

BC Geological Survey Assessment Report 35974

Ministry of Energy and Mines BC Geological Survey

Assessment Report Title Page and Summary

TYPE OF REPORT [type of survey(s)]: Drilling, Geochemical, Geolog	cal, Geophysical TOTAL C	ost: \$2,237,362.50
AUTHOR(S): Tyler Fiolleau, P.Geo, Max Kaczmer, G.I.T	SIGNATURE(S):	
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): May 1, 2020 to Octo	ober 8, 2020 Permit: 0100071	YEAR OF WORK: 2020
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S):	October 8 Event #: 5845821	
PROPERTY NAME: Doc Project		
CLAIM NAME(S) (on which the work was done): 1031031, 1036878, 1	036939, 1036953, 1036954, 103695	5, 1033369, 1036952,
COMMODITIES SOUGHT: Gold, Silver, Copper		
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:		
MINING DIVISION: Skeena	NTS/BCGS: 104B 08	
LATITUDE: N56 ° 44 '14.13 " LONGITUDE: W131	o 00 '42.03 " (at centre of	work)
OWNER(S): 1) Bot, John Chrisostom 102844	2) Richard Mill 104874	
MANUNO ADDDEGO.		
MAILING ADDRESS: Box 4373	20071 37 Ave	
Quesnel, BC V2J 3J4	Langley BC V3A 6K3	
OPERATOR(S) [who paid for the work]: 1) Hanstone Gold Corporation 288493	2)	
MAILING ADDRESS: 970 - 777 Hornby Street		
Vancouver BC V6Z 1S4	-	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Epithermal Vein Hosted Au, Cu, Ag, VMS, Porphyry Au,	, alteration, mineralization, size and attitud	de):
REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT F	EDORT NUMBERS: 05230 05512 080	225 15615 16708
18306, 18367, 18622, 19429, 19625, 19995, 32600, 36704, 389		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres) Ground			
Magnetic			
Electromagnetic			
Induced Polarization			
Radiometric			
Seismic			
Other Satellite Analysis		1031031, 1036878, 1036939, 103695	\$24,006.25
Airborne Aeromagnetic Surve	ey .	1036939, 1036952, 1036954	\$21,929.53
GEOCHEMICAL (number of samples analysed for)			
Soil			
Silt			
			\$58,986.63
Other		_	
DRILLING (total metres; number of holes, size)			
Core 2724 m, 21 holes HQ		1036952, 1036954, 1036953	\$842,070.17
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/tr			
Trench (metres)			
Underground dev. (metres)			
Other Support and other cost			\$1,290,369.92
		TOTAL COST:	\$2,237,362.50

Doc Project Assessment Report 2020 Mineral Exploration Program

Located in the Skeena Mining Division BCGS Map Sheet 104B 08 N56° 44′ 14.14″ W131° 00′ 42.04″

Event Number: 5845821

Mineral exploration was carried out on claims 1031031, 1036878, 1036939, 1036953, 1036954, 1036955, 1033369, 1036952 including prospecting, sampling, satellite analysis, UAV High Resolution Magnetic Survey, and Diamond Drilling

Prepared by:

December 3, 2021

ASSESSMENT REPORT ON 2020 EXPLORATION ACTIVITIES

DOC PROJECT BRITISH COLUMBIA, CANADA

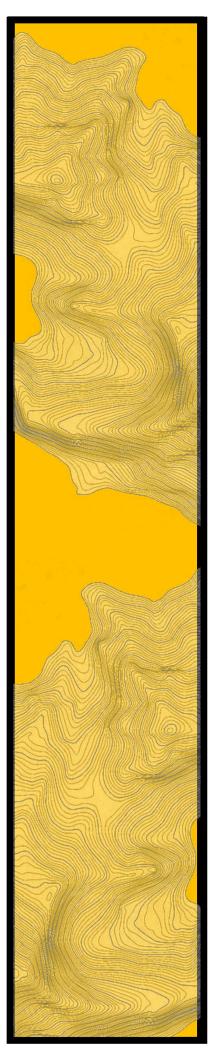
PROJECT #: 20.3037.HSG

PREPARED FOR:

HANSTONE GOLD CORP.

ATTENTION TO: RAY MARKS

SUITE 600, 890 WEST PENDER STREET VANCOUVER, BC, CANADA


PREPARED BY:

AXIOM EXPLORATION GROUP LTD.

Suite 101 - 3239 Faithfull Avenue Saskatoon, SK, Canada

MAX KACZMER, G.I.T. TYLER FIOLLEAU, P.GEO. MATTHEW SCHWAB, P.GEO.

TABLE OF CONTENTS

1.	Summary	
	1.1. Summer 2020 Diamond Drilling P	rogram1
2.	Introduction & Property Overview	3
	2.1. Location, Infrastructure, Access 8	Local Resources3
	2.2. Climate & Physiography	3
3.	Geology	4
	3.1. Regional Geology	4
	3.2. Local Geology	4
	3.3. Mineralization Type	10
4.	Disposition Status & Ownership	11
5.	Exploration History and Previous Work	13
6.	Summer 2020 Exploration Program	18
	6.1. Satellite Imagery Analysis	18
	6.1.1. Methodology of Satellite Image	ry Analysis18
	6.1.2. Results of Satellite Imagery And	alysis at Doc18
	6.2. Outcrop Sampling	19
	6.2.1. Outcrop Sampling Results	20
	6.2.2. Discussion of Outcrop Sampling	g23
	6.3. Downhole Surveys	23
	6.3.1. Methodology for Interpreting Or	iented Core23
	6.3.2. Oriented Core Results	24
	6.4. Diamond Drill Program - Summer	202025
	6.4.1. Drill Hole Results - Doc Zone	25
	6.4.2. Drill Hole Results - Q19 Zone	34
	6.4.3. Drill Hole Results - Galena Rido	ge37
	6.4.4. Discussion of Diamond Drill Re	sults42
	6.5. Analytical Information	44
	6.5.1. Methodology for Lithogeochem	ical Sampling45
	6.5.2. Quality Control	45
	6.5.3. Drill Core Geochemical Results	45
7.	UAV Magnetic Survey Results	47
	7.1 Doc Property UAV Magnetic Survey	Post Processing Figures47
	7.2 Quinn Eskay UAV Magnetic Survey	Post Processing Figures50
8.	Conclusions & Recommendations	52

9.	References	.54
10.	Certificate of Qualified Person	.56
	Tyler Fiolleau - Certificate of Qualified Person	.56
	Matthew Schwab - Certificate of Qualified Person	.57

LIST OF FIGURES

Figure 1: Doc Project Location Map	1
Figure 2: Doc Property Mineral Disposition	2
Figure 4: BC Geological Belts	7
Figure 5: Regional Geology (J. L. Nelson 2019)	8
Figure 6: Doc Property Local Geology	9
Figure 8: Epithermal Mineralization Deposit Model (Wang et al. 2019)	10
Figure 9: Schematic Cross Section of the Q17 Vein (Freeze et al. 1989)	11
Figure 10: 2020 Drill Hole Location Map	43
Figure 11: Locations of Doc and Quinn Eskay Survey	47
Figure 12: Total Magnetic Intensity	48
Figure 13: Residual Magnetic Intensity	48
Figure 14: First Vertical Derivative	49
Figure 15: Analytic Signal	49
Figure 16: Tilt Derivative	50
Figure 17: Total Magnetic Intensity	51
Figure 18: Residual Magnetic Intensity	51
Figure 19: First Vertical Derivative	51
Figure 20: Analytical Signal	52
LIST OF TABLES	
Table 1: Project Mineral Disposition Status	12
Table 2: Doc Summer 2020 - Outcrop Sample Locations	19
Table 3: Doc Summer 2020 - Outcrop Sample Assay Results	20
Table 4: Doc Summer 2020 - Drill Hole Locations	44
Table 5: Summary of Geochemical Results	46

LIST OF APPENDICES

Appendix A: Satellite Analyses Map Appendix B: Diamond Drill Logs Appendix C: Assay Certificates

Appendix D: UAV Magnetic Logistic Report

Appendix E: 2020 Cross Sections Appendix F: Outcrop Sample Maps Appendix G: Exploration Cost Statement

1. SUMMARY

In May of 2020, Hanstone Gold Corp. (the Client) engaged Axiom Exploration Group Ltd. (Axiom) to design, manage and execute a diamond drill program on their Doc Property mineral dispositions (the Property) located in northwestern British Columbia, Canada (Figures 1 & 2). In addition to the diamond drill exploration program a Satellite Analysis of the Doc Property was completed to aid in drill targeting.

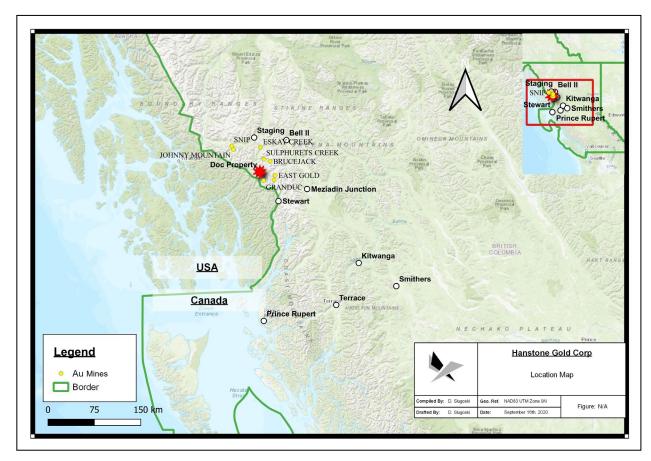


Figure 1: Doc Project Location Map

1.1. SUMMER 2020 DIAMOND DRILLING PROGRAM

Personnel mobilized from Saskatoon, Saskatchewan to Terrace, British Columbia on July 17, 2020. Completion of drilling and demobilization of equipment and field crews occurred on Oct 8, 2020.

The summer 2020 exploration program on the Doc Property consisted of diamond drill program with 21 diamond drill holes completed totalling 2724 meters. Diamond drill holes (DDH) Q19-20-01, 02, 03, 04 and GR-20-01, 02, 03 were drilled on disposition 1036954 and DDH DC-20-01, 02, 03, 04 and GR-20-04, 05, 06, were drilled on disposition 1036952. The Doc Zone was tested with 11 drill holes totalling 1323 meters, the Q19 zone was tested with four drill holes totalling 663 meters and the Galena Ridge Zone was tested with six drill holes totalling 738 meters.

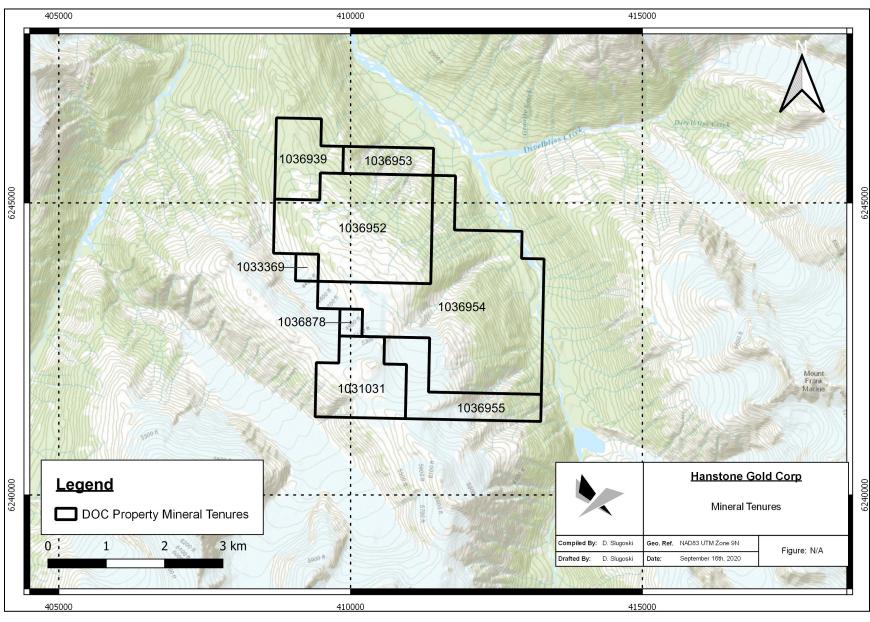


Figure 2: Doc Property Mineral Disposition

2. Introduction & Property Overview

The following report documents the Summer 2020 exploration program carried out on the Doc project by Axiom Exploration Group Inc on behalf of Hanstone Gold Corp.

2.1. LOCATION, INFRASTRUCTURE, ACCESS & LOCAL RESOURCES

The Doc Property is located approximately 55 kilometers northeast of Stewart, British Columbia within the NTS map area 104B-08, with its centre at about 130° 26' W longitude and 56° 19' N latitude. The mineral claims cover 1704.23 hectares (ha) (Table 1) and consists of eight contiguous British Columbia Mineral Dispositions (Figure 2).

Primary access to the Property is via helicopter from the staging area at kilometer 32 on Eskay Mine Road which is located 50 kilometers north of the Doc Property. Secondary helicopter assessable staging areas are located at Bell 2, BC (60 kilometers northwest) and Stewart, BC (50 kilometers south-southwest). The Eskay Mine road is an all-weather gravel access road connecting provincial Highway 37 to the Eskay Creek Mine Site. Target areas on the Property can be accessed by combination of helicopter and all-terrain vehicle in the summer and by helicopter in the winter.

Stewart is the closest community to the Doc Property with a population of over 400. The village hosts local businesses, a healthcare facility, a school, a local airport, an ice-free ocean port, and a bank, but has limited access to industrial and exploration support services. Terrace and Smithers are cities with population of 11,500 and 5,300 and can be to from staging or Stewart in approximately 3.5 hours.

2.2. CLIMATE & PHYSIOGRAPHY

The Property is located on the north edge of Mount Willbert between 1500 and 1750 meters above sea level. Outcrop exposure is variable due to the tree line with less than 3% exposure below 1200 meters and up to 25% exposure above 1200 meters. Above 1200 meters vegetation is minimal and covered with snow for most of the year, with portions of the mountain covered by glacier ice. Scree covers most of the outcrop once the snow melts in the summer. Vegetation below 1200 meters is comprised of mainly pine and spruce.

The Property area is located within a humid continental climate region which is characterised by relatively well distributed year-round precipitation, warm and often humid summers, and cold winters.

The ocean and maritime influences have a local effect on the climate of the Property causing mild winters and cool summers relative to the interior of BC. On average the Property will receive 1866 millimeters of precipitation per year and a yearly average temperature of 6° Celsius.

According to Environment and Natural Resources Canada, temperatures cross the Property typically range from an average low in January of -10.8° Celsius to an average high of 24.1° Celsius in July Average annual precipitation is 540.3 mm, while the average annual snowfall is 177.9 cm (Government of Canada 2020).

3. GEOLOGY

3.1. REGIONAL GEOLOGY

The Doc Property is situated within the Stikine Terrane which defines the westernmost boundary of the Intermontane Belt. The Intermontane Belt is bounded by the plutonic rocks of the Coast Crystalline Complex Belt to the west and the Omineca Belt to the east. The Stikine terrane is interpreted to be composed of the five major stratigraphic units which include the Devonian to Permian Stikine Assemblage, the Late Jurassic Stuhini Group, early to middle Jurassic Hazelton Group, early to middle Jurassic to Cretaceous Bowser Lake Group and upper Miocene to Holocene Mount Edziza volcanic complex (Barresi and Dostal 2005). The Stikine assemblage comprises mostly Mississippian arc, back-arc volcanics and meta sedimentary rocks that are unconformably overlain by the Stuhini Group rocks (Cutts, et al. 2014). The Stuhini Group was formed in an intra-oceanic arc setting during the upper Triassic and is characterized by mafic to intermediate flows with intercalated siliciclastic sedimentary rocks with minor carbonate intervals and related intrusions (Alldrick and Barresi 2004). The Hazelton Group unconformably overlies the Stuhini Group and represents the final stages of magmatic arc activity of the Stikine assemblage and its incorporation into the cordilleran tectonic collage (Gagnon, et al. 2012). The Hazelton Group was fed by two parallel subduction zones of the Insular microplate beneath the Intermontane Plate and the Intermontane plate beneath ancestral north America (Nelson and Kyba 2014). During the middle to late Jurassic, the Stikine and other terranes collided with each other which eventually led to their accretion into the North American Plate. This caused erosion of the mainly uplifted Cache Creek terrane rocks which lead to the deposition of the Bowser Lake Group sedimentary basin and overlays the Hazelton Group (T. Barresi 2015).

The Doc Property is mainly situated over metamorphosed volcanic and lesser metasedimentary rocks of the Stuhini group and the coeval intrusions of the Bronson Stock. Lithology consists of mafic to intermediate volcanic rocks intercalated with siliciclastic and calcareous sedimentary rocks.

3.2. LOCAL GEOLOGY

The Doc Property lies on the western side of the South Unuk River fault and is situated over late Triassic metamorphosed volcanic and meta-sedimentary rocks of the Stuhini Group. Stuhini Group rocks are intruded by coeval late Triassic Bronson Stock metadiorites as well as a variety of plutonic to sub-volcanic dykes (Figure 4). Detailed mapping was carried out on the Property in 1988 and 1989 by Glover and Freeze.

3.2.1. LITHOLOGICAL UNITS

STUHINI GROUP

Stuhini Group rocks on the Property comprise five polydeformed sub-units consisting of schistose to gneissic volcaniclastics, metapelites, marbles, and flows (Glover and Freeze, 1989). Mafic to intermediate volcanic rocks comprise fine grained, light to dark green biotite-chlorite-hornblende schists, with a well-developed foliation. These rocks are interpreted to be derived from a volcanic protolith of andesitic composition. Mafic to intermediate tuffs and tuffaceous sedimentary rocks are characterized by 1–2-centimeter thick, alternating

melanocratic and leucocratic layers of fine to medium grained gneissic banding. These rocks are dominantly green, and contain abundant epidote and chlorite, respectively segregated into pale and dark bands. Siliciclastic sedimentary rocks are grey to rusty brown and characterized by a weakly foliated fabric. These rocks are generally thinly bedded, locally with thicker, more massive intervals, with dark, heavy minerals inferred to define bedding planes. Calcareous sedimentary rocks present as interbeds and laminations within the above-described siliciclastic sedimentary horizons. These rocks are grey to buff weathering, and contain a calcsilicate mineral assemblage that includes garnet, epidote, and rare diopside. Texturally these rocks range from fine grained siltstones with carbonate cement, to more crystalline, carbonate rich marls. Marble represents perhaps the only easily identifiable, continuous lithological contact within the Stuhini Group. This unit is present north of the Doc Zone, and trends north-northwest down into the South Unuk River valley. This unit is generally massive, though well-preserved isoclinal folds are observed where bedding is present.

INTRUSIVE ROCKS

Stuhini Group rocks are intruded by a variety of plutonic to sub-volcanic intrusive units. Glover and Freeze (1989) identify at least three discrete pulses of magmatism that account for this variety. The oldest intrusions on the Property are believed to be upper Triassic in age and characterized as mafic to intermediate, ranging from diorite to gabbro, with a similar overall composition to the mafic volcanic units underlying the Doc Property. Triassic aged intrusions commonly show well developed gneissic banding, characterized by melanocratic bands of hornblende and biotite interlayers with pale bands of quartz and plagioclase. Historically, the gneissic banded metadiorites found on the Property were grouped into the Bucke Glacier Stock; however, recent mapping by the Mineral Deposit Research Unit ("MDRU") at the University of British Columbia (Lewis et al. 2013) classifies these as Bronson Stock diorites. There can be some difficulty differentiating gneissic banded diorites from intermediate to mafic meta-tuff of the Stuhini Group, which when metamorphosed may exhibit similar textures. The British Columbia Geological Survey ("BCGS") (Massey et al. 2005) age dated a second metadiorite body southeast of the main adit at the Doc Zone using K/Ar dating techniques and determined it is of middle Jurassic Age (170±1.7 Ma). The intrusive rocks are medium grained, lineated to gneissic banded hornblende-plagioclase bearing diorite. The authors have not been able to locate a primary source for this description or age date outside of the regional compilation map legend. This unit was also conspicuously absent from the Lewis et al. (2013) mapping effort.

Late Cretaceous to Eocene monzodiorites of the Coast Plutonic Complex were observed within a few kilometers of the western margin of the Property. In contrast to the Triassic aged metadiorites, these rocks are relatively fresh, and unmetamorphosed. The large intrusive body, coupled with accretionary tectonic forces, likely accounts for the regional metamorphism grade associated with the Triassic aged strata and intrusive rocks. Several phases of dykes are also present across the Doc Project, indiscriminately cutting intrusive and stratified rocks. Milky white to buff coloured fine grained quartz aplite dykes were found locally during 2019 field work. These dykes comprise acicular voids, inferred to be weathered out fine mafic minerals. Glover and Freeze (1989) note that while these aplite dykes appear to cut both the schistosity and gneissic banding, they are commonly folded (isoclinal) and locally pinch and swell. They interpret these dykes as syn-deformational structures. Dark grey-green to black, fine grained diabase dykes are also found locally.

3.2.2. STRUCTURAL GEOLOGY

The Doc Property lies on the western side of the South Unuk River fault, a regionally significant structure that trends northwest, paralleling the South Unuk River valley. The South Unuk River fault dips 70 to 80 degrees to the northeast and strikes approximately 335 degrees (Glover and Freeze, 1989).

West of this fault, regional metamorphism has reached up to amphibolite facies. As a result of this metamorphism, most units on the Property have a well-developed foliation, manifested as either schistosity (platy cleavage) or gneissic banding. Foliation is commonly sub-parallel to bedding within sedimentary strata and appears to be axial planar to small-scale, shallowly northwest plunging isoclinal folds (F1) developed in sedimentary strata, indicating the folding is coeval with regional metamorphism. A second generation of southwesterly verging macroscopic chevron folds (F2) overprints F1 folding, resulting in the complex fold interference pattern observed throughout the Property.

Mineralization on the Doc Project is hosted within steeply north dipping, west-northwest striking, shear-hosted quartz veins. Multiple shear zones have been observed across the Property, and these are commonly associated with precious metal-bearing sulphides along the footwall and hanging wall of the quartz veins. These shear zones all trend sub-parallel to each other, cut all lithologies, and are similarly discontinuous along their strikes. It can be interpreted that this property-scale shearing event post-dates the emplacement of the intrusive units, and is either co-eval with, or postdates the F2 deformation event.

The polyphase deformation is most prominent in sedimentary strata, particularly in the interbedded siliciclastic and calcareous units. The apparent similarities between gneissic volcaniclastic and intrusive units has hindered previous efforts to produce detailed and accurate geological maps of the Doc Property. Effort was made during the 2013 mapping program to differentiate marble horizons in the northeast from other sedimentary and volcanic strata to the south. As development on the Doc Property proceeds, it is recommended that a concerted effort be placed into properly differentiating and delineating the contacts between stratified and intrusive rocks, particularly in areas along strike from known mineralized veins. As previous studies have noted, mineralized quartz veins appear to be preferentially emplaced into competent crystalline metavolcanic rocks, as opposed to less competent, ductile deformed sedimentary strata. Efforts to constrain contacts of various lithological units would be of great benefit to future exploration.

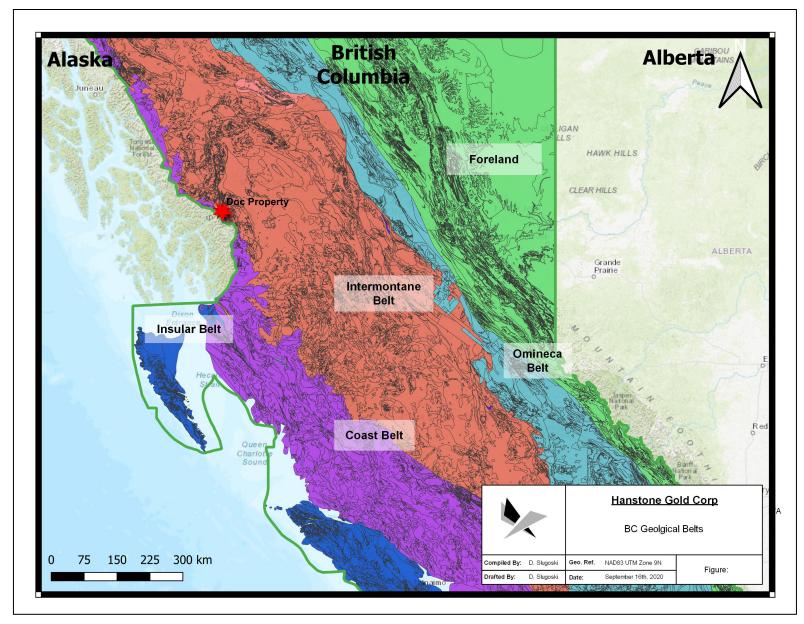


Figure 4: BC Geological Belts

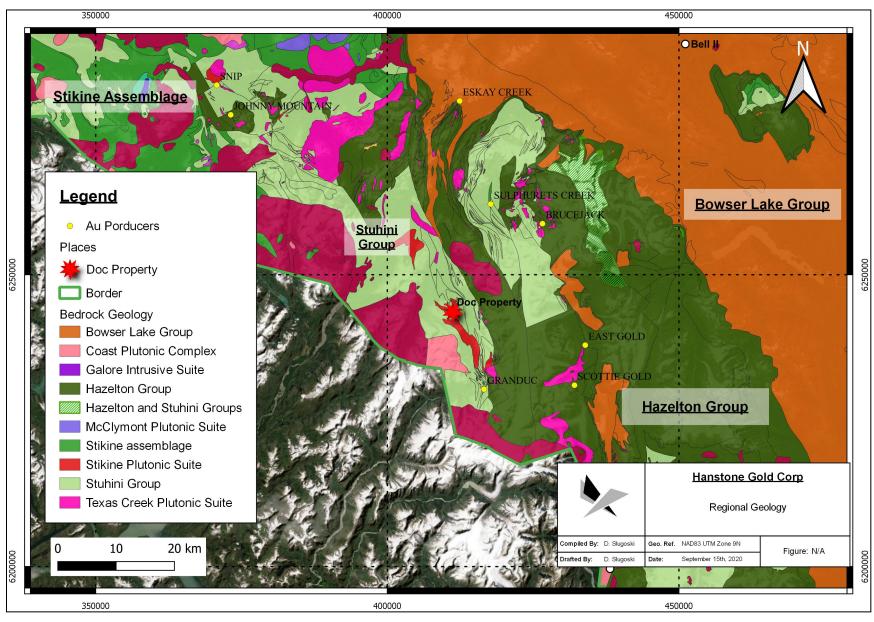


Figure 5: Regional Geology (J. L. Nelson 2019)

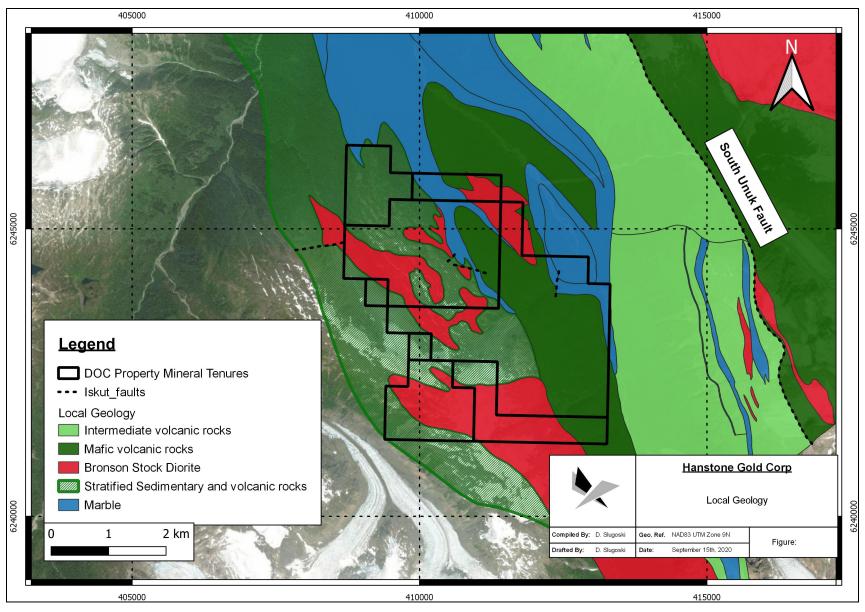


Figure 6: Doc Property Local Geology

3.3. MINERALIZATION TYPE

Previous work on the Doc Property identified the potential for different styles of precious and base metals mineralization. Three principal types of mineralization occur at the Doc Project: 1) gold- and silver-rich quartz veins; 2) replacement style skarn with potential to host base and precious metals mineralization and 3) volcanogenic massive sulphide base metal mineralization. Previous operators noted the most important of the three are the precious metals-enriched quartz veins, which have been the primary focus for most work done on the Property to date.

Mineralized quartz veins are thought to be a product of a localized epithermal intermediate sulphidation model. Intermediate sulfidation (IS) veins are one of the subtypes of epithermal deposits formed in subduction-related arc settings or post-collisional orogenic belts (Wang et al. 2019). IS deposits are presumably controlled by tectono-magmatic settings and fluid evolution paths. Ore deposition occurs where fluids ascend rapidly resulting in a composition change several hundred meters below the surface (Figure). This process favours precipitation of bisulfide-complexed metals such as gold. This style deposit is often associated with syn-ore dykes as well as the possibility of being connected to a porphyry stock (Wang et al. 2019).

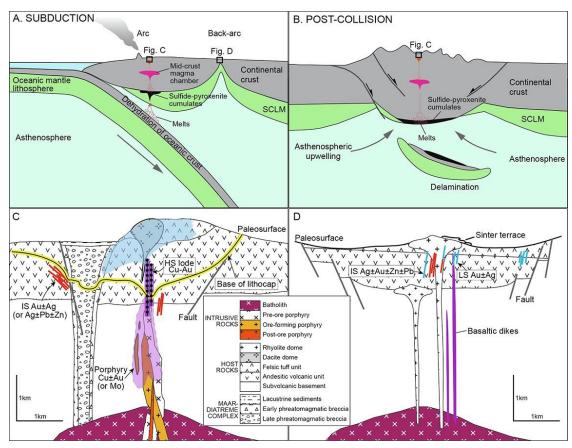


Figure 8: Epithermal Mineralization Deposit Model (Wang et al. 2019)

The above figure is a simplified model of a typical epithermal system. However, the mineralization that occurs on the Doc Project has been further deformed and remobilized.

Freeze et al. (1989) noted that the veins in the Doc Zone have undergone multiple phases of movement, via brittle fracturing of the central bull quartz vein and emplacement of sulphides, followed by re-brecciation and shearing of the veins. The sense of displacement of the shear zone indicates reverse movement (north-side up) with a component of right-lateral movement. The preferred model involves initial development of en-echelon tension fissures, with subsequent progressive shearing. It was also noted that veins are best developed in competent metavolcanic rocks and diminishes in intensity and grade within sedimentary rocks. The best gold and silver grades are reported in massive to semi-massive sulphides along the footwall and hanging wall margins of the veins.

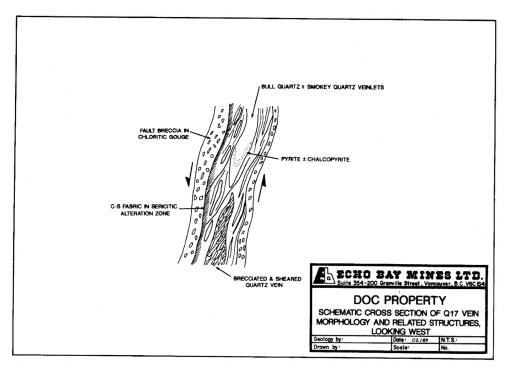


Figure 9: Schematic Cross Section of the Q17 Vein (Freeze et al. 1989)

The Doc Property is located within the NTS map area 104B08, with its centre at about 130° 26' W longitude and 56° 19' N latitude. The Property covers 1704.23 hectares (ha) and consists of eight contiguous mineral claims (Figure 2). The current status of the mineral claims is listed in Table 1 as of April 26, 2021. On August 17, 2020, Hanstone Gold Corp., a public company listed on the TSX Venture Exchange, acquired 100% interest of all Milestone's right, title and interest in the Doc Property.

The Snip North Property is located straddling the NTS map areas 104B10, 11, 14, 15, and covers 3,336.60 hectares (ha) and consists of 5 contiguous mineral claims (Figure 3).

The Snip North dispositions have had their expiry dates extended to December 31, 2021 due to the Covid-19 pandemic.

To conduct work at the Property the operator must be registered with the government of British Columbia and comply with the British Columbia Environment's Exploration Guidelines and hold

the appropriate Free Use Permit, Mineral and Coal Exploration Activities and Reclamation Permit and, Mine Act Permit. As well, the operator must comply with the Federal Department of Fisheries and Oceans that administers its own Guidelines for the Mineral Exploration Industry.

Table 1: Project Mineral Disposition Status

Title Number	Claim Name	Owner	Expiry Date	Area (Ha)
		Doc Property		
1031031		Hanstone Gold Corp. (100%)	2025-03-07	179.46
1036878		Hanstone Gold Corp. (100%)	2025-03-07	17.94
1036939	Grace NW	Hanstone Gold Corp. (100%)	2025-03-07	125.51
1036952	Golden Grace 2	Hanstone Gold Corp. (100%)	2025-03-07	430.45
1036953	Grace N	Hanstone Gold Corp. (100%)	2025-03-07	71.72
1036954	Grace SE	Hanstone Gold Corp. (100%)	2025-03-07	699.69
1036955	Grace S	Hanstone Gold Corp. (100%)	2025-03-07	161.52
1033369		Hanstone Gold Corp. (100%)	2025-03-07	17.94

5. EXPLORATION HISTORY AND PREVIOUS WORK

The earliest work reported near the Doc Property, circa 1900, included exploration of two veins containing sulphide mineralization and gold values at the Globe Showing. This work included trenching and underground development of four adits (Minister of Mines, 1901). Also developed during this time was a small stamp mill that included a concentrating table and copper plates and had a capacity of three tons per twenty-four hours (Minister of Mines, 1901). High-grade ore was stockpiled but no shipments were made (Freeze et al. 1989 - BC Assessment Report18622A).

In 1935, it was reported that a wide quartz vein was discovered, carrying pyrite, chalcopyrite, galena and gold values (Minister of Mines, Annual Report 1935, p. B11). This vein is located about 1.6 kilometers south of the Globe Showing, (Ministry of Mines, Annual Report 1935, p. B11), and is now referred to as the Florence Minfile occurrence.

Discoveries in September 1946 by Tom McQuillan and his partner, Pat Onhasy, on the south fork of the Unuk River, opposite Divelbliss (Cabin) Creek, led to claim staking by Leitch Gold Mines (Minister of Mines, Annual Report 1948, p. A66; Tully, 1974 - AR5239). The discoveries by McQuillan and Onhasy included numerous quartz veins occurring in shear zones that are mineralized with hematite, pyrite, galena, and minor chalcopyrite. It was noted that quartz veins mineralized with sulphides often contained gold, and to a lesser extent, silver (Minister of Mines, Annual Report 1948, p. A66).

In 1947 and 1948, the Doc Property was optioned from Leitch Gold Mines by Halport Mines and was explored by trenching and diamond drilling (Minister of Mines, Annual Report 1948, p. A66). Supplies and equipment required in 1947 and 1948 were flown by fixed-wing aircraft from Stewart and dropped at the Property; equipment for the 1948 program totalled 16 tons, including a diamond drill. Mineralized quartz veins were numbered and designated by the prefix "Q" (Q17, Q19, Q22 & Q25). In 1948, the Q17 and Q22 veins were traced for 400 m along strike by excavation of forty-four trenches and tested below the surface by diamond drilling in 19 EX holes totalling 1280.16 m of drilling. The Q25 vein was traced for 150 meters along strike and tested by eleven trenches, while the Q19 lode was traced for 267 m by excavation of twenty trenches (Minister of Mines, Annual Report 1948, p. A66).

In 1949, Halport Mines conducted 633.98 meters of diamond drilling at the Q25 vein. The purpose of the drilling was to prove the underground lateral extension of the vein. Results from this program showed only spotty gold values. Core recovery was reported to be reasonably good within the quartz vein, but poor along the sheared margins of the veins (Minister of Mines, Annual Report 1949, p. A73).

The Property did not see any additional work until 1974, when New Minex Resources collected 16 channel and 6 grab samples and conducted 10.8 kilometers of magnetometer surveying. Channel sampling along the Q17 vein returned an average grade of 0.309 oz/ton gold across an average width of 2.47 meters over an exposed strike length of 79.25 meters. A 1.77-meter-long channel sample across the Q25 vein assayed 1.82 oz/ton gold and 8.18 oz/ton silver. New Minex Resources reported magnetometer results which showed the gold-bearing quartz veins occurring within northwest trending magnetic lows (Tully, 1974 - BC Assessment Report 05239).

In 1975, New Minex Resources completed 19.1 kilometers of Ronka EM-16 electromagnetic surveys over the known mineralized zones on the Doc Property. They concluded that the

electromagnetic work showed no apparent response to known gold-bearing quartz vein structures, possibly due to their low sulphide content. They recommended geological mapping and prospecting prior to any further exploration work (Tully, 1975 - BC Assessment Report 05512).

In 1980, Du Pont of Canada Exploration performed geological mapping, and soil and rock geochemical sampling, with a focus on the main mineralized veins found by previous operators. They established a grid in the central part of the claim group and mapped the historical workings at 1:2500 scale. Geological mapping over the grid area indicated that interbedded felsic and mafic volcanic rocks strike northwest and were folded along a northwest trending fold axis, while quartz feldspar porphyry, diabase and diorite dykes intrude the volcanic rocks. A clastic limestone unit is shown by the mapping to unconformably overlie the volcanic rocks. Auriferous-quartz veins discordantly cut the volcanic rocks at roughly 110 degrees and dip steeply to the north. A soil grid comprising 447 soil samples over the Doc workings returned anomalous gold values (≥22 ppb) for over half of the grid area, while elevated silver results were more erratically distributed. A total of 19 rock samples (only 13 were analyzed for gold, silver, copper, lead and zinc) were collected and yielded a high of 0.405 oz/ton Au, 4.30 oz/ton Ag, 1.44% Cu and 11.45% Pb (Harron, 1981 - BC Assessment Report 08925).

In 1985, Silver Princess Resources Inc. optioned the Doc Property and carried out detailed mapping, mainly at the Q17 and Q22 veins, along with extensive geochemical sampling within historical trenches and along exposed veins (Gewargis, 1986 - BC Assessment Report 15615). The report for the 1985 work was not located during the literature review for this report; however, Gewargis' 1986 report, which was prepared for Magna Ventures Limited, summarizes the work and the significant advances made during the 1985 program. The most significant results were obtained from semi-massive to massive sulphide mineralization on the footwall side of the Q17 vein, where a grab sample of the material in Trench #12 returned over 3 oz/ton Au, over 14 oz/ton Ag and over 9% Pb.

In 1986, Magna Ventures optioned the Property from Silver Princess Resources and conducted a 10-hole diamond drill program totalling 913.2 meters of BQ-size core and completed 33.5 meters of underground development at the Q17 vein. The program was designed to test beneath the high-grade results from the 1985 surface trenching and rock sampling program.

Diamond drilling was completed on 5 drill pads targeting the Q17 and Q22 vein systems to test their strike and down-dip potential. It was reported that core recovery in the vein structure, particularly within the highly auriferous-limonitic-oxidized footwall and hanging wall portion of the vein was poor. Drill core produced values of up to 7.010 oz/ton Au and 25.80 oz/ton Ag over 0.4 meters. Significant intercepts were made in holes 86-8 (0.313 oz/ton Au, 1.026 oz/ton Ag across 2.0 meters and 0.998 oz/ton Au and 3.18 oz/ton Ag across 0.6 meters), 86-9 (0.574 oz/ton Au, 1.03 oz/ton Ag across 0.6 meters, 0.270 oz/ton Au and 0.61 oz/ton Ag across 0.3 meters, and 0.598 oz/ton Au and 0.78 oz/ton Ag across 1.5 meters) and 86-10 (0.450 oz/ton Au and 2.16 oz/ton Ag across 5.3 meters, including 0.712 oz/ton over 0.9 meters and 4.72 oz/ton over 0.4meters). The drill program successfully returned significant gold results confirming that the gold values in the trenches continue along strike and down dip.

It was recommended that future drilling should collect larger diameter core, such as NQ-size. A "possible" "geological reserve" for the Q17 and Q22 veins of 49,095 tons with an average grade of 0.46 oz/ton Au and 1.60 oz/ton Ag was calculated in 1986 (Gewargis, 1986 - BC Assessment Report 15615), however; this resource calculation is non-NI 43-101 compliant and cannot be relied upon in any way.

A NOM

In 1987, Magna Ventures and Silver Princess expanded their claim block to approximately 7,600 hectares, taking in the Globe crown grants and Divelbliss Creek area. They carried out a review of the geological setting, site preparation, underground development and drilling, surface prospecting, and mineral reserve estimations. Surface facilities were established and comprised a fully winterized 18-person mining camp, a 6-person summer prospecting tent camp, a seasonal water supply and storage system, and a full complement of mining equipment for trackless operations.

Magna Ventures and Silver Princess also undertook an extensive prospecting and rock and soil sampling program on the Doc Project. This was done in conjunction with surface trenching and underground sampling on gold veins other than Q17 and Q22. Four new veins were discovered, and six old zones were extended, all of which were reported to contain potentially economic grades over mineable widths on surface. The veins were ranked in order of importance as follows: 1) Q17- Q22-Q32 zone; 2) Q25-Q28 zone; 3) Globe North-Globe South zone; 4) Q19 zone, 5) Pyramid zone (currently known as BGS); 6) Alf 3 (currently known as Quinn Eskay), Glacier, TK, TS zones; and 7) soil anomalies (Figure 6.4).

A total of 694.33 meters of underground drilling completed by Magna Ventures and Silver Princess in 8 holes from 2 setups was successful in locating the Q22 vein and testing the Q17 vein. Every hole intersected mineralization, with the best result coming from hole 87-6, which averaged 0.305 oz/ton Au and 1.908 oz/ton Ag over 2.00 meters, with 90% recovery in mineralized zones (Aelicks et al. 1988 - BC Assessment Report 16708). Also completed was a total of 376 meters of underground development on the 1160-meter level, mainly to access and test the Q17 vein. Three mine crosscuts, 76.2 meters below surface into the Q17 vein, averaged 0.47 oz/ton Au and 1.71 oz/ton Ag over 2.29 meters (true width), with select high-grade chip samples grading up to 4.2 oz/ton Au and 9.8 oz/ton Ag over 0.88 meters (Aelicks et al. 1988 - BC Assessment Report 16708).

Non-NI 43-101 compliant reserves for the Q17 vein were reported by Magna Ventures and Silver Princess in 1988 in the proven, probable, and possible categories (uncut and undiluted). The noncompliant reserves totalled 206,872 tons grading 0.32 oz/ton Au and 1.38 oz/ton Ag (no cutoff grade was stated), and it was noted that the resource blocks remained open in all directions for expansion. Magna Ventures and Silver Princess also reported possible reserves from other veins which contributed another 262,594 tons grading 0.23 oz/ton Au and 1.25 oz/ton Ag, for a total combined non-compliant reserve of 469,466 tons grading 0.27 oz/ton Au and 1.31 oz/ton Ag on the Doc Property (Aelicks et al. 1988 - BC Assessment Report 16708). These non-NI 43-101 compliant values cannot be relied upon in any way.

In 1988, Echo Bay Mines Limited entered into a joint venture agreement with Magna Ventures and Silver Princess. A 40-person camp was erected during the program to house the crews. Helicopter-supported diamond drilling (one NQ and one BQ drill) totalling 3074.10 meters were completed in 32 holes. The drill program was designed to test the Q17 and Q22 veins and areas between the Q22 and Q28 veins. Of the 32 holes drilled, 14 intersected sub-economic to potentially economic grade values over narrow widths, while the remaining holes either returned low gold values, missed the mineralized structure, or were abandoned due to bad ground conditions.

A new vein (JT vein) was discovered and characterized as having a 100-meter strike length and an average width between 1.0 and 2.0 meters. It was drill tested to a vertical depth of 80 meters below surface. The best result from the JT vein was from hole 89-15, which averaged 0.099

oz/ton Au over 2.55 meters. Underground development totalling 230 meters on the 1160-meter level was completed along the strike of the Q17 vein west and east from the ends of former workings. Development was extended to the limit of vein mineralization and could not be located any further along trend. Along the Q17 West Drift, a 30-meter-long exposure of sulphide-rich potentially economic grade mineralization occurs over mineable widths (between 1.2 to 2.0 meters). A crosscut was driven from the eastern limit of the Q17 vein to the projected extension of the Q22 vein; however, difficult ground conditions prevented further advancement.

Detailed underground sampling was done at the Q17 vein by collecting muck and face samples. A 300-pound sample of potentially economic grade material was also collected from each drift round and placed into 45-gallon drums for future metallurgical testing. A non-NI 43-101 compliant reserve calculation was done at Q17 and Q22 veins using all data from 1947 to 1988 from all categories grading greater than 0.100 oz/ton Au and totalled 100,851 tons grading 0.258 oz/ton Au. (Freeze, et al. 1989 - BC Assessment Report 18622).

It was concluded that the size and grades of the Q17 and Q22 veins were insufficient to support a mining operation, given the remoteness and ruggedness of the area. Echo Bay recommended a mapping program be carried out at the Q17 and Q22 veins, as well as over the entire Doc Property, to gain a better understanding of ore controls and deposit types, to identify new mineralization, and delineate possible major structure(s) that may control special distribution of veins. The goal of the program was to evaluate alternative targets elsewhere on the Property for drill testing (Glover, et al. 1989 - BC Assessment Report 19940).

In 1989, Echo Bay and their joint venture partners Magna Ventures and Silver Princess performed helicopter-supported surface geology mapping, prospecting, and sampling over the entire Property. A total of 40 traverses were completed and 140 grab and rough chip rock samples were collected during the program. It was concluded that the gold-bearing veins are the most promising exploration target, but that the veins discovered on surface have limited tonnage potential at a minimum average grade of 0.3 oz/ton Au.

In 1989, Kengate Resources carried out rock, soil and heavy sediment sampling at the Gracey Creek Property, immediately west of the Doc Project. No soil or rock samples were collected from the Doc Property, but one heavy sediment sample draining the southwestern area returned 11 ppb Au, and 0.1 ppm Ag (Hrkac, C., 1989 - BC Assessment Report 18367).

In 1990, Amphora Resources flew an airborne magnetic and VLF-EM survey over their Pearson, GC, Galena Cliff and Summa claims. A small part of this survey (Summa Property) covered the southwestern part of the current Doc Project, over an area of expansive ice-cover. The magnetic and VLF-EM responses were as expected within an area of thick ice cover and steep slopes, causing data processing to be very difficult and potentially unreliable (Murton, 1990 - Assessment Report 19995).

In 1996, the claims were allowed to lapse due to a dispute between the previous claim owners, and the Hunter Exploration Group immediately staked the Property. In October 1999, Hunter Exploration carried out a prospecting program and discovered the BGS Zone, described as a 25 meter by 6-meter area comprising quartz vein rubble in subcrop near the base of a snowfield. The vein material consists primarily of white quartz with abundant pyrite and chalcopyrite, and assayed up to 44.66 g/t Au, 219 g/t Ag, 1.02% Cu and 5.58% Pb (Robins, 2000 - Assessment Report 26256).

In 2011, Cache Minerals Inc. collected a total of 13 rock samples from the southwestern corner of the current Doc Property, in the western part of the Quinn Eskay Zone. Six rock samples were collected from a gossan zone that forms a rounded ridge and has a strike length of over 300 m and a width of greater than 50 m. The two best samples were taken from quartzofeldspathic gneiss with ankerite/sulphide weathering that returned 828 ppb Au and a quartz vein within host melanocratic metasedimentary rocks with trace sulphides that graded 368 ppb Au, 6.9 g/t Ag and 0.17% Pb (Fox et al. 2011 - Assessment Report 32600).

In 2013, claim owner John Bot contracted UTM Exploration Services Ltd. to conduct a 4-day field program consisting of prospecting and rock sampling on the Doc Property. A total of 18 rock samples were collected and focused on locating new areas of interest along the strike of the known veins and along their peripheries. Two rock samples, taken about 400 meters northeast of Cache Minerals gossanous zone discovery, consisted of quartz vein material (<30 centimeters thick) hosting chalcopyrite and specularite with malachite staining. Samples assayed 1.31% Cu, 366 g/t Ag and 485 ppb Au, and 471 ppm Cu, 35.2 g/t Ag and 131 ppb Au (Mackenzie et al. 2013 - Assessment Report 34406).

In 2015, John Bot hired CJL Enterprises Ltd. to perform a limited prospecting and sampling program on the Doc Property. A small fly camp was erected for a 4-day prospecting program where a total of 26 rock samples were collected and assayed for gold and silver. Samples were primarily taken from old hand trenches at the main Doc workings and along strike to the west-northwest, as well as to the north-northwest. Samples ranged from heavily mineralized to barren bull quartz with the highest-grade samples returning up to 103.0 g/t Au and 515 g/t Ag, 58.6 g/t Au and 343 g/t Ag, and 41.0 g/t Au and 189 g/t Ag, all of which are associated with galena mineralization (Middleton, 2015 - Assessment Report 35635).

In 2018, Tudor Gold Corp. performed reconnaissance rock sampling approximately 80 to 400 meters west of the BGS Zone. A total of 11 rock samples were collected, mostly from quartz sulphide veins and narrow breccia/stockwork zones. A 2-centimeter-wide quartz vein with up to 5% pyrite, 1% chalcopyrite, up to 5% magnetite and malachite staining returned 454.0 g/t Ag, 4.86% Cu, 639 ppm Pb, 962 ppm Zn and 622 ppb Au. Two additional samples comprising narrow quartz vein material hosted elevated silver values of 1.8 and 2.2 g/t (Rowe, 2018 - Assessment Report 38639).

In 2019, a two-phase exploration program was conducted by C.J. Greig & Associates Ltd. on behalf of Milestone in early August and early September. Phase 1 comprised a geological reconnaissance and rock geochemical sampling program over the Doc, BGS, Galena Ridge, Q19, Quinn Eskay and Glacier zones, together with ground-based magnetometer surveys over the Doc, BGS, Galena Ridge and Quinn Eskay zones. A total of 154 rock samples were collected and 30.5 line-kilometers of magnetometer surveys were completed during the exploration campaign. Phase 2 consisted of channel sampling (37 samples) at the BGS, Galena Ridge, Q19 and Quinn Eskay zones, as well as limited prospecting at the Florence Zone. (Mitchell et al., 2020).

6. SUMMER 2020 EXPLORATION PROGRAM

6.1. SATELLITE IMAGERY ANALYSIS

In June of 2020, Axiom subcontracted Terra Modelling Services Inc. (TMI) to complete Satellite Imagery and Data Analysis (SIDA) over the Doc and Quinn Eskay Properties. This consisted of combining modern remote sensing techniques using multispectral imaging and synthetic aperture radar and proprietary algorithms to analyze vegetation, structure, alteration, and ground movement. SIDA allows for quick and effective identification of complex anomalies over large areas. This relatively new exploration approach combined existing geological, geochemical, and geophysical data with multiple satellite analyses, to identify new potential mineral targets for both properties. The analysis generated vegetation and hydrothermal anomalies as well as detected fault movement. Full satellite analysis is provided in Appendix A.

6.1.1. METHODOLOGY OF SATELLITE IMAGERY ANALYSIS

Axiom subcontracted Terra Modelling Services Inc. (TMS) to complete Satellite Imagery and Data Analysis (SIDA) over the Doc Project. This consisted of combining modern remote sensing techniques using multispectral and synthetic aperture radar and proprietary algorithms to analyze vegetation, structure, alteration, and ground movement. The SIDA is a quick and effective tool to highlight anomalies over a large area. The SIDA combined with existing geological, geochemical, and geophysical data identified potential mineral target areas for the Doc mineral claims.

6.1.2. RESULTS OF SATELLITE IMAGERY ANALYSIS AT DOC

All layers are detected by analyzing the reflectance spectra from two different satellites. The results on the Hanstone Property are described below and the images are included in Appendix A.

Vertical displacement can be detected using satellites by taking pictures of the same area over a period of time and analyzing the small changes in elevation. On Hanstone's Property vertical displacement was identified and used to help interpret active structures that may be more prospective relative to other "old" faults and lineaments. This data will be used in conjunction with other satellite layers to determine the best target areas for further follow up outside of the Doc and Q26 zones.

Satellite analyses has proven effective for detecting specific hydrothermal alteration minerals typically associated with mineralization events. The various images in Appendix A highlight hydrothermal alteration, lithium, carbonates, and argillic alteration, among others.

The results from the Satellite Imagery Data analysis on the Snip North Property were encouraging especially in the north and western areas of the Property with increased hydrothermal alteration spectra along interpreted faults. Other results from the SIDA will be used in conjunction with ground truthing over the summer of 2021 to identify the most prospective areas for further follow up.

6.2. OUTCROP SAMPLING

During the 2020 diamond drill program by Axiom a simultaneous outcrop sampling program was executed. Geological and structural data was collected at each sample locality. A total of 28 were collected at various prospective areas throughout the Hanstone claims. Satellite analysis and historic reporting was used to locate focus areas. Samples were primarily retrieved from areas of Gossan in shear zones and on existing quartz vein outcrops.

A total of 28 outcrop samples were sent to TSL Laboratories Inc. in Saskatoon, SK for geochemical analysis. Analytical techniques of fire assay and ICP-MS with aqua regia was conducted on all samples. Detailed maps of sample locations and results can be found in Appendix F.

Table 2: Doc Summer 2020 - Outcrop Sample Locations

Sample #	Location	Easting	Northing
A0867951	DOC	410104	6244792
A0867952	DOC	410104	6244792
A0862955	GR East	410435.2	6243491.4
A0862954	GR West	410123.5	6243688.5
A0862956	GR East	410531.5	6243637.5
A0862957	GR East	410432	6243418.4
A0862958	BGS	410732.7	6243161.6
A0862959	Ray Veins	411455.8	6242604
A0862960	DOC Lake	409684.5	6244869.1
A0862961	DOC	410141	6244799.3
A0862962	DOC	410140.2	6244798.9
A0867931	Ray Veins	411571	6242637.1
A0867932	Ray Veins	411566.1	6242634.1
A0867933	Ray Veins	411562.9	6242633.3
A0867934	Q19 Valley	411471.2	6243221.7
A0867935	Ray Veins	411562.5	6242614.1
A0867936	Ray Veins	411562.9	6242633.3
A0867937	Ray Veins	411464	6242587.8
A0867938	Ray Veins	411458.9	6242591.1
A0867939	Ray Veins	411571	6242637.1
A0867940	Ray Veins	411524.7	6242547.7
A0867926	BGS	410645.5	6243231.7
35776	Doug/Matt1	410094.8	6244781.8
35777	Doug/Matt2	410155.2	6244705.2
35778	Doug/Matt3	411124.6	6243476.9
35779	Doug/Matt4	410465.7	6242494.7
35780	Doug/Matt5	410465.7	6242495.8
35781	Doug/Matt6	410465.7	6242495.8

6.2.1. OUTCROP SAMPLING RESULTS

<u>Table 3:</u> Doc Summer 2020 - Outcrop Sample Assay Results

Sample #	Location	Easting	Northing	Au (g/t)	Ag (ppm)	Cu (ppm)	Description
A0867951	DOC	410104	6244792	0.48	1.5	318.1	Weak sericite altered mafic volcanic, hematite stained.
A0867952	DOC	410104	6244792	0.50	4.5	563.6	Mafic volcanic with weak argillic alteration, disseminated fresh and rusty sulphides
A0862955	GR East	410435.2	6243491.4	2.40	72.2	46800	Orange quartz within mafic volcanic with rusty sulphides, minor chalcopyrite
A0862954	GR West	410123.5	6243688.5	2.7	99.3	1963.3	Orange quartz within mafic volcanic rock, moderate patchy oxidized copper, disseminated chalcopyrite
A0862956	GR East	410531.5	6243637.5	0.06	0.3	28.2	Orange quartz vein with disseminated pyrite
A0862957	GR East	410432	6243418.4	0.03	0.6	9.8	Orange quartz vein with disseminated pyrite
A0862958	BGS	410732.7	6243161.6	0.09	14.2	14300	Orange quartz within mafic volcanic rock, moderate patchy oxidized copper, disseminated chalcopyrite
A0862959	Ray Veins	411455.8	6242604	24.21	211.3(g/t)	94.8	Orange quartz within mafic volcanic rock, weak patchy oxidized copper, weak disseminated chalcopyrite
A0862960	DOC Lake	409684.5	6244869.1	0.0055	0.2	155.4	White quartz with disseminated pyrite
A0862961	DOC	410141	6244799.3	0.24	3.6	259.1	Weak sericite altered mafic volcanic, hematite stained.
A0862962	DOC	410140.2	6244798.9	2.73	20.9	120.4	Weak sericite altered mafic volcanic, hematite stained.
A0867931	Ray Veins	411571	6242637.1	1.32	18.5	30	Orange quartz within mafic volcanic rock, weak patchy oxidized pyrite

A0867932	Ray Veins	411566.1	6242634.1	1.92	141.6(g/t)	3695.9	Orange quartz within mafic volcanic rock, weak patchy oxidized copper, weak disseminated chalcopyrite
A0867933	Ray Veins	411562.9	6242633.3	0.33	4.8	331.3	Orange quartz within mafic volcanic rock, weak disseminated chalcopyrite
A0867934	Q19 Valley	411471.2	6243221.7	0.09	19.7	2387.9	Sheared mafic volcanic gossan, disseminated pyrite, pyrrhotite and chalcopyrite
A0867935	Ray Veins	411562.5	6242614.1	0.99	15.5	26.6	Orange quartz within mafic volcanic rock, weak disseminated pyrite
A0867936	Ray Veins	411562.9	6242633.3	0.42	17.9	354.5	Rusty mafic volcanic on sheared contact with quartz vein
A0867937	Ray Veins	411464	6242587.8	0.18	2.3	123.6	Rusty mafic volcanic on sheared contact with quartz vein
A0867938	Ray Veins	411458.9	6242591.1	0.27	2.9	163.4	Rusty mafic volcanic on sheared contact with quartz vein
A0867938 Re	Ray Veins	411458.0	6242591.1	0.1962	2.9	160.5	Rusty mafic volcanic on sheared contact with quartz vein
A0867939	Ray Veins	411571	6242637.1	0.54	8.7	198.1	Orange quartz vein with no significant fresh sulphides left
A0867940	Ray Veins	411524.7	6242547.7	<0.03	0.8	57.1	White-orange quartz vein with weak hematite alteration
A0867926	BGS	410645.5	6243231.7	<0.005	0.1	58.9	Intermediate volcanic with moderate fresh disseminated pyrite
35776	Doug/Matt1	410094.8	6244781.8	95.64			Weak sericite altered mafic volcanic, hematite stained.
35777	Doug/Matt2	410155.2	6244705.2	164.4			Weak sericite altered mafic volcanic, hematite stained.
35778	Doug/Matt3	411124.6	6243476.9	9.26			Rusty Quartz vein with semi massive galena, chalcopyrite
35779	Doug/Matt4	410465.7	6242494.7	1.13			Mafic volcanic gossan with minor disseminated chalcopyrite
35780	Doug/Matt5	410465.7	6242495.8	0.035			Mafic volcanic gossan with minor disseminated chalcopyrite

35781 Doug/Matt6 410465.7 6242495.8 50.21 disse	volcanic gossan with ninated pyrite, and weak ninated chalcopyrite
---	--

6.2.2. DISCUSSION OF OUTCROP SAMPLING

At the DOC Zone, results from limited sampling in new areas was successful in identifying a new shear zone-oriented sub parallel to the main Q17 mineralized quartz vein. Limited exposure of the shear zone was sampled and returned results up to 95.6 g/t Au with the sample taken on the Q17 quartz vein returning assay values up to 164.4 g/t Au directly above the adit.

Other sampling in the Doc Zone from shearing exposed in historical trenching returned 0.24 (3.6) and 2.79 (20.9) g/t Au (Ag) respectively.

In the Galena Ridge zone, outcrop samples were taken on the historical quartz vein nearby to 2020 drilling which returned assays up to 2.7 g/t Au with 99.3 g/t Ag and 1963.3 ppm Cu.

Another sample taken nearby the southern fence of drillholes yielded 2.44 g/t Au with 72.2 g/t Ag and 46,800 ppm Cu.

During the field program significant quartz veining was discovered across the valley approximately 1 kilometer to the southeast from Q19 at the base of a glacier. Outcrop sampling yielded several anomalous values with the best result of 23.92 g/t Au with 211.3 g/t Ag and 94.8 ppm Cu. Another highlight from this area yielded 1.92 g/t Au with 141.6 g/t Ag and 3695.9 ppm Cu.

Additional sampling was done at the base of another glacier near to the Quinn Eskay area of the claims with a highlight sample of 50.21 g/t Au.

Finally, in the Q19 area a sample was taken on a quartz vein approximately 17 meters to the east of the major 202 g/t Au sample taken in 2019 which returned 9.26 g/t Au. Additional mapping and structural studies need to be done in this area to understand the structural scenario at Q19 which will allow for higher confidence drill targets.

Geochemical analysis of all samples returned minimal arsenic (As) values. This is of importance to note from both an economic and environmental standpoint. Arsenic is a common accessory metal to most gold deposits. Typically, mining involves the crushing of arsenic bearing rock in order to extract and deposit the arsenic rich waste rock as mine tailings. This process accelerates oxidative arsenic mobilization thus causing a greater environmental burden. Having low arsenic values therefore decreases overall mining costs and results in less environmental concerns.

6.3. DOWNHOLE SURVEYS

A Reflex ACT III Tool was used by the drill crew to mark the core orientation bottom of hole reference point on each run of core. The geologists then pieced the run of core back together (if possible) and extended a crayon line along the run of core from the reference point. An Ezy-Logger™ Goniometer was used to measure the alpha and beta angles of foliations, fractures, and gouges where possible.

6.3.1. METHODOLOGY FOR INTERPRETING ORIENTED CORE

Oriented core results were collected in the field using an Ezy-Logger™ Goniometer. Downhole deviations, as measured by the drill crew using a Reflex EZ-shot, were entered into MX Deposit with the alpha and beta measurements to determine true dips and strikes of planar structures.

6.3.2. ORIENTED CORE RESULTS

Oriented core measurements were difficult to obtain over the summer of 2020 due to the brokenup nature of the rocks on the Doc Property. Although measurements were taken wherever possible, it was difficult to verify orientation marks from multiple runs and thus confidence in the measurements was overall very poor.

6.4. DIAMOND DRILL PROGRAM - SUMMER 2020

During the diamond drill program executed in August and September of 2020 by Axiom, 21 drill holes tallying 2724 meters were completed on the Property. A total of 815.3 meters of core were sampled resulting in 970 geochemical samples that were sent for analysis. The drill holes targeted the Doc Zone, Q19, Q26, Q28 and Galena Ridge. The objective of the drill program was to verify mineralization at the Doc Zone as identified in historical drilling as well as test new areas for additional mineralization. Significant mineralized intersections are outlined in Table 5. Full geochemical analysis for all summer 2020 samples is provided in Appendix C.

Core was logged in the core shack located in the Doc Camp. The core was cross-stacked and stored in the core yard located roughly 50 meters west of camp.

6.4.1. DRILL HOLE RESULTS - DOC ZONE

Summaries of each drill hole are listed below with the drillhole logs included in Appendix B.

DDH DC-20-01

LOCATION: 9 N 410116 E 6244601 N

ELEVATION: 1316 masl

EOH: 195.5 m

AZIMUTH/DIP: 020/-50

DATE: September 12, 2020 to September 16, 2020

DC-20-01 was intended to intersect the Q17 quartz vein near the underground workings and to test footwall stratigraphy for additional en echelon veins which may not be visible at surface. The drill hole was collared with a dip of -50° and an azimuth of 020°.

Casing was set at 5.0 meters. Below, siliceous metasediment occurs to 17.65 meters with zones of weak to moderate oxide staining. A mafic volcanic unit was then intersected to 53.4 meters which hosts an interval of possible hyaloclastite from 43.0 to 46.2 meters and a tonalite dyke from 47.0 to 47.4 meters. This unit is moderately silicified in patches throughout with zones of weak to moderate hematite/oxidation down to 40.0 meters. A unit of siliceous metasediment is present from 53.4 to 75.0 meters with strong structure-controlled silicification throughout. Below, a variably altered and strongly structured mafic volcanic unit persists to the end of hole at 195.5 meters. A mixed alteration package of silicification, rust staining, epidote, chlorite, carbonates, sericitization, and minor bleaching is present to approximately 156.3 meters, where a zone of strong hematite and rust staining with locally strong silicification continues to the end of hole. A small mafic dyke was intersected from 190.75 to 191.16 meters.

Broad zones of highly fractured blocky core are ubiquitous throughout the drill hole, with decameter-scale fault zones (often with soft coatings) which first appear at 46.0 meters and increase in frequency with depth. Minor, centimeter-to-decimeter scale breccias and fragment-rich fault gouge are common throughout. A healed stockwork fracture zone from 168.1 to 170.0 meters comprises both quartz and carbonate. Two discrete, strongly altered shear zones are present from 175.28 to 176.74 meters and 177.84 to 178.38 meters.

DC-20-01 intersected quartz +/- carbonate veins from 169.66 to 170.23 meters and 176.92 to 177.84 m, the latter of which displays 7% disseminated pyrite mineralization. Pyrite increases from trace to 2% from approximately 153.0 to 156.25 meters. 10-15% pyrite disseminations are common within shear zones from 175.28 to 176.92 meters.

A total 6.0 meters of mineralization was intersected in DC-20-01 from 175.00 to 181.00 meters, with 1.58 g/t Au across the interval. Within this interval, 2.92 g/t Au is present from 176.00 to 178.90 meters, and 7.41 g/t Au is present from 176.94 to 177.44 meters. The mineralized zone is hosted within a bull white quartz vein between two sheared contacts. The interval has up to 15% pyrite locally along with moderate pervasive chlorite alteration and structurally hosted oxidation and sericitization.

DDH DC-20-02

LOCATION: 9 N 409998 E 6244768 N

ELEVATION: 1260 masl

EOH: 241.3 m

AZIMUTH/DIP: 186/-45

DATE: August 4, 2020 to August 9, 2020

DC-20-02 was intended to test the western extension of the Q17 quartz vein based on magnetic survey results and underground observations. The drill hole was collared with a dip of -45° and an azimuth of 186°.

Casing was set at 2.8 meters. A zone of blocky, weakly altered metasedimentary rock above 10.3 meters includes a quartz veinlet from 9.0 to 9.2 meters. Mafic volcanic rocks below to 38.25 meters contain frequent quartz veining and a strongly altered fault zone from 27.8 to 31.3 meters. A calc-silicate unit was intersected from 38.25 to 75.2 meters with frequent oxidized staining, quartz, and carbonate fracture coatings. A mixed package of interleaved mafic tuff and mafic volcanic units is present below to 145.25 meters, characterized by moderate pervasive chlorite and vein-/fracture-hosted calcite, epidote, and oxidized sulphides. Interleaved units of siliceous and calcareous metasediments occur to 216.2 meters with weak rust staining as well as weak chlorite and sericite alteration. A mafic volcanic unit with intercalated mafic tuff lenses is present below to end of hole at 241.28 meters, characterized by moderate pervasive chlorite and moderate structurally controlled carbonates.

Minor centimeter-scale fault gouges are sporadically disseminated throughout the hole. A broken core zone occurs immediately below the casing to approximately 10.3 meters. A significant mineralized fault zone from 27.8 to 31.2 meters is characterized by both brittle and ductile shearing and up to 5% sulphides. Evidence of ductile deformation, particularly folding, exists throughout the drill hole and commonly hosts sulphide mineralization.

Deformed and/or altered centimeter- to decimeter-scale quartz and quartz-carbonate veinlets are present sporadically throughout drill hole DC-20-02. Oxidized sulphides first occur from 28.0 to 30.3 meters along margins of a quartz veinlet and are common proximal to quartz veins and fault gouges down to 167.1 meters. Up to 2% fresh chalcopyrite and minor fresh pyrite line a quartz-carbonate veinlet between 220.0 to 220.2 meters, with foliation-controlled fresh sulphides common within folding from 231.8 to 232.6 meters.

A total 8.5 meters of mineralization was intersected in DC-20-02 within several discrete zones. 1.39 g/t Au is present from 28.0 to 30.4 meters within a strongly faulted zone with oxidized sulphide fault fill and a 0.10-meter quartz veinlet. 4.36 g/t Au, 96.50 g/t Ag, 1300.00 ppm Cu, and 381.00 ppm Zn are present from 59.20 to 59.40 within a strongly oxidized quartz-sulphide fracture fill. Values of 0.53 g/t Au and 0.33 g/t Au were detected within oxidized fault gouges from 105.92 to 106.80 meters and 111.60 to 113.27 meters, respectively. Fault gouges from 162.55 to 165.50 meters and 166.7 to 167.10 meters returned Au values of 0.20 g/t and 0.31 g/t respectively.

DDH DC-20-03

LOCATION: 9 N 410327 E 6244720 N

ELEVATION: 1236 masl

EOH: 162.0 m

AZIMUTH/DIP: 191/-45

DATE: August 13, 2020 to August 16, 2020

DC-20-03 was intended to test the eastern extent of the Q22 quartz vein down dip of historical drilling. The drill hole was collared at a dip of -45.7° and an azimuth of 190.7°.

Casing was set at 2.87 meters. Moderately altered mafic volcanic rocks occur below to 17.0 meters, where a fault contacts a unit of moderately altered calcareous metasediments. Variably altered mafic volcanic rocks are continue to the end of hole at 162.0 meters. This unit is weakly chlorite altered throughout with frequent carbonate and sericite bands. A zone of strong silicification from 21.2 to 29.0 meters decreases in intensity with depth.

A partially cemented fault zone comprises the bottom of the casing to 21.0 meters. A variable-intensity open fault zone with localized gouge is common continuously to 68.7 meters. Local cm scale fault gouge is hosted within decimeter- to meter-scale zones of faulted and rubbly core from 82.67 m to end of hole at 162.0 meters.

Zones of fracture-hosted and disseminated sulphides along with oxidized fracture coatings occur throughout the drill hole. The Q22 quartz vein mineralization was intersected from 82.18 to 85.2 meters. This zone hosts a brecciated bull white quartz vein with pyrite blebs and oxidized fracture coatings. Mineralization related to the Q17 vein was intersected from 121.46 to 130.38 meters and consists of oxidized fractures and minor quartz veins.

DC-20-03 intersected 12.62 meters of mineralization across two intervals. In the Q22 unit, 2.27 g/t Au was intersected from 82.18 to 89.20, within a larger interval from 82.18 to 91.00 meters which returned 1.85 g/t Au overall. This zone is defined by a brecciated bull white quartz vein with local gouge, shearing and oxidized fracture coatings. Minor white quartz veins and significant oxidation comprise the second zone, from 121.80 to 125.60 meters which hosts 0.31 g/t Au within the Q17 unit.

DDH DC-20-04

LOCATION: 9 N 410142 E 6244751 N

ELEVATION: 1273 masl

EOH: 92.0 m

AZIMUTH/DIP: 215/-60

DATE: September 6, 2020 to September 8, 2020

DC-20-04 was intended to twin hole 86-6 to verify grades from historic drilling. The drill hole was collared at a dip of -60° and an azimuth of 215°.

Casing was set at 0.41 meters. A unit of moderately chlorite-altered mafic volcanic rocks is present below to end of hole at 92.0 meters. A zone of strong pervasive silicification from 59.0 to 73.0 meters comprise the hanging-wall side of the Q17 quartz vein. Carbonate veining is common throughout the unit.

Broad structural zones are common from 15.3 to 77.6 meters including fault zone from 15.3 to 67.7 meters with several gouges and up to 30% core loss. Shear zones exist on either side of the Q17 quartz vein with a 0.7-meter gouge on the footwall side.

Trace pyrite disseminations occur from the bottom of the casing to 59.0 meters, increasing in intensity with depth. Weak fault-controlled oxide mineralization is common from 7.5 to 7.6 meters and strong disseminated oxidized sulphides ranging from 5% to 35% comprise the core from 70.0 to 77.5 meters. The targeted Q17 quartz vein was intersected within this zone between 73.0 and 77.0 meters.

DC-20-04 intersected an 8.12-meter interval of 6.35 g/t Au from 69.48 to 77.60 meters within the strongly fractured and oxide-coated Q17 quartz vein, bounded by two sheared and gouged contacts. Within this zone, multiple higher-grade intervals are present. 53.10 g/t Au, 198.9 g/t Ag, and 416 ppm Cu were intersected from 72.90 to 73.50 meters, within a zone grading 10.58 g/t from 71.0 to 74.50 meters. 17.68 g/t Au, 76.9 g/t Ag, and 920.9 ppm Cu were detected from 76.3 to 77.0 meters.

DDH DC-20-05

LOCATION: 9 N 410142 E 6244751 N

ELEVATION: 1273 masl

EOH: 143.0 m

AZIMUTH/DIP: 215/-75

DATE: September 8, 2020 to September 10, 2020

DC-20-05 was intended to twin historical hole 86-7 to verify grades from historical drilling. The drill hole was collared at a dip of -75° and an azimuth of 215°.

Casing was set at 9.0 meters. A unit of variably altered mafic volcanic rocks was intersected below to end of hole at 143.0 meters. Sporadic centimeter- to decimeter-scale aplite dykes flanked by minor sericite alteration are present down to 29.0 meters. Moderate pervasive chlorite and moderate fracture-hosted rust staining persist throughout.

Blocky, locally sheared core comprises the rock from the bottom of the casing to 53.0 meters associated with oxidized sulphides. Meter-scale fracture and fault zones are present throughout the rest of the hole, often with gouge and hydrothermal alteration. A mineralized hydraulic breccia occurs from 130.2 to 130.45 meters, terminating on a 0.05-meter gouge, followed by a mineralized shear zone from 130.5 to 136.0 meters.

Strong silicification with moderate to strong carbonate veining occurs from 130.2 to 136.0 meters. Trace disseminated pyrite increases in intensity proximal to major silicified zones and quartz veinlets. Weak galena and pyrite halo a small quartz-carbonate vein from 125.33 to 125.35 meters with weak disseminated pyrite from 130.03 to 132.24 m. 30% semi-massive pyrite from 132.24 to 134.63 m with 5% disseminated pyrite persist along fabric and fractures to 136.0 meters. Chalcopyrite and galena blebs are also common from 135.22 to 135.88 meters where sporadic trace pyrite occurs below the mineralized zone to end of hole at 143.0 meters.

DC-20-05 intersected 9.09 meters of mineralization across several discrete zones. 0.45 g/t Au was intersected from 61.6 to 62.6 meters within a sericitized quartz stringer zone. 0.69 g/t Au is present from 65.6 to 66.28 meters and 0.62 g/t Au is present from 68.64 to 68.88 meters, both within a strongly silicified fractured/blocky zone characterized by sericitized quartz veins and pyrite mineralization. 11.51 g/t Au was intersected from 129.83 to 137.00 meters within a fault-bounded and quartz-flooded shear zone.

DDH DC-20-06

LOCATION: 9 N 410142 E 6244751 N

ELEVATION: 1273 masl

EOH: 149.0 m

AZIMUTH/DIP: 225/-70

DATE: September 10, 2020 to September 12, 2020

DC-20-06 was intended to test the Doc Zone along strike to the west of hole DC-20-05. The drill hole was collared at a dip of -70° and an azimuth of 225°.

Casing was set at 1.5 meters above a mixed package of weakly chloritized and rust-stained mafic volcanic rocks to 40.3 m with moderate silicification and carbonate alteration. A unit of distinctly bedded and strongly silicified mafic volcanic rocks occur below a faulted contact to 64.0 meters where weakly foliated/bedded mafic volcanic rocks are present to end of hole at 149.0 meters.

Broken core is common from bottom of casing to 51.8 meters with numerous meter-scale fault and fracture zones from 62.0 meters to the end of hole. A broad fold is identified between 89.0 and 97.0 meters.

Trace amounts of disseminated is common pyrite from bottom of casing to 60.1 meters with chalcopyrite blebs from 13.0 to 13.5 meters. A fragmented quartz vein with 2% pyrite is present from 60.5 to 62.0 meters with late cross-cutting mineralized veinlets. Disseminated pyrite continues to end of hole with local increased concentrations within quartz-carbonate vein fill and on fracture faces, occasionally associated with trace chalcopyrite. An anastomosing quartz vein from 131.1 to 132.2 meters exhibits up to 15% massive pyrite.

DC-20-06 intersected 16.28 meters of mineralization across two discrete intervals. The first, from 60.50 to 63.50 meters returned 0.97 g/t Au within a fault zone, containing a sub-interval up to 2.78 g/t Au within vuggy quartz veins with strong potassic alteration, oxidation, sericite, and carbonate alteration. The second zone, from 119.00 to 132.28 meters, contains 12.01 g/t Au, 52.70 g/t Au, 323.60 ppm Cu, and 229.10 ppm Zn within a variably silicified and oxidized fault zone with localized sericite, chlorite, and potassic alteration. This zone contains a sub-interval of 8.47 g/t Au from 119.00 to 119.50 meters along with another sub-interval up to 113.7 g/t Au, 495.30 g/t Ag, 838.00 ppm Cu, and 728.10 ppm Zn from 131.00 to 132.28 meters associated with abundant vein-hosted pyrite and disseminated chalcopyrite.

DDH Q26-20-01

LOCATION: 9 N 409765 E 6244663 N

ELEVATION: 1346 masl

EOH: 74.0 m

AZIMUTH/DIP: 178/-45

DATE: September 16, 2020 to September 17, 2020

Q26-20-01 was intended to test a mineralized quartz vein originally exposed in historical trenches. The drill hole was collared at a dip of -45° and an azimuth of 178°.

Casing was set at 4.5 meters. The hole entire hole lithologically characterized by a mafic volcanic unit. Meter-scale diabase dykes were intersected along fractured contacts from 10.6 to 12.1 m and 54.5 to 55.5 meters. Weak chlorite and silicification are common throughout the entire drill hole along with patchy epidote. Intermittent fracture-hosted oxidation is sporadically distributed in the hole with a zone of strong structurally controlled hematite (concurrent with moderate siderite) from 41.35 to 44.8 meters.

Meter-scale broken core and fault zones frequent the drill hole with local centimeter-scale fault gouges. Hydrothermal brecciation with local shear fabrics were intersected from 40.0 to 44.5 meters.

Multiple decimeter to meter-scale hydrothermally altered quartz veins appear in the core from 42.8 to 44.7 m, with a strongly altered and irregular quartz vein from 42.83 to 43.3 m carrying trace disseminated pyrite and coarse galena. Underlying veins are strongly oxidized with trace fresh disseminated pyrite.

Q26-20-01 intersected 1.97 meters of 5.10 g/t Au and 49.30 g/t Ag from 42.83 to 44.80 meters within a zone of weakly sheared and brecciated vuggy quartz veins.

DDH Q26-20-02

LOCATION: 9 N 409765 E 6244663 N

ELEVATION: 1346 masl

EOH: 87.0 m

AZIMUTH/DIP: 178/-60

DATE: September 17, 2020 to September 18, 2020

Q26-20-02 was intended to test the mineralized quartz vein down dip of drill hole Q26-20-01. The drill hole was collared at a dip of -60° and an orientation of 178°.

Casing was set at 3.0 meters. An undifferentiated mafic volcanic unit is present from 3.0 to 86.0 m where the hole ends in a 1-meter-wide marble unit at 87.0 m. Alteration generally weak and includes pervasive chlorite, carbonate and patchy silicification. A zone of strong hydrothermal alteration around the mineralized quartz vein from 47.8 to 53.4 m is characterized by yellow brown sericite and red oxide stains. Strong chlorite, carbonate and trace patchy epidote alteration are prevalent from 37.7 to 38.4 m and from 56.8 to 57.5 meters.

Banded and fractured white carbonate veins occur from 42.5 to 43.9 m and 47.8 to 51.4 m. The mineralized interval contains dirty irregular fractured quartz veins from 51.5 to 51.7 and from 52.6 to 53.0 m.

The main mineralized zone from 47.8 to 53.4 m contains strong oxidized sulphides, trace fresh disseminated pyrite and local quartz vein hosted galena, pyrite, chalcopyrite, and malachite.

Gold grades from Q26-20-02 were subtle between 53.0 and 53.3 m running 0.87 g/t Au over 0.3 meters. Mineralization in this hole is weaker than either of the holes up and down dip although structure and alteration are still significant.

DDH Q26-20-03

LOCATION: 9 N 409765 E 6244663 N

ELEVATION: 1346 masl

EOH: 106.0 m

AZIMUTH/DIP: 178/-80

DATE: September 18, 2020 to September 19, 2020

Q26-20-03 was intended to test the quartz vein down dip of intersections from drill holes Q26-20-01 and Q26-20-02. The drill hole was collared at a dip of -80° and an azimuth of 178°.

Casing was set at 3.0 meters. An undifferentiated mafic volcanic unit was encountered to 58.1 m with weak chlorite, carbonate, and weak patchy silicification with localized intersections of lapilli tuff. Oxide staining on fractures is common and strong chlorite and carbonate alteration develops from 46.5 to 47.0 meters. Carbonate-rich calc-silicate was intersected from 58.1 to 61.2 meters, underlain by a unit of muscovite schist. A moderately chlorite altered and silicified mafic volcanic unit of tuff and lapilli tuff terminating on a diabase dyke was intersected between 69.8 and 71.3 meters. Strong faulting with hydrothermally altered muscovite schist occurs to 72.6 meters. The mineralized quartz vein was encountered at 74.8 m where a unit of moderate

chlorite-altered mafic volcanics was intersected to 95.3 m. The hole ended in a weakly altered marble unit

Fractures and zones of broken core are frequent throughout the drill hole with local gouge. Hydraulic brecciation occurs between 17.5 and 17.9 meters. Fault zones with gouge were intersected from 24.7 to 26.5 m, 48.0 to 56.5 m, and 71.25 to 72.6 meters.

A massive white quartz vein was intersected from 72.6 to 74.8 meters with strongly oxidized fracture faces and 1% disseminated pyrite. Trace amounts of pyrite are disseminated throughout the drill hole with slightly elevated concentrations from 39.7 to 40.8 meters within stringers and associated with chlorite alteration.

Q26-20-03 intersected 6.00 meters of mineralization grading 2.20 g/t Au including 0.8 m up to 10.80 g/t within a fractured zone containing quartz and carbonate veining, oxidation, potassic alteration, sericite, and chlorite along with minor galena and pyrite.

DDH Q28-20-01

LOCATION: 9 N 410244 E 6244552 N

ELEVATION: 1290 masl

EOH: 41.0 m

AZIMUTH/DIP: 200/-45

DATE: September 19, 2020 to September 20, 2020

Q28-20-01 was intended to test a quartz vein southeast of the Doc Zone. The drill hole was collared at a dip of -45° and an azimuth of 200°.

Casing was set at 3.0 meters. A mafic volcanic unit characterizes the entire hole to 41.0 meters. Chlorite alteration is weak to moderate throughout with patchy moderate silicification below 16.0 meters. Rust staining is common on fracture faces.

Zones of strongly fractured/blocky characterize the core from 3.0 to 9.0 and 14.1 to 15.9 meters. Fractures and minor blocky zones are common throughout the drill hole.

Strongly altered and fractured bull quartz vein intersected from 14.4 to 15.95 meters with strong oxidation along fracture faces and vein margins. Trace to 2% disseminated pyrite, chalcopyrite, and clots of galena were encountered from 13.6 to 14.0 meters and from 17.0 to 17.47 meters. Stockwork carbonate veinlets are weak throughout the drill hole.

Q28-20-01 intersected 1.00-meter grading 1.73 g/t Au within an oxidized and sericitized bull quartz vein from 15.00 to 16.00 meters.

DDH Q28-20-02

LOCATION: 9 N 410244 E 6244552 N

ELEVATION: 1290 masl

EOH: 32.0 m

AZIMUTH/DIP: 190/-80

DATE: September 20, 2020 to September 20, 2020

Q28-20-02 was intended to test down dip of drill hole Q28-20-01. The drill hole was collared at a dip of -80° and an orientation of 190°.

Casing was casing set at 9.0 meters. A mafic volcanic unit characterizes the core from 3.0 to end of hole at 32.0 meters. Weak pervasive chlorite alteration and rust-stained fractures are present throughout the drill hole.

Blocky, rubbly core was encountered in the hole from 3.0 to 27.0 with sandy fault gouge between 23.2 and 23.3 meters. Fracturing sporadically persists within otherwise competent rock.

An anastomosing quartz carbonate vein is present with 1% pyrite from 21.3 to 21.7 meters. Strongly oxidized Q28 quartz vein was intersected from 23.3 to 25.7 m, with an associated hydrothermal alteration halo between 22.5 and 29.0 meters also containing trace disseminated and weak vein hosted sulphides. Weak oxidized gouge characterizes the upper contact of the Q28 vein from 23.2 to 23.3 meters.

Q28-20-02 intersected up to 0.51 g/t Au from 23.0 to 26.0 meters. This zone is variably fractured with local gouge, moderate oxidation and contains the Q28 bull white quartz vein from 23.3 to 25.7 meters.

6.4.2. DRILL HOLE RESULTS - Q19 ZONE

A summary of the Summer 2020 Q19 Zone results is provided in Table 5.

DDH Q19-20-01

LOCATION: 9 N 411136 E 6243532 N

ELEVATION: 1353.216 masl

EOH: 234.0 m

AZIMUTH/DIP: 207/-70

DATE: August 10, 2020 to August 13, 2020

Q19-20-01 was intended to evaluate the Q19 quartz vein and follow up results from 2019 prospecting and trench sampling program. The drill hole was collared with a dip of -70° and an azimuth of 207°.

Casing was set at 2.75 meters. Chlorite-altered mafic volcanics is the main lithology and persists to end of hole at 234.0 meters. Sporadic epidote lenses are ubiquitous and oxidized fracture coatings are common but decrease in frequency with depth. Strong sericite is present within a fault zone from 27.0 to 29.6 meters. Minor porphyritic phases within the mafic volcanic unit were intersected from 111.2 to 116.6 and from 218.0 to 219.7 meters.

Broken/blocky core is consistent from the top of the hole to 77.0 meters, with discrete zones of broken/blocky core below. A barren fault zone exists from approximately 27.0 to 29.6 meters.

Quartz stringers and veinlets are common throughout Q19-20-01. Trace fresh disseminated sulphides are present throughout the drill hole and fracture-hosted sulphides appear below 94.5 meters.

DDH Q19-20-02

LOCATION: 9 N 411118 E 3243496 N

ELEVATION: 1362 masl

EOH: 179.0 m

AZIMUTH/DIP: 207/-45

DATE: August 16, 2020 to August 19, 2020

Q19-20-02 was intended to target a quartz vein identified in 2019 prospecting and trench sampling directly under where the prospecting activities took place. The drill hole was collared with a dip of -45° and an azimuth of 207°.

Casing was set at 4.75 meters. A moderately chlorite-altered and silicified mafic volcanic unit characterizes the entire hole to 179.0 meters. Patchy calc-silicate alteration and epidote veining are sporadic throughout.

Broken/blocky core that may be related to the mineralization at Q19 occurs from the top of the hole to 99.0 meters. Narrow broken core zones become less frequent to the end of hole.

A fractured and oxidized bull white quartz vein with disseminated pyrite from 7.5 to 8.2 meters was intersected. Brecciated white quartz fragments in an oxidized matrix are present from 31.0 to 31.4 m and may be related to the main mineralized Q19 quartz vein. Trace pyrite occurs below as veinlets, fracture coatings, and within calcite/sericite veins. Moderate disseminated sphalerite was intersected within a calcite vein from 173.5 to 173.7 meters.

Q19-20-02 intersected 1.0 m grading 0.29 g/t Au within the first intercept of the Q19 zone from 7.5 to 8.5 meters. This zone occurs along the pervasively silicified and oxidized upper contact of a fractured bull white quartz vein.

DDH Q19-20-03

LOCATION: 9 N 411118 E 6243496 N

ELEVATION: 1362 masl

EOH: 149.0 m

AZIMUTH/DIP: 225/-45

DATE: August 19, 2020 to August 21, 2020

Q19-20-03 was intended to follow up results from Q19-20-02 by testing the same quartz vein to the west. The drill hole was collared with a dip of -45° and an azimuth of 225°.

Casing was set at 2.9 meters. A moderately chlorite-altered mafic volcanic unit similar to Q19-20-02 characterizes the lithology to the end of hole at 149.0 meters with discrete zones of siliceous metasediments from 99.5 to 101.0 m and intermediate volcanic rocks from 113.2 to 114.8 meters. Q19-20-03 is moderately silicified throughout.

The entire drill hole is interpreted as having intersected the Q19 structural zone. Broken/blocky core is continuous throughout with intervals of fault gouge and slickensides.

The upper part of the Q19 mineralized zone from 8.17 to 10.25 meters features oxidation and blebby pyrite centering on a massive bull white quartz vein. Trace to weakly disseminated and fracture-hosted pyrite is present to end of hole. The lower section of the Q19 mineralized zone was intersected from 63.6 to 63.83 m and is characterized by disseminated pyrite and oxidized calcite veins.

Q19-20-03 intersected 1.07 meters grading 1.21 g/t Au from 8.17 to 9.24 meters within the moderately oxidized and strongly gouged upper contact of a 0.30-meter bull white quartz vein and within the vein itself.

DDH Q19-20-04

LOCATION: 9 N 411118 E 6243496 N

ELEVATION: 1362 masl

EOH: 101.0 m

AZIMUTH/DIP: 175/-45

DATE: August 21, 2020 to August 23, 2020

Q19-20-04 was intended to follow up results from previous drilling on this target in Q19-20-02 by testing quartz veins and structure along strike to the east. The drill hole was collared with a dip of -45° and an azimuth of 175°.

Casing was set at 4.8 meters. As in the previous holes, moderately chlorite altered mafic volcanic rocks lithologically characterize the hole to it's completion at 101.0 meters. The entire drill hole is moderately silicified with local strong silicification over rare intervals. A quartz-feldspar dyke was intersected from 14.5 to 14.6 meters in addition to a centimeter-scale granitic dyke from 91.77 to 91.93 meters.

Broad zones of broken, blocky, and faulted core are consistent throughout the drill hole with rare, localized fault gouge. Q19-20-04 is interpreted to have intersected the Q19 structural zone throughout its entire length.

Fracture-hosted pyrite associated with the Q19 mineralized zone was intersected from 6.8 to 8.7 meters associated with rusty fracture linings and a meter-scale bull white quartz vein. Trace to weak disseminated pyrite occurs throughout most of the drill hole with rare chalcopyrite blebs.

Q19-20-04 intersected 2.25 meters grading 6.18 g/t Au and 47.78 g/t Ag from 6.80 to 9.05 meters within the strongly silicified Q19 structural zone. A bull white quartz vein with pyritic and oxidized fracture coatings was encountered within this zone from 7.3 to 8.5 meters, below which strong sericite alteration occurs.

6.4.3. DRILL HOLE RESULTS - GALENA RIDGE

A summary of the Summer 2020 Galena Ridge results is provided in Table 5.

DDH GR-20-01

LOCATION: 9 N 410442 E 6243514 N

ELEVATION: 1498 masl

EOH: 167.0 m

AZIMUTH/DIP: 198/-45

DATE: August 24, 2020 to August 26, 2020

GR-20-01 was intended to test the Galena Ridge quartz vein to the south of the highest-grade outcrop channel samples. The drill hole was collared with a dip of -45° and an azimuth of 198°.

Casing was set at 2.9 meters. A moderate chlorite-altered mafic volcanic unit was intersected to 6.8 meters with local strong silicification. Calcareous metasediment comprises the upper part of the hole down to 10.0 meters depth where a mafic volcanic unit is intersected to 48.8 meters with discrete intervals of calcareous metasediment and millimeter- to centimeter-scale calc silicate veining. Calcareous metasediment to 68.8 m is underlain by a strongly chlorite-altered mafic volcanic unit to 93.4 meters. A unit of pyritic calcareous metasediment was intersected below to 101.6 m with patches of moderate calc-silicate alteration. Moderately silicified mafic volcanics characterize the core to 117.9 meters with locally strong magnetite from 112.8 to 115.5 m and a felsic dyke from 112.4 to 112.8 meters. Siliceous metasediment was intersected from 117.9 to 124.3 meters which hosts discrete magnetite dykes. A weakly pyritic mafic volcanic unit occurs to end of hole at 167.0 m with a lens of siliceous metasediment from 159.0 to 160.0 meters.

Broad zones of broken/blocky core with localized fracture zones and brecciation are common throughout the middle of the hole. Localized decimeter-scale brecciation is intersected in the lower third of the hole. Centimeter- to decimeter-scale sporadic fault gouge is present from 66.4 to 93.1 meters.

Weak fracture-hosted, vein-hosted, and disseminated pyrite occurs initially at 4.5 meters. Increased concentrations of pyrite were observed frequently from 68.7 to 116.4 m with discontinuous semi-massive and vein-hosted mineralization ranging from 10-40% from 93.4 to 100.6 meters. Weak structural galena is encountered in fractures and veins from 17.9 to 30.1 meters. Pyrrhotite was first intersected at 10.0 m, occurs in trace amounts to 33.4 m with a bedded interval up to 30% pyrrhotite from 17.6 to 17.7 meters. Disseminated magnetite, up to 10% is present from 112.8 to 115.5 m and from 120.3 to 120.6 m with a zone of 30% banded magnetite from 121.4 to 121.7 meters. Stockwork calcite veins, occasionally hosting pyrite mineralization, are encountered from 37.6 to 38.2 meters and from 93.1 to 101.6 meters. Sheeted centimeter-scale quartz veins from 20.9 to 21.19 m and 148.0 to 148.66 m contain trace amounts of sulphides along the contacts.

DDH GR-20-02

LOCATION: 9 N 410442 E 6243514 N

ELEVATION: 1498 masl

EOH: 143.0 m

AZIMUTH/DIP: 206/-60

DATE: August 26, 2020 to August 28, 2020

GR-20-02 was intended to test the Galena Ridge quartz vein to the south of the highest-grade outcrop channel samples. The drill hole was collared with a dip of -60° and an azimuth of 206°.

Casing was set at 2.31 meters. A moderately chlorite-altered mafic volcanic unit was intersected to 7.0 m with decimeter-scale calcareous and silicified metasediment beds. Siliceous metasediment with decimeter-scale calcareous layers occur to 8.5 meters. Moderately chlorite-altered mafic volcanics were then intersected to 41.4 m with discrete siliceous and calcareous layers. The bottom of the hole comprises a mixed unit of strongly siliceous metasediments, mafic volcanics, and calcareous metasediments to 59.48 meters with a mafic volcanic unit to the end of hole at 143.0 meters.

Broad zones of broken core are common throughout the drill hole with sporadic sediment filled fractures. A zone of brittle-ductile deformation from 91.6 to 112.0 meters is characterized by intervals of strongly foliated mylonite interleaved with stockwork fractures, brecciation, and intense gouge.

Common weakly disseminated and vein-hosted pyrite throughout the drill hole has locally elevated concentrations in and around quartz and calcite veins. Specularite micro-veining is found in local fracturing and veinlets from 5.07 to 5.8 meters. A smoky quartz vein with 10% semi-massive pyrite is intersected from 24.1 to 24.8 meters. A pyritic quartz-calcite vein breccia is present from 73.6 to 74.4 meters where cm-scale quartz veins become prevalent from 89.0 to 89.2 m with oxidized contacts. A zone of pyritic quartz veining was intersected from 126.6 to 132.1 meters.

DDH GR-20-03

LOCATION: 9 N 410442 E 6243514 N

ELEVATION: 1498 masl

EOH: 149.48 m

AZIMUTH/DIP: 025/-45

DATE: August 28, 2020 to August 31, 2020

GR-20-03 was intended to evaluate stratigraphy with high metallic content to evaluate the stratigraphy for potential low grade disseminated Au. The drill hole was collared with a dip of - 45° and an azimuth of 025°.

Casing was set at 3.1 meters. A unit of moderately chlorite-altered mafic volcanic rocks was intersected to the end of hole at 149.5 m with a lens of calcareous metasediment from 138.9 to 140.9 meters. Isolated zones of increased magnetite content sporadic throughout. Discrete bleached zones are present intermittently throughout the drill hole, regularly flanking quartz-calcite veins.

Several meter-scale intervals of broken/blocky core were intersected intermittently throughout the drill hole. Zones of distinct ductile deformation are also present with discontinuous folded textures observed from 61.5 to 74.9 m and folded calcite veins from 145.8 to 149.5 meters.

Pyrite, chalcopyrite, and pyrrhotite are disseminated in trace amounts throughout the entire drill hole, often in tight fractures and calcite veins. Sulphide mineralization is occasionally oxidized. Millimeter- to centimeter-scale quartz and calcite veins are present sporadically throughout GR-20-03, becoming more frequent with depth.

DDH GR-20-04

LOCATION: 9 N 410516 E 6243711 N

ELEVATION: 1501 masl

EOH: 105.25 m

AZIMUTH/DIP: 217/-45

DATE: September 1, 2020 to September 3, 2020

GR-20-04 was intended to test under a channel sample that contained galena, gold, silver, and copper related to a quartz vein. The drill hole was collared with a dip of -45° and an azimuth of 217°.

Casing was set at 3.0 meters. A unit of moderately chlorite-altered mafic volcanics characterizes the lithology to the end of hole at 105.3 meters. Lenses of calcareous metasediment (possibly marble) are encountered from 3.0 to 8.0 m and from 16.1 to 16.6 meters. Zones of bleaching and oxidation are common on the periphery of quartz and calcite veins. Silicification varies from weak to moderate throughout the drill hole.

Decimeter scale broken/blocky core zones are intermittent throughout the drill hole. A shear zone from 37.7 to 40.7 comprises local mylonite and fault gouge. Two additional shear zones are encountered from 62.3 to 64.0 m and from 96.3 to 105.3 m, the latter of which has multiple intervals of moderate to intense gouge.

Disseminated sulphides including pyrrhotite with minor galena and chalcopyrite are common throughout the drillhole. Moderate fracture and vein-hosted pyrite occurs from 88.9 to 90.9 m and from 92.3 to 96.3 m within calcite veinlets. Discrete zones of elevated magnetite content along foliation and within veins were intersected sporadically throughout the drillhole. Quartz veins with variable sulphide mineralization are present from 15.5to 16.1 meters and 40.7 to 41.7 meters.

GR-20-04 intersected 0.42 meters grading 1.33 g/t Au and 12.2 g/t Ag from 15.67 to 16.09 meters associated with a 0.50 meter fractured quartz vein hosting pyrite, chalcopyrite, pyrrhotite, and galena.

DDH GR-20-05

LOCATION: 9 N 410156 E 6243711 N

ELEVATION: 1501 masl

EOH: 88.0 m

AZIMUTH/DIP: 217/-70

DATE: September 3, 2020 to September 4, 2020

GR-20-05 was intended to follow up results from GR-20-04 down dip. The drill hole was collared with a dip of -70° and an azimuth of 217°.

Casing was set at 0.9 meters. Weakly pyritic calcareous metasediments are present to 3.0 m, where a mafic volcanic unit persists to end of hole at 88.0 meters. Bleached halos around quartz and calcite veins are frequent, as are oxidized fracture coatings. Moderate chlorite alteration and weak silicification are ubiquitous.

Broken/blocky core zones are common throughout the drill hole with local decimeter scale gouges. Mixed brecciated/broken and shear zones with minor mylonite and gouge were intersected from 15.1 to 33.6 m and from 67.9 to 87.5 meters.

Foliation-parallel quartz and calcite stringers are abundant below 5.0 meters, with quartz stringers largely disappearing below 69.08 meters. Several quartz veins with mixed sulphide mineralization were intersected from 40.4 to 40.5 m and from 67.4 to 67.8 m overlain and underlain, respectively by mixed broken/breccia/shear zones. Trace disseminated pyrite is common throughout GR-20-05, with rare discrete intervals of galena and chalcopyrite. Elevated pyrite concentrations are limited within calcite-quartz veinlets and along fracture surfaces. Local strong pyrite mineralization exists within calcite veins and associated with significant magnetite and chlorite from 72. 5 to 80.7 meters.

DDH GR-20-06

LOCATION: 9 N 410156 E 6243711 N

ELEVATION: 1501 masl

EOH: 86.0 m

AZIMUTH/DIP: 217/-82.5

DATE:September 4, 2020 to September 5, 2020

GR-20-06 was intended to follow up results from GR-20-04 and GR-20-05 down dip. The drill hole was collared with a dip of -82.5° and an azimuth of 217°.

Casing was set at 0.6 meters. Strongly deformed calcareous metasediments were intersected to 8.0 m with interbedded mafic volcanic layers. A moderately chlorite-altered mafic volcanic makes up the lithology to end of hole at 86.0 meters. Silicification is weak to moderate throughout most of the drill hole and bleached haloes are common around veins and veinlets.

Strong folded textures were observed within the calcareous meta-sediments from the bottom of the casing to 8.0 meters. Two fault zones were intersected - the first, from 73.5 to 77.3 m is associated with mineralization and features multiple gouges; the second, from 80.0 to 85.3 m,

comprises clay and limonite on the fracture faces. Meter-scale broken/blocky core zones are intermittently present from 18.1 to 50.0 meters.

Foliation-parallel quartz and calcite veinlets are abundant to 51.2 m, with centimeter- to decimeter-scale, occasionally pyrite-bearing, quartz veins dispersed sporadically throughout the interval. Disseminated pyrite and pyrite stringers are variably common throughout the drillhole, sometimes adjacent to rare chalcopyrite grains. Increased pyrite content exists on some fracture surfaces and within fault fill from 75.6 to 77.0 meters.

6.4.4. DISCUSSION OF DIAMOND DRILL RESULTS

Results from the 2020 Exploration program were overall very positive. The Doc zone mineralization was verified with several drillholes while mineralization was intersected at Q26, Galena Ridge and Q19 areas associated with sheared epithermal quartz veins. Cross sections with assay results of all drill holes can be found in Appendix E.

At the Doc Zone, mineralization was intersected to a degree in each of the drill holes. DC-20-01 unfortunately did not intersect any structures or quartz veins to the south of the Q17 vein itself, but successfully tested the mineralization near the underground workings. DDH DC-20-02 intersected several small zones of mineralization on the western side of the Q17 vein even though it was not ideally placed based on subsequent 3D modelling suggesting another test to undercut this hole is warranted. DC-20-04 and 05 were drilled to verify historical results from holes 86-6 and 86-7. Grades obtained in both of those holes were successful in achieving this goal. DC-20-06 also intersected high grade Au mineralization in the Q17 several meters along strike to the west. The mineralization at the Doc zone is currently open at depth and along strike and with the results from the UAV magnetic survey it may be offset to the north on the western side.

At the Q26 zone, historical trenching exposed a mineralized quartz vein over ~140 m of strike length. The new UAV magnetics survey results show an association with a magnetic low which is similar to the Doc veins system. This quartz vein is much the same in character as the Doc veins with sheared and structurally disrupted contacts on each side of the quartz vein itself and may be part of the same mineralizing system. In the summer of 2020, three holes tested this quartz vein. Results were positive in the upper and lower holes on the fence, with the centre test returning lower Au values. Additional tests of this quartz vein are warranted as mineralization is open in all directions.

The Q19 quartz vein is located in the central portion of the Property and historical work including channel and grab samples have returned significant Au grades up to 202.0 g/t Au, 1735 g/t Ag with 32.1% Pb. The Q19 zone is characterized by discontinuous white bull quartz veins over a meter wide in places with structurally disrupted contacts. Because of their discontinuous character, tracing them with drilling has proven difficult. In 2020, four drill holes evaluated one of the quartz veins directly down dip of where the channel sample mentioned above was taken. Results were mixed with moderate grades reaching 6.18 g/t Au over 2.25 m. Additional work is warranted in this area to better understand the structural scenario and help identify new mineralization.

The Galena Ridge quartz vein also has historical channel and grab sampling information with results returning grades including 12.8 g/t Au with 263 g/t Ag and 1975 ppm Cu. The area was drill tested in 2020 with 6 holes. Three of which tested the quartz vein returning modest grades of 1.33 g/t Au over 0.42 m.

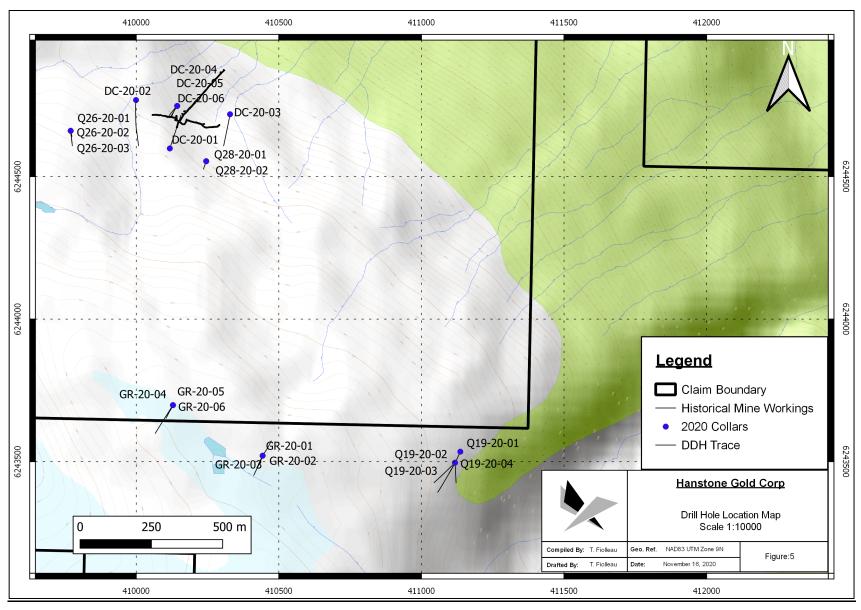


Figure 10: 2020 Drill Hole Location Map

Table 4: Doc Summer 2020 - Drill Hole Locations

Hole ID	Target Zone	UTM		Elevation	Dip	Azi	E.O.H.
Hole ID		Eastings	Northings	(masl)	(°)	(°)	(m)
DC-20-01	Doc	410116	6244601	1316	-50	215	195.5
DC-20-02	Doc	409998	6244768	1260	-45	215	241.3
DC-20-03	Doc	410327	6244720	1236	-45	215	162
DC-20-04	Doc	410142	6244751	1273	-60	215	92
DC-20-05	Doc	410142	6244751	1273	-75	215	143
DC-20-06	Doc	410143	6244748	1273	-70	225	149
Q19-20-01	Q19	411136	6243532	1353	-70	146	105.3
Q19-20-02	Q19	411118	6243496	1362	-45	208	87.5
Q19-20-03	Q19	411118	6243496	1362	-45	225	86
Q19-20-04	Q19	411118	6243496	1362	-45	175	166.4
GR-20-01	Galena Ridge	410156	6243711	1501	-45	217	143
GR-20-02	Galena Ridge	410156	6243711	1501	-70	217	149.5
GR-20-03	Galena Ridge	410156	6243711	1501	-83	217	233.7
GR-20-04	Galena Ridge	410442	6243514	1498	-45	198	179
GR-20-05	Galena Ridge	410442	6243514	1498	-60	198	149
GR-20-06	Galena Ridge	410442	6243514	1498	-45	25	101
Q26-20-01	Q26	409770	6244661	1346	-45	178	74
Q26-20-02	Q26	409770	6244661	1346	-60	178	87
Q26-20-03	Q26	409770	6244661	1346	-45	178	106
Q28-20-01	Q28	410245	6244554	1290	-45	200	41
Q28-20-02	Q28	410245	6244554	1290	-80	200	32

6.5. ANALYTICAL INFORMATION

A total of 182 drill core samples were submitted to ALS Laboratory Group and 788 to TLC laboratories Inc. during the summer 2020 diamond drill program. Of the 970 samples submitted, 31 were blind field duplicates and standards were inserted by the labs according to internal QaQc procedures.

Both labs utilized by Axiom are registered with current ISO accreditation. Both, ALS and TSL is accredited to international quality standards through the International Organization for Standardization/ Internal Electronic Commission (ISO/IEC), ISO17025 (Testing and Calibration Laboratories).

All rock sample preparation conducted by TSL was at their preparation facility in Saskatoon, SK. Rock samples were dried, crushed to 95% passing 1.70 mm, creating ~1000g sample. Sample is then split and pulverized to 95% passing 106 microns. Core analyzed by TSL was handled at their facility in Saskatoon, SK. Core samples were analyzed for gold using method D19, gravimetric, gold fire assay, 1000g. Gold Assays returning greater than 10g/t (ppm) where analyzed using FAS-245, gold fire assay with gravimetric finish. Additionally, Ag and Cu returning greater than 100 ppm and 1% respectively were also reanalyzed using methods with higher above detection thresholds.

All rock sample preparation conducted by ALS at their preparation facility in Terrance, B.C. Rock samples were dried, crushed to 70% passing 2 mm, creating ~1.75kg sample. Sample is then split and pulverized to 85% passing 75 microns. Core analyzed by ALS was conducted at their

facility in British Columbia. Core samples were analyzed for gold using method AA23, gold fire assay, 50g. AAS, ore grade. Gold Assays returning greater than 10 g/t (ppm) where analyzed using GRA21, gold fire assay with gravimetric finish. Core was also analyzed for various elements using method ME-MS41, Aqua regia digestion, 50g sample.

6.5.1. METHODOLOGY FOR LITHOGEOCHEMICAL SAMPLING

Sampling of core consisted of targeting geological structures, alteration, and sulphide mineralization. Lithogeochemical samples were 0.2- to 1.0-meter-long pieces collected over the entire width of any noteworthy alteration, structures or sulphide mineralization. Bracket samples were utilized over anomalous mineralization for at least 1 meter beyond the anomalous interval. Attempts were made to avoid having more than one lithology or alteration type in any given sample. All samples were split with a gas Pothier rock saw.

6.5.2. QUALITY CONTROL

TSL laboratories ran several different standards that were inserted approximately every 20 samples, as well as two pulp duplicates and one geological blank in every batch with FA/AA work and three pulp duplicates for FA/Gravimetric work. Random additional repeats were also analyzed to ensure quality control.

A total of 18 blanks, 27 GS-7E high-grade Au standards, 18 Oreas 262 low-grade standards, and 10 DS-11 poly metallic standards were inserted into the 788 drill core samples sent to TSL Labs.

ASL labs inserts standards and blanks according to their own internal procedure that is ISO and IEC accredited.

Data validation shows repeatability of all standards to be quite good with minimal variation.

6.5.3. DRILL CORE GEOCHEMICAL RESULTS

Analyses results from the 970 core samples from the drill program have been compiled and reviewed. The statistical results were grouped by area, namely Doc, Q19, Galena Ridge and Q27. The geochemistry for selected elements are provided in Table 5. The assay certificates are included in Appendix C.

<u>Table 5</u>: Summary of Geochemical Results

Hole ID	GT	Avg Grade Au (g/t)	Ag (g/t)	Cu (ppm)	Zn (ppm)	Interval	From (m)	To (m)
DC_20_01	9.5	1.58				6.00	175.00	181.00
DC_20_01	8.5	2.92				2.90	176.00	178.90
DC_20_01	3.7	7.41				0.50	176.94	177.44
DC_20_02	3.3	1.39				2.40	28.00	30.40
DC_20_02	0.9	4.36	96.50	1300.0	381.0	0.20	59.20	59.40
DC_20_02	0.5	0.53				0.88	105.92	106.80
DC_20_02	0.5	0.33				1.67	111.60	113.27
DC_20_02	0.6	0.20				2.95	162.55	165.50
DC_20_02	0.1	0.31				0.40	166.70	167.10
DC_20_03	16.3	1.85				8.82	82.18	91.00
DC_20_03	16.0	2.27				7.02	82.18	89.20
DC_20_03	1.2	0.31				3.80	121.80	125.60
DC_20_04	51.6	6.35				8.12	69.48	77.60
DC_20_04	37.0	10.58				3.50	71.00	74.50
DC_20_04	31.9	53.10	198.9	416		0.60	72.90	73.50
DC_20_04	12.4	17.68	76.9	920.9		0.70	76.30	77.00
DC_20_05	0.5	0.45				1.00	61.60	62.60
DC_20_05	0.5	0.69				0.68	65.60	66.28
DC_20_05	0.1	0.62				0.24	68.64	68.88
DC_20_05	82.5	11.51				7.17	129.83	137.00
DC_20_05	58.6	50.12				1.17	133.23	134.40
DC_20_05	78.2	20.74				3.77	132.23	136.00
DC_20_06	1.2	2.78				0.45	61.10	61.55
DC_20_06	2.9	0.97				3.00	60.50	63.50
DC_20_06	159.5	12.01	52.70	323.6	229.1	13.28	119.00	132.28
DC_20_06	4.2	8.47				0.50	119.00	119.50
DC_20_06	145.6	113.70	495.30	838.0	728.1	1.28	131.00	132.28
GR-20-04	0.6	1.33	12.2			0.42	15.67	16.09
Q19-20-02	0.3	0.29				1.00	7.50	8.50
Q19-20-03	1.3	1.21				1.07	8.17	9.24
Q19-20-04	13.9	6.18	47.78			2.25	6.80	9.05
Q26-20-01	10.1	5.10	49.30			1.97	42.83	44.80
Q26-20-02	0.3	0.87				0.35	53.00	53.35
Q26-20-03	13.2	2.20				6.00	72.00	78.00
Q26-20-03	8.6	10.80				0.80	74.00	74.80
Q28-20-01	1.7	1.73				1.00	15.00	16.00
Q28-20-02	1.5	0.51				3.00	23.00	26.00
GR-20-04	0.6	1.33	12.2			0.42	15.67	16.09

7. UAV MAGNETIC SURVEY RESULTS

The Drone mounted UAV magnetic survey was flown in September 2020 over all high priority areas on the Doc Property. The survey logistics report is attached in Appendix E.

Results from the survey can be used to help broadly map lithological units and identify structural trends that may be related to Au mineralization on the Property. Results from this survey will be utilized in conjunction with ground truthing and SIDA to help identify prospective target areas outside of Doc and Q26 zones.

7.1 DOC PROPERTY UAV MAGNETIC SURVEY POST PROCESSING FIGURES

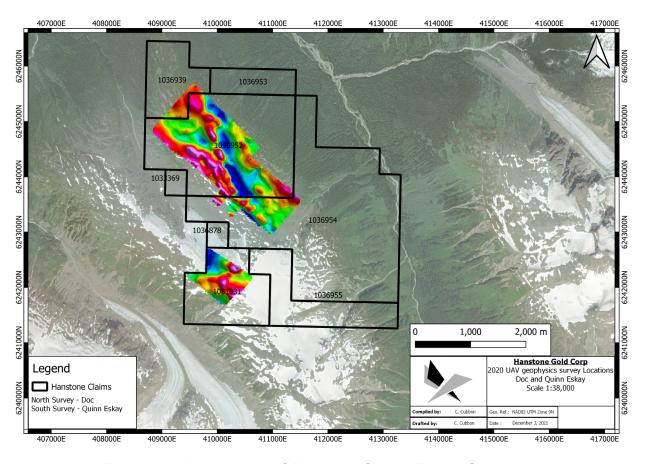


Figure 11: Locations of Doc and Quinn Eskay Survey

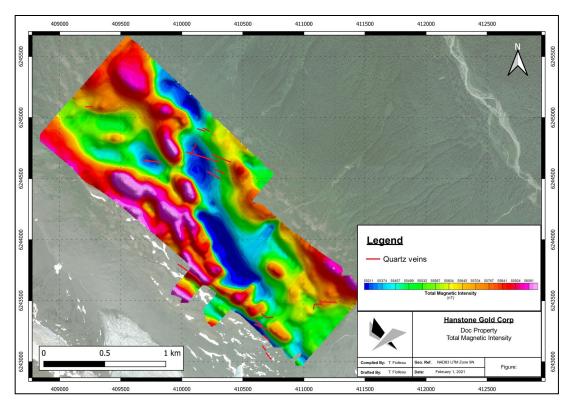


Figure 12: Total Magnetic Intensity

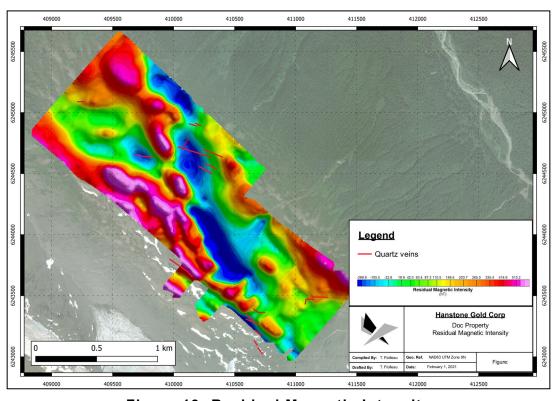


Figure 13: Residual Magnetic Intensity

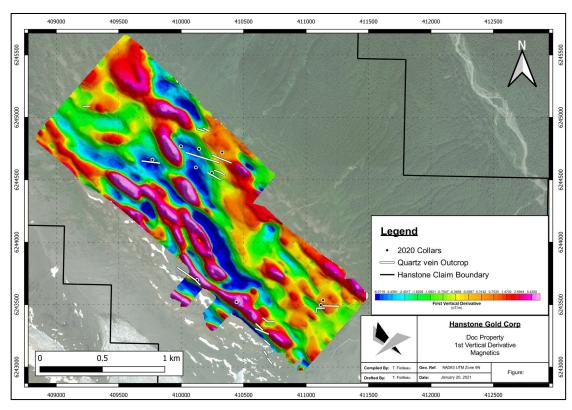


Figure 14: First Vertical Derivative

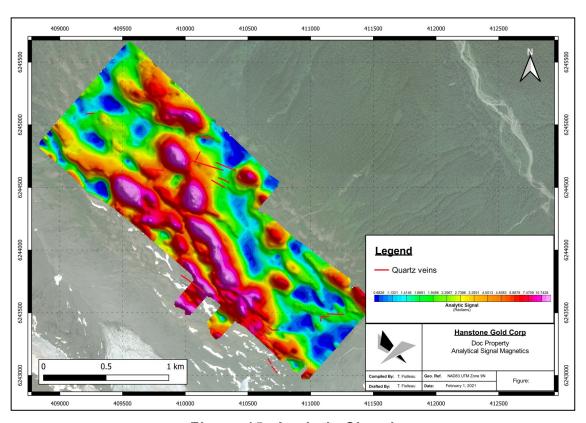


Figure 15: Analytic Signal

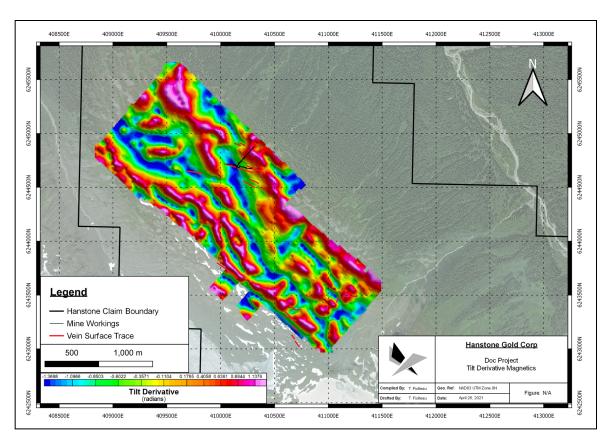
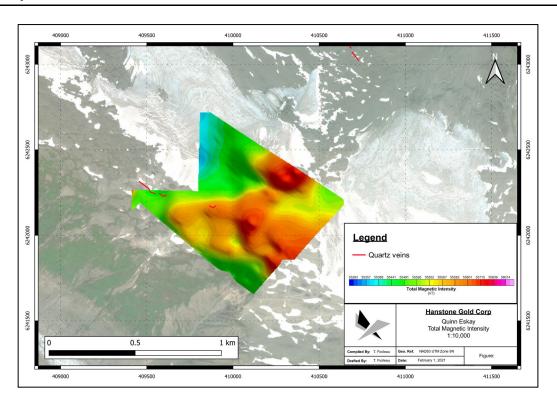
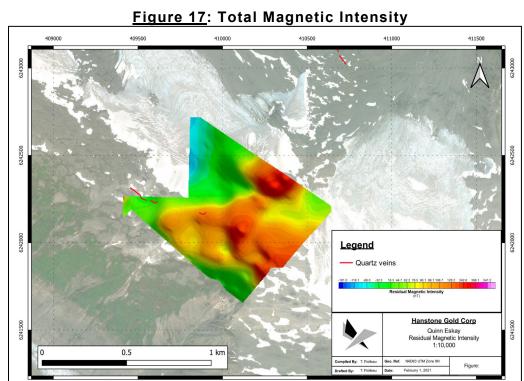




Figure 16: Tilt Derivative

7.2 QUINN ESKAY UAV MAGNETIC SURVEY POST PROCESSING FIGURES

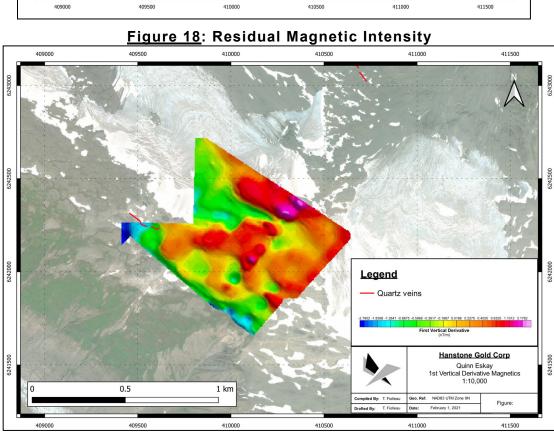


Figure 19: First Vertical Derivative

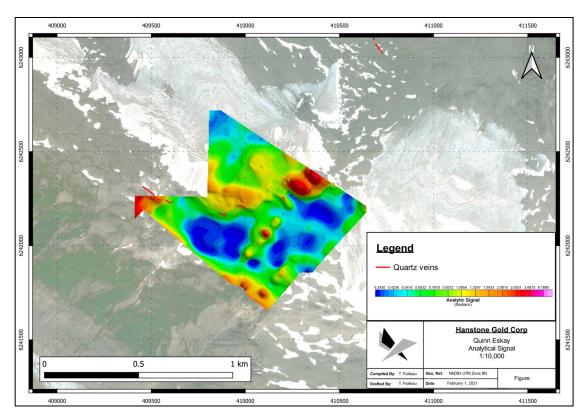


Figure 20: Analytical Signal

8. CONCLUSIONS & RECOMMENDATIONS

Results from the 2020 Exploration program on the Doc Property were successful in verifying the mineralization associated with the Doc Zone, Q19, Q26 and Galena Ridge areas.

The 2020 UAV magnetic survey has successfully helped identify areas for prospective mineralization due to the associated magnetic signature. Although historical surveys were useful for general location of anomalies, the current survey provides much better resolution and confidence in the location and interpretation of local geology.

