BRITISH COLUMBIA The Best Place on Earth	BC Geological Survey Assessment Report 39454	The second					
Ministry of Energy and Mines BC Geological Survey	Assess Title F	ment Report Page and Summary					
TYPE OF REPORT [type of survey(s)]: Geochemical, Geological	TOTAL COST: \$17,64	\$17,647.43					
AUTHOR(S): Connor Malek	SIGNATURE(S) and Mel	(
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR	OF WORK: 2020					
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): SOV	V Event # 5838758						
PROPERTY NAME: Hisnit Property							
CLAIM NAME(S) (on which the work was done): 1076209, 1076211, 10762	12						
COMMODITIES SOUGHT: Cu MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: 092E-077, 092E-0 MINING DIVISION: Alberni LATITUDE: 49 ° 44 °06 " LONGITUDE: 126 ° OWNER(S): 1) Denis Pelletier2)	78, 092E-079, 092E-080 NTS/BCGS: <u>NTS 92E/10</u> <u>31 ³0</u> " (at centre of work)						
MAILING ADDRESS:							
OPERATOR(S) [who paid for the work]: 1) Denis Pelletier 2)	First Geolas Consutling P.O Box 2600 Chilliwack BC, V2R 1A8						
MAILING ADDRESS:							
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alter Eocene Mount Washington Pluton, Hisnit Stock, Clayoquot intrusive Catface Copper, Quatsino Formation, Bonanza Formation	ration, mineralization, size and attitude): suite, West Coast Crystalline Complex, Cu	Porphyry					
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPOR	RT NUMBERS: 32165, 31749, 29909						

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic			
Induced Polarization		-	
Radiometric		_	
Seismic			
Other			
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil			
Silt			
Rock <u>53</u> Grab samples, 4 \	Whole Rock Samples	1076209, 1076211, 1076212	\$17,647.43
Other			
DRILLING (total metres; number of holes, size)		
Core			_
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic		_	
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/trail		
Trench (metres)			
Underground dev. (metres)			
Other		_	
		TOTAL COST:	\$17,647.43

HISNIT PROPERTY

VANCOUVER ISLAND, BRITISH COLUMBIA

ALBERNI MINING DIVISION 49° 44' 06" N LATITUDE, 126° 31' 30" W LONGITUDE UTM: NAD 83 ZONE 9, 677440 E, 5512200 N NTS 92E/10

Looking southwest from the Hisnit Property

For:

Mirva Properties Ltd. Prepared by: First Geolas Consulting Connor Malek, B.Sc.

February 8, 2020

TABLE OF CONTENTS

Summary
1 Location, Infrastructure, and Tenure 4
2 Geology
2.1 Regional Geology
2.2 Property Geology10
2.3 Deposit Model10
3 Historical Technical Work13
4 2020 Exploration Program18
4.1 Rock Sample Geochemistry19
4.2 Whole Rock Geochemistry21
5 Conclusions
6 Recommendations
References
Statements of Qualifications
Appendices

LIST OF FIGURES

Figure 1: Hisnit Property Location Map	5
Figure 2: Hisnit Property Tenure Map	7
Figure 3: Hisnit Property Regional Geology Map (modified from Madsen et al., 2006)) 9
Figure 4: Hisnit Property Geology Map	12
Figure 5: Hisnit Property Historical Rock Samples	15
Figure 6: Hisnit Property Historical Soil and Moss Mat Samples	16
Figure 7: Hisnit Property Historical Geophysics – TMI	17
Figure 8: Hisnit Property 2020 Rock Samples	20
Figure 9: Hisnit Property 2020 Whole Rock Samples	22
Figure 10: Total Alkalis Versus Silica Plot	23
Figure 11: Samples Compared to Average Element Abundances in Granodiorite	24
Figure 12: AFM Plot	24
Figure 13: Alumina Saturation Plot	25
Figure 14: Sr/Y versus SiO2 Plot	26

Summary

The Hisnit Property is located on the west coast of Vancouver Island, a favorable district with historical mining and current exploration projects. The Property is close to the Town of Gold River, and has excellent road access.

The Hisnit Property has a limited exploration history that nevertheless has resulted in the discovery of copper mineralization associated with porphyry-style alteration on the Property. An economic deposit of porphyry copper, the Catface deposit, is located less than 50 km away and provides an analogue to guide exploration on the Hisnit Property. An intrusive body of likely Eocene age occurs directly east of the Hisnit Property and potentially is the source for the copper mineralization discovered on the Property so far.

Six days of field work completed on the Property in two phases in 2020 resulted in geochemical sampling of sulphide mineralization both at the existing showings as well as at two new areas of anomalous copper mineralization recently exposed by logging. Advanced geochemical analysis of four granodiorite dikes related to copper mineralization allows some comparisons to the Catface deposit. This report details the setting, geology, mineralization, history, and 2020 field work completed on the Hisnit Property and offers recommendations for future work.

1 Location, Infrastructure, and Tenure

The Hisnit Property is located on the west coast of Vancouver Island, an area with a rich resource extraction history including mining, forestry, and fishing operations. The Property is part of the Alberni Mining Division.

The Hisnit Property is located approximately 35 km west of Gold River, BC. The Property is accessed by numerous logging roads that begin from Head Bay Drive, which connects Gold River to Tahsis, BC. Room and board can be obtained in Gold River, which also hosts a primary health care facility. The Property is directly west of Hisnit Inlet, a northern branch off of Tlupana Inlet, providing access to tidewater. Tree cover consists of mature stands of Douglas Fir, Western Hemlock, and Western Red Cedar, with a dense undergrowth of salal, salmonberry, blackberry, and other shrubs and ferns. Terrain is moderate to rugged and relief varies from 0 to 760 m above sea level. Monthly average temperatures range from 4°C in January to 25°C in August, and precipitation averages over 285 cm per year, including about 100 cm of snow between December and March.

Approximately 47 km southeast of the Property lies the Catface Cu (Mo-Au) porphyry deposit, owned by Imperial Minerals Corporation. A low-grade copper resource has been delineated within the Cliff Zone estimated to contain an indicated resource of 56.9 million tonnes averaging 0.4% Cu and an additional inferred resource of 262.4 million tonnes grading 0.38% Cu (Simpson and Chapman, 2009)

As shown in Table 1 below, the Hisnit Property comprises 5 mineral claims totaling 1,295 hectares that are 100% owned by Denis Pelletier. The core claim of the Property is subject to \$5 per hectare in assessment work and the remaining claims are older than six years and are therefore subject to \$20 per hectare of assessment work required annually to keep them in good standing, which results in a total annual expenditure amount of \$17,438.08.

Tenure_ID	Claim Name	Owner	Issue Date	Good to Date	Hectares
1076209	NEW HISNIT	Denis Pelletier	May 14, 2020	June 2, 2020	563.80
1076210	New Hisnit 3	Denis Pelletier	November 25, 2009	June 2, 2020	250.60
1076211	New Hisnit 2	Denis Pelletier	November 25, 2009	June 2, 2020	187.92
1076212	New Hisnit 5	Denis Pelletier	November 25, 2009	June 2, 2020	167.11
1076213	New Hisnit 4	Denis Pelletier	November 25, 2009	June 2, 2020	125.33
					1294.76

Table 1: Hisnit Property Claim Status as of February 1, 2020

2 Geology

2.1 Regional Geology

The Hisnit Property lies within Wrangellia Terrane, a complex and variable terrane that extends from Vancouver Island to central Alaska (Figure 3). Triassic flood basalts of the Karmutsen Formation are the most distinct unit of the terrane and appear to represent a single flood basalt event that formed a once-continuous unit between Alaska and Vancouver Island (Greene et al., 2005).

On Vancouver Island, the oldest rocks of Wrangellia, which lie at the top of an imbricated stack of northeast-dipping thrust sheets, are Late Silurian to Early Permian arc sequences. In the Late Triassic, rapid uplift associated with a rising plume head led to the eruption of voluminous flood basalts to form part of an extensive oceanic plateau. As volcanism ceased, the oceanic plateau soon began to subside and accumulate deep water carbonate sediments. Sedimentation within the Wrangellia Terrane lasted until the Early Jurassic, when the resurgence of arc volcanism developed in response to subduction, forming the Bonanza Arc (Greene et al., 2005, and references therein). The Bonanza Arc formed along the length of Vancouver Island during the accretion of Wrangellia. Owing to later tilting, products of this arc from various crustal depths are all preserved. These include the Westcoast Crystalline Complex, the Island Intrusions, and the Bonanza Group volcanic rocks. It appears that all these components have similar ages (ca. 190 to 169 Ma) and geochemical signatures, indicating that they are all parts of a single arc (DeBari et al., 1999). The Wrangellia Terrane was accreted to the North American Craton by the Late Jurassic or Early Cretaceous (Greene et al., 2005).

The eastern margin of the Pacific Basin has extensive magmatism and associated porphyry-style mineralization during the Paleogene, in a semi-continuous belt from Oregon to Alaska. On Vancouver Island, the first pulse is represented by the Clayoquot intrusions (51.2-48.8 Ma) and the second pulse is represented by the Mount Washington intrusions (41–35.3 Ma) (Madsen et al., 2006).

Figure 3: Hisnit Property Regional Geology Map (modified from Madsen et al., 2006)

2.2 Property Geology

The geology of the Hisnit Property area was summarized by Jacques Houle during the 2010 field program (ARIS #31749):

"The Hisnit Property is mainly underlain by metamorphic rocks of the Paleozoic to Jurassic West Coast Crystalline Complex. The northern portion of the property covers the southwest margin of a northwest-trending graben structure, defined topographically by the southwest side of Hisnit Inlet. The graben structure contains a northeast-striking and northwest-dipping stratigraphic succession from southeast to northwest consisting of Triassic Quatsino Formation Limestone, Triassic Parson Bay Formation Sediments, and Jurassic Bonanza Formation Volcanics. The graben structure and other rocks in the area are intruded and possibly underlain by granodiorite stocks and sills of both the Jurassic Island Plutonic Suite and the Eocene Mount Washington Plutonic Suite"

Further comments towards the Property geology resulting from the 2020 field work can be found below in section 4.

2.3 Deposit Model

The mapped Eocene Mount Washington Pluton directly east of the Hisnit Property (herein referred to as the "Hisnit Stock") is of most interest in regards to copper mineralization. While it has not been directly dated, the Mt. Tahsis granodiorite stock north of the Property returned a concordant U-Pb age of 48.8 Ma, placing it within the Clayoquot intrusive suite (Madsen, 2004).

The Clayoquot intrusions on Vancouver Island are coincident with the approximate location of the Farallon-Resurrection ridge-trench triple junction at the time. From 49 to 45 Ma, the Farallon-Resurrection triple junction and slab window migrated southward to underlie parts of Washington and Oregon (Madsen et al., 2006). Subduction of a tectonic ridge may instigate slab melting, a potential precursor to the generation of post-subduction copper porphyry deposits (Richards, 2011).

The Catface Cu porphyry deposit located southeast of the Hisnit Property presents a potential analogue to the copper mineralization observed on the Property. It was historical recognized as being older. Muller and Carson (1969) reported a K–Ar age for the Hecate Bay quartz diorite of 48±12 Ma, placing it likely within the Clayoquot intrusive suite.

Recent U–Pb age dating of zircons at the Catface Deposit shows two intrusive phases were emplaced at 41.26 and 41.15 Ma, and a second two at 40.93 and 40.88 Ma. The latter ages were identical to the Re–Os age of molybdenite mineralization of 40.9±0.2 Ma. (Smith et al., 2012). This places the Catface deposit within the later Mount Washington intrusive suite.

The Zeballos gold camp lies approximately 38 km northwest of the Hisnit Property. There, quartz veins hosting high grade gold mineralization cross-cuts the Zeballos Stock, which has been dated to 35.4 Ma (Marshall et al., 2005). This results in the gold mineralization at Zeballos likely related to the Mount Washington intrusive suite.

Furthermore, ten showings of quartz-carbonate veining hosting Au-Ag-As-Cu mineralization occur approximately 9 km north of the Hisnit Property. The highlight there is the Vivian Showing where material from the waste dump returned up to 271.7 g/t Au and 3,480 g/t Ag (ARIS #22335).

Eocene copper and gold mineralization occur to the southeast and northwest, respectively, of the Hisnit Property. U-Pb dating of the Mt. Tahsis Stock north of the Property suggests that the Hisnit Stock is within the Clayoquot intrusive suite age, but the Hisnit Stock itself has not been thoroughly investigated. Furthermore, in the region of the Catface porphyry deposit, there is an intimate spatial relationship with both the Clayoquot and Mt. Washington intrusive suite where both occur in close proximity to one another. There exists significant copper mineralization related to epidote alteration on the Hisnit Property, as well as indications of copper mineralization northeast of the Hisnit Stock. Given the indications of copper mineralization near the Hisnit Stock, and the Hisnit Stock potentially being of similar age to the Catface porphyry deposit, further investigation for Cu-Mo-Au porphyry mineralization on and around the current Hisnit Property is warranted.

3 Historical Technical Work

The geology shown in Figure 4 (Cui et al., 2017) is sourced from Muller et al. (1981) who produced a geological map at a scale of 1:250,000 for the Property area. Muller et al. (1981) also produced a report describing the geology, structure, and mineral occurrences in the Nootka Sound area. Besides the various research articles referenced above, the Hisnit Property has seen very little geological mapping, research, and exploration.

The following chronological summary of historical exploration efforts is sourced from assessment reports contained in the BC Ministry of Energy, Mines, and Petroleum Resources' Assessment Report Database ("ARIS").

The first report on the Hisnit Property area is from 2005 when Doublestar Resources completed rock chip sampling and limited ground magnetic surveys directly north of the Hisnit Property (ARIS #28386). A total of 475 rock chip samples were collected for the purpose of assessing the limestone potential, and results were generally favorable for potential limestone production.

In 2007, Dan Berkshire completed limited prospecting for copper mineralization on the Hisnit Property (ARIS #29909). This work discovered the Hisnit North and the Hisnit South showings, and included a spectral analysis of remote sensing data.

In 2010, Compliance Energy optioned the Hisnit Property from Dan Berkshire and completed a field work program that resulted in the collection of 15 rock samples, 180 soil samples, 37 moss mat samples (ARIS #31749). The Hisnit South Showing returned up to 3.69 ppm Ag, 1060 ppm Co, and 5.4% Cu. The South Cu Showing was discovered with a single sample returning 1630 ppm Cu. The Fe Skarn Showing was also discovered returning 1435 ppm Cu and 7.95 ppm Mo from a 1.0 m. thick iron skarn exposed in a creek bed close to its outflow into the Hisnit Inlet. The results of this program are shown on Figure 5 and 6 below.

In 2010, Compliance Energy commissioned Aeroquest to complete 190.8 line-km of combined magnetic, electromagnetic and radiometric airborne geophysics (100 m line-spacing) the Hisnit Property (ARIS #32165). The total magnetic intensity of the 2010 airborne survey is shown on Figure 7 below.

