BC Geological Survey Assessment Report 39322

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT: Geochemical Work on Harry Property

TOTAL COST: \$9,235

AUTHOR(S): SIGNATURE(S):

D. Cremonese, P.Eng. lina

NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): STATEMENT OF WORK EVENT NUMBER(S)/DATE(S): 5816962 Nov. 8, 2020 5829576 Feb. 23, 2021 YEAR OF WORK: 2020 PROPERTY NAME: Harry

CLAIM NAME(S) (on which work was done): #508822, 508823

COMMODITIES SOUGHT: Au , Ag

MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:

 MINING DIVISION:
 Skeena

 NTS / BCGS:
 104B020

 LATITUDE:
 57_____37____'____"

 LONGITUDE:
 130______34____'

 UTM Zone:
 EASTING:

OWNER(S):

Teuton Resources Corp.

MAILING ADDRESS:

2130 Crescent Road, Victoria, BC V8S 2H3 OPERATOR(S) [who paid for the work]: Same as above MAILING ADDRESS: Same as above

REPORT KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude. **Do not use abbreviations or codes**) Stewart Complex, Triassic-Jurassic, Mylonites, Betty Creek Formation, Mudstones, Greywackes, Mount Dilworth Formation, Unuk River Formation, andesite volcancis.

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS:

Related Reports 28014, 28689, 30770, 31328, 32083, 38607

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (in metric units)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samp	les analysed for)		
Soil			
Silt		508822	\$0.235
Rock	Assay	508823	
Other			
DRILLING (total metres, number o	f holes, size, storage location)		
Core			
Non-core			
RELATED TECHNICAL			
Sampling / Assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale/area)			
PREPATORY / PHYSICAL			
Line/grid (km)		-	
Topo/Photogrammetric (sc	ale, area)		
Legal Surveys (scale, area)		
Road, local access (km)/tra	ail	-	
Trench (number/metres)			
Underground development	(metres)		
Other		ΤΟΤΔΙ	\$0 235
		COST	ψφιαυσ

ASSESSMENT REPORT ON GEOCHEMICAL WORK ON THE FOLLOWING CLAIMS

Tenure # 508822 and 508823

Harry Property

STATEMENTS OF WORK # 5816962, #5829576

Located

30 KM NORTH-NORTHWEST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 10 minutes latitude 130 degrees 03 minutes longitude

MAPSHEETS 104B020

PROJECT PERIOD: July 15 to September 25, 2020

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

D. Cremonese, P. Eng. 2130 Crescent Road. Victoria, BC V8S 2H3.

Date: February 23, 2021

TABLE OF CONTENTS

1. INTRODUCTION

A. Property, Location, Access and Physiography	1
B. Status of Property	1
C. History	1
D. References	3
E. Summary of Work Done	4
2. TECHNICAL DATA AND INTERPRETATION	4
A. Geology & Mineralization	4
B. Rock Geochemistry	5
a. Introduction	5
b.Treatment of Data	5
c. Sample Descriptions	6
C. Discussion	13
D. Field Procedure and Laboratory Technique	14
E. Conclusions	14

APPENDICES

1	Work Cost Statement	
	Work Cost Butternein	

- 2 Certificate of Qualification3 Assay Certificates

ILLUSTRATIONS

Report Body
Report Body
Report Body
Report Body

1. INTRODUCTION

A. Property, Location, Access and Physiography

The property is located about 30 km northwest of Stewart, British Columbia. Access is by truck up the old Granduc Mining Road which commences on the American side of the border at Hyder, Alaska (about 2km from Stewart), and then proceeds north before entering Canada again just before the Premier minesite. Most of the interesting portions of the claims lie between the Granduc road and the Salmon Glacier (to the west). In places the precursor Granduc road, which lies sub-parallel to the newer road but at lower elevation near the ice, provides an alternative method of traversing the claims area. Because this road is now washed out in several places, a helicopter is necessary to access some of the steeper portions of the property.

Topography in the area of interest between the road and the Salmon Glacier is generally rugged, with occasional places too steep to access without ropes. Elevations vary from 800 to 1,100m. Vegetation in the area is generally sparse, with much of it featuring barren rock or glacial debris, however in some places scrub hemlock and balsam occur in patches, interspersed with shrubs, mountain grasses and heather.

Climate is severe during the winter months with abundant snowfall. Depending upon local weather conditions, ground comes open for fieldwork generally from early June onward.

B. Status of Property

The property is comprised of two claims as summarized below:

Tenure #	Present Anniversary Date
508822	Nov. 5, 2021
508823	Nov. 5, 2021

Claim locations are shown on Fig. 2. The claims are owned by Teuton Resources Corp. of Vancouver and are presently under option to Jayden Resources.

C. History

After the 1919 discovery and subsequent exploitation of the famous Premier mine located a few kilometers south of the Harry property, the upper portions of the Salmon Glacier region were intensively prospected. At that time, much less rock exposure was available for sampling because glaciers and permanent icefields covered far greater areas than they do today. This work disclosed a number of new showings in the upper Salmon Glacier area, mostly gold or silver bearing veins, some of which were high-graded on a small scale (the Outland Silver Bar prospect, adjoining west

of the Harry property, being an example). A little further north in the Summit Lake area goldpyrrhotite veins at the Scottie Gold property saw limited production in the 1980's.

As for the property area itself, in the northern sections along Troy ridge, well-known Stewart prospector Harry Swan (whom the author had the pleasure of meeting many times during the 1980's) maintained a property for many years. This property featured a rustic cabin, built by Mr. Swan, with majestic views of the surrounding mountains.

About twelve years ago the Silver Butte area about three kilometers south-southeast of the Harry claims became prominent due to the discovery by Pinnacle Mines and Mountain Boy Resources of gold-silver bearing shears in a zone 300m wide that has been traced for 1.6 km. Outstanding drill intersections were obtained including Hole 36 which assayed 11.35 g/t gold over 17.8m and Hole #52 grading a remarkable 34.05 g/t gold over 15.25m. This property has been explored intermittently during the past years and was eventually acquired by Ascot Resources to add to its gold holdings in the Premier and Dilworth areas.

The impetus for staking the Harry property arose from the memory of a trip the author made in the early 1980's to a spot near the center of the property, accompanied by Mr. Nick Benkovich (a well-known Stewart prospector who went by the handle "Bonus Nick"). Mr. Benkovich had a small fraction (the "Harry Fraction") surrounded by claims owned by third parties. The author sampled a shear zone on this fraction over a 10m width, located on a steep slope that required careful climbing to access from the old Granduc road. From memory it was in silicified volcanics and mineralized with pyrite and minor galena. The original assay certificate for this sample has been misplaced, but the author remembers it being close to 0.10 oz/ton gold over the 10m sampled interval. Exact location of the sample site, however, has not subsequently been identified.

In 2004, Teuton carried out a small rock geochem survey over the subject claims with generally positive results. This was followed up in 2006 and 2008 with a further rock geochem survey and some geological mapping. The 2008 work established a line of anomalous gold and arsenic values near the eastern border of the property. Results of this work are on file with the government in the assessment report database.

Geochemical programs were run along the eastern edge of the Salmon Glacier in both 2008 and 2009 disclosing a large number of anomalous to highly anomalous gold and arsenic values. In 2010, four holes totalling 487.07 meters were drilled testing a silicified, sercite-altered, pyritic gossan close to the eastern boundary of Tenure 508823. Best intersection was 9.15m of 0.72g/t gold in a hole which had to be discontinued when it encountered underground workings. A talus fine, surface sampling program was also undertaken which defined a long section of anomalous gold values with peaks up to 965ppm gold.

D. References

- ALLDRICK, D.J.(1984): Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", B.C.M.E.M.P.R.
- ALLDRICK, D.J.(1985): "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- ASCOT RESOURCES WEBSITE; https://ascotgold.com/
- EMPR ASSESMENT REPORT INDEX; Report #15752, 1986 Diamond Drill Program, Silver Butte Property.
- EMPR MAPPLACE; http://webmap.em.gov.bc.ca/mapplace/minpot/new_xmap.cfm
- EMPR MINFILE MASTER REPORT: 104B30 Outland Silver Bar; 104B34 Scottie Gold
- CREMONESE, D. AND MASTALERZ, K (2005): Assessment Report on Geochemical Work on Tenure #s 508822 and 508823, on file with BCEMPR, Report #28,014.
- CREMONESE, D. AND MASTALERZ, K (2006): Assessment Report on Geological and Geochemical Work on Tenure #s 508822 and 508823, on file with BCEMPR, Report #28,689.
- CREMONESE, D. (2009): Assessment Report on Geochemical Work on the Harry Property; on file with BCEMPR, Report #30770.
- CREMONESE, D. (2010): Assessment Report on Geochemical Work on the Harry Property; on file with BCEMPR, Report #31328.
- CREMONESE, D. (2011): Assessment Report on Geochemical and Diamond Drilling, Harry Property; on file with BCEMPR, Report #32083.

CREMONESE, D. (2019): Assessment Report on Geochemical Work, Harry Property; on file with BCEMPR, Report #38607.

- GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- GROVE, E.W. (1987): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, Bulletin 63, BCMEMPR

KRUCHKOWSKI, E.R. (2020); National Instrument 43-101 Technical Report on Harry Property, Located near Stewart, BC, Skeena Mining Division; Report Available Online at www.sedar.com, under Jayden Resources Inc., January 12, 2021.