Some recommendations for follow-up are:

- Expanding the known mineralization on the Doc Zone (Q17 and Q22 veins) with the objective to complete a preliminary NI 43-101 compliant resource. This would require 3-hole fences spaced at 25 to 40 m centres. Historical work on these veins were done with small diameter coring in the 80's and 90's and do not have proper QA/QC. Much of this work would need to be re-drilled with NQ or HQ core to become compliant.
- Scout for additional historical drillholes and potentially look at conducting an IP survey over key areas on the Property. IP can be useful in identifying areas with disseminated sulphides that do not connect and therefore would not otherwise be conductive. This method works well to explore for porphyry type deposits.
- Continue with a broader magnetic program throughout the area. From the digitised magnetic data, there are significant magnetic anomalies outside the bounds of the

- current UAV magnetic survey. These areas should be followed-up with a more recent survey if these anomalies are found to be geologically interesting.
- Updated surface mapping and integration into a modern structural and lithological interpretation of the area is recommended. A thorough mapping program combined with a detailed geological and structural interpretation from the UAV magnetics survey from 2020 would help identify new target areas.
- Many orogenic Au deposits do not have a strong magnetic or conductive signature due the prevalence of Au in non-magnetic quartz veins hosted in second and third order shear zones or competency contrasts between lithologies. Identifying these prospective shear zones and structural features from the magnetic data and mapping, which have no conductive signature, may also be useful in targeting areas of increased Au mineralization.

9. REFERENCES

* All assessment reports are available on-line at https://aris.empr.gov.bc.ca/

Aelicks, B.T., Cooke, B.J, Robins, J.E., Sandberg, T. 1988. "Assessment Report of Exploration Work on the Doc Property for Magna Ventures Ltd. and Silver Princess Resources Inc."; British Columbia Ministry of Energy and Mines, Assessment Report No. 16708.

Alldrick, D. J., and T. Barresi. "Geology and Mineral Occurrences of the Upper Iskut River Area: Tracking the Eskay Rift through Northern British Columbia (Telegraph Creek NTS 104G/1, 2; Iskut NTS 104B/9, 10, 15, 16)." Geologicasl Fieldwork 2004, 2004: 1-30.

Barresi, T., and J. Dostal. "Geochemistry and Petrography of the Upper Hazelton Group Volcanics: VHMS-Favourable Stratigraphy in the Iskut River and Telegraph Creek Map Areas, Northwestern British Columbia." Geological Fieldwork 2004, Paper 2005-1, 2005.

Barresi, Tony. Tectono-Magnatic and Metallogenic Evoluation of the Late Triassic to Middle Jurassic Hazelton Group in Northwest British Columbia. Halifax: Dalhousie University, 2015.

British Columbia Mineral Titles Online. 2020. https://maps.gov.bc.ca/ess/hm/mto_min/ (accessed 2020).

Cutts, J. A., V. J. McNicoll, A. Zagorevski, R. G, Anderson, and K. Martin. "U-Pb geochronology of the Hazelton Group in the McTagg anticlinorium, Inkut River area, northwestern British Columbia." Geological Fieldwork 2014, British Columbia Geological Survey Paper 2015-1, 2014: 87-101.

Fox, A., Lentz, D., Lee-Beal, K. 2011. "Assessment Report, Prospecting and Geochemical Analysis of Rock Samples on the Quinn Eskay Property for Cache Minerals Inc."; British Columbia Ministry of Energy and Mines Assessment Report No. 32600.

Freeze, A.C., Glover, K.J., Scott, B.M. 1989. "Assessment Report on the Doc Property for Echo Bary Mines, Magna Ventures and Silver Princess"; British Columba Ministry of Energy and Mines, Assessment Report No. 18622.

Gagnon, J. F., T. Barresi, J. L. Waltron, T. P. Poulton, and F. Cordey. "Stratigraphy of the upper Hazelton Group and the Jurassic evolution of the Stikine terrane, British Columbia." Canadian Journal of Earth Sciences 49 (2012): 1027-1052.

Gewargis, W.A. 1986. "Assessment Report, Diamond Drilling Report on the DOC Claims Property for Magna Ventures Ltd."; British Columbia Ministry of Energy and Mines, Assessment Report No. 15615.

Glover, J.K, Freeze, A.C. 1989. "Assessment Report on the Doc Property 1989"., Exploration Program for Echo Bay Mines Ltd. on behalf of Silver Princess Resources Inc. and Magna Ventures Ltd.

Harron, G.A. 1981. "Assessment Report, Geological and Geochemical Report on the DOC 1-4 Claims for Du Pont of Canada Exploration Limited"; British Columbia Ministry of Energy and Mines Assessment Report No. 08925.

Hrkac, C. 1989. "Assessment Report, Geological and Geochemical Report on the Gracey Creek Property for Kengate Resources Ltd."; British Columbia Ministry of Energy and Mines, Assessment Report No. 18367.

Mackenzie, K., Beck, R., Ledwon, A. 2013. "2013 Technical Assessment Report on Prospecting and Sampling of the Doc Property for John Bot".; British Columbia Ministry of Energy and Mines, Assessment Report No. 34406.

Middleton, M. 2015. "Assessment Report, Geological and Geochemical Assessment Report on the Doc Property for John Bot."; British Columbia Ministry of Energy and Mines, Assessment Report No. 35635.

Murton, J.C. 1990. "Assessment Report, Geophysical Report on an Airborne Magnetic and VLF-EM Survey on the Pearson 1-4, GC 1 & 2, Galena Cliff and Summa 1 & 4 Claims for Amphora Resources."; British Columbia Ministry of Energy and Mines, Assessment Report No. 19995.

Nelson, J. L. "Iskut region Compilation: Supporting data and working files. Ministry of Energy, Mines and Petroleum Resources, British Columbia." GeoFile 2019-02, 2019: 2.

Nelson, JoAnne, and Jeff Kyba. "Structural and Stratigraphic control of porphyry and related mineralization in the Treaty Glacier - KSM - Brucejack - Stewart trend of western Stikinia." Geological Fieldwork 2013, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2014 - 1, 2014: 111 - 140.

Nelson, JoAnne, John Waldron, Bram van Straaten, and Alex Zagorevski. "Revised stratigraphy of the Hazelton Group in the Iskut region, northwestern British Columbia." Geological Fieldwork 2017, British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia, 2018: 15-38.

Robins, J.E. 2000. "Assessment Report on the Doc Property for Hunter Exploration Group"; British Columbia Ministry of Energy and Mines, Assessment Report No. 26256.

Rowe, J. 2018. "Assessment Report, Geochemical and Geological Reconnaissance on the Crown Project for Tudor Gold Corp."; British Columbia Ministry of Energy and Mines, Assessment Report No. 38639.

Tully, D.W. 1974. "Assessment Report on the D.O.C. Mineral Claim Group for New Minex Resources Ltd."; British Columbia Ministry of Energy and Mines, Assessment Report No. 05239.

Tully, D.W. 1975. "Assessment Report on the D.O.C. #1, 3, 4, 11-13, 27-32 for New Minex Resources Ltd."; British Columbia Ministry of Energy and Mines, Assessment Report No. 05512.

Wang, L., Qin, K., Song, G., Li, G., "A review of intermediate sulfidation epithermal deposits and subclassification" Ore Geology Reviews, 2019: 434-456.

Prowse, Neil D., Andrew J. Michell, and Arron M. Albano. NI 43-101 Technical Report on the DOC Property. C.J. Greig & Associates, 2020.

Voordouw, Ron, and Ian Carr. 2018 Geological and Geochemical Report on the Scottie Gold Project. Assessment Report, Vancouver: Equity Exploration Consultants Ltd., 2019.

10. CERTIFICATE OF QUALIFIED PERSON

Tyler Fiolieau - Certificate of Qualified Person

I, Tyler Fiolleau, P.Geo., as an author of this report entitled "Assessment Report On Exploration Activities, Doc Project, British Columbia, Canada, do hereby certify that:

- 1. I am a Senior Geologist with Axiom Exploration Group Ltd
- 2. I am a graduate of with a Bachelor of Science Degree in Geology.
- 3. I am a Member of the Association of Professional Engineers and Geoscientists of Saskatchewan (APEGS) and registered as a Professional Geoscientist, Member #13295. I have worked as a Geologist for a total of 15 years.

My relevant experience for the purpose of the Assessment Report is:

- Over 15 years of exploration, mining, and project evaluation experience, including gold and precious metal exploration.
- 4. I have read the definition of 'qualified person' set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a 'qualified person' for the purposes of NI 43-101.
- 5. I have visited the Property which is the subject of the Assessment Report.
- 6. I am independent of Hanstone Gold Corp.
- 7. I have not had any prior involvement with the subject matter of the Assessment Report.
- 8. As at the Effective Date, to the best of my knowledge, information, and belief, the Assessment Report contains all scientific and technical information that is available to be disclosed to make the Assessment Report not misleading.

Dated this 5th day of May 2021

(Signed & Sealed) "Tyler Fiolleau"

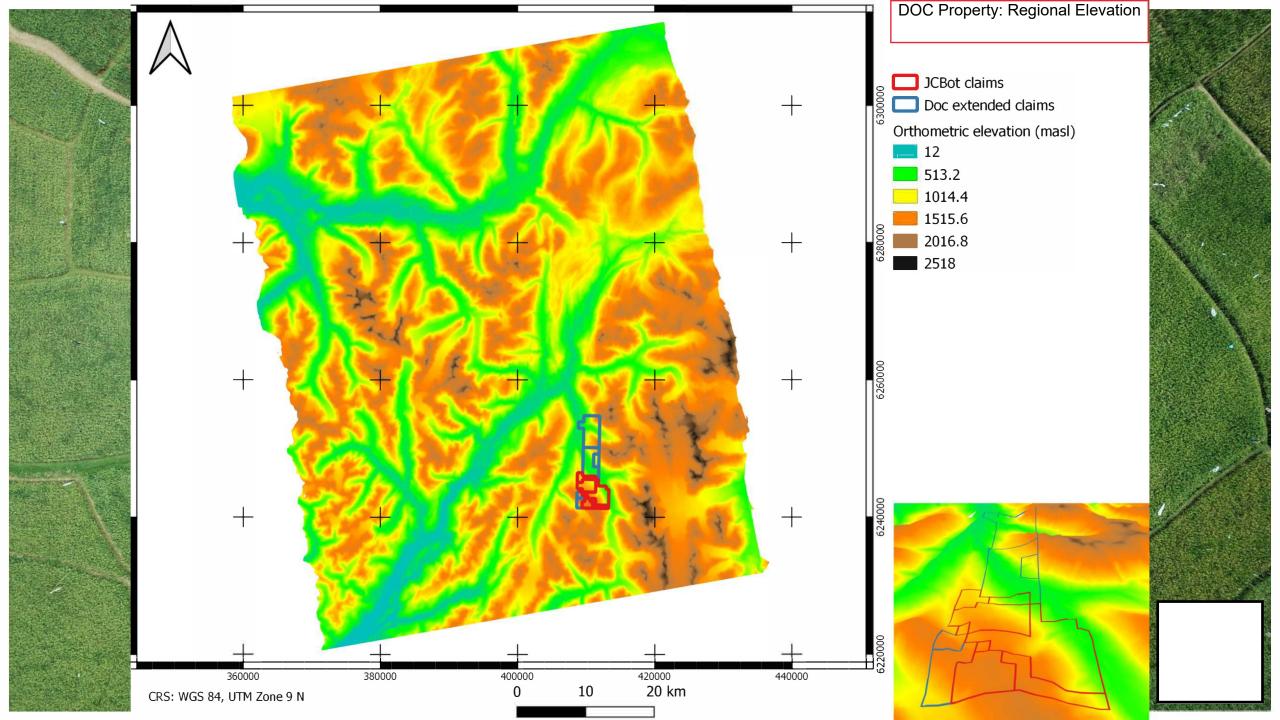
Tyler Fiolleau, P.Geo.

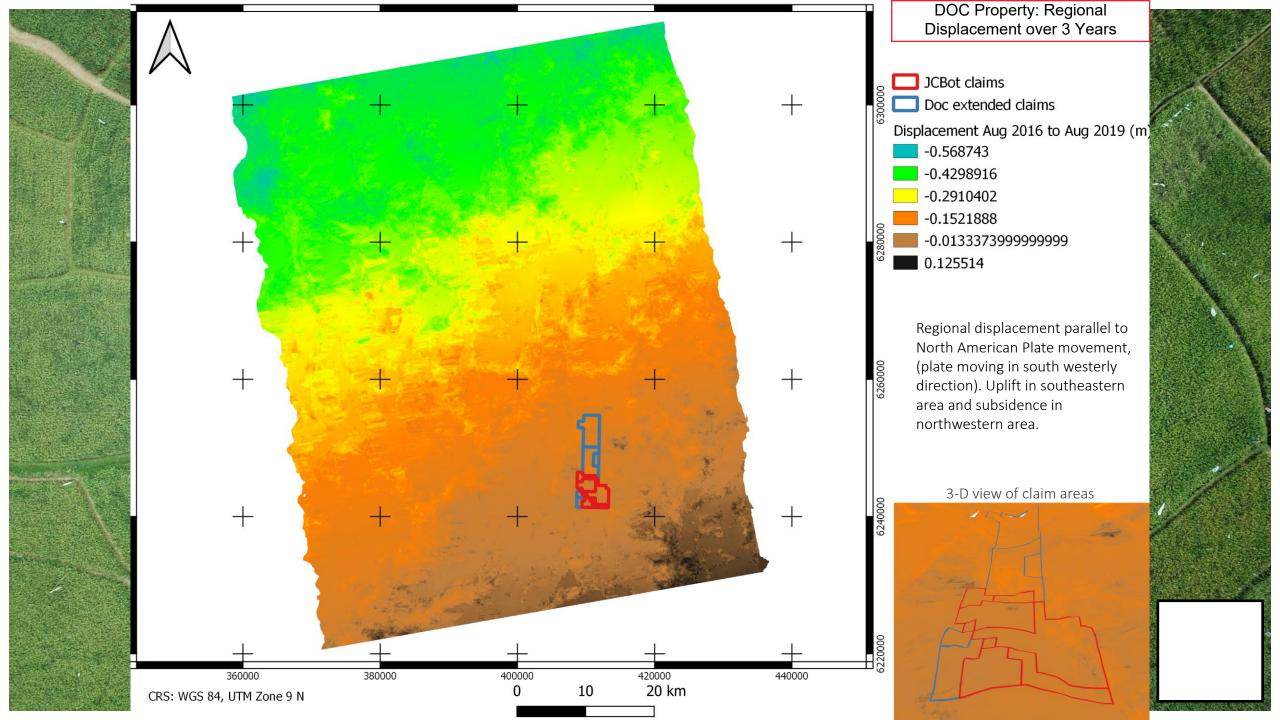
MATTHEW SCHWAB - CERTIFICATE OF QUALIFIED PERSON

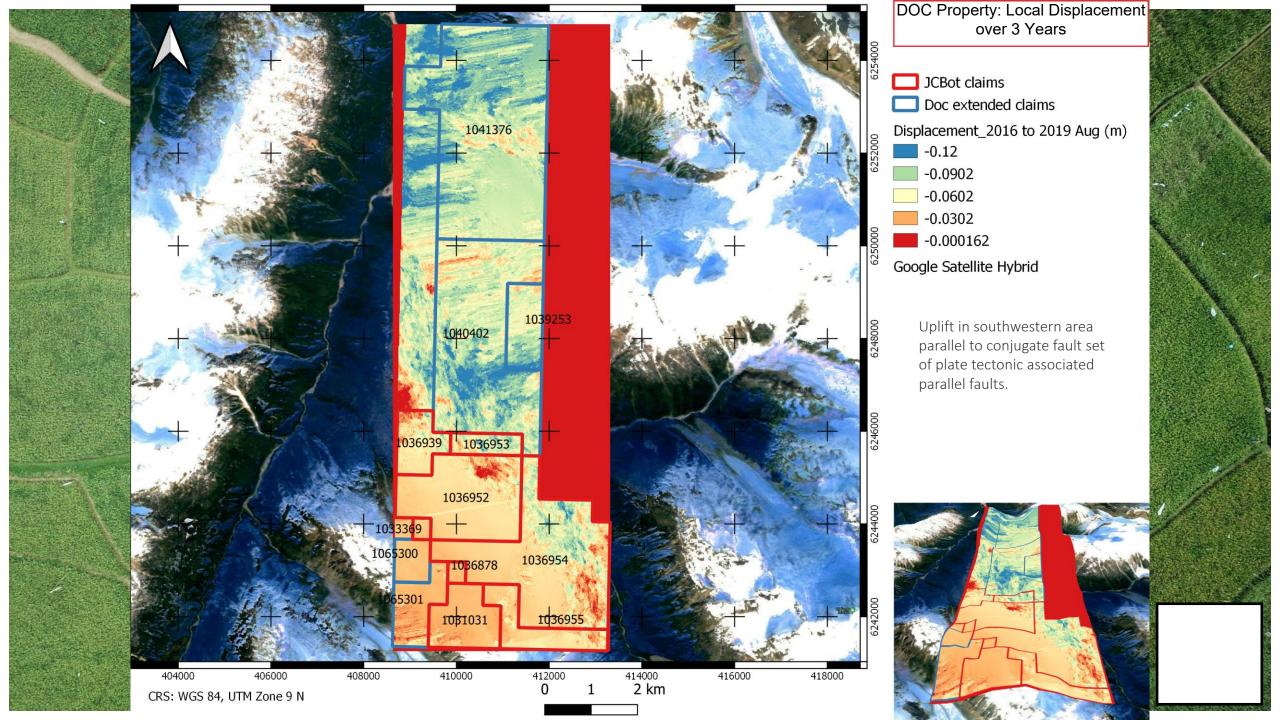
- I, Matthew Schwab, P.Geo., as a reviewer of this report entitled "Assessment Report On Exploration Activities, Doc Project, British Columbia, Canada, do hereby certify that:
 - 1. I am the current Senior Vice President of Axiom Exploration Group Ltd. of 101 3239 Faithfull Avenue, Saskatoon, SK, Canada, S7K 8H4.
 - 2. I am a graduate of the University of Saskatchewan, Saskatchewan, Saskatchewan, Canada with an Honours Degree in Geological Sciences.
 - 3. I am registered as a Professional Geoscientist in the Province of Saskatchewan (APEGS Reg. #21328) and the Province of Alberta (APEGA Reg. #210006) and a member in good standing with both organizations. I have worked as a geologist in the natural resources industry since 2009.
 - 4. I have read the definition of 'qualified person' set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a 'qualified person' for the purposes of NI 43-101.
 - 5. I have visited the properties which are the subject of this Assessment Report.
 - 6. I have not had any prior involvement with the subject matter of the Assessment Report.
 - 7. I am independent of the report issuer.

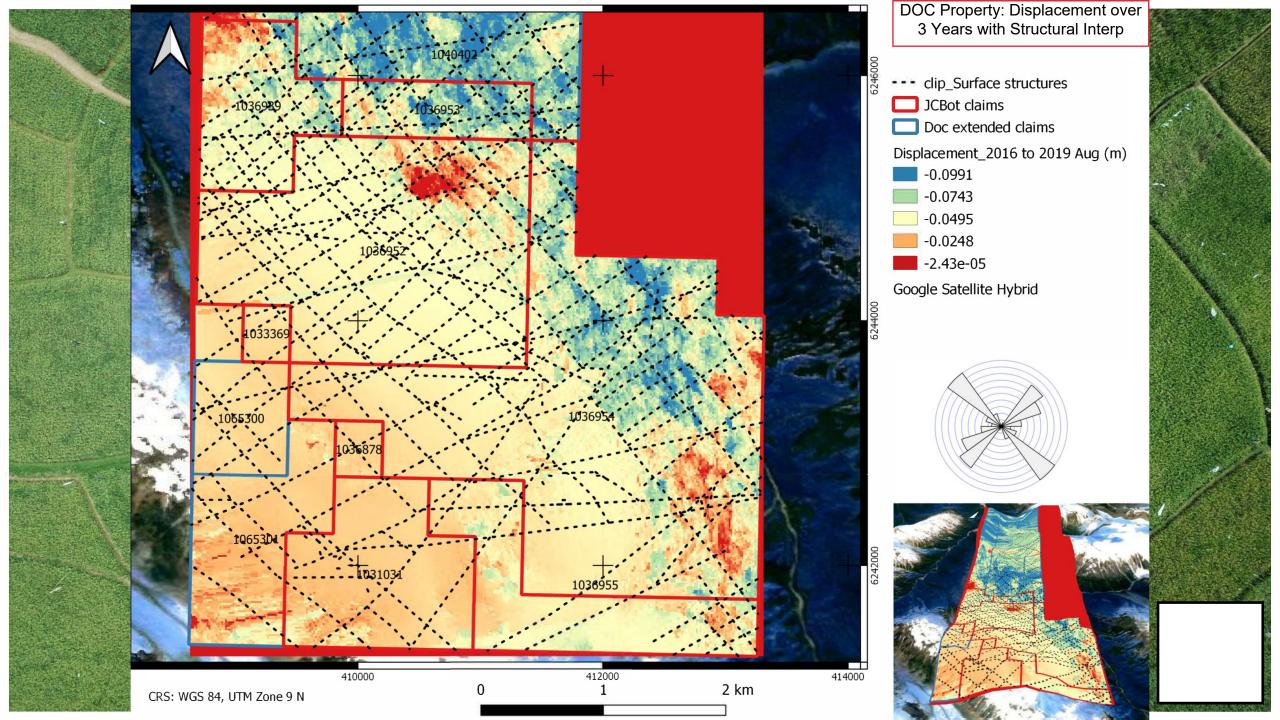
My relevant experience for the purpose of the assessment report is:

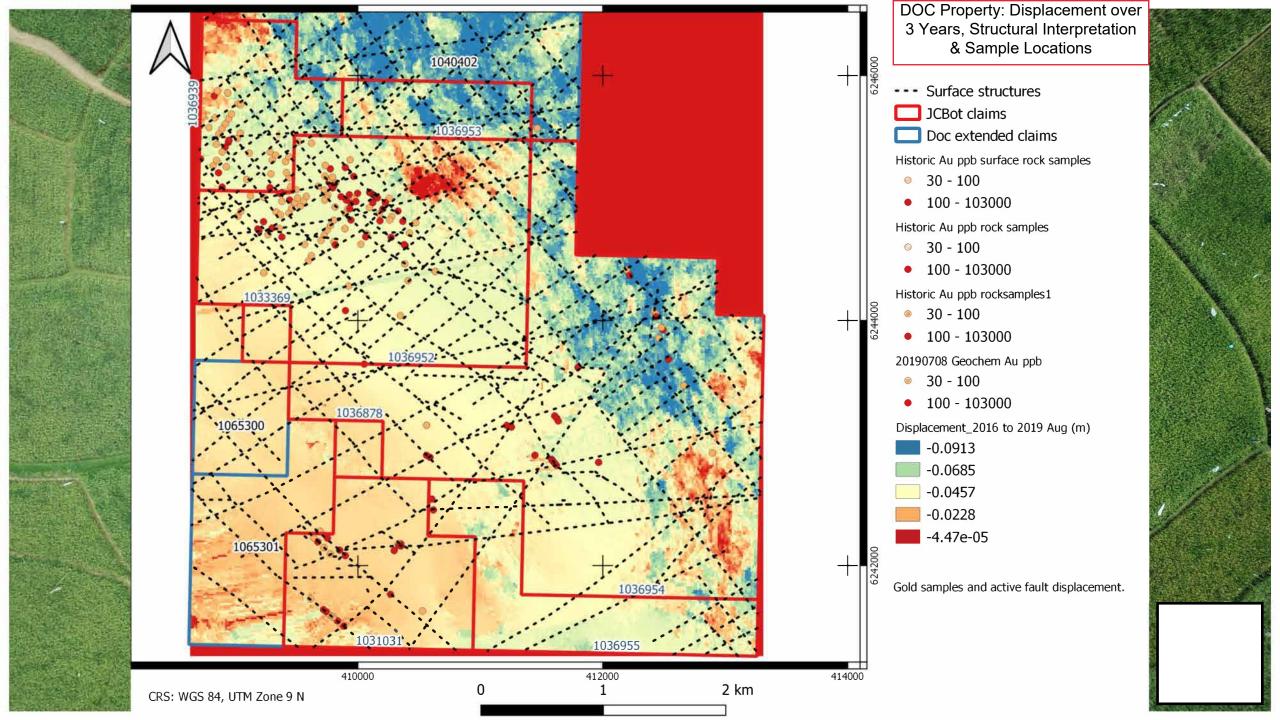
- Participation in; review of and reporting on numerous mining and exploration projects for the purposes of mineral exploration, resource development, environmental regulatory compliance, quality control and due diligence.
- Previous roles as an exploration geologist and project manager on numerous mineral exploration projects in Canada, the United States and Africa.
- Experience as a consulting wellsite geologist and advisory supervisor on numerous petroleum exploration and development projects across western Canada.
- 8. At the effective date of the Assessment report, to the best of my knowledge, information, and belief, the Assessment report contains all scientific and technical information that is required to be disclosed to make the Assessment Report not misleading.

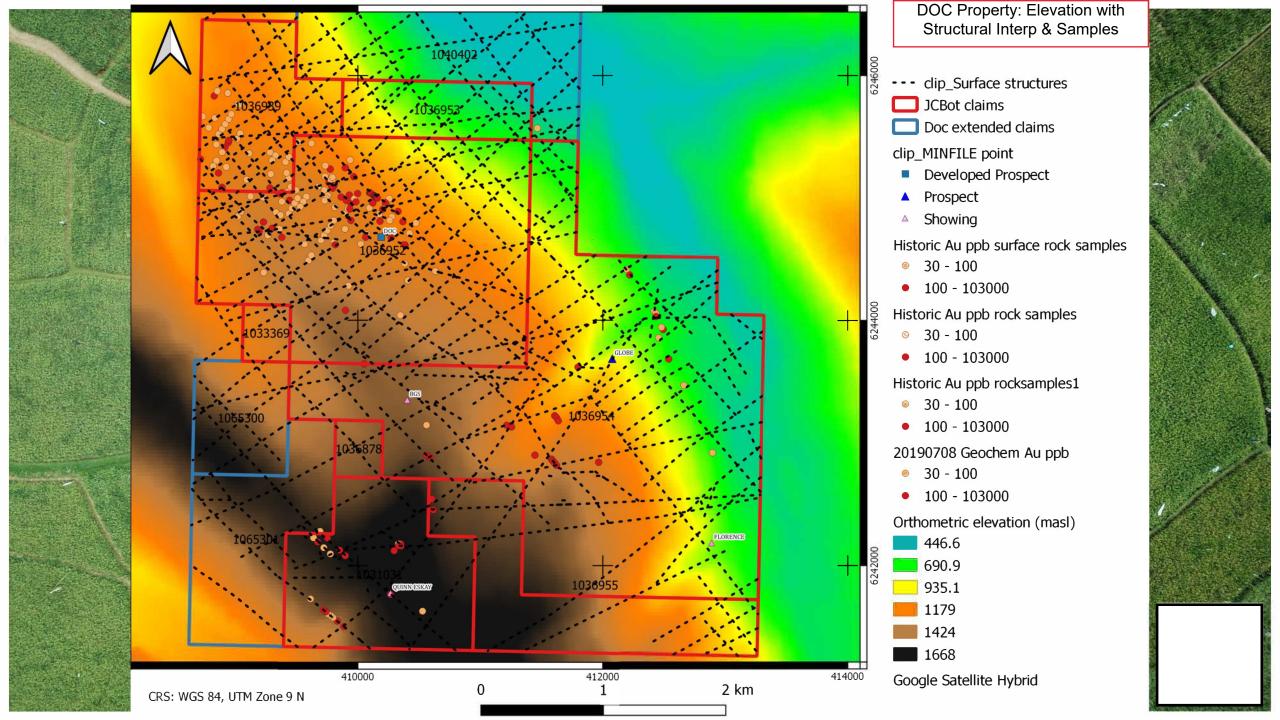

Dated this 5th day of May 2021

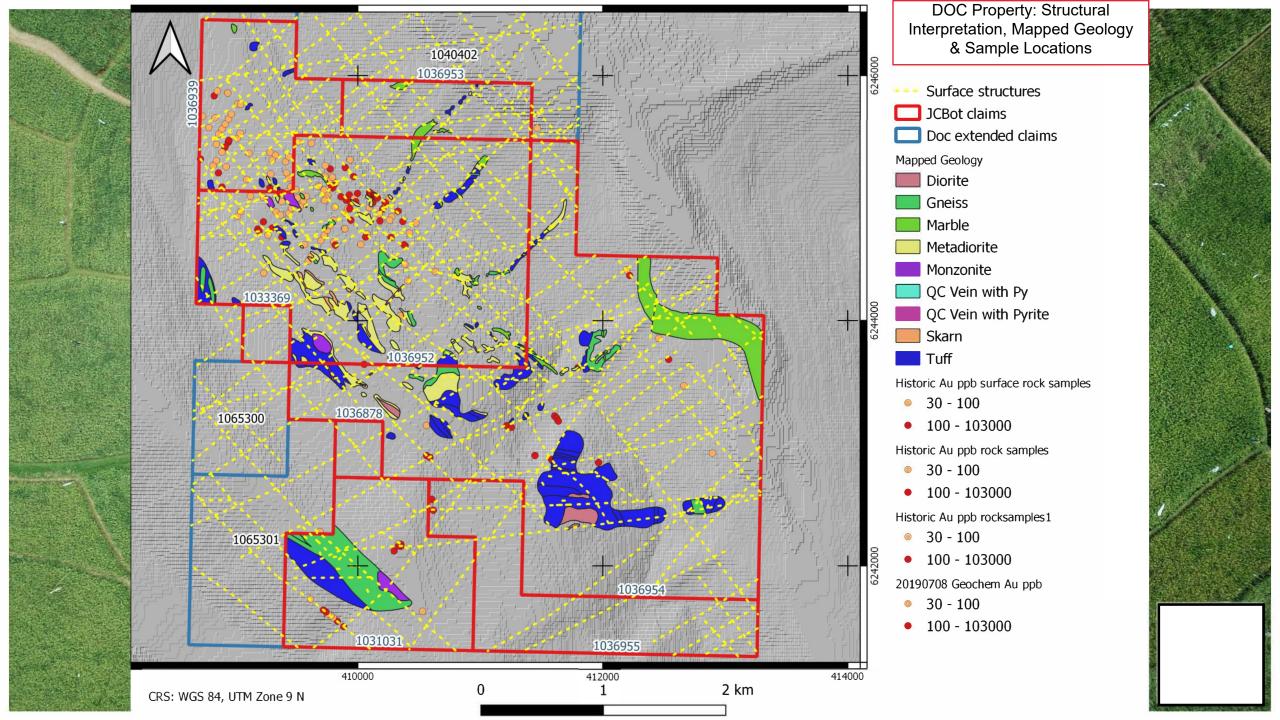

(Signed & Sealed) "Matthew Schwab"

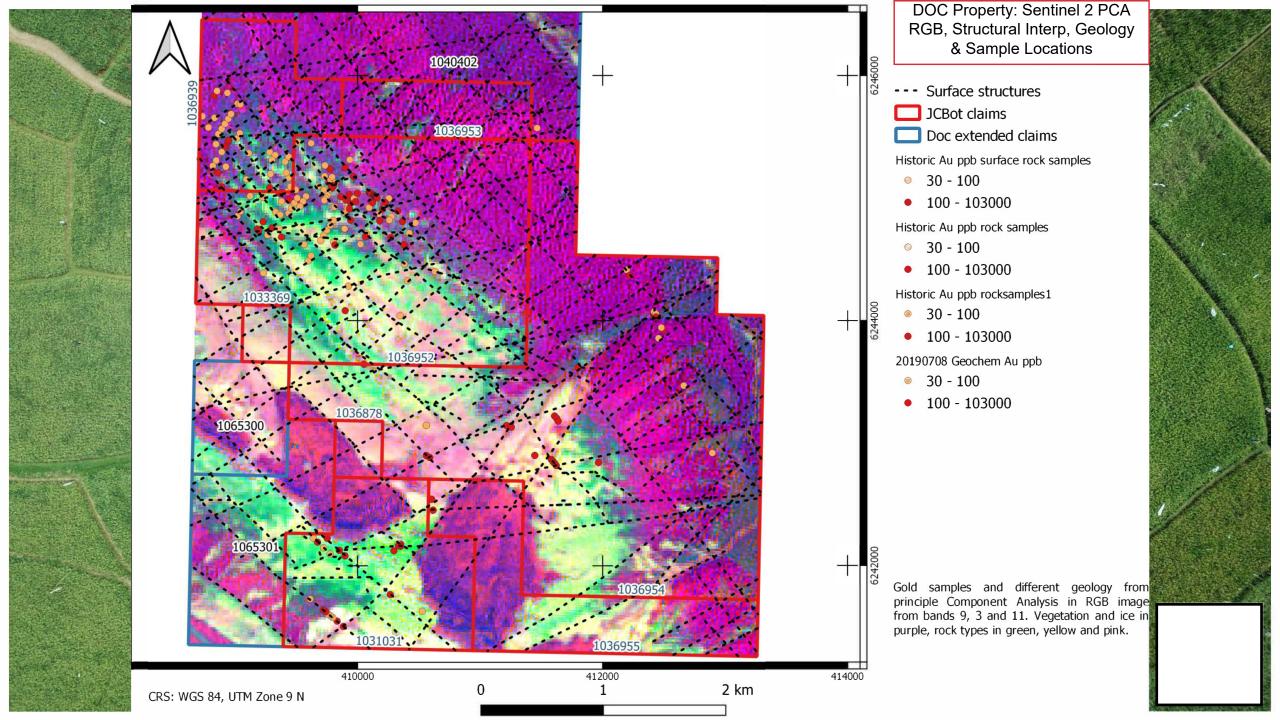

Matthew Schwab, P.Geo.

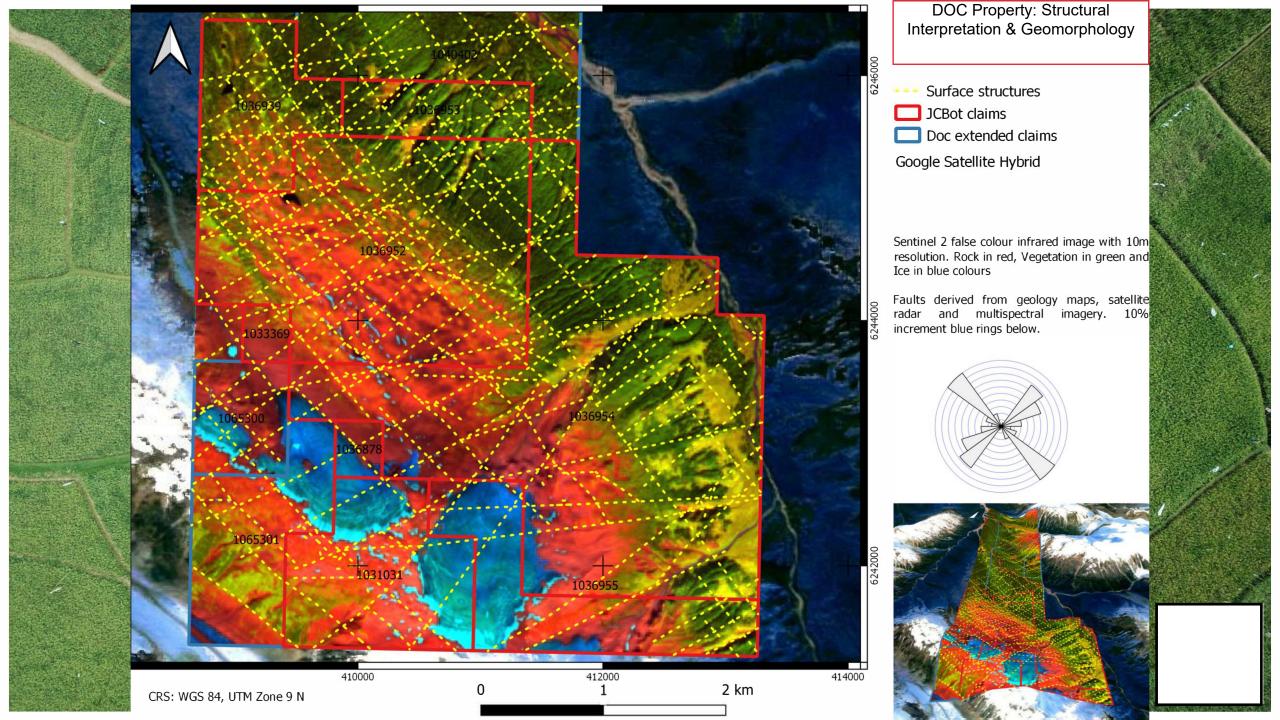


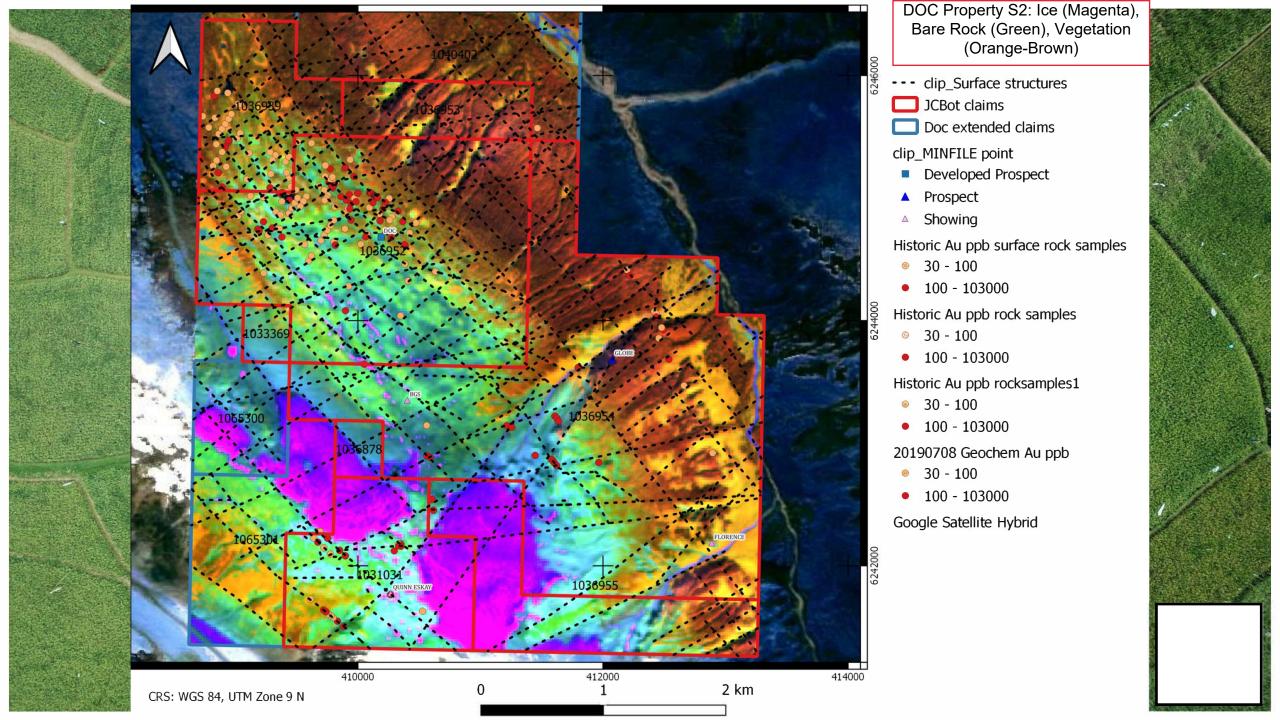


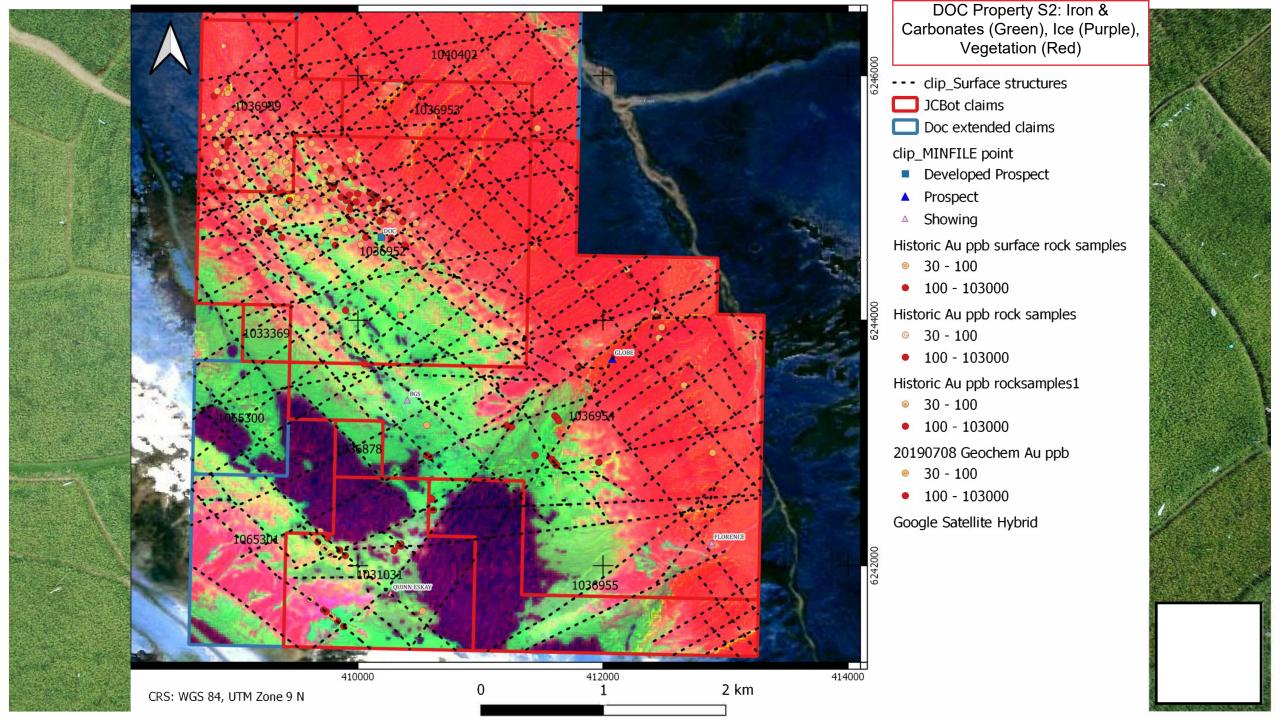


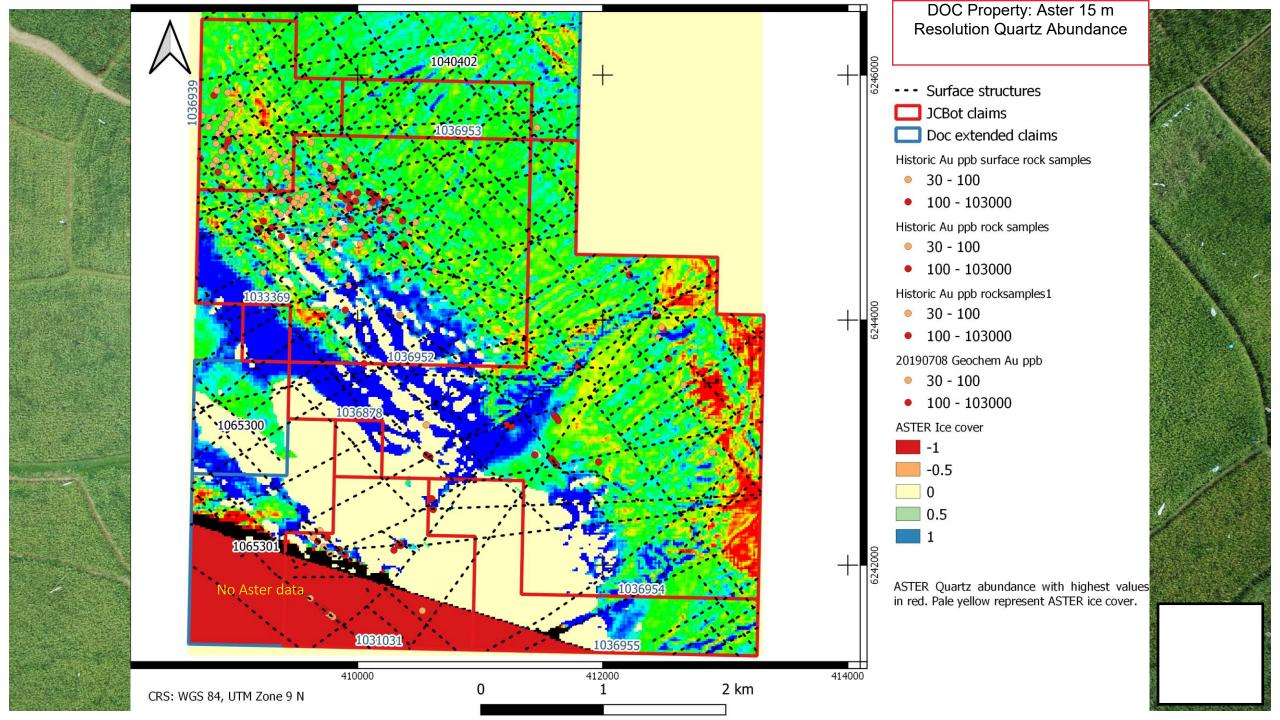


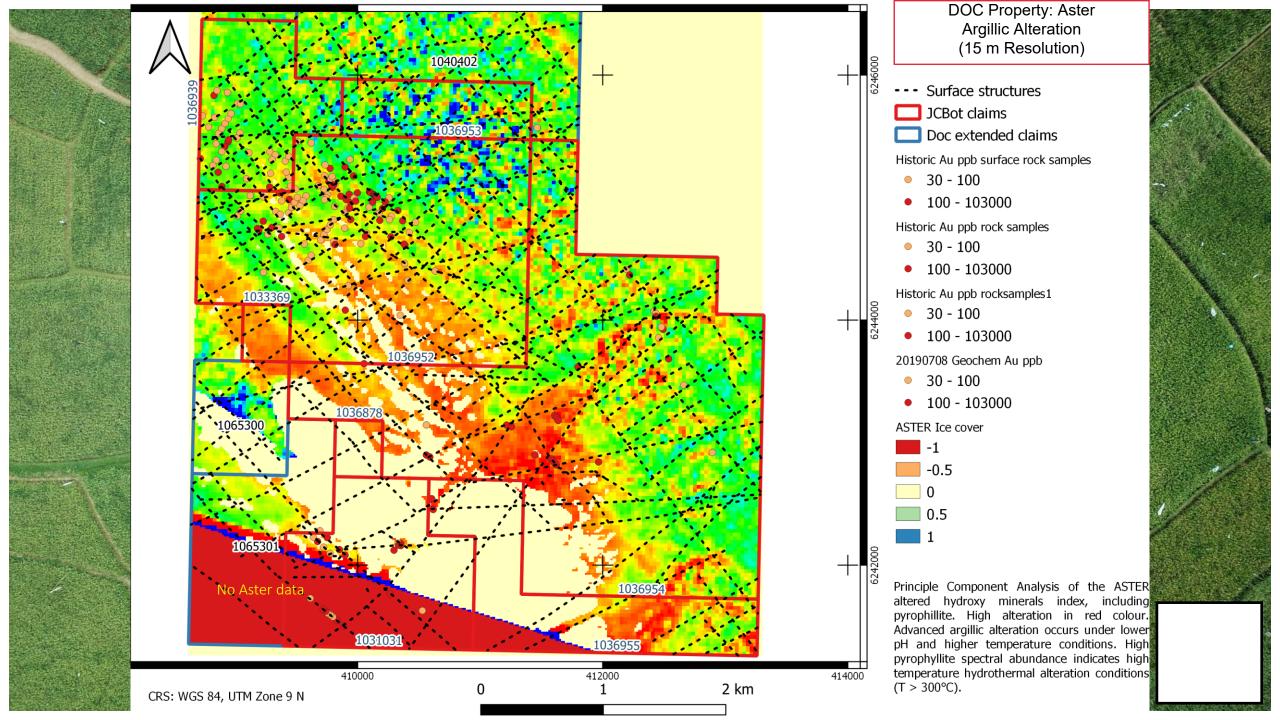


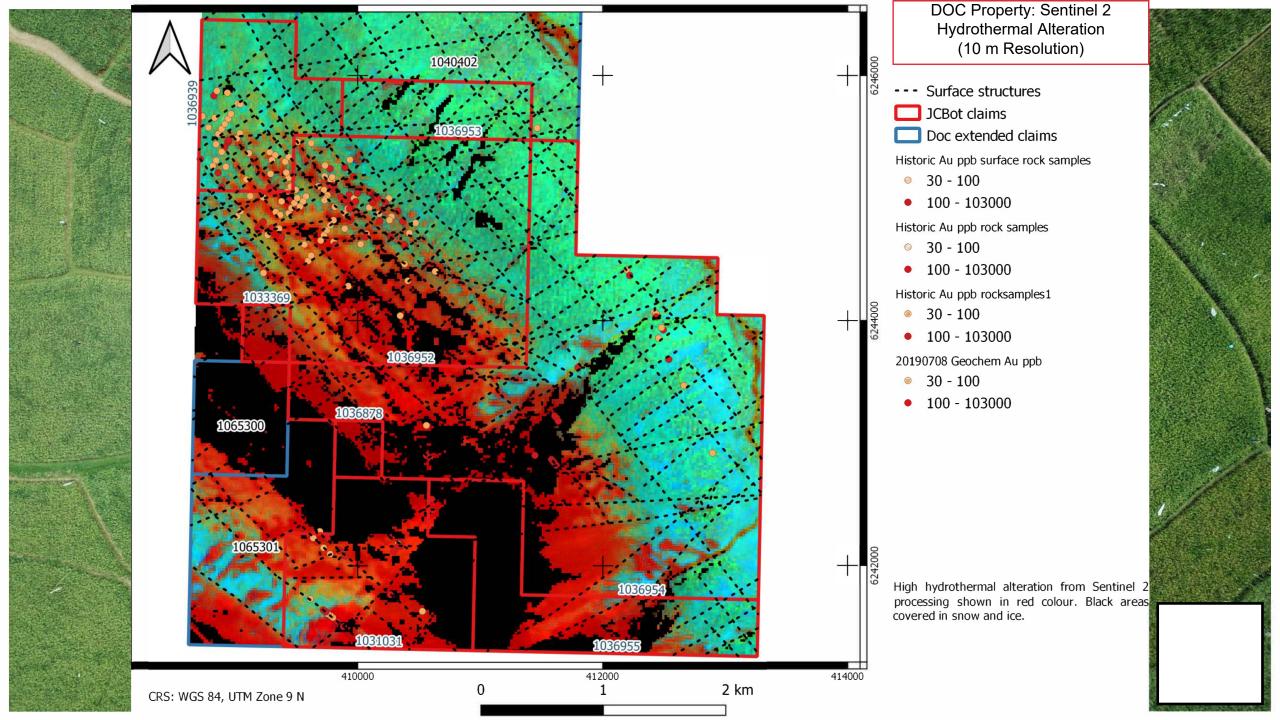


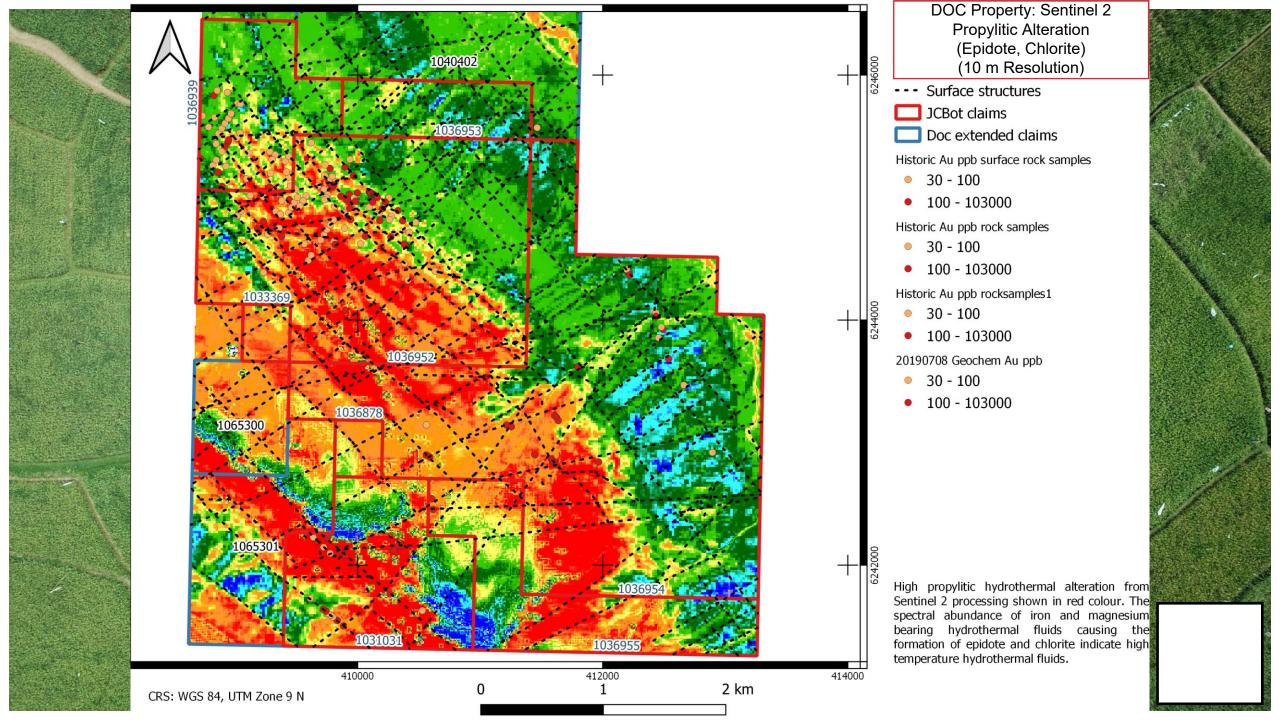


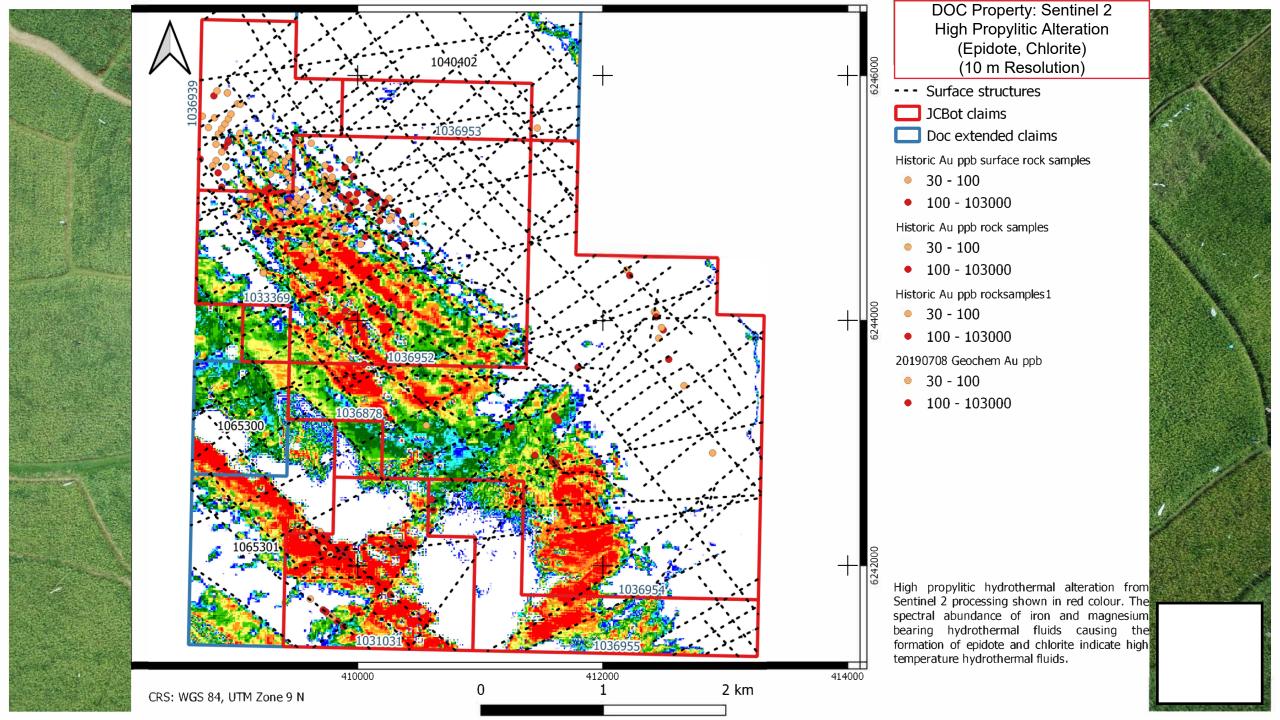


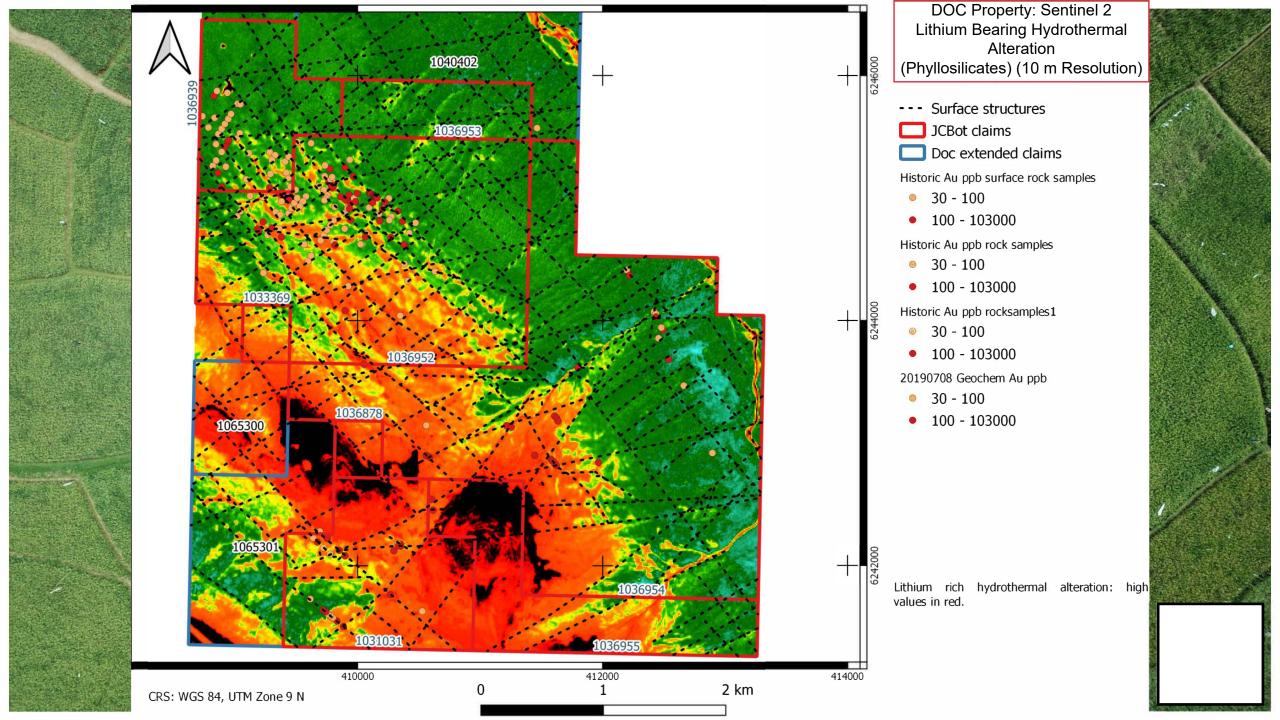


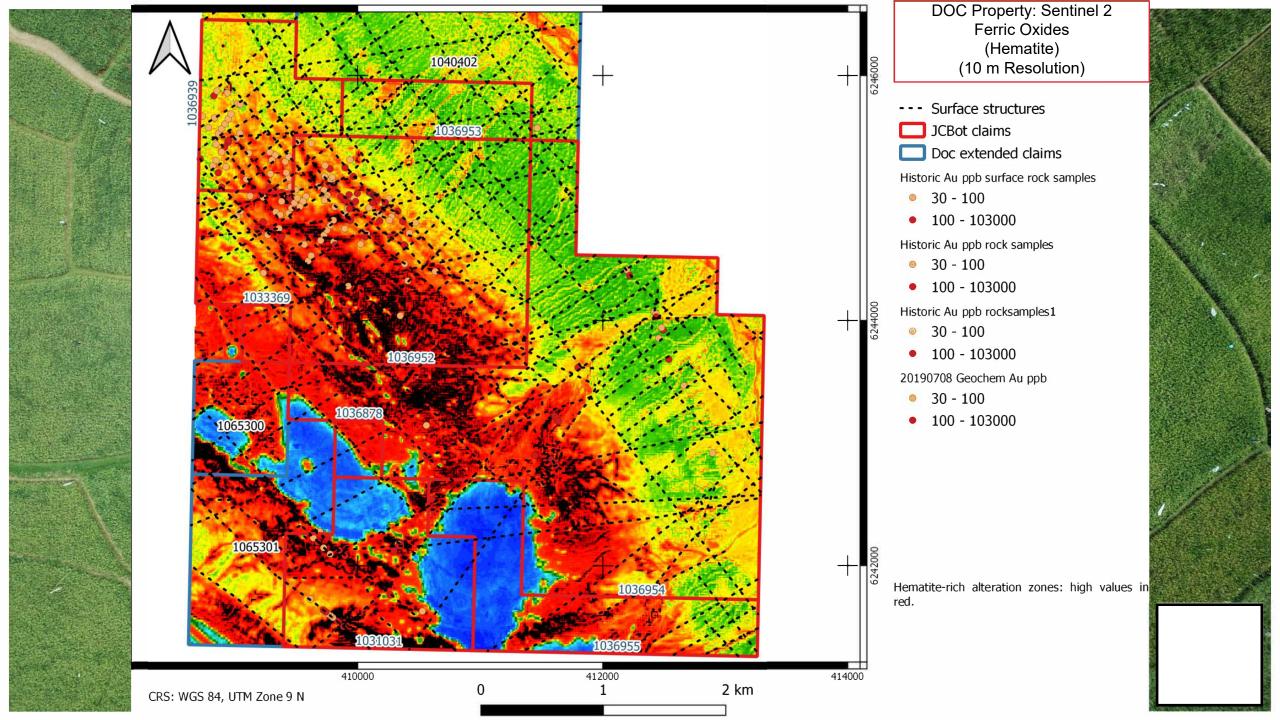


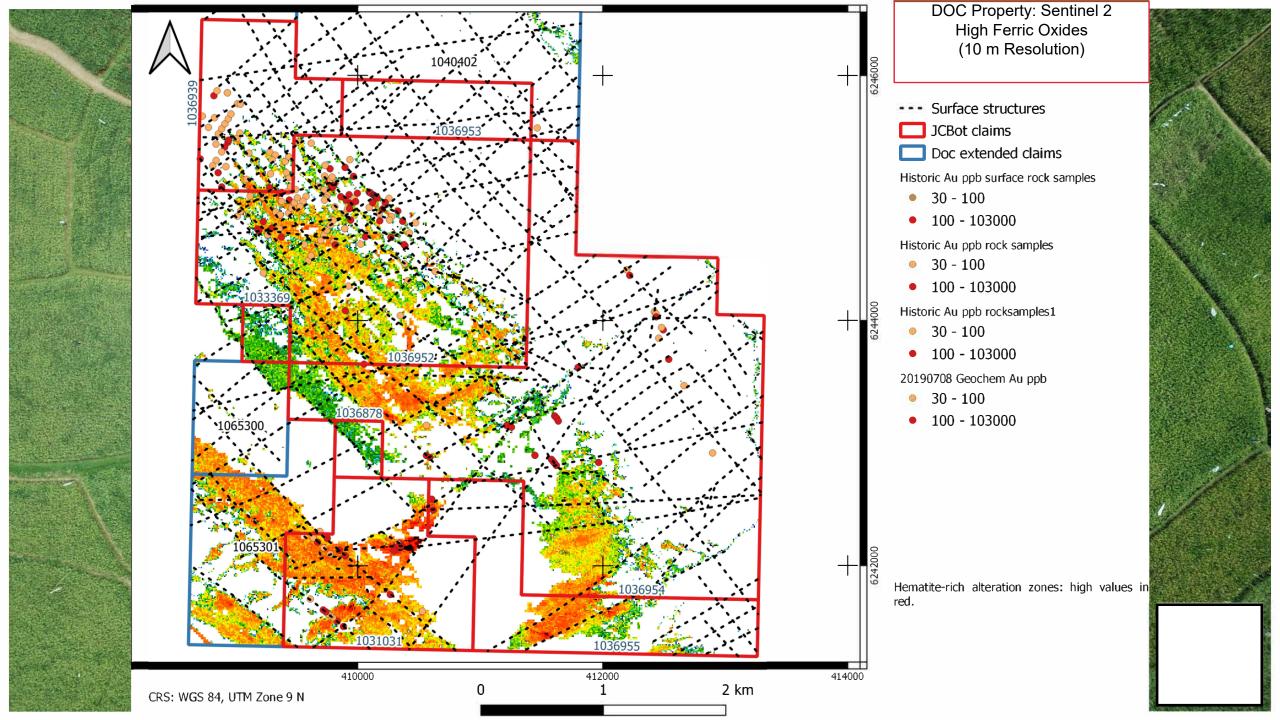


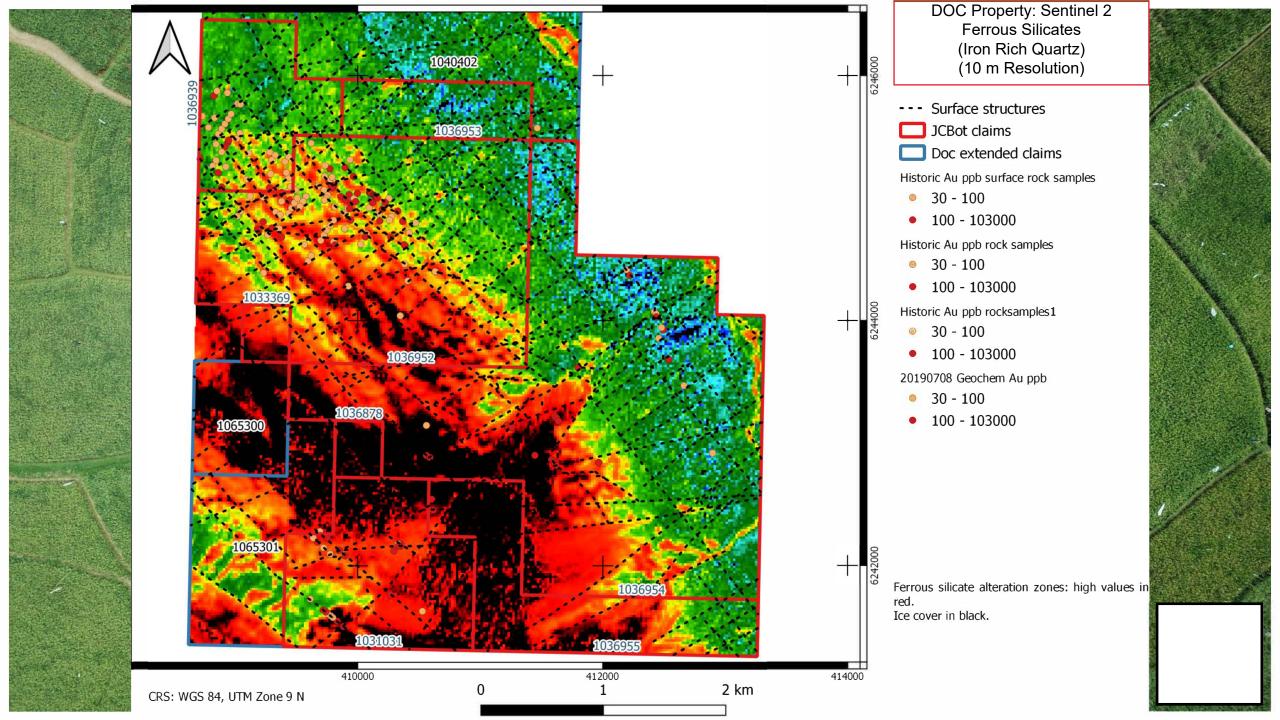


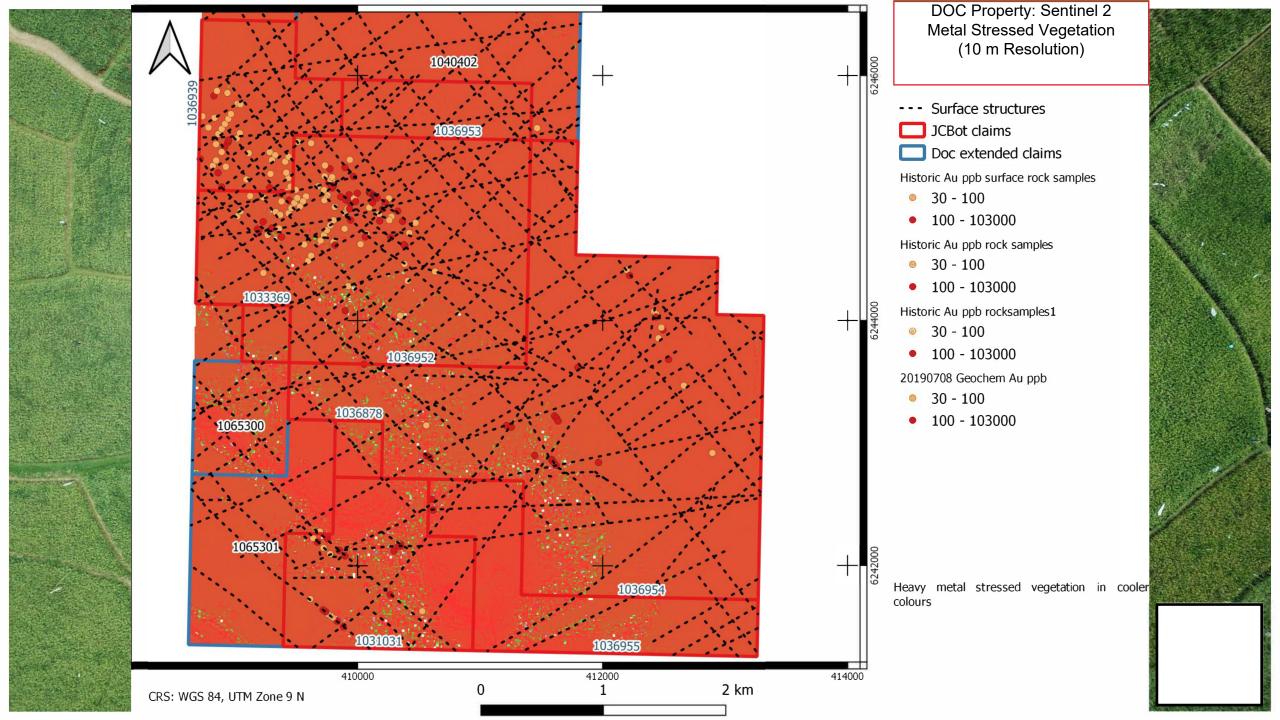


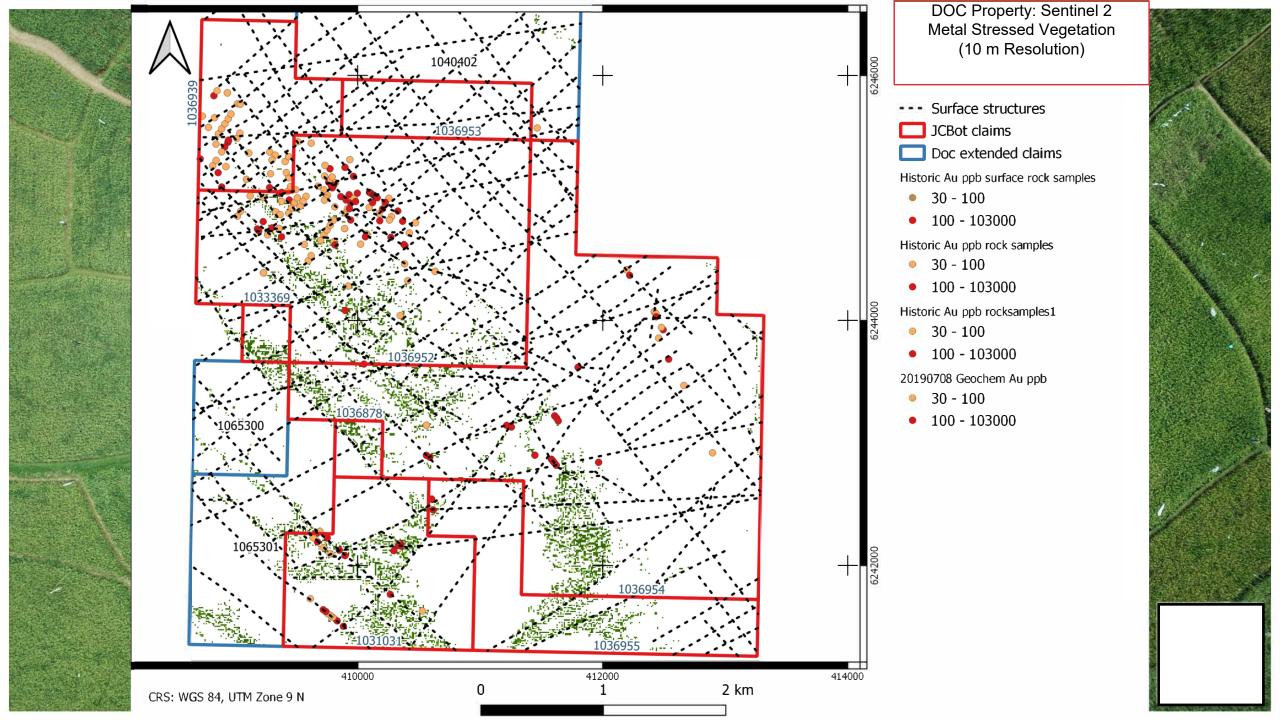


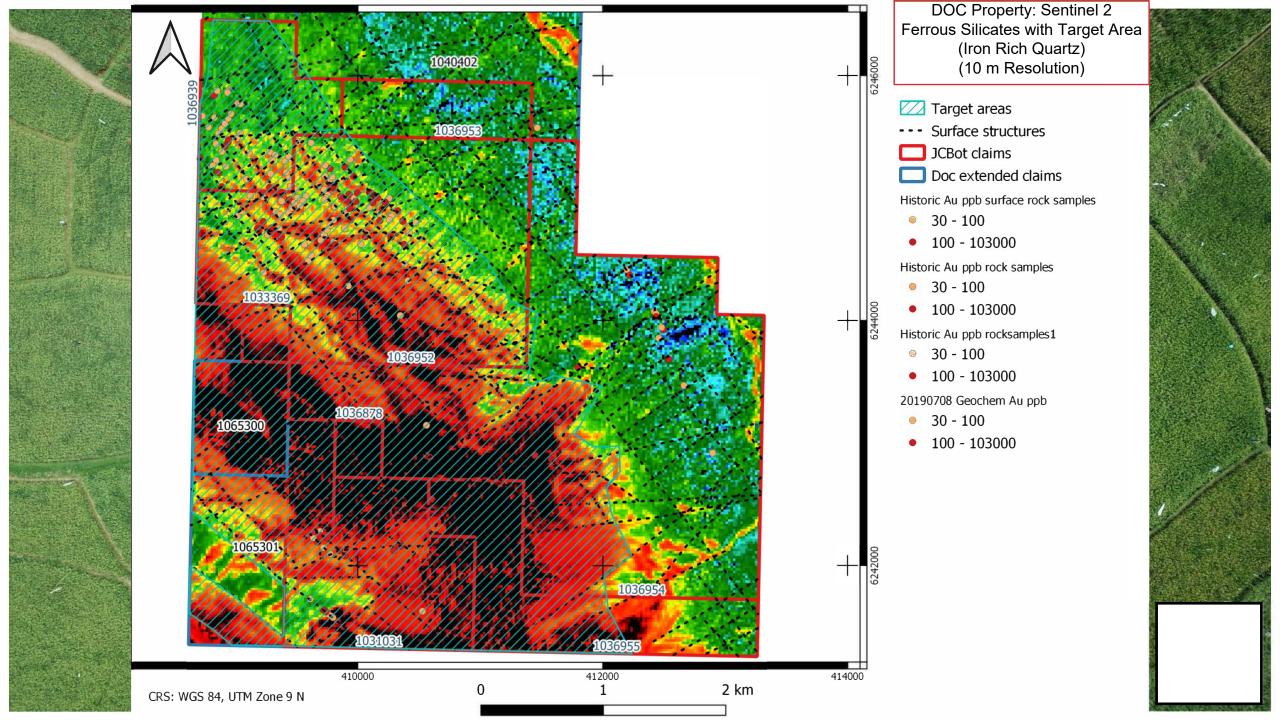


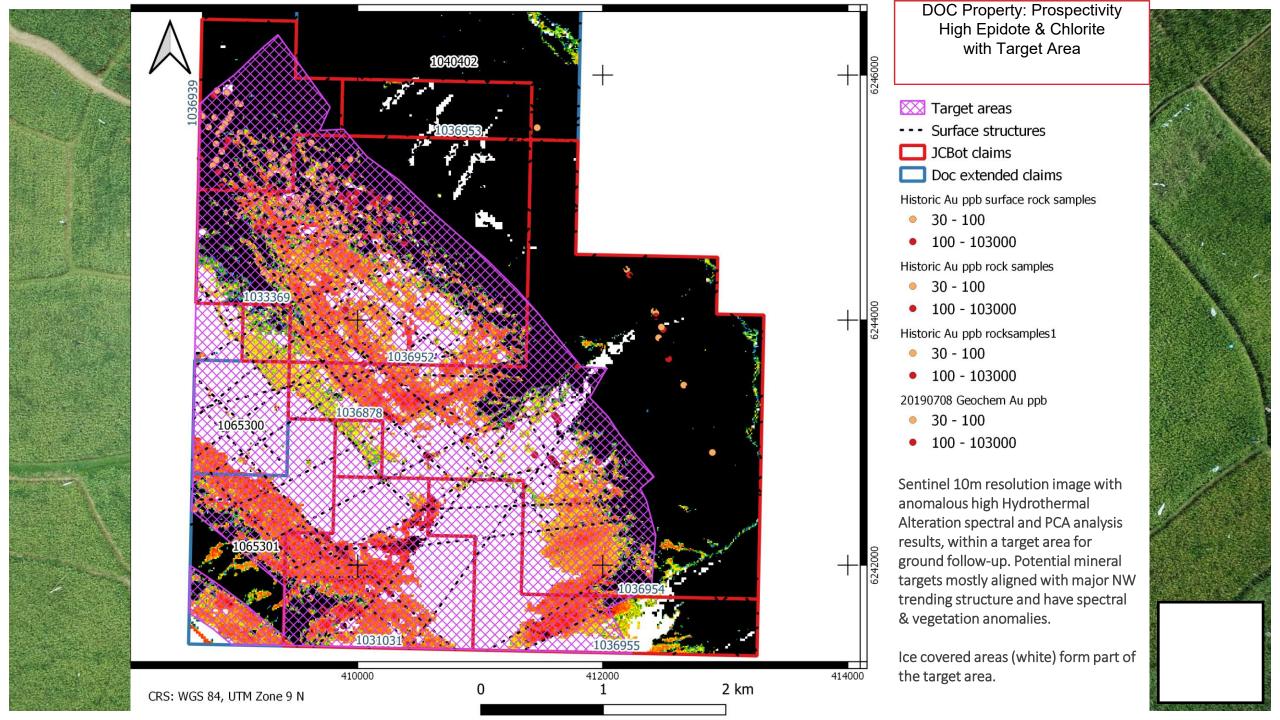


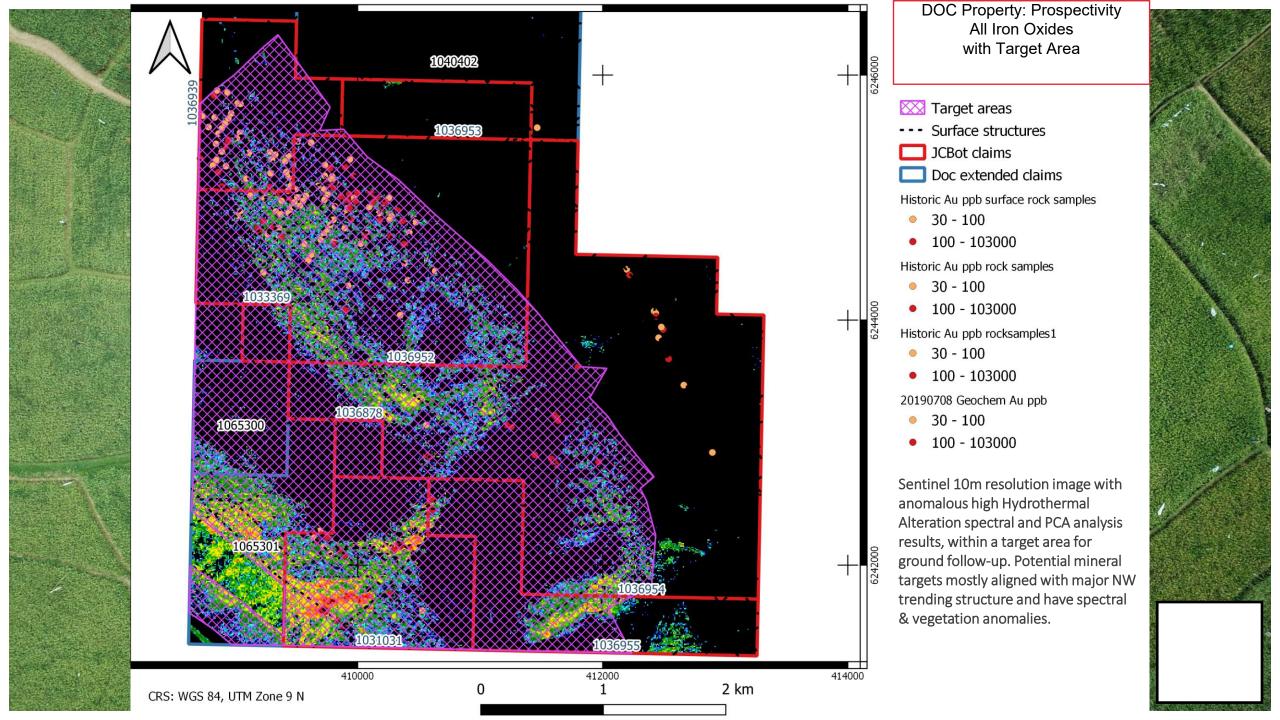












Project	: Doc I	Project								Hole I	Number	: DC-2	0-01		
			Drill Hole			Drilling					Colla	ar Surve	∍ у		
Hole	type	DD	Core location:	Doc Camp	Drilling started	Sep-12-20	20		Gri	d:	1	NAD83 /	UTM zo	ne 9N	
Hole	size:	HQ	Claim number:		Drilling completed:				Eas	sting:	4	110,116			
Actu	ıal depth:	195.5	Logged by:		Drilling contractor:	Dorado			Noi	thing:	6	5,244,60	1		
Targ	et:								Ele	vation:	1	1,316			
Survey	,														
0	Depth	Survey Type	Mag Azimuth	Azimuth	Dip	Sur	vey Qualit	y							
	0	Collar Hanstone	20	20	-50										
	17	Reflex Hanstone	0.1	18.1	-51.8										
	68	Reflex Hanstone	0.3	18.3	-51.4										
	119	Reflex Hanstone	0.7	18.7	-50.7										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
0	5	CAS - Casing													
Casing															
Structu	ire	Type/Intensity	Comments												
3.0 - 35	.0	Bc S	Blocky / broke	en core due to faulting											
5	17.65	SS - Siliceous Me	etasediment			A0867717	15.0	16.0	1	2.5	0.3	26.5	5.7	30	0.

Siliceous metasediment. Light grey, fine to medium grained, bedded, silicified, sandstone with mudstone laminar (?). Bedding / foliation is irregular but generally low angle (0- 30) TCA. Lower contact appears to be sharp at 25 dTCA.

Blocky core over almost the entire unit. Rusty fault gouge from 15.48 to 15.58 m.

Rusty fractures and locally pervasive hematite / oxide staining occur throughout. Strong to moderate silicification occurs throughout. Local trace to weak bedding controlled chlorite.

No sulphides observed in this interval.

Alteration	Type/Style/Intensity	Comments
5.0 - 18.65	Si Pv M	
5.0 - 21.0	Rs FV M	
5.0 - 53.4	Chl P W	
15.0 - 40.0	Hem P W	Patchy weak to moderate infiltrating oxide staining
Mineralization	Type/Style/%Mineral	Comments

Project: Doc Project Hole Number: DC-20-01												
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
5.0 - 21.0	Ox FR 10%	Moderate structurally controlled oxide staining / mineralization.										
Structure	Type/Intensity	Comments										
3.0 - 35.0	Bc S	Blocky / broken core due to faulting										
15.48 - 15.58	G M	Rusty brown fault gouge										
17.65 53.4	MV - Mafic Volcanic		A0867718	23.5	24.5	1	11.1	0.9	101.5	6.4	38	14.6
Mafic volcanic. Me contact is faulted		rained, massive to weakly foliated, mafic volcanic (basalt?). Lower	A0867719	40.0	41.0	1	3.1	0.05	13.6	0.5	51	0.25
		or blocky core. Fault gouge from 23.75 to 24 m.	A0867720	47.0	47.5	0.5	4.5	0.7	36.2	13.6	15	2.4

Weak pervasive chlorite with local patchy moderate chlorite alteration. Pervasive weak and patchy moderate silicification. Pervasive trace to weak rust staining on fractures, very locally moderate to strong.

Strong oxidized sulphides associated with gouge from 23.5 to 24.2 m, trace oxidized euhedral py. Trace disseminated fine grained py observed from 40 to 41 m.

Minor Lithology	Type/Description	Comments
43.0 - 46.2	Unk Unknown Lithology	Bleached, texturally distinct, possible hyaloclastite
47.0 - 47.4	ApDK Aplite Dyke	Coarse grained tonalite dyke. Blocky core so upper and lower contacts are broken.
Alteration	Type/Style/Intensity	Comments
5.0 - 18.65	Si Pv M	
5.0 - 21.0	Rs FV M	
5.0 - 53.4	Chl P W	
15.0 - 40.0	Hem P W	Patchy weak to moderate infiltrating oxide staining
18.65 - 53.4	Si P M	
21.0 - 195.5	Rs FV W	Very locally moderate
Mineralization	Type/Style/%Mineral	Comments
5.0 - 21.0	Ox FR 10%	Moderate structurally controlled oxide staining / mineralization.
23.5 - 24.5	Ox FR 30%	Fault controlled oxidized mineralization.
23.5 - 24.5	Py Tr 0.1%	
40.0 - 41.0	Py D 0.1%	

Project: Doc	Project		Hole Number: DC-20-01										
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)		
Structure	Type/Intensity	Comments											
3.0 - 35.0	Bc S	Blocky / broken core due to faulting											
23.75 - 24.0	G S	Brown, fragment rich, fault gouge / bx											
35.0 - 46.0	Bc W	Somewhat competent, local blocky core over 30 - 60 cm											
16.0 - 58.0	Flt S	Fault zone. Blocky core over most of the interval with clay common on fracture surfaces. Poor recovery, up to 50% core loss from 47 to 56 m.											
53.4 75	SS - Siliceous Met	asediment	A0867721	71.0	72.0	1	2.5	0.2	36.6	6.1	47	1.2	
Siliceous metase	diment. Light grey, fine	to medium grained, bedded, silicified, sandstone with mudstone laminae. ontact gradational as silicification intensity decreases and proportion of	A0867722	72.0	73.0	1	1.6	0.05	21.8	1.7	40	1	
mafic minerals in	creases.	which gradulonal as smollistation interiorly assistance and proportion of	A0867723	73.0	74.0	1	1.6	0.1	24.6	3.5	49	1.6	
Broken / blocky c healed crackle / f		t. Silicification healed (stockwork?) fracturing occurs throughout. Local	A0867724	74.0	75.0	1	1.1	0.1	29.8	2.1	64	1.4	
Intense silicification		unit. Patchy to pervasive hm / oxidation staining. Trace to weak bedding											
No observed sulp	ohides.												
Alteration	Type/Style/Intensity	Comments											
21.0 - 195.5	Rs FV W	Very locally moderate											
53.4 - 75.0	Si Pv S												
Minoralization	Tuna/Stula/9/ Minara	d Commente											

Alteration	Type/Style/Intensity	Comments										
21.0 - 195.5	Rs FV W	Very locally moderate										
53.4 - 75.0	Si Pv S											
Mineralization	Type/Style/%Mineral	Comments										
71.0 - 75.0	Ox Stn 5%											
Structure	Type/Intensity	Comments										
46.0 - 58.0	Flt S	Fault zone. Blocky core over most of the interval with clay common on fracture surfaces. Poor recovery, up to 50% core loss from 47 to 56 m.										
58.0 - 80.0	F M	Broken / blocky core. Abundant healed and open fractures.										
64.0 - 67.0	BX W	Cm scale healed crackle / fault bx seams observed running sub // TCA.										
65.5 - 71.5	Flt S	Blocky core, locally rubble.										
75 195.	5 MV - Mafic Volcanic		A0867725	86.0	87.0	1	1.6	0.4	87.4	1.4	175	0.25
		nined, massive to weakly foliated, bedded, mafic volcanic (mafic tuff?). Om, and poorly defined below. Intersected mineralized bull quartz	A0867726	87.0	88.0	1	2.4	0.3	64.5	1.5	126	0.7
vein from 176.92		ss py. Plagioclase phyric mafic dyke from 190.75 to 191.16 m. Lower	A0867727	88.0	89.0	1	3.5	0.2	47.7	1	101	0.25
CONTACT IS LOTT	iautica, stopped due to dillill	ig productio)	A0867728	89.0	90.0	1	0.25	0.2	60.6	1.5	78	0.25

	Project						Hole N	lumber	: DC-2	0-01		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
		y throughout. Blocky core from 76 to 80 m, and broken somewhat 17 to 107 m. Fairly compent and fresh from 107 to 150 m, with	A0867729	114.0	115.0	1	0.25	0.2	87.3	1.4	63	0.5
several discrete fa	ult gouges without develope	ed fault damage zones, crackle breccia somewhat common in this ore is more common with several intevals (<1m) of blocky core.	A0867731	117.5	118.0	0.5	0.7	0.2	135.5	2.2	64	0.25
Shearing occurs p	roximal to quartz veining fro	om 175.28 to 176.74 m and below vein from 177.85 to ~179 m. Fault tof main vein from 176.74 to 176.92 m, 55 dTCA. Below 179 m,	A0867732	118.0	119.0	1	9	8.0	190	30.7	90	1.3
blocky core is con	nmon between intervals of fa	sirly competent core. Fault zone / rubble from ~195 to EOH.	A0867733	119.0	119.5	0.5	1.5	0.2	107.4	1.6	89	0.25
		oderate to strong hematization / oxidation. Pervasive weak to	A0867734	119.5	120.0	0.5	2.8	0.2	118.1	1.4	74	0.25
sericite alteration	and 10-15 % fgr diss py in s	ilicification from 175.28 to ~189 m associated with veining. Strong hear zone from ~175.28 to 176.92 m and from 177.84 to ~178.5 m.	A0867735	120.0	121.0	1	0.25	0.1	97	0.9	74	0.25
		e alteration. Local moderate structurally controlled chlorite. From 106 ost healed fracs. Very local patchy domainal epidote.	A0867736	121.0	122.0	1	1.3	0.2	114.5	1.2	68	0.25
Sporadic trace fine	e to medium ar diss. pv from	175 to 195.5 m. 2% diss fgr py from ~153 to 156.25 m. Weak to	A0867737	141.0	142.0	1	0.25	0.05	63	1.6	76	0.5
moderate oxidatio	n from 86 to 90.5m, strong s 6.55 m, and patchy from 175	structurally controlled oxidized sulphide min. associated with faulting	A0867738	142.0	143.0	1	0.9	0.1	74.4	1.7	67	0.5
			A0867739	143.0	144.0	1	0.25	0.1	87.8	1.5	67	0.25
Minor Lithology	Type/Description	Comments	A0867740	144.0	145.0	1	2.5	0.2	103.4	2.4	75	0.25
190.75 - 191.16	Dia Diabase Dyke	Not diabaseFine grained, mafic, plagioclase phyric, volcanic, dyke. Sub volcanic feeder dyke?	A0867741	145.0	146.0	1	1.3	0.2	72.9	2.7	107	0.6
Alteration	Type/Style/Intensity	Comments	A0867742	151.0	152.0	1	4.9	0.3	80.9	4.1	78	1
	· · · · · ·		A0867743	152.0	153.0	1	1	0.3	75.4	4.5	82	1
21.0 - 195.5	Rs FV W	Very locally moderate	A0867744	153.0	53.85	0.85	3.4	0.2	71.9	14	95	0.7
75.0 - 101.0	Si Pv M	Pervasive weak to moderate silicification. Locally strong	A0867745	153.85	54.55	0.7	208.5	0.8	84.4	49.2	109	0.7
75.0 - 175.28	Ep P W	Local very patchy weak epidote. Locally fracture, veinlet controlled.	A0867746	154.55	55.15	0.6	0.25	0.2	76.9	4.1	83	0.25
75.0 105.5	Chl Pv W	Weak pervasive and moderate patchy domainal chl. Local	A0867747	155.15	55.75	0.6	135.8	0.9	175.5	13.7	65	0.25
75.0 - 195.5	CIII FV VV	moderate structurally controlled chl	A0867748	155.75	56.25	0.5	197.9	1.1	207.9	12.5	78	0.25
75.0 - 195.5	Carb P W		A0867749	156.25	56.55	0.3	5107.9	22.6	428.6	256	158	1.3
101.0 - 175.28	Si Pv W		A0867750	156.55	57.55	1	25.7	1.5	87.1	19.8	75	1.2
106.0 - 150.0	Ser FV W	Trace sericite and hematite fracture fill lining most healed fractures	A0867751	157.55	58.33	0.78	9	0.4	84.6	9.9	81	1.1
			A0867752	166.0	167.0	1	3.2	0.2	45.4	5.7	76	1.1
106.0 - 156.3	Hem FV W		A0867753	167.0	168.0	1	5.7	0.4	85.7	8.2	92	1.4
153.0 - 156.3	BI Pv W	Trace to weak bleaching	A0867754	168.0	168.5	0.5	0.25	0.4	80.1	6.8	90	3.6
156.3 - 156.55	Hem FV S		A0867755	168.5	169.0	0.5	1	8.0	79.1	5	93	10.4
			A0867756	169.0	69.62	0.62	5.6	0.6	64.9	4.7	84	12.7
168.0 - 170.0	Rs P S	Strong ciliaitation provincel to otherwise. Decreases and deally with	A0867757	169.62	70.35	0.73	6.1	8.0	96.6	12	96	3.7
175.28 - 181.5	Si Pv S	Strong silicifation proximal to qtz vein. Decreases gradually with depth.	A0867758	170.35	171.0	0.65	0.6	0.5	66	4.5	95	0.9
175.28 - 182.0	Rs P S		A0867759	171.0	172.0	1	0.25	0.5	93.5	8.1	107	0.7
175.5 - 176.92	Ser Pv S	Strong hydrothermal alteration / sericitization related to shearing /	A0867761	172.0	173.0	1	0.25	0.4	80.3	8	123	1.1
173.5 - 176.92	Jei LA J	veining	A0867762	173.0	174.0	1	27.8	8.0	146.7	7	111	1.1

BX W

G W

Flt M

BX W

113.23 - 113.36

113.36 - 113.5

118.2 - 118.53

122.82 - 122.88

Crackle bx

Upper contact 60 dTCA

Fault zone. Core becomes increasingly fractured, gradually turning to rubble with 3 cm of preserved gouge at the lower contact of interval. Lower contact ~80 dTCA.

Fault breccia. Poorly developed. Approx 30 dTCA

A NOI	VI P	DNILL LO	JG NEFO	יחי								
Project: Doc	Project						Hole I	Number	: DC-2	0-01		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
177.84 - 179.0	Ser Pv S	Strong sericitization decreases in intensity with depth	A0867763	174.0	175.0	1	3.6	0.4	119.2	12.1	106	0.7
182.0 - 195.5	Hem FV M	Limonite coatings on most fractures.	A0867764	175.0	175.28	0.28	430.9	1.6	72.5	14.9	110	1.8
.02.0		3	A0867765	175.28	176.0	0.72	758.4	3.5	267.6	25.1	96	1.4
Mineralization	Type/Style/%Mineral	Comments	A0867766	176.0	176.6	0.6	2382.9	7.2	66	25.8	107	0.25
75.0 - 195.5	Py Tr 0.1%	Trace flecks of sulphides and sporadic fine grained disseminated py	A0867767	176.6	176.94	0.34	2829.9	11.9	100.2	39	114	0.9
86.0 - 90.5	Ox Stn 10%		A0867768	176.94	177.44	0.5	7194	35.1	137	110.1	10	0.7
		Fine grained, disseminated, locally fabric controlled pyrite.	A0867769	177.44	177.9	0.46	1669.4	7.1	27.1	32.1	14	0.7
153.9 - 156.25	Py D 2%	Associated with weak bleaching and thin quartz veinlets.	A0867770	177.9	178.9	1	1795.2	7.6	146.8	74	87	1
156.25 - 156.55	Ox FR 20%	Strong oxidation associated with faulting / fracturing	A0867771	178.9	180.0	1.1	218.1	1.3	177.3	6.8	98	1
168.4 - 170.0	Ox Stn 15%	Patchy, structurally controlled (?) moderate oxide staining.	A0867772	180.0	181.0	1	115.2	0.8	140.8	6.4	76	0.9
	D D 450/	Very fine grained disseminated, thin fine grained veinlets and very	A0867773	181.0	182.0	1	28.7	0.6	114.5	5.1	99	0.9
175.28 - 176.92	Py D 15%	local medium grained "clumps" of py.	A0867774	182.0	183.0	1	120	1	226.8	14.5	133	0.8
175.28 - 181.5	Ox FR 15%	Moderate to strong structurally controlled oxidized sulphides and local patchy moderate staining.	A0867775	183.0	184.0	1	8.8	0.4	146.9	6.9	86	0.6
176.92 - 177.84	Py FR 7%	Fine to medium grained, disseminated, fracture controlled and aggregates of py	A0867776	184.0	185.0	1	0.25	0.1	60.4	3.9	67	0.25
177.84 - 179.0	Py D 10%	Very fine grained disseminated, thin fine grained veinlets and very	A0867777	185.0	186.0	1	0.25	0.2	83.1	2.8	75	0.6
177.04 - 179.0	<u> </u>	local medium grained "clumps" of py.	A0867778	186.0	187.0	1	0.25	0.1	33.8	4.5	80	0.25
181.5 - 195.5	Ox FR 5%	Limonite coating common on fractures.	A0867779	187.0	188.0	1	0.25	0.2	66.4	4.9	69	0.25
Structure	Type/Intensity	Comments	A0867780	188.0	189.0	1	0.25	0.2	97.7	3.8	82	0.25
58.0 - 80.0	F M	Broken / blocky core. Abundant healed and open fractures.	A0867781	194.0	194.75	0.75	7	0.5	58.4	24.9	89	0.9
		Broken's blocky core. Abundant realed and open madrates.	A0867782	194.75	195.5	0.75	3.7	0.7	104.8	51.5	96	1.1
80.0 - 91.0	Bc W											
91.0 - 97.0	Bc M	Broken somewhat blocky core										
97.0 - 107.0	Flt M	Fault zone. Blocky core to rubble, common thick clay coatings on fractures. Locally rubble with clay matrix (gouges that have been broken up by drilling). Significant core loss from 98 -101.										
104.0 - 104.4	G M	Poorly preserved, possible gouge. Brown yellowish clay with angular fragments / rubble.										
107.0 - 150.0	F W	Weak to locally moderate fracturing. Fairly competent. Several discrete fault gouges without well developed damage zones.										

Project:	Doc	Project						Hole I	lumber	: DC-2	0-01		
From	То	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
128.59 -	128.64	G M	Lower contact 65 dTCA. Matrix grey clay.										
132.4 - 13	32.52	G M	Lower contact 75 dTCA. Matrix greenish gray brown.										
144.07 -	144.17	BX W	Weakly consolidated rubble. Gouge / bx.										
144.8 - 14	45.25	Flt M	Fault gouge at 70 dTCA flanked by ~20cm of crackle bx above and below.										
148.75 -	149.0	BX W	Crackle bx with brown clay matrix between closed fractures										
151.8 - 1	51.9	G W	Grey brown clay matrix, coarse angular fragments.										
150.0 - 1	75.28	Bc M	Weak to moderate fracturing with several intervals < 1m of blocky core. Oxidiation / alteration of blocky core zones is somewhat common.										
156.45 -	156.55	G M	Very rusty gouge with bull qtz fragments.										
168.1 - 1	70.0	STK S	Healed stockwork fracturing zone / crackle bx. Strong patchy rust staining. Moderate broken core										
169.66 -	170.23	VN M	Irregular, anastomosing, quartz carbonate vein. 1-3cm wide. Trace py, local oxidized sulphides along margins. Local fragments of host rock. 17 dTCA at 169.75.										
171.15 -	171.4	Flt W	Fault. Two discrete 5cm gouges with brown green dark gray clay matrix.										
175.28 -	176.74	She S	Strongly altered shear zone. Foliation approx 55-60 dTCA.										
176.74 -	176.92	G M	Rusty bright orange fault gouge with fragments of altered shear zone. 55 dTCA										
176.92 -	177.84	Vqtz S	Altered bull quartz vein bearing ~7% fine to medium grained disseminated py. Fracture set through vein at 35 dTCA. Faulted upper contact and irregular lower contact.										
177.84 -	178.38	She M	Strongly altered shear zone. Alteration and shearing intensity gradually decrease with depth.										
178.38 -	195.0	F S	Approximately 60% of the interval is blocky core and the rest is moderately fractured/ broken core. Clay coating common on fracture surfaces and local possible weak gouges.										
195.0 - 19	95.5	Flt In	Rubble with some green gray and yellow green clay material. Some fragments of core. Unclear to what extent core was broken up due to drilling problems vs faulting.										

Project: Doc Project Hole Number: DC-20-01

iented Point S	tructure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
9.5	Bed	10				
15.4	Bed	20				
15.48	G	40				
17.7	Bed	13				
30	F	55				Coated with brown clay
38.7	F	33				Weak rust staining
44.4	Fol	28				
56.4	BX	5				Irregular anastamozing crackle breccia, 5-15 m wide
58.8	Bed	1				
62	Bed	10				
63.25	Bed	5				
63.26	F	40				mm scale bedding offset
73.4	Bed	12				
73.5	F	15				Healed/silicified
80.6	Bed	0				folded
81	Bed	43				
86.7	Flt	3				early healed fault. cm scale offset
88.7	Bed	40				
89.5	Bed	45				
91	F	65				healed discordant fracture set
95.4	Fol	50				
113.35	G	60				upper contact
116.3	Fol	50				
118.55	G	80				lower contact
119.7	Bed	30				subtle
124.4	Bed	27				
128.64	G	65				lower contact
132.5	G	75				lower contact
134.1	Bed	20				gently folded, steepns very gradually with depth from 133.9 to 134.1
139.6	Bed	0				very subtle

Project:	Doc Project				Hole Number: DC-20-01
140).7 Be	ed	7		very subtle, very gently folded
145.1	11 (à	70		lower contact
151	.9	à	40		Lower contact of 6cm gouge
152	2.7 F	ol	35		
153	3.8 F	ol	30		
15	54 V	L	30		1 cm wide py bearing qtz cb vein
156.5			45		L.C.
156			50		
157.5			48		
159			15		
166			40	75	
169		tz	17	155	qtz carb vein
170			40	50	
172			45	10	
175			70	350	shear foliation is fairly irregular / altered
175		tz	65	350	dirty, altered, irregular bull qtz vein, 7 cm wide along core axis
176			60	330	strongly altered, foliation somewhat irregular
176		ne	57		
176.7			55		upper contact
176.9			55		lower contact
177.1			35		frac set through qtz vein
179	0.8 BA	N.	60		contact of hm staining
Geotech					
Fro	m To	Recovery	Recovery %	Comments	
	3 5	2	100		
	5 8	2.83	94.33		
	8 11	3.84	128		
1	11 14	2.81	93.67		
1	14 17	2.77	92.33		
1	17 20	2.91	97		
2	20 23	3.1	103.33		
2	23 26	3.12	104		

Project:	Doc Pro	ject			Hole Number: DC-20-01
	26	29	2.9	96.67	
	29	32	2.81	93.67	
	32	35	2.2	73.33	
	35	38	3.25	108.33	
	38	41	3.1	103.33	
	41	44	2.67	89	
	44	47	2.9	96.67	
	47	50	1.65	55	
	50	53	2.5	83.33	
	53	56	1.5	50	
	56	59	2.85	95	
	59	62	2.11	70.33	
	62	65	2.85	95	
	65	68	2.78	92.67	
	68	71	2.5	83.33	
	71	74	3.07	102.33	
	74	77	2.8	93.33	
	77	80	3.2	106.67	
	80	83	3.05	101.67	
	83	86	3.1	103.33	
	86	89	3.05	101.67	
	89	92	2.97	99	
	92	95	3.05	101.67	
	95	98	3.15	105	
	98	101	1.4	46.67	
	101	104	2.87	95.67	
	104	107	3.4	113.33	
	107	110	2.92	97.33	
	110	113	3.09	103	
	113	116	3.13	104.33	
	116	119	2.94	98	
	119	122	2.8	93.33	
1	122	125	2.97	99	

roject:	Doc Pro	ect			Hole Number: DC-20-01
1:	25	128	3.11	103.67	
1	28	131	2.85	95	
1	31	134	2.99	99.67	
1	34	137	2.93	97.67	
1	37	140	3.11	103.67	
1-	40	143	2.91	97	
1-	43	146	2.85	95	
1	46	149	2.98	99.33	
1-	49	152	3.03	101	
1	52	155	2.93	97.67	
1	55	158	2.96	98.67	
1:	58	161	3.01	100.33	
1	61	164	2.95	98.33	
1	64	167	2.75	91.67	
1	67	170	2.97	99	
1	70	173	2.92	97.33	
1	73	176	2.92	97.33	
1	76	179	2.75	91.67	
	79	182	2.81	93.67	
1	32	185	2.7	90	
1	35	188	2.98	99.33	
1	38	191	2.92	97.33	
		194	3.1	103.33	
1	94 1	95.5	1.5	100	

Project:	Doc F	Project								Hole I	Number	: DC-2	0-02		
			Drill Hole		Drilling				Collar Survey						
Hole t	уре	DD	Core location:	Doc Camp	Drilling started	Aug-04-202	0		Grid	l:	1	NAD83 /	UTM zo	ne 9N	
Hole s	size:	HQ	Claim number:		Drilling completed:	Aug-09-202	0		Eas	ting:	4	109,998			
Actua	l depth:	241.3	Logged by:		Drilling contractor:	Dorado			Nort	thing:	6	5,244,76	8		
Target	t:								Elev	ation:	-	,260			
Survey									·						
De	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Surv	ey Quality								
	0	Collar Hanstone	186	186	-45										
	21	Reflex Hanstone	165	183	-47.1										
	63	Reflex Hanstone	160.4	178.4	-48.2										
	114	Reflex Hanstone	161	179	-49.1										
	165	Reflex Hanstone	153.1	171.1	-48.7										
:	216	Reflex Hanstone	155.7	173.7	-48.7										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
0	2.8	CAS - Casing													

2.8 10.3 MTSD - Metasedimentary Rock

Grey and orange and fine grained metasedimentary rock composed of quartz, chlorite and minor alkali feldspar.

Unit is characterized by weak chlorite alteration with patchy feldspathic alteration and pervasive weak silicification. Fractures commonly contain orange limonite alteration on open surfaces. Patchy rust staining is apparent throughout the rock.

Lithology is broken up and blocky throughout with rare pieces greater than 10 cm. Foliation is generally ~75 - 90 DTCA. Quartz veinlet from 9 - 9.2 m is boudinaged with tourmaline layers and looks quite rusty, but no fresh sulphides are visible.

As mentioned previously, unit contains weak to locally moderate rust staining. Weak magnetic minerals are common.

9 - 9.2 m - Cherty quartz veinlet with rusty lenses. Layered tourmaline in the centre.

Lower contact is broken up and undefined with Mafic volcanics.

Alteration	Type/Style/Intensity	Comments
2.8 - 10.3	K P W	
2.8 - 75.2	Rs FV M	Common fracture surfaces with orange rust staining.
Structure	Type/Intensity	Comments
10.3 38.25	MV - Mafic Volcanic	

Project:Doc ProjectHole Number:DC-20-02												
From	То	Lithology	Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
		e grained mafic volcanic rock composed of mainly hornblende and other amphibole minerals onent of magnetite.	35801	28.0	28.4	0.4	257	2.5	291	639	174	2
•		ū	35802	28.4	29.0	0.6	27	0.9	464	26	223	2
epidote or	Alteration is characterized by pervasive weak pervasive chlorite alteration with hydraulicly brecciated vessicular epidote on sporadic fractures between 0.5 - 5 cm wide. A fault zone described below is characterized by strong				29.5	0.5	258	1.8	380	28	79	2
light to da	rk orang	e oxidized sulphide staining with heavy minerals concentrated on fault planes.	35804	29.5	29.8	0.3	2360	8.6	311	73	34	3
Brittle/duc gouge is o so far, sev m are orie	Quartz stringers and thin boudinaged quartz veining without sulphides is common throughout this unit. Brittle/ductile deformation also common with rotated and boudinaged barren quartz stringers. A 30 cm chloritized gouge is oriented at 40 DTCA at 19.0 - 19.3 m. Although the entire hole contains evidence of structural movemen so far, several gouges with associated light to dark orange rust staining around brecciated quartz from 27.8 - 31.3 m are oriented ~70 - 75 DTCA. This zone is also moderate to strongly magnetic. A 20 cm greenish gouge at 48 DTCA from 29.95 - 31.15 m is characterized by dark green fragments within a matrix supported soft greyish green				30.4	0.6	3950	11.6	483	250	35	8

Mineralization in this unit is contained between 27.8 - 31.3 m within the strongly faulted and altered zone characterized by light to dark orange sulphide staining and heavy minerals on structural planes.

Lower contact is broken up but is sharp at 60 DTCA.

Alteration	Type/Style/Intensity	Comments										
2.8 - 75.2	Rs FV M	Common fracture surfaces with orange rust staining.										
10.3 - 28.1	Chl Pv M	Moderate chlorite alteration throughout.										
16.0 - 23.1	Ep FV M	Vein and lenses of epidote throughout interval. oriented parallel to the foliation.										
28.1 - 30.3	Rs FV S	Strong structurally controlled controlled oxidized sulphides throughout this interval. Especially strong near fault planes and gouges, HW and FW to the ~10 cm quartz veinlet.										
30.3 - 38.25	Chl Pv M											
Mineralization	Type/Style/%Mineral	Comments										
28.0 - 30.3	Ox Sul 10%	5-20% oxidized sulphides throughout zone. Structurally controlled and concentrated on margins of a 10 cm quartz veinlet.										
Structure	Type/Intensity	Comments										
38.25 75.2	Calc - Calc-Silicate		35806	59.2	59.4	0.2	4360	96.5	1300	1845	381	5
	with orange fractures and f	ine grained. Mineralogical composition made up of plagioclase,	35808	58.5	59.2	0.7	6	0.2	25	6	62	6
,	•		35809	59.4	60.2	0.8	63	1.6	66	44	93	4
		and bleaching and strong oxidized orange staining on and haloing een carbonate lenses are common.	35810	60.2	61.2	1	8	0.4	41	16	65	5
Frequent oxidized	d fractures oriented random	y. Sporadic 0.5 cm gouges throughout to 65.00 m characterized by	35811	61.2	62.2	1	2.5	0.2	33	6	43	4
grey clay matrix v	vith mm to cm scale pebble: a quartz or carbonate mm to	s of wallrock. Frequent fractures in this unit exhibit hydraulic cm scale cement. Minor folding is also apparent at 44.2 and 45.4 m.	35812	62.2	63.2	1	2.5	0.3	24	6	46	3
widespread polyp	hase folding at 55.00 - 75.2	idle film to cin scale centent. Willor louting is also apparent at 44.2 and 45.4 m.	35813	63.2	64.2	1	6	0.3	30	5	46	2
	Oxidized sulphides on fracture surfaces and bleeding out into wallrock from fluid flow. No fresh sulphides visible.		35814	64.2	65.0	0.8	2.5	0.2	24	4	50	5
Oxidized Sulphide	55 on nacture surfaces and	oreeding out into wallrock from huld flow. No fresh sulphides visible.	35815	65.0	65.5	0.5	2.5	0.2	39	4	32	4

75.2 - 145.26

75.2 - 145.26

75.2 - 145.6

88.0 - 88.25

105.92 - 106.8

112.27 - 113.27

Mineralization

Chl Pv M

Cal FV M

Ep FV M

Ox Sul

Ox Sul 5%

Type/Style/%Mineral

Sul 10%

5%

Comments

Strongly oxidized sulphides proximal to 10 cm quartz vein.

Fault gouge with orange rusty sulphide staining at 70 DTCA

Fault gouge with rusty soft clay matrix. No orientation possible.

Project: Doc	Project		Hole Number: DC-20-02									
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Lower contact sha	arp at 42 DTCA.		35816	65.5	66.3	0.8	2.5	0.3	52	3	36	3
Alteration	Type/Style/Intensity	Comments	35817	66.3	67.3	1	6	0.3	28	5	69	1
2.8 - 75.2	Rs FV M	Common fracture surfaces with orange rust staining.	35818	67.3	68.0	0.7	5	0.3	38	3	60	2
			35819	68.0	69.0	1	6	0.1	26	7	63	5
38.25 - 75.2	Cal P W	Weak carbonate alteration.	35820	69.0	70.0	1	11	0.2	27	15	83	4
38.25 - 75.2	Ser FV M		35821	70.0	71.0	1	2.5	0.2	45	6	55	2
Mineralization	Type/Style/%Mineral	Comments	35822	71.0	72.0	1	9	0.2	30	20	45	2
50.05 50.4		Strongly oxidized sulphides on a fracture plane with thickness and	35823	72.0	73.0	1	5	0.1	19	19	51	2
59.25 - 59.4	Ox Sul 10%	quartz (dissolution).	35824	73.0	73.3	0.3	11	0.2	45	40	67	4
Structure	Type/Intensity	Comments	35825	73.3	74.0	0.7	6	0.2	24	8	58	1
			29026	74.0	75.0	1	6	0.4	93	4	102	3
			29027	75.0	76.0	1	2.5	1.2	138	3	67	1
75.2 123.7	Tuf - Mafic Tuff		35807	88.0	88.25	0.25	530	1.7	173	16	118	3
Green to dark gre accessory magne		afic tuff. Mineralogical composition: amphibole, biotite, quartz and	29027	75.0	76.0	1	2.5	1.2	138	3	67	1
, ,		ith weak foliation controlled carbonate alteration. Epidote cemented	29028	105.45	105.92	0.47	6	0.5	223	4	139	2
		onjugate fractures with carbonate cement are ubiquitous.	29029	105.92	106.8	0.88	528	1.4	43	12	154	3
		gate hairline fracture sets are scattered throughout the unit cemented	29030	106.8	107.2	0.4	2.5	0.2	108	3	121	1
with carbonate and rarely epidote. Shear zone from 87.40 - 89.75 m oriented at ~40 DTCA. Grain size reduction resulting from the ductile deformation. Open fractures are generally fresh with rare mm scale dark brown clay.		29031	111.6	112.27	0.67	256	1.4	149	7	101	1	
A fractured 10 cm quartz vein associated with dark red rusty sulphides throughout from 88.00 - 88.25 m.		29032	112.27	113.27	1	376	1.8	98	33	174	2	
Alteration	Type/Style/Intensity	Comments	29033	113.27	113.9	0.63	7	0.2	116	3	147	1
88.0 - 88.25	Rs FV S	Strong dark red rust staining around narrow quartz veinlet.										

Project:	Doc P	roject		Hole Number: DC-20-02								
From	То	Lithology	Sample From To Lei		lu ob) (pp	Ag Cu m) (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)			

Structure Type/Intensity Comments

123.7 130.4 MV - Mafic Volcanic

Dark green, fine grained and weakly foliated mafic volcanic rock with amphibole and minor plagioclase.

Alteration is characterized by pervasive dark green chlorite with stringers of fine sulphides. 127.3 m mm scale phenocrysts of plagioclase and quartz around possible deformed pink carbonate with 0.5 cm sericite alteration halo.

Hairline carbonate stringers are common throughout unit as in above tuff. Fractures commonly also carry fine sulphides. Stringers with epidote as cement are also locally present oriented parallel to the foliation.

Upper and lower contacts are gradational.

Alteration	Type/Style/Intensity	Comments
75.2 - 145.26	Chl Pv M	
75.2 - 145.26	Cal FV M	
75.2 - 145.6	Ep FV M	
Structure	Type/Intensity	Comments

130.4 143.95 Tuf - Mafic Tuff

Green to dark green speckled, well foliated mafic tuff. Mineralogical composition: amphibole, biotite, quartz and accessory magnetite.

Unit is moderate to strongly chlorite altered with weak foliation controlled carbonate alteration. Epidote cemented fractures and veinlets are common. Hairline conjugate fractures with carbonate cement are ubiquitous.

Foliation in unit generally 45-80 DTCA. Conjugate hairline fracture sets are scattered throughout the unit cemented with carbonate and commonly epidote. Fault gouge at 137.5 and 138.0 m both have soft dark brown clay within, and the gouge at 138.0 m is approx 20 cm wide, also containing strong oxidized sulphides.

Lower contact gradational and associated with grain size reduction into a narrow zone of mafic volcanic rock.

Alteration	Type/Style/Intensity	Comments
75.2 - 145.26	Chl Pv M	
75.2 - 145.26	Cal FV M	
75.2 - 145.6	Ep FV M	
137.0 - 186.0	Rs FV M	Moderate to strong rust staining on structures especially strong around faulting and gouges. Black oxides are common within clay gouge.
Structure	Type/Intensity	Comments

143.95 145.25 MV - Mafic Volcanic

Dark green, fine grained and weakly foliated mafic volcanic rock with amphibole and minor plagioclase.

DRILL LOG REPORT

Project:	Project: Doc Project Hole Number									
From	То	Lithology	Sample From To	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)

Alteration is characterized by pervasive dark green chlorite with stringers of fine sulphides.

Hairline carbonate stringers are common throughout unit as in above tuff. Fractures commonly also carry fine sulphides. Stringers with epidote as cement are also locally present oriented parallel to the foliation.

Lower contact with siliceous metasediment is sharp at 47 DTCA beneath a pink carbonate band.

Alteration	Тур	e/Style	e/Intensity	Comments
75.2 - 145.26	Chl	Pv	М	
75.2 - 145.26	Cal	FV	М	
75.2 - 145.6	Ep	FV	М	
137.0 - 186.0	Rs	FV	М	Moderate to strong rust staining on structures especially strong around faulting and gouges. Black oxides are common within clay gouge.

145.25 150.76 SS - Siliceous Metasediment

Very fine grained and laminated to finely bedded siliceous metasediments. Quartz and mafic amphibole minerals with intercalated carbonate rich bands.

Alteration is characterized by a pervasive weak chloritization of the mafic minerals along with patchy weak to moderate sericite and carbonate alteration. Oxide staining bleeding out of fractures into surrounding wallrock up to 2 cm.

Stringers contain hydraulic brecciated plagioclase and carbonate fragments. Bedding is commonly oriented ~ 48 DTCA. Laminations and beds within the unit are broken and compressed with brittle ductile deformation and evidence of folding ubiquitous throughout the unit. Cemented and open fractures are commonly associated with structurally controlled oxidized sulphides.

Fresh fine structurally controlled pyrite and pyrrhotite are also common near or within stringers.

The lower contact is sharp at 150.76 m with carbonate rich metasediment.

Alteration	Type/Sty	le/Intensity	Comments										
75.2 - 145.26	Chl Pv	М											
75.2 - 145.26	Cal FV	M											
75.2 - 145.6	Ep FV	M											
145.6 - 216.2	Ser FV	M	Moderate sericitization around select fractures and veinlets. Usually extending up to 5 cm into wallrock.										
137.0 - 186.0	Rs FV	М	Moderate to strong rust staining on structures especially strong around faulting and gouges. Black oxides are common within clay gouge.										
150.76 160.1	2 CS - Ca	Ilcareous Meta	sediment	29034	158.47	159.0	0.53	2.5	0.1	19	8	15	10
	Bedded and fine grained grey carbonate rich metasediments (turbidites?). Unit resembles marble over several intervals.		29036	159.0	159.5	0.5	5	0.6	41	19	28	12	
				29037	159.5	160.12	0.62	133	6.6	230	242	147	8

159.0 - 160.8

162.54 - 162.8

Ox Sul 15%

Ox Sul 5%

DRILL LOG REPORT

Project:	oject: Doc Project						Hole I	Number	: DC-20	0-02		
From	То	Lithology	Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Alteration	Alteration is characterized by common rusty oxidized fractures with some bleeding ~ 1 cm into wallrock.											

Structurally controlled weak sericite alteration is common throughout the unit.

Fracture related fluid movement through the unit is prevalent. Laminations and bedding is obviously deformed as in above siliceous unit. Brittle structure including hydraulic brecciation affect stringers and <1 cm quartz (carbonate) veinlets.

Alteration	Type/Style/Intensity	Comments									
145.6 - 216.2	Ser FV M	Moderate sericitization around select fractures and veinlets. Usually extending up to 5 cm into wallrock.									
137.0 - 186.0	Rs FV M	Moderate to strong rust staining on structures especially strong around faulting and gouges. Black oxides are common within clay gouge.									
Mineralization	Type/Style/%Mineral	Comments									
159.0 - 160.8	Ox Sul 15%	Several fault gouges with dark brown, orange and black clay matrix. Extensive sulphide staining bleeding out into the surrounding rock.									
Structure	Type/Intensity	Comments									
160.12 168.4 SS - Siliceous Metasediment			29038	160.12 160.4	0.28	260	8.9	368	98	76	56
Very fine grained and laminated to finely bedded siliceous metasediments. Quartz and mafic amphibole minerals with intercalated carbonate rich bands. Quartz veinlets =<1 cm are common with mm scale offsets.		29039	160.4 160.85	0.45	51	0.9	34	13	62	4	
Alteration is characterized by a pervasive weak chloritization of the mafic minerals along with patchy weak to			29040	160.85 161.85	1	80	1	12	9	39	3
moderate sericite and carbonate alteration. Oxide staining bleeding out of fr			29041	161.85 162.55	0.7	78	0.7	33	21	102	3
	2 cm.			162.55 162.9	0.35	328	4	69	52	36	8
DTCA. Lamination	s and beds within the unit a	ase and carbonate fragments. Bedding is commonly oriented ~ 48 re broken and compressed with brittle ductile deformation and	29043	162.9 164.0	1.1	109	1.3	61	24	69	6
evidence of folding	gubiquitous throughout the	unit. Gouges at 159.70 (40 DTCA), 159.90 (60 DTCA), 160.22 (60 CA) all characterized by black to orange clay matrix with 1-5 cm	29044	164.0 165.0	1	277	6.4	497	86	80	7
thickness.	2 . o., aa o oo(. o 2 .	1-5 th an original action 250 by black to orange day mains with 1-5 dill	29045	165.0 165.5	0.5	150	3	135	29	81	8
Fresh fine structur	ally controlled pyrite and pyr	rhotite are also common near or within stringers.	29046	165.5 165.7	0.2	24	2.9	145	11	73	6
The lower contact	is gradational at 168.4 m w	ith carbonate rich metasediment.	29047	165.7 166.7	1	49	1.2	70	27	70	15
Alteration	Type/Style/Intensity	Comments	29048	166.7 167.1	0.4	305	2.4	60	27	97	9
		Moderate sericitization around select fractures and veinlets.	29049	167.1 167.6	0.5	64	0.3	27	5	82	2
145.6 - 216.2	Ser FV M	Usually extending up to 5 cm into wallrock.									
137.0 - 186.0	Rs FV M	Moderate to strong rust staining on structures especially strong around faulting and gouges. Black oxides are common within clay gouge.									
Mineralization	Type/Style/%Mineral	Comments									

Several fault gouges with dark brown, orange and black clay matrix. Extensive sulphide staining bleeding out into the surrounding rock.