In 2011, RCR Mining completed a field program collecting 14 rock samples and 20 moss mat samples northeast of the Hisnit Property (ARIS #32853). This work discovered three separate occurrences of skarn-style sulphide mineralization northeast of the Hisnit Stock that assayed between 583 and 930 ppm Cu.

4 2020 Exploration Program

In 2020 two phases of field work were completed to explore the Hisnit Property. The first phase, between June 19th and 21st, was to primarily collect samples of intrusive dikes related to copper mineralization for whole rock analysis. There was three staff on site for the first phase, including Dan Berkshire. The second phase, between August 5th and 7th, was to map and collect rock samples along the new logging road that extends to the west above the Property showings. There was four staff on site for the second phase. During both programs 57 rock samples, including 4 whole rock samples, were collected for geochemical analysis. Lodging and food was secured in Gold River, and access to the Property was achieved daily using a pickup truck and ATV on forestry roads.

The 53 rock samples were shipped to ALS Geochemistry in North Vancouver for geochemical analysis. Sample preparation included being weighed, dried, and finely crushed to better than 70% passing a 2 mm screen. A split of up to 250 g was taken using a Boyd rotary splitter and pulverized to better than 85% passing a 75 micron screen (ALS Code: PREP-31Y). Gold concentrations were determined by 30 g fire assay with ICP-AES finish (Au-ICP21). The samples were also analyzed for 33 elements by four acid digestion with ICP-MS/ICP-AES finish (ME-ICP61 and ME-OG62). The sample submission included one low-grade multi-element standard reference material (CDN-ME-1409) sourced from CDN Resource Laboratories of Langley, BC.

An additional 4 rock samples were submitted for advanced lithogeochemistry and REE analysis. These samples were subject to a preparation of being weighed, dried, and finely crushed to better than 70% passing a 2 mm screen. A split of up to 250 g was taken using a Boyd rotary splitter and pulverized to better than 85% passing a 75 micron screen (ALS Code: PREP-31Y). The major oxides were determined by a Lithium Metaborate/Lithium Tetraborate Fusion and ICP-AES finish and the REE were determined by a Lithium Borate Fusion and ICP-MS finish (ME-MS81d). The samples were also analyzed for 48 elements by four acid digestion with ICP-MS/ICP-AES finish (ME-MS61).

4.1 Rock Sample Geochemistry

As expected, the rock samples collected from the Hisnit North and Hisnit South Showings host anomalous copper mineralization of up to 1.05 % Cu and 4.19 % Cu, respectively. The Hisnit South showing also features anomalous silver (23.10 g/t Ag) and cobalt (497 ppm Co) concentrations (Figure 8).

The Hisnit North Showing is an extensive (~200 m long) road-cut exposure of epidote- and hematite-altered volcanic rocks that features local centimeter-scale fractures and quartz veinlets that host pyrite, chalcopyrite, and malachite mineralization. The Hisnit South Showing is a road-cut exposure (~10 m wide) of strongly hematite- and limonite-altered volcanic rocks that host semi-massive pyrite-chalcopyrite mineralization. A 2.0 m wide, relatively unaltered, coarse grained biotite granodiorite dike is present in hanging wall to Hisnit South Showing.

The rock samples from the road-cuts of the new logging road that extends past the Hisnit North Showing returned two samples of anomalous copper concentrations of 0.21% Cu and 0.24 % Cu approximately 800 meters west of, and ~325 m vertically above, the Hisnit South Showing. There were another four samples that returned above 500 ppm Cu along the new logging road (Figure 8).

At the northern end of the new road-cut exposure, meter-scale granodiorite dikes with associated hematite-alteration are found intruding volcanic rocks. There was also a small (20 cm) occurrence of semi-massive magnetite adjacent to a diabase dike. Further south, similar granodiorite dikes are found intruding deformed metamorphosed bedded sedimentary rocks that likely represent the West Coast Crystalline Complex. At the southernmost end of the new logging road, multiple extensive (~15 m wide) gossanous zones related to fractures and granodiorite dikes are found within the hosting silicified and pyritic granodiorite. There are local exposures of intrusive brecciation and aplite-pegmatite dikes.

In addition to the copper mineralization, there is a sub-vertical seam of marbleized limestone along the new logging road with an approximate width of 200 meters that may be of interest for marble production (Figure 8).

4.2 Whole Rock Geochemistry

A total of 4 samples were collected for a first pass investigation of the geochemical signatures of the intrusive rocks on the Hisnit Property, and how they relate to the geological environment described at the Catface porphyry deposit (Smith et al., 2012). The four samples collected from the Hisnit Property were from outcropping dikes of biotite granodirite dikes with minimal alteration (Figure 9).

Smith et al. (2012) described the geochemistry of the Catface porphyry deposit:

"All of the intrusive phases at Catface are quartz diorite, are mostly metaluminous with Aluminum Saturation Indices ranging from 0.88 to 1.09, and plot within the calc-alkaline field on a FeO/MgO vs. SiO2 diagram. All Catface intrusive phases show trace element patterns typical of arc magmas with enrichments in Ba and Th and depletions in Nb and Ti. There is considerable variation in K, Rb and Sr. On a Sr/Y versus Y diagram, only one sample (Cliff Porphyry) slightly overlaps the adakite field."

The samples collected on the Hisnit Property are color coded to light green in the following figures. The samples from the Catface deposit are color coded as follows:

- Catface Intrusive: Red
- Cliff Porphyry: Purple
- Halo Porphyry: Pink
- Hectate Bay Intrusive: Grey
- ADP Dike: Black
- Island Intrusive: Yellow
- Karmutsen Volcanics: Light Blue

Three samples from the Hisnit Property plot within the granodiorite field, and one (sample V725337) plots at the boundary between the diorite and monzonite filed, on the total alkalis versus silica plot. The intrusive phases from the Catface deposit plot largely within the granodiorite field (Figure 10).

Figure 10: Total Alkalis Versus Silica Plot

Comparing the samples collected to the average element abundances in granodiorite shows that the the samples from the Hisnit Property are aligned with the samples from Catface in being enriched in Ba and Th and depleted in Nb and Ti (Figure 11). Note that the Catface samples are all highly enriched in copper and silver, suggesting that there is likely some sulphide mineralization thus likely alteration associated with the Catface sample data.

Figure 11: Samples Compared to Average Element Abundances in Granodiorite

The AFM Plot shows that both the Hisnit samples and Catface samples are classified as Calcalkaline (Figure 12).

The Alumina Saturation Plot shows that both the Hisnit samples and Catface samples are classified as weakly peraluminous to metaluminous (Figure 13).

Figure 13: Alumina Saturation Plot

Cohen et al. (2010) formulated a plot of Sr/Y versus SiO₂ to assess porphyry potential derived from data from northwest pacific arcs. Figure 14 below shows that only some of the Catface samples plot within the favorable high Sr/Y field. One of the Hisnit samples (sample V725337) plots within the high Sr/Y field, while the rest are encouragingly close to the compositions of the Catface and Cliff intrusive phases.

Figure 14: Sr/Y versus SiO2 Plot

Overall, the 2020 samples from the Hisnit Property and the samples from the Catface porphyry deposit have some geochemical similarities and differences. Both areas host granodiorite intrusives related to copper mineralization that are calc-alkaline and peraluminous-metaluminous. There are similarities in trace element concentrations between the two areas, such as barium, strontium, yttrium, and thorium. There are also differences such as the Hisnit samples have lower concentrations of zircon and nickel, and higher concentrations of manganese, lead, and erbium.

60.0

SiO2 [Locked]

62.5

65.0

67.5

70.0

72.5

75.0

47.5

50.0

52.5

55.0

57.5

Sr/Y [Locked]

5 Conclusions

The geological environment of Eocene intrusive bodies on the west coast of Vancouver Island is prospective for economic porphyry copper deposits, as evidenced by the Catface Cu (Mo-Au) porphyry deposit approximately 47 km southeast of the Property. The Hisnit Property is proximal to the Hisnit Stock, an Eocene intrusive likely within the Clayoquot intrusive suite but potentially within the Mount Washington intrusive suite. The Hisnit Property has a short and limited history of exploration that has resulted in encouraging copper results from very little work. The work in 2020 confirmed the copper mineralization at the historic showings with up to 4.19 % Cu. Rock sampling discovered new zones of copper mineralization along a recent road-cut resulting in the lateral extent of anomalous copper on the Property to measure approximately 1,700 m x 1,700 m. The limited whole rock analysis completed in 2020 provided insight that the intrusive phases on the Hisnit Property share geochemical similarities with the intrusive phases found associated with the Catface deposit.

6 Recommendations

- Further staking east of the current Hisnit property to extend over and beyond the mapped extent of the Mount Washington Plutonic Suite intrusion.
- A prospecting/mapping program to collect rock and moss mat samples. Detailed alteration mapping, likely employing the use of a spectrometer such as a Terraspec Halo, is recommended to be a part of this field work. Collecting samples for petrographic analysis is also recommended to assess the nature of the copper mineralization.
- Collecting samples from the Hisnit stock east of the current Property for U-Pb geochronology. This work can potentially be coordinated with academia.
- An airborne magnetic and radiometric survey to cover the new claim acquisitions described above.

References

- Cohen, D.R., Kelley, D.L., Anand, R. and Coker, W.B., 2010. Major advances in exploration geochemistry, 1998–2007. Geochemistry: Exploration, Environment, Analysis, 10(1), pp.3-16.
- Cui, Y., Miller, D., Schiarizza, P., and Diakow, L.J., 2017. British Columbia digital geology. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File 2017-8, 9p. Data version 2019-12-19.
- DeBari, S.M., Anderson, R.G., and Mortensen, J.K., 1999. Correlation among lower to upper crustal components in an island arc: the Jurassic Bonanza arc, Vancouver Island, Canada. Canadian Journal of Earth Sciences, 36(8), pp.1371-1413.
- Greene, A.R., Scoates, J.S., and Weis, D., 2005. Wrangellia Terrane on Vancouver Island, British
 Columbia: Distribution of Flood Basalts with Implications for Potential Ni-Cu-PGE
 Mineralization in Southwestern British Columbia. British Columbia Geological Survey,
 Geological Fieldwork 2004, Paper 2005-1.
- Madsen, J.K., 2004. Geochemistry and Geochronology of Eocene Forearc Magmatism on Vancouver Island: Implications for Cenozoic to Recent Plate Configurations in the Pacific Basin (Doctoral dissertation, Department of Earth Sciences-Simon Fraser University).
- Madsen, J.K., Thorkelson, D.J., Friedman, R.M. and Marshall, D.D., 2006. Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in western North America. Geosphere, 2(1), pp.11-34.
- Marshall, D., Close, S., Podstawskyj, N., Aichmeier, A. 2005. Gold Mineralization and Geology in the Zeballos Area, Nootka Sound, Southwestern British Columbia. in Geological Fieldwork 2004, B.C. Ministry of Energy and Mines, Paper 2005-01, Rocks to Riches pages 301 to 310.
- Mihalasky, M.J., Bookstrom, A.A., Frost, T.P. and Ludington, S., 2011. Porphyry copper assessment of British Columbia and Yukon Territory, Canada: Chapter C in Global mineral resource assessment (No. 2010-5090-C). US Geological Survey.
- Muller, J E; Cameron, B E B; Northcote, K E. 1981. Geology and Mineral Deposits of Nootka Sound map area Vancouver Island, British Columbia. Geological Survey of Canada, Paper 80-16, 1981.
- Muller, J.E., Carson, D.J., 1969. Geology and mineral deposits of Alberni map-area, British Columbia (92 F). Geological Survey of Canada, Paper 68–50.
- Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1), pp.1-26.

- Simpson, R.G. and Chapman, J. 2009. Mineral Resource Estimate Catface Copper Project. Selkirk Metals Corp. SEDAR filings.
- Smith, C.M., Canil, D., Rowins, S.M. and Friedman, R., 2012. Reduced granitic magmas in an arc setting: the Catface porphyry Cu–Mo deposit of the Paleogene Cascade Arc. Lithos, 154, pp.361-373.

Statements of Qualifications

Statement of Qualifications

- I, Connor Malek do hereby certify that:
- 1. I am currently working with First Geolas Consulting under the business address:

P.O Box 2600 Chilliwack, British Columbia V2R 1A8

- 2. I am a graduate of the University of Saskatchewan with the degree of Bachelor of Science (high honors) in Geology (2015).
- 3. I have worked as a geologist continuously since my graduation for myself and for various resource exploration companies on a variety of commodities and deposit types.
- 4. I participated in and completed field work during the 2020 exploration program on the Hisnit Property in June and August 2020.
- 5. This report, authored by myself, is based on personal examination of all available company and government reports pertinent to the Hisnit Property.

Dated this 8th Day of February, 2021, in Chilliwack, British Columbia.

IGNATURE

Connor W. Malek, B.Sc.

February 8, 2021

Appendices

Field Work	Days	Unit Cost	Total
Connor Malek	6.0	\$600.00	\$3,600.00
Dan Berkshire	3.0	\$600.00	\$1,800.00
Jonas Rigaux	6.0	\$300.00	\$1,800.00
Lindsay Richards	3.0	\$250.00	\$750.00
Colby Green	3.0	\$250.00	\$750.00
Office Work	Days	Unit Cost	Total
First Geolas Consulting: 2 days Planning, 2 days Assessment Report writing	4.0	\$400.00	\$1,600.00
Food Hotel Travel	Units	Unit Cost	Total
Food	00		\$483.44
Gold River Hotel			\$875.95
Ferry and sample shipping			\$336.95
Fuel for Truck			\$381.14
Sample Bags, Flagging Tape, etc.			\$7.45
Rentals	Days	Unit Cost	Total
First Geolas Geological Gear Rental	6.0	\$65.00	\$390.00
First Geolas Truck Rental	6.0	\$100.00	\$600.00
Quad and Chainsaw Rental	6.0	\$225.00	\$1,350.00
Geochemistry and Sample Prep.	Units	Unit Cost	Total
ALS Geochemistry Sample Analysis (53 Rock Samples, 4 Whole Rock Samples)	57.0		\$2,922.50
Grand Total			\$17,647.43