E. Summary of Work Done.

The 2020 work on the Harry property was part of a larger, summer program involving exploration of several Teuton properties located in the Stewart region. This field work spanned the period from July 15 to September 25, 2020.

Geologists Jeff Auston and Alex Walus made two one-day trips into the Harry property by helicopter to collect geochemical samples from a previously unexplored area of the claims lying in a zone of ablation east of the Salmon Glacier. This portion of the property is marked by a number of gossans exposed intermittently through glacial debris. Altogether 49 samples were taken—some float, some grabs and some chips. Samples were prepared and analyzed for gold content/ICP at the MSALabs facility in Langley, BC.

2. TECHNICAL DATA AND INTERPRETATION

A. Geology and Mineralization

The property lies along the western edge of a broad, NNW trending belt of Triassic and Jurassic volcanic and sedimentary rocks termed by Grove (1971) as the "Stewart Complex". This belt is bounded to the west by the Coast Crystalline Belt (mainly granodiorites) and to the east by a thick series of sedimentary rocks known as the Bowser Assemblage (Middle Jurassic to Upper Jurassic). The geology of the property and surrounding area is shown in this report in Fig. 3.

Locally, the Harry property is underlain by a succession of Lower to Upper Jurassic sedimentary and volcanogenic rocks of the Hazelton Group. The strata strike generally from NNW to SSE and dip at variable angles westward. The property area is located entirely on the western limb of a relatively narrow (ca. 5-7 km) butcomplex, NNW-SSE trending synclinorial feature (Mt. Dilworth Syncline; Grove 1971) which parallels the prominent McTagg Anticlinorium located ca. 10 km westward and which locally exposes a broad belt of an older, folded succession of the Stuhini Group (Triassic). The western limb of the synclinorium forms a zone of intense tectonic deformation with numerous faults of varying geometry and orientation. This zone of, probably a regional thrust character, is overprinted locally by numerous effects caused by cataclastic deformation and mylonitization. The area is host to several important mineral occurrences starting from the Premier mine (south), through Scottie Gold, East Gold and the Sulphurets area, up to the Treaty Creek showings. Most of the faults are parallel or sub-parallel to the main structural trend in the area, however, there are some steep faults which cross cut the main structural trend (Grove 1971). The predominant part of the Harry property is underlain by coarse-grained and poorly sorted sedimentary rocks of mixed composition with fragments predominantly of volcanic provenance interfingering with greenish volcanic/volcaniclastic rocks of andesitic composition of the Unuk River Formation). Finer-grained end members--siltstones, tuffaceous sediments-- are less common. A high proportion of the rocks of this unit are represented by cataclasites and mylonites derived from the pre-existing volcanics and sediments, which underwent strong tectonic deformation. Eastward, these strata grade(?) into variably colored sandstones, conglomerates and breccias also of volcanic provenance of the Betty Creek Formation. This succession is relatively thin and overprinted locally by strong tectonic deformation. Its upper contact with a younger succession appears to have a character of a NNW-SSE trending fault or thrust. This succession is composed predominantly of dark gray mudstones to greywackes with minor conglomerates, chert and limestones and is here assigned to the Mount Dilworth Formation. A narrow belt of these rocks is exposed in the very northeastern corner of the property along the southeastern shoreline of Summit Lake (Fig. 3). These fine-grained sedimentary rocks interfinger with felsic volcanics and volcanic breccias further southeastward in the Long Lake area. The lithostratigraphic position of the youngest strata exposed at the NE tip of the property (turbiditic sediments has not been yet defined precisely, but they apparently correspond to Salmon River Formation. E. Grove (1971) has mapped several thin, subvertical Tertiary dykes along the eastern slope of the Salmon Glacier valley. The dykes cross cut older stratigraphic units and strike roughly W-E on the Harry Property.

B. Rock Geochemistry

a. Introduction

Forty-nine rock geochemical samples (samples HYJTA052 to 72, incl. and TUT-08 to 35, incl.) were taken in 2020 along the slopes overlooking the Salmon Glacier from the east. None of this area had been previously sampled by Teuton personnel but was considered prospective because of the many gossanous areas exposed intermittently through pervasive glacial till. Sample locations were located by way of a handheld GPS. Some of the areas sampled had probably been freshly exposed by retreating ice in the last twenty or thirty years.

b. Treatment of Data

Locations for the rock geochemical samples and their corresponding gold values in ppb (as well as their silver values in ppm) are presented in this report on Fig. 4.

As in other small-scale surveys, a statistical treatment according to standard methods was not deemed practical. In lieu of such treatment, the author has simply chosen anomalous levels by reference to several rock geochemical programs conducted over other properties in the Stewart region over the past thirty years. On this basis, anomalous levels are indicated below:

<u>Element</u>	Anomalous Above*
Gold	100 ppb
Silver	3.6 ppm

*Anomalous ranges will vary greatly according to rock type. For this reason, defining anomalous levels for any particular property based on regional averages is somewhat arbitrary

c. Sample Descriptions

The top line of each of the sample descriptions follows this format (from left to right): Sample name, GPS Easting (NAD 83), GPS Northing (NAD 83) and Sample Type. Below that is the description itself followed by another line containing silver values in ppm and gold values in ppb. Anomalous values are highlighted in bold.

HYJTA052 434195 6225443 Random Grab

Random grab of phyllite near gossanous shear with calcite vein fragments and 5% very fine-grained disseminated pyrite

Silver -	3.3 ppm	Gold -	80 ppb

HYJTA053 434197 6225443 Select Grab

Select grab of gossanous fault shear zone with strongly oxidized clay gouge and increased silica in wallrock and minor disseminated pyrite 300/-80

 Silver 5.8 ppm
 Gold 91 ppb

 HYJTA054
 434185
 6225443
 Select Grab

Strongly gossanous shear zone parallel to previous sample; strongly oxidized rock with no observed mineralization due to strong oxidation 290/-85

Silver - 2.6 ppm Gold - 817 ppb

HYJTA055 434144 6225900 Select Grab

Select grab of grey schist with 8-10% euhedral pyrite in host rock; there is an irregular quartz vein in sample but no mineralization is seen in the vein.

 Silver 1.6 ppm
 Gold 602 ppb

 HYJTA056
 434138
 6225913
 Select Grab

Random grab from gossanous area; silicified schist with calcite vein fragments; ~10% very finegrained disseminated pyrite

 Silver 1.5 ppm
 Gold 148 ppb

 HYJTA057
 434162
 6226467
 Select Grab

Select grab of strong pyrite mineralization, heavily veined and silicified outcrop--pyrite stringers and aggregates ~40% pyrite

Silver -	3.6 ppm	Gold	l - 104 ppb
HYJTA058	434162	6226466	Select Grab

Select grab of quartz vein 1m south of previous sample; vein swarm here up to 1m wide; major pyrite in selvage and minor clots of galena and sphalerite seen in vein 315/-80

Silver -	11.7 ppm	Gold	l - 70 ppb
HYJTA059	434162	6226463	Select Grab

Select grab from parallel vein as previous sample and 4m away down strike; sample taken here since yellow-green oxide (scorodite?) appears on weathered surface; vein contains minor galena and sphalerite

Silver -	1.1 ppm	Gold -	36 ppb

HYJTA060 434161 6226475 Select Grab

Select grab from calcite-pyrite vein (40% pyrite) exposed on strike on side of outcrop and appears discontinuous possibly a lens? 240/-50

Silver - 1.0 ppm Gold - 43 ppb

HYJTA061 434159 6226502 Select Grab

Select grab of calcite vein with strongly silicified rock adjacent and a band of very fine-grained grey pyrite possibly some arsenopyrite 110/-50

Silver - 2.8 ppm **Gold - 205 ppb**

HYJTA062 434169 6226518 Select Grab Select grab from quartz vein breccia with 20% pyrite and minor amounts of galena observed; taken near bottom of quartz vein zone **HYJTA063** 434169.76 6226518.64 Select Grab

Select grab of quartz vein where there is 35% fine grained pyrite - visible gold as dendrites in quartz and selvages in quartz vein breccia that is 2m wide and is trending 310 degrees; the host rock is strongly QSP altered; strong gossan; named Milestone showing

 Silver 642 ppm
 Gold 1,553,400 ppb

HYJTA064 434168.62 6226517.68 0-1m Chip of 2

1st chip sample over Milestone gold showing 0-1m going in a 050 degree direction;

Silver -	12.8 ppm	Gold -	1,014 ppb
----------	----------	--------	-----------

HYJTA065 434169.38 6226518.32 1-2m Chip of 2

2nd chip sample over Milestone gold showing 1-2m going in a 050 degree direction; visible gold seen in this sample

Silver -	301 ppm	Gold -	537,900 ppb

HYJTA066 434165 6226526 Select Grab

Select grab of quartz-calcite galena-sphalerite vein orientation is inconsistent; 2-5cm wide vein; 10% galena, 7% sphalerite, 3% pyrite and 5% dark fine grained metallic sulphide 040/-60

 Silver 99.9 ppm
 Gold 348 ppb

HYJTA067 434165.54 6226520 0-1m Chip of 3

1st chip sample over vein down strike 4m at 300 degrees from Milestone gold showing; 0-1m going in a 045 degree direction; 3% pyrite and minor veining