Quartz vein oriented at 35 DTCA with black coated fracturing throughout. Strong associated sericite alteration.

Project: Doc	Project				Hole Number: DC-20-02								
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm	
162.8 - 164.7	Ox Sul 10%	Predominantly pervasive black oxide throughout interval with quartz cement and weak to moderate sericite alteration.											
164.7 - 167.1	Ox Sul 15%	Dark orange to red oxide staining throughout rubble fault zone. Remnants of quartz veining throughout. Foreign material possible within this interval as there is significant gravelly looking pebbles, although most of the rock looks to be in situ.											
Structure	Type/Intensity	Comments											

Bedded and fine grained grey carbonate rich metasediments (turbidites?) characterized by thin beds to rarely laminations of calcareous siltstone. Carbonate and quartz is common within barren quartz veinlets.

Alteration is characterized by common rusty oxidized fractures with some bleeding ~ 1 cm into wallrock. Structurally controlled weak sericite alteration is common throughout the unit.

Fracture related fluid movement through the unit is prevalent. Laminations and bedding oriented at 40 DTCA between 172.00 - 174.00 m. Brittle structure including hydraulic brecciation affect stringers and <1 cm quartz (carbonate) veinlets. Quartz carbonate stringers are frequently present with tension cracks oriented perpendicular to bedding. Entire unit is folded with with ductile deformation as evidenced by boudinaged quartz ~175.8 m. Folded layers and laminations resemble turbidites as mentioned in previous assessement reports. Silicification increases at 211.2 m above a mostly barren quartz vein that appears from 216.2 - 216.5 m oriented at 55 DTCA with speckled floating amphiboles suspended within and a few healed fractures containing minor sulphides.

Lower contact is sharp at the guartz vein ~55 DTCA.

Alteration	Type/Style/Intensity	Comments									
145.6 - 216.2	Ser FV M	Moderate sericitization around select fractures and veinlets. Usually extending up to 5 cm into wallrock.									
137.0 - 186.0	Rs FV M	Moderate to strong rust staining on structures especially strong around faulting and gouges. Black oxides are common within clay gouge.									
186.0 - 241.28	Rs FV W										
168.4 - 241.28	Cal FV M	Structural controlled carbonate cemented hairline fractures throughout the interval with a few mm scale veinlets.									
Structure	Type/Intensity	Comments									
216.2 241.2	8 MV - Mafic Volcanic		29050	220.0 220.2	0.2	11	3.3	2180	1	55	1
Dark green fine grained and weakly foliated metavolcanic (amphibolite) rock made up of primarily amphibole minerals with intercalations of mafic tuff? Tuff at 227.8 - 230.7 m contains sporadic disseminated garnets proximal		37301	231.8 232.36	0.56	2.5	0.1	72	1	80	1	

minerals with intercalations of mafic tuff? Tuff at 227.8 - 230.7 m contains sporadic disseminated garnets proxima to veinlets of epidote.

Pervasive moderate chlorite alteration with a moderate to strong pervasive silicification. Sulphides are associated with a quartz veinlet (1 cm wide) at 220.00 m. Fresh foliation controlled sulphides are locally present proximal to quartz and quartzcarb stringers.

Structure within this unit is characterized by quartz filled fracturing and veinlets with sporadic rust on open fractures. A veinlet at 220 m as mentioned above contains sulphides on the margins including chalcopyrite with minor pyrite up to 2%. Quartz flooding in veinlets and stringers are folded. Carbonate cemented hairline fractures preferentially oriented ~45 DTCA and usually are oblique to quartz veinlets. Sporadic epidote appearing at 224.00 m within folded veinlets oriented near perpendicular TCA.

Drill Log Report Page 7 of 13 Apr-29-2021

Project: Doc	Project		Hole Number: DC-20-02										
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	
Alteration	Type/Style/Intensity	Comments											
186.0 - 241.28	Rs FV W												
216.2 - 241.28	Chl Pv M	Moderate pervasive chlorite alteration within unit associated with silicification.											
168.4 - 241.28	Cal FV M	Structural controlled carbonate cemented hairline fractures throughout the interval with a few mm scale veinlets.											
Mineralization	Type/Style/%Mineral	Comments											
220.0 - 220.2	Ccp Sul 2%	1.5 cm wide quartz carbonate veinlet with fresh chalcopyrite lining.											
231.8 - 232.6	Py Sul 1%	Foliation controlled fresh fine sulphides within folding.											
Structure	Type/Intensity	Comments											

Drill Log Report Page 8 of 13 Apr-29-2021

Project: Doc Project Hole Number: DC-20-02

riented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
9.8	G	30				
20	Fol	85				
20.05	Vcc	85				
22.85	Vcc	85				
19	G	35				
21.4	G	85				
25.1	G	40				
28.3	G	55				
29.9	She	60				
30	G	80				
30.3	G	60				
31	G	45				
32	Fol	60				
34	G	10				Parallel to core axis gouge with broken core
44	Fol	70				
46.1	F	25				
48.5	F	70				
58.1	Fol	40				
59.25	She	39				Shearing associated with quartz stringers and very strong oxidized sulphide content including pyrrhoti and pyrite.
62.3	F	10				Fracturing carrying oxidized sulphides with alterating halos bleeding out from fracture into wall rock ~ m scale.
60.4	F	90				Fracturing with carbonate cement +/- pyrite.
65.1	G	35				Oxidized sulphide clay matrix gouge ~3 cm wide.
65.5	She	55				Shearing with considerable folding and brittle/duct deformation. Alternating light and dark layers of sericite alteration/quartz and carbonate with dark layers of chlorite and mafic minerals. Shear is aphanitic.
68.2	G	70				Dark brown matrix with splay subparallel TCA.
76.6	Fol	40				
73	Vqtz	40				5 cm wide quartz vein (bull quartz?) No significant associated sulphides. Broken up but looks to be parallel to the foliation.
75.2	С	42				

roject: Doc P	roject		Hole Number: DC-20-02
78.2	Vqtz	20	Quartz stringer shear. Foliation changes to 40 within 10 cm FW to shear.
84.2	Fol	30	TO CHI FW to Shear.
81.5	F	30	Conjugate fracturing with carbonate cement.
87.4	She	30	
89.75	She	60	
106	G	70	Fault gouge with soft grey-orange clay matrix.
110	G	80	Dark brown soft clay matrix.
113	G	90	Fault gouge with dark brown clay matrix.
111	Fol	75	
119.9	Fol	65	
98.4	Fol	65	
128	Fol	30	
137.4	G	30	
138.2	G	30	
140.4	Fol	60	
146	Bed	45	
143.95	С	40	
147.82	Vqtz	60	Fractured and stained quartz vein with brittle fracturing.
153.4	Bed	45	
150.74	С	50	Gradational contact with bedding oriented at approximately 50 DTCA.
159.72	G	24	
159.95	G	48	
160.33	G	60	
162.57	Vqtz	40	
164.6	G	45	
167	G	60	
170	Bed	35	
173.1	F	45	Tension fractures perpendicular dominant fracture all filled with quartz cement.
171.3	F	5	Black oxide surface coating.
173.5	Vqtz	55	
189.2	Bed	85	
194.2	Bed	70	

GROU	P				
Project: Doc F	Project				Hole Number: DC-20-02
202.5	Bed		80		
198.6	F		48		
212.1	F		50		
212.5	F		10		
230.9	Fol		45		
224.3	Vqtz		65		
237.4	Fol		62		
229.8	F		75		
241.2	Fol		40		
Geotech					
From	То	Recovery	Recovery %	Comments	
1	3	0.3	15		
3	6	0.53	17.67		
6	9	1.21	40.33		
9	12	2.03	67.67		
12	15	2.52	84		
15	18	2.63	87.67		
18	21	2.99	99.67		
21	24	2.61	87		
24	27	2.45	81.67		
27	30	2.74	91.33		
30	33	2.94	98		
33	36	1.55	51.67		
36	39	2.01	67		
39	42	2.65	88.33		
42	45	2.65	88.33		
45	48	2.99	99.67		
48	51	1.88	62.67		
51	54	2.96	98.67		
54	57	2.58	86		
57	60	2.66	88.67		
60	63	2.18	72.67		

Project:	Doc Proj	ect				Hole Number:	DC-20-02
	63	66	2.64	88			
	66	69	2.15	71.67	highly fractured & gouge		
	69	72	1.93	64.33			
	72	75	2.16	72	fractured ground		
	75	78	2.83	94.33			
	78	81	2.85	95			
	81	84	2.22	74			
	84	87	2.99	99.67			
	87	90	2.49	83			
	90	93	1.58	52.67			
	93	96		103.33			
	96	99	2.61	87			
		102	2.25	75			
		105	1.88	62.67			
		108	2.33	77.67			
		111	2.42	80.67			
		114	2.62	87.33			
		117	1.96	65.33			
		120	2.61	87			
		123	2.51	83.67			
		126	2.93	97.67			
		129	2.55	85			
		132		107.67			
		135	2.97	99			
		138	2.69	89.67			
		141	2.34	78			
		144 147	2.9 2.57	96.67			
				85.67			
		150 153	3.11 3.03	103.67 101			
		156	2.98	99.33			
		159	2.88	99.33			
		162	2.88	96			
	108	102	2.02	94			

Project:	Doc F	Project			Hole Number: DC-20-02
1	62	165	2.27	75.67	
1	65	168	1.81	60.33	
1	68	171	3.07	102.33	
1	71	174	3	100	
1	74	177	2.59	86.33	
1	77	180	2.89	96.33	
1	80	183	2.83	94.33	
1	83	186	2.9	96.67	
1	86	189	3.05	101.67	
1	89	192	3.02	100.67	
1	92	195	2.84	94.67	
1	95	198	3.03	101	
1	98	201	3.06	102	
2	01	204	2.86	95.33	
2	04	207	2.86	95.33	
2	07	210	2.94	98	
2	10	213	2.94	98	
	13	216	2.89	96.33	
	16	219	2.91	97	
	19	222	3	100	
	22	225	2.81	93.67	
	25	228	2.94	98	
	28	231	3.06	102	
	31	234	2.94	98	
2	34	237	2.75	91.67	
	37	240	3	100	
2	40	241.28	1.28	100	

Project:	Doc I	Project								Hole N	lumber	: DC-2	0-03		
		D	rill Hole		Г	Drilling					Colla	ar Surve	еу		
Hole t	type	DD	Core location:	Doc Camp	Drilling started	Aug-13	3-2020		Gri	d:	1	NAD83 /	UTM zo	ne 9N	
Hole	size:	HQ	Claim number:		Drilling completed:	Aug-16	6-2020		Eas	sting:	4	10,327			
Actua	I depth:	162.0	Logged by:		Drilling contractor:	Dorado)		Noi	rthing:	6	6,244,72	20		
Targe	t:								Ele	vation:	1	,236			
Survey									•						
De	epth	Survey Type	Mag Azimuth	Azimuth	Dip		Survey Qualit	у							
	0	Collar Hanstone	191	191	-45										
	24	Reflex Hanstone	172.7	190.7	-45.7										
	75	Reflex Hanstone	173.7	191.7	-45.9										
	126	Reflex Hanstone	173	191	-46.1										
17	72.7	Reflex Hanstone	173	191	-46										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)		Zn (ppm)	
0	2.87	CAS - Casing													
2.87	17	MV - Mafic Volcanio	.			37306	16.8	17.8	1	2.5	0.3	113	15	108	2

Dark grey to black fine grained and weakly foliated mafic volcanic rock with mostly amphibole, biotite and minor quartz. Disseminated sulphides are common throughout this unit yielding yellowy orange colors especially visible on fracture surfaces.

Weak to moderate carbonate as cement within fracturing. Weak banded chlorite alteration and frequent rusty sulphides on open fracture surfaces.

Frequent stockwork fracturing throughout the unit with carbonate cement and rarely quartz +/- druzy.

Lower contact is broken up at 17.0 m with calc rich metasediments.

Alteration	Type/Style/Intensity	Comments
2.87 - 21.2	Cal FV M	
2.87 - 21.2	Rs FV M	
2.87 - 29.0	Chl Pv W	
Mineralization	Type/Style/%Mineral	Comments
2.87 - 34.0	Ox FR 2%	
2.87 - 34.2	SUL D 1%	

0 1	, 0	<u>. </u>											
Project:	Doc I	Project						Hole I	Number	: DC-2	0-03		
From	То	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Structure	!	Type/Intensity	Comments										
2.87 - 21.0)	F M	Broken core with frequent strong stockwork fracturing with carbonate cement. Brittle deformation.										
17	21.2	CS - Calcareous Met	asediment	37306	16.8	17.8	1	2.5	0.3	113	15	108	2
	aminated to bedded fine grained calc-rich metasediments with bedding controlled disseminated sulphides nave mostly been rusted out.		metasediments with bedding controlled disseminated sulphides that	37307	20.45	21.1	0.65	11	0.3	60	15	128	4

Oxidized sulphides common throughout with weak chlorite alteration.

Frequent stockwork fracturing throughout with carbonate cement. Hydraulic brecciation in places. Bedding commonly oriented at 30-45 DTCA.

Lower contact sharp at 80 DTCA.

LOWER CORRECT SITE	a.p a. 00 B 1 07 t.											
Alteration	Type/Style/Intensity	Comments										
2.87 - 21.2	Cal FV M											
2.87 - 21.2	Rs FV M											
2.87 - 29.0	Chl Pv W											
Mineralization	Type/Style/%Mineral	Comments										
2.87 - 34.0	Ox FR 2%											
2.87 - 34.2	SUL D 1%											
Structure	Type/Intensity	Comments										
2.87 - 21.0	F M	Broken core with frequent strong stockwork fracturing with carbonate cement. Brittle deformation.										
21.0 - 36.0	F W	Weak to moderately fractured mafic volcanic rock.										
21.2 162	MV - Mafic Volcanic		37308	33.8	34.25	0.45	2.5	0.1	78	1	58	1
Dark greyish gree places. Unit is cha	n to black, fine grained and aracterized mineralogically b	weak to moderately foliated mafic volcanic showing flow banding in y amphibole, quartz and disseminated sulphides.	37309	34.25	35.0	0.75	2.5	0.1	111	3	60	2
Weak chlorite alte	eration with common carbona	ate banding. Strong silicification at top of the unit to 29.0 m, then	37310	35.0	36.0	1	2.5	0.1	68	2	69	3
becoming modera	ate to weak with depth. Com ractures where fluid interacti	mon quartz "eyes" near top of unit within strong sil. Sulphides are	37311	36.0	37.0	1	2.5	0.2	100	1	63	1
		v	37312	37.0	38.0	1	5	0.2	110	2	56	1
silicified zone, with	h carbonate more common a	. Cement composed of both carbonate and quartz, especially in at depth. Sericite and carbonate veinlets become more common at	37313	38.0	39.0	1	2.5	0.1	104	2	60	2
depth. Foliation in	the unit varies from approxi	mately parallel to 30-45 DTCA.	37314	39.0	40.0	1	2.5	0.1	98	1	74	2
		in encountered at 58.5, 82.5 and 88.0m. The rusty intervals all host t for surfaces fluids to oxidize the core core. (I am unsure if oxidized	37315	40.0	41.0	1	2.5	0.1	86	2	68	1
and rusty core is r	elated to the movement of r	nineralized fluids). The first target zone was intersected from 82.18 to	37316	41.0	41.7	0.7	2.5	0.1	74	2	66	2
		partz vein, gouge and local ductile shearing. Intensity of quartz and the intensity of veining increases towards the main target (Q22). A	37317	41.7	42.7	1	2.5	0.2	81	2	63	2

Project: Doc	Project			(pph) (ppm)								
From To	Lithology		Sample	From	То	Length						As (ppm)
	ed (Q17) unit was intersecte ed core but only minor white	d from 121.46 to 130.38 metres. The second mineralized unit hosts quartz veins.	37318	42.7	43.0	0.3	54	0.3	67	5	74	3
Lower contact is	•	4-11-2	37319	43.0	43.6	0.6	2.5	0.1	102	3	58	2
		O	37320	43.6	44.6	1	2.5	0.1	101	2	71	1
Alteration	Type/Style/Intensity	Comments	37321	44.6	44.8	0.2	13	0.6	187	7	97	2
2.87 - 29.0	Chl Pv W		37322	44.8	45.3	0.5	2.5	0.2	108	3	80	1
21.2 - 29.0	Si Pv S		37324	81.67	82.18	0.51	21	0.1	10	4	65	1
21.2 - 37.0	Rs FV W		37325	82.18	82.67	0.49	415	1.2	35	5	61	2
			37326	82.67	83.6	0.93	213	0.8	63	3	62	1
29.0 - 162.0	Chl Pv M		37327	83.6		0.6	10	0.2	96	3	70	1
37.0 - 42.8	Rs FV M		37328			1						2
40.0 - 40.7	Rs P M		37329							-		1
50.0 50.0	Rs Pv M		37330									1
58.0 - 59.0	Rs Pv M		37331							•		2
63.0 - 63.08	Rs Pv M		37332									1
81.67 - 82.0	Ser FV M	Minor Epidote altered minerals.	37333									3
82.18 - 85.2	Rs Pv M		37334									1
			37335			-						2
87.51 - 89.5	Rs Pv M											2
90.5 - 93.0	Rs P M											1
112.22 - 112.38	Rs Pv S	Oxidized breccia.	37338	93.0	94.0	1	11	0.2	79	4	85	2
115.8 - 116.8	Act FV M	Calc-silicate altered veins.	37339	112.44		0.29	7	0.3	59	4	102	2
115.6 - 116.6		Rust oxidation of a narrow quartz vein. Quartz vein is the conduit	37340	118.74		0.48	5	0.2	75	31	147	1
119.26 - 119.35	Rs Pv W	for fluid migration causing the wall rock to oxidize.	37341	119.22		0.56	9	0.4	87	6	125	2
121.46 - 130.38	Rs P M	Moderate to strong patchy oxidized core.	37342	119.78		0.43	15	0.4	92	2	109	1
131.45 - 132.0	Si Pv S		37343	120.21	121.2	0.99	8	0.3	89	4	99	1
			37344	121.2	121.8 122.5	0.6	7 335	0.4	94 57	2 7	87 97	1
132.0 - 132.16	Rs Pv M		37345	121.8		0.7		1.6				
135.6 - 136.0	Rs Pv M		37346 37347	122.5 123.0	123.0 123.8	0.5 0.8	533 511	3.9	83 18	10	73 117	1
141.06 - 141.5	Ser P M	Patchy sericite alteration with minor smoky quartz veins. The core is pitted locally.	37347	123.0	125.6	1.8	141	0.8	42	7	117	56
145.2 - 145.9	Rs FV M	Rust stained fractures.	37349	125.6	126.6	1.0	13	0.5	77	6	138	5
1.0.0	- · · · · · · · · · · · · · · · · · · ·		A0862501	126.6	127.0	0.4	56	1.3	230	7	143	27
			7.0002001	120.0		0.4	00	1.0	200	•	. 40	۷,

Project: Doc	Project						Hole I	Number	: DC-2	0-03		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Mineralization	Type/Style/%Min	eral Comments	A0862502	127.0	127.5	0.5	2.5	0.2	81	4	91	1
2.87 - 34.0	Ox FR 2%		A0862503	127.5	128.4	0.9	10	0.3	66	4	75	6
			A0862504	128.4	129.0	0.6	25	0.6	120	5	95	20
2.87 - 34.2	SUL D 1%		A0862505	129.0	129.66	0.66	2.5	0.2	112	5	104	3
34.2 - 34.5	SUL FR 2%		A0862506		130.34	0.68	2.5	0.1	112	3		1
34.5 - 200.0	SUL D 2%		A0862507	130.34		0.66	2.5	0.1	128	5		1
40.0 - 40.7	Ox FR 1%		A0862508	131.95		0.25	21	0.5	134	4	98	1
			A0862509	133.6		0.7	129	0.4	110	17	117	1
58.0 - 59.0	Ox FR 2%		A0862510	135.6		0.4	5	0.3	135	6	116	1
63.0 - 63.8	Ox FR 1%		A0862511	136.0		1	62	0.3	96	14	123	1
82.18 - 85.2	DOC BI 2%	Mineralization (Q22) consists on disseminated and locally blebby pyrite hosted in oxidized core. Fractures may be coated in galen.			145.86	0.86	37	0.4	129	16	102	1
		creating the dark grey fractures.	A0862513	152.45	152.8	0.35	198	0.6	162	21	99	1
87.51 - 89.5	Ox FR 2%											
90.5 - 93.0	Ox FR 1%											
112.22 - 112.38	Ox FR 2%	Oxidized breccia.										
119.26 - 119.35	Ox FR 3%	Oxidized quartz vein hosting 3% disseminated pyrite.										
121.46 - 130.38	DOC FR 2%	Mineralization related to the Q17 vein. Most mineralization is related to oxidized fractures with minor quartz veins.										
132.0 - 132.16	Ox FR 1%	Unable to visually identify sulphides.										
135.6 - 136.0	Ox FR 1%											
145.2 - 145.9	Ox FR 2%	Rusty fractures.										
152.44 - 152.8	Py FR 5%	Blebby disseminated vein controlled fractures. The pyrite crystal are euhedral up to 1 mm in diameter.	3									
145.9 - 146.05	Py FR 1%	Blebby disseminated vein controlled fractures. The pyrite crystal are euhedral up to 1 mm in diameter.	3									
Structure	Type/Intensity	Comments										
21.0 - 36.0	F W	Weak to moderately fractured mafic volcanic rock.										
36.0 - 52.0	F S	Broken up core with oxidized sulphides on fracture surfaces. Disseminated and foliation controlled fresh sulphides of mostly pyrite on core surface.										
52.0 - 52.5	F In	Rubbly core with fragments from 0.1 to 1 cm in diameter.										
52.5 - 58.0	F S	Blocky core.										

Project: Doc I	Projec	t						Hole N	Number	: DC-20	0-03		
From To	Lit	thology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
58.1 - 58.3	G	In	Fault gouge with associated rust mineraliztion. Gouge occurs at 85 DTCA.										
58.3 - 59.0	F	In	Rubbly core with fragments from 0.1 to 5 cm in diameter.										
66.0 - 68.7	F	М	Blocky Core.										
68.7 - 82.18	VL	М	Weak to moderate quartz carbonate stock work veins.										
82.67 - 83.5	G	In	1 cm wide fault gouge occurring at 15 dtca.										
83.5 - 85.2	F	W	Blocky core.										
87.51 - 88.2	She	М	Moderate ductile shearing with moderate rust alteration.										
88.2 - 88.35	G	In	Gouge occurring 40 DTCA.										
88.35 - 88.65	Vqtz	z In	Brecciated bull white quartz vein hosting disseminated pyrite and possibly galena coated fractures.										
88.65 - 89.2	Вс	In	Intensity broken core and significant core loss. Core is broken into mm-scaled fragments.										
70.0 - 70.14	Vqtz	z S	8 cm wide dirty quartz vein cutting core at 50 DTCA. The vein is offset by a mm-scaled with dextral movement.										
100.0 - 107.0	Вс	S	Strongly broken and blocky core. Local narrow gouge can be seen on fracture surfaces.										
112.22 - 112.38	вх	S	Oxidized breccia. The breccia hosts sub-rounded quartz fragments from 0.1 to 2 cm in diameter. The matrix is completely oxidized to rusty orange.										
121.45 - 126.65	STK	СМ	Carbonate (with minor quartz) stockwork with mm-scaled veinlets.										
126.65 - 127.0	G	W	Minor oxidized fault gouge occurring adjacent to a white quartz vein.										
127.0 - 135.0	STK	C W	Stockwork fractured core. Fractures host carbonate with epidote/sericite occurring locally.										
135.0 - 140.73	Вс	W	Weak to moderately broken core.										
152.45 - 152.8	VN	М	Ladder quartz veins with associated pyrite mineralization.										
144.9 - 145.6	Вс	S	Blocky and broken core with rusty mineralization.										
153.0 - 162.0	Вс	M	Blocky core.										

Project: Doc Project Hole Number: DC-20-03

Oriented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
9	Fol	60				
6.8	F	10				Carbonate cemented hairline fracture.
9.1	F	30				
18	Lam	60				
20.8	Bed	30				
22.5	Fol	5				
25	Fol	25				
22.4	F	80				Quartz carbonate cemented fracture.
28	Fol	20				
29.2	Vqtz	70				Boudinaged quartz veinlet 1 cm wide.
29.5	Fb	15				
30.5	Fol	18				Foliation controlled strong oxidation.
32.5	F	30				Fractures with carbonate cement and 1 cm chlorite halo.
35.1	Vqtz	2				Quartz veinlet with actinolite crystals growing within and carbonate on the margins.
38.2	F	30				Rusty fracture
42.9	Fol	80				Intense rust zone 10 cm wide with disintegrated focus.
44.6	Vqtz	75				Boudinaged quartz veinlet with intense sulphide oxidation both HW and FW.
43.9	F	15				Carbonate cemented stockwork fracturing throughout.
50.75	Fol	25				•
52.1	Vqtz	50				
58.13	G	85				
62.6	Fol	25				
72.8	Fol	45				
73.45	Vqtz	70				
80.85	Fol	60				
83	G	10				
88.2	G	40				
92	Fb	0				
98	Fol	40				
112.3	BX	60				

ect:	Doc Project				Hole Number: DC-20-03
119.3	3 Vqtz		80		
117.24	ı G		60		
121.48	3 G		60		
122.4	Fol		40		
125.8	3 Vqtz		60		
126.7	7 G		25		
126.85	5 Vqtz		50		
129.7	7 BX		70		
135.9) F		40		
134.1	STK		75		
141.26	S Vqtz		90		
145.95	5 Vqtz		60		
147.86	6 Flt		20		
152.5	5 Vqtz		60		
152.5 152.68			60 50		
	3 Vqtz				
152.68	3 Vqtz		50		
152.68 157	8 Vqtz 7 Fol	Recovery	50	Comments	
152.68 157 tech	Vqtz Fol	Recovery 0.3	50 50	Comments	
152.68 157 <i>tech</i> From	8 Vqtz 7 Fol 1 To 7 3		50 50 Recovery %	Comments Broken	
152.68 157 tech From 2.87	7 Fol To 3 6	0.3	50 50 Recovery %		
152.68 157 tech From 2.87	Fol To 3 3 6 6 9	0.3 1.57	50 50 Recovery % 230.77 52.33	Broken	
152.68 157 tech From 2.87 3	7 Fol To 7 3 8 9 12	0.3 1.57 2.8	50 50 Recovery % 230.77 52.33 93.33	Broken Broken	
152.68 157 tech From 2.87 3 6	Fol To 3 3 6 6 5 9 12 15	0.3 1.57 2.8 2.15	50 50 Recovery % 230.77 52.33 93.33 71.67	Broken Broken Broken	
152.68 157 tech From 2.87 3 6 9 12	Fol. To 3 6 9 12 15 18	0.3 1.57 2.8 2.15 2.28	50 50 Recovery % 230.77 52.33 93.33 71.67 76	Broken Broken Broken Broken	
152.68 157 tech From 2.87 3 6 9 12	Fol To 3 3 6 6 9 12 15 18 21	0.3 1.57 2.8 2.15 2.28 2.44	50 50 Recovery % 230.77 52.33 93.33 71.67 76 81.33	Broken Broken Broken Broken Broken	
152.68 157 tech From 2.87 3 6 9 12 15	Fol. To To To To To To To To To T	0.3 1.57 2.8 2.15 2.28 2.44 2.3	50 50 Recovery % 230.77 52.33 93.33 71.67 76 81.33 76.67	Broken Broken Broken Broken Broken Broken Broken	
152.68 157 tech From 2.87 3 6 9 12 15 18	Fol To 3 3 6 6 9 12 15 18 3 21 1 24 4 27	0.3 1.57 2.8 2.15 2.28 2.44 2.3 2.85	50 50 Recovery % 230.77 52.33 93.33 71.67 76 81.33 76.67	Broken	
152.68 157 tech From 2.87 3 6 9 12 15 18 21 24	Fol. To To To To To To To To To T	0.3 1.57 2.8 2.15 2.28 2.44 2.3 2.85 3.36	50 50 Recovery % 230.77 52.33 93.33 71.67 76 81.33 76.67 95 112	Broken Broken Broken Broken Broken Broken Broken Broken Long run???	
152.68 157 tech From 2.87 3 6 9 12 15 18 21 24 27	To T	0.3 1.57 2.8 2.15 2.28 2.44 2.3 2.85 3.36 2.24	50 50 Recovery % 230.77 52.33 93.33 71.67 76 81.33 76.67 95 112 74.67	Broken Badly broken. Long run???	
152.68 157 tech From 2.87 3 6 9 12 15 18 21 24 27 30	Fol. To To To To To To To To To T	0.3 1.57 2.8 2.15 2.28 2.44 2.3 2.85 3.36 2.24 2.87	50 50 Recovery % 230.77 52.33 93.33 71.67 76 81.33 76.67 95 112 74.67 95.67	Broken Broken Broken Broken Broken Broken Broken Broken Broken Badly broken. Long run??? Broken Broken	

<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>					
Project:	Doc Proj	ect				Hole Number: DC-20-03
	42	45	2.69	89.67	Badly Broken	
	45	48	2.69	89.67		
	48	51	2.88	96	Broken zone	
	51	54	2.18	72.67	Badly broken	
	54	57	2.34	78	Broken	
	57	60	1.5	50	Broken & Faulted	
	60	63	1.81	60.33	Ground Core Marker	
	63	66	2.92	97.33		
	66	69	2.46	82	Broken Zone	
	69	72	2.97	99		
	72	75	3.03	101		
	75	78	3.02	100.67		
	78	81	2.99	99.67		
	81	84	2.66	88.67	Faulted/Broken	
	84	87	2.33	77.67	Faulted/Broken	
	87	90	2.5	83.33	Faulted/Altered	
	90	93	3	100	Altered	

	: Doc	Project								Hole N	Number	: DC-2	0-04		
			Drill Hole			Drilling					Colla	ar Surve	Э у		
Hole	type	DD	Core location:	Doc Camp	Drilling started	Sep-06-20	20		Gri	d:	N	NAD83 /	UTM zo	ne 9N	
Hole	size:	HQ	Claim number:		Drilling complete	d:			Eas	sting:	4	10,142			
Actu	ıal depth:	92.0	Logged by:		Drilling contracto	r: Dorado			Noi	thing:	6	3,244,75	1		
Targ	et:								Ele	vation:	1	,273			
Survey															
0	Depth	Survey Type	Mag Azimuth	Azimuth	Dip	Sui	vey Qual	ity							
	0	Collar Hanstone	215	215	-60										
	17	Reflex Hanstone	192.8	210.8	-61.3										
	71	Reflex Hanstone	192.1	210.1	-61.5										
	92	Reflex Hanstone	193.6	211.6	-61										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm
0	0.41	CAS - Casing													
0.41 Dork ar	92	MV - Mafic Volca				A0867569	7.3	7.6	0.3	3.2	0.7	124.2	68.1	164	5.
ŭ	een iine gi	rained mafic volcanics	with weak ionation.												
Daul. a		aire ablarita altaration	with from one from true	and west of	aining Ctrong west	A0867570	20.4	21.0	0.6	3.4	0.3	67.9	4.9	99	
staining	at 7.45 m	on 2.5 cm fault surface		coated in limonite and rust sta carbonate alteration common		A0867571	21.0	22.0	1	6.4	0.7	73	18.7	128	1
staining pervasiv	at 7.45 m ve silicifica	on 2.5 cm fault surfaction.	ce. Fracture controlled	carbonate alteration common	throughout unit. Weak	A0867571 A0867572	21.0 58.0	22.0 59.0	1 1	6.4 874.3	0.7 1.6	73 37	18.7 12.8	128 65	1 0.
staining pervasiv Fault zo quartz c	at 7.45 m ve silicifica one at 7.45 carbonate	on 2.5 cm fault surfaction. m with strong associate and stringers	ce. Fracture controlled ated oxide stains orien are commonly oriented	carbonate alteration common ted 75 DTCA and parallel to fo	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core	A0867571 A0867572 A0867573	21.0 58.0 62.0	22.0 59.0 63.0	1 1 1	6.4 874.3 10.4	0.7 1.6 0.3	73 37 27.8	18.7 12.8 4.6	128 65 80	1 0. 1.
staining pervasiv Fault zo quartz o become	at 7.45 m ve silicifica one at 7.45 carbonate es really br	on 2.5 cm fault surfaction. m with strong associate and stringers	ce. Fracture controlled ated oxide stains orien are commonly oriented	carbonate alteration common ted 75 DTCA and parallel to fo	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core	A0867571 A0867572 A0867573 A0867574	21.0 58.0 62.0 63.0	22.0 59.0 63.0 64.0	1 1 1	6.4 874.3 10.4 34.4	0.7 1.6 0.3 0.3	73 37 27.8 17.1	18.7 12.8 4.6 7.9	128 65 80 85	1 0. 1. 0.
staining pervasiv Fault zo quartz c become commor Target (at 7.45 m ve silicifica one at 7.45 carbonate es really br n on fractu Q17 quarta	on 2.5 cm fault surfaction. m with strong associate veinlets and stringers oken up below 15.27 tres throughout zone. vein intersected at 73	ce. Fracture controlled ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with inc	carbonate alteration common ted 75 DTCA and parallel to for parallel to the foliation at 70 to the gouges at 20.5 and 21.8 m reased related silicification at 5	throughout unit. Weak oliation. Quartz and to 80 DTCA. Core h. Moderate limonite	A0867571 A0867572 A0867573 A0867574 A0867575	21.0 58.0 62.0 63.0 64.0	22.0 59.0 63.0 64.0 65.0	1 1 1 1	6.4 874.3 10.4 34.4 235.7	0.7 1.6 0.3 0.3 1.1	73 37 27.8 17.1 33.7	18.7 12.8 4.6 7.9 9.1	128 65 80 85 69	1 0. 1. 0.
staining pervasive Fault zo quartz of become common Target (HW sheincrease	at 7.45 m ve silicification at 7.45 carbonate es really br n on fractu Q17 quart: ear zone bes with the	on 2.5 cm fault surfaction. m with strong associate veinlets and stringers token up below 15.27 ares throughout zone. z vein intersected at 73 egins about 70.00 m estilicification up to 2%	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m is with stringers and veil	carbonate alteration common ted 75 DTCA and parallel to for diparallel to the foliation at 70 trith gouges at 20.5 and 21.8 m reased related silicification at 5 FW to the Q17. Disseminated allets of quartz containing blebl	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core bliation. Moderate limonite 59.00 - 73.00 m. Main pyrite mineralization by pyrite. The quartz	A0867571 A0867572 A0867573 A0867574	21.0 58.0 62.0 63.0	22.0 59.0 63.0 64.0	1 1 1	6.4 874.3 10.4 34.4	0.7 1.6 0.3 0.3	73 37 27.8 17.1	18.7 12.8 4.6 7.9	128 65 80 85	1 0. 1. 0. 0.
staining pervasive Fault zo quartz obecome commore Target (HW sheincrease vein itse	at 7.45 m we silicificate at 7.45 carbonate as really brong on fractual Q17 quarts ar zone swith the left contains	on 2.5 cm fault surfaction. in m with strong associate veinlets and stringers oken up below 15.27 ares throughout zone. It vein intersected at 73 egins about 70.00 m earlication up to 2% of ark orange gouge of a stronge gouge of the stronge of	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m to with stringers and veicen both contacts. The F	carbonate alteration common ted 75 DTCA and parallel to for d parallel to the foliation at 70 to the gouges at 20.5 and 21.8 m reased related silicification at 5 FW to the Q17. Disseminated	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core bliation. Moderate limonite 59.00 - 73.00 m. Main pyrite mineralization by pyrite. The quartz gride (exact width can't	A0867571 A0867572 A0867573 A0867574 A0867575 A0867576	21.0 58.0 62.0 63.0 64.0 65.0	22.0 59.0 63.0 64.0 65.0 66.0	1 1 1 1 1	6.4 874.3 10.4 34.4 235.7 88.3	0.7 1.6 0.3 0.3 1.1 0.4	73 37 27.8 17.1 33.7 27.5	18.7 12.8 4.6 7.9 9.1 6.3	128 65 80 85 69 72	1 0. 1. 0. 0. 0.
staining pervasiv Fault zo quartz c become common Target (HW she increase vein itse be meas specula	at 7.45 m we silicification at 7.45 carbonate es really bran on fractual 217 quartzear zone bes with the est with the surred and arrite +/- gal	on 2.5 cm fault surfaction. in m with strong associate veinlets and stringers oken up below 15.27 lites throughout zone. It vein intersected at 73 egins about 70.00 m et e silicification up to 2% as dark orange gouge of thas fragments of quatena. QV is oriented at	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m low with stringers and veiron both contacts. The Fartz with dark orange to t 20 DTCA. Quartz with	carbonate alteration common ted 75 DTCA and parallel to for d parallel to the foliation at 70 to the gouges at 20.5 and 21.8 m reased related silicification at 5 FW to the Q17. Disseminated plets of quartz containing blebs FW contact gouge is ~20 cm w	chroughout unit. Weak colliation. Quartz and to 80 DTCA. Core n. Moderate limonite collins in the collins of th	A0867571 A0867572 A0867573 A0867574 A0867575 A0867576 A0867577	21.0 58.0 62.0 63.0 64.0 65.0 66.0	22.0 59.0 63.0 64.0 65.0 66.0 67.0	1 1 1 1 1 1	6.4 874.3 10.4 34.4 235.7 88.3 95.8	0.7 1.6 0.3 0.3 1.1 0.4 0.6	73 37 27.8 17.1 33.7 27.5 50.9	18.7 12.8 4.6 7.9 9.1 6.3 27.4	128 65 80 85 69 72 150	1 0. 1. 0. 0. 0.
staining pervasiv Fault zo quartz c become common Target (HW she increase vein itse be mease specula precipita	at 7.45 m we silicificatione at 7.45 carbonate as really bron on fractual 217 quart: car zone bes with the elf contains sured) and rite +/- gat at ded within	on 2.5 cm fault surfaction. in m with strong association weinlets and stringers oken up below 15.27 ares throughout zone. It wein intersected at 73 egins about 70.00 m expression in the silicification up to 2% as dark orange gouge of the stragments of quality and the stragments of quality at the stragments of quality and the stragme	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m look owith stringers and veil on both contacts. The Fartz with dark orange to the entire width.	carbonate alteration common ted 75 DTCA and parallel to for d parallel to the foliation at 70 to the gouges at 20.5 and 21.8 m reased related silicification at 9 FW to the Q17. Disseminated alets of quartz containing bleble FW contact gouge is ~20 cm word black matrix containing mass and the vein is fractured with or the parallel of	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core h. Moderate limonite 59.00 - 73.00 m. Main pyrite mineralization by pyrite. The quartz ride (exact width can't sive pyrite and ange sulphides	A0867571 A0867572 A0867573 A0867574 A0867575 A0867576 A0867577 A0867578	21.0 58.0 62.0 63.0 64.0 65.0 66.0 67.0	22.0 59.0 63.0 64.0 65.0 66.0 67.0 68.0	1 1 1 1 1 1 1	6.4 874.3 10.4 34.4 235.7 88.3 95.8 20	0.7 1.6 0.3 0.3 1.1 0.4 0.6	73 37 27.8 17.1 33.7 27.5 50.9 45.9	18.7 12.8 4.6 7.9 9.1 6.3 27.4 7.1	128 65 80 85 69 72 150	1 0. 1. 0. 0. 0. 1.
staining pervasiv Fault zo quartz coecome common Target (HW she ncrease vein itse pe meas specula precipita	at 7.45 m ve silicification at 7.45 carbonate as really bron on fractu Q17 quarticar zone be ear zone beelf contains sured) and rite +/- gal ated withir	on 2.5 cm fault surfaction. 5 m with strong associate veinlets and stringers oken up below 15.27 ares throughout zone. 2 vein intersected at 73 egins about 70.00 m etailicification up to 25 dark orange gouge of has fragments of qualena. QV is oriented at a fractures throughout ed pyrite visible in the	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m look owith stringers and veil on both contacts. The Fartz with dark orange to the entire width.	carbonate alteration common ted 75 DTCA and parallel to for parallel to the foliation at 70 to the foliation at 20.5 and 21.8 m reased related silicification at 5 FW to the Q17. Disseminated lebs of quartz containing blebs W contact gouge is ~20 cm who black matrix containing mass and the vein is fractured with or to for the unit to 59.00 m above	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core h. Moderate limonite 59.00 - 73.00 m. Main pyrite mineralization by pyrite. The quartz ride (exact width can't sive pyrite and ange sulphides	A0867571 A0867572 A0867573 A0867574 A0867575 A0867576 A0867577 A0867578 A0867579	21.0 58.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0	22.0 59.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0	1 1 1 1 1 1 1 1	6.4 874.3 10.4 34.4 235.7 88.3 95.8 20 19.3	0.7 1.6 0.3 0.3 1.1 0.4 0.6 0.4 0.5	73 37 27.8 17.1 33.7 27.5 50.9 45.9 70.2	18.7 12.8 4.6 7.9 9.1 6.3 27.4 7.1 43.2	128 65 80 85 69 72 150 100	1 0. 1. 0. 0. 0. 1. 1.
staining pervasive ault zo quartz co pecome common rarget (HW she ncrease yein itse pecula precipitar race di frace si	at 7.45 m we silicification at 7.45 carbonate as really brong on fracture ar zone bees with the sured) and rite +/- galated within isseminate ulphides of	on 2.5 cm fault surfaction. 5 m with strong associate veinlets and stringers oken up below 15.27 ares throughout zone. 2 vein intersected at 73 egins about 70.00 m etailicification up to 25 dark orange gouge of has fragments of qualena. QV is oriented at a fractures throughout ed pyrite visible in the	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m lowith stringers and vein both contacts. The Fartz with dark orange to the entire width. mafic volcanics from to the end of the hole m to the end of the hole.	carbonate alteration common ted 75 DTCA and parallel to for parallel to the foliation at 70 to the foliation at 20.5 and 21.8 m reased related silicification at 5 FW to the Q17. Disseminated lebs of quartz containing blebs W contact gouge is ~20 cm who black matrix containing mass and the vein is fractured with or to for the unit to 59.00 m above	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core h. Moderate limonite 59.00 - 73.00 m. Main pyrite mineralization by pyrite. The quartz ride (exact width can't sive pyrite and ange sulphides	A0867571 A0867572 A0867573 A0867574 A0867575 A0867576 A0867577 A0867578 A0867579 A0867580	21.0 58.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0	22.0 59.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0	1 1 1 1 1 1 1 1 1 0.48	6.4 874.3 10.4 34.4 235.7 88.3 95.8 20 19.3 36.3	0.7 1.6 0.3 0.3 1.1 0.4 0.6 0.4 0.5	73 37 27.8 17.1 33.7 27.5 50.9 45.9 70.2 120.6	18.7 12.8 4.6 7.9 9.1 6.3 27.4 7.1 43.2 6.4	128 65 80 85 69 72 150 100 128 78	1 0. 1. 0. 0. 1. 1. 1.
staining pervasin Fault zo quartz co pecome common Target (HW she ncrease wein itse pecula precipita Trace di Trace di Trace si	at 7.45 m we silicification at 7.45 carbonate es really bran on fractu. Q17 quartzer zone bes with the elf contains sured) and rite +/- galated within isseminate ulphides contains.	on 2.5 cm fault surfaction. in m with strong associate veinlets and stringers oken up below 15.27 litres throughout zone. It vein intersected at 73 egins about 70.00 m et e silicification up to 2% of dark orange gouge of thas fragments of quatena. QV is oriented at a fractures throughout ed pyrite visible in the ontinue below 83.00 m Type/Style/Intensit	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m lowith stringers and vein both contacts. The Fartz with dark orange to the entire width. mafic volcanics from to the end of the hole m to the end of the hole.	carbonate alteration common ted 75 DTCA and parallel to for parallel to the foliation at 70 to the foliation at 20.5 and 21.8 m reased related silicification at 5 FW to the Q17. Disseminated lebs of quartz containing blebs W contact gouge is ~20 cm who black matrix containing mass and the vein is fractured with or to for the unit to 59.00 m above	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core h. Moderate limonite 59.00 - 73.00 m. Main pyrite mineralization by pyrite. The quartz ride (exact width can't sive pyrite and ange sulphides	A0867571 A0867572 A0867573 A0867574 A0867575 A0867576 A0867577 A0867578 A0867579 A0867580 A0867581	21.0 58.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0	22.0 59.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 69.48 70.2	1 1 1 1 1 1 1 1 0.48 0.72	6.4 874.3 10.4 34.4 235.7 88.3 95.8 20 19.3 36.3 336.1	0.7 1.6 0.3 0.3 1.1 0.4 0.6 0.4 0.5 0.5	73 37 27.8 17.1 33.7 27.5 50.9 45.9 70.2 120.6 111.7	18.7 12.8 4.6 7.9 9.1 6.3 27.4 7.1 43.2 6.4 9.2	128 65 80 85 69 72 150 100 128 78	1 0. 1. 0. 0. 1. 1. 1. 0.
staining pervasin Fault zo quartz co quartz co pecome common Target (HW she ncrease vein itse peculas precipita Trace di Trace si Alterati 0.41 - 73	at 7.45 m we silicification at 7.45 carbonate es really bran on fractural ar zone bes with the est with an article +/- gal ated within isseminate with the est wi	on 2.5 cm fault surfaction. on with strong association weinlets and stringers oken up below 15.27 lines throughout zone. It vein intersected at 73 egins about 70.00 m et e silicification up to 2% of a dark orange gouge of a has fragments of qualena. QV is oriented at a fractures throughout ed pyrite visible in the ontinue below 83.00 m Type/Style/Intensit Chl Pv M	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m lowith stringers and vein both contacts. The Fartz with dark orange to the entire width. mafic volcanics from to the end of the hole m to the end of the hole.	carbonate alteration common ted 75 DTCA and parallel to for parallel to the foliation at 70 to the foliation at 20.5 and 21.8 m reased related silicification at 5 FW to the Q17. Disseminated lebs of quartz containing blebs W contact gouge is ~20 cm who black matrix containing mass and the vein is fractured with or to for the unit to 59.00 m above	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core h. Moderate limonite 59.00 - 73.00 m. Main pyrite mineralization by pyrite. The quartz ride (exact width can't sive pyrite and ange sulphides	A0867571 A0867572 A0867573 A0867574 A0867575 A0867576 A0867577 A0867578 A0867579 A0867580 A0867581 A0867582	21.0 58.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 69.48 70.2	22.0 59.0 63.0 64.0 65.0 66.0 67.0 68.0 69.48 70.2 71.0	1 1 1 1 1 1 1 1 0.48 0.72	6.4 874.3 10.4 34.4 235.7 88.3 95.8 20 19.3 36.3 336.1 408.4	0.7 1.6 0.3 0.3 1.1 0.4 0.6 0.4 0.5 0.5 1.4 1.6	73 37 27.8 17.1 33.7 27.5 50.9 45.9 70.2 120.6 111.7 69.4	18.7 12.8 4.6 7.9 9.1 6.3 27.4 7.1 43.2 6.4 9.2 7.9	128 65 80 85 69 72 150 100 128 78 85 75	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
staining pervasiv Fault zo quartz c become common Target (HW she increase vein itse be meas specula precipita	at 7.45 m we silicification at 7.45 carbonate es really bran on fractural ar zone bes with the est with an article +/- gal ated within isseminate with the est wi	on 2.5 cm fault surfaction. in m with strong associate veinlets and stringers oken up below 15.27 litres throughout zone. It vein intersected at 73 egins about 70.00 m et e silicification up to 2% of dark orange gouge of thas fragments of quatena. QV is oriented at a fractures throughout ed pyrite visible in the ontinue below 83.00 m Type/Style/Intensit	ated oxide stains orien are commonly oriented m within a fault zone w 3.00 - 77.00 m with incextending to ~79.00 m lowith stringers and vein both contacts. The Fartz with dark orange to the entire width. mafic volcanics from to the end of the hole m to the end of the hole.	carbonate alteration common ted 75 DTCA and parallel to for parallel to the foliation at 70 to the foliation at 20.5 and 21.8 m reased related silicification at 5 FW to the Q17. Disseminated lebs of quartz containing blebs W contact gouge is ~20 cm who black matrix containing mass and the vein is fractured with or to for the unit to 59.00 m above	throughout unit. Weak bliation. Quartz and to 80 DTCA. Core h. Moderate limonite 59.00 - 73.00 m. Main pyrite mineralization by pyrite. The quartz ride (exact width can't sive pyrite and ange sulphides	A0867571 A0867572 A0867573 A0867574 A0867575 A0867576 A0867577 A0867578 A0867579 A0867580 A0867581 A0867582 A0867583	21.0 58.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 69.48 70.2 71.0	22.0 59.0 63.0 64.0 65.0 66.0 67.0 68.0 69.48 70.2 71.0	1 1 1 1 1 1 1 1 0.48 0.72 0.85	6.4 874.3 10.4 34.4 235.7 88.3 95.8 20 19.3 36.3 336.1 408.4	0.7 1.6 0.3 0.3 1.1 0.4 0.6 0.4 0.5 1.4 1.6 6.7	73 37 27.8 17.1 33.7 27.5 50.9 45.9 70.2 120.6 111.7 69.4 83.6	18.7 12.8 4.6 7.9 9.1 6.3 27.4 7.1 43.2 6.4 9.2 7.9 21.2 59.8	128 65 80 85 69 72 150 100 128 78 85 75 83	2. 1 0. 1. 0. 0. 1. 1. 0. 1. 0.

Project: Doc	Project						Hole I	Number	: DC-2	0-04		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
0.41 - 59.0	Si P W		A0867588	73.5	74.5	1	448.8	2.1	28.9	62.1	5	0.9
59.0 - 73.0	Si Pv S	Strong pervasive silicification appearing HW to the main Q17	A0867589	74.5	75.5	1	284.3	1.9	31.4	82.5	5	0.6
00.0	G G	quartz vein. Zone is heavily fractured with increased sulphides appearing on fractures and disseminated within the host rock.	A0867590	75.5	76.3	0.8	494.6	4	134.2	334	13	1
70.0 - 77.5	Rs FV S	Strong orange to dark orange, structurally controlled rust staining in fractures and within gouges associated with the quartz vein.	A0867591	76.3	77.0	0.7	18649. 2	76.9	920.9	641.4	43	1.1
77.5 - 92.0	Cal FV W	<u> </u>	A0867592	77.0	77.6	0.6	1615.3	7.1	401.3	137.5	78	1.5
77.5 - 92.0	Chl Pv M		A0867593	77.6	78.2	0.6	229.7	0.9	166.5	13	77	0.25
77.5 - 92.0		Moderate sericite alteration on the HW of the Q17 associated with	A0867594	78.2	79.0	0.8	73.6		142.2	8.6	93	0.25
69.48 - 71.85	Ser B M	heavily disseminated fine grained pyrite.	A0867595	79.0	80.0	1	14.1	0.4	105.9	4.1	117	0.25
Mineralization	Type/Style/%Mineral	Comments										
0.41 - 59.0	Py D 0.1%											
7.45 - 7.55	Ox FR 2%											
59.0 - 70.0	Py D 2%	Disseminated pyrite increasing with silicification on HW of Q17 vein.										
70.0 - 73.0	Ox D 10%	Heavily disseminated oxidized sulphides proximal to Q17.										
73.0 - 73.5	Ox FR 15%	Strong oxides in HW contact gouge to Q17.										
73.5 - 76.3	Ox FR 10%	Strong sulphides in fractures and on local shearing within Q17 quartz vein. Sulphides are all oxidized out within vein.										
76.3 - 77.0	Ox FR 35%	~ Sheared FW contact of Q17 vein with intense dark orange to black sulphides within broken gouge. Gouge also contains specularite.										
77.0 - 77.5	Ox FR 5%	Weak shearing compared to above still with structurally controlled and disseminated orange sulphides up to 5%.										
77.5 - 89.0	Py D 1%	Trace to 1% disseminated sulphides in competent mafic volcanic host rock.										
Structure	Type/Intensity	Comments										
15.27 - 67.7	Flt S	Strong fault zone with several gouges. Oxidized limonite staining on fractures and throughout the host rock. Interval is significantly broken up with local core loss up to 30% of the unit. Fractures commonly oriented sub parallel to the core axis ~20 DTCA										
67.7 - 73.0	She S	Sheared HW contact of the Q17 quartz vein. Oriented at 20 DTCA.										
73.0 - 77.0	Vqtz In	Q17 quartz vein with intense oxidized fracturing.										
76.3 - 77.0	G In	Massive oxidized sulphides within the gouge. Interval is broken up with specularite.										
77.0 - 77.6	She In	Oriented at 20 DTCA. Sheared FW of the Q17 quartz vein. Ground conditions significantly improve below this zone.										

ect: Doc	Project						Hole Number: DC-20-04
ented Point S	Structure						
Depth	Structure	Al	lpha Angle	Beta Angle	Strike	Dip	Comment
3.8	Fol		70				
7.45	Flt		70				3 cm wide fault zone with intense red rust staining
10	Fol		69				
15.4	Vqtz		70				1 cm wide rusty qv
20.5	G						gouge undefined orientation and thickness
21.8	G						gouge undefined orientation and thickness
28	F		30				
36	F		20				Fracture with limonite coating.
38.8	Fol		70				
53.5	Fol		75				
47.7	F		20				LIMONITE COATING
62	Fol		52				
71.1	She		31				Shear proximal to Q17 with heavy disseminated sulphides.
69	Col		50				
76.3	Flt		33				Faulting on lower contact of Q17 vein.
76.7	G		24				Gouge with significant oxidized massive mineralization. Specularite also present.
73	She		22				Gouge with significant oxidized massive mineralization. Specularite also present. Upper sheared contact of Q17 quartz vein. Inten limonite and oxidization.
77.77	Fol		15				
84.9	Fol		55				
83.66	F		12				
89.4	Fol		55				
tech							
From	То	Recovery	Recovery %	Comments			
0.41	5	4.3	93.68				
5	8	2.73	91				
8	11	3	100				
11	14	2.5	83.33				
14	17	2.5	83.33				
17	20	2.56	85.33				

Project:	Doc Pro	ject			Hole Number: DC-20-04
	20	23	2.35	78.33	
	23	26	2.95	98.33	
	26	29	2.91	97	
	29	32	2.28	76	
	32	35	2.1	70	
	35	38	2.3	76.67	
	38	41	2.95	98.33	
	41	44	3	100	
	44	47	2.1	70	
	47	50	2.85	95	
	50	53	2.88	96	
	53	56	2.76	92	
	56	59	2.88	96	
	59	62	2.77	92.33	
	62	65	2.98	99.33	
	65	68	2.5	83.33	
	68	71	3.01	100.33	
	71	74	3.08	102.67	
	74	77	2.95	98.33	
	77	80	2.6	86.67	
	80	83	0	0	Adit void
	83	86	2.57	85.67	
	86	89	2.9	96.67	
	89	92	2.7	90	

		Project								Hole N	lumber	: DC-20	0-05		
			Drill Hole			Drilling					Colla	ar Surve	y		
Hole	type	DD	Core location:	Doc Camp	Drilling started	Sep-08-20	20		Grid	d:	N	IAD83 /	UTM zo	ne 9N	
Hole	size:	HQ	Claim number:		Drilling completed	i : Sep-10-20	20		Eas	ting:	4	10,142			
Actu	ıal depth:	143.0	Logged by:		Drilling contractor	r: Dorado			Nor	thing:	6	,244,75	1		
Targ	et:								Ele	vation:	1	,273			
Survey															
	Depth	Survey Type	Mag Azimuth	Azimuth	Dip	Sui	rvey Qual	ity							
	0	Collar Hanstone	215	215	-75										
	20	Reflex Hanstone	194.4	212.4	-72.7										
	70	Reflex Hanstone	190.4	208.4	-72.5										
	122	Reflex Hanstone	183.7	201.7	-72.3										
rom	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	A (ppn
)	9	CAS - Casing								,	,	,	,	,	
)	143	MV - Mafic Volca	nic			A0867596	41.0	41.63	0.63	28.9	2.9	964.6	7.5	91	7
Grey to	greenish g	grey, fine grained and	weakly foliated mafic v	olcanic rock. Sporadic 5 - 20 c	em aplite bands	A0867596 A0867597	41.0 54.1	41.63 55.1	0.63	28.9	2.9	964.6	7.5 1.7	91 106	
Grey to present racture	greenish g above 29 surfaces.	grey, fine grained and .00 m. Weak to mode Frequent stockwork c	weakly foliated mafic verate pervasive chlorite carbonate fracturing thre	alteration. Dark brown oxide o oughout the unit. Weak to loca	commonly coating lly moderate										2
Grey to resent acture ilicifica	greenish of above 29. surfaces. Ition appearances.	grey, fine grained and 000 m. Weak to mode Frequent stockwork c aring below 24.00 m a n casing to 53 m with	weakly foliated mafic verate pervasive chlorite carbonate fracturing through the carbonate fracturing to *. Minot 1-3 m zones of broken	alteration. Dark brown oxide of bughout the unit. Weak to loca or structurally controlled sericite core due to increased sulphide	commonly coating Ily moderate a around aplite dykes. coated fracturing.	A0867597	54.1	55.1	1	6.2	0.2 0.2	39.2	1.7	106	2 1
Grey to resent racture ilicifica Init is buartz	greenish of above 29 surfaces. Ition appearablocky from veinlets or s coated w	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m at a casing to 53 m with iented at 45 DTCA. Storth dark red to brown	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minc 1-3 m zones of broken tockwork carbonate fracoxide. Foliation throug	alteration. Dark brown oxide of bughout the unit. Weak to locat ir structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout in steepens between 26 and 42	commonly coating Illy moderate e around aplite dykes. e coated fracturing. tt the unit. Open 2 m to 35 DTCA.	A0867597 A0867598	54.1 55.1	55.1 56.1	1 1	6.2 3.2	0.2 0.2	39.2 37.7	1.7 7.4	106 63	2 1 1
arey to resent acture ilicifica Init is buartz acture oliation elow fa	greenish of above 29. surfaces. surfaces olocky from veinlets or s coated who is otherwault zone of above 29.	grey, fine grained and 00 m. Weak to mode Frequent stockwork caring below 24.00 m and casing to 53 m with iented at 45 DTCA. St with dark red to brown vise consistent at 45-6-30 DTCA from 128.15	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minc 1-3 m zones of broken tockwork carbonate fracoxide. Foliation throug 55 DTCA to ~129.5 m. Feult go	alteration. Dark brown oxide of bughout the unit. Weak to locator structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout the steepens between 26 and 42 Fault zone from 126 to 128.15 uge at 130.4 m below which significant authematic structure in the structure of t	commonly coating Ily moderate e around aplite dykes. e coated fracturing. ut the unit. Open 2 m to 35 DTCA. m. Foliation shallower trong shearing and	A0867597 A0867598 A0867599	54.1 55.1 56.1	55.1 56.1 57.1	1 1 1	6.2 3.2 653.9	0.2 0.2 4.6	39.2 37.7 107.9	1.7 7.4 180.9	106 63 91	1
Grey to present racture illicification in the control of the contr	greenish of above 29 surfaces. Ition appeablocky from veinlets or s coated with a contract of the coated with a coated wit	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m at seing to 53 m with iented at 45 DTCA. Storth dark red to brown ise consistent at 45-6 .30 DTCA from 128.15 uring is present to ~13 8.05 to EOH at 143 m	weakly foliated mafic verate pervasive chlorite carbonate fracturing through the carbonate fracturing the carbonate fracturing to *. Minc 1-3 m zones of broken tockwork carbonate fracturing the ca	alteration. Dark brown oxide obughout the unit. Weak to loca or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 fault zone from 126 to 128.15 uge at 130.4 m below which sign 135.8 to 138.05 m. Weak to loyrite mineralization through the	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open I m to 35 DTCA. m. Foliation shallower trong shearing and ocally moderate le unit to where	A0867597 A0867598 A0867599 A0867600	54.1 55.1 56.1 57.1	55.1 56.1 57.1 58.1	1 1 1 1	6.2 3.2 653.9 107.1	0.2 0.2 4.6 0.8	39.2 37.7 107.9 50.3	1.7 7.4 180.9 152.1	106 63 91 114	2 1 1
Grey to resent acture ilicification is buartz cacture foliation elow faveak to acturir ilicifica ilicifica	greenish of above 29 surfaces. Ition appealocky from veinlets or s coated who is otherwall zone of mod fracting from 13 tion increation down	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m an casing to 53 m with iented at 45 DTCA. Storith dark red to brown rise consistent at 45-6-30 DTCA from 128.15 uring is present to ~13 8.05 to EOH at 143 mses at 54.10 m. Sulph to 78.10 m where con	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minot 1-3 m zones of broken tockwork carbonate fracturing thrung 55 DTCA to ~129.5 m. For to 130.40 m. Fault go 35.8 m. Fault zone from the carbonated phides increase in concert becomes broken up a serious three provides increase in concert in the carbonate of the carbon	alteration. Dark brown oxide of pughout the unit. Weak to local or structurally controlled sericity core due to increased sulphide cturing is ubiquitous throughout a steepens between 26 and 42 fault zone from 126 to 128.15 uge at 130.4 m below which sin 135.8 to 138.05 m. Weak to loyrite mineralization through the intration with moderate to local and core loss becomes locally	commonly coating Illy moderate e around aplite dykes. e coated fracturing. It the unit. Open In moderate m to 35 DTCA. m. Foliation shallower trong shearing and locally moderate ne unit to where Illy strong patchy significant.	A0867597 A0867598 A0867599 A0867600 A0867601	54.1 55.1 56.1 57.1 58.1	55.1 56.1 57.1 58.1 59.1	1 1 1 1	6.2 3.2 653.9 107.1 0.25	0.2 0.2 4.6 0.8 0.2	39.2 37.7 107.9 50.3 26.2	1.7 7.4 180.9 152.1 12.8	106 63 91 114 39	1 1 1 0
arey to resent racture ilicifica Init is buartz racture foliation elow faveak to acturir ilicifica ilicifica	greenish of above 29 surfaces. Ition appealookly from veinlets or s coated with a coat	grey, fine grained and 00 m. Weak to mode Frequent stockwork caring below 24.00 m an casing to 53 m with iented at 45 DTCA. Since consistent at 45-6-30 DTCA from 128.15 uring is present to ~1% 8.05 to EOH at 143 m sees at 54.10 m. Sulph to 78.10 m where corars between thin fractu	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minc 1-3 m zones of broken tockwork carbonate fracoxide. Foliation throug 55 DTCA to ~129.5 m. Fault go 35.8 m. Fault zone fron h. Trace disseminated hides increase in concere becomes broken up aures from 60.00 - 61.10	alteration. Dark brown oxide of oughout the unit. Weak to loca or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 fault zone from 126 to 128.15 uge at 130.4 m below which sign 135.8 to 138.05 m. Weak to loyrite mineralization through the intration with moderate to local and core loss becomes locally m. Up to 5 cm wide quartz vei	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open 2 m to 35 DTCA. m. Foliation shallower trong shearing and locally moderate lie unit to where lly strong patchy significant. Ining with carbonate is	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602	54.1 55.1 56.1 57.1 58.1 59.1	55.1 56.1 57.1 58.1 59.1 60.0	1 1 1 1 1 0.9	6.2 3.2 653.9 107.1 0.25 5.6	0.2 0.2 4.6 0.8 0.2 0.3	39.2 37.7 107.9 50.3 26.2 22.6	1.7 7.4 180.9 152.1 12.8 102.8	106 63 91 114 39 63	1 1 1 0
rey to resent acture licifica nit is buartz acture oliationelow faeak to acturir licifica pecular pecular pecular noneal (1-	greenish (above 29 surfaces. tion appealolocky from veinlets or s coated w n is otherwault zone ~ mod fract of from 13 tion increation down arite appea n throughc	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m an incasing to 53 m with iented at 45 DTCA. Storith dark red to brown vise consistent at 45-6-30 DTCA from 128.15 k.05 to EOH at 143 m ases at 54.10 m. Sulph to 78.10 m where contact the silicified zone was to the silicified zone was to mode.	weakly foliated mafic verate pervasive chlorite carbonate fracturing through the carbonate fracturing the carbonate fracturing to *. Minot 1-3 m zones of broken tockwork carbonate fracturing to the carbonate fracturing the	alteration. Dark brown oxide of oughout the unit. Weak to local or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 and 26 and 130.4 m below which sign 135.8 to 138.05 m. Weak to local or weak to local or weak to local and core loss becomes locally m. Up to 5 cm wide quartz vein ace disseminated py above 12 mineralized to semi massive propertical or structured to semi massive processing the surface of the su	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open In the unit. Open In the unit to where In	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602 A0867603	54.1 55.1 56.1 57.1 58.1 59.1 60.0	55.1 56.1 57.1 58.1 59.1 60.0 60.6	1 1 1 1 1 0.9 0.6	6.2 3.2 653.9 107.1 0.25 5.6	0.2 0.2 4.6 0.8 0.2 0.3	39.2 37.7 107.9 50.3 26.2 22.6 17.4	1.7 7.4 180.9 152.1 12.8 102.8 5.1	106 63 91 114 39 63 82	1 1 0 0.2
arey to resent acture dilicification for acture oliation elow facture acturing dilicification elow facturing dilicification elow facturing dilicification elow facturing dilicification elocal (1-34.40	greenish of above 29 surfaces. Ition appealocky from veinlets or second with the surface of the	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m an incasing to 53 m with iented at 45 DTCA. Storith dark red to brown vise consistent at 45-6-30 DTCA from 128.15 k.05 to EOH at 143 m ases at 54.10 m. Sulph to 78.10 m where contact the silicified zone was to the silicified zone was to mode.	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minot 1-3 m zones of broken tockwork carbonate fracturing thrung 55 DTCA to ~129.5 m. F 5 to 130.40 m. Fault go 35.8 m. Fault zone from 1. Trace disseminated phides increase in concere becomes broken up a ures from 60.00 - 61.10 with up to 3% pyrite. Tracelow to 132.23 m. Well persists to approx 136 n	alteration. Dark brown oxide of oughout the unit. Weak to loca or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 and 120 and 126 to 128.15 and 135.8 to 138.05 m. Weak to locally increased in 135.8 to 138.05 m. Weak to locally increased in 135.8 to 138.05 m. Weak to locally increased in 135.8 to 138.05 m. Weak to locally increased in 135.8 to 138.05 m. Weak to locally increased in 135.8 to 138.05 m. Weak to locally increased in 135.8 to 138.05 m. Weak to locally increased in 135.8 to 136.05 m. Weak to locally increased in 135.8 to 136.05 m. Weak to locally increased in 135.05 m. Weak to locally inc	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open In the unit. Open In the unit to where In	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602 A0867603 A0867604	54.1 55.1 56.1 57.1 58.1 59.1 60.0 60.6	55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6	1 1 1 1 1 0.9 0.6	6.2 3.2 653.9 107.1 0.25 5.6 6 4.6	0.2 0.2 4.6 0.8 0.2 0.3 0.2	39.2 37.7 107.9 50.3 26.2 22.6 17.4 13.2	1.7 7.4 180.9 152.1 12.8 102.8 5.1 6.3	106 63 91 114 39 63 82 77	2 1 1 1 0 0 0.2
arey to resent acture dilicifical init is bount of acture oliation for acturirilicifical dilicifical ilicifical pecular one one ocal (1-34.40 bserve	greenish of above 29 surfaces. Ition appealookly from veinlets or s coated with a sufface of the surface of the	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m an casing to 53 m with iented at 45 DTCA. Stovith dark red to brown rise consistent at 45-6-30 DTCA from 128.19 uring is present to ~13 8.05 to EOH at 143 m ases at 54.10 m. Sulph to 78.10 m where controlled by the silicified zone we turally controlled by be inated to stringer by person to the silicified sone we have the silicified sone we have the silicified zone we have the silicified sone sone sone sone sone sone sone sone	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minot 1-3 m zones of broken tockwork carbonate fracturing thrunds. Foliation throug 55 DTCA to ~129.5 m. F 5 to 130.40 m. Fault go 35.8 m. Fault zone from n. Trace disseminated phides increase in concere becomes broken up a cures from 60.00 - 61.10 with up to 3% pyrite. Traclow to 132.23 m. Well persists to approx 136 n to 135.6 m.	alteration. Dark brown oxide of oughout the unit. Weak to local or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 and 26 and 130.4 m below which sign 135.8 to 138.05 m. Weak to local or weak to local or weak to local and core loss becomes locally m. Up to 5 cm wide quartz vein ace disseminated py above 12 mineralized to semi massive propertical or structured to semi massive processing the surface of the su	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open In the unit. Open In the unit to where In	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602 A0867603 A0867604 A0867605	54.1 55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6	55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6	1 1 1 1 0.9 0.6 1	6.2 3.2 653.9 107.1 0.25 5.6 6 4.6 422.3	0.2 0.2 4.6 0.8 0.2 0.3 0.2 0.1 1.5	39.2 37.7 107.9 50.3 26.2 22.6 17.4 13.2 29.4	1.7 7.4 180.9 152.1 12.8 102.8 5.1 6.3 6.6	106 63 91 114 39 63 82 77 50	2 1 1 1 0 0 0.2 0
rey to resent acture licificanit is buartz vacture oliationelow faeak to acturilicifical licifical pecular monocal (1-34.40 oserve	greenish of above 29, surfaces, surfaces, stion appealocky from veinlets or s coated with a sufface and fraction increation down arite appears througher 3%) struction, disseminated at 125.3 stoon	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m an casing to 53 m with icated at 45 DTCA. Storith dark red to brown rise consistent at 45-6-30 DTCA from 128.15 uring is present to ~10 8.05 to EOH at 143 mases at 54.10 m. Sulph to 78.10 m where controlled by the silicified zone we the silicified zone with all the si	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minot 1-3 m zones of broken tockwork carbonate fracturing thrunds. Foliation throug 55 DTCA to ~129.5 m. F 5 to 130.40 m. Fault go 35.8 m. Fault zone from n. Trace disseminated phides increase in concere becomes broken up a cures from 60.00 - 61.10 with up to 3% pyrite. Traclow to 132.23 m. Well persists to approx 136 n to 135.6 m.	alteration. Dark brown oxide of oughout the unit. Weak to local or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 and 26 and 130.4 m below which sign 135.8 to 138.05 m. Weak to local or weak to local or weak to local and core loss becomes locally m. Up to 5 cm wide quartz vein ace disseminated py above 12 mineralized to semi massive propertical or structured to semi massive processing the surface of the su	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open In the unit. Open In the unit to where In	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602 A0867603 A0867604 A0867605 A0867606	54.1 55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6	55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6	1 1 1 1 1 0.9 0.6 1 1	6.2 3.2 653.9 107.1 0.25 5.6 6 4.6 422.3	0.2 0.2 4.6 0.8 0.2 0.3 0.2 0.1 1.5	39.2 37.7 107.9 50.3 26.2 22.6 17.4 13.2 29.4 25.1	1.7 7.4 180.9 152.1 12.8 102.8 5.1 6.3 6.6 3.9	106 63 91 114 39 63 82 77 50 76	22 11 11 00 00 0.2 00 00 0.2
arey to resent acture elicification it is but acture oliation elow facat to acturing elicification pecular omno ocal (1-34.40 bserve	greenish of above 29, surfaces, surfaces, stion appealocky from veinlets or s coated with a sufface and fraction increation down arite appears througher 3%) struction, disseminated at 125.3 stoon	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m an casing to 53 m with iented at 45 DTCA. Stovith dark red to brown rise consistent at 45-6-30 DTCA from 128.19 uring is present to ~13 8.05 to EOH at 143 m ases at 54.10 m. Sulph to 78.10 m where controlled by the silicified zone we turally controlled by be inated to stringer by person to the silicified sone we have the silicified sone we have the silicified zone we have the silicified sone sone sone sone sone sone sone sone	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minot 1-3 m zones of broken tockwork carbonate fracturing thrunds. Foliation throug 55 DTCA to ~129.5 m. F 5 to 130.40 m. Fault go 35.8 m. Fault zone from n. Trace disseminated phides increase in concere becomes broken up a cures from 60.00 - 61.10 with up to 3% pyrite. Traclow to 132.23 m. Well persists to approx 136 n to 135.6 m.	alteration. Dark brown oxide of oughout the unit. Weak to local or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 and 26 and 130.4 m below which sign 135.8 to 138.05 m. Weak to local or weak to local or weak to local and core loss becomes locally m. Up to 5 cm wide quartz vein ace disseminated py above 12 mineralized to semi massive propertical or structured to semi massive processing the surface of the su	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open In the unit. Open In the unit to where In	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602 A0867603 A0867604 A0867605 A0867606 A0867607	54.1 55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6	55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6 64.6	1 1 1 1 0.9 0.6 1 1 1	6.2 3.2 653.9 107.1 0.25 5.6 6 4.6 422.3 6 24.6	0.2 0.2 4.6 0.8 0.2 0.3 0.2 0.1 1.5 0.1 0.2	39.2 37.7 107.9 50.3 26.2 22.6 17.4 13.2 29.4 25.1 28.5	1.7 7.4 180.9 152.1 12.8 102.8 5.1 6.3 6.6 3.9 17.6	106 63 91 114 39 63 82 77 50 76 45	22 11 11 CC CC CC CC CC CC CC
irey to resent acture dicification it is buartz valuartz	greenish of above 29, surfaces, surfaces, stion appealocky from veinlets or s coated with a sufface and fract of a mod fract of the surface and through coated at 125.3 struction from 13 struction and the surface and through of the surface and	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m an casing to 53 m with icated at 45 DTCA. Storith dark red to brown rise consistent at 45-6-30 DTCA from 128.15 uring is present to ~10 8.05 to EOH at 143 mases at 54.10 m. Sulph to 78.10 m where controlled by the silicified zone we the silicified zone with all the si	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minot 1-3 m zones of broken tockwork carbonate fracturing thrunds. Foliation throug 55 DTCA to ~129.5 m. F 5 to 130.40 m. Fault go 35.8 m. Fault zone from n. Trace disseminated phides increase in concere becomes broken up a cures from 60.00 - 61.10 with up to 3% pyrite. Traclow to 132.23 m. Well persists to approx 136 n to 135.6 m.	alteration. Dark brown oxide of oughout the unit. Weak to local or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 and 26 and 130.4 m below which sign 135.8 to 138.05 m. Weak to local or with the steepens between 26 and 26 and 26 and 27 mineralization through the output of the steepens with moderate to local and core loss becomes locally m. Up to 5 cm wide quartz ver ace disseminated py above 12 mineralized to semi massive processing the steepens of the steepens	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open In the unit. Open In the unit to where In	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602 A0867603 A0867604 A0867605 A0867606 A0867607	54.1 55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6 64.6	55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6 64.6 65.6	1 1 1 1 0.9 0.6 1 1 1	6.2 3.2 653.9 107.1 0.25 5.6 6 4.6 422.3 6 24.6 5.7	0.2 0.2 4.6 0.8 0.2 0.3 0.2 0.1 1.5 0.1 0.2 0.2	39.2 37.7 107.9 50.3 26.2 22.6 17.4 13.2 29.4 25.1 28.5 37.2	1.7 7.4 180.9 152.1 12.8 102.8 5.1 6.3 6.6 3.9 17.6 13.1	106 63 91 114 39 63 82 77 50 76 45 66	22 11 11 CC CC CC CC CC CC CC
arey to resent acture dilicifical init is but acture oliation elow faveak to acturification ocal (1-34.40 bserve	greenish (above 29 surfaces. tion appealolocky from veinlets or s coated w n is otherw ault zone ~ mod fract of mod fract ton increation down rite appeal n through 3%) struct m, dissem ed at 125.3 fon 3.0 3.0	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m aroung below 25.00 m aroung below 25.00 m aroung 25.00 m a	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minot 1-3 m zones of broken tockwork carbonate fracturing 55 DTCA to ~129.5 m. fs to 130.40 m. Fault go 35.8 m. Fault zone from n. Trace disseminated phides increase in conceive becomes broken up a cures from 60.00 - 61.10 with up to 3% pyrite. Traclow to 132.23 m. Well persists to approx 136 m. **Ty Comments** Moderate to lo	alteration. Dark brown oxide of oughout the unit. Weak to loca or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 fault zone from 126 to 128.15 auge at 130.4 m below which sign 135.8 to 138.05 m. Weak to love the increase of t	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open 2 m to 35 DTCA. m. Foliation shallower trong shearing and locally moderate live unit to where lly strong patchy significant. Ining with carbonate is 9.83 m with weak locally moderate live unit to where live strong patchy significant. Ining with carbonate is 9.83 m with weak locally we will be a compared to the compared t	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602 A0867603 A0867604 A0867605 A0867606 A0867607 A0867608 A0867609 A0867611 A0867612	54.1 55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6 64.6 65.6	55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6 64.6 65.6 66.28	1 1 1 1 0.9 0.6 1 1 1 1 1 0.68	6.2 3.2 653.9 107.1 0.25 5.6 6 4.6 422.3 6 24.6 5.7 77.2	0.2 0.2 4.6 0.8 0.2 0.3 0.2 0.1 1.5 0.1 0.2 0.2	39.2 37.7 107.9 50.3 26.2 22.6 17.4 13.2 29.4 25.1 28.5 37.2 42.7	1.7 7.4 180.9 152.1 12.8 102.8 5.1 6.3 6.6 3.9 17.6 13.1 15.2	106 63 91 114 39 63 82 77 50 76 45 66 61	77 22 11 11 00 00.22 00 00.22 11 00 00 00 00
Grey to present racture illicifica Junit is but acture foliation for each to racture illicifica silicifica sommoo ocal (1-34.40 abserve foliation for each to racturi for each to racture	greenish (above 29 surfaces. tion appealolocky from veinlets or s coated w n is otherw ault zone ~ mod fract of mod fract ton increation down rite appeal n through 3%) struct m, dissem ed at 125.3 fon 3.0 3.0	grey, fine grained and .00 m. Weak to mode Frequent stockwork caring below 24.00 m an incasing to 53 m with iented at 45 DTCA. Storith dark red to brown vise consistent at 45-6-30 DTCA from 128.15 known as es at 54.10 m. Sulph to 78.10 m where contained to stringer py person to stringer py person and with the silicified zone we turally controlled py be inated to stringer py person and with tropy at the silicified zone we turn the silicified zone we sil	weakly foliated mafic verate pervasive chlorite carbonate fracturing thrund extending to *. Minot 1-3 m zones of broken tockwork carbonate fracturing 55 DTCA to ~129.5 m. fs to 130.40 m. Fault go 35.8 m. Fault zone from n. Trace disseminated phides increase in conceive becomes broken up a cures from 60.00 - 61.10 with up to 3% pyrite. Traclow to 132.23 m. Well persists to approx 136 m. **Ty Comments** Moderate to lo	alteration. Dark brown oxide obughout the unit. Weak to local or structurally controlled sericite core due to increased sulphide cturing is ubiquitous throughout steepens between 26 and 42 and 25 aut zone from 126 to 128.15 uge at 130.4 m below which sign 135.8 to 138.05 m. Weak to local or steepens with moderate to local and core loss becomes locally m. Up to 5 cm wide quartz verace disseminated py above 12 mineralized to semi massive processing and core gal associated with qt	commonly coating lly moderate e around aplite dykes. e coated fracturing. It the unit. Open 2 m to 35 DTCA. m. Foliation shallower trong shearing and locally moderate live unit to where lly strong patchy significant. Ining with carbonate is 9.83 m with weak locally moderate live unit to where live strong patchy significant. Ining with carbonate is 9.83 m with weak locally we will be a compared to the compared t	A0867597 A0867598 A0867599 A0867600 A0867601 A0867602 A0867603 A0867604 A0867605 A0867606 A0867607 A0867608 A0867609 A0867611	54.1 55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6 64.6 65.6 66.28	55.1 56.1 57.1 58.1 59.1 60.0 60.6 61.6 62.6 63.6 64.6 65.6 66.28 67.0	1 1 1 1 0.9 0.6 1 1 1 1 0.68 0.72	6.2 3.2 653.9 107.1 0.25 5.6 6 4.6 422.3 6 24.6 5.7 77.2 36.4	0.2 0.2 4.6 0.8 0.2 0.3 0.2 0.1 1.5 0.1 0.2 0.2 0.5 0.3	39.2 37.7 107.9 50.3 26.2 22.6 17.4 13.2 29.4 25.1 28.5 37.2 42.7 42.2	1.7 7.4 180.9 152.1 12.8 102.8 5.1 6.3 6.6 3.9 17.6 13.1 15.2 7.3	106 63 91 114 39 63 82 77 50 76 45 66 61 71	

Project: Doc	Project						Hole I	Number	: DC-2	0-05		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
129.9 - 136.0	Ser P M		A0867615	68.88	69.2	0.32	25.4	0.6	109.3	70.2	132	0.7
130.2 - 136.0	Si Pv S	Moderate pervasive with local strong silicification / quartz flooding.	A0867616	69.2	70.0	0.8	9.1	0.2	37.2	9.4	73	8.0
		Strong silicification associated with shearing and py mineralization.	A0867617	70.0	70.9	0.9	25.8	0.3	81.1	4.3	63	1
130.4 - 137.0	Rs FV S		A0867618	70.9	71.9	1	5.5	0.3	79.9	4	106	1.7
9.0 - 24.4	Ser FV W	Weak sericite around aplite dykes.	A0867619	71.9	72.9	1	9.1	0.4	73.1	6.1	83	2.6
24.4 - 54.1	Si P M		A0867620	72.9	73.5	0.6	373.3	1.5	64.1	11.1	105	1.4
54.1 - 78.1	Si P S	Strong silicification throughout interval with common oxide coated	A0867621	73.5	74.5	1	67.9	0.5	57.6	19.2	97	1.3
54.1 76.1	0. 1 0	fracture surfaces, quartz veinlets less than 5 cm wide, and stringers qtz carbonate. Sulphide mineralization increases linearly	A0867622	74.5	75.0	0.5	54.8	0.7	128	10.9	111	1.8
		with increasing silicification. Blebby sulphides in qtz VL. Local moderate sericite alteration around select quartz veinlets.	A0867623	75.0	76.0	1	39	0.9		145.8	144	1.5
61.9 - 78.1	Ser FV M	Increased disseminated sulphides within sericite altered halos +-fine grained galena and specularite.	A0867624	76.0	77.0	1	7.2	0.4	84	11.8	117	1.9
Mineralization	Type/Style/%Mineral	Comments	A0867625	77.0	77.8	0.8	5.2	0.3	41.5	2.5	67	0.9
wiiieranzauon	rype/Style/%willeral	Comments	A0867626	77.8	78.1	0.3	12.4	0.3	52.4	5.4	63	0.8
9.0 - 60.0	Py Bed 0.1%	Trace disseminated pyrite throughout interval.	A0867627	109.1	109.5	0.4	8.5	0.4	118	4.8	78	4.8
60.0 - 68.64	Py D 1%	Patchy disseminated sulphides throughout silicified zone, increasing with degree of silicification.	A0867628		114.1	0.6	41.3	1.1		24.1	101	1
68.64 - 68.88	Py FR 2%	Blebby and disseminated pyrite within sericitized quartz veinlet	A0867629	114.1		0.55	2.1	0.3	75.3	3.4	81	0.9
	•	with carbonate on contacts.	A0867630	114.65	115.2	0.55	0.25	0.2	77	2.7	92	0.8
68.88 - 72.9	Py D 1%	Disseminated pyrite mineralization within host rock up to 1%	A0867631	129.16		0.67	113.9	0.6	92	10	269	0.9
72.9 - 73.5	Py FR 2%	Blebby pyrite within 10 cm wide quartz vein with dark chlorite rim. Moderate associated sericite halo for min of 10 cm on HW and	A0867632	129.83		0.6	475.8	2.1		28.5	192	1.2
		FW. Oxidized sulphides on fractures and within host rock/adjacent to	A0867633	130.43		0.8	14.9	0.4	51.1	13.3	164	0.7
73.5 - 77.8	Ox FR 1%	quartz veining.	A0867634 A0867635	131.23 132.23		1	1181.3 6414.8	4.2	144.3 50.3	25.6 168.5	158 136	0.7
77.8 - 109.1	Py D 0.1%	Trace disseminated pyrite +- minor pyrrhotite within mafic volcanic unit.	A0867636	133.23		0.42	57046.	100	75.4	586.9	104	1.5
109.1 - 109.5	Ox FR 3%	Oxidized shearing at 20 DTCA. Two small shears parallel to each other have oxidized halos ~3 cm thick each.					9					
109.5 - 133.03	Py D 0.1%	Trace disseminated py	A0867637	133.65	134.4	0.75	53916	100	140.7		109	2.1
109.5 - 133.03	•	Weak gal and py associated with 5-25mm wide fracture fill gtz carb	A0867638	134.4		0.82 0.78	5585.9 12255.	24.8 44.8	80.8	435.6	87 141	1.1
125.33 - 125.35	Gn FR 3%	vein at 60 dTCA	A0867639	135.22	136.0		4			1099.1		_
130.03 - 130.37	Py D 2%	Fine to medium grained py associated with alteration halo early faulted cm scale qtz carb veining.	A0867641	136.0	137.0	1	2700.3	12.1		68.4	146	0.9
130.37 - 130.6	Py FR 1%	Disseminated / wispy py and mag in hydraulic carb qtz bx.	A0867642	137.0	138.0	1	18.5	0.3	82.8	8.5	115	0.25
		truncated by gouge Trace disseminated py with bands of diss 2-5% py from 131.65 to	A0867643	138.0	139.0	1	16.9	0.3	110	7	104	0.25
130.6 - 132.24	Py D 1%	131.95 m.	A0867644	139.0	140.0	1	11.2	0.3	111.2	32.6	117	0.25
131.65 - 137.0	Ox FR 5%	Oxidation on fractures and locally penetrating 1-3cm into host rock. Vuggy oxidation at approx 136 m.										

Project: Doc	Project						Hole	Number	: DC-20)-05		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
132.24 - 134.63	Py SM 30%	5 -60% disseminated to semi massive medium to coarse grained pyrite. Commonly banded and/or foliation controlled. Mineralization is strongest (40-60%) from 133.2 to 134 m.										
134.63 - 136.0	Py D 5%	Disseminated fine to medium grained py. Generally fabric / fracture controlled										
135.22 - 135.88	Ccp Bl 0.2%	Small clots										
135.22 - 135.88	Gn Bl 0.2%	Small clots										
136.0 - 143.0	Py D 0.1%	Sporadic trace disseminated										
Structure	Type/Intensity	Comments										
9.0 - 53.0	F M	Blocky core throughout zone as a result of brittle fracturing. Open fractures through zone carry brown oxidized sulphides.										
26.0 - 42.0	She W	Very weak shear zone.										
62.0 - 62.2	VL W	Narrow quartz stringer zone with associated sulphide mineralization and sericitization.										
62.2 - 78.1	F M	Fracturing and blocky core within moderate to strongly silicified zone. Sericitized quartz veinlets common with associated pyrite mineralization.										
78.1 - 109.1	F M	Moderate fracturing through blocky core zone. Interval characterized by mostly background chlorite and carbonate alteration with minor silicification.										
109.1 - 109.5	She M	Small shear zone with two shears carrying oxidized mineralization oriented approx 20 DTCA.										
113.5 - 115.2	Flt M	Fault zone with gouge between 114.1 - 114.4 m. Zone is characterized by up to 1% oxidized sulphides and grey clay matrix. Interval is broken up.										
126.0 - 128.15	Fit M	Fault zone with broken blocky core, locally rubble.										
128.05 - 128.15	G In	Rusty brown green gouge										
130.2 - 130.45	BX S	Hydraulic / crackle bx. ~25 TCA weakly mineralized with py + mag. Carbonate and qtz fill.										
130.45 - 130.5	G M	Fault gouge. Dark dirty green clay and rubble										
130.5 - 136.0	She S	Mineralized shear zone. Foliation generally 0-30 TCA. Weak to moderate fracturing locally.										
136.0 - 138.15	Flt M	Fault zone. Blocky / rubbly core with several clay rich gouge zones. Competent core from 137.47 to 137.92 m.										
138.15 - 143.0	F W	Weak to moderate fracturing / broken core. Possible weak gouge at 142.2 m.										

Project: Doc Project Hole Number: DC-20-05

riented Point S	tructure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
16.6	Fol	65				
16.7	Dyk	55				
22	Fol	60				
25.95	Dyk	46				
26.3	Fol	35				
28.9	Fol	45	100			
35.8	Fol	40				
41.1	Flt	50				Fault zone oriented at 50 DTCA with dark red oxidized sulphides.
45.8	G	60				5 cm thick grey clay gouge.
46.7	Fol	60				
49.1	Fol	55				
53	Fol	60				
55.9	Fol	60				
62	Vqtz	35	318			Qtz stringers parallel to foliation with sericite alteration, disseminated pyrite +-galena and.
62.1	Fol	34	318			
66.1	Vqtz	35				Quartz veinlet ~3 cm wide with sericite and pyrite mineralization and carbonate on veinlet contacts.
68.7	Vqtz	35				Quartz veinlet ~1 cm wide with carbonate on contact and associated sericite/pyrite.
70	Fol	35				
73.4	Vqtz	35				10 cm wide quartz vein with dark chlorite rim and sericite halos extending for 10 cm in each direction. Increased associated pyrite mineralization.
78	Vqtz	55				Increased associated pyrite mineralization. Qtz stringer with sercite halo and increased pyrite mineralization in the ferric and fresh form. Signification core loss through area likely on both sides of this structure.
90	Fol	55				
97.6	She	38				5 cm shear zone with associated minor oxide stains
101	Fol	55				
107	Fol	46	332			
109.2	She	20				1 of 2 shears oriented parallel to each other with moderate oxide staining ~5 cm wide.
109.3	She	20				2 of 2 shears with oxide staining for 3 cm.
114.2	G	80				Gouge oriented at roughly 80 DTCA. Broken up and hydrothermally altered. Minor associated oxidized sulphides.

3 K O O					
Project: Doc	Project				Hole Number: DC-20-05
121.8	Fol		48		
125.2	Fol		45		
125.33	Vqtz		60		5-25mm wide vein with gal and py
128.15	G		47		lower contact of gouge
133.4	BAN		25	340	semi massive pyrite banding
Geotech					
From	То	Recovery	Recovery %	Comments	
9	11	1.99	99.5		
11	14	1.5	50		
14	17	2.65	88.33		
17	20	3	100		
20	23	3.07	102.33		
23	26	3.05	101.67		
26	29	2.82	94		
29	32	3.05	101.67		
32	35	2.73	91		
35	38	3	100		
38	41	2.88	96		
41	44	2.95	98.33		
44	47	2.95	98.33		
47	50	3.1	103.33		
50	53	2.55	85		
53	56	3.11	103.67		
56	59	2.99	99.67		
59	62	3	100		
62	65	2.7	90	Adit void	
65	68	2.95	98.33		
68	71	2.79	93		
71	74	2.4	80		
74	77	2.49	83		
77	80	0.98	32.67	Broken	
80	83	1.7	56.67	Broken	

<u> </u>	<i>,</i> .					
Project:	Doc Pr	oject				Hole Number: DC-20-05
	83	86	2.45	81.67	Broken	
	86	89	2.38	79.33	Broken	
	89	92	2.7	90	Broken	
	92	95	3.05	101.67	Broken	
	95	98	2.95	98.33	Badly broken.	
	98	101	1.97	65.67	Long run???	
	101	104	3.01	100.33	Broken	
	104	107	2.82	94	Broken	
	107	110	2.95	98.33	Broken	
	110	113	2.98	99.33	Broken	
	113	116	2.8	93.33	Badly Broken Sections	
	116	119	2.89	96.33	Badly Broken	
	119	122	2.65	88.33		
	122	125	2.86	95.33		
	125	128	2.7	90		
	128	131	2.95	98.33		
	131	134	3.08	102.67		
	134	137	2.6	86.67		
	137	140	3.04	101.33		
	140	143	3.3	110		

Project	: Doc	Project								Hole I	Number	: DC-2	0-06		
			Drill Hole			Drilling			Collar Survey						
Hole	type	DD	Core location:		Drilling started				Grid	NAD83 / UTM zone 9N					
Hole	e size:	HQ	Claim number:		Drilling complete	Drilling completed:			Eas	ting:	4	410,142			
Actu	ual depth:		Logged by:		Drilling contracto	r:			Nor	thing:	6	5,244,75	51		
Targ	get:								Elev	ation:	•	1,273			
Survey	,								'						
	Depth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qualit	y							
	0	Collar	225	225	-70										
	20	Reflex Hanstone	205.1	223.1	-69.1										
	80	Reflex Hanstone	199.6	217.6	-69										
	149	Reflex Hanstone	198.2	216.2	-69.4										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
0	1.5	CAS - Casing													
1.5	40.3	MV - Mafic Volca	nic			A0867645	12.0	13.0	1	23.8	0.5	188.4	4.4	78	1
Medium faulted.		e grained, locally bedo	ded, weakly foliated to massiv	e mafic volcanic. Lower o	contact is	A0867646	13.0	13.5	0.5	41.1	8.7	1717.3	14.7	123	0.25
		a alay a ara frama a a ain a	to E4 0 m. Foult governmeter	ial propert from 24.75 to	21.0 m and	A0867647	13.5	14.0	0.5	6.4	0.3	98.4	2.3	72	0.9
from 38	, locally bi 3.9 to 39.1	5 m.	to 51.8 m. Fault gouge mater	iai present nom 31.75 to	ST.STII, and	A0867648	14.0	15.0	1	2.2	0.2	100.9	2.4	64	0.9
			r and fracture fill carbonate. F	atchy moderate silicificat	ion throuhgout.	A0867649	15.0	16.0	1	7.7	0.2	87.7	2.3	54	1
	•	ire coatings occur spo	, ,			A0867650	16.0	17.0	1	1.9	0.2	82.2	5.9	60	2.2
Trace fi	ine graine	d disseminated py occ	eurs sporadically throughout. \ to 9.0 m, patchy from 17.5 to	einlet controlled cpy obs	erved from 13										

Alteration	Type/Style/Intensity	Comments
1.5 - 149.0	Chl Pv W	
1.5 - 149.0	Rs FV W	
1.5 - 40.5	Si P M	
1.5 - 149.0	Carb P M	

Project: Doc I	Project						Hole N	Number	: DC-2	0-06		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Mineralization	Type/Style/%Mineral	Comments										
1.5 - 55.0	Py Tr 0.1%	Trace disseminated py										
1.5 - 149.0	Ox FR 1%	Rusty oxidized fractures occur more or less throughout.										
13.0 - 13.5	Ccp Tr 1%	Trace clots of cpy.										
Structure	Type/Intensity	Comments										
1.5 - 51.8	Bc M											
31.75 - 31.9	G W											
38.9 - 39.15	G W											
40.3 64	MV - Mafic Volcanic		A0867651	51.0	52.0	1	1.9	0.3	73.3	1.1	200	0.7
	rey, fine grained, strongly sil dTCA. Lower contact faulted	icified, bedded mafic volcanics. Distinct bedding at	A0867652	52.0	53.0	1	22.7	0.6	71.2	8.8	140	0.7
,			A0867653	53.0	54.0	1	3.4	0.4	100.9	3.3	91	0.7
alteration halo with	eakiy mineralized, vein quart h vuggy strong hydrotherma	z vein from 60.75 to 61.15 m at approx. 35 DTCA. Vein I alteration extends from 60.51 to 62 m.	A0867654	54.0	55.0	1	9.9	0.3	63.2	3.2	94	2.6
Upper contact ma	rked by hydraulic bx with pir	nk red hm filled fractures. Broken / blocky core to ~51.8 m below	A0867655	55.0	56.0	1	6.9	0.2	37.6	2.5	72	2.8
which core is fairly fractured. Blocky /	y competent to 60.51 m. Alte	ered / veining zone from 60.51 to 62.0 m is moderately o 68.7 m. Possible fault gouge at 65.9 m.	A0867656	56.0	57.0	1	3.8	0.2	29.4	2	62	1.7
Strong silicification	n throughout. Patchy modera	ate fracture and bedding controlled Fe staining. Weak to	A0867657	57.0	58.0	1	92.3	0.8	70.2	95.3	71	0.9
		patchy to locally pervasive, chlorite + epidote from 52.7 to ate sericite + moderate oxidation (+ strong potassic?), from	A0867658	58.0	59.0	1	33.9	0.3	23.7	6.1	67	1.6
60.51 to 62.5 m.	,	(, , , , , , , , , , , , , , , , , , ,	A0867659	59.0	60.0	1	6	0.3	24.1	10.6	101	1.9
		oradically throughout. Slight increase in py abundance below 55 lisseminated. Weak (2%) disseminated medium grained py from	A0867660	60.0	60.5	0.5	5.8	0.3	26	16.3	76	1.1
60.51 to 62 m.	ii iiile giaiiled veililets alid t	isseminated. Weak (270) disseminated inculum granied by nom	A0867661	60.5	60.8	0.3	636	2.4	22.8	42.9	37	1.3
Alteration	Type/Style/Intensity	Comments	A0867662	60.8	61.1	0.3	1225.8	4.2	19.2	15.3	22	1.7
	OH D. W		A0867663	61.1	61.55	0.45	2718.9	9.6	43.3	17.3	42	0.7
1.5 - 149.0	Chl Pv W		A0867664	61.55	62.0	0.45	1582.2	5.8	61.5	22.1	39	0.9
1.5 - 149.0	Rs FV W		A0867665	62.0	63.5	1.5	234	1.1	48.3	60.4	73	1
1.5 - 40.5	Si P M		A0867666	63.5	65.0	1.5	8.5	0.7	22.6	13.3	64	0.7
40.5 - 60.5	Si Pv S											
1.5 - 149.0	Carb P M											
52.0 - 60.5	Chl B M	Bedding controlled and frac/ vein controlled chl + ep										
52.0 - 60.5	Ер В М											

Project: Doc	Project						Hole I	Number	: DC-2	0-06		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
60.5 - 64.0	K FV S											
60.5 - 62.0	Ser FV M											
60.5 - 62.0	Hem FV M											
60.5 - 64.0	Carb FV M											
60.5 - 119.3	Si P M											
Mineralization	Type/Style/%Mineral	Comments										
1.5 - 55.0	Py Tr 0.1%	Trace disseminated py										
1.5 - 149.0	Ox FR 1%	Rusty oxidized fractures occur more or less throughout.										
55.0 - 60.15	Py D 0.5%	Fine grained trace disseminated py. Locally as small fabric controlled veinlets / stringers.										
60.15 - 62.0	Py FR 2%	Vein controlled medium grained disseminated py. Associated with late cross cutting veinlets.										
62.0 - 149.0	Py Tr 0.1%	Sporadic trace disseminated py										
Structure	Type/Intensity	Comments										
1.5 - 51.8	Bc M											
60.5 - 62.0	Vqtz S	Main fragment rich vein from 60.75 to 61.15 m. Alteration halo with late cross cutting mineralized veinlets from 60.5 to 62 m.										
62.0 - 68.7	Flt S	Fault damage zone with apparent fault core gouge from 65.8 to 66m. Entire interval is blocky core / rubble with ~60% recovery.										
64 149	MV - Mafic Volcanic		A0867666	63.5	65.0	1.5	8.5	0.7	22.6	13.3	64	0.7
Medium gray, fin- contact is EOH	e grained, weakly foliated (be	edded) to massive, mafic to intermediate volcanic. Lower	A0867667	65.0	66.0	1	7.9	0.5	21.2	6.5	55	0.6
	ore from 64 to 73.5 m. Mode	rate fracturing with local blocky core from 73.5 to 91.5 m,	A0867668	66.0	67.0	1	9.2	0.2	37.8	4.1	64	0.7
possible fault gou	ge (rubble, some clay) from	90.3 to 90.4 m. Weak fracturing to ~99 m. Below 99 m core is agment-rich fault gouge from 109.95 to 110.05 m. Weak	A0867669	67.0	68.0	1	7.7	0.3	35.6	3.8	65	0.9
fracturing from 11	0.3 to 117.9 m. Fault zone fr	rom 117.9 m with weakly developed damage zone to 119 m, m, poorly developed moderately fractured damage zone to	A0867671	68.0	69.0	1	4.6	0.05	18.5	2.9	46	0.9
119.6 m. Broken l	locally blocky core from 119.	6 to 123.5 m. Fault zone from 123.5 to 128.1 m, strongly	A0867672	76.0	76.5	0.5	9.4	0.3	55.9	3.5	108	2.2
associated core lo	ore to 126.4 with intense cla oss. Weak fracturing from 12	y and sand filled fault gouge from 126.4 to 128 m with 18 to 143 m. Fault zone below.	A0867673	76.5	77.0	0.5	112.4	0.5	56.2	21.8	104	2
Rusty/ oxidized fra	actures occur throughout. Tr	ace sericite / carbonate occurs sporadically on fractures	A0867674	77.0	78.0	1	41.5	0.4	64	7.3	119	2.9
throughout. Patch	y pervasive moderate silicifi	cation occurs from 64 to 119.3 m, strong to locally intense, 132.28 m. Weak silicification below. Trace to weak pervasive	A0867675	78.0	79.0	1	5.4	0.4	69	11.9	145	2.3
chlorite throughou	ut. Strong to locally moderate	e hydrothermal alteration associated with faulting and veining	A0867676	89.0	90.0	1	1.8	0.2	48.2	2.5	109	0.9
fracture controlled	d moderate potassic alteration	intense silicification, moderate to intense oxidation, local in, and local intense sericite + chlorite alteration.	A0867677	90.0	91.0	1	4	0.3	84.4	1.8	121	0.9
		Fine grained disseminated, vein hosted and thin veinlets of Moderate to strong oxidized sulphides and trace to 3% fine	A0867678	91.0	92.0	1	17.5	0.6	86.7	48.1	162	1.1

Drill Log Report Page 3 of 9 Dec-03-2021

Project: Doc F	Project						Hole I	Number	: DC-2	0-06		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
		and trace disseminated cpy associated with veining occur from ted, medium to coarse grained, subhedral, vein hosted py	A0867679	92.0	93.0	1	2.6	0.3	118.1	1	133	0.6
occurs from 131 to		tod, modiam to obdise granica, subhediai, vein nosted py	A0867680	97.18	97.8	0.62	1	0.3	44.1	5.4	74	1.1
Alteration	Type/Style/Intensity	Comments	A0867681	97.8	98.3	0.5	134.5	0.9	62.5	19.9	111	0.9
1.5 - 149.0	Chl Pv W		A0867682	98.3	98.8	0.5	3.6	0.4	72.2	2.2	70	1.1
			A0867683	105.5	106.0	0.5	6.3	0.4	96.3	9.2	123	8.0
1.5 - 149.0	Rs FV W		A0867684	106.0	107.0	1	17.2	0.5	83.2	9.9	77	1.5
1.5 - 149.0	Carb P M		A0867685	107.0	107.8	0.8	4.3	0.3	69	8.5	93	1.6
83.0 - 86.0	Ep P M		A0867686	107.8	108.8	1	16.6	0.7	88.6	133.4	182	7.6
60.5 - 119.3	Si P M		A0867687	108.8	109.8	1	2.8	0.4	96.1	4.9	98	2.8
00.5 - 119.5			A0867688	109.8	110.5	0.7	77.1	0.9	130.8	20.4	101	1.4
119.3 - 132.28	Si Pv S	Pervasive or patchy intense structurally controlled silicification	A0867689	110.5	111.0	0.5	2.4	0.2	54.7	1.5	85	0.9
132.28 - 149.0	Si Pv W		A0867690	111.0	112.0	1	69.2	0.8	181.9	3.8	78	0.9
105.9 - 110.0	Rs FV M		A0867691	112.0	112.5	0.5	48	0.6	170.7	16.8	63	0.9
		Madagata to locally integra atwinturally controlled avidation	A0867692	112.5	113.5	1	223.1	1.3	208.4	56.5	117	0.25
119.0 - 128.0	Rs FV S	Moderate to locally intense structurally controlled oxidation	A0867693	113.5	114.0	0.5	34.7	0.4	93.1	3.6	87	0.25
119.0 - 133.5	Chl FV M	Patchy moderate structurally controlled chlorite	A0867694	117.0	118.0	1	69	0.5	131.3	4.8	111	0.6
119.0 - 133.5	K FV W	Local weak to moderate fracrure controlled potassic alteration	A0867695	118.0	119.0	1	120.8	1.5	148.6	84.8	121	1.1
130.7 - 131.1	Chl Pv S	Strong pervasive chlorite + sericite at upper margin of main vein	A0867696	119.0	119.5	0.5	9433.3	30	174.4	134.2	130	8.2
			A0867697	119.5	120.0	0.5	533.6	1.8	61.6	11.3	121	1.3
130.7 - 131.1	Ser Pv S		A0867698	120.0	121.0	1	396.8	2.1		67	147	1.2
119.0 - 130.7	Ser FV W		A0867699	121.0	122.0	1	567.7		241.2	701	266	1.4
119.0 - 130.7	Carb FV W	Local vein and veinlets of carbonate	A0867701	122.0	123.0	1	72.5	1	319.4	22.3	212	1.1
146.0 - 149.0	Chl FV S	intense chlorite replacement in gouges	A0867702	123.0	124.0 125.0	1	172.1	1	154.8	12.9 92.8	232 275	1.9
			A0867703 A0867704	124.0 125.0	126.0	1	780.1 246.8	3.1	112.6 61.7	92.6	157	2.3 1.8
133.5 - 149.0	Chl Pv M		A0867704 A0867705	126.0	128.0	2	1366.6	7.4	114	132.3	151	2.1
Mineralization	Type/Style/%Mineral	Comments	A0867706	128.0	129.0	1	2879.6	10	88.5	132.3	52	0.7
1.5 - 149.0	Ox FR 1%	Rusty oxidized fractures occur more or less throughout.	A0867707	129.0	130.0	1	693.9	3.2		37.8	86	0.25
62.0 - 149.0	Py Tr 0.1%	Sporadic trace disseminated py	A0867708	130.0	131.0	1	841	9.2	1413	704.6	256	0.7
76.5 - 78.0	Py FR 2%	Fine to medium grained disseminated and veinlets of py.	A0867709	131.0	131.5	0.5	10000	100	347.1	575	197	0.25
70.5 - 70.0	Ty FR 2/0	Structurally controlled associated with fractures, and mm to cm scale quartz carbonate veins/ veinlets.	A0867710	131.5	132.0	0.5	10000	100	1403	10000	1075	1
107.8 - 110.0	Ox FR 10%	Moderate rusty alteration / mineralization and fracture coatings.	A0867711	132.0	132.28	0.28	57800. 9	100	705.7	4143.9	1057	0.8

Drill Log Report Page 4 of 9 Dec-03-2021

Hole Number: DC-20-06

1.4

0.3

To Length

0.72

192.4

120.2

6.2

6.6

5.9

133.0

133.0 134.0

134.0 135.0

138.0 139.0

139.0 140.0

From

132.28

Au Ag Cu Pb Zn As (ppb) (ppm) (ppm) (ppm) (ppm) (ppm)

95.1

25.9

4.2

13.3

6.1

1640

362

136

90

93

1.9

1.2

0.6

0.6

0.25

308.9

86

0.6 78.6

0.3 128.7

0.2 101.4

From To	Lithology		Sample
112.0 - 113.5	Py D 1%	Fine grained disseminated and quartz carbonate fracture fill vein hosted py	A086771
112.0 - 113.5	Py FR 1%	Weak vein / alteration / structurally controlled fine grained disseminated py	A086771 A086771
119.0 - 128.1	Ox FR 15%	Fault + fracture controlled oxidized mineralization	A086771
119.0 - 131.0	Py FR 1%	Weak vein / alteration / structurally controlled fine grained disseminated py	A086771
130.5 - 132.0	Ccp FR 0.1%	Trace cpy. Clots observed at 130.8 m.	
131.0 - 132.28	Py FR 10%	Abundant (5-15%) disseminated, medium to coarse grained, subhedral, vein hosted py	
132.28 - 133.5	Ox FR 10%	Weak to moderate oxidation below vein	
138.0 - 140.0	Ccp FR 0.1%	Trace cpy in late qtz carb veinlets	
Structure	Type/Intensity	Comments	
62.0 - 68.7	Flt S	Fault damage zone with apparent fault core gouge from 65.8 to 66m. Entire interval is blocky core / rubble with ~60% recovery.	
65.8 - 66.0	G M	Fault gouge with white gray clay. Depth approximate due to core loss.	
66.0 - 73.5	Bc M	Broken / blocky core	
73.5 - 91.5	F M	Moderate fracturing with local blocky core	
89.0 - 97.0	Fld M	Broad zone of ductile deformation. Convoluted bedding / foliation with cm scale parasitic folds.	
90.3 - 90.4	G W	Possible gouge, weak, rubble and some clay	
91.5 - 99.0	F W		
99.0 - 110.3	Bc M	Broken, very locally blocky	
109.95 - 110.05	G M	Rusty, limonite and clay (sericite) coated / filled gouge. Fragment rich bordering on fault bx	
110.3 - 117.9	F W		
117.9 - 119.6	Flt M	Fault zone. Moderate to strong fracturing with fault core gouge from 119 to 119.25	
119.0 - 119.25	G S	Fault core. Rusty gouge with sandy matrix, quartz vein fragments.	
123.5 - 128.1	Flt In	Fault zone. Damage zone from 123.5 to 126.4 m, with secondary fault bx from 123 to 123.65 m.	
126.4 - 128.0	G In	Rusty light orange brown, clay and sand filled fault gouge. Associated core loss.	
128.1 - 143.0	F W		

Project: Doc	Project				Hole	Number	: DC-2	0-06				
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
131.15 - 132.28	Vqtz In	Massive, mineralized, anastomosing quartz vein.										
143.0 - 149.0	Flt M	Fault zone with weakly developed damage zone (moderate broken / blocky core) and 3 distinct gouges										
143.6 - 143.75	G W	Possible gouge with minor clay and rubble										
146.18 - 146.42	G M	Weakly consolidated (crumbles to touch) fault gouge / bx. Approx 70% dark green gray (chlorite rich) matrix and 30% mm to cm scale angular fragments.										
148.1 - 148.3	G M	Weakly consolidated (crumbles to touch) fault gouge / bx. Approx 70% dark green gray (chlorite rich) matrix and 30% mm to cm scale angular fragments. Almost identical to gouge at 146.18 m										

Project: Doc Project Hole Number: DC-20-06

iented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
5.5	Fol	65				
15.2	Fol	55				
17.5	Fol	28				wk shear?
19.7	Fol	50				subtle
29.6	Fol	60				
46.9	Bed	55				
48	Bed	50				
49.5	Bed	55				
50.8	Bed	57				
53.25	Bed	60	275			
56.2	Bed	57	270			
60.4	Fol	55				
60.5	Uc	50				upper contact of vein associated alteration zone. concordant to foliation/ bedding
79.7	Fol	40				subtle
80.25	VL	35				2mm wide py bearing qtz cb veinlet
84.1	Fol	50				
87.6	Fol	50				
91.8	Fol	60				for the second s
97.93	Vqtz	50	40			fractured upper contact of 8 cm wide weakly py mineralized bull qtz vein
100.6	Fol	55	295			
109.9	Vqtz	25				altered with coarse py mineralization
110.05	G	40				approx lower contact of gouge
112.8	VL	15	210			weakly py mineralized altered qtz cb veinlet. 5mr wide
112.85	Fol	50	270			
131.1	Vqtz	17	35			approx upper contact of main mineralized vein
138.9	VL	45	340			cpy bearing carb veinlet
142.9	Fol	50	290			subtle
146.18	G	25				upper contact of gouge
148.3	G	35				lower contact of gouge

	Doc Projec	pt .			Hole Number: DC-20-06
Geotech					
Fro	m ·	То	Recovery	Recovery %	Comments
1	.5	2	1	200	
	2	5	2.76	92	
	5	8	2.86	95.33	
	8	11	2.65	88.33	
	11	14	3.2	106.67	
•	14	17	2.83	94.33	
,	17	20	2.81	93.67	
2	20	23	2.89	96.33	
2	23	26	3.3	110	
2	26	29	3	100	
		32	3.01	100.33	
		35	92	3066.67	
		38	2.96	98.67	
		41	3.28	109.33	
		44	2.83	94.33	
		47	3.09	103	
		50	2.85	95	
		53	3.05	101.67	
		56	3.08	102.67	
		59	3.06	102	
		62	3.15	105	
		65	2.05	68.33	
		68	2.3	76.67	
		71	2.95	98.33	
		74	2.9	96.67	
		77	2.92	97.33	
		80	3.25	108.33	
		83	2.91	97	
		86	2.86	95.33	
3	36	89	3	100	

Project:	Doc Pro	oject			Hole Number: DC-20-06
	89	92	2.95	98.33	
	92	95	3.11	103.67	
	95	98	3.25	108.33	
	98	101	3.17	105.67	
1	101	104	3.03	101	
1	104	107	3.03	101	
1	107	110	2.91	97	
1	110	113	3.01	100.33	
1	113	116	3.02	100.67	
1	116	119	3.05	101.67	
1	119	122	3.08	102.67	
1	122	125	3.3	110	
1	125	128	2.2	73.33	
1	128	131	3.2	106.67	
1	131	134	3.18	106	
1	134	137	2.86	95.33	
1	137	140	3.03	101	
1	140	143	3	100	
1	143	146	2.85	95	
1	146	149	3.3	110	

Project:	Q19									Hole I	Number	: Q19-2	20-01		
Drill Hole					Drilling			Collar Survey							
Hole type	е	DD Core location: Doc Camp			Drilling started	d Aug-10-2020			Grid:			NAD83 / UTM zone 9N			
Hole size	e:	HQ	Claim number:		Drilling completed: Aug-13-2020				Easting:			411,136			
Actual de	Actual depth: 234.0 Logged by: Drilling contracto				r: Dorado			Northing:		6	6,243,532				
Target:								Elev	ation:	1	,353.21	6			
Survey									•						
Depth	h	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qualit	ty							
(0	Collar Hanstone	207	207	-70										
36	6	Reflex Hanstone	185.7	203.7	-69.6										
87	7	Reflex Hanstone	188	206	-69.4										
138	8	Reflex Hanstone	191.2	209.2	-69.2										
189	9	Reflex Hanstone	192	210	-68.4										
234	4	Reflex Hanstone	191.4	209.4	-67.7										
From 1	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
0 2	2.75	CAS - Casing													
2.75 2	233.74	MV - Mafic Volcar	nic			37302	27.0	28.0	1	32	0.5	62	5	97	2
Dark green fine grained and weakly foliated mafic volcanic rock. Unit contains up to 1% finely disseminated fresh sulphides throughout.						37303	28.0	29.0	1	46	0.8	66	5	67	20
MINOR: 111.2 - 116.6 m - Porphyritic phase with quartz and plagioclase phenocrysts disseminated throughout the unit. Structure and alteration otherwise identical to surrounding mafic volcanic unit.					ninated throughout the	37304	29.0	29.6	0.6	26	0.4	111	4	93	

MINOR: 218.0 - 219.7 - Porphyritic phase with altered mm scale mafic phenocrysts (cordierite or garnet?). Ductile deformation evident from rotated crystals and with groundmass flowing around the phenocrysts.

Alteration throughout the unit is characterized by pervasive chlorite alteration with sporadic discontinuous epidote lenses and cemented fracturing commonly also hydraulicly brecciated. Common healed and open fractures coated with dark red almost maroon oxide. Epidote looks to be associated with an earlier episode of alteration as quartz and quartz carbonate stringers cross cut it (~10 m). Alteration changes briefly from 27.0 - 29.6 m where moderate patchy sericitization is associated with red and brown clay gouge.

Unit is broken up from the top of the hole to 27 m where it becomes altered and even more obliterated. Intense fracturing with dark red sulphide stains on healed and open surfaces are ubiquitous. ~10 cm of light brown gouge at 28.3 m appears to be the focus of the faulting. Dark red to black oxide flanks both ends of the gouge. The focus of the faulting ends by 29.6 where core becomes blocky again and the sericite disappears. Brittle structure in the hole is evident to 77.0 m characterized by more shattered mafic volcanic with frequent dark red rust staining on fractures. Quartz stringers are sporadic and usually oriented near 85 DTCA. Foliation through the unit to 70 m is ~55 - 65 DTCA. Quartz veinlets and stringers are common and boudinaged. Stringers below 141.0 m starting to contain finely disseminated pyrite +/- pyrrhotite.

Alteration Type/Style/Intensity Comments

Project: Q19	1		Hole Number:					Q19-20-01				
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
2.75 - 233.74	Chl Pv M	Dark green chlorite alteration pervasively affecting the unit.										_
2.75 - 233.74	Ep FV M	Epidote as cement within fractures and stringers. Sometimes causing hydraulic brecciation where present. Epidote is also present as discontinuous lenses throughout the unit sometimes cross-cut by quartz stringers as at ~10 m. Fracs often offset QV on mm sc										
2.75 - 94.2	Rs FV M	Dark reddish maroon staining on fracture within open and healed fractures, sometimes associated with quartz stringers. Some of healed fractures show mm scale offset.										
27.0 - 29.6	Ser FV S	Strong sericite alteration throughout fault zone with 10 cm goug in at least one location. Sericitized zone is intensely fractured and broken and intimately associated with dark red/maroon rust staining.										
94.2 - 233.74	Rs FV W	Rare fractures contain weak rust staining on open and healed surfaces.										
Mineralization	Type/Style/%Mineral	Comments										
2.75 - 233.74	SUL D 1%	Fresh disseminated sulphide mineralization up to 1%.										
94.5 - 233.74	SUL FR 1%	Fresh fine fracture controlled sulphides.										
Structure	Type/Intensity	Comments										

Project: Q19 Hole Number: Q19-20-01

Oriented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
10.8	Fol	65				
11	Vqtz	70				1cm
15.3	F	20				Hairline fracture with epidote cement.
15.95	F	10				Rust staining on open fracture.
24.6	Vqtz	70				
27.5	F	60				Fracturing oriented approx 65 DTCA but are penetrating rock in several directions.
28.3	G	80				Light brown clay gouge
34	Fol	35				
38.2	Fol	65				
39.3	F	11				Fracture with quartz and dark red/maroon cement.
45	Fol	60				
47.4	F	25				
49.6	F	10				Fracture with maroon staining on surface.
55	F	50				
59.1	Fol	80				
65	F	20				Fracture with quartz and carbonate cement associated with red rust staining.
68.6	Vqtz	70				5 cm quartz veinlet with associated epidote on Hw contact.
70	Fol	80				
75.3	Vqtz	75				15 cm wide epidotized quartz veinlet.
76.2	F	70				Epidotized healed fracture with stockwork fracturing both HW and FW.
79	F	80				Zone of epidotized fractures commonly associated with quartz all oriented roughly the same ~80 DTCA.
79.1	Fol	80				
83.2	Vqtz	78				Zone of boudinaged quartz stringers with plagioclase nodules within.
92.77	F	10				Epidote cemented fractures offsetting quartz veinlets
92.78	Vqtz	80				Quartz veinlets and stringers offset by epidote cemented fracturing.
95	Fol	70				
102.3	Vqtz	30				Qtz stringer with weak red stains.
110.7	F	70				Fracturing with quartz and carbonate.
111.2	Vqtz	20				Quartz carbonate stringer with associated epidote (1-2 cm wide) Minor dissolution.

Project: Q19			Hole Number: Q19-20-01
115	F	20	Epidote cemented fracture set with associated stockwork fractures.
119	Fol	80	GOOMON National
121	VL	25	4 cm wide epidote cemented veinlet with hydraulic brecciation.
129.2	Vqtz	85	1 cm wide quartz veinlet.
130.3	Fol	82	
137.2	Fol	79	
146.1	Fol	80	
144.9	Vqtz	65	1-2 cm quartz veinlet with blebby pyrite mineralization.
159.6	Fol	60	
155.2	VL	30	Hydraulic brecciated 5 cm veinlet with sericite +/-epidote cement.
155	VL	11	Quartz stringer associated with mm scale epidote fracture offset.
154.99	Vqtz	80	2 cm quartz veinlet with trace disseminated pyrite ar pyrrhotite.
162.3	Vqtz	80	Quartz veinlet with associated plagioclase nodules
166	F	90	within and on periphery. Epidote healed fracture with associated stockwork fracturing stemming from single fracture.
166.7	Vqtz	78	Boudinaged quartz veinlet with plagioclase.
167.7	Fol	48	
170.8	Fol	74	
177.1	F	21	Sericitized hairline fracture.
181.2	Fol	64	
184.5	VL	62	Stringer with epidote.
184.2	VL	25	Druzy quartz stringer ~3 mm wide. Several other fractures oriented parallel to structure.
192.4	VL	21	Hydraulic brecciated quartz stringer.
194.3	Fb	80	Flow banded blobs of rock oriented sub parallel to the foliation.
195.1	Fol	79	
201.3	Fol	80	
207.5	Fol	78	
195.4	F	25	Quartz/carbonate cemented fractures.
203	Fol	80	
208	VL	60	Sericite/epidote? veinlet with quartz and altered and deformed garnets? within.
212.1	BAN	80	Banding of sericite parallel to foliation.
218.3	Fol	75	
213.6	F	20	Fracture sets oriented around 20 DTCA.

