387223	<1	0.13	<10	0.02	42	4	0.01	57	146	4321	2.51	73
W387224	<1	0.24	<10	0.33	245	4	0.04	45	497	>10000	3.00	430
W387225	<1	0.10	<10	0.09	95	4	0.01	25	96	9270	1.02	511
W387226	<1	0.21	<10	0.04	72	3	0.02	42	388	2869	1.40	174
W387227	<1	0.30	<10	0.10	139	3	0.02	68	1229	>10000	3.95	263
W387228	<1	0.27	<10	0.11	126	5	<0.01	37	549	6446	1.64	192
W387229	<1	0.33	<10	0.41	421	4	0.03	48	869	7245	2.02	120
W387230	<1	0.02	<10	2.17	121	1	<0.01	<1	73	5	<0.01	<2
W387231	<1	0.34	<10	0.35	274	5	0.01	36	956	>10000	1.89	208
W387232	<1	0.31	<10	0.74	530	4	0.03	40	1043	9245	1.51	150
W387233	<1	0.31	<10	0.30	211	5	0.02	38	812	4813	1.17	76
W387234	<1	0.27	<10	0.28	332	9	0.16	31	472	1312	0.18	19
W387235	<1	0.80	<10	0.81	422	7	0.09	87	817	135	1.46	<2
W387236	<1	0.64	<10	0.58	392	5	0.09	83	975	229	1.25	<2
W387237	1	0.11	<10	0.06	166	<1	<0.01	45	299	>10000	>10	874
W387238	<1	0.16	<10	0.03	44	2	<0.01	33	256	7609	5.73	144
W387239	<1	0.08	<10	0.01	24	2	<0.01	36	120	2574	2.34	33
W387240	<1	0.24	<10	1.42	393	4	0.37	122	390	18	0.06	<2
W387241	<1	0.13	<10	0.09	211	2	<0.01	57	142	>10000	5.50	329
W387242	<1	0.53	<10	0.50	856	3	0.08	63	749	4232	2.33	40
W387243	<1	0.28	<10	0.33	723	5	0.04	45	633	6190	3.92	100
W387244	<1	0.24	<10	0.29	421	3	0.06	42	593	6289	1.86	180
W387245	<1	0.32	<10	0.39	369	3	0.11	58	1053	162	1.00	<2

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130											
	Hg	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb
	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm
Sample ID	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2
W389908	<1	0.04	<10	0.06	1917	20	<0.01	67	491	59	>10	22
W389909	<1	0.04	<10	0.06	147	19	<0.01	213	35	48	>10	29
W389910	<1	0.02	<10	0.94	93	<1	<0.01	<1	74	2	0.04	<2
W389911	<1	<0.01	<10	0.06	840	14	<0.01	55	176	2017	>10	43
W389912	<1	0.07	<10	0.59	152	4	<0.01	361	423	46	6.11	<2
A060862	<1	0.31	<10	0.38	282	2	0.02	53	229	1435	2.72	8
A060863	<1	0.32	<10	0.59	206	3	<0.01	56	280	636	1.81	<2
DUP W387236	<1	0.64	<10	0.59	390	5	0.09	83	980	234	1.20	3
STD BLANK	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10	<2	<0.01	<2
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD OREAS 601	<1	0.26	21	0.20	430	4	0.09	25	362	284	1.03	21

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130 Hg	ICP-130 K	ICP-130 La	ICP-130 Mg	ICP-130 Mn	ICP-130 Mo	ICP-130 Na	ICP-130 Ni	ICP-130 P	ICP-130 Pb	ICP-130 S	ICP-130 Sb
Sample ID	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2
STD OxQ115 STD OxK160 STD G319-9 STD OxK160 STD OxG141												
STD MP-1b STD CDN-ME-1805												

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130								
	Sc	Sr	Th	Ti	TI	V	W	Zn	Zr
	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	1	8	0.01	10	1	10	1	5
Granite Blank	3	22	<8	0.08	<10	28	<10	126	<5
Granite Blank	3	31	<8	0.10	<10	28	<10	29	6
A0600851	11	10	<8	0.15	<10	111	<10	128	<5
A0600852	11	17	<8	0.15	<10	108	<10	126	<5
A0600853	11	138	<8	0.19	<10	99	<10	341	<5
A0600854	12	27	<8	0.18	<10	111	<10	154	<5
A0600855	8	17	<8	0.10	<10	87	<10	435	<5
A0600856	10	18	<8	0.11	<10	99	<10	123	<5
A0600857	8	23	<8	0.09	<10	78	<10	1049	<5
A0600858	11	51	<8	0.19	<10	114	<10	110	<5
A0600859	13	121	<8	0.19	<10	106	<10	255	<5
A0600860	3	94	<8	0.11	<10	73	<10	72	<5
A0600861	13	110	<8	0.15	<10	93	<10	7560	<5
W387209	4	49	<8	0.08	<10	42	<10	1693	<5
W387210	<2	78	<8	<0.01	<10	2	<10	23	<5
W387211	2	26	<8	0.06	<10	28	37	>10000	<5
W387212	3	62	<8	0.05	<10	31	852	2195	<5
W387213	5	67	<8	0.08	<10	56	26	3541	8
W387214	3	75	<8	0.05	<10	38	283	4850	5
W387215	3	71	<8	0.06	<10	36	<10	104	<5
W387216	4	78	<8	0.09	<10	46	<10	>10000	7
W387217	4	56	<8	0.09	<10	44	306	4585	7
W387218	3	42	<8	0.08	<10	34	<10	61	<5
W387219	8	100	<8	<0.01	<10	24	<10	318	<5
W387220	3	88	<8	0.11	<10	69	<10	81	<5

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130								
	Sc	Sr	Th	Ti	TI	V	W	Zn	Zr
	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	1	8	0.01	10	1	10	1	5
W387221	7	8	<8	<0.01	<10	54	23	295	<5
W387222	<2	1	<8	<0.01	<10	6	172	>10000	<5
W387223	<2	2	<8	<0.01	<10	6	19	1439	<5
W387224	2	34	<8	0.03	<10	21	<10	6126	<5
W387225	<2	9	<8	0.02	<10	9	25	5950	<5
W387226	<2	6	<8	<0.01	<10	5	40	4664	<5
W387227	<2	9	<8	0.02	<10	11	85	9391	<5
W387228	<2	19	<8	0.01	<10	9	32	1817	<5
W387229	2	75	<8	0.05	<10	28	<10	9285	<5
W387230	<2	76	<8	<0.01	<10	2	<10	6	<5
W387231	2	37	<8	0.05	<10	25	<10	7279	<5
W387232	3	66	<8	0.08	<10	45	<10	7546	<5
W387233	2	35	<8	0.06	<10	25	59	4683	<5
W387234	4	59	<8	0.08	<10	38	44	175	<5
W387235	4	86	<8	0.15	<10	61	<10	199	<5
W387236	3	97	<8	0.07	<10	37	<10	159	<5
W387237	<2	5	<8	<0.01	<10	6	123	>10000	<5
W387238	<2	4	<8	<0.01	<10	6	138	8952	<5
W387239	<2	2	<8	<0.01	<10	3	<10	779	<5
W387240	3	91	<8	0.11	<10	76	<10	78	<5
W387241	<2	14	<8	<0.01	<10	8	<10	>10000	<5
W387242	5	201	<8	0.07	<10	43	23	6869	<5
W387243	3	119	<8	0.04	<10	27	23	>10000	<5
W387244	3	229	<8	0.07	<10	25	33	2470	<5
W387245	5	298	<8	0.08	<10	38	<10	481	<5

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:
Job Received Date:
Job Report Date:
Report Version:

	ICP-130								
	Sc	Sr	Th	Ti	TI	V	W	Zn	Zr
	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	1	8	0.01	10	1	10	1	5
W389908	<2	200	<8	0.01	<10	14	<10	828	12
W389909	<2	54	<8	0.01	<10	13	<10	62	12
W389910	<2	81	<8	<0.01	<10	2	<10	4	<5
W389911	<2	37	<8	<0.01	<10	8	10	6608	11
W389912	9	62	<8	0.03	<10	22	28	156	<5
A060862	3	39	<8	0.04	<10	27	<10	566	<5
A060863	3	7	<8	0.03	<10	31	<10	609	<5
DUP W387236	3	97	<8	0.07	<10	37	<10	161	<5
STD BLANK	<2	<1	<8	<0.01	<10	<1	<10	<1	<5
STD BLANK									
STD BLANK									
STD BLANK									
STD BLANK									
STD BLANK									
STD BLANK									
STD BLANK									
STD OREAS 601	<2	37	<8	0.01	<10	10	<10	1277	28

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name: Job Received Date: Job Report Date: Report Version:

	ICP-130								
	Sc	Sr	Th	Ti	TI	V	W	Zn	Zr
	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	1	8	0.01	10	1	10	1	5
STD OxQ115									
STD OxK160									
STD G319-9									
STD OxK160									
STD OxG141									
STD MP-1b									
STD CDN-ME-1805									

TEST REPOR	T: YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Number of Samples:	201
Report Version:	Final

COMMENTS:

NR indicates sample not received.

Test results reported relate to the tested samples only on an "as received" basis. Unless otherwise stated above, sufficient sample was received for the methods requested and all samples were received in acceptable condition. Analytical results in unsigned reports marked "provisional" are subject to change, pending final QC review and approval. The customer has not provided any information than can affect the validity of the test results. Please refer to MSALABS' Schedule of Services and Fees for our complete Terms and Conditions. Preliminary results are applicable when a portion of samples in a job is 100% completed and reported or 1 of a number of methods on the same job have been completed 100%. Results cannot change, but additional results or results for additional methods can be added. To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

SAMPLE PREPARATION					
METHOD CODE	DESCRIPTION				
PRP-910	Dry, Crush to 70% passing 2mm, Split 250g, Pulverize to 85% passing 75µm				
DRD-920-MET	Dry, Crush to 2mm, split 1000g sub-sample, pulverize and sieve past 106 micron				
FINE-JZU-IVIET	mesh in order to obtain plus and minus fractions				
DPD 920 MET	Dry, Crush to 2mm, split 3000g sub-sample, pulverize and sieve past 106 micron				
PRP-350-IVIET	mesh in order to obtain plus and minus fractions				

ANALYTICAL METHODS					
METHOD CODE	DESCRIPTION				
FAS-121	Au, Fire Assay, 50g fusion, AAS, Trace Level				
MSC-150	Metallic Screening 1000g, Fire Assay, 50g Fusion				
MSC-350	Metallic Screening 3000g, Fire Assay, 50g Fusion				
FAS-428	Ag, Fire Assay, 50g fusion, Gravimetric				
ICF-6Ag	Ag, 0.2g, 4-Acid, ICP-AES, Ore Grade				
ICF-6Cu	Cu, 0.2g, 4-Acid, ICP-AES, Ore Grade				
ICF-6Pb	Pb, 0.2g, 4-Acid, ICP-AES, Ore Grade				
ICF-6Zn	Zn, 0.2g, 4-Acid, ICP-AES, Ore Grade				
ICP-130	Multi-Element, 0.5g, 3:1 Aqua Regia, ICP-AES, Trace Level				

Munitar Signature: Yvette Hsi, BSc.

Laboratory Manager MSALABS

TEST REPORT: YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
Granite Blank	QC-P-BK											
Granite Blank	QC-P-BK											
A0600614	Core	5.99										
A0600615	Core	11.90										
A0600615PD	QC-PD											
A0600616	Core	4.59										
A0600617	Core	15.89										
A0600618	Core	7.35										
A0600619	Core	11.49										
A0600620	Pulp	0.13		6.743								
A0600621	Core	7.72										
A0600622	Core	5.96										
A0600623	Core	6.09										
A0600624	Core	5.65										
A0600625	Core	9.86										
A0600626	Core	6.32										
A0600627	Core	10.38										
A0600628	Core	5.67										
A0600629	Core	4.29										
A0600630	Rock	0.46		<0.005								
A0600631	Core	3.08										
A0600632	Core	4.23										
A0600633	Core	1.60			957.8	20.2	937.6	<0.9	<0.9	0.03	0.03	
A0600634	Core	0.55		0.018								
A0600635	Core	1.79			995.3	32.1	963.2	<0.9	<0.9	0.10	0.06	

***Please refer to the cover page for comments

TEST REPORT: YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
A0600636	Core	1.68			986.1	32.3	953.8	<0.9	<0.9	0.29	0.27	
A0600637	Core	1.39			1087.9	17.6	1070.3	4.2	4.4	4.28	4.18	
A0600638	Core	1.16			866.3	20.0	846.3	<0.9	<0.9	0.03	0.04	
A0600639	Core	1.10			803.6	14.3	789.4	<0.9	<0.9	<0.01	<0.01	
A0600640	Pulp	0.13		1.380								
A0600641	Core	5.47										
A0600642	Core	6.72										
A0600643	Core	6.02										
A0600644	Core	4.38										
A0600645	Core	6.53										
A0600646	Core	6.33										
A0600647	Core	8.33										
A0600648	Core	8.31										
A0600649	Core	8.58										
A0600650	Rock	0.57		<0.005								
A0600701	Core	6.71										
A0600702	Core	1.41			1074.9	31.5	1043.4	1.3	4.9	1.14	1.31	
A0600703	Core	1.55			984.3	23.4	960.9	1.0	<0.9	0.99	1.05	
A0600704	Core	0.50		0.042								
A0600705	Core	1.78			990.7	22.7	968.0	3.5	3.3	3.50	3.49	
A0600706	Core	0.92		9.597								
A0600707	Core	1.09			783.3	12.9	770.4	7.9	150.2	5.56	5.48	
A0600708	Core	1.52			1002.7	23.1	979.6	<0.9	<0.9	0.03	0.04	
A0600951	Core	0.49		0.027								
A0600952	Core	0.62		0.056								

***Please refer to the cover page for comments

Job Report Date:

Report Version:

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326					
Project Name:	Goliath Resources - Surabat					
Job Received Date:	01-Sep-2020					