Appendix A: Hisnit Property 2020 Field Work Cost Table

Appendix C: Geochemical Sample Data

Waypoint	UTM_Zone	UTM_Easting_m	UTM_Northing_m	Devation_m	Date Photos	Notes	Geochemistry_	Geochemistry_Sample_Description	Sample ID Au	nom kr.on	an Al est	AL COT	Sa onm	Be nom Bi nom	Calert Colle	om fo mo	n fr. com	Ou norm	Fe ort Ga com K ort	a non Mr. ort	Mo com M	nom Na oct	Ni nami Pinom	th nam	S act Sh asm	trana tr	th non	Tint Ting	II com	(000 W 000	20.000								
	9	67634182	5512233.85	325.78	2020-08-05	End of new road. Roadcut with volcanics with stockwork carbonate veinlets. Minor epidote alteration, local mm-acal fault	X567093	Epidote and chlorite altered																															
CM_001						gouge. Trace pyrite associated with epidote and chlorite altered volcanics		volcanics hosting trace pyrite.	0987093	0.004	0.25 1	25 53	3 130	0.7	4 13.9	0.7	24 62	2 165	12.1 10 0.35	10 3.5	2620	7 0.23	2 60 :	290 2	1.39 2.5	9	227	10 0.19 C	3 0.5	107 0.5	110								
CM 003	9	678267.62	5512139.27	318.20	2020-08-05 DSCN1306- DSCN1308	White aplite/pegmatite brecciating altered dark biotite intrusive. Locally strong hematite alteration	X\$67094	Intrusive breccia with silicification and trace pyrite and chalcopyrite	1087034	0.001	0.75 6	97 8	420	0.6	7 73	0.25	31 71	770	8.68 10 0.68	10 11	447	3 250		110 2	5 15 2 5	14	675	10 033 0	15 05	125 0.5	40								
					00001300			Intrusive breccia. 4 m wide shear																					1										
Ch4 007	9	678215.89	5512161.61	330.93	2020-08-05 DSCN1310	Intrusive breccia. 4 m wide shear zone (298/67) hosting 2-5% pyrite in northern contact	X\$67095	zone (298/67) hosting 2-5% pyrite in northern contect											107 10 010	10 0.0	1170					10	1.00												
Chil. 000	9	678085.05	5512246.98	353.61	2020-08-05 DSCN1311-	5 meter wide friable and fine grained andeatic dike (hosting 2-3% pyrite) cross-cutting intrusive breccia	X\$87096	andealtic dike hosting 2-3% pyrite		0.0007				0.5	1 8.07	0.0	20 04		10.0 10 0.0	10 1.2	3270	1 10		100 1		10	10.5	10 0.10 0		107 0.5									
Cite_Out					D9CN1312			silicitied volcanics with strong clay-			1			0.0		0.4	~ ~		11.12 10 04		2210									101 03									
Ch4 000	9	678017.42	5512224.40	358.55	2020-08-05 DSCN1313	Andesitic dike (012/57) cross-cutting silicited volcanics hosting 2% pythotite	X\$67097	alteration hosting 2% arsencovrite/ovrhotte						0.17						10 14	70.2	1 40		110 1															
Ch4, 100	2	678055.05	5512070.43	367.81	2020-08-05	Infrusive breccia, amail outcrop (1 m) with 2-3% chalcopyrite-pyrite	X\$67096	Intrusive breccia with 2-3%	0.087008	0.000	0.77 4			0.15	6.77	0.0	10 17	1 034	1.14 10 0.11	10 10	1110	4 13		100 1	10 15	1.0	473	10 017 0		100 05	74								
								Intrusive breccia with strong																					1										
CM_103	8	6/8125.00	5012010.52	300.35	2020-08-06	instance precision with strong selectication and trace pyrine	X367099	silicification and trace pyrite	0987099	0.002	0.25 7	15 2.5	5 530	0.6	5.5	0.25	12 19	85	4.92 10 0.74	10 0.9	1010	1 3.2		290 1	0.91 2.5	13	483	10 0.29 0	.5 0.5	141 0.5	95								
CM_103		6/8125.00	5512010.52	300.35	2020-06-06 DSCN1320-	SSINGIPO CEN-IVE-1409	X367 120	slicited granodicite with very fine	Ky87100	0.744	11.6 2	9/ 22	100	4.25 1	5 1.91	39.8	10 41	2359	9.07 10 0.41	10 2.	4/1	13 0.0.		120 646	6.92 32	0	- 20	0.11	4 65	66 0.5	7470								
CM_104	9	675161.65	5511975.42	355.40	2020-08-05 DSCN1323	~30 m long roadout of salicitied granodionite with very fine disseminate pyrite	Y993818	disseminate pyrite	Y993818	0.001	0.25 5	56 28	600	0.6	16.3	0.7	8 30	160	4.67 10 0.76	10 0.9	1530	2 0.85	22	150 1	1.65 2.5	12	270	10 0.23 0	.5 0.5	96 0.5	124								
								~1 m wide gossan zone fauit gouge																							1								
	9	675144.18	5511888.38	376.71	2020-08-05 DSCN1324	~1 m wide gossen zone/tault gouge (purple biotite intrusive) hosting 3% pyrite. Hosted in intrusive breccta	Y993819	(purple biotite intrusive) hosting 3% pyrite. Hosted in intrusive breccia									-																						
CM_105	2	677962.13	5511925.45	409.10	2020-08-05 DSCN1328-	~20 m wide gassan zone in intrusive. Silicited and hosting 5% purite	Y293820	Silicified intrusive hosting	(993819 0	0.0005	0.25 6	54 2.5	5 300	1	7 4.12	0.6	47 79	9 589	10.25 20 1.03	20 1.5	1860	3 2.9	5 53 1	100 1	5.12 2.5	22	292	10 0.59 0	3 0.5	98 0.5	79								
CM_108	2	677962.13	5511925.45	409.10	2020-08-05 DSCN1328-	~20 m wide gossan zone in intrusive. Silicited and hosting 5% purite	Y293821	Sticified intrusive hosting	1993820		· •	.64 2.5	5 730	0.8 1	2 7.04			145	5.91 20 0.81	10 2.5	612			770 s	21/ 25	23	150	10 127 0	3 0.5	2/6 0.5									
CM_108					DSCN1333			Frisble strongly chiprite-altered	1993821	u.uuus	/ 0	A/ 23	> 000		7.11	445	21 20	154	5.97 20 0.75	10 26	7/4	1 14		570 1	1/4 25	31	540		3 65	256 0.5	50								
CM_110	9	677934.83	5511917.85	413.58	2020-08-05	Fruble strongly chlorite-altered intrusive with 2% pyrtle	Y993822	intrusive with 2% pyrite	Y993822 0	0.0005	0.25	4.5 2.5	5 20	0.5	7 12.9	0.8	43 27	7 365	15.4 10 0.04	10 1.6	3870	1 0.94	4 28	150 3	2.39 2.5	12	263	10 0.27 0	.5 0.5	156 0.5	116								
CH 111	9	677907.63	5511902.74	418.18	2020-08-05	~20 m readcut of limestone/matble with 5% disseminate pyrite	Y993823	20 m roadcut of limestone/marble with 5% disseminate pyrite				-		0.15						10				-			77.0			310									
CM_112								Veloanic heating of maids access	***3823	0.001	1 (4.9		630	0.25	3.54		~ 62	375	*/8 10 0.84	10 2.0	762	3 25	4/ 1	2	4.30 2.5	24	/30	u45 C	1 45	210 0.5	12								
1	9	677784.90	5511925.74	435.55	2020-08-05	Volcanic hosting ~4 m wide gossan zone with epidote-chlorite alteration and up to 3% pyrite in vuggy quartz	Y993824	zone with epidote-chionite alteration						1	1		1	1				1	1 1					1 1	1										
CM_115								and up to 3% pyrite in vuggy quartz	1993824 0	0.0005	0.25	5.5 2.5	5 0.5	1.5	5 14.55	0.7	25 32	2 6	11.3 10 0.03	10 1.3	4660	1 0.3	1 29 :	230 4	0.49 2.5	11	41	10 0.28 0	.5 0.5	66 0.5	141								
CH 117	9	677681.23	5511893.29	445.14	2020-08-05 DSCN1345- DSCN1347	~15 m wide gossan zone in granodionite, up to 5% pyrite	Y993825	~15 m wide gossan zone in granodiorite, up to 5% pvrite		0.000				0.15						10	1 700																		
CM_118					DSCN1345-			~15 m wide gossan zone in	1993825	0.002		21 25	s 65	1.75	121	1	98 19	923	21.2 10 0.01	10 0.1	1/10	1 00.		/10 2	5./6 25			10 0.14 1	3 10	56 0.5	- ²⁴								
CM_118	9	677681.23	5511893.29	445.14	2020-08-05 DSCN1347	~15 m wide gossan zone in granodiorite, up to 5% pyrite	Y993826	granodiorite, up to 5% pyrite	Y993826 0	0.0005	0.25 5	39 2.5	5 520	0.25	s 17.55	1.1	5 22	2 55	12.7 10 0.68	10 1.2	1570	2 0.23		190 1	0.4 2.5	14	83	10 0.28 0	.5 0.5	110 0.5	78								
		677443.23	5512690 27	340.67	2020-05-05	Other mad out helpsy methic seam. Stirified and chindle-alutered volcanics with some minor hematite alteration	Y993827	Silicitied and chlorite-alatered vn/canics with some minor hamalite																							1								
CM_125	-							alteration	Y993827 0	0.0005	0.25 5	.67 6	5 30	0.7	5 16	0.8	14 54	4 35	9.62 10 0.03	10 2	4180	1 0.15	5 23 1	190 1	0.15 2.5	13	288	10 0.25 0	.5 0.5	116 0.5	85								
JM_007	9	677349.29	5513399.39	222.37	2020-08-05	Mafic volcanics with epidote alteration & discontinuous epidote anygdyules. Gossan concentrated around a subvertical fault and includes minor motio. Ended a value to the similar of saveda strike & dis 34541	Y993857	Gossanus material with minor pyrite from a subuartical fault									-																						
JM 005	9	67737116	5513368.05	224.10	2020-08-05	Mafe volcanics with anishing alteration. Grossmous material around a fault shiking 34482	Y003858	Cosserves material and fault ocurse	1993857	0.001	<u>ه</u> کن	.4/ 2.3	20	0.5 1	2 12.6	0.5	24 59		8.78 40 0.11	10 1.9	1010	1 0.16	39	510 1	u1 25	20	2030	10 0.76	4 0.5	342 0.5	43								
JM 009	2	677390.47	5513348.67	224.05	2020-08-05	Finely brecciated (mm-cm scale clasts) mafic dike approx. 2m wide intruding mafic volcanics. Dike has a gossarous fault	Y293859	Gossanous material	acatwer	0.001	· · ·	.94 2.5	200	0.5	0 2.03	0.25	40 120	43	9.18 20 1.05	10 1.1	803	1 0.8		//0 1	0.05 18	43	220	10 1.12 0	3 65	366 10	63								
JM 010	2	677405.35	5513334.61	225.19	2020-08-05	bounding its South edge with slickenitives visable on the clike. Massive epodole hosted in matic volcarics. Approx. 2mm thick parallel gossany veinlets subvertical and 2-5cm apert	Y293860	Massive epidote and gossary	TW/ABOV	0.023	ہ <u>م</u> ں		4 50	0.25	242	0.6	43 155	20102	8.29 20 0.11	10 4.3	1380	0.5 2.5	90	520 1	0.14 2.5	20	191	10 0.85 0	3 0.5	256 0.5	83								
						Fault hoated epidote vein striking 336/72. Magnetite observed in fault breccia. Host rock is mafic volcanics with some		Epidote with gossarry material and	1 39 2000	0.001						0.7			40 00	10 13	113				10 13		~~~			12 03									
30_011	8	6//428.25	5513315.85	229.20	2020-08-05	attygdules.	1993001	magnetite rock	1993861	0.002	0.25 8	33 2.5	5 80	0.25 2	12.05	0.9	32 102	2 123	9.4 40 0.13	10 1.9	1025	2 0.5	7 55 (530 4	0.03 2.5	28	3600	10 0.95 C	.5 0.5	403 0.5	46								
JM_012	9	677455.65	5513269.57	239.95	2020-08-05	righty ractured massive epicote with significant gostant. I o the right of the mactured epicote accovertical epicote vertea are less fractured.	Y993852	Gossany epidote	Y993862	0.002	0.25	5.5 2.5	5 30	0.25	5 7.23	0.8	33 67	7 31	7.37 20 0.34	10 3.1	1150	1 1/	6 51	530 2	0.18 2.5	29	470	10 0.81 0	.5 0.5	285 0.5	65								
JM_013	9	677502.13	5513195.98	258.13	2020-08-05	Mafic volcanica with a laminated epidote-autphide vein hosted in a subvertical fault. Epidote phases approx. 30cm thick and sulphide chases 3-10cm thick for a total width of approximately 75cm. Sulphide chases flank the epidote chases.	Y993863	Gossany epidote				-					-																						
JM_014	9	677538.65	5513155.23	273.98	2020-08-05	Gossan with disseminated pyrite, hosted in mafic volcanics, quartz inclusions in gossan	Y223884	Gossanous Material	Y993864	0.074	0.9 4	.09 2.5 56 92	2 40	0.25	5 6.38	1.7 1	16 69	2100	14.6 20 0.11	10 2.5	1140	2 0.3	3 66	110 1	1 25	25	238	10 0.59	10 0.5	216 0.5	64								
JM_015	9	677495.58	5512978.32	343.24	2020-08-05	Vertical fault with gossan, small (~1mm thick) pyrite veins of calcite with apparent laminations. Small epidote veins	Y993865	epidote, and gossan	1293865	0.004	0.25 6	.84 5	5 20	0.5 1	0 7.45	0.9	39 8	168	9.03 20 0.13	10 2.6	1170	2 2.63	7 12 12	200 1	3 2.5	36	362	10 1.19 0	.5 0.5	305 0.5	72								
JM_016	9	677440.92	5512842.09	381.18	2020-08-05	vencia gossancos taut. Criacopyte, some massive pytea, some massive magnetice. Contact ven matow, and granodorite dike to left of fault	Y993856	gossan with pyrites and mignetite	1993865	0.005	0.25 1	.74 14	6 20	0.25	1 8.43	1.7	45 11	495	26.7 10 0.01	0.5 2.3	1700	0.5 0.0	4 21	190 82	5.07 2.5	3	321	10 0.05	10 0.5	83 0.5	75								
JM_017	9	677253.08	5512631.22	431.97	2020-08-05	vertical itsuit with micrured gossian, amail sectors of maxieve pyreas, contact with marcele "Jum to the right Gossan, apparent pegmalitie, some pyrites, epidole, biolitie. Highly fractured. Creek to left of outcrop with granodionite on	19933667 Y9933668	gossancus material Cossancus material and fault ocurse	1993807	0.001	ں کں	(48 13	5 05	U.S	1 14.60	14	// 1	397	129 10 0.01	0.5 4.6	3080	1 0.01	ao .	4	141 25		10	10 0.03 0	3 0.5	44 0.5	19								
JM 019	2	677293.65	5512604.68	441.40	2020-08-05	left side of creak. ~10m South of marble contact Gossanous outcrop, apparent bedding planes with numerous faults, significant fracturing of the roock. Massive pyrite	Y293859	Gossanous material	1001868	0.0005	0.25 6	24 6	5 50	0.7	1 14.35	0.9	14 13	1 18	11.1 20 0.01	10 1.7	2950	2 0.0	6 28	180 3	0.09 2.5	2	7.35	10 0.09 0	3 0.5	91 05	50								
JM 020	2	677325.75	5512476.98	450.50	2020-08-05	sections. Total outcrop ~40m wide. Felaic dyke I othe left of gossanous material. Felaic inituations. Gossanous fault (strike 80. do 82) disseminated ovrites hosted in mafic volcanics	Y293870	Gossarous material and fault goupe	TYV380V	0.001	ہ <u>م</u> ں	20 400	190	0.6	1 127	1.4	32 167	. 193	30 10 0.21	10 1.5	2310	2 0.5	41 1	130 3	1.04 2.5	18	107	10 0.39 0	3 0.5	196 0.5	151								
						bedded metasedmentary rocks, striking 250/27, terminated at the north end by a vertical fault. Gossanous throughout,			1993870	u.uuus	/ 0		220	0.6	> >.09	0.5	33 35	. 201	6.41 20 0.41	10 1.	910	2 19		100 1	1.36 2.5	20	/83	10 0.42 L	3 65	200 0.5	40								
JM_021	9	677467.76	5512364.79	465.17	2020-08-05	but conentrated at the top near grano-dionte contact. Significant epidote in metaseds, both massive and as veinlets.	Y993871	gossarous material, epidote	Y993871 0	0.0005	0.25 7	.19 2.5	5 530	1	5 9.47	0.25	13 38	64	4.97 10 1.26	10 1.9	1040	9 2.45	35 1	170 1	0.64 2.5	13	795	10 0.26 0	.5 0.5	116 0.5	92								
JM_022	9	677472.01	5512354.03	461.33	2020-08-05	far left side of outcrop, gossan with more sufficies. From north to south, the outcrop begins with dicritie for approximately 5 metres before a gradational contact to pylitic	Y993872	Gossanous material	Y993872	0.007	0.25 1	.97 5	s 40	0.25	1 11.15	0.9	55 61	1 389	12.05 10 0.05	10 1.2	1220	11 0.23	7 57 1	500 3	4.76 2.5	16	93	10 0.29	3 0.5	116 0.5	84								
						metasedimentary rocks Foliation has a strike and clip of 254/80. A drill hole was observed in the metaseds with a trend & plunge of 30 -> 302. The metasedimentas are extremely gossary. At approx. 15 metres the metaseds are intruded by a		Grassen in mafe unleasing and																							1								
JM_024	9	677516.00	5512232.00	405.85	2020-08-05	granodionite dike, which is in turn intruded by a smaller paralell diabase dike with widths of 50cm and 15cm respectively. The dikes are flanked by gossan, at approximately 20m there is massive magnetite and disseminated cyrite and	Y993873	intrusiona																							1								
						chalcopyrite before contacting a donte intrusive, centimetre scale felsic dikes at 45 degrees to foliation are present Iterarchive the cutrem.			1993873	0.001	0.25 2	28 2.5	5 80	0.25	2 3.36	1.8 1	64 7	7 1660	30.5 0.5 1.14	0.5 1.0	338	63 0.64	6 65 :	590 S	11 2.5	8	73	10 0.13 0	3 0.5	87 0.5	25								
						Prominism to south, the outprop begins with donie for approximately 5 metres before a gradiecreal consid to pyetic metasedimentary rocks. Foliation has a strike and dip of 254/80. A drill hole was observed in the metaseds with a trend &																									1								
JM_024	9	677516.00	5512232.00	405.85	2020-08-05	plunge of 30 → 302. The metasedmentas are extremely gossary. At approx. 15 metres the metaseds are intruded by a granodionte dike, which is in turn intruded by a smaller paraleli diabase dike with widths of 50cm and 15cm respectively.	Y993874	Gossanous metasedimentary rock																							1								
						The dikes are flanked by gossan, at approximately 20m there is massive magnetite and disseminated cyrite and chalcopyrite before contacting a diorite intrusive, centimetre scale fetsic dikes at 45 degrees to foliation are present																									1								
						From norm to assum, the outcorp begins with abhies thrap the shelling's metres before a graduatione contact to pyetic			Y993874 0	0.0005	0.25 7	23 2.5	5 860	0.6	3 9.43	0.6	15 32	2 95	5.14 10 1	10 1.7.	862	6 2.13	7 29 21	340 1	1.65 2.5	15	562	10 0.3 C	5 0.5	126 0.5	79								
						metasedimentary rocks if oliation has a strike and dip of 254/80 . A drill hole was observed in the metaseds with a trend & plunge of 30 -> 302. The metasedimentas are extremely gossary. At approx. 15 metres the metaseds are intruded by a		Conserve entroid from bodies																							1								
JM_024	9	677516.00	5512232.00	405.85	2020-08-05	granodionite dike, which is in turn intruded by a smaller paralell diabase dike with widths of 50cm and 15cm respectively. The dikes are flanked by gossan, at approximately 20m there is massive magnetite and disseminated pyrite and	Y993875	dike																							1								
						chalcopyrite before contacting a donte intrusive, centimetre scale felsic dikes at 45 degrees to foliation are present			1993875	0.0005	0.25 7	58 2.5	5 280	0.8 1	7.3	0.6	63 11	451	9.21 20 1.18	10 1.6	401	34 2.61	1 26 2	190 1	5.07 2.5	22	711	10 0.75 0	3 0.5	195 0.5	32								
						r rom norm to soum, me outcrop begins with dicrite for approximately 5 metres before a gradational contact to pylitic metasedimentary rocks. Foliation has a strike and clip of 254/80. A drill hole was observed in the metaseds with a trend &				1			ΙT				1	1 T			I T	1 -					1 -				ιĪ								
JM_024	2	677516.00	5512232.00	405.85	2020-08-05	punge or 30 -> 302. The metasedmentias are extremely gossary. At approx. 15 metres the metaseds are intruded by a granodionite dike, which is in turn intruded by a smaller parallel diabase dike with widths of 50cm and 15cm respectively.	Y993876	Massive magnetite, gossanous material							1		1	1				1	1 1					1 1	1										
1						The dikes are flanked by gossen, at approximately 20m there is massive magnetite and disseminated pyrite and chalcopyrite before contacting a dionite intrusive, centimetre scale felsic dikes at 45 degrees to foliation are present		1. State and																			-												
<u> </u>			<u> </u>			From norm to accur, the outcrop begins with addite to addite the addition of the new server a gradience contact to pyenc			1993876	0.002	0.6 1	.14 2.5	60	0.25	1 1.88	1.5 2	3	2400	427 0.5 0.08	0.5 0.3	120	56 0.25	94	50 6	11 2.5	3	29	10 0.05 0	3 10	32 0.5	18								
						measecomensary rocks i calation has a strike and op or 224-60. A drill hole was observed in the metaleeds with a trend & plunge of 30 -> 302. The metaleolimentals are extremely gossary. At approx. 15 metries the metaleeds are intruded by a		Gossanous material, disseminater				1										1						1	1 '										
JM_024	9	677516.00	5512232.00	405.85	2020-08-05	granodionte dike, which is in turn intruded by a smaller paralell diabase dike with widths of 50cm and 15cm respectively. The dikes are flanked by gossan, at approximately 20m there is massive magnetite and disseminated pyrite and	Y993877	pyrite and chalcopyrite.				1										1						1	1 '										
						chalcopyrite before contacting a donte intrusive. centimetre scale fetaic dikes at 45 degrees to foliation are present threactbool the outrants			1993877 0	0.0005	0.25	7.2 2.5	5 180	0.7	4 5.44	0.5	19 14	4 250	8.18 10 1.65	10 1.6	542	3 3.2	21 1	350 4	5.05 2.5	12	479	10 0.27 0	.5 0.5	116 0.5	35								
JM_023 JM_023	3	677562.61	5511991.33 5511991.33	405.85	2020-08-05	Matto volcanica, disseminated chalcopyrite, gossan. Several vertical faults. Matto volcanica, disseminated chalcopyrite, gossan. Several vertical faults.	Y223878 Y223872	Gossanous fault material Gossanous fault material	Y993878 0 Y993879 0	0.0005	0.25 6	.63 2.5 .03 5	5 720 5 20	1.6	1 1.19	0.25	2 13	21	3.11 20 2.21 5.58 20 0.01	20 0.	809 982	4 1.8	1 1	250 1	0.15 2.5	21	158	10 0.19 0 10 0.44 0	3 0.5	16 0.5 149 0.5	18 120								
	9 9	678209.05	5512547.73 5512547.73	141.65	2020-08-05	Hant South	Y993880 Y993881		Y993880 Y993881	0.007	0.25 5 1.9 0	-68 2.5	5 30	0.5	1 10.5 1 10.7	1.9 7	37 240 51 7	267 7 12950	9.58 20 0.14	10 4.8 0.5 2.1	1610	1 0.65	122 1	530 7	0.09 2.5	26	54	10 0.77 0	3 0.5	205 0.5	92 248								
	9	678269.05	5512547.73	141.65	2020-08-05	Hant South	Y993882		1993882	0.1	7.1 2	.42 7	7 20	0.25	11.85	2.2	60 23	14350	18.85 20 0.04	0.5 2.	2400	0.5 0.3	1 34	170 3	2.95 2.5	11	40	10 0.14 0	15 10	85 0.5	123								
Waypoint	UTM_Zone	UTM_Easting_m	UTM_Northing_m	Elevation_m	Date	Notes	Geochemistry _Sample_ID	Geochemistry_Sample_Description A	Au_ppm	Ag_ppm	Al_pct As_p	pm Ba_p	pm Be_p	.ppm Bi_ppm	Ca_pct	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Fe_pct	Ga_ppm	K_pct	La_ppm	Mg_pct Mn_pp	m Mo_pp	m Na_pct	Ni_ppm	P_ppm	Pb_ppm S_p	t Sb_ppr	m Sc_ppm	Sr_ppm	Th_ppm	Ti_pct	TI_ppm	U_ppm	V_ppm	W_ppm Zn	n_ppm
----------	----------	---------------	----------------	-------------	------------	--	----------------------------	--	--------	--------	-------------	---------	---------	-------------	--------	--------	--------	--------	--------	--------	--------	-------	--------	--------------	---------	----------	--------	-------	------------	----------	----------	--------	--------	--------	--------	-------	-------	----------	-------
2020-204	9	678063.73	5513076.01	79.81	2020-06-20	Hisnit North. Strongly epidote-altered volcarric with dissmeniated pyrite, chalcopyrite, and malachite	X987035	Strongly epidote-altered volcanic with dissmeniated pyrite, chalcopyrite, and malachite	0.036	0.5	7.73 1	1 50	0.3	25 1	7.99	1	132	81	856	16	30	0.12	5	2.11 946	2	1.47	57	710	7 3.2	5 2.5	36	1330	10	0.86	5	5	372	5	51
2020-205	9	678045.75	5513092.12	83.71	2020-06-20	Hisnit North. Strongly epidote-altered volcanic with disameniated pyrite, chalcopyrite, and malachite	X987036	Hisnit North. Strongly epidote-altered volcanic with dissmeniated pyrite, chalcopyrite, and malachite	0.088	1.7	8.61 6	20	0 03	25 3	10.75	1.6	37	117	5430	10.1	30	0.06	5	2.51 1175	1	1.72	67	810	17 0.5	3 5	38	1810	10	1.19	5	s,	455	5	82
2020-206	9	678033.42	5513102.95	85.96	2020-06-20	Hisnit North. Semi-massive pyrite-chalcopyrite in mm-scale veinlet	X987037	Semi-massive pyrite-chalcopyrite in mm-scale veintet	0.011	6.4	8.06 2.	5 10	0 0.	1.6 6	9.04	5.5	65	64	10500	11.2	30	0.04	5	3.24 1240	1	1.37	70	1100	11 1.9	2 2.5	38	995	10	1.22	10	5	398	s :	268
2020-208	9	677978.76	5513166.36	99.45	2020-06-20	Hisnit North. 30 cm wide gossan zone in volcanics with disamenited pyrite-chalcopyrite	X987038	Volcanics with dissmenited pyrite-chalcopyrite	0.004	0.6	8.3 5	10	0.	1.6 1	11.25	1.4	109	127	803	12.2	30	0.05	5	3.57 1360	4	0.54	81	850	11 1.7	9 2.5	36	1460	10	1.02	10	5	340	5 .	113
2020-209	9	677879.70	5513163.54	113.56	2020-06-20	Hisnit North. Strongly epidote-altered volcanics with dissmeniated pyrite	X987039	Strongly epidote-altered volcanics with dissmeniated pyrite	0.005	0.5	8.55 2.	5 30	0 0.	1.5 5	9.48	1.1	35	144	645	10.2	30	0.06	10	2.71 1360	1	1.38	74	960	6 0.1	7 2.5	46	1875	10	1.44	5	5	463	5	77
2020-210	9	677823.96	5513213.79	126.34	2020-06-20	Hisnit North. Moderately epidote-altered volcanics with hematite- alteration	X987040	Moderately epidote-altered volcarics with hematite- alteration	0.023	1.1	7.91 2.	5 50	0.0.	1.5 3	6.72	1.2	46	136	2490	9.53	20	0.23	10	4.29 1945	1	2.97	90	850	6 0.3	2 2.5	42	356	10	1.3	5	5	411	5 .	125
2020-214	9	678269.08	5512547.73	141.66	2020-06-20	Hisnit South. Semi massive pytte-chalcopyrite-magnetite in volcanic hosting stockwork qartz-carbonate veinlets.	X987041	Hisnit South. Semi massive pyrite-chalcopyrite- magnetite in volcanic hosting stockwork gartz- carbonate veinlets.	0.006	0.25	8.19 8	50	0 0.	1.7 1	13.85	0.8	33	166	155	9.55	30	0.09	5	3.37 1605	0.5	0.58	98	890	3 0.2	2.5	21	280	10	0.57	5	s	169	5	64
2020-214	9	678269.08	5512547.73	141.66	2020-06-20	Hisnit South. Semi massive pytte-chalcopyrite-magnetite in volcanic hosting stockwork qartz-carbonate veinlets.	X987042	Hisnit South. Semi massive pyrite-chalcopyrite- magnetite in volcanic hosting stockwork gartz- carbonate veintets.	0.066	23.1	0.28 23	2 10	0 0.3	25 3	3.44	9.6	497	0.5	41900	50	10	0.01	5	0.43 1100	2	0.04	94	180	5 7.7	4 2.5	0.5	4	10	0.01	10	s	16	s :	717
2020-216	9	679566.92	5510996.86	84.70	2020-06-20	Argonaut Quartz vein with hematite-alteration subcrop. Showing along road is very grown in	X987043	Argonaut Quartz vein with hematite-alteration subcrop	0.0005	0.25	1.39 6	40	0.3	25 1	0.26	0.25	4	44	245	1.52	5	0.22	5	0.29 182	2	0.38	5	180	1 0.0	7 2.5	3	15	10	0.09	5	5	27	5	17
2020-217	9	677767.91	5513679.22	75.80	2020-06-20	Epidote-altered volcanics. Up new spur road, under soil sample copper anomaly accortding to Dan	X987044	Epidote-altered volcanics	0.003	0.25	6.85 2.	5 10	0.3	.25 1	8.68	0.9	51	183	158	8.81	20	0.05	5	4.5 1455	0.5	2.09	120	560	6 0.1	2 2.5	42	622	10	0.92	5	5	341	5 :	104