<u> </u>					
Project: Q19					Hole Number: Q19-20-01
222.3	Fol		69		
227	F		20		Fracture sets oriented at 20 DTCA with epidote or sericite cement causing hydraulic brecciation.
229.5	F		3		Cemented stockwork hairline fractures with quartz/carb cement
231.4	Fol		60		
233.68	VL		55		Stringer of fresh pyrite cement. ~1-3 mm wide.
Geotech					
From	То	Recovery	Recovery %	Comments	
2.75	3	0.25	100	Rubble	
3	6	0.82	27.33	Rubble	
6	9	1.31	43.67	Heavily fractured	
9	12	1.7	56.67	Heavily Fractured	
12	15	0.35	11.67	heavily fractured and rubble	
15	18	1.91	63.67	Lots of fractures	
18	21	1.93	64.33	heavily fractured and rubble	
21	24	1.92	64	heavily fractured	
24	27	1.35	45	heavily fractured	
27	30	2.16	72	fractures and gouge	
30	33	2.82	94	fractured	
33	36	2.84	94.67		
36	39	2.61	87		
39	42	2.5	83.33		
42	45	2.4	80	fractured	
45	48	2.65	88.33		
48	51	2.39	79.67	badly fractured	
51	54	2.1	70	badly fractured	
54	57	1.78	59.33	badly fractured	
57	60	1.79	59.67	heavily fractured and rubble	
60	63	1.31	43.67	heavily fractured	
63	66	2.1	70	heavily fractured	
66	69	2.44	81.33	heavily fractured	
69	72	3.1	103.33	fractured	
72	75	2.46	82	fractured	

Project:	Q19				Hole Number: Q19-20-01
	75	78	2.7	90	
	78	81	2.87	95.67	
	81	84	3	100	
	84	87	2.86	95.33	
	87	90	3.01	100.33	
	90	93	2.91	97	
	93	96	2.95	98.33	
	96	99	3.02	100.67	
	99	102	3.04	101.33	
	102	105	2.85	95	Fractured zone
	105	108	2.67	89	Highly fractured
	108	111	2.95	98.33	
	111	114	2.9	96.67	
	114	117	2.96	98.67	Fractured
-	117	120	2.96	98.67	
	120	123	3.02	100.67	
-	123	126	2.96	98.67	
	126	129	3.04	101.33	
	129	132	2.94	98	
	132	135	2.99	99.67	
	135	138	3.05	101.67	
	138	141	3.08	102.67	
	141	144	2.97	99	
	144	147	2.99	99.67	
	147	150	2.97	99	
	150	153	2.9	96.67	
	153	156	3	100	
	156	159	2.76	92	Highly fractured
	159	162	2.79	93	
	162	165	2.4	80	Highly fractured
	165	168	3.03	101	
	168	171	2.7	90	
	171	174	2.99	99.67	some fractures

ect: Q19)				Hole Number: Q19-20-01
174	177	2.81	93.67	some fractures	
177	180	2.71	90.33	badly fractured	
180	183	2.89	96.33	fractured	
183	186	2.85	95		
186	189	3.08	102.67		
189	192	2.85	95		
192	195	3.04	101.33		
195	198	3.01	100.33		
198	201	3.05	101.67	some fractures	
201	204	2.74	91.33		
204	207	3	100		
207	210	2.97	99		
210	213	2.8	93.33		
213	216	3.14	104.67		
216	219	2.86	95.33		
219	222	2.61	87		
222	225	2.95	98.33		
225	228	2.85	95		
228	231	2.89	96.33		
231	234	2.76	92		

Project:	Q19									Hole N	lumber	: Q19-2	20-02		
			Prill Hole			Drilling					Colla	ar Surve	y		
Hole typ	ре	DD	Core location:	Doc Camp	Drilling started	Aug-16-20)20		Grid: NAD83 / UTM zone					ne 9N	
Hole siz	ze:	HQ	Claim number:		Drilling completed	: Aug-19-20)20		Eas	ting:	4	111,118			
Actual c	depth:	179.0	Logged by:		Drilling contractor	: Dorado			Nor	thing:	6	5,243,49	6		
Target:									Elev	vation:	1	1,362			
urvey															
Dept	th	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qual	ity							
	0	Collar Hanstone	207	207	-45										
2	20	Reflex Hanstone	190.7	208.7	-47.4										
8	30 I	Reflex Hanstone	193	211	-48.1										
12	22	Reflex Hanstone	192	210	-48.1										
17	73	Reflex Hanstone	195	213	-48.7										
rom	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	(ppi
	4.75	CAS - Casing								(PP-)	(PP)	(PP)	(PP)	(PP)	(66.
		3													
75	179	MV - Mafic Volcani	С			A0862514	7.0	7.5	0.5	2.5	0.3	132	14	95	
reenish gi aked eve.	rey mafi From 1	ic volcanics. The core of 22 to 126.3m the core	consists of aphanitic	mafic minerals that can not boot mm-scaled feldspar pher	e distinguished with the	A0862515	7.5	8.2	0.7	203	2	263	71	90	
ervasively	/ altered	l to chlorite. Silicificatioı	n is variable but is us	sually associated with large bits also weakly magnetic. The	ull white quartz veining	A0862516	8.2	8.5	0.3	495	2.1	67	35	21	
ne Q19 st	tructure)	begins at the top of the	e hole ďown and cor	ntinues down to 99m and is con. The core becomes more of	oss-cut by mm-scaled	A0862517	8.5	9.0	0.5	101	1.2	146	8	71	
exits the (ar ioda milioralizado	in the core becomes more c	ompotent after com ac	A0862518	28.5	28.7	0.2	2.5	0.1	64	3	96	
ne first int	terval of	oxidized mineralization	occurs from 7.5 to	9.0m which is associated with idized breccia from 31.0 to 3	a large bull white	A0862519	30.5	31.0	0.5	5	0.7	220	5	139	
		contact is EOH.	mervai occurs as ox	idized breccia irom 31.0 to 3	1.4m. Foliation is fami	A0862520	31.0	31.4	0.4	12	0.4	7	194	292	
Iteration		Type/Style/Intensity	Comments			A0862521	31.4	32.0	0.6	5	0.3	38	29	194	
	•	, .		lance and also site alternation		A0862522	32.0	33.0	1	2.5	0.2	101	35	135	
75 - 179.0	0	Chl Pv M		kground chlorite alteration.	tale levell or letter according	A0862523	33.0	33.5	0.5	2.5	0.1	59	6	162	
		Si Pv S	and oxidized r	ive silicification associated w nineralization.	ith buil white quartz vein	A0862524	38.3	38.8	0.5	2.5	0.2	76	17	119	
3 - 9.0		Rs Pv S	Rust stained r diameter.	nineralized core hosting pyrit	e up to 1mm in	A0862525	38.8	39.1	0.3	2.5	0.5	68	700	394	
						A0862526	39.1	40.4	1.3	2.5	0.2	51	24	109	
5 - 8.2		Si Pv M	The core is me	oderately silicified throughout	the mafic volcanics.	A0060E07									
5 - 8.2 0 - 77.0		Si Pv M		oderately silicified throughout		A0862527	50.6	51.6	1	2.5	0.1	115	3	114	
3 - 9.0 5 - 8.2 0 - 77.0 5.48 - 15.8	82	Si Pv M Carb S W		oderately silicified throughout to pale green calc-silicate al		A0862527 A0862528 A0862529	50.6 63.6 98.2	63.8 98.6	0.2	2.5 2.5 2.5	0.1	86 130	1 2	70 84	

Project: Q19								Hole I	Number	: Q19-	20-02		
From To	Litholo	gy		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
31.0 - 31.4	Rs Pv	S	Strongly rusted stained interval with minor brecciated quartz veins.	A0862532	149.35	149.94	0.59	2.5	0.1	126	1	76	2
34.54 - 34.67	Ser FV	′ M	Quartz veins with associated sericite and chlorite alteration.	A0862533	153.0	153.2	0.2	2.5	0.1	180	1	79	1
			Chlorite fractures cross-cut interval at 35 dtca. Brown rust stained fractures with calcite. Alteration doesn't appear	A0862534	162.13	162.35	0.22	5	0.3	376	1	78	1
75.0 - 80.0	Rs FV	W	to be associated with sulphides.	A0862535	167.33	168.33	1	2.5	0.2	120	8	94	1
77.0 - 78.0	Si Pv	S	Strong pervasive silicification causing the core to be glossy.	A0862536	168.33	168.9	0.57	2.5	0.1	91	1	79	2
78.0 - 145.42	Si Pv	M	Moderate pervasive silicification.	A0862537	173.5	173.7	0.2	2.5	0.2	94	3	121	2
87.86 - 100.0	Rs FV	W	Brown rust stained fractures with calcite. Alteration doesn't appear to be associated with sulphides.	A0862539 A0862540		178.55 179.0	0.55 0.45	2.5	0.2	12	8 5		1
105.3 - 105.35	Ep Pv	S	Narrow band of pervasive epidote alteration.										
113.4 - 114.3	Ep FV	W	Mm-scaled stockwork epidote/sericite veins.										
124.9 - 126.3	Cal P	М	Patchy calc-silicate alteration. Tuff?										
145.42 - 148.9	Si Pv	S	Strong glassy pervasive silicification.										
148.9 - 179.0	Si Pv	М											
151.14 - 151.82	Ep FV	W	Epidote altered stockwork veins.										
168.63 - 168.9	Ser FV	M M	Strong sericite and epidote alteration in stockwork fractures.										
176.4 - 176.6	Rs FV	S	Calcite vein with strong rusty alteration.										
178.56 - 178.81	Rs FV	M	Fractures with rust staining penetrating into wall rock.										
Mineralization	Type/Sty	le/%Mineral	Comments										
7.5 - 8.2	Q19 St	tn 3%	Pervasive oxidized core with disseminated pyrite. Mineralization occurs at the upper contact of a bull white quartz vein. Appears to be a small mineralized interval occurring above the Q19 strcture.										
31.0 - 31.4	Q19 FF	R 100%	This unit appears to be the second mineralized unit of the Q19 and is completely oxidized. The interval appears to be brecciated with small white quartz fragments in a rusty orange matrix. A quartz vein occurs at the upper contact.										
33.9 - 34.0	Ox FR	2%	Rusty vein associated white quartz. The vein occurs 45 dtca (Most likely a vertical vein).										
38.84 - 39.1	Gn FR	2%	The mineralization consists of one large galena crystal 1.5 cm in diameter hosted in a white quartz vein cross-cutting core at 10 dtca.										
50.6 - 51.6	Ox FR	1%	Brown stained fractures and veins. This oxidation doesn't appear to be from sulphides.										
153.0 - 153.1	Py FR	3%	A single mm-scaled pyrite fracture.										
154.4 - 154.9	Py FR	3%	A single mm-scaled pyrite fracture.										

Hole Number: Q19-20-02

To Length

Au Ag Cu Pb Zn As (ppb) (ppm) (ppm) (ppm) (ppm) (ppm)

From To	Lithology		Sample	Fro
162.14 - 162.32	Py FR 3%	Two parallel mm-scaled pyrite fractures.		
166.63 - 166.7	Py Bl 2%	Blebby pyrite located in a sericite vein.		
171.28 - 171.55	Py FR 1%	Pyrite in a calcite vein.		
173.56 - 173.7	Sp FR 10%	Sphalerite (? reddish brown streak, soft), occurs in a calcite vein.		
176.4 - 176.6	Ox FR 5%	Calcite vein with rusty mineralization.		
176.6 - 179.0	Py D 0.1%	Disseminate pyrite in core.		
178.5 - 178.81	Ox FR 5%	Rusty oxidation propagating into wall rock from fracture.		
Structure	Type/Intensity	Comments		
4.75 - 7.3	Bc In	Core is intensely broken and ground into small cm scaled fragments.		
7.3 - 8.2	Bc S	Broken and blocky core with core loss.		
8.2 - 8.6	Vqtz S	Large broken bull white quartz vein. The veins appears to be barren.		
10.34 - 10.47	Vqtz S	Dirty white quartz veins with a 8cm true width. The quartz is cross-cut with mm-scaled fractures and hosts trace pyrite.		
13.8 - 56.0	Вс М	Blocky core.		
23.0 - 25.0	STK W	Narrow mm-scale white stockwork quartz veins cross-cut core. Many veins run parallel to core axis.		
28.3 - 28.4	Vqtz M	Multiple narrow sheeted quartz veins. The quartz veins cross-cut by a fracture causing dextral offset of the veins.		
31.0 - 31.4	BX W	Weakly brecciated interval. The rust staining obscures textures.		
38.8 - 39.1	Vqtz M	White quartz vein with at 17 mm TW hosing one massive galena crystal.		
49.1 - 49.2	Vqtz M	Sheeted white quartz veins. No sulphides. The true width is 15mm.		
56.0 - 73.8	STK In	Intensely stockwork fractured core. The core is cross-cut by mm-scaled calcite fractures. Many of the calcite fractures have dextral offset caused by micro-faulting. Slickenlines can be found locally.		
56.0 - 99.0	Bc S	Strong to intensely broken and blocky core. Multiple intervals of rubble and core loss.		
73.8 - 73.88	Dyk S	Pink quartz feldspar vein/dyke. No sulphides.		
73.88 - 99.0	STK S	Intensely stockwork fractured core. The core is cross-cut by mm-scaled calcite fractures. The veins are commonly associated locally with quartz and rust coated fractures. Many of the calcite fractures have dextral offset caused by micro-faulting.		
109.6 - 110.3	Vqtz S	Sheeted parallel smoky quartz veins with lesser calcite veins. Veins occur at 70 dtca but can be locally brecciated and folded.		

Project: Q1)						Hole	Number	Q19-	20-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
111.65 - 111.7	Vqtz M	White quartz vein. 12mm true width.										
113.4 - 113.6	Vqtz M	Parallel sheeted smoky and white quartz veins with associated epidote alteration.										
113.6 - 114.3	STK M	Narrow mm-scaled epidote stockwork veins.										
126.0 - 128.0	STK M	Calcite coated stockwork fractures.										
138.8 - 139.0	Vcc W	Sheeted parallel calcite veins.										
145.4 - 148.9	STK M	Moderate calcite stockwork veins.										
151.14 - 151.8	STK M	Mm-scaled epidote altered stockwork veins.										
155.7 - 155.8	G W	Narrow gouge on fracture surface.										
162.04 - 162.1	Vqtz M	Quartz vein. No sulphides.										
164.22 - 168.4	Bc M	Moderately broken core caused by parallel tca fractures and calcite stockwork fracturing.										
168.63 - 168.9	STK In	Intense sericite stockwork fracturing. The interval could be classified as a breccia.										
169.21 - 169.3	Dyk S	White to pale pink plagioclase/quartz dyke? The dyke hosts 1% mafic minerals.										
178.0 - 178.2	BX S	Smoky brecciated quartz vein annealed with white calcite. Interval cuts-core at 30 dtca.										

Project: Q19 Hole Number: Q19-20-02

riented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
7.35	Fol	70				
10.34	Vqtz	60				
13.5	Vcc	25				
18.7	Fol	70				
24	Vcc	0				
28.5	Vqtz	70				
31.4	С	50				
34.6	Vqtz	60				
38.9	Vqtz	10				
49.1	Vqtz	60				
60.5	Vcc	45				
62.7	F	25				
63.7	VL	70				Pyrite Stinger.
68.7	Fol	70				
68.8	Vcc	15				Calcite stockwork vein cross-cutting foliation.
70.5	Vqtz	70				Sheeted narrow quartz veins.
77.2	Vqtz	40				Quartz calcite vein hosting MV fragments.
71.4	SIs	70				Slickenlines oriented at 70 dtca across fracture fa
76.7	F	45				Calcite fracture with brown rust alteration.
79	Fol	70				
80.1	F	30				Brown rust coated fracture.
93.2	F	0				Calcite vein with brown rust alteration.
95.3	Fol	70				
74.9	Vqtz	80				
73.9	Dyk	70				Pink feldspar dyke or quartz.
98.5	Vqtz	80				White quartz vein.
103	Fol	70				
105.3	Vqtz	70				Smoky quartz vein.
109.9	Vqtz	70				Sheeted quartz vein.
111.65	Vqtz	80				White quartz vein.

0 10 0 1					
Project: Q19					Hole Number: Q19-20-02
113.1	Fol		70		
113.5	Vqtz		70		
122.6	Fol		70		
127.5	Vcc		15		
136	Vqtz		70		
145.45	Vqtz		70		Quartz vein with a 3 c true width.
149.9	Vqtz		30		Quartz/carbonate vein with blebby pyrite.
149.4	VL		70		Pyrite stringer.
153.5	VL		55		Pyrite stringer.
154.45	VL		45		Mm-scaled pyrite stringer.
155.8	G		70		
157.2	Fol		60		
160	Vcc		20		
162.06	Vqtz		40		
160.2	VL		60		Mm-scaled pyrite stringer.
160.3	VL		60		Mm-scaled pyrite stringer.
163.57	Fol		70		
164.4	F		0		Long fracture occurring parallel tca causing broken core.
168.5	Vqtz		70		
169.25	Dyk		60		
169.67	Vqtz		60		
171	Vcc		0		Calcite vein with some pyrite.
173.6	Vcc		60		Calcite vein with sphalerite.
176.4	Vcc		30		Calcite vein with rust staining.
177.74	Fol		60		
178.7	F		40		Rusty fracture.
178.1	ВХ		30		
Geotech					
From	То	Recovery	Recovery %	Comments	
17	20	2.8	93.33	badly broken	
20	23	2.73	91	broken	
23	26	2.89	96.33	faulted/broken	

Project:	Q19					Hole Number:	Q19-20-02
	26	29	2.6	86.67	very badly broken		
	29	32	2.09	69.67	badly broken/faulted		
	32	35	2.13	71	badly broken/faulted		
	35	38	2.31	77	badly broken		
	38	41	2.14	71.33	badly broken/rubble		
	41	44	2.64	88	badly broken		
	44	47	2.48	82.67	badly broken		
	47	50	2.78	92.67	badly broken		
	50	53	2.43	81	very badly broken/rubble		
	53	56	2.56	85.33	badly broken		
	56	59	2.19	73	extremely broken/rubble		
4	1.75	5	25	10000	over-burn/rubble		
	5	8	1.52	50.67	very broken/rubble		
	8	11	1.85	61.67	very broken		
	11	14	3.12	104	broken		
	14	17	2.21	73.67	very broken/rubble		

0 U	P													
: Q19									Hole N	Number	: Q19-2	20-03		
	Di	rill Hole			Drilling					Coll	ar Surve	∍y		
type	DD	Core location:	Doc Camp	Drilling started	Aug-19-20	20		Gric	i:	1	NAD83 /	UTM zo	ne 9N	
size:	HQ	Claim number:		Drilling completed	: Aug-21-20	20		Eas	ting:	4	411,118			
al depth:	149.0	Logged by:		Drilling contractor	: Dorado			Nor	thing:	6	3,243,49	6		
et:								Elev	/ation:	-	1,362			
epth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qual	ity							
0	Collar Hanstone	225	225	-45										
17	Reflex Hanstone	208.1	226.1	-47.4										
68	Reflex Hanstone	208	226	-47.7										
149	Reflex Hanstone	210.1	228.1	-48.1										
То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)		Pb (ppm)	Zn (ppm)	As (ppm)
2.9	CAS - Casing								,	,				,
149	MV - Mafic Volcanic	;			A0862541	7.17	8.17	1	13	0.4	127	4	86	1
sh grey ma	fic volcanics. The core co	onsists of mostly apha	nitic mafic minerals that can	not be distinguished	A0862542	8.17	8.6	0.43	1755	17.1	152	69	80	6
yrsts. From	n 87 to 88.1m a interval c	of volcanic sediments a	are encountered hosting bed	and layers of	A0862543	8.6	9.24	0.64	851	6.7	41	31	2	2
		Oliver and the second and the	. b. 1 . l l		A0862544	9.24	9.54	0.3	188	1.4	62	60	93	1
			e but strong locally. The core	is calcareous	A0862545	9.54	10.25	0.71	7	0.3	80	32	109	1
in structura	al zone (the Q19 structur	re) begins at the top of	the hole down and continues	s until the bottom of	A0862546	10.25	10.75	0.5	5	0.1	132	1	90	1
and is cro ork fracture	oss-cut by mm-scaled fra es are late and cross-cut	ictures and quartz carb smoky and white quar	oonate veinlets with local min tz veins. Strong faulting a mo	eralization. The overnent occurs from	A0862547	23.26	23.6	0.34	2.5	0.1	47	1	39	1
					A0862548	23.6	24.6	1	2.5	0.1	100	26	78	2
					A0862549	24.6	24.9	0.3	2.5	0.3	152	43	108	1
					A0862550	24.9	25.9	1	6	0.1	147	1	86	2
		unit. At 148m the foliat	lion changes to 30 DTCA pos	sibly caused from	A0862551	25.9	26.9	1	17	0.3	117	1	88	2
ithology	Type/Description	Comments			A0862552	28.5	29.0	0.5	2.5	0.1	117	1	97	2
		Intermediate me	fic volcanics hosting mm-sca	led white feldspar	A0862553	29.0	29.3	0.3	12	0.8	87	303	306	5
- 114.8	IV Intermediate Volc	phenocyrsts.	· ·	·	A0862554	29.3	29.8	0.5	2.5	0.3	136	2	123	1
01.0	SS Siliceous	Silicified meta-se alternating with r	ediments(?). mm scaled quar mafic bands. Folding occurs a	tz bands are 101m.	A0862555	53.5	54.0	0.5	5	0.1	111	2	72	1
	wetaseament	-	-		A0862556	54.0	54.54	0.54	2.5	0.1	127	1	78	1
on	Type/Style/Intensity	Comments			A0862557	54.54	55.0	0.46	2.5	0.1	138	1	107	1
					A0862558		57.1	0.2	5	0.1	116		64	1
	type size: al depth: et: epth 0 17 68 149 To 2.9 149 h grey manaked eyersts. Fron et uff and a se is pervast to acid ar and is crock fracture 39 which is interval of ein and sillation is faint at Lower cortification in the long of the lower cortification is faint at Lower cortification in the long of the lower cortification is faint at Lower cortification in the long of the lower cortification is faint at Lower cortification in the lower cortification in the lower cortification in the lower cortification in the lower cortification in	type DD size: HQ al depth: 149.0 et: Pepth Survey Type O Collar Hanstone 17 Reflex Hanstone 18 Reflex Hanstone 19 Reflex Hanstone 19 Reflex Hanstone 10 Lithology 2.9 CAS - Casing Percentage of the core	Drill Hole type DD Core location: It size: HQ Claim number: Logged by: et: Pepth Survey Type Mag Azimuth O Collar Hanstone 225 17 Reflex Hanstone 208.1 68 Reflex Hanstone 208 149 Reflex Hanstone 210.1 To Lithology 2.9 CAS - Casing 149 MV - Mafic Volcanic In grey mafic volcanics. The core consists of mostly aphanaked eye. Minor intermediate mafic volcanics are encoursts. From 87 to 88.1m a interval of volcanic sediments at tuff and ash. In structural zone (the Q19 structure) begins at the top of and is cross-cut by mm-scaled fractures and quartz carter fractures are late and cross-cut smoky and white quar 39 which may represent the bottom of the Q19 structure interval of oxidized mineralization occurs from 8.17 to 11 ein and silicification. The second interval occurs as oxidinals faint at 70 dtca for most of the unit. At 148m the foliat Lower contact is EOH. SS Siliceous Metasediment Silicified meta-scalternating with metased in the contact of the Comments Silicified meta-scalternating with metased in the contact is EOH. SS Siliceous Metasediment Silicified meta-scalternating with metased in the contact is EOH. SS Siliceous Metasediment Silicified meta-scalternating with metased in the contact is EOH. SS Siliceous Metasediment Silicified meta-scalternating with metased in the contact is EOH. SS Siliceous Metasediment Silicified meta-scalternating with metased in the contact is EOH.	Drill Hole type DD Core location: Doc Camp size: HQ Claim number: all depth: 149.0 Logged by: et: beth Survey Type Mag Azimuth Azimuth 0 Collar Hanstone 225 225 17 Reflex Hanstone 208.1 226.1 68 Reflex Hanstone 208.1 226.1 149 Reflex Hanstone 210.1 228.1 To Lithology 2.9 CAS - Casing To Lithology 2.9 CAS - Casing Hay MV - Mafic Volcanic In aked eye. Minor intermediate mafic volcanics are encountered locally usually with mrsts. From 87 to 88.1 m a interval of volcanics are encountered hosting bed it uff and ash. e is pervasively altered to chlorite. Silicification is variable but strong locally. The core to acid and is also weakly magnetic. In structural zone (the Q19 structure) begins at the top of the hole down and continues and is cross-cut by mm-scaled fractures and quartz carbonate veinlets with local min fx fractures are late and cross-cut smoky and white quartz veins. Strong faulting a mean 39 which may represent the bottom of the Q19 structure. Linterval of oxidized mineralization occurs from 8.17 to 10.25m which is associated with an is faint at 70 dtca for most of the unit. At 148m the foliation changes to 30 DTCA post Lower contact is EOH. Lithology Type/Description Comments Intermediate mafic volcanics hosting mm-scaled quar alternating with mafic bands. Folding occurs a silternating with mafic bands. Folding occurs a silternating with mafic bands. Folding occurs as a silternating with mafic	Drill Hole type DD Core location: Doc Camp Drilling started prilling completed al depth: 149.0 Logged by: Peth Survey Type Mag Azimuth Azimuth Dip Collar Hanstone 225 225 -45 Collar Hanstone 208.1 226.1 -47.4 Collar Hanstone 208.1 226.1 -47.4 Collar Hanstone 208.1 226.1 -47.7 Collar Hanstone 208 226 -47.7 Collar Hanstone 208 228.1 -48.1 Collar Hanstone 208 226 -47.7 Collar Hanstone 208 228.1 -48.1 Collar Hanstone 208 228.1 -48.1 Collar Hanstone 208 228.1 -48.1 Collar Hanstone 208 226 -47.7 Collar Hanstone 208 226 -47.7 Collar Hanstone 208 226 -47.7 Collar Hanstone 208 228.1 -48.1 Collar Hanstone 208 226 -47.7 Collar Hanstone 208 228.1 -48.1 Collar Hanstone 208 226 -47.7 Collar Hanstone 208 228.1 -48.1 Collar Hanstone 208 226 -47.7 Collar Hanstone 208 228.1 Collar Hanstone 225 225 -45 Collar H	type DD Core location: Doc Camp Drilling started Aug-19-20 Drilling completed: Aug-21-20 Drilling completed: Aug-21-20 Drilling completed: Aug-21-20 Drilling contractor: Dorado etc: Page	type DD Core location: Doc Camp Drilling started Aug-19-2020 Drilling completed: Aug-21-2020 Drilling completed: Aug-22-2020 Drilling completed: Aug-22-2020 Drilling completed: Aug-22-2020 Drilling completed: Aug-22-2020 D	Part Part	Drill Hole			Drill Hole		Part Part

G S

8.17 - 8.6

DRILL LOG REPORT

Hole Number: Q19-20-03

0.1

0.1

0.4

0.7

0.3

0.1

0.1

0.1

0.5

0.2

To Length

0.5

0.3

1

0.3

0.5

0.19

0.2

0.2

1

0.69

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

5

Au Ag Cu Pb Zn As (ppb) (ppm) (ppm) (ppm) (ppm) (ppm)

1

30

24

1

1

92

25

49

61

111

125

96

73

55

86

220

137

2

3 2

2

109

104

105

95

119

138

56

86

102

23

Project: Q19					
From To	Lithology		Sample	From	To
2.9 - 130.27	Si Pv M	Moderately silicified core with local intervals of strong silicification.	A0862559	61.8	62.
8.17 - 8.6	Rs FV M	Moderate rust alteration of pyrite associated with fault gouge.	A0862561	62.3	62.
9.24 - 9.5	Ser Pv S	Strong sericite atlered core at the lower contact of a bull white quartz vein. The alteration is associated with narrow cross-cutting quartz veins, actinolite and bleby pyrite.	A0862562 A0862563	62.6 63.6	63.9 63.9
9.96 - 10.25	Rs FV M	Rust stained fractures propagating into wall rock.	A0862564	63.9	64.
29.09 - 29.3	Rs FV M	Rust stained fracture/mm-scaled gouge.	A0862565	81.25	81.44
29.09 - 29.3	ns rv ivi	riust stained fracture/fillif-scaled gouge.	A0862566	82.8	83.0
25.0 - 27.5	Rs FV W	Rust coated fractures commonly associated with slickenlines.	A0862567	118.0	118.2
27.1 - 27.3	Ep FV M	Stockwork veinlets with epidote fracture fill.	A0862568	137.0	138.0
51.0 - 59.5	Ep FV M	Stockwork veinlets with epidote fracture fill.	A0862569	136.0	138.69
130.27 - 130.54	Si Pv S	Intense silicification cause the core to be glossy and feel like glass.			
130.54 - 149.0	Si Pv M				
137.0 - 139.0	BI P M	Patchy bleaching caused by fluids flowing through the fault.			
Mineralization	Type/Style/%Mineral	Comments			
8.17 - 8.6	Ox FR 3%	Zone 1 - Gouge hosting rusty mineralization.			
8.6 - 9.24	Q19 M 100%	Zone 1 - Massive bull white quartz vein.			
9.24 - 9.5	Py Bl 5%	Zone 1 - Blebby pyrite hosted in small white quartz vein stringers. Pyrite is also disseminated throughout the interval. The main targeted structure in zone 1.			
9.96 - 10.25	Ox FR 20%	Zone 1 - Rusty alteration associated with fractures.			
29.09 - 29.29	Q19 FR 10%	Rusty mineralization. Mostly likely is the same structure as the rusty breccia seen in Q19-20-02. Q19 zone 2.			
54.0 - 54.7	Py D 0.1%	Disseminated pyrite.			
62.35 - 62.45	Py Bl 3%	Blebby fracture fill pyrite.			
63.6 - 63.83	Q19 BI 5%	Zone 3 (?) - Blebby pyrite and a oxidized calcite vein. Caclite veins runs 35 dtca.			
118.0 - 118.2	Py Bl 1%	Trace blebby pyrite within a quartz-feldspar dyke.			
Structure	Type/Intensity	Comments			

Fault gouge with significant movement at the lower contact.

Project: Q19)					Hole Number: Q19-	20-03
From To	Lithology		Sample	From	To Length	Au Ag Cu (ppb) (ppm) (ppm)	Pb Zn As (ppm) (ppm)
8.6 - 9.24	Vqtz S	Large bull white quartz vein ~30 cm in diameter.					
9.24 - 132.5	Bc S	Strongly broken core. Core is broken into 5 to 20 cm fragments. Slickenlines are common on fracture surfaces.					
27.1 - 27.3	STK M	Epidote and sericite stockwork fractures.					
29.09 - 29.3	G M	Narrow rust gouge in Zone 2.					
51.0 - 59.5	STK M	Stockwork veinlets with epidote fracture fill. The veinlets usually occur parallel TCA or at 60 dtca. Local intervals of sericite veins.					
59.5 - 62.0	F M	Brown coated fractures. Slickenlines are common of fracture surfaces.					
81.24 - 81.42	Vqtz M	Two sheeted smoky/white quartz veins cutting core at 80 dtca. True width of quartz veins are 18mm,.					
82.9 - 83.0	Vqtz M	Smoky quartz lens. No sulphides.					
96.26 - 106.7	F M	Fracture with brown alteration on surface.					
115.7 - 116.13	Vqtz M	Sheeted quartz veins. Veins are boundinage and folded locally.					
137.0 - 139.0	Flt S	Moderate to strong faulting creating rubbly core. The fault consists of multiple narrow gouges roughly 5mm in width cross-cutting the core at 10 dtca. Slickenlines occur on some of the fracture surfaces.					

Project: Q19 Hole Number: Q19-20-03

Oriented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
6.24	Fol	60				
8.26	G	60				Top contact of fault gouge.
10.08	F	70				Rusty mineralized fracture.
10.16	F	40				Rusty mineralized fracture.
18.5	F	50				Slickenlines at a 50 deg orientation on fracture face.
24.7	F	40				White quartz vein with a 1 cm true width. Rusty oxidation coats the edges of the vein.
25.7	Fol	50				Ū
26.28	Vqtz	60				Mm-scaled quartz vein with trace pyrite.
27.4	F	0				Rust coated fracture running parallel tca.
29.11	G	60				Zone 2 fault gouge.
43.74	Vqtz	70				White quartz vein with a true width of 1 cm.
51.7	STK	15				Epidote stockwork fracture.
52.4	Vqtz	70				Quartz vein cross-cut by stockwork fractures.
56.95	Vcc	45				Narrow calcite vein with trace Chalcopyrite (?)
62.25	Fol	55				
63.75	F	35				Calcite fracture with oxidized mineralization.
78.1	Vcc	15				Brecciated calcite vein with brown alteration.
81.3	Vqtz	80				Sheeted quartz vein.
81.4	Vqtz	80				Sheeted quartz vein.
88.1	Fb	90				Mafic volcanic layering.
94.85	Fol	80				
98.3	Vqtz	80				White quartz vein. True width 3.5 cm.
100.1	Fol	70				
100.95	Fld	70				Apex of fold is 70 dtca.
102.9	Vcc	10				Calcite vein. Rusty alteration occurs along contact of vein.
112.2	Fol	70				
120.9	F	70				Fracture with gouge material on surface.
118.1	Dyk	70				Qtz-feldspar dyke with 1% blebby pyrite. The dyke is cross-cut by stockwork calcite veinlets creating sinstral offset.
129.3	Vqtz	10				Narrow mm-scaled quartz vein with minor gouge.

ROUP					
oject: Q19					Hole Number: Q19-20-03
136	F		15		Calcite with brown alteration.
137.8	G		10		Narrow fault gouge. Width is 12mm.
140	Vcc		0		Calcite vein with minor epidote stringers.
145.4	Vcc		30		Calcite vein with brown alteration.
148.2	Fol		30		
eotech					
From	То	Recovery	Recovery %	Comments	
2.9	5	2.86	136.19	very broken /rubble	
5	8	2.75	91.67	very broken /rubble	
8	11	2.88	96	broken /rubble	
11	14	2.95	98.33		
14	17	2.9	96.67	broken /rubble	
17	20	3	100	broken /rubble	
20	23	3	100	broken /rubble	
23	26	3	100	broken/rubble	
26	29	3	100	broken /rubble	
29	32	3	100	very broken /rubble	
32	35	2.53	84.33	very broken /rubble	
35	38	2.3	76.67	very broken /rubble	
38	41	2.97	99	very broken /rubble	
41	44	3	100	broken /rubble	
44	47	2.9	96.67	moderately broken	
47	50	2.55	85	broken	
50	53	2.98	99.33	broken /rubble	
53	56	2.82	94	very broken /rubble	
56	59	2.78	92.67	broken /rubble	
59	62	2.97	99	very broken	
62	65	2.93	97.67	broken /rubble	
65	68	3	100	broken	
68	71	2.98	99.33	broken	
71	74	3.4	113.33	very broken /rubble	
74	77	2.97	99	broken	

Project:	Q19					Hole Number: Q19-20-03	
	77	80	2.91	97	broken		
	80	83	2.81	93.67			
	83	86	2.85	95	broken/rubble		
	86	89	2.87	95.67	broken/rubble		
	89	92	2.65	88.33	very broken /rubble		
	92	95	2.87	95.67	broken /rubble		
	95	98	2.68	89.33	very broken /rubble		
	98	101	2.5	83.33	very broken /rubble		
-	01	104	2.51	83.67	broken /rubble		
-	04	107	2.72	90.67	very broken /rubble		
-	07	110	2.25	75	very broken /rubble		
-	10	113	2.79	93	broken /rubble		
-	13	116	2.93	97.67	broken		
-	16	119	2.92	97.33	very broken		
-	19	122	2.81	93.67	broken		
-	22	125	2.75	91.67	broken/rubble		
-	25	128	2.75	91.67	broken/rubble		
-	28	131	2.34	78	very broken		
-	31	134	2.21	73.67	broken, appearance of gouge		
	34	137	2.34	78	broken/rubble likely from gouge		
-	37	140	2.68	89.33	broken/rubble due to gouge		
-	40	143	2.96	98.67	broken/rubble		
	43	146	2.75	91.67	very broken		
	46	149	2.78	92.67	very broken		

		P								Hal- !	Marana la	. 010			
Project: Q19 Drill Hole Drilling				Hole		: Q19-									
Uala	be type DD e size: HQ ual depth: 101.0 get: Depth Survey Type 0 Collar Hanstone 23 Reflex Hanstone 74 Reflex Hanstone To Lithology 4.8 CAS - Casing 101 MV - Mafic Volcanic sh grey mafic volcanics. The core cone enaked eye. Minor volcanic sediment asively altered to chlorite. Silicification and is also weakly magnetic. The number of the law with local mineralization. The stocks a movement occurs at 69m which is a movement occurs at 69m which is disseminated pyrite and significant secontact is EOH. Signature Type/Style/Intensity 3 Si Pv M 11.0 Chl Pv M 5 Rs FV S Rs FV S		Dog Comp		•	200		Collar Survey Grid: NAD83 / UTM zone 9N							
	••			Doc Camp		ŭ				a: sting:		111,118		ne siv	
						ŭ	,20			rthing:		5,243,49			
	•	101.0	Logged by.		Drining contractor	Dorado				vation:		1,362	,0		
												-,			
•		Survey Type	Mag Azimuth	Azimuth	Din	Su	rvev Qual	itv							
	-	, ,,	•		•	Jui	vey Quai	ıty							
		Hellex Hanslon	159.3	177.3	-40.0					Au	Ag	Cu	Pb	Zn	As
From	То	Lithology				Sample	From	То	Length					(ppm)	
D	4.8	CAS - Casin	g												
4.8	101	MV - Mafic V	olcanic			A0862570	6.8	7.3	0.5	366	2.7	71	335	45	1
Greenis	h grey ma	grey mafic volcanics. The core consists of mostly aphanitic mafic minerals that can not be distinguaked eve. Minor volcanic sediments are encountered locally usually with cm-scaled bedding. The				A0862571	7.3	7.8	0.5	1715	25.2	35	4	9	1
is perva	naked eye. Minor volcanic sediments are encountered locally usually with cm-scaled bed sively altered to chlorite. Silicification is variable but can be strong locally. The core is cal				calcareous reacting	A0862572	7.8	8.5	0.7	18150	128	198	35	4	
down ar	nd continue	rey mafic volcanics. The core consists of mostly aphanitic mafic minerated eye. Minor volcanic sediments are encountered locally usually with all all all all all all all all all al	ut by mm-scaled fractures and	quartz carbonate	A0862573	8.5	9.05	0.55	277	7.2	759	180	38	;	
faulting	a moveme	ent occurs at 69	n which is represented by a	fault gouge. The first interval	of oxidized	A0862574	9.05	10.05	1	31	1.4	399	33	75	:
The sec	ond miner	alized zone was	not intersected. A third min-	eralized zone was intersected	from 52.0 to 57.7 m	A0862575	10.05	10.42	0.37	35	0.4	112	5	69	
			nificant sheeted quartz veir	s. Foliation is faint at 60 dtca	for most of the unit.	A0862576	10.42	11.3	0.88	6	0.3	138	2	104	
A Itawati		Turno/Cturlo/Ind	anaitre Cammanta			A0862577	11.3	12.3	1	2.5	0.2	146	2	97	
Anterani	on	i ype/Style/int	ensity Comments			A0862578	12.3	13.3	1	6	0.1	91	1	87	-
4.8 - 5.3	}	Si Pv M				A0862579	13.3	13.8	0.5	5	0.1	113	1	99	2
4.8 - 10 ⁻	1.0	Chl Pv M				A0862580	13.8	14.0	0.2	5	0.2	188	1	95	2
53-85	•	Si Pv S	Strong silicific	ation at the top contact of Zone	e 1 mineralization.	A0862581	14.0	14.5	0.5	5	0.1	81	1	90	2
			ŭ	·		A0862582	24.1	24.3	0.2	6	0.2	189	1	92	1
6.8 - 7.3	}	BI Pv W	interval is also	hard and silicified.	у то рашо 9. оста	A0862583	42.2	42.7	0.5	64	0.6	143.5	8.6	101	29.5
7.3 - 8.5	;	Rs FV S	Rusty altered	fractures with blebby pyrite.		A0862584	42.7	43.4	0.7	40.3	0.5	128.7	65.7	163	152.4
8.5 - 10.	.05	Ser Pv S	Strong sericitie	ed core. Core is pale brownish	green. Fractures are rom surface.		43.4	44.34	0.94	14.7	0.1	59.9			8.7
8 5 - 22	6	Si Pv M	300.000 111 0100	aa black organio material i			44.34	44.9	0.56	79.5	0.4	69.8			8
J.J 22.		OI I V IVI				A0862587	44.9	45.4	0.5	28.6	0.4	32.3	27.8	128	8.3
		Si Pv S		licification causing the core to l		A0862588	47.5	48.0	0.5	11.9	0.1	90.8	2.4	82	12.2

Project: Q19			Hole Number: Q19-20-04									
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
26.2 - 101.0	Si Pv M		A0862589	48.0	48.5	0.5	2.9	0.2	108.5	2.2	81	6.6
44.34 - 44.9	Rs P W	Weakly altered core with rust staining.	A0862591	48.5	49.0	0.5	2.1	0.05	50.3	1.2	83	1.7
		Pervasively bleached interval causing the core to be pale grey.	A0862592	49.0	49.7	0.7	1.8	0.1	118.6	2.4	98	5.3
55.7 - 55.9	BI Pv S	Alteration contact is sharp at 40 dtca. Low angle calcite-quartz vein may have been the conduit for fluids.	A0862593	49.7	50.16	0.46	8.0	0.1	100.3	2.5	85	2.4
75.16 - 89.0	Ep FV M	Epidote alteration occurs along mm-scaled epidote stockwork	A0862594	50.16	50.45	0.29	0.25	0.05	103.5	1.6	81	2.1
75.10 - 09.0	LP I V IVI	fractures commonly occurring with calcite veins.	A0862595	50.45	51.3	0.85	0.25	0.1	85.5	2.3	87	1.4
Mineralization	Type/Style/%Mineral	Comments	A0862596	51.3	52.3	1	0.7	0.1	73.1	1.6	70	1.2
6.8 - 8.7	Q19 FR 3%	Rusty fractures with pyrite mineralization.	A0862597	52.3	53.0	0.7	8.0	0.1	102.4	2.1	80	2.2
10.25 - 10.42	Py FR 3%	Blebby fracture controlled pyrite located in a calcite vein. Host rock	A0862598	53.0	54.0	1	0.25	0.3	85.6	2.9	86	1.3
	•	host trace disseminated pyrite.	A0862599	54.0	55.0	1	0.25	0.05	55.8	6.5	86	0.25
11.45 - 11.58	Py FR 3%	Blebby fracture controlled pyrite located in a calcite vein.	A0862602	55.0	55.5	0.5	1.8	0.4	119.4	9.7	71	2.3
13.84 - 13.86	Ccp In 0.1%	Two little specs of malachite. See pic.	A0862603	55.5	56.0	0.5	3.8	0.6	67.2	379.5	759	0.9
21.95 - 22.02	Py D 1%	Disseminated pyrite.	A0862604	56.0	57.0	1	2	0.4	73.3	56	116	0.7
24.1 - 24.2	Py FR 1%	Fracture controlled pyrite associated with sheeted quartz veins.	A0862605	57.0	57.7	0.7	1.9	0.2	53.4	48.7	141	0.25
24.1 - 24.2	1 y 111 170	Disseminated pyrite occasionally concentrating along fracture	A0862606	57.7	58.7	1	1.4	0.3	72.2	113.7	328	2
52.0 - 57.7	Q19 D 0.1%	edges up to 3% locally. Zone 3?	A0862607	58.7	59.7	1	1.1	0.2	78.8	54.2	135	0.6
58.5 - 58.6	Ccp Bl 0.1%	Interval has 1% blebby pyrite and trace specs of chalcopyrite.	A0862608	59.7	60.6	0.9	1.3	0.1	89.2	1.9	74	1.2
60.6 - 61.66	Py FR 1%	1% pyrite occurring in micro-veins and stringers.	A0862609	60.6	61.6	1	1.4	0.1	92.3	1.7	52	0.5
04.00.04.75	Dv DI 50/	5% occurring blebby and along fractures.	A0862610	61.6	61.8	0.2	3.3	0.3	178.1	3.2	96	2.8
61.66 - 61.75	Py Bl 5%	5% occurring biebby and along fractures.	A0862611	61.8	62.8	1	1.1	0.1	74.4	1.9	51	0.6
61.75 - 64.75	Py FR 1%	1% pyrite occurring in micro-veins and stringers.	A0862612	62.8	63.8	1	0.8	0.05	29.2	1	33	1.2
66.45 - 66.65	Py D 1%	Disseminated pyrite hosted in a felsic dyke.	A0862613	63.8	64.2	0.4	0.8	0.05	62.6	2	36	1.6
66.65 - 68.0	Pv S 1%	Interval host pyritic veins and stringers.	A0862614	64.2	64.75	0.55	0.7	0.05	33	1.1	40	1
		.,	A0862615	64.75	65.25	0.5	0.6	0.05	34.2	1.2	53	0.25
73.4 - 75.16	Py Bl 3%	3% blebby pyrite locally occurring as pyrite stringers.	A0862616	66.45	66.65	0.2	1.4	0.2	8.1	79.6	178	2.5
75.16 - 76.0	Py D 0.1%	Disseminated pyrite.	A0862617	67.65	68.0	0.35	2.2	0.5	66.6	66.9	175	0.9
Structure	Type/Intensity	Comments	A0862618	68.0	69.0	1	1.6	0.3	61.6	67.3	132	1.1
72 05	Vatz S	Bull white quartz vein with rusty and pyritic fractures.	A0862619	69.0	69.3	0.3	3.6 9.2	0.3	38.6 52.3	46.1 119.5	91 120	3
7.3 - 8.5	Vqtz S	Dun write quartz vent with rusty and pyritic fractures.	A0862620	69.3	70.3	1 0.5	9.2	0.6	97.2			2.3 0.9
8.5 - 10.05	F S	Strongly fractured core.	A0862621	72.9	73.4			0.05		2.6	81	
10.05 - 11.0	Bc M		A0862622	73.4	73.75	0.35	0.8	0.05	66	1.6	56	1
			A0862623	73.75	74.3	0.55	1.3	0.2	129.6	2.8	46	1.2

Project: Q1	9		Hole Number: Q19-20-04										
From To	Lithology		Sample	From	То	Leng	th	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)		As (ppm)
11.0 - 12.39	ShV M	Interval of sheeted calcite veins.	A0862624	74.3	75.3		1	0.9	0.05	54.8	1.7	81	0.9
12.39 - 14.5	Bc M		A0862625	75.3	76.3		1	0.7	0.05	69.7	1.5	77	0.25
14.5 - 14.66	Dyk S	Quartz feldspar dyke.											
14.66 - 42.85	Bc M												
42.85 - 43.07	G M	Fault gouge. Faint foliation can still be recognized.											
43.07 - 50.16	Bc M												
50.16 - 50.45	ShV M	Multiple parallel sheeted quartz veins cross-cut by calcite veins.											
50.45 - 55.0	ShV W	Sheeted quartz veins and lens.											
55.0 - 57.7	ShV S	Large broken and offset quartz veins. Calcite veinlets cross-cit foliation and quartz. Quartz veins are up to 6cm wide.											
57.7 - 59.8	Bc M												
59.8 - 59.96	ShV S	Sheeted calcite veins with sericite alteration.											
59.96 - 66.45	Bc M	Slickenlines are commonly seen on fracture surfaces.											
66.45 - 66.65	Dyk S	Fine grained pink felsic (Apilite) dyke. True width 12 cm. Contacts are sharp at 60 dtca.											
66.65 - 69.0	Bc W												
69.0 - 69.3	G S	Fault gouge with large sub-angular fragments from 0.1 to 2.0cm in diameter. The majority of the movement appears to have occurred at 69.01m.											
69.3 - 74.7	Bc S	Very broken and blocky core.											
74.7 - 89.0	STK M	Moderate epidote and calcite stockwork veining. The veins appear to be dominantly at60 or 0 dtca.											
89.0 - 91.77	Bc S	Blocky and broken core.											
91.77 - 91.93	Dyk S	Granitic dyke. True width 6cm.											
91.93 - 97.88	Bc S	Strongly broken and blocky core with local rubble intervals. Local fractures host slicklines which appear to show reverse faulting. Oriented core was not available for this interval.											

Project: Q19
Hole Number: Q19-20-04

Oriented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
8.5	Vqtz	75				Lower contact of white quartz vein
10.2	Vcc	60				Pyritic calcite vein.
11.5	Vcc	80				Pyritic calcite vein.
14.6	Dyk	45				Quartz feldspar dyke.
21	Fol	60				
32	Vqtz	37				Few quartz veins up to 1 cm in width, oriented perpendicular to and cut by the preceding calcite veins.
32.01	Vcc	45				highly oxidized calcite vein fractured at the edge, mm scale. cross cuts a quartz vein
37.9	Vcc	30				calcite vein controlled by fracturing, variable dip from 30 to 50 degrees. mm scale, several veins with the same orientation within 10 cm of point.
41.24	Fol	65				
43	G	65				measured edge of gouge core block, the surface measured may not represent the fault plane (uncertain).
50.41	Vqtz	60				sheeted quartz veins up to 1 cm thick cut by smaller (mm thick) calcite veins.
55.73	Vcc	30				Calcareous vein with a dark green mineral (actinolite?), quartz and calcite. the alteration halo has the same orientation and has bleached the wall rock. Sulfides are absent in the vein but present in the altered and unaltered wall rock.
57.87	Fol	58				
59.9	Vcc	50				Several calcite veins from 1 mm to 1 cm wide, cross cut by a sinistral fault oriented perpendicular to the veins.
59.91	Flt	15				Sinistral fault cross cutting calcite veins
64.54	Fol	60				Foliation defined by amphibole(?) crystal orientation.
66.51	Dyk	60				upper contact of aplite dike.
66.67	Fol	55				foliation of the aplite dyke
74.2	Vqtz	60				1 cm wide quartz veins with mm wide pyrite veins cross cutting roughly perpendicular
80.91	Vqtz	60				quartz vein with epidote and iron oxidization likely from alteration. 1 cm wide
83	Vqtz	5				quartz and epidote vein up to 1 cm wide. epidote Crystals are up to 1 mm long
83.56	Vqtz	60				quartz vein with epidote, garnet? and amphibole?
84.59	Fol	45				
89.2	Vqtz	60				up to 3 cm wide, coarse grained white translucent quartz with minor pyrite grains distributed along the margins
95.19	Vqtz	60				<1 cm wide with minor pyrite grains along the margins

 Project:
 Q19

 97.94
 Fol
 45

97.94	Fol		45	
Geotech				
From	То	Recovery	Recovery %	Comments
5	8	1.18	39.33	low rec from washed material
8	11	2.03	67.67	very broken/rubble
11	14	2.39	79.67	very broken /rubble
14	17	2.1	70	very broken /rubble
17	20	2.02	67.33	very broken / washed away
20	23	3	100	broken
23	26	2.94	98	1.44-0.46broken
26	29	2.86	95.33	broken/minor rubble
29	32	2.79	93	broken/rubble
32	35	2.57	85.67	very broken
35	38	2.4	80	verybroken/rubble
38	41	2.32	77.33	very broken /rubble
41	44	2.4	80	very broken/rubble/gouge
44	47	2.78	92.67	very broken /rubble
47	50	2.11	70.33	very broken /rubble
50	53	2.4	80	very broken /rubble
53	56	2.77	92.33	broken/rubble
56	59	2.64	88	verybroken
59	62	2.47	82.33	very broken /rubble
62	65	2.86	95.33	verybroken
65	68	2.56	85.33	1.22_0.62 broken
68	71	2.09	69.67	loss from gouge and rubble
71	74	2.24	74.67	very rubbly
74	77	3	100	very broken
77	80	2.94	98	verybroken
80	83	2.94	98	broken
83	86	3.13	104.33	broken
86	89	2.88	96	very broken
89	92	2.2	73.33	very broken /rubble

Project:	Q19					Hole Number: Q19-20-04
	92	95	2.5	83.33	very broken /rubble	
	95	98	2.52	84	very broken /rubble	
	98	101	1.62	54	loss	

Project	: Doc I	Project								Hole I	Number	: Q26-	20-01		
		Г	Orill Hole			Drilling					Colla	ar Surve	∍y		
Hole	type	DD	Core location:	oc Camp	Drilling started	Sep-16-20	20		Grid: NAD83 / UTM zone					ne 9N	
Hole	size:	HQ	Claim number:		Drilling complete	d: Sep-17-20	20		Eas	ting:	4	109,765			
Actu	al depth:	74.0	Logged by:		Drilling contracto	r: Dorado			Nor	thing:	6	5,244,66	3		
Targ	et:								Elev	vation:	1	1,346			
Survey															
	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qual	ity							
	0	Collar Hanstone	178	178	-45										
	20	Reflex Hanstone	154.3	172.3	-44.6										
	73	Reflex Hanstone	155.8	173.8	-45.2										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	A (ppn
	4.5	CAS - Casing													
asing	to 4.5														
.5	74	MV - Mafic Volcani	ic			A0867783	4.5	5.0	0.5	2.9	0.1	186.7	1.4	33	
	to dark gray, fine grained, well foliated / bedded to massive, intermediate to mafic volcanics ogenic sediments). Cross cut by mafic volcanic dykes from 10.6 to 12.1 m, and from 54.5 to					A0867784	10.0	10.6	0.6	0.25	0.05	79.6	0.9	29	0
cal na	narrower (<50cm) dykelets proximal to main dykes. Pervasive weak chlorite, dom			ve weak chlorite, domainal t	race epidote, weak	A0867785	10.6	11.35	0.75	1.6	0.05	44.8	6.3	71	7
eneral	ly ~50 dTC	e, and patchy weak silicification are typical background alteration of this ur ~50 dTCA steepening gradually to 65 dTCA at 69 m. Lower contact is EC			ky core.	A0867786	11.35	12.1	0.75	1.9	0.05	60.2	9.2	89	19
				row (<25 cm), vuggy, altere		A0867787	12.1	13.0	0.9	1.3	0.05	73.6	3.6	45	9
	·	•		g approximately 25% of the		A0867788	16.0	17.0	1	0.7	0.05	28.9	0.8	18	C
ո. Wea	k shearing	and strong hydrotherm	nal brecciation / stockwo	ow intervals of blocky core a rk fracturing through main v	ein zone from ~40 to	A0867789	17.0	17.5	0.5	44.9	0.1	12.2	3.2	43	0.2
4.8 m. 48.9 to	Small folia 67.2 m, v	ation parallel gouge fron vith several narrow gou	n 42.1 to 42.14 m. Block ges. Blocky core from ~	sy core and moderate faultin 72 to 74 m.	ng common from	A0867791	17.5	18.0	0.5	19.5	0.4	52.7	204.4	209	C
lust sta	aining occu	ırs sporadically on fracti	ures througout. Rare ox	idized gouges. Patchy and I	ocally structurally	A0867792	18.0	19.0	1	1.9	0.05	30.5	2	19	0
ontrolle	ed modera 0 to 44.8 ii	te carbonate álteration l	locally throughout. Alter	ation associated with the ma + siderite, pervasive model	ain mineralized zone rate and locally strong	A0867813	28.0	29.0	1	13.6	0.1	23.4	4.4	30	0
ilicifica	tion, stron	g fracture controlled oxid	dation and patchy strong	g yellow brown hydrotherma	al alteration.	A0867814	29.0	30.0	1	15.2	0.1	12.2	3.4	31	0
poradi	c trace fine	e grained disseminated	py throughout. Patchy r	noderate oxide mineralizationalized zone from ~40 to 44.5	on throughout.	A0867815	30.0	31.5	1.5	7.2	0.1	36.8	1.6	21	0.3
rong c	xide mine	ralization (30%), coarse	grained galena (5%) fro	om ~40.2 - 40.5m and from		A0867793	31.5	32.0	0.5	4.4	0.3	217.8	2	31	0
ssemi	nated, veir	nlet and stringer pyrite (~1%) throughout			A0867794	32.0	32.5	0.5	12.4		308.6	1.7	25	1
inor L	.ithology	Type/Description	Comments			A0867795	32.5	33.0	0.5	1.5	0.05	29.8	1.4	22	1
).6 - 1	2.1	Dia Diabase Dyke	Dark greenish gra	ay to altered brown, fine gra eder (?) dyke. Comprised of	ined, porphrytic,	A0867796	35.0	36.0	1	6.5	0.1	63.2	2.5	21	C
		-	20% plagioclase	laths <1mm, 10% black, bro	own and green	A0867797	38.0	38.54	0.54	0.8	0.05	2.6	1.3	8	0.3
			disseminated fine	e in a fine grained dark gree e grained py. Local pervasiv	e greenish medium	A0867798	38.54	39.54	1	2.3	0.05	50.2	6.4	16	0
			brown structurally contacts are fract	/ controlled (?) alteration Up tured / faulted.	oper and lower	A0867799	39.54	40.0	0.46	2.8	0.05	11.4	7.1	38	(

S 5%

FR

FR

FR

FR 1%

1%

30%

5%

Gn

Gn

Ox

40.0 - 40.5

40.0 - 44.8

40.9 - 44.8

42.83 - 43.0

65.0 - 66.0

DRILLING REPORT

As (ppm) 0.25 0.25 0.6 0.9 0.7 0.25 1.8 0.25 0.7 1.9 0.9 0.9 1.3

Project: Doc	Project						Hole I	Number	: Q26-	20-01	
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm) (
54.5 - 55.5	Dia Diabase Dyke	Dark greenish gray to altered brown, fine grained, porphrytic, mafic volcanic feeder (?) dyke. Comprised of approximately	A0867800	40.0	40.5	0.5	8.2	0.05	12.3	6	11
		20% plagioclase laths <imm, 10%="" a="" acicular="" and="" black,="" brown="" dark="" fine="" grained="" green="" in="" local<="" matrix.="" pyroxene="" td=""><td>A0867801</td><td>40.5</td><td>41.35</td><td>0.85</td><td>14.4</td><td>0.05</td><td>11.5</td><td>4.4</td><td>51</td></imm,>	A0867801	40.5	41.35	0.85	14.4	0.05	11.5	4.4	51
		pervasive greenish medium brown structurally controlled (?) alteration. This unit is part of a larger faulted interval of blocky	A0867802	41.35	42.2	0.85	13.3	0.3	20.4	14.6	97
		core therefore contacts are fractured / approximate.	A0867803	42.2	42.83	0.63	11	0.4	66	47.8	167
Alteration	Type/Style/Intensity	Comments	A0867804	42.83	43.3	0.47	4573.8	100	301.6	10000	215
4.5 - 39.7	Si P W	Locally moderate	A0867805	43.3	44.3	1	891	9	270.3	4544.1	525
		Patchy + locally structurally controlled + sporadic vein carbonate.	A0867806	44.3	44.8	0.5	13752. 3	78.1	1175.5	3676.4	386
4.5 - 39.7	Carb FV W	Rhodochrosite observed at 35 m.	A0867807	44.8	45.5	0.7	53.2	0.9	45	120.5	249
4.5 - 74.0	Chl Pv W	Pervasive trace to weak. Locally structurally controlled moderate	A0867808	45.5	46.5	1	9.6	0.3	58.2	41.5	105
4.5 - 74.0	Ep P W	Patchy domainal epidote	A0867809	46.5	47.5	1	3.1	0.1	129.2	10.4	16
4.5 - 74.0	Rs FV W	Sporadic staining on fractures throuhgout	A0867810	53.0	54.0	1	132.6	0.5	40.2	59.6	56
		Strong stockwork carbonate and local thick calcite veins + bands.	A0867811	54.0	55.0	1	16.4	0.2	40.7	16.9	42
39.7 - 44.8	Carb FV S	Local rhodonchrosite (pink carbonate)	A0867812	55.0	56.0	1	7.3	0.1	93.7	6.3	95
39.7 - 53.0	Si P M	Locally strong									
41.35 - 44.8	Hem Pv S	Strong structurally controlled oxidation / hematization									
41.35 - 44.8	Sid FV M										
53.0 - 74.0	Si P W	Locally moderate									
Mineralization	Type/Style/%Mineral	Comments									
4.5 - 74.0	Py Tr 0.1%	Sporadic trace disseminated py									
28.0 - 31.5	Ox FR 5%	Moderate oxidation mineralization along fractures and within gouge									
32.2 - 32.4	Ox FR 5%	Malachite, hematite and black fracture coatings on strongly silicified / cherty altered rock									
35.5 - 36.0	Ox FR 5%										

Stringers and disseminated medium to coarse grained galena.

Weak fine grained disseminated, stringer and veinlets of py in

Moderate to strong oxide staining / mineralization through vein

Stringers and disseminated medium to coarse grained galena.

Large aggregate of galena in vein quartz from 42.95 to 43.3 m.

veins and alteration zone.

Weak bright orange fracture coatings

alteration zone.

Project:	Doc F	Project						Hole	Number	: Q26-	20-01		
From	То	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Structure		Type/Intensity	Comments										
4.5 - 10.5		Bc M	Broken very locally blocky core										
4.5 - 48.6		Bc W	Weak to moderate brittle defm. Approx 60% of the interval is fairly competent and 40% is strongly fractured to faulted.										
10.5 - 14.0		Flt M	Weak to moderate faulting associated with dyke (faulting related to dyke emplacement?). Weak clay coatings common on fractures. 5mm of gypsum buildup on fracture at 13.9 m, sub // TCA. Weak 2cm gouge at 13.7 m.										
23.8 - 24.5		Flt M	Fault zone. Gouge material over ~5cm in blocky core at 23.9 m. Somewhat broken up crackle bx										
28.2 - 31.5		Flt M	Fault zone. Blocky / fractured core 30.9 m and rubble / gouge below. Gouge matrix is mostly green gray clay with patchy oxidized orange clay.										
40.0 - 44.5		BX S	Hydrothermal breccia zone. Healed stockwork fracturing / carbonate +/- quartz veining results in most of the interval being crackle bx. Brecciation strength is patchy with the strongest deformation/alteration from 40.2-41 m, 41.35-43.3 m and 44.25-44.8 m.										
41.0 - 44.8		She W	Slight grain size reduction										
41.8 - 41.9	4	Vcc S	White carbonate vein, ~40 dTCA. Few fractures or inclusions. Bifurcates around strongly altered orange host rock.										
42.1 - 42.1	4	G M	Fault gouge. Well preserved, with coarser fragments of host rock in centre and smaller rounded fragments at margin. Matrix light brown clay. 43 dTCA.										
42.83 - 43.	3	Vqtz M	Wormy, vuggy, irregular quartz veining. Strongly altered host rock. Mineralized with trace diss py and coarse galena aggregate.										
44.4 - 44.5	1	Vqtz M	Altered, vuggy, irregular quartz vein. Strongly oxidized with trace fresh disseminated py. Roughly 80 dTCA										
44.6 - 44.6	7	Vqtz M	Altered, vuggy, irregular quartz vein. Strongly oxidized. Roughly 80 dTCA										
44.9 - 46.3	2	Flt M	Fault zone. Blocky core with 3 cm gouge at 45.95 m.										
49.0 - 58.8		Fit M	Fault zone. Blocky core over 75% of the interval. Several narrow gouges. Crackle breccias common. Thick brown gray green clay common as gouge material, fracture coatings and as weak consolidation of bx.										
60.4 - 60.4	2	G W	2cm gouge. Green brown matrix. 35 dTCA										
61.7 - 67.2	5	Flt M	Fault zone. Blocky core/ rubble over ~50% of interval. Deformation less intense from 63.8 to 66 m.Thick brown gray green clay common as gouge material, fracture coatings and as weak consolidation of bx.										
67.25 - 72.	5	F M	Moderate fracturing. Infrequent clay coatings and thin (<3cm) gouges.										
72.5 - 74.0		Flt W	Blocky core with broken up gouge material from 72.7 to 72.8 m and from 73.6 to 73.8 m										

Project: Doc Project Hole Number: Q26-20-01 **Oriented Point Structure** Depth Structure Alpha Angle **Beta Angle** Strike Dip Comment 8.6 Fol 50 Flt 10 11.3 fault along dyke contact 19.5 Fol 50 35 20.8 50 Fol 55 21.3 Fol 25.4 Fol 50 55 Fol 40 26.5 28.1 Fol 55 50 33.4 Fol oxidized py stringer 35.55 VL 40 38 Fol 45 40 very subtle 39.5 40 Dyk 41.8 Vcc 43 upper contact 41.94 Vcc 35 lower contact 33 42 She 42.14 G 43 lower contact 42.4 She 40 Fol 50 46.5 F 47.3 25 315 appears to be sub // to very faint fol 47.35 F 65 90 60 48.1 Fol 28 250 52.85 52.86 VL 60 30 appears to be sub // to subtle fol Fol 70 60.15 subtle 60.5 G 30 Fol 65 61 65 68.8 Fol Geotech From To Recovery % Comments Recovery

Project:	Doc	Project			Hole Number: Q26-20-01
4	4.5	5	0.98	196	
	5	8	2.85	95	
	8	11	3.1	103.33	
	11	14	3.05	101.67	
	14	17	3.08	102.67	
	17	20	3.15	105	
	20	23	2.9	96.67	
	23	26	3.15	105	
	26	29	2.91	97	
	29	32	2.32	77.33	
	32	35	3.25	108.33	
	35	38	3.09	103	
	38	41	3.2	106.67	
	41	44	2.85	95	
	44	47	3.03	101	
	47	50	3.09	103	
	50	53	2.93	97.67	
	53	56	3.06	102	
	56	59	3.08	102.67	
	59	62	2.86	95.33	
	62	65	3.07	102.33	
	65	68	3.25	108.33	
	68	71	2.9	96.67	
	71	74	2.71	90.33	

R		Project								Uals N	Munaha a		00.00		
Project	: DOC 1	Project			T					Hole	Number				
		22	Drill Hole		5	Drilling						ar Surve	•	011	
	type	DD		c Camp	Drilling started	Sep-17-20			Grid				UTM zo	ne 9N	
	size:	HQ	Claim number:		Drilling completed	•	120			ting:		109,765 244.66			
Targ	al depth:	87.0	Logged by:		Drilling contracto	r: Dorado				thing: vation:		5,244,66 1,346	3		
									Lie	valion.		1,340			
Survey															
D	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Sui	rvey Qual	ity							
	0	Collar Hanstone	178	178	-60										
	20	Reflex Hanstone	153.1	171.1	-61										
	71	Reflex Hanstone	157.1	175.1	-59.8										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (maa)	Pb (ppm)	Zn (maa)	As (ppm
0	3	CAS - Casing								W-17	(I- I-)	(1-1- /	(FF /	WF 7	(I-1- /
Casing t	to 3m	· ·													
3	86	MV - Mafic Volca	nic			A0867816	20.0	21.0	1	11.4	0.1	54.5	7.1	47	0.8
			led to massive, foliated, und f observed. Pervasive weal			A0867817	35.0	36.0	1	13.8	0.2	163.1	1.2	17	0.6
carbona	ite, and pa	tchy weak silicification	n are typical background alt	eration of this unit. Lower	contact is sharp and	A0867818	36.0	37.0	1	5.8	0.2	89.4	1.5	18	2.2
	parallel.	المالية المستوار والأطاري			10.0 m and fram 47.00	A0867819	37.0	37.77	0.77	3.3	0.05	30.4	1	12	0.6
to 51.4 i	m. Dirty, al		arren, fractured, carbonate regular, fractured bull qtz ve			A0867821	37.77	38.4	0.63	1	0.05	12.5	1.7	4	0.7
52.95 m	1.					A0867822	38.4	39.0	0.6	2.5	0.05	9.1	1.4	10	0.25
			ctures througout. Rare oxid			A0867823	39.0	40.0	1	3.5	0.2	5.7	1.3	8	0.25
			n locally throughout. Alterat icturally controlled carbona			A0867824	40.0	41.0	1	1.1	0.05	9.4	1.2	10	0.25
			rellow brown hydrothermal a p occur from 37.37 to 38.4			A0867825	41.0	42.0	1	1.3	0.05	13.9	1.9	8	0.25
`	J	,	ed py throughout. Patchy mo			A0867826	42.0	43.0	1	2.5	0.1	17.1	9.1	17	0.2
The mai	in minerali:	zed zone from 47.82 t	to 53.35 m contains strong d trace galena, py, and cpy	oxidized mineralization, tra	ace disseminated py,	A0867827	43.0	44.0	1	58.9	1	46.4	200	74	1.8
	•		u trace galeria, py, and cpy	maiachile.		A0867828	44.0	45.0	1	1.5	0.1	9.9	9.7	40	0.25
Minor L	.ithology	Type/Description	Comments			A0867829	45.0	46.0	1	8.9	0.05	17.9	6.8	16	0.25
29.0 - 3	2.0	Tuf Mafic Tuff	Mafic lapilli tuff. We moderately sericitize	ell foliated. Matrix weakly s zed/	silicified and	A0867830	46.0	47.0	1	1.5	0.05	8.5	10.1	24	0.25
Alterati	on	Type/Style/Intensit	•			A0867831	47.0	47.82	0.82	1.6	0.1	12.7	12.2	46	0.25
				un annualitable es force	a thus wall and	A0867832	47.82	48.5	0.68	5.3	0.1	20.5	15.2	25	1
3.0 - 87.	.0	Rs FV W	Hust staining occu	rs sporadically on fracture	s throughout	A0867833	48.5	49.3	0.8	1.6	0.05	46.6	6.7	10	0.6
3.0 - 87.	.0	Ep P W	Very local domaina	al epidote		A0867834	49.3	50.0	0.7	2.3	0.1	46.1	7.2	20	0.9
						A0867835	50.0	50.8	0.8	4.4	0.3	52.3	126.7	75	1.8

3.0 - 47.2

10.0 - 11.1

21.9 - 22.0

24.0 - 25.7

25.07 - 25.1

F M

Flt M

G W

Flt M

G M

DRILL LOG REPORT

Project: D	oc Project						Hole I	Number	: Q26-	20-02		
From To 3.0 - 87.0 3.0 - 87.0 29.0 - 32.0 40.7 - 41.0 41.9 - 42.1 47.82 - 53.35 47.82 - 53.35 46.7 - 58.0 Mineralization 3.0 - 87.0 52.5 - 53.0 52.5 - 53.0 52.5 - 53.35	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
3.0 - 87.0	Si P W	Patchy weak to locally moderate silicification throughout. Silicification intensity does not appear to increase significantly near	A0867836	50.8	51.8	1	48.6	0.5	41.6	126.9	110	1.3
		mineralized zone (47.82 to 53.35 m)	A0867837	51.8	52.5	0.7	3.8	0.05	14	79	156	0.25
3.0 - 87.0	Chl Pv W	Pervasive weak chloritization and local domainal and structurally controlled moderate chl	A0867838	52.5	53.0	0.5	341.1	5.3	473.6	2495.2	773	2.5
29.0 - 32.0	Ser Pv M	Moderate sericitization of matrix of lapilli tuff interval	A0867839	53.0	53.35	0.35	916.2	3.7	54.3	366.2	102	5.7
40.7 41.0	Si Pv S	Narrow interval of bedding controlled (?) quartz flooding	A0867840	53.35	54.0	0.65	37.5	0.3	126.5	11.1	56	4.3
40.7 - 41.0		Trained interval of bedding controlled (1) quartz hooding	A0867841	54.0	55.0	1	1.9	0.2	138.5	7.5	19	3.3
41.9 - 42.1	Chl FV S	Micro bx with chlorite matrix	A0867842	55.0	56.0	1	1.8	0.05	138	3.6	11	3.6
47.82 - 51.8	Carb FV S	Strong pervasive carbonate, abundant carbonate stockwork veining and several carbonate veins >15 cm wide	A0867843	56.0	57.0	1	1	0.05	39.7	2.1	13	1.2
47 82 - 53 35	Hem P S	Patchy strong structurally controlled oxidation as fracture fill and	A0867844	57.0	58.0	1	5.8	0.1	36.6	10.4	23	1.1
47.02 - 33.33		pervasive staining.	A0867845	58.0	59.0	1	6	0.2	97.4	8.3	49	1.6
47.82 - 53.35	Ser P W	Patchy weak to moderate	A0867846	59.0	60.0	1	1	0.05	34.8	3.3	54	0.25
56.7 - 58.0	Carb FV M		A0867847	60.0	61.0	1	15.6	0.2	94.1	53.5	58	0.7
Mineralization	Type/Style/%Mineral	Comments	A0867848	61.0	62.0	1	2	0.05	61.2	2.7	27	1.4
		Sporadic trace pyrite throughout. Generally fine grained	A0867849	62.0	63.0	1	1.8	0.05	147.9	3.3	10	6.3
3.0 - 87.0	Py Tr 0.1%	disseminated but commonly associated with veinlets.	A0867851	63.0	64.0	1	1.1	0.05	70	2.1	12	1.5
50.0 - 51.8	Gn FR 0.1%	Trace fracture fill fine grained galena, appears to be preferentially hosted in late cross cutting fracs										
52.5 - 53.0	Gn FR 0.1%	Trace fine grained galena										
52.5 - 53.0	Ccp FR 0.1%	Trace disseminated cpy										
52.5 - 53.35	Ox Stn 30%	Pervasive strong oxidized mineralization										
50.0 - 53.35	Py FR 0.1%											
49.3 - 51.8	Ox Stn 25%	Pervasive strong oxidized mineralization										
47.82 - 48.5	Ox FR 20%	Moderate fracture controlled oxidized mineralization										
Structure	Type/Intensity	Comments										

Blocky to broken core comprises approximately 80% of the interval. Few intervals of competent core >1m. Several fault

Fault zone. Entire interval is rubble or blocky core. Preserved gouge not observed but some sand + clay locally.

Small gouge. Brown gray clay matrix with rounded and angular fragments up to 2mm. ~55dTCA

Fault zone. Blocky core with approx 4 weak gouges

Project: Doo	Project						Hole I	Number	: Q26-	20-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
25.48 - 25.63	G M	Fault gouge. Brown gray green clay matrix with rounded and angular fragments up to 4mm. ~70 dTCA										
25.78 - 28.8	G W	Small gouge. Brown gray clay matrix. ~50 dTCA										
27.7 - 28.0	Flt W	Fault zone. Unconsolidated to weakly consolidated rubble /gouge. Fragments 5-70 mm.										
32.0 - 37.37	Flt S	Fault zone. Blocky core + rubble to 36 m, with clay coating most fracture surfaces, local dark maroon clay. Below 36 m core is almost entirely rubble with locally intact gouge. Gouge matrix is green brown with trace bright orange staining.										
38.65 - 38.69	G M	Gouge. Intact at 33 dTCA. Fragment rich with green brown clay matrix.										
42.3 - 44.0	Vcc S	Thick banded, barren, carbonate veining and associated weak hydraulic brecciation. Associated moderate rust staining.										
45.5 - 45.8	Vcc S	Fractured, strong barren white carbonate veins										
46.0 - 46.1	BX W	Crackle bx with green clay matrix										
47.0 - 54.0	She W	Weak shearing of host rock in vein / alteration zone										
47.82 - 51.8	Vcc S	White, banded, 10-30cm carbonate veins comprise approximately 40% of the interval.										
47.82 - 53.5	STK M	Healed stockwork fracturing filled with hm and cb. Randomly oriented where fracturing is strongest and foliation parallel where fracturing intensity decreases.										
51.5 - 51.7	Vqtz M	Dirty, altered, mineralized, irregular, fractured bull qtz veins from 51.47 to 51.53 m 51.56 to 51.66 m.										
52.6 - 52.9	Vqtz S	Dirty, altered, mineralized, irregular, fractured bull qtz vein										
57.0 - 70.4	Вс М	Blocky core somewhat common with local narrow fault zones + gouges.										
57.9 - 58.1	Dyk S	Altered mafic dyke										
67.0 - 67.15	G S	Fault gouge. Brown clay and sand matrix.										
70.4 - 87.0	Bc W	Core is mostly competent with some narrow intervals of moderate fracturing and very local weak gouges										
78.04 - 78.07	G W	Pale green grey fill. 30 dTCA										

Dull grey green, medium grained, bedded, marble (meta-limestone). Comprised of approximately 70% carbonate (calcite), 20% chlorite and 20% intebedded mafic volcanogenic sediments. Lower contact is EOH

Alteration	Type/Style/Intensity	Comments
3.0 - 87.0	Rs FV W	Rust staining occurs sporadically on fractures throughout
3.0 - 87.0	Ep P W	Very local domainal epidote

Project: Doc	Project						Hole I	Number	: Q26-2	20-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
3.0 - 87.0	Si P W	Patchy weak to locally moderate silicification throughout. Silicification intensity does not appear to increase significantly near mineralized zone (47.82 to 53.35 m)										
3.0 - 87.0	Chl Pv W	Pervasive weak chloritization and local domainal and structurally controlled moderate chl										
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 87.0	Py Tr 0.1%	Sporadic trace pyrite throughout. Generally fine grained disseminated but commonly associated with veinlets.										
Structure	Type/Intensity	Comments										
70.4 - 87.0	Bc W	Core is mostly competent with some narrow intervals of moderate fracturing and very local weak gouges										

Project: Doc	Project						Hole Number: Q26-20-02
Oriented Point S	tructure						
Depth	Structure	А	lpha Angle	Beta Angle	Strike	Dip	Comment
11.8	Fol		60				
15.7	Fol		60				
17.5	Fol		50				
24.7	G		50				
25.07	G		55				
25.5	G		70				strong fault gouge
25.7	Fol		43				
30.6	Fol		45				
31.2	Fol		40				
38.5	G		35				
48.35	Vcc		70				
48.92	Vcc		40				
50.8	Vcc		35				
51.1	Vcc		25				
52	Vcc		22				
55	F		50	120			
55.9	F		25	350			
54.3	F		63	310			
55.8	Fol		47	110			very subtle
67.1	G		35				
61.6	F		40	190			
78.04	G		30				
86	С		77	140			somewhat irregular difficult to measure beta
Geotech							
From	То	Recovery	Recovery %	Comments			
3	5	2.45	122.5				
5	8	3	100				
8	11	3.03	101				
11	14	3.2	106.67				

Project:	Doc Proj	ect				Hole Number:	Q26-20-02
	14	17	2.91	97			
	17	20	2.8	93.33	20m block was missed originally		
	20	23	2.75	91.67	so block placement estimated		
	23	26	3.33	111	Good below 23m		
	26	29	2.3	76.67	Core loss between 26 and 27		
	29	32	3.43	114.33			
	32	35	2.8	93.33			
	35	38	2.78	92.67			
	38	41	3.44	114.67			
	41	44	2.79	93			
	44	47	3.24	108			
	47	50	2.96	98.67			
	50	53	3	100			
	53	56	2.71	90.33			
	56	59	3.1	103.33			
	59	62	2.75	91.67			
	62	65	3	100			
	65	68	2.95	98.33			
	68	71	2.8	93.33			
	71	74	3.06	102			
	74	77	2.92	97.33			
	77	80	3.05	101.67			
	80	83	2.85	95			
	83	86	2.95	98.33			
	86	87	0.72	72			

Project:		Project								Hole I	Number	: Q26-2	20-03		
		D	rill Hole			Drilling					Coll	ar Surve	еу		
Hole	type	DD	Core location: Do	c Camp	Drilling started	Sep-18-20	20		Grid	d:	1	NAD83 /	UTM zo	ne 9N	
Hole	size:	HQ	Claim number:		Drilling complete	d: Sep-19-20	20		Eas	ting:	4	109,765			
Actu	al depth:	106.0	Logged by:		Drilling contracto	r: Dorado			Nor	thing:	6	5,244,66	3		
Targe	et:								Ele	vation:	-	1,346			
Survey															
D	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Sui	rvey Quali	ty							
	0	Collar Hanstone	178	178	-80										
	20	Reflex Hanstone	148.4	166.4	-79.6										
	74	Reflex Hanstone	146.9	164.9	-79.1										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
0	3	CAS - Casing													
Casing.															
3	58.05	MV - Mafic Volcanio				A0867852	24.0	25.0	1	0.9	0.05	40.1	1.7	8	0.9
Medium volcano	to dark gi genic sedi	ray, fine grained, bedded ments. Local lapilli tuff o	d to massive, foliated, und bserved. Pervasive weal	differentiated intermediate cchlorite, domainal trace e	to mafic volcanics + epidote, weak	A0867853	25.0	26.0	1	1.6	0.2	36.8	4.9	22	1.1
			are typical background all ith underlying calc silicat	eration of this unit. Lower e.	contact is somewhat	A0867854	26.0	27.0	1	0.6	0.05	16.2	1.6	17	0.5
•			, 0	ılt zones to 48 m. Major fa	ult zone from 48 to	A0867855	29.0	30.0	1	26.7	0.2	15.6	34.7	32	0.9
		ent below 56.5 m.	,	.,		A0867856	39.5	40.0	0.5	1.9	0.05	46	0.7	22	
Rust sta	ining occu	urs sporadically on fractu	res througout. Patchy ar	nd/ or structurally controlle ong chlorite + carbonate al	d moderate carbonate	A0867857	46.0	47.0	1	6.8	0.2	140.8	1.3	20	0.6
47 m.		oodily in odgrodi. Vory	oodi quartz nooding. Otre	ing officials a surportate at	tordilon nom 10.0 to	A0867858	47.0	48.0	1	1.2	0.05	9.7	2.7	12	
Sporadio	c trace fin	e grained disseminated p	py throughout. Patchy mo	oderate oxide mineralizatio	on locally throughout.	A0867859	48.0	49.0 50.0	1	2.2	0.05	33.5	1.5	28	0.7
Alteratio	on	Type/Style/Intensity	Comments			A0867860 A0867861	49.0 50.0	51.5	1.5	2.5 3.9	0.05	11.2 20.4	1.1 2.5	14 11	0.25
3.0 - 84.	0	Rs FV W	Locally moderate			A0867862	51.5	53.0	1.5	2.4	0.2	36.2	0.9	31	0.25
						A0867863	53.0	54.0	1	2.6	0.05	33.9	0.9	27	0.7
3.0 - 106	5.0	Si P W													• • • • • • • • • • • • • • • • • • • •
3.0 - 106	3.0	Ep P W	Trace patchy doma	ainal epidote											
3.0 - 106	3.0	Carb P W													
3.0 - 106	3.0	Chl Pv W													
20.0 - 21	1.0	Carb P M													
20.0 - 21	1.0	Carb P M													

Project: Doc	Project						Hole I	Number	: Q26-	20-03		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
29.6 - 29.8	Rs FV M											
34.59 - 34.83	Si Pv S	Quartz flooding associated with healed fracturing										
46.5 - 47.0	Carb Pv M	Marker horizion of rhodochrosite + calcite + chlorite alteration. Fractured.										
46.5 - 47.0	Chl Pv M	Marker horizion of rhodochrosite + calcite + chlorite alteration. Fractured.										
50.0 - 51.0	Carb P S	Carbonate veins / beds are only pieces of competent core in fault zone										
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.										
39.7 - 39.8	Py S 0.5%	Very thin (0.5 - 1 mm) pyrite stringers, following foliation										
40.7 - 40.8	Py D 1%	Medium grained py associated with chlorite + garnet (??? red mineral) alteration										
Structure	Type/Intensity	Comments										
3.0 - 18.3	F S	Blocky fractured and faulted core. Local moderate gouge + bx.										
9.8 - 10.0	G W	Weak gouge. Not intact: rubble and brown clay										
15.25 - 15.3	G W	Weak gouge. Irregular, sub // TCA.										
17.5 - 17.9	BX M	Weakly consolidated to unconsolidate crackle to mosaic bx + gouge										
18.3 - 24.7	F W	Weak fracturing of competent core										
24.7 - 26.5	Flt M	Fault zone. Blocky core with strong fault gouge sub // TCA from 25.3 to 25.6 m and moderat fault gouge/bx from 26.25 to 26.5 m.										
26.5 - 27.6	F W											
27.6 - 30.4	F S	Broken / blocky core interval, with very local moderate rust staining and weak gouge										
30.4 - 48.0	F W											
48.0 - 56.5	Fit In	Major fault zone. Fault damage zone with blocky core to rubble, and several moderate gouges from 48 to ~51 m. Fault core gouge from ~51 to 54 m, somewhat washed away with ~70% recovery, where gouge is intact it is approx 30% fragments with brown grey clay										
56.5 - 69.8	F W											
58.05 61.23	Calc - Calc-Silicate		A0867864	60.23	61.23	1	1.8	0.05	43	7.4	29	0.6
alteration of mafic	volcanic rock. Comprised	carbonate rich, well foliated / bedded to contorted, strong calc silicate of varying abundances of calcite, chlorite, rhodochrosite, lartz and garnet. Lower contact is conformable and gradual with										
Prill Log Report		Page 2 of 10									Apr-	29-202

Project: Doc	Project						Hole I	Number	: Q26-2	20-03		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Alteration	Type/Style/Intensity	Comments										
3.0 - 84.0	Rs FV W	Locally moderate										
3.0 - 106.0	Si P W											
3.0 - 106.0	Ep P W	Trace patchy domainal epidote										
3.0 - 106.0	Carb P W											
3.0 - 106.0	Chl Pv W											
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.										
Structure	Type/Intensity	Comments										
56.5 - 69.8	F W											
61.23 62.46	Sch - Schist											

Medium grey, medium grained, well foliated, muscovite schist. Comprised of medium grained biotite in a fine grained intermediate matrix with bands of coarse quartz + feldspar and trace disseminated py. Lower contact is gradual and conformable with underlying mafic volcanic.

Alteration	Type/Style/Intensity	Comments										
3.0 - 84.0	Rs FV W	Locally moderate										
3.0 - 106.0	Si P W											
3.0 - 106.0	Ep P W	Trace patchy domainal epidote										
3.0 - 106.0	Carb P W											
3.0 - 106.0	Chl Pv W											
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.										
Structure	Type/Intensity	Comments										
56.5 - 69.8	F W											
56.5 - 69.8 62.46 69.8	F W MV - Mafic Volcanic		A0867865	67.0	68.0	1	2.1	0.05	9.1	3.6	45	0.25

Project:	Doc P	roject					Hole I	Number	: Q26-2	20-03		
From	То	Lithology	Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
and trac	e py, occui	, patchy, carbonate and quartz+carbonate veining, with white and pale yellow alteration haloes is from 64.8 to 69.8 m. Veins + veinlets are carbonate rich above 67 m, below 67 m veins are th carb margins and contain slightly more py.	A0867867	69.0	69.8	0.8	31	0.2	19.7	5.7	51	0.7

Competent with weak fracturing.

Weak localized rusty (limonite) fracture coatings. Local vein associated moderate carbonate and weak sericite.

Trace disseminated and fracture controlled py throughout. Pervasive weak to moderate chlorite. Patchy moderate silicification.

Alteration	Type/Style/Intensity	Comments	
3.0 - 84.0	Rs FV W	Locally moderate	
3.0 - 106.0	Si P W		
3.0 - 106.0	Ep P W	Trace patchy domainal epidote	
3.0 - 106.0	Carb P W		
3.0 - 106.0	Chl Pv W		
64.8 - 66.75	Ser FV W		
Mineralization	Type/Style/%Mineral	Comments	
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.	
Structure	Type/Intensity	Comments	
56.5 - 69.8	F W		
69.8 71.25	Dia - Diabase Dyke		A0867

Massive, porphyritic, amygdular, mafic volcanic dyke. Comprised of 15% plagioclase laths (<1mm), 10% pyroxene phenocrysts (<1mm), and 5% quartz amygdules (up to 2mm). Upper contact is fractured at 25 dTCA and lower contact is faulted (gouge) at 18 dTCA. Raft / xenolith of altered host mafic volcanic from 70.45 to 70.6 m.

A0867868	69.8	70.5	0.7	10.8	0.2	20.3	8.2	88	4.1	
A0867869	70.5	71.25	0.75	29.3	0.2	33.9	8.9	93	3.2	

Alteration	Type/Style/Intensity	Comments
3.0 - 84.0	Rs FV W	Locally moderate
3.0 - 106.0	Si P W	
3.0 - 106.0	Ep P W	Trace patchy domainal epidote
3.0 - 106.0	Carb P W	
3.0 - 106.0	Chl Pv W	

Project: Doc I	Project						Hole I	Number	: Q26-	20-03		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.										
Structure	Type/Intensity	Comments										
69.8 - 71.25	Dyk S											
71.25 72.6	Sch - Schist		A0867870	71.25	72.0	0.75	230.9	1.2	65.9	6.9	70	2.
	and fractured rock (schist) to	5 to 72 m, fractured muscovite schist from 72 to 72.4 m, strongly 72.55 m and oxidized gouge from 72.55 to 72.6 m. Lower contact of	A0867890	72.0	72.6	0.6	793	3.4	39.8	8.3	58	2.
Alteration	Type/Style/Intensity	Comments										
3.0 - 84.0	Rs FV W	Locally moderate										
3.0 - 106.0	Si P W											
3.0 - 106.0	Ep P W	Trace patchy domainal epidote										
3.0 - 106.0	Carb P W											
3.0 - 106.0	Chl Pv W											
71.25 - 77.8	Hem P S											
71.25 - 83.0	Rs FV M											
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.										
Structure	Type/Intensity	Comments										
71.25 - 72.6	Flt S	Fault zone. Strong gouge from 71.25 to 72 m, strong fracturing from 72 to 72.5 and moderate gouge from 72.5 to 72.6 m.										
71.25 - 72.6	G S	Strong fault gouge. Approximately 40% fragments up to 3cm in a greenish gray brown locally rusty clay matrix.										
72.6 74.84	Unk - Unknown Lithol	ogy	A0867871	72.6	73.5	0.9	881.5	3.2	14	8	4	0.9
White, massive, fr	actured, mineralized bull qu	uartz vein (Q26). Vuggy with 1% dissseminated py. Strongly fractured	A0867872	73.5	74.0	0.5	232.4	8.3	327.5	8.4	21	2
of oxidized altered		xidized mineralization coatings. Lower contact marked below 20 cm ular veining at margin of relatively clean quartz vein and strongly lact ~37 dTCA	A0867873	74.0	74.8	0.8	11927. 7	43.2	212.2	63.7	56	4.5
			A0867874	74.8	75.3	0.5	1876.5	12.7	42.3	151.5	61	0.
Alteration	Type/Style/Intensity	Comments										
3.0 - 84.0	Rs FV W	Locally moderate										

Project: Doc F	Project						Hole N	Number	: Q26-	20-03		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)		Zn (ppm)	
3.0 - 106.0	Si P W											
3.0 - 106.0	Ep P W	Trace patchy domainal epidote										
3.0 - 106.0	Carb P W											
3.0 - 106.0	Chl Pv W											
71.25 - 77.8	Hem P S											
71.25 - 83.0	Rs FV M											
74.8 - 77.8	Si Pv M											
74.8 - 77.8	Ser Pv M											
74.8 - 77.8	Chl Pv M											
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.										
Structure	Type/Intensity	Comments										
72.6 - 74.84	Vqtz S	Fractured, mineralized, bull qtz vein										
74.84 95.27	MV - Mafic Volcanic		A0867874	74.8	75.3	0.5	1876.5	12.7	42.3	151.5	61	0.
		massive, foliated, undifferentiated intermediate to mafic interbedded approximately 40% lapilli tuff, with dark green gray, stretched, mafic	A0867875	75.3	76.0	0.7	344.6	1.5	21.3	10.5	61	0.2
lapilli in a fine grain	ned chloritized matrix. Folia	tion consistent, 30-40 dTCA. Lower contact is conformable marked	A0867876	76.0	76.5	0.5	759.6	3.8	18.1	766.5	80	0.2
•	er, with interbedded mafic vo		A0867877	76.5	77.0	0.5	1056.3	5.9	20.7	890.5	56	0.9
		4.84 to 77.80 m. Veining occurs as multiple generations of carbonate veinlets. Bull quartz veins / veinlets appear to be late and	A0867878	77.0	77.5	0.5	1493	8.1	23.6	1407.6	112	1.5
		ation consists of strong pervasive silicification, patchy pervasive and rate pink potassic alteration, and patchy strong yellow hydrothermal	A0867879	77.5	78.0	0.5	680.2	3.7	76.6	212.3	100	
(sericite+chlorite?)) alteration. Sulphide minera	alization comprised of fine to medium grained, disseminated and in hosted medium grained galena and patchy moderate oxidized	A0867881	78.0	79.0	1	30.8	0.5	68.4	89.1	112	0.2
mineralization (20°	% locally).	in nosted medium gramed galeria and patchy moderate oxidized	A0867882	79.0	80.0	1	24.3	0.6	29.2	135.3	86	0.25
Moderate fracturin	ng from 74.84 to ~82 m with	weak gouge from 77.6 to 77.7 m. Weak fracturing below 82 m.	A0867883	80.0	81.0	1	7.1	0.3	47.6	13.8	52	0.5
Pervasive weak to	moderate chlorite through	but. Rust staining common on fracs above 83 m, rare below. Weak	A0867884	81.0	82.0	1	19.1	0.3	87.8	7.5	61	0.6
		ny weak silicification. Patchy weak to moderate carbonate.	A0867885	82.0	83.0	1	2	0.05	25.1	2.9		2.8
	ted, fracture controlled and	mm scale stringers of py, trace throughout, locally up to 1%	A0867886	83.0	84.0	1	2	0.05	30	4.3	7	
abundance.			A0867887	84.0	85.0	1	4.8	0.05	29.1	3.7	16	
			A0867888	88.0	89.0	1	2.1	0.05	60			
							4.1					

Project: Doc	Project						Hole N	lumber	: Q26-	20-03		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
3.0 - 84.0	Rs FV W	Locally moderate										
3.0 - 106.0	Si P W											
3.0 - 106.0	Ep P W	Trace patchy domainal epidote										
3.0 - 106.0	Carb P W											
3.0 - 106.0	Chl Pv W											
71.25 - 77.8	Hem P S											
71.25 - 83.0	Rs FV M											
74.8 - 77.8	Si Pv M											
74.8 - 77.8	Ser Pv M											
74.8 - 77.8	Chl Pv M											
76.5 - 77.0	K FV W											
83.0 - 85.0	Carb P M	Patchy moderate calc silicate alteration										
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.										
Structure	Type/Intensity	Comments										
74.84 - 83.0	F M											
77.6 - 77.7	G W	Weak gouge/ rubble										
83.0 - 98.5	F W											
95.27 106	Mbl - Marble	adium grained hadded I well feliated markle interhadded with met	A0867889	104.75	105.6	0.85	1.6	0.05	40.2	3.9	7	0.6

White interbedded with dark green, fine to medium grained, bedded + well foliated, marble interbedded with mafic tuff and lapilli tuff. Carbonate beds frequently compressed with ptygmatic folds and commonly bear fragments / segmented mafic beds. Lower contact EOH.

Smoky barren quartz vein from 104.99 to 105.18 m.

Pervasive weak and patchy moderate chloritization. Cm to dm intervals of intense sericitized rock occurs between quartz veins and marble beds 104.8 to 105.5 m

Very trace pyrite occurs sporadically.

Alteration Type/Style/Intensity Comments

Project: Doc	Project						Hole N	lumber:	Q26-2	20-03		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
3.0 - 106.0	Si P W											
3.0 - 106.0	Ep P W	Trace patchy domainal epidote										
3.0 - 106.0	Carb P W											
3.0 - 106.0	Chl Pv W											
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 106.0	Py Tr 0.1%	Trace disseminated py occurs sporadically throughout.										
Structure	Type/Intensity	Comments										
83.0 - 98.5	F W											
98.5 - 106.0	F M	Blocky core from 98.5 to 98.7 m and from \sim 102 to 104.5 m.										

Drill Log Report Page 8 of 10 Apr-29-2021

Project: Doc Project Hole Number: Q26-20-03 **Oriented Point Structure** Depth Structure Alpha Angle **Beta Angle** Strike Dip Comment 14.2 Fol 35 21 Fol 35 31.8 Fol 40 34.3 35 Fol 50 39.7 Fol 45.3 Fol 60 G 71.25 18 82.55 Fol 33 35 86.7 Fol 87.5 35 Fol 89.2 Fol 30 92.5 Fol 38 С 95.27 42 98.3 Bed 45 28 99.7 Bed 100.5 53 Bed 102 Bed 37 105 Vqtz 55 G contact of gouge with quartz vein 72.6 33 Geotech From To Recovery Recovery % Comments 5 3 1.97 98.5 5 8 2.96 98.67 8 11 2.85 95 11 14 3.38 112.67 14 17 3.1 103.33 17 20 3.08 102.67 20 23 2.82 94

23

26

2.72

90.67

Project:	Doc Proje	ect			Hole Number: Q26-20-03
	26	29	3.05	101.67	
	29	32	2.7	90	
	32	35	3.28	109.33	
	35	38	2.95	98.33	
	38	41	3.2	106.67	
	41	44	3.06	102	
	44	47	3.03	101	
	47	50	2.38	79.33	
	50	53	2.15	71.67	
	53	56	2.36	78.67	
	56	59	2.88	96	
	59	62	3.03	101	
	62	65	2.99	99.67	
	65	68	3.14	104.67	
	68	71	2.91	97	
	71	74	3.12	104	
	74	77	3.22	107.33	
	77	80	2.78	92.67	
	80	83	3.2	106.67	
	83	86		100.33	
	86	89	2.9	96.67	
	89	92	3.06	102	
	92	95	2.93	97.67	
	95	98		100.33	
		101	3.15	105	
		104		108.33	
1	104	106	2.2	110	

R Project:		P Project								Hole I	Number	: Q28-2	20-01		
-		D	rill Hole			Drilling					Colla	ar Surve	ey .		
Hole	type	DD	Core location: Do	c Camp	Drilling started	Sep-19-20)20		Gri	d:	1	NAD83 /	UTM zo	ne 9N	
Hole	size:	HQ	Claim number:		Drilling completed	: Sep-20-20)20		Eas	ting:	2	10,244			
Actua	al depth:	41.0	Logged by:		Drilling contractor	: Dorado			Noi	thing:	6	6,244,55	2		
Targe	et:								Ele	vation:	1	,290			
Survey															
D	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qual	ity							
	0	Collar Hanstone	200	200	-45										
	20	Reflex Hanstone	181	199	-45										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	A (ppm
0	3	CAS - Casing													
Casing															
3	41	MV - Mafic Volcanio				A0867891	11.0	12.0	1	4.4	0.1	89.4	1.3	59	0.2
Dark gre (tuff).	enish gre	y, fine grained, massive	to weakly bedded + folia	ted, mafic volcanics / volc	anogenic sediments	A0867892	12.0	13.0	1	2.1	0.1	81.8	4.5	83	0
Altered,	rusty, dirty	y, fractured, bull quartz v	vein intersected from ~14	.4 to 15.95 m (30% core lo	oss). Trace to weak	A0867893	13.0	13.6	0.6	1.2	0.3	78.8	23.7	93	1
alteration	n halo ext	ends upwards to \sim 13.6 r	m and below vein to \sim 17.	47 m, consisting of patchy ides, including galena, py	strong silicification,	A0867894	13.6	14.0	0.4	8.5	1.6	181	243.8	145	1
observe	d from 13.	6 to 14 m and from 17 to	o 17.47 m. Strong oxidati	on mineralization occurs for an alteration	rom 14 to 15.95 m, as	A0867895	14.0	15.0	1	258.1	2.4		60.5	108	2
36 m, wi	ith associa	ated 5% disseminated py	y.	, a.a. 12		A0867896	15.0	16.0	1	1641.9	8.6	93.9	47.3	62	1
Core is f	airly comp	petent overall. Blocky co	re from casing at 3 m to	~9 m. Weak fault gouge at 4.4 to 15.95 m. Very local	t vein margin from	A0867897	16.0	17.0	1	15.4	0.8	158.5	123.8	111	0
				nout. Very local domainal v	•	A0867898 A0867899	17.0	17.47	0.47 0.53	244.6	0.2	94.7	1591.4 12.2	1176 97	0
				e silicification below 16 m.		A0867900	17.47 18.0	18.0 19.0	0.55	5.2	0.2	94.7	5.8	80	0
Alteratio	on	Type/Style/Intensity	Comments			A0867901	19.0	20.0	1	2.6	0.1	135	4	66	0.
3.0 - 41.0	Λ	Chl Pv W				A0867902	20.0	21.0	1	1.8	0.1	123.4	2.1	66	0.2
						A0867903	35.15	35.75	0.6	4.7	0.2	84.8	1.9	102	0.2
3.0 - 14.0	0	Rs FV W				A0867904	35.75	36.15	0.4	15.3	0.4	82.2	10.2	92	0.2
14.0 - 15	5.95	Hem FV S				A0867905	36.15	37.15	1	2.1	0.3	69.9	205.3	266	0.2
15.95 - 4	11.0	Rs FV W				A0867906	37.15	38.0	0.85	16.4	0.4	111.4	53.2	168	0.2
3.0 - 41.0	0	Carb FV W	Trace carbonate ve	einlets and very local band	ls occur sporadically										
3.0 - 41.0	0	Ep P W	Very local weak do	mainal ep											
13.6 - 14	1.0	Si Pv S													

Project: Doc	Project						Hole N	Number	: Q28-2	20-01		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
17.0 - 18.0	Si Pv M											
18.0 - 41.0	Si P W											
13.6 - 14.0	Ser Pv W											
17.0 - 17.47	Ser Pv W											
Mineralization	Type/Style/%Mineral	Comments										
3.0 - 41.0	Py Tr 0.1%	Sporadic trace disseminated py throuhgout.										
13.8 - 14.1	Gn Tr 0.1%	Trace fine grained galena along fractures										
17.0 - 17.47	Py D 1%	Disseminated fine grained py associated with qtz veinlets										
17.0 - 17.47	Gn FR 1%	Fine to medium grained galena hosted in mm scale qtz veinlets										
17.0 - 17.47	Chl Tr 0.1%	Trace cpy hosted in mm scale qtz veinlets										
14.0 - 15.95	Ox FR 30%	Strong oxide mineralization at vein margins and along most fractures										
35.8 - 36.0	Py FR 5%	Vein hosted medium grained anhedral to subhedral py										
Structure	Type/Intensity	Comments										
3.0 - 9.0	F S	Blocky core										
9.0 - 14.1	F W	Weak fracturing / broken core										
14.4 - 15.95	Vqtz M	Bull quartz vein, strongly fractured, altered and dirty										
14.1 - 15.95	F S	Strong fracturing, blocky core to rubble										
14.1 - 14.2	G M	Gouge. Rusty brown sand and clay matrix.										
15.95 - 25.0	F W											
25.0 - 27.0	F M	Somewhat blocky core										
27.0 - 41.0	F W	Very local blocky core										

Project: Doc Project Hole Number: Q28-20-01 **Oriented Point Structure** Depth Structure Alpha Angle **Beta Angle** Strike Dip Comment F 9.8 20 Clean 12.9 75 16.9 F 55 10 Polished with trace rusty coating. 8mm wide irregular quartz veinlet, vuggy with weak sericite and moderate hematite. Mineralized with 5% 17.07 VL 53 100 galena and 1% pyrite along margins. Bedding offset mm scale by healed fractures. 19.95 Bed 80 185 Healed fracture offsets bedding by 3 mm and has 25 225 19.94 trace sericite and rusty lining. F 25 140 28.48 Dark brown rusty coating. 50 32.95 75 Trace brown and white clay coating. F 35.3 50 350 Trace brown/green coating. Geotech To Recovery % Comments From Recovery 3 5 1.6 80 8 2.91 97 5 8 11 2.54 84.67 11 14 2.98 99.33 Driller note: HIT VOID 14 17 1.94 64.67 17 20 2.9 96.67 20 23 2.8 93.33 23 26 3.1 103.33 26 29 3.12 104 29 32 2.95 98.33 32 35 2.97 99 35 3 38 100 38 41 2.92 97.33

Project: Doc I	Project	·							Hole I	Number	Q28-2	20-02		
		Drill Hole		ı	Drilling					Colla	ar Surve	y		
Hole type	DD	Core location:	Doc Camp	Drilling started	Sep-20-202	20		Grid	:	N	IAD83 /	UTM zo	ne 9N	
Hole size:	HQ	Claim number:		Drilling completed:	Sep-20-202	20		East	ing:	4	10,244			
Actual depth:	32.0	Logged by:		Drilling contractor:	Dorado			Nort	hing:	6	,244,55	2		
Target:								Elev	ation:	1	,290			
Survey														
Depth	Survey Type	Mag Azimuth	Azimuth	Dip	Surv	vey Quality								
0	Collar Hanstone	190	190	-80										
32	Reflex Hanstone	173.1	191.1	-81.2										
From To	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	

9 CAS - Casing

Alteration

Type/Style/Intensity

Originally set casing to 3 m, re-cased to 9 m. Drill crew spilled poly-mud on core, entire hole covered in drilling fluid

Comments

A0867907	20.0	21.0	1	2.3	0.2	101.2	3.3	107	0.8
A0867908	21.0	21.9	0.9	3.2	0.2	135	4.5	113	1.6
A0867909	21.9	22.5	0.6	6	0.2	127.7	3.8	84	2.3
5.7 A0867911	22.5	23.0	0.5	31.1	0.7	149.6	3.7	114	1.6
n A0867912	23.0	23.3	0.3	1076.6	7	284.9	17.4	154	11.9
A0867913	23.3	24.0	0.7	418.7	2.8	125.3	30.7	36	3.4
^{g,} A0867914	24.0	25.0	1	134.3	0.8	4.1	21.5	27	0.9
A0867915	25.0	26.0	1	613.8	3.7	23.3	469.7	93	1.7
to A0867916	26.0	27.0	1	30.5	0.6	101.2	16.8	129	0.25
A0867917	27.0	28.0	1	100.7	0.9	115.2	203.2	146	11.1
A0867918	28.0	29.0	1	4.8	0.3	67.8	61.2	149	0.25
n,	A0867908 A0867909 A0867911 A0867912 A0867913 A0867914 A0867915 A0867916 A0867917	A0867908 21.0 A0867909 21.9 Image: A0867911 22.5 On A0867912 23.0 A0867913 23.3 Ing. A0867914 24.0 A0867915 25.0 Ito A0867916 26.0 A0867917 27.0	A0867908 21.0 21.9 A0867909 21.9 22.5 A0867911 22.5 23.0 A0867912 23.0 23.3 A0867913 23.3 24.0 A0867914 24.0 25.0 A0867915 25.0 26.0 A0867916 26.0 27.0 A0867917 27.0 28.0	A0867908 21.0 21.9 0.9 A0867909 21.9 22.5 0.6 Im A0867911 22.5 23.0 0.5 A0867912 23.0 23.3 0.3 A0867913 23.3 24.0 0.7 A0867914 24.0 25.0 1 A0867915 25.0 26.0 1 A0867916 26.0 27.0 1 A0867917 27.0 28.0 1	A0867908 21.0 21.9 0.9 3.2 A0867909 21.9 22.5 0.6 6 Im A0867911 22.5 23.0 0.5 31.1 A0867912 23.0 23.3 0.3 1076.6 A0867913 23.3 24.0 0.7 418.7 A0867914 24.0 25.0 1 134.3 A0867915 25.0 26.0 1 613.8 A0867916 26.0 27.0 1 30.5 A0867917 27.0 28.0 1 100.7	A0867908 21.0 21.9 0.9 3.2 0.2 A0867909 21.9 22.5 0.6 6 0.2 Important A0867911 22.5 23.0 0.5 31.1 0.7 A0867912 23.0 23.3 0.3 1076.6 7 A0867913 23.3 24.0 0.7 418.7 2.8 A0867914 24.0 25.0 1 134.3 0.8 A0867915 25.0 26.0 1 613.8 3.7 A0867916 26.0 27.0 1 30.5 0.6 A0867917 27.0 28.0 1 100.7 0.9	A0867908 21.0 21.9 0.9 3.2 0.2 135 A0867909 21.9 22.5 0.6 6 0.2 127.7 Image: A0867911 22.5 23.0 0.5 31.1 0.7 149.6 A0867912 23.0 23.3 0.3 1076.6 7 284.9 A0867913 23.3 24.0 0.7 418.7 2.8 125.3 A0867914 24.0 25.0 1 134.3 0.8 4.1 A0867915 25.0 26.0 1 613.8 3.7 23.3 A0867916 26.0 27.0 1 30.5 0.6 101.2 A0867917 27.0 28.0 1 100.7 0.9 115.2	A0867908 21.0 21.9 0.9 3.2 0.2 135 4.5 A0867909 21.9 22.5 0.6 6 0.2 127.7 3.8 A0867911 22.5 23.0 0.5 31.1 0.7 149.6 3.7 A0867912 23.0 23.3 0.3 1076.6 7 284.9 17.4 A0867913 23.3 24.0 0.7 418.7 2.8 125.3 30.7 A0867914 24.0 25.0 1 134.3 0.8 4.1 21.5 A0867915 25.0 26.0 1 613.8 3.7 23.3 469.7 A0867916 26.0 27.0 1 30.5 0.6 101.2 16.8 A0867917 27.0 28.0 1 100.7 0.9 115.2 203.2	A0867908 21.0 21.9 0.9 3.2 0.2 135 4.5 113 A0867909 21.9 22.5 0.6 6 0.2 127.7 3.8 84 Image: A0867911 22.5 23.0 0.5 31.1 0.7 149.6 3.7 114 A0867912 23.0 23.3 0.3 1076.6 7 284.9 17.4 154 A0867913 23.3 24.0 0.7 418.7 2.8 125.3 30.7 36 A0867914 24.0 25.0 1 134.3 0.8 4.1 21.5 27 A0867915 25.0 26.0 1 613.8 3.7 23.3 469.7 93 A0867916 26.0 27.0 1 30.5 0.6 101.2 16.8 129 A0867917 27.0 28.0 1 100.7 0.9 115.2 203.2 146

Project: Doc	Project						Hole N	lumber	: Q28-2	20-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Alteration	Type/Style/Intensity	Comments	A0867919	29.0	30.0	1	3.7	0.2	85.2	9	97	0.6
3.0 - 23.0	Si P W		A0867920	30.0	31.0	1	4.8	0.2	125.9	3.4	76	0.6
			A0867921	31.0	32.0	1	4.5	0.1	122.8	3.2	80	0.25
23.0 - 32.0	Si P M											
3.0 - 32.0	Chl Pv W											
3.0 - 23.0	Rs FV W											
23.0 - 26.0	Rs FV S											
26.0 - 29.0	Rs FV M											
29.0 - 32.0	Rs FV W											
3.0 - 32.0	Carb FV W	Trace fracture fill carbonate veinlets throuhgout										
Mineralization	Type/Style/%Mineral	Comments										
21.0 - 29.0	Py FR 0.1%	Trace vein hosted and disseminated fine grained py										
23.1 - 26.0	Ox FR 20%	Patchy strong oxidation mineralization										
25.9 - 26.0	Gn FR 1%	Coarse grained galena observed in quartz veinlet										
26.0 - 29.0	Ox FR 10%	Fracture controlled weak oxide mineralization										
Structure	Type/Intensity	Comments										
3.0 - 27.0	Bc In	Blocky core / rubble and poor recovery over the entire interval.										
27.0 - 32.0	F M	Moderate fracturing of relatively competent core. Recovery good										
23.2 - 23.3	G W	Weak fault gouge. Rubble and rusty orange clay/sand										
23.3 - 25.7	Vqtz S	Strongly fractured, white, dirty, mineralized, bull quartz vein. Q28										

oject: Doc	Project						Hole Number: Q28-20-02
riented Point S	tructure						
Depth	Structure	A	lpha Angle	Beta Angle	Strike	Dip	Comment
21.5	VL		0				Quartz carbonate veinlet bearing fine grained py. 1. cm wide. Cross cuts older barren quartz veinlet Galena mineralized quartz veinlet in massive bull qt
25.93	VL		75				Galena mineralized quartz veinlet in massive bull qt alteration halo. 1cm wide
27	F		55				Hm filled fracture. Appears to be main orientation of frac set
28.8	VL		50				Red rusty quartz veinlet. Almost entirely oxidized / hematized
eotech							
From	То	Recovery	Recovery %	Comments			
3	5	2.5	125				
5	8	1.1	36.67				
8	11	1.4	46.67	Recase to 9m.			
11	14	2.03	67.67				
14	17	2.6	86.67				
17	20	2.56	85.33				
20	23	3.06	102				
23	26	2	66.67				
26	29	2.81	93.67				
29	32	2.4	80				

	Gale	na Ridge													
]	Drill Hole			Drilling					Colla	ar Surve	∍y		
Hole	type	DD	Core location:	oc Camp	Drilling started	Aug-24-20	20		Gric	l:	١	NAD83 /	UTM zo	ne 9N	
Hole	size:	HQ	Claim number:		Drilling completed	: Aug-26-20	20		Eas	ting:	4	10,442			
Actua	al depth:		Logged by:		Drilling contractor	: Dorado			Nor	thing:	6	5,243,51	4		
Targe	et:								Elev	ation:	1	,498			
Survey															
D	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Sur	vey Qualit	y							
	0	Collar	198	198	-45										
	41	Reflex Hanstone	188.2	206.2	-44.5										
	92	Reflex Hanstone	187.4	205.4	-44.9										
	143	Reflex Hanstone	189.4	207.4	-44.5										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	(pp
0	2.95	CAS - Casing													
2.95	6.84	MV - Mafic Volcani	c			A0862626	5.1	5.6	0.5	1.3	0.05	14.9	1.1	38	0
Greenish	n grey ma	afic volcanics. The core	consists of mostly aphar	nitic mafic minerals that car	n not be	A0862626 A0862627	5.1 5.6	5.6 5.9	0.5 0.3	1.3	0.05	14.9 20.2	1.1	38 43	
Greenish distinguis thick. T	n grey ma shed with the core is	afic volcanics. The core of the naked eye. Siliceous pervasively altered to	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s	re common and occur in be strong and pervasive. The o	eds up to 4cm core is calcareous										
Greenish distinguis thick. T reacting veins. O	n grey ma shed with he core is to acid a xidized in	afic volcanics. The core of the naked eye. Siliceous pervasively altered to and is also weakly magnetervals occur locally and	consists of mostly aphar us volcanic sediments an chlorite. Silicification is setic. The core is crossed are associated with pit	re common and occur in be strong and pervasive. The c cut by narrow mm-scaled e ted core and fractures. Fol	eds up to 4cm core is calcareous echelon calcite	A0862627	5.6	5.9	0.3	98.4	0.5	20.2	3.8	43	
Greenish distinguis thick. T reacting veins. O 70 dtca.	n grey ma shed with he core is to acid a xidized in Lower co	afic volcanics. The core of the naked eye. Siliceous pervasively altered to and is also weakly magnetervals occur locally and ontact is sharp marked to	consists of mostly aphar us volcanic sediments an chlorite. Silicification is setic. The core is crossed are associated with pitransitioning into calcare	re common and occur in be strong and pervasive. The c cut by narrow mm-scaled e ted core and fractures. Fol	eds up to 4cm core is calcareous echelon calcite	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	
Greenish distinguishick. Treacting veins. On the distance of t	n grey ma shed with he core is to acid al xidized in Lower co	affic volcanics. The core of the naked eye. Siliceous pervasively altered to and is also weakly magnetervals occur locally and ontact is sharp marked to a style-s	consists of mostly aphar us volcanic sediments an chlorite. Silicification is setic. The core is crossed are associated with pitransitioning into calcare	re common and occur in be strong and pervasive. The c cut by narrow mm-scaled e ted core and fractures. Fol	eds up to 4cm core is calcareous echelon calcite	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	
Greenish distinguishick. The cacting veins. On the case of the cas	n grey ma shed with the core is to acid an xidized in Lower co	afic volcanics. The core the naked eye. Siliceous pervasively altered to ad is also weakly magnetervals occur locally and contact is sharp marked to a type/Style/Intensity Chl Pv M	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s etic. The core is cross- d are associated with pit ransitioning into calcare Comments	re common and occur in be strong and pervasive. The ocut by narrow mm-scaled e ted core and fractures. Fol ous meta-sediments.	eds up to 4cm core is calcareous echelon calcite	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	
Greenish distinguithick. Treacting veins. On the distinguish of the di	n grey ma shed with the core is to acid al xidized in Lower co	afic volcanics. The core the naked eye. Siliceous pervasively altered to ad is also weakly magnetervals occur locally and contact is sharp marked to a type/Style/Intensity Chl Pv M Si P S	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s etic. The core is cross- d are associated with pit ransitioning into calcare Comments Locally strong pe	re common and occur in be strong and pervasive. The ocut by narrow mm-scaled e ted core and fractures. Fol ous meta-sediments.	eds up to 4cm core is calcareous echelon calcite	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	
distingui: thick. T reacting veins. O	n grey ma shed with the core is to acid al xidized in Lower co	afic volcanics. The core the naked eye. Siliceous pervasively altered to ad is also weakly magnetervals occur locally and contact is sharp marked to a type/Style/Intensity Chl Pv M	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s etic. The core is cross- d are associated with pit ransitioning into calcare Comments Locally strong pe	re common and occur in be strong and pervasive. The ocut by narrow mm-scaled e ted core and fractures. Fol ous meta-sediments.	eds up to 4cm core is calcareous echelon calcite	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	0.
Greenish distinguithick. Treacting veins. On the distinguish of the di	n grey ma shed with the core is to acid an xidized in Lower co	afic volcanics. The core the naked eye. Siliceous pervasively altered to ad is also weakly magnetervals occur locally and contact is sharp marked to a type/Style/Intensity Chl Pv M Si P S	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s etic. The core is cross- d are associated with pit ransitioning into calcare Comments Locally strong pe Weakly oxidized	re common and occur in be strong and pervasive. The ocut by narrow mm-scaled e ted core and fractures. Fol ous meta-sediments.	eds up to 4cm core is calcareous chelon calcite liation is faint at	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	
Greenish distinguishick. Treacting veins. O. 70 dtca. Alteration 2.95 - 6.6 2.95 - 6.6 5.78 - 5.6 6.63 - 6.6	n grey ma shed with the core is to acid an xidized in Lower co	afic volcanics. The core the naked eye. Siliceous pervasively altered to add is also weakly magnetervals occur locally and contact is sharp marked to a type/Style/Intensity Chl Pv M Si P S Rs FV W	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s etic. The core is cross-of d are associated with pit ransitioning into calcare Comments Locally strong pe Weakly oxidized Oxidized alteration	re common and occur in bestrong and pervasive. The cout by narrow mm-scaled ested core and fractures. Follows meta-sediments. rvasive silicification. quartz carbonate fracture.	eds up to 4cm core is calcareous chelon calcite liation is faint at	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	
Greenish distinguishick. Treacting veins. On the distinguishick of the distinguishick. The distinguishing of the distinguish of the distinguishing of the distinguishing of the distinguish of the distinguishing of the dis	n grey ma shed with the core is to acid an xidized in Lower co	affic volcanics. The core the naked eye. Siliceous pervasively altered to and is also weakly magnetervals occur locally and contact is sharp marked to the property of the pro	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s etic. The core is cross- d are associated with pit ransitioning into calcare Comments Locally strong pe Weakly oxidized Oxidized alteration Comments	re common and occur in bestrong and pervasive. The cout by narrow mm-scaled ested core and fractures. Follows meta-sediments. rvasive silicification. quartz carbonate fracture.	eds up to 4cm core is calcareous chelon calcite liation is faint at	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	
Greenish distinguishick. Treacting veins. O 70 dtca. Alteration 2.95 - 6.6 2.95 - 6.6 5.78 - 5.9	n grey ma shed with the core is to acid an xidized in Lower co	affic volcanics. The core the naked eye. Siliceous pervasively altered to and is also weakly magnetervals occur locally and ontact is sharp marked to the property of the prop	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s etic. The core is cross- d are associated with pit ransitioning into calcare Comments Locally strong pe Weakly oxidized Oxidized alteration Comments Fracture controlled	re common and occur in bestrong and pervasive. The cout by narrow mm-scaled eted core and fractures. Follows meta-sediments. rvasive silicification. quartz carbonate fracture. on propagating from fracture.	eds up to 4cm core is calcareous chelon calcite liation is faint at	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	
Greenish distinguishick. Treacting veins. On 70 dtca. Alteration 2.95 - 6.6 5.78 - 5.6 6.63 - 6.6 Minerali	n grey ma shed with the core is to acid an xidized in Lower co	affic volcanics. The core of the naked eye. Siliceous pervasively altered to add it also weakly magnetervals occur locally and contact is sharp marked to a	consists of mostly aphar us volcanic sediments ar chlorite. Silicification is s etic. The core is cross- d are associated with pit ransitioning into calcare Comments Locally strong pe Weakly oxidized Oxidized alteration Comments Fracture controlled	re common and occur in bestrong and pervasive. The cout by narrow mm-scaled eted core and fractures. Follows meta-sediments. rvasive silicification. quartz carbonate fracture. on propagating from fracture. ed pyrite mineralzation. ure controlled pyrite.	eds up to 4cm core is calcareous chelon calcite liation is faint at	A0862627 A0862628	5.6 5.9	5.9 6.63	0.3 0.73	98.4 11.4	0.5 0.1	20.2 42.5	3.8 1.1	43 50	

Project:	Galen	a Ridge							Hole N	Number	: GR-2	0-01		
From	То	Litholog	у		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
				by black narrow mm-scaled bands. Green hard chert is occurring as nodules, irregular bodies and discontinuous layers.	A0862632	7.0	8.0	1	1.6	0.05	10.4	4.7	3	1.5
They typical	ally form	during early	y diagenesis by	y precipitation of silica mobilized from biogenic sources. Small y cut core. Pyrite occurs disseminated in chert intervals as well	A0862633	8.0	8.9	0.9	1.4	0.05	9.3	6.9	11	2.3
as concentra	rated in	fractures.	Foliation is var	iable at 30 to 45 dtca. Lower contact is sharp oriented at 30 dtca	A0862634	8.9	9.4	0.5	1.9	0.05	8.4	4.3	4	1.8
transitioning	g into m	anc voicanio	CS.		A0862635	9.4	10.0	0.6	2.6	0.05	10.7	3.7	5	1.9
Alteration		Type/Style	e/Intensity	Comments										
8.9 - 9.4		Rs FV	M	Rusty fractures hosting pyrite.										
Mineralizati	tion	Type/Style	e/%Mineral	Comments										
6.84 - 10.0		Py D	0.1%	Trace pyrite usually occurring in chert.										
10	48.8	MV - Maf	ic Volcanic		A0862636	10.0	11.0	1	3.6	0.05	37	6.9	15	1.7
				sists of mostly aphanitic mafic minerals. Siliceous volcanic The core is pervasively altered to chlorite. Silicification is	A0862637	16.5	17.5	1	1.8	0.05	64.8	1.6	22	0.7
moderate ar	ınd local	lly strong. T	he core is calca	areous reacting to acid and is weakly magnetic. Multiple 10cm	A0862638	17.5	18.08	0.58	9	0.1	57.2	12	39	1.7
veins are co	ommon	and occur fi	rom 1 to 10mm	are occasionally intersected throughout the unit. Calc-silicate in width. The core is cross-cut by narrow mm-scaled echelon	A0862639	18.08	18.13	0.05	17.5	2.6	70.3	2388.6	936	0.25
the unit. Tra	ace pyrit	te and pyrrh	otite occur diss	and kinks. Epidote stockwork veinlets are common throughout seminated throughout the unit with local intervals hosting up to	A0862640	18.13	19.0	0.87	0.25	0.05	18.5	1.9	31	0.7
3% sulphide	es. Fol	liation is 60	to 70 dtca. Lo	wer contact is sharp marked by calcareous meta-sediments.	A0862641	20.45	20.95	0.5	1.4	0.05	15.2	8.2	14	0.25
Minor Litho	ology	Type/Desc	cription	Comments	A0862642	20.95	21.19	0.24	1.5	0.05	19.9	2	15	1.1
16.8 - 17.1		CS Calc	areous	A small interval of calcareous meta-sediments.	A0862643	21.19	21.6	0.41	1.6	0.05	17.7	3.1	11	0.5
		Metasedim	nent		A0862644	21.6	22.6	1	0.7	0.1	84.1	3.6	46	0.25
17.5 - 18.13	3		areous	A small interval of calcareous meta-sediments hosting galena fractures and pyrite and a 0.5 m wide pyrrhotite band.	A0862645	22.6	23.2	0.6	1.3	0.2	105	2.4	57	0.25
		Metasedim	nent		A0862646	23.2	23.85	0.65	34.7	0.3	97.2	3.7	86	0.6
15.0 - 15.2		CS Calc Metasedim		A small interval of calcareous meta-sediments.	A0862647	23.85	24.35	0.5	1.2	0.05	21.9	2.3	20	0.8
				_	A0862648	29.1	29.6	0.5	5.1	0.2	117.6	3.7	67	0.25
Alteration		Type/Style	e/Intensity	Comments	A0862649	29.6	29.9	0.3	32.2	0.9	407.5	6.1	72	0.25
10.0 - 47.5		Si Pv	M		A0862650	29.9	30.2	0.3	279.5	5.4	183.7	1025.1	162	0.8
10.0 - 48.8		Chl Pv	M		A0862651	30.2	30.7	0.5	1.4	0.2	86.2	3.2	52	0.25
00.0.00.05	-	D- 5\/	N 4	Rust alteration propagating from fracture into foliation.	A0862652	30.7	37.6	6.9	7.4	0.3	157.6	7.3	113	3.8
23.2 - 23.85	.	Rs FV	M	Rust alteration propagating from fracture into ioliation.	A0862653	37.6	38.2	0.6	5.7	0.2	62.6	6.9	118	2.6
29.95 - 30.1	1	Rs FV	S	Fracture with rust stained gouge on the surface.	A0862654	47.3	48.0	0.7	4.2	0.05	55.4	1.9	26	1.7
47.5 - 48.3		Si Pv	S	Strongly silicified breccia. Fluids have bleached the core grey.										
47.5 - 48.3		Bl Pv	М	Bleached core from fluids striping chlorite from core.										
		Si Pv	M											

Project: Gale	na Ridge						Hole N	Number	: GR-2	0-01		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Mineralization	Type/Style/%Mineral	Comments										
10.0 - 17.6	Po D 0.1%	Trace disseminated and patchy pyrrhotite.										
10.0 - 68.8	Py FR 2%	Trace to locally 3% pyrite occurring in veins and stringers throughout the core.										
17.6 - 17.7	Po Bed 30%	Pyrrhotite bed occurring with a black band in calcareous sediments.										
17.7 - 33.37	Po D 0.1%	Very trace and disseminated pyrrhotite. Its tough to distinguish the disseminated fine grained pyrite from the pyrrhotite.										
17.95 - 18.13	Gn FR 2%	Fracture vein controlled galena with pyrite. The galena is grey and soft (easily scratched with knife).										
29.95 - 30.1	Gn FR 1%	Rusty fracture with minor gouge. Black fractures propagating from rusting fracture hosting pyrite and possible galena.										
Structure	Type/Intensity	Comments										
15.2 - 17.6	STK M	Cross-cutting epidote stockwork veinlets.										
18.3 - 20.9	VL M	Calcite echelon veins.										
20.9 - 21.19	ShV M	Narrow interval of sheeted quartz veins. The veins are 0.4 to 0.8 mm in diameter and discontinuous.										
37.6 - 38.2	STK S	Stockwork calcite fractures with pyrite fractures. The interval is weakly bleached and broken.										
38.2 - 47.5	Bc W	Weak to moderately broken core.										
47.5 - 48.3	BX W	Weakly brecciated core with minimal movement. Most fractures are at 30 dtca. Interval has be strongly silicified.										
48.3 - 52.6	Bc W	Blocky core with minor rubble intervals.										
48.8 68.8	CS - Calcareous Metas	sediment	A0862655	49.8	50.3	0.5	5.3	0.1	98.5	3.1	15	2.4
Buff to green calc	areous meta-sediments. Th	e unit is fine-grained sandstone with calcareous cement that tersected multiple times throughout the unit occurring as	A0862656	50.3	50.5	0.2	3	0.05	71.5	1.8	15	2.1
nodules, irregular	bodies and discontinuous la	ayers. Small mm-scaled quartz and calcite veins commonly cut rvals as well as concentrated along narrow black beds. The	A0862657	50.5	51.55	1.05	3.2	0.1	206.2	8.0	16	4.1
foliation at a low a	ngle relative to the angles r	neasured in the mafic volcanics usually wavy and erratic from	A0862658	51.55	52.6	1.05	3.5	0.05	136.1	1	16	3.1
20 to 50 dtca. Lov	er contact is snarp oriented	at 70 dtca transitioning into mafic volcanics.	A0862659	52.6	53.0	0.4	3.7	0.05	19.3	1.4	8	3.7
Mineralization	Type/Style/%Mineral	Comments	A0862661	68.1	68.6	0.5	0.25	0.05	58.3	2	6	1.1
10.0 - 68.8	Py FR 2%	Trace to locally 3% pyrite occurring in veins and stringers throughout the core.	A0862662	68.6	69.0	0.4	9.8	0.1	34.1	2.4	34	0.25
68.7 - 69.0	Py BI 5%	Blebby pyrite occur at the contact with calcareous sediments. Compositional plane of weakness between lithological units.										
Structure	Type/Intensity	Comments										
48.3 - 52.6	Bc W	Blocky core with minor rubble intervals.										
52.6 - 53.0	F M	Narrow mm wide black fracture hosting pyrite and hematite (?). The fractures may also host galena.										