Final

03-Nov-2020

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
A0600953	Core	1.11			802.1	2.3	799.8	<0.9	<0.9	0.06	0.08	
A0600954	Core	1.30			1013.4	36.9	976.5	<0.9	<0.9	0.05	0.06	
A0600955	Core	2.12			1090.3	28.3	1062.1	<0.9	<0.9	<0.01	0.01	
A0600956	Core	4.43										
A0600957	Core	4.01										
A0600958	Core	0.96		0.427								
A0600959	Core	0.75		<0.005								
A0600960	Pulp	0.13		1.312								
A0600961	Core	1.31			1107.3	32.2	1075.1	<0.9	<0.9	<0.01	<0.01	
A0600962	Core	0.99		<0.005								
A0600963	Core	1.39			1097.7	25.8	1071.9	<0.9	<0.9	0.01	0.02	
A0600964	Core	4.42										
A0600965	Core	3.05										
A0600966	Core	5.39										
A0600967	Core	6.69										
A0600968	Core	5.59										
A0600969	Core	3.80										
A0600970	Rock	0.53		<0.005								
A0600971	Core	4.52										
A0600972	Core	8.95										
A0600973	Core	7.33										
A0600974	Core	10.64										
A0600975	Core	6.30										
A0600976	Core	7.90										
A0600977	Core	7.24										

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425	Ĺ
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)	l
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	l
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9	l
A0600978	Core	3.72											Ĺ
A0600979	Core	3.91										1	l
A0600980	Pulp	0.13		6.906								1	l
A0600981	Core	4.44										1	l
A0600982	Core	5.40											l
A0600983	Core	3.58											Ĺ
A0600984	Core	5.43										1	l
A0600985	Core	0.67		<0.005									l
A0600986	Core	1.10			802.6	35.2	767.4	<0.9	<0.9	<0.01	<0.01		l
A0600987	Core	1.24			966.2	33.7	932.5	<0.9	<0.9	0.24	0.32		l
A0600988	Core	2.51			995.4	34.3	961.1	<0.9	<0.9	<0.01	<0.01		Ĺ
W387860	Core	1.67			964.7	35.2	929.5	<0.9	<0.9	0.02	0.02	1	l
W387861	Core	2.76			1065.7	32.8	1032.9	<0.9	<0.9	0.17	0.19	1	l
W387862	Core	3.23										1	l
W387863	Core	3.03											l
W387864	Core	1.65			1002.3	36.2	966.1	<0.9	<0.9	0.02	0.02		Ĺ
W387865	Core	2.50			1041.7	23.3	1018.4	<0.9	2.0	0.07	0.07	1	l
W387865PD	QC-PD											1	l
W387866	Core	1.91			974.5	13.0	961.5	<0.9	<0.9	0.12	0.11	1	l
W387867	Core	1.99			1007.8	20.2	987.6	4.1	59.0	3.08	2.96		l
W387868	Core	2.35			991.6	20.6	971.0	<0.9	<0.9	0.02	0.04		Ĺ
W387869	Core	2.20			992.8	20.3	972.5	<0.9	<0.9	0.42	0.02		l
W387870	Core	2.57			1000.9	17.4	983.5	<0.9	<0.9	0.03	0.03		l
W387909	Core	16.18											l
W387910	Pulp	0.13		6.671								1	l

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT:	YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Type	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
W387911	Core	6.31										
W387912	Core	12.32										
W387913	Core	7.22										
W387914	Core	12.66										
W387915	Core	11.20										
W387916	Core	10.09										
W387917	Core	8.70										
W387918	Core	14.81										
W387919	Core	4.49										
W387920	Rock	0.56		<0.005								
W387921	Core	18.01										
W387922	Core	9.48										
W387923	Core	9.31										
W387924	Core	7.22										
W387925	Core	6.74										
W387926	Core	7.81										
W387927	Core	10.25										
W387928	Core	7.29										
W387929	Core	8.25										
W387930	Pulp	0.12		1.359								
W387931	Core	6.94										
W387932	Core	9.12										
W387933	Core	12.03										
W387934	Core	11.16										
W387935	Core	13.63										

***Please refer to the cover page for comments regarding this test report. ***

TEST REPORT: YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
W387936	Core	8.62										
W387937	Core	8.80										
W387938	Core	7.36										
W387939	Core	6.99										
W387940	Rock	0.44		<0.005								
W387941	Core	5.08										
W387942	Core	7.04										
W387943	Core	5.25										
W387944	Core	7.34										
W387945	Core	7.58										
W387946	Core	6.09										
W387947	Core	11.35										
W387948	Core	10.45										
W387949	Core	7.47										
W387950	Pulp	0.13		6.585								
W387956	Core	7.68										
W387957	Core	6.80										
W387958	Core	5.20										
W387958PD	QC-PD											
W387959	Core	7.09										
W387960	Pulp	0.13		1.360								
W387961	Core	5.67										
W387962	Core	7.71										
W387963	Core	5.36										
W387964	Core	7 54										

***Please refer to the cover page for comments

TEST REPORT: YXT2010326

liath Resources - Surebet
-Sep-2020
-Nov-2020
nal

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
W387965	Core	10.01										
W387966	Core	5.47										
W387967	Core	2.34			1059.8	10.0	1049.8	924.4	33052.3	>100	>100	615.6
W387968	Core	0.67		<0.005								
W387969	Core	11.44										
W387970	Rock	0.47		< 0.005								
W387971	Core	10.06										
W387972	Core	6.93										
W387973	Core	9.79										
W387974	Core	5.28										
W387975	Core	6.86										
W387976	Core	8.27										
W387977	Core	6.96										
W387978	Core	0.50		<0.005								
W387979	Core	1.62			928.1	27.0	901.1	<0.9	1.3	0.38	0.23	
W387980	Pulp	0.13		6.592								
W387981	Core	0.78		0.007								
W491961	Core	7.58										
W491962	Core	8.45										
W491963	Core	9.36										
W491964	Core	7.98										
W491965	Core	10.85										
W491966	Core	7.61										
W491967	Core	5.19										
W491968	Core	7.62										

***Please refer to the cover page for comments

TEST REPORT:

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

YXT2010326

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
W491969	Core	6.87										
W491970	Pulp	0.13		6.796								
W491971	Core	6.00										
W491971PD	QC-PD											
W491972	Core	8.90										
W491973	Core	4.51										
W491974	Core	2.76			1003.0	28.3	974.7	<0.9	<0.9	0.03	0.04	
W491975	Core	7.62										
W491976	Core	9.74										
W491977	Core	7.10										
W491978	Core	3.20										
W491979	Core	8.16										
W491980	Rock	0.52		<0.005								
W491981	Core	6.29										
W491982	Core	5.62										
W491983	Core	NR		NR								
W491984	Core	6.17										
W491985	Core	5.53										
W491986	Core	6.27										
W491987	Core	5.41										
W491988	Core	7.09										
W491989	Core	10.08										
W491990	Pulp	0.13		1.362								
W491991	Core	6.37										
W491992	Core	8 37										

***Please refer to the cover page for comments regarding this test report. ***

To: Goliath Resources Limited

25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

T:	EST REPOR
----	-----------

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
W491993	Core	7.30										
W491994	Core	5.14										
W491995	Core	6.46										
W491996	Core	5.09										
W491997	Core	7.12										
W491998	Core	8.74										
W491999	Core	8.77										
DUP A0600649												
DUP A0600955												
DUP W387862												
DUP W387966												
DUP W491973												
DUP A0600634				0.019								
DUP W387963												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK				<0.005								
STD BLANK												
STD BLANK												

***Please refer to the cover page for comments

. . .

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

TEST REPORT:

YXT2010326

Goliath Resources - Surebet
01-Sep-2020
03-Nov-2020
Final

. . .

	Sample	PWE-100	Method	FAS-121	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	MSC-150	FAS-425
	Туре	Rec. Wt.	Analyte	Au	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Au (-)
		kg	Units	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm
Sample ID		0.01	LOR	0.005	1.0	1.0	1.0	0.9	0.9	0.01	0.01	0.9
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK									<0.9			<0.9
STD BLANK										<0.01	<0.01	
STD OREAS 24b												
STD OREAS 601												
STD OREAS 24b												
STD OREAS 601												
STD OREAS 24b												
STD OxD151				0.43								
STD CDN-ME-1805												
STD OxQ115												
STD OxN155												
STD OxQ115												
STD OxG141												
STD OxD151												
STD OxN155												
STD OxQ115									25.2			25.2
STD OxN155										7.67	7.67	
STD MP-1b												

TEST REPORT: YXT2010326

Project Name:
Job Received Date:
Job Report Date:
Report Version:

Goliath Resources - Surebet 01-Sep-2020 03-Nov-2020 Final

	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	Pb
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	96	96
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
Granite Blank												
Granite Blank												1
A0600614		3024.8	28.1	2996.7	<0.9	<0.9	0.02	0.02				1
A0600615		3140.0	31.4	3108.6	<0.9	1.0	0.23	0.21				
A0600615PD												
A0600616		2957.5	27.7	2929.8	<0.9	<0.9	0.15	0.16				
A0600617		2976.5	30.5	2946.0	3.0	32.9	2.61	2.76		134		1.42
A0600618		3009.6	15.2	2994.4	17.4	73.7	17.30	16.94		112		1
A0600619		3012.5	27.8	2984.7	<0.9	6.7	0.63	0.88		122		1.77
A0600620											1.935	
A0600621		3056.6	35.2	3021.4	<0.9	1.0	0.32	0.33				
A0600622		2935.3	28.3	2907.0	1.9	9.2	1.78	1.78				1
A0600623		2929.5	31.8	2897.7	<0.9	1.6	0.22	0.19				1
A0600624		2811.7	31.8	2779.9	<0.9	<0.9	0.04	0.04				1
A0600625		2979.9	25.7	2954.2	<0.9	<0.9	0.28	0.30				
A0600626		2988.0	30.4	2957.6	<0.9	<0.9	0.03	0.03				1
A0600627		3000.6	27.9	2972.7	<0.9	<0.9	0.08	0.07				1
A0600628		2852.2	28.6	2823.6	<0.9	<0.9	0.01	0.01				1
A0600629		2993.6	26.9	2966.7	<0.9	<0.9	<0.01	<0.01				1
A0600630												
A0600631		2630.8	32.5	2598.3	<0.9	<0.9	0.02	0.02				1
A0600632		3061.9	34.8	3027.1	<0.9	<0.9	0.01	<0.01				1
A0600633												
A0600634												
A0600635												1

***Please refer to the cover page for comments

regarding this test report. ***

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
--------------	------------

Project Name: Job Received Date: Job Report Date: Report Version: Goliath Resources - Surebet 01-Sep-2020 03-Nov-2020 Final

	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	Pb
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	96	%
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
A0600636												
A0600637												
A0600638												
A0600639												
A0600640												
A0600641		3073.2	31.8	3041.4	<0.9	<0.9	<0.01	<0.01				
A0600642		3350.0	31.1	3318.9	<0.9	<0.9	<0.01	<0.01				
A0600643		2921.4	33.3	2888.1	<0.9	<0.9	0.05	0.05				
A0600644		2973.2	20.0	2953.2	0.9	17.7	0.66	0.83				
A0600645		3100.0	30.5	3069.5	<0.9	<0.9	0.05	0.02				
A0600646		3106.4	16.3	3090.1	<0.9	<0.9	0.10	0.07				
A0600647		3120.0	15.6	3104.4	1.2	23.7	1.16	0.95				
A0600648		3030.5	18.5	3012.0	<0.9	<0.9	0.01	0.01				
A0600649		2975.4	27.2	2948.2	<0.9	<0.9	<0.01	<0.01				
A0600650												
A0600701		2829.0	29.7	2799.3	<0.9	<0.9	0.06	0.06				
A0600702												
A0600703												
A0600704												
A0600705										306		1.39
A0600706										847		6.38
A0600707												
A0600708												
A0600951												
A0600952												

***Please refer to the cover page for comments

TEST REPORT:

YXT2010326

Project Name:	Gol
Job Received Date:	01-
Job Report Date:	03-
Report Version:	Fina

Goliath Resources - Surebet 01-Sep-2020 03-Nov-2020 Final

	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	Pb
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	96	%
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
A0600953												
A0600954												
A0600955												
A0600956		3180.0	26.9	3153.1	5.4	68.1	4.88	4.82	1519	>1000		1.10
A0600957		3059.0	21.3	3037.7	3.4	198.8	2.01	2.12		260		
A0600958												
A0600959												
A0600960												
A0600961												
A0600962												
A0600963												
A0600964		2959.0	27.4	2931.6	<0.9	<0.9	0.02	0.02				
A0600965		2699.0	26.4	2672.6	3.2	24.4	3.06	2.97				
A0600966		2939.0	25.5	2913.5	4.8	14.9	4.66	4.80	2047	>1000		1.22
A0600967		3070.0	27.4	3042.6	1.7	3.9	1.72	1.63	903	>1000		1.73
A0600968		2920.0	29.9	2890.1	1.8	48.8	1.33	1.31				
A0600969		3050.0	28.0	3022.0	<0.9	<0.9	0.21	0.25				
A0600970												
A0600971		3180.0	34.8	3145.2	<0.9	8.4	0.40	0.37				
A0600972		2950.0	15.0	2935.0	6.2	215.5	5.04	5.24	2691	>1000		4.77
A0600973		3080.0	23.7	3056.3	1.3	57.7	0.92	0.84		472		
A0600974		2720.0	28.7	2691.3	<0.9	<0.9	0.05	0.06				
A0600975		3170.0	26.7	3143.3	<0.9	<0.9	0.06	0.06				
A0600976		2930.0	24.5	2905.5	<0.9	10.3	0.73	0.72				
A0600977		3035.0	15.4	3019.6	<0.9	1.1	0.27	0.24				

***Please refer to the cover page for comments

regarding this test report. ***

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020

Final

03-Nov-2020

Job Report Date:

Report Version:

FAS-425 MSC-350 MSC-350 MSC-350 MSC-350 MSC-350 MSC-350 MSC-350 FAS-428 ICF-6Ag ICF-6Cu ICF-6Pb Au (-) D total (+) (-) Total Au Au (+) Au (-) Au (-) D Ag РЬ Ag Cu ppm g g ppm ppm ppm ppm ppm ppm 96 96 g Sample ID 0.9 1.0 1.0 1.0 0.9 0.9 0.01 0.01 50 0.001 0.01 1 A0600978 2955.0 28.3 2926.7 <0.9 3.4 0.25 0.32 A0600979 2915.0 25.7 2889.3 <0.9 < 0.9 0.20 0.09 A0600980 1.969 A0600981 2975.0 25.5 2949.5 <0.9 < 0.9 0.05 0.05 A0600982 2983.2 25.2 2958.0 <0.9 <0.9 0.12 0.13 A0600983 2924.5 30.5 2894.0 1.6 19.7 1.38 1.45 A0600984 2925.5 31.2 2894.3 <0.9 37.5 0.08 0.08 A0600985 A0600986 A0600987 A0600988 W387860 W387861 W387862 2845.0 28.3 2816.7 1.3 <0.9 0.72 1.97 1958 >1000 5.13 W387863 2675.0 30.5 2644.5 <0.9 <0.9 0.05 0.05 W387864 W387865 W387865PD W387866 W387867 1597 >1000 1.49 W387868 W387869 W387870 W387909 2925.0 20.4 2904.6 <0.9 <0.9 < 0.01 < 0.01 W387910 1.955

***Please refer to the cover page for comments

TEST REPORT:

YXT2010326

Goliath Resources - Surebet
01-Sep-2020
03-Nov-2020
Final

	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	Pb
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	96	96
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
W387911		2965.0	29.0	2936.0	<0.9	<0.9	0.09	0.09				
W387912		3005.0	28.1	2976.9	<0.9	<0.9	0.07	0.08				
W387913		2855.0	24.4	2830.6	<0.9	<0.9	0.17	0.18				
W387914		3065.0	30.5	3034.5	<0.9	<0.9	0.20	0.23				
W387915		2845.0	19.0	2826.0	<0.9	1.5	0.12	0.10				
W387916		3000.0	23.4	2976.6	<0.9	<0.9	0.07	0.06				
W387917		2940.0	27.8	2912.2	<0.9	<0.9	0.02	0.01				
W387918		2850.4	17.3	2833.0	<0.9	<0.9	<0.01	<0.01				
W387919		2915.2	28.0	2887.2	<0.9	<0.9	<0.01	<0.01				
W387920												
W387921		2926.2	23.9	2902.3	<0.9	<0.9	<0.01	<0.01				
W387922		2953.3	27.4	2926.0	<0.9	<0.9	0.02	0.03				
W387923		2913.2	29.0	2884.1	<0.9	<0.9	0.01	0.01				
W387924		2955.0	31.4	2923.6	<0.9	<0.9	0.02	0.02				
W387925		2877.0	32.9	2844.1	<0.9	<0.9	0.02	0.01				
W387926		2937.4	27.5	2909.9	<0.9	<0.9	<0.01	<0.01				
W387927		2859.4	32.4	2827.0	<0.9	<0.9	0.06	0.08				
W387928		2887.4	33.2	2854.2	<0.9	<0.9	<0.01	<0.01				
W387929		2911.7	33.6	2878.1	<0.9	<0.9	0.01	0.01				
W387930												
W387931		2966.2	28.7	2937.5	<0.9	<0.9	<0.01	0.01				
W387932		2966.2	27.2	2939.0	<0.9	<0.9	<0.01	<0.01				
W387933		2792.2	11.3	2780.9	4.3	78.2	3.96	4.12		180		
W387934		2876.5	29.9	2846.6	<0.9	<0.9	0.08	0.04				
W387935		2991.3	21.8	2969.5	<0.9	<0.9	< 0.01	< 0.01				1

***Please refer to the cover page for comments

regarding this test report. ***

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	РЬ
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	96	96
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
W387936		2923.5	16.6	2906.9	<0.9	<0.9	<0.01	<0.01				
W387937		2994.4	34.5	2959.9	<0.9	<0.9	0.01	<0.01				
W387938		2926.3	27.8	2898.5	<0.9	<0.9	<0.01	<0.01				
W387939		2622.8	51.1	2571.7	<0.9	<0.9	<0.01	0.04				
W387940												
W387941		2950.6	30.5	2920.1	<0.9	<0.9	0.03	0.03				
W387942		2707.3	24.1	2683.2	<0.9	16.0	0.69	0.68				
W387943		2824.6	35.6	2789.0	<0.9	<0.9	0.04	0.04				
W387944		2825.5	32.3	2793.2	<0.9	<0.9	0.03	0.05				
W387945		2740.4	18.9	2721.5	<0.9	<0.9	<0.01	<0.01				
W387946		2660.6	19.0	2641.6	<0.9	<0.9	0.11	0.10				
W387947		2809.9	31.7	2778.2	<0.9	<0.9	<0.01	<0.01				
W387948		2916.1	28.3	2887.9	<0.9	<0.9	<0.01	<0.01				
W387949		2926.6	33.5	2893.1	<0.9	<0.9	<0.01	<0.01				
W387950											1.989	
W387956		2981.3	21.8	2959.5	<0.9	<0.9	0.07	0.10				
W387957		2910.7	15.8	2895.0	<0.9	<0.9	0.01	0.02				
W387958		2940.5	13.1	2927.4	<0.9	<0.9	0.02	0.02				
W387958PD												
W387959		3031.1	17.4	3013.7	<0.9	<0.9	<0.01	<0.01				
W387960												
W387961		2953.0	23.1	2929.9	<0.9	<0.9	<0.01	<0.01				
W387962		2902.2	32.9	2869.3	<0.9	<0.9	<0.01	<0.01				
W387963		2946.2	19.0	2927.2	3.3	151.0	2.33	2.39	1743	>1000		4.06
W387964		2895.9	24.3	2871.7	3.7	124.5	2.53	2.80		413		

***Please refer to the cover page for comments

TEST REPORT:

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

YXT2010326

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	РЬ
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	96	%
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
W387965		2997.2	33.6	2963.6	<0.9	<0.9	0.05	0.05				
W387966		2875.2	25.7	2849.6	4.3	146.4	3.17	2.83				
W387967	620.0						>100	>100	3023	>1000		12.59
W387968												
W387969		2526.7	23.2	2503.5	7.2	29.0	7.41	6.56		722		5.47
W387970												
W387971		2994.5	32.1	2962.4	<0.9	8.6	0.03	0.05				
W387972		2958.2	27.5	2930.7	<0.9	1.2	0.10	0.09				
W387973		2971.3	28.6	2942.7	<0.9	1.6	0.18	0.19				
W387974		2874.7	33.4	2841.3	8.2	17.0	8.24	7.87				
W387975		2958.8	36.4	2922.4	23.1	253.2	20.20	20.36		111		
W387976		2903.9	35.2	2868.7	<0.9	<0.9	0.05	0.04				
W387977		2880.6	23.8	2856.8	<0.9	<0.9	0.01	<0.01				
W387978												
W387979												
W387980											1.986	
W387981												
W491961		2880.6	25.6	2855.0	<0.9	<0.9	<0.01	<0.01				
W491962		2868.1	26.7	2841.4	<0.9	<0.9	<0.01	<0.01				
W491963		2933.9	28.5	2905.4	<0.9	<0.9	<0.01	<0.01				
W491964		2883.9	33.0	2850.9	<0.9	<0.9	<0.01	<0.01				
W491965		2854.8	30.7	2824.1	<0.9	<0.9	0.03	0.03				
W491966		2877.6	14.7	2862.9	<0.9	<0.9	<0.01	<0.01				
W491967		2743.2	23.5	2719.7	<0.9	5.5	0.79	0.72		293		
W491968		2991.5	23.7	2967.8	<0.9	3.1	0.29	0.26		455		1

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	РЬ
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	96	96
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
W491969		3005.1	24.9	2980.2	<0.9	<0.9	0.43	0.45		243		1.69
W491970											2.017	
W491971		2887.3	29.5	2857.8	<0.9	5.0	0.28	0.34				
W491971PD												
W491972		2957.2	26.2	2931.1	<0.9	1.6	0.30	0.31				
W491973		2953.3	27.8	2925.5	2.1	2.2	2.14	2.09		545		1.58
W491974												
W491975		2950.0	24.3	2925.7	3.3	36.7	3.13	2.94		330		1.27
W491976		2870.2	28.0	2842.2	<0.9	0.9	0.25	0.30				
W491977		2891.3	31.1	2860.2	5.3	12.6	5.26	5.22				
W491978		2857.3	29.7	2827.6	<0.9	<0.9	0.04	0.04				
W491979		2915.1	19.3	2895.8	3.6	27.7	3.32	3.57				
W491980												
W491981		2940.2	26.7	2913.5	<0.9	<0.9	0.14	0.17				
W491982		2777.1	20.2	2756.9	<0.9	<0.9	0.43	0.39				
W491983												
W491984		2811.9	32.3	2779.6	<0.9	<0.9	0.03	0.02				
W491985		2987.0	35.6	2951.4	<0.9	<0.9	0.04	0.05				
W491986		2763.8	29.2	2734.6	<0.9	<0.9	<0.01	<0.01				
W491987		2922.0	27.1	2895.0	<0.9	<0.9	0.01	0.01				
W491988		2911.2	29.6	2881.6	<0.9	<0.9	0.04	0.03				
W491989		3051.3	26.6	3024.7	<0.9	<0.9	<0.01	<0.01				
W491990												
W491991		2718.6	10.9	2707.7	<0.9	<0.9	<0.01	<0.01				
W491992		2890.3	16.5	2873.8	<0.9	<0.9	0.02	<0.01				

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST RI	TEST REPORT:				26	Ι						
Droject Name		Callada D		Cumber								
Froject Name:		Gollath R	esources	- Surepet								
Job Received Date:		01-Sep-2	020									
Job Report Date:		03-Nov-2	020									
Report Version:		Final										
	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	РЬ
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	96	96
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
W491993		2983.8	30.4	2953.5	<0.9	<0.9	0.01	<0.01				
W491994		2954.4	30.8	2923.6	<0.9	<0.9	<0.01	<0.01				
W491995		2968.4	29.8	2938.6	<0.9	<0.9	<0.01	<0.01				
W491996		2855.9	19.4	2836.5	<0.9	<0.9	<0.01	<0.01				
W491997		2731.5	22.7	2708.8	<0.9	<0.9	<0.01	<0.01				
W491998		2861.7	27.6	2834.1	<0.9	<0.9	0.01	<0.01				
W491999		2981.8	29.8	2952.1	<0.9	<0.9	0.02	0.01				
DUP A0600649												
DUP A0600955												
DUP W387862												
DUP W387966												
DUP W491973												
DUP A0600634												
DUP W387963									1704			
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK									<50			
STD BLANK										<1	< 0.001	< 0.01

***Please refer to the cover page for comments regarding this test report. ***

Report Version:

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875 To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:YXT2010326Project Name:Goliath Resources - SurebetJob Received Date:01-Sep-2020Job Report Date:03-Nov-2020

Final

	FAS-425	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	MSC-350	FAS-428	ICF-6Ag	ICF-6Cu	ICF-6Pb
	Au (-) D	total	(+)	(-)	Total Au	Au (+)	Au (-)	Au (-) D	Ag	Ag	Cu	РЬ
	ppm	g	g	g	ppm	ppm	ppm	ppm	ppm	ppm	%	%
Sample ID	0.9	1.0	1.0	1.0	0.9	0.9	0.01	0.01	50	1	0.001	0.01
STD BLANK						<0.9						
STD BLANK						<0.9						
STD BLANK						<0.9						
STD BLANK							<0.01	<0.01				
STD BLANK							<0.01	<0.01				
STD BLANK							<0.01	<0.01				
STD BLANK	<0.9											
STD BLANK												
STD OREAS 24b												
STD OREAS 601												
STD OREAS 24b												
STD OREAS 601												
STD OREAS 24b												
STD OxD151												
STD CDN-ME-1805									2207			
STD OxQ115						25.2						
STD OxN155						7.4						
STD OxQ115						25.5						1
STD OxG141							0.92	0.92				
STD OxD151							0.43	0.43				
STD OxN155							7.74	7.74				
STD OxQ115	25.2											
STD OxN155												
STD MP-1b										49	3.111	2.12

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

 	 \sim n	-
	 110	

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr
	96	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
Granite Blank		<0.2	1.19	<2	14	101	<0.5	<2	0.76	<0.5	4	81
Granite Blank		<0.2	1.16	<2	14	97	<0.5	<2	0.79	<0.5	4	68
A0600614		3.1	2.45	137	17	197	0.6	<2	1.40	<0.5	17	99
A0600615		24.0	3.51	196	17	110	1.0	<2	2.49	13.5	18	88
A0600615PD		26.3	3.44	167	19	114	0.9	<2	2.36	15.0	18	86
A0600616		24.4	3.22	169	19	129	1.0	<2	1.73	11.4	15	113
A0600617		>100	1.96	1267	18	77	<0.5	<2	1.77	92.9	9	117
A0600618		>100	1.00	486	19	48	<0.5	<2	0.66	92.4	8	131
A0600619	1.04	>100	2.71	164	17	94	0.6	<2	2.53	290.3	12	105
A0600620		53.7	1.08	399	342	95	<0.5	<2	3.28	29.1	22	33
A0600621		53.9	3.60	116	19	74	0.9	<2	2.46	167.2	14	101
A0600622		57.3	2.91	346	24	99	0.7	6	1.49	70.2	14	102
A0600623		37.9	4.74	103	14	100	1.1	6	4.36	113.0	13	121
A0600624		4.4	2.95	94	13	114	0.8	<2	2.26	22.2	12	152
A0600625		4.8	3.87	168	19	158	1.1	<2	1.74	1.3	18	124
A0600626		2.6	4.09	85	16	119	1.0	<2	4.78	2.9	13	97
A0600627		2.0	3.12	110	16	132	0.8	<2	1.69	<0.5	15	122
A0600628		5.9	2.40	42	18	130	<0.5	<2	2.91	3.0	10	162
A0600629		3.7	1.90	32	13	116	<0.5	<2	2.86	2.0	9	166
A0600630		0.6	0.03	2	167	14	<0.5	<2	>25	<0.5	<1	19
A0600631		2.6	2.91	75	14	75	0.5	<2	9.07	<0.5	9	106
A0600632		2.4	3.24	48	14	133	0.6	<2	6.38	<0.5	13	123
A0600633		1.3	2.19	<2	12	301	<0.5	<2	1.01	<0.5	12	62
A0600634		1.4	1.37	68	178	197	<0.5	<2	0.70	<0.5	8	177
A0600635		<0.2	0.87	5	<10	173	<0.5	<2	0.15	<0.5	2	92