artine.	 optimation.	neimmet's	manage of	**		Carpe, Sector	out the second second second	Children and a	1,00,0000	a parama	A DESCRIPTION OF A DESC	Contract (1)	1,00.000 1,00.00	1. Mar. 11, 30	Cardina (Cardina)	, and a 1990	and the second	an a particular	 Applement 		 Notice and the second se	a the second	- projektere	، مەرىر	property of	a a a a a a a a a a a a a a a a a a a	1.0	Carter arterio	and prove	-	-	an Papalanan	1,00,000	of the last sector of	and an other the	organization (194	1. H	,	n an an a su		un paramente de la presenta de la pr	CHARLES (199		to a second second	On the State	an a	properties of particular	a ayaya ay	a junjana	 Property and address 	a second a second	and the second	an canada	a constant
-	*****			1	Sectors of		summers and		**	-	***			**	**	**		-			**			1		**	***			55		1	**	***		**	-	54	**	**	-	***	***		****	***		**	***	-				
-	*****			1111	galantikak nationak nationak	1			**	-		**			**	**				-		**		-		**	-	-				-				**		**		**	-				**	***	-	**	-		** **		-	
-	-	mage in		1		1		~~	**		-				**				**	**	**	**		-	**		***	-		**	85	ł	-	**				**	**	**	-	**	***		8.85	***			170	-	** **			
88.01		****	**	1 1	manual va	11	Tank park		**		847					-				***	**	**	5	**		**	***				-	ŝ	**	**		***		***		**	ś			1		8.56		**	174					