Project: Gale	ena Ridge						Hole N	Number	: GR-2	0-01		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
53.0 - 59.0	Bc M											
59.0 - 63.0	Bc S	Rubbly and broken core with fragments 1 to 5 cm in diameter.										
66.45 - 66.6	G M	Minor fault gouge. Orientation of fault can not be measured.										
66.6 - 69.7	Bc M	Moderately blocky core.										
68.8 93.4	MV - Mafic Volcanic		A0862662	68.6	69.0	0.4	9.8	0.1	34.1	2.4	34	0.25
Greenish grey ma	afic volcanics. The core con	sists of mostly aphanitic mafic minerals. The core is pervasively nd locally strong. The core is calcareous reacting to acid and is	A0862663	69.0	70.0	1	6.9	0.2	67	1.1	36	0.25
weakly magnetic.	 Trace pyrite and pyrrhotite 	e occur disseminated throughout the unit with local intervals occurs at the upper and lower contacts of the unit. Foliation is	A0862664	73.8	74.0	0.2	2.5	0.3	101.7	3.7	125	0.25
60 to 70 dtca. Lo	ower contact is sharp at 45 c	trace marked by calcareous meta-sediments.	A0862665	80.1	80.5	0.4	104.9	1.4	17.9	100.9	202	1.2
Alteration	Type/Style/Intensity	Comments	A0862666	80.5	81.3	8.0	85.6	0.6	89.9	5.3	105	0.25
68.8 - 80.6	Chl Pv M		A0862667	81.3	81.8	0.5	6.6	0.2	85.7	4.8	71	0.25
00.0 - 00.0	CIII PV IVI		A0862668	84.0	85.0	1	8.9	0.1	68	1.7	49	0.25
68.8 - 93.4	Si Pv M		A0862669	87.8	88.0	0.2	4.5	0.1	81.2	1.8	54	2.4
80.6 - 81.3	BI Pv S	Strongly bleached core associated with a fault gouge.	A0862670	91.9	92.6	0.7	5.2	0.2	67.4	1.3	50	
81.3 - 93.4	Chl Pv M		A0862671	92.6	93.4	0.8	5.6	0.1	47.6	6.8	23	1.3
90.0 - 90.3	Rs Pv M	Rust stained and oxidized interval.										
90.3 - 101.6	C P M	Patchy green calc-silicate alteration.										
Mineralization	Type/Style/%Mineral	Comments										
68.7 - 69.0	Py Bl 5%	Blebby pyrite occur at the contact with calcareous sediments. Compositional plane of weakness between lithological units.										
69.0 - 87.8	Py D 0.1%	Trace disseminated pyrite and minor pyrrhotite.										
72.9 - 73.0	Ccp FR 1%	Chalcopyrite on fracture surface.										
87.8 - 88.0	Py Bl 10%	A large bleb of granular pyrite. Calcite veins within the interval host pyrite.										
88.0 - 93.4	Py D 0.1%											
Structure	Type/Intensity	Comments										
66.6 - 69.7	Bc M	Moderately blocky core.										
69.7 - 70.0	G S	Fault gouge with associated broken core. Some of the gouge as been washed away resulting poor core recovery.										
70.0 - 71.6	Bc S											

Project:	Galena l	Ridg	е											Hole	Numbe	r: GR-2	20-01		
From T	То	Lith	olog	у						Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)			As (ppm)
71.6 - 71.9	G	i N	Л		Fault gouge wi measured.	th associate	d rubbly core	e. Orientation c	an not be										
71.9 - 75.0	В	С	W																
75.0 - 75.4	G	i N	Л		Fault gouge wi measured.	th associate	d rubbly core	e. Orientation c	an not be										
75.4 - 77.5	В	С	W																
77.5 - 78.0	G	i N	Л		Fault gouge wi measured.	th associate	d rubbly core	e. Orientation c	an not be										
80.6 - 81.3	G	i 5	3		Soft gouge with large calcite ver in veins.														
81.3 - 93.0	В	С	М																
93.0 - 93.1	G	i V	V		Small oxidized	core with m	inor gouge n	naterial.											
93.1 - 101.6	s S	TK	S		The interval is pyrite veins. The pyrite.	moderately s ne interval is	stockwork br moderatey t	ecciated with costrongly mine	alcite and eralized with										
93.4 1	101.6	cs.	- Calc	careous Metas	sediment					A0862672	93.4	93.9	0.5	5.4	0.1	38.8	6.3	9	5
Buff to green minerals, cal	n calcare	ous poside	oyritic	meta-sedimente and epidote	nts.The mineral as . The unit is fine-ç	ssemblage in grained sand	ncludes quar	tz, calc-silicate	ent that	A0862673	93.9	94.4	0.5	3.4	0.05	26	3	10	4.5
strongly read	cts to acid	d. T	he ur	nit hosts signifi	cant pyrite minera	dization from	า 3% to 20%	locally. The py	rite is	A0862674	94.4	94.9	0.5	0.8	0.05	10.6	1.7	15	2.3
epidote veins	s. Calc-s	licat	e alte	ration is patch	y and irregular cre Lower contact is	eating blotch	y green inter	rvals. Foliation	has	A0862675	94.9	95.9	1	1.4	0.05	8.3	1.3	17	2.3
mafic volcan		ı alı	eralio	in and veiring.	Lower contact is	snarp onem	eu ai ou uica	t transitioning ii	11.0	A0862676	97.0	97.58	0.58	2.8	0.05	28.2	1.7	12	2.2
Alteration	7	vpe/	/Stvle	e/Intensity	Comments					A0862677	97.58	97.9	0.32	3.7	0.05	23.5	3.2	14	8.5
						1 11 1				A0862678	97.9	98.3	0.4	0.8	0.05	8.3	1.8	17	4
90.3 - 101.6	S C	F	P M]	Patchy green of	aic-silicate a	aiteration.			A0862679	98.3	98.95	0.65	1.3	0.05	8.1	2.3	13	3.3
Mineralizati	ion T	ype/	Style:	e/%Mineral	Comments					A0862680	98.95	99.57	0.62	1.9	0.05	6.3	1.7	11	4.6
93.4 - 93.9	P	У	SM	10%				ng at the contac		A0862681	99.57	100.19	0.62	1.3	0.05	6.3	1.8	12	4.3
00		,			the MV and CS pyrite. The inte				illicant	A0862682	100.19	100.66	0.47	4.2	0.05	15.1	2.5	7	4.6
93.4 - 94.4	Р	у	FR	5%	Fracture and v	ein controlle	d pyrite.			A0862683	100.66	101.6	0.94	0.9	0.05	11.6	1.3	20	1.1
94.4 - 97.8	Р	у	D (0.1%	Trace pyrite.														
97.8 - 97.9	Р	у	SM	40%	Semi-massive	pyrite occur	ring 40 dtca.												
97.9 - 98.3	Р	У	FR	1%	Fracture contro	olled pyrite ir	n veinlets.												
98.3 - 98.95	Р	у	Bed	10%	Pyrite occurrin	g within blac	k heavy min	eral beds.											
98.95 - 100.2	2 P	у	FR	1%	Pyrite veintlets														

Project: Gale	na Ridge						Hole N	Number	: GR-2	0-01		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	A: (ppm
100.2 - 100.65	Py FR 20%	Pyrite veinlets occurring concordant to heavy mineral bed as well as occurring with calcite veins.										
100.65 - 101.6	Py FR 3%	Vein controlled pyrite.										
Structure	Type/Intensity	Comments										
93.1 - 101.6	STK S	The interval is moderately stockwork brecciated with calcite and pyrite veins. The interval is moderatey to strongly mineralized with pyrite.										
101.6 117.9	MV - Mafic Volcanic		A0862684	101.6	102.6	1	22.4	0.2	355.5	1.3	16	1.
		cs. The core consists of aphanitic mafic minerals until 112.2m	A0862685	102.6	103.6	1	8.5	0.1	210.5	1.2	22	1.3
plagioclase and bl	ack magnetite. The core is	olcanics. The intermediate volcanics consist of pale green weakly altered to chlorite. Silicification is moderate and locally	A0862686	103.6	104.6	1	2.6	0.05	81.5	1.2	17	0.2
disseminated thro	ughout the unit with local int	d and is strongly magnetic. Trace pyrite and pyrrhotite occur tervals hosting up to 10% sulphides. Foliation is faint at 50	A0862687	104.6	105.6	1	3.8	0.3	283.8	1.4	18	1.8
dtca. Lower conta	act is sharp at 75 dtca marke	ed by siliceous meta-sediments.	A0862688	105.6	106.6	1	9.2	0.05	43.8	1	42	
Alteration	Type/Style/Intensity	Comments	A0862689	106.6	107.6	1	0.25	0.05	9.8	0.5	38	0.6
101.6 - 117.9	Si Pv M		A0862691	107.6	108.6	1	3.2	0.05	6.7	0.7	23	0.6
			A0862692	108.6	109.6	1	1.7	0.05	12.6	1.8	26	0.7
110.6 - 110.8	BI P M	Moderately bleached breccia fragments.	A0862693	109.6	110.6	1	2	0.05	19.4	1.3	33	0.25
112.8 - 115.5	Mag D S	Strong magnetite occurring throughout the interval as 1mm in diameter crystals.	A0862694	110.6	111.6	1	2.4	0.1	54.9	1.7	31	0.8
Mineralization	Type/Style/%Mineral	Comments	A0862695	111.6	112.6	1	2.3	0.05	100.9	1	12	0.7
101.6 104.1	Pv D 5%	5% pyrite alteration concordant to CS and MV contact.	A0862696	112.6	113.6	1	7.6	0.05	89.1	0.6	11	0.6
101.6 - 104.1	Py D 5%	376 pyrite alteration contordant to 65 and MV contact.	A0862697	113.6	114.6	1	6.2	0.05	221.8	0.5	18	0.5
104.1 - 116.1	Py D 1%		A0862953	114.6	115.6	1	12.3	0.05	160.7	0.6	13	0.6
112.8 - 115.5	Mag D 10%	Strong magnetite occurring throughout the interval as 1mm in diameter crystals.	A0862698	115.6	116.6	1	1.5	0.05	37	0.9	32	0.25
116.1 - 116.4	Py D 10%	Pyrite core with 10% disseminated pyrite.	A0862699	116.6	117.6	1	2.3	0.05	47	1.4	25	0.6
	•	.,	A0862700	117.6	118.6	1	1.8	0.05	66.4	0.9	9	0.6
116.4 - 124.3	Py D 0.1%	Trace disseminated pyrite.										
Structure	Type/Intensity	Comments										
101.6 - 110.6	STK M	Moderate calcite stockwork veining usually associated with pyrite.										
110.6 - 110.8	BX W	Weakly brecciated core with large angular fragment up annealed with calcite. Fractures are bleached to pale beige.										
112.4 - 112.8	Dyk S	Pale pink felsic dyke with 1% green mafics. Contact is 80 dtca.										
112.8 - 113.0	Vqtz M	A quartz vein cross cutting core at 25 dtca. Width is 12mm. The vein appears to represent the contact between mafic volcanics and intermediate volcanics. White calcite occurs along the edge of the hanging wall side of the vein.										
117.9 124.3	SS - Siliceous Metaseo	liment	A0862700	117.6	118.6	1	1.8	0.05	66.4	0.9	9	0.

	na Ridge						Hole N	lumber	: GR-20	.0-01		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm
		core is hard and glassy with bands of fine grained grey and acid. The unit hosts trace pyrite mineralization. Magnetite	A0862701	118.6	119.6	1	1.9	0.05	25.3	1	12	0.25
pands occur locally		ed with calcite. Foliation variable at 35 to 50 dtca. Lower	A0862702	119.6	120.6	1	15.5	0.3	417.4	1	15	1.4
ontact is snarp at	1 30 dica transitioning into it	iv.	A0862703	120.6	121.43	0.83	27.6	0.3	610.6	1	21	0.25
Alteration	Type/Style/Intensity	Comments	A0862704	121.43	121.74	0.31	11.4	0.3	597.1	1.5	9	1.4
17.9 - 124.3	Si Pv S	Hard glassy siliceous sediments.	A0862705	121.74	122.74	1	5.7	0.3	336.6	0.8	12	1.2
Mineralization	Type/Style/%Mineral	Comments	A0862706	122.74	123.74	1	5.1	0.2	112.8	0.9	11	0.25
	rype/Gtyle//olimineral		A0862707	123.74	124.74	1	4	0.05	62.1	0.9	18	0.2
16.4 - 124.3	Py D 0.1%	Trace disseminated pyrite.										
21.43 - 121.74	Mag SM 30%	Banded magnetite up to 15mm in diameter. Strongly magnetic occurring parallel to folaition. Sharp upper and lower contact at 45 dtca.										
20.3 - 120.6	Mag FR 10%	Magnetite occurring within a quartz calcite vein along with pyrite.										
Structure	Type/Intensity	Comments										
20.3 - 120.6	Vcc S	Quartz calcite vein with pyrite and magnetite mineralization. Vein occurs at 20 dtca.										
24.3 167	MV - Mafic Volcanic		A0862707	123.74	124.74	1	4	0.05	62.1	0.9	18	0.25
		s of siliceous sediments occur locally. Silicification is moderate. strongly magnetic. Amphibole crystals up to 2mm in diameter	A0862708	124.74	125.74	1	5.5	0.2	197.3	8.0	16	0.
an be recognized	I locally throughout the unit.	Trace pyrite and pyrrhotite occur disseminated with local veinlets are sparse usually occurring at 20 and 90 dtca. Core	A0862709	125.74	126.74	1	6.6	0.05	72.4	1	17	0.
hard and compe	etent with foliation at 40 to 5	0 dtca with foliation in siliceous sediments occurring at 15 dtca.	A0862710	126.74	127.74	1	8.2	0.05	32.8	1.1	19	_
ower contact is E	:OH.		A0862711	127.74	128.74	1	1.5	0.05	5.1	0.8		2.
	Turns/Description									0.0	15	
linor Lithology	Type/Description	Comments	A0862712	128.74	129.74	1	8.4	0.05	13.9	1.2	15 16	0.2
	SS Siliceous	A small interval of banded siliceous metasedments with foliation		128.74 <i>1</i>		1		0.05 0.05	13.9 10.6			0.2
			A0862712		130.74		8.4			1.2	16	0.2 1. 0.
59.0 - 160.0	SS Siliceous	A small interval of banded siliceous metasedments with foliation	A0862712 A0862713	129.74	130.74 131.74	1	8.4 1.9	0.05	10.6	1.2 0.8	16 23	0.29
59.0 - 160.0 Metation	SS Siliceous Metasediment Type/Style/Intensity	A small interval of banded siliceous metasedments with foliation at 40 dtca.	A0862712 A0862713 A0862714	129.74 °	130.74 131.74 132.74	1 1	8.4 1.9 6.5	0.05 0.1	10.6 40.8	1.2 0.8 1.2	16 23 29	0.28 1.6 0.6
59.0 - 160.0 Metation	SS Siliceous Metasediment Type/Style/Intensity Si Pv M	A small interval of banded siliceous metasedments with foliation at 40 dtca.	A0862712 A0862713 A0862714 A0862715	129.74 130.74 131.74	130.74 131.74 132.74 133.74	1 1 1	8.4 1.9 6.5 1.3	0.05 0.1 0.05	10.6 40.8 15.7	1.2 0.8 1.2 2.6	16 23 29 53	0.25 1.6 0.6 1.8
Minor Lithology 59.0 - 160.0 Alteration 24.3 - 167.0 24.3 - 167.0	SS Siliceous Metasediment Type/Style/Intensity	A small interval of banded siliceous metasedments with foliation at 40 dtca.	A0862712 A0862713 A0862714 A0862715 A0862716	129.74 2 130.74 2 131.74 2 132.74 2	130.74 131.74 132.74 133.74 134.74	1 1 1	8.4 1.9 6.5 1.3 0.25	0.05 0.1 0.05 0.05	10.6 40.8 15.7 37.2	1.2 0.8 1.2 2.6	16 23 29 53 83	0.25 1.6 0.6 1.8 0.9
59.0 - 160.0 Alteration 24.3 - 167.0 24.3 - 167.0	SS Siliceous Metasediment Type/Style/Intensity Si Pv M	A small interval of banded siliceous metasedments with foliation at 40 dtca.	A0862712 A0862713 A0862714 A0862715 A0862716 A0862717	129.74 2 130.74 2 131.74 2 132.74 2 133.74 2	130.74 131.74 132.74 133.74 134.74 135.74	1 1 1 1	8.4 1.9 6.5 1.3 0.25 2.5	0.05 0.1 0.05 0.05 0.1	10.6 40.8 15.7 37.2 90 61.4	1.2 0.8 1.2 2.6 2 2.4	16 23 29 53 83 91	0.29 1.0 0.0 1.6 0.29 0.29
59.0 - 160.0 Ilteration 24.3 - 167.0 24.3 - 167.0 Ilineralization	SS Siliceous Metasediment Type/Style/Intensity Si Pv M Chl Pv W Type/Style/%Mineral	A small interval of banded siliceous metasedments with foliation at 40 dtca. Comments Comments	A0862712 A0862713 A0862714 A0862715 A0862716 A0862717 A0862718	129.74 6 130.74 6 131.74 6 132.74 6 133.74 6 134.74 6	130.74 131.74 132.74 133.74 134.74 135.74 136.74	1 1 1 1 1	8.4 1.9 6.5 1.3 0.25 2.5 1.3	0.05 0.1 0.05 0.05 0.1 0.05	10.6 40.8 15.7 37.2 90 61.4	1.2 0.8 1.2 2.6 2 2.4 16.8	16 23 29 53 83 91 71	0.25 1.6 0.6 1.6 0.25 0.25 2.3
59.0 - 160.0 **Miteration** 24.3 - 167.0 24.3 - 167.0 **Mineralization** 24.3 - 167.0	SS Siliceous Metasediment Type/Style/Intensity Si Pv M Chl Pv W Type/Style/%Mineral Py D 1%	A small interval of banded siliceous metasedments with foliation at 40 dtca. Comments Comments Trace to 1% disseminated pyrite.	A0862712 A0862713 A0862714 A0862715 A0862716 A0862717 A0862718 A0862719	129.74 130.74 131.74 132.74 133.74 134.74 135.74 135.74	130.74 131.74 132.74 133.74 134.74 135.74 136.74	1 1 1 1 1	8.4 1.9 6.5 1.3 0.25 2.5 1.3 9.4	0.05 0.1 0.05 0.05 0.1 0.05 0.05	10.6 40.8 15.7 37.2 90 61.4 108.5	1.2 0.8 1.2 2.6 2 2.4 16.8 1.8	16 23 29 53 83 91 71 29	0.28 1.6 0.6 1.8 0.9 0.28 0.28
59.0 - 160.0 **Miteration** 24.3 - 167.0 24.3 - 167.0 **Mineralization** 24.3 - 167.0	SS Siliceous Metasediment Type/Style/Intensity Si Pv M Chl Pv W Type/Style/%Mineral	A small interval of banded siliceous metasedments with foliation at 40 dtca. Comments Comments Trace to 1% disseminated pyrite. Comments	A0862712 A0862713 A0862714 A0862715 A0862716 A0862717 A0862718 A0862719 A0862720	129.74 130.74 131.74 132.74 134.74 135.74 136.74 136.74	130.74 131.74 132.74 133.74 134.74 135.74 136.74 137.74	1 1 1 1 1 1 1	8.4 1.9 6.5 1.3 0.25 2.5 1.3 9.4 4.5	0.05 0.1 0.05 0.05 0.1 0.05 0.05 0.05	10.6 40.8 15.7 37.2 90 61.4 108.5 84	1.2 0.8 1.2 2.6 2 2.4 16.8 1.8	16 23 29 53 83 91 71 29	0.29 1.6 0.6 1.8 0.9 0.29 0.29 2.3 0.29
59.0 - 160.0 Alteration 24.3 - 167.0	SS Siliceous Metasediment Type/Style/Intensity Si Pv M Chl Pv W Type/Style/%Mineral Py D 1%	A small interval of banded siliceous metasedments with foliation at 40 dtca. Comments Comments Trace to 1% disseminated pyrite.	A0862712 A0862713 A0862714 A0862715 A0862716 A0862717 A0862718 A0862719 A0862720 A0862721	129.74 130.74 131.74 132.74 135.74 136.74 137.74 137.74	130.74 131.74 132.74 133.74 134.74 135.74 136.74 137.74 138.74	1 1 1 1 1 1 1	8.4 1.9 6.5 1.3 0.25 2.5 1.3 9.4 4.5 3.7	0.05 0.1 0.05 0.05 0.1 0.05 0.05 0.05	10.6 40.8 15.7 37.2 90 61.4 108.5 84 94	1.2 0.8 1.2 2.6 2 2.4 16.8 1.8 1.4	16 23 29 53 83 91 71 29 21 26	2.5 0.28 1.6 0.6 1.8 0.28 0.28 0.28 1.4

Project: Gale	ena Ridge						Hole N	Number	: GR-2	0-01		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
148.0 - 148.66	ShV W	Sparse sheeted quartz veins from 0.8 to 1.5 cm in diameter. The veins occur at 40, 70 and 60 dtca.	A0862725	141.74	142.74	1	0.25	0.05	20.4	0.7	15	0.5
		veins occur at 40, 70 and oo dea.	A0862726	142.74	143.74	1	0.25	0.05	47.1	1.4	24	1
			A0862727	143.74	144.74	1	0.25	0.05	37.1	0.7	25	1.4
			A0862728	144.74	145.74	1	0.25	0.05	73.4	0.8	38	0.5
			A0862729	145.74	146.74	1	0.9	0.05	108.8	0.7	27	0.8
			A0862731	146.74	147.74	1	0.25	0.05	39.6	2	21	1.4
			A0862732	147.74	148.74	1	0.25	0.2	69.6	31.5	50	0.8
			A0862733	148.74	149.74	1	0.25	0.05	31.7	1.9	38	5.8
			A0862734	149.74	150.74	1	0.25	0.05	114.1	1.3	32	1
			A0862735	150.74	151.74	1	0.25	0.05	109.4	1.7	45	1.2
			A0862736	151.74	152.74	1	1	0.1	135.4	1.3	79	1.9
			A0862737	152.74	153.74	1	0.25	0.1	109.4	2	79	4.4
			A0862738	153.74	154.74	1	0.25	0.2	80.7	3.5	96	2.5
			A0862739	154.74	155.74	1	0.25	0.1	79.1	1.3	86	0.8
			A0862740	155.74	156.74	1	0.25	0.05	37.6	1.7	67	0.7
			A0862741	156.74	157.74	1	4.8	0.3	119.3	2.2	33	1.3
			A0862742	157.74	158.74	1	0.25	0.2	81.5	1.5	43	0.6
			A0862743	158.74	159.74	1	0.25	0.1	46.4	2.8	53	0.7
			A0862744	159.74	160.74	1	0.25	0.05	36.3	1.8	60	0.8
			A0862745	160.74	161.74	1	0.25	0.05	40.7	2.8	80	0.8
			A0862746	161.74	162.74	1	0.25	0.05	75.8	3.6	89	0.8
			A0862747	162.74	163.74	1	1.1	0.05	70.1	1.6	32	0.25
			A0862748	163.74	164.74	1	3.3	0.05	76.1	1.7	49	0.6
			A0862749	164.74	165.74	1	6.3	0.2	197.2	3.3	24	0.6
			A0862750	165.74	167.0	1.26	1.2	0.05	85.2	1.3	28	0.6

Project: Galena Ridge Hole Number: GR-20-01

Oriented Point S	tructure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
4.17	Fol	70				
4.77	Vqtz	65				quartz veins up to 2 cm true width, pyrite is hosted in the margins and in fractures from later, cross cutting calcite veins.
6.74	F	65				fracture, oxidized
6.84	Dyk	35				uncertain contact with calcareous metasediments
8.76	Fol	40				foliation of calcareous metasedimentary unit
11.24	Lc	55				 1.2 cm true width of small calcareous metasediment interval.
11.28	Vqtz	55				2 quartz veins with minor pyrite along the edges and center. up to 0.8 cm true width.
18.06	Vqtz	45				8 cm true witdth. contains blebby pyrite and Galena situated along vein margins and in veinlets discordant to the main quartz vein.
18.23	Fol	55				
19.38	Fol	40				
22.6	Fol	50				
23.4	Fol	70				
26.11	Fol	70				
29.72	Vqtz	55				up to 1.5 cm true width eye of quartz and calcite. Minor pyrite present as fine grains (<1%) along the vein margins
30.03	F	60				oxidized fracture
35.9	Fol	75				
47.07	Fol	60				
47.85	F	30				fracturing of bleached mafic volcanics
50.35	Vqtz	40				white to dark grey quartz veins, up to 2 cm wide, minor (>1%) pyrite content which is mostly associated with thin (mm) calcite veins that cross cut the quartz veins.
50.72	VL	50				thin (mm) black stringers that potentially host galena or hematite in addition to the pyrite. These veins are concordant to the foliation of the metasediment unit.
58.26	Fol	45				foliation of metasediments
63.63	С	55				contact between chert and metasedimentary unit
71.45	Fol	60				foliation of mafic volcanics
74.22	Vqtz	50				cm wide quartz vein with coarse grained calcite. One grain (2 mm) of chalcopyrite present on the margin. pyrite is disseminated throughout the wallrock and on the margins of the vein. unknown dark purple/red mineral that reacts with HCI.
81.04	G	60				fractured surface of gouge unit, uncertain measurement

Project:	Galena Ridge				Hole Number: GR-20-01
82.	.5 Fol		55		foliation of mafic volcanics
91.8	36 Fol		55		foliation of mafic volcanics
97.5	58 Vcc		60		calcite vein which hosts up to 40% pyrite, ~5 cm true width
100.4	17 Vqtz		90		quartz vein with pyrite and epidote and contacting th calcareous metasedimentary unit.
100.5	51 Vqtz		70		quartz vein with pyrite and epidote and contacting th calcareous metasedimentary unit.
102.3	36 Fol		40		
108.5	57 Fol		50		
112.9	95 Vqtz		25		Quartz vein up to 1.5 cm true width, minor (<1%) pyrite presence along vein margins and throughout fractures.
114.7	75 Fol		55		
117.8	38 Vcc		60		calcite and magnetite veins, up to ~3 mm thick
118.5	56 C		40		orientation of siliciclastic units
120.4	Vcc		20		magnetite, quartz pyrite, calcite veins, mm scale
121.5			55		contact between magnetite/calcite vein and mafic volcanics
124.			50		
127.9	91 Fol		45		
143.4			50		avente vale va ta O ana tava vidith a antaina
148.0)8 Vqtz		45		quartz vein, up to 2 cm true width, contains plagioclase, chlorite, K-feldspar (or pink/red carbonate)?
151.2	26 Fol		50		
156.4	15 Fol		40		
159.	.8 C		35		lower contact of calcareous metasedimentary unit with mafic volcanics
160.2	22 Fol		40		
Geotech					
Froi	m To	Recovery	Recovery %	Comments	
2.9	95 5	2.05	100	broken/rubble	
	5 8	3.05	101.67	broken	
	8 11	2.68	89.33	broken/rubble	
1	11 14	2.73	91	broken /rubble	
1	14 17	2.99	99.67	broken/rubble	
1	17 20	2.98	99.33	broken	
		3.02	100.67	broken	

<u> </u>	, <u> </u>						
Project:	Galena R	Ridge				Hole Number:	GR-20-01
	23	26	2.7	90	broken/rubble		
	26	29	2.93	97.67	broken		
	29	32	3.14	104.67			
	32	35	2.7	90	broken, 1 rubble section		
	35	38	2.93	97.67	verybroken/rubble		
	38	41	2.99	99.67	broken/rubble		
	41	44	2.86	95.33	broken		
	44	47	3.08	102.67	broken		
	47	50	2.98	99.33	very broken		
	50	53	2.82	94			
	53	56	2.66	88.67	broken/rubble		
	56	59	2.85	95	broken		
	59	62	2	66.67	rubble		
	62	65	2.79	93	broken/rubble		
	65	68	2.3	76.67	broken/rubble		
	68	71	2.18	72.67	verybroken/rubble/gouge		
	71	74	2.23	74.33	verybroken/rubble/gouge		
	74	77	2.46	82	gouge		
	77	80	2.47	82.33	gouge/broken		
	80	83	2.84	94.67	gouge/broken		
	83	86	2.79	93	verybroken		
	86	89	2.8	93.33	broken/rubble		
	89	92	2.75	91.67	broken		
	92	95	2.15	71.67	broken/rubble		
	95	98	1.87	62.33	broken/rubble		
		101	2.92	97.33	broken		
		104	2.37	79	broken/rubble		
		107	2.91	97	broken/rubble		
		110	3	100	broken		
		113	3.06	102	broken		
		116	3	100			
		119	2.94	98	broken		
	119	122	2.92	97.33	broken		

- 					
Project:	Galena Rido	e			Hole Number: GR-20-01
1	22 12	5 3	100	broken	
1	25 12	3	100		
1	28 13	1 2.89	96.33	broken	
1	31 13	4 3	100		
1	34 13	7 3	100		
1	37 14	3	100	broken	
1	40 14	3 3	100		
1	43 14	2.89	96.33	broken	
1	46 14	9 2.86	95.33	very broken	
1	49 15	2 2.92	97.33		
1	52 15	5 3	100		
1	55 15	3 2.68	89.33	rubble section	
1	58 16	1 2.89	96.33	rubble section	
1	61 16	4 2.93	97.67	broken	
1	64 16	7 3	100		

2.31 - 7.0

Mineralization

Chl Pv M

Type/Style/%Mineral

Comments

G R	`o U	P														
Projec	t: Gale	Galena Ridge								Hole Number: GR-20-02						
			Drill Hole			Drilling					Coll	ar Surve	ey			
Hol	e type	DD	Core location: Doo	c Camp	Drilling started	Aug-26-20	020		Gri	d:	ı	NAD83/	UTM zo	one 9N		
Hol	e size:	NQ	Claim number:		Drilling completed	d: Aug-28-20	020		Eas	sting:	4	410,442				
Act	ual depth:		Logged by:		Drilling contracto	r: Dorado			Noi	rthing:	(6,243,51	.4			
Tar	get:								Ele	vation:		1,498				
Surve	y															
	Depth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Quali	ity								
	0	Collar	206	206	-60											
	17	Reflex Hanstone	188.4	206.4	-59.8											
	116	Reflex Hanstone	184.6	202.6	-59.5											
	143	Reflex Hanstone	186.5	204.5	-59											
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	
0	2.31	CAS - Casing														
2.31	7	MV - Mafic Volca	nic			A0862751	2.31	3.81	1.5	2.6	0.05	38.5	1.1	19	1.7	
Greeni	sh grey ma	fic volcanics. The core	e consists of mostly aphaniti ous volcanic sediments are	ic mafic minerals that car	n not be	A0862752	3.81	5.07	1.26	4.3	0.05	28.6	1.1	22	0.8	
thick.	diorica with	the naked eye. Ollide	odo volodino ocamiento die	common and cood in be	343 up to 200111	A0862753	5.07	5.4	0.33	74.5	0.4	38	4.5	33	0.6	
The co	ore is perva	sively altered to chlori	te and weakly calareous we seminated throughout the co	akly reacting to acid Sili	icification is	A0862754	5.4	5.8	0.4	115.8	1.8	195.2	5.2	37	0.7	
	s at 5.5m.	sive. Pyrite occurs diss	seminated infoughout the co	ore and galeria occurs in	smaii mineralized	A0862755	5.8	7.3	1.5	3.2	0.05	29.5	1.6	36	0.9	
	s blocky and eous meta-		at 55 dtca. Lower contact is	s sharp marked transitior	ning into											
Minor	Lithology	Type/Description	Comments													
3.2 - 3.	4	CS Calcareous Metasediment	Small interval of cal	Icareous sediments. Folia	ation at 60 dtca.											
5.3 - 5.	9	SS Siliceous Metasediment	Interval of siliceous micro galena veins.	sediments. This interval	may also host											
Altera	tion	Type/Style/Intensit	ty Comments													
2.31 - 8	8.5	Si Pv S	Strong pervasive si	licification.												

Project: Gale	na Ridge						Hole I	Number	: GR-2	0-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
2.31 - 24.1	Py D 2%	Trace to 3% disseminated pyrite occasionally occurring in fractures.										
5.07 - 5.4	Gn FR 2%	Core is cut with mineralized galena micro-veins and associated calcite. Galena is locally blebby.										
5.6 - 5.8	Gn FR 0.1%	Black micro-veinlets. Possible galena.										
Structure	Type/Intensity	Comments										
2.31 - 4.6	Bc M											
4.6 - 4.7	G M	Rusty gouge occurring on a low angle fracture.										
4.7 - 8.5	Bc M											
7 8.5	SS - Siliceous Metased	liment	A0862755	5.8	7.3	1.5	3.2	0.05	29.5	1.6	36	0.9
White to green sili multiple calcareou	ceous meta-sediments. The is layers that strong react to	unit is banded with green and white layers. The unit hosts acid. Black bedding in core is strongly magnetic.	A0862756	7.3	8.8	1.5	9	0.3	35.4	14.8	27	0.8
Small mm-scaled well as concentrate		nmonly cut core. Pyrite occurs disseminated in chert intervals as										
Foliation is folded	and wavy from 60 to 90 dtca	a. Lower contact is sharp marked by broken core.										
Minor Lithology	Type/Description	Comments										
7.0 - 7.5	CS Calcareous Metasediment	An interval of calcareous metasediments Interval strongly reacts to acid and hosts chert nodules.										
Alteration	Type/Style/Intensity	Comments										
2.31 - 8.5	Si Pv S	Strong pervasive silicification.										
Mineralization	Type/Style/%Mineral	Comments										
2.31 - 24.1	Py D 2%	Trace to 3% disseminated pyrite occasionally occurring in fractures.										
Structure	Type/Intensity	Comments										
4.7 - 8.5	Bc M											
8.5 41.4	MV - Mafic Volcanic		A0862756	7.3	8.8	1.5	9	0.3	35.4	14.8	27	0.8
		ists of mostly aphanitic mafic minerals. Siliceous volcanic	A0862757	8.8	10.3	1.5	8.9	0.1	30.6	2.5	31	0.6
moderate and loca	ally strong. The core is calca	The core is pervasively altered to chlorite. Silicification is areous reacting to acid and is strongly magnetic (if the core is	A0862758	10.3	11.8	1.5	2.4	0.05	43.2	2.7	34	1
•	be more magnetic.		A0862759	11.8	13.3	1.5	2.1	0.05	23.9	1.2	28	0.9
throughout the uni	it with local intervals hosting	.5m and 31.8m. Trace pyrite and pyrrhotite occur disseminated up to 3% sulphides. The targeted structure was intersected at	A0862760	13.3	14.8	1.5	5.3	0.05	92.4	0.6	30	0.25
	as a narrow gouge and a 30		A0862761	14.8	16.3	1.5	5.7	0.05	55.8	0.7	26	0.25
The core is compe	etent with foliation at 60 to 70	0 dtca. Lower contact is sharp marked by calcareous										

Project: Galer	na Ridge						Hole N	Number	: GR-2	0-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
meta-sediments.			A0862762	16.3	17.3	1	6.8	0.2	134.3	1.6	54	0.6
Minor Lithology	Type/Description	Comments	A0862763	17.3	18.8	1.5	5.6	0.2	133.2	1.7	55	0.7
36.6 - 36.9	CS Calcareous	Buff to green interval of calcareous sediments. Strongly reacts	A0862764	18.8	20.3	1.5	5.9	0.1	202.2	0.7	38	0.8
	Metasediment	to acid.	A0862765	20.3	21.8	1.5	3.2	0.05	156.8	1.1	45	0.8
Alteration	Type/Style/Intensity	Comments	A0862766	21.8	23.3	1.5	2.5	0.05	149	1.1	42	0.5
8.5 - 41.4	Si Pv M	Moderate pervasive silicification.	A0862767	23.3	24.1	8.0	20.6	0.4		5.6	76	0.9
			A0862768	24.1	24.87	0.77	5.5	0.2	150.7	2.2	60	0.7
24.84 - 41.4	Chl Pv M		A0862769	24.87	26.37	1.5	3.9	0.2	178.4	1.8	61	0.25
27.3 - 27.7	Ep FV S	Epidote stockwork veinlets.	A0862770	26.37	27.87	1.5	6.3	0.1	234.3	1	46	0.9
30.78 - 30.95	Ep FV S	Epidote stockwork veinlets.	A0862771	27.87	29.37	1.5	3.5		153.3	2.6	58	0.25
8.5 - 24.1	Chl Pv M		A0862772	29.37	30.87	1.5	3.5	0.1	113.2	2.2	44	0.6
		Moderately bleached core associated with fault gouge and quartz	A0862773	30.87	32.37	1.5	4.4	0.05	162.4	0.6	39	0.7
24.1 - 24.84	BI Pv M	vein.	A0862775	32.37	34.87	2.5	1.7	0.05	72.2	1.3	46	0.25
Mineralization	Type/Style/%Mineral	Comments	A0862776	34.87	36.37	1.5	6.7	0.05	170.9	0.9	33	0.25
2.31 - 24.1	Py D 2%	Trace to 3% disseminated pyrite occasionally occurring in fractures.	A0862777 A0862778	36.37 37.87	37.87 39.37	1.5 1.5	4.9 2.9	0.05	126.1 146.3	1.4 0.9	24 47	0.25
24.1 - 24.81	Py SM 10%	Semi-massive pyrite associated with smoky quartz vein.	A0862778 A0862779	39.37	40.87	1.5	2.9	0.05	101.1	0.9	60	0.5
	•	Trace to 3% disseminated pyrite occasionally occurring in	A0862780	40.87	42.37	1.5	4.4	0.03	79.4	2	53	1.5
24.81 - 59.48	Py D 2%	fractures.	710002700	10.01	12.01	1.0	•••	0.1	70.1	_	00	1.0
24.1 - 24.81	Ccp D 0.1%	Trace to 1% disseminated chalcopyrite.										
Structure	Type/Intensity	Comments										
27.3 - 27.7	STK S	Strong epidote stockwork veinlets cross-cutting core.										
24.35 - 24.5	G M	Small gouge and white quartz vein located at the main target with associated chalcopyrite and pyrite mineralization.										
30.78 - 30.95	STK S	Strong epidote stockwork veinlets cross-cutting core.										
40.87 - 52.2	Bc M											
41.4 59.48	SS - Siliceous Metased	liment	A0862780	40.87	42.37	1.5	4.4	0.1	79.4	2	53	1.5
		e unit is banded with green and white layers. The unit is and calcareous sediments. The unit is not magnetic.	A0862781	42.37	43.87	1.5	9.4	0.1	155.2	0.6	13	1.8
		be hard and glassy. Pyrite usually occurs concentrated in	A0862782	43.87	45.37	1.5	11.1	0.05	151.5	0.5	15	2.7
veinlets and is loca		guessy ya acada.y occario contochilated iii	A0862783	45.37	46.87	1.5	3.7	0.05	77.7	0.7	9	2.5
		s of rubble. Foliation is 80 to 90 dtca. Lower contact is sharp	A0862784	46.87	48.37	1.5	4.2	0.05	89.7	0.8	22	2
marked by mafic v	uicariics.		A0862785	48.37	48.73	0.36	2.3	0.2	40.1	1.9	38	2.6

Drill Log Report Page 3 of 9 Dec-03-2021

Project: Galer	na Ridge						Hole N	Number	: GR-2	0-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Minor Lithology	Type/Description	Comments	A0862786	48.73	49.0	0.27	3.4	0.3	32.7	3.6	41	4
44.0 - 44.2	MV Mafic Volcanic	Interval of mafic volcanics.	A0862787	49.0	50.5	1.5	4.8	0.2	93.1	1.6	37	3.3
44.0 - 44.2			A0862788	50.5	53.0	2.5	2.1	0.1	48.8	1.3	22	2.7
44.8 - 44.9	MV Mafic Volcanic	Dark green mafic volcanics.	A0862789	53.0	54.5	1.5	1.8	0.2	96.7	1.1	9	3.8
47.3 - 47.6	MV Mafic Volcanic	Dark green mafic volcanics.	A0862791	54.5	56.0	1.5	2	0.05	67.3	1.3	18	1.5
56.4 - 56.6	CS Calcareous	Buff calcareous sediments. Strongly react to acid.	A0862792	56.0	57.5	1.5	1.5	0.05	40	1.1	9	3
	Metasediment	•	A0862793	57.5	59.0	1.5	1.3	0.05	63.1	1.8	31	1.3
58.4 - 58.7	CS Calcareous Metasediment	Buff calcareous sediments. Strongly react to acid.	A0862794	59.0	60.5	1.5	1.6	0.05	69.3	2.6	32	0.8
59.13 - 59.48	CS Calcareous Metasediment	Buff calcareous sediments. Strongly react to acid.										
Alteration	Type/Style/Intensity	Comments										
41.4 - 59.48	Si Pv S	Strong pervasive silicification of sediments.										
Mineralization	Type/Style/%Mineral	Comments										
24.81 - 59.48	Py D 2%	Trace to 3% disseminated pyrite occasionally occurring in fractures.										
Structure	Type/Intensity	Comments										
40.87 - 52.2	Bc M											
52.2 - 54.75	Bc In	Intensely broken and rubbly core with fragments 0.5 to 10 cm in diameter.										
59.48 143	MV - Mafic Volcanic		A0862794	59.0	60.5	1.5	1.6	0.05	69.3	2.6	32	0.8
Dark greyish gree	n and fine grained moderate	e to well foliated mafic volcanic rock.	A0862795	60.5	62.0	1.5	1.1	0.1	84.7	1.3	54	0.9
		weak silicification between 59.48 and 77.00 m. Carbonate	A0862796	62.0	63.5	1.5	8.4	0.3	80.9	3.8	136	0.6
	e common in stringers.	ugnout. Finely dissemated trace to 1% pyrite throughout the	A0862797	63.5	64.0	0.5	1.6	0.3	77.6	2.5	102	0.25
		ement ubiquitous. Veinlets ~1 cm wide and larger often contain	A0862798	64.0	64.55	0.55	174.5	1.8	274.6	24.9	81	0.6
hydraulic brecciati	on. Shear zone (mylonite) f	rom 94.46 ~98.00 m oriented at 50 DTCA.	A0862799	64.55	65.0	0.45	1	0.2	71.5	3	122	0.25
Minor Lithology	Type/Description	Comments	A0862800	65.0	66.5	1.5	1.1	0.3	93.8	4.2	93	0.6
59.48 - 143.0	MV Mafic Volcanic	Dark green mafic volcanics	A0862801	66.5	68.0	1.5	0.7	0.3	100.1	3.8	203	0.6
		•	A0862802	68.0	69.5	1.5	0.8	0.2	71.1	2.2	111	0.7
Alteration	Type/Style/Intensity	Comments	A0862803	69.5	71.0	1.5	1.6	0.2	69.3	1	83	0.25
63.4 - 75.98	Si P M	patchy moderate silicification	A0862804	71.0	72.5	1.5	1.5	0.2	44.8	1.7	61	0.5
64.1 - 64.39	BI Pv M	strongly bleached core likely due to quartz vein	A0862805	72.5	73.6	1.1	1.1	0.2	52.1	2.2	98	0.25

Project : Ga	lena Ridge						Hole I	Number	: GR-2	0-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
71.0 - 71.5	Ep FV M	epidote mineralization and alteration from parallel veinlet sets, alpha angle = 70	A0862806	73.6	74.35	0.75	241.6	2.5	54.4	15.8	53	1.4
59.48 - 143.0	Chl Pv M	moderate pervasive chlorite alteration throughout entire mafic volcanic unit	A0862807	74.35	75.85	1.5	6.7	0.2	73	2.9	99	0.25
73.6 - 74.35	BI FV M	bleaching due to quartz cemented hydrofractured breccia vein	A0862808	75.85	77.35	1.5	6.2	0.2	85	1.8	100	0.25
		bleaching proximal to focus of shear zone and from hydrofractured	A0862809	77.35	78.85	1.5	13.2	0.3	73.3	6.6	155	0.25
96.64 - 96.88	BI FV M	brecca closer to the upper limit of the shear zone.	A0862810	78.85	80.35 81.85	1.5	4.7	0.5	98.8	47.9	179 111	0.9
81.85 - 85.45	Ep FV W	sparse epidote and calcite veinlets spaced ~1m and dtca of 50	A0862811 A0862812	80.35 81.85	83.35	1.5 1.5	2.5 3.5	0.2	85.5 100	4.1 2.6	110	0.25
106.0 - 110.52	BI FV W	caused by fractures and quartz veining along the interval, intensity varies with the highest near veins	A0862813	83.35	84.85	1.5	6.4	0.2	68.1	3.3	149	0.25
118.0 - 120.5	BI FV W	caused by fractures and quartz veining along the interval, intensity	A0862814	84.85	86.35	1.5	3.7	0.2	55.8	24.9	144	0.23
	DI D. W	varies with the highest near veins	A0862815	86.35	87.85	1.5	4.9	0.2	59.2	13.6	117	0.8
122.23 - 122.63	BI Pv W	caused by calcite/quartz veining	A0862816	87.85	88.95	1.1	3.8	0.2	78.8	4.4	105	0.25
122.63 - 128.5	BI Pv M	moderate bleaching caused by quartz veining	A0862817	88.95	89.18	0.23	4.2	0.2	83.8	6		0.25
120.69 - 138.0	Si P M	moderate silicification that varies in intensity throughout interval, from weak to moderate.	A0862818	89.18	90.68	1.5	5.8	0.2	121.1	11.5	148	0.25
Mineralization	Type/Style/%Mineral	Comments	A0862819	90.68	91.64	0.96	7.8	0.3	127.1	4.6	124	0.25
59.48 - 73.6	Py D 1%	trace to 1% disseminated pyrite occurring ocasionally in highest	A0862820	91.64	93.14	1.5	7.2	0.1	86.4	3.4	106	0.7
	•	concentrations in quartz and calcite veins or fractures. blebby fracture controlled pyrite occuring on vein boundaries,	A0862821	93.14	94.46	1.32	8.2	0.2	93	1.9	79	0.5
73.6 - 74.35	Py Bl 1%	grains are up to 3 mm wide	A0862822	94.46	95.07	0.61	8.5	0.3	125.1	3.2	89	0.25
74.35 - 123.58	Py D 1%	trace to 1% disseminated pyrite occurring ocasionally in highest concentrations in quartz and calcite veins or fractures.	A0862823	95.07	95.3	0.23	176	8.0	47.2	6.5	60	1.4
109.2 - 118.1	Py FR 3%	pyrite ocuring as blebby grains in quartz and calcite veins, 3%	A0862824	95.3	96.8	1.5	4	0.1	52.3	1.5	67	0.25
118.1 - 120.25	Py D 1%	Pyrite occuring disseminated throughout mafic volcanics	A0862825	96.8	98.3	1.5	5.2	0.2	90.5	0.8	60	0.6
	,	pyrite occurring as blebs in veinlets spaced out by 10s of cm	A0862826	98.3	98.75	0.45	6	0.2	56.8	1.6	54	0.6
120.25 - 143.0	Py FR 1%	throughout interval. pyrite is present disseminated in the mafic volcanics in trace amounts but concntrated in veins. Pyrite veins	A0862827	98.75	99.0	0.25	10.7	0.3	56.3	1.6		0.9
		are up to 0.3 cm wide, but most are <1 mm wide.	A0862828	99.0	100.5	1.5	5.7	0.3	93.7	1.2		0.25
Structure	Type/Intensity	Comments	A0862829	100.5	102.0	1.5	3.8	0.1	67.6	1.2	56	0.25
69.22 - 69.3	Bc In	angular rubble, fragments are ~ 0.5 mm in diameter	A0862831	102.0	103.5	1.5	3.4	0.05	70	1.1	65	0.6
	O	strong quartz vein breccia, pyrite mineralization, matix supported,	A0862832	103.5	105.0	1.5	3.9	0.1	81	1.2		1.2
73.6 - 74.35	Vqtz S	clasts are angular and up to 3 cm in diameter, minor chlorite and calcite present.	A0862833	105.0	106.5	1.5	2.8	0.1	69.8	1.3		1.8
89.0 - 89.18	Vqtz M	3 moderate quartz veins parallel to foliation, dtca 50 degrees, 1.5 cm wide orange tint from rusting.	A0862834 A0862835	106.5 108.0	108.0 109.5	1.5 1.5	1.8	0.2	120.9 102.9	1.2	57 53	1.1
91.64 - 93.87	STK M	moderate stockwork fracturing of outer margin of shear zone,	A0862836	109.5	111.0	1.5	1.7	0.1	65.5	1	56	1.1
31.04 - 33.0 <i>1</i>	SIK W	calcite and quartz veins, brecciation starts to occur closer to the focus.	A0862837	111.0	112.5	1.5	1.9	0.1	51	1.1	60	1.2
93.87 - 94.46	BX S	strong brecciation of wallrock with calcite and quartz cement, clasts are up to 0.5 cm in diameter.	A0862838		114.0	1.5	2.2	0.1	100	2.1	88	0.8
		טומסוס מוב עף נט ט.ס טווו ווו עומווובנפו.	/10002000	112.0	117.0	1.0	2.2	0.0	100	۷.۱	00	0.0

Project: Gale	ena Ridge						Hole I	Number	: GR-2	0-02		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
94.46 - 95.07	Fol S	strong foliation of mylonite in the same orientation of the fault plane.	A0862839	114.0	115.5	1.5	2.2	0.3	143.3	2.4	101	1.3
95.07 - 95.2	G In	intense gouge indication possible focus of shear zone, clasts are up to 0.3 cm in diameter	A0862840	115.5	117.0	1.5	3.8	0.2		3.6	68	0.25
		strong foliation from shear zone which persists in the footwall for a	A0862841	117.0	118.5	1.5	3.5	0.2	50.3	2.9	66	0.7
95.2 - 112.0	Fol S	larger interval. small intervals of brecciation alternate with foliation: calcite and quartz cement, clasts are up to 0.5 cm in diameter.	A0862842	118.5	120.0	1.5	6.5	0.2	71.2	3.1	81	0.7
118.1 - 120.69	Bc S	core is strongly broken and has spots of rubble up to 15 cm in	A0862843	120.0	121.5	1.5	5.1	0.2	90.3	3.3	59	1.7
		diameter	A0862844	121.5	123.0	1.5	2.3	0.05	20.1	1.9	60	0.7
122.69 - 123.8	STK M	stockwork quartz and calcite veinin, p to 1 cm wide.	A0862845	123.0	124.5	1.5	3.3	0.2	80.9	2.6	67	0.9
126.62 - 132.1	Vqtz M	Discontinuous quartz veining with pyrite and chlorite. veins are more uniformly oriented near 128.70 m, along foliation dtca 60.	A0862846	124.5	126.0	1.5	4.1	0.2	63.7	3.2	157	0.25
		mild hydrofracturing is associated with the veins.	A0862847	126.0	127.5	1.5	5.4	0.2	82.2	2.5	190	1
134.68 - 137.9	Vcc M	calcite veins present on fractured surfaces of core, likely from low coherence of calcite. dtca = 35. minor hydrofracturing of wall	A0862848	127.5	129.0	1.5	2.8	0.1	56.2	4	133	0.25
		rockproximal to calcite veins, clasts are angular and up to 1.5 cm in width.	A0862849	129.0	130.5	1.5	3.4	0.1	53.6	3.4	131	0.25
			A0862851	130.5	132.0	1.5	4	0.2	167.7	1.3	104	0.25
			A0862852	132.0	133.5	1.5	1.8	0.1	109.4	1.1	132	0.6
			A0862853	133.5	135.0	1.5	2.6	0.1	79.7	1.5	104	0.25
			A0862854	135.0	136.5	1.5	3.3	0.05	62.3	1.6	100	0.6
			A0862855	136.5	138.0	1.5	4.1	0.05	62.5	2.6	168	0.25
			A0862856	138.0	139.5	1.5	4	0.1	93.6	2.1	196	0.6
			A0862857	139.5	141.0	1.5	3.5	0.1	73	2.8	123	0.25
			A0862858	141.0	142.0	1	3.9	0.1	93.4	2	184	0.25
			A0862859	142.0	143.0	1	4	0.1	85.1	1.4	176	0.5

Project: Galena Ridge Hole Number: GR-20-02

Oriented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
4.22	Fol	55				
4.76	G	35				fractured core surface that may approximate fault angle
9.37	Fol	60				
16.08	Fol	50				
21.53	Fol	65				
24.4	G	75	180			orientation of a fractured surface of a quartz/calcite vein system that contacts gouge. Was unable to confirm the accuracy of the orientation mark, thus this measurement is uncertain to a degree.
35.73	Vcc	70	30			epidote and calcite vein, mm scale width.
56.77	Vqtz	75				quartz vein, 4 mm wide, follows the structure of the calcareous metasedimentary unit.
59.15	С	75	100			contact between "beds" of metasediments unit.
69.66	Fol	60				
71.24	Vcc	70				several calcite and epidote mm scale veinlets
73.8	F	50	35			surface of a fracture along a quartz vein breccia
75.84	Vqtz	65				thin (mm) translucent quartz veins with minor pyrite along the edges and mm scale pyrite veins
76.86	G	45				fracture with gouge
80.88	Fol	40	55			
85.6	Vqtz	35	60			veins up to 5 mm wide, variable dip, discontinuous, contain minor pyrite along grain boundaries.
89.1	Fol	50				foliation appears co-planar to breccia quartz veining
95.12	G	40				potentially area of maximum displacement in shear zone, measured surface is a fracture which contacts gouge.
97.9	F	35	340			fractured surface which is parallel to the foliation
103.87	Fol	50	170			
106.98	Fol	35	355			
121.9	Fol	55	350			
83.38	Flt	40	235			slicken lines visible
128.69	Vqtz	60				few quartz veins up to 1 cm thick, devoid of sulfides, contains micrograins of chlorite throughout the vein.
130.89	Fol	25				
140.26	Fol	30	210			
141.14	VN	55	230			epidote and calcite vein with minor pyrite mineralisatoin disseminated throughout the vein. pyrite grains are up to 1 mm in diameter and are euhedral to subhedral. the vein is up to 0.8 cm wide

Project:	Galena F	Ridge				Hole Number: GR-20-02
1	36	F		35		fratured surface of calcite vein, mm scale width
Geotech						
Fro	om	То	Recovery	Recovery %	Comments	
2.	31	5	2.69	100	broken/rubble	
	5	8	2.81	93.67	very broken	
	8	11	3	100	very broken	
	11	14	3	100	broken	
	14	17	3.24	108	broken	
	17	20	2.98	99.33	broken	
	20	23	2.95	98.33		
	23	26	2.98	99.33	broken	
	26	29	3	100		
	29	32	3	100		
	32	35	2.84	94.67	broken	
	35	38	2.98	99.33		
	38	41	3.11	103.67	very broken	
	41	44	2.42	80.67	very broken, rubble	
	44	47	2.26	75.33	very broken, rubble	
	47	50	2.97	99	very broken	
	50	53	1.61	53.67	very broken, rubble	
	53	56	2.24	74.67	very broken, rubble	
	56	59	3.11	103.67	broken	
	59	62	2.8	93.33	broken	
	62	65	2.84	94.67	broken	
	65	68	2.79	93	very broken	
	68	71	2.88	96	broken	
	71	74	2.79	93	verybroken	
	74	77	2.88	96	verybroken	
	77	80	2.52	84	broken/rubble	
	80	83	3.1	103.33		
	83	86	3	100		
	86	89	2.25	75	verybroken/rubble	

Ν Ο	0 1				
oject:	Galena Rid	ge			Hole Number: GR-20-02
8	39 9	2 2.41	80.33	broken/rubble	
9	92 9	5 2.81	93.67	broken	
9	95 9	8 3.06	102	very broken	
9	98 10	1 2.89	96.33	broken	
10	01 10	4 3.1	103.33		
10	04 10	7 2.84	94.67	very broken	
10	07 11	0 3	100	broken	
11	10 11	3 3.05	101.67	very broken	
11	13 11	6 2.96	98.67		
11	16 11	9 2.88	96	broken/rubble	
11	19 12	2 2.68	89.33	broken/rubble	
12	22 12	5 2.95	98.33	very broken	
12	25 12	8 3	100	broken	
12	28 13	1 2.74	91.33	very broken	
13	31 13	4 3.12	104	broken	
13	34 13	7 2.9	96.67	broken	
13	37 14	0 3.1	103.33	broken	
14	40 14	3 2.96	98.67		

	t: Gale	ena Ridge								Hole N	lumber	: GR-2	0-03		
			Drill Hole			Drilling					Colla	ar Surve	э у		
Hole type DD Hole size: HQ		DD	Core location:	Doc Camp	Drilling started Aug-28-2020			Grid: NAD83 / UTM zone				ne 9N			
		HQ	Claim number:		Drilling completed	Aug-31-2020		Easting:		410,442					
Act	ual depth:		Logged by:	Grant	Drilling contractor	: Dorado			Nor	thing:	6	5,243,51	4		
Tar	get:								Ele	vation:	1	,498			
Surve	у														
	Depth	Survey Type	Mag Azimuth	Azimuth	Dip	Sur	rvey Qual	ity							
	0	Collar	25	25	-45										
	14	Reflex Hanstone	5.5	23.5	-46.4										
	67	Reflex Hanstone	8.3	26.3	-46.2										
	116	Reflex Hanstone	10	28	-46										
	149	Reflex Hanstone	11.5	29.5	-46.2										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (nnm)	Pb (ppm)	Zn (nnm)	As (ppm
3.11	149.4					A0862860	12.43	13.59	1.16	36.1	0.3		2.5	93	
Dark g	reen to gre	ey, moderate to well for	oliated, aphanitic, green	schist grade metamorphosed r gnetic in isolated points, likely t	mafic volcanics.	A0862861	28.0	28.5	0.5	39.2	0.1	52.1	1.1	62	0.2
Dark g The ur sulfide	reen to gre nit is very w mineraliza	ey, moderate to well for reakly magnetic every tion occurs as pyrite	oliated, aphanitic, green ywhere and strongly ma and pyrrhotite dissemina	gnetic in isolated points, likely tated throughout the unit in trace	from magnetite. e amounts.	A0862861 A0862862	28.0 28.5	28.5 28.68	0.5 0.18	39.2 170.8	0.1 0.4	52.1 264.5	1.1 2.3	62 68	0.2
Dark g The ur sulfide Pyrite They a	reen to grenit is very we mineraliza and pyrrho are mostly a	ey, moderate to well for reakly magnetic every tion occurs as pyrite tite are concentrated associated with calcite	oliated, aphanitic, green ywhere and strongly man and pyrrhotite dissemina in hairline fractures whe e veins. Chalcopyrite oc	gnetic in isolated points, likely that ated throughout the unit in tractured regrain sizes can reach mms curs as single coarse grains us	from magnetite. e amounts. in diameter. sually associated	A0862861 A0862862 A0862863	28.0 28.5 28.75	28.5 28.68 29.45	0.5 0.18 0.7	39.2 170.8 0.7	0.1 0.4 0.05	52.1 264.5 5.4	1.1 2.3 1.4	62 68 49	0.2 1. 0.2
Dark g The ur sulfide Pyrite They a	reen to gre nit is very w mineraliza and pyrrho are mostly a rrite or pyrr	ey, moderate to well for reakly magnetic every tion occurs as pyrite tite are concentrated associated with calcite	oliated, aphanitic, green ywhere and strongly man and pyrrhotite dissemina in hairline fractures whe e veins. Chalcopyrite oc	gnetic in isolated points, likely f ated throughout the unit in trac are grain sizes can reach mms	from magnetite. e amounts. in diameter. sually associated	A0862861 A0862862 A0862863 A0862864	28.0 28.5 28.75 29.45	28.5 28.68 29.45 30.0	0.5 0.18 0.7 0.55	39.2 170.8 0.7 312.7	0.1 0.4 0.05 0.3	52.1 264.5 5.4 53.9	1.1 2.3 1.4 3.8	62 68 49 65	0.25 1.8 0.25 0.25
Dark g The ur sulfide Pyrite They a with py orienta	reen to gre nit is very w mineraliza and pyrrho are mostly a rrite or pyrr ation.	ey, moderate to well for yeakly magnetic every tion occurs as pyrite tite are concentrated associated with calcite thotite. At 136.9 to 13	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemina in hairline fractures whe e veins. Chalcopyrite oc 17.02, a moderate, 0.1 to	gnetic in isolated points, likely to ated throughout the unit in trace are grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs	from magnetite. e amounts. in diameter. sually associated with no clear	A0862861 A0862862 A0862863 A0862864 A0862865	28.0 28.5 28.75 29.45 30.0	28.5 28.68 29.45 30.0 30.5	0.5 0.18 0.7 0.55 0.5	39.2 170.8 0.7 312.7 59.5	0.1 0.4 0.05 0.3 0.2	52.1 264.5 5.4 53.9 69.5	1.1 2.3 1.4 3.8 1.9	62 68 49 65 75	0.25 1.5 0.25 0.25 0.25
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach	mineraliza and pyrrho are mostly a rrite or pyrration.	ey, moderate to well for reakly magnetic every atton occurs as pyrite tite are concentrated associated with calcitrated. At 136.9 to 13 pervasive chloralterated with quartz veins	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemina in hairline fractures where veins. Chalcopyrite oc 7.02, a moderate, 0.1 to tion for the entire lenth.	gnetic in isolated points, likely to ated throughout the unit in tracture grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs. There are local zones of mode, pyrite, epidote and chlorite ve	from magnetite. e amounts. in diameter. sually associated with no clear rate to strong eins typically	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866	28.0 28.5 28.75 29.45 30.0 38.52	28.5 28.68 29.45 30.0 30.5 38.76	0.5 0.18 0.7 0.55 0.5	39.2 170.8 0.7 312.7 59.5 3.9	0.1 0.4 0.05 0.3 0.2 0.1	52.1 264.5 5.4 53.9 69.5 133.6	1.1 2.3 1.4 3.8 1.9	62 68 49 65 75	0.25 1.6 0.25 0.25 0.25
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach follow m quai	reen to gre nit is very w mineraliza and pyrrho are mostly a vrite or pyrr ation. nit exhibits ing associa foliation, st rtz veining	ey, moderate to well for reakly magnetic every attion occurs as pyrite tite are concentrated associated with calcite thotite. At 136.9 to 13 pervasive chloralterated with quartz veins ockwork veins are co with potential k-spar of the reakly to the spar of th	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemina in hairline fractures where veins. Chalcopyrite oction, a moderate, 0.1 to tion for the entire lenth. S. Parallel quartz, calcite ommon. Garnet appears component appears and	gnetic in isolated points, likely to ated throughout the unit in trace tre grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs.	from magnetite. e amounts. in diameter. sually associated with no clear rate to strong eins typically n. From 71 to 73	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866 A0862867	28.0 28.5 28.75 29.45 30.0 38.52 39.08	28.5 28.68 29.45 30.0 30.5 38.76 39.35	0.5 0.18 0.7 0.55 0.5 0.24	39.2 170.8 0.7 312.7 59.5 3.9 7.3	0.1 0.4 0.05 0.3 0.2 0.1	52.1 264.5 5.4 53.9 69.5 133.6 165.7	1.1 2.3 1.4 3.8 1.9 1.1 0.4	62 68 49 65 75 67 54	0.24 0.24 0.25 0.25
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach follow: m qual From 9	mineraliza and pyrrho are mostly a rite or pyrration. hit exhibits ing associa foliation, st rtz veining 96.3 to 128	ey, moderate to well for reakly magnetic every atton occurs as pyrite tite are concentrated associated with calcitrated. At 136.9 to 13 pervasive chloralterated with quartz veins ockwork veins are co with potential k-spar of 34 mod to strong silicated.	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemination hairline fractures where veins. Chalcopyrite oc. 17.02, a moderate, 0.1 to tion for the entire lenth. It is. Parallel quartz, calcite ommon. Garnet appears component appears and cification.	gnetic in isolated points, likely to ated throughout the unit in trace tre grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs. There are local zones of mode, pyrite, epidote and chlorite vein epidote/calcite veins at 46 m I reappears at shorter intervals.	e amounts. in diameter. sually associated with no clear rate to strong sins typically n. From 71 to 73 down hole.	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866 A0862867 A0862868	28.0 28.5 28.75 29.45 30.0 38.52 39.08 42.53	28.5 28.68 29.45 30.0 30.5 38.76 39.35 42.87	0.5 0.18 0.7 0.55 0.5 0.24 0.27	39.2 170.8 0.7 312.7 59.5 3.9 7.3 42.6	0.1 0.4 0.05 0.3 0.2 0.1 0.1	52.1 264.5 5.4 53.9 69.5 133.6 165.7 201.9	1.1 2.3 1.4 3.8 1.9 1.1 0.4 1.4	62 68 49 65 75 67 54 43	0.29 1.6 0.29 0.29 0.29
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach follow: m quai From §	mineraliza mineraliza	ey, moderate to well for reakly magnetic every atton occurs as pyrite tite are concentrated associated with calcitrated. At 136.9 to 13 pervasive chloralterated with quartz veins ockwork veins are co with potential k-spar of 34 mod to strong silicated.	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemination hairline fractures where veins. Chalcopyrite octrolog, a moderate, 0.1 to tion for the entire lenth. S. Parallel quartz, calcite mmon. Garnet appears component appears and cification.	gnetic in isolated points, likely thated throughout the unit in tracture grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs. There are local zones of modelly, pyrite, epidote and chlorite vein epidote/calcite veins at 46 m	e amounts. in diameter. sually associated with no clear rate to strong sins typically n. From 71 to 73 down hole.	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866 A0862867	28.0 28.5 28.75 29.45 30.0 38.52 39.08	28.5 28.68 29.45 30.0 30.5 38.76 39.35	0.5 0.18 0.7 0.55 0.5 0.24	39.2 170.8 0.7 312.7 59.5 3.9 7.3	0.1 0.4 0.05 0.3 0.2 0.1 0.1 0.2 0.2	52.1 264.5 5.4 53.9 69.5 133.6 165.7	1.1 2.3 1.4 3.8 1.9 1.1 0.4	62 68 49 65 75 67 54	0.29 0.29 0.29 0.10 0.29
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach follow m qual From 8 loss in	mineraliza mineraliza	ey, moderate to well for reakly magnetic every attention occurs as pyrite title are concentrated associated with calcitrated. At 136.9 to 13 pervasive chloralterated with quartz veins ockwork veins are cowith potential k-spar and to strong silic the core becomes rule ong these intervals of	oliated, aphanitic, green ywhere and strongly may and pyrrhotite disseminatin hairline fractures where veins. Chalcopyrite octor.02, a moderate, 0.1 to tion for the entire lenth. S. Parallel quartz, calcite mmon. Garnet appears component appears and cification. bbly and broken with street in the street appears and cification.	gnetic in isolated points, likely to ated throughout the unit in trace tre grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs. There are local zones of mode, pyrite, epidote and chlorite vein epidote/calcite veins at 46 m I reappears at shorter intervals.	e amounts. in diameter. sually associated with no clear rate to strong sins typically n. From 71 to 73 down hole.	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866 A0862867 A0862868 A0862869	28.0 28.5 28.75 29.45 30.0 38.52 39.08 42.53 59.0	28.5 28.68 29.45 30.0 30.5 38.76 39.35 42.87 59.26	0.5 0.18 0.7 0.55 0.5 0.24 0.27 0.34 0.26	39.2 170.8 0.7 312.7 59.5 3.9 7.3 42.6 2.4	0.1 0.4 0.05 0.3 0.2 0.1 0.1 0.2 0.2	52.1 264.5 5.4 53.9 69.5 133.6 165.7 201.9	1.1 2.3 1.4 3.8 1.9 1.1 0.4 1.4	62 68 49 65 75 67 54 43	0.25 0.25 0.25 0.25 0.25 0.25
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach follow m qual From 5 loss in Minor	mineraliza and pyrrho are mostly a yrite or pyrration. hit exhibits ing associa foliation, st rtz veining 96.3 to 128 56 to 72 m creases alo	ey, moderate to well for reakly magnetic every attion occurs as pyrite tite are concentrated associated with calcite thotite. At 136.9 to 13 pervasive chloralterated with quartz veins ockwork veins are co with potential k-spar of 34 mod to strong silicate the core becomes rule ong these intervals of Type/Description	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemina in hairline fractures where veins. Chalcopyrite octor.02, a moderate, 0.1 to tion for the entire lenth. S. Parallel quartz, calcite ammon. Garnet appears component appears and cification. bbly and broken with street of rubble. Comments White calcare	gnetic in isolated points, likely to ated throughout the unit in trace tre grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs. There are local zones of mode, pyrite, epidote and chlorite vein epidote/calcite veins at 46 m are reappears at shorter intervals ong oxidization along fractured ous metasedimentary unit, pos	e amounts. in diameter. sually associated with no clear rate to strong sins typically n. From 71 to 73 down hole. I surfaces. Core	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866 A0862867 A0862868 A0862869 A0862870	28.0 28.5 28.75 29.45 30.0 38.52 39.08 42.53 59.0 79.48	28.5 28.68 29.45 30.0 30.5 38.76 39.35 42.87 59.26 79.68	0.5 0.18 0.7 0.55 0.5 0.24 0.27 0.34 0.26 0.2	39.2 170.8 0.7 312.7 59.5 3.9 7.3 42.6 2.4 32.6	0.1 0.4 0.05 0.3 0.2 0.1 0.1 0.2 0.2 0.2	52.1 264.5 5.4 53.9 69.5 133.6 165.7 201.9 16.2 677.2	1.1 2.3 1.4 3.8 1.9 1.1 0.4 1.4 4 0.4	62 68 49 65 75 67 54 43 80 49	0.29 0.29 0.29 0.29 0.02 1.0 0.21
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach follow m qual From 5 loss in Minor	mineraliza mineraliza	ey, moderate to well for reakly magnetic every attention occurs as pyrite title are concentrated associated with calcitrated. At 136.9 to 13 pervasive chloralterated with quartz veins ockwork veins are cowith potential k-spar and to strong silic the core becomes rule ong these intervals of	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemina in hairline fractures whe e veins. Chalcopyrite oc 7.02, a moderate, 0.1 to tion for the entire lenth. s. Parallel quartz, calcite ommon. Garnet appears component appears and cification. bbly and broken with strof f rubble. Comments White calcaree the 99% CaCt quartz and cal	gnetic in isolated points, likely to ated throughout the unit in tracter grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs. There are local zones of mode, pyrite, epidote and chlorite vein epidote/calcite veins at 46 m or reappears at shorter intervals cong oxidization along fractured pus metasedimentary unit, pos 23 content. Mildy deformed. Cocite stringers with minor pyrite	e amounts. in diameter. sually associated with no clear rate to strong eins typically n. From 71 to 73 down hole. I surfaces. Core	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866 A0862867 A0862868 A0862869 A0862870 A0862871	28.0 28.5 28.75 29.45 30.0 38.52 39.08 42.53 59.0 79.48 96.18	28.5 28.68 29.45 30.0 30.5 38.76 39.35 42.87 59.26 79.68 97.18	0.5 0.18 0.7 0.55 0.5 0.24 0.27 0.34 0.26 0.2	39.2 170.8 0.7 312.7 59.5 3.9 7.3 42.6 2.4 32.6 0.7	0.1 0.4 0.05 0.3 0.2 0.1 0.1 0.2 0.2 0.2 0.2	52.1 264.5 5.4 53.9 69.5 133.6 165.7 201.9 16.2 677.2	1.1 2.3 1.4 3.8 1.9 1.1 0.4 1.4 4 0.4	62 68 49 65 75 67 54 43 80 49	0.29 1.6 0.29 0.29 0.4 0.29 1.7 0.29
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach follow: m quai From 5 loss in Minor	reen to gre nit is very w mineraliza and pyrrho are mostly a rite or pyrr ation. hit exhibits ling associa foliation, st rtz veining 26.3 to 128 56 to 72 m creases alo Lithology - 140.92	ey, moderate to well for reakly magnetic every atton occurs as pyrite title are concentrated associated with calcitrated thotite. At 136.9 to 13 pervasive chloralterated with quartz veins ockwork veins are cowith potential k-spar of 34 mod to strong silicate the core becomes rule ong these intervals of the core becomes rule ong the core of the core becomes rule ong the core of the	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemina in hairline fractures where veins. Chalcopyrite oc 17.02, a moderate, 0.1 to tion for the entire lenth. S. Parallel quartz, calcite ommon. Garnet appears component appears and cification. bbly and broken with street of the street of t	gnetic in isolated points, likely to ated throughout the unit in tracter grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs. There are local zones of mode, pyrite, epidote and chlorite vein epidote/calcite veins at 46 m or reappears at shorter intervals cong oxidization along fractured pus metasedimentary unit, pos 23 content. Mildy deformed. Cocite stringers with minor pyrite	e amounts. in diameter. sually associated with no clear rate to strong eins typically n. From 71 to 73 down hole. I surfaces. Core	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866 A0862867 A0862868 A0862870 A0862871 A0862872	28.0 28.5 28.75 29.45 30.0 38.52 39.08 42.53 59.0 79.48 96.18 97.18	28.5 28.68 29.45 30.0 30.5 38.76 39.35 42.87 59.26 79.68 97.18 98.18	0.5 0.18 0.7 0.55 0.5 0.24 0.27 0.34 0.26 0.2 1	39.2 170.8 0.7 312.7 59.5 3.9 7.3 42.6 2.4 32.6 0.7	0.1 0.4 0.05 0.3 0.2 0.1 0.1 0.2 0.2 0.2 0.05 0.05	52.1 264.5 5.4 53.9 69.5 133.6 165.7 201.9 16.2 677.2 6.1 4.1	1.1 2.3 1.4 3.8 1.9 1.1 0.4 1.4 4 0.4 1.2	62 68 49 65 75 67 54 43 80 49 13	0.25 0.25 0.25 0.25 0.25 0.25 1.4 0.25 1.7 3 9.8
Dark g The ur sulfide Pyrite: They a with py orienta The ur bleach follow m qual From 5 loss in Minor	reen to gre nit is very w mineraliza and pyrrho are mostly a rite or pyrr ation. hit exhibits ling associa foliation, st rtz veining 26.3 to 128 56 to 72 m creases alo Lithology - 140.92	ey, moderate to well for reakly magnetic every stion occurs as pyrite tite are concentrated associated with calcitrated. At 136.9 to 13 pervasive chloralterated with quartz veins ockwork veins are cowith potential k-spar of 34 mod to strong silicate the core becomes rule tong these intervals of the CS Calcareous	oliated, aphanitic, green ywhere and strongly may and pyrrhotite dissemina in hairline fractures where eveins. Chalcopyrite octors, 202, a moderate, 0.1 to tion for the entire lenth. It is. Parallel quartz, calcite tommon. Garnet appears component appears and cification. bbly and broken with strong rubble. Comments White calcaree the 99% CaCo quartz and cal Lower contacts.	gnetic in isolated points, likely to ated throughout the unit in tracter grain sizes can reach mms curs as single coarse grains us 0.5 cm pyrrhotite vein occurs. There are local zones of mode, pyrite, epidote and chlorite vein epidote/calcite veins at 46 m or reappears at shorter intervals cong oxidization along fractured pus metasedimentary unit, pos 23 content. Mildy deformed. Cocite stringers with minor pyrite	e amounts. in diameter. sually associated with no clear rate to strong eins typically n. From 71 to 73 down hole. I surfaces. Core sibly marble due to ontains concordant mineralization.	A0862861 A0862862 A0862863 A0862864 A0862865 A0862866 A0862867 A0862868 A0862870 A0862871 A0862872 A0862873	28.0 28.5 28.75 29.45 30.0 38.52 39.08 42.53 59.0 79.48 96.18 97.18	28.5 28.68 29.45 30.0 30.5 38.76 39.35 42.87 59.26 79.68 97.18 98.18	0.5 0.18 0.7 0.55 0.5 0.24 0.27 0.34 0.26 0.2 1 1	39.2 170.8 0.7 312.7 59.5 3.9 7.3 42.6 2.4 32.6 0.7 0.25 0.6	0.1 0.4 0.05 0.3 0.2 0.1 0.2 0.2 0.2 0.05 0.05 0.05	52.1 264.5 5.4 53.9 69.5 133.6 165.7 201.9 16.2 677.2 6.1 4.1 36.3	1.1 2.3 1.4 3.8 1.9 1.1 0.4 1.4 4 0.4 1.2 1.5	62 68 49 65 75 67 54 43 80 49 13 19	0.25 1.8 0.25 0.25 0.25 0.25 1.4 0.25 1.7 3 9.8

Drill Log Report Page 1 of 8 Dec-03-2021

Project: Gale	ena Ridge					Hole I	Number	: GR-2	0-03		
From To	Lithology		Sample	From To	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
12.98 - 13.19	BI Pv S	strong pervasive bleaching associated with quartz veining. defines the foliation.	A0862877	100.75 101.75	1	4	0.05	33.9	2.4	30	2.1
27.83 - 29.8	BI FV S	strong pervasive bleaching associated with quartz and chlorite	A0862878	101.75 102.75	1	1	0.1	55.6	6.2	32	7.8
		veins	A0862879	102.75 103.75	1	1.3	0.2	89.8	1.5	28	1.9
44.18 - 44.68	BI FV M	bleaching associated with quartz veins and minor silicification	A0862880	103.75 104.75	1	1.1	0.05	46.1	1.7	21	1.4
47.45 - 47.75	BI FV M	Bleaching caused by calcite, chlorite and epidote vein system.	A0862881	104.75 105.75	1	1.3	0.05	18.8	1.2	18	4.3
61.45 - 65.15	Carb Pv M	pervasive carbonitization throughout folded interval, strong chlorite and mod epidote alteration in the MV unit. The vein exhibits K-spar	A0862882	105.75 106.75	1	0.7	0.05	21.2	1.1	24	2.7
		alteration. Mild sericite alteration is present along entire interval.	A0862883	106.75 107.75	1	1.2	0.2	40.2	1.2	18	3.4
67.88 - 74.94	Chl FV S	Strong chlorite alteration associated with Quartz veins. The veins have mild K-spar alteration and sericitization.	A0862884	107.75 108.75	1	1.2	0.05	41.8	2.7	18	2.6
95.18 - 96.18	BI FV M	Moderate bleaching caused by calcite veining	A0862885	108.75 109.75	1	1.6	0.05	21.5	1.6	19	1.1
		moderate to strong silicification of MV, and garnet(?)	A0862886	109.75 110.75	1	1.1	0.05	19.4	1.4	16	1.8
96.18 - 128.34	Si Pv M	mineralization within the unit giving the core a deep red/purple colour in places.	A0862887	110.75 111.75	1	1.3	0.05	14.7	1.2	20	2.3
124.24 - 133.36	BI FV M	Bleaching associated likely with quartz veins.	A0862888	111.75 112.75	1	2	0.05	17.5	1.8	18	2.2
124.24 - 133.36	DI FV IVI	bleaching associated likely with quality verific.	A0862889	112.75 113.75	1	3	0.05	20.6	1.8	23	2.6
Mineralization	Type/Style/%Mineral	Comments	A0862891	113.75 114.75	1	2.8	0.2	22.7	7.1	25	5.1
3.11 - 47.0	Py FR 50%	Pyrite occurs primarily in calcite stringers and veinlets throughout the unit. Veins are up to a few mms thick and spaced ~1 m apart.	A0862892	114.75 115.75	1	0.9	0.05	26	1.2	20	0.8
		Blebby pyrite occurs next to veins in the wall rock.	A0862893	115.75 116.75	1	4.2	0.1	60.9	2.2	38	1.1
3.11 - 47.0	Py D 0.1%	pyrite occurs disseminated throughout the unit in trace amounts	A0862894	116.75 117.75	1	0.8	0.05	25.3	1.3	32	1.6
12.7 - 13.18	SUL FR 1%	Hematite occurring as grains up to 1 mm wide in calcite/quartz	A0862895	117.75 118.75	1	1	0.05	41	1.5	24	0.8
		veins, also present in healed fractures as fine grains which run parallel to foliation (dtca 45). pyrite occurs in greater abundance, up to 1% disseminated. Core edges are oxidized.	A0862896	118.75 119.75	1	1.6	0.05	61.2	1.8	28	1.3
29.34 - 29.55	Py FR 5%	Blebby pyrite occuring within calcite vein dtca 35. 5% pyrite with	A0862897	119.75 120.75	1	2	0.1	68	1.5	24	1.9
20.01 20.00	. ,	anhedral to euhedral grains <1 mm. the vein is wavy but follows the foliation well.	A0862898	120.75 121.75	1	1	0.05	40.6	1.1	26	1.5
34.6 - 34.61	Ccp FR 1%	single grain of chalcopyrite 3 mm wide on fractured core surface. highly oxidized.	A0862899	121.75 122.75	1	1.4	0.05	44.3	1.2	39	1.3
20.54 20.75	Dv. ED 159/	euhedral pyrite crystals hosted in a 1.5 cm wide calcite vein	A0862900	122.75 123.75	1	0.6	0.05	22.7	1	49	0.8
38.51 - 38.75	Py FR 15%	euneural pyrite crystals hosted in a 1.5 cm wide calcite vein	A0862901	123.75 124.81	1.06	0.6	0.1	69.8	1.3	31	1
40.5 - 47.0	Py D 2%	pyrite disseminated in greater abundance, up to 2%.	A0862902	124.81 125.75	0.94	1.1	0.3	72.6	23.7	35	10.7
42.74 - 42.78	Py FR 80%	Calcite vein hosting pyrite, about 1 cm wide	A0862903	125.75 127.75	2	1.2	0.1	26.1	8.3	23	7
46.4 - 46.41	Ccp FR 1%	1% Cpy in calcite vein up to 0.5 cm wide, 25 DTCA.	A0862904	127.75 128.34	0.59	2.6	0.05	19.8	3.7	21	0.8
40.4 - 40.41	ССР ГК 1/6	Pyrite is hosted primarily in calcite stringer veins where blebs and	A0862905	136.85 137.23	0.38	55.4	0.1	71.8	4	15	8.4
47.0 - 96.18	Py FR 10%	visible euhedral crystals occur. Pyritiferous veins are less common	A0867564	137.37 137.75	0.38	7.6	0.2	55.7	3.5	21	1.2
	D D 0.101	in this interval than the last, spaced about 1 m.	A0867565	137.75 138.0	0.25	11.7	0.3	62.2	3.5	36	5.7
47.0 - 96.3	Py D 0.1%	Trace pyrite disseminated throughout MV	A0867566	138.0 138.96	0.96	2.8	0.2	21.4	2.9	39	3.2
			A0867567	138.96 139.88	0.92	4.1	0.1	20.9	1.7	6	4.3

Project: Gale	ena Ridge						Hole I	Number	: GR-2	0-03		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
51.0 - 51.41	Py P 1%	Pyrite which occurs disseminated in greater abundance and in patches within strong chlorite altered mafic volcanics and within calcite-epidote veins.	A0867568	139.88	140.3	0.42	1.6	0.05	29.2	0.7	2	
51.41 - 65.12	Py FR 0.1%	Sparse pyrite mineralization throughout heavily deformed quartz vein interval.										
59.0 - 59.1	Py FR 25%	Pyrite occuring in calcite veins with strong chlorite alteration of mafic volcanics along the edges.										
71.1 - 74.92	Py FR 1%	minor pyrite mineralization throughout deformed 1 cm wide quartz veins.										
79.55 - 79.58	Ccp FR 1%	Uncertain identification of chalcopyrite within pyrite dominated calcite-epidote vein										
84.55 - 84.95	Py FR 2%	Fine pyrite grains present within calcite stringers in heavily fractured interval.										
96.3 - 115.5	Po FR 1%	Pyrrhotite becomes the dominant sulfide with minor pyrite. Occurs within quartz and calcite veins as fine grains typically bunched together.										
99.32 - 99.48	Po FR 1%	Fine pyrrhotite within quartz vein.										
99.57 - 99.77	Ccp FR 1%	Minor chalcopyrite with pyrrhotite hosted in calcite vein. The vein is 2 cm wide with DTCA 35.										
107.85 - 118.3	Po FR 5%	Patches of pyrrhotite appearing on oxidized fractured core surfaces, likely from calcite veins which created a plane of weakness.										
108.58 - 108.59	Ccp FR 1%	mm wide chalcopyrite grain contacting pyrrhotite and hosted I calcite stringer.										
115.5 - 136.9	Py FR 1%	Pyrite becomes more common than pyrrhotite, mineralization is controlled by calcite and quartz veins.										
136.9 - 137.02	Po FR 99%	Pyrrhotite vein that ranges from 0.1 to 1.5 cm in width, has erratic geometry and is associated with quartz, see photograph. Grains are anhedral and range up to 3 mm wide.										
137.02 - 138.9	Py D 0.1%	Disseminated pyrite in trace amounts.										
138.9 - 142.38	Py FR 1%	Pyrite occuring only in veinlets of calcite.										
142.38 - 149.48	Py D 0.1%	Pyrite disseminated throughout the MV unit in trace amounts										
142.38 - 149.48	Py FR 1%	Pyrite occuring mainly in calcite stringers in minor amounts.										
Structure	Type/Intensity	Comments										
3.11 - 8.97	Bc S	rubbly core with 7 pieces greater than 10 cm long.										
15.0 - 27.4	VN M	epidote veining with association with quartz and calcite, mostly parallel to foliation. veins range from <1 mm to several cms.										
22.05 - 26.8	Vqtz M	translucent quartz veins mostly parallel to foliation and not associated with sulfides, range from mm to cm scale.										
29.51 - 29.53	She S	Early stage shear zone with strong chlorite mineralization, calcite veins that show early stage of boudinage, possible k-spar and sericite component.										
29.53 - 34.3	Vqtz M	stockwork to parallel calcite veins with chlorite comprising up to 50% of the veins.										

Project: Gal	ena Ridge			Hole Number: GR-20-03											
From To	Litholog	gy		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)		
34.3 - 47.0	Vcc W		stockwork to parallel calcite veins up to 1 cm thick.												
46.25 - 96.22	VN W		mm to cm scale calcite-epidote veins with garnet? and intermittent pyrite mineralization. Spaced apart at 0.5 m intervals. Range from parallel to foliation to cross cutting foliation. Some show brecciation of mafic volcanics with clasts up to 0.5 cm across												
47.0 - 96.22	Vcc W		Many calcite stringers parallel to foliation throughout most of the unit, some pyritiferous.												
61.45 - 65.15	Fld S		Folding of pre-existing quartz veins and mafic volcanics. Core is rubbly with fragments averaging 7 cm across.												
67.88 - 74.92	Fld S		Folding of pre-existing quartz veins and mafic volcanics. Core is very rubbly with fragments averaging 5 cm across. Tightly folded with axial plane DTCA 30. Quartz veins are cms across.												
84.55 - 84.95	F M		Fractured mafic volcanics from calcite stringer veining.												
94.0 - 98.85	Bc M		Rubble to broken core, fragments are mostly less than 10 cm in length.												
98.85 - 109.3	Vqtz M		Translucent quartz veins become more abundant. Up to 1 cm wide and spaced \sim 0.5 m apart. Mostly follow foliation. Potential source for strong silicification												
107.85 - 128.0	Vcc M		Calcite stringers that mostly run parallel to foliation with some discordant to foliation. mm scale width and spaced out about a few cms.												
108.66 - 108.95	Vcc S		$5\ \mbox{cm}$ WIDE calcite vein with 5% chloride grains oriented along the plane of the vein. dtca of 20. no sulfides :(
110.43 - 112.0	Bc S		Core strongly broken and rubbly, oxidized fracture surfaces. Fragments are less than 10 cm across.												
112.51 - 112.92	Vcc S		$2.5\ \mbox{cm}$ wide calcite vein with 10% chlorite. dtca of 10. trace pyrite.												
119.5 - 122.9	Vqtz M		Translucent quartz veins which mostly follow foliation, spaced about 0.5 m apart and 0.5 cm wide. associated with pyrite and pyrrhotite mineralization.												
124.3 - 128.5	Bc S		Core strongly broken and rubbly, few pieces greater than 10 cm wide.												
127.5 - 127.75	Vcc M		7cm wide calcite vein, dtca 55. Contains quartz and chlorite with trace pyrite mineralization.												
128.0 - 132.36	STK M		Hydraulic fracturing and brecciation caused by predominantly calcite veins with a minor component of quartz veins.												
129.0 - 131.2	Bc S		Core strongly broken with "lost recovery".												
132.36 - 138.9	Vcc M		Calcite veins concordant to foliation with few stockwork sections. mm to cm scale. some veins exhibit brecciation and some are mildly deformed/folded.												
140.92 - 143.3	Vcc M		Calcite veining and brecciation of MV unit in a mild stockwork fashion. Veins may be associated with the calcareous metasediment unit.												
143.3 - 145.8	Vcc M		Abundant calcite stringers mostly oriented parallel to foliation, mm scale width												
145.8 - 149.48	Fld W		Weak folding of calcite veins that have mm scale width. folds are inclined, isoclinal to tight, dtca of 40 at 145.9 for a limb which may also represent the axial plane, and dtca of 25 of foliation at 146.75	· 											

Project: Galena Ridge Hole Number: GR-20-03

Oriented Point	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
7.8	Fol	30				quartz and pyrite veins run parallel to foliation in this location.
7.85	Flt	40				fault offsetting a quartz vein by 8 mm.
13.23	Fol	45				
13.54	Vqtz	50				quartz vein up to 1 cm wide, contains no pyrite. cross cuts pyritiferous calcite veinlets.
15.14	VN	25				pyrite and calcite vein up to 2 mm wide
15.92	VN	30				predominately quartz, epidote and chlorite wth minor amounts of calcite and pyrite. Vein system is concentrated in 8 cm true width.
21.23	Fol	35				
24.1	Vcc	35				calcite and epidote vein, 2 cm wide
25.25	Fol	40				
29.24	F	25	144			fractured core surface of a calcite quartz vein.
29.4	Vcc	35				Calcite vein with blebby pyrite
34.1	Fol	37	104			
34.25	Vcc	55	340			Calcite vein with blebs of pyrite up to 2 mm wide, pyrite
44.4	Vqtz	30				Quartz and calcite vein up to 0.5 cm wide
46.9	Fol	40	100			
47.35	Vqtz	27	100			Quartz vein 2 mm wide, parallel to foliation
49.8	Fol	30	150			Calcite/pyrite stringers are present running along foliation.
51.48	Vcc	40				calcite and epidote veins to 0.5 cm wide
58.36	Fol	40				
61.65	Vqtz	30	135			Quartz veins deformed along MV unit. Possible measurement of axial plane of fold.
65.86	Fol	40				MV foliation
72.75	Vqtz	30				Series of subparallel quartz veins with minor pyrite occuring along then center and edges of vein. Up to 1.5 cm thick.
80	Vcc	25	144			Calcite vein 2 mm wide parallel to foliation, trace pyrite along the center. Several veins parallel in 10 cm.
81.15	Fol	40	135			MV foliation
88.3	Fol	25				Mv foliation
100	VN	30				Quartz/calcite veinlet system 4.5 cm true width. Individual veinlets are mms wide. Trace fine pyrite grains along veins.
101.55	F	35	140			Fractured surface of core, parallel to quartz veins. Veins are up to 4 mm wide, and contain trace pyrrhotite.

ject: G	Galena Ridge				Hole Number: GR-20-03
108.75	Vcc		20		5.5 cm wide calcite vein with 5% of trace sulfides unidentifiable with h
109.63	Vcc		60	51	3 mm wide calcite vein with minor mineralization, several calcite vein with same orientation and mineral
109.68	Fol		23	135	MV foliation
112.8	С		10	137	contact with either a calcite vein o metasediments, the vein is 2 cm v chlorite.
118.45	Fol		8	158	MV foliation
122.2	Vqtz		25	146	Mildy folded quartz veins up to 1 of foliation
126.5	Fol		25		MV foliation
131.9	Vqtz		50		Quartz veins 1 cm wide, fractured calcite stringers.
137.1	Fol		60	260	MV foliation
140.9	Lc		30	162	lower contact of calcareous sedim
142.65	Fol		40	158	MV foliation, many veins which ru foliation.
145.9	Fld		40	148	Folded calcite veins, isoclinal to ti measurement of a limb but can be axial plane.
146.75	Fol		25	167	Foliation with parallel calcite veins a smaller degree from previous m
					145.9 m.
otech					
otech From	То	Recovery	Recovery %	Comments	
	To 5	Recovery	Recovery %	Comments Rubble	
From	5	•	-		
From 3.11	5 8	1.89	100	Rubble	
From 3.11	5 8	1.89	100 63.33	Rubble Rubble	
From 3.11 5 8	5 8 11 14	1.89 1.9 2.32	100 63.33 77.33	Rubble Rubble Very broken/rubble	
From 3.11 5 8	5 8 11 14 17	1.89 1.9 2.32 2.69	100 63.33 77.33 89.67	Rubble Rubble Very broken/rubble Broken	
From 3.11 5 8 11 14	5 8 11 14 17 20	1.89 1.9 2.32 2.69 3.08	100 63.33 77.33 89.67 102.67	Rubble Rubble Very broken/rubble Broken	
From 3.11 5 8 11 14 17 20	5 8 11 14 17 20 23	1.89 1.9 2.32 2.69 3.08 3 2.75	100 63.33 77.33 89.67 102.67 100 91.67	Rubble Rubble Very broken/rubble Broken Broken/rubble	
From 3.11 5 8 11 14 17 20 23	5 8 11 14 17 20 23 26	1.89 1.9 2.32 2.69 3.08 3 2.75 2.88	100 63.33 77.33 89.67 102.67 100 91.67 96	Rubble Rubble Very broken/rubble Broken Broken/rubble Broken Broken	
From 3.11 5 8 11 14 17 20 23 26	5 8 11 14 17 20 23 26 29	1.89 1.9 2.32 2.69 3.08 3 2.75 2.88 2.94	100 63.33 77.33 89.67 102.67 100 91.67 96	Rubble Rubble Very broken/rubble Broken Broken/rubble Broken Broken Broken Broken	
From 3.11 5 8 11 14 17 20 23 26 29	5 8 11 14 17 20 23 26 29 32	1.89 1.9 2.32 2.69 3.08 3 2.75 2.88 2.94 2.67	100 63.33 77.33 89.67 102.67 100 91.67 96 98	Rubble Rubble Very broken/rubble Broken Broken/rubble Broken Broken Broken Broken Broken Broken	
From 3.11 5 8 11 14 17 20 23 26 29 32	5 8 11 14 17 20 23 26 29 32 35	1.89 1.9 2.32 2.69 3.08 3 2.75 2.88 2.94 2.67 1.37	100 63.33 77.33 89.67 102.67 100 91.67 96 98 89	Rubble Rubble Very broken/rubble Broken Broken/rubble Broken Broken Broken Broken Broken Loss	
From 3.11 5 8 11 14 17 20 23 26 29 32 35	5 8 11 14 17 20 23 26 29 32 35 38	1.89 1.9 2.32 2.69 3.08 3 2.75 2.88 2.94 2.67 1.37 3.12	100 63.33 77.33 89.67 102.67 100 91.67 96 98 89 45.67	Rubble Rubble Very broken/rubble Broken Broken/rubble Broken Broken Broken Broken Broken Broken Broken Broken	
From 3.11 5 8 11 14 17 20 23 26 29 32	5 8 11 14 17 20 23 26 29 32 35	1.89 1.9 2.32 2.69 3.08 3 2.75 2.88 2.94 2.67 1.37	100 63.33 77.33 89.67 102.67 100 91.67 96 98 89	Rubble Rubble Very broken/rubble Broken Broken/rubble Broken Broken Broken Broken Broken Loss	

Project:	Galena I	Ridge				Hole Number: GR-20-03
	44	47	2.85	95	Broken/rubble	
	47	50	3.06	102	Broken	
	50	53	2.78	92.67	Broken/rubble	
	53	56	2.98	99.33	Broken/rubble	
	56	59	2.86	95.33	Very broken	
	59	62	3	100	Broken	
	62	65	2.49	83	Very broken/rubble	
	65	68	2.82	94	Broken/rubble	
	68	71	2.47	82.33	Rubble	
	71	74	2.99	99.67	Broken/rubble	
	74	77	2.87	95.67	Broken	
	77	80	3.03	101		
	80	83	2.75	91.67	Hit void	
	83	86	2.95	98.33	Broken/rubble	
	86	89	2.93	97.67		
	89	92	2.97	99		
	92	95	2.76	92		
	95	98	2.78	92.67	Broken/rubble	
	98	101	2.95	98.33	Broken	
	01	104	2.59	86.33	Broken/rubble	
	04	107	2.93	97.67		
	07	110	3	100	Broken/rubble	
	10	113	2.52	84	Broken/rubble	
	13	116	2.87	95.67	Broken	
	16	119	3	100	Broken	
	19	122		105.33		
	22	125	2.96	98.67	Broken	
	25	128	1.74	58	Broken	
	28	131	2.21	73.67	Lost recovery/rubble	
	31	134		100.67	Broken	
	34	137	2.64	88	Broken/rubble	
	37	140	2.56	85.33	Very broken/rubble	
1	40	143	2.99	99.67	Broken	

Project: Gale	ena Ridge			Hole Number: GR-20-03
143	146	2.96	98.67	
146	149	3	100	

G R	O U	P													
Projec	t: Gale	na Ridge								Hole N	Number	: GR-2	0-04		
			Drill Hole			Drilling					Colla	ar Surve	∍y		
Hole	e type	DD	Core location:		Drilling started	Sep-01-20)20		Gri	d:	1	NAD83 /	UTM zo	ne 9N	
Hole	e size:	HQ	Claim number:		Drilling complete	d: Sep-03-20)20		Eas	sting:	4	110,156			
Act	ual depth:		Logged by:		Drilling contracto	r: Dorado			Nor	rthing:	6	6,243,71	1		
Tar	get:								Ele	vation:	1	,501			
Surve	/								·						
1	Depth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qual	ity							
	0	Collar	217	217	-45										
	11	Reflex Hanstone	193.7	211.7	-45.2										
	65	Reflex Hanstone	194.5	212.5	-45.6										
	102	Reflex Hanstone	193.8	211.8	-46.1										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm
0	3	CAS - Casing								(1-1-7	(I-I-)	W F /	W F /	(11 /	(I-1-
		•													
3	105.2	5 MV - Mafic Volcar	nic			A0862906	11.31	12.18	0.87	3.2	0.2	116.7	2.4	41	0.5
		y greenschist metamor	rphosed mafic volcanics. Ap	hanitic with moderately to	o well defined	A0862907	12.18	13.18	1	3.6	0.1	41.9	4	72	0.25
foliation						A0862908	13.18	13.54	0.36	15.4	0.3	72.8	8.2	51	2.2
calcite	and quartz	veining. Mild intermitte	chloritization with some section ent silicification throughout u	nit. Strong oxidization ne	ear fault from 37	A0862909	13.54	14.41	0.87	49.7	0.4	51.9	11.4	147	0.0
to 47 m I	n. The core	has spotty magnetism	from magnetite grains. Seri	cite present from 77 to 8	3 m.	A0862910	14.41	15.41	1	3.4	0.2	72.8	4.7	112	0.2
			pyrite and minor chalcopyrite unit occurs primarily in string			A0862911	15.41	15.67	0.26	265.4	1.7	49.6	11.1	143	1.
pyrrhot	ite. Few ve	inlets with fine magnet	tite grains. Second quartz ve e presence, pyrrhotite is pres	in at 40.75 to 41.75 m sl	nows intense	A0862912	15.67	16.09	0.42	1204.1	12.2	291.8	490.8	238	0.7
ŭ	•	G			(coloito voining	A0862913	16.09	17.0	0.91	101.1	0.6	94.6	209.5	185	0.2
contain	ning minor p	pyrrhotite and pyrite mi	gouge occurrences appears ineralization. A second majo	r shear zone appears at	the end of the	A0862914	17.0	18.0	1	34.6	0.1	66.5	3.3	34	0.2
hole wi	th several	occurrences of gouge,	mineralization of pyrite is re	latively strong adjacent to	o this fault.	A0862915	18.0	19.0	1	1.7	0.05	52	2.2	50	0.2
Minor	Lithology	Type/Description	Comments			A0862916	19.0	19.51	0.51	5.4	0.2	81.2	6.1	39	4.
3.0 - 8.	0	CS Calcareous		of calcareous meta-sed Possibly a marble. DTC		A0862917	19.51	20.26	0.75	39.7	0.1	27.9	4.8	46	10.1
		Metasediment	thin stringers of pyrr	hotite.		A0862918	20.26	21.24	0.98	94.2	0.2	62.3	4	77	8.6
16.09 -	16.62	CS Calcareous		of calcareous meta-sed possibly a marble. Cont		A0862919	21.24	22.17	0.93	65.1	0.1	24.5	1.8	70	3.3
		Metasediment		ngers and and a stringer		A0862920	33.39	34.39	1	1.6	0.05	91.2	1.6	78	3
Alterat	tion	Type/Style/Intensity	y Comments			A0862921	34.39	35.39	1	2.8	0.05	71.3	2.1	53	1.6
3.0 - 10	01.5	Chl Pv M		teration throughout the e ssive in around quartz a		A0862922	35.39	36.39	1	4.8	0.05	37	4.3	69	2.7
	-		ssive in around quartz a	no calcite vellis likely	A0862923	36.39	37.39	1	2.8	0.05	33.9	3.2	85	2.8	

Project: Gale	ena Ridge							Hole N	Number	: GR-2	0-04		
From To	Lithology			Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
12.16 - 21.26	BI FV M	Bleaching throughout in and calcite veins	nterval caused by and proximal to quartz	A0862924	37.39	38.29	0.9	5.5	0.2	72.6	1.7	96	4.4
3.0 - 54.71	Si Pv W		afic volcanics throughout the entire interval.	A0862925	38.29	39.0	0.71	17.2	0.3	31.5	6.6	66	12.8
		5 1 11 6 11 1 1		A0862926	39.0	40.0	1	17.3	0.3	153.8	2.6	53	1.4
34.8 - 49.0	BI FV W	Bleaching of wall rock the	G .	A0862927	40.0	40.65	0.65	57.1	0.4	109.9	2.1	44	1.6
15.07 - 21.09	Rs FV M	Fractured surfaces of co the core.	ore are oxidized, as well as fractures within	A0862928	40.65	41.0	0.35	14.6	0.2	34.3	3.8	35	5.1
36.8 - 40.75	Rs FV S	Strong oxidization along shear zone.	g veins and fractures throughout portion of	A0862929	41.0	41.65	0.65	12.7	0.05	11.6	4.5	17	0.6
40.75 - 41.75	Rs Pv S	Strong oxidization of qu	artz vein. moderate chloritization also	A0862931	41.65	42.65	1	13.1	0.05	22.7	4.6	45	1.9
		present. Could be rustin	ng of sulfides. mafic volcanics likely related to	A0862932	44.0	45.0	1	22.8	0.05	24.2	3.2	38	1
56.0 - 59.0	BI FV M	quartz/calcite stringers/	veinlets.	A0862933	45.0	46.0	1	1.9	0.2	32.9	2.3	42	0.8
56.0 - 96.36	Si P M	Moderate silicification w moderate.	which varies in intensity from mild to	A0862934	46.0	47.0	1	2.3	0.05	85.9	2.1	41	0.9
68.43 - 68.74	BI FV M		sociated with calcite veining with magnetite	A0862935	47.0	48.0	1	1.8	0.1	87.9	2.1	44	0.5
		and pyrite mineralization Quartz replacement of the	n. host rock through means of metasomatism	A0862936	48.0	48.25	0.25	1.6	0.05	58	2.9	35	0.7
77.0 - 83.0	Si FV S	from fracture fluid flow.	Foliation of original rock is retained, or Iteration. Fine sericite grains at 2%	A0862937	48.25	49.26	1.01	0.25	0.05	8.2	1.3	35	0.25
			to foliation also present.	A0862938	49.26	50.0	0.74	0.25	0.05	1.2	0.8	23	0.25
90.5 - 101.5	BI FV S	Strong bleaching assoc	siated with faultIng and quartz veining.	A0862939	50.0	50.46	0.46	0.6	0.05	20.9	1.6	39	0.8
54.71 - 75.4	Rs FV W	Weak rusting along frac	ctured surfaces of core.	A0862940	68.37	68.5	0.13	2.8	0.05	26.1	1	28	0.7
			y associated with calcite veining. Strong	A0862941	75.67	75.86	0.19	0.7	0.05	39.8	0.5	24	2
90.26 - 96.66	BI FV S		ent. alteration front visible.	A0862942	89.26	90.26	1	1.9	0.05	50	1.9	36	2.3
Mineralization	Type/Style/%l	Mineral Comments		A0862943	90.26	91.26	1	0.25	0.05	28.2	2.1	23	0.25
3.0 - 15.4	Po S 10%		ccuring primarily as pyrrhotite with lesser and quartz stringers up to 10%	A0862944	92.26	92.58	0.32	6.2	0.2	21.8	8.4	94	0.8
45.4.45.55	D. ED 40	Abundant pyrrhotite stri	ngers present in altered wallrock adjacent	A0862945	92.58	93.58	1	6.3	0.3	43.8	4	45	0.25
15.4 - 15.55	Po FR 10	to the 0.5 m wide quartz		A0862946	93.58	95.58	2	3	0.2	50.3	4.7	47	0.6
15.55 - 16.05	Py FR 1%	mineralized along fractu	tz vein, pyrite is the dominant sulfide which ures(?) oriented DTCA 70. The vein may	A0862947	95.58	96.2	0.62	7.1	3.7	137.6	535	160	1.5
		have a DTCA of 45, wh of core.	ich is a measurement of a fractured edge	A0862948	96.2	96.48	0.28	3.5	0.4	23.1	47.5	31	2.5
16.04 - 16.05	Ccp FR 1	% Few grains ~1 mm acro	oss	A0862949	96.48	97.48	1	0.25	0.05	22	2.9	37	1.3
	<u>'</u>			A0862950	97.48	98.48	1	0.25	0.05	5.7	1.7	18	1.2
16.04 - 16.05	Gn FR 19	•		A0867501	98.48	99.48	1	0.25	0.05	12.1	1.3	18	1.8
16.09 - 16.62	Po S 1%	Stringers of pyrrhotite d meta-sediments at	listributed throughout the calcareous	A0867502	99.48	100.48	1	0.8	0.05	6.1	1.2	14	1.6
16.36 - 16.37	Gn S 5%	Single stringer of galena	a	A0867503	100.48	101.0	0.52	1.7	0.05	12.9	1.2	14	8.0
16.62 21.55	Po D 1%		ed throughout the interval unevenly it is	A0867504	101.0	101.5	0.5	0.25	0.4	17.8	0.9	19	8.1
16.62 - 21.55	FU D 1%		te and quartz veins and in fractures. allel to foliation occur at irregular intervals	A0867505	91.26	92.26	1	2.5	0.1	21.5	17.6	60	0.9
21.55 - 29.55	Po S 5%	ranging from 0.1 to 1 m		A0867506	101.5	104.0	2.5	1.2	0.2	23.1	8.0	21	1.8

Project: Gal	ena Ridge						Hole N	Number	: GR-2	0-04		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
29.55 - 29.82	Mag FR 2.5%	Very fine magnetite grains distributed within a calcite vein with Dtca of 40. The vain is up to 1.5 cm wide.	A0867507	104.0	104.7	0.7	2.2	0.1	48.8	2.3	14	1
29.82 - 33.1	Po S 5%	Pyrrhotite stringers parallel to foliation occur at irregular intervals ranging from 0.1 to 1 m.	A0867508	104.7	105.25	0.55	1.6	0.1	37	1.1	15	0.5
33.1 - 33.24	Po FR 1%	Pyrrhotite mineralization in fractures with chlorite, moderate oxidization occured around the fractures.										
33.24 - 47.47	Po FR 1%	Fine pyrrhotite grains that appear disseminated in rock but are concentrated around fractures.										
50.0 - 50.35	Mag FR 1%	Fine grainedmagnetite occuring with pyrrhotite in similar abundance in quartz veins with irregular geometry, and up to 0.5 cm width.										
50.35 - 53.5	Po D 0.1%	Pyrrhotite disseminated in very trace quantities.										
53.5 - 61.3	Po FR 2%	Pyrrhotite is disseminated in rock proximal to calcite veinlets, few coarse grains within calcite veinlets themselves.										
22.27 - 22.28	Mag Tr 10%	Fine magnetite with <1 mm wide elongate crystals within a calcite veinlet.										
40.75 - 41.75	Po FR 1%	Pyrrhotite mineralization in the quartz vein, intense rusting may be of sulfides.										
61.3 - 66.33	Po S 1%	Stringers of Pyrrhotite that follow foliation, sparse density.										
66.33 - 66.43	Po D 0.1%	Disseminated pyrite aligned to foliation.										
66.33 - 66.43	Mag D 30%	Fine magnetite disseminated and aligned with foliation.										
66.43 - 69.43	Po D 1%	Pyrrhotite disseminated in mafic volcanics, fine grained and aligned with foliation. Up to 1% Po.										
68.43 - 69.3	Mag FR 5%	Magnetite closely associated with chlorite and concentrated near a calcite vein, DTCA of 50. Very fine grained and moderately magnetic, suggesting a small concentration of the mineral.										
68.43 - 69.3	Po FR 10%	Pyrrhotite concentrated in and adjacent to calcite veins, DTCA of 50. 10% Po within the veins.										
69.3 - 75.51	Po Tr 0.1%	Trace pyrrhotite present disseminated in the rock with small concentrations appearing in calcite veinlets/stringers										
75.51 - 76.55	Po FR 2%	Pyrrhotite Concentrated in stockwork stringers/veinlets										
76.55 - 84.51	Po FR 1%	Pyrrhotite occuring in stringers/veinlets and fractured surfaces of core.										
84.52 - 86.22	Py FR 5%	5% pyrite along stringers following foliation with DTCA of 55										
86.22 - 88.95	Py D 0.1%	Trace pyrite disseminated throughout mafic volcanics.										
88.95 - 90.9	Py FR 80%	Pyrite occuring in calcite veinlets and disseminated throughout the rock. 2% disseminated and 80% pyritiferous veinlets/stringers.										
92.26 - 96.26	Py FR 10%	Pyrite and pyrrhotite occuring in calcite veinlets and along with magnetite and chlorite. Makes up 10% of the minerals within the veins. Also occurs disseminated in the ro I near the veins.										
90.9 - 92.26	Py FR 0.1%	Pyrite occuring in veinlets/stringers in trace amounts.										

Sample

From

Hole Number: GR-20-04

To Length

Au Ag Cu Pb Zn As (ppb) (ppm) (ppm) (ppm) (ppm) (ppm)

Project: Gale	ena Ridge	
From To	Lithology	
92.26 - 96.66	Mag FR 10%	Magnetite up to 10% within calcite veins. Very fine grains.
96.66 - 105.25	Py FR 0.1%	Trace pyrite occuring in veinlets.
Structure	Type/Intensity	Comments
3.0 - 10.0	Bc S	Very broken core and rubbly core. Few fragments greater than 10 cm long.
15.55 - 16.05	Vqtz In	50 cm wide quartz vein with Po, Py, Gn, and Cpy mineralization. Fractured core surface DTCA of 45 and pyrite stringers and fractures with DTCA of 70.
3.0 - 54.71	VL M	Abundant calcite stringers that are parallel and non parallel to foliation. There are several veins per 10 cm of core. Few of them host sulfides.
3.0 - 54.71	Vqtz W	Sparse quartz veinlets up to 1 cm thick, few of which host sulfides. Spaced out 10s to 100s of cms.
37.74 - 38.31	She M	Low grade mylonite indicative of shearing. DTCA of 40 for foliation
38.31 - 38.33	G S	Fine grained gouge with angular clasts up to 0.5 cm across.
38.33 - 40.7	She M	Mylonite, within a shear zone.
40.7 - 40.75	G S	Fine grained gouge with angular clasts.
40.74 - 41.75	VN S	Quartz vein with intense rusting suggesting strong previous iron sulfide mineralization. Gouge is present within the vein.
44.5 - 44.9	Bc S	Strongly fragmented core likely from the shear zone. Mylonite texture visible on fragments.
44.9 - 45.1	G M	Coarse grained gouge with angular clasts up to 1 cm wide.
45.1 - 46.5	Bc S	Strongly fragmented core likely from the shear zone. Mylonite texture visible on fragments.
47.47 - 48.0	Bc S	Rubbly core likely form weakened rocks from shearing. Fragments ts are about 3 cm wide.
48.0 - 48.05	G S	Fine grained gouge with clasts up to 3 mm wide.
48.05 - 50.0	Bc W	Weakly broken core with rubble sections. Few pieces greater than 10 cm long. Likely the end of the shear zone.
50.0 - 51.7	Vqtz W	Quartz veins following foliation with strong proximal silicification causing blurred edges of the veins. mm scale width.
51.7 - 56.66	VL M	Calcite stringers with mm scale width and several occuring within 10 cm of core.
56.66 - 56.89	VN M	Calcite vein which caused alteration. Follows foliation at DTCA 55. Width of veins are likely no greater than 1 cm, boundaries are poorly defined.
60.0 - 60.5	VN S	Calcite and epidote veins up to 6 cm wide. DTCA 50. At least 2 veins exist over this interval.
59.0 - 88.0	VL W	Epidote stringers in a stockwork pattern.

Project: Gale	na Ridg	e						Hole I	Number	: GR-2	0-04		
From To	Lith	nology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
68.43 - 68.74	VN	S	Calcite veining which cause strong bleaching and magnetite and pyrrhotite mineralization over the interval.										
52.52 - 56.5	Вс	S	Rubbly core, pieces rarely exceed 10 cm.										
57.0 - 59.43	Вс	In	Rubbly core, void.										
60.5 - 66.0	Вс	In	Rubbly core, fragments are subrounded. possibly indicative of a shear zone.										
62.3 - 64.0	She	In	Fine to coarse angular to subrounded clasts likely cause by brittle shearing, gouge could not be located.										
66.7 - 68.43	Вс	S	Rubbly core, no pieces over 10 cm long.										
69.1 - 69.11	G I	М	Thin segment of gouge, fine grained with angular clasts.										
68.74 - 101.5	VL	М	Calcite stringers with mm scale width and several occuring within 10 cm of core. Few contain sulfide mineralization.										
69.11 - 72.75	Вс	S	Broken core, no pieces greater than 10 cm.										
77.31 - 84.52	Вс	М	Very broken core and rubbly, few pieces greater than 10 cm.										
80.95 - 81.22	Vqtz	М	Quartz vein with cm scale width which caused strong alteration of wall rock in the form of silicification.										
87.46 - 90.5	Вс	S	Rubbly core, few pieces greater than 10 cm long.										
90.9 - 91.51	ВХ	W	Weak brecciation of rock caused by stockwork calcite veining. Clasts are no greater than 1 cm wide.										
91.51 - 91.75	G S	S	Coarse grained gouge, angular clasts.										
91.75 - 96.66	VL	S	Calcite veinlets causing alteration (chlorite and bleaching) and mineralization of magnetite and pyrite.										
96.3 - 96.46	G I	n	light grey gouge with clay to coarse clasts, angular. 1 cm wide dark grey pure clay layer in the center, DTCA of 35.										
96.85 - 96.95	G S	S	light grey gouge with clay to coarse clasts, angular.										
96.3 - 105.25	She	In	Rubble, fragments from brittle shearing, clasts are cms in diameter. some sections of coarse to fine grained angular clasts and gouge.										
101.2 - 104.7	G I	M	Gouge with clast size ranging from clay to coarse grained, angular. Grey in coarser material and light grey in finer material.										
104.7 - 105.03	Вс	S	Rubble, sub angular clasts										
105.03 - 105.25	G S	S	Clay gouge.										