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr
	96	ppm	%	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
A0600636		42.1	3.66	186	<10	136	0.9	<2	2.05	126.1	13	129
A0600637		2.7	0.64	5	30	<10	0.7	185	1.07	<0.5	100	34
A0600638		0.8	2.95	4	<10	173	0.6	<2	1.07	<0.5	15	190
A0600639		<0.2	0.56	<2	<10	37	<0.5	<2	0.03	<0.5	3	107
A0600640	2.94	86.6	0.27	2255	478	19	<0.5	35	1.44	157.5	48	23
A0600641		1.6	2.52	34	12	223	0.5	<2	0.40	<0.5	15	135
A0600642		1.1	3.06	19	13	245	0.8	<2	0.62	0.7	10	71
A0600643		2.3	2.92	83	12	201	0.9	<2	1.00	<0.5	12	80
A0600644		9.7	4.11	35	11	136	0.9	<2	2.33	23.8	12	149
A0600645		0.9	5.22	7	14	267	0.9	<2	2.72	<0.5	8	34
A0600646		3.1	4.41	100	14	254	0.7	<2	1.85	2.5	10	111
A0600647		4.5	3.93	338	14	174	0.9	<2	1.70	8.8	18	144
A0600648		1.4	2.71	51	<10	239	0.5	<2	0.11	<0.5	21	189
A0600649		1.0	2.62	28	11	238	0.5	<2	0.12	<0.5	18	137
A0600650		<0.2	0.02	<2	155	15	<0.5	<2	>25	<0.5	<1	19
A0600701		6.7	3.02	1027	21	122	<0.5	7	1.21	4.2	33	49
A0600702		10.8	1.77	17	<10	96	<0.5	8	0.76	59.4	5	176
A0600703		0.6	0.96	42	<10	41	<0.5	5	0.03	<0.5	11	137
A0600704		1.4	1.17	65	142	220	<0.5	<2	0.61	<0.5	6	49
A0600705	1.03	>100	0.05	570	13	<10	<0.5	4	<0.01	261.8	8	191
A0600706		>100	0.42	35	97	14	<0.5	5	0.26	119.5	5	161
A0600707		22.1	0.17	23	<10	<10	<0.5	2	0.10	11.4	10	246
A0600708		0.5	4.58	68	<10	100	1.2	<2	2.56	<0.5	13	211
A0600951		6.3	4.02	64	179	248	0.7	<2	3.96	<0.5	11	137
A0600952		1.5	1.10	16	112	37	<0.5	<2	6.31	<0.5	2	106

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
lob Report Date:	03-Nov-2020
Report Version:	Final

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr
	96	ppm	96	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
A0600953		4.2	3.95	64	10	325	0.8	<2	2.67	<0.5	15	179
A0600954		0.7	1.51	5	11	104	<0.5	2	0.50	<0.5	13	121
A0600955		<0.2	1.91	4	<10	428	0.6	<2	1.06	<0.5	2	133
A0600956		>100	0.25	254	12	16	<0.5	9	0.30	133.1	6	120
A0600957		>100	1.35	44	14	47	<0.5	<2	0.58	6.8	8	144
A0600958		11.2	3.73	458	206	78	1.0	<2	1.82	1.4	14	109
A0600959		1.4	0.47	19	134	63	<0.5	<2	2.96	<0.5	3	113
A0600960	3.05	91.4	0.27	2370	469	13	<0.5	33	1.51	163.2	50	24
A0600961		0.8	0.44	4	<10	21	<0.5	<2	0.30	1.0	2	183
A0600962		1.5	0.65	11	116	42	<0.5	<2	0.34	<0.5	2	207
A0600963		2.0	1.35	26	<10	72	<0.5	<2	1.20	8.3	4	158
A0600964		4.9	2.12	11	12	342	<0.5	<2	0.84	7.4	13	56
A0600965		84.1	1.06	16	<10	47	<0.5	10	0.29	16.0	8	127
A0600966		>100	0.39	527	<10	37	<0.5	2	0.09	29.7	8	106
A0600967		>100	0.87	540	18	45	<0.5	8	0.31	200.8	14	94
A0600968		11.8	3.56	219	13	109	0.8	<2	1.88	1.8	12	165
A0600969		12.4	4.24	188	14	113	0.9	<2	2.68	11.6	13	166
A0600970		0.4	0.02	<2	112	13	<0.5	<2	>25	<0.5	<1	22
A0600971		96.9	3.73	14	14	175	0.6	<2	1.83	3.0	16	113
A0600972		>100	0.22	166	<10	13	<0.5	7	0.16	238.2	8	156
A0600973		>100	2.26	139	10	69	0.6	<2	1.17	35.3	15	137
A0600974		12.8	2.91	36	12	102	0.7	<2	1.65	3.4	13	132
A0600975		20.5	3.47	138	11	114	0.9	<2	1.78	<0.5	16	153
A0600976		84.0	2.61	260	14	64	0.6	<2	1.51	51.4	17	124
A0600977		31.6	4.10	125	12	89	0.9	<2	2.46	35.1	11	140

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr
	96	ppm	96	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
A0600978		24.3	3.34	359	16	67	0.8	<2	1.99	10.7	17	178
A0600979		8.0	2.95	65	12	56	0.7	<2	1.73	2.4	10	150
A0600980		51.6	1.15	428	333	98	<0.5	<2	3.41	30.2	22	34
A0600981		29.2	3.51	256	21	93	0.8	<2	1.93	6.6	18	146
A0600982		28.1	2.22	214	13	120	0.5	<2	1.81	26.2	12	133
A0600983	1.82	26.6	1.50	47	<10	59	<0.5	5	1.12	508.4	8	161
A0600984		3.1	5.95	152	16	159	1.4	<2	2.93	2.1	21	159
A0600985		<0.2	0.05	<2	101	16	<0.5	<2	0.17	<0.5	<1	183
A0600986		<0.2	0.53	<2	<10	<10	<0.5	<2	0.02	<0.5	3	181
A0600987		6.2	0.91	312	<10	142	<0.5	<2	0.11	0.5	6	93
A0600988		0.4	1.15	<2	<10	55	<0.5	<2	2.34	1.9	2	172
W387860		4.5	2.38	86	<10	66	<0.5	<2	2.43	<0.5	4	144
W387861		1.8	3.97	196	<10	84	1.1	<2	11.09	6.8	10	95
W387862	10.82	>100	1.35	48	10	56	<0.5	6	1.03	>2000	9	111
W387863		4.4	3.73	87	<10	153	0.7	<2	2.50	2.0	12	134
W387864		0.6	6.37	11	<10	595	1.1	<2	3.29	<0.5	8	73
W387865		4.0	1.19	15	<10	79	<0.5	<2	0.59	<0.5	5	123
W387865PD		3.6	1.09	13	<10	69	<0.5	<2	0.57	<0.5	5	135
W387866		1.3	0.56	46	<10	35	<0.5	<2	0.87	26.3	3	171
W387867		>100	0.78	66	<10	23	<0.5	<2	0.42	59.9	6	182
W387868		4.2	2.88	11	<10	178	0.7	<2	0.16	<0.5	11	231
W387869		0.9	2.43	75	10	357	<0.5	<2	1.13	<0.5	13	60
W387870		0.6	0.45	14	<10	21	<0.5	<2	2.72	<0.5	5	110
W387909		3.0	3.16	72	14	115	0.7	<2	3.01	<0.5	12	137
W387910		51.4	1.14	416	344	105	<0.5	<2	3.41	30.6	22	34

***Please refer to the cover page for comments

TECT DEDODT.

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

VVT201022C

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	1/12010320						
Project Name:	Goliath Resources - Surebet						
Job Received Date:	01-Sep-2020						
Job Report Date:	03-Nov-2020						

Final

Report Version:

ICF-6Zn ICP-130 Zn Ag AI As В Ba Be Bi Ca Cd Co Cr % % % ppm ppm ppm ppm ppm ppm ppm ppm ppm Sample ID 0.01 0.2 0.01 2 10 10 0.5 2 0.01 0.5 1 1 W387911 2.9 4.33 130 15 195 1.3 <2 2.17 <0.5 17 110 W387912 1.6 4.50 119 <0.5 125 12 152 1.2 <2 2.42 15 W387913 3.6 4.55 102 175 2.98 <0.5 96 15 1.2 <2 22 W387914 2.6 5.18 77 11 176 1.2 <2 3.43 <0.5 16 139 W387915 2.8 4.51 93 10 171 0.9 <2 3.74 <0.5 18 113 W387916 1.7 4.53 76 12 245 1.1 <2 2.78 <0.5 14 128 W387917 1.9 4.20 42 11 297 1.0 <2 4.02 <0.5 19 109 W387918 0.7 3.33 37 <10 0.7 <2 <0.5 19 116 327 1.14 W387919 1.2 4.58 52 <10 194 0.9 <2 7.42 <0.5 14 120 W387920 0.3 0.02 <2 122 13 <0.5 <2 >25 <0.5 <1 21 W387921 0.7 4.16 33 15 194 0.7 <2 5.66 <0.5 14 144 W387922 1.1 3.65 35 11 357 0.8 <2 1.28 <0.5 18 127 W387923 0.8 3.90 53 0.9 <2 1.29 <0.5 113 11 354 19 W387924 2.1 3.36 31 <10 163 0.7 <2 1.99 <0.5 12 121 0.6 W387925 1.9 2.87 26 <10 102 <2 1.95 0.6 10 98 W387926 2.77 1.5 44 <10 62 <0.5 <2 3.47 <0.5 11 112 W387927 4.34 57 148 144 2.7 <10 0.8 <2 3.68 4.6 14 W387928 2.0 3.70 62 <10 170 0.7 <2 1.99 <0.5 16 153 W387929 1.7 3.01 44 <10 223 0.6 <2 1.56 <0.5 17 122 W387930 90.5 2.96 0.27 2380 447 15 <0.5 32 1.51 163.3 49 23 W387931 22 <2 18 122 1.6 3.00 10 408 0.7 0.99 <0.5 W387932 1.2 2.85 37 <10 241 <0.5 <2 1.16 <0.5 17 138 2.78 W387933 >100 3.08 137 <10 123 1.0 <2 222.2 14 110 W387934 3.8 4.04 70 13 220 1.2 <2 2.13 1.6 17 82 W387935 0.8 3.64 53 12 345 0.8 <2 0.56 <0.5 18 93

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPOR	T: YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final
·	

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr
	96	ppm	96	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
W387936		0.9	4.12	35	<10	516	0.5	<2	1.61	<0.5	17	96
W387937		1.0	3.19	49	<10	452	0.6	<2	0.83	<0.5	19	119
W387938		0.8	3.14	32	<10	383	0.8	<2	0.38	<0.5	19	119
W387939		2.1	4.83	112	<10	180	1.1	<2	3.91	<0.5	14	112
W387940		0.3	0.02	3	122	13	<0.5	<2	>25	<0.5	<1	17
W387941		4.6	2.01	60	11	253	0.6	<2	0.49	<0.5	31	101
W387942		3.7	2.04	23	11	117	<0.5	<2	2.32	<0.5	19	117
W387943		3.0	3.93	65	<10	219	1.0	<2	2.67	<0.5	20	100
W387944		2.9	3.55	78	12	273	1.1	<2	1.33	<0.5	30	84
W387945		2.0	3.40	77	<10	162	0.7	<2	2.29	<0.5	12	137
W387946		2.3	4.46	53	11	192	1.1	<2	2.91	8.1	12	134
W387947		1.8	4.19	59	<10	272	0.9	<2	2.50	<0.5	17	143
W387948		0.4	3.19	42	<10	237	0.5	<2	2.76	<0.5	14	126
W387949		0.3	1.43	19	<10	89	<0.5	<2	6.85	<0.5	8	88
W387950		53.2	1.12	414	327	92	<0.5	<2	3.37	30.3	22	33
W387956		5.9	2.12	235	12	141	0.7	<2	1.50	2.4	23	75
W387957		1.7	2.67	115	<10	267	0.5	<2	1.29	<0.5	17	108
W387958		1.7	2.77	152	<10	131	0.7	<2	1.40	1.8	17	101
W387958PD		1.8	2.85	146	<10	139	0.7	<2	1.38	<0.5	17	104
W387959		1.2	2.79	70	<10	123	0.6	<2	3.17	<0.5	14	117
W387960	3.01	89.4	0.27	2342	437	14	<0.5	36	1.48	160.7	50	23
W387961		0.4	2.09	29	<10	111	<0.5	<2	5.84	<0.5	12	114
W387962		0.4	2.26	11	<10	254	<0.5	<2	7.98	<0.5	11	96
W387963	16.74	>100	1.43	289	<10	66	<0.5	6	0.66	>2000	23	62
W387964		>100	5.42	119	<10	192	1.2	<2	2.46	68.6	18	148

***Please refer to the cover page for comments

YXT2010326

Goliath Resources Limited To: 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020

Final

Report Version:

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Со	Cr
	96	ppm	%	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
W387965		6.0	4.01	89	<10	152	0.9	<2	1.38	0.8	18	126
W387966		47.9	4.79	91	<10	185	1.2	3	2.86	222.9	13	143
W387967	4.11	>100	0.09	42	<10	<10	<0.5	101	0.02	982.5	6	184
W387968		1.0	3.79	11	154	128	0.8	<2	1.98	0.6	9	183
W387969		>100	0.40	150	<10	31	<0.5	5	0.10	26.6	3	133
W387970		0.3	0.03	2	115	12	<0.5	<2	>25	<0.5	<1	20
W387971		5.9	2.80	68	<10	123	0.7	<2	1.03	3.1	12	134
W387972		3.7	2.29	66	<10	97	0.6	<2	0.82	9.2	11	109
W387973		23.6	2.35	85	<10	81	0.7	<2	0.95	18.6	12	114
W387974		79.0	0.11	85	<10	18	<0.5	<2	0.01	<0.5	<1	159
W387975		>100	2.07	149	<10	68	0.6	<2	0.91	4.8	8	98
W387976		3.5	3.46	192	<10	110	0.9	<2	1.64	1.1	16	115
W387977		3.2	4.32	196	<10	141	1.0	<2	1.98	0.9	14	133
W387978		0.4	0.70	<2	122	25	<0.5	<2	1.12	1.7	3	178
W387979		5.9	3.44	83	<10	137	<0.5	<2	1.27	1.5	17	249
W387980		51.4	1.11	422	331	95	<0.5	<2	3.33	29.8	22	33
W387981		0.4	1.88	<2	106	41	<0.5	<2	1.86	<0.5	10	108
W491961		<0.2	1.45	16	<10	83	<0.5	<2	6.46	<0.5	8	100
W491962		0.2	2.86	42	<10	146	0.5	<2	1.87	<0.5	13	167
W491963		0.5	2.48	10	<10	200	0.6	<2	2.38	<0.5	13	115
W491964		1.0	3.10	19	<10	363	0.8	<2	3.92	<0.5	13	56
W491965		0.8	3.69	14	<10	483	0.9	<2	1.86	<0.5	12	87
W491966		4.9	4.86	121	<10	177	1.3	<2	2.77	<0.5	13	167
W491967		>100	4.22	103	<10	50	1.0	<2	3.53	170.5	10	144
W491968		>100	4.41	215	13	50	1.1	<2	3.61	221.4	12	140

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr
	96	ppm	96	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
W491969	1.59	>100	4.08	112	14	52	1.1	<2	3.11	459.6	12	136
W491970		52.3	1.13	430	337	92	<0.5	<2	3.43	30.7	22	34
W491971		94.6	3.51	134	12	131	1.0	<2	2.06	231.3	14	159
W491971PD		92.1	3.56	132	<10	129	1.0	2	2.09	243.2	14	161
W491972		21.2	4.73	409	12	172	1.4	<2	2.46	23.8	20	135
W491973	1.61	>100	3.18	425	<10	100	1.0	<2	1.57	401.8	14	113
W491974		2.7	2.00	101	155	110	0.6	<2	3.73	<0.5	13	91
W491975		>100	2.73	173	11	80	0.7	<2	1.91	53.3	10	142
W491976		26.9	3.01	65	<10	71	0.7	8	1.94	19.0	9	138
W491977		82.8	1.10	179	<10	47	<0.5	<2	0.75	45.9	7	171
W491978		3.8	3.51	86	11	339	0.8	<2	1.61	<0.5	14	114
W491979		42.4	1.42	174	11	64	<0.5	<2	0.81	7.6	7	160
W491980		0.4	0.02	<2	107	16	<0.5	<2	>25	<0.5	<1	21
W491981		11.2	3.28	428	<10	67	1.0	<2	1.89	1.6	16	126
W491982		19.3	2.97	410	<10	91	0.8	<2	1.89	19.6	10	131
W491983		NR										
W491984		1.9	4.22	92	12	194	1.0	<2	2.76	<0.5	13	118
W491985		3.7	4.23	112	<10	166	1.1	<2	2.12	<0.5	16	150
W491986		2.1	2.11	66	<10	89	<0.5	<2	2.04	1.2	8	160
W491987		2.4	1.87	88	<10	123	<0.5	<2	1.76	<0.5	11	140
W491988		8.5	3.07	62	<10	127	0.6	<2	2.48	4.3	9	120
W491989		2.5	2.74	98	<10	98	0.6	<2	1.99	1.7	11	144
W491990	3.04	89.0	0.27	2334	427	15	<0.5	37	1.48	160.4	49	23
W491991		3.0	1.61	34	<10	61	<0.5	3	9.07	1.2	5	89
W491992		3.6	2.63	90	13	168	0.5	<2	4.16	<0.5	13	127

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT: YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr
	96	ppm	%	ppm	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
W491993		1.9	3.41	38	12	49	<0.5	<2	10.11	<0.5	3	47
W491994		1.9	1.70	61	<10	58	<0.5	<2	11.27	<0.5	4	67
W491995		0.5	0.36	17	<10	21	<0.5	<2	23.50	<0.5	2	35
W491996		1.8	1.68	76	<10	92	<0.5	<2	8.12	<0.5	10	83
W491997		2.2	2.09	86	<10	127	<0.5	<2	3.18	2.9	11	129
W491998		1.9	2.90	126	<10	133	0.7	<2	10.29	<0.5	12	87
W491999		2.0	2.58	77	<10	110	0.7	<2	11.28	<0.5	11	83
DUP A0600649		1.2	2.78	31	14	253	0.6	<2	0.13	<0.5	18	143
DUP A0600955		<0.2	1.86	3	<10	434	0.6	<2	1.04	<0.5	1	130
DUP W387862		>100	1.33	50	12	54	<0.5	7	1.03	>2000	9	112
DUP W387966		53.1	4.97	92	12	198	1.3	3	2.95	227.7	14	151
DUP W491973		>100	3.19	418	<10	106	1.0	<2	1.56	393.7	14	115
DUP A0600634												
DUP W387963												
STD BLANK		<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1
STD BLANK		<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1
STD BLANK		<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1
STD BLANK		<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1
STD BLANK		<0.2	<0.01	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1
STD BLANK												
STD BLANK												
STD BLANK	<0.01											

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICF-6Zn	ICP-130										
	Zn	Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Co	Cr
	96	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID	0.01	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD OREAS 24b		<0.2	3.04	7	12	147	1.4	<2	0.45	<0.5	15	107
STD OREAS 601		48.8	0.87	304	<10	161	0.6	21	1.10	7.9	5	43
STD OREAS 24b		<0.2	3.08	8	<10	146	1.5	<2	0.45	<0.5	15	107
STD OREAS 601		45.8	0.86	324	<10	206	0.7	21	1.08	8.1	5	42
STD OREAS 24b		<0.2	3.22	7	<10	151	1.5	<2	0.45	<0.5	14	106
STD OxD151												
STD CDN-ME-1805												
STD OxQ115												
STD OxN155												
STD OxQ115												
STD OxG141												
STD OxD151												
STD OxN155												
STD OxQ115												
STD OxN155												
STD MP-1b	16.69											

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT:

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	Р
	ppm	%	ppm	ppm	96	ppm	%	ppm	ppm	96	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
Granite Blank	4	1.75	<10	<1	0.18	<10	0.43	436	2	0.23	6	398
Granite Blank	3	1.75	<10	<1	0.17	<10	0.45	450	2	0.20	5	401
A0600614	34	3.02	<10	<1	0.77	10	0.50	316	3	0.18	86	820
A0600615	34	3.92	11	<1	0.51	<10	0.24	584	3	0.09	94	913
A0600615PD	28	3.72	<10	<1	0.54	<10	0.24	552	3	0.08	91	839
A0600616	62	3.38	<10	<1	0.71	<10	0.41	739	3	0.09	100	609
A0600617	37	5.47	<10	<1	0.43	<10	0.20	834	3	0.04	52	439
A0600618	37	6.69	<10	<1	0.27	<10	0.09	407	3	0.03	53	272
A0600619	33	5.66	<10	<1	0.51	<10	0.27	743	2	0.08	59	629
A0600620	>10000	6.50	<10	1	0.10	<10	1.23	780	612	0.07	70	398
A0600621	43	6.35	14	<1	0.46	<10	0.44	1001	3	0.09	72	840
A0600622	63	11.91	17	<1	0.56	<10	0.51	777	2	0.10	81	499
A0600623	38	4.08	14	<1	0.54	<10	0.57	1208	3	0.13	65	591
A0600624	35	2.17	<10	<1	0.49	<10	0.45	756	3	0.09	63	396
A0600625	53	4.34	11	<1	1.17	<10	1.22	783	3	0.13	105	842
A0600626	40	2.45	<10	<1	0.59	<10	0.49	546	2	0.14	79	667
A0600627	49	2.80	<10	<1	0.66	<10	0.78	354	3	0.21	91	848
A0600628	22	2.45	<10	<1	0.36	<10	0.44	343	2	0.29	59	644
A0600629	19	2.18	<10	<1	0.32	<10	0.41	265	3	0.20	55	556
A0600630	7	0.09	<10	<1	0.01	<10	0.42	80	1	0.01	2	71
A0600631	33	2.32	<10	<1	0.20	<10	0.35	607	2	0.13	52	574
A0600632	40	2.43	<10	<1	0.28	<10	0.43	504	2	0.31	69	734
A0600633	21	3.58	<10	<1	0.78	11	1.23	477	2	0.36	7	1147
A0600634	47	2.00	<10	<1	0.33	13	0.48	278	3	0.21	39	640
A0600635	15	1.32	<10	<1	0.48	<10	0.34	238	4	0.14	6	241

***Please refer to the cover page for comments

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

Goliath Resources Limited To: 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST RI	PORT:		Y	XT20103	26	Ι						
Project Name: Job Received Date: Job Report Date:		Goliath R 01-Sep-2 03-Nov-2	esources 020 020	- Surebet								
Report Version:		Final										
	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130
	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P
	0.000	04			04		04		0.000	04		

	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	Р
	ppm	96	ppm	ppm	96	ppm	%	ppm	ppm	96	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
Granite Blank	4	1.75	<10	<1	0.18	<10	0.43	436	2	0.23	6	398
Granite Blank	3	1.75	<10	<1	0.17	<10	0.45	450	2	0.20	5	401
A0600614	34	3.02	<10	<1	0.77	10	0.50	316	3	0.18	86	820
A0600615	34	3.92	11	<1	0.51	<10	0.24	584	3	0.09	94	913
A0600615PD	28	3.72	<10	<1	0.54	<10	0.24	552	3	0.08	91	839
A0600616	62	3.38	<10	<1	0.71	<10	0.41	739	3	0.09	100	609
A0600617	37	5.47	<10	<1	0.43	<10	0.20	834	3	0.04	52	439
A0600618	37	6.69	<10	<1	0.27	<10	0.09	407	3	0.03	53	272
A0600619	33	5.66	<10	<1	0.51	<10	0.27	743	2	0.08	59	629
A0600620	>10000	6.50	<10	1	0.10	<10	1.23	780	612	0.07	70	398
A0600621	43	6.35	14	<1	0.46	<10	0.44	1001	3	0.09	72	840
A0600622	63	11.91	17	<1	0.56	<10	0.51	777	2	0.10	81	499
A0600623	38	4.08	14	<1	0.54	<10	0.57	1208	3	0.13	65	591
A0600624	35	2.17	<10	<1	0.49	<10	0.45	756	3	0.09	63	396
A0600625	53	4.34	11	<1	1.17	<10	1.22	783	3	0.13	105	842
A0600626	40	2.45	<10	<1	0.59	<10	0.49	546	2	0.14	79	667
A0600627	49	2.80	<10	<1	0.66	<10	0.78	354	3	0.21	91	848
A0600628	22	2.45	<10	<1	0.36	<10	0.44	343	2	0.29	59	644
A0600629	19	2.18	<10	<1	0.32	<10	0.41	265	3	0.20	55	556
A0600630	7	0.09	<10	<1	0.01	<10	0.42	80	1	0.01	2	71
A0600631	33	2.32	<10	<1	0.20	<10	0.35	607	2	0.13	52	574
A0600632	40	2.43	<10	<1	0.28	<10	0.43	504	2	0.31	69	734
A0600633	21	3.58	<10	<1	0.78	11	1.23	477	2	0.36	7	1147
A0600634	47	2.00	<10	<1	0.33	13	0.48	278	3	0.21	39	640
A0600635	15	1.32	<10	<1	0.48	<10	0.34	238	4	0.14	6	241

_

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT:

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	ĸ	La	Mg	Mn	Mo	Na	Ni	P
	ppm	96	ppm	ppm	96	ppm	%	ppm	ppm	96	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
A0600636	177	2.92	11	<1	0.50	<10	0.46	745	4	0.12	66	399
A0600637	602	24.81	23	<1	0.02	<10	0.07	172	3	0.08	76	2732
A0600638	54	3.17	<10	<1	0.73	<10	1.05	556	5	0.12	115	437
A0600639	7	0.77	<10	<1	0.19	<10	0.23	197	3	0.06	18	54
A0600640	6568	26.23	24	12	0.05	<10	0.59	706	8	0.01	27	175
A0600641	47	3.48	<10	<1	0.79	<10	1.15	679	3	0.11	88	468
A0600642	32	2.93	<10	<1	0.82	<10	1.14	600	2	0.19	54	473
A0600643	54	2.78	<10	<1	0.90	<10	0.98	537	2	0.18	73	1887
A0600644	176	3.14	11	<1	0.52	<10	0.77	626	4	0.17	81	929
A0600645	36	3.36	14	<1	0.85	<10	1.09	875	1	0.20	24	1770
A0600646	47	3.41	12	<1	1.05	<10	1.16	865	2	0.31	52	686
A0600647	139	3.71	13	<1	0.76	<10	0.94	602	3	0.23	104	787
A0600648	57	4.19	<10	<1	0.93	<10	1.51	550	3	0.08	153	305
A0600649	55	3.84	10	<1	0.96	<10	1.50	618	2	0.09	118	218
A0600650	2	0.09	<10	<1	<0.01	<10	0.42	72	<1	0.02	1	66
A0600701	236	10.84	17	<1	0.52	<10	1.72	1035	2	0.11	65	4305
A0600702	66	2.20	<10	<1	0.18	<10	0.37	483	5	0.10	27	281
A0600703	4	5.59	<10	<1	0.09	<10	0.58	185	5	0.01	9	50
A0600704	2	3.14	<10	<1	0.34	<10	0.17	223	2	0.05	5	1311
A0600705	805	6.53	<10	<1	0.02	<10	<0.01	74	4	0.01	67	11
A0600706	247	1.99	<10	<1	0.05	<10	0.06	105	3	0.02	25	175
A0600707	133	5.69	<10	<1	0.02	<10	0.02	43	5	0.01	49	30
A0600708	116	3.12	14	<1	0.54	<10	0.91	942	4	0.08	121	650
A0600951	44	3.00	12	<1	0.52	<10	0.62	477	3	0.59	78	636
A0600952	20	0.86	<10	<1	0.03	<10	0.08	250	2	0.06	22	154