1,00,000	China and and a state	the part of the second	a contraction of the second	4.300,00.000	A DAY OF A DAY	1,00,000	1,00,00,000	of the last of the	10,00,00.000	10,000,00000	a particular	in the second second	10,000,00000	-	a the second	1,00,000	A DECEMBER OF	A DECK DECK		- particular	(an an and	1,00,00.000	(page-and	a history and the second	1,00,00.000		and he was not	and the second		and the second second	and the second second		and the second	and the second second	an a	- managed and the	entre server			
***	**	-	17.8		**		**	***		**		-	444		-				**	***	-		**	- 4	-	-	**		***					-				***		1011
1.07	**		-		**	**	***		-	***	**				-		- 14			149	-				-					***					**					****
***	**	-	-		**	**		***		-		-				**	***			141	-		-		-	-	-					-						***		88.74
		-						***		***					-	**							**	1.5		~	••	1.5	**			**						***	- 4	81.07

Appendix D: Geochemical Analysis Details, Assay Certificates, and Standard Reference Material Information

Sample Preparation Package

PREP- 31Y

Standard Sample Preparation: Dry, Crush, Rotary Split and Pulverize

Sample preparation is the most critical step in the entire laboratory operation. The purpose of preparation is to produce a homogeneous analytical sub-sample that is fully representative of the material submitted to the laboratory.

The sample is logged in the tracking system, weighed, dried and finely crushed to better than 70 % passing a 2 mm (Tyler 9 mesh, US Std. No.10) screen. A split of up to 250 g is taken using a Boyd rotary splitter and pulverized to better than 85 % passing a 75 micron (Tyler 200 mesh, US Std. No. 200) screen. This method is appropriate for rock chip or drill samples.

Method Code	Description
LOG-22	Sample is logged in tracking system and a bar code label is attached.
CRU-31	Fine crushing of rock chip and drill samples to better than 70 % of the sample passing 2 mm.
SPL-22Y	Rotary split using a Boyd rotary splitter.
PUL-31	A sample split of up to 250 g is pulverized to better than 85 % of the sample passing 75 microns.

Sample Preparation Package

Flow Chart - Sample Preparation Package - PREP- 31Y Standard Sample Preparation: Dry, Crush, Rotary Split and Pulverize

Revision 01.00 Aug 08, 2007

Au-ICP21/Au-ICP22 – Fire Assay Fusion – ICP-AES Finish

Sample Decomposition:

Fire Assay Fusion (FA-FUSPG1 & FA-FUSPG2)

Analytical Method:

Inductively Couple Plasma - Atomic Emission Spectrometry

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 mL dilute nitric acid in the microwave oven. 0.5 mL concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 mL with de-mineralized water, and analyzed by inductively coupled plasma atomic emission spectrometry against matrix-matched standards.

Method Code	Element	Symbol	Units	Sample	Lower	Upper	Default
				Weight (g)	Limit	Limit	Overlimit
							Method
Au-ICP21	Gold	Au	ppm	30	0.001	10	Au-GRA21
Au-ICP22	Gold	Au	ppm	50	0.001	10	Au-GRA22

Whole Rock Geochemistry

ME-ICP06 and OA-GRA05 Analysis of major oxides by ICP-AES

ME-ICP06

Sample Decomposition:

Lithium Metaborate/Lithium Tetraborate (LiBO₂/Li₂B₄O₇) Fusion* (FUS-LI01)

Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)

A prepared sample (0.100 g) is added to lithium metaborate/lithium tetraborate flux, mixed well and fused in a furnace at 1000°C. The resulting melt is then cooled and dissolved in 100 mL of 4% nitric acid/2% hydrochloric acid. This solution is then analyzed by ICP-AES and the results are corrected for spectral inter-element interferences. Oxide concentration is calculated from the determined elemental concentration and the result is reported in that format.

Element	Symbol	Units	Lower Limit	Upper Limit
Aluminum	Al ₂ O ₃	%	0.01	100
Barium	BaO	%	0.01	100
Calcium	CaO	%	0.01	100
Chromium	Cr ₂ O ₃	%	0.01	100
Iron	Fe ₂ O ₃	%	0.01	100
Magnesium	MgO	%	0.01	100
Manganese	MnO	%	0.01	100
Phosphorus	P_2O_5	%	0.01	100
Potassium	K ₂ O	%	0.01	100
Silicon	SiO ₂	%	0.01	100
Sodium	Na ₂ O	%	0.01	100

Revision 07.00 January 10th, 2014

Whole Rock Geochemistry

Element	Symbol	Units	Lower Limit	Upper Limit
Strontium	SrO	%	0.01	100
Titanium	TiO ₂	%	0.01	100

*Note: For samples that are high in sulphides, we may substitute a peroxide fusion in order to obtain better results.

OA-GRA05, ME-GRA05

Sample Decomposition: Analytical Method:

Thermal decomposition Furnace or TGA (OA-GRA05 or ME-GRA05) Gravimetric

If required, the total oxide content is determined from the ICP analyte concentrations and loss on Ignition (L.O.I.) values. A prepared sample (1.0 g) is placed in an oven at 1000°C for one hour, cooled and then weighed. The percent loss on ignition is calculated from the difference in weight.

Method Code	Parameter	Symbol	Units	Lower Limit	Upper Limit
OA-GRA05	Loss on Ignition (Furnace)	LOI	%	0.01	100
ME-CRA05	Loss on Ignition	Moisture	%	0.01	100
	(TGA)	LOI	%	0.01	100

Revision 07.00 January 10th, 2014

ME-MS61: Ultra-Trace Level Method Using ICP MS and ICP-AES

Sample Decomposition:

HF-HNO3-HClO4 acid digestion, HCl leach (GEO-4A01)

Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

The ME-MS61 Ultra Trace method combines a four-acid digestion with ICP-MS instrumentation. A four acid digestion quantitatively dissolves nearly all minerals in the majority of geological materials.

A prepared sample (0.25 g) is digested with perchloric, nitric and hydrofluoric acids. The residue is leached with dilute hydrochloric acid and diluted to volume.

The final solution is then analyzed by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry. Results are corrected for spectral inter-element interferences.

List of Reportable Analytes:

A	Complete I	11	1	11
Analyte	Symbol	Units	Lower Limit	Upper Limit
Silver	Ag	ppm	0.01	100
Aluminum	Al	%	0.01	50
Arsenic	As	ppm	0.2	10000
Barium	Ba	ppm	10	10000
Beryllium	Ве	ppm	0.05	1000
Bismuth	Bi	ppm	0.01	10000
Calcium	Ca	%	0.01	50
Cadmium	Cd	ppm	0.02	1000
Cerium	Ce	ppm	0.01	500
Cobalt	Со	ppm	0.1	10000
Chromium	Cr	ppm	1	10000
Cesium	Cs	ppm	0.05	500
Copper	Cu	ppm	0.2	10000
Iron	Fe	%	0.01	50
Gallium	Ga	ppm	0.05	10000
Germanium	Ge	ppm	0.05	500
Hafnium	Hf	ppm	0.1	500
Indium	In	ppm	0.005	500
Potassium	К	%	0.01	10
Lanthanum	La	ppm	0.5	10000
Lithium	Li	ppm	0.2	10000
Magnesium	Mg	%	0.01	50
Manganese	Mn	ppm	5	100000
Molybdenum	Мо	ppm	0.05	10000
Sodium	Na	%	0.01	10
Niobium	Nb	ppm	0.1	500
Nickel	Ni	ppm	0.2	10000

Page 1 of 2

Analyte	Symbol	Units	Lower Limit	Upper Limit
Phosphorous	Р	ppm	10	10000
Lead	Pb	ppm	0.5	10000
Rubidium	Rb	ppm	0.1	10000
Rhenium	Re	ppm	0.002	50
Sulphur	S	%	0.01	10
Antimony	Sb	ppm	0.05	10000
Scandium	Sc	ppm	0.1	10000
Selenium	Se	ppm	1	1000
Tin	Sn	ppm	0.2	500
Strontium	Sr	ppm	0.2	10000
Tantalum	Ta	ppm	0.05	100
Tellurium	Те	ppm	0.05	500
Thorium	Th	ppm	0.01	10000
Titanium	Ti	%	0.005	10
Thallium	TI	ppm	0.02	10000
Uranium	U	ppm	0.1	10000
Vanadium	V	ppm	1	10000
Tungsten	W	ppm	0.1	10000
Yttrium	Y	ppm	0.1	500
Zinc	Zn	ppm	2	10000
Zirconium	Zr	ppm	0.5	500

NOTE: Four acid digestions are able to dissolve most minerals. However, depending on the sample matrix, not all elements are quantitatively extracted. For example:

- This digestion may not be complete for minerals such as corundum (Al₂O₃), kyanite (Al₂SiO₅) and more complex silicates such as garnet, staurolite, topaz and tourmaline.
- Potassium may bias low due to the formation of the insoluble perchlorate, which may not be completely decomposed during the leaching process.
- Low recoveries of Al and Ca may occur if their insoluble fluorides are not completely decomposed during the leaching process.
- Scandium may not be fully solubilized and may show lower recovery by this digestion. Sc-ICP06 (Lithium Metaborate Fusion, ICP-AES Finish), a method developed for Scandium, can be used as an alternative for this analyte.
- Four acid digestions can also volatilize certain exploration pathfinder elements, in particular mercury. Mercury is better analyzed by an aqua regia digestion and can be added as a package to this analysis (Package: ME-MS61m).

minerats

Food & Environmental Tribology Pharmaceutical Industrial

Geochemical Procedure

ME-MS81 Lithogeochemistry

Sample Decomposition:

Lithium Borate (LiBO₂/Li₂B₄O₂) Fusion (FUS-LI01)*

Analytical Method:

Inductively Coupled Plasma - Mass Spectroscopy (ICP - MS)

A prepared sample (0.100 g) is added to lithium metaborate/lithium tetraborate flux, mixed well and fused in a furnace at 1025°C. The resulting melt is then cooled and dissolved in an acid mixture containing nitric, hydrochloric and hydrofluoric acids. This solution is then analyzed by inductively coupled plasma - mass spectrometry.

Element	Symbol	Unit	Lower Limit	Upper Limit
Barium	Ba	ppm	0.5	10000
Cerium	Ce	ppm	0.5	10000
Chromium	Cr	ppm	10	10000
Cesium	Cs	ppm	0.01	10000
Dysprosium	Dy	ppm	0.05	1000
Erbium	Er	ppm	0.03	1000
Europium	Eu	ppm	0.03	1000
Gallium	Ga	ppm	0.1	1000
Gadolinium	Gd	ppm	0.05	1000
Hafnium	Hf	ppm	0.2	10000
Holmium	Но	ppm	0.01	1000
Lanthanum	La	ppm	0.5	10000
Lutetium	Lu	ppm	0.01	1000
Niobium	Nb	ppm	0.2	2500

Geochemical Procedure

Element	Symbol	Unit	Lower Limit	Upper Limit
Neodymium	Nd	ppm	0.1	10000
Praseodymium	Pr	ppm	0.03	1000
Rubidium	Rb	ppm	0.2	10000
Samarium	Sm	ppm	0.03	1000
Tin	Sn	ppm	1	10000
Strontium	Sr	ppm	0.1	10000
Tantalum	Ta	ppm	0.1	2500
Terbium	Tb	ppm	0.01	1000
Thorium	Th	ppm	0.05	1000
Thallium	TI	ppm	0.5	1000
Thullium	Tm	ppm	0.01	1000
Uranium	U	ppm	0.05	1000
Vanadium	V	ppm	5	10000
Tungsten	W	ppm	1	10000
Yttrium	Y	ppm	0.5	10000
Ytterbium	Yb	ppm	0.03	1000
Zirconium	Zr	ppm	2	10000

*Note: Minerals that may not recover fully using the lithium borate fusion include zircon, some metal oxides, some rare-earth phosphates and some sulphides. Basemetals also do not fully recover using this method.

Basemetals determined by either aqua regia or 4-acid digestion and ICP-AES may be added to the ME-MS81 package. See following page.

Geochemical Procedure

Addition of Basemetals

Sample Decomposition:Aqua Regia (GEO-AR01) or 4-Acid (GEO-4ACID)Analytical Method:Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES)

The lithium borate fusion is not the preferred method for the determination of base metals. Many sulfides and some metal oxides are only partially decomposed by the borate fusion and some elements such as cadmium and zinc can be volatilized.

Base metal and additional elements more appropriately analysed by acid digestion can be reported with ME-MS81 by either an aqua regia (ME-AQ81) or four acid digestion (ME-4ACD81). The four acid digestion is preferred when the targets include more resistive mineralization such as that associated with nickel and cobalt. Mercury is only offered with the aqua regia digestion.

ME-4ACD81

Element	Symbol	Units	Lower Limit	Upper Limit
Silver	Ag	ppm	0.5	100
Arsenic	As	ppm	5	10000
Cadmium	Cd	ppm	0.5	1000
Cobalt	Со	ppm	1	10000
Copper	Cu	ppm	1	10000
Lithium	Li	ppm	10	10000
Molybdenum	Мо	ppm	1	10000
Nickel	Ni	ppm	1	10000
Lead	Pb	ppm	2	10000
Scandium	Sc	ppm	1	10000
Zinc	Zn	ppm	2	10000

Geochemical Procedure

ME-AQ81

Note: Mercury is only available via the aqua regia digestion

Element	Symbol	Units	Lower Limit	Upper Limit
Silver	Ag	ppm	0.5	100
Arsenic	As	ppm	5	10000
Cadmium	Cd	ppm	0.5	1000
Cobalt	Со	ppm	1	10000
Copper	Cu	ppm	1	10000
Mercury	Hg	ppm	1	10000
Molybdenum	Мо	ppm	1	10000
Nickel	Ni	ppm	1	10000
Lead	Pb	ppm	2	10000
Zinc	Zn	ppm	2	10000

RIGHT SOLUTIONS RIGHT PARTNER

www.alsglobal.com

ME-OG62- Ore Grade Elements by Four Acid Digestion Using Conventional ICP-AES Analysis

Sample Decomposition:

HNO₃-HClO₄-HF-HCl Digestion (ASY-4A01)

Analytical Method:

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)

Assays for the evaluation of ores and high-grade materials are optimized for accuracy and precision at high concentrations. Ultra high concentration samples (> 15 -20%) may require the use of methods such as titrimetric and gravimetric analysis, in order to achieve maximum accuracy.