Silver - 6.4 ppm Gold - 2,080 ppb

HYJTA068 434166.25 6226520.71 1-2m chip of 3

2nd chip sample over vein down strike 4m at 300 degrees from Milestone gold showing; 1-2m going in a 045 degree direction; 5-6% pyrite with increase in quartz calcite veining - less mineralization with the veining than Milestone

Silver - 63.0 ppm Gold - 4,812 ppb

HYJTA069 434166.96 6226521.42 2-3m chip of 3

3rd chip sample over vein down strike 4m at 300 degrees from Milestone gold showing; 2-3m going in a 045 degree direction; 5-6% pyrite with increase in quartz calcite veining - less mineralization with the veining than Milestone

Silver - 4.1 ppm Gold - 107 ppb

HYJTA070 434181 6226542 Select Grab

Select grab where a hydrothermal breccia 080/-70 contacts quartz veins 020/-40; hbx consists of silicified clasts in black pyrite rich matrix; where the veins contact there is ~10% galena and sphalerite clots within the veins

Silver -	16.8 ppm	Gold -	54 ppb
Silver -	16.8 ppm	Gold -	54 ppb

HYJTA071 434179 6226576 Random Grab

Random grab from strongly silicified qsp altered outcrop with pyrite stringers at random directions and quartz veins going at 350/-55

Silver -	1.8 ppm	Gold	- 182 ppb
HYJTA072	434194	6226588	Random Grab

Random grab from very highly silicified and veined outcrop; thin black sulphide and grey silica veinlets and pyrite stringers throughout; 10% pyrite

 Silver 1.7 ppm
 Gold 199 ppb

TUT-08 434196 6225466 float

Angular float 10 cm across of limonitic quartz. The float came from a big rusty zone above.

Silver -	<0.2 ppm	Gold -	6 ppb

TUT-09 434228 6225637 grab

Completely sericite-quartz altered rock with 1-2% pyrite and strong limonite stain.Silver -2.6 ppmGold -283 ppb

TUT-10 434131 6225823 grab

Shear zone replaced by sericite-quartz alteration, strong limonite stain. The zone is less than 1 m

wide and several metres long.

Silver -	1.8 ppm	Gold	l -	358 ppb
TUT-11	434170	6225816	grab)

Limonitic quartz vein 20 cm wide. Above, there is another parallel vein 80-100 cm wide. Veins orientation 320/60N.

Silver -	0.9 ppm	Gold	1 -	36 ppb
TUT-12	434170	6225845	grab	

Strongly limonitic sericite-qtx altered zone. It is 1.0 m wide and can be traced for several m. Shearing within the zone is striking 60 degrees and has steep NW dip.

Silver -	4.2 ppm	Gold	- 201 ppb
TUT-13	434037	6226109	grab

Irregular quartz veining within andesite, weak limonite stain.

Silver -	0.3 ppm	Gold -	6 ppb

TUT-14 434059 6226241 grab

Small pod of carbonate with 2-3% pyrite.

Silver -	2.4 ppm	Gold	- 2,148 ppb
TUT-15	434170	6226433	grab

Massive sericite-quartz altered rock, minor pyriite. Sample was taken from a bottom of a big gossanous zone.

Silver - 16.8 ppm Gold - 30 ppb

TUT-16 434149 6226466 grab Qtx vein 10 cm wide with local concentrations of powdery limonite and minor wad 320/40-50 N.

Silver -	1.0 ppm	Gold -	12 ppb

TUT-17 434135 6226511 grab

3-5 cm wide quartz vein with 10-15 % pyrite. Orientation 90/v.

Silver -	4.3 ppm	Gold -		47 ppb
TUT-18	434130	6226618	float	

Selective grab from a 5-10 cm wide quartz vein with 1-2% pyrite and trace sphalerite located in a boulder 1.0 m in size. The boulder most likely came from a big gossan above.

Silver -	5.9 ppm	Gold -	332 ppb
TUT-19	434148	6226607	grab

Composite grab sample from 1.0 m wide quartz vein with minor pyrite and trace to minor very fine-grained gray sulphides. Orientation 80/very steep S.

Silver -	3.7 ppm	Gol	d - 158 ppb
TUT-20	434169	6226501	chip 15 cm

Chip across 10-15 cm wide shear composed of quartz with lesser sericite, carbonate chlorite. The shear contains a few quartz stringers 0.5 to 3.0 cm wide with average 3-5% of combined pyrite, galena and sphalerite. Shear orientation 90/75 S

Silver - 11.0 ppm Gold - 2,981 ppb

TUT-21 434183 6226479 grab

Shear zone 50-60 cm wide replaced by quartz and sericite with 5-7% pyrite and trace to minor gray sulphide.

Silver - 6.7 ppm Gold - 275 ppb

TUT-22 434192 6226483 grab

Quartz vein 3-5 cm wide with 10-15% pyrite. Orientation 80/v.

Silver -	4.0 ppm	Gold -	67 ppb
TUT-23	434170	6226488 g	rab

Pod 10x5 cm in size with 2-3% pyrite, some carbonaceous substance and possibly extremely fine-grained gray sulphide.

Silver - 1.9 ppm **Gold - 199 ppb**

TUT-24 434154 6226485 grab

Quartz vein 1 cm wide with 2-3% of combined pyrite, sphalerite and galena. Large part of the sample

Silver - 6.7 ppm Gold - 89 ppb

TUT-25 434154 6226485 grab

Wallrock of the vein sampled by TUT-24 comprised by completely quartz-sericite altered rocks.

Silver -	1.1 ppm	Gold	1 -	30 ppb
TUT-26	434166	6226453	grab	

Quartz vein 3-5 cm wide with 40-50% of combined galena, pyrite and sphalerite. It can be traced 4-5 m with both ends covered by overburden. Orientation 80/85S.

Silver -	193 ppm	Gold	- 447 ppb
TUT-27	434223	6226463	float

Angular boulder 10x7x5 cm in size of white quartz with 2-3% pyrite and 2-3% coarse sphalerite.

d - 347	ppb
(d - 347

TUT-28 434223 6226463 float

Small angular boulder of quartz with 5-7% galena.

Silver -	20.7 ppm	Gold	- 385 ppb
TUT-29	434230	6226461	grab

Composite grab sample from partially quartz replaced 30 cm wide shear zone with 5-7% pyrite. Orientation 80/v.

Silver -	5.8 ppm	Gold	- 1,482 ppb
TUT-30	434207	6226457	float

Angular float 30 cm across of completely sericite-quartz-pyrite altered rock cut by 0.5-1.5 cm veinlets of vuggy quartz containing trace to minor galena and sphalerite.

Silver - 1.6 ppm Gold - 22 ppb

TUT-31 434148 6226613 grab

Quartz vein 3-5 cm wide with local concentrations of limonite. Orientation 90/40-50 S.

 Silver 2.4 ppm
 Gold 7 ppb

 TUT-32
 434148
 6226613
 grab

Quartz vein 0.2-0.4 m wide with 5-10% pyrite and trace to minor extremely fine-grained gray sulphide and/or carbonaceous substance. Orientation 100/very steep N dip.

Silver -	4.9 ppm	Gold -	• 1,342 ppb
TUT-33	434153	6226613	grab

Quartz vein 10 cm wide with 1-2% pyrite and trace to minor extremely fine grained sulphide carbonaceous substance. The vein is oriented E-W with steep S dip. There are many similar veins nearby but access is difficult.

 Silver 1.3 ppm
 Gold 151 ppb

 TUT-34
 434137
 6226626
 grab

Quartz vein 30-35 cm wide with 2-3% pyrite and 5-7% of combined galena and sphalerite. Orientation 110/70-80 S. Only 2m of the vein is exposed with both ends covered by overburden

. Silver -	32.3 ppm		Gold -	228 ppb
TUT-35	434142	6226634	grab	

Quartz vein 40 cm wide with 3-5% pyrite and 0.5-1.0% of combined galena and sphalerite. Orientation 105/very steep S. Only 5-6 m of the vein is exposed with both ends covered by overburden.

Silver -	8.1 ppm	Gold -	163 ppb
	11		

C. Discussion

Samples were taken from prospective areas lying just above the eastern edge of the Salmon Glacier in a previously unexplored corridor. Although rock outcrop is only exposed intermittently through widespread glacial debris, it appears that the area has been highly altered

with several sub-portions featuring networks of small quartz veins mineralized with pyrite and often galena and sphalerite as well.

During the 2020 survey an unusual showing containing coarse native gold was discovered and dubbed the "Milestone" (samples HYJTA063 to 65, incl.). The gold formed dendrites within milky white quartz vein fragments in a 2m wide breccia. Within a 300m radius of this showing, many outcrops were seen exhibiting the same alteration and also occasionally with small veins carrying galena. The samplers suggested that there is a strong probability of more gold bearing veins to be found as the local area is covered with extensive glacial till.

D. Field Procedure and Labratory Analysis

Analysis of rock specimens collected during the 2020 program was carried out at the MSALabs facility in Langley BC (an ISO 9001:2015 certified and ISO 17025:2017 accredited laboratory)

Rock samples are logged into the tracking system and dried prior to sample preparation. The dried samples are crushed to 70% passing 2mm and split to create homogeneous subsamples. The subsamples are then pulverized to 85% passing 75micron. Preparation blanks are inserted with every workorder that requires crushing and/or pulverizing. Barren material is crushed, pulverized and analyzed along with the samples. Preparation duplicates are split after the crushing stage and are denoted by 'PD' following the sample name. Once split, they are pulverized and analyzed along with the sample name.