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	P
	ppm	%	ppm	ppm	96	ppm	%	ppm	ppm	%	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
A0600953	36	2.91	14	<1	0.49	<10	0.34	194	3	0.37	70	639
A0600954	41	6.87	11	<1	0.23	<10	0.63	202	4	0.16	55	545
A0600955	8	0.53	<10	<1	0.10	<10	0.16	73	3	0.28	11	70
A0600956	1954	6.84	<10	<1	0.07	<10	0.05	202	3	0.02	39	105
A0600957	179	4.17	<10	<1	0.37	<10	0.36	482	3	0.07	42	601
A0600958	65	5.65	14	<1	0.93	<10	0.84	681	3	0.13	72	1097
A0600959	13	1.00	<10	<1	0.11	<10	0.20	416	3	0.02	28	199
A0600960	6822	27.57	27	12	0.05	<10	0.62	729	9	0.01	28	177
A0600961	11	0.79	<10	<1	0.03	<10	0.08	151	4	0.04	23	77
A0600962	19	1.22	<10	<1	0.10	<10	0.21	176	4	0.05	29	165
A0600963	14	0.92	<10	<1	0.12	<10	0.11	274	4	0.10	33	490
A0600964	57	2.92	<10	<1	0.89	<10	0.92	402	2	0.30	20	888
A0600965	203	4.90	<10	<1	0.20	<10	0.56	377	7	0.07	37	414
A0600966	1297	4.20	<10	<1	0.18	<10	0.14	153	3	0.01	62	361
A0600967	1338	9.99	11	<1	0.43	<10	0.28	500	3	0.02	88	620
A0600968	28	4.28	11	<1	0.82	<10	0.69	693	3	0.11	66	751
A0600969	17	4.47	14	<1	0.74	<10	0.69	876	3	0.11	70	1167
A0600970	2	0.10	<10	<1	<0.01	<10	0.55	79	1	<0.01	2	53
A0600971	122	3.94	13	<1	0.90	<10	1.26	630	8	0.40	55	757
A0600972	1582	2.28	<10	<1	0.06	<10	0.11	259	4	0.01	40	80
A0600973	453	4.26	<10	<1	0.35	<10	0.40	490	3	0.08	80	479
A0600974	27	3.73	10	<1	0.49	<10	0.63	606	3	0.11	69	730
A0600975	31	4.53	12	<1	0.81	<10	0.78	775	3	0.09	80	589
A0600976	178	4.97	<10	<1	0.34	<10	0.65	971	3	0.04	109	921
A0600977	175	4.48	13	<1	0.50	<10	0.69	906	3	0.09	71	904

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT:

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P
	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
A0600978	52	5.16	13	<1	0.50	<10	0.57	697	3	0.07	80	772
A0600979	23	3.03	<10	<1	0.43	<10	0.51	617	3	0.06	53	604
A0600980	>10000	6.74	10	1	0.10	<10	1.28	812	635	0.07	73	414
A0600981	64	7.72	15	<1	0.69	<10	0.69	1017	3	0.08	92	776
A0600982	104	5.14	<10	<1	0.50	<10	0.68	1195	3	0.06	67	614
A0600983	54	2.12	<10	<1	0.18	10	0.29	627	4	0.06	54	350
A0600984	83	4.56	17	<1	1.38	<10	1.35	697	3	0.24	101	851
A0600985	11	0.30	<10	<1	0.01	<10	<0.01	212	4	0.01	10	28
A0600986	4	1.58	<10	<1	0.01	<10	0.17	556	4	0.01	10	37
A0600987	82	2.26	<10	<1	0.25	<10	0.46	224	11	0.02	6	526
A0600988	16	1.28	<10	<1	0.21	<10	0.36	536	5	0.16	17	251
W387860	28	4.02	10	<1	0.27	<10	0.83	358	3	0.11	68	375
W387861	43	1.88	10	<1	0.38	<10	0.28	1628	5	0.16	56	792
W387862	809	3.87	<10	1	0.13	<10	0.20	666	2	0.05	30	213
W387863	67	2.84	<10	<1	0.29	<10	0.48	344	3	0.15	65	495
W387864	90	3.28	17	<1	0.77	<10	1.27	205	2	0.41	30	184
W387865	80	2.37	<10	<1	0.12	<10	0.23	167	3	0.05	44	26
W387865PD	76	2.37	<10	<1	0.10	<10	0.20	187	4	0.05	42	26
W387866	50	1.77	<10	<1	0.08	<10	0.28	1819	8	0.01	34	524
W387867	644	2.50	<10	<1	0.12	<10	0.18	339	4	0.03	33	183
W387868	45	3.61	11	<1	1.24	11	1.31	301	3	0.08	63	521
W387869	16	3.72	11	<1	0.84	<10	1.41	577	2	0.33	9	1156
W387870	13	1.78	<10	<1	0.08	<10	0.34	586	3	<0.01	26	113
W387909	35	1.65	<10	<1	0.47	<10	0.30	328	3	0.23	57	751
W387910	>10000	6.79	<10	<1	0.10	<10	1.29	816	640	0.07	72	413

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	Р
	ppm	%	ppm	ppm	96	ppm	96	ppm	ppm	96	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
W387911	88	4.37	12	<1	1.08	<10	0.90	491	2	0.21	99	1407
W387912	85	2.89	11	<1	0.87	<10	0.68	375	2	0.25	89	836
W387913	70	3.64	12	<1	0.75	<10	0.47	334	3	0.23	113	1105
W387914	69	2.96	13	<1	0.56	<10	0.56	408	3	0.32	85	680
W387915	91	3.47	13	<1	0.47	<10	0.49	469	3	0.24	95	838
W387916	60	2.97	12	<1	0.63	<10	0.67	417	3	0.35	82	757
W387917	62	4.28	12	<1	1.14	<10	0.88	510	2	0.27	116	745
W387918	44	3.83	<10	<1	1.51	<10	1.10	239	2	0.21	101	814
W387919	45	2.40	11	<1	0.74	<10	0.59	741	2	0.33	74	746
W387920	6	0.09	<10	<1	0.01	<10	0.51	79	1	<0.01	1	58
W387921	33	2.69	11	<1	1.01	<10	0.67	423	2	0.44	77	814
W387922	46	3.92	11	<1	1.30	<10	1.03	233	2	0.28	94	805
W387923	59	4.24	11	<1	1.37	<10	1.12	228	2	0.24	106	929
W387924	45	2.53	<10	<1	0.46	<10	0.61	288	3	0.17	67	472
W387925	46	2.65	<10	<1	0.24	<10	0.60	302	3	0.15	58	402
W387926	30	1.32	<10	<1	0.29	<10	0.31	266	2	0.42	56	819
W387927	34	2.35	11	<1	0.55	<10	0.50	393	3	0.41	67	612
W387928	32	2.84	11	<1	0.79	<10	0.67	309	2	0.40	78	736
W387929	30	2.38	<10	<1	0.61	<10	0.53	247	3	0.26	78	633
W387930	6786	27.54	27	13	0.05	<10	0.62	735	9	0.01	26	179
W387931	45	3.74	<10	<1	1.12	<10	0.99	284	2	0.24	103	818
W387932	22	2.83	<10	<1	0.67	<10	0.88	270	2	0.21	86	739
W387933	271	4.09	10	<1	0.53	<10	0.37	622	11	0.11	61	1196
W387934	77	3.74	12	<1	0.74	<10	1.16	469	3	0.21	100	693
W387935	48	4.62	11	<1	1.46	<10	1.68	313	3	0.18	101	558

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	P
	ppm	96	ppm	ppm	96	ppm	%	ppm	ppm	96	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
W387936	53	4.30	11	<1	1.71	<10	1.43	691	2	0.32	96	1243
W387937	66	4.22	11	<1	1.25	<10	1.40	457	3	0.22	132	1469
W387938	74	4.12	10	<1	1.20	<10	1.49	379	3	0.16	135	421
W387939	48	2.55	13	<1	0.56	<10	0.57	345	2	0.30	76	927
W387940	5	0.10	<10	<1	0.01	<10	0.43	74	<1	<0.01	1	65
W387941	106	4.97	<10	<1	0.97	<10	0.90	279	4	0.06	137	726
W387942	162	5.21	<10	<1	0.50	<10	0.43	348	3	0.16	66	492
W387943	51	3.16	11	<1	0.63	<10	0.60	358	3	0.25	92	802
W387944	59	4.65	11	<1	1.25	<10	0.89	349	3	0.20	130	614
W387945	27	1.93	<10	<1	0.59	<10	0.58	293	3	0.35	61	557
W387946	51	2.58	11	<1	0.48	<10	0.52	335	3	0.32	77	603
W387947	45	3.21	13	<1	0.97	<10	0.82	285	3	0.39	93	1368
W387948	30	1.96	11	<1	0.79	<10	0.58	259	2	0.35	72	757
W387949	30	1.10	<10	<1	0.34	<10	0.26	556	1	0.25	55	532
W387950	>10000	6.69	<10	1	0.10	<10	1.27	806	629	0.07	73	412
W387956	135	5.85	<10	<1	0.73	<10	0.47	200	4	0.15	134	1008
W387957	70	2.94	<10	<1	1.00	<10	0.78	191	4	0.25	76	877
W387958	39	2.97	<10	<1	0.92	<10	0.51	382	3	0.27	85	857
W387958PD	37	2.96	<10	<1	0.94	<10	0.51	384	3	0.28	83	863
W387959	26	2.50	<10	<1	0.79	<10	0.43	317	2	0.32	71	816
W387960	6810	27.14	27	12	0.05	<10	0.61	719	9	0.01	26	176
W387961	19	2.08	<10	<1	0.63	<10	0.34	356	2	0.27	58	815
W387962	19	2.88	<10	<1	0.95	<10	0.45	574	2	0.22	54	987
W387963	2087	7.80	10	2	0.33	<10	0.32	1001	1	0.08	73	302
W387964	644	4.23	16	<1	1.32	<10	1.25	761	3	0.27	75	656

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	P
	ppm	96	ppm	ppm	96	ppm	%	ppm	ppm	96	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
W387965	62	4.11	14	<1	1.46	<10	1.35	565	3	0.23	83	939
W387966	135	3.64	15	<1	0.66	<10	0.56	368	12	0.32	68	636
W387967	528	4.83	<10	<1	0.03	<10	0.03	151	3	0.01	15	23
W387968	31	2.47	11	<1	0.79	<10	0.86	531	2	0.48	61	825
W387969	129	1.89	<10	<1	0.13	<10	0.11	75	4	0.02	15	226
W387970	2	0.09	<10	<1	0.02	<10	0.72	81	<1	<0.01	<1	76
W387971	55	2.85	<10	<1	0.74	<10	0.76	356	2	0.24	69	573
W387972	47	2.82	<10	<1	0.49	<10	0.73	355	2	0.18	65	586
W387973	116	3.47	<10	<1	0.36	<10	0.74	417	1	0.16	64	639
W387974	51	1.16	<10	<1	0.06	<10	<0.01	15	4	0.01	10	73
W387975	164	3.46	<10	<1	0.31	<10	0.55	459	4	0.06	49	745
W387976	89	3.35	11	<1	0.49	<10	0.94	571	3	0.11	116	662
W387977	126	3.13	13	<1	0.75	<10	1.11	550	3	0.18	90	530
W387978	22	1.55	<10	<1	0.08	<10	0.15	199	5	0.10	18	114
W387979	39	3.46	12	<1	1.31	<10	1.31	583	4	0.10	104	596
W387980	>10000	6.66	<10	1	0.10	<10	1.26	798	631	0.07	72	405
W387981	51	1.55	<10	<1	0.10	<10	0.19	182	3	0.06	29	1653
W491961	27	1.13	<10	<1	0.22	<10	0.26	503	2	0.25	55	574
W491962	31	1.94	10	<1	0.52	<10	0.59	259	2	0.41	76	589
W491963	40	2.81	<10	<1	0.50	<10	0.80	409	2	0.27	77	718
W491964	44	2.85	<10	<1	0.75	<10	1.03	772	2	0.21	58	614
W491965	72	3.06	<10	<1	1.04	<10	1.17	425	2	0.29	69	592
W491966	32	2.25	14	<1	0.89	<10	0.65	260	2	0.24	72	585
W491967	416	2.63	12	<1	0.58	<10	0.46	1238	3	0.11	64	800
W491968	603	2.56	11	<1	0.64	<10	0.53	1078	3	0.11	71	572

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TECT		
1631	REF 1	

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	Р
	ppm	96	ppm	ppm	96	ppm	%	ppm	ppm	96	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
W491969	676	3.52	12	<1	0.58	<10	0.49	1519	2	0.10	67	868
W491970	>10000	6.78	<10	2	0.10	<10	1.28	818	644	0.07	74	418
W491971	302	3.07	<10	<1	0.71	<10	0.54	863	3	0.11	77	496
W491971PD	322	3.12	<10	<1	0.70	<10	0.54	866	4	0.11	78	498
W491972	145	4.84	16	<1	1.15	<10	0.94	917	4	0.15	100	1166
W491973	409	4.59	11	<1	0.76	<10	0.70	1051	3	0.11	67	542
W491974	31	2.25	<10	<1	0.54	<10	0.35	398	3	0.23	61	776
W491975	155	4.38	<10	<1	0.46	<10	0.31	596	3	0.08	65	547
W491976	75	3.28	<10	<1	0.39	<10	0.28	468	4	0.09	72	544
W491977	116	2.91	<10	<1	0.19	<10	0.13	405	4	0.04	36	260
W491978	36	3.83	10	<1	1.06	<10	0.62	408	2	0.31	83	910
W491979	44	4.25	<10	<1	0.34	<10	0.16	474	4	0.04	45	476
W491980	8	0.11	<10	<1	0.01	<10	0.41	73	1	<0.01	2	59
W491981	21	5.28	12	<1	0.53	<10	0.60	771	3	0.09	86	931
W491982	27	4.94	<10	<1	0.57	<10	0.51	783	3	0.10	68	843
W491983	NR											
W491984	62	2.77	10	<1	0.80	<10	0.79	500	3	0.19	77	665
W491985	77	3.94	13	<1	0.99	<10	0.88	485	3	0.26	93	723
W491986	25	2.03	<10	<1	0.32	<10	0.35	198	3	0.25	49	539
W491987	22	1.87	<10	<1	0.43	<10	0.35	168	3	0.16	60	726
W491988	36	2.65	<10	<1	0.44	<10	0.39	307	3	0.17	59	851
W491989	38	2.02	<10	<1	0.51	<10	0.39	255	3	0.31	60	737
W491990	6828	27.06	27	12	0.05	<10	0.61	716	8	0.01	26	175
W491991	21	1.38	<10	<1	0.15	<10	0.14	560	2	0.10	31	416
W491992	34	2.26	<10	<1	0.57	<10	0.33	310	3	0.20	67	873