A prepared sample is digested with nitric, perchloric, hydrofluoric, and hydrochloric acids, and then evaporated to incipient dryness. Hydrochloric acid and de-ionized water is added for further digestion, and the sample is heated for an additional allotted time. The sample is cooled to room temperature and transferred to a volumetric flask (100 mL). The resulting solution is diluted to volume with de-ionized water, homogenized and the solution is analyzed by inductively coupled plasma - atomic emission spectroscopy or by atomic absorption spectrometry. Results are corrected for spectral interelement interferences.

*NOTE: ICP-AES is the default finish technique for ME-OG62. However, under some conditions and at the discretion of the laboratory an AA finish may be substituted. The certificate will clearly reflect which instrument finish was used.

Element	Svmbol	Units	Lower Limit	Upper Limit
Silver	Ag	ppm	1	1500
Arsenic	As	%	0.001	30
Bismuth	Bi	%	0.001	30
Cadmium	Cd	%	0.0001	10
Cobalt	Со	%	0.0005	<mark>30</mark>
Chromium	Cr	%	0.002	30
Copper	Cu	%	0.001	<mark>50</mark>
Iron	Fe	%	0.01	100
Magnesium	Mg	%	0.01	50
Manganese	Mn	%	0.01	<mark>60</mark>
Molybdenum	Мо	%	0.001	10
Nickel	Ni	%	0.001	30
Lead	Pb	%	0.001	20
Sulphur	S	%	0.01	50
Zinc	Zn	%	0.001	30

CERTIFICATE VA20132416

Project: HT

P.O. No.: 2020-HT-01

This report is for 14 Rock samples submitted to our lab in Vancouver, BC, Canada on 23-JUN-2020.

The following have access to data associated with this certificate:

CONNOR MALEK

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 1 Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 This copy reported on 27-JUL-2020 Account: LASFIR

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging - ClientBarCode
CRU-31	Fine crushing - 70% <2mm
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
SPL-22Y	Split Sample - Boyd Rotary Splitter
PUL-31	Pulverize up to 250g 85% <75 um

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Cu-OG62	Ore Grade Cu - Four Acid	
ME-MS61	48 element four acid ICP-MS	
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ
ME-MS81	Lithium Borate Fusion ICP-MS	ICP-MS
TOT-ICP06	Total Calculation for ICP06	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-ICP61	33 element four acid ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - A Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
X987035 X987036 X987037 X987038 X987038 X987039		2.20 2.04 3.52 3.14 2.52	0.036 0.088 0.011 0.004 0.005	0.5 1.7 6.4 0.6 0.5	7.73 8.61 8.06 8.30 8.55	11 6 <5 5 <5	50 20 10 10 30	<0.5 <0.5 0.6 0.6 0.5	<2 3 6 <2 5	7.99 10.75 9.04 11.25 9.48	1.0 1.6 5.5 1.4 1.1	132 37 65 109 35	81 117 64 127 144	856 5430 >10000 803 645	16.00 10.10 11.20 12.20 10.20	30 30 30 30 30 30
X987040 X987041 X987042 X987043 X987044		2.74 2.02 3.18 1.76 2.80	0.023 0.006 0.066 <0.001 0.003	1.1 <0.5 23.1 <0.5 <0.5	7.91 8.19 0.28 1.39 6.85	<5 8 22 6 <5	50 50 10 40 10	0.5 0.7 <0.5 <0.5 <0.5	3 <2 3 <2 <2 <2	6.72 13.85 3.44 0.26 8.68	1.2 0.8 9.6 <0.5 0.9	46 33 497 4 51	136 166 <1 44 183	2490 155 >10000 245 158	9.53 9.55 >50 1.52 8.81	20 30 10 <10 20
V725334 V725335 V725336 V725337		1.44 2.16 1.44 0.96														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - B Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
X987035 X987036 X987037 X987038 X987038 X987039		0.12 0.06 0.04 0.05 0.06	<10 <10 <10 <10 10	2.11 2.51 3.24 3.57 2.71	946 1175 1240 1360 1360	2 1 1 4 1	1.47 1.72 1.37 0.54 1.38	57 67 70 81 74	710 810 1100 850 960	7 17 11 11 6	3.26 0.53 1.92 1.79 0.17	<5 5 <5 <5 <5	36 38 38 36 46	1330 1810 995 1460 1875	<20 <20 <20 <20 <20	0.86 1.19 1.22 1.02 1.44
X987040 X987041 X987042 X987043 X987044		0.23 0.09 0.01 0.22 0.05	10 <10 <10 <10 <10	4.29 3.37 0.43 0.29 4.50	1945 1605 1100 182 1455	1 <1 2 2 <1	2.97 0.58 0.04 0.38 2.09	90 98 94 5 120	860 890 180 180 560	6 3 5 <2 6	0.32 0.29 7.74 0.07 0.12	<5 <5 <5 <5 <5 <5	42 21 <1 3 42	356 280 4 15 622	<20 <20 <20 <20 <20	1.30 0.57 0.01 0.09 0.92
V725334 V725335 V725336 V725337																

ALS)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - C Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-ICP61 Tl ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	ME-MS61 Ag ppm 0.01	ME-MS61 Al % 0.01	ME-MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME-MS61 Be ppm 0.05	ME-MS61 Bi ppm 0.01	ME-MS61 Ca % 0.01	ME-MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01
X987035 X987036 X987037 X987038 X987038 X987039		<10 <10 10 10 <10	<10 <10 <10 <10 <10	372 455 398 340 463	<10 <10 <10 <10 <10	51 82 268 113 77	1.050									
X987040 X987041 X987042 X987043 X987044		<10 <10 10 <10 <10	<10 <10 <10 <10 <10	411 169 16 27 341	<10 <10 <10 <10 <10	125 64 717 17 104	4.19									
V725334 V725335 V725336 V725337								0.04 0.03 0.04 0.04	7.76 7.87 7.53 9.20	4.4 2.4 2.6 2.5	570 570 620 340	1.72 0.92 0.80 0.77	0.04 0.02 0.04 0.08	2.20 1.69 2.02 5.01	0.10 0.09 0.11 0.11	32.4 29.1 27.4 16.10

ALS Canada Ltd. 2103 Dollarton Hwy

ALS)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - D Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method	ME-MS61														
	Analyte	Co	Cr	Cs	Cu	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm
	LOD	0.1	1	0.05	0.2	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05
X987035 X987036 X987037 X987038 X987038 X987039																
X987040 X987041 X987042 X987043 X987044																
V725334		6.9	19	0.85	10.0	3.04	17.55	0.06	0.5	0.027	1.61	14.7	9.2	0.53	542	1.69
V725335		4.4	9	0.48	16.2	2.87	15.50	0.08	1.6	0.035	1.45	13.4	6.7	0.64	863	0.92
V725336		4.0	8	0.41	11.0	2.71	14.90	0.06	1.2	0.042	1.45	12.8	4.9	0.51	755	0.63
V725337		10.4	10	0.46	32.7	3.96	19.75	0.06	0.4	0.057	0.71	6.0	5.9	1.03	870	0.66

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - E Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method	ME-MS61														
	Analyte	Na	Nb	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te
	Units	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm						
	LOD	0.01	0.1	0.2	10	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05
X987035 X987036 X987037 X987038 X987038 X987039																
X987040 X987041 X987042 X987043 X987044																
V725334		3.63	5.5	3.1	770	6.9	56.3	<0.002	0.01	0.49	5.6	<1	0.9	234	0.43	<0.05
V725335		3.56	4.5	1.5	590	8.9	35.1	<0.002	0.01	0.43	9.9	1	0.5	301	0.33	<0.05
V725336		3.50	4.4	0.5	550	5.5	31.2	<0.002	<0.01	0.38	9.4	<1	0.7	270	0.31	<0.05
V725337		3.81	3.3	3.5	760	6.1	11.6	<0.002	0.01	0.41	16.3	1	0.9	542	0.20	<0.05

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - F Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 Tl ppm 0.02	ME-MS61 U ppm 0.1	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	ME-MS81 Ba ppm 0.5	ME-MS81 Ce ppm 0.1	ME-MS81 Cr ppm 10	ME-MS81 Cs ppm 0.01	ME-MS81 Dy ppm 0.05	ME-MS81 Er ppm 0.03
X987035 X987036 X987037 X987038 X987038 X987039																
X987040 X987041 X987042 X987043 X987044																
V725334 V725335 V725336 V725337		3.93 1.60 1.48 1.04	0.247 0.250 0.235 0.391	0.23 0.16 0.19 0.14	1.5 0.8 0.7	24 31 27 114	0.3 0.3 0.2 0.5	25.8 16.7 17.9 17.6	48 56 50 50	10.3 59.2 40.1 7.8	584 574 576 338	35.2 28.9 26.1 17.9	20 20 10 10	0.85 0.43 0.42 0.49	4.51 3.67 3.53 3.35	2.92 2.31 2.16 1.96

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - G Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-MS81 Eu ppm 0.02	ME-MS81 Ga ppm 0.1	ME-MS81 Gd ppm 0.05	ME-MS81 Hf ppm 0.1	ME-MS81 Ho ppm 0.01	ME-MS81 La ppm 0.1	ME-MS81 Lu ppm 0.01	ME-MS81 Nb ppm 0.1	ME-MS81 Nd ppm 0.1	ME-MS81 Pr ppm 0.02	ME-MS81 Rb ppm 0.2	ME-MS81 Sm ppm 0.03	ME-MS81 Sn ppm 1	ME-MS81 Sr ppm 0.1	ME-MS81 Ta ppm 0.1
X987035 X987036 X987037 X987038 X987038 X987039																
X987040 X987041 X987042 X987043 X987044																
V725334 V725335 V725336 V725337		1.23 0.97 0.82 1.24	17.8 15.7 14.6 19.2	3.90 3.01 3.04 3.02	6.3 4.2 3.4 2.5	1.00 0.79 0.72 0.70	16.9 14.4 13.1 9.0	0.53 0.44 0.39 0.32	5.8 4.9 4.4 3.4	19.2 16.1 13.5 11.6	4.64 3.50 3.33 2.33	65.9 37.9 32.0 24.4	4.43 3.43 3.07 2.61	1 1 1	224 283 239 511	0.6 0.5 0.4 0.3

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - H Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-MS81 Tb ppm 0.01	ME-MS81 Th ppm 0.05	ME-MS81 Tm ppm 0.01	ME-MS81 U ppm 0.05	ME-MS81 V ppm 5	ME-MS81 W ppm 1	ME-MS81 Y ppm 0.1	ME-MS81 Yb ppm 0.03	ME-MS81 Zr ppm 2	ME-ICP06 SiO2 % 0.01	ME-ICP06 Al2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaO % 0.01	ME-ICP06 MgO % 0.01	ME-ICP06 Na2O % 0.01
X987035 X987036 X987037 X987038 X987038 X987039																
X987040 X987041 X987042 X987043 X987044																
V725334 V725335 V725336 V725337		0.69 0.56 0.53 0.50	5.70 3.11 2.82 1.63	0.45 0.36 0.34 0.27	2.12 1.26 1.22 0.78	28 38 30 127	1 1 1	28.8 22.0 20.0 18.1	3.26 2.84 2.16 1.76	246 141 131 115	68.1 70.0 69.0 57.8	15.60 15.20 15.05 19.80	4.43 4.12 3.94 5.75	3.11 2.32 2.88 6.96	0.98 1.14 0.94 1.98	5.04 4.92 4.90 5.13

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - I Total # Pages: 2 (A - I) Plus Appendix Pages Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MnO % 0.01	ME-ICP06 P2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaO % 0.01	OA-GRA05 LOI % 0.01	TOT-ICP06 Total % 0.01	
X987035 X987036 X987037 X987038 X987038 X987039											
X987040 X987041 X987042 X987043 X987044											
V725334 V725335 V725336 V725337		1.99 1.77 1.84 0.95	0.004 0.002 <0.002 <0.002	0.42 0.43 0.40 0.66	0.07 0.12 0.10 0.11	0.19 0.12 0.12 0.18	0.03 0.03 0.03 0.06	0.07 0.06 0.07 0.04	1.07 1.60 1.49 1.65	101.10 101.83 100.76 101.07	

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 15-JUL-2020 Account: LASFIR

Project: HT

		CERTIFICATE COM	MENTS	
		ANALY	TICAL COMMENTS	
Applies to Method:	REEs may not be totally solubl ME-MS61	e in this method.		
		LABORA		
	Processed at ALS Vancouver lo	ocated at 2103 Dollarton Hwy, No	rth Vancouver, BC, Canada.	
Applies to Method:	Au-ICP21 LOG-21 ME-MS81 PUL-OC	CRU-31 ME-ICP06 ME-OG62 SPL-22Y	CRU-QC ME-ICP61 OA-GRA05 TOT-ICP06	Cu-OG62 ME-MS61 PUL-31 WEI-21

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-SEP-2020 Account: LASFIR

CERTIFICATE VA20181722

Project: HT

P.O. No : 2020-HT-02

This report is for 44 Rock samples submitted to our lab in Vancouver, BC, Canada on 21-AUG-2020.