Galena Ridge Hole Number: GR-20-04 Project: **Oriented Point Structure** Depth Alpha Angle Strike Dip Comment Structure **Beta Angle** Fol 7.79 70 Calcareous metasedimentary unit foliation 15.75 F 45 Fractured surface of core of quartz vein 15.8 VL 70 Orientation of pyrite veinlets within guartz vein. Barren quartz vein 1 cm across, discordant to 60 47 21.34 Vqtz foliation. 21.47 VL 60 100 Pyrite stringers parallel to foliation. 25.84 Fol 20 119 MV foliation Calcite vein 1.5 cm across with minor magnetite 40 29.63 Vcc Fol 35 Foliaiton in fault zone, parallel to fractured surfaces. 35.44 162 Fractured surface within fault zone, parallel to 38.22 F 40 foliation. Calcite vein up to 3 cm wide, may exhibit vuggy vein texture. Parallel to foliation 41.55 Vcc 50 51.85 Fol 30 MV foliation. 58.85 Fol 55 Uncertain measurement of foliation. 59.92 Fol 55 Certain measurement of foliaiton. 60.5 VN 50 Epidote vein >10 cm wide. 66.4 Fol 60 Foliation 68.7 Fol 50 81.1 VL40 Calcite stringers 75.79 Fol 65 Fractured surface of core which was likely from a pre 88.2 F 25 existing epidote vein. 85.25 VL 55 Pyrite stringers that are parallel ot foliation. VL 50 95.45 Pyrite stringer parallel to foliation. 96.3 G 35 Measurement of fault gouge. Geotech To Recovery % Comments From Recovery Rubble 3 5 1.36 68 8 85 5 2.55 Very broken/rubble 85.67 8 11 2.57 Very broken 11 14 2.98 99.33 17 2.83 94.33 14 Broken

Project:	Galena	Ridge			Hole Number: GR-20-04
	17	20	2.95	98.33	Broken
	20	23	2.85	95	
	23	26	23.02	767.33	
	26	29	2.96	98.67	
	29	32	2.89	96.33	Broken
	32	35	2.76	92	Broken/rubble
	35	38	2.75	91.67	Very broken, shear zone
	38	41	2.14	71.33	Very broken, gouge
	41	44	1.63	54.33	Rubbly, shear zone
	44	47	1.92	64	Rubblem shear zone
	47	50	2.41	80.33	Very broken/rubble
	50	53	2.73	91	Very broken
	53	56	1.95	65	Broken/rubble
	56	59	1.21	40.33	Rubble, void
	59	62	2.58	86	Rubble
	62	65	1.76	58.67	Rubble
	65	68	2.4	80	Rubble
	68	71	2.39	79.67	Rubble
	71	74	2.72	90.67	Very broken/rubble
	74	77	2.89	96.33	Very broken/rubble
	77	80	2.41	80.33	Rubble
	80	83	2.35	78.33	Rubble
	83	86	2.85	95	Very broken
	86	89	2.63	87.67	Very broken/rubble
	89	92	2.64	88	Broken/rubble
	92	95	1.5	50	Very broken
	95	98	3.2	106.67	Half broken, half rubble
	98	101	1.35	45	Rubble
	01	104	0.6	20	Gouge
1	04 1	05.25	1.25	100	Gouge

R Project:	O U Gale	na Ridge								Hole I	Number	: GR-2	20-05		
			Drill Hole			Drilling					Coll	ar Surv	еу		
Hole	type	DD	Core location:		Drilling started	Sep-03-20	20		Gri	d:	ı	NAD83/	UTM zo	ne 9N	
Hole	size:	HQ	Claim number:		Drilling completed	l: Sep-04-20	20		Eas	sting:	4	110,156			
Actu	al depth:		Logged by:		Drilling contractor	r:			Noi	rthing:	(5,243,71	11		
Targe	et:								Ele	vation:		,501			
Survey															
D	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qual	ity							
	0	Collar	217	217	-70										
	14	Reflex Hanstone	190	208	-68.8										
	86	Reflex Hanstone	188.9	206.9	-69										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)		Zn (ppm)	As (ppm
0	0.87	CAS - Casing													
).87	88	MV - Mafic Volcan	ic			A0867509	23.0	23.47	0.47						
		y greenschist metamorp	phosed mafic volcanics. A	phanitic with poorly to mo	derately defined	A0867510	23.47	23.7	0.23						
oliation.		,				A0867511	23.7	24.3	0.6						
alcite a	ınd quartz	veining. Mild intermitte	nloritization with some sec int silicification throughout	unit.The core has spotty r		A0867512	24.3	24.96	0.66						
Ū	Ü		gly around quartz and calc			A0867513	24.96	25.44	0.48						
			yrite and minor chalcopyri 10.50 m with minor galena			A0867514	11.0	11.2	0.2	3.2	0.3	200.3	1.1	68	0.
olebs ar	e present	within a quartz vein. Mi	ineralization throughout the Pyrite is also disseminated	e rest of the unit occurs p	rimarily in	A0867515	40.05	40.34	0.29	4.4	0.3	102.4	9.4	137	0.
ssociat	ed with st	ringer occurrences. 2 q	uartz veins appear at 62.4	2 m and 67.35 m, with py	rite and k-spar.	A0867516	40.59	41.0	0.41	2.2	0.3	136.7	4	119	0.
			th small zones of shearing rite and moderate magneti		er shear zone	A0867517	62.73	62.93	0.2	412.1	2.1	582.9	1.1	93	0.2
ippears	110111 09.0		nte and moderate magneti	te mineralization.		A0867518	40.34	40.59	0.25	182.3	2.5	394.6	260.1	97	0.
Minor L	ithology	Type/Description	Comments			A0867519	56.82	57.82	1	20.2	0.2	96.7	2	100	0.
).87 - 2.	96	CS Calcareous		neta-sediments, possibly ains stringers of pyrite with		A0867520	57.82	58.82	1	4	0.1	42.4	1.7	83	0.2
		Metasediment		3		A0867521	58.82	59.2	0.38	5.4	0.1	113.9	2.1	104	0.2
Alteratio	on	Type/Style/Intensity	Comments			A0867522	59.2	59.75	0.55	181.9	1	43.9	3.6	78	1.
.87 - 87	7.5	Si Pv W	Weak to moderate throughout section.	silicification that varies sli	ghtly in intensity	A0867523	63.08	63.34	0.26	0.25	0.2	71.1	8	82	0.2
.87 - 87	7 5	Chl Pv M	Moderate chloritiza	tion throughout entire uni		A0867524	63.34	63.68	0.34	0.25	0.05	28.5	3.9	11	0.2
				ed with local strong chlorit		A0867525	63.68	64.8	1.12	4	0.2	95.3	1.5	102	0.2
5.85 - 8.	0	BI FV M	·	g controlled by veins of ca	·	A0867526	66.93	67.26	0.33	1.8	0.05	45.5	1.7	95	0.25
15.72 - 1	15.97	BI FV M	Bleaching caused I mineralization.	by calcite stringers, assoc	iated with pyrite	A0867527	67.26	67.84	0.58	2.8	0.05	23.7	2.8	28	0.9

Project: Gale	ena Ridge							Hole I	Number	: GR-2	0-05		
From To	Lithology	y		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
22.6 - 25.83	BI FV	M	Moderate bleaching cause by quartz vein.	A0867528	67.84	68.07	0.23	1.7	0.05	20.4	1.5	135	0.25
40.0 - 41.0	BI FV	W	Milf bleaching caused by quartz vein.	A0867529	69.08	70.0	0.92	4	0.2	96.4	1.1	70	0.25
			<u> </u>	A0867531	70.0	71.0	1	4.5	1.1	118.5	1.6	90	0.25
40.33 - 40.42	Rs FV	M	Moderate rusting associated with the quartz vein.	A0867532	71.0	72.0	1	4.2	0.6	81.7	1.8	89	0.25
23.78 - 24.25	Rs FV	S	Strong rusting of rock on the edges of quartz vein, suggesting alteration of iron sulfides.	A0867533	72.0	73.0	1	64.7	0.6	252.3	17.1	80	1
24.69 - 24.82	Rs FV	S	Strong rusting cause by stringers of calcite	A0867534	73.0	74.0	1	110.5	0.8	461.6	13.5	60	2.5
53,26 - 56.0	BI FV	W	Weak bleaching cause by calcite stringers.	A0867535	74.0	75.0	1	17.8	0.4	265.9	5.3	51	1.3
55.26 - 56.0		VV	Bleaching all throughout the shear zone. Ranging from moderate	A0867536	75.0	76.0	1	1.1	0.2	106.4	3.1	32	0.9
72.42 - 87.5	BI FV	M	to high.	A0867537	76.0	77.0	1	2.4	0.05	6.9	1.9	20	0.25
69.08 - 80.0	Si FV	М	Eyes of quartz aligned to foliation. mm scale width. up to 20% proportion of the rock.	A0867538	77.0	78.0	1	1.6	0.05	2.3	1.6	24	0.6
79.4 - 80.0	Chl Pv	S	Chloritization of rock causing a stronger green colour than the	A0867539	78.0	79.0	1	2.3	0.05	4.4	1.2	17	0.25
73.4 - 00.0			surrounding rock.	A0867540	79.0	80.0	1	6.5	0.05	83	1.7	36	0.5
Mineralization	Type/Style	/%Mineral	Comments	A0867541	80.0	80.71	0.71	3	0.05	19.5	2.4	20	0.25
0.87 - 2.96	Py FR	1%	Pyrite stringers comprising 1% of the calcareous meta-sediments The pyrite grains create an appearance of fuzzy dark grey bands	A0867542	82.24	83.0	0.76	1.9	0.05	23.2	1.9	9	0.25
			in the rock.	A0867543	83.0	83.71	0.71	2.6	0.05	21.6	1.5	21	0.6
2.96 - 9.0	Po FR	1%	Pyrrhotite occuring in hairline fractures and stringers. Po makes u 1% of the whole rock in sections strongly affected by stringers and veinlets.	AU867544	83.71	84.42	0.71	4.3	0.05	23.5	1.4	22	0.7
9.0 - 15.77	Py D ´	1%	Up to 1% disseminated in the rock, grains of pyrite follow foliation	A0867545	84.42	86.0	1.58	3.4	0.05	10.6	1.3	16	0.25
11.14 - 11.15	Ccp FR	1%	and occur in areas with a greater density of calcite stringers Single chalcopyrite grain about 1 mm across hosted in a calcite	A0867546 A0867547	86.0 86.37	86.37 86.83	0.37 0.46	2.9	0.05	11.6 24.2	1.6 1.6	15 28	1.1 0.25
11.14 - 11.13	ОСР ТК	1 70	veinlet. associated with pyrite. 5% pyrite disseminated throughout rock, parallel to foliation,	A0867548	86.83	87.5	0.67	1.8	0.05	9.3	1.0	14	0.25
15.77 - 16.8	Py FR	5%	associated with calcite stringers. Fine grains, subhedral to euhedral.	7,0007040	00.00	07.0	0.07	1.0	0.00	0.0			0.20
15.77 - 16.8	SUL FR	0.1%	Small concentration of very fine grained hematite occuring with th pyrite in calcite veinlets/stringers.	e									
23.86 - 24.1	Ccp FR	0.1%	Few concentrated coarse grains of chalcopyrite closely associate with pyrite and galena. Ocurrs in "fractures" aligned with the orientation of the vein.										
23.86 - 24.1	Gn FR	0.1%	Fine to coarse grains of galena focused along the edges of the vein within fractures.										
23.86 - 24.1	Py FR	0.1%	Coarse grains of pyrite concentrated along the edges of the vein, occurs with galena and chalcopyrite.										
16.8 - 23.86	Py FR	1%	1% pyrite occuring primarily in calcite stringers and areas that have been calcified. Fine grains that are aligned to foliation.										
24.1 - 38.0	Py FR	0.1%	Pyrite occuring in association with quartz and calcite veinlets as groups of grains within veins and stringers.										
38.0 - 40.43	Py FR	1%	Relatively higher percentage of pyrite hosted in stringers parallel foliation. up to 1% of the host rock.	0									
40.43 - 40.5	Py FR	5%	Very coarse grains of subhedral pyrite occuring in a quartz vein u to 3.5 cm wide. Distributed mostly along the margins.)									

Pb Zn As (ppm) (ppm)

Project: Gal	lena Ridge						Hole	Numbe	r: GR-:	20-05
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)
40.5 - 40.58	Py D 2%	Fine grains of pyrite disseminated throughout the alteration halo caused by the quartz vein. 2%.								
40.58 - 61.59	Py Tr 0.1%	Trace pyrite occuring in stringer and veinlets.								
61.59 - 62.7	Py FR 1%	Pyrite occuring in veinlets and stringers I higher abundance than previous interval.								
62.7 - 62.94	Ccp FR 1%	blebby chalcopyrite occuring in an irregularly shaped calcite vein. Pyrite occuring in the vein as fine grains in fractures.								
40.43 - 40.5	Gn FR 0.1%	2 very fine grains of galena occuring in a fracture within the quartz vein.								
62.42 - 62.68	Py FR 1%	Coarse pyrite grains occuring in hairline fractures with chlorite that run discordant to the vein and appear in the wall rock as well. the vein has DTCA of 60. Finer pyrite grains occur disseminated throughout the vein at <1%.								
67.35 - 67.84	Py FR 1%	Pyritedisseminated as euhedral grains throughout the vein, <1%.								
63.08 - 72.45	Py Tr 0.1%	Trace pyrite disseminated throughout the rock.								
72.45 - 80.71	Py FR 50%	Up to 50% pyrite occuring in calcite veins along with magnetite and chlorite. Veins are up to 3 cm wide, at least 7 veins occur along this interval.								
72.45 - 80.0	Mag FR 40%	Up to 40% magentie within calcite veins, occuring with pyrite and chlorite.								
80.71 - 87.5	Py FR 1%	Pyrite occuring in stringers of chlorite and calcite. Appears on fractured surfaces as well.								
80.0 - 80.71	Py FR 1%	Pyrite occuring in chlorite stringers within the calcite vein.								
Structure	Type/Intensity	Comments								
0.87 - 5.5	Bc S	Rubbly core, 2 pieces greater than 10 cm long.								
5.0 - 69.08	VL S	Abundant calcite and quartz stringers aligned to foliation and stockwork stringers. Common host for sulfide mineralization. Occur all throughout core.								
23.87 - 24.1	Vqtz In	Quartz vein with DTCA of 50. Contains pyrite, galena and chalcopyrite. The wall rock around the vein is strongly oxidized, suggesting iron sulfide oxidation.								
11.46 - 12.39	Vcc S	Rubble								
15.1 - 20.52	Bc S	Strong rubble sections.								
26.23 - 26.28	G S	Grey to rust red colour, clay matrix with angular coarse clasts.								
25.9 - 26.53	She M	Evidence of shearing from strongly fractured core, fractured surfaces have slicken lines, clay and clasts on them.								
32.25 - 33.6	Bc M	Rubbly core, fragments are about 8 cm in diameter.								
40.43 - 40.5	Vqtz S	Quartz vein up to 4 cm wide with DTCA of 55. Pyrite and galena mineralization.								

Project:	Galer	na Ridge						Hole	Number	: GR-2	0-05		
From	То	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
47.6 - 63.08	8	VL W	Thin (<1cm) translucent to pink-white quartz veins with 3 measurements at 70 degrees DTCA. Spaced apart at 1.5 m intervals, few contain mineralization.										
62.7 - 62.8		VL M	irregularly shaped quartz vein containing pyrite and chalcopyrite mineralization. Veinlet is 0.5 cm wide.										
59.27 - 59.6	66	G S	Clay matrixe with angular clasts up to 0.5 cm in diameter. Brown to rust red colour.										
62.42 - 62.6	68	Vqtz In	Quartz vein with discordant hairline fractures that host chlorite and pyrite. The vein has a white and pink colour suggesting presence of K-spar.										
67.35 - 67.8	84	Vqtz In	White to pink quartz with discordant pyrite and chlorite stringers running through the wall rock and vein. Pyrite disseminated <1% through vein.										
67.84 - 69.7	7	Bc S	Rubbly core, possibly from shearing										
69.08 - 87.5	5	She S	Brittle-ductile shearing that created low grade mylonite and short sections of gouge.										
72.45 - 80.7	71	Vcc M	At least 7 calcite veins occur along this interval, aligned to foliation. Up to 3 cm wide and contain pyrite, magnetite and chlorite. Several stringers also occur along the interval.										
69.08 - 87.5	5	VL W	calcite stockwork stringers.										
86.38 - 86.5	54	G S	brown to grey gouge, angular clasts up to 5 mm wide in a matrix of clay.										
80.71 - 87.5	5	Bc In	Rubble with a section of gouge at 86.38 m										
80.0 - 80.71	1	Vcc In	Calcite vein heavily fractured by chlorite and pyrite stringers.										

Project: Gale	na Ridge						Hole Number: GR-20-05
Oriented Point S	tructure						
Depth	Structure	Α	lpha Angle	Beta Angle	Strike	Dip	Comment
6.38	Vqtz		80				5 cm wide quartz vein with <1% pyrrhotite mineralization. Parallel to foliation
9.73	Fol		50				
15.96	VL		55				Measurement of a calcite stinger with several other stringers of quartz, calcite and pyrite nearby with the same orientation.
24.08	Vqtz		50				Contact of a 20 cm wide quartz vein with Cpy, Py and Gn(?).
22.92	Fol		65				
29.42	VL		70	56			Calcite stringers, possibly parallel to foliation.
37.55	Vcc		70	126			Calcite stringers, possibly parallel to foliation.
47.64	Vqtz		70	128			2 quartz veinlets up to 0.5 cm wide, causing minor pyrite mineralization and chloritization.
52.51	Vqtz		70	163			0.5 cm wide quartz veinlet devoid of sulfides, and caused proximal chloritization.
61.6	Vqtz		70	290			Up to 2 cm wide quartz veinlet, has slight pink colour and chloritization. Minor pyrite.
57.9	VL		35				Quartz veinlet which is strongly rusted. mm scale width.
25.7	Fol		65				
14.78	Fol		45				Foliation with parallel pyrite stringers and calcite stringers.
63.43	Vqtz		60	162			Measurement of upper contact of quartz vein.
76.79	F		40	67			Fractured surface parallel to foliation.
70.6	Fol		35				For the standard of additional accommodate
80.7	F		40				Fractured surface of calcite vein, may represent orientation.
Geotech							
From	То	Recovery	Recovery %	Comments			
0.87	2	1.13	100	Rubbly			
2	5	1.53	51	Rubbly			
5	8	2.69	89.67	Rubbly			
8	11	2.98	99.33	Very broken			
11	14	2.81	93.67	Broken			
14	17	2.63	87.67	Broken/rubble			
17	20	2.36	78.67	Broken/rubble			
20	23	2.93	97.67	Very broken			
29	32	2.9	96.67	Very broken			

0 10	, , ,						
Project:	Galena I	Ridge				Hole Number:	GR-20-05
	32	35	3.03	101	Broken		
	35	38	2.94	98	Broken		
	38	41	2.86	95.33	Broken		
	41	43	3.01	150.5			
	43	46	3.09	103			
	46	50	3.04	76	Broken		
	50	53	2.97	99			
	53	56	2.82	94			
	56	59	2.69	89.67	Broken		
	59	62	2.88	96			
	62	65	3.03	101			
	23	26	2.62	87.33	Very broken		
	65	68	2.93	97.67	Very broken		
	68	71	2.2	73.33	Loss from rubble, box dropped		
	71	74	3.09	103	Rubble section, box dropped		
	74	77	2.8	93.33	Broken		
	77	80	2.94	98			
	80	83	1.36	45.33	Rubbly, loss section		
	83	86	1.38	46	Rubble		
	86	87.5	1.31	87.33	Rubble and gouge		

G R	o u	P													
Project:	: Gale	ena Ridge								Hole N	Number	: GR-2	0-06		
		J	Drill Hole			Drilling					Colla	ar Surve	∍ у		
Hole	type	DD	Core location:		Drilling started	Sep-04-20)20		Grid	i:	١	NAD83 /	UTM zo	ne 9N	
Hole	size:		Claim number:		Drilling completed	: Sep-05-20)20		Eas	ting:	4	110,156			
Actu	al depth:		Logged by:		Drilling contractor	: Dorado			Nor	thing:	6	5,243,71	1		
Targ	et:								Elev	/ation:	1	,501			
Survey															
D	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Qual	ity							
	0	Collar	217	217	-82.5										
	14	Reflex Hanstone	185	203	-82.6										
	64	Reflex Hanstone	188.9	206.9	-82.3										
	86	Reflex Hanstone	187.8	205.8	-82.6										
From	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
0	0.61	CAS - Casing								,	,	** ,	** ,	,	
		_													
0.61	86	MV - Mafic Volcan	ic			A0867549	32.07	32.54	0.47	82.3	0.4	70.7	4.5	68	1.5
Dark gre		y greenschist metamor	phosed mafic volcanics. Ap	phanitic with poorly to mod	derately defined	A0867550	32.54	32.9	0.36	232	1.3	49.3	18.8	107	1.9
		primarily as parysaive of	nloritization with some sect	ions of ablarita vaiplets as	accipated with	A0867551	32.9	33.26	0.36	19.3	0.4	81.4	3.7	77	1.5
calcite a	and quartz	z veining. Moderate silic	ification above 48.00 and b	elow 50 m. The core has		A0867552	33.26	34.05	0.79	179.1	1.9	325.7	36	66	2.9
J		0	hing occurs around quartz			A0867553	34.05	34.8	0.75	1.7	0.3	159.8	3.8	182	0.2
amounts	s of Cpy.	Quartz veins with o ly p	n stringers and veinlets of yrite for sulfides occur at 3	calcite and quartz. Few sp 2 and 51 m. Minor rusty ~	ots with small 10 cm quartz	A0867554	50.62	50.85	0.23	2	0.1	58.9	2.3	71	0.9
vein at 5	50.90 m. F	Fractures commonly oxi	dized above 50.9 m.			A0867555	50.85	51.15	0.3	0.25	0.05	58.8	2	65	0.6
through	out the er	itire depth. Healed hairli	form of rubbly core. String ine fracturing of carbonate	and/or quartz is ubiquitou	is throughout the	A0867556	74.0	74.35	0.35	1.1	0.3	137.8	4.8	134	0.9
mafic vo	olcanic ro	ck. Faulting with gouge	at 74.5 and 76.6m is chara zone extends from 73.00	cterized by blueish grey of	clay matrix and	A0867557	74.35	74.95	0.6	3	0.3	130.6	4.8	147	0.9
below 8	0 m exter	iding to the end of the h	ole at 86.0 m characterized oriented ~15-20 DTCA.			A0867558	74.95	75.6	0.65	247.8	1.1	100.4	46.8	111	0.9
anciano	ii, pervas	ive weak chilomite and is	onenieu ~13-20 DTCA.			A0867560	75.6	76.0	0.4	21.7	0.7	237.2	11.5	103	0.25
Minor L	ithology	Type/Description	Comments			A0867561	76.0	76.6	0.6	24.6	0.4	95.4	7.2	102	1
0.61 - 8.	.0	CS Calcareous	White to buff calcar and interbedded wi	eous meta-sediments. Sti th mafic volcanics.	rongly deformed	A0867562	76.6	77.25	0.65	354	1.6	91.6	19.2	134	1.6
		Metasediment				A0867563	77.25	77.73	0.48	3.7	0.2	87.7	6.8	123	1.1
Alteration	on	Type/Style/Intensity	Comments												
0.61 - 86	6.0	Chl Pv M		tion throughout entirety of s strong in quartz and cald											
8.0 - 48.	0	Si Pv M	Moderate silicificati	on that varies in intensity	in some places.										

Project: Gal	ena Ridge						Hole I	Number	: GR-2	0-06		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
17.4 - 25.0	Rs FV W	Weak rusting occuring on fractured surfaces of core.										
19.77 - 20.0	BI FV M	Moderate bleaching producing a grey colour likely from quartz veinlets.										
32.58 - 33.03	BI FV W	Weak bleaching associated with a quartz vein.										
33.39 - 33.5	BI FV S	Strong bleaching associated with carbonate veinlets.										
42.6 - 42.97	Rs FV W	Weak rusting on fractured surfaces.										
45.79 - 45.93	BI FV M	Grey colour bleaching caused by quartz vein.										
45.95 - 46.4	Rs FV W	Weak rusting along fractures.										
51.0 - 80.0	Si Pv W											
80.0 - 86.0	Ka FV M											
Mineralization	Type/Style/%Mineral	Comments										
0.61 - 9.5	Py FR 1%	Pyrite occuring in stringers of calcite in mafic volcanics and calcareous meta-sediments.										
9.5 - 18.13	Py D 0.1%	Disseminated pyrite in mafic volcanics. Also occurs in stringers aligned to foliation.										
18.13 - 32.58	Py FR 2%	Pyrite occuring in stringers aligned to foliation, often associated with calcite.										
32.58 - 32.8	Py FR 5%	5% pyrite disseminated throughout the vein and concentrated in edges and little stringers. Chlorite occurs on the margins of the vein.										
32.8 - 33.5	Py FR 5%	Pyrite up to 5% occuring in stringers.										
20.1 - 20.2	Ccp FR 0.1%	Single grain of Cpy about 2 mm across hosted in a calcite vein DTCA of 35.										
33.6 - 33.61	Ox FR 0.1%	Malachite occuring on fractured surface of rubbly quartz core, likely a sheared quartz vein.										
33.5 - 42.19	Py S 1%	Abundant stringers of pyrite occuring in association with calcite and quartz stringers/veinlets										
42.19 - 51.15	Py FR 10%	Pyrite occuring within quartz and calcite veinlets/stringers. coarser grains are more common. Up to 10 % within veinlets.										
44.63 - 44.64	Ccp FR 0.1%	Single grain of Cpy 2 mm across occuring in a calcite veinlet.										
45.2 - 45.21	Ccp FR 0.1%	Very fine Cpy hosted in a calcite vein with pyrite.										
42.89 - 42.9	Py FR 10%	Coarse grains of pyrite (up to 0.4 cm across) and fine grains of hematite present in a fractured surface of core that has undergone weak oxidization.										
45.85 - 45.88	Py FR 1%	1 % pyrite.										
50.91 - 51.0	Py FR 1%	1% pyrite.										

Project: Gal	ena Ridge						Hole I	Number	: GR-2	0-06		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
53.6 - 53.7	Py FR 0.1%	Trace pyrite within small stringer										
53.7 - 75.6	Py D 0.1%											
75.6 - 77.0	Py D 2%	2%disseminated pyrite within fault zone.										
77.0 - 86.0	Py D 0.1%											
Structure	Type/Intensity	Comments										
0.61 - 51.15	VL S	Abundant calcite and quartz stringers mostly oriented parallel to foliation.										
0.61 - 8.0	Fld S	Strong folding of calcareous meta-sediments and mafic volcanics										
18.13 - 26.9	Bc S	Strongly broken core, rubbly sections.										
32.58 - 32.8	Vqtz S	Quartz vein up to 12 cm wide. Coarse quartz Crystal's and vuggy texture. Chlorite and pyrite mineralization.										
33.5 - 33.75	Vqtz M	Remnants of a quartz vein that was likely faulted, core is broken to rubble. One oxidized fragment shows malachite mineralization.										
33.5 - 38.35	Bc S	Rubbly core, could be indicative of a shear zone										
40.18 - 40.4	BX M	Mafic volcanics brecciated by stockwork epidote stringers.										
40.4 - 51.15	VL W	Epidote +/- calcite and garnet veinlets sparsely populated.										
42.0 - 51.15	VN W	Quartz veinlets up to 0.5 cm wide. sparsely distributed. Milky white to translucent grey.										
45.85 - 45.88	Vqtz S	White quartz vein up to 2.5 cm wide. Minor pyrite. DTCA 50.										
48.31 - 50.0	Bc M	Rubbly core.										
50.91 - 51.0	Vqtz M	Quartz vein up to 7 cm true width. contains pyrite, chlorite, kspar and calcite stringers. DTCA of 60.										
73.5 - 77.25	Flt S	Strong fault zone with at least three fault gouges (74.53, 76.7 and 77.00 m). Zone shows increased disseminated pyrite +-pyrrhotite with minor increased silicification.										
80.0 - 85.34	Flt W	Fault zone with blue grey clay on fractures. Minor limonite stains. Zone is oriented sub parallel to the core axis at approximately 15 DTCA.										

Project: Gale	na Ridge						Hole Number: GR-20-06
Oriented Point S	tructure						
Depth	Structure	Α	lpha Angle	Beta Angle	Strike	Dip	Comment
9.09	VL		50				Calcite stringer set. Parallel to foliation.
20.1	Vcc		35				Calcite vein 4.5 cm wide that appears to have brecciated a pre-existing quartz vein. 1 grain of Cpy with in calcite.
24.65	Fol		40				Foliation of mafic volcanics and orientation of pyrite stringers.
15.4	Fol		50				
32.53	Fol		55	35			Foliation measurement which is parallel to the quart vein and quartz stringers.
33.45	VL		65				Quartz stringers
33.19	Fol		50				
40.97	VL		70	107			Quartz veinlet 0.5 cm wide. Parallel to foliation.
42.9	F		40	158			Fractured surface with pyrite and hematite mineralization and weak oxidization.
45.85	Vqtz		50				2.5 mm wide quartz vein.
52.5	Fol		50	30			
59	Fol		48	30			
70.3	Fol		47				
76.65	С		25				
76.4	Vqtz		20				1 cm wide qtz vn with trace to 1% sulphides on contacts.
76.7	G		50				
Geotech							
From	То	Recovery	Recovery %	Comments			
0.61	2	1.39	100	Broken			
2	5	1.8	60	Rubble			
5	8	2.66	88.67	Rubble			
8	11	3.15	105	Broken			
11	14	3.1	103.33	Broken			
14	17	2.44	81.33	Broken/rubble			
17	20	2.16	72	Broken/rubble			
20	23	1.72	57.33	Rubble			
23	26	2.6	86.67	Rubble			
26	29	2.97	99	Broken			

K U	UF					
roject:	Galena Ri	dge				Hole Number: GR-20-06
	29	32	3.07	102.33	Broken	
	32	35	2.6	86.67	Rubble	
	35	38	1.94	64.67	Rubble	
	38	41	2.93	97.67	Broken	
	41	44	2.95	98.33	Broken	
	44	47	3.04	101.33	Very broken	
	47	50	2.85	95	Very broken/rubble	
	50	53	3.1	103.33	1.15-	
	53	56	2.95	98.33		
	56	59	2.96	98.67		
	59	62	2.77	92.33		
	62	65	3	100		
	65	68	2.67	89		
	68	71	2.91	97		
	71	74	2.85	95		
	74	77	2.8	93.33		
	77	80	2.79	93		
	80	83	3	100		
	83	86	2.65	88.33		

roject:	Doo	Project								Hole I	Number	: DC-2	0-06		
			Drill Hole			Drilling					Colla	ar Surve	ey .		
Hole	type	DD	Core location:		Drilling started				Gric	d:	NAD83 / UTM zone 9I				
Hole	size:	HQ	Claim number:		Drilling complete	d:			Eas	ting:	2	10,142			
Actua	al depth	:	Logged by:		Drilling contracto	r:			Nor	thing:	6,244,75		,751		
Targe	et:								Elevation:		1,273				
Survey				<u>.</u>					•						
De	epth	Survey Type	Mag Azimuth	Azimuth	Dip	Su	rvey Quali	ty							
	0	Collar	225	225	-70										
	20	Reflex Hanstone	205.1	223.1	-69.1										
	80	Reflex Hanstone	199.6	217.6	-69										
	149	Reflex Hanstone	198.2	216.2	-69.4										
rom	То	Lithology				Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	(pp
	1.5	CAS - Casing													
5	40.3	MV - Mafic Volca	nic			A0867645	12.0	13.0	1	23.8	0.5	188.4	4.4	78	
edium ulted.	gray, fir	ne grained, locally bedd	ded, weakly foliated to massiv	e mafic volcanic. Lower c	ontact is	A0867646	13.0	13.5	0.5	41.1	8.7	1717.3	14.7	123	C
	ما د الحجما		to E4 O as Facilit account assets	:-	24.0	A0867647	13.5	14.0	0.5	6.4	0.3	98.4	2.3	72	
	ocally b 9 to 39.1		to 51.8 m. Fault gouge mater	iai present from 31.75 to :	si.e in, and	A0867648	14.0	15.0	1	2.2	0.2	100.9	2.4	64	
			r and fracture fill carbonate. F	atchy moderate silicificati	on throuhgout.	A0867649	15.0	16.0	1	7.7	0.2	87.7	2.3	54	
eak ru	sty fracti	ure coatings occur spor	radically throuhgout.			A0867650	16.0	17.0	1	1.9	0.2	82.2	5.9	60	
ace fin 13.5 n	e graine n. Modei	ed disseminated py occi rate oxidiation from 8.3	urs sporadically throughout. \ to 9.0 m, patchy from 17.5 to	einlet controlled cpy obsect 25 m.	erved from 13										

Alteration	Type/Style/Intensity	Comments
1.5 - 149.0	Chl Pv W	
1.5 - 149.0	Rs FV W	
1.5 - 40.5	Si P M	
1.5 - 149.0	Carb P M	

Project: Doc	Project						Hole N	Number	: DC-2	0-06		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
Mineralization	Type/Style/%Mineral	Comments										
1.5 - 55.0	Py Tr 0.1%	Trace disseminated py										
1.5 - 149.0	Ox FR 1%	Rusty oxidized fractures occur more or less throughout.										
13.0 - 13.5	Ccp Tr 1%	Trace clots of cpy.										
Structure	Type/Intensity	Comments										
1.5 - 51.8	Bc M											
31.75 - 31.9	G W											
38.9 - 39.15	G W											
40.3 64	MV - Mafic Volcanic		A0867651	51.0	52.0	1	1.9	0.3	73.3	1.1	200	0.7
		icified, bedded mafic volcanics. Distinct bedding at	A0867652	52.0	53.0	1	22.7	0.6	71.2	8.8	140	0.7
,	dTCA. Lower contact faulted		A0867653	53.0	54.0	1	3.4	0.4	100.9	3.3	91	0.7
		z vein from 60.75 to 61.15 m at approx. 35 DTCA. Vein Il alteration extends from 60.51 to 62 m.	A0867654	54.0	55.0	1	9.9	0.3	63.2	3.2	94	2.6
Upper contact ma	rked by hydraulic bx with pir	nk red hm filled fractures. Broken / blocky core to ~51.8 m below	A0867655	55.0	56.0	1	6.9	0.2	37.6	2.5	72	2.8
which core is fairly fractured. Blocky	y competent to 60.51 m. Alte / rubble fault zone from 62 to	ered / veining zone from 60.51 to 62.0 m is moderately o 68.7 m. Possible fault gouge at 65.9 m.	A0867656	56.0	57.0	1	3.8	0.2	29.4	2	62	1.7
·		ate fracture and bedding controlled Fe staining. Weak to	A0867657	57.0	58.0	1	92.3	0.8	70.2	95.3	71	0.9
moderate structur	ally and bedding controlled,	patchy to locally pervasive, chlorite + epidote from 52.7 to ate sericite + moderate oxidation (+ strong potassic?), from	A0867658	58.0	59.0	1	33.9	0.3	23.7	6.1	67	1.6
60.51 to 62.5 m.		and contain a middle of the containing policious, in containing the containing policious and the contai	A0867659	59.0	60.0	1	6	0.3	24.1	10.6	101	1.9
Trace disseminate	ed fine grained py occurs sp	oradically throughout. Slight increase in py abundance below 55 disseminated. Weak (2%) disseminated medium grained py from	A0867660	60.0	60.5	0.5	5.8	0.3	26	16.3	76	1.1
60.51 to 62 m.	ii iiile giaiiled veililets aild t	isseminated. Weak (270) disseminated medium grained by nom	A0867661	60.5	60.8	0.3	636	2.4	22.8	42.9	37	1.3
Alteration	Type/Style/Intensity	Comments	A0867662	60.8	61.1	0.3	1225.8	4.2	19.2	15.3	22	1.7
			A0867663	61.1	61.55	0.45	2718.9	9.6	43.3	17.3	42	0.7
1.5 - 149.0	Chl Pv W		A0867664	61.55	62.0	0.45	1582.2	5.8	61.5	22.1	39	0.9
1.5 - 149.0	Rs FV W		A0867665	62.0	63.5	1.5	234	1.1	48.3	60.4	73	1
1.5 - 40.5	Si P M		A0867666	63.5	65.0	1.5	8.5	0.7	22.6	13.3	64	0.7
40.5 - 60.5	Si Pv S											
1.5 - 149.0	Carb P M											
52.0 - 60.5	Chl B M	Bedding controlled and frac/ vein controlled chl + ep										
52.0 - 60.5	Ер В М											

Project: Doc	Project						Hole I	Number	: DC-2	0-06		
From To	Lithology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)
60.5 - 64.0	K FV S											
60.5 - 62.0	Ser FV M											
60.5 - 62.0	Hem FV M											
60.5 - 64.0	Carb FV M											
60.5 - 119.3	Si P M											
Mineralization	Type/Style/%Mineral	Comments										
1.5 - 55.0	Py Tr 0.1%	Trace disseminated py										
1.5 - 149.0	Ox FR 1%	Rusty oxidized fractures occur more or less throughout.										
55.0 - 60.15	Py D 0.5%	Fine grained trace disseminated py. Locally as small fabric controlled veinlets / stringers.										
60.15 - 62.0	Py FR 2%	Vein controlled medium grained disseminated py. Associated with late cross cutting veinlets.										
62.0 - 149.0	Py Tr 0.1%	Sporadic trace disseminated py										
Structure	Type/Intensity	Comments										
1.5 - 51.8	Bc M											
60.5 - 62.0	Vqtz S	Main fragment rich vein from 60.75 to 61.15 m. Alteration halo with late cross cutting mineralized veinlets from 60.5 to 62 m.										
62.0 - 68.7	Flt S	Fault damage zone with apparent fault core gouge from 65.8 to 66m. Entire interval is blocky core / rubble with ~60% recovery.										
64 149	MV - Mafic Volcanic		A0867666	63.5	65.0	1.5	8.5	0.7	22.6	13.3	64	0.7
Medium gray, fine contact is EOH	e grained, weakly foliated (be	edded) to massive, mafic to intermediate volcanic. Lower	A0867667	65.0	66.0	1	7.9	0.5	21.2	6.5	55	0.6
	ore from 64 to 73.5 m. Mode	rate fracturing with local blocky core from 73.5 to 91.5 m,	A0867668	66.0	67.0	1	9.2	0.2	37.8	4.1	64	0.7
possible fault gou	ge (rubble, some clay) from	90.3 to 90.4 m. Weak fracturing to ~99 m. Below 99 m core is agment-rich fault gouge from 109.95 to 110.05 m. Weak	A0867669	67.0	68.0	1	7.7	0.3	35.6	3.8	65	0.9
fracturing from 11	0.3 to 117.9 m. Fault zone fr	m, poorly developed moderately fractured damage zone to	A0867671	68.0	69.0	1	4.6	0.05	18.5	2.9	46	0.9
119.6 m. Broken l	locally blocky core from 119.	6 to 123.5 m. Fault zone from 123.5 to 128.1 m, strongly	A0867672	76.0	76.5	0.5	9.4	0.3	55.9	3.5	108	2.2
associated core lo	ore to 126.4 with intense cla oss. Weak fracturing from 12	y and sand filled fault gouge from 126.4 to 128 m with 8 to 143 m. Fault zone below.	A0867673	76.5	77.0	0.5	112.4	0.5	56.2	21.8	104	2
		ace sericite / carbonate occurs sporadically on fractures	A0867674	77.0	78.0	1	41.5	0.4	64	7.3	119	2.9
throughout. Patch	y pervasive moderate silicifi	cation occurs from 64 to 119.3 m, strong to locally intense, 132.28 m. Weak silicification below. Trace to weak pervasive	A0867675	78.0	79.0	1	5.4	0.4	69	11.9	145	2.3
chlorite throughou	ut. Strong to locally moderate	e hydrothermal alteration associated with faulting and veining intense silicification, moderate to intense oxidation, local	A0867676	89.0	90.0	1	1.8	0.2	48.2	2.5	109	0.9
fracture controlled	d moderate potassic alteration	n, and local intense sericite + chlorite alteration.	A0867677	90.0	91.0	1	4	0.3	84.4	1.8	121	0.9
		Fine grained disseminated, vein hosted and thin veinlets of Moderate to strong oxidized sulphides and trace to 3% fine	A0867678	91.0	92.0	1	17.5	0.6	86.7	48.1	162	1.1

Drill Log Report Page 3 of 9 Dec-07-2021

Prom To	Project: Doc	Project			Hole I	Number	: DC-2	0-06					
No contain from 1 10 132.28 No contain for 1 10 132.28 No contain for 1 10 132.28 No contain for 1 10 132.28 No contain for 1 10 132.28 No contain for 1 10 132.28 No contain for 1 10 132.28 No contain for 1 10 132.28 No contain for 1 10 132.28 No c	From To	Lithology		Sample	From	То	Length						As (ppm)
Note				A0867679	92.0	93.0	1	2.6					0.6
1.5 - 149.0 Ch Pr W			ateu, medium to coarse grameu, subhedrai, vein nosteu py	A0867680	97.18	97.8	0.62	1	0.3	44.1	5.4	74	1.1
1.5 1.49 Ch	Alteration	Type/Style/Intensity	Comments	A0867681	97.8	98.3	0.5	134.5	0.9	62.5	19.9	111	0.9
1.5 - 149.0 Rs	15-1490	Chl Pv W		A0867682	98.3	98.8	0.5	3.6	0.4	72.2	2.2	70	1.1
1.5 - 149.0 Carb P M A0867685 107.0 107.8 0.8 4.3 0.3 59 8.5 38 30 - 86.0 Ep P M A0867686 107.8 108.8 1 16.6 0.7 86.6 13.4 182 180 180 193 1 18.6 10.5				A0867683	105.5	106.0	0.5	6.3	0.4	96.3	9.2	123	0.8
83.0 - 86.0 Ep P M	1.5 - 149.0	Rs FV W		A0867684	106.0	107.0	1	17.2	0.5	83.2	9.9	77	1.5
A0867687 108.8 109.8 1 2.8 0.4 96.1 4.9 98.60.5 119.3 119.3 132.28	1.5 - 149.0	Carb P M		A0867685	107.0	107.8	0.8	4.3	0.3	69	8.5	93	1.6
0.0.5 - 119.3 Si	83.0 - 86.0	Ep P M		A0867686	107.8	108.8	1	16.6	0.7	88.6	133.4	182	7.6
119.3 - 132.28 Si Pv S Pervasive or patchy intense structurally controlled silicification A0867689 110.5 111.0 0.5 2.4 0.2 54.7 1.5 132.26 14.9 1	60.5 110.3	Ci D M		A0867687	108.8	109.8	1	2.8	0.4	96.1	4.9	98	2.8
132.28 - 149.0 Si Pv W	00.5 - 119.3			A0867688	109.8	110.5	0.7	77.1	0.9	130.8	20.4	101	1.4
A0867691 112.0 112.5 0.5	119.3 - 132.28	Si Pv S	Pervasive or patchy intense structurally controlled silicification	A0867689	110.5	111.0	0.5	2.4	0.2	54.7	1.5	85	0.9
105.9 - 110.0 Rs FV M Moderate to locally intense structurally controlled oxidation A0867692 112.5 113.5 1 223.1 1.3 208.4 56.5 117 119.0 - 128.0 Rs FV S Moderate to locally intense structurally controlled oxidation A0867693 113.5 114.0 0.5 34.7 0.4 93.1 3.6 87 119.0 - 133.5 Chi FV M Patchy moderate structurally controlled chlorite A0867694 117.0 118.0 1 69 0.5 131.3 4.8 111 119.0 - 133.5 K FV W Local weak to moderate fracture controlled potassic alteration A0867695 118.0 119.0 1 120.8 1.5 148.6 84.8 121 120.7 - 131.1 Chi FV S Strong pervasive chlorite + sericite at upper margin of main vein A0867696 119.0 119.5 0.5 9433.3 30 174.4 134.2 130 130.7 - 131.1 Ser FV S Strong pervasive chlorite + sericite at upper margin of main vein A0867697 119.5 120.0 0.5 533.6 1.8 61.6 11.3 121 130.7 - 131.1 Ser FV W Local vein and veinlets of carbonate A0867699 121.0 122.0 1 396.8 2.1 120.3 67 147 119.0 - 130.7 Carb FV W Local vein and veinlets of carbonate A0867701 122.0 123.0 1 72.5 1 319.4 22.3 212 146.0 - 149.0 Chi FV S intense chlorite replacement in gouges A0867703 124.0 125.0 1 780.1 3.1 112.6 92.8 275 133.5 - 149.0 Chi FV M A0867706 126.0 128.0 2 1366.6 7.4 114 132.3 151 Mineralization Type/Style/*Mineral Comments A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 150.7 150.7 150.7 150.0 150.0 150.0 1	132.28 - 149.0	Si Pv W		A0867690	111.0	112.0	1	69.2	0.8	181.9	3.8	78	0.9
119.0 - 128.0 Rs FV S Moderate to locally intense structurally controlled oxidation A0867693 113.5 114.0 0.5 34.7 0.4 93.1 3.6 87 119.0 - 133.5 Chl FV M Patchy moderate structurally controlled chlorite A0867694 117.0 118.0 1 69 0.5 131.3 4.8 111 119.0 - 133.5 K FV W Local weak to moderate fracrure controlled potassic alteration A0867696 119.0 119.5 0.5 9433.3 30 174.4 134.2 130 130.7 - 131.1 Chl Pv S Strong pervasive chlorite + sericite at upper margin of main vein A0867698 120.0 120.0 0.5 533.6 1.8 61.6 11.3 121 130.7 - 131.1 Ser Pv S Strong pervasive chlorite + sericite at upper margin of main vein A0867698 120.0 120.0 0.5 533.6 1.8 61.6 11.3 121 130.7 - 131.1 Ser FV W Local vein and veinlets of carbonate A0867699 121.0 122.0 1 396.8 2.1 120.3 67 147 119.0 - 130.7 Carb FV W Local vein and veinlets of carbonate A0867701 122.0 123.0 1 72.5 1 319.4 22.3 212 146.0 - 149.0 Chl FV S intense chlorite replacement in gouges A0867703 124.0 125.0 1 780.1 31.1 126.9 92.8 275 133.5 - 149.0 Chl FV M Mineralization Type/Style/%Mineral Comments A0867706 128.0 129.0 1 2879.6 10 88.5 18 52 15.5 149.0 Comments A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 15.5 149.0 Comments A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 15.5 149.0 Comments A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 15.5 149.0 Comments A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86 A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8	105.9 - 110.0	Rs FV M		A0867691	112.0	112.5	0.5	48	0.6		16.8	63	0.9
119.0 - 133.5			Made ante to leadly interes of wet well, acceptable devidation	A0867692	112.5	113.5	1	223.1	1.3	208.4		117	0.25
119.0 - 133.5 K FV W Local weak to moderate fracture controlled potassic alteration A0867695 118.0 119.0 11 120.8 1.5 148.6 84.8 121 130.7 - 131.1 Chl PV S Strong pervasive chlorite + sericite at upper margin of main vein A0867696 119.0 119.5 120.0 0.5 533.6 1.8 61.6 11.3 121 130.7 - 131.1 Ser PV S FV W Local vein and veinlets of carbonate A0867699 121.0 122.0 1 396.8 2.1 120.3 67 147 146.0 - 149.0 Chl FV S intense chlorite replacement in gouges A0867701 122.0 123.0 1 72.5 1 319.4 22.3 212 133.5 - 149.0 Chl PV M Mineralization Type/Style/%Mineral Comments A0867706 128.0 129.0 1 2879.6 10 88.5 18 52 1.5 - 149.0 Ox FR 1% Rusty oxidized fractures occur more or less throughout. A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86	119.0 - 128.0	RS FV S	Moderate to locally intense structurally controlled oxidation	A0867693	113.5	114.0	0.5	34.7	0.4		3.6		0.25
119.0 - 133.5 K FV W Local weak to moderate fracture controlled potassic alteration A0867696 119.0 119.5 0.5 9433.3 30 174.4 134.2 130 130.7 - 131.1 Chl Pv S Strong pervasive chlorite + sericite at upper margin of main vein A0867697 119.5 120.0 0.5 533.6 1.8 61.6 11.3 121 120.7 - 131.1 Ser Pv S Pv S A0867698 120.0 121.0 120.0 1 396.8 2.1 120.3 67 147 149.0 149.0 130.7 Carb FV W Local vein and veinlets of carbonate A0867701 122.0 123.0 1 72.5 1 319.4 22.3 212 140.0 - 149.0 Chl FV S intense chlorite replacement in gouges A0867702 123.0 124.0 1 172.1 1 154.8 12.9 232 140.0 - 149.0 Chl FV S intense chlorite replacement in gouges A0867703 124.0 125.0 1 780.1 3.1 112.6 92.8 275 133.5 - 149.0 Chl FV M A0867704 125.0 126.0 1 246.8 1 61.7 9.7 157 A0867705 126.0 128.0 2 1366.6 7.4 114 132.3 151 15.1	119.0 - 133.5	Chl FV M	Patchy moderate structurally controlled chlorite	A0867694	117.0	118.0	1	69	0.5	131.3	4.8		0.6
130.7 - 131.1 ChI Pv S Strong pervasive chlorite + sericite at upper margin of main vein A0867697 119.5 120.0 0.5 533.6 1.8 61.6 11.3 121 130.7 - 131.1 Ser Pv S A0867698 120.0 121.0 1 396.8 2.1 120.3 67 147 119.0 - 130.7 Ser FV W Local vein and veinlets of carbonate A0867699 121.0 122.0 1 567.7 4.5 241.2 701 266 119.0 - 130.7 Carb FV W Local vein and veinlets of carbonate A0867701 122.0 123.0 1 72.5 1 319.4 22.3 212 146.0 - 149.0 ChI FV S intense chlorite replacement in gouges A0867702 123.0 124.0 1 172.1 1 154.8 12.9 232 133.5 - 149.0 ChI Pv M M A0867703 124.0 125.0 1 74.0 11.4 132.3 151 Mineralization Type/Style/%Mineral <t< td=""><td>119.0 - 133.5</td><td>K FV W</td><td>Local weak to moderate fracrure controlled potassic alteration</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.1</td></t<>	119.0 - 133.5	K FV W	Local weak to moderate fracrure controlled potassic alteration										1.1
130.7 - 131.1 Ser Pv S A0867698 120.0 121.0 1 396.8 2.1 120.3 67 147	130 7 - 131 1	Chl Pv S	Strong pervasive chlorite + sericite at upper margin of main vein										8.2
A0867699 121.0 122.0 1 567.7 4.5 241.2 701 266 241.0 266 241.0 266 241.0 266 241.0 266 241.0 266 241.0 266 241.0 266			enong portaono enone i continue at apportuagin et main tem										1.3
119.0 - 130.7 Ser FV W Local vein and veinlets of carbonate A0867701 122.0 123.0 1 72.5 1 319.4 22.3 212	130.7 - 131.1	Ser Pv S											1.2
119.0 - 130.7 Carb FV W Local vein and veinlets of carbonate A0867702 123.0 124.0 1 172.1 1 154.8 12.9 232 146.0 - 149.0 ChI FV S intense chlorite replacement in gouges A0867703 124.0 125.0 1 780.1 3.1 112.6 92.8 275 133.5 - 149.0 ChI Pv M A0867704 125.0 126.0 1 246.8 1 61.7 9.7 157 Mineralization Type/Style/%Mineral Comments A0867705 126.0 128.0 2 1366.6 7.4 114 132.3 151 A0867706 128.0 129.0 1 2879.6 10 88.5 18 52 1.5 - 149.0 Ox FR 1% Rusty oxidized fractures occur more or less throughout. A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86	119.0 - 130.7	Ser FV W					·						1.4
146.0 - 149.0 ChI FV S intense chlorite replacement in gouges A0867703 124.0 125.0 1 780.1 3.1 112.6 92.8 275 133.5 - 149.0 ChI Pv M A0867704 125.0 126.0 1 246.8 1 61.7 9.7 157 Mineralization Type/Style/%Mineral Comments A0867705 126.0 128.0 129.0 1 2879.6 10 88.5 18 52 1.5 - 149.0 Ox FR 1% Rusty oxidized fractures occur more or less throughout. A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86	119.0 - 130.7	Carb FV W	Local vein and veinlets of carbonate										1.1
133.5 - 149.0 Chi Pv M A0867704 125.0 126.0 1 246.8 1 61.7 9.7 157	146.0 140.0	Chl EV S	intense chlorite replacement in gourges										1.9
Mineralization Type/Style/%Mineral Comments A0867705 126.0 128.0 2 1366.6 7.4 114 132.3 151 A0867706 128.0 129.0 1 2879.6 10 88.5 18 52 1.5 - 149.0 Ox FR 1% Rusty oxidized fractures occur more or less throughout. A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86	140.0 - 149.0		intense enonte replacement in gouges										2.3
Mineralization Type/Style/%Mineral Comments A0867706 128.0 129.0 1 2879.6 10 88.5 18 52 1.5 - 149.0 Ox FR 1% Rusty oxidized fractures occur more or less throughout. A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86	133.5 - 149.0	Chl Pv M					•						1.8
1.5 - 149.0 Ox FR 1% Rusty oxidized fractures occur more or less throughout. A0867707 129.0 130.0 1 693.9 3.2 367.5 37.8 86	Mineralization	Type/Style/%Mineral	Comments				_						2.1 0.7
	1.5 - 149.0	Ox FR 1%	Rusty oxidized fractures occur more or less throughout.				1						0.25
62.0 - 149.0 Py Tr 0.1% Sporadic trace disseminated py A0867708 130.0 131.0 1 841 9.2 1413 704.6 256		Py Tr 0.1%	Sporadic trace disseminated py				1						0.7
Fine to medium grained disseminated and veinlets of py. A0867709 131.0 131.5 0.5 10000 100 347.1 575 197		<u>, </u>	Fine to medium grained disseminated and veinlets of py.	A0867709	131.0	131.5	0.5	10000	100	347.1	575	197	0.25
76.5 - 78.0 Py FR 2% Structurally controlled associated with fractures, and mm to cm scale quartz carbonate veins/ veinlets. A0867710 131.5 132.0 0.5 10000 100 1403 10000 1075	0.5 - 78.0	ry FK 2%	Structurally controlled associated with fractures, and mm to cm	A0867710	131.5	132.0	0.5	10000	100	1403	10000	1075	1
107.8 - 110.0 Ox FR 10% Moderate rusty alteration / mineralization and fracture coatings. A0867711 132.0 132.28 0.28 57800. 9 100 705.7 4143.9 1057	107.8 - 110.0	Ox FR 10%	Moderate rusty alteration / mineralization and fracture coatings.	A0867711	132.0	132.28	0.28	57800. 9	100	705.7	4143.9	1057	0.8

 Drill Log Report
 Page 4 of 9
 Dec-07-2021

From

132.28

Hole Number: DC-20-06

1.4

0.3

To Length

0.72

192.4

120.2

6.2

6.6

5.9

133.0

133.0 134.0

134.0 135.0

138.0 139.0

139.0 140.0

Au Ag Cu Pb Zn As (ppb) (ppm) (ppm) (ppm) (ppm) (ppm)

95.1

25.9

4.2

13.3

6.1

1640

362

136

90

93

1.9

1.2

0.6

0.6

0.25

308.9

86

0.6 78.6

0.3 128.7

0.2 101.4

From To	Lithology		Sample
112.0 - 113.5	Py D 1%	Fine grained disseminated and quartz carbonate fracture fill vein hosted py	A086771
112.0 - 113.5	Py FR 1%	Weak vein / alteration / structurally controlled fine grained disseminated py	A086771 A086771
119.0 - 128.1	Ox FR 15%	Fault + fracture controlled oxidized mineralization	A086771
119.0 - 131.0	Py FR 1%	Weak vein / alteration / structurally controlled fine grained disseminated py	A086771
130.5 - 132.0	Ccp FR 0.1%	Trace cpy. Clots observed at 130.8 m.	
131.0 - 132.28	Py FR 10%	Abundant (5-15%) disseminated, medium to coarse grained, subhedral, vein hosted py	
132.28 - 133.5	Ox FR 10%	Weak to moderate oxidation below vein	
138.0 - 140.0	Ccp FR 0.1%	Trace cpy in late qtz carb veinlets	
Structure	Type/Intensity	Comments	
62.0 - 68.7	Flt S	Fault damage zone with apparent fault core gouge from 65.8 to 66m. Entire interval is blocky core / rubble with ~60% recovery.	
65.8 - 66.0	G M	Fault gouge with white gray clay. Depth approximate due to core loss.	
66.0 - 73.5	Bc M	Broken / blocky core	
73.5 - 91.5	F M	Moderate fracturing with local blocky core	
89.0 - 97.0	Fld M	Broad zone of ductile deformation. Convoluted bedding / foliation with cm scale parasitic folds.	
90.3 - 90.4	G W	Possible gouge, weak, rubble and some clay	
91.5 - 99.0	F W		
99.0 - 110.3	Bc M	Broken, very locally blocky	
109.95 - 110.05	G M	Rusty, limonite and clay (sericite) coated / filled gouge. Fragment rich bordering on fault bx	
110.3 - 117.9	F W		
117.9 - 119.6	Flt M	Fault zone. Moderate to strong fracturing with fault core gouge from 119 to 119.25	
119.0 - 119.25	G S	Fault core. Rusty gouge with sandy matrix, quartz vein fragments.	
123.5 - 128.1	Flt In	Fault zone. Damage zone from 123.5 to 126.4 m, with secondary fault bx from 123 to 123.65 m.	
126.4 - 128.0	G In	Rusty light orange brown, clay and sand filled fault gouge. Associated core loss.	
128.1 - 143.0	F W		

Project: Doc	roject: Doc Project											Hole Number: DC-20-06							
From To	Li	thology		Sample	From	То	Length	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)						
131.15 - 132.28	Vqt	z In	Massive, mineralized, anastomosing quartz vein.																
143.0 - 149.0	Flt	M	Fault zone with weakly developed damage zone (moderate broken / blocky core) and 3 distinct gouges																
143.6 - 143.75	G	W	Possible gouge with minor clay and rubble																
146.18 - 146.42	G	М	Weakly consolidated (crumbles to touch) fault gouge / bx. Approx 70% dark green gray (chlorite rich) matrix and 30% mm to cm scale angular fragments.																
148.1 - 148.3	G	М	Weakly consolidated (crumbles to touch) fault gouge / bx. Approx 70% dark green gray (chlorite rich) matrix and 30% mm to cm scale angular fragments. Almost identical to gouge at 146.18 m																

Project: Doc Project Hole Number: DC-20-06

iented Point S	Structure					
Depth	Structure	Alpha Angle	Beta Angle	Strike	Dip	Comment
5.5	Fol	65				
15.2	Fol	55				
17.5	Fol	28				wk shear?
19.7	Fol	50				subtle
29.6	Fol	60				
46.9	Bed	55				
48	Bed	50				
49.5	Bed	55				
50.8	Bed	57				
53.25	Bed	60	275			
56.2	Bed	57	270			
60.4	Fol	55				
60.5	Uc	50				upper contact of vein associated alteration zone. concordant to foliation/ bedding
79.7	Fol	40				subtle
80.25	VL	35				2mm wide py bearing qtz cb veinlet
84.1	Fol	50				
87.6	Fol	50				
91.8	Fol	60				for the section of th
97.93	Vqtz	50	40			fractured upper contact of 8 cm wide weakly py mineralized bull qtz vein
100.6	Fol	55	295			
109.9	Vqtz	25				altered with coarse py mineralization
110.05	G	40				approx lower contact of gouge
112.8	VL	15	210			weakly py mineralized altered qtz cb veinlet. 5mr wide
112.85	Fol	50	270			
131.1	Vqtz	17	35			approx upper contact of main mineralized vein
138.9	VL	45	340			cpy bearing carb veinlet
142.9	Fol	50	290			subtle
146.18	G	25				upper contact of gouge
148.3	G	35				lower contact of gouge

Project:	Doc Project			Hole Number: DC-20-06
Geotech				
From	n To	Recovery	Recovery %	Comments
1.5	5 2	1	200	
2	2 5	2.76	92	
Ę	5 8	2.86	95.33	
8	8 11	2.65	88.33	
11	1 14	3.2	106.67	
14	4 17	2.83	94.33	
17	7 20	2.81	93.67	
20		2.89	96.33	
23	3 26	3.3	110	
26	6 29	3	100	
29		3.01	100.33	
32		92	3066.67	
35		2.96	98.67	
38		3.28	109.33	
4′		2.83	94.33	
44		3.09	103	
47		2.85	95	
50		3.05	101.67	
53		3.08	102.67	
56		3.06	102	
59		3.15	105	
62		2.05	68.33	
65		2.3	76.67	
68		2.95	98.33	
7′		2.9	96.67	
74		2.92	97.33	
77		3.25	108.33	
80		2.91	97	
83		2.86	95.33	
86	6 89	3	100	

, ,, ,					
Project:	Doo	Project			Hole Number: DC-20-06
	89	92	2.95	98.33	
	92	95	3.11	103.67	
	95	98	3.25	108.33	
	98	101	3.17	105.67	
1	01	104	3.03	101	
1	04	107	3.03	101	
1	07	110	2.91	97	
1	10	113	3.01	100.33	
1	13	116	3.02	100.67	
1	16	119	3.05	101.67	
1	19	122	3.08	102.67	
1	22	125	3.3	110	
1	25	128	2.2	73.33	
1	28	131	3.2	106.67	
1	31	134	3.18	106	
1	34	137	2.86	95.33	
1	37	140	3.03	101	
1	40	143	3	100	
1	43	146	2.85	95	
1	46	149	3.3	110	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 1 Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 22-SEP-2020

Account: HAGOCO

CERTIFICATE YW20190113

Project: DOC Project P.O. No.: DOC Project

This report is for 85 Drill Core samples submitted to our lab in Terrace, BC, Canada

on 20-AUG-2020.

The following have access to data associated with this certificate:

TYLER FIOLLEAU DEBORAH HOLMES RAY MARKS

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging - ClientBarCode
BAG-01	Bulk Master for Storage
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-32m	Pulverize 500g - 85%<75um

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA23	Au 30g FA-AA finish	AAS
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - A
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 22-SEP-2020
Account: HAGOCO

Project: DOC Project

(ALS	<i>3)</i>						CERTIFICATE OF ANALYSIS				_YSIS	S YW20190113				
Sample Description	Method	WEI-21	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Recvd Wt.	Ag	AI	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOD	0.02	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01	10
29026		2.70	0.4	1.92	3	<10	60	<0.5	<2	4.37	0.6	9	49	93	3.56	10
29027		3.53	1.2	1.68	<2	<10	80	<0.5	<2	1.65	<0.5	15	31	138	3.68	10
29028		1.81	0.5	2.81	2	<10	50	<0.5	<2	4.28	0.7	28	36	223	6.27	10
29029		1.59	1.4	2.23	3	<10	420	<0.5	<2	1.61	1.5	32	22	43	6.25	10
29030		1.66	0.2	2.44	<2	<10	50	<0.5	<2	2.89	0.9	24	27	108	5.13	10
29031		2.58	1.4	1.96	<2	<10	90	<0.5	<2	3.96	<0.5	26	19	149	6.07	10
29032		2.38	1.8	1.98	2	<10	180	0.6	<2	1.81	2.4	30	18	98	6.58	10
29033		2.02	0.2	2.64	<2	<10	60	<0.5	<2	4.42	1.1	29	23	116	6.83	10
29034		0.87	<0.2	0.37	10	<10	10	<0.5	<2	9.7	<0.5	4	8	19	2.08	<10
29035		1.05	0.2	0.35	10	<10	10	<0.5	<2	10.4	<0.5	5	9	18	2.13	<10
29036		1.99	0.6	0.12	12	<10	110	<0.5	<2	15.2	1.3	2	2	41	1.37	<10
29037		2.30	6.6	0.21	8	<10	110	<0.5	2	9.4	5.2	2	4	230	2.60	<10
29038		0.82	8.9	0.83	56	<10	430	<0.5	8	1.28	1.3	7	12	368	7.88	<10
29039		1.33	0.9	1.02	4	<10	320	<0.5	<2	2.29	0.5	4	12	34	10.05	<10
29040		4.13	1.0	0.61	3	<10	100	<0.5	<2	4.80	0.5	6	11	12	7.69	<10
29041 29042 29043 29044 29045		2.77 1.13 4.14 1.61 1.26	0.7 4.0 1.3 6.4 3.0	1.62 0.46 1.27 0.37 0.32	3 8 6 7 8	<10 <10 <10 <10 <10	160 130 170 150 180	<0.5 <0.5 <0.5 <0.5 <0.5	<2 3 2 3 <2	2.86 0.61 2.33 0.76 0.56	1.1 0.7 0.5 1.4 1.2	7 8 6 4 7	18 8 18 8	33 69 61 497 135	8.64 3.36 6.95 3.77 2.76	<10 <10 <10 <10 <10
29046 29047 29048 29049 29050		0.42 2.37 1.54 1.94 1.26	2.9 1.2 2.4 0.3 3.3	0.60 0.25 0.45 0.70 1.33	6 15 9 2 <2	<10 <10 <10 <10 <10	170 110 320 60 30	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	0.20 0.91 0.59 1.87 2.55	0.9 1.4 1.5 0.6 <0.5	7 7 10 8 7	10 6 8 10 21	145 70 60 27 2180	2.73 2.37 3.34 2.91 2.98	<10 <10 <10 <10
35801		0.82	2.5	2.01	2	<10	220	<0.5	<2	0.17	0.9	29	20	291	5.83	10
35802		2.14	0.9	1.16	2	<10	220	<0.5	<2	1.79	3.1	28	15	464	5.88	<10
35803		1.38	1.8	0.63	2	<10	430	<0.5	<2	0.11	1.6	34	7	380	5.66	<10
35804		1.68	8.6	0.38	3	<10	90	<0.5	<2	0.06	<0.5	13	5	311	5.76	<10
35805		1.78	11.6	0.38	8	<10	610	<0.5	<11	0.32	0.5	16	6	483	9.13	<10
35806 35807 35808 35809 35810		1.68 0.95 2.67 1.59 3.58	96.5 1.7 0.2 1.6 0.4	0.90 1.37 1.57 1.61 2.06	5 3 6 4 5	<10 <10 <10 <10 <10	720 330 50 250 40	0.5 0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	4.66 2.17 1.05 4.12 1.65	4.9 1.0 <0.5 0.7 <0.5	26 26 9 15 13	42 7 23 67 52	1300 173 25 66 41	5.76 5.87 3.79 4.04 4.14	<10 10 <10 10
35811		2.76	0.2	1.53	4	<10	70	<0.5	<2	0.18	<0.5	9	36	33	3.28	10
35812		2.58	0.3	1.64	3	<10	60	<0.5	<2	0.21	<0.5	8	34	24	3.61	10
35813		2.58	0.3	1.63	2	<10	70	<0.5	<2	0.22	<0.5	9	38	30	3.58	10
35814		2.76	0.2	1.83	5	<10	100	<0.5	<2	1.24	<0.5	11	53	24	3.42	10
35815		2.04	0.2	0.96	4	<10	100	<0.5	<2	5.59	<0.5	9	34	39	1.79	<10

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 22-SEP-2020 Account: HAGOCO

									C	ERTIFIC	CATE O	F ANAL	YSIS	YW201	90113	
Sample Description	Method Analyte Units LOD	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
29026 29027		<1 <1	0.12 0.22	10 <10	1.28 1.20	607 579	1 1	0.02 0.06	67 22	620 600	4 3	0.01 0.07	<2 2	6 7	29 16	<20 <20
29028		<1	0.16	<10	2.64	1805	<1	0.03	15	560	4	0.01	<2	18	81	<20
29029		1	0.12	10	2.34	1940	1	0.03	20	590	12	0.07	<2	16	29	<20
29030		<1	0.12	<10	2.36	1375	<1	0.04	16	610	3	0.01	<2	19	42	<20
29031		<1	0.73	<10	2.11	1765	<1	0.02	10	620	7	0.44	<2	16	120	<20
29032		<1	0.94	10	2.24	1870	1	0.02	15	650	33	0.02	<2	25	44	<20
29033		<1	0.26	<10	2.59	1590	<1	0.02	15	660	3	0.02	<2	21	57	<20
29034		<1	0.09	<10	0.35	931	1	< 0.01	59	610	8	0.89	<2	1	86	<20
29035		<1	0.08	<10	0.32	973	1	<0.01	65	640	8	0.97	2	1	89	<20
29036		<1	0.05	<10	0.11	2050	1	< 0.01	26	330	19	0.22	<2	2	94	<20
29037		<1	0.06	<10	0.13	3200	2	< 0.01	22	420	242	0.39	3	2	107	<20
29038		<1	0.15	10	0.32	6150	4	< 0.01	44	580	98	0.36	<2	2	36	<20
29039		<1	0.26	<10	0.42	14850	5	< 0.01	33	400	13	0.12	<2	3	73	<20
29040		<1	0.25	<10	1.09	13000	3	<0.01	34	320	9	1.00	<2	3	121	<20
29041		<1	0.37	<10	1.14	10500	1	< 0.01	41	410	21	1.02	<2	4	69	<20
29042		<1	0.12	<10	0.24	1280	4	< 0.01	37	80	52	1.16	2	2	16	<20
29043		<1	0.39	<10	0.92	5800	2	< 0.01	41	450	24	1.20	<2	3	51	<20
29044		<1	0.11	<10	0.19	2850	3	<0.01	31	570	86	0.66	3	2	26	<20
29045		<1	0.13	<10	0.10	1530	2	<0.01	36	620	29	0.06	2	2	13	<20
29046		<1	0.13	10	0.30	1590	2	< 0.01	34	480	11	0.01	<2	2	11	<20
29047		<1	0.14	10	0.06	1010	3	< 0.01	41	550	27	0.03	2	1	9	<20
29048		<1	0.26	<10	0.17	1670	2	< 0.01	47	920	27	0.39	3	2	23	<20
29049		<1	0.32	<10	0.96	760	1	< 0.01	26	850	5	0.64	<2	2	79	<20
29050		<1	0.04	<10	0.94	606	<1	0.01	16	410	<2	0.27	<2	6	22	<20
35801		<1	0.28	<10	1.47	1665	3	0.01	14	630	639	0.02	<2	9	10	<20
35802		<1	0.18	10	0.72	2490	1	0.01	16	630	26	0.01	<2	5	11	<20
35803		<1	0.25	<10	0.07	4350	5	0.01	13	460	28	<0.01	<2	4	8	<20
35804		<1	0.22	<10	0.11	405	19	< 0.01	9	310	73	0.03	<2	2	4	<20
35805		<1	0.15	10	0.06	1010	28	<0.01	28	440	250	0.26	<2	3	9	<20
35806		<1	0.44	10	0.49	1800	6	0.02	111	1280	1845	0.36	4	8	30	<20
35807		<1	0.94	10	0.99	1325	1	0.03	9	2000	16	0.18	<2	10	30	<20
35808		<1	0.13	10	1.08	381	1	0.01	63	960	6	0.15	3	2	13	<20
35809		1	0.23	<10	1.49	1050	1	0.02	91	790	44	0.87	<2	8	66	<20
35810		<1	0.10	10	1.64	442	1	0.02	98	540	16	0.44	<2	4	24	<20
35811		<1	0.10	10	1.14	191	1	0.02	88	370	6	0.28	<2	3	5	<20
35812		<1	0.21	<10	1.27	205	1	0.03	72	300	6	0.19	<2	6	4	<20
35813		1	0.12	<10	1.25	224	1	0.02	77	290	5	0.13	<2	6	4	<20
35814		<1	0.39	<10	1.34	305	1	0.03	81	1170	4	0.14	<2	6	11	<20
35815		<1	0.04	<10	0.54	757	1	0.04	77	1120	4	0.02	<2	3	47	<20

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 22-SEP-2020 Account: HAGOCO

									CERTIFICATE OF ANALYSIS YW20190113
Sample Description	Method Analyte Units LOD	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA23 Au ppm 0.005	Au ppm
20026	LOD	0.04			56		102	0.006	
29026 29027		0.04	<10 <10	<10 <10	105	<10 <10	67	< 0.005	
29028		0.06	<10	<10	183	<10	139	0.006	
29029		0.02	<10	<10	124	<10	154	0.528	
29030		0.08	<10	<10	180	<10	121	< 0.005	
29031		0.06	<10	<10	141	<10	101	0.256	
29032		0.10	<10	<10	163	<10	174	0.376	
29033		0.06	<10	<10	228	<10	147	0.007	
29034		< 0.01	<10	<10	10	<10	15	< 0.005	
29035		<0.01	<10	<10	10	<10	11	< 0.005	5
29036		<0.01	<10	<10	5	10	28	0.005	
29037		0.01	<10	<10	7	140	147	0.133	
29038		0.03	<10	<10	41	230	76	0.260	
29039		0.05	<10	<10	25	40	62	0.051	
29040		0.03	<10	<10	14	20	39	0.080	
29041		0.09	10	<10	37	<10	102	0.078	
29042		0.01	<10	<10	12	210	36	0.328	
29043		0.06	<10	<10	27	120	69	0.109	
29044		0.01	<10	<10	16	2220	80	0.277	
29045		0.01	<10	<10	24	100	81	0.150	
29046		0.04	<10	<10	26	40	73	0.024	
29047		0.01	<10	<10	18	10	70	0.049	
29048		0.02	<10	<10	22	100	97	0.305	
29049		0.06	<10	<10	19	<10	82	0.064	
29050		0.09	<10	<10	63	<10	55	0.011	
35801		0.03	<10	<10	86	10	174	0.257	
35802		0.01	<10	<10	69	20	223	0.027	
35803		0.01	<10	<10	39	10	79	0.258	
35804		<0.01	<10	<10	16	90	34	2.36	
35805		<0.01	<10	<10	31	320	35	3.95	
35806		0.04	<10	<10	63	<10	381	4.36	
35807		0.14	<10	<10	78	<10	118	0.530	
35808		0.01	<10	<10	38	<10	62	0.006	
35809		0.05	<10	<10	75	<10	93	0.063	
35810		0.01	<10	<10	55	<10	65	0.008	
35811		0.01	<10	<10	48	<10	43	< 0.005	
35812		0.15	<10	<10	83	<10	46	< 0.005	
35813		0.14	<10	<10	81	<10	46	0.006	
35814		0.17	<10	<10	71	<10	50	<0.005	
35815		0.15	<10	<10	34	<10	32	< 0.005	

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1

Page: 3 - A
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 22-SEP-2020
Account: HAGOCO

(ALS								CI	ERTIFIC	CATE O	F ANAL	_YSIS	YW201	190113		
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
35816 35817 35818 35819 35820		2.95 3.45 1.65 2.31 2.69	0.3 0.3 0.3 <0.2 0.2	1.24 1.96 1.80 1.91 1.93	3 <2 2 5 4	<10 <10 <10 <10 <10	70 80 60 80 70	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	1.86 0.60 0.14 0.81 0.20	<0.5 <0.5 <0.5 <0.5 0.6	16 10 8 9	57 27 31 19 40	52 28 38 26 27	2.35 3.96 3.90 3.95 3.89	<10 10 10 10 10
35821 35822 35823 35824 35825		2.86 2.01 3.15 0.71 2.22	0.2 0.2 <0.2 0.2 0.2	1.45 1.40 1.44 1.82 1.63	2 2 2 4 <2	<10 <10 <10 <10 <10	50 70 40 40 40	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.10 0.10 0.06 0.06 0.05	<0.5 <0.5 <0.5 <0.5 <0.5	10 8 7 10 8	35 37 40 42 42	45 30 19 45 24	3.60 2.81 2.72 3.57 3.12	<10 <10 <10 <10
37301 37302 37303 37304 37305		2.21 3.12 2.47 0.61 0.80	<0.2 0.5 0.8 0.4 0.4	1.28 1.64 1.67 2.36 2.40	<2 25 26 <2 <2	<10 <10 <10 <10 <10	270 130 130 100 110	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 2 2	1.92 2.07 2.41 3.00 3.21	<0.5 0.6 0.7 0.5 <0.5	10 23 31 18 19	16 5 5 10 9	72 62 66 111 136	2.74 4.86 5.39 5.29 5.32	10 <10 <10 10
37306 37307 37308 37309 37310		1.88 2.23 1.99 2.79 3.95	0.3 0.3 <0.2 <0.2 <0.2	1.88 0.51 1.50 1.31 1.47	2 4 <2 2 3	<10 <10 <10 <10 <10	170 30 300 190 260	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	3.67 10.8 0.49 1.12 1.15	<0.5 1.4 <0.5 <0.5 <0.5	16 7 14 15	8 15 7 7 4	113 60 78 111 68	5.56 1.92 3.60 3.54 3.51	10 <10 10 <10
37311 37312 37313 37314 37315		3.79 3.28 2.57 4.28 3.43	0.2 0.2 <0.2 <0.2 <0.2	1.38 1.34 1.26 1.68 1.39	<2 <2 2 2 <2	<10 <10 <10 <10 <10	50 70 70 300 270	<0.5 <0.5 <0.5 <0.5 <0.5	2 <2 <2 <2 <2	0.99 0.55 0.65 0.71 1.45	<0.5 <0.5 <0.5 <0.5 <0.5	14 14 14 15	6 4 5 6 3	100 110 104 98 86	3.49 3.39 3.23 3.93 3.25	10 10 10 10
37316 37317 37318 37319 37320		2.18 2.53 0.80 2.05 3.76	<0.2 0.2 0.3 <0.2 <0.2	1.43 1.46 1.28 1.41 1.62	2 2 3 2 <2	<10 <10 <10 <10 <10	240 110 190 50 40	<0.5 <0.5 <0.5 <0.5 <0.5	2 <2 2 2 <2	0.86 0.62 4.42 1.72 1.69	<0.5 <0.5 0.8 <0.5 <0.5	14 13 10 13 16	16 17 6 4 5	74 81 67 102 101	3.33 3.67 5.98 3.53 4.14	10 10 <10 10
37321 37322 37323 37324 37325		0.80 1.23 1.17 2.01 1.81	0.6 0.2 0.2 <0.2 1.2	1.75 1.92 1.91 0.82 0.31	2 <2 <2 <2 2	<10 <10 <10 <10 <10	90 60 60 50 200	<0.5 <0.5 <0.5 <0.5 <0.5	2 <2 <2 <2 <2	4.62 1.89 2.01 5.41 1.49	1.0 <0.5 <0.5 0.7 1.6	14 18 17 14 20	4 6 6 47 3	187 108 106 10 35	5.59 5.01 5.00 3.99 3.83	10 10 10 <10 <10
37326 37327 37328 37329 37330		1.72 2.54 1.69 3.85 3.43	0.8 0.2 0.8 0.8 0.9	0.43 0.67 0.50 0.32 0.31	<2 <2 2 <2 <2	<10 <10 <10 <10 <10	170 80 230 50 130	<0.5 <0.5 <0.5 <0.5 0.5	<2 <2 <2 <2 <2 <2	2.43 3.07 2.92 3.32 3.42	1.3 0.7 2.0 0.9 1.2	15 16 19 16 15	5 4 6 3 3	63 96 106 53 8	3.48 3.78 4.20 3.20 2.81	<10 <10 <10 <10 <10

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 3 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 22-SEP-2020 Account: HAGOCO

(ALS	,								CI	ERTIFIC	CATE O	F ANAL	YSIS	YW201	90113	
Sample Description	Method Analyte Units LOD	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
35816 35817		<1 1 1	0.09 0.32	<10 <10	0.90 1.48	344 267	1	0.06 0.03	107 55	1240 570	3 5	0.17 0.01	<2 <2	3 7	17 6	<20 <20
35818 35819 35820		1 <1	0.10 0.13 0.10	<10 10 <10	1.34 1.32 1.42	223 784 238	1 1 1	0.02 0.01 0.02	54 84 66	470 1360 770	3 7 15	<0.01 <0.01 0.02	<2 <2 <2	4 3 3	3 9 5	<20 <20 <20
35821 35822 35823 35824		1 <1 <1 <1	0.08 0.10 0.11 0.14	<10 10 10 10	1.00 0.96 0.94 1.19	171 195 182 210	2 1 <1 1	0.02 0.02 0.02 0.01	91 65 45 61	370 210 210 180	6 20 19 40	0.47 0.03 0.02 0.01	<2 <2 <2 <2	2 2 2 2	4 3 2 3	<20 <20 <20 <20
35825		1	0.13	10	1.10	203	1	0.01	52	110	8	<0.01	<2	2 5	3	<20 <20 <20
37301 37302 37303 37304 37305		1 <1 <1 1	0.37 0.18 0.17 0.18 0.17	10 10 10 10	0.79 0.66 1.01 1.38 1.39	1150 1640 1380 1405	<1 <1 1 <1 <1	0.04 0.02 0.02 0.02 0.02	9 8 7 7	970 1260 1110 1210	<2 5 5 4 4	0.29 0.21 0.15 0.04 0.04	<2 <2 <2 <2 <2	5 8 6 7 7	42 61 92 90	<20 <20 <20 <20 <20
37306 37307 37308 37309 37310		<1 <1 1 1	0.09 0.03 0.81 0.48 0.71	10 <10 <10 <10 <10	1.52 0.35 0.96 0.76 0.90	1305 688 377 479 502	1 1 <1 2 <1	0.03 0.02 0.05 0.05 0.05	7 15 6 7 4	2060 450 760 770 840	15 15 <2 3 2	0.15 0.24 0.11 0.52 0.09	<2 <2 <2 <2 <2	9 4 4 6 5	76 40 4 8 7	<20 <20 <20 <20 <20
37311 37312 37313 37314 37315		<1 <1 <1 <1 <1	0.19 0.32 0.23 0.78 0.47	<10 <10 <10 <10 <10	0.91 0.89 0.83 1.06 0.85	508 416 439 494 557	<1 <1 <1 <1 <1	0.05 0.06 0.06 0.05 0.06	6 5 4 6 3	770 790 750 790 930	<2 2 2 2 <2 2	0.03 0.02 0.01 0.02 0.03	<2 <2 <2 <2 <2 <2	5 5 5 5	8 6 13 7	<20 <20 <20 <20 <20 <20
37316 37317 37318 37319 37320		<1 1 <1 1 1	0.54 0.31 0.33 0.22 0.14	<10 <10 10 <10 <10	0.94 1.01 0.62 0.98 1.27	496 505 5360 718 670	<1 <1 2 <1 <1	0.05 0.05 0.01 0.05 0.05	9 10 11 5	920 840 600 790 820	2 2 5 3 2	0.02 0.02 0.02 0.02 0.04 0.03	- <2 <2 <2 <2 <2	5 8 11 9	7 7 23 15 16	<20 <20 <20 <20 <20 <20
37321 37322 37323 37324 37325		1 1 <1 1 <1	0.29 0.29 0.31 0.21 0.24	<10 <10 <10 <10 <10	1.09 1.45 1.44 2.35 0.10	2200 721 739 1995 1845	1 <1 <1 1	0.02 0.04 0.04 0.01 0.01	8 5 6 77 7	730 800 790 730 690	7 3 3 4 5	0.04 0.02 0.02 0.25 0.48	<2 <2 <2 <2 <2	14 15 15 6 4	25 16 18 188 24	<20 <20 <20 <20 <20
37326 37327 37328 37329 37330		1 <1 <1 <1 <1	0.27 0.36 0.35 0.29 0.28	<10 <10 <10 <10 <10	0.17 0.62 0.64 1.07 1.21	1475 1015 2300 1580 2120	1 1 2 1 1	0.01 0.01 <0.01 <0.01 <0.01	13 6 15 9 7	670 650 910 560 1100	3 3 6 5 5	0.33 0.17 0.67 1.36 1.53	<2 <2 <2 <2 <2	3 4 8 3 3	23 51 80 153 173	<20 <20 <20 <20 <20

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 3 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 22-SEP-2020 Account: HAGOCO

									CERTIFICATE OF ANALYSIS YW20190113
Sample Description	Method Analyte Units LOD	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05
35816		0.20	<10	<10	49	<10	36	<0.005	
35817		0.15	<10	<10	97	<10	69	0.006	
35818		0.01	<10	<10	77	<10	60	0.005	
35819		0.01	<10	<10	37	<10	63	0.006	
35820		0.01	<10	<10	63	<10	83	0.011	
35821		< 0.01	<10	<10	53	<10	55	< 0.005	
35822		< 0.01	<10	<10	30	<10	45	0.009	
35823		0.01	<10	<10	27	10	51	0.005	
35824		0.01	<10	<10	37	<10	67	0.011	
35825		0.01	<10	<10	33	<10	58	0.006	
37301		0.17	<10	<10	75	<10	80	< 0.005	
37302		< 0.01	<10	<10	31	<10	97	0.032	
37303		0.01	<10	<10	47	<10	67	0.046	
37304		0.06	<10	<10	78	<10	93	0.026	
37305		0.06	<10	<10	80	<10	89	0.008	
37306		0.01	<10	<10	73	<10	108	< 0.005	
37307		0.05	<10	<10	37	<10	128	0.011	
37308		0.24	<10	<10	132	<10	58	< 0.005	
37309		0.23	<10	<10	107	<10	60	< 0.005	
37310		0.25	<10	<10	118	<10	69	< 0.005	
37311		0.16	<10	<10	120	<10	63	< 0.005	
37312		0.14	<10	<10	113	<10	56	0.005	
37313		0.17	<10	<10	112	<10	60	< 0.005	
37314		0.28	<10	<10	148	<10	74	< 0.005	
37315		0.25	<10	<10	107	<10	68	< 0.005	
37316		0.24	<10	<10	110	<10	66	< 0.005	
37317		0.18	<10	<10	116	<10	63	< 0.005	
37318		0.07	<10	<10	70	<10	74	0.054	
37319		0.15	<10	<10	113	<10	58	< 0.005	
37320		0.18	<10	<10	134	<10	71	< 0.005	
37321		0.10	<10	<10	125	<10	97	0.013	
37322		0.16	<10	<10	176	<10	80	< 0.005	
37323		0.18	<10	<10	177	<10	79	< 0.005	
37324		0.01	<10	<10	16	<10	65	0.021	
37325		<0.01	<10	<10	16	<10	61	0.415	
37326		0.02	<10	<10	17	<10	62	0.213	
37327		0.05	<10	<10	25	<10	70	0.010	
37328		0.02	<10	<10	26	<10	91	0.247	
37329		0.01	<10	<10	10	<10	54	0.209	
37330		< 0.01	<10	<10	8	10	59	0.273	

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fay:

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1

Page: 4 - A
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 22-SEP-2020
Account: HAGOCO

									С	ERTIFIC	CATE O	F ANA	LYSIS	YW201	90113	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
37331 37332 37333 37334 37335		2.23 2.39 1.72 2.73 4.18	0.6 2.9 63.5 1.3 0.6	0.25 0.25 0.11 0.32 0.42	2 <2 3 <2 2	<10 <10 <10 <10 <10	70 400 580 350 320	<0.5 0.5 <0.5 <0.5 <0.5	<2 <2 3 <2 <2	3.12 1.63 0.09 0.83 1.55	1.1 2.8 1.9 1.5 0.6	15 20 7 10 8	2 7 7 12 8	10 16 266 38 35	2.97 3.70 2.64 2.48 2.27	<10 <10 <10 <10 <10

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 4 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 22-SEP-2020 Account: HAGOCO

									CI	ERTIFIC	CATE O	F ANAL	YSIS	YW201	90113	
Sample Description	Method Analyte Units LOD	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
37331		1	0.23	<10	0.97	1545	1	<0.01	6	630	4	1.50	<2	3	123	<20
37332		<1	0.20	10	0.07	1965	6	< 0.01	50	850	67	0.15	<2	4	21	<20
37333		<1	0.06	10	0.02	496	16	< 0.01	9	350	1590	0.22	<2	2	21	<20
37334		<1	0.19	<10	0.37	941	1	0.01	20	390	19	0.55	<2	3	44	<20
37335		<1	0.24	<10	0.59	766	1	0.01	16	400	8	0.54	<2	2	70	<20

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 4 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 22-SEP-2020 Account: HAGOCO

									CERTIFICATE OF ANALYSIS YW20190113
Sample Description	Method Analyte Units LOD	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05
37331 37332 37333 37334 37335		<0.01 <0.01 <0.01 0.02 0.03	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	7 8 23 16 16	<10 <10 <10 <10 <10	48 97 106 80 57	0.177 0.839 >10.0 0.282 0.137	16.55

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 22-SEP-2020 Account: HAGOCO

4L3)		CERTIFICATE COMMENTS LABORATORY ADDRESSES ellowknife located at # 8 - 3 Coronation Drive, X1A 0G5, Yellowknife, NT, Canada. CRU-31 CRU-QC LOG-21 PUL-QC SPL-21 WEI-21 ancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au-GRA21 ME-ICP41	YSIS YW20190113	
		CERTIFICATE C	OMMENTS	
		LAB	ORATORY ADDRESSES	
Applies to Method:	Processed at ALS Yellowknife BAG-01 PUL-32m	CRU-31	CRU-QC	
Applies to Method:	Processed at ALS Vancouver Au-AA23			

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1

Page: 1 Total # Pages: 4 (A - C) **Plus Appendix Pages** Finalized Date: 2-OCT-2020 This copy reported on 5-OCT-2020

Account: HAGOCO

CERTIFICATE YW20192720

Project: DOC Project P.O. No.: DOC Project

This report is for 82 Drill Core samples submitted to our lab in Terrace, BC, Canada

on 26-AUG-2020.

The following have access to data associated with this certificate:

TYLER FIOLLEAU **DEBORAH HOLMES RAY MARKS**

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging - ClientBarCode
BAG-01	Bulk Master for Storage
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-32m	Pulverize 500g - 85%<75um

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Ag-OG46	Ore Grade Ag - Aqua Regia	
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
Au-AA23	Au 30g FA-AA finish	AAS
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - A
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 2-OCT-2020
Account: HAGOCO

(ALS	WELD A ADD A SOLD WEISSLE								CI	ERTIFIC	CATE O	F ANAL	YSIS	YW201	92720	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
A0862501 A0862502 A0862503 A0862504 A0862505		1.13 2.08 2.38 2.13 2.35	0.056 <0.005 0.010 0.025 <0.005		1.3 0.2 0.3 0.6 0.2	1.15 1.33 0.83 0.94 1.90	27 <2 6 20 3	20 <10 <10 <10 <10	510 80 100 80 20	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	2.22 3.06 3.60 3.91 2.81	1.3 0.5 0.7 0.8 <0.5	18 16 15 16 20	4 6 4 5 9	230 81 66 120 112
A0862506 A0862507 A0862508 A0862509 A0862510		2.46 2.46 0.89 1.94 1.14	<0.005 <0.005 0.021 0.129 0.005		<0.2 <0.2 0.5 0.4 0.3	2.11 2.47 1.41 1.64 1.59	<2 <2 <2 <2 <2	<10 <10 <10 <10 <10	60 30 60 140 80	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	3.51 3.04 4.57 2.79 3.05	0.5 <0.5 0.7 1.3 0.5	21 22 18 19 20	9 10 8 10 7	112 128 134 110 135
A0862511 A0862512 A0862513 A0862514 A0862515		1.90 2.47 0.94 2.41 1.31	0.062 0.037 0.198 <0.005 0.203		0.3 0.4 0.6 0.3 2.0	1.70 1.68 2.16 1.72 1.03	<2 <2 <2 <2 2	<10 <10 <10 <10 <10	570 180 100 60 160	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 2 <2 <2	2.68 2.37 4.98 3.55 2.06	0.8 0.6 1.0 0.7 2.0	20 21 23 17 26	9 12 10 6 6	96 129 162 132 263
A0862516 A0862517 A0862518 A0862519 A0862520		1.66 1.73 1.14 1.86 1.31	0.495 0.101 <0.005 0.005 0.012		2.1 1.2 <0.2 0.7 0.4	0.30 1.30 1.82 2.90 0.69	<2 14 <2 2 7	<10 <10 <10 <10 <10	40 150 60 50 2490	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 2 2	0.81 4.25 2.90 3.54 12.1	<0.5 1.3 <0.5 <0.5 6.3	4 14 11 24 17	12 3 8 21 3	67 146 64 220 7
A0862521 A0862522 A0862523 A0862524 A0862525		0.97 3.57 2.42 1.45 0.91	0.005 <0.005 <0.005 <0.005 <0.005		0.3 0.2 <0.2 0.2 0.5	2.29 2.47 2.71 2.73 2.16	<2 <2 <2 <2 <2	<10 <10 <10 <10 <10	90 230 190 210 40	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	3.62 2.23 3.54 2.65 6.80	0.9 0.7 <0.5 0.6 7.1	21 19 18 19 13	12 12 11 18 9	38 101 59 76 68
A0862526 A0862527 A0862528 A0862529 A0862530		3.05 3.46 0.68 0.82 0.68	<0.005 <0.005 <0.005 <0.005 <0.005		0.2 <0.2 <0.2 <0.2 <0.2	2.92 2.50 1.81 2.40 2.42	<2 2 <2 <2 <2	<10 <10 <10 <10 <10	30 80 50 330 380	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	3.11 3.16 1.51 1.79 1.61	0.6 <0.5 <0.5 <0.5 <0.5	21 21 17 19 20	21 13 14 16 14	51 115 86 130 77
40862531 40862532 40862533 40862534 40862535		2.71 2.56 0.93 0.98 2.33	<0.005 <0.005 <0.005 0.005 <0.005		<0.2 <0.2 <0.2 0.3 0.2	1.87 2.06 2.27 2.36 2.82	<2 2 <2 <2 <2	<10 <10 <10 <10 <10	30 150 10 50 40	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	2.05 1.40 2.93 1.50 2.25	<0.5 <0.5 <0.5 <0.5	11 23 20 23 23	10 11 11 13 21	61 126 180 376 120
A0862536 A0862537 A0862538 A0862539 A0862540		1.78 0.99 0.72 1.56 1.44	<0.005 <0.005 <0.005 <0.005 <0.005		<0.2 0.2 0.2 0.2 <0.2	2.51 2.77 2.94 1.36 3.08	2 2 <2 <2 <2	<10 <10 <10 <10 <10	20 20 40 80 40	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	2.41 2.35 3.37 3.77 4.72	<0.5 <0.5 <0.5 0.8 <0.5	22 22 22 14 23	17 19 16 8 24	91 94 71 12 3

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 2-OCT-2020 Account: HAGOCO

(ALS	,								C	ERTIFIC	CATE O	F ANAL	_YSIS	YW201	92720	
Sample Description	Method Analyte Units LOD	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
A0862501 A0862502 A0862503 A0862504 A0862505		10.70 4.90 4.26 4.56 5.66	<10 <10 <10 <10 10	<1 <1 <1 <1 <1	0.45 0.22 0.25 0.21 0.08	<10 <10 <10 <10 <10	0.56 1.09 0.70 1.34 1.89	6390 1235 1230 1235 1060	3 1 1 1	0.01 0.02 0.02 0.01 0.02	9 7 5 8 9	630 930 780 670 750	7 4 4 5 5	0.05 0.02 0.06 0.26 0.06	2 4 5 7 <2	8 6 5 6 11
A0862506 A0862507 A0862508 A0862509 A0862510		6.19 5.96 5.86 5.42 5.87	10 10 10 10 10 <10	<1 <1 <1 <1 <1	0.09 0.05 0.22 0.11 0.13	<10 <10 <10 <10 <10	1.49 2.23 1.16 1.58 1.16	1325 1240 1745 1105 1650	1 <1 1 <1 1	0.02 0.03 0.02 0.03 0.02	9 8 9 10 7	820 650 620 720 800	3 5 4 17 6	0.04 0.06 0.03 0.34 0.02	3 <2 <2 <2 <2	12 16 13 11 8
A0862511 A0862512 A0862513 A0862514 A0862515		5.42 5.43 5.81 5.09 5.46	10 10 10 10 10 <10	<1 <1 <1 <1 <1	0.24 0.40 0.97 0.16 0.30	<10 <10 <10 10 <10	1.74 1.41 1.68 1.21 0.63	1320 1465 1730 1025 1795	<1 1 <1 <1 2	0.03 0.02 0.01 0.02 <0.01	10 10 9 7 9	750 800 620 1050 1150	14 16 21 14 71	0.44 0.26 1.29 0.10 0.57	<2 <2 <2 <2 <2	15 10 16 7 7
A0862516 A0862517 A0862518 A0862519 A0862520		1.20 3.79 4.15 6.82 11.15	<10 <10 10 10 <10	<1 <1 <1 <1 <1	0.08 0.21 0.14 0.10 0.12	<10 <10 <10 <10 <10	0.15 0.68 1.06 1.83 0.41	480 1630 961 1160 6030	1 <1 <1 <1 8	<0.01 0.01 0.02 0.02 0.01	1 4 5 13 10	180 860 730 960 490	35 8 3 5 194	0.18 1.03 0.05 0.43 0.09	<2 <2 2 <2 <2	1 5 7 10 8
A0862521 A0862522 A0862523 A0862524 A0862525		5.51 5.70 6.08 5.97 4.76	10 10 10 10 10	<1 <1 <1 <1 <1	0.17 0.22 0.36 0.51 0.12	<10 <10 <10 10	1.30 1.50 1.77 1.82 1.30	1060 1000 1545 1085 1695	<1 <1 <1 <1 <1	0.01 0.02 0.02 0.03 0.02	11 8 7 10 7	1280 1230 1320 900 710	29 35 6 17 700	0.10 0.08 0.03 0.05 0.04	<2 <2 <2 <2 <2	7 9 9 13 9
A0862526 A0862527 A0862528 A0862529 A0862530		6.30 5.66 4.54 5.22 5.44	10 10 10 10 10	<1 <1 <1 <1 <1	0.10 0.23 0.34 0.66 0.74	10 <10 <10 <10 <10	2.11 1.82 1.40 1.46 1.57	1020 931 594 744 788	<1 <1 <1 <1 <1	0.03 0.04 0.04 0.06 0.04	11 9 8 9 9	970 1010 1090 1180 1100	24 3 <2 2 2	0.03 0.02 0.19 0.01 0.01	<2 <2 <2 <2 <2	12 10 7 14 13
A0862531 A0862532 A0862533 A0862534 A0862535		4.12 5.09 5.17 6.08 6.21	10 10 10 10 10	<1 <1 <1 <1 <1	0.10 0.45 0.12 0.20 0.15	<10 <10 <10 <10 <10	1.04 1.49 1.56 1.54 1.98	704 576 821 671 944	<1 1 1 2 <1	0.03 0.05 0.04 0.05 0.04	5 8 7 10 12	730 1020 1110 960 990	4 <2 <2 <2 <2 8	0.03 0.36 0.15 0.83 0.20	<2 <2 <2 2 2	6 9 9 10 14
A0862536 A0862537 A0862538 A0862539 A0862540		5.84 6.26 6.42 4.80 7.13	10 10 10 <10 10	<1 <1 <1 <1 <1	0.15 0.08 0.12 0.21 0.12	<10 <10 <10 <10 <10	1.72 1.95 1.99 1.68 2.52	796 1000 1105 1830 1350	1 1 <1 <1 1	0.04 0.04 0.02 0.01 0.02	10 13 13 11 39	1000 780 570 710 1690	<2 3 <2 8 5	0.27 0.17 0.13 0.26 0.12	<2 <2 <2 <2 <2	11 13 8 5 9

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 2-OCT-2020 Account: HAGOCO

(C	ERTIFICATI	OF ANALYSIS	YW20192720
Sample Description	Method Analyte Units LOD	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-OG46 Ag ppm 1		
A0862501		31	<20	0.07	<10	<10	82	10	143			
A0862502		54	<20	0.07	<10	<10	68	<10	91			
A0862503		53	<20	0.06	<10	<10	36	<10	75 05			
A0862504		116	<20	0.04	<10	<10	38	<10	95			
A0862505		59	<20	0.07	<10	<10	132	<10	104			
A0862506		35	<20	0.04	<10	<10	123	<10	112			
A0862507		41	<20	0.06	<10	<10	200	<10	104			
A0862508		53	<20	0.07	<10	<10	118	<10	98			
A0862509		69	<20	0.04	<10	<10	140	<10	117			
A0862510		23	<20	0.03	<10	<10	91	<10	116			
A0862511		81	<20	0.10	<10	<10	129	<10	123			
A0862512		31	<20	0.07	<10	<10	102	<10	102			
A0862513		111	<20	0.16	<10	<10	122	<10	99			
A0862514		292	<20	0.02	<10	<10	48	<10	95			
A0862515		75	<20	0.03	<10	<10	48	<10	90			
A0862516		27	<20	<0.01	<10	<10	3	<10	21			
A0862517		132	<20	< 0.01	<10	<10	11	<10	71			
A0862518		128	<20	0.06	<10	<10	50	<10	96			
A0862519		145	<20	0.03	<10	<10	126	<10	139			
A0862520		112	<20	< 0.01	<10	<10	30	<10	292			
A0862521		119	<20	0.01	<10	<10	71	<10	194			
A0862522		108	<20	0.14	<10	<10	99	<10	135			
A0862523		102	<20	0.13	<10	<10	105	<10	162			
A0862524		71	<20	0.10	<10	<10	111	<10	119			
A0862525		182	<20	0.01	<10	<10	56	<10	394			
A0862526		68	<20	0.02	<10	<10	133	<10	109			
A0862527		116	<20	0.24	<10	<10	160	<10	114			
A0862528		19	<20	0.19	<10	<10	138	<10	70			
A0862529		83	<20	0.30	<10	<10	162	<10	84			
A0862530		64	<20	0.32	<10	<10	159	<10	91			
A0862531		83	<20	0.15	<10	<10	64	<10	89			
A0862532		37	<20	0.21	<10	<10	159	<10	76			
A0862533		51	<20	0.15	<10	<10	150	<10	79			
A0862534		33	<20	0.18	<10	<10	162	<10	78			
A0862535		46	<20	0.26	<10	<10	172	<10	94			
A0862536		51	<20	0.21	<10	<10	164	<10	79			
A0862537		60	<20	0.14	<10	<10	166	<10	121			
A0862538		83	<20	0.01	<10	<10	118	<10	151			
A0862539		105	<20	<0.01	<10	<10	32	<10	118			
A0862540		105	<20	0.01	<10	<10	93	<10	214			

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 3 - A
Total # Pages: 4 (A - C)
Plus Appendix Pages
Finalized Date: 2-OCT-2020
Account: HAGOCO

(ALS	4L3)								CI	ERTIFIC	CATE O	F ANAI	_YSIS	YW201	92720	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
A0862541 A0862542 A0862543 A0862544 A0862545		3.54 1.34 1.32 1.70 3.17	0.013 1.755 0.851 0.188 0.007		0.4 17.1 6.7 1.4 0.3	1.46 1.09 0.02 1.06 1.40	<2 6 2 <2 <2	<10 <10 <10 <10 <10	80 190 <10 250 90	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	3.59 0.41 0.01 4.44 4.04	0.5 1.4 <0.5 1.4 0.5	19 21 1 19 22	7 8 15 6 9	127 152 41 62 80
A0862546 A0862547 A0862548 A0862549 A0862550		4.67 1.09 3.67 0.94 2.55	0.005 <0.005 <0.005 <0.005 0.006		<0.2 <0.2 <0.2 0.3 <0.2	2.32 1.74 2.07 2.08 2.08	<2 <2 2 <2 2	<10 <10 <10 <10 <10	90 30 30 50 50	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 2	3.50 3.26 3.37 7.16 1.60	<0.5 <0.5 <0.5 0.9 <0.5	22 14 17 17 18	19 68 48 7 13	132 47 100 152 147
A0862551 A0862552 A0862553 A0862554 A0862555		3.76 1.33 1.22 1.76 1.85	0.017 <0.005 0.012 <0.005 0.005		0.3 <0.2 0.8 0.3 <0.2	2.19 2.03 2.40 3.04 2.07	2 2 5 <2 <2	<10 <10 <10 <10 <10	50 70 90 220 40	<0.5 <0.5 <0.5 <0.5 <0.5	2 <2 <2 <2 <2	1.84 2.45 4.07 2.41 2.11	<0.5 <0.5 5.3 0.5 <0.5	18 17 25 24 18	15 16 10 16 14	117 117 87 136 111
A0862556 A0862557 A0862558 A0862559 A0862560		1.95 1.32 1.18 1.04 0.88	<0.005 <0.005 0.005 <0.005 <0.005		<0.2 <0.2 <0.2 <0.2 <0.2	2.09 2.31 1.58 1.29 1.37	<2 <2 <2 <2 <2	<10 <10 <10 <10 <10	20 40 10 50 40	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	1.92 3.41 1.94 1.02 1.05	<0.5 <0.5 <0.5 <0.5 <0.5	18 17 16 13 14	8 13 9 10 11	127 138 116 109 99
A0862561 A0862562 A0862563 A0862564 A0862565		0.84 3.09 0.89 1.80 1.23	<0.005 <0.005 <0.005 <0.005 <0.005		<0.2 0.4 0.7 0.3 <0.2	1.59 2.03 2.30 2.54 1.83	2 2 3 2 <2	<10 <10 <10 <10 <10	10 20 10 110 250	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	1.65 2.52 9.1 2.06 1.17	<0.5 0.6 1.3 <0.5 <0.5	16 18 18 22 18	13 16 15 10 16	104 105 95 119 138
A0862566 A0862567 A0862568 A0862569 A0862570		0.62 0.78 3.30 1.44 1.63	0.005 <0.005 <0.005 <0.005 0.366		<0.2 <0.2 0.5 0.2 2.7	1.28 1.96 2.57 2.17 0.55	2 <2 <2 2 <2	<10 <10 <10 <10 <10	70 60 30 20 200	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	1.37 2.23 3.33 2.60 1.99	<0.5 <0.5 2.4 1.0 0.9	11 17 20 16 9	14 11 11 10 3	56 86 102 23 71
A0862571 A0862572 A0862573 A0862574 A0862575		1.01 2.07 1.49 2.11 1.46	1.715 >10.0 0.277 0.031 0.035	18.15	25.2 >100 7.2 1.4 0.4	0.25 0.05 0.75 1.38 1.08	<2 <2 3 2 <2	<10 <10 <10 <10 <10	20 10 150 130 100	<0.5 <0.5 <0.5 <0.5 <0.5	<2 2 <2 <2 <2	0.11 0.01 0.04 0.30 3.71	<0.5 <0.5 <0.5 0.7	5 2 25 13 16	12 15 3 3 3	35 198 759 399 112
A0862576 A0862577 A0862578 A0862579 A0862580		2.67 3.52 3.39 1.47 0.91	0.006 <0.005 0.006 0.005 0.005		0.3 0.2 <0.2 <0.2 0.2	2.35 2.43 2.08 2.50 2.30	<2 <2 <2 2 2	<10 <10 <10 <10 <10	80 20 30 40 20	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 2 <2	4.57 3.36 2.89 3.36 3.53	<0.5 <0.5 <0.5 0.5 <0.5	22 23 22 25 22	10 19 20 17 20	138 146 91 113 188

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 3 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 2-OCT-2020 Account: HAGOCO

(ALS	ALS)									ERTIFIC	CATE O	F ANAL	_YSIS	YW201	92720	
Sample Description	Method Analyte Units LOD	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
A0862541 A0862542 A0862543 A0862544 A0862545		5.27 5.39 0.65 4.79 5.44	<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	0.26 0.25 0.01 0.29 0.25	10 10 <10 <10 10	0.86 0.32 <0.01 1.51 1.72	1185 1225 58 1450 1320	1 3 1 <1 <1	0.01 0.01 <0.01 0.01 0.02	9 17 1 11 10	970 950 10 910 830	4 69 31 60 32	0.10 0.26 0.04 0.87 0.08	3 2 <2 2 <2	5 3 <1 5 6
A0862546 A0862547 A0862548 A0862549 A0862550		5.80 2.55 3.68 5.53 4.66	10 <10 10 10	<1 <1 <1 <1 <1	0.13 0.10 0.13 0.17 0.14	<10 <10 <10 10 <10	1.79 1.76 1.81 1.20 1.31	1225 519 778 1770 751	<1 <1 <1 1 <1	0.03 0.05 0.04 0.02 0.05	14 44 35 6 9	930 1180 1180 940 1110	<2 <2 26 43 <2	0.10 <0.01 0.04 0.14 0.13	<2 <2 3 <2 <2	7 6 7 9
A0862551 A0862552 A0862553 A0862554 A0862555		4.81 5.51 5.78 7.07 4.18	10 10 10 10	<1 <1 <1 <1 <1	0.13 0.14 0.18 0.44 0.15	<10 <10 10 <10 <10	1.45 1.39 1.41 2.08 1.38	830 867 1380 1025 674	<1 <1 <1 <1 <1	0.05 0.04 0.01 0.03 0.06	8 8 10 11 8	1360 930 920 1230 1010	<2 <2 303 2 2	0.11 0.12 0.24 0.10 0.04	3 2 <2 2 <2	9 12 9 18 8
40862556 40862557 40862558 40862559 40862560		4.30 4.84 4.15 3.28 3.46	10 10 10 10 10	<1 <1 <1 <1 <1	0.10 0.15 0.03 0.13 0.13	<10 <10 <10 <10 <10	1.47 1.54 1.17 0.97 1.06	731 860 566 458 482	1 1 <1 <1 <1	0.07 0.04 0.06 0.07 0.07	7 8 8 6 6	1180 1020 1080 1050 1060	<2 <2 <2 <2 <2	0.02 0.13 0.05 0.04 0.06	2 <2 <2 <2 <2	7 7 6 5 5
A0862561 A0862562 A0862563 A0862564 A0862565		4.20 5.40 6.39 6.34 4.35	10 10 10 10	<1 <1 <1 <1 <1	0.04 0.07 0.03 0.23 0.60	<10 <10 10 <10 <10	1.29 1.46 1.83 1.68 1.23	615 939 2590 981 618	1 <1 <1 <1 <1	0.06 0.05 0.03 0.04 0.08	7 8 9 7 11	1000 1060 940 910 1080	<2 30 24 <2 <2	0.05 0.10 0.43 0.30 0.08	<2 <2 <2 <2 <2	8 15 16 13 9
A0862566 A0862567 A0862568 A0862569 A0862570		3.24 5.04 5.77 4.91 2.80	10 10 10 10 <10	<1 <1 1 1 <1	0.20 0.17 0.11 0.09 0.21	<10 <10 <10 <10 10	0.85 1.47 1.63 1.32 0.31	498 736 1110 1035 894	<1 1 <1 <1 <1	0.06 0.04 0.02 0.02 <0.01	6 6 12 9 2	810 850 930 860 620	<2 4 92 25 335	0.01 0.23 0.18 0.12 0.94	<2 <2 <2 2 2 <2	9 13 12 9 2
A0862571 A0862572 A0862573 A0862574 A0862575		1.36 2.18 3.31 3.42 4.55	<10 <10 <10 <10 <10	<1 <1 <1 <1 <1	0.06 0.02 0.25 0.21 0.22	<10 <10 10 10	0.13 0.01 0.11 0.49 1.03	132 50 998 829 1035	1 6 2 <1 1	<0.01 <0.01 <0.01 <0.01 0.01	2 2 3 5 5	140 40 670 760 880	4 35 180 33 5	0.14 0.21 0.29 0.01 0.33	<2 <2 <2 <2 <2 <2	1 <1 4 3 4
A0862576 A0862577 A0862578 A0862579 A0862580		6.34 6.63 6.03 6.60 6.38	10 10 10 10	<1 <1 <1 <1 <1	0.13 0.04 0.06 0.10 0.06	10 10 10 10 <10	1.72 1.93 1.74 1.97 1.85	1340 1230 1180 1270 1245	<1 <1 <1 <1 <1	0.02 0.04 0.04 0.03 0.03	9 11 10 12 11	980 1040 1040 1400 1020	2 2 <2 <2 <2	0.15 0.04 0.02 0.05 0.13	<2 <2 <2 <2 2	9 16 11 9 12

A0862580

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 3 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 2-OCT-2020 Account: HAGOCO

Project: DOC Project

95

<10

(763)									CI	RTIFIC	ATE OF ANALYSIS	YW20192720
Sample Description	Method Analyte Units LOD	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-OG46 Ag ppm 1		
A0862541 A0862542 A0862543 A0862544 A0862545		202 30 2 449 397	<20 <20 <20 <20 <20	0.03 0.01 <0.01 0.01 0.02	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	39 26 1 33 44	<10 <10 <10 <10 <10	86 80 2 93 109			
A0862546 A0862547 A0862548 A0862549 A0862550		319 95 124 613 149	<20 <20 <20 <20 <20	0.10 0.13 0.11 0.08 0.22	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	104 85 93 91 101	<10 <10 <10 <10 <10	90 39 78 108 86			
A0862551 A0862552 A0862553 A0862554 A0862555		142 97 149 79 88	<20 <20 <20 <20 <20	0.22 0.14 0.01 0.15 0.23	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	105 124 99 188 118	<10 <10 <10 <10 <10	88 97 306 123 72			
A0862556 A0862557 A0862558 A0862559 A0862560		63 103 48 12 13	<20 <20 <20 <20 <20 <20	0.22 0.24 0.19 0.18 0.19	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	114 124 126 104 108	<10 <10 <10 <10 <10	78 107 64 49 51			
A0862561 A0862562 A0862563 A0862564 A0862565		22 48 295 59 52	<20 <20 <20 <20 <20	0.18 0.09 0.01 0.13 0.27	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	136 163 133 167 121	<10 <10 <10 <10 <10	61 111 125 96 73			
A0862566 A0862567 A0862568 A0862569 A0862570		56 40 59 44 108	<20 <20 <20 <20 <20 <20	0.19 0.16 <0.01 0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	91 131 95 83 5	<10 <10 <10 <10 <10	55 86 220 137 45			
A0862571 A0862572 A0862573 A0862574 A0862575		9 2 7 20 214	<20 <20 <20 <20 <20	0.02 <0.01 <0.01 <0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	10 2 10 11 25	<10 <10 <10 <10 <10	9 4 38 75 69	128		
A0862576 A0862577 A0862578 A0862579		218 126 91 95	<20 <20 <20 <20	0.01 0.02 0.06 0.04	<10 <10 <10 <10	<10 <10 <10 <10	112 176 159 147	<10 <10 <10 <10	104 97 87 99			

120

<20

0.11

<10

<10

154

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. **3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1**

Page: 4 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 2-OCT-2020 **Account: HAGOCO**

									C	ERTIFIC	CATE O	F ANAI	_YSIS	YW201	92720	
Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
A0862581 A0862582		1.34 0.56	0.005 0.006		<0.2	2.23 2.54	2 <2	<10 <10	40 230	0.6 <0.5	<2 <2	3.27 1.71	<0.5 <0.5	22 20	18 10	81 189

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. **3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1**

Page: 4 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 2-OCT-2020 **Account: HAGOCO**

	,								C	ERTIFIC	CATE O	F ANA	LYSIS	YW201	92720	
Sample Description	Method Analyte Units LOD	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
A0862581 A0862582	LOD	6.06 5.88	10 10	<1 <1	0.09 0.45	10 <10	1.70 1.74	1220 909	<1 <1	0.03	11 7	1160 1080	<2 <2	0.06 0.12	<2 <2 <2	9 9

ALS Canada Ltd.

2103 Dollarton Hwy

North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 4 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 2-OCT-2020 Account: HAGOCO

	,								C	ERTIFIC	ATE OF ANALYSIS	YW20192720
Sample Description	Method Analyte Units LOD	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-OG46 Ag ppm 1		
A0862581 A0862582		107 95	<20 <20	0.04 0.30	<10 <10	<10 <10	132 154	<10 <10	90 92			

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 2-OCT-2020 Account: HAGOCO

Project: DOC Project

CERTIFICATE OF ANALYSIS YW20192720

		CERTIFICATE CO	MMENIS	
			RATORY ADDRESSES	
	Processed at ALS Yellowk	nife located at #8 - 3 Coronation D	rive, X1A 0G5, Yellowknife, NT, Canada.	
Applies to Method:	BAG-01 PUL-32m	CRU-31 PUL-QC	CRU-QC SPL-21	LOG-21 WEI-21
		ver located at 2103 Dollarton Hwy, i		***************************************
Applies to Method:	Ag-OG46	Au-AA23	Au-GRA21	ME-ICP41
	ME-OG46			

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1

Page: 1 Total # Pages: 2 (A - C) **Plus Appendix Pages** Finalized Date: 30-SEP-2020 This copy reported on 5-OCT-2020

Account: HAGOCO

CERTIFICATE YW20194671

Project: DOC Project P.O. No.: DOC Project

This report is for 15 Drill Core samples submitted to our lab in Terrace, BC, Canada

on 26-AUG-2020.

The following have access to data associated with this certificate:

TYLER FIOLLEAU **DEBORAH HOLMES RAY MARKS**

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
BAG-01	Bulk Master for Storage	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
LOG-21	Sample logging - ClientBarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-32m	Pulverize 500g - 85%<75um	

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Au-AA23	Au 30g FA-AA finish	AAS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 30-SEP-2020 Account: HAGOCO

									Cl	ERTIFIC	CATE O	F ANAL	YSIS	YW201	94671	
Sample Description	Method	WEI-21	Au-AA23	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	LOD	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
37336		3.96	0.090	0.5	0.68	2	<10	160	<0.5	<2	1.65	0.8	10	10	58	2.73
37337		3.38	0.014	0.4	0.85	<2	<10	150	<0.5	<2	0.73	0.6	9	15	46	2.65
37338		8.39	0.011	0.2	1.64	2	<10	60	<0.5	<2	1.18	<0.5	14	16	79	4.48
37339		3.11	0.007	0.3	1.80	2	<10	150	<0.5	<2	2.27	<0.5	12	33	59	4.20
37340		1.49	0.005	0.2	3.28	<2	<10	50	<0.5	2	3.26	<0.5	23	8	75	6.84
37341		1.77	0.009	0.4	2.79	2	<10	40	<0.5	<2	4.50	<0.5	22	9	87	6.94
37342		1.60	0.015	0.4	2.52	<2	<10	40	<0.5	2	2.39	<0.5	18	13	92	5.88
37343		3.55	0.008	0.3	2.26	<2	<10	40	<0.5	<2	2.08	<0.5	17	12	89	5.42
37344		1.02	0.007	0.4	1.92	<2	<10	90	<0.5	<2	1.90	<0.5	16	8	94	5.39
37345		2.29	0.335	1.6	0.90	2	<10	250	<0.5	<2	4.25	1.6	25	49	57	5.34
37346 37347		1.65 1.29	0.533 0.511	3.9 3.2	0.40 0.36	<2 <2	<10 <10	360 650	<0.5 <0.5	<2 <2	2.66 3.54	1.7 2.3	17 15	3	83 18	3.83 3.95
37348		1.61	0.141	8.0	0.57	56	<10	110	<0.5	<2	5.14	1.5	21	2	42	5.83
37349		0.94	0.013	0.5	1.95	5	<10	90	<0.5	<2	4.42	0.7	14	12	77	5.65
37350		2.29	0.018	0.5	1.83	6	<10	160	<0.5	<2	3.13	0.5	18	19	82	5.36

^{*****} See Appendix Page for comments regarding this certificate *****

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 30-SEP-2020 Account: HAGOCO

CERTIFICATE OF ANALYSIS YW20194671

															<u> </u>	
Sample Description	Method Analyte Units LOD	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
37336		<10	<1	0.23	10	0.52	748	1	0.02	18	590	33	0.17	<2	4	33
37337		<10	<1	0.15	10	0.62	405	1	0.02	19	390	86	0.12	<2	3	11
37338		10	<1	0.18	<10	1.17	631	1	0.04	12	560	4	0.07	<2	11	12
37339		10	<1	0.26	10	1.27	620	<1	0.03	29	1650	4	0.08	<2	9	22
37340		10	<1	0.10	<10	2.72	1505	<1	0.03	9	1250	31	0.04	3	19	39
37341		10	<1	0.09	<10	2.19	1820	1	0.02	10	1160	6	0.20	3	17	77
37342		10	<1	0.10	<10	1.88	1215	1	0.03	10	690	2	0.23	2	9	30
37343		10	<1	0.08	<10	1.77	1030	1	0.03	8	720	4	0.11	<2	12	22
37344		10	<1	0.20	<10	1.28	1150	1	0.03	7	670	2	0.02	2	9	17
37345		<10	<1	0.40	<10	1.51	1575	1	0.02	77	860	7	0.60	<2	9	138
37346		<10	<1	0.26	<10	0.10	1305	1	0.01	9	1080	8	0.35	<2	5	30
37347		<10	<1	0.23	<10	0.27	2470	3	0.01	13	1260	10	0.27	<2	5	59
37348		<10	<1	0.25	<10	1.05	2030	1	< 0.01	8	600	7	0.75	2	6	116
37349		10	<1	0.60	<10	1.80	1575	1	0.02	9	650	6	0.06	<2	9	126
37350		10	<1	0.55	<10	1.14	1115	1	0.02	13	650	4	0.01	3	9	26

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 30-SEP-2020 Account: HAGOCO

									CERTIFICATE OF ANALYSIS YW20194671
	Method Analyte	ME-ICP41 Th	ME-ICP41 Ti	ME-ICP41 TI	ME-ICP41 U	ME-ICP41 V	ME-ICP41 W	ME-ICP41 Zn	
Sample Description	Units LOD	ppm 20	% 0.01	ppm 10	ppm 10	ppm 1	ppm 10	ppm 2	
37336		<20	0.04	<10	<10	27	<10	72	
37337		<20	0.05	<10	<10	37	<10	103	
37338		<20	0.14	<10	<10	132	<10	85	
37339		<20	0.10	<10	<10	77	<10	102	
37340		<20	0.08	<10	<10	212	<10	147	
37341		<20	0.08	<10	<10	174	<10	125	
37342		<20	0.04	<10	<10	96	<10	109	
37343		<20	0.05	<10	<10	141	<10	99	
37344		<20	0.05	<10	<10	108	<10	87	
37345		<20	0.03	<10	<10	39	<10	97	
37346		<20	<0.01	<10	<10	13	<10	73	
37347		<20	< 0.01	<10	<10	11	<10	117	
37348		<20	0.02	<10	<10	25	<10	116	
37349		<20	0.12	<10	<10	104	<10	138	
37350		<20	0.10	<10	<10	99	<10	125	

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 30-SEP-2020 Account: HAGOCO

Project: DOC Project

CERTIFICATE OF ANALYSIS YW20194671

		CERTIFICATE CO	MMENTS	
			ATORY ADDRESSES	
Applies to Method:	Processed at ALS Yellowk BAG-01 PUL-32m	nife located at # 8 - 3 Coronation Dr CRU-31 PUL-QC	ive, X1A 0G5, Yellowknife, NT, Canada. CRU-QC SPL-21	LOG-21 WEI-21
Applies to Method:	Processed at ALS Vancouv Au-AA23	ver located at 2103 Dollarton Hwy, N ME-ICP41	orth Vancouver, BC, Canada.	