Prepared samples are weighed and digested under heat using a mixture of hydrochloric and nitric acids (termed "aqua regia"). Upon completion of digestion, samples are made up to volume with deionized water and analyzed by ICP-ES (Inductively Coupled Plasma) once the solutions have settled.

Gold assays: The prepared samples are weighed, mixed with flux, and fused to produce a lead button. The lead button is subsequently cupelled to remove the lead to yield a doré bead containing only the precious metals. The doré beads are digested using a combination of hydrochloric and nitric acids and the final solutions are analyzed by AAS (atomic absorption spectroscopy) or ICP-ES. Any samples reporting gold concentrations greater than 10ppm are re-analyzed by fire assay fusion with gravimetric finish

E. Conclusions

The 2020 rock geochemical sampling program over part of the Harry property was successful in identifying a highly prospective area containing numerous sample sites with anomalous gold and silver mineralization. One showing, called the "Milestone", contained coarse gold and ran 7.8 oz/ton over a 2.0m width.

The Harry property lies along a prospective corridor running north-northeast from the famous

Premier gold mine to the presently producing Valley of the Kings gold mine. Both of these mines are known for their exceptional bonanza ores. Although it is much too early to judge the importance of the Milestone discovery, the high-grade nature of the mineralization warrants aggressive follow-up. This would include intense prospecting and sampling all along the gossans exposed both to the north and south of the showing. Favourable results would lead to drilling.

•

Respectfully submitted,

D. Cremonese, P.Eng. February 23, 2021

APPENDIX 1 - WORK COST STATEMENT

Field Personnel—Aug. 12, 2019	
Jeff Auston, P. Geo.	
2.0 days @ \$500/day	1,000
Alex Walus, P. Geo.	
2.0 days @ \$650/day	1,300
Food & Lodging/Misc. Costs.	
4.0 man-days @ \$125/man-day	500
Helicopter Cost (Bajo Reef Helicopters on contract)—Sept. 13-14, 2020 2.0 hrs @ \$1,346.10/hr (with fuel)	2,692
Miscellaneous: Truck rental, hand-held radios, Garmin In-reach charges, Sample freight charges, etc.	180
Assay costs—MSALabs (Langley, BC)	
Rock sample prep, Au geochem $+$ 30 elem. ICP	
49 samples @ \$31.89/sample	1,563
Report Costs	
Report and map preparation, compilation and research	
D. Cremonese, P.Eng., 1.5 days @ \$800/day	1,200
Draughting—Nicole Barrette	800

TOTAL..... <u>\$9,235</u>

Amount Claimed Per Statements of Work (not including 30% PAC withdrawal add-on):

Per SOW #5816962 \$5,110 Per SOW #5829576 \$4,125

*Please adjust PAC account of Teuton Resources Corp.

Regional Geology Map TEUTON RESOURCES CORP. (TUO:TSXV) Figure 3 Paleogene Boundary Stock: Granodioritic intrusive EBo rocks Coast Plutonic Complex (?): Quartz monzonitic intrusive rocks Eqm Middle Jurassic to Upper Jurassic Hazelton Group - Mount Dilworth Formation: Calc-alkaline volcanic rocks muJHM Hazelton Group: Undivided sedimentary muJHs rocks Lower Jurassic Texas Creek Plutonic Suite: Granodioritic EJTCS intrusive rocks Hazelton Group - Betty Creek Formation: Volcaniclastic rocks IJHB Hazelton Group - Unuk River Formation: IJHU Andesitic volcanic rocks Fault

Harry Property

Gold Geochemistry Values

TEUTON RESOURCES CORP. (TUO:TSXV)

Figure 4

Au Concentration (ppb)

\leq		>
CI	hi	р

Sample ID	Sample	Au	Ag
Sample ID	Туре	Concentration (ppb)	Concentration (ppm)
HYJTA052	Grab	80	3.3
HYJTA053	Grab	91	5.8
HYJTA054	Grab	817	2.6
HYJTA055	Grab	602	1.6
HYJTA056	Grab	148	1.5
HYJTA057	Grab	104	3.6
HYJTA058	Grab	70	11.7
HYJTA059	Grab	36	1.1
HYJTA060	Grab	115	7.2
HYITA061	Grab	205	2.0
HVITA062	Grab	1 553 400	53.1
HVITA064	0-1 m Chin	1014	12.8
HYITA065	1-2 m Chin	537 900	301
HYITA066	Grab	348	99.9
HYJTA067	0-1 m Chip	2080	6.4
HYJTA068	2-3 m Chip	4812	63
HYJTA069	2-3 m Chip	107	4.1
HYJTA070	Grab	54	16.8
HYJTA071	Grab	182	1.8
HYJTA072	Grab	199	1.7
TUT-08	Float	6	<0.2
TUT-09	Grab	283	2.6
TUT-10	Grab	358	1.8
TUT-11	Grab	36	0.9
TUT-12	Grab	201	4.2
TUT-13	Grab	6	0.3
TUT-14	Grab	2418	2.4
TUT-15	Grab	30	16.8
101-16	Grab	12	1
101-17	Grab	47	4.3
TUT-18	Float	332	5.9
TUT-19	Grab	158	3.7
TUT-20	Grab	2961	6.7
TUT-21	Grab	67	4
TUT-23	Grab	199	19
TUT-24	Grab	89	6.7
TUT-25	Grab	30	1.1
TUT-26	Grab	447	193
TUT-27	Float	347	19.1
TUT-28	Float	21	49.5
TUT-29	Grab	1482	5.8
TUT-30	Float	22	1.6
TUT-31	Grab	7	2.4
TUT-32	Grab	1342	4.9
TUT-33	Grab	151	1.3
TUT-34	Grab	228	32.3
101-35	Grab	163	8.1

Glaciated terrain

TEU-2021-Harry-Assessment-Samplemap NAD 83 Feb 13 2021 Last updated: Feb 22 2021 Created by: NB

434000

APPENDIX 2 - CERTIFICATE OF QUALIFICATION

I. Duo M. Cremonese, do hereby certify that:

- 1. I am a mineral property consultant with an office at 2130 Crescent Road, Victoria, BC.
- 2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practised my profession since 1979.
- 5. This report is based upon work carried out on the Harry property, Skeena Mining Division in September of 2020.
- 6. I am a principal of Teuton Resources Corp., owner of the Harry property: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 23rd day of February, 2021

2. Imm

D. Cremonese, P.Eng.

APPENDIX 3

ASSAY CERTIFICATES

MSALABS Langley, BC V1M 4B4 Phone: +1-604-888-0875

TEST REPORT: YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Number of Samples:	77
Report Version:	Final

COMMENTS:

Test results reported relate to the tested samples only on an "as received" basis. Unless otherwise stated above, sufficient sample was received for the methods requested and all samples were received in acceptable condition. Analytical results in unsigned reports marked "provisional" are subject to change, pending final QC review and approval. The customer has not provided any information than can affect the validity of the test results. Please refer to MSALABS' Schedule of Services and Fees for our complete Terms and Conditions. Preliminary results are applicable when a portion of samples in a job is 100% completed and reported or 1 of a number of methods on the same job have been completed 100%. Results cannot change, but additional results or results for additional methods can be added.

Teuton Resources Corp 2130 Crescent Road Victoria, BC, V8S 2H3 Canada

To:

SAMPLE PREPARATION					
METHOD CODE	DESCRIPTION				
PRP-910	Dry, Crush to 70% passing 2mm, Split 250g, Pulverize to 85% passing 75µm				
	Sample preparation performed by MS Analytical Terrace				

ANALYTICAL METHODS						
METHOD CODE	DESCRIPTION					
FAS-111	Au, Fire Assay, 30g fusion, AAS, Trace Level					
FAS-415	Au, Fire Assay, 30g fusion, Gravimetric					
ICF-6Pb	Pb, 0.2g, 4-Acid, ICP-AES, Ore Grade					
ICA-6Ag	Ag, 0.4g, 3:1 Aqua Regia, ICP-AES, Ore Grade					
ICA-6Pb	Pb, 0.4g, 3:1 Aqua Regia, ICP-AES, Ore Grade					
ICA-6Zn	Zn, 0.4g, 3:1 Aqua Regia, ICP-AES, Ore Grade					
ICP-130	Multi-Element, 0.5g, 3:1 Aqua Regia, ICP-AES, Trace Level					

Muerreffin

Signature: Yvette Hsi, BSc.