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020

Job Report Date: Report Version: 01-Sep-2020 03-Nov-2020 Final

	ICP-130											
	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	Р
	ppm	%	ppm	ppm	96	ppm	%	ppm	ppm	%	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
W491993	13	7.40	14	<1	0.26	12	1.66	692	1	0.06	94	164
W491994	20	2.23	<10	<1	0.22	<10	0.51	809	2	0.14	43	334
W491995	10	0.75	<10	<1	0.07	27	0.14	1153	2	0.04	14	131
W491996	41	1.84	<10	<1	0.32	<10	0.28	491	3	0.17	49	604
W491997	66	1.58	<10	<1	0.21	<10	0.15	328	5	0.22	54	628
W491998	58	2.21	<10	<1	0.37	<10	0.29	693	4	0.30	61	1361
W491999	81	2.57	<10	<1	0.27	<10	0.28	857	3	0.23	66	737
DUP A0600649	55	4.00	11	<1	1.01	<10	1.56	653	2	0.10	123	231
DUP A0600955	12	0.51	<10	<1	0.10	<10	0.15	71	3	0.27	10	69
DUP W387862	798	3.83	<10	<1	0.12	<10	0.19	659	2	0.05	30	209
DUP W387966	139	3.76	15	<1	0.69	<10	0.59	387	13	0.33	69	652
DUP W491973	409	4.55	<10	<1	0.78	<10	0.70	1048	3	0.11	67	536
DUP A0600634												
DUP W387963												
STD BLANK	<1	<0.01	<10	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10
STD BLANK	<1	<0.01	<10	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10
STD BLANK	<1	<0.01	<10	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10
STD BLANK	<1	<0.01	<10	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10
STD BLANK	<1	<0.01	<10	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10
STD BLANK												
STD BLANK												
STD BLANK												

***Please refer to the cover page for comments regarding this test report. ***

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TECT	DE	DT.	
1631			

YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Cu	Fe	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	P
	ppm	%	ppm	ppm	96	ppm	%	ppm	ppm	96	ppm	ppm
Sample ID	1	0.01	10	1	0.01	10	0.01	5	1	0.01	1	10
STD BLANK												
STD BLANK											1	
STD BLANK											1	
STD BLANK											1	
STD BLANK												
STD BLANK												
STD BLANK											1	
STD BLANK											1	
STD OREAS 24b	36	3.89	12	<1	1.15	25	1.35	323	4	0.11	58	608
STD OREAS 601	1014	2.21	<10	<1	0.26	21	0.20	432	4	0.09	24	360
STD OREAS 24b	36	3.94	13	<1	1.20	27	1.35	351	4	0.12	58	641
STD OREAS 601	1057	2.21	<10	<1	0.27	21	0.20	431	4	0.10	23	373
STD OREAS 24b	36	4.00	14	<1	1.21	29	1.38	354	4	0.12	55	633
STD OxD151											1	
STD CDN-ME-1805												
STD OxQ115											1	
STD OxN155											1	
STD OxQ115											1	
STD OxG141											1	
STD OxD151												
STD OxN155											1	
STD OxQ115											1	
STD OxN155												
STD MP-1b												

***Please refer to the cover page for comments regarding this test report. ***

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT:	YXT2010326
Project Name:	Coliath Pasaursas Surabat
Job Received Date:	01-Sep-2020

Job Report Date: Report Version: 03-Nov-2020 Final

	ICP-130											
	РЬ	s	Sb	Sc	Sr	Th	Ti	TI	v	w	Zn	Zr
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
Granite Blank	<2	0.02	<2	3	32	<8	0.10	<10	25	<10	26	7
Granite Blank	<2	0.02	<2	3	32	<8	0.10	<10	25	<10	27	7
A0600614	30	1.03	4	4	113	<8	0.12	<10	42	<10	128	<5
A0600615	1080	2.32	9	3	191	<8	0.06	<10	35	<10	561	6
A0600615PD	1176	2.20	9	3	186	<8	0.06	<10	34	11	646	6
A0600616	1243	1.84	10	4	115	<8	0.07	<10	33	38	417	7
A0600617	>10000	3.56	102	3	145	<8	0.05	<10	29	428	3640	7
A0600618	8981	4.31	83	<2	49	<8	0.03	<10	15	523	3761	<5
A0600619	>10000	3.95	102	4	247	<8	0.07	<10	37	803	>10000	7
A0600620	1562	5.01	63	3	75	<8	0.03	<10	49	<10	4253	6
A0600621	7091	3.80	41	4	194	<8	0.09	<10	45	376	5487	6
A0600622	6040	7.41	52	4	101	<8	0.07	<10	39	944	2648	9
A0600623	3619	2.02	22	6	422	<8	0.11	<10	61	611	3957	5
A0600624	260	0.80	6	5	224	<8	0.08	<10	46	507	900	5
A0600625	37	2.04	5	6	131	<8	0.12	<10	63	<10	72	<5
A0600626	29	0.99	3	4	317	<8	0.11	<10	44	<10	67	<5
A0600627	39	0.86	2	4	159	<8	0.12	<10	48	77	70	<5
A0600628	474	0.07	3	6	259	<8	0.12	<10	66	<10	209	<5
A0600629	256	0.04	<2	4	197	<8	0.13	<10	55	<10	132	<5
A0600630	12	<0.01	<2	<2	77	<8	<0.01	<10	2	<10	11	<5
A0600631	72	0.11	2	4	496	<8	0.09	<10	50	<10	85	<5
A0600632	42	0.29	3	4	388	<8	0.09	<10	52	<10	77	<5
A0600633	10	1.65	3	6	133	<8	0.30	<10	98	<10	70	<5
A0600634	41	0.10	3	8	74	<8	0.15	<10	83	<10	42	<5
A0600635	10	0.04	<2	3	28	16	0.09	<10	27	<10	21	<5

***Please refer to the cover page for comments

TEST REPORT:

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

YXT2010326

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	РЬ	S	Sb	Sc	Sr	Th	Ti	TI	v	W	Zn	Zr
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
A0600636	4723	1.78	28	7	144	<8	0.08	<10	53	<10	4115	<5
A0600637	12	>10	14	<2	90	<8	0.06	<10	9	1551	18	13
A0600638	11	1.03	5	10	146	<8	0.15	<10	86	<10	80	<5
A0600639	9	<0.01	<2	<2	5	18	0.01	<10	9	<10	19	<5
A0600640	5472	>10	170	<2	31	<8	<0.01	<10	17	<10	>10000	9
A0600641	21	0.44	<2	11	42	<8	0.19	<10	88	<10	129	<5
A0600642	17	0.27	<2	9	47	<8	0.12	<10	51	<10	99	<5
A0600643	28	0.47	<2	9	72	<8	0.11	<10	48	<10	134	5
A0600644	267	0.93	3	9	249	<8	0.18	<10	71	<10	935	<5
A0600645	17	0.48	<2	15	328	<8	0.21	<10	62	<10	98	7
A0600646	197	0.30	<2	15	174	<8	0.22	<10	85	<10	309	5
A0600647	194	0.81	2	14	218	<8	0.20	<10	101	<10	508	<5
A0600648	13	0.53	4	12	16	<8	0.18	<10	111	<10	130	<5
A0600649	7	0.35	3	13	21	<8	0.21	<10	102	<10	113	<5
A0600650	<2	0.01	<2	<2	80	<8	<0.01	<10	2	<10	2	<5
A0600701	71	2.39	4	17	57	<8	0.12	<10	84	<10	220	6
A0600702	1568	0.39	5	4	85	<8	0.08	<10	36	<10	2312	<5
A0600703	6	3.50	6	<2	4	<8	<0.01	<10	12	<10	56	<5
A0600704	8	1.03	8	5	66	<8	0.02	<10	33	<10	31	<5
A0600705	>10000	6.75	245	<2	2	<8	<0.01	<10	2	17	>10000	<5
A0600706	>10000	2.19	516	<2	20	<8	0.02	<10	10	<10	4126	<5
A0600707	200	3.31	8	<2	8	<8	<0.01	<10	4	177	431	<5
A0600708	17	1.05	6	11	249	<8	0.18	<10	104	<10	58	<5
A0600951	240	0.98	7	8	442	<8	0.13	<10	70	<10	69	<5
A0600952	25	0.06	<2	<2	324	<8	0.03	<10	14	<10	12	<5

***Please refer to the cover page for comments

YXT2010326

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	РЬ	s	Sb	Sc	Sr	Th	Ti	TI	v	w	Zn	Zr
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
A0600953	20	0.74	5	7	529	<8	0.14	<10	65	<10	47	<5
A0600954	25	4.19	10	3	79	<8	0.04	<10	30	<10	27	<5
A0600955	9	0.04	<2	<2	221	<8	<0.01	<10	24	<10	41	<5
A0600956	>10000	4.33	1024	<2	39	<8	<0.01	<10	5	289	4667	<5
A0600957	1282	2.44	91	2	37	<8	0.04	<10	26	<10	259	<5
A0600958	134	1.63	8	7	115	<8	0.12	<10	83	<10	52	<5
A0600959	24	0.03	<2	<2	177	<8	0.02	<10	14	<10	47	<5
A0600960	5682	>10	177	<2	34	<8	<0.01	<10	16	<10	>10000	9
A0600961	9	0.02	3	<2	56	<8	<0.01	<10	7	<10	78	<5
A0600962	18	0.09	3	<2	48	<8	0.01	<10	13	<10	45	<5
A0600963	52	0.03	3	<2	204	<8	0.05	<10	15	<10	511	<5
A0600964	116	0.46	3	4	138	<8	0.24	<10	69	<10	332	9
A0600965	2154	2.01	23	3	34	<8	0.08	<10	35	<10	536	<5
A0600966	>10000	2.26	1088	<2	10	<8	<0.01	<10	7	<10	428	<5
A0600967	>10000	7.19	653	2	14	<8	<0.01	<10	18	30	7013	<5
A0600968	149	1.86	6	7	137	<8	0.15	<10	74	<10	99	6
A0600969	151	2.05	4	7	201	<8	0.15	<10	64	16	316	6
A0600970	<2	<0.01	<2	<2	73	<8	<0.01	<10	2	<10	2	<5
A0600971	819	1.17	53	8	223	<8	0.26	<10	102	<10	135	8
A0600972	>10000	2.37	1923	<2	5	<8	0.01	<10	6	140	7319	<5
A0600973	7360	2.51	295	3	117	<8	0.05	<10	31	24	956	<5
A0600974	194	1.93	7	4	136	<8	0.07	<10	39	63	114	6
A0600975	163	2.34	5	5	138	<8	0.08	<10	50	16	62	6
A0600976	2187	2.34	28	3	135	<8	0.10	<10	41	<10	1907	<5
A0600977	1381	2.53	12	6	252	<8	0.13	<10	65	10	1133	7

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Pb	S	Sb	Sc	Sr	Th	Ti	TI	v	w	Zn	Zr
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
A0600978	1246	2.75	10	5	160	<8	0.11	<10	53	24	402	<5
A0600979	125	1.24	5	4	143	<8	0.08	<10	37	23	150	<5
A0600980	1601	5.26	62	3	78	<8	0.03	<10	52	<10	4381	6
A0600981	1071	4.22	8	6	136	<8	0.13	<10	60	36	231	8
A0600982	412	2.59	7	5	126	<8	0.08	<10	46	18	1014	8
A0600983	1366	1.81	13	3	119	<8	0.05	<10	25	<10	>10000	<5
A0600984	44	1.78	5	11	240	<8	0.19	<10	111	<10	119	<5
A0600985	2	<0.01	<2	<2	6	<8	<0.01	<10	2	<10	3	<5
A0600986	21	<0.01	2	<2	3	<8	<0.01	<10	8	<10	75	<5
A0600987	3	0.59	5	<2	6	<8	<0.01	<10	20	<10	38	<5
A0600988	3	0.52	3	4	138	<8	0.03	<10	58	<10	105	<5
W387860	12	1.25	3	<2	384	<8	0.03	<10	34	<10	75	<5
W387861	115	0.70	3	5	1139	<8	0.07	<10	57	<10	372	<5
W387862	>10000	8.30	1217	<2	127	<8	0.03	<10	15	<10	>10000	5
W387863	80	1.21	<2	5	328	<8	0.11	<10	53	<10	163	<5
W387864	13	0.95	7	4	531	<8	0.04	<10	79	<10	65	<5
W387865	11	0.50	3	<2	114	<8	<0.01	<10	20	<10	64	<5
W387865PD	11	0.47	5	<2	109	<8	<0.01	<10	18	<10	64	<5
W387866	24	0.38	3	2	62	<8	<0.01	<10	30	<10	1523	<5
W387867	>10000	1.48	588	<2	42	<8	0.03	<10	15	200	2046	<5
W387868	45	0.52	6	15	15	<8	0.31	<10	131	<10	92	<5
W387869	26	1.52	3	5	169	<8	0.31	<10	102	<10	89	<5
W387870	9	0.80	2	<2	432	<8	<0.01	<10	10	<10	33	<5
W387909	42	0.45	<2	4	251	<8	0.10	<10	39	<10	60	5
W387910	1625	5.31	61	3	79	<8	0.03	<10	52	<10	4459	6