Company: Hanstone Gold Corp TSL Report: S58476 Geologist: T. Fiolleau Date Received: Oct 08, 2020 Project: Doc Project Date Reported: Nov 05, 2020 Purchase Order: Hanstone2

Invoice: 78663

Sample Type: Number Size Fraction Sample Preparation Core 108 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag Al* As Au B* Ba* Bi Ca* Cd Cr* Cu Fe* Ga* Hg K* La* Mg*	0.1 ppm 0.01 % 0.5 ppm 0.5 ppb 1 ppm 1 ppm 0.1 ppm 0.01% 0.1 ppm 0.1 ppm 0.1 ppm 0.01% 1 ppm 0.01 ppm 0.01 ppm 0.01 ppm 0.01 ppm	100 ppm 10 % 10000 ppm 100 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10000 ppm 10000 ppm 1000 ppm 1000 ppm 100 ppm 30 %	Mn * Mo Na * Ni P * Pb S Sb Sc Se Sr * Te Th * Ti * TI U * V * V * Zn	1 ppm 0.1 ppm 0.001% 0.1 ppm 0.001% 0.1 ppm 0.05 % 0.1 ppm 0.5 ppm 1 ppm 1 ppm 0.1 ppm	10000 ppm 2000 ppm 10 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 1000 ppm 10000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10 % 1000 ppm 10 m 10
					• •

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 108 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:
Date: Novem

S58476 November 5, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	В	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	Р
outprc	ppiii	70	ppiii	ppu	ppm	ppm	ppm	70	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0867814	0.1	2.49	0.9	15.2	<20	194	0.5	0.23	0.2	15.5	85	12.2	5	11	< 0.01	1.3	5	1.97	241	0.7	0.038	15.3	0.02
A0867815	0.1	2.55	< 0.5	7.2	<20	104	< 0.1	3.09	<0.1	17.7	78	36.8	4.34	13	< 0.01	0.81	4	2.17	385	0.3	0.03	12.7	0.163
A0867816	0.1	2.39	0.8	11.4	<20	149	< 0.1	2.6	0.4	11.4	55	54.5	4.27	10	<0.01	1.12	5	1.93	505	0.4	0.029	16.4	0.082
A0867817	0.2	2.83	0.6	13.8	<20	73	0.3	2.94	0.2	23.7	87	163.1	3.68	11	< 0.01	0.68	5	2.77	497	0.3	0.026	14.3	0.45
A0867818	0.2	2.42	2.2	5.8	<20	85	0.1	0.65	< 0.1	16.9	56	89.4	4.18	11	< 0.01	0.64	4	1.91	289	1	0.042	10	0.109
																					0.0		51205
A0867819	< 0.1	2.67	0.6	3.3	<20	97	< 0.1	0.78	< 0.1	9.8	87	30.4	4.53	10	< 0.01	0.59	4	2.16	383	0.5	0.03	14.2	0.05
A0867820	< 0.1	3.23	0.5	3.2	<20	139	< 0.1	0.37	< 0.1	11.9	86	31.5	5.19	13	< 0.01	0.89	4	2.61	364	0.5	0.035	16.4	0.062
A0867821	< 0.1	1.13	0.7	1	<20	32	< 0.1	5.48	< 0.1	5.2	71	12.5	1.35	4	< 0.01	0.21	4	0.81	474	0.3	0.017	6.2	0.175
A0867822	<0.1	2.79	< 0.5	2.5	<20	146	< 0.1	0.4	< 0.1	13.1	96	9.1	4.73	13	< 0.01	1.05	4	2.36	176	0.2	0.029	15.3	0.06
A0867823	0.2	2.11	< 0.5	3.5	<20	150	< 0.1	1.94	< 0.1	8.8	126	5.7	3.54	9	< 0.01	0.99	3	1.76	248	0.2	0.027	18.7	0.116
A0867824	-0.1	1.00	.0.6	4.4	20																		
A0867825	<0.1 <0.1	1.83 1.87	<0.5	1.1	<20	95	<0.1	1.05	<0.1	8.9	116	9.4	3.59	9	< 0.01	0.67	6	1.51	200	0.3	0.058	16.3	0.117
A0867826	0.1	1.72	<0.5	1.3	<20	62	<0.1	1.25	<0.1	9	119	13.9	3.39	10	< 0.01	0.51	2	1.83	224	0.2	0.055	21	0.031
A0867827	1	1.15	<0.5	2.5	<20	147	<0.1	5.75	0.4	10.7	56	17.1	3.05	6	< 0.01	0.71	3	1.26	407	0.2	0.02	17.7	0.058
A0867828	0.1	2.16	1.8 <0.5	58.9 1.5	<20 <20	184	<0.1	10.8	3.9	10.5	78	46.4	2.65	3	< 0.01	0.44	3	0.5	843	0.4	0.009	14.2	0.123
A0007620	0.1	2.10	VU.3	1.3	420	102	<0.1	1.32	1.2	10.6	60	9.9	4.15	7	<0.01	1.04	8	1.6	195	0.1	0.024	22.8	0.019
A0867829	< 0.1	1.84	< 0.5	8.9	<20	86	<0.1	8.51	0.8	7.9	85	17.9	2.77	6	< 0.01	0.96	3	1.3	480	0.2	0.016	17.1	0.05
A0867830	< 0.1	1.98	< 0.5	1.5	<20	169	< 0.1	1.47	0.6	8	92	8.5	3,33	9	<0.01	0.99	3	1.65	227	0.2	0.04	21.3	0.044
A0867831	0.1	1.99	< 0.5	1.6	<20	113	< 0.1	0.85	0.8	8.7	72	12.7	3.55	9	< 0.01	0.76	5	1.79	176	0.2	0.047	21.7	0.016
A0867832	0.1	0.55	1	5.3	<20	37	< 0.1	14.14	1.9	6.8	43	20.5	1.51	2	< 0.01	0.2	3	0.36	653	0.7	0.01	9.7	0.123
A0867833	< 0.1	1.59	0.6	1.6	<20	49	< 0.1	9.07	0.3	9.7	80	46.6	2.35	6	< 0.01	0.53	3	1.5	506	0.2	0.019	18.9	0.132
A0867834	0.1	1.11	0.9	2.3	<20	66	< 0.1	5.66	0.4	11.2	73	46.1	3.36	4	< 0.01	0.32	6	0.77	468	0.7	0.019	19.7	0.083
A0867835	0.3	0.64	1.8	4.4	<20	60	< 0.1	11.48	5.2	13.8	37	52.3	2.9	2	< 0.01	0.31	6	0.28	940	1.2	0.011	16.3	0.131
A0867836	0.5	0.35	1.3	48.6	<20	86	< 0.1	11.65	5.8	9	65	41.6	2.13	1	< 0.01	0.23	4	0.19	1050	1	0.012	11.3	0.116
A0867836 Re	0.5	0.35	1.3	42.4	<20	84	< 0.1	11.65	5.8	8.9	65	41.9	2.13	1	< 0.01	0.23	4	0.19	1072	1	0.012	11.3	0.118
A0867837	< 0.1	1.32	<0.5	3.8	<20	328	<0.1	2.43	4.1	9.8	72	14	2.85	5	< 0.01	0.76	5	1.25	461	0.3	0.027	18.8	0.045
A0867838	5.3	0.46	2.5	341.1	<20	433	0.1	6.41	60.6	10.6	112	473.6	2.49	2	-0.01	0.3	1.4	0.25	4 400		0.000		0.405
A0867839	3.7	0.75	5.7	916.2	<20	208	0.1	0.14	0.7	47.1	42	54.3	5.41	2	<0.01 <0.01	0.3 0.55	11	0.25	1436	11.5	0.008	10.7	0.126
A0867840	0.3	1.5	4.3	37.5	<20	403	<0.1	2.26	0.7	26.9	31	126.5	3.37	5			34	0.52	429	30.5	0.028	18	0.088
A0867841	0.2	2.17	3.3	1.9	<20	105	<0.1	2.51	0.2	27.1	74	138.5	3.77	9	<0.01 <0.01	0.78 0.73	4	1.08 1.72	510	2.4	0.037	8.3	0.184
A0867842	<0.1	2.48	3.6	1.8	<20	74	<0.1	1	<0.1	32.6	80	138	4.46	-					380	1.2	0.036	11.4	0.079
		2.10	5.0	2.0	~~~	/ ¬	70.2	±	~V. L	32.0	00	130	4.40	12	<0.01	0.86	2	1.81	356	1.3	0.05	14.4	0.063
A0867843	< 0.1	2.68	1.2	1	<20	103	< 0.1	1.65	< 0.1	13.4	74	39.7	4.42	12	< 0.01	1.1	3	1.86	402	0.6	0.031	8.8	0.096
A0867844	0.1	2.28	1.1	5.8	<20	38	< 0.1	2.37	0.1	9.8	58	36.6	3.6	12	< 0.01	0.51	4	1.96	480	0.3	0.024	5.5	0.101
A0867845	0.2	2.89	1.6	6	<20	111	0.1	2.67	0.2	20.4	90	97.4	5.38	15	< 0.01	0.39	14	2.5	725	0.4	0.051	30.6	0.16
A0867846	< 0.1	4.94	< 0.5	1	<20	113	< 0.1	6	< 0.1	49.4	579	34.8	6.65	16	< 0.01	1.23	2	6.29	1349	0.3	0.006	317.1	0.053
A0867847	0.2	4.68	0.7	15.6	<20	97	< 0.1	4.06	0.4	39.5	419	94.1	6.24	16	< 0.01	1.01	3	5.24	1159	0.2	0.03	216.7	0.063

Signed: _______Mark Acres - Quality Assurance

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 108 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58476 Date: November 5, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Ag	Al	As	Au	В	Ba	Bi	Са	Cd	Co	Cr	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Mo	Na	Ni	Р
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0867848	<0.1	3.49	1.4	2	<20	79	< 0.1	3.44	0.1	32.6	329	61.2	4.9	14	< 0.01	0.62	3	3.54	703	0.4	0.049	155.3	0.116
A0867849	< 0.1	2.74	6.3	1.8	<20	81	< 0.1	2.07	<0.1	32.7	75	147.9	4.45	12	< 0.01	0.67	2	2.48	367	0.6	0.076	19.5	0.178
A0867850	< 0.1	2.25	5.2	2.1	<20	82	< 0.1	2.25	< 0.1	27.6	56	114.1	3.55	10	< 0.01	0.59	2	2.02	329	0.6	0.055	16.5	0.177
A0867851	< 0.1	2.62	1.5	1.1	<20	73	< 0.1	0.59	< 0.1	13.5	79	70	4.31	13	< 0.01	0.95	3	2.24	257	1	0.079	11.8	0.068
A0867852	< 0.1	1.99	0.9	0.9	<20	44	< 0.1	2.36	< 0.1	8.7	65	40.1	2.76	9	< 0.01	0.87	3	1.51	296	0.2	0.04	10.5	0.167
																							0.20.
A0867853	0.2	3.1	1.1	1.6	<20	118	< 0.1	0.38	0.2	14.8	89	36.8	5.28	14	< 0.01	0.89	5	2.04	460	0.3	0.039	12.4	0.048
A0867854	< 0.1	3.34	0.5	0.6	<20	183	< 0.1	0.36	< 0.1	17	62	16.2	5.72	13	< 0.01	1.74	3	2.05	308	0.2	0.032	11.3	0.042
A0867855	0.2	2.3	0.9	26.7	<20	146	< 0.1	2.23	0.3	20.2	74	15.6	4.85	9	< 0.01	1	5	1.82	374	1.1	0.058	11.3	0.106
A0867856	< 0.1	2.68	< 0.5	1.9	<20	102	< 0.1	1.32	< 0.1	11.9	70	46	4.28	13	< 0.01	0.97	4	2.44	354	0.2	0.057	17.8	0.299
A0867857	0.2	2.78	0.6	6.8	<20	82	0.2	0.19	0.2	20.8	98	140.8	4.4	13	< 0.01	0.43	8	2.17	259	0.6	0.058	16.1	0.035
A0867858	<0.1	1.76	<0.5	1.2	<20	80	< 0.1	4.69	0.3	7.8	67	9.7	2.79	8	< 0.01	0.53	2	1.32	472	0.2	0.041	14.2	0.073
A0867859	< 0.1	2.41	0.7	2.2	<20	113	< 0.1	2.09	0.1	17	72	33.5	3.78	10	< 0.01	0.55	4	2.19	507	0.2	0.102	26	0.164
A0867860	<0.1	2.29	< 0.5	2.5	<20	86	< 0.1	1.15	0.1	10.4	62	11.2	3.9	12	< 0.01	0.73	3	2.04	282	0.1	0.046	23.4	0.02
A0867861	0.2	2.3	<0.5	3.9	<20	117	< 0.1	6.86	0.3	8.7	122	20.4	3.41	8	< 0.01	1.25	3	1.61	447	0.3	0.031	20	0.051
A0867862	0.2	3.17	<0.5	2.4	<20	146	<0.1	3.02	< 0.1	16.3	53	36.2	4.74	13	<0.01	0.8	4	2.4	694	0.2	0.036	27.1	0.147
A0867863	<0.1	2.8	0.7	2.6	<20	91	< 0.1	7.1	0.3	140	~7.0	22.0	4.04	4.3	-0.01	0.53	~	2.4	7.47	0.2	0.004	22.4	0.422
A0867864	<0.1	2.47	0.6	1.8	<20	54	<0.1	5.79	0.3	14.8 18.4	74 64	33.9 43	4.01	12	<0.01	0.53	3	2.1	747	0.2	0.031	22.4	0.127
A0867865	<0.1	2.16	<0.5	2.1	<20	105	<0.1	2.96	0.1				4.16	10 7	<0.01	0.26	-	2.43	843	0.2	0.042	29	0.156
A0867866	0.7	1.61	<0.5	75.7	<20	147	0.2	1.94	0.3	17.8 18.9	104 69	9.1 24.6	4.09 3.78	7	<0.01 <0.01	0.82	5 2	2.28 1.94	406	2	0.036	23.9	0.351
A0867867	0.2	1.79	0.7	31	<20	151	<0.1	2.94	0.3	10.5	103	19.7	3.78	7	<0.01	0.83 0.83	7	1.59	413	2.1	0.037	13.4	0.116
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,	2.75	0.7		120	431	VO. 2	2.54	0.5	11	103	13.7	3.2	,	VO.01	0.65		1.59	512	0.8	0.034	12.2	0.067
A0867868	0.2	2.58	4.1	10.8	<20	37	< 0.1	2.35	< 0.1	20	47	20.3	5.63	16	< 0.01	0.15	33	2.77	850	0.8	0.029	31.5	0.241
A0867869	0.2	2.92	3.2	29.3	<20	53	< 0.1	2.29	0.3	20.5	65	33.9	6.02	17	< 0.01	0.15	33	3.03	821	0.4	0.03	32.6	0.233
A0867870	1.2	2.19	2.7	230.9	<20	202	0.2	0.59	0.4	16.5	49	65.9	3.92	8	< 0.01	0.62	11	1.47	687	0.7	0.009	17.8	0.069
A0867871	3.2	0.09	0.9	881.5	<20	46	10.1	0.04	< 0.1	5.2	481	14	0.96	<1	< 0.01	0.04	1	0.04	149	1.4	0.007	12.1	0.002
A0867872	8.3	0.58	2	232.4	<20	78	7	0.11	0.2	11.8	208	327.5	1.71	2	< 0.01	0.14	3	0.46	565	1.5	0.005	12.8	0.022
A0867872 Re	7.6	0.58	2	194.3	<20	76	6.4	0.11	0.2	11.8	201	323	1.7	2	< 0.01	0.14	3	0.46	561	1.5	0.005	12.6	0.021
A0867873	43.2	0.38	4.5	11927.7	<20	465	11.3	0.12	0.6	15.8	426	212.2	2.67	2	0.02	0.15	10	0.19	504	10.6	0.018	17.1	0.023
A0867874	12.7	0.64	0.7	1876.5	<20	170	0.7	3.12	1.7	23	101	42.3	3.68	2	< 0.01	0.35	3	1.03	1983	9.7	0.019	13.9	0.066
A0867875	1.5	1.06	< 0.5	344.6	<20	156	0.6	3.36	1	19.2	178	21.3	3.78	3	< 0.01	0.51	2	1.26	1733	2.8	0.023	16.1	0.062
A0867876	3.8	1.1	< 0.5	759.6	<20	166	0.4	1.58	0.9	14.5	111	18.1	3.66	4	< 0.01	0.58	2	1.55	922	3.6	0.033	15.8	0.069
A0867877	5.9	0.73	0.9	1056.3	<20	158	0.4	0.3	1.1	13.8	302	20.7	2.84	3	0.01	0.35	3	0.53	652	3	0.048	16	0.049
A0867878	8.1	0.6	1.5	1493	<20	170	0.1	0.22	2.5	19.2	108	23.6	3.54	2	0.01	0.4	8	0.36	876	37.9	0.019	13.8	0.044
A0867879	3.7	1.47	1	680.2	<20	326	0.4	0.34	1.6	18.7	121	76.6	4.04	5	< 0.01	0.92	5	0.73	769	4.2	0.031	12.1	0.031
A0867880	4.4	1.28	1.3	738.4	<20	251	0.6	0.3	1.3	14.6	80	55	3.6	4	< 0.01	0.85	4	0.74	694	3	0.02	10.1	0.022
A0867881	0.5	2.11	<0.5	30.8	<20	366	< 0.1	1.09	0.6	6.3	55	68.4	4.01	7	< 0.01	1.54	4	1.27	579	0.5	0.052	8.1	0.022

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 108 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58476

Date: November 5, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag	Al %	As	Au	В	Ва	Ві	Ca	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	р
Jampie	ppm	/0	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0867882	0.6	2.09	< 0.5	24.3	<20	220	< 0.1	1	0.4	9.1	38	29.2	4.1	7	< 0.01	1.7	3	1.29	418	0.4	0.023	8.1	0.036
A0867883	0.3	2.48	0.5	7.1	<20	188	<0.1	1.49	0.2	14.2	65	47.6	4.76	8	<0.01	1.38	5	1.54	448	0.4	0.025	9.4	0.056
A0867884	0.3	2.91	0.6	19.1	<20	156	<0.1	2.23	0.3	18.3	46	87.8	5.29	11	<0.01	1.17	5	2.25	386	0.7	0.033	12.9	0.032
A0867885	< 0.1	3.08	2.8	2	<20	121	<0.1	1.01	<0.1	15.3	102	25.1	5.32	12	<0.01	0.55	4	2.41	311	0.8	0.027	20.3	0.046
A0867886	< 0.1	1.93	3.5	2	<20	66	0.1	6.16	0.1	18.1	73	30	3.97	6	<0.01	0.39	2	1.48	550	1.2	0.016	18.3	0.046
							012	0.20	0.1	10.1		50	3.31	0	~G.O.L	0.55	2	1.40	330	1.2	0.010	10.3	0.100
A0867887	< 0.1	2.38	0.8	4.8	<20	174	0.1	1.7	< 0.1	11.9	151	29.1	4.2	8	0.01	0.85	5	1.61	275	0.5	0.046	16	0.054
A0867888	< 0.1	1.78	1	2.1	<20	64	0.1	2.43	< 0.1	18	59	60	3.58	7	< 0.01	0.39	3	1.48	394	0.7	0.049	7.5	0.131
A0867889	< 0.1	0.79	0.6	1.6	<20	27	< 0.1	6.98	< 0.1	2.2	113	40.2	0.53	2	< 0.01	0.25	1	1.24	229	0.3	0.018	4.1	0.052
A0867890	3.4	1.42	2.2	793	<20	322	3.5	0.17	0.5	24.1	45	39.8	4.53	3	0.01	0.79	6	0.75	542	3.1	0.01	20.4	0.027
A0867891	0.1	1.7	< 0.5	4.4	<20	24	< 0.1	1.43	< 0.1	16.8	86	89.4	3.65	7	< 0.01	0.13	4	1.25	590	0.5	0.096	16	0.118
																							0.220
A0867892	0.1	2.09	0.6	2.1	<20	29	< 0.1	1.94	0.1	21.2	64	81.8	4.98	8	0.01	0.1	1	1.55	880	0.3	0.048	13.9	0.065
A0867893	0.3	1.84	1.2	1.2	<20	37	< 0.1	2.2	0.2	18	88	78.8	4.5	6	0.01	0.21	3	1.39	863	0.6	0.063	11	0.063
A0867894	1.6	1.01	1.2	8.5	<20	71	0.1	3.02	1.8	15.7	45	181	4.56	4	< 0.01	0.22	2	1.26	1058	0.6	0.028	9.2	0.078
A0867895	2.4	0.65	2.4	258.1	<20	196	0.6	1.14	3.7	21	207	148.3	3.7	2	< 0.01	0.34	5	0.11	1620	3	0.021	12.3	0.071
A0867896	8.6	0.28	1.2	1641.9	<20	379	0.4	0.26	2.4	10.3	236	93.9	1.98	<1	< 0.01	0.16	4	0.1	868	2.7	0.005	10.8	0.02
A0867897	0.8	2.08	0.6	15.4	<20	55	<0.1	3.28	0.4	22.8	44	158.5	5.3	6	< 0.01	0.34	3	1.83	1307	1	0.043	11.8	0.08
A0867898	3	0.89	1	244.6	<20	246	<0.1	4.36	64.5	22.3	32	657.5	4.43	3	0.03	0.34	2	1.47	2119	0.8	0.043	15.2	0.144
A0867899	0.2	2.38	0.8	2.4	<20	59	<0.1	2.83	0.4	20.8	41	94.7	4.73	8	<0.01	0.14	3	1.66	846	0.3	0.013	15.7	0.158
A0867900	0.1	1.8	0.5	5.2	<20	33	<0.1	1.43	0.2	15.5	44	93	3.94	8	<0.01	0.12	2	1.4	592	0.4	0.072	1.3.7	0.107
A0867901	0.1	1.88	0.5	2.6	<20	95	< 0.1	0.9	<0.1	17.3	54	135	4.13	7	<0.01	0.42	2	1.43	466	0.6	0.105	9.1	0.107
													1120	,	10.01	0,74.	*-	1.45	400	0.0	0.103	J. J.	0.071
A0867902	0.1	1.89	< 0.5	1.8	<20	133	< 0.1	0.93	0.2	18.2	48	123.4	4.27	7	< 0.01	0.5	2	1.49	486	0.3	0.051	8.8	0.062
A0867903	0.2	2.39	< 0.5	4.7	<20	433	< 0.1	1.54	< 0.1	19.2	45	84.8	5.5	10	< 0.01	0.97	2	1.79	929	0.4	0.09	7.7	0.074
A0867904	0.4	1.79	< 0.5	15.3	<20	167	< 0.1	3.66	0.2	19	30	82.2	4.97	9	< 0.01	0.73	1	1.6	1534	0.3	0.057	5.2	0.076
A0867905	0.3	2.53	< 0.5	2.1	<20	427	< 0.1	1.75	5.4	19.9	39	69.9	5.84	10	0.01	1.01	2	2.02	1171	0.4	0.076	7.6	0.064
A0867906	0.4	1.46	< 0.5	16.4	<20	261	< 0.1	1.9	1.8	15.4	41	111.4	4.69	6	< 0.01	0.88	3	1.61	1489	2.2	0.044	7.8	0.046
A0867907	0.2	3.48	0.8	2.3	<20	70	< 0.1	2.05	0.1	24.3	38	101.2	6.72	12	< 0.01	0.11	3	2.27	1042	0.1	0.067	10.1	0.069
A0867908	0.2	2.96	1.6	3.2	<20	166	< 0.1	4.07	< 0.1	24.8	36	135	6.4	10	< 0.01	0.09	2	1.94	1075	0.2	0.029	12.9	0.067
A0867908 Re	0.2	2.92	1.6	2.6	<20	157	< 0.1	4.02	< 0.1	24.9	35	126.1	6.28	10	< 0.01	0.09	2	1.91	1059	0.4	0.029	12.1	0.065
A0867909	0.2	2.14	2.3	6	<20	383	< 0.1	2.4	0.2	19.1	65	127.7	4.58	6	< 0.01	0.23	2	1.26	688	0.3	0.1	13.1	0.058
A0867910	0.2	2.54	1.8	8.4	<20	802	< 0.1	2	0.2	21.3	49	126.6	5.4	7	< 0.01	0.21	2	1.5	731	0.4	0.07	12.5	0.061
A0867911	0.7	1.94	1.6	31.1	<20	676	0.1	2.48	0.5	21.9	56	149.6	4.31	4	<0.01	0.55	3	1.04	943	0.6	0.028	8.9	0.064
A0867912	7	2.46	11.9	1076.6	<20	412	1.4	2.03	0.9	27.7	25	284.9	6.54	6	0.01	0.33	4	1.43	959	10.4	0.028	13.1	0.064
A0867913	2.8	0.2	3.4	418.7	<20	108	0.5	0.08	0.8	8.5	428	125.3	1.75	<1	<0.01	0.09	1	0.07	702	3.1	0.003	11.6	0.078
A0867914	0.8	0.09	0.9	134.3	<20	78	<0.1	0.05	0.6	4.7	210	4.1	0.98	<1	<0.01	0.05	<1	0.04	560	0.7	0.013	6.1	0.012
A0867915	3.7	0.64	1.7	613.8	<20	293	1.2	1	2.2	16.3	195	23.3	4.53	1	<0.01	0.03	4	0.04	3209	2.7	0.009	11.3	0.008
	-						oto 4 das	*	A- + 64	20.0	100	23.3	4.33	J.	~U.UI	₩	14	V.14	3203	4.1	0.023	11.3	0.075

Hanstone Gold Corp

Attention: T. Fiolleau
Project: Doc Project

Sample: 108 Core / 0 Pulp

ISL LABORATORIES INC.

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	8 ppm	8a ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
A0867916	0.6	1.74	<0.5	30.5	<20	394	0.2	3.61	1	19.8	69	101.2	5.03	5	< 0.01	0.31	4	1.13	1699	0.8	0.016	11.5	0.078
A0867917	0.9	1.97	11.1	100.7	<20	395	0.6	3.4	0.6	19	60	115.2	4.77	5	< 0.01	0.37	5	1.19	1764	0.7	0.023	8.3	0.085
A0867918	0.3	2.54	<0.5	4.8	<20	81	< 0.1	2.65	0.3	16.8	42	67.8	5.39	9	< 0.01	0.11	8	1.73	1155	0.5	0.035	8.7	0.075
A0867919	0.2	2.37	0.6	3.7	<20	59	< 0.1	1.69	0.1	19.1	54	85.2	5.35	9	< 0.01	0.09	2	1.82	751	0.5	0.081	8.6	0.077
A0867920	0.2	1.94	0.6	4.8	<20	42	< 0.1	0.92	<0.1	17.7	49	125.9	4.5	7	<0.01	0.05	1	1.52	542	0.2	0.054	8.6	0.06
A0867921	0.1	2.08	<0.5	4.5	<20	70	< 0.1	0.83	<0.1	18.3	50	122.8	4.69	8	< 0.01	0.1	2	1.57	548	0.3	0.092	9.5	0.073
STD DS11	1.7	1.16	41.1	60.8	<20	414	10.9	1.06	2.2	14.1	61	152.6	3.24	7	0.25	0.41	17	0.86	1058	14.7	0.072	82.5	0.068
STD OREAS262	0.5	1.34	34.1	56.2	<20	255	0.9	3.05	0.6	28.6	44	118.4	3.47	5	0.15	0.31	16	1.21	563	0.6	0.066	64.1	0.04
STD OREAS262	0.5	1.29	33.2	55.5	<20	251	0.9	3.03	0.6	27.8	43	115.7	3.4	5	0.15	0.31	15	1.19	553	0.6	0.066	62.6	0.038
STD DS11	1.8	1.13	42.9	135.5	<20	430	12.4	1.02	2.3	14.2	63	157.7	3.08	5	0.26	0.4	19	0.84	987	14.9	0.07	80.4	0.07
STD OREAS262	0.5	1.24	34.9	61.3	<20	260	1.1	2.94	0.5	27.4	42	114.4	3.3	4	0.18	0.31	17	1.19	516	0.6	0.067	63.4	0.039
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	<0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	<0.1	< 0.001	<0.1	< 0.001
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	<0.1	< 0.1	<1	<0.1	<0.01	<1	< 0.01	< 0.01	<1.	< 0.01	<1	<0.1	<0.001	<0.1	< 0.001
BLK	< 0.1	< 0.01	<0.5	<0.5	<20	<1	<0.1	< 0.01	<0.1	<0.1	<1	<0.1	<0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	<0.1	< 0.001	<0.1	<0.001

Report No:

Date:

S58476

November 5, 2020

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 108 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No: S58476 Date: November 5, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Те	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0867814	3.4	<0.05	0.1	10.6	<0.5	3	<0.2	1.5	0.187	0.3	0.5	140	0.3	31
A0867815	1.6	<0.05	0.1	10.7	<0.5	24	<0.2	1.6	0.124	0.3	0.5	198	0.3	21
A0867816	7.1	0.06	<0.1	10.5	<0.5	38	<0.2	1.3	0.171	0.3	0.3	193	0.2	47
A0867817	1.2	< 0.05	<0.1	7.4	<0.5	22	<0.2	2.1	0.081	< 0.1	0.7	441	0.2	17
A0867818	1.5	< 0.05	0.1	9.2	<0.5	10	<0.2	1.8	0.137	<0.1	0.6	195	0.2	18
													0.2	20
A0867819	1	< 0.05	< 0.1	6.4	< 0.5	11	< 0.2	2.9	0.135	< 0.1	0.6	127	< 0.1	12
A0867820	0.8	< 0.05	< 0.1	7.7	< 0.5	5	< 0.2	2.9	0.168	< 0.1	0.6	168	<0.1	13
A0867821	1.7	< 0.05	< 0.1	3.3	< 0.5	60	< 0.2	1.5	0.069	< 0.1	0.7	48	0.1	4
A0867822	1.4	< 0.05	< 0.1	16.4	< 0.5	4	< 0.2	2.1	0.164	0.1	0.5	186	< 0.1	10
A0867823	1.3	< 0.05	< 0.1	7.7	< 0.5	27	<0.2	1.4	0.144	0.1	0.6	133	1	8
									0.2	0.4	0.0		*	O
A0867824	1.2	< 0.05	< 0.1	8.4	< 0.5	9	< 0.2	2	0.098	< 0.1	0.5	105	< 0.1	10
A0867825	1.9	< 0.05	< 0.1	10.6	< 0.5	8	< 0.2	1.6	0.154	< 0.1	0.3	153	<0.1	8
A0867826	9.1	0.07	0.2	6.6	< 0.5	39	< 0.2	1.2	0.091	0.1	0.3	86	0.2	17
A0867827	200	< 0.05	0.3	5.6	< 0.5	69	0.2	0.7	0.037	< 0.1	0.6	35	0.6	74
A0867828	9.7	< 0.05	0.2	4	< 0.5	7	< 0.2	1.7	0.109	0.2	0.3	155	0.1	40
A0867829	6.8	< 0.05	0.1	3.6	< 0.5	54	< 0.2	1.1	0.149	0.1	0.3	108	0.2	16
A0867830	10.1	< 0.05	0.1	7.4	< 0.5	9	< 0.2	1.3	0.217	0.1	0.3	223	0.2	24
A0867831	12.2	< 0.05	0.1	6.8	< 0.5	3	< 0.2	1.9	0.095	< 0.1	0.2	163	0.2	46
A0867832	15.2	< 0.05	0.3	2.2	< 0.5	78	< 0.2	1.5	0.006	< 0.1	0.7	45	1	25
A0867833	6.7	<0.05	0.2	4.1	<0.5	57	<0.2	1.2	0.079	0.1	0.5	164	0.1	10
A0867834	7.2	< 0.05	0.4	3.6	<0.5	1.4	.0.7		0.007	0.1				
A0867835	126.7	<0.05	0.4	2.8	<0.5 <0.5	14 38	<0.2 <0.2	1.5 0.9	0.037	<0.1	0.6	85	1.4	20
A0867836	126.9	<0.05	0.3	4.1	<0.5	61	<0.2	0.9	0.012 0.008	<0.1 <0.1	0.5 0.8	36	3.3	75
A0867836 Re	121.9	<0.05	0.3	4.1	<0.5	62	<0.2	0.9	0.008	<0.1	0.8	34 34	2.8 2.7	110 111
A0867837	79	<0.05	0.4	5.7	<0.5	20	<0.2	1.1	0.008	0.3	0.7	122	2.1	156
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10.05	0.4	247	10.0	LO	VO.2.	1.1	0.004	0.5	0,4	322	2.1	130
A0867838	2495.2	0.06	1.2	5	< 0.5	111	4.3	0.5	0.01	<0.1	1.3	40	>100.0	773
A0867839	366.2	0.18	1.3	13.3	<0.5	11	3.7	1.6	0.033	0.2	2	53	4.7	102
A0867840	11.1	0.47	0.3	3	0.6	42	<0.2	0.9	0.071	0.3	0.5	34	2.8	56
A0867841	7.5	0.19	0.1	7.5	0.8	24	< 0.2	1.4	0.116	0.2	1.4	305	1.1	19
A0867842	3.6	0.29	< 0.1	12.8	1.3	9	< 0.2	1.3	0.271	0.1	1.5	257	0.7	11
A0867843	2.1	0.09	< 0.1	10.9	< 0.5	11	< 0.2	1.4	0.27	0.1	0.9	215	0.5	13
A0867844	10.4	< 0.05	0.1	10.1	< 0.5	18	< 0.2	1.4	0.204	< 0.1	0.3	124	0.5	23
A0867845	8.3	0.08	0.3	12.6	< 0.5	39	< 0.2	1.8	0.27	< 0.1	0.5	136	0.6	49
A0867846	3.3	< 0.05	0.1	27.8	<0.5	94	< 0.2	< 0.1	0.163	0.3	< 0.1	176	0.2	54
A0867847	53.5	< 0.05	< 0.1	26.3	< 0.5	71	< 0.2	0.6	0.15	0.3	0.1	183	0.3	58

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Tel: (306) 931-1033 Fax: (306) 242-4717 Sample: 108 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4

Report No: S58476 November 5, 2020 Date:

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0867848	2.7	0.06	< 0.1	18	< 0.5	34	< 0.2	1	0.115	0.2	0.3	145	0.2	27
A0867849	3.3	< 0.05	< 0.1	11.3	< 0.5	14	< 0.2	1.5	0.172	0.1	0.8	339	0.3	10
A0867850	2.9	< 0.05	< 0.1	10.5	< 0.5	13	< 0.2	1.3	0.146	< 0.1	0.9	486	0.2	10
A0867851	2.1	< 0.05	0.1	15.2	< 0.5	6	< 0.2	1.8	0.218	0.1	0.4	179	0.2	12
A0867852	1.7	<0.05	< 0.1	8.3	< 0.5	16	< 0.2	1.3	0.153	< 0.1	0.3	107	0.2	8
********	4.0	.0.05	-0.4	42.5	.0.5	-	.0.2	4.0	0.400		0.0	434	0.0	22
A0867853	4.9	<0.05	<0.1	13.6	<0.5	5	<0.2	1.9	0.182	<0.1	0.2	131	0.3	22
A0867854	1.6	< 0.05	<0.1	11.1	<0.5	4	<0.2	1.8	0.342	0.1	0.2	142	0.2	17
A0867855	34.7	0.15	0.1	13.1	<0.5	44	0.3	1	0.114	0.2	0.3	108	0.2	32
A0867856	0.7	<0.05	< 0.1	13.5	<0.5	11	<0.2	2.4	0.14	<0.1	0.7	253	<0.1	22
A0867857	1.3	<0.05	0.1	10.9	<0.5	3	<0.2	2.7	0.046	<0.1	0.9	343	<0.1	20
A0867858	2.7	< 0.05	< 0.1	7.9	<0.5	31	<0.2	1.3	0.149	< 0.1	0.3	107	0.4	12
A0867859	1.5	< 0.05	< 0.1	5.6	< 0.5	28	< 0.2	1	0.17	< 0.1	0.3	124	0.2	28
A0867860	1.1	< 0.05	< 0.1	11	< 0.5	9	< 0.2	1.6	0.21	< 0.1	0.2	176	0.2	14
A0867861	2.5	< 0.05	< 0.1	6.3	< 0.5	38	< 0.2	1.3	0.205	< 0.1	0.3	124	0.6	11
A0867862	0.9	< 0.05	< 0.1	8.6	< 0.5	28	< 0.2	1	0.149	< 0.1	0.3	132	0.5	31
A0867863	0.9	<0.05	< 0.1	8.2	<0.5	95	< 0.2	0.9	0.134	< 0.1	0.3	106	0.2	27
A0867864	7.4	< 0.05	0.1	6.7	< 0.5	76	< 0.2	0.9	0.092	<0.1	0.2	89	0.1	29
A0867865	3.6	0.1	0.2	7.9	< 0.5	83	< 0.2	1.1	0.082	0.2	0.5	65	0.2	45
A0867866	9.2	0.72	0.3	9.4	< 0.5	71	0.4	0.7	0.1	0.3	0.3	73	0.3	51
A0867867	5.7	0.15	0.4	6.1	<0.5	55	<0.2	1.4	0.134	0.3	0.6	93	0.7	51
A0007000	0.3	0.40	0.7		.n.r	F-1	-0.2	2.4	0.205	-0.4	0.6	4.4.79	0.0	0.0
A0867868	8.2 8.9	0.19	0.7	8 9,2	<0.5 <0.5	51	<0.2	2.4	0.396	<0.1	0.6	117	0.8	88
A0867869	6.9	0.32	0.7			49	<0.2	2.3	0.425	<0.1	0.6	121	1	93
A0867870 A0867871	8.9	<0.05 0.2	0.4 0.2	5.1 0.3	<0.5 <0.5	16 2	0.6 8.4	1.4 <0.1	0.117 0.003	0.2	0.7	63 4	0.8	70 4
A0867872	8.4	0.05	0.2	v.s 3		8	5.4			<0.1	<0.1		0.4	
AU80/8/2	8.4	0.05	0.3	3	<0.5	ō	5.4	0.3	0.006	<0.1	0.2	15	0.5	21
A0867872 Re	8.2	0.06	0.3	3	< 0.5	8	5.1	0.3	0.006	< 0.1	0.2	15	0.5	21
A0867873	63.7	0.23	1.1	3.1	< 0.5	11	33.5	0.5	0.003	< 0.1	0.4	18	0.9	56
A0867874	151.5	2.14	0.7	6	0.5	112	7.8	0.5	0.006	< 0.1	0.7	11	0.7	61
A0867875	10.5	2.29	0.5	6.6	< 0.5	141	1.8	0.7	0.014	0.1	0.5	31	1.3	61
A0867876	766.5	1.93	0.5	7	< 0.5	89	3.1	0.8	0.052	0.2	0.5	61	4	80
A0867877	890.5	0.33	0.4	5	<0.5	18	4.8	0.9	0.017	0.1	0.5	30	1.3	56
A0867878	1407.6	0.62	1.1	4.7	< 0.5	9	5.6	1	0.011	0.1	0.6	19	1.4	112
A0867879	212.3	0.37	0.5	5.9	< 0.5	12	1.8	1.4	0.062	0.3	0.3	38	1.6	100
A0867880	294.2	0.06	0.4	4.4	< 0.5	8	1.9	1.4	0.072	0.2	0.3	39	1.6	119
A0867881	89.1	< 0.05	0.3	8.4	< 0.5	14	< 0.2	1.6	0.172	0.3	0.2	67	2.7	112

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 108 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4

Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	Τĺ	U	V	w	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Jampie	pp	,,	pp	ppiii	ppm	bbiii	ppiii	ppiii	70	ppiii	ppiii	ppm	bbitt	pp···
A0867882	135.3	0.06	0.3	6.8	< 0.5	15	< 0.2	1.1	0.207	0.4	0.2	63	0.5	86
A0867883	13.8	< 0.05	0.2	6.9	< 0.5	10	<0.2	1.4	0.177	0.3	0.2	105	0.3	52
A0867884	7.5	< 0.05	0.2	11.9	< 0.5	12	< 0.2	1.2	0.154	0.3	0.4	172	0.6	61
A0867885	2.9	0.22	0.2	8.4	< 0.5	12	< 0.2	1.6	0.06	< 0.1	0.3	134	< 0.1	18
A0867886	4.3	0.65	< 0.1	6	< 0.5	105	0.2	1.5	0.062	< 0.1	0.9	98	0.1	7
A0867887	3.7	0.29	< 0.1	9.4	< 0.5	24	< 0.2	2.2	0.118	0.1	0.7	144	< 0.1	16
A0867888	3.2	0.43	< 0.1	6.2	< 0.5	25	< 0.2	1.2	0.133	< 0.1	0.5	118	0.2	24
A0867889	3.9	<0.05	< 0.1	0.8	< 0.5	61	< 0.2	0.6	0.067	< 0.1	0.7	75	< 0.1	7
A0867890	8.3	0.15	0.6	3.9	<0.5	10	3.2	1.1	0.074	0.3	0.9	43	1.9	58
A0867891	1.3	0.13	0.1	6.4	< 0.5	18	< 0.2	0.8	0.225	< 0.1	0.2	111	< 0.1	59
A0867892	4.5	0.08	0.3	10.4	<0.5	22	< 0.2	0.3	0.147	<0.1	< 0.1	134	0.4	83
A0867893	23.7	0.07	0.7	10.7	<0.5	32	<0.2	0.6	0.105	0.1	0.1	114	1.3	93
A0867894	243.8	0.22	1.9	8.5	<0.5	113	<0.2	0.4	0.026	<0.1	0.1	60	1.3	145
A0867895	60.5 47.3	<0.05 0.09	1 0.8	6.6 2.3	<0.5	18	0.8	0.5	0.003	0.1	0.4	30	>100.0	108
A0867896	47.3	0.09	0.8	2.3	< 0.5	17	5.2	0.2	0.005	< 0.1	0.3	14	95.8	62
A0867897	123.8	0.19	0.7	8.9	<0.5	100	<0.2	0.6	0.041	0.2	0.1	105	1.2	111
A0867898	1591.4	1.08	1.2	6.1	<0.5	185	1.3	0.5	0.015	0.2	0.2	38	5	1176
A0867899	12.2	0.08	0.3	9.9	<0.5	58	<0.2	0.5	0.013	<0.1	0.2	131	0.7	97
A0867900	5.8	<0.05	0.3	7.2	0.5	21	<0.2	0.5	0.168	<0.1	0.1	120	0.4	80
A0867901	4	0.08	0.1	7.9	< 0.5	12	<0.2	0.4	0.201	<0.1	<0.1	166	0.1	66
									010.00	-012	-010		0.0	-
A0867902	2.1	0.06	0.1	8.4	< 0.5	15	<0.2	0.4	0.189	0.1	< 0.1	170	0.4	66
A0867903	1.9	0.08	< 0.1	19.6	< 0.5	25	< 0.2	0.4	0.246	0.3	< 0.1	180	0.4	102
A0867904	10.2	0.48	0.2	20.9	< 0.5	111	< 0.2	0.3	0.175	0.3	< 0.1	179	0.4	92
A0867905	205.3	0.08	0.1	19.3	< 0.5	40	< 0.2	0.5	0.238	0.4	< 0.1	204	0.3	266
A0867906	53.2	0.33	0.2	12.6	< 0.5	108	< 0.2	0.4	0.145	0.5	0.1	128	0.7	168
A0867907	3.3	0.06	< 0.1	15.4	< 0.5	18	< 0.2	0.5	0.028	< 0.1	< 0.1	214	0.4	107
A0867908	4.5	0.22	< 0.1	14	< 0.5	64	< 0.2	0.4	0.016	< 0.1	< 0.1	178	0.3	113
A0867908 Re	4.3	0.23	0.1	14.6	< 0.5	62	< 0.2	0.4	0.016	< 0.1	< 0.1	181	0.3	102
A0867909	3.8	0.08	0.2	6.6	<0.5	21	< 0.2	0.3	0.015	< 0.1	< 0.1	88	0.5	84
A0867910	3.2	0.1	0.2	6.5	<0.5	29	< 0.2	0.5	0.018	< 0.1	0.1	92	0.3	101
	_													
A0867911	3.7	0.07	0.4	6.3	<0.5	29	<0.2	0.4	0.055	0.2	0.1	59	0.6	114
A0867912	17.4	0.07	0.6	9.5	<0.5	30	3.5	0.4	0.045	0.2	0.4	84	1.1	154
A0867913	30.7	0.1	0.5	1.8	<0.5	9	1.7	< 0.1	0.002	<0.1	0.2	14	2.2	36
A0867914	21.5	0.06	0.3	1.1	<0.5	6	0.3	<0.1	0.001	<0.1	0.1	9	4.7	27
A0867915	469.7	0.08	0.5	6.8	<0.5	15	1.8	0.5	0.008	0.1	0.7	24	12.7	93

Report No:

Date:

S58476

November 5, 2020

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 108 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0867916	16.8	0.1	0.4	8.1	<0.5	40	<0.2	0.6	0.019	0.1	0.2	54	0.3	129
A0867917	203.2	0.12	0.6	8.9	< 0.5	55	< 0.2	0.6	0.035	0.1	0.2	70	2.4	146
A0867918	61.2	< 0.05	0.2	12.7	< 0.5	28	< 0.2	0.7	0.021	< 0.1	0.1	131	< 0.1	149
A0867919	9	< 0.05	0.3	15.9	< 0.5	20	< 0.2	0.4	0.136	< 0.1	< 0.1	170	0.3	97
A0867920	3.4	0.07	0.2	8.3	<0.5	12	<0.2	0.1	0.154	< 0.1	< 0.1	150	0.2	76
A0867921	3.2	<0.05	0.2	9.9	<0.5	18	<0.2	0.2	0.19	<0.1	<0.1	151	0.2	80
STD DS11	129.9	0.28	6.4	3	2.2	66	4.6	6.8	0.091	4.9	2.5	50	2.3	346
STD OREAS262	55.2	0.26	2.3	3.1	0.5	37	0.2	8.7	0.003	0.5	1.1	22	< 0.1	148
STD OREAS262	54.3	0.26	2.4	3	< 0.5	36	0.2	8.7	0.003	0.5	1.1	21	0.1	145
STD DS11	146.6	0.28	7.5	3.2	1.4	70	4.7	8.3	0.095	4.7	2.8	49	2.9	346
STD OREAS262	57.6	0.26	2.8	3.3	<0.5	38	0.2	9.8	0.003	0.5	1.2	22	0.2	147
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BIK	<0.1	<0.05	<0.1	<0.1	<0.5	<1	<0.2	<0.1	<0.001	<0.1	cn 1	e1	<0.1	<1°

Signed:_ Mark Acres - Quality Assurance

Report No:

Date:

S58476

November 5, 2020

2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp

Geologist: T. Fiolleau Project: Doc Project Purchase Order: Hanstone2

TSL Report: S58476

Date Received: Oct 08, 2020 Date Reported: Oct 16, 2020

Invoice: 78663

Remarks:

Size Fraction Sample Type: Number Sample Preparation Reject ~ 95% at -10 mesh (1.70 mm) Core 108

Crush, Rolls Crush, Riffle Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%

#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58476

SAMPLE(S) OF

108 Core/0 Pulp

INVOICE #:78663 P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867814 A0867815	.03	<.03	S58476 S58476
A0867816	.07		S58476
A0867817	<.03		S58476
A0867818	<.03		S58476
A0867819	<.03		S58476
A0867820	<.03	<.03	S58476
A0867821	<.03		S58476
A0867822	<.03		S58476
A0867823 A0867824	<.03		S58476 S58476
A0867825	<.03	<.03	S58476
A0867826	<.03		S58476
A0867827	.07		S58476
A0867828	<.03		S58476
A0867829	<.03		S58476
A0867830	<.03		S58476
A0867831	<.03		S58476
A0867832 A0867833	<.03		S58476 S58476

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58476

SAMPLE(S) OF

108 Core/0 Pulp

INVOICE #:78663

P.O.:

Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867834	<.03		S58476
A0867835	<.03	<.03	S58476
A0867836	.05		S58476
A0867837	<.03		S58476
A0867838	.36		S58476
A0867839	.87		S58476
A0867840	.03	.03	S58476
A0867841	< .03		S58476
A0867842	<.03		S58476
A0867843	<.03		S58476
A0867844	.03		S58476
A0867845	< .03	<.03	S58476
A0867846	<.03		S58476
A0867847	<.03		S58476
A0867848	<.03		S58476
A0867849	<.03		S58476
A0867850	<.03		S58476
A0867851	<.03		S58476
A0867852	<.03		S58476
A0867853	<.03		S58476

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58476

SAMPLE(S) OF

108 Core/0 Pulp

INVOICE #:78663
P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867854	<.03		S58476
A0867855	.03	.03	S58476
A0867856	<.03		S58476
A0867857	< .03		S58476
A0867858	<.03		S58476
A0867859	<.03		S58476
A0867860	<.03	<.03	S58476
A0867861	<.03		S58476
A0867862	< .03		S58476
A0867863	<.03		S58476
A0867864	<.03		S58476
A0867865	<.03	<.03	S58476
A0867866	.10		S58476
A0867867	.03		S58476
A0867868	<.03		S58476
A0867869	.03		S58476
A0867870	.27		S58476
A0867871	.93		S58476
A0867872	. 24		S58476
A0867873	10.80		S58476

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58476

SAMPLE(S) OF

108 Core/0 Pulp

INVOICE #:78663
P.O.: Hanstone2

T. Fiolleau

Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867874	1.92		S58476
A0867875	.38	.41	S58476
A0867876	.55		S58476
A0867877	1.03		S58476
A0867878	1.54		S58476
A0867879	.70		S58476
A0867880	.72	.72	S58476
A0867881	.03	o 1 da	S58476
A0867882	.03		
A0867883	<.03		S58476
11000700	V. 03		S58476
A0867884	<.03		S58476
A0867885	<.03	<.03	S58476
A0867886	<.03		S58476
A0867887	<.03		S58476
A0867888	<.03		S58476
A0867889	<.03		S58476
A0867890	.75	. 75	S58476
A0867891	<.03		S58476
A0867892	<.03		S58476
A0867893	<.03		S58476

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. S58476

SAMPLE(S) OF

108 Core/0 Pulp

INVOICE #:78663
P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Aul	File
	g/t	g/t	Name
A0867894	<.03		S58476
A0867895	.29	.27	S58476
A0867896	1.73		S58476
A0867897	<.03		S58476
A0867898	.24		S58476
A0867899	<.03		S58476
A0867900	<.03	<.03	S58476
A0867901	<.03		S58476
A0867902	<.03		S58476
A0867903	< .03		S58476
A0867904	<.03		S58476
A0867905	<.03	<.03	S58476
A0867906	<.03		S58476
A0867907	<.03		S58476
A0867908	<.03		S58476
A0867909	<.03		S58476
A0867910	<.03		S58476
A0867911	.05		S58476
A0867912	1.34		S58476
A0867913	.51		S58476

Oct 16/20

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58476

SAMPLE(S) OF

108 Core/0 Pulp

INVOICE #:78663

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867914	. 14		S58476
A0867915	.62		S58476
A0867916	.03		S58476
A0867917	.10		S58476
A0867918	<.03		S58476
A0867919	<.03		S58476
A0867920	<.03		S58476
A0867921	< .03		S58476
GS-7E	7.10		S58476
GS-7E	7.48		S58476
GS-7E	7.13		S58476
GS-7E	6.89		S58476
GS-7E	7.72		S58476
GS-7E	6.93		S58476
GS-7E	7.24		S58476

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

Company: Hanstone Gold Corp TSL Report: S58437
Geologist: T. Fiolleau Date Received: Sep 23, 2020
Project: Doc Project Date Reported: Oct 15, 2020
Rurahasa Order: Hanstone 3

Purchase Order: Hanstone2 Invoice: 78631

Sample Type: Number Size Fraction Sample Preparation
Core 80 Reject ~ 95% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% -150 mesh (1.70 mm) Crush, Rime Split, Pulve

Pulp 0 None

ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element	Lower Detection	Upper Detection	Element	Lower Detection	Upper Detection
Name	Limit	Limit	Name	Limit	Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	10000 ppm
AI *	0.01 %	10 %	Mo	0.1 ppm	2000 ppm
As	0.5 ppm	10000 ppm	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	Ni	0.1 ppm	10000 ppm
B *	1 ppm	2000 ppm	P *	0.001%	5 %
Ba *	1 ppm	1000 ppm	Pb	0.1 ppm	10000 ppm
Bi	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Со	0.1 ppm	2000 ppm	Se	0.5 ppm	1000 ppm
Cr*	1 ppm	10000 ppm	Sr *	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Te	1 ppm	2000 ppm
Fe *	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	Ti *	0.001%	10 %
Hg	0.01 ppm	100 ppm	TI	0.1 ppm	1000 ppm
K *	0.01%	10 %	U *	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	V *	2 ppm	10000 ppm
Mg *	0.01%	30 %	W *	0.1 ppm	100 ppm
			Zn	1 ppm	10000 ppm

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58437 October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Ag	Al	As	Au	В	Ва	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Мо	Na	Ni	р
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0867634	4.2	1.88	0.7	1181.3	<20	75	< 0.1	6.71	1.3	39.4	40	144.3	7.17	6	0.01	0.23	4	2.08	2431	9.7	0.006	27.6	0.129
A0867634 Re	4.5	1.89	0.8	1279.1	<20	73	< 0.1	6.75	1.3	36.9	38	143.9	7.21	5	< 0.01	0.23	4	2.12	2433	10.2	0.006	24.8	0.139
A0867635	21.3	0.99	0.8	6414.8	<20	68	0.3	6.06	2.3	45.9	57	50.3	8.57	2	0.02	0.35	3	1.73	4206	92.6	0.008	26.4	0.121
AO867636	>100.0	0.63	1.5	57046.9	<20	13	0.8	1.75	2.5	60.5	76	75.4	24.02	2	0.06	0.25	16	0.76	1292	287.1	0.002	29.8	0.039
A0867637	>100.0	0.43	2.1	53916	<20	7	1.3	1.01	4.3	72.2	86	140.7	21.85	1	0.07	0.24	8	0.49	853	392.7	0.002	30.9	0.032
A0867638	24.8	0.48	1.1	5585.9	<20	36	0.8	1.8	3	45.6	65	80.8	8.66	1	0.02	0.33	3	0.6	1343	197.4	0.015	29.8	0.06
A0867639	44.8	0.78	2	12255.4	<20	87	0.5	2.61	4.9	29.3	54	303	6.99	2	0.02	0.31	3	0.92	2427	100.5	0.025	17.4	0.064
A0867640	36.4	0.93	1.1	12540.3	<20	92	0.4	2.34	3.2	28	46	339.5	6.14	2	0.02	0.31	3	0.89	2247	57.3	0.024	16.3	0.067
A0867641	12.1	1.58	0.9	2700.3	<20	96	< 0.1	2.15	2.3	21.8	36	113.5	4.92	5	< 0.01	0.26	2	1.31	1797	5.3	0.026	13.5	0.059
A0867642	0.3	2.78	< 0.5	18.5	<20	38	<0.1	3.01	0.5	19.6	77	82.8	5.26	8	<0.01	0.12	2	2.19	1081	0.4	0.018	16.6	0.06
						-	-012	3102	0.0			02.0	3.20		40.01	0.22	4	4	2002	0.7	0.010	40.0	0.00
A0867643	0.3	2.94	< 0.5	16.9	<20	26	< 0.1	2.21	0.2	20.6	60	110	5.78	11	< 0.01	0.11	2	2.44	994	0.6	0.023	9.8	0.063
A0867644	0.3	2.61	< 0.5	11.2	<20	22	< 0.1	3.06	0.4	19.9	38	111.2	5.15	10	< 0.01	0.09	2	2.12	1050	0.3	0.02	11.3	0.05
A0867645	0.5	1.78	1	23.8	<20	28	< 0.1	0.6	0.2	15.7	53	188.4	3.95	8	< 0.01	0.15	2	1.28	661	0.4	0.039	10.6	0.072
A0867646	8.7	2.36	< 0.5	41.1	<20	58	2.5	1.82	1.5	18	67	1717.3	4.99	10	< 0.01	0.42	2	1.6	1313	1	0.032	11.2	0.071
A0867647	0.3	1.84	0.9	6.4	<20	76	<0.1	0.62	< 0.1	15.9	63	98.4	4.01	6	< 0.01	0.23	2	1.27	577	0.4	0.056	8.1	0.071
A0867648	0.2	1.49	0.9	2.2	<20	93	< 0.1	0.58	< 0.1	13.5	92	100.9	3.31	6	<0.01	0.22	2	0.85	467	0.6	0.054	10	0.051
A0867649	0.2	1.24	1	7.7	<20	121	< 0.1	0.95	< 0.1	12	89	87.7	2.8	5	< 0.01	0.27	2	0.67	450	0.8	0.057	8.1	0.059
AO867650	0.2	1.3	2.2	1.9	<20	32	< 0.1	1.1	0.3	12.3	79	82.2	3.05	5	< 0.01	0.08	2	0.66	553	0.7	0.051	7.7	0.06
A0867651	0.3	1.28	0.7	1.9	<20	318	< 0.1	0.3	0.3	13.9	80	73.3	3.37	6	< 0.01	0.53	2	0.87	444	0.4	0.06	14.8	0.051
A0867652	0.6	1.44	0.7	22.7	<20	321	<0.1	0.93	0.2	13.2	91	71.2	3.81	7	< 0.01	0.53	3	1.1	644	0.5	0.043	22.7	0.054
A0867653	0.4	1.45	0.7	3.4	<20	630	< 0.1	0.74	<0.1	12.8	88	100.9	3.56	7	< 0.01	0.85	3	0.93	556	0.6	0.049	19	0.053
A0867654	0.3	1.27	2.6	9.9	<20	703	< 0.1	0.47	< 0.1	13.8	115	63.2	3.22	6	< 0.01	0.67	3	0.88	425	1	0.048	36.5	0.055
A0867655	0.2	1.04	2.8	6.9	<20	537	< 0.1	0.47	< 0.1	7.4	110	37.6	2.46	5	< 0.01	0.54	5	0.7	384	1.2	0.048	27.2	0.053
AO867656	0.2	1.2	1.7	3.8	<20	636	< 0.1	0.46	< 0.1	7.6	128	29.4	2.6	6	< 0.01	0.63	4	0.8	415	0.7	0.037	25.9	0.036
AO867657	0.8	1.1	0.9	92.3	<20	522	<0.1	2.21	0.5	7.7	128	70.2	2.27	5	< 0.01	0.41	3	0.72	655	2,2	0.03	17.3	0.063
A0867658	0.3	1.34	1.6	33.9	<20	603	< 0.1	1.73	< 0.1	7.6	122	23.7	2.61	6	<0.01	0.51	3	0.82	570	1	0.025	25.5	0.051
AO867659	0.3	1.54	1.9	6	<20	719	< 0.1	0.64	0.3	9.9	103	24.1	3.22	7	< 0.01	0.83	4	1.04	569	1	0.036	32.5	0.053
A0867660	0.3	1.21	1.1	5.8	<20	649	< 0.1	1.27	0.1	6.8	126	26	2.64	4	< 0.01	0.43	4	0.84	592	0.8	0.027	27.3	0.043
AO867661	2.4	0.79	1.3	636	<20	659	< 0.1	0.26	1	7.4	237	22.8	1.75	2	< 0.01	0.22	21	0.28	651	3.1	0.023	18.8	0.029
AO867662	4.2	0.4	1.7	1225.8	<20	258	0.1	0.31	0.3	8.3	201	19.2	1.96	1	< 0.01	0.18	5	0.19	433	3.1	0.023	19.1	0.023
A0867663	9.6	0.63	0.7	2718.9	<20	122	0.2	1.07	0.6	12.2	120	43.3	3.19	2	<0.01	0.41	7	0.4	758	22.6	0.024	24	0.061
AO867664	5.8	0.72	0.9	1582.2	<20	1168	0.3	0.11	0.2	8.6	121	61.5	2.43	2	< 0.01	0.44	12	0.43	388	3.8	0.022	18.6	0.032
A0867665	1.1	1.09	1	234	<20	599	0.1	0.34	0.3	9	135	48.3	2.57	4	0.01	0.47	9	0.68	421	0.8	0.031	27.4	0.045
AO867666	0.7	1.2	0.7	8.5	<20	333	0.1	0.33	0.1	7.3	134	22.6	2.43	5	< 0.01	0.49	6	0.78	370	0.4	0.021	18.5	0.035
AO867667	0.5	1.3	0.6	7.9	<20	311	<0.1	0.25	<0.1	6.5	108	21.2	2.39	5	<0.01	0.37	4	8.0	356	0.3	0.027	19.1	0.031

Signed: Mark Acres - Quality Assurance

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58437 October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Mn ppm	Mo	Na %	Ní ppm	P %
•	F-F		4 F		PP-11	b b	[s]s	,,,	ppiii	Pikur	ppm	ppm	70	ppm	ppiii	76	ppin	76	ppm	ppm	/0	ppin	/0
A0867668	0.2	1.21	0.7	9.2	<20	1096	< 0.1	0.25	0.1	7.8	129	37.8	2.47	6	< 0.01	0.44	7	0.8	381	0.5	0.034	23.9	0.048
AO867669	0.3	1.27	0.9	7.7	<20	548	< 0.1	0.36	0.1	9.4	116	35.6	2.78	6	< 0.01	0.64	10	0.83	377	0.4	0.034	32.6	0.047
A0867670	0.1	1.06	0.8	3.3	<20	283	< 0.1	0.16	< 0.1	8.2	121	27.2	2.32	5	< 0.01	0.49	9	0.7	343	0.3	0.034	23.6	0.022
A0867670 Re	0.2	1.04	0.7	6.4	<20	275	< 0.1	0.16	0.2	7.4	107	25.4	2.27	5	< 0.01	0.48	9	0.69	335	0.4	0.034	22.9	0.024
AO867671	< 0.1	1.16	0.9	4.6	<20	248	< 0.1	0.23	0.1	8.4	138	18.5	2.58	5	< 0.01	0.37	7	0.75	326	0.3	0.038	25.9	0.046
A0867672	0.3	1.5	2.2	9.4	<20	197	< 0.1	1.26	0.2	12.7	96	55.9	3.62	6	< 0.01	0.27	5	1.08	802	0.6	0.032	35.8	0.093
A0867673	0.5	1.28	2	112.4	<20	181	<0.1	1.58	0.5	14.2	119	56.2	3.95	6	<0.01	0.34	4	1.14	1033	0.8	0.032	47.4	0.033
A0867674	0.4	1.44	2.9	41.5	<20	206	0.1	1.51	0.3	15.7	82	64	3.95	6	< 0.01	0.34	4	1.11	916	0.7	0.032	59.5	0.054
A0867675	0.4	1.72	2.3	5.4	<20	224	0.1	0.84	0.2	16.2	102	69	4.19	8	< 0.01	0.33	5	1.25	723	0.7	0.033	70.3	0.054
A0867676	0.2	1.71	0.9	1.8	<20	123	< 0.1	1.23	0.1	14.8	89	48.2	4.65	8	< 0.01	0.33	4	1.44	817	0.3	0.038	20.3	0.032
			0.5		-23	40.86.47	-0.2	30.50.07	0.1	24.0	32	40.2	4.03	0	√0.01	0.5	-+	1.44	OI1	0.3	0.042	20.3	0.072
A0867677	0.3	2.09	0.9	4	<20	216	< 0.1	0.49	0.2	20	63	84.4	5.26	9	< 0.01	0.4	4	1.61	985	0.2	0.048	16.2	0.051
A0867678	0.6	1.68	1.1	17.5	<20	873	< 0.1	1.41	0.4	19.1	68	86.7	5.08	8	< 0.01	0.76	2	1.62	1161	1.2	0.037	15.3	0.06
A0867679	0.3	1.68	0.6	2.6	<20	197	< 0.1	0.93	0.2	14.5	42	118.1	3.98	8	< 0.01	0.38	2	1.28	786	0.6	0.056	8.2	0.068
AO867680	0.3	1.69	1.1	1	<20	132	< 0.1	1.77	< 0.1	11.8	83	44.1	3.47	6	< 0.01	0.27	2	1.38	575	1.6	0.043	14.5	0.052
AO867681	0.9	1.86	0.9	134.5	<20	178	<0.1	2.16	1.4	15.4	104	62.5	4.22	7	<0.01	0.37	2	1.52	862	0.6	0.027	18.2	0.056
AO867682	0.4	1.97	1.1	3.6	<20	590	<0.1	1.03	<0.1	16	108	72.2	4.06	7	< 0.01	0.83	2	1.28	599	0.4	0.042	16.1	0.057
AO867683	0.4	2.79	0.8	6.3	<20	122	< 0.1	1.93	0.2	24.2	53	96.3	6.16	12	< 0.01	0.24	3	2.39	1075	1.3	0.042	13	0.076
AO867684	0.5	1.95	1.5	17.2	<20	70	< 0.1	0.81	0.3	16.6	64	83.2	4.64	7	< 0.01	0.09	4	1.37	668	0.4	0.053	11.1	0.078
AO867685	0.3	2.1	1.6	4.3	<20	60	< 0.1	1.04	0.3	16.3	51	69	4.87	8	< 0.01	0.09	4	1.53	737	0.4	0.046	13.1	0.075
AO867686	0.7	1.94	7.6	16.6	<20	109	< 0.1	1.74	4.5	19	72	88.6	5.37	8	< 0.01	0.25	3	1.22	1071	0.7	0.05	13.4	0.07
														_			-				0.00	2011	0107
A0867687	0.4	2.25	2.8	2.8	<20	154	< 0.1	1.38	0.2	18.5	58	96.1	5.15	9	< 0.01	0.38	3	1.64	972	0.6	0.048	11.3	0.073
AO867688	0.9	2.07	1.4	77.1	<20	84	0.3	1.33	0.3	19.5	86	130.8	4.71	7	< 0.01	0.21	3	1.41	911	0.8	0.038	11.8	0.067
AO867689	0.2	1.79	0.9	2.4	<20	49	< 0.1	1.1	< 0.1	14.1	62	54.7	4.19	7	< 0.01	0.14	2	1.32	732	0.9	0.04	11.3	0.034
AO867690	0.8	1.55	0.9	69.2	<20	74	< 0.1	1.26	0.2	13.6	69	181.9	3.76	5	< 0.01	0.26	2	1.09	775	0.7	0.045	9.8	0.041
AO867691	0.6	0.95	0.9	48	<20	106	< 0.1	1.56	0.3	9.1	62	170.7	2.71	4	< 0.01	0.33	3	0.78	913	1.4	0.038	7.1	0.047
AO867692	1.3	1.81	< 0.5	223.1	<20	131	0.2	1.85	0.9	17.4	61	208.4	4.42	6	< 0.01	0.48	2	1.33	1096	0.8	0.032	11.5	0.073
AO867693	0.4	1.89	< 0.5	34.7	<20	78	< 0.1	1.72	0.2	18.3	65	93.1	4.28	7	< 0.01	0.21	2	1.3	828	0.6	0.04	10.6	0.05
AO867694	0.5	2.3	0.6	69	<20	251	< 0.1	0.71	0.3	18.7	56	131.3	5.38	9	< 0.01	0.57	2	1.7	928	0.5	0.046	12.6	0.058
AO867695	1.5	1.88	1.1	120.8	<20	165	< 0.1	0.42	0.8	20.7	59	148.6	5.42	7	< 0.01	0.34	4	1.35	1184	1.5	0.034	12.5	0.058
A0867696	30	0.83	8.2	9433.3	<20	274	0.5	0.19	3.7	39.9	118	174.4	7.99	4	<0.01	0.34	5	0.42	2089	24.9	0.021	17.3	0.069
AO867697	1.8	0.79	1.3	533.6	<20	468	<0.1	1.09	1.3	18.8	70	61.6	3.5	3	<0.01	0.56	2	0.92	2584	1.3	0.038	11.4	0.047
A0867698	2.1	0.98	1.2	396.8	<20	464	<0.1	0.38	1.2	19.3	49	120.3	3.58	3	<0.01	0.36	4	0.76	1588	1.5	0.036	12.7	0.047
A0867699	4.5	0.86	1.4	567.7	<20	530	<0.1	1.14	3.2	23.7	51	241.2	3.36 4.77	3	< 0.01		4	0.76	1969	6.3			
AO867700	4.1	0.86	1.4	482.1	<20	480	<0.1	1.63	2.8	25.7	56	250.1	4.77	3	<0.01	0.62	4		2067		0.028	14.2	0.089
A0867701	1	1.36	1.1	72.5	<20	336	<0.1	1.14	2.9	32.5	50 61	319.4		3		0.6 0.6	4 5	0.8		4.4	0.027	14	0.089
1 10 001 1 012	-	2.00	A. L	16.0	~20	330	~V.1	1.14	2.3	32.3	OT	313.4	5.21	4	< 0.01	0.6	5	1.04	2926	1.7	0.032	17.1	0.102

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58437 October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	8 ppm	8a ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
A0867702	1	1.56	1.9	172.1	<20	307	<0.1	0.63	1.7	25.2	60	154.8	4.52	5	< 0.01	0.56	5	1.16	2039	2.3	0.035	15	0.097
AO867703	3.1	1.41	2.3	780.1	<20	492	0.1	0.4	3.3	20.9	49	112.6	3.94	4	< 0.01	0.44	3	0.78	2652	7	0.041	12.1	0.06
AO867704	1	0.87	1.8	246.8	<20	430	< 0.1	0.27	2.6	14.5	45	61.7	2.87	2	< 0.01	0.34	4	0.36	1976	2.7	0.031	9.5	0.062
AO867705	7.4	0.63	2.1	1366.6	<20	598	0.2	0.24	3.4	20.1	93	114	3.46	1	0.01	0.22	4	0.15	768	5.1	0.01	9.4	0.044
A0867706	10	0.53	0.7	2879.6	<20	262	< 0.1	1.59	0.8	19.9	110	88.5	3.23	1	0.01	0.37	1	0.46	1520	2	0.009	12.1	0.044
A0867706 Re	9.1	0.55	0.6	2673.2	<20	244	<0.1	1.6	0.9	20.7	116	85.8	3.22	1	<0.01	0.38	2	0.45	1492	2	0.011	11.6	0.043
AO867707	3.2	0.97	<0.5	693.9	<20	177	<0.1	2.62	1.1	17	80	367.5	3.22	2	<0.01	0.50	1	0.43	1891	0.9	0.011	9,4	0.043
A0867708	9.2	0.71	0.7	841	<20	204	<0.1	2.3	6.2	15.7	62	1413	3.21	3	< 0.01	0.46	1	1.1	1982	1.5	0.02	10.2	0.05
A0867709	>100.0	0.26		100000.0	<20	36	0.6	0.52	5.5	25.7	244	347.1	6.98	<1	0.23	0.07	3	0.13	342	13.2	0.004	17.4	0.018
A0867710	>100.0	0.62		100000.0	<20	46	2.9	0.21	25.4	24.3	273	1403	6.38	<1	0.27	0.2	7	0.19	192	30.6	0.002	16.5	0.023
													0.00		0.427		•	0.20	204	30.0	0.002	40.5	01043
AO867711	>100.0	0.5	0.8	57800.9	<20	68	0.6	0.29	17.4	21.4	230	705.7	5	<1	0.06	0.22	5	0.19	446	17.7	0.008	16.1	0.026
A0867712	1.4	1.24	1.9	192.4	<20	190	< 0.1	0.97	38.2	23	42	308.9	4.23	4	< 0.01	0.36	5	0.67	1928	1.2	0.025	11.1	0.074
A0867713	0.6	1.49	1.2	120.2	<20	81	< 0.1	1.3	4.6	18.5	43	78.6	4.24	5	< 0.01	0.19	4	0.89	1024	0.7	0.025	10.4	0.064
STD OREAS262	0.5	1.23	38	69.1	<20	258	1.1	2.93	0.7	27.5	41	117.7	3.32	4	0.18	0.3	16	1.21	537	0.6	0.072	67.8	0.038
STD DS11	1.8	1.11	43	68.4	<20	437	12.3	1.02	2.3	12.8	59	137.9	3.06	5	0.31	0.39	18	0.83	1009	15.4	0.069	80.2	0.065
STD OREAS262	0.5	1.31	37.5	71	<20	263	1.1	2.98	0.7	27.6	42	114.5	3.2	4	0.19	0.3	17	1.18	545	0.7	0.066	65.7	0.04
STD DS11	1.7	1.15	42	67.1	<20	418	13	1.06	2.5	14.1	58	150.5	3.1	5	0.27	0.4	18	0.85	1017	14.4	0.074	78.1	0.072
STD OREAS262	0.5	1.3	35.7	62.8	<20	253	1	2.91	0.6	27.5	44	117.5	3.26	4	0.16	0.32	18	1.22	527	0.6	0.07	66.8	0.04
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	<0.1	< 0.001	< 0.1	< 0.001
BLK	<0.1	< 0.01	<0.5	<0.5	<20	<1	< 0.1	< 0.01	< 0.1	<0.1	<1	<0.1	<0.01	<1	<0.01	<0.01	<1	< 0.01	<1	< 0.1	<0.001	<0.1	<0.001
BLK	<0.1	< 0.01	<0.5	<0.5	<20	<1	< 0.1	<0.01	<0.1	<0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	<0.1	<0.001	<0.1	<0.001

Signed: Mark Acres - Quality Assurance

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58437 Date: October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
AO867634	25.6	1.99	0.4	6.7	<0.5	256	2.4	0.4	0.018	<0.1	0.3	90	0.5	158
A0867634 Re	26	2.03	0.4	7.1	0.6	250	2.6	0.3	0.018	0.1	0.3	88	0.5	145
AO867635	168.5	6.81	0.7	7.7	<0.5	321	15.9	0.2	0.01	0.2	0.2	28	1.2	136
A0867636	586.9	>10.00	1	2	1.8	103	158.5	0.5	0.007	0.2	<0.1	16	3.3	104
AO867637	894.5	>10.00	2	1.6	1.3	54	154.3	0.2	0.005	0.2	<0.1	13	0.9	109
				210	210			014	0.005	0.2	~~~	4.0	0.5	200
AO867638	435.6	8.55	1.2	3.7	0.6	113	21.1	0.2	0.006	0.2	0.7	16	1.1	87
AO867639	1099.1	5.78	0.7	7	0.5	115	32.7	0.2	0.005	0.2	1.2	21	1	141
A0867640	1126.7	5.01	0.5	6.7	0.7	93	26.7	0.2	0.007	0.2	1.3	24	1.1	117
A0867641	68.4	1.13	0.3	8.7	< 0.5	71	6.2	0.3	0.025	0.1	0.2	64	1.2	146
A0867642	8.5	0.06	<0.1	9.1	< 0.5	61	<0.2	0.3	0.062	<0.1	<0.1	137	<0.1	115
. 10007012	0.5	0.00	-0.2	UT 1 M	40.5	01	1012	0.0	0.002	4012	~U.S.	201	70.2	**3
A0867643	7	< 0.05	0.1	13.6	< 0.5	32	< 0.2	0.2	0.118	< 0.1	< 0.1	185	< 0.1	1.04
A0867644	32.6	0.14	< 0.1	9.7	< 0.5	69	< 0.2	0.3	0.048	<0.1	<0.1	132	0.1	117
A0867645	4.4	< 0.05	0.1	11.3	< 0.5	8	< 0.2	0.3	0.139	< 0.1	< 0.1	139	0.3	78
A0867646	14.7	0.18	0.2	20.4	1.7	30	0.2	0.3	0.136	0.2	0.1	221	0.4	123
AO867647	2.3	< 0.05	< 0.1	8.9	< 0.5	11	< 0.2	0.3	0.193	0.1	< 0.1	159	0.2	72
A0867648	2.4	< 0.05	0.1	6.9	< 0.5	14	< 0.2	0.3	0.194	< 0.1	0.1	108	0.1	64
AO867649	2.3	< 0.05	< 0.1	6.1	< 0.5	15	< 0.2	0.4	0.198	< 0.1	0.2	86	0.2	54
AO867650	5.9	< 0.05	0.2	6.6	< 0.5	21	< 0.2	0.3	0.136	< 0.1	0.2	92	0.2	60
AO867651	1.1	< 0.05	0.1	6.7	< 0.5	4	< 0.2	0.4	0.147	< 0.1	0.1	143	0.1	200
AO867652	8.8	0.21	0.2	12.1	< 0.5	15	0.3	0.5	0.141	0.1	0.1	142	0.4	140
AO867653	3.3	0.14	0.1	8.2	0.5	6	< 0.2	0.4	0.244	< 0.1	0.1	143	0.2	91
A0867654	3.2	0.23	0.1	7.5	1	11	< 0.2	0.4	0.191	< 0.1	0.1	138	0.2	94
A0867655	2.5	0.16	0.2	8.8	1	4	< 0.2	0.7	0.15	0.1	0.1	80	0.2	72
AO867656	2	0.16	0.1	9.1	< 0.5	4	< 0.2	1	0.183	0.2	0.2	77	0.2	62
A0867657	95.3	0.31	0.2	6.8	< 0.5	22	0.4	0.9	0.121	0.2	0.2	55	0.3	71
A0867658	6.1	0.16	0.1	8.7	0.6	15	<0.2	0.8	0.146	0.1	0.2	69	0.2	67
AO867659	10.6	0.3	< 0.1	9.4	0.7	13	<0.2	0.8	0.187	0.2	0.2	84	0.2	101
AO867660	16.3	0.24	0.1	4.7	0.9	27	<0.2	0.6	0.103	0.1	0.2	54	0.1	76
A0867661	42.9	< 0.05	0.3	3.6	< 0.5	14	1.7	0.8	0.005	< 0.1	0.4	14	0.5	37
AO867662	15.3	1.09	0.2	2.1	<0.5	23	2.7	0.4	0.005	< 0.1	0.1	10	0.5	22
10967663	477	2.2	0.3	2.2	0.0	22		0.5	0.000	0.7	0.2	20	0.7	200
A0867663	17.3	2.2	0.3	3.2	0.6	33	6.9	0.5	0.022	0.2	0.3	20	0.7	42
A0867664	22.1	0.48	0.2	3.6	<0.5	21	3.8	0.8	0.029	0.2	0.3	22	0.9	39
A0867665	60.4	0.07	0.4	4.1	< 0.5	9	0.6	1.1	0.086	0.2	0.2	43	2.5	73
A0867666	13.3	<0.05	0.2	5.5	<0.5	4	<0.2	1	0.123	0.2	0.1	52	0.8	64
AO867667	6.5	<0.05	<0.1	5.1	<0.5	3	<0.2	0.7	0.112	<0.1	0.1	59	1	55

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58437 Date: October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Sample ppm % ppm ppm ppm ppm ppm ppm ppm ppm p	Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
AO867668															
AOS67669 AOS67670 AOS67670 AOS67671 AOS67671 AOS67671 AOS67671 AOS67672 AOS67672 AOS67672 AOS67673 AOS67673 AOS67673 AOS67674 AOS67674 AOS67674 AOS67674 AOS67674 AOS67675 AOS67675 AOS67674 AOS67675 AOS67674 AOS67674 AOS67676 AOS67674 AOS67676 AOS67676 AOS67676 AOS67676 AOS67677 AOS67676 AOS67677 AOS67677 AOS67678 AOS67678 AOS67678 AOS67678 AOS67679 AOS67678 AOS67679 AOS67679 AOS67678 AOS67680 AOS676		pp	,,	pp	ppitt	pp	ppm	bbiii	ppiii	70	ppiii	ppiii	ppiii	ppiii	pp
AO867669 AO867670 AO867670 AO867671 AO867671 AO867671 AO867670 AO867671 AO867671 AO867671 AO867671 AO867671 AO867671 AO867671 AO867671 AO867672 AO867672 AO867672 AO867672 AO867673 AO867673 AO867673 AO867673 AO867673 AO867674 AO867674 AO867674 AO867674 AO867674 AO867674 AO867674 AO867675 AO867674 AO867676 AO867677 AO867676 AO867676 AO867676 AO867676 AO867676 AO867676 AO867677 AO867677 AO867676 AO867677 AO867676 AO867676 AO867676 AO867677 AO867676 AO867680 AO8	AO867668	4.1	< 0.05	< 0.1	8.4	< 0.5	6	< 0.2	1.6	0.118	0.2	0.2	64	0.4	64
AO867670 3.3 <0.05 0.1 7.3 <0.5 3 <0.2 1 0.115 0.2 0.1 61 0.3 51 AO867670 Re 3.2 <0.05	A0867669	3.8	< 0.05	0.1	8.8	< 0.5	11	< 0.2							
A0867671	A0867670	3.3	< 0.05	0.1	7.3	< 0.5	3	< 0.2	1	0.115	0.2	0.1		0.3	51
AO867672 3.5 0.22 0.1 8.5 0.05 23 0.2 0.5 0.072 0.1 0.1 99 0.4 108 AO867673 21.8 0.61 0.1 9 9 1.3 51 0.3 0.4 0.074 0.1 0.1 97 0.6 104 AO867674 7.3 0.55 0.1 9.5 1 32 0.2 0.5 0.033 0.1 0.1 111 0.7 119 0.34 0.667674 7.3 0.55 0.1 9.5 1 32 0.2 0.5 0.033 0.1 0.1 0.1 111 0.7 119 0.34 0.667676 0.2 5 0.07 0.01 18.2 0.5 15 0.0 0.5 0.086 0.1 0.1 111 0.7 119 0.34 0.61 13.3 1.6 14 0.0 0.5 0.0 0.0 0.6 0.1 0.1 185 0.2 109 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	A0867670 Re	3.2	< 0.05	0.1	6.5	< 0.5	3	< 0.2	1	0.105	0.2	0.1	59	0.3	48
AO867673 21.8 0.61 0.1 9 1.3 51 0.3 0.4 0.074 0.01 0.1 0.1 191 0.04 AO867674 AO867675 11.9 0.34 4.01 13.3 1.6 14 4.02 0.5 0.101 4.01 1.01 1.11 0.7 1.19 AO867676 2.5 0.07 4.01 18.2 4.0.5 15 4.0.2 0.5 15 4.0.2 0.5 0.086 0.1 0.1 1.11 0.7 1.19 AO867676 2.5 0.07 4.01 18.2 4.0.5 15 4.0.2 0.5 15 4.0.2 0.5 0.086 0.1 0.1 1.11 0.1 1.11 0.7 1.19 AO867676 2.5 0.07 4.01 1.82 4.0.5 1.83 4.1 0.84 0.2 1.83 4.1 0.84 0.2 1.83 0.5 6.01 6.02 0.3 0.15 6.01 6.01 6.01 1.01 1.03 1.03 1.01 AO867689 1.0.17 0.2 8.7 4.0.5 6.0 6.0.2 0.3 0.15 6.0.1 6.0.1 6.0.1 1	A0867671	2.9	< 0.05	0.1	8.7	< 0.5	3	< 0.2	1.2	0.102	0.1	0.1	76	0.3	46
AO867673 21.8 0.61 0.1 9 1.3 51 0.3 0.4 0.074 0.01 0.1 0.1 191 0.04 AO867674 AO867675 11.9 0.34 4.01 13.3 1.6 14 4.02 0.5 0.101 4.01 1.01 1.11 0.7 1.19 AO867676 2.5 0.07 4.01 18.2 4.0.5 15 4.0.2 0.5 15 4.0.2 0.5 0.086 0.1 0.1 1.11 0.7 1.19 AO867676 2.5 0.07 4.01 18.2 4.0.5 15 4.0.2 0.5 15 4.0.2 0.5 0.086 0.1 0.1 1.11 0.1 1.11 0.7 1.19 AO867676 2.5 0.07 4.01 1.82 4.0.5 1.83 4.1 0.84 0.2 1.83 4.1 0.84 0.2 1.83 0.5 6.01 6.02 0.3 0.15 6.01 6.01 6.01 1.01 1.03 1.03 1.01 AO867689 1.0.17 0.2 8.7 4.0.5 6.0 6.0.2 0.3 0.15 6.0.1 6.0.1 6.0.1 1															
AOB67674 7.3 0.55 0.1 9.5 1 32 0.2 0.5 0.083 <0.1 0.1 111 0.7 119 AOB67675 1.19 0.34 <0.1 13.3 1.6 14 <0.2 0.5 0.101 158 0.2 109 AO867676 2.5 0.07 <0.1 18.2 <0.5 15 <0.2 0.05 0.006 0.1 1.158 0.2 145 AO867678 4.8.1 0.84 0.2 16.8 <0.7 45 0.3 0.5 0.175 0.2 0.2 168 0.4 162 AO867679 1 0.17 0.2 8.7 <0.5 6 <0.2 0.3 0.15 <0.1 <0.1 128 <0.1 133 AO867681 19.9 0.43 0.2 11.8 <0.5 52 0.4 0.3 0.01 <0.1 114 <0.1 <0.1 <0.1 <0.1 <0.1	A0867672	3.5	0.22	0.1	8.5		23	< 0.2	0.5	0.072	< 0.1	0.1	99	0.4	108
A0867675	AO867673	21.8	0.61	0.1	9	1.3	51	0.3	0.4	0.074	0.1	0.1	97	0.6	104
A0867676			0.55	0.1	9.5		32	0.2	0.5	0.083	< 0.1	0.1	111	0.7	119
A0867687									0.5	0.101	< 0.1	0.1	158	0.2	145
A0867678 48.1 0.84 0.2 16.8 0.7 45 0.3 0.5 0.175 0.2 0.2 168 0.4 162 A0867679 1 0.17 0.2 8.7 <0.5 6 <0.2 0.3 0.15 <0.1 <0.1 128 <0.1 133 A0867680 5.4 0.11 <0.1 8.9 <0.5 30 <0.2 0.3 0.11 <0.1 104 <0.1 74 A0867681 19.9 0.43 0.2 11.8 <0.5 52 0.4 0.3 0.098 <0.1 <0.1 114 <0.5 11 <0.2 0.4 0.25 <0.1 <0.1 114 <0.5 11 <0.2 0.4 0.25 <0.1 <0.1 151 <0.1 11 <0.2 0.4 0.25 <0.1 <0.1 151 <0.1 101 123 A0867684 9.9 0.17 0.2 15.7 <0.5 <	A0867676	2.5	0.07	< 0.1	18.2	< 0.5	15	< 0.2	0.5	0.086	0.1	0.1	185	0.2	109
A0867678 48.1 0.84 0.2 16.8 0.7 45 0.3 0.5 0.175 0.2 0.2 168 0.4 162 A0867679 1 0.17 0.2 8.7 <0.5 6 <0.2 0.3 0.15 <0.1 <0.1 128 <0.1 133 A0867680 5.4 0.11 <0.1 8.9 <0.5 30 <0.2 0.3 0.11 <0.1 104 <0.1 74 A0867681 19.9 0.43 0.2 11.8 <0.5 52 0.4 0.3 0.098 <0.1 <0.1 114 <0.5 11 <0.2 0.4 0.25 <0.1 <0.1 114 <0.5 11 <0.2 0.4 0.25 <0.1 <0.1 151 <0.1 70 A0867683 9.2 0.28 0.2 22.2 <0.5 12 <0.2 0.7 0.045 <0.1 <0.1 128 <0.2 77	4 79 79 70 70 70 70 70						_								
A0867679 1 0.17 0.2 8.7 <0.5 6 <0.2 0.3 0.15 <0.1 <0.1 128 <0.1 133 A0867680 5.4 0.11 <0.1 8.9 <0.5 30 <0.2 0.3 0.11 <0.1 <0.1 <0.1 104 <0.1 74 A0867681 19.9 0.43 0.2 11.8 <0.5 52 0.4 0.3 0.098 <0.1 <0.1 114 0.3 111 A0867682 2.2 0.17 <0.1 10.4 <0.5 11 <0.2 0.4 0.2 0.3 0.098 <0.1 <0.1 114 0.3 111 A0867683 9.2 0.28 0.2 22.2 <0.5 38 <0.2 0.6 0.095 <0.1 <0.1 151 0.1 234 <0.1 123 A0867684 9.9 0.17 0.2 14.7 <0.5 12 <0.2 0.6 0.095 <0.1 <0.1 128 0.2 77 A0867685 8.5 0.22 0.2 15.7 <0.5 17 <0.2 0.6 0.095 <0.1 0.1 128 0.2 77 A0867686 133.4 0.2 0.4 15.3 <0.5 29 0.2 0.4 0.057 <0.1 0.1 143 0.1 93 A0867686 133.4 0.2 0.4 15.3 <0.5 29 0.2 0.4 0.057 <0.1 0.1 143 0.1 93 A0867687 4.9 0.2 0.2 18.1 <0.5 23 <0.2 0.2 0.4 0.057 <0.1 0.1 172 <0.1 98 A0867689 1.5 0.29 0.2 10.1 <0.5 27 <0.2 0.4 0.4 0.045 <0.1 0.1 94 0.2 101 A0867689 3.8 0.34 0.2 7.3 <0.5 27 <0.2 0.4 0.4 0.045 <0.1 0.1 86 <0.1 85 A0867690 3.8 0.34 0.2 7.3 <0.5 34 0.3 0.4 0.05 <0.1 0.1 86 <0.1 85 A0867691 16.8 0.53 0.3 7.9 <0.5 63 0.5 0.5 0.07 0.045 <0.1 0.1 91 27 117 A0867693 3.6 0.4 0.2 10.1 <0.5 24 0.4 0.5 0.5 0.5 0.07 0.1 0.1 16 0.1 170 0.2 78 A0867694 4.8 0.09 0.1 17 <0.5 40 <0.2 0.4 0.09 <0.1 <0.1 106 0.6 87 A0867695 84.8 0.08 0.2 10.3 <0.5 8 0.4 0.5 0.5 0.5 0.07 0.2 0.1 10.1 106 0.6 87 A0867695 84.8 0.08 0.2 10.3 <0.5 8 0.4 0.4 0.6 0.71 0.2 0.2 114 1.4 121 A0867696 67 0.25 0.6 7.2 <0.5 14 21.7 0.4 0.019 0.1 1.6 104 10.4 130 A0867697 11.3 1.25 0.5 7.1 <0.5 52 1.4 0.4 0.4 0.06 0.71 0.2 0.2 114 1.4 121 A0867699 701 0.4 0.7 9.7 <0.5 52 1.4 0.4 0.6 0.071 0.2 0.2 114 1.4 121 A0867699 701 0.4 0.7 9.7 <0.5 52 1.4 0.4 0.6 0.6 0.71 0.2 0.2 114 1.4 121 A0867699 701 0.4 0.7 9.7 <0.5 52 1.4 0.4 0.6 0.6 0.71 0.2 0.2 114 1.4 121 A0867699 701 0.4 0.7 9.7 <0.5 52 1.4 0.4 0.6 0.6 0.74 0.6 0.4 0.6 0.4 0.6 78 2.3 2.6 0.4 0.06 0.4 0.6 0.4 0.5 78 1.7 222															
A0867680 5.4 0.11															
A0867681 19.9 0.43 0.2 11.8 <0.5 52 0.4 0.3 0.098 <0.1 <0.1 114 0.3 111 A0867682 2.2 0.17 <0.1															
A0867682 2.2 0.17 <0.1 10.4 <0.5 11 <0.2 0.4 0.25 <0.1 <0.1 <0.1 151 0.1 70 A0867683 9.2 0.28 0.2 22.2 <0.5 38 <0.2 0.6 0.095 <0.1 <0.1 123 <0.1 234 <0.1 123 A0867684 9.9 0.17 0.2 14.7 <0.5 12 <0.2 0.7 0.045 <0.1 0.1 128 0.2 77 A0867685 8.5 0.22 0.2 15.7 <0.5 17 <0.2 0.6 0.051 <0.1 0.1 143 0.1 93 A0867686 133.4 0.2 0.4 15.3 <0.5 29 0.2 0.4 0.057 <0.1 0.1 128 0.2 139 0.3 182 A0867687 4.9 0.2 0.2 18.1 <0.5 23 <0.2 0.5 0.107 0.1 <0.1 172 <0.1 98 A0867688 20.4 0.34 0.3 8.8 <0.5 24 0.4 0.4 0.045 <0.1 0.1 172 <0.1 98 A0867689 1.5 0.29 0.2 10.1 <0.5 27 <0.2 0.4 0.045 <0.1 0.1 143 0.1 93 A0867690 3.8 0.34 0.2 7.3 <0.5 34 0.3 0.4 0.05 <0.1 0.1 172 <0.1 86 <0.1 85 A0867691 16.8 0.53 0.3 7.9 <0.5 53 <0.2 0.7 0.045 <0.1 0.1 0.1 94 0.2 101 A0867694 4.8 0.09 0.1 17 <0.5 10 <0.2 0.4 0.09 <0.1 <0.1 0.1 34 0.6 63 A0867696 134.2 0.48 1.4 4.2 <0.5 10 <0.2 0.4 0.09 <0.1 <0.1 0.1 172 11 111 A0867696 134.2 0.48 1.4 4.2 <0.5 14 0.1 0.2 0.4 0.09 <0.1 <0.1 172 1 111 A0867696 134.2 0.48 1.4 4.2 <0.5 14 0.1 0.2 0.4 0.09 <0.1 <0.1 172 1 111 A0867696 134.2 0.48 1.4 4.2 <0.5 14 0.1 0.2 0.4 0.09 <0.1 <0.1 16 0.4 10.4 10.4 130 A0867697 11.3 1.25 0.5 7.1 <0.5 52 1.4 0.3 0.4 0.09 0.6 0.4 0.3 25 23 121 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 0.6 78 2.3 26 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 0.6 78 2.3 26 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 0.6 78 2.3 26 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 0.6 78 2.3 26 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 0.6 78 2.3 26 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 0.7 0.5 78 2.3 26 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.066 0.4 0.6 0.5 78 2.3 26 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.066 0.4 0.6 0.5 78 2.3 26 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.066 0.4 0.6 0.5 78 2.3 26 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.066 0.4 0.6 0.5 78 2.3 26 A0867700 603.6 0.3 0.7 8.4 0.5 23 2.6 0.4 0.066 0.4 0.6 0.5 78 2.3 26 A0867700 603.6 0.3 0.7 8.4 0.5 5															
A0867683 9.2 0.28 0.2 22.2 <0.5 38 <0.2 0.6 0.095 <0.1 <0.1 234 <0.1 123 A0867684 9.9 0.17 0.2 14.7 <0.5	AU80/081	19.9	0.43	0.2	11.8	<0.5	52	0.4	U.3	0.098	<0.1	<0.1	114	0.3	111
A0867683 9.2 0.28 0.2 22.2 <0.5 38 <0.2 0.6 0.095 <0.1 <0.1 234 <0.1 123 A0867684 9.9 0.17 0.2 14.7 <0.5	A0867682	2.2	0.17	<∩ 1	10.4	<0.5	11	<0.2	0.4	0.25	c0.1	-0.1	151	0.1	70
A0867684 9.9 0.17 0.2 14.7 <0.5 12 <0.2 0.7 0.045 <0.1 0.1 128 0.2 77 A0867685 8.5 0.22 0.2 15.7 <0.5															
A0867685 8.5 0.22 0.2 15.7 <0.5 17 <0.2 0.6 0.051 <0.1 0.1 143 0.1 93 A0867686 133.4 0.2 0.4 15.3 <0.5															
A0867686 133.4 0.2 0.4 15.3 <0.5 29 0.2 0.4 0.057 <0.1 0.2 139 0.3 182 A0867687 4.9 0.2 0.2 18.1 <0.5															
A0867687 4.9 0.2 0.2 18.1 <0.5 23 <0.2 0.5 0.107 0.1 <0.1 172 <0.1 98 A0867688 20.4 0.34 0.3 8.8 <0.5															
A0867688 20.4 0.34 0.3 8.8 <0.5 24 0.4 0.4 0.045 <0.1 0.1 94 0.2 101 A0867689 1.5 0.29 0.2 10.1 <0.5			0.111	0	2010	-070		0.40	0.1	0.007	10.2	0.1	200	0.0	200
A0867689 1.5 0.29 0.2 10.1 <0.5 27 <0.2 0.4 0.049 <0.1 <0.1 86 <0.1 85 A0867690 3.8 0.34 0.2 7.3 <0.5	A0867687	4.9	0.2	0.2	18.1	< 0.5	23	< 0.2	0.5	0.107	0.1	< 0.1	172	< 0.1	98
A0867689 1.5 0.29 0.2 10.1 <0.5 27 <0.2 0.4 0.049 <0.1 <0.1 86 <0.1 85 A0867690 3.8 0.34 0.2 7.3 <0.5	AO867688	20.4	0.34	0.3	8.8	< 0.5	24	0.4	0.4	0.045	< 0.1	0.1	94		101
A0867691 16.8 0.53 0.3 4.4 <0.5 53 <0.2 0.7 0.045 0.1 0.1 34 0.6 63 A0867692 56.5 0.53 0.3 7.9 <0.5	A0867689	1.5	0.29	0.2	10.1	< 0.5	27	< 0.2	0.4	0.049	< 0.1	< 0.1	86	< 0.1	85
A0867692 56.5 0.53 0.3 7.9 <0.5 63 0.5 0.5 0.076 0.2 0.1 91 2.7 117 A0867693 3.6 0.4 0.2 10.1 <0.5 40 <0.2 0.4 0.09 <0.1 <0.1 106 0.6 87 A0867694 4.8 0.09 0.1 17 <0.5 10 <0.2 0.4 0.143 0.1 <0.1 172 1 111 A0867695 84.8 0.08 0.2 10.3 <0.5 8 0.4 0.6 0.071 0.2 0.2 114 1.4 121 A0867696 134.2 0.48 1.4 4.2 <0.5 14 21.7 0.4 0.019 0.1 1.6 104 10.4 130 A0867697 11.3 1.25 0.5 7.1 <0.5 52 1.4 0.3 0.048 0.4 0.3 25 2.3 121 A0867698 67 0.25 0.6 7.2 <0.5 12 1.4 0.4 0.069 0.6 0.4 46 1.4 147 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 78 2.3 266 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.063 0.4 0.5 78 1.7 222	A0867690	3.8	0.34	0.2	7.3	< 0.5	34	0.3	0.4	0.05	< 0.1	< 0.1	70	0.2	78
A0867693 3.6 0.4 0.2 10.1 <0.5 40 <0.2 0.4 0.09 <0.1 106 0.6 87 A0867694 4.8 0.09 0.1 17 <0.5	AO867691	16.8	0.53	0.3	4.4	< 0.5	53	< 0.2	0.7	0.045	0.1	0.1	34	0.6	63
A0867693 3.6 0.4 0.2 10.1 <0.5 40 <0.2 0.4 0.09 <0.1 106 0.6 87 A0867694 4.8 0.09 0.1 17 <0.5															
A0867694 4.8 0.09 0.1 17 <0.5	A0867692	56.5	0.53	0.3	7.9	< 0.5	63	0.5	0.5	0.076	0.2	0.1	91	2.7	117
A0867695 84.8 0.08 0.2 10.3 <0.5	AO867693	3.6	0.4	0.2	10.1	< 0.5	40	< 0.2	0.4	0.09	< 0.1	< 0.1	106	0.6	87
A0867696 134.2 0.48 1.4 4.2 <0.5 14 21.7 0.4 0.019 0.1 1.6 104 10.4 130 A0867697 11.3 1.25 0.5 7.1 <0.5	AO867694	4.8	0.09	0.1	17	< 0.5	10	< 0.2	0.4	0.143	0.1	< 0.1	172	1	111
A0867697 11.3 1.25 0.5 7.1 <0.5 52 1.4 0.3 0.048 0.4 0.3 25 2.3 121 A0867698 67 0.25 0.6 7.2 <0.5 12 1.4 0.4 0.069 0.6 0.4 46 1.4 147 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 78 2.3 266 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.063 0.4 0.5 78 1.7 222	A0867695	84.8	0.08	0.2	10.3	< 0.5	8	0.4	0.6	0.071	0.2	0.2	114	1.4	121
A0867698 67 0.25 0.6 7.2 <0.5 12 1.4 0.4 0.069 0.6 0.4 46 1.4 147 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 78 2.3 266 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.063 0.4 0.5 78 1.7 222	A0867696	134.2	0.48	1.4	4.2	< 0.5	14	21.7	0.4	0.019	0.1	1.6	104	10.4	130
A0867698 67 0.25 0.6 7.2 <0.5 12 1.4 0.4 0.069 0.6 0.4 46 1.4 147 A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 78 2.3 266 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.063 0.4 0.5 78 1.7 222															
A0867699 701 0.4 0.7 9.7 <0.5 22 2.6 0.4 0.066 0.4 0.6 78 2.3 266 A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.063 0.4 0.5 78 1.7 222															
A0867700 603.6 0.3 0.7 8.4 <0.5 23 2.6 0.4 0.063 0.4 0.5 78 1.7 222															
											0.4	0.6			
A0867701 22.3 0.11 0.4 9.2 <0.5 17 0.2 0.6 0.06 0.5 0.4 97 2.3 212															
	AO867701	22.3	0.11	0.4	9.2	<0.5	17	0.2	0.6	0.06	0.5	0.4	97	2.3	212

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: October 15, 2020

S58437

MULTIELEMENT ICP-MS ANALYSIS

Element Sample	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Sr ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm
A0867702	12.9	0.08	0.4	9.6	<0.5	15	0.4	0.5	0.052	0.4	0.4	80	2	232
A0867703	92.8	0.58	0.4	9.2	< 0.5	16	1.8	0.3	0.04	0.3	0.4	54	4.7	275
A0867704	9.7	0.21	0.5	5.3	< 0.5	14	0.8	0.4	0.026	0.2	0.4	30	2.9	157
A0867705	132.3	0.38	0.5	2.6	< 0.5	15	3.1	0.3	0.003	< 0.1	0.7	15	1.4	151
A0867706	18	2.49	0.3	3.3	<0.5	49	6.6	0.3	0.007	0.1	0.2	14	2.7	52
A0867706 Re	16.7	2.44	0.3	3.2	<0.5	50	6.1	0.2	0.007	0.2	0.2	14	2.5	53
A0867707	37.8	1.49	0.4	5.1	< 0.5	51	1.8	0.2	0.028	0.3	0.2	27	1.3	86
A0867708	704.6	1.58	0.4	7.1	< 0.5	73	3.9	0.2	0.038	0.4	0.4	35	1	256
A0867709	575	6.9	0.4	2.2	< 0.5	20	436.8	0.7	< 0.001	< 0.1	0.3	3	0.2	197
A0867710	>10000.0	6.19	1.3	2.5	1.5	18	365.5	0.4	0.002	< 0.1	1	7	0.8	1075
A0867711	4143.9	4.21	0.8	2.8	0.9	16	170.1	0.2	0.002	< 0.1	0.3	7	1.4	1057
AO867712	95.1	0.1	0.3	7.2	< 0.5	15	0.6	0.9	0.058	0.3	0.2	62	1.5	1640
A0867713	25.9	0.15	0.2	4.4	< 0.5	15	0.2	0.8	0.039	< 0.1	0.1	50	0.3	362
STD OREAS262	58.9	0.26	3.7	3.5	0.6	36	0.3	9.6	0.003	0.4	1.2	22	0.1	164
STD DS11	136.4	0.27	8.1	3.3	2.1	64	4.8	8.3	0.093	5	2.7	49	2.5	364
STD OREAS262	58.2	0.26	3.5	3.4	0.5	37	<0.2	9.7	0.003	0.5	1.3	21	0.1	156
STD DS11	144.2	0.28	7.5	3.3	2	67	4.9	8.6	0.098	5	2.9	50	2.7	337
STD OREAS262	57.8	0.26	3.5	3.3	< 0.5	34	0.3	10.1	0.004	0.5	1.3	22	0.1	152
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	<0.1	<0.05	< 0.1	<0.1	< 0.5	<1	<0.2	< 0.1	<0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	<0.1	< 0.05	<0.1	<0.1	<0.5	<1	<0.2	< 0.1	<0.001	<0.1	<0.1	<1	<0.1	<1

Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Hanstone2

TSL Report: S58437

Date Received: Sep 23, 2020
Date Reported: Sep 30, 2020

Invoice: 78631

Remarks:

Sample Type: Number Size Fraction Sample Preparation
Core 80 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	a/tonne	Fire Assav/Gravimetric	0.03	100%

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58437

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78631

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867634	1.30		S58437
A0867635	6.31		S58437
A0867636	53.02	52.19	S58437
A0867637	49.79	47.67	S58437
A0867638	6.48		S58437
A0867639	11.42	11.21	S58437
A0867640	8.98		S58437
A0867641	2.71		S58437
A0867642	.03		S58437
A0867643	.05	.03	S58437
A0867644	<.03		S58437
A0867645	<.03		S58437
A0867646	. 17		S58437
A0867647	<.03		S58437
A0867648	<.03	<.03	S58437
A0867649	<.03		S58437
A0867650	<.03		S58437
A0867651	<.03		S58437
A0867652	<.03		S58437
A0867653	<.03		S58437

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 30/20

SIGNED

Mark Acres - Quality Assurance

and the second

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58437

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78631 P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867654	<.03		S58437
A0867655	.03		S58437
A0867656	<.03		S58437
A0867657	.12		S58437
A0867658	.03	.05	S58437
A0867659	<.03		S58437
A0867660	<.03		S58437
A0867661	.60		S58437
A0867662	1.11		S58437
A0867663	2.81	2.74	S58437
A0867664	1.73		S58437
A0867665	.24		S58437
A0867666	<.03		S58437
A0867667	<.03		S58437
A0867668	<.03	<.03	S58437
A0867669	<.03		S58437
A0867670	<.03		S58437

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

< .03

< .03

.15

Sep 30/20

A0867671

A0867672

A0867673

SIGNED

S58437

S58437

S58437

and the same

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58437

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78631
P.O.: Hanstone2

T. Fiolleau Doc Project

Au a/t	Au1	File Name
3/ 0	3/ 0	2.40,2110
.03		S58437
<.03	<.03	S58437
<.03		S58437
<.03		S58437
.15		S58437
<.03		S58437
< .03	<.03	S58437
.05		S58437
<.03		S58437
<.03		S58437
<.03		S58437
.14	.12	S58437
<.03		S58437
.09		S58437
.05		S58437
.26		S58437
.03		S58437
	g/t .03 <.03 <.03 <.03 <.03 <.03 <.03 <.03	g/t g/t .03 <.03 <.03 <.03 <.03 <.03 <.03 <.03

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 30/20

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58437

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78631

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867694	.05		S58437
A0867695	.15		S58437
A0867696	8.74	8.20	S58437
A0867697	.55		S58437
A0867698	.39	.39	S58437
A0867699	.55		S58437
A0867700	.51		S58437
A0867701	.07		S58437
A0867702	.19		S58437
A0867703	.84	.86	S58437
A0867704	.24		S58437
A0867705	1.37		S58437
A0867706	2.67		S58437
A0867707	.77		S58437
A0867708	.96	.94	S58437
A0867709	157.0	157.8	S58437
A0867710	103.6	104.2	S58437
A0867711	52.98	53.74	S58437
A0867712	.19		S58437
A0867713	.07		S58437

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 30/20

SIGNED

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58437

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78631

P.O.: Hans

Hanstone2

T. Fiolleau Doc Project

	Au g/t	Aul g/t	File Name
GS-7E	7.78		S58437
GS-7E	7.82		S58437
GS-7E	7.54		S58437
GS-7E	7.75		S58437
GS-7E	7.00		S58437
GS-7E	7.78		S58437

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 30/20

SIGNED

Santa Contraction of the Contrac

Company: Hanstone Gold Corp TSL Report: S58436 Geologist: T. Fiolleau Date Received: Sep 23, 2020 Project: Doc Project Date Reported: Oct 15, 2020 Purchase Order: Hanstone2 Invoice: 78626

ruichase Order. Haristonez invoice. 70020

Sample Type: Number Size Fraction Sample Preparation
Core 80 Reject ~ 95% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% -150 mesh (106 μm)

Pulp 0 None

ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag Al* As Au B* Bi Ca* Co Cr* Cu Fe* Ga* Hg K* La* Mg*	0.1 ppm 0.01 % 0.5 ppm 0.5 ppb 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.01% 1 ppm 0.01% 1 ppm 0.01 ppm 0.01 ppm	100 ppm 10 % 10000 ppm 100 ppm 2000 ppm 2000 ppm 40 % 2000 ppm 2000 ppm 10000 ppm 10000 ppm 1000 ppm 1000 ppm 100 ppm 30 %	Mn * Mo Na * Ni P * Pb S Sb Sc Se Sr * Te Th * Ti * TI U * V * W * Zn	1 ppm 0.1 ppm 0.001% 0.1 ppm 0.001% 0.1 ppm 0.05 % 0.1 ppm 0.5 ppm 1 ppm 1 ppm 0.1 ppm 0.1 ppm 2 ppm 0.1 ppm 0.1 ppm	10000 ppm 2000 ppm 10 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 1000 ppm 10000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10 % 1000 ppm 10000 ppm 10000 ppm

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58436 October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo	Na %	Ni ppm	P %
			.,	, ,	, ,	, ,	, ,		• •	* *		• •											
A0867554	0.1	1.63	0.5	2	<20	156	< 0.1	1.99	< 0.1	15.3	105	58.9	4.53	8	< 0.01	0.21	4	1.36	843	1.3	0.105	10	0.069
A0867555	<0.1	1.46	0.6	< 0.5	<20	94	< 0.1	1.52	< 0.1	14.1	83	58.8	4.1	8	< 0.01	0.23	3	1.26	667	0.6	0.07	10	0.048
A0867556	0.3	3.32	0.9	1.1	<20	34	< 0.1	2.81	< 0.1	28	115	137.8	7.09	13	< 0.01	0.11	3	2.57	1163	1.4	0.052	22.7	0.096
A0867557	0.3	3.82	0.9	3	<20	50	< 0.1	4.81	< 0.1	31.5	91	130.6	7.68	14	< 0.01	0.26	3	3	1501	0.5	0.027	25.5	0.106
A0867558	1.1	3.03	0.9	247.8	<20	118	<0.1	3.15	0.1	22.4	48	100.4	6.13	12	< 0.01	0.67	3	1.99	1072	0.4	0.037	10	0.092
A0867559	0.6	2.89	0.6	9.4	<20	117	< 0.1	3.49	0.2	22.9	60	241	6.01	10	< 0.01	0.61	2	1.97	1151	0.7	0.051	9.8	0.096
A0867560	0.7	2.76	< 0.5	21.7	<20	77	< 0.1	4.26	0.1	22.6	48	237.2	6.3	11	< 0.01	0.28	3	1.91	1183	0.8	0.053	6.9	0.088
A0867561	0.4	2.61	1	24.6	<20	78	< 0.1	3.41	< 0.1	22	42	95.4	6	11	< 0.01	0.29	3	1.78	987	0.8	0.052	7.7	0.091
A0867562	1.6	3.1	1.6	354	<20	1.40	< 0.1	3.54	0.3	23	38	91.6	6.03	12	< 0.01	0.37	4	2.1	1092	0.9	0.04	9.9	0.093
A0867563	0.2	3.06	1.1	3.7	<20	121	<0.1	3.24	0.1	22.6	34	87.7	6.17	12	< 0.01	0.4	3	2.12	1144	0.7	0.045	10.4	0.092
A0807303	0.2	3.00	2.1	3.7	~20	121	~0.1	3.24	0.1	22.0	34	07.7	0.27	1.2	10.02	0.4	,	de contra	22	0.,	0.075	2011	0,000
A0867564	0.2	1.28	1.2	7.6	<20	18	0.7	10.03	0.1	13.6	117	55.7	3.07	4	< 0.01	0.14	8	1.14	732	1.4	0.027	30.7	0.06
AO867565	0.3	1.56	5.7	11.7	<20	141	1	6.76	0.3	23.6	79	62.2	4.2	4	< 0.01	0.12	5	1.68	719	1.6	0.005	45	0.048
A0867566	0.2	1.87	3.2	2.8	<20	152	0.3	8.62	0.1	14.4	88	21.4	3.98	5	< 0.01	0.15	9	1.86	1327	0.9	0.003	41.9	0.072
A0867567	0.1	0.36	4.3	4.1	<20	300	0.1	22.67	0.1	5	61	20.9	1.27	<1	< 0.01	0.09	5	0.33	1031	1.4	< 0.001	13.6	0.017
A0867567 Re	0.1	0.36	4.1	8.7	<20	289	0.1	22.96	0.2	4.7	59	21	1.26	1	<0.01	0.1	5	0.33	1046	1.3	<0.001	13.2	0.018
A0867568	<0.1	0.09	3.8	1.6	<20	166	<0.1	34.52	0.1	2.3	6	29.2	0.38	<1	< 0.01	0.01	5	0.15	1056	0.3	< 0.001	3.8	0.012
A0867569	0.7	2.44	5.4	3.2	<20	54	0.1	0.72	1.2	22.5	122	124.2	5.9	11	< 0.01	0.16	5	1.69	1009	0.8	0.08	14.4	0.054
A0867570	0.3	1.75	2.7	3.4	<20	344	< 0.1	0.43	0.3	15.3	85	67.9	4.22	7	< 0.01	0.62	4	1.16	681	0.4	0.068	12.6	0.07
A0867571	0.7	1.96	10	6.4	<20	190	< 0.1	0.46	1.3	15.6	67	73	4.7	9	< 0.01	0.36	7	1.33	648	0.3	0.057	12.4	0.078
A0867572	1.6	0.94	8.0	874.3	<20	324	< 0.1	0.19	0.8	8.2	247	37	2.49	3	< 0.01	0.49	11	0.47	408	0.7	0.061	25.8	0.026
A0867573	0.3	1.45	1.3	10.4	<20	492	0.1	0.34	0.4	10.6	156	27.8	3.22	6	< 0.01	0.71	9	0.94	430	0.3	0.05	32.6	0.064
A0867574	0.3	1.65	0.9	34.4	<20	734	0.3	0.38	0.8	12.2	167	17.1	3.4	6	< 0.01	1.01	8	1.04	510	0.5	0.068	25.9	0.049
A0867575	1.1	0.91	0.8	235.7	<20	340	< 0.1	0.38	0.8	8.6	211	33.7	2.75	4	< 0.01	0.58	10	0.59	538	0.7	0.054	23.4	0.05
A0867576	0.4	1.26	0.7	88.3	<20	401	< 0.1	0.26	0.3	8.7	220	27.5	2.89	5	< 0.01	0.54	7	0.83	554	1	0.074	18.4	0.044
A0867577	0.6	1.36	1.1	95.8	<20	370	0.6	0.2	1	12.9	162	50.9	3.71	6	<0.01	0.58	7	1	541	0.7	0.056	19.4	0.045
A0867578	0.4	1.5	1.4	20	<20	353	3.1	0.6	0.6	14.8	192	45.9	3.55	6	< 0.01	0.66	4	1.05	610	0.6	0.078	22.3	0.052
AO867579	0.5	1.15	1.1	19.3	<20	423	0.1	1.14	0.6	13.6	109	70.2	3.36	5	< 0.01	0.39	3	1.05	903	1.2	0.042	48.2	0.045
AO867580	0.5	1.2	0.8	36.3	<20	251	0.1	2.12	0.4	14.7	131	120.6	3.56	4	< 0.01	0.58	4	1.08	1383	0.9	0.044	22.2	0.05
AO867581	1.4	1.57	1.1	336.1	<20	294	0.1	1.69	0.5	18.1	194	111.7	4.03	5	< 0.01	0.81	5	1.03	1205	1	0.033	22	0.078
A0867582	1.6	1.11	0.8	408.4	<20	274	< 0.1	0.55	1.2	13.5	283	69.4	3.1	3	< 0.01	0.56	6	0.53	835	1.1	0.036	20.6	0.057
AO867583	6.7	0.55	0.9	1775.3	<20	312	<0.1	0.41	2.9	9.7	362	83.6	2.56	2	<0.01	0.31	6	0.23	606	1.8	0.033	16.5	0.026
	11.6	0.33	0.9										4.27	2	<0.01	0.31	6	0.24	824	2.8	0.033	21.3	0.042
A0867584				2926.5	<20	61	0.1	0.24	1.6	16.6	222	78.9		2	< 0.01	0.47	7	0.24	1251	4.7	0.021	17.3	0.044
A0867585	13.2	0.71	1	3222.5	<20	116	0.1	0.09	1.8	22.4	123	105.4	4.79	3			4	0.25	1454	3.2	0.007	30.8	0.044
A0867586	19	1.19	0.9	3274.4	<20	27	0.3	1.75	3.2	27	208	262.6	5.47	3	< 0.01	0.87			130	17.9	0.017	6.2	0.037
AO867587	>100.0	0.34	1.1	64697.4	<20	2685	0.2	0.03	0.6	2.9	218	416	3.63	Ţ	0.11	0.24	8	0.07	120	17.3	0.000	0.2	U.UII

Signed: Mark Acres - Quality Assurance

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58436 October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Ag	Al	As	Au	8	Ва	Ві	Ca %	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P %
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	70	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	70
A0867588	2.1	0.01	0.9	448.8	<20	357	< 0.1	0.02	< 0.1	1.6	537	28.9	0.74	<1	< 0.01	< 0.01	<1	0.01	61	3.4	0.005	11.1	0.001
A0867589	1.9	0.01	0.6	284.3	<20	430	< 0.1	0.02	< 0.1	1.4	225	31.4	0.46	<1	< 0.01	< 0.01	<1	< 0.01	39	5.9	0.002	4.9	< 0.001
AO867590	4	0.02	1	494.6	<20	165	< 0.1	0.02	< 0.1	2.2	463	134.2	1.36	<1	< 0.01	< 0.01	<1	< 0.01	131	5.4	0.004	9.7	0.002
AO867591	76.9	0.24	1.1	18649.2	<20	14	19.9	0.04	0.4	16.5	231	920.9	7.33	<1	0.04	0.17	2	0.03	430	28	0.005	16.6	0.016
A0867592	7.1	0.85	1.5	1615.3	<20	751	0.6	0.15	1.3	18.4	146	401.3	4.25	2	< 0.01	0.53	6	0.18	606	4.7	0.005	8.4	0.067
A0867593	0.9	1.18	< 0.5	229.7	<20	336	0.1	4.54	1.5	16.9	89	166.5	3.1	3	< 0.01	0.71	2	0.74	1966	0.9	0.029	8.6	0.074
A0867594	0.6	1.37	< 0.5	73.6	<20	448	0.1	3.32	0.4	17.8	55	142.2	4.33	4	< 0.01	1.05	2	1.41	1470	0.7	0.05	9.6	0.064
A0867595	0.4	2.79	< 0.5	14.1	<20	67	< 0.1	3.12	0.2	25.3	37	1.05.9	6.06	11	< 0.01	0.23	2	2.22	1166	0.2	0.035	11.7	0.062
AO867596	2.9	2.54	7.1	28.9	<20	168	0.5	3.22	0.5	21.5	119	964.6	5.68	8	< 0.01	0.86	5	1.48	2521	0.9	0.025	13.3	0.084
A0867597	0.2	1.47	2.5	6.2	<20	682	<0.1	0.43	<0.1	11.5	87	39.2	3.53	7	<0.01	0.74	4	1.06	540	0.5	0.052	30.7	0.076
AO867598	0.2	1.07	1.7	3.2	<20	553	<0.1	0.32	< 0.1	7.9	216	37.7	2.45	5	< 0.01	0.5	5	0.65	376	2.5	0.094	27.4	0.031
A0867599	4.6	1.14	1.5	653.9	<20	813	< 0.1	0.5	0.6	8.8	104	107.9	2.71	5	< 0.01	0.58	6	0.8	500	1.9	0.046	24.4	0.052
A0867600	0.8	1.32	1	107.1	<20	794	< 0.1	0.64	0.6	8.2	178	50.3	2.78	6	< 0.01	0.73	4	0.89	535	1.9	0.069	22.4	0.04
A0867601	0.2	1.05	1.3	< 0.5	<20	2304	< 0.1	2.88	0.1	7.3	99	26.2	1.9	4	< 0.01	0.4	3	0.55	538	0.4	0.036	14.7	0.05
A0867602	0.3	1.22	0.7	5.6	<20	395	< 0.1	1.86	0.1	7,5	180	22.6	2.56	5	< 0.01	0.55	4	0.79	583	0.6	0.061	16.9	0.043
a visa and and and all all all																							0.000
A0867603	0.2	1.05	0.9	6	<20	421	< 0.1	0.72	0.1	8	117	17.4	2.53	5	< 0.01	0.59	4	0.78	456	0.2	0.037	27.1	0.037
A0867603 Re	0.2	1.04	0.7	8.8	<20	413	<0.1	0.71	0.2	8	113	16.2	2.54	5	< 0.01	0.58	4	0.78	456	0.2	0.036	28	0.038
A0867604	0.1	1.24	<0.5	4.6	<20	558	0.1	0.42	<0.1	7.5	164	13.2	2.92	/	< 0.01	0.62	6	0.86	446	0.6	0.093	17.1	0.046
A0867605	1.5	0.83	0.6	422.3	<20	1428	0.1	0.59	0.1	7.3	107	29.4	2.18	4	< 0.01	0.43	5	0.66	499	0.4	0.034	16.3	0.044
AO867606	0.1	1.43	0.7	6	<20	767	<0.1	0.3	0.1	8.5	163	25.1	2.85	/	<0.01	0.72	7	0.92	470	0.4	0.08	26.9	0.042
AO867607	0.2	0.87	< 0.5	24.6	<20	242	< 0.1	0.27	0.1	6.5	140	28.5	2.14	3	< 0.01	0.23	6	0.59	435	0.3	0.035	18.6	0.023
AO867608	0.2	1.12	1.1	5.7	<20	326	< 0.1	0.63	0.1	8.2	175	37.2	2.57	4	< 0.01	0.33	8	0.71	519	0.5	0.069	42	0.047
AO867609	0.5	0.96	0.7	77.2	<20	242	< 0.1	0.22	0.2	6.7	225	42.7	2.54	4	< 0.01	0.29	8	0.54	461	0.7	0.067	28.3	0.035
A0867610	2.1	0.57	0.6	628.7	<20	425	< 0.1	0.75	0.5	7	147	24.2	1.91	2	< 0.01	0.34	6	0.28	646	1.4	0.035	19.1	0.037
A0867611	0.3	1.47	0.8	36.4	<20	407	< 0.1	0.68	0.1	10.6	133	42.2	3.34	6	< 0.01	0.58	7	1.02	677	0.4	0.04	15.2	0.108
						0.55													200			20	0.054
A0867612	0.3	1.46	0.8	20.1	<20	365	<0.1	1.02	0.1	12.1	146	44.4	3.63	6	<0.01	0.5	5	1.06	890	0.6	0.068	20	0.054
AO867613	0.6	1.28	1.2	33.1	<20	295	<0.1	1.18	0.9	15.5	126	69.9	3.85	5	< 0.01	0.53	4	1.06	976	0.6	0.033	67.8	0.056
A0867614	2	0.83	1	497.7	<20	79	0.1	1.83	0.8	15.8	214	38.1	4.08	3	< 0.01	0.53	6	0.81	1451	5	0.071	40.6	0.049
A0867615	0.6	1.53	0.7	25.4	<20	426	<0.1	1.64	1.7	12.9	101	109.3	4.8	7	< 0.01	0.88	4	1.4	1301	0.7	0.041	21.5	0.066
AO867616	0.2	1.67	0.8	9.1	<20	245	< 0.1	1.78	0.4	12.8	145	37.2	3.94	6	< 0.01	0.38	7	1.03	842	0.6	0.063	26.5	0.069
A0867617	0.3	1.81	1	25.8	<20	193	< 0.1	2.22	<0.1	17.1	113	81.1	4.33	6	< 0.01	0.38	4	1.21	962	0.5	0.035	22	0.104
AO867618	0.3	2.56	1.7	5.5	<20	297	< 0.1	1.38	0.5	20.9	105	79.9	5.6	10	< 0.01	0.46	8	1.5	953	1.1	0.047	25.3	0.14
A0867619	0.4	1.46	2.6	9.1	<20	339	0.2	1.35	0.5	16.5	204	73.1	3.65	5	< 0.01	0.49	9	0.85	798	1.5	0.039	23.9	0.065
AO867620	1.5	1.16	1.4	373.3	<20	245	<0.1	2.78	0.8	20.1	164	64.1	4.8	4	< 0.01	0.34	4	1.27	1655	8.4	0.041	20.9	0.149
A0867621	0.5	1.29	1.3	67.9	<20	201	<0.1	1.26	0.3	11.8	102	57.6	3.55	5	< 0.01	0.33	4	0.96	753	1.6	0.033	19.1	0.076
									0.0		92. OF 812	30		_		0.00							

Signed: Mark Acres - Quality Assurance

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No:

S58436

Date:

October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
A0867622	0.7	1.51	1.8	54.8	<20	353	<0.1	1.38	1.6	20.8	233	128	4.32	4	< 0.01	0.56	4	0.85	927	0.7	0.037	25.9	0.051
A0867623	0.9	1.52	1.5	39	<20	259	< 0.1	1.4	2.2	16.3	187	147.9	4.31	5	< 0.01	0.64	6	0.92	899	0.8	0.031	19.1	0.051
A0867624	0.4	1.81	1.9	7.2	<20	400	< 0.1	0.94	0.9	19	125	84	4.05	7	< 0.01	0.64	4	1.16	629	0.6	0.066	26.9	0.121
A0867625	0.3	1.35	0.9	5.2	<20	233	< 0.1	0.61	< 0.1	9.2	94	41.5	3.18	5	< 0.01	0.39	4	0.9	463	0.2	0.037	15.9	0.038
A0867626	0.3	1.28	0.8	12.4	<20	186	< 0.1	1.26	0.2	11.3	179	52.4	2.84	4	< 0.01	0.36	4	0.77	534	0.4	0.06	17.4	0.035
A0867627	0.4	1.84	4.8	8.5	<20	143	0.1	2.85	0.3	17	85	118	5.04	7	<0.01	0.27	3	1.32	2873	1.7	0.036	12.3	0.057
A0867627 Re	0.4	1.84	4.6	6.9	<20	150	0.1	2.86	0.2	16.7	87	115	5.13	6	< 0.01	0.28	3	1.32	2858	1.5	0.037	11.8	0.055
A0867628	1.1	2.31	1	41.3	<20	114	0.6	1.47	0.2	17.4	84	124.4	4.98	9	< 0.01	0.37	3	1.61	967	0.4	0.074	12.6	0.05
A0867629	0.3	2.43	0.9	2.1	<20	249	< 0.1	1.53	< 0.1	16.9	60	75.3	4.46	8	< 0.01	0.59	2	1.41	758	0.3	0.039	11.1	0.055
AO867630	0.2	2.39	0.8	<0.5	<20	345	<0.1	0.99	0.2	19	132	77	4.87	8	< 0.01	0.92	2	1.5	767	0.7	0.066	14.4	0.062
AO867631	0.6	2.75	0.9	113.9	<20	104	<0.1	6.16	0.7	39.3	42	92	6.56	10	< 0.01	0.23	3	2.72	2078	0.7	0.011	28	0.156
A0867632	2.1	2.01	1.2	475.8	<20	105	< 0.1	8.12	1.7	34.8	58	260.5	5.82	7	< 0.01	0.38	4	2.25	3056	0.7	0.02	23.6	0.144
AO867633	0.4	2.47	0.7	14.9	<20	97	< 0.1	5.52	0.6	39.3	59	51.1	7.35	7	< 0.01	0.26	5	2.13	1967	0.8	0.005	28.6	0.142
STD DS11	1.7	1.17	41.3	53.8	<20	420	11.6	1.07	2.4	14.5	60	147.5	3.18	5	0.24	0.4	19	0.86	1027	14.1	0.076	80.7	0.069
STD OREAS262	0.5	1.33	37.7	75.8	<20	262	1	3	0.7	28.2	44	116.7	3.43	4	0.17	0.33	17	1.24	564	0.6	0.073	66.8	0.041
STD DS11	1.8	1.18	46.2	69	<20	467	12.2	1.08	2.6	13.3	61	153.9	3.21	5	0.26	0.41	20	0.87	1046	14.2	0.073	82.3	0.077
STD OREAS262	0.4	1.18	35.2	52	<20	263	0.9	3.06	0.5	27.4	41	115.7	3.26	4	0.17	0.29	16	1.2	549	0.7	0.067	63	0.042
STD OREAS262	0.5	1.26	38.7	58	<20	257	1.1	3.06	0.7	29.4	45	114.8	3.39	4	0.15	0.32	16	1.21	549	0.7	0.07	68.7	0.036
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	<0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	<0.1	<1	<0.1	< 0.01	<1	<0.01	<0.01	<1	<0.01	<1	<0.1	<0.001	< 0.1	<0.001
BLK	< 0.1	< 0.01	< 0.5	<0.5	<20	<1	<0.1	<0.01	<0.1	< 0.1	<1	<0.1	<0.01	<1	<0.01	<0.01	<1	<0.01	<1	< 0.1	<0.001	< 0.1	<0.001