Laboratory Manager MSALABS

TEST REPORT:

YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-111	FAS-415	ICF-6Pb	ICA-6Ag	ICA-6Pb	ICA-6Zn	ICP-130	ICP-130
	Туре	Rec. Wt.	Analyte	Au	Au	Pb	Ag	Pb	Zn	Ag	Al
		kg	Units	ppm	ppm	%	ppm	%	%	ppm	%
Sample ID		0.01	LOR	0.005	0.9	0.01	1	0.001	0.001	0.2	0.01
Granite Blank	QC-P-BK			<0.005						<0.2	0.93
Granite Blank	QC-P-BK			<0.005						<0.2	1.00
A20-150	Rock	0.34		0.093						16.8	0.33
A20-150PD	QC-PD			0.122						16.6	0.45
A20-151	Rock	0.24		0.032						0.9	2.70
A20-152	Rock	0.72		>10	25.4			2.687	5.058	81.6	0.10
A20-153	Rock	0.68		7.492						51.7	0.18
TUT-1	Rock	0.88		0.959					3.825	9.6	0.17
TUT-2	Rock	0.56		0.396						1.9	0.39
TUT-3	Rock	0.62		0.008						0.6	0.18
TUT-4	Rock	0.58		0.018					1.785	6.1	0.09
TUT-5	Rock	0.22		0.008						2.5	1.26
TUT-6	Rock	0.66		<0.005						0.4	0.21
TUT-7	Rock	0.70		0.008						7.5	0.11
TUT-8	Rock	0.34		0.006						<0.2	0.02
TUT-9	Rock	0.26		0.283						2.6	0.04
TUT-10	Rock	0.26		0.358						1.8	0.74
TUT-11	Rock	0.34		0.036						0.9	0.65
TUT-12	Rock	0.28		0.201						4.2	0.45
TUT-13	Rock	0.28		0.006						0.3	0.08
TUT-14	Rock	0.20		2.418						2.4	0.90
TUT-15	Rock	0.24		0.030						16.8	0.36
TUT-16	Rock	0.26		0.012						1.0	0.96
TUT-17	Rock	0.36		0.047						4.3	0.20
TUT-18	Rock	0.14		0.332						5.9	0.10

YXT2010455

TEST REPORT:

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-111	FAS-415	ICF-6Pb	ICA-6Ag	ICA-6Pb	ICA-6Zn	ICP-130	ICP-130
	Туре	Rec. Wt.	Analyte	Au	Au	Pb	Ag	Pb	Zn	Ag	AI
		kg	Units	ppm	ppm	%	ppm	%	%	ppm	%
Sample ID		0.01	LOR	0.005	0.9	0.01	1	0.001	0.001	0.2	0.01
TUT-19	Rock	0.78		0.158						3.7	0.06
TUT-20	Rock	0.56		2.981					1.405	11.0	0.45
TUT-21	Rock	0.48		0.275						6.7	0.21
TUT-22	Rock	0.32		0.067						4.0	0.31
TUT-23	Rock	0.22		0.199						1.9	0.34
TUT-24	Rock	0.40		0.089					1.579	6.7	0.47
TUT-25	Rock	0.42		0.030						1.1	0.58
TUT-26	Rock	0.56		0.447		8.98	193	>5	6.054	>100	0.08
TUT-27	Rock	0.56		0.347					1.632	19.1	0.16
TUT-27PD	QC-PD			0.385					1.836	20.7	0.16
TUT-28	Rock	0.14		0.021		8.03		>5		49.5	0.08
TUT-29	Rock	0.86		1.482						5.8	0.30
TUT-30	Rock	0.86		0.022						1.6	0.42
TUT-31	Rock	0.54		0.007						2.4	0.16
TUT-32	Rock	0.38		1.342						4.9	0.34
TUT-33	Rock	0.38		0.151						1.3	0.19
TUT-34	Rock	0.54		0.228				3.679	6.082	32.3	0.10
TUT-35	Rock	0.52		0.163					1.703	8.1	0.20
KSJTA-029	Rock	0.68		0.118						2.3	0.39
KSJTA-030	Rock	0.56		0.046						2.4	0.49
KSJTA-031	Rock	0.56		<0.005						0.3	0.80
KSJTA-032	Rock	0.70		<0.005						0.6	0.18
KSJTA-033	Rock	0.72		0.014						0.5	0.37
KSJTA-034	Rock	0.62		<0.005						0.3	0.35
KSJTA-035	Rock	0.68		<0.005						<0.2	0.54

YXT2010455

TEST REPORT:

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-111	FAS-415	ICF-6Pb	ICA-6Ag	ICA-6Pb	ICA-6Zn	ICP-130	ICP-130
	Туре	Rec. Wt.	Analyte	Au	Au	Pb	Ag	Pb	Zn	Ag	AI
		kg	Units	ppm	ppm	%	ppm	%	%	ppm	%
Sample ID		0.01	LOR	0.005	0.9	0.01	1	0.001	0.001	0.2	0.01
KSTA-048	Rock	0.62		0.012						0.5	0.62
KSTA-049	Rock	0.52		0.304						65.8	0.09
KSTA-050	Rock	0.60		0.041						62.2	0.08
KSTA-051	Rock	0.70		<0.005						2.0	0.31
JTA-042	Rock	0.56		0.007						0.3	1.56
JTA-043	Rock	0.54		0.019						0.8	1.74
JTA-044	Rock	0.54		0.128						0.9	0.55
JTA-045	Rock	0.46		3.106						12.4	0.34
JTA-046	Rock	0.50		0.022						0.8	1.96
JTA-047	Rock	0.36		0.050						1.5	0.47
HYJTA-052	Rock	0.48		0.080						3.3	0.76
HYJTA-053	Rock	0.62		0.091						5.8	1.23
HYJTA-054	Rock	0.48		0.817						2.6	1.05
HYJTA-055	Rock	0.62		0.602						1.6	1.42
HYJTA-056	Rock	0.58		0.148						1.5	0.25
HYJTA-057	Rock	0.66		0.104						3.6	0.27
HYJTA-058	Rock	0.76		0.070						11.7	0.17
HYJTA-059	Rock	1.00		0.036						1.1	0.18
HYJTA-059PD	QC-PD			0.043						1.0	0.20
HYJTA-060	Rock	0.58		0.115						7.2	0.27
HYJTA-061	Rock	0.76		0.205						2.8	0.39
HYJTA-062	Rock	0.76		>10	21.6					33.1	0.16
HYJTA-063	Rock	0.64		>10	1553.4		642			>100	0.21
HYJTA-064	Rock	1.40		1.014						12.8	0.33
HYJTA-065	Rock	1.56		>10	537.9		301			>100	0.33

TEST REPORT: YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-111	FAS-415	ICF-6Pb	ICA-6Ag	ICA-6Pb	ICA-6Zn	ICP-130	ICP-130
	Туре	Rec. Wt.	Analyte	Au	Au	Pb	Ag	Pb	Zn	Ag	AI
		kg	Units	ppm	ppm	%	ppm	%	%	ppm	%
Sample ID		0.01	LOR	0.005	0.9	0.01	1	0.001	0.001	0.2	0.01
HYJTA-066	Rock	0.90		0.348		11.45		>5	7.756	99.9	0.26
HYJTA-067	Rock	1.06		2.080						6.4	0.31
HYJTA-068	Rock	1.18		4.812						63.0	0.27
HYJTA-069	Rock	1.26		0.107						4.1	0.43
HYJTA-070	Rock	0.64		0.054				1.126		16.8	0.35
HYJTA-071	Rock	0.58		0.182						1.8	0.28
HYJTA-072	Rock	0.90		0.199						1.7	0.19
DUP TUT-30										1.5	0.42
DUP TUT-34										31.7	0.11
DUP TUT-3				0.007							
DUP HYJTA-070				0.051							
STD BLANK										<0.2	<0.01
STD BLANK										<0.2	<0.01
STD BLANK				<0.005							
STD BLANK				<0.005							
STD BLANK							<1	<0.001	< 0.001		
STD BLANK						<0.01					

TEST REPORT: YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	Sample	PWE-100	Method	FAS-111	FAS-415	ICF-6Pb	ICA-6Ag	ICA-6Pb	ICA-6Zn	ICP-130	ICP-130
	Туре	Rec. Wt.	Analyte	Au	Au	Pb	Ag	Pb	Zn	Ag	Al
		kg	Units	ppm	ppm	%	ppm	%	%	ppm	%
Sample ID		0.01	LOR	0.005	0.9	0.01	1	0.001	0.001	0.2	0.01
STD BLANK					<0.9						
STD OREAS 24b										<0.2	3.08
STD OREAS 601										49.6	0.83
STD OxA147				0.083							
STD OxK160				3.703							
STD CDN-ME-1410							69	0.249	3.602		
STD MP-1b						2.14					
STD OxQ115					26.0						

To: Teuton Resources Corp 2130 Crescent Road Victoria, BC, V8S 2H3 Canada

TEST REPORT:

YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	As	В	Ba	Ве	Bi	Са	Cd	Со	Cr	Cu	Fe
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
Granite Blank	<2	<10	45	<0.5	<2	0.69	<0.5	4	19	6	1.87
Granite Blank	<2	<10	52	<0.5	<2	0.72	<0.5	4	25	7	1.97
A20-150	5	<10	12	<0.5	<2	22.30	1.8	5	8	4569	2.54
A20-150PD	5	<10	17	<0.5	4	22.66	1.9	6	13	4571	2.67
A20-151	18	<10	50	<0.5	3	0.53	<0.5	11	7	106	6.84
A20-152	5103	31	13	<0.5	8	4.25	192.3	8	17	631	21.83
A20-153	1872	19	28	<0.5	<2	8.93	29.8	13	14	186	9.94
TUT-1	633	12	46	<0.5	<2	1.97	335.3	12	30	386	4.16
TUT-2	442	<10	45	<0.5	<2	0.99	9.4	25	21	47	5.32
TUT-3	38	<10	32	<0.5	<2	2.70	<0.5	9	33	8	2.57
TUT-4	20	18	37	<0.5	<2	11.15	136.4	7	16	158	6.34
TUT-5	221	11	53	<0.5	3	3.21	2.3	24	13	20	8.16
TUT-6	<2	<10	39	<0.5	<2	4.62	<0.5	<1	28	26	0.82
TUT-7	78	<10	76	<0.5	<2	6.70	<0.5	14	25	2635	4.51
TUT-8	97	<10	<10	<0.5	<2	0.02	<0.5	<1	38	6	0.58
TUT-9	258	<10	<10	<0.5	2	0.01	1.3	<1	27	175	3.35
TUT-10	450	<10	79	<0.5	<2	0.20	1.2	15	10	15	6.60
TUT-11	95	<10	58	<0.5	<2	0.59	<0.5	13	29	23	4.40
TUT-12	108	<10	76	<0.5	<2	2.10	<0.5	14	24	92	3.12
TUT-13	9	<10	19	<0.5	<2	4.38	<0.5	2	32	5	0.61
TUT-14	240	<10	89	<0.5	<2	2.21	1.3	13	21	66	3.81
TUT-15	32	<10	114	0.5	<2	4.07	4.3	10	15	1306	5.12
TUT-16	20	<10	159	<0.5	<2	0.24	3.2	21	21	70	3.34
TUT-17	146	17	11	<0.5	6	0.01	<0.5	6	20	22	13.18
TUT-18	24	<10	29	<0.5	<2	1.62	7.5	3	59	32	1.70