***Please refer to the cover page for comments

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875

Goliath Resources Limited To: 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT: YXT2010326				26	Ι							
Project Name: Job Received Date: Job Report Date: Report Version:		Goliath R 01-Sep-2 03-Nov-2 Final	esources 020 020	- Surebet								
	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130	ICP-130
	Pb	S	Sb	Sc	Sr	Th	Ti	TI	v	w	Zn	Zr
	ppm	96	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm

	РЬ	s	Sb	Sc	Sr	Th	Ti	TI	v	w	Zn	Zr
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
W387911	36	1.09	3	6	167	<8	0.23	<10	76	<10	99	<5
W387912	33	0.77	<2	6	195	<8	0.17	<10	63	<10	68	<5
W387913	28	1.56	5	5	276	<8	0.15	<10	55	91	73	7
W387914	32	1.04	3	7	344	<8	0.15	<10	69	336	80	6
W387915	24	1.54	3	5	376	<8	0.12	<10	54	144	71	6
W387916	26	0.77	4	6	278	<8	0.14	<10	63	66	69	6
W387917	35	1.43	4	7	317	<8	0.17	<10	70	<10	120	<5
W387918	11	0.41	3	5	135	<8	0.22	<10	64	<10	96	<5
W387919	24	0.53	4	7	897	<8	0.14	<10	65	<10	71	<5
W387920	<2	<0.01	<2	<2	72	<8	<0.01	<10	2	<10	1	<5
W387921	17	0.27	<2	7	312	<8	0.18	<10	74	<10	78	<5
W387922	15	0.60	3	6	168	<8	0.19	<10	71	<10	91	<5
W387923	14	0.34	<2	6	166	<8	0.19	<10	80	<10	113	<5
W387924	14	0.64	3	5	229	<8	0.10	<10	40	<10	52	<5
W387925	26	0.62	3	4	187	<8	0.06	<10	26	<10	100	6
W387926	53	0.17	<2	4	230	<8	0.11	<10	43	<10	59	<5
W387927	64	0.57	3	6	462	<8	0.12	<10	62	<10	209	<5
W387928	27	0.51	4	7	305	<8	0.16	<10	74	<10	89	<5
W387929	23	0.49	7	4	265	<8	0.12	<10	54	<10	51	<5
W387930	5685	>10	177	<2	33	<8	<0.01	<10	16	<10	>10000	9
W387931	19	0.84	<2	6	161	<8	0.22	<10	76	<10	81	<5
W387932	16	0.19	6	6	205	<8	0.20	<10	66	<10	65	<5
W387933	7827	2.76	112	4	240	<8	0.05	<10	47	<10	7255	7
W387934	67	0.92	2	6	243	<8	0.14	<10	56	<10	171	<5
W387935	10	0.51	<2	7	67	<8	0.20	<10	77	<10	122	<5

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT: YXT2010326

Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	РЬ	S	Sb	Sc	Sr	Th	Ti	ті	v	w	Zn	Zr
	ppm	%	ppm	ppm	ppm	ppm	96	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
W387936	15	0.69	3	10	137	<8	0.24	<10	90	<10	103	<5
W387937	9	0.90	6	8	78	<8	0.18	<10	89	<10	109	<5
W387938	6	0.55	<2	7	55	<8	0.18	<10	85	<10	118	<5
W387939	22	0.77	<2	6	370	<8	0.13	<10	66	<10	76	6
W387940	<2	0.02	<2	<2	77	<8	<0.01	<10	2	<10	13	<5
W387941	18	1.63	8	4	36	<8	0.20	<10	42	<10	74	<5
W387942	17	2.77	4	4	275	<8	0.08	<10	36	24	83	5
W387943	24	1.23	7	5	305	<8	0.11	<10	53	<10	87	6
W387944	21	1.52	3	6	192	<8	0.17	<10	58	<10	109	<5
W387945	34	0.36	2	6	306	<8	0.11	<10	58	<10	91	<5
W387946	51	0.88	2	5	382	<8	0.09	<10	56	<10	365	6
W387947	22	0.83	3	7	335	<8	0.15	<10	74	<10	73	<5
W387948	11	0.14	3	6	372	<8	0.15	<10	62	<10	51	<5
W387949	8	0.09	<2	4	230	<8	0.11	<10	47	<10	30	<5
W387950	1597	5.25	63	3	77	<8	0.03	<10	51	<10	4362	6
W387956	43	3.52	5	3	131	<8	0.07	<10	37	<10	129	<5
W387957	15	0.57	2	5	112	<8	0.17	<10	63	<10	90	<5
W387958	24	0.82	<2	5	102	<8	0.13	<10	56	<10	96	<5
W387958PD	23	0.78	6	5	104	<8	0.13	<10	57	<10	102	<5
W387959	11	0.43	6	7	157	<8	0.14	<10	72	<10	50	<5
W387960	5583	>10	173	<2	31	<8	<0.01	<10	16	<10	>10000	9
W387961	5	0.21	3	8	194	<8	0.14	<10	75	<10	44	<5
W387962	8	0.11	6	7	282	<8	0.16	<10	66	<10	59	<5
W387963	>10000	>10	1110	<2	57	<8	0.03	<10	19	<10	>10000	5
W387964	1234	1.23	182	10	248	<8	0.17	<10	102	<10	2471	<5

***Please refer to the cover page for comments

J

MSALABS Unit 1, 20120 102nd Avenue Langley, BC V1M 4B4 Phone: +1-604-888-0875 To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
ob Received Date:	01-Sep-2020
lob Report Date:	03-Nov-2020

Final

Report Version:

	ICP-130											
	РЬ	S	Sb	Sc	Sr	Th	Ti	TI	v	w	Zn	Zr
	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
W387965	90	1.10	5	6	174	<8	0.14	<10	69	<10	152	<5
W387966	7630	2.19	34	7	229	<8	0.12	<10	71	<10	7736	5
W387967	>10000	6.49	1160	<2	4	<8	<0.01	<10	4	<10	>10000	<5
W387968	70	0.39	3	8	195	<8	0.16	<10	76	<10	111	<5
W387969	>10000	1.21	664	<2	8	<8	0.01	<10	10	<10	567	<5
W387970	4	<0.01	<2	<2	69	<8	<0.01	<10	2	<10	3	<5
W387971	401	0.46	7	4	104	<8	0.11	<10	44	<10	316	<5
W387972	245	0.51	4	3	62	<8	0.10	<10	36	<10	744	<5
W387973	2212	0.72	12	3	67	<8	0.11	<10	41	<10	562	<5
W387974	1144	0.05	73	<2	2	<8	<0.01	<10	3	256	101	<5
W387975	2551	0.52	67	5	54	<8	0.08	<10	39	35	363	<5
W387976	68	0.86	2	8	97	<8	0.15	<10	68	<10	77	5
W387977	43	0.68	4	11	117	<8	0.16	<10	82	<10	73	6
W387978	<2	0.76	2	<2	53	<8	0.02	<10	28	<10	81	<5
W387979	331	0.71	6	12	61	<8	0.23	<10	109	<10	160	<5
W387980	1578	5.21	60	3	76	<8	0.03	<10	50	<10	4358	6
W387981	5	0.58	2	<2	158	<8	0.06	<10	17	<10	20	<5
W491961	13	0.12	<2	5	225	<8	0.11	<10	47	<10	36	<5
W491962	16	0.23	3	10	218	<8	0.16	<10	84	<10	53	<5
W491963	12	0.80	2	6	170	<8	0.14	<10	59	<10	64	<5
W491964	18	0.34	<2	6	279	<8	0.11	<10	47	<10	88	<5
W491965	23	0.30	<2	7	214	<8	0.16	<10	58	<10	88	<5
W491966	35	0.56	4	9	212	<8	0.12	<10	74	<10	57	<5
W491967	5984	1.52	139	5	176	<8	0.12	<10	54	279	5757	<5
W491968	5224	1.66	92	5	172	<8	0.10	<10	57	32	8236	<5

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326							
Project Name:	Goliath Resources - Surebet							
Job Received Date:	01-Sep-2020							
Job Report Date:	03-Nov-2020							
Report Version:	Final							

	ICP-130											
	Pb	s	Sb	Sc	Sr	Th	Ti	TI	v	w	Zn	Zr
	ppm	96	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
W491969	>10000	2.87	136	5	144	<8	0.13	<10	53	158	>10000	<5
W491970	1629	5.33	60	3	78	<8	0.03	<10	51	<10	4464	6
W491971	5686	1.93	49	6	152	<8	0.08	<10	53	34	7681	6
W491971PD	5834	1.98	47	6	155	<8	0.08	<10	54	30	8150	5
W491972	501	2.31	12	10	215	<8	0.12	<10	76	<10	943	10
W491973	>10000	3.13	315	9	119	<8	0.09	<10	58	3262	>10000	5
W491974	38	0.78	5	3	193	<8	0.06	<10	36	<10	99	<5
W491975	>10000	2.59	105	4	166	<8	0.06	<10	35	257	1887	<5
W491976	1737	1.68	15	3	200	<8	0.06	<10	30	17	702	<5
W491977	1872	1.62	64	<2	78	<8	0.04	<10	15	153	1724	<5
W491978	48	0.80	6	5	154	<8	0.15	<10	55	<10	86	<5
W491979	3435	2.21	32	2	66	<8	0.06	<10	22	142	247	5
W491980	<2	0.04	<2	<2	71	<8	<0.01	<10	2	<10	<1	<5
W491981	119	2.68	6	5	138	<8	0.10	<10	49	<10	53	<5
W491982	539	2.51	4	5	158	<8	0.08	<10	47	703	702	6
W491983	NR											
W491984	28	0.91	4	6	306	<8	0.11	<10	52	<10	63	5
W491985	45	1.64	3	7	221	<8	0.11	<10	66	<10	56	<5
W491986	29	0.49	2	4	249	<8	0.07	<10	43	<10	163	<5
W491987	21	0.43	<2	3	191	<8	0.06	<10	35	<10	34	<5
W491988	425	0.94	<2	3	331	<8	0.06	<10	33	<10	175	<5
W491989	38	0.45	2	5	174	<8	0.11	<10	48	<10	335	<5
W491990	5602	>10	173	<2	32	<8	<0.01	<10	17	<10	>10000	9
W491991	110	0.38	<2	3	1071	<8	0.03	<10	17	<10	80	<5
W491992	31	0.64	<2	4	558	<8	0.09	<10	43	<10	39	5

***Please refer to the cover page for comments

To: Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020

Final

Report Version:

ICP-130 Pb s Sb Sc Sr Th Ti ТΙ ٧ W Zr Zn % ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm Sample ID 2 0.01 2 2 1 8 0.01 10 1 10 1 5 W491993 65 0.54 5 4 1383 <8 0.02 <10 50 <10 44 <5 W491994 10 0.53 <2 4 1573 <8 0.04 <10 31 <10 31 <5 W491995 2 0.15 <2 5 3285 <8 < 0.01 <10 10 <10 10 <5 W491996 15 0.49 2 4 1116 <8 0.06 <10 35 <10 50 <5 W491997 31 0.51 з 2 412 <8 0.04 <10 23 <10 392 <5 W491998 21 0.78 3 4 924 <8 0.05 <10 39 <10 77 <5 W491999 24 1.15 7 4 1420 <8 0.04 <10 36 <10 28 <5 DUP A0600649 11 0.36 <2 13 22 <8 0.22 <10 <10 118 <5 106 DUP A0600955 10 0.04 2 <2 214 <8 < 0.01 <10 24 <10 43 <5 DUP W387862 >10000 <2 0.03 >10000 <5 8.22 1189 126 <8 <10 14 <10 DUP W387966 7844 6 2.25 34 7 236 <8 0.13 <10 74 <10 7921 DUP W491973 >10000 3.10 314 9 120 <8 0.09 <10 58 3231 >10000 6 DUP A0600634 DUP W387963 STD BLANK <2 < 0.01 <2 <2 <1 <8 < 0.01 <10 <1 <10 <1 <5 STD BLANK <2 < 0.01 <2 <2 <1 <8 <0.01 <10 <1 <10 <1 <5 STD BLANK <2 < 0.01 <2 <2 < 0.01 <1 <10 <5 <1 <8 <10 <1 <5 STD BLANK <2 <2 <2 <1 <10 <1 <10 <1 <0.01 <8 < 0.01 STD BLANK <2 < 0.01 <2 <2 <1 <8 < 0.01 <10 <1 <10 <1 <5 STD BLANK STD BLANK STD BLANK

***Please refer to the cover page for comments

Goliath Resources Limited 25 Adelaide Street, East Suite 1614 Toronto, Ontario, M5C 3A1 Canada

To:

TEST REPORT:	YXT2010326
Project Name:	Goliath Resources - Surebet
Job Received Date:	01-Sep-2020
Job Report Date:	03-Nov-2020
Report Version:	Final

	ICP-130											
	Pb	s	Sb	Sc	Sr	Th	Ti	TI	v	w	Zn	Zr
	ppm	96	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	2	0.01	2	2	1	8	0.01	10	1	10	1	5
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD BLANK												
STD OREAS 24b	9	0.19	<2	10	27	11	0.20	<10	80	<10	91	27
STD OREAS 601	285	1.06	22	<2	36	<8	0.01	<10	9	<10	1334	29
STD OREAS 24b	10	0.20	4	10	29	10	0.20	<10	82	<10	92	27
STD OREAS 601	280	1.05	23	<2	37	<8	0.01	<10	10	<10	1332	27
STD OREAS 24b	9	0.19	5	10	30	12	0.21	<10	81	<10	91	26
STD OxD151												
STD CDN-ME-1805												
STD OxQ115												
STD OxN155												
STD OxQ115												
STD OxG141												
STD OxD151												
STD OxN155												
STD OxQ115												
STD OxN155												
STD MP-1b												

***Please refer to the cover page for comments regarding this test report. ***