The following have access to data associated with this certificate:

CONNOR MALEK

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-21	Sample logging - ClientBarCode								
CRU-QC	Crushing QC Test								
PUL-QC	Pulverizing QC Test								
OA-HSUL10	Handling of High Sulphide Samples								
CRU-31	Fine crushing - 70% <2mm								
SPL-22Y	Split Sample - Boyd Rotary Splitter								
PUL-31	Pulverize up to 250g 85% <75 um								
LOG-23	Pulp Login - Rcvd with Barcode								

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Cu-OG62	Ore Grade Cu - Four Acid	
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-ICP61	33 element four acid ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Saa Traxler, General Manager, North Vancouver

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-SEP-2020 Account: LASFIR

Project: HT

Sample Description	Method	WEI-21	Au-ICP21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOD	0.02	0.001	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	10
X987093		1.12	0.004	<0.5	3.25	53	130	0.7	4	13.90	0.7	24	62	165	12.10	10
X987094		2.32	0.001	<0.5	6.97	8	420	0.6	8	7.23	<0.5	31	21	270	8.68	10
X987095		1.68	<0.001	<0.5	3.97	<5	160	0.5	2	11.30	0.6	24	44	136	10.80	10
X987096		1.80	<0.001	<0.5	4.48	<5	120	0.6	3	8.97	0.8	30	94	48	12.25	10
X987097		1.78	0.004	<0.5	7.27	5	320	<0.5	5	6.99	0.5	18	35	119	5.14	10
X987098		1.78	<0.001	<0.5	6.97	<5	230	<0.5	4	6.73	0.6	69	47	926	11.85	10
X987099		1.94	0.002	<0.5	7.15	<5	530	0.6	3	6.60	<0.5	12	19	85	4.92	10
X987100		0.12	0.739	11.6	2.97	221	180	<0.5	16	1.91	39.8	18	48	2350	9.07	10
Y993818		2.00	0.001	<0.5	5.56	28	600	0.6	3	16.30	0.7	8	30	160	4.67	10
Y993819		1.28	<0.001	<0.5	6.54	<5	300	1.0	7	4.12	0.6	47	79	589	10.25	20
Y993820 Y993821 Y993822 Y993823 Y993823 Y993824		1.14 2.06 1.32 1.40 2.08	<0.001 <0.001 <0.001 0.001 <0.001	<0.5 <0.5 <0.5 <0.5 <0.5	7.64 7.87 4.50 8.04 5.50	<5 <5 <5 5 <5	730 660 20 610 <10	0.8 0.7 0.5 <0.5 1.5	12 10 7 5 5	7.04 7.11 12.90 5.52 14.55	<0.5 <0.5 0.8 0.5 0.7	21 21 43 46 26	8 26 27 62 32	145 152 365 379 6	5.91 5.97 15.40 9.48 11.30	20 20 10 10 10
Y993825		1.68	0.002	1.1	2.70	<5	<10	<0.5	2	15.10	1.0	98	19	923	21.2	10
Y993826		1.56	<0.001	<0.5	5.39	<5	520	<0.5	5	17.55	1.1	5	22	55	12.70	10
Y993827		1.52	<0.001	<0.5	5.67	6	30	0.7	5	16.00	0.8	14	54	35	9.62	10
Y993857		1.88	0.001	<0.5	8.47	<5	20	0.5	12	12.60	0.5	23	59	79	8.78	40
Y993858		1.76	0.001	<0.5	6.92	<5	200	0.5	6	2.63	<0.5	40	120	43	9.18	20
Y993859		1.48	0.023	<0.5	6.81	12	50	<0.5	5	5.15	0.6	43	155	105	8.39	20
Y993860		2.12	0.081	<0.5	8.35	<5	10	<0.5	11	13.00	0.7	27	84	498	10.05	40
Y993861		2.52	0.002	<0.5	8.33	<5	80	<0.5	10	12.05	0.9	32	102	123	9.40	40
Y993862		2.30	0.002	<0.5	5.50	<5	30	<0.5	5	7.23	0.8	33	67	31	7.37	20
Y993863		3.08	0.004	<0.5	8.09	<5	10	0.6	3	10.80	0.7	35	65	78	9.47	30
Y993864		3.90	0.074	0.9	4.56	92	40	<0.5	6	6.38	1.7	116	69	2100	14.60	20
Y993865		2.66	0.004	<0.5	6.84	5	10	0.5	10	7.45	0.9	39	8	168	9.03	20
Y993866		2.46	0.006	<0.5	1.74	14	10	<0.5	<2	8.43	1.7	45	11	495	26.7	10
Y993867		2.56	0.001	<0.5	0.48	15	<10	0.6	<2	14.65	1.4	77	3	592	12.90	10
Y993868		3.36	<0.001	<0.5	6.24	6	10	0.7	3	14.35	0.9	14	13	18	11.10	20
Y993869		2.76	0.001	<0.5	6.26	460	190	0.6	3	15.70	1.4	32	167	193	10.00	10
Y993870		2.26	<0.001	<0.5	7.87	16	220	0.8	5	5.69	0.5	33	30	201	6.41	20
Y993871		3.28	<0.001	<0.5	7.19	<5	530	1.0	6	9.47	<0.5	13	38	64	4.97	10
Y993872		2.48	0.007	<0.5	3.97	5	40	<0.5	3	11.15	0.9	55	61	389	12.05	10
Y993873		3.40	0.001	<0.5	2.28	<5	80	<0.5	2	3.36	1.8	164	7	1660	30.5	<10
Y993874 Y993875 Y993876 Y993877 Y993878		2.92 3.30 2.66 2.76 1.90	<0.001 <0.001 0.002 <0.001 <0.001	<0.5 <0.5 0.6 <0.5 <0.5	7.23 7.58 1.12 7.20 6.63	<5 <5 <5 <5 <5 <5	860 280 60 180 720	0.6 0.8 <0.5 0.7 1.6	3 10 <2 4 <2	9.43 7.30 1.88 5.44 1.19	0.6 0.6 1.5 0.5 <0.5	15 63 258 19 2	32 11 3 14 13	95 481 2400 250 21	5.14 9.21 42.7 8.18 3.11	10 20 <10 10 20

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-SEP-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
X987093 X987094 X987095 X987096 X987097		0.35 0.68 0.34 0.46 0.48	10 10 10 10 10	3.58 1.15 0.84 1.23 1.45	2620 447 3370 2310 793	7 3 3 3 3	0.22 2.59 1.16 2.61 4.08	60 31 34 29 25	390 1030 900 960 920	2 2 <2 <2 2	1.39 5.15 1.21 0.90 1.21	<5 <5 <5 <5 <5 <5	9 14 10 13 15	227 635 185 86 695	<20 <20 <20 <20 <20	0.19 0.33 0.19 0.21 0.29
X987098 X987099 X987100 Y993818 Y993819		0.73 0.74 0.43 0.76 1.02	10 10 10 10 20	0.90 0.91 2.50 0.95 1.84	1110 1010 471 1530 1860	6 1 13 2 3	1.28 3.29 0.07 0.89 2.95	55 9 38 22 53	800 990 320 860 1300	<2 <2 646 <2 <2	4.41 0.91 6.92 1.65 5.32	<5 <5 32 <5 <5	18 13 6 12 22	432 483 56 270 292	<20 <20 <20 <20 <20	0.37 0.29 0.11 0.23 0.59
Y993820 Y993821 Y993822 Y993823 Y993823 Y993824		0.83 0.75 0.04 0.84 0.01	10 10 10 10 10	2.38 2.61 1.64 2.05 1.36	615 798 3870 782 4660	1 1 1 3 1	3.00 3.18 0.94 2.52 0.31	11 12 28 47 19	2070 1670 850 1100 230	3 <2 3 2 4	2.12 1.73 2.39 4.55 0.49	<5 <5 <5 <5 <5	33 31 12 24 11	759 840 263 756 41	<20 <20 <20 <20 <20	1.27 1.00 0.27 0.45 0.28
Y993825 Y993826 Y993827 Y993857 Y993858		0.01 0.68 0.02 0.11 1.09	10 10 10 10 10	0.39 1.22 2.10 1.93 3.35	1790 1570 4180 1010 803	1 2 1 1 1	0.02 0.27 0.15 0.16 0.83	71 8 23 39 86	710 190 1190 530 770	2 <2 <2 <2 <2 <2	5.78 0.40 0.15 0.10 0.05	<5 <5 <5 <5 18	5 14 13 27 43	11 88 288 2030 226	<20 <20 <20 <20 <20	0.14 0.28 0.25 0.76 1.12
Y993859 Y993860 Y993861 Y993862 Y993863		0.13 0.01 0.13 0.34 0.04	10 10 10 10 10	4.37 1.43 1.99 3.13 2.59	1380 715 1025 1150 1140	<1 2 2 1 1	2.57 0.16 0.57 1.40 0.46	90 48 55 51 53	620 660 630 530 650	<2 <2 4 2 <2	0.14 0.27 0.03 0.18 0.08	<5 <5 <5 <5 <5	38 36 28 29 34	191 3090 3600 470 1235	<20 <20 <20 <20 <20	0.85 0.93 0.95 0.81 0.95
Y993864 Y993865 Y993866 Y993866 Y993867 Y993868		0.11 0.11 0.01 0.01 0.01	10 10 <10 <10 10	0.75 2.61 2.36 4.64 1.74	881 1170 1700 3080 2950	2 2 <1 1 2	0.39 2.67 0.04 0.08 0.04	66 12 21 86 28	410 1900 190 100 180	3 <2 82 4 3	3.00 3.00 5.07 1.41 0.09	<5 <5 <5 <5 <5 <5	25 36 3 1 2	238 362 321 16 738	<20 <20 <20 <20 <20	0.59 1.19 0.06 0.03 0.09
Y993869 Y993870 Y993871 Y993872 Y993873		0.23 0.43 1.26 0.05 1.14	10 10 10 10 <10	1.74 1.40 1.98 1.29 1.07	2310 930 1040 1220 338	2 2 9 11 63	0.38 3.91 2.49 0.27 0.64	41 24 35 57 66	1330 950 1170 1600 590	3 <2 <2 3 5	1.04 1.36 0.64 4.76 >10.0	<5 <5 <5 <5 <5	18 20 13 16 8	107 783 796 93 73	<20 <20 <20 <20 <20	0.39 0.42 0.26 0.29 0.13
Y993874 Y993875 Y993876 Y993877 Y993878		1.00 1.18 0.08 1.69 2.21	10 10 <10 10 20	1.73 1.68 0.38 1.61 0.30	862 401 120 542 809	6 34 56 3 4	2.17 2.63 0.25 3.28 3.81	19 16 94 21 3	1040 1490 150 1050 250	<2 <2 6 4 <2	1.65 5.07 >10.0 5.05 0.15	<5 <5 <5 <5 <5 <5	15 22 3 12 5	562 711 29 479 158	<20 <20 <20 <20 <20 <20	0.30 0.75 0.05 0.27 0.19

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-SEP-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	
X987093		<10	<10	107	<10	110		
X987094 X087005		<10	<10	125	<10	40		
X987095 X987096		<10	<10	101	<10	63		
X987097		<10	<10	162	<10	74		
X987098		<10	<10	181	<10	71		
X987099		<10	<10	141	<10	95		
X987100		10	<10	66	<10	/4/0		
Y993818		<10 <10	<10 <10	96 98	<10 <10	79		
Y993820		<10	<10	276	<10	35		
Y993821		<10	<10	258	<10	50		
Y993822		<10	<10	156	<10	116		
Y993823		<10	<10	210	<10	32		
Y993824		<10	<10	66	<10	141		
Y993825		<10	10	58	<10	82		
Y993826		<10	<10	110	<10	78		
Y993827		<10	<10	116	<10	85		
Y993857		10	<10	342	<10	48		
1993858		<10	<10	368	10	63		
Y993859		<10	<10	298	<10	83		
1993800		<10	<10	300	<10	29		
Y993862		<10	<10	286	<10	40 65		
Y993863		<10	<10	375	<10	64		
Y993864		10	<10	236	<10	69		
Y993865		<10	<10	306	<10	72		
Y993866		10	<10	83	<10	75		
Y993867		<10	<10	44	<10	79		
Y993868		<10	<10	91	<10	50		
Y993869		<10	<10	196	<10	131		
Y993870		<10	<10	200	<10	46		
V003872		10	<10	136	<10	92 84		
Y993873		<10	<10	87	<10	25		
Y993874		<10	<10	126	<10	79		
Y993875		<10	<10	196	<10	32		
Y993876		<10	10	32	<10	18		
Y993877		<10	<10	116	<10	35		
Y993878		<10	<10	16	<10	38		

ALS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-SEP-2020 Account: LASFIR

Project: HT

Sample Description	Method	WEI-21	Au-ICP21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOD	0.02	0.001	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	10
Y993879 Y993880 Y993881 Y993882	LOD	0.02 1.94 2.08 4.06 3.04	0.001 <0.007 0.067 0.100	0.5 <0.5 <0.5 3.9 7.1	0.01 8.03 5.68 0.57 2.42	5 <5 <5 7	10 30 20 10	0.5 0.6 0.5 <0.5 <0.5	2 7 3 3 3	0.01 16.80 10.60 10.70 11.85	0.5	1 14 37 253 69	1 50 240 7 29	1 71 267 >10000 >10000	0.01 5.58 9.58 30.6 18.85	10 20 20 10 20

ALS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-SEP-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
Sample Description Y993879 Y993880 Y993881 Y993882	LOD	0.01 0.01 0.14 0.01 0.04	10 10 10 <10 <10	0.01 1.75 4.85 2.18 2.20	982 1610 3180 2400	1 2 1 <1 <1	0.01 0.08 0.69 0.08 0.10	1 17 122 38 14	10 890 1070 630 370	2 4 <2 2 3	0.01 0.09 0.09 2.86 2.95	5 <5 <5 <5 <5	1 21 26 2 11	1 66 54 13 49	20 <20 <20 <20 <20 <20 <20	0.01 0.44 0.77 0.05 0.14

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 29-SEP-2020 Account: LASFIR

Project: HT

Sample Description	Method Analyte Units LOD	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Cu-OG62 Cu % 0.001	
Sample Description Y993879 Y993880 Y993881 Y993882	Analyte Units LOD	rm 10 <10 <10 10 <10	ppm 10 <10 <10 <10 10	ppm 1 149 206 12 85	<pre></pre>	2 120 92 248 123	% 0.001 1.295 1.435	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FIRST GEOLAS CONSULTING 414-333 1ST STREET E NORTH VANCOUVER BC V7L 4W9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29-SEP-2020 Account: LASFIR

Project: HT

		CERTIFICATE COM	IMENTS									
	LABORATORY ADDRESSES Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.											
Applies to Method:	Au-ICP21 LOG-21 OA-HSUL10 WEI-21	CRU-31 LOG-23 PUL-31	CRU-QC ME-ICP61 PUL-QC	Cu-OG62 ME-OG62 SPL-22Y								

CDN Resource Laboratories Ltd.

#2, 20148 – 102nd Ave, Langley, B.C., Canada, V1M 4B4, 604-882-8422, Fax: 604-882-8466 (www.cdnlabs.com)

REFERENCE MATERIAL: CDN-ME-1409

Recommended values and the "Between Lab" Two Standard Deviations

Gold	0.646 g/t	±	0.070 g/t	Certified value
Silver	11.6 g/t	±	1.6 g/t	Provisional value
Copper	0.242 %	±	0.010 %	Certified value
Lead	0.065 %	±	0.002 %	Certified value
Zinc	0.771 %	±	0.038 %	Certified value

Note: Standards with an RSD of near or less than 5% are certified; RSD's of between 5% and 15% are Provisional; RSD's over 15% are Indicated. Provisional and Indicated values cannot be used to monitor accuracy with a high degree of certainty.

PREPARED BY:CDN Resource Laboratories Ltd.CERTIFIED BY:Duncan Sanderson, B.Sc., Licensed Assayer of British ColumbiaINDEPENDENT GEOCHEMIST:Dr. Barry Smee., Ph.D., P. Geo.DATE OF CERTIFICATION:November 17, 2014

METHOD OF PREPARATION:

Reject ore material was dried, crushed, pulverized and then passed through a 270 mesh screen. The +270 material was discarded. The -270 material was mixed for 5 days in a double-cone mixer. Splits were taken and sent to 15 laboratories for round robin assaying.