YXT2010455

To: Teuton Resources Corp 2130 Crescent Road Victoria, BC, V8S 2H3 Canada

TEST REPORT:

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	As	В	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
TUT-19	107	<10	27	<0.5	<2	0.39	<0.5	1	39	38	0.96
TUT-20	3819	10	44	<0.5	2	5.09	81.6	16	18	54	6.09
TUT-21	372	<10	52	<0.5	2	0.16	8.9	9	30	27	3.95
TUT-22	1010	18	22	<0.5	6	0.40	2.0	6	23	25	13.14
TUT-23	161	<10	45	<0.5	<2	0.13	0.7	5	42	42	1.78
TUT-24	206	<10	70	<0.5	2	2.14	108.6	17	21	400	5.54
TUT-25	84	<10	85	<0.5	<2	0.34	<0.5	19	15	43	4.45
TUT-26	201	14	<10	<0.5	6	0.01	448.3	6	4	152	9.59
TUT-27	401	<10	46	<0.5	2	0.02	119.6	3	37	245	4.82
TUT-27PD	444	<10	49	<0.5	<2	0.01	135.4	3	41	275	4.78
TUT-28	20	<10	53	<0.5	<2	0.02	13.8	3	11	34	2.47
TUT-29	287	<10	62	<0.5	3	0.25	3.4	7	34	58	4.26
TUT-30	13	12	63	<0.5	<2	0.27	18.2	11	31	33	4.04
TUT-31	8	<10	31	<0.5	<2	0.55	2.9	4	15	39	1.29
TUT-32	207	18	16	<0.5	4	0.69	1.8	16	24	7	9.21
TUT-33	251	<10	85	<0.5	<2	0.07	0.5	3	43	20	1.41
TUT-34	143	<10	22	<0.5	4	<0.01	446.1	4	14	535	6.03
TUT-35	227	<10	24	<0.5	<2	0.04	110.4	4	37	392	5.65
KSJTA-029	359	<10	131	<0.5	<2	2.69	4.6	13	25	34	4.18
KSJTA-030	103	<10	77	<0.5	<2	2.97	20.3	12	11	44	2.54
KSJTA-031	28	<10	136	<0.5	<2	1.32	<0.5	3	42	62	2.46
KSJTA-032	19	12	172	<0.5	<2	13.09	<0.5	6	10	15	7.49
KSJTA-033	40	<10	83	<0.5	<2	0.87	<0.5	22	11	26	3.43
KSJTA-034	7	14	109	<0.5	<2	10.03	<0.5	9	13	24	6.18
KSJTA-035	35	<10	102	<0.5	<2	6.84	<0.5	18	22	17	5.17

YXT2010455

To: Teuton Resources Corp 2130 Crescent Road Victoria, BC, V8S 2H3 Canada

100 400

100 400

TEST REPORT:

100 400

100 40

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	As	В	Ва	Ве	Bi	Ca	Cd	Со	Cr	Cu	Fe
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
KSTA-048	33	<10	205	0.7	<2	0.06	<0.5	2	2	39	5.81
KSTA-049	99	<10	38	<0.5	6	0.68	4.3	3	40	2938	1.40
KSTA-050	32	<10	18	<0.5	5	0.04	63.1	<1	45	893	0.93
KSTA-051	3	<10	625	<0.5	<2	7.48	<0.5	3	7	12	2.12
JTA-042	17	<10	131	<0.5	<2	8.92	<0.5	16	42	89	3.04
JTA-043	9	<10	78	<0.5	<2	0.67	<0.5	29	50	168	4.23
JTA-044	324	<10	46	<0.5	<2	7.50	0.8	12	22	83	4.39
JTA-045	950	27	28	<0.5	5	10.54	15.8	49	7	2577	21.00
JTA-046	5	<10	39	<0.5	<2	2.61	<0.5	20	43	97	5.81
JTA-047	4	12	31	<0.5	5	1.03	<0.5	56	27	310	9.94
HYJTA-052	196	<10	43	<0.5	<2	13.23	1.1	12	13	28	5.54
HYJTA-053	2436	22	173	<0.5	3	0.68	2.9	55	30	111	17.28
HYJTA-054	5141	43	50	<0.5	16	0.29	4.7	85	18	166	28.84
HYJTA-055	233	<10	58	<0.5	<2	0.13	0.9	9	29	23	5.97
HYJTA-056	140	<10	39	<0.5	<2	6.06	<0.5	7	18	9	3.65
HYJTA-057	463	15	15	<0.5	4	0.15	2.3	15	29	44	10.50
HYJTA-058	116	<10	54	<0.5	<2	0.35	54.2	11	26	65	2.90
HYJTA-059	52	16	44	<0.5	<2	5.62	13.1	10	14	17	7.87
HYJTA-059PD	55	14	52	<0.5	<2	4.57	18.1	11	14	20	7.13
HYJTA-060	280	23	11	<0.5	9	0.12	3.6	10	22	89	20.84
HYJTA-061	248	<10	63	<0.5	3	0.19	1.1	9	18	25	6.47
HYJTA-062	902	11	39	<0.5	3	0.46	1.6	7	29	11	6.33
HYJTA-063	610	14	28	<0.5	4	0.19	2.4	9	25	36	8.89
HYJTA-064	316	<10	54	<0.5	3	0.39	2.3	15	29	17	5.39
HYJTA-065	246	12	43	<0.5	3	0.82	2.2	19	20	85	6.21

100 400

100 400

100 400

TEST REPORT:

YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	As	В	Ва	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
HYJTA-066	47	<10	53	<0.5	<2	3.23	912.2	14	20	116	3.74
HYJTA-067	53	<10	73	<0.5	<2	0.91	<0.5	9	28	8	2.95
HYJTA-068	115	<10	75	<0.5	<2	0.15	<0.5	10	31	20	2.82
HYJTA-069	158	<10	48	<0.5	3	0.53	1.6	21	14	64	5.19
HYJTA-070	14	<10	67	<0.5	4	0.97	101.2	16	16	166	5.02
HYJTA-071	70	<10	56	<0.5	<2	1.68	13.0	17	16	22	5.10
HYJTA-072	99	<10	77	<0.5	<2	0.08	<0.5	6	29	16	2.52
DUP TUT-30	13	11	66	<0.5	<2	0.27	17.5	11	35	33	4.03
DUP TUT-34	139	11	27	<0.5	4	0.01	433.8	4	14	517	5.92
DUP TUT-3											
DUP HYJTA-070											
STD BLANK	<2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1	<1	<0.01
STD BLANK	<2	<10	<10	<0.5	<2	< 0.01	<0.5	<1	<1	<1	< 0.01
STD BLANK											
STD BLANK											
STD BLANK											
STD BLANK											

TEST REPORT: YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	As	В	Ва	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample ID	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
STD BLANK											
STD OREAS 24b	6	<10	144	1.3	<2	0.44	<0.5	15	105	36	3.80
STD OREAS 601	312	<10	249	0.6	21	1.11	7.8	5	40	1026	2.17
STD OxA147											
STD OxK160											
STD CDN-ME-1410											
STD MP-1b											
STD OxQ115											

YXT2010455

TEST REPORT:

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	Р	Pb
	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample ID	10	1	0.01	10	0.01	5	1	0.01	1	10	2
Granite Blank	<10	<1	0.06	<10	0.54	484	3	0.07	2	401	<2
Granite Blank	<10	<1	0.08	<10	0.55	497	4	0.08	3	400	<2
A20-150	<10	<1	0.05	16	0.86	3920	2	0.02	13	226	3
A20-150PD	<10	<1	0.09	16	0.91	3923	4	0.02	14	261	8
A20-151	11	<1	0.15	<10	1.69	290	5	0.02	6	2483	6
A20-152	21	6	0.05	<10	0.60	1410	2	<0.01	64	106	>10000
A20-153	<10	1	0.11	<10	1.26	5145	3	0.01	11	699	7776
TUT-1	<10	37	0.14	<10	0.30	299	6	0.01	9	471	6682
TUT-2	<10	<1	0.19	<10	0.25	160	15	0.02	44	1062	571
TUT-3	<10	<1	0.12	<10	0.78	785	5	0.02	15	639	44
TUT-4	<10	19	0.06	<10	3.35	4578	67	0.02	32	143	918
TUT-5	<10	<1	0.20	<10	0.33	952	14	0.02	6	1359	79
TUT-6	<10	<1	0.23	<10	0.04	671	4	0.03	2	170	8
TUT-7	<10	<1	0.08	<10	1.52	1998	3	0.02	69	300	6
TUT-8	<10	<1	<0.01	<10	<0.01	88	5	<0.01	3	41	4
TUT-9	<10	1	0.01	<10	<0.01	40	4	0.01	3	69	203
TUT-10	<10	<1	0.22	<10	0.32	630	4	0.01	3	1831	42
TUT-11	<10	<1	0.18	<10	0.15	1456	5	0.01	4	2843	10
TUT-12	<10	<1	0.20	<10	0.14	1716	4	0.02	3	1138	70
TUT-13	<10	<1	0.04	<10	0.03	2132	5	0.01	2	82	<2
TUT-14	<10	<1	0.22	<10	0.60	1575	4	0.02	4	1000	73
TUT-15	<10	<1	0.26	<10	0.32	2782	3	0.02	4	1219	1379
TUT-16	<10	<1	0.16	<10	0.24	5290	4	0.04	6	882	32
TUT-17	13	10	0.19	<10	0.03	155	11	0.01	6	107	25
TUT-18	<10	2	0.08	<10	0.09	529	10	0.02	4	153	354