ORIGIN OF REFERENCE MATERIAL:

The ore was supplied by Farallon Resources from their Campo Morado property in Mexico. The Campo Morado precious-metalbearing, volcanogenic massive sulphide deposits occur in a lower Cretaceous bimodal, calc-alkaline volcanic sequence. Most deposits occur in the upper part of a sequence of felsic flows and heterolithic volcanoclastic rocks or at its contact with overlying chert and argillite. Gold, silver, zinc, and lead are associated with pyrite, quartz, ankerite, sphalerite, chalcopyrite and galena, with minor tennanite-freibergite, arsenopyrite, and pyrrhotite. Standard CDN-ME-1409 was made by combining 797 kg of Farallon material with 3 kg of a high grade gold ore.

	Percent		Percent
SiO2	61.7	MgO	4.5
Al2O3	6.0	K2O	0.5
Fe2O3	13.5	TiO2	0.2
CaO	2.7	LOI	9.3
Na2O	0.1	S	7.6
С	1.2		

Approximate chemical composition (from whole rock analysis) is as follows:

Statistical Procedures:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t test of the global means of the other laboratories. The means and standard deviations were calculated using all remaining data. Any analysis that fell outside of the mean ±2 standard deviations was removed from the ensuing data base. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual "between-laboratory" standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Assay Procedures:

Au: Fire assay pre-concentration, AA or ICP finish. Ag, Cu, Pb, Zn: 4-acid digestion, AA or ICP finish.
REFERENCE MATERIAL CDN-ME-1409

Results from round-robin assaying:

	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7	Lab 8	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13	Lab 14	Lab 15
	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t	Au a/t
	,	, (6, 9, 1	,	, ia. g, i	, ia. g, i	, to gr	, ia g, i	, ia gr	, ia. g, i	, ia. g, i	, ia g, i	, ia. g, i	, ta g, t	, tu g, t	, .c. g, t
ME-1409-1	0.692	0.661	0.704	0.570	0.676	0.702	0.668	0.706	0.720	0.656	0.641	0.543	0.710	0.584	0.600
ME-1409-2	0.674	0.626	0.705	0.585	0.645	0.761	0.651	0.618	0.630	0.650	0.628	0.581	0.704	0.612	0.600
ME-1409-3	0.662	0.677	0.729	0.610	0.642	0.683	0.682	0.598	0.600	0.615	0.635	0.593	0.674	0.636	0.590
ME-1409-4	0.655	0.675	0.696	0.595	0.681	0.766	0.677	0.622	0.550	0.678	0.685	0.637	0.647	0.661	0.640
ME-1409-5	0.629	0.677	0.692	0.606	0.633	0.760	0.675	0.583	0.640	0.626	0.665	0.600	0.617	0.645	0.620
ME-1409-6	0.655	0.628	0.657	0.573	0.690	0.739	0.657	0.599	0.620	0.652	0.704	0.643	0.626	0.625	0.640
ME-1409-7	0.668	0.665	0.697	0.628	0.615	0.701	0.678	0.650	0.660	0.650	0.701	0.564	0.612	0.647	0.650
ME-1409-8	0.676	0.693	0.710	0.588	0.689	0.753	0.672	0.606	0.670	0.681	0.627	0.585	0.616	0.629	0.630
ME-1409-9	0.729	0.660	0.693	0.613	0.635	0.713	0.661	0.655	0.660	0.678	0.683	0.586	0.641	0.629	0.620
ME-1409-10	0.668	0.701	0.712	0.598	0.636	0.678	0.653	0.613	0.650	0.639	0.645	0.645	0.676	0.619	0.660
Mean	0.671	0.666	0.700	0.597	0.654	0.726	0.667	0.625	0.640	0.653	0.661	0.598	0.652	0.629	0.625
Std. Devn.	0.0263	0.0245	0.0186	0.0183	0.0271	0.0340	0.0112	0.0362	0.0452	0.0222	0.0300	0.0343	0.0366	0.0213	0.0232
% RSD	3.92	3.67	2.66	3.06	4.14	4.68	1.67	5.80	7.06	3.40	4.54	5.73	5.61	3.39	3.71
	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t	Ag g/t
		10			40.0	10.1	10.0	10		10	10		40.0	10.1	
ME-1409-1	9.1	12	11	11	13.0	12.4	12.3	10	10	12	12	11	10.6	12.1	11.5
ME-1409-2	9.5	13	11	11	13.1	12.2	12.0	10	12	12	11	11	10.9	12.3	11.5
ME-1409-3	9.6	12	11	11	12.9	12.7	12.1	11	12	12	12	11	10.3	11.7	11.5
ME-1409-4	9.6	12	12	12	12.5	12.2	12.1	10	12	12	12	11	10.5	12.0	11.5
ME-1409-5	9.4	13	11	11	13.6	12.1	12.1	9	12	12	11	11	10.4	11.3	12.0
ME-1409-6	9.5	12	11	11	13.2	12.1	12.2	11	14	13	12	11	10.3	11.5	11.5
ME-1409-7	10.2	13	11	12	13.1	12.3	12.4	10	12	12	11	11	11.1	12.3	11.5
ME-1409-8	9.2	12	11	12	13.1	12.4	12.1	11	11	12	12	11	10.9	11.6	11.5
ME-1409-9	10.8	13	11	11	13.1	12.5	12.0	10	13	12	12	11	10.4	11.9	11.5
ME-1409-10	8.6	12	12	11	12.4	12.3	12.3	10	10	12	11	11	10.8	12.1	11.0
		10.1			40.0	40.0	10.0	10.0		10.1			40.0		
Mean	9.6	12.4	11.2	11.3	13.0	12.3	12.2	10.2	11.8	12.1	11.6	11.0	10.6	11.9	11.5
Std. Devn.	0.6005	0.5164	0.4216	0.4830	0.3432	0.1874	0.1350	0.6325	1.2293	0.3162	0.5164	0.0000	0.2860	0.3425	0.2357
% RSD	6.29	4.16	3.76	4.27	2.64	1.52	1.11	6.20	10.42	2.61	4.45	0.00	2.69	2.88	2.05

Notes: Au data from laboratory 6 was removed for failing the t test. Ag data from laboratory 1 was removed for failing the t test.

REFERENCE MATERIAL CDN-ME-1409

Results from round-robin assaying:

,	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	lah 7	Lab 8	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13	Lab 14	Lab 15
ļ!	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu	% Cu
ME-1409-1	0.237	0.249	0.232	0.240	0.234	0.243	0.24	0.245	0.253	0.244	0.237	0.234	0.250	0.238	0.245
ME-1409-2	0.237	0.244	0.236	0.235	0.231	0.238	0.24	0.238	0.245	0.237	0.240	0.238	0.250	0.241	0.256
ME-1409-3	0.251	0.248	0.234	0.239	0.235	0.241	0.24	0.244	0.248	0.239	0.241	0.227	0.260	0.238	0.249
ME-1409-4	0.247	0.250	0.242	0.240	0.235	0.240	0.24	0.238	0.246	0.239	0.236	0.243	0.250	0.240	0.248
ME-1409-5	0.243	0.251	0.236	0.237	0.237	0.242	0.24	0.241	0.248	0.239	0.234	0.237	0.250	0.241	0.251
ME-1409-6	0.247	0.258	0.241	0.238	0.230	0.240	0.24	0.243	0.249	0.236	0.240	0.247	0.250	0.241	0.252
ME-1409-7	0.246	0.253	0.241	0.241	0.237	0.242	0.24	0.240	0.246	0.240	0.235	0.237	0.250	0.243	0.244
ME-1409-8	0.243	0.256	0.233	0.241	0.238	0.242	0.24	0.241	0.252	0.238	0.240	0.241	0.250	0.246	0.255
ME-1409-9	0.251	0.256	0.243	0.246	0.236	0.249	0.24	0.239	0.253	0.243	0.241	0.232	0.250	0.246	0.242
ME-1409-10	0.248	0.251	0.236	0.237	0.233	0.250	0.24	0.244	0.247	0.240	0.239	0.243	0.250	0.248	0.245
Maan	0.045	0.050	0.007	0.000	0.005	0.040	0.040	0.044	0.040	0.040	0.000	0.000	0.054	0.040	0.040
Mean	0.245	0.252	0.237	0.239	0.235	0.243	0.242	0.241	0.249	0.240	0.238	0.238	0.251	0.242	0.249
Std. Devn.	0.0050	0.0042	0.0040	0.0030	0.0026	0.0040	0.0018	0.0026	0.0030	0.0025	0.0026	0.0059	0.0032	0.0035	0.0048
% RSD	2.05	1.69	1.69	1.26	1.12	1.64	0.76	1.07	1.23	1.03	1.08	2.49	1.26	1.44	1.91
ļ!			<u>↓ '</u>	'			'	'	'		'	'			
ļ	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb	% Pb
MF-1409-1	0.070	0.06	0.064	0.063	0.066	0.064	0.066	0.065	0.065	0.065	0.064	0.064	0.07	0.065	0.066
MF-1409-2	0.072	0.06	0.065	0.064	0.066	0.064	0.067	0.063	0.063	0.064	0.063	0.062	0.07	0.067	0.066
ME-1409-3	0.072	0.00	0.000	0.00	0.000	0.00	0.001	0.000	0.000	0.065	0.064	0.002	0.07	0.065	0.000
ME_1409-4	0.071	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.07	0.000	0.000
ME_1400-5	0.071	0.00	0.000	0.004	0.007	0.000	0.007	0.004	0.000	0.000	0.003	0.004	0.07	0.000	0.000
NE 1409-5	0.071	0.07	0.000	0.004	0.007	0.004	0.000	0.003	0.000	0.004	0.003	0.000	0.07	0.000	0.000
NE-1409-0	0.009	0.00	0.067	0.063	0.000	0.000	0.000	0.003	0.005	0.005	0.064	0.003	0.07	0.000	0.000
ME-1409-7	0.068	0.06	0.065	0.064	0.066	0.066	0.066	0.063	0.065	0.065	0.063	0.064	0.07	0.065	0.065
ME-1409-8	0.064	0.06	0.065	0.064	0.066	0.065	0.067	0.064	0.064	0.064	0.064	0.062	0.06	0.065	0.067
ME-1409-9	0.066	0.06	0.064	0.065	0.066	0.067	0.067	0.064	0.064	0.066	0.064	0.063	0.07	0.067	0.066
ME-1409-10	0.067	0.06	0.063	0.064	0.066	0.066	0.065	0.065	0.067	0.065	0.063	0.064	0.07	0.067	0.067
Mean	0.069	0.061	0.065	0.064	0.066	0.065	0.066	0.064	0.064	0.065	0.064	0.063	0.069	0.066	0.066
Std. Devn.	0.0027	0.0032	0.0012	0.0006	0.0004	0.0009	0.0008	0.0009	0.0018	0.0007	0.0005	0.0011	0.0032	0.0009	0.0007
% RSD	3.92	5.18	1.84	0.99	0.61	1.37	1.19	1.37	2.82	1.14	0.83	1.77	4,58	1.39	0.99
/0	<u> </u>										0.02	···· ·	1.02		
ļļ	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n	% 7n
	/0	/0	/0	/0	/0	70 <u>_</u>	/0	/0	/0	/0	/0	/0	/0	/0	/0
ME-1409-1	0.790	0.780	0.750	0.763	0.740	0.752	0.756	0.783	0.773	0.797	0.779	0.74	0.80	0.772	0.760
ME-1409-2	0.779	0.780	0.765	0.763	0.738	0.751	0.759	0.774	0.755	0.764	0.780	0.73	0.80	0.766	0.769
ME-1409-3	0.822	0.790	0.751	0.769	0.760	0.760	0.754	0.772	0.754	0.762	0.792	0.74	0.82	0.765	0.769
ME-1409-4	0.812	0.800	0.776	0.767	0.753	0.756	0.760	0.762	0.759	0.777	0.777	0.71	0.80	0.770	0.758
ME-1409-5	0.804	0.810	0.766	0.762	0.747	0.753	0.758	0.771	0.754	0.764	0.780	0.71	0.81	0.769	0.762
ME-1409-6	0.801	0.830	0.777	0.769	0.736	0.747	0.750	0.783	0.763	0.766	0.790	0.71	0.81	0.770	0.754
ME-1409-7	0.816	0.810	0.779	0.774	0.767	0.758	0.755	0.766	0.775	0.775	0.782	0.73	0.82	0.770	0.742
ME-1409-8	0.804	0.810	0.750	0.769	0.753	0.754	0.751	0.767	0.761	0.780	0.777	0.72	0.74	0.768	0.773
ME-1409-9	0.818	0.810	0.773	0.780	0.746	0.773	0.753	0.767	0.775	0.791	0.796	0.71	0.83	0.779	0.765
MF-1409-10	0.827	0.810	0.751	0.762	0.743	0.765	0.751	0.785	0.776	0.755	0.780	0.73	0.81	0.788	0.758
	0.02.	0.010	0.701	0.702	0.7.10	0.700	0.701	0.700	0.110	0.700	0.700	00	0.01	0.700	0.700
Mean	0.807	0.803	0.764	0.768	0.748	0.757	0.755	0.773	0.764	0.773	0.783	0.723	0.804	0.772	0.761
Std. Devn.	0.0148	0.0157	0.0123	0.0058	0.0100	0.0075	0.0035	0.0081	0.0093	0.0134	0.0068	0.0125	0.0246	0.0068	0.0089
% RSD	1.84	1.95	1.61	0.76	1.33	0.99	0.47	1.05	1.22	1.74	0.87	1.73	3.06	0.88	1.17

Notes: Pb data from laboratories 1, 2 and 13 was removed for failing the t test. Zn data from laboratory 12 was removed for failing the t test.

REFERENCE MATERIAL CDN-ME-1409

Participating Laboratories:

(not in same order as listed in table of results)

Bureau Veritas, Vancouver, BC, Canada Actlabs, Ancaster, Ontario, Canada Actlabs, Thunder Bay, Ontario, Canada AGAT, Mississauga, Ontario, Canada ALS Canada Inc., North Vancouver, BC, Canada ALS, Loughrea, Ireland (Omac) American Assay Laboratories, Nevada, USA Certimin, Lima, Peru Intertek - Genalysis, Perth, Australia Met-Solve, Langley, B.C., Canada SGS, Lima, Peru SGS Canada Inc., Burnaby, BC, Canada Skyline Assayers and Laboratories, Arizona, USA TSL Laboratories Ltd., Saskatoon, Saskatchewan, Canada Bureau Veritas, Perth, Australia

Legal Notice:

This certificate and the reference material described in it have been prepared with due care and attention. However CDN Resource Laboratories Ltd. or Barry Smee accept no liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Duran Sendenson

Duncan Sanderson, Certified Assayer of B.C.

Geochemist

Dr. Barry Smee, Ph.D., P. Geo.