YXT2010455

TEST REPORT:

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	Р	Pb
	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample ID	10	1	0.01	10	0.01	5	1	0.01	1	10	2
TUT-19	<10	<1	0.05	<10	0.11	301	7	0.01	3	48	111
TUT-20	<10	16	0.19	<10	0.23	1184	17	0.01	5	810	3688
TUT-21	<10	2	0.17	<10	0.02	43	9	0.01	5	602	373
TUT-22	12	1	0.15	<10	0.15	406	7	<0.01	6	529	41
TUT-23	<10	<1	0.12	<10	0.14	361	7	0.01	4	417	65
TUT-24	<10	17	0.36	<10	0.83	2179	4	0.03	4	1196	1546
TUT-25	<10	<1	0.36	<10	0.36	541	3	0.04	5	1525	53
TUT-26	<10	21	0.02	<10	<0.01	40	3	<0.01	4	36	>10000
TUT-27	<10	45	0.11	<10	0.01	32	6	0.01	4	54	6647
TUT-27PD	<10	48	0.11	<10	0.01	38	6	0.01	5	61	7328
TUT-28	<10	1	0.01	<10	0.01	1326	3	0.03	6	91	>10000
TUT-29	<10	<1	0.19	<10	0.07	141	10	0.01	5	280	220
TUT-30	<10	2	0.31	<10	0.05	65	5	0.01	6	970	697
TUT-31	<10	<1	0.09	<10	0.18	607	1	0.01	4	313	456
TUT-32	<10	5	0.25	<10	0.18	442	5	<0.01	6	1025	106
TUT-33	<10	<1	0.16	<10	0.02	149	9	0.02	3	298	31
TUT-34	<10	50	0.09	<10	0.01	102	1	0.01	5	37	>10000
TUT-35	<10	12	0.17	<10	0.02	54	5	0.01	4	219	1667
KSJTA-029	<10	<1	0.23	<10	0.49	716	11	0.03	62	581	126
KSJTA-030	<10	2	0.27	<10	0.41	536	1	0.03	56	510	1713
KSJTA-031	<10	<1	0.10	<10	0.24	215	6	0.02	56	387	14
KSJTA-032	<10	<1	0.08	<10	2.55	2290	2	0.03	23	176	17
KSJTA-033	<10	<1	0.20	<10	0.23	191	2	0.03	49	1058	68
KSJTA-034	<10	<1	0.25	<10	2.18	1603	3	0.02	16	1005	8
KSJTA-035	<10	<1	0.42	<10	2.14	1287	2	0.03	15	731	5

To: Teuton Resources Corp 2130 Crescent Road Victoria, BC, V8S 2H3 Canada

34 -0875

To:

Teuton Resources Corp

2130 Crescent Road

Victoria, BC, V8S 2H3

Canada

TEST REPORT:

YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	Ga	Hg	К	La	Mg	Mn	Mo	Na	Ni	Р	Pb
	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample ID	10	1	0.01	10	0.01	5	1	0.01	1	10	2
KSTA-048	<10	<1	0.34	42	0.03	179	19	0.05	3	526	40
KSTA-049	<10	4	0.05	<10	0.02	294	7	0.01	3	130	97
KSTA-050	<10	7	0.05	<10	<0.01	204	7	0.01	3	41	7001
KSTA-051	<10	<1	0.20	<10	0.25	1386	<1	0.09	3	494	41
JTA-042	<10	<1	0.46	<10	1.55	1516	2	0.03	81	924	13
JTA-043	<10	<1	0.27	<10	1.08	254	7	0.02	39	1431	8
JTA-044	<10	<1	0.12	<10	0.56	1268	4	0.02	32	807	41
JTA-045	18	<1	0.14	<10	0.24	2964	1	0.01	15	405	209
JTA-046	<10	<1	0.16	10	1.32	1894	2	0.02	61	1362	12
JTA-047	11	<1	0.10	<10	0.18	361	5	0.02	17	297	4
HYJTA-052	<10	<1	0.11	<10	0.79	3987	2	0.01	8	510	16
HYJTA-053	17	<1	0.26	<10	0.67	2003	7	0.03	20	4610	252
HYJTA-054	23	<1	< 0.01	<10	0.61	10587	<1	< 0.01	14	4109	359
HYJTA-055	<10	<1	0.16	<10	0.61	731	9	0.01	4	998	30
HYJTA-056	<10	<1	0.15	<10	0.04	1176	8	0.01	3	489	9
HYJTA-057	10	3	0.24	<10	0.03	71	6	0.01	6	481	91
HYJTA-058	<10	3	0.12	<10	0.04	196	10	0.04	3	955	5565
HYJTA-059	<10	<1	0.10	<10	1.39	4669	3	0.04	4	2472	63
HYJTA-059PD	<10	1	0.12	<10	1.14	3650	3	0.05	4	2081	71
HYJTA-060	20	24	0.25	<10	0.03	148	13	<0.01	8	584	82
HYJTA-061	<10	8	0.26	<10	0.05	86	6	0.03	4	870	30
HYJTA-062	<10	4	0.15	<10	0.01	101	14	0.01	4	154	482
HYJTA-063	<10	52	0.17	<10	0.02	74	11	0.01	7	546	161
HYJTA-064	<10	2	0.26	<10	0.03	55	8	0.01	6	874	167
HYJTA-065	<10	22	0.26	<10	0.02	128	14	0.01	6	1013	98

YXT2010455

To: Teuton Resources Corp 2130 Crescent Road Victoria, BC, V8S 2H3 Canada

TEST REPORT:

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	Ga	Hg	к	La	Mg	Mn	Мо	Na	Ni	Р	Pb
	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample ID	10	1	0.01	10	0.01	5	1	0.01	1	10	2
HYJTA-066	<10	27	0.20	<10	0.78	1462	4	0.02	4	934	>10000
HYJTA-067	<10	<1	0.23	<10	0.03	530	6	0.01	4	917	91
HYJTA-068	<10	1	0.21	<10	0.02	249	6	0.01	3	691	179
HYJTA-069	<10	<1	0.32	<10	0.04	103	3	0.01	5	1715	32
HYJTA-070	<10	4	0.19	<10	0.25	909	4	0.06	4	1127	>10000
HYJTA-071	<10	<1	0.17	<10	0.42	931	3	0.05	4	1262	1013
HYJTA-072	<10	<1	0.18	<10	0.01	36	6	0.01	3	387	221
DUP TUT-30	<10	2	0.31	<10	0.05	65	4	0.02	5	962	693
DUP TUT-34	<10	50	0.09	<10	0.01	102	1	0.01	5	34	>10000
DUP TUT-3											
DUP HYJTA-070											
STD BLANK	<10	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10	<2
STD BLANK	<10	<1	< 0.01	<10	<0.01	<5	<1	< 0.01	<1	<10	<2
STD BLANK											
STD BLANK											
STD BLANK											
STD BLANK											

TEST REPORT: YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	Ga	Hg	к	La	Mg	Mn	Mo	Na	Ni	Р	Pb
	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm
Sample ID	10	1	0.01	10	0.01	5	1	0.01	1	10	2
STD BLANK											
STD OREAS 24b	13	<1	1.16	21	1.37	318	3	0.10	54	601	8
STD OREAS 601	<10	<1	0.25	20	0.19	434	3	0.10	22	358	282
STD OxA147											
STD OxK160											
STD CDN-ME-1410											
STD MP-1b											
STD OxQ115											

875

To:

Teuton Resources Corp

2130 Crescent Road

Victoria, BC, V8S 2H3

Canada

TEST REPORT:

YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	S	Sb	Sc	Sr	Th	Ti	TI	V	W	Zn	Zr
	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	2	2	1	8	0.01	10	1	10	1	5
Granite Blank	0.02	<2	2	19	<8	0.07	<10	26	<10	29	<5
Granite Blank	0.02	<2	2	21	<8	0.08	<10	29	<10	29	<5
A20-150	0.62	4	3	387	<8	<0.01	<10	9	<10	105	<5
A20-150PD	0.65	5	3	404	<8	<0.01	<10	11	<10	110	<5
A20-151	0.16	6	3	30	<8	0.01	<10	53	<10	71	<5
A20-152	>10	97	<2	173	<8	< 0.01	<10	5	<10	>10000	6
A20-153	8.97	61	<2	417	<8	<0.01	<10	7	<10	5786	<5
TUT-1	5.62	12	<2	76	<8	<0.01	<10	7	<10	>10000	<5
TUT-2	4.86	10	4	36	<8	<0.01	<10	13	<10	1007	<5
TUT-3	0.65	8	3	109	<8	< 0.01	<10	6	<10	137	<5
TUT-4	1.17	19	4	287	<8	<0.01	<10	16	<10	>10000	<5
TUT-5	5.16	18	<2	337	<8	<0.01	<10	20	<10	145	<5
TUT-6	<0.01	<2	<2	530	<8	<0.01	<10	33	<10	24	<5
TUT-7	0.56	7	2	140	<8	<0.01	<10	8	<10	38	<5
TUT-8	0.01	4	<2	2	<8	<0.01	<10	<1	<10	16	<5
TUT-9	0.21	9	<2	<1	<8	<0.01	<10	<1	<10	426	<5
TUT-10	1.46	9	<2	8	<8	<0.01	<10	16	<10	39	<5
TUT-11	1.01	7	<2	38	<8	<0.01	<10	10	<10	71	<5
TUT-12	1.99	6	<2	80	<8	0.07	<10	9	<10	222	<5
TUT-13	0.18	<2	<2	332	<8	<0.01	<10	2	<10	4	<5
TUT-14	2.54	5	<2	137	<8	0.06	<10	16	<10	109	<5
TUT-15	0.50	63	6	172	<8	< 0.01	<10	9	<10	375	<5
TUT-16	0.23	5	7	19	<8	<0.01	<10	22	<10	198	<5
TUT-17	>10	128	<2	1	<8	<0.01	86	7	<10	58	<5
TUT-18	1.15	18	<2	112	<8	<0.01	<10	3	<10	1019	<5

2130 Crescent Road Victoria, BC, V8S 2H3 Canada

To:

Teuton Resources Corp

TEST REPORT:

YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	S	Sb	Sc	Sr	Th	Ti	TI	V	w	Zn	Zr
	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	2	2	1	8	0.01	10	1	10	1	5
TUT-19	0.31	22	<2	48	<8	< 0.01	<10	6	<10	87	<5
TUT-20	6.48	131	2	287	<8	< 0.01	12	15	<10	>10000	<5
TUT-21	3.97	21	<2	9	<8	<0.01	<10	5	<10	1805	<5
TUT-22	>10	60	<2	19	<8	<0.01	<10	10	<10	56	<5
TUT-23	0.87	6	<2	7	<8	<0.01	<10	11	<10	56	<5
TUT-24	4.66	16	4	195	<8	< 0.01	<10	14	<10	>10000	<5
TUT-25	2.41	10	3	14	<8	<0.01	<10	19	<10	123	<5
TUT-26	>10	32	<2	2	<8	<0.01	<10	<1	<10	>10000	<5
TUT-27	5.92	93	<2	2	<8	< 0.01	<10	3	<10	>10000	<5
TUT-27PD	5.93	106	<2	4	<8	<0.01	<10	3	<10	>10000	<5
TUT-28	1.13	49	2	41	<8	< 0.01	<10	7	<10	2319	<5
TUT-29	4.16	21	<2	19	<8	<0.01	<10	8	<10	507	<5
TUT-30	4.20	23	<2	36	<8	<0.01	<10	10	<10	1961	<5
TUT-31	0.27	20	<2	92	<8	< 0.01	<10	7	<10	638	<5
TUT-32	9.62	64	<2	73	<8	< 0.01	<10	13	<10	47	<5
TUT-33	0.97	18	<2	8	<8	<0.01	<10	5	<10	52	<5
TUT-34	9.58	48	<2	7	<8	< 0.01	<10	3	<10	>10000	<5
TUT-35	6.62	25	<2	4	<8	<0.01	<10	6	<10	>10000	<5
KSJTA-029	1.55	26	3	77	<8	<0.01	<10	11	<10	434	<5
KSJTA-030	1.30	7	2	86	<8	<0.01	<10	9	<10	1985	<5
KSJTA-031	0.03	11	<2	36	<8	< 0.01	<10	13	<10	115	<5
KSJTA-032	0.48	6	<2	458	<8	< 0.01	<10	8	<10	23	<5
KSJTA-033	1.95	12	<2	54	<8	<0.01	<10	9	<10	59	<5
KSJTA-034	0.03	8	6	293	<8	<0.01	<10	52	<10	43	<5
KSJTA-035	0.32	7	13	281	<8	<0.01	<10	33	<10	27	<5

2130 Crescent Road Victoria, BC, V8S 2H3 Canada

To:

Teuton Resources Corp

TEST REPORT:

YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	S	Sb	Sc	Sr	Th	Ti	TI	V	W	Zn	Zr
	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	2	2	1	8	0.01	10	1	10	1	5
KSTA-048	1.29	15	3	19	12	<0.01	<10	<1	<10	60	<5
KSTA-049	0.04	365	<2	10	<8	<0.01	<10	5	<10	349	<5
KSTA-050	0.30	704	<2	15	<8	<0.01	<10	<1	<10	9216	<5
KSTA-051	0.63	3	2	462	<8	< 0.01	<10	7	<10	63	<5
JTA-042	0.20	7	2	642	<8	0.02	<10	25	<10	43	<5
JTA-043	1.54	5	<2	48	<8	0.02	<10	29	<10	39	<5
JTA-044	0.67	14	3	549	<8	<0.01	<10	14	<10	29	<5
JTA-045	>10	13	<2	331	<8	<0.01	<10	11	<10	1352	6
JTA-046	1.18	6	<2	42	<8	0.02	<10	34	<10	40	<5
JTA-047	6.93	12	<2	52	<8	<0.01	<10	5	<10	35	<5
HYJTA-052	5.20	16	3	539	<8	<0.01	<10	23	<10	36	<5
HYJTA-053	2.06	21	8	67	<8	<0.01	<10	47	<10	216	6
HYJTA-054	0.15	42	6	36	<8	0.01	<10	64	<10	207	9
HYJTA-055	1.94	5	<2	7	<8	<0.01	<10	17	<10	67	<5
HYJTA-056	3.74	4	<2	161	<8	<0.01	<10	5	<10	11	<5
HYJTA-057	>10	69	<2	10	<8	<0.01	<10	10	<10	106	<5
HYJTA-058	2.71	28	2	44	<8	< 0.01	<10	8	<10	4860	<5
HYJTA-059	2.33	6	23	601	<8	< 0.01	<10	58	<10	1144	<5
HYJTA-059PD	2.45	4	19	490	<8	<0.01	<10	50	<10	1577	<5
HYJTA-060	>10	80	<2	8	<8	<0.01	42	11	<10	87	7
HYJTA-061	4.47	83	<2	10	<8	<0.01	11	11	<10	61	<5
HYJTA-062	6.74	100	<2	34	<8	<0.01	<10	4	<10	67	<5
HYJTA-063	9.22	181	<2	15	<8	<0.01	19	5	<10	138	<5
HYJTA-064	5.61	48	<2	21	<8	<0.01	<10	8	<10	254	<5
HYJTA-065	6.64	67	<2	34	<8	< 0.01	<10	9	<10	296	<5

YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	S	Sb	Sc	Sr	Th	Ti	TI	V	w	Zn	Zr
	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	2	2	1	8	0.01	10	1	10	1	5
HYJTA-066	7.79	89	7	664	<8	< 0.01	<10	13	<10	>10000	<5
HYJTA-067	2.77	6	<2	48	<8	< 0.01	<10	8	<10	96	<5
HYJTA-068	2.22	22	<2	6	<8	<0.01	<10	6	<10	160	<5
HYJTA-069	5.42	10	<2	35	<8	<0.01	<10	11	<10	106	<5
HYJTA-070	3.96	95	8	136	<8	< 0.01	<10	17	<10	8521	<5
HYJTA-071	3.52	9	5	235	<8	< 0.01	<10	19	<10	1358	<5
HYJTA-072	2.37	9	<2	11	<8	<0.01	<10	9	<10	111	<5
DUP TUT-30	4.19	23	<2	36	<8	<0.01	<10	9	<10	1939	<5
DUP TUT-34	9.45	48	<2	7	<8	<0.01	<10	4	<10	>10000	<5
DUP TUT-3											
DUP HYJTA-070											
STD BLANK	< 0.01	<2	<2	<1	<8	<0.01	<10	<1	<10	<1	<5
STD BLANK	<0.01	<2	<2	<1	<8	< 0.01	<10	<1	<10	<1	<5
STD BLANK											
STD BLANK											
STD BLANK											
STD BLANK											

TEST REPORT: YXT2010455

Project Name:	HOSB
Job Received Date:	18-Sep-2020
Job Report Date:	27-Nov-2020
Report Version:	Final

	ICP-130										
	S	Sb	Sc	Sr	Th	Ti	TI	V	W	Zn	Zr
	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample ID	0.01	2	2	1	8	0.01	10	1	10	1	5
STD BLANK											
STD OREAS 24b	0.20	3	10	26	9	0.20	<10	80	<10	91	24
STD OREAS 601	1.06	22	<2	35	<8	0.01	<10	9	<10	1334	27
STD OxA147											
STD OxK160											
STD CDN-ME-1410											
STD MP-1b											
STD OxQ115											