Signed:

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58436 Date: October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
•	• •				, ,			1.1.		***	ie ie	F F	J- 1- · · ·	1.6
A0867554	2.3	0.26	< 0.1	16.9	< 0.5	58	< 0.2	1	0.092	< 0.1	0.2	137	0.1	71
AO867555	2	0.23	< 0.1	15.6	< 0.5	31	< 0.2	2	0.086	< 0.1	3.5	144	< 0.1	65
AO867556	4.8	0.25	0.2	24.1	< 0.5	30	< 0.2	0.9	0.2	< 0.1	0.2	230	0.1	134
A0867557	4.8	0.08	0.1	28	< 0.5	44	< 0.2	0.7	0.163	< 0.1	0.2	270	0.2	147
A0867558	46.8	0.08	0.1	20.4	< 0.5	38	0.7	0.6	0.192	0.2	0.2	196	0.2	111
A0867559	51.4	0.13	0.2	18.3	< 0.5	45	< 0.2	0.5	0.243	0.1	0.1	186	0.2	108
A0867560	11.5	0.22	0.2	16.7	< 0.5	60	< 0.2	0.8	0.169	< 0.1	0.2	185	0.1	103
A0867561	7.2	0.27	0.1	15.8	< 0.5	51	< 0.2	8.0	0.109	< 0.1	0.1	163	0.2	102
A0867562	19.2	0.33	0.2	16.8	< 0.5	56	1	0.9	0.093	< 0.1	0.4	161	0.2	134
A0867563	6.8	0.17	0.2	17.9	< 0.5	44	< 0.2	0.6	0.188	< 0.1	0.1	185	< 0.1	123
A0867564	3.5	0.94	0.1	7.3	< 0.5	134	< 0.2	0.8	0.01	< 0.1	0.3	47	< 0.1	21
A0867565	3.5	1.02	0.1	7.8	1.1	106	< 0.2	0.7	0.002	< 0.1	0.3	35	0.1	36
A0867566	2.9	0.21	< 0.1	8.4	< 0.5	120	< 0.2	0.7	< 0.001	< 0.1	0.3	51	0.1	39
A0867567	1.7	0.21	< 0.1	1	2	114	<0.2	0.1	< 0.001	< 0.1	0.2	10	< 0.1	6
A0867567 Re	1.7	0.19	< 0.1	1.1	1.3	118	< 0.2	0.2	0.001	< 0.1	0.2	10	0.2	6
A0867568	0.7	0.08	< 0.1	0.4	< 0.5	106	< 0.2	< 0.1	< 0.001	< 0.1	0.1	3	< 0.1	2
A0867569	68.1	0.05	0.5	23.1	< 0.5	9	< 0.2	0.7	0.092	< 0.1	0.1	189	0.3	164
A0867570	4.9	< 0.05	0.2	10.5	< 0.5	9	<0.2	0.6	0.205	0.2	0.1	116	0.2	99
A0867571	18.7	< 0.05	0.3	19.3	<0.5	6	<0.2	1	0.115	0.1	0.1	145	0.2	128
A0867572	12.8	<0.05	0.2	5.4	<0.5	7	0.7	1.2	0.061	0.2	0.3	48	0.7	65
40007070	* *	-0.05	0.0	c 0	0.5		.0.0		0.440	0.2			~ -	
AO867573 AO867574	4.6 7.9	<0.05 <0.05	0.2	6.8 8	0.5	4	<0.2	1.4	0.142	0.2	0.2	75	0.5	80
A0867575	7.9 9.1	<0.05	0.2	8 5.7	<0.5 <0.5	6	0.2	1.3	0.193	0.3	0.2	79	0.9	85
A0867576	6.3	0.05	0.2	7.2	<0.5	9	0.6 0.4	1.4 0.8	0.088 0.12	0.3	0.3	47	1.8	69
A0867577	27.4	<0.05	0.1	11.4	<0.5	6	0.4	0.8	0.12	0.3	0.2	71	0.5	72
MU6013/1	27.4	<0.03	U.I	11.4	NU.5	U	0.5	0.7	0.151	0.4	0.2	117	0.5	150
A0867578	7.1	0.2	0.2	11.7	< 0.5	11	1.5	0.6	0.159	0.4	0.2	112	0.9	100
A0867579	43.2	0.47	0.2	7.9	0.8	30	0.2	0.4	0.1	0.2	0.1	96	0.3	128
A0867580	6.4	0.41	0.2	6.5	0.8	62	<0.2	0.7	0.071	0.3	0.1	64	1	78
AO867581	9.2	0.63	0.2	8.8	0.9	52	0.8	0.6	0.1	0.3	0.1	78	1.6	85
A0867582	7.9	0.65	0.2	4.8	<0.5	25	1	0.9	0.047	0.2	0.1	35	0.9	75
	* 1-0*	0.00	W+60	1.0	-0	See not	- Car	0,5	070.77	0.4	101.00	99	0.0	13
AO867583	21.2	1.01	0.4	2.9	< 0.5	32	4.6	0.7	0.006	0.1	0.1	13	0.9	83
A0867584	36.6	2.65	0.6	5.8	< 0.5	20	7.8	0.4	0.008	0.2	0.3	25	3.1	77
A0867585	59.8	1.32	0.6	5.6	0.7	17	8.4	0.5	0.007	0.2	0.5	26	2	125
A0867586	266.4	4.05	0.9	8.9	0.7	88	9.4	0.3	0.038	0.4	0.3	51	5.1	106
AO867587	1883.7	0.12	0.7	1.6	0.9	35	128.7	0.3	0.006	<0.1	0.5	15	7.3	82
	/									W 7 W		~~~		

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58436 Date: October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
AO867588	62.1	< 0.05	0.2	0.1	< 0.5	6	1.2	0.2	< 0.001	< 0.1	< 0.1	2	0.6	5
AO867589	82.5	< 0.05	< 0.1	0.1	< 0.5	6	1.1	< 0.1	< 0.001	< 0.1	< 0.1	1	0.9	5
AO867590	334	< 0.05	0.2	0.1	< 0.5	3	1.6	< 0.1	< 0.001	< 0.1	0.1	1	2.3	13
AO867591	641.4	4.1	0.5	1.6	2.3	21	51	0.3	0.004	< 0.1	0.3	14	10.4	43
AO867592	137.5	0.31	0.7	5.5	< 0.5	23	4.3	0.4	0.01	0.2	0.5	37	2.9	78
AO867593	13	0.93	0.5	7.8	<0.5	80	0.9	0.3	0.028	0.3	0.3	41	6	77
A0867594	8.6	0.25	0.4	12	<0.5	81	0.2	0.4	0.126	0.5	0.2	79	1.4	93
A0867595	4.1	< 0.05	0.1	14.4	<0.5	72	<0.2	0.3	0.062	<0.1	<0.1	183	0.2	117
A0867596	7.5	< 0.05	0.7	18.8	<0.5	20	<0.2	0.6	0.117	0.3	0.3	158	1.8	91
A0867597	1.7	< 0.05	0.1	14.6	<0.5	4	<0.2	0.5	0.184	0.1	0.1	139	0.2	106
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.7	*0.03	0.2	24.0	40.5	~	70.2	0.5	0.204	0.1	0.1	200	0.2.	200
AO867598	7.4	0.12	0.1	9.4	< 0.5	5	< 0.2	0.9	0.16	0.1	0.1	77	0.2	63
A0867599	180.9	0.21	0.3	9.5	< 0.5	8	2.7	0.9	0.152	0.2	0.1	64	0.3	91
AO867600	152.1	0.2	0.2	8.9	< 0.5	13	0.4	0.9	0.179	0.2	0.1	73	0.2	114
AO867601	12.8	0.18	< 0.1	5	0.9	29	< 0.2	0.5	0.144	< 0.1	0.1	47	0.4	39
AO867602	102.8	0.12	0.2	8.4	<0.5	20	< 0.2	8.0	0.142	0.1	0.1	64	0.5	63
A0867603	5.1	<0.05	0.1	9.4	<0.5	8	<0.2	0.7	0.143	0.2	0.1	75	0.3	82
A0867603 Re	4.9	<0.05	0.1	8.9	<0.5	7	<0.2	0.6	0.137	0.2	0.1	74	0.4	82
A0867604	6.3	0.15	0.1	9.8	<0.5	8	<0.2	1	0.151	0.2	0.1	65	0.2	77
A0867605	6.6	0.35	0.1	6.2	<0.5	22	1	0.9	0.093	0.2	0.2	46	0.4	50
A0867606	3.9	<0.05	0.1	9.3	<0.5	6	<0.2	1.4	0.192	0.2	0.2	70	0.3	76
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.5	40.03	67.34	0.0	*0.5	Ü	10.2	2.77	0.404	0.4	0.2	70	0.3	70
AO867607	17.6	< 0.05	0.1	4.4	< 0.5	4	< 0.2	1	0.068	< 0.1	< 0.1	49	0.3	45
A0867608	13.1	0.16	0.2	5.1	0.5	17	< 0.2	1.2	0.081	< 0.1	0.1	54	0.2	66
AO867609	15.2	0.11	0.2	3.6	< 0.5	6	< 0.2	0.8	0.058	< 0.1	0.2	43	0.2	61
AO867610	9.1	0.71	0.2	4.1	< 0.5	31	1.7	1.1	0.024	0.1	0.2	19	0.6	30
A0867611	7.3	<0.05	0.1	9.3	< 0.5	10	< 0.2	0.9	0.118	0.2	0.2	82	0.4	71
A0867612	7.2	0.21	0.1	9.4	<0.5	18	<0.2	0.4	0.12	0.2	<0.1	111	0.3	79
A0867613	153.7	0.42	0.2	7.3	0.7	31	0.2	0.5	0.106	0.2	0.2	100	0.6	107
A0867614	49.3	1.97	0.3	9.9	1.1	104	1.7	0.4	0.067	0.2	1.3	60	2.9	67
A0867615	70.2	0.31	0.2	15.2	< 0.5	67	<0.2	0.6	0.157	0.4	0.1	152	4.7	132
A0867616	9.4	0.08	0.2	8.6	<0.5	16	<0.2	0.7	0.099	0.1	<0.1	105	0.3	73
	J.**	0.00	V.C.	0.0	40.5	20	~0.2	0.7	0.055	0.1	~U. A.	100	0.5	,,
AO867617	4.3	0.12	0.1	10.8	< 0.5	19	< 0.2	0.6	0.103	0.2	0.1	137	0.2	63
AO867618	4	0.07	0.2	14.6	< 0.5	11	< 0.2	0.7	0.104	0.1	0.2	185	0.5	106
AO867619	6.1	0.15	0.2	7.5	< 0.5	14	< 0.2	0.8	0.102	0.2	0.2	82	0.7	83
AO867620	11.1	1.48	0.3	8.2	0.7	156	0.9	0.3	0.045	0.1	0.3	65	0.7	105
AO867621	19.2	0.38	0.2	8.7	< 0.5	29	< 0.2	0.4	0.11	0.1	0.2	100	0.8	97

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58436

: October 15, 2020

MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn	
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
A0867622	10.9	0.14	0.2	8.1	<0.5	20	0.2	0.4	0.08	0.2	0.3	89	1.1	111	
AO867623	145.8	0.1	0.2	8.4	< 0.5	19	< 0.2	0.5	0.11	0.2	0.2	97	1.4	144	
A0867624	11.8	0.07	0.1	10.3	0.7	10	< 0.2	0.4	0.18	0.1	0.1	127	0.4	117	
A0867625	2.5	< 0.05	< 0.1	9.2	< 0.5	6	< 0.2	0.6	0.118	< 0.1	< 0.1	87	0.5	67	
AO867626	5.4	0.05	< 0.1	8.1	0.6	14	< 0.2	0.4	0.112	< 0.1	< 0.1	87	0.9	63	
A0867627	4.8	0.1	0.6	12.4	<0.5	44	<0.2	0.4	0.056	<0.1	0.2	106	0.9	78	
A0867627 Re	4.5	0.11	0.6	12.3	< 0.5	45	< 0.2	0.4	0.059	< 0.1	0.2	106	1	73	
AO867628	24.1	0.24	0.1	20.2	< 0.5	35	0.3	0.4	0.102	< 0.1	< 0.1	162	< 0.1	101	
A0867629	3.4	0.09	< 0.1	14.2	< 0.5	23	< 0.2	0.2	0.15	< 0.1	< 0.1	155	0.2	81	
AO867630	2.7	0.1	0.1	15.5	< 0.5	16	<0.2	0.3	0.245	0.2	< 0.1	178	< 0.1	92	
AO867631	10	0.33	0.2	10.7	<0.5	348	0.3	0.4	0.057	0.1	0.1	141	0.4	269	
A0867632	28.5	0.69	0.3	12.2	< 0.5	515	0.9	0.2	0.039	0.1	0.6	103	2.4	192	
AO867633	13.3	0.24	0.4	6	< 0.5	161	< 0.2	0.3	0.016	< 0.1	0.1	116	0.5	164	
STD DS11	143.2	0.29	7.3	3.2	2.6	64	4.6	8.4	0.098	5	2.5	50	2.7	353	
STD OREAS262	59.2	0.28	2.9	3.4	<0.5	35	<0.2	10.5	0.003	0.6	1.2	23	0.1	154	
STD DS11	143.6	0.28	7.5	3.5	2.1	68	5.1	8	0.098	5.2	2.6	49	2.4	362	
STD OREAS262	54.7	0.27	2.7	3.2	< 0.5	36	< 0.2	8.4	0.003	0.4	1.1	21	0.1	156	
STD OREAS262	60.1	0.26	3	3.4	< 0.5	36	0.3	9.4	0.004	0.5	1.3	23	0.1	164	
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1	
BLK	<0.1	<0.05	< 0.1	< 0.1	< 0.5	<1	<0.2	< 0.1	<0.001	< 0.1	< 0.1	<1	<0.1	<1	
BLK	< 0.1	<0.05	<0.1	<0.1	<0.5	<1	<0.2	<0.1	<0.001	< 0.1	<0.1	<1	<0.1	<1	

Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Hanstone2

TSL Report: S58436

Date Received: Sep 23, 2020 Date Reported: Sep 29, 2020

Invoice: 78626

Remarks:

Sample Type: Number Size Fraction Sample Preparation
Core 80 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626
P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Aul	File
	g/t	g/t	Name
A0867554	<.03		S58436
A0867555	<.03		S58436
A0867556	<.03	<.03	S58436
A0867557	<.03		S58436
A0867558	.26		S58436
A0867559	<.03		S58436
A0867560	<.03		S58436
A0867561	.03	.03	S58436
A0867562	.36		S58436
A0867563	<.03		S58436
A0867564	<.03		S58436
A0867565	<.03		S58436
A0867566	<.03	< .03	S58436
A0867567	<.03		S58436
A0867568	< .03		S58436
A0867569	<.03		S58436
A0867570	<.03		S58436
A0867571	<.03		S58436
A0867572	.24		S58436
A0867573	<.03		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626 P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867574	.05		S58436
A0867575	. 22		S58436
A0867576	.09	.10	S58436
A0867577	.10		S58436
A0867578	< .03		S58436
A0867579	<.03		S58436
A0867580	.05		S58436
A0867581	.36	.38	S58436
A0867582	.45		S58436
A0867583	1.56		S58436
A0867584	2.88		S58436
A0867585	2.23		S58436
A0867586	2.95	2.98	S58436
A0867587	54.18	52.02	S58436
A0867588	.51		S58436
A0867589	.29		S58436
A0867590	.46		S58436
A0867591	17.87	17.49	S58436
A0867592	1.46		S58436
A0867593	.21		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626 P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Aul	File
	g/t	g/t	Name
A0867594	.07		S58436
A0867595	<.03		S58436
A0867596	.03	.05	S58436
A0867597	<.03		S58436
A0867598	<.03		S58436
A0867599	.57		S58436
A0867600	<.03		S58436
A0867601	<.03	<.03	S58436
A0867602	<.03		S58436
A0867603	<.03		S58436
A0867604	<.03		S58436
A0867605	.45		S58436
A0867606	<.03	<.03	S58436
A0867607	.03		S58436
A0867608	<.03		S58436
A0867609	.09		S58436
A0867610	.69		S58436
A0867611	<.03		S58436
A0867612	<.03		S58436
A0867613	.05		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626
P.O.: Hanstone2

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name
A0867614 A0867615 A0867616 A0867617 A0867618	.62 .03 <.03 .05 <.03	<.03	S58436 S58436 S58436 S58436 S58436
A0867619 A0867620 A0867621 A0867622 A0867623	<.03 .39 .05 .14	.03	S58436 S58436 S58436 S58436 S58436
A0867624 A0867625 A0867626 A0867627 A0867628	<.03 <.03 <.03 <.03 <.03 <.03	<.03	\$58436 \$58436 \$58436 \$58436 \$58436
A0867630	<.03		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

.12

.48

< .03

Sep 29/20

A0867631

A0867632

A0867633

SIGNED

S58436

S58436

S58436

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name
GS-7E	7.72		S58436
GS-7E	7.68		S58436
GS-7E	7.03		S58436
GS-7E	7.34		S58436
GS-7E	7.10		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20

SIGNED

Company: Hanstone Gold Corp TSL Report: S58475 Geologist: T. Fiolleau Date Received: Oct 08, 2020 Doc Project Project: Date Reported: Nov 03, 2020

Purchase Order: Hanstone2 Invoice: 78662

Sample Type: Number Size Fraction Sample Preparation Core Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle 100

Split, Pulverize

Pulp $\sim 95\%$ at -150 mesh (106 μ m)

Pulp 0 None

ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	10000 ppm
Al*	0.01 %	10 %	Mo	0.1 ppm	2000 ppm
As	0.5 ppm	10000 ppm	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	Ni	0.1 ppm	10000 ppm
B *	1 ppm	2000 ppm	P *	0.001%	5 %
Ba *	1 ppm	1000 ppm	Pb	0.1 ppm	10000 ppm
Bi	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Co	0.1 ppm	2000 ppm	Se	0.5 ppm	1000 ppm
Cr *	1 ppm	10000 ppm	Sr *	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Те	1 ppm	2000 ppm
Fe *	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	Ti *	0.001%	10 %
Hg	0.01 ppm	100 ppm	TI	0.1 ppm	1000 ppm
K *	0.01%	10 %	U *	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	V *	2 ppm	10000 ppm
Mg *	0.01%	30 %	W *	0.1 ppm	100 ppm
			Zn	1 ppm	10000 ppm

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 100 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: November 3, 2020

S58475

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	8a ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo	Na %	Ni ppm	p %
•					F F		P- P		F F		6.6	P P		pp	pp	,,,	belovit	,,,	lab	PP	7.0	bb	/*
A0867714	0.3	2.18	0.6	6.2	<20	117	< 0.1	1.51	2.2	18.1	68	86	4.44	8	< 0.01	0.19	3	1.36	841	0.9	0.069	11.6	0.065
A0867715	0.3	1.81	0.6	6.6	<20	58	< 0.1	2.93	0.9	17.1	69	128.7	4.43	6	< 0.01	0.17	2	1.27	1004	1.4	0.044	9.1	0.061
A0867716	0.2	2.26	< 0.5	5.9	<20	51	< 0.1	1.83	0.2	20.1	62	101.4	4.83	9	< 0.01	0.12	2	1.59	832	0.6	0.058	13.1	0.048
A0867717	0.3	0.93	0.6	2.5	<20	209	0.1	0.52	0.1	7.3	95	26.5	2.63	4	< 0.01	0.17	2	0.53	433	0.6	0.038	25.2	0.032
A0867718	0.9	1.5	14.6	11.1	<20	783	0.2	0.29	0.2	18.4	185	101.5	3.61	6	< 0.01	0.28	5	0.71	785	1.5	0.023	26.7	0.044
A0867719	< 0.1	1.82	<0.5	3.1	<20	540	< 0.1	0.53	< 0.1	9.7	91	13.6	3.86	8	< 0.01	0.84	3	0.98	555	0.6	0.034	17.2	0.095
A0867720	0.7	0.41	2.4	4.5	<20	38	1.3	0.08	0.1	2.6	170	36.2	0.81	2	< 0.01	0.07	4	0.15	151	0.3	0.134	5.4	0.012
A0867721	0.2	1.09	1.2	2.5	<20	167	< 0.1	0.37	0.2	7.1	82	36.6	2.42	6	< 0.01	0.24	6	0.68	366	0.4	0.039	29.4	0.062
A0867721 Re	0.2	1.09	1.2	2.3	<20	162	< 0.1	0.37	0.3	7.2	81	37.6	2.39	5	<0.01	0.24	5						
A0867722	<0.1	1.1	1	1.6	<20	229	<0.1	0.23						-				0.67	359	0.4	0.04	29.5	0.06
A0507722	VO.1	1.1	T	7.0	<20	223	<0.1	0.23	<0.1	6.7	161	21.8	2.45	5	<0.01	0.34	5	0.64	343	2.1	0.075	27.6	0.037
A0867723	0.1	1.11	1.6	1.6	<20	115	< 0.1	0.26	< 0.1	5.8	82	24.6	2.49	6	< 0.01	0.16	7	0.72	394	0.3	0.044	25	0.038
A0867724	0.1	1.36	1.4	1.1	<20	459	< 0.1	0.52	0.1	7.2	143	29.8	2.96	6	< 0.01	0.41	5	0.78	473	1.9	0.094	21.7	0.077
A0867725	0.4	1.16	< 0.5	1.6	<20	337	< 0.1	0.43	0.4	13.2	78	87.4	3.24	5	< 0.01	0.41	3	0.82	455	0.4	0.073	21.1	0.059
A0867726	0.3	1.19	0.7	2.4	<20	383	< 0.1	0.78	0.2	11.3	118	64.5	2.95	6	< 0.01	0.36	3	0.78	498	0.5	0.117	20	0.059
A0867727	0.2	1.17	<0.5	3.5	<20	582	<0.1	0.32	0.1	11.9	59	47.7	3.26	5	< 0.01	0.65	3	0.8	406	0.8	0.084	17.1	0.07
A0867728	0.2	1.26	< 0.5	< 0.5	<20	393	< 0.1	0.42	< 0.1	11.8	99	60.6	3.41	5	< 0.01	0.55	3	0.83	451	0.6	0.151	16.8	0.051
A0867729	0.2	1.79	0.5	< 0.5	<20	432	< 0.1	0.28	< 0.1	14.3	45	87.3	4.05	6	< 0.01	0.82	2	1.21	464	0.5	0.085	12.2	0.039
A0867730	0.2	1.79	< 0.5	2.5	<20	421	< 0.1	0.32	< 0.1	14.3	69	73.1	4.08	7	< 0.01	0.83	2	1.22	472	0.5	0.134	12.6	0.036
A0867731	0.2	1.59	< 0.5	0.7	<20	266	< 0.1	0.58	< 0.1	16.4	50	135.5	3.79	7	< 0.01	0.6	2	1.05	524	0.3	0.08	11.3	0.071
A0867732	0.8	2.28	1.3	9	<20	204	0.3	1.01	0.3	18.7	64	190	5.03	9	< 0.01	0.52	2	1.52	777	0.3	0.096	12.8	0.055
A0867733	0.2	2.36	< 0.5	1.5	<20	424	< 0.1	0.99	< 0.1	21	41	107.4	5.21	9	< 0.01	1.1	1	1.58	735	0.4	0.059	12.2	0.08
A0867734	0.2	2.12	< 0.5	2.8	<20	357	< 0.1	1.24	< 0.1	17.8	60	118.1	4.69	8	< 0.01	1	2	1.4	702	0.6	0.108	11.5	0.086
A0867735	0.1	1.85	< 0.5	< 0.5	<20	339	< 0.1	0.55	< 0.1	16	54	97	4.32	8	< 0.01	0.74	1	1.22	545	0.6	0.073	10.5	0.053
A0867736	0.2	1.81	< 0.5	1.3	<20	197	< 0.1	0.6	< 0.1	17.1	57	114.5	4.23	7	< 0.01	0.41	2	1.23	546	0.5	0.125	10.3	0.061
A0867737	< 0.1	2.13	0.5	<0.5	<20	67	< 0.1	0.94	0.1	16	43	63	4.47	9	< 0.01	0.18	1	1.53	763	0.1	0.068	9.2	0.074
A0867738	0.1	2.04	0.5	0.9	<20	62	<0.1	1.73	0.1	14.6	43	74.4	4.32	8	< 0.01	0.14	2	1.4	753	0.2	0.114	6.7	0.078
A0867739	0.1	1.88	< 0.5	< 0.5	<20	94	< 0.1	0.84	< 0.1	13.1	35	87.8	3.9	7	< 0.01	0.27	1	1.3	585	< 0.1	0.097	5.9	0.072
A0867740	0.2	2.21	< 0.5	2.5	<20	148	< 0.1	1.17	0.1	16.1	47	103.4	4.76	8	< 0.01	0.47	2	1.57	655	0.2	0.099	6.5	0.062
A0867741	0.2	3.01	0.6	1.3	<20	173	< 0.1	2	0.1	23.2	19	72.9	6.14	12	< 0.01	0.36	3	2.24	1261	< 0.1	0.05	11.4	0.089
A0867742	0.3	2.11	1	4.9	<20	259	< 0.1	0.63	< 0.1	15.5	57	80.9	4.46	8	< 0.01	0.44	3	1.28	775	0.5	0.108	9.3	0.068
A0867743	0.3	2.05	1	1	<20	145	<0.1	1.26	0.3	14.7	48	75.4	4.36	7	<0.01	0.31	1	1.36	721	0.7	0.05	10.1	0.065
A0867744	0.2	2.22	0.7	3.4	<20	133	< 0.1	1.89	0.1	16.9	38	71.9	4.65	8	< 0.01	0.36	2	1.58	827	0.4	0.07	10.8	0.047
A0867745	0.8	1.78	0.7	208.5	<20	144	< 0.1	2.09	0.7	17.9	41	84.4	4.68	6	< 0.01	0.45	2	1.46	1041	0.7	0.053	11.7	0.099
A0867746	0.2	2.2	< 0.5	< 0.5	<20	79	< 0.1	1.73	0.2	18.1	54	76.9	4.69	7	< 0.01	0.28	1	1.48	895	0.3	0.076	9.3	0.051
A0867747	0.9	0.83	< 0.5	135.8	<20	258	<0.1	2.32	0.7	12.1	55	175.5	3.27	3	< 0.01	0.32	2	0.97	1229	0.6	0.037	5.8	0.043

Signed:

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 100 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Ag	Al	As	Au	В	Ва	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Мо	Na	Ni	Р
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0867748	1.1	0.82	< 0.5	197.9	<20	241	<0.1	2.87	1.4	15.7	62	207.9	3.16	2	< 0.01	0.63	4	1.2	2017	1.6	0.051	13.2	0.061
A0867749	22.6	0.9	1.3	5107.9	<20	838	0.3	0.24	3	25.2	74	428.6	3.96	3	< 0.01	0.63	32	0.7	1421	5.8	0.04	22.7	0.001
A0867750	1.5	1.82	1.2	25.7	<20	238	< 0.1	0.85	0.3	15.6	113	87.1	3.87	6	< 0.01	0.46	2	1.2	584	0.9	0.073	12.8	0.053
A0867751	0.4	1.93	1.1	9	<20	187	< 0.1	0.94	0.1	18.1	54	84.6	4.39	7	< 0.01	0.48	1	1.36	718	0.3	0.05	12.7	0.043
A0867752	0.2	2.07	1.1	3.2	<20	44	< 0.1	2.04	0.2	14.9	61	45.4	4.18	8	< 0.01	0.11	3	1.42	695	0.5	0.093	7.4	0.073
																	_						
A0867753	0.4	2.24	1.4	5.7	<20	90	< 0.1	1.57	0.2	17.8	54	85.7	4.9	8	< 0.01	0.21	1	1.62	724	0.2	0.051	7.9	0.058
A0867754	0.4	2.09	3.6	< 0.5	<20	92	< 0.1	2.92	0.2	18.1	32	80.1	4.95	8	< 0.01	0.23	2	1.39	1085	0.5	0.069	6.1	0.061
A0867755	0.8	1.64	10.4	1	<20	147	0.1	2.86	1	18.1	84	79.1	4.94	5	< 0.01	0.35	5	0.7	1606	1.5	0.026	7.2	0.06
A0867756	0.6	1.62	12.7	5.6	<20	113	0.2	2.83	0.8	18	59	64.9	4.63	5	< 0.01	0.46	4	0.94	1332	1.2	0.033	7.6	0.058
A0867757	0.8	1.66	3.7	6.1	<20	149	0.2	4.1	1.3	16.2	141	96.6	4.12	4	< 0.01	0.73	3	1.07	1518	0.9	0.007	9.5	0.051
A0867757 Re	0.7	1.66	3.4	2.9	<20	151	0.2	3.75	1.3	15.3	133	93.4	3.99	4	< 0.01	0.7	3	1.04	1532	0.7	0.006	9	0.053
A0867758	0.5	2.31	0.9	0.6	<20	101	< 0.1	2.53	0.3	16.2	65	66	4.94	8	< 0.01	0.36	4	1.59	952	0.4	0.048	8.5	0.086
A0867759	0.5	2.59	0.7	< 0.5	<20	71	< 0.1	1.89	0.3	19.3	45	93.5	5.3	9	< 0.01	0.26	3	1.88	726	0.2	0.036	9.3	0.071
A0867760	0.5	2.57	0.9	<0.5	<20	66	< 0.1	1.96	0.2	20	64	96.9	5.1	9	< 0.01	0.24	2	1.83	753	0.3	0.046	9.8	0.066
A0867761	0.4	2.13	1.1	<0.5	<20	44	< 0.1	2.47	0.3	19.6	42	80.3	4.94	8	< 0.01	0.2	2	1.63	877	0.5	0.041	6.4	0.079
40007707	0.0	244		27.0	-20	4 * *		~						_									
A0867762	0.8	2.14	1.1	27.8	<20	116	<0.1	2.15	0.4	21.7	42	146.7	5.18	8	<0.01	0.31	3	1.77	1123	0.7	0.059	11.1	0.07
A0867763	0.4	2.25	0.7	3.6	<20	75	<0.1	1.82	0.5	19.3	35	119.2	5.06	8	<0.01	0.17	2	1.84	1021	0.4	0.041	9	0.078
A0867764 A0867765	1.6	1.28	1.8	430.9	<20	464	<0.1	2.31	0.9	16.8	47	72.5	4.15	4	< 0.01	0.3	2	1.32	1465	0.8	0.066	6.3	0.081
A0867765 A0867766	3.5 7.2	0.82	1.4	758.4	<20	368	<0.1	1.87	1.6	18.8	53	267.6	3.55	2	< 0.01	0.51	4	0.66	2370	3.4	0.022	5.9	0.089
AU807760	7.2	1.07	<0.5	2382.9	<20	29	<0.1	3.12	2.8	25.6	87	66	5.15	2	<0.01	0.53	1	0.94	3055	9.3	0.026	12.1	0.064
A0867767	11.9	1.11	0.9	2829.9	<20	133	0.1	0.27	2.1	25.7	19	100.2	5.63	2	< 0.01	0.29	3	0.29	1364	7.9	0.009	9.7	0.067
A0867768	35.1	0.11	0.7	7194	<20	244	5.3	0.16	0.2	14.4	452	137	2.29	<1	<0.01	0.23	5	0.02	89	7.5	0.003	19.9	0.007
A0867769	7.1	0.08	0.7	1669.4	<20	441	0.3	0.04	0.3	6.4	151	27.1	1.45	<1	<0.01	0.07	11	0.02	180	17.7	0.003	5.5	0.006
A0867770	7.6	0.59	1	1795.2	<20	141	0.2	3.15	1.7	21.1	122	146.8	4.25	1.	<0.01	0.42	4	1.07	2210	8.3	0.003	10.1	0.058
A0867771	1.3	0.9	1	218.1	<20	97	0.1	2.84	1.5	22.5	40	177.3	4.3	2	<0.01	0.4	2	0.97	1520	1.7	0.017	9.8	0.066
						-				warts	,,,	27715	110	-	-0.02	0	-	0.5.	3.57.6	4,	0.027	2.0	0.000
A0867772	0.8	1.12	0.9	115.2	<20	164	< 0.1	1.65	1	17.9	100	140.8	4.03	3	< 0.01	0.46	4	0.48	1395	1.7	0.022	9.4	0.058
A0867773	0.6	1.51	0.9	28.7	<20	131	< 0.1	0.86	1.1	17.5	46	114.5	4.29	5	< 0.01	0.31	4	0.88	1459	0.7	0.024	9.6	0.054
A0867774	1	1.78	0.8	120	<20	131	< 0.1	0.52	1.7	22.8	52	226.8	4.61	5	< 0.01	0.29	4	0.92	1109	0.7	0.054	8.6	0.074
A0867775	0.4	1.79	0.6	8.8	<20	59	< 0.1	1.58	0.7	18.6	43	146.9	3.96	6	< 0.01	0.16	3	1.17	781	0.2	0.038	8.1	0.061
A0867776	0.1	1.97	< 0.5	< 0.5	<20	101	< 0.1	1.58	< 0.1	16.3	75	60.4	3.57	8	< 0.01	0.35	4	1.53	635	0.3	0.088	20	0.129
A0867777	0.2	2.06	0.6	< 0.5	<20	151	< 0.1	0.9	< 0.1	17.3	43	83.1	4.29	7	< 0.01	0.54	1	1.5	685	0.2	0.057	8	0.074
A0867778	0.1	2.26	< 0.5	< 0.5	<20	93	< 0.1	1.62	< 0.1	14.4	62	33.8	4.19	9	< 0.01	0.39	4	1.7	708	0.2	0.067	13.4	0.099
A0867779	0.2	1.84	< 0.5	< 0.5	<20	206	< 0.1	1.36	0.1	14.2	56	66.4	3.5	7	< 0.01	0.63	4	1.36	675	0.2	0.065	14.9	0.084
A0867780	0.2	2.33	< 0.5	< 0.5	<20	162	< 0.1	1.33	0.1	17.6	60	97.7	4.63	8	< 0.01	0.77	2	1.6	836	0.4	0.079	8.8	0.075
A0867781	0.5	2.3	0.9	7	<20	50	0.2	0.98	0.2	17.4	51	58.4	4.6	8	< 0.01	0.12	3	1.61	728	< 0.1	0.049	12.8	0.041

Report No:

Date:

S58475

November 3, 2020

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 100 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

S58475

Date: November 3, 2020

MULTIELEMENT ICP-MS ANALYSIS

Element	Ag	Al	As	Au	8	Ва	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	Р
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0967702	0.7	2.4	4.4	2.7	-20		0.5		0.3	407	50	4040	4.54		.0.04	0.40	2		0.40	0.2	0.000	44.7	0.055
A0867782 A0867783	0.7 0.1	2.4 2.39	1.1	3.7 2.9	<20	68	0.5	1.41	0.2	18.7	59	104.8	4.64	8	< 0.01	0.19	2	1.6	843	0.2	0.039	11.3	0.055
A0867784	<0.1	2.39	0.9	<0.5	<20	349	<0.1	0.33	0.1	20.4	34	186.7	4.26	9	< 0.01	0.87	3	2.16	263	2.7	0.04	7.7	0.074
A0867785	<0.1	2.37	7.7	1.6	<20 <20	344 86	<0.1	0.68 1.68	<0.1	14.7	87	79.6	3.65 4.75	9	< 0.01	0.13	8	1.71	392	1.2	0.106 0.071	25.4	0.163 0.239
A0867786	<0.1	2.85	19.1	1.9	<20	80	<0.1 <0.1	2.05	<0.1 0.3	19.6 26.8	47 55	44.8	5.83	12	< 0.01	0.12 0.11	27 34	2.54 2.83	612 619	0.7 2.2	0.071	30.1 33.4	0.239
A0007700	VO.1	2.00	15.1	1.5	\2U	ου	<0.1	2.03	0.3	20.8	22	60.2	3.03	14	<0.01	0.11	34	2.03	019	2.2	0.025	33.4	0.273
A0867787	<0.1	2.79	9.6	1.3	<20	103	< 0.1	1.92	< 0.1	17	44	73.6	4.56	12	< 0.01	0.15	13	2.48	512	0.4	0.043	22.7	0.155
A0867788	< 0.1	3.05	0.8	0.7	<20	156	< 0.1	0.77	< 0.1	14.2	105	28.9	5.03	10	< 0.01	1.21	3	2.24	402	0.4	0.046	25.9	0.041
A0867789	0.1	2.04	< 0.5	44.9	<20	191	0.3	0.88	0.5	8.5	88	12.2	3.78	6	< 0.01	0.81	3	1.66	456	1.2	0.043	12.3	0.03
A0867790	0.1	1.91	< 0.5	27.4	<20	197	0.2	0.81	0.8	7.9	118	14.3	3.51	6	< 0.01	0.77	3	1.52	531	1	0.054	12	0.03
A0867791	0.4	2.59	0.8	19.5	<20	144	< 0.1	1.07	2.3	14.7	67	52.7	4.69	7	< 0.01	0.97	5	2.14	453	0.3	0.032	44.8	0.061
A0867792	<0.1	2.8	0.9	1.9	<20	143	< 0.1	1.07	0.3	14.5	60	30.5	4.53	8	< 0.01	1.07	6	1.91	310	0.4	0.037	15	0.081
A0867792 Re	< 0.1	2.71	0.7	1.6	<20	136	< 0.1	1.04	0.3	14.4	59	29.8	4.43	7	< 0.01	1.05	6	1.86	304	0.4	0.037	14.7	0.079
A0867793	0.3	2.87	0.8	4.4	<20	120	0.2	2.89	0.1	22.1	40	217.8	4.75	11	< 0.01	0.67	4	2.41	546	0.3	0.053	8.3	0.159
A0867794	0.6	2.37	1.5	12.4	<20	130	0.2	0.24	0.1	19.3	85	308.6	3.8	9	< 0.01	0.69	7	1.83	276	0.8	0.057	15.2	0.042
A0867795	< 0.1	2.51	1.2	1.5	<20	82	< 0.1	0.05	< 0.1	5.5	50	29.8	4.62	8	< 0.01	0.3	4	1.74	253	1.1	0.034	12.5	0.006
A0867796	0.1	1.4	0.6	6.5	<20	121	< 0.1	1.79	0.5	6.4	154	63.2	2.56	4	< 0.01	0.92	5	1.07	302	0.4	0.05	13.7	0.101
A0867797	< 0.1	2.62	< 0.5	0.8	<20	151	< 0.1	0.66	< 0.1	12.7	74	2.6	4.5	8	< 0.01	1.76	2	1.85	272	<0.1	0.033	25.2	0.043
A0867798	<0.1	1.67	0.9	2.3	<20	75	0.1	5.81	0.2	24.9	68	50.2	2.58	5	< 0.01	0.4	2	1.54	688	0.6	0.072	22.9	0.134
A0867799	< 0.1	1.81	0.5	2.8	<20	103	< 0.1	6.27	0.5	8.4	51	11.4	3.26	6	< 0.01	0.96	2	1.61	560	0.1	0.028	20.1	0.04
A0867800	<0.1	0.58	< 0.5	8.2	<20	77	< 0.1	3.66	0.3	12.4	64	12.3	2.16	2	< 0.01	0.34	3	1.38	750	0.3	0.07	13.1	0.027
A0867801	<0.1	1.13	<0.5	14.4	<20	112	< 0.1	1.58	1.1	9.9	44	11.5	3.02	4	<0.01	0.38	4	1.42	308	0.6	0.047	20.5	0.023
A0867802	0.3	1.03	0.6	13.3	<20	105	<0.1	6.72	2.4	12.6	116	20.4	2.44	2	< 0.01	0.38	6	0.85	790	0.0	0.047	18.5	0.023
A0867803	0.4	1.18	0.0	11	<20	135	<0.1	5.86	8.3	26.4	26	66	4.02	2	<0.01	0.40	9	1.41	1300	0.7	0.020	31.2	0.216
A0867804	>100.0	1.06	0.7	4573.8	<20	332	0.4	0.09	17.1	3.4	216	301.6	3.98	3		0.74	6	0.56	111	56.9	0.008	6.1	0.216
A0867805	9	2.22	<0.5	891	<20	518	<0.1	0.09	4.5	3.4 9	36	270.3	4.32	7	0.02	1.88	7	2.12	682	5.4	0.029	5.5	0.044
A0807003	,	ha e ba ha	VU.3	031	~20	210	~U.1	0.22	4.5	9	30	270.3	4.32	/	<0.01	1.00	,	2.12	502	5.4	0.045	3.3	0.003
A0867806	78.1	1.07	1.8	13752.3	<20	1175	0.2	0.16	3.3	14	214	1175.5	4.08	3	0.04	0.73	12	0.71	499	27	0.032	8	0.061
A0867807	0.9	2.54	< 0.5	53.2	<20	352	0.1	0.56	2.9	8.7	29	45	4.02	7	< 0.01	1.85	4	2.02	427	0.7	0.026	4.6	0.127
A0867808	0.3	2.48	0.7	9.6	<20	165	< 0.1	1.62	0.8	9.4	75	58.2	3.66	6	< 0.01	1.35	5	1.79	468	0.4	0.029	5.1	0.1
A0867809	0.1	2.16	1.9	3.1	<20	115	< 0.1	0.7	0.2	14.2	63	129.2	3.64	8	< 0.01	0.85	2	1.83	310	0.7	0.039	11.2	0.102
A0867810	0.5	2.54	0.9	132.6	<20	202	<0.1	0.87	0.4	16.3	64	40.2	4.79	9	< 0.01	1.4	6	1.69	335	0.5	0.046	12.8	0.082
										20.5		1011	*****	_	-0.02	4	_	=.00	202	3,3	3.0.0	30 00.750	31000
A0867811	0.2	2.59	0.9	16.4	<20	109	< 0.1	1.66	0.3	23.4	94	40.7	4.34	9	< 0.01	0.56	6	2.35	456	0.1	0.03	43.1	0.084
A0867812	0.1	2.75	1.3	7.3	<20	80	< 0.1	1.6	0.3	20.5	56	93.7	4.99	12	< 0.01	0.17	17	2.97	641	0.3	0.055	30.7	0.167
A0867813	0.1	2.18	0.6	13.6	<20	119	0.3	0.5	0.2	12.3	56	23.4	3.9	7	< 0.01	1.05	6	1.99	290	0.4	0.033	11.7	0.056
STD DS11	1.5	1.1	43.2	52.1	<20	414	11.9	1.02	2.2	13.7	58	144.3	3.08	4	0.27	0.38	16	0.82	991	13.3	0.071	79.6	0.065
STD OREAS262	0.4	1.23	34.5	63.4	<20	247	0.9	2.86	0.6	26.9	42	112.3	3.25	3	0.16	0.31	16	1.19	527	0.6	0.069	64.4	0.038

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 100 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

S58475

Date:

November 3, 2020

MULTIELEMENT ICP-MS ANALYSIS

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %	
STD DS11	1.6	1.1	40	57.1	<20	423	11.1	1.01	2.4	13.1	57	142.2	3.08	5	0.25	0.39	17	0.84	988	14.5	0.072	81.3	0.069	
STD OREAS262	0.4	1.21	33.8	50.4	<20	243	0.9	2.71	0.5	25.6	42	110.4	3.14	4	0.14	0.29	15	1.14	520	0.6	0.067	60.5	0.037	
STD OREAS262	0.5	1.19	37.7	60.5	<20	248	1	2.81	0.7	28.1	40	114.2	3.15	4	0.14	0.29	17	1.12	516	0.6	0.064	67.1	0.036	
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001	
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001	
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001	

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 100 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	DI.		Ct.	6.			***	-	***					
	Pb	\$	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0867714	4.2	0.21	0.1	7.5	0.6	34	< 0.2	0.4	0.043	< 0.1	<0.1	91	0.4	136
A0867715	13.3	0.54	< 0.1	5.8	< 0.5	65	< 0.2	0.4	0.032	< 0.1	< 0.1	77	0.4	90
A0867716	6.1	0.21	< 0.1	9.1	< 0.5	38	< 0.2	0.2	0.059	<0.1	<0.1	124	0.2	93
A0867717	5.7	0.53	< 0.1	4.1	0.7	20	< 0.2	0.6	0.107	<0.1	0.2	49	0.5	30
A0867718	6.4	0.1	0.9	5.9	0.6	13	< 0.2	0.6	0.098	<0.1	0.3	56	0.9	38
A0867719	0.5	0.18	< 0.1	9.5	0.7	5	< 0.2	0.8	0.237	0.2	0.3	96	0.4	51
A0867720	13.6	< 0.05	0.1	2.6	< 0.5	3	0.3	4.4	0.009	< 0.1	5	16	0.3	15
A0867721	6.1	< 0.05	< 0.1	7.2	< 0.5	4	< 0.2	1	0.093	< 0.1	0.2	75	0.5	47
A0867721 Re	5.9	< 0.05	< 0.1	6.9	< 0.5	3	<0.2	0.8	0.092	< 0.1	0.2	76	0.6	46
A0867722	1.7	< 0.05	0.1	7.3	< 0.5	4	<0.2	0.9	0.154	<0.1	0.2	80	0.3	40
									0120	-012	012		0.0	0
A0867723	3.5	< 0.05	0.1	6.8	< 0.5	3	< 0.2	1.2	0.123	< 0.1	0.2	70	0.3	49
A0867724	2.1	0.06	< 0.1	8.3	0.5	7	< 0.2	1.4	0.128	< 0.1	0.3	67	0.3	64
A0867725	1.4	< 0.05	< 0.1	6	0.5	4	< 0.2	0.4	0.148	< 0.1	< 0.1	152	0.3	175
A0867726	1.5	0.08	< 0.1	6.9	0.6	7	< 0.2	0.5	0.169	< 0.1	0.1	112	0.3	126
A0867727	1	0.09	< 0.1	6.7	< 0.5	3	< 0.2	0.5	0.176	< 0.1	0.1	122	0.2	101
A0867728	1.5	0.09	< 0.1	6.9	0.5	5	<0.2	0.5	0.161	< 0.1	< 0.1	135	0.1	78
A0867729	1.4	0.17	< 0.1	10.9	< 0.5	7	< 0.2	0.4	0.203	0.1	< 0.1	144	0.2	63
A0867730	1.5	0.1	< 0.1	11	<0.5	11	< 0.2	0.4	0.207	0.1	0.1	146	0.1	64
A0867731	2.2	<0.05	< 0.1	7.8	< 0.5	9	< 0.2	0.3	0.191	0.1	< 0.1	127	0.2	64
A0867732	30.7	<0.05	0.1	18.1	< 0.5	29	< 0.2	0.3	0.166	0.1	< 0.1	168	0.2	90
A0867733	1.6	<0.05	<0.1	13.6	<0.5	8	<0.2	0.2	0.22	0.3	< 0.1	190	0.1	89
A0867734	1.4	0.11	0.1	14.6	<0.5	12	<0.2	0.3	0.227	0.2	<0.1	178	0.4	74
A0867735	0.9	0.11	<0.1	9.8	<0.5	5	<0.2	0.2	0.219	0.2	< 0.1	152	0.1	74
A0867736 A0867737	1.2	0.06	<0.1	9.2	<0.5	8	<0.2	0.2	0.212	< 0.1	< 0.1	152	0.1	68
AU00//3/	1.6	<0.05	0.1	10	<0.5	15	<0.2	0.2	0.198	<0.1	<0.1	138	0.2	76
A0867738	1.7	< 0.05	0.2	12.9	<0.5	25	<0.2	0.3	0.178	<0.1	< 0.1	130	0.5	C7
A0867739	1.5	<0.05	0.1	6.7	<0.5	14	<0.2	0.3	0.178	<0.1	<0.1	113		67 67
A0867740	2.4	<0.05	0.1	1.7.7	<0.5	15	<0.2	0.3	0.164	0.2	<0.1	189	0.2 0.3	75
A0867741	2.7	< 0.05	0.2	20.9	<0.5	28	<0.2	0.3	0.186	0.2	0.1	284	0.3	107
A0867742	4.1	<0.05	0.2	12.6	<0.5	11	<0.2	0.4	0.185	<0.1	0.1	140	0.3	78
	7.1	~0.03	V.2.	46.0	~0.2	4.1	70.2	0.0	0.103	~U.I	0.1	140	V.3	/8
A0867743	4.5	0.17	0.1	10.4	0.5	19	<0.2	0.4	0.077	< 0.1	< 0.1	116	0.1	82
A0867744	14	0.14	0.1	9.7	<0.5	48	<0.2	0.4	0.075	0.1	<0.1	115	0.2	95
A0867745	49.2	0.52	0.2	10.2	<0.5	77	0.5	0.2	0.079	0.3	0.1	107	0.7	109
A0867746	4.1	0.12	0.1	10.9	<0.5	32	<0.2	0.2	0.085	0.1	<0.1	130	0.1	83
A0867747	13.7	0.76	0.2	5.6	<0.5	87	0.3	0.4	0.033	0.1	0.2	45	0.6	65
		4-7-4			-97107		010	VY	0.000	V.1	UL	73	0.0	U.J

Report No:

Date:

S58475

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 100 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Flanco	Di-		ch	r-	6-	Sr	Te	Th	Ti	TI	U	V	W	Zn
Element	Pb	S %	Sb	Sc	Se				%					ppm
Sample	ppm	70	ppm	ppm	ppm	ppm	ppm	ppm	76	ppm	ppm	ppm	ppm	ppm
A0867748	12.5	1.19	0.4	7.8	< 0.5	137	0.7	0.4	0.029	0.3	1	36	1.3	78
A0867749	256	0.19	1.4	11.5	< 0.5	20	13.9	1.1	0.066	0.3	3.4	57	3.2	158
A0867750	19.8	0.19	0.2	10.1	0.6	16	< 0.2	0.4	0.178	0.1	0.1	118	3	75
A0867751	9.9	0.2	0.2	13.2	< 0.5	10	< 0.2	0.2	0.187	0.1	< 0.1	142	0.3	81
A0867752	5.7	0.06	0.3	13.9	< 0.5	25	< 0.2	0.7	0.105	< 0.1	0.1	118	< 0.1	76
A0867753	8.2	0.09	0.5	18.3	< 0.5	17	< 0.2	0.2	0.094	< 0.1	< 0.1	169	< 0.1	92
A0867754	6.8	0.08	1.4	15.8	<0.5	43	< 0.2	0.3	0.085	0.1	< 0.1	138	0.1	90
A0867755	5	< 0.05	1.9	8.3	< 0.5	14	<0.2	0.6	0.038	< 0.1	0.3	64	1	93
A0867756	4.7	0.06	1.3	8.2	< 0.5	40	< 0.2	0.4	0.059	0.2	0.2	72	0.9	84
A0867757	12	0.19	0.7	8.5	<0.5	80	<0.2	0.4	0.081	0.3	0.1	62	3.8	96
A0867757 Re	11.5	0.18	0.7	8.7	0.6	76	<0.2	0.4	0.075	0.2	0.1	60	3.9	90
A0867758	4.5	< 0.05	0.7	12.7	<0.5	30	<0.2	0.4	0.079	0.2	0.1	125	0.2	95
A0867759	8.1	<0.05	0.4	16.8	<0.5	22	<0.2	0.4	0.109	0.1	<0.1	178	0.1	107
A0867759 A0867760	8.7	<0.05	0.4	17.1	<0.5	28	<0.2	0.4	0.142	0.1	<0.1	174	0.1	104
A0867761	8.7	0.16	0.4	14.9	<0.5	35	<0.2	0.3	0.099	0.1	<0.1	158	0.1	123
A0807701	3	0.10	0.0	14.5	٧٥.٥	33	40.2	0.3	0.055	0.2	40.2	200	0.1	2.2.3
A0867762	7	0.21	1.1	11.5	< 0.5	33	<0.2	0.3	0.087	0.1	< 0.1	134	0.7	111
A0867763	12.1	0.06	0.5	13.5	< 0.5	26	< 0.2	0.3	0.099	< 0.1	< 0.1	166	0.2	106
A0867764	14.9	0.52	0.8	7.6	< 0.5	60	0.8	0.3	0.048	0.1	0.2	59	1.2	110
A0867765	25.1	0.97	1.2	6.1	< 0.5	47	1.4	0.2	0.034	0.3	0.5	25	25.4	96
A0867766	25.8	4.21	0.9	6.7	0.7	99	5.3	0.1	0.009	0.2	0.2	25	3.4	107
A0867767	39	2.03	0.7	4.4	2.6	16	7.1	0.2	0.005	0.2	1.1	12	2.4	114
A0867768	110.1	1.36	0.5	0.5	<0.5	21	16.2	0.1	0.001	< 0.1	0.2	5	50.7	10
A0867769	32.1	0.61	0.6	0.6	<0.5	9	3.4	0.3	0.001	< 0.1	0.1	3	40.4	14
A0867770	74	2.19	1.7	6.5	< 0.5	131	4.4	0.2	0.009	0.2	1.4	22	5.3	87
A0867771	6.8	0.33	0.8	5.8	0.6	86	0.3	0.3	0.041	0.2	0.2	42	3.8	98
A0867772	6.4	0.14	0.5	4.8	<0.5	15	0.2	0.5	0.04	0.2	0.3	45	2	76
A0867773	5.1	0.14	0.3	6.1	<0.5	10	<0.2	0.4	0.043	0.1	0.2	60	1.1	99
A0867774	14.5	0.07	0.4	8.1	<0.5	10	0.2	0.5	0.025	<0.1	0.2	70	0.8	133
A0867775	6.9	0.13	0.4	8.2	<0.5	21	<0.2	0.4	0.075	<0.1	<0.1	105	0.2	86
A0867776	3.9	0.13	0.1	7.5	<0.5	30	<0.2	0.8	0.223	<0.1	0.2	88	0.2	67
MU00///0	3.5	0.03	0.1	1.3	\U.J	30	~U.E	0.0	V- 16. 6. 13	-0.1	0.2	00	0,2	0,
A0867777	2.8	0.08	0.1	12.3	0.5	13	<0.2	0.3	0.2	0.1	< 0.1	133	0.2	75
A0867778	4.5	< 0.05	0.2	13	< 0.5	17	< 0.2	0.8	0.194	< 0.1	0.2	109	0.3	80
A0867779	4.9	< 0.05	0.1	11	< 0.5	16	< 0.2	0.8	0.218	0.1	0.2	107	0.3	69
A0867780	3.8	0.09	0.1	15.8	< 0.5	15	< 0.2	0.3	0.27	0.2	< 0.1	144	0.2	82
A0867781	24.9	< 0.05	< 0.1	17.4	< 0.5	10	< 0.2	0.5	0.057	< 0.1	< 0.1	153	0.2	89

Report No:

Date:

S58475

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 100 Core / 0 Pulp

TSL LABORATORIES INC.

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0867782	51.5	<0.05	0.1	17.8	<0.5	14	<0.2	0.4	0.085	<0.1	<0.1	150	0.1	96
A0867783	1.4	0.07	< 0.1	16.8	1.5	8	< 0.2	1.6	0.158	< 0.1	0.9	181	0.2	33
A0867784	0.9	< 0.05	< 0.1	7.4	<0.5	10	< 0.2	2.8	0.234	< 0.1	0.4	109	0.1	29
A0867785	6.3	0.06	0.4	9	< 0.5	42	<0.2	2.5	0.407	< 0.1	0.7	137	8.0	71
A0867786	9.2	<0.05	0.9	11.9	<0.5	43	<0.2	3.2	0.451	<0.1	0.9	177	2.5	89
A0867787	3.6	< 0.05	0.5	11.4	<0.5	28	<0.2	2	0.361	< 0.1	0.6	158	1.3	45
A0867788	0.8	0.09	< 0.1	13.8	<0.5	13	< 0.2	1.4	0.272	< 0.1	0.2	160	0.1	18
A0867789	3.2	0.1	0.1	9.6	< 0.5	22	0.2	1.8	0.094	0.2	0.3	90	0.2	43
A0867790	4	0.05	0.1	10.2	< 0.5	20	<0.2	1.7	0.09	0.2	0.4	90	0.2	48
A0867791	204.4	<0.05	0.1	11.6	<0.5	20	0.2	1.3	0.126	0.3	0.3	107	0.2	209
A0867792	2	< 0.05	< 0.1	8.1	<0.5	16	< 0.2	1.5	0.133	0.1	0.3	85	< 0.1	19
A0867792 Re	2	< 0.05	0.1	7.8	< 0.5	15	< 0.2	1.5	0.128	0.1	0.3	84	< 0.1	19
A0867793	2	0.21	0.2	10.3	< 0.5	24	< 0.2	0.6	0.118	0.2	0.3	191	< 0.1	31
A0867794	1.7	< 0.05	0.2	10.7	< 0.5	4	<0.2	2.2	0.089	< 0.1	0.5	105	< 0.1	25
A0867795	1.4	0.12	0.2	6.1	<0.5	2	<0.2	1.5	0.047	< 0.1	0.2	98	< 0.1	22
A0867796	2.5	<0.05	0.2	7	<0.5	19	<0.2	1.3	0.095	0.2	0.7	92	0.5	21
A0867797	1.3	< 0.05	< 0.1	8.2	< 0.5	6	< 0.2	1.8	0.282	0.1	0.2	89	0.1	8
A0867798	6.4	0.23	< 0.1	3.8	< 0.5	47	< 0.2	0.5	0.149	< 0.1	0.2	67	0.1	16
A0867799	7.1	< 0.05	0.1	6.7	< 0.5	80	< 0.2	1.1	0.118	0.1	0.3	151	< 0.1	38
A0867800	6	0.32	0.2	6.2	<0.5	97	<0.2	0.9	0.015	<0.1	0.1	43	0.2	11
A0867801	4,4	0.06	0.2	7.6	< 0.5	31	<0.2	1.1	0.033	0.1	0.1	80	0.2	51
A0867802	14.6	< 0.05	0.4	4.6	< 0.5	75	< 0.2	1.1	0.026	0.1	0.5	56	0.6	97
A0867803	47.8	< 0.05	0.6	3.9	< 0.5	69	< 0.2	0.9	0.046	0.2	0.4	28	0.4	167
A0867804	>10000.0	0.82	17.3	7.3	2.5	8	61.6	1.1	0.053	0.4	0.6	52	0.9	215
A0867805	4544.1	0.1	1.4	15.4	<0.5	12	7.1	2	0.241	1	0.6	164	0.8	525
A0867806	3676.4	0.4	1.3	11	<0.5	21	43.2	1.1	0.066	0.3	1.4	55	2.1	386
A0867807	120.5	< 0.05	0.2	7.2	< 0.5	9	0.3	1.6	0.226	0.5	0.2	163	0.4	249
A0867808	41.5	< 0.05	0.3	6.9	< 0.5	16	< 0.2	1.7	0.153	0.2	0.3	102	0.6	105
A0867809	10.4	0.12	0.1	9.1	0.9	6	< 0.2	1.2	0.182	< 0.1	0.5	428	0.1	16
A0867810	59.6	< 0.05	0.2	12.6	<0.5	16	0.4	1.4	0.24	0.3	0.2	138	0.3	56
A0867811	16.9	< 0.05	0.1	10.7	<0.5	23	<0.2	1.2	0.192	0.2	0.2	125	0.3	42
A0867812	6.3	< 0.05	0.2	14.8	< 0.5	30	< 0.2	2	0.284	< 0.1	0.6	159	0.3	95
A0867813	4.4	< 0.05	0.2	10.3	< 0.5	5	< 0.2	1.8	0.12	0.2	0.7	185	0.4	30
STD DS11	134.6	0.27	6.9	2.9	2.1	63	4.7	7.1	0.087	4.9	2.3	47	2.7	342
STD OREAS262	54.8	0.26	3	3	< 0.5	33	0.2	8.6	0.003	0.4	1.1	21	0.1	148

Signed:__ Mark Acres - Quality Assurance

Report No:

Date:

S58475

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project

Sample: 100 Core / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4

Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Sr ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm
STD DS11	140.1	0.27	5.8	3	2.2	66	4.6	7.9	0.086	4.9	2.5	47	3	341
STD OREAS262	55.2	0.25	2.4	2.9	< 0.5	33	0.3	8.5	0.003	0.4	1.1	21	0.2	140
STD OREAS262	57.5	0.25	2.6	3	< 0.5	35	0.2	9.5	0.003	0.4	1.3	20	< 0.1	164
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	<0.1	<0.5	<1	<0.2	< 0.1	< 0.001	< 0.1	<0.1	<1	<0.1	<1
BLK	<0.1	< 0.05	<0.1	<0.1	<0.5	<1	<0.2	<0.1	< 0.001	<0.1	<0.1	<1	<0.1	<1

Report No:

Date:

S58475

2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp

Geologist: T. Fiolleau Project: Doc Project Purchase Order: Hanstone2

TSL Report: S58475

Date Received: Oct 08, 2020 Date Reported: Oct 16, 2020

Invoice: 78662

Remarks:

Sample Type: Number Size Fraction Sample Preparation
Core 100 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	a/tonne	Fire Assay/Gravimetric	0.03	100%

#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58475

SAMPLE(S) OF

100 Core/0 Pulp

INVOICE #:78662

£. . . .

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867714	<.03		S58475
A0867715	<.03		S58475
A0867716	<.03		S58475
A0867717	<.03	<.03	S58475
A0867718	<.03		S58475
A0867719	<.03		S58475
A0867720	<.03		S58475
A0867721	<.03		S58475
A0867722	<.03	<.03	S58475
A0867723	<.03		S58475
A0867724	<.03		S58475
A0867725	<.03		S58475
A0867726	<.03		S58475
A0867727	<.03	<.03	S58475
A0867728	<.03		S58475
A0867729	<.03		S58475
A0867730	<.03		S58475
A0867731	<.03		S58475
A0867732	< .03		S58475
A0867733	<.03		S58475

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

The same of the sa

#2 - 302 48th Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58475

SAMPLE(S) OF

100 Core/0 Pulp

INVOICE #:78662

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
BOOCEEO A	0.0		
A0867734	< .03		S58475
A0867735	<.03		S58475
A0867736	<.03		S58475
A0867737	<.03	<.03	S58475
A0867738	<.03		S58475
A0867739	<.03		S58475
A0867740	<.03		S58475
A0867741	<.03		S58475
A0867742	<.03	< .03	S58475
A0867743	<.03		S58475
A0867744	<.03		S58475
A0867745	.26		S58475
A0867746	<.03		S58475
A0867747	.19	.19	S58475
A0867748	.26		S58475
A0867749	5.69		S58475
A0867750	.05		S58475
A0867751	<.03		S58475
A0867752	<.03		S58475
A0867753	<.03		S58475

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

Mark Acres - Quality Assurance

#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58475

SAMPLE(S) OF

100 Core/0 Pulp

INVOICE #:78662

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867754	<.03		S58475
A0867755	<.03		S58475
A0867756	< .03		S58475
A0867757	<.03	<.03	S58475
A0867758	<.03		S58475
A0867759	<.03		S58475
A0867760	<.03		S58475
A0867761	<.03		S58475
A0867762	.03	.03	S58475
A0867763	<.03		S58475
A0867764	.45		S58475
A0867765	.79		S58475
A0867766	2.25		S58475
A0867767	2.88		S58475
A0867768	7.41		S58475
A0867769	1.34		S58475
A0867770	1.83		S58475
A0867771	.19		S58475
A0867772	.12		S58475
A0867773	.03		S58475

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58475

SAMPLE(S) OF

100 Core/0 Pulp

INVOICE #:78662

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867774	. 14		S58475
A0867775	<.03		S58475
A0867776	< .03		S58475
A0867777	< .03	<.03	S58475
A0867778	<.03		S58475
A0867779	<.03		S58475
A0867780	<.03		S58475
A0867781	< .03		S58475
A0867782	<.03	<.03	S58475
A0867783	< .03		S58475
A0867784	< .03		S58475
A0867785	<.03		S58475
A0867786	< .03		S58475
A0867787	<.03	<.03	S58475
A0867788	<.03		S58475
A0867789	.09		S58475
A0867790	.05		S58475
A0867791	.05		S58475
A0867792	< .03		S58475
A0867793	< .03		S58475

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

#2 - 302 48th Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58475

SAMPLE(S) OF

100 Core/0 Pulp

INVOICE #:78662 P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867794	<.03		S58475
A0867795	< .03		S58475
A0867796	< .03		S58475
A0867797	<.03	<.03	S58475
A0867798	<.03		S58475
A0867799	<.03		S58475
A0867800	<.03		S58475
A0867801	<.03		S58475
A0867802	<.03	.03	S58475
A0867803	<.03		S58475
A0867804	4.32		S58475
AO867805	1.15		S58475
A0867806	13.75		S58475
A0867807	.07	.07	S58475
A0867808	<.03		S58475
A0867809	<.03		S58475
A0867810	.19		S58475
A0867811	< .03		S58475
A0867812	<.03		S58475
A0867813	< .03		S58475

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58475

SAMPLE(S) OF

100 Core/0 Pulp

INVOICE #:78662

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au g/t	Aul g/t	File Name
GS-7E	7.06		S58475
GS-7E	7.75		S58475
GS-7E	7.61		S58475
GS-7E	7.30		S58475
GS-7E	7.65		S58475
GS-7E	7.24		S58475

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Hanstone2

TSL Report: S58490

Date Received: Oct 15, 2020 Date Reported: Oct 16, 2020

Invoice: 78669

Remarks: Original Report S58436

Sample Type: Number Sample Preparation

Core Pulp 1 None

Standard Procedure:

Samples for Ag (g/tonne) are weighed at 0.5 gram.

			rowei	opper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Ag	g/tonne	HNO3-HF-HCI04-HCI/AA	1	1000

#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58490

SAMPLE(S) OF

1 Core/Pulp

INVOICE #:78669

P.O.: Hanstone2

T. Fiolleau Doc Project

Original Report S58436. Assay on over-range values from ICP-MS

	Ag	File
	g/t	Name
A0867587	198.9	S58490
ME-8	60.1	S58490
ME-1605	270.8	S58490
ME-1606	116.9	S58490

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Hanstone2

TSL Report: S58491

Date Received: Oct 15, 2020 Date Reported: Oct 16, 2020

Invoice: 78670

Remarks: Original Report S58437

Sample Type: Number Sample Preparation

Core Pulp 5 None

Standard Procedure:

Samples for Ag (g/tonne) are weighed at 0.5 gram.

		yon 4 . 4 a	Lower	Upper
Element	8 9 9 4	Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Ag	g/tonne	HNO3-HF-HCI04-HCI/AA	1	1000

#2 - 302 48th Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58491

SAMPLE(S) OF

5 Core/Pulp

INVOICE #:78670 P.O.: Hanstone2

T. Fiolleau Doc Project

Original Report S58437. Assay on over-range values from ICP-MS

	Ag	File
	g/t	Name
	_	
A0867636	182.3	S58491
A0867637	173.5	S58491
A0867709	606.8	S58491
A0867710	515.3	S58491
A0867711	260.4	S58491
ME-8	60.1	S58491
ME-1605	270.8	S58491
ME-1606	116.9	S58491

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

Mark Acres - Quality Assurance

2 - 302 48th Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company:

Hanstone Gold Corp

S58511

Geologist:

T. Fiolleau

TSL Report: Date Received: Oct 22, 2020

Project:

Doc Project

Date Reported:

Nov 16, 2020

Purchase Order:

Hanstone2

Invoice:

78775

Sample Type:

Number

Sample Preparation

Pulp

72

None

ICP-AES

Multiacid Digestion

HNO₃-HCIO₄-HF-HCI

The Multiacid digestion liberates most metals that are not completely dissolved with Aqua Regia. Dissolution may not be complete for Cr and Ba minerals(*). Some loss of As and Sb may occur.(1)

Element Name	Lower Detection Limit	Element Name	Lower Detection Limit
Ag	0.5 ppm	Na	100 ppm
Al	100 ppm	Nb	2 ppm
As	5 ppm	Ni	2 ppm
Ва	1 ppm	Р	20 ppm
Ве	1 ppm	Pb	5 ppm
Bi	5 ppm	Sb	5 ppm
Ca	100 ppm	Sc	1 ppm
Cd	0.4 ppm	Sn	2 ppm
Co	2 ppm	Sr	2 ppm
Cr	2 ppm	Th	2 ppm
Cu	2 ppm	Ti	100 ppm
Fe	0.01 %	U	20 ppm
K	100 ppm	V	2 ppm
La	2 ppm	W	4 ppm
Mg	100 ppm	Υ	2 ppm
Mn	5 ppm	Zn	2 ppm
Mo	2 ppm	Zr	2 ppm

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 72 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: November 16, 2020

S58511

MULTIELEMENT ICP-AES ANALYSIS

Multiacid Digestion

Element Sample	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P %	Pb ppm	\$ %
A0867645	0.8	8.01	<5	610	<1	<5	2.32	<0.4	22	68	191	6.48	1.4	6	2.08	1355	<2	3.51	3	14	0.082	8	< 0.1
A0867646	8.6	7.74	<5	455	<1	<5	3.38	0.9	21	79	1793	6.7	0.93	7	1.95	1925	<2	2.79	3	13	0.073	17	0.2
A0867647	0.6	7.89	<5	501	<1	<5	3.41	< 0.4	26	84	103	7.46	0.73	6	2.31	1550	<2	2.83	3	12	0.077	<5	<0.1
A0867648	<0.5	7.91	<5	561	<1	<5	3.46	< 0.4	18	118	102	5.77	0.9	6	1.48	1189	<2	2.78	3	12	0.058	6	< 0.1
A0867649	<0.5	7.91	<5	528	<1	<5	4.35	< 0.4	17	113	93	5.29	0.88	6	1.26	1172	<2	2.8	3	11	0.066	6	< 0.1
A0867650	< 0.5	8.03	<5	392	<1	<5	4.25	< 0.4	16	106	77	5.19	0.71	6	1.05	1105	<2	3.05	3	9	0.059	8	< 0.1
A0867651	0.5	7.2	<5	612	<1	<5	1.59	< 0.4	19	111	76	5.8	0.66	9	1.57	1471	<2	4.01	3	19	0.062	<5	< 0.1
A0867652	0.8	6.28	<5	611	<1	<5	1.63	< 0.4	14	113	70	4.87	0.62	10	1.32	1160	<2	3.5	4	25	0.059	12	0.2
A0867653	0.6	6	<5	1026	<1	<5	2.19	< 0.4	16	116	108	5.08	1.04	12	1.34	1151	<2	2.75	6	22	0.06	6	0.1
A0867654	< 0.5	5.69	<5	1102	<1	<5	1.61	< 0.4	15	132	62	4.61	0.78	12	1.28	1066	<2	2.82	4	38	0.061	5	0.2
																	~	2.00	r	27	0.000	<5	0.2
A0867655	<0.5	5.19	<5	1043	<1	<5	1.19	< 0.4	8	124	36	2.98	0.69	13	0.79	695	<2	2.84	5 6	27 25	0.053 0.04	<5	0.2
A0867656	<0.5	4.7	<5	1377	<1	<5	1.01	< 0.4	8	140	28	2.9	0.87	13	0.82	598	<2	2.32	4	16	0.066	97	0.3
A0867657	0.9	4.34	<5	1171	<1	<5	2.87	< 0.4	8	156	67	2.66	1.01	13	0.79	830	<2	1.84	3	26	0.057	9	0.2
A0867658	<0.5	4.61	<5	1540	<1	<5	2.36	<0.4	8	146	24	3	0.99	12	0.9	742 688	<2 <2	1.77 2.48	4	33	0.057	13	0.2
A0867659	<0.5	5.78	<5	1467	1	<5	1.13	< 0.4	10	133	24	3.6	1.43	14	1.08	588	<2	2.40	4	33	0.003	10	0.5
1000700	-0 F	r 40	~E	1639	-1	<5	1.61	< 0.4	8	162	2.6	3.16	1.33	10	0.93	704	<2	2.05	2	29	0.045	19	0.2
A0867660	<0.5	5.42 3.78	<5 <5	796	<1 2	<5	0.28	0.6	7	265	24	2.16	1.34	22	0.48	685	3	1.09	<2	21	0.032	45	< 0.1
A0867661	2.4				2	<5	0.28	<0.4	7	244	17	2.10	1.19	10	0.35	435	3	1.19	<2	19	0.023	14	1.1
A0867662	3.6 10.3	3.27 6.22	<5 <5	68 50	3	<5	1.18	<0.4	12	195	45	4.32	2.59	33	0.79	800	21	1.82	<2	31	0.07	21	2.4
A0867663 A0867664	5.9	4.7	<5 <5	422	3	<5	0.15	<0.4	9	138	60	3	2.06	18	0.7	412	4	1.57	<2	20	0.036	23	0.5
AU007004	3.3	4.7	\ 3	422	3	~	0.13	70,4	J	130	00	,	2.00	2.0	0	7 80.400							
A0867665	1.2	4.96	<5	1573	1	<5	0.57	< 0.4	8	160	47	3.17	1.55	14	0.83	526	<2	1.73	2	30	0.046	63	< 0.1
A0867666	0.7	4.36	<5	1730	<1	<5	0.55	< 0.4	7	162	21	2.88	1.43	10	0.87	514	<2	1.47	3	19	0.036	18	< 0.1
A0867667	0.8	4.09	<5	1824	<1	<5	0.51	< 0.4	7	136	21	2.72	1.18	10	0.84	507	<2	1.4	4	19	0.033	10	< 0.1
A0867668	<0.5	4.89	<5	2791	1	<5	0.63	< 0.4	7	140	37	2.83	0.99	14	0.84	593	<2	2.36	9	24	0.056	8	< 0.1
A0867669	<0.5	4.94	<5	1587	<1	<5	0.69	< 0.4	9	133	33	3.13	1.14	17	0.85	540	<2	2.36	5	31	0.049	6	< 0.1
A0867670	<0.5	4.3	<5	1124	<1	<5	0.45	< 0.4	8	133	25	2.62	0.9	14	0.75	469	<2	2.11	4	23	0.024	5	< 0.1
A0867670 Re	< 0.5	4.16	<5	1108	<1	<5	0.43	< 0.4	8	129	25	2.57	0.89	14	0.74	459	<2	2.09	4	23	0.024	6	<0.1
A0867671	< 0.5	4.82	<5	936	<1	<5	0.5	< 0.4	8	157	18	2.97	0.67	13	0.78	498	<2	2.61	5	25	0.052	6	< 0.1
A0867672	< 0.5	5.45	<5	955	<1	<5	1.5	< 0.4	13	125	60	4.61	0.88	12	1.21	1145	<2	2.4	4	38	0.095	5	0.2
A0867673	0.7	5.71	<5	721	<1	<5	1.74	< 0.4	14	176	56	4.86	1.06	14	1.25	1266	<2	2.67	3	47	0.043	22	0.7
A0867674	0.7	5.82	<5	669	<1	<5	1.66	< 0.4	15	107	60	4.69	0.98	15	1.18	1152	<2	2.8	3	61	0.054	12	0.6
A0867675	0.6	5.77	<5	837	<1	<5	1.15	< 0.4	15	126	67	4.87	0.62	15	1.29	1030	<2	2.77	4	72	0.052	15	0.4
A0867676	< 0.5	6.68	<5	590	<1	<5	1.58	< 0.4	16	113	51	5.58	0.48	12	1.52	1462	<2	3.69	3	22	0.077	<5	<0.1
A0867677	0.6	6.95	<5	609	<1	<5	0.76	< 0.4	18	79	86	5.95	0.53	9	1.64	1562	<2	3.74	3	17	0.054	<5	< 0.1
A0867678	0.7	6.84	<5	121	<1	<5	1.74	< 0.4	20	93	90	6.12	0.88	9	1.79	1783	<2	3.84	3	15	0.061	45	0.9

Signed:

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 72 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: November 16, 2020 Date:

S58511

MULTIELEMENT ICP-AES ANALYSIS

Element	Ag	Al	As	Ва	Ве	Bi	Са	Cd	Со	Cr	Cu	Fe	К	La	Mg	Mn	Mo	Na	Nb	Ni	Р	Pb	S
Sample	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
A0867679	<0.5	7.45	<5	458	<1	<5	2.79	<0.4	21	57	118	6.71	0.53	7	2.24	2047	<2	3.71	3	10	0.07	<5	0.2
A0867680	0.5	6.47	<5	624	<1	<5	2.96	<0.4	14	108	44	4.68	0.65	8	1.74	924	<2	3	2	17	0.052	14	0.1
A0867680 A0867681	0.3	5.65	<5	728	<1	<5	2.4	0.6	15	135	59	4.83	1.26	8	1.61	1086	<2	2	2	18	0.055	25	0.5
													1.24	8	1.74	1105	<2	2.72	3	19	0.058	7	0.2
A0867682	0.6	6.96	<5	1358	<1	<5	2.56	< 0.4	17	154	72	5.45		_	2.32	1360	<2	3.68	2	12	0.076	17	0.3
A0867683	0.7	7.72	<5	707	<1	<5	2.24	< 0.4	22	62	93	6.58	0.64	6	2.32	1300	× 2	5.00	4	14	0.070	2.7	0.0
A0867684	0.7	7.76	<5	555	<1	<5	1.11	< 0.4	16	79	84	5.02	0.51	5	1.32	818	<2	4.5	2	11	0.075	17	0.2
A0867685	0.6	7.84	<5	542	<1	<5	1.3	< 0.4	16	60	64	5.37	0.5	6	1.52	927	<2	4.33	<2	13	0.069	14	0.2
A0867686	1	7.54	8	491	<1	<5	1.92	3.7	18	94	85	5.88	0.97	7	1.25	1259	<2	3.8	2	13	0.064	146	0.2
A0867687	0.7	7.78	<5	601	<1	<5	2.16	< 0.4	19	77	94	5.89	0.89	7	1.72	1359	<2	3.62	3	12	0.07	15	0.2
A0867688	1.2	8	<5	730	1	<5	1.49	< 0.4	19	114	135	5.58	1.75	7	1.58	1161	<2	3.12	<2	12	0.065	27	0.4
																							0.0
A0867689	< 0.5	7.89	<5	611	<1	<5	1.55	< 0.4	14	88	50	4.79	1.25	4	1.38	895	<2	3.59	<2	11	0.036	8	0.3
A0867690	0.9	7.63	<5	567	<1	<5	1.59	< 0.4	14	97	185	4.52	1.66	7 -	1.21	930	<2	3.27	<2	10	0.041	10	0.4
A0867691	0.7	7.94	<5	581	2	<5	1.93	< 0.4	10	93	162	3.6	2.04	8	1.01	1036	<2	3.37	2	8	0.047	22	0.6
A0867692	1.6	7.95	<5	543	2	<5	2.12	< 0.4	18	87	214	5.69	2.23	7	1.62	1392	<2	2.8	2	12	0.068	65	0.6
A0867693	0.6	8.03	<5	567	<1	<5	2.9	< 0.4	16	80	88	5.32	1.2	6	1.4	1205	<2	3.21	2	11	0.052	11	0.4
											4 10 100	gra	4.00	7	a cr	1311	<2	3.61	2	13	0.056	11	<0.1
A0867694	0.7	7.58	<5	646	<1	<5	1.13	< 0.4	18	70	127	5.75	1.06		1.65	1311		3.09	2	14	0.050	98	<0.1
A0867695	1.7	7.56	<5	788	1	<5	0.65	<0.4	21	80	158	6.68	1.76	8	1.56	1529	<2		<2	18	0.061	141	0.5
A0867696	29.2	6.67	7	240	2	<5	0.21	2.7	39	199	170	8.71	2.33	17	0.72	2047	23	2.47	<2	13	0.043	13	1.2
A0867697	1.8	8.03	<5	97	2	<5	1.04	0.6	18	101	54	4.85	2.12	7	1.13	2535	<2 <2	4.49 3.65	<2	15	0.043	74	0.3
A0867698	2.5	7.6	<5	684	2	<5	0.4	0.4	22	75	123	5.47	2.64	9	1.08	1658	<.Z	3.03	~~	7.3	0.032	7 -4	0.5
A0867699	4.9	7.42	<5	912	2	<5	1.17	2.6	25	81	256	6.56	2.66	14	1.09	2103	5	3.05	<2	16	0.085	812	0.4
A0867700	4.5	7.74	<5	863	1	<5	1.72	2.0	27	88	245	6.92	2.87	11	1.17	2133	3	2.95	<2	16	0.084	661	0.3
A0867700 A0867701	1.3	8.15	<5	795	2	<5	1.15	2.3	31	80	319	7.25	2.91	9	1.41	2950	<2	2.89	<2	19	0.11	28	0.1
		7.98		590	1	<5	0.65	1.2	25	83	154	6.19	2.13	8	1.41	2083	<2	3.55	<2	16	0.098	17	< 0.1
A0867702 A0867703	1.3 3.3	7.88	<5 <5	453	2	<5	0.03	2.5	23	71	117	5.59	2.13	4	1.71	2580	6	4.25	<2	14	0.055	93	0.6
AU8677U3	3.3	7.00	<>>	400	2.	< 3	0.4	2.3	21	/1	11/	3.33	۷.	***	1	2300		7.4.0	742		0.000		
A0867704	1.3	7.82	<5	578	2	<5	0.27	1.8	15	64	58	4.96	2.31	4	0.69	1938	<2	4.22	<2	11	0.057	10	0.2
A0867705	6.9	6.48	<5	620	2	<5	0.25	2.3	20	140	108	4.73	2.97	10	0.55	774	4	1.24	<2	11	0.039	134	0.4
A0867706	8.8	5.93	<5	46	4	<5	1.58	0.4	19	139	80	4.24	3.24	6	0.94	1485	<2	0.82	<2	12	0.043	19	2.4
A0867706 Re	8	5.78	<5	42	4	<5	1.54	0.5	18	136	79	4.17	3.2	6	0.91	1457	<2	0.81	<2	12	0.041	15	2.3
A0867707	3.4	7.05	<5	223	3	<5	2.65	0.5	17	109	365	5.06	3.12	7	1.22	1822	<2	1.86	<2	11	0.051	47	1.5
MUGU//U/	٠.٠٠	1.00	~3	443	3	~>	2.03	0.5	4.1	103	303	3.00	age a da da	,	alla il discidenti	A			_				
A0867708	8.4	7.34	<5	170	3	<5	2.37	5.9	16	87	1385	4.88	2.45	9	1.4	1941	<2	3.23	<2	13	0.05	733	1.6
A0867709	>200.0	1.82	<5	13	<1	<5	0.5	3.9	23	215	332	6.96	0.54	15	0.19	339	14	0.71	<2	17	0.018	567	7
A0867710	>200.0	3.53	<5	21	3	<5	0.21	22.2	22	215	1354	6.76	1.66	28	0.42	196	33	0.47	<2	15	0.027	>10000	6.3
A0867711	>200.0	3.9	<5	24	3	<5	0.29	15.7	21	229	698	5.79	1.98	22	0.49	454	18	0.51	<2	16	0.027	4428	4.4
A0867712	1.8	8.06	<5	604	1	<5	0.98	35.2	23	53	310	5.97	2.31	8	0.91	2024	<2	3.33	2	13	0.079	97	< 0.1
U0001175	1.0	0.00	~,3	OU~	4	~_>	0.50	32,2	de al	2.0	310		a. r. cr. a.	~	9,52					,			

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 72 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: November 16, 2020

Date:

S58511

MULTIELEMENT ICP-AES ANALYSIS

Element Sample	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	La ppm	Mg %	Mn	oM mag	Na %	Nb ppm	Ni ppm	P %	Pb maa	S %
	to love.	, ,	pp	ppiii	ppm	ppitti	70	ppiii	ppin	ppiii	ppiii	70	70	ppiii	70	ppiii	ppm	,,,	pp.	pp	, ,	la fa	
A0867713	0.9	8.06	<5	779	<1	<5	1.38	3.9	17	54	73	5.42	2.01	9	1.06	1157	<2	2.89	3	11	0.064	30	0.1
A0867714	0.5	7.67	<5	706	<1	<5	1.66	1.4	18	85	83	5.37	1.11	7	1.49	1027	<2	3.34	<2	13	0.072	10	0.2
A0867715	0.6	7.29	<5	533	<1	<5	3.35	< 0.4	17	105	128	5.25	1.58	6	1.35	1185	<2	2.34	<2	10	0.065	23	0.5
A0867716	0.5	7.23	<5	372	<1	<5	2.29	< 0.4	20	79	106	5.76	0.77	7	1.7	1089	<2	2.97	<2	14	0.052	15	0.2
STD OREAS45E	0.9	7.06	17	268	<1	<5	0.06	< 0.4	59	1057	797	25.65	0.34	11	0.16	582	<2	0.06	7	472	0.035	14	< 0.1
STD OREAS25A-4A	< 0.5	9.52	10	152	<1	<5	0.3	< 0.4	7	117	30	6.85	0.51	20	0.32	516	<2	0.14	20	47	0.051	27	< 0.1
STD OREAS25A-4A	< 0.5	9.18	11	150	<1	<5	0.3	< 0.4	7	113	30	6.59	0.51	20	0.32	496	<2	0.14	19	46	0.05	26	< 0.1
STD OREAS45H	0.6	8.21	16	349	1	<5	0.14	< 0.4	86	653	759	20	0.21	13	0.25	395	<2	0.09	14	435	0.024	10	< 0.1
BLK	< 0.5	< 0.01	<5	<1	<1	<5	< 0.01	< 0.4	<2	<2	<2	< 0.01	< 0.01	<2	< 0.01	<5	<2	< 0.01	<2	<2	< 0.002	<5	< 0.1
BLK	< 0.5	< 0.01	<5	<1	<1	<5	< 0.01	< 0.4	<2	<2	<2	< 0.01	< 0.01	<2	< 0.01	<5	<2	< 0.01	<2	<2	< 0.002	<5	< 0.1

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 72 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58511 Date: November 16, 2020

MULTIELEMENT ICP-AES ANALYSIS

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	w	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Jample	ppiii	ppiii	ppiii	pp	pp	, ,	ppiii	b b	P.P.	p p	P.F.	* *
A0867645	<5	29	<2	166	<2	0.65	<20	260	<4	20	102	4
A0867646	<5	30	<2	277	<2	0.65	<20	271	7	13	147	3
A0867647	<5	32	<2	173	<2	0.72	<20	313	<4	23	113	4
A0867648	<5	26	<2	182	<2	0.57	<20	203	<4	23	89	3
A0867649	<5	23	2	200	<2	0.5	<20	185	<4	25	80	5
A0867650	<5	22	<2	249	<2	0.5	<20	181	<4	25	80	7
A0867651	<5	25	<2	109	<2	0.59	<20	218	<4	20	261	<2
A0867652	<5	19	<2	89	<2	0.5	<20	173	<4	17	156	<2
A0867653	<5	21	<2	88	<2	0.54	<20	197	<4	22	116	4
A0867654	<5	18	<2	89	<2	0.51	<20	169	<4	20	117	3
A0867655	<5	12	<2	79	<2	0.38	<20	91	<4	12	78	<2
A0867656	<5	11	<2	75	<2	0.37	<20	83	<4	12	61	<2
A0867657	<5	10	<2	82	<2	0.29	<20	70	<4	14	75	2
A0867658	<5	12	<2	76	<2	0.32	<20	85	<4	12	69	2 <2
A0867659	<5	14	<2	92	<2	0.36	<20	100	<4	8	102	<2
					-0	0.00	-20	92	<4	8	83	<2
A0867660	<5	12	<2	93	<2	0.28	<20		15	6	50	<2
A0867661	<5	11	<2	25	<2	0.12	<20	76 70	11	5	36	<2
A0867662	<5	7	<2	41	<2	0.07	<20	132	17	10	36 75	<2
A0867663	<5	14	<2	74	<2	0.16	<20 <20	98	18	5	73 57	<2
A0867664	<5	11	<2	57	<2	0.14	<20	30	10	3	37	~2
*0007005	<5	12	<2	77	<2	0.26	<20	93	9	8	82	<2
A0867665 A0867666	<5	11	<2	62	<2	0.20	<20	84	<4	7	67	<2
A0867667	<5	10	<2	58	<2	0.28	<20	79	<4	9	58	<2
A0867668	<5	11	<2	83	<2	0.34	<20	78	<4	12	63	<2
A0867669	<5	12	<2	84	<2	0.36	<20	88	<4	9	64	<2
AU807003	~5	14.	42.	0-7		0.00	-2.0			_	-	
A0867670	<5	9	<2	69	<2	0.27	<20	69	<4	6	53	<2
A0867670 Re	<5	9	<2	67	<2	0.27	<20	69	<4	6	52	<2
A0867671	<5	13	<2	70	<2	0.36	<20	94	<4	9	49	<2
A0867672	<5	18	<2	94	<2	0.49	<20	173	<4	13	119	4
A0867673	<5	19	<2	128	<2	0.46	<20	178	6	7	116	<2
1,0001010			-									
A0867674	<5	19	<2	115	<2	0.49	<20	180	6	8	128	3
A0867675	<5	19	2	84	<2	0.52	<20	191	<4	8	147	<2
A0867676	<5	23	<2	91	<2	0.55	<20	206	<4	12	124	<2
A0867677	<5	22	<2	76	<2	0.52	<20	202	<4	9	131	<2
A0867678	<5	23	<2	133	<2	0.49	<20	196	7	12	178	2
7.0007070			-									

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 72 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58511 Date: November 16, 2020

MULTIELEMENT ICP-AES ANALYSIS

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	w	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
Jumpic	ppiii	pp	la la	p p · · ·	p p····		P.P.	P P	factor	le le	F F · · ·	
A0867679	<5	27	<2	87	<2	0.64	<20	239	<4	23	184	4
A0867680	<5	20	<2	126	<2	0.42	<20	168	<4	16	91	3
A0867681	<5	19	<2	125	<2	0.37	<20	170	6	10	109	<2
A0867682	<5	23	<2	107	<2	0.53	<20	206	<4	22	88	3
A0867683	<5	28	<2	157	<2	0.52	<20	272	<4	10	121	<2
A0007003	~5	20		201	72	0102	7440				34 46 36	
A0867684	<5	20	<2	163	<2	0.39	<20	163	5	9	81	<2
A0867685	<5	23	<2	157	<2	0.43	<20	183	<4	8	96	<2
A0867686	5	25	<2	145	<2	0.45	<20	203	10	7	192	<2
A0867687	<5	25	<2	185	<2	0.52	<20	205	<4	12	105	<2
A0867688	<5	25	<2	139	<2	0.41	<20	210	7	11	108	<2
1000700		24		174	-2	0.36	<20	143	5	6	86	<2
A0867689	<5 <5	21 21	<2 <2	164	<2 <2	0.36	<20	136	6	8	84	<2
A0867690		1.7	<2	181	<2	0.34	<20	110	9	9	78	<2
A0867691	<5 <5	26	<2	181	<2	0.45	<20	219	14	9	135	<2
A0867692	<5	25	<2	211	<2	0.53	<20	185	<4	15	90	2
A0867693	<i>(</i>)	2.3	~~	211	~2	0.55	~20	100	44	2.7	50	4
A0867694	<5	25	<2	137	<2	0.53	<20	206	<4	11	110	<2
A0867695	<5	26	<2	110	<2	0.5	<20	231	7	9	133	<2
A0867696	<5	17	<2	67	<2	0.12	<20	227	26	7	146	<2
A0867697	<5	20	<2	114	<2	0.18	<20	111	16	5	135	<2
A0867698	<5	24	<2	64	<2	0.21	<20	175	13	5	176	<2
			_		_					_	0.00	
A0867699	<5	33	<2	68	<2	0.23	<20	268	17	7	297	<2
A0867700	<5	34	<2	69	<2	0.24	<20	282	12	8	260	<2
A0867701	<5	37	<2	69	<2	0.24	<20	316	11	9	239	<2
A0867702	<5	29	<2	69	<2	0.22	<20	215	13	8 5	240	<2 <2
A0867703	<5	22	<2	72	<2	0.2	<20	164	24	5	275	< Z
A0867704	<5	20	<2	60	<2	0.19	<20	146	16	5	177	<2
A0867705	<5	18	<2	38	<2	0.13	<20	135	18	4	181	<2
A0867706	<5	18	<2	60	<2	0.12	<20	162	20	5	99	<2
A0867706 Re	<5	17	<2	58	<2	0.12	<20	157	20	5	95	<2
A0867707	<5	24	<2	84	<2	0.18	<20	182	18	5	129	<2
	_											
A0867708	<5	24	<2	116	<2	0.17	<20	163	16	6	295	<2
A0867709	<5	6	<2	29	<2	0.02	<20	30	<4	5	198	<2
A0867710	<5	12	<2	30	5	0.06	<20	71	10	16	1100	<2
A0867711	<5	14	<2	25	<2	0.06	<20	76	14	9	1086	<2
A0867712	<5	26	<2	79	<2	0.44	<20	222	7	8	1732	<2

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 72 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58511 Date: November 16, 2020

MULTIELEMENT ICP-AES ANALYSIS

Element Sample	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Th ppm	Tī %	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
		F. F.	4- 1-	1. 6.	. ,					• •	. ,	• •
A0867713	<5	23	<2	114	<2	0.47	<20	182	5	8	370	<2
A0867714	<5	23	<2	157	<2	0.41	<20	181	<4	9	143	<2
A0867715	<5	21	<2	166	<2	0.34	<20	172	<4	10	102	<2
A0867716	<5	25	<2	169	<2	0.45	<20	204	<4	11	98	<2
STD OREAS45E	<5	98	<2	17	13	0.55	<20	316	<4	7	46	97
STD OREAS25A-4A	<5	14	5	47	14	0.99	<20	163	<4	10	45	156
STD OREAS25A-4A	6	14	5	46	14	0.92	<20	156	<4	10	44	149
STD OREAS45H	7	59	3	28	8	0.88	<20	266	<4	9	39	121
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2

2 - 302 48th Street * Saskatoon, SK * S7K 6A4

P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp TSL Report:
Geologist: T. Fiolleau Date Received:

Geologist: T. Fiolleau Date Received: Oct 22, 2020
Project: Doc Project Date Reported: Nov 16, 2020

S58512

Purchase Order: Hanstone2 Invoice: 78776

Sample Type: Number Sample Preparation

Pulp 39 None

ICP-AES Multiacid Digestion HNO₃-HClO₄-HF-HCl

The Multiacid digestion liberates most metals that are not completely dissolved with Aqua Regia. Dissolution may not be complete for Cr and Ba minerals(*). Some loss of As and Sb may occur.(1)

Element Name	Lower Detection Limit	Element Name	Lower Detection Limit
Ag	0.5 ppm	Na	100 ppm
Al	100 ppm	Nb	2 ppm
As	5 ppm	Ni	2 ppm
Ва	1 ppm	Р	20 ppm
Ве	1 ppm	Pb	5 ppm
Bi	5 ppm	Sb	5 ppm
Ca	100 ppm	Sc	1 ppm
Cd	0.4 ppm	Sn	2 ppm
Co	2 ppm	Sr	2 ppm
Cr	2 ppm	Th	2 ppm
Cu	2 ppm	Ti	100 ppm
Fe	0.01 %	U	20 ppm
K	100 ppm	V	2 ppm
La	2 ppm	W	4 ppm
Mg	100 ppm	Υ	2 ppm
Mn	5 ppm	Zn	2 ppm
Мо	2 ppm	Zr	2 ppm

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 39 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4

Tel: (306) 931-1033 Fax: (306) 242-4717

MULTIELEMENT ICP-AES ANALYSIS

Multiacid Digestion

Element	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Nb	Ni	Р	Pb	S
Sample	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
A0867852	<0.5	6.76	<5	435	<1	<5	4.88	< 0.4	11	77	38	4.08	2.48	17	2.31	512	<2	1.67	<2	12	0.176	<5	<0.1
A0867853	<0.5	8.31	<5	717	<1	<5	0.94	<0.4	15	97	35	5.55	2.61	11	2.2	489	<2	2.58	<2	13	0.06	7	<0.1
A0867854	<0.5	7.77	<5	672	<1	<5	1.15	<0.4	17	67	15	5.85	3.32	9	2.19	311	<2	1.96	<2	12	0.052	<5	< 0.1
A0867855	<0.5	7.22	<5	383	1	<5	2.23	< 0.4	20	84	16	5.41	2.36	14	1.94	401	<2	2.84	<2	12	0.112	39	0.1
A0867856	<0.5	6.4	<5	222	<1	<5	2.17	< 0.4	13	76	43	4.65	1.26	12	2.48	447	<2	2.44	4	20	0.315	<5	< 0.1
			_																				
A0867857	0.7	7.62	<5	460	1	<5	0.48	<0.4	19	98	132	4.45	1.61	10	2.16	309	<2	3.07	<2	16	0.048	<5	<0.1
A0867858	< 0.5	5.61	<5	269	<1	<5	6.78	< 0.4	10	67	10	3.58	1.1	9	2.62	889	<2	2.04	2	19	0.075	<5	< 0.1
A0867859	< 0.5	7.94	<5	393	<1	<5	4.85	< 0.4	20	75	33	5.54	1.08	15	3.45	916	<2	2.84	6	34	0.168	<5	< 0.1
A0867860	< 0.5	7.85	<5	349	<1	<5	1.99	< 0.4	11	58	11	4.05	1.42	6	2.26	294	<2	3.69	<2	24	0.03	<5	< 0.1
A0867861	0.6	6.13	<5	355	<1	<5	6.2	< 0.4	9	123	19	3.72	2.46	8	1.78	443	<2	1.58	<2	22	0.05	<5	<0.1
A0867862	<0.5	8.44	<5	418	1	<5	4.44	<0.4	19	52	35	5.81	1.38	16	2.97	915	<2	2.99	11	33	0.161	<5	< 0.1
A0867863	<0.5	7.54	<5	340	<1	<5	7.77	< 0.4	17	72	33	5	1.06	14	2.72	936	<2	2.48	6	27	0.132	<5	< 0.1
A0867864	0.5	7.96	<5	429	<1	<5	6.34	< 0.4	21	62	40	5.62	1.25	14	2.88	984	<2	2.69	4	35	0.161	13	< 0.1
A0867865	< 0.5	6.59	<5	344	<1	<5	2.91	< 0.4	18	124	8	4.81	2.39	11	2.43	397	<2	1.78	<2	27	0.366	5	0.1
A0867866	1.9	6.75	<5	321	1	<5	1.93	< 0.4	18	84	29	4.29	2.17	12	2.06	374	<2	2.84	<2	14	0.121	12	0.7
A0867867	0.5	6.75	<5	465	2	<5	2.95	< 0.4	11	129	20	4.17	3.01	13	1.83	531	<2	1.73	3	15	0.074	9	0.2
A0867868	0.6	7.99	6	1620	2	<5	2.7	< 0.4	20	55	21	5.92	2.9	29	2.85	837	<2	2.36	18	33	0.265	13	0.2
A0867869	0.5	7.68	<5	1690	2	<5	2.43	< 0.4	20	73	31	6.05	2.82	26	2.97	771	<2	2.22	17	33	0.247	15	0.3
A0867870	1.6	6.97	<5	779	3	<5	0.61	< 0.4	17	82	61	4.9	2.93	13	1.83	741	<2	0.76	4	21	0.073	9	< 0.1
A0867871	4	0.28	<5	69	<1	11	0.05	< 0.4	5	430	13	0.93	0.15	<2	0.06	148	<2	0.02	<2	11	0.002	9	0.2
A0867872	7.4	1.73	<5	169	<1	6	0.11	< 0.4	10	210	297	1.84	0.83	4	0.53	536	<2	0.02	<2	12	0.022	10	< 0.1
A0867873	39.7	1.6	6	518	<1	9	0.12	0.4	14	461	189	2.63	0.62	15	0.25	473	10	0.4	<2	16	0.023	62	0.2
A0867874	12.7	5.9	<5	113	2	<5	3.02	1.5	22	128	37	4.39	2.61	24	1.31	1907	10	1.55	<2	15	0.07	154	2.1
A0867875	1.7	5.52	<5	120	2	<5	3.31	0.7	17	204	19	4.33	2.53	14	1.51	1670	3	1.13	<2	17	0.063	12	2.4
A0867876	3.8	5.14	<5	165	2	<5	1.6	0.6	14	143	17	4	1.46	10	1.69	918	4	2.4	<2	16	0.073	779	1.8
A0867877	6.7	3,45	<5	241	2	<5	0.31	0.8	12	317	18	2.88	1.05	6	0.61	620	3	1.49	<2	15	0.049	885	0.3
A0867878	7.5	5.1	<5	371	3	<5	0.31	2.2	17	162	21	3.96	2.42	21	0.68	886	36	1.42	<2	14	0.046	1352	0.6
A0867879	4.3	7.45	<5	706	4	<5	0.35	1.2	18	159	69	5.21	3.89	11	1.21	808	4	1.79	<2	14	0.033	220	0.4
A0867880	4.5	6.73	<5	626	4	<5	0.29	1	14	108	46	4.58	3.59	8	1.13	705	3	1.41	<2	11	0.023	299	<0.1
A0867881	0.9	8.26	<5	717	2	<5	1.07	<0.4	7	74	64	5.18	3.16	9	1.56	711	<2	2.61	<2	11	0.025	102	<0.1
A0007061	0.9	0.20	-	7.1.1	2	~3	1.07	VU.4	,	74	04	3.10	3,10	2	1.50	744	~ 2	2.01	~2	11	0.02.0	102	10.1
A0867882	0.9	8.26	<5	688	2	<5	1.04	< 0.4	10	60	27	5.52	4.1	10	1.72	478	<2	2.02	<2	10	0.042	156	< 0.1
A0867883	0.5	7.78	<5	632	1	<5	1.5	< 0.4	14	82	44	5.79	3.55	10	1.82	489	<2	1.97	<2	10	0.055	18	< 0.1
A0867884	0.8	6.89	<5	411	1	<5	2.26	< 0.4	18	58	86	5.9	2.51	8	2.4	405	<2	2.22	<2	14	0.173	11	< 0.1
A0867885	< 0.5	7.04	<5	550	1	<5	1.08	< 0.4	15	111	24	5.65	1.92	12	2.5	322	<2	2.12	<2	21	0.052	5	0.2
A0867885 Re	<0.5	7.26	<5	556	1	<5	1.11	< 0.4	14	112	24	5.67	1.93	13	2.52	324	<2	2.13	<2	20	0.051	6	0.2

A 0.25 g sample is digested with HClO4, HNO3, HCl, HF and diluted to 10 ml with D.I. H2O.

Signed: Mark Acres - Quality Assurance

Report No:

Date:

S58512

November 16, 2020

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 39 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58512 Date: November 16, 2020

MULTIELEMENT ICP-AES ANALYSIS

Element	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Nb	Ni	Р	Pb	S
Sample	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
A0867886	<0.5	5.46	<5	284	<1	<5	7.37	<0.4	18	85	26	4.81	1.26	12	1.83	697	<2	1.22	<2	20	0.177	<5	0.6
A0867887	<0.5	6.45	<5	495	1	<5	1.99	<0.4	11	169	25	4.67	1.95	11	1.75	329	<2	1.91	<2	16	0.057	5	0.3
A0867888	< 0.5	7.75	<5	297	<1	<5	4.43	< 0.4	21	73	58	5.13	1.03	14	2.16	724	<2	2.88	4	9	0.14	5	0.4
A0867889	< 0.5	2	<5	74	<1	<5	10.33	< 0.4	5	108	44	1.28	0.5	5	4.35	446	<2	0.33	<2	9	0.057	<5	< 0.1
A0867890	3.9	9.5	<5	1053	4	<5	0.19	< 0.4	24	115	40	6.46	5.04	11	1.33	801	3	1.12	2	26	0.03	10	0.2
STD OREAS45E	0.7	6.89	18	257	<1	<5	0.07	< 0.4	56	1004	749	26.07	0.35	12	0.16	558	3	0.06	7	478	0.034	13	< 0.1
STD OREAS25A-4A	< 0.5	9.18	11	151	<1	<5	0.28	< 0.4	8	104	28	6.86	0.51	19	0.33	486	3	0.13	19	44	0.049	24	< 0.1
STD OREAS25A-4A	< 0.5	8.97	10	146	<1	<5	0.29	< 0.4	7	112	29	6.52	0.5	20	0.31	487	<2	0.13	19	46	0.049	24	< 0.1
STD OREAS45H	0.6	8.05	16	350	1	<5	0.14	< 0.4	88	647	769	20.25	0.21	13	0.25	398	<2	0.09	14	441	0.024	10	< 0.1
BLK	<0.5	< 0.01	<5	<1	<1	<5	<0.01	< 0.4	<2	<2	<2	< 0.01	<0.01	<2	<0.01	<5	<2	< 0.01	<2	<2	< 0.002	<5	< 0.1
BLK	<0.5	< 0.01	<5	<1	<1	<5	< 0.01	< 0.4	<2	<2	<2	< 0.01	< 0.01	<2	< 0.01	<5	<2	< 0.01	<2	<2	<0.002	<5	< 0.1

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 39 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58512 Date: November 16, 2020

MULTIELEMENT ICP-AES ANALYSIS

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
A0867852	<5	18	<2	126	<2	0.37	<20	169	<4	23	9	40
A0867853	<5	23	<2	98	<2	0.39	<20	164	<4	12	23	<2
A0867854	<5	24	<2	99	<2	0.51	<20	186	<4	15	17	<2
A0867855	<5	21	<2	106	<2	0.35	<20	186	<4	8	37	2
A0867856	<5	15	<2	114	<2	0.31	<20	278	<4	18	23	5
A0867857	<5	21	<2	73	<2	0.29	<20	473	<4	8	19	10
A0867858	<5	15	<2	139	<2	0.32	<20	183	<4	14	15	20
A0867859	<5	20	2	296	<2	0.47	<20	210	<4	19	40	9
A0867860	<5	17	<2	87	<2	0.35	<20	214	<4	10	14	2
A0867861	<5	14	<2	84	<2	0.32	<20	174	<4	11	11	14
	·e	40	-0	104	-3	0.44	<20	184	<4	17	40	6
A0867862	<5	18 19	<2 <2	191 274	<2 <2	0.44	<20	157	<4	18	34	32
A0867863 A0867864	<5 <5	20	<2	288	<2	0.37	<20	167	<4	17	37	8
	<5	19	<2	126	<2	0.37	<20	163	<4	12	52	3
A0867865	<5	18	<2	147	3	0.23	<20	162	<4	7	59	2
A0867866	^ >	10	~2	141	3	0.23	\20	102	74	,	33	2
A0867867	<5	17	<2	131	<2	0.3	<20	282	5	8	64	17
A0867868	<5	16	<2	346	<2	0.76	<20	169	<4	17	102	97
A0867869	<5	16	<2	304	<2	0.74	<20	158	4	17	107	92
A0867870	<5	19	<2	57	2	0.39	<20	193	12	7	88	20
A0867871	<5	<1	<2	4	<2	0.01	<20	12	<4	<2	5	<2
A0867872	<5	6	<2	12	<2	0.05	<20	43	6	3	26	5
A0867873	6	6	<2	20	<2	0.03	<20	39	<4	6	57	5
A0867874	<5	15	<2	129	<2	0.09	<20	87	9	10	85	<2
A0867875	<5	15	<2	152	2	0.11	<20	133	11	8	81	3
A0867876	<5	12	<2	164	<2	0.15	<20	160	14	7	91	23
A0867877	<5	8	<2	56	<2	0.08	<20	75	11	6	61	11
A0867878	<5	13	<2	38	<2	0.09	<20	114	14	5	142	4
A0867879	<5	20	<2	57	<2	0.25	<20	163	16	6	138	<2
A0867880	<5	19	<2	53	<2	0.27	<20	154	16	4	145	<2
A0867881	<5	25	<2	158	<2	0.51	<20	179	14	4	142	<2
			_ -									
A0867882	<5	25	<2	118	<2	0.48	<20	183	<4	5	116	<2
A0867883	<5	23	<2	78	<2	0.44	<20	215	<4	6	64	<2
A0867884	<5	20	<2	73	<2	0.37	<20	290	<4	9	73	4
A0867885	<5	20	<2	63	<2	0.3	<20	206	<4	5	18	3
A0867885 Re	<5	21	<2	65	<2	0.3	<20	205	<4	5	18	3

	one of the same of		
Signed:			
		Mark Acres - Qua	lity Assurance

Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 39 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58512 Date: November 16, 2020

MULTIELEMENT ICP-AES ANALYSIS

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
A0867886	<5	14	<2	168	<2	0.26	<20	168	<4	13	7	16
A0867887	<5	19	<2	80	<2	0.29	<20	204	<4	7	14	6
A0867888	<5	14	<2	204	<2	0.45	<20	207	<4	21	28	5
A0867889	<5	5	<2	106	<2	0.12	<20	250	<4	7	18	9
A0867890	6	26	<2	38	3	0.44	<20	295	28	5	89	<2
STD OREAS45E	9	94	6	16	9	0.51	<20	313	<4	9	46	99
STD OREAS25A-4A	<5	13	4	45	10	0.9	<20	147	<4	10	44	142
STD OREAS25A-4A	5	13	5	45	13	0.91	<20	155	<4	10	43	147
STD OREAS45H	5	60	2	27	8	0.88	<20	267	<4	9	39	120
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2

2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company:Axiom GroupTSL Report:S58653Geologist:T. FiolleauDate Received:Nov 19, 2020Project:DocDate Reported:Dec 10, 2020

Purchase Order: 20.2037.HSG Invoice: 78887

Sample Type: Number Sample Preparation

Pulp 51 None

ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element	Lower Detection	Upper Detection	Element	Lower Detection	Upper Detection
Name	Limit	Limit	Name	Limit	Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	10000 ppm
Al *	0.01 %	10 %	Mo	0.1 ppm	2000 ppm
As	0.5 ppm	10000 ppm	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	Ni	0.1 ppm	10000 ppm
B *	1 ppm	2000 ppm	P *	0.001%	5 %
Ba *	1 ppm	1000 ppm	Pb	0.1 ppm	10000 ppm
Bi	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Co	0.1 ppm	2000 ppm	Se	0.5 ppm	1000 ppm
Cr *	1 ppm	10000 ppm	Sr *	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Te	1 ppm	2000 ppm
Fe *	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	- i *	0.001%	10 %
Hg	0.01 ppm	100 ppm		0.1 ppm	1000 ppm
K *	0.01%	10 %	U *	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	V *	2 ppm	10000 ppm
Mg *	0.01%	30 %	₩ *	0.1 ppm	100 ppm
			Zn	1 ppm	10000 ppm

Axiom Group

Attention: T. Fiolleau Project: Doc Project Sample: 51 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

S58653

Date: December 10, 2020

MULTIELEMENT ICP-AES ANALYSIS

Multiacid Digestion

Element	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	La	Mg	Mn	Мо	Na	Nb	Ní	Р	Pb	S
Sample	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
35801	3	9.23	<5	794	3	<5	0.23	1.2	29	34	283	7.11	3.75	3	1.94	1787	3	2.51	<2	16	0.064	662	< 0.1
35802	0.9	9.51	<5	779	2	<5	1.85	3.5	30	31	457	7.26	3.68	6	1.12	2620	<2	2.32	<2	19	0.063	28	<0.1
35803	2	9.89	<5	1009	3	<5	0.13	1.8	38	32	381	7.67	5.24	5	0.71	4620	6	1.3	<2	18	0.049	. 34	<0.1
35804	8.6	6.52	<5	490	5	<5	0.06	< 0.4	12	25	309	7.16	4.34	3	0.81	471	20	0.12	<2	10	0.032	80	< 0.1
35805	11.7	4.89	11	1011	3	14	0.32	0.6	16	27	473	9.87	2.88	28	0.48	1091	29	0.06	<2	33	0.046	264	0.3
35806	94.3	6.12	<5	862	2	<5	4.39	5.4	26	122	1277	6.21	2.57	39	0.67	1878	7	2.07	3	142	0.127	1861	0.3
35807	1.9	8.29	<5	721	2	<5	2.25	1.3	27	11	165	6.24	2.14	14	1.12	1454	<2	5.37	3	8	0.197	21	0.2
35807 Re	2.2	8.46	<5	746	2	<5	2.31	1.2	27	10	171	6.49	2.21	14	1.16	1495	<2	5.55	3	9	0.198	29	0.2
35808	< 0.5	5.62	6	219	1	<5	1.08	< 0.4	8	29	23	4.07	1.46	17	1.22	408	<2	1.46	<2	65	0.097	8	0.1
35809	1.9	6.16	<5	304	1	<5	4.37	0.9	15	65	64	4.38	1.06	19	1.64	1164	<2	2.57	6	94	0.08	55	8.0
35810	0.5	6.69	<5	286	1	<5	1.83	< 0.4	14	59	40	4.57	1.19	16	1.84	504	<2	2.24	4	105	0.058	18	0.4
35811	< 0.5	6.36	<5	392	1	<5	0.42	< 0.4	9	43	32	3.73	1.07	17	1.34	224	<2	2.65	3	96	0.047	11	0.3
35812	< 0.5	6.44	<5	204	1	<5	0.89	< 0.4	8	39	23	3.92	0.56	17	1.34	283	<2	3.16	4	75	0.04	9	0.2
35813	0.6	6.3	<5	271	1	<5	0.92	< 0.4	8	37	30	4.03	0.66	16	1.38	321	<2	2.9	5	83	0.037	7	0.1
35814	<0.5	6.49	5	280	1	<5	2.49	<0.4	12	60	24	4.11	0.94	19	1.61	510	<2	2.38	9	91	0.126	10	0.1
35815	<0.5	5.71	<5	236	1.	<5	9.91	<0.4	16	80	37	4.67	0.31	17	1.83	1926	<2	1.4	12	118	0.111	6	< 0.1
35816	<0.5	6.95	<5	230	1	<5	5.7	< 0.4	29	144	51	5.78	0.48	18	2.92	1303	<2	2.14	16	167	0.126	7	0.1
35817	<0.5	6.94	<5	243	1	<5	1.4	< 0.4	10	30	26	4.6	1.12	15	1.71	416	<2	2.46	3	57	0.063	12	< 0.1
35818	<0.5	6.15	<5	276	1	<5	0.29	< 0.4	9	38	37	4.38	1.26	12	1.59	267	<2	2.09	<2	58	0.049	7	< 0.1
35819	<0.5	6.69	5	437	2	<5	0.9	0.4	8	32	25	4.53	1.76	20	1.64	880	<2	1.69	2	88	0.144	10	< 0.1
55025	10.0	0,03	3	15.	***		0.0	0	Ü	54													
35820	< 0.5	6.45	6	385	1	<5	0.33	0.7	10	47	27	4.36	1.41	16	1.68	261	<2	2.22	<2	70	0.082	24	< 0.1
35821	< 0.5	5.95	<5	342	1	<5	0.25	< 0.4	10	53	42	3.97	1.14	16	1.19	184	2	2.38	<2	95	0.041	9	0.5
35822	< 0.5	5.46	<5	434	1	<5	0.2	< 0.4	8	60	30	3.09	1.48	14	1.15	205	<2	1.49	<2	68	0.024	20	< 0.1
35823	< 0.5	5.16	<5	288	1	<5	0.16	< 0.4	6	55	17	3.02	1.55	12	1.11	188	<2	1.3	<2	46	0.025	23	< 0.1
35824	<0.5	6.41	<5	363	1	<5	0.19	< 0.4	10	63	43	4.01	1.95	17	1.42	229	<2	1.25	<2	66	0.024	45	< 0.1
32335	-0 F	го:	4E	222	1	-5	0.37	-O 4	o	r.c	2.4	3,47	1.67	13	1.3	216	<2	1.49	3	56	0.018	14	<0.1
35825	<0.5	5.81	<5	333	1	<5	0.27	<0.4	8	56	24			24	1.56	780	<2	2.16	5	72	0.068	<5	<0.1
29026	0.5	6.93	<5	460	1	<5	5.45	0.7	10	62	94	4.24	1.05						3		0.06	5	<0.1
29027	0.9	8.3	<5	473	<1	7	4.44	<0.4	23	41	134	6.59	0.66	9	2.09	1332	<2	3.81		26			
29028	0.8	8.34	<5	342	<1	<5	5.2	0.7	32	37	218	7.27	1.01	5	3.01	2294	<2	3.26	<2	16	0.055	16	<0.1
29029	1.3	9.06	<5	665	2	<5	2.09	1.9	36	35	43	7.66	1.8	7	3.07	2366	<2	3.53	<2	23	0.063	27	<0.1
29030	0.6	8.7	<5	273	<1	<5	4.83	0.8	32	32	105	7.12	0.89	5	3.12	2013	<2	2.96	<2	19	0.062	11	< 0.1
29031	1.3	8.25	<5	269	2	<5	4.21	0.5	29	24	149	6.98	2.65	5	2.53	1988	<2	3.06	<2	13	0.063	6	0.4
29032	1.6	8.54	<5	288	2	<5	1.83	2.6	28	24	91	7.08	2.26	11	2.46	1968	<2	4.26	<2	15	0.063	42	< 0.1
29033	0.5	7.77	<5	261	<1	<5	4.48	1.5	30	21	106	7.21	1.24	6	2.7	1961	<2	3.31	<2	15	0.064	13	< 0.1
29034	<0.5	3.05	9	123	<1	<5	9.28	<0.4	5	31	16	2.17	1.33	11	0.44	992	<2	0.22	<2	57	0.059	5	0.7
~~~~~	-0.5	0.00		de too O	- 4	796	D + BU/U	- Wx F	9				#-U-U										

A 0.25 g sample is digested with HClO4, HNO3, HCl, HF and diluted to 10 ml with D.I. H2O.

Signed:

**Axiom Group** 

Attention: T. Fiolleau Project: Doc Project Sample: 51 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: December 10, 2020

S58653

#### MULTIELEMENT ICP-AES ANALYSIS

Element Sample	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P %	Pb ppm	S %
29035	<0.5	3.19	10	138	<1	<5	10.03	< 0.4	6	36	17	2.29	1.41	15	0.43	1070	<2	0.21	<2	64	0.064	8	0.8
29036	0.7	1.86	11	180	<1	<5	15.32	1.4	3	21	39	1.44	0.88	11	0.17	2258	<2	0.04	<2	26	0.034	17	0.2
29037	7	1.82	8	189	<1	<5	9.05	5.8	3	18	230	2.73	0.87	9	0.19	3416	<2	0.03	<2	24	0.043	252	0.4
29038	9.9	1.79	60	364	<1	12	1.34	1.4	7	21	372	8.22	0.62	12	0.38	6843	5	0.01	<2	47	0.061	100	0.4
29038 Re	10	1.79	57	512	<1	<5	1.34	1.2	7	20	368	8.17	0.61	11	0.37	6836	5	0.01	<2	45	0.059	99	0.4
29039	0.8	1.61	<5	408	<1	<5	2.42	0.8	4	17	33	10.57	0.55	13	0.47	>10000	6	< 0.01	<2	36	0.043	12	0.1
29040	0.9	1.84	<5	181	<1	<5	4.84	0.5	5	17	10	7.73	0.92	10	1.18	>10000	3	0.02	<2	36	0.033	<5	0.9
29041	0.9	3.31	<5	113	<1	<5	2.95	1.2	6	28	31	9.11	1.29	1.2	1.3	>10000	<2	0.06	3	45	0.044	24	1
29042	4.1	3.9	9	48	1	<5	0.57	0.5	8	27	62	3.96	2.02	6	0.43	1381	3	0.04	<2	43	0.009	54	1.1
29043	1.5	3.3	<5	53	<1	<5	2.37	0.5	6	32	56	7.25	1.43	12	1.02	6492	<2	0.03	<2	42	0.046	21	1.1
29044	6.6	2.59	6	88	<1	11	0.73	0.9	5	26	485	4.01	1.24	1.2	0.27	2945	<2	0.03	2	34	0.056	98	0.6
29045	2.9	3.94	9	738	1	<5	0.52	1.2	6	34	124	3.17	2.01	9	0.24	1574	3	0.06	<2	42	0.061	36	< 0.1
29046	2.8	4.37	8	1023	1	<5	0.19	0.8	7	34	136	3.29	2.03	10	0.4	1833	<2	0.06	<2	37	0.048	12	< 0.1
29047	1.2	4.44	19	635	1	<5	0.9	1.5	8	34	68	2.91	2.29	12	0.2	1103	3	0.06	<2	52	0.058	34	< 0.1
29048	2.7	5.51	8	842	2	<5	0.53	1.5	10	34	57	4.19	3.16	12	0.44	1811	2	0.06	<2	56	0.092	27	0.4
29049	0.9	5.18	<5	420	1	<5	1.86	0.5	8	26	26	3.92	2.82	9	1.23	914	<2	0.33	<2	34	0.086	13	0.6
29050	3.8	4.71	<5	610	<1	<5	2.97	< 0.4	7	21	2174	3.27	0.5	13	1.02	750	<2	1.92	3	16	0.043	<5	0.2
37301	0.7	6.29	<5	823	<1	<5	4.27	< 0.4	13	17	72	4.16	0.91	11	1.21	1352	<2	2.05	2	21	0.062	<5	0.3
STD OREAS25A-4A	< 0.5	8.91	12	145	<1	<5	0.29	< 0.4	7	112	29	6.55	0.51	19	0.32	492	2	0.12	17	45	0.049	29	< 0.1
STD OREAS45H	<0.5	7.92	16	333	1	<5	0.14	< 0.4	87	644	776	19.47	0.21	12	0.24	396	<2	0.08	12	435	0.023	10	< 0.1
STD OREAS25A-4A	< 0.5	8.57	12	145	<1	<5	0.28	< 0.4	8	112	29	6.48	0.5	19	0.31	484	2	0.12	18	44	0.049	20	< 0.1
STD OREAS45H	<0.5	7.98	16	331	1	<5	0.13	< 0.4	85	646	758	19.78	0.21	13	0.24	391	<2	0.08	12	425	0.024	13	< 0.1
BLK	<0.5	< 0.01	<5	<1	<1	<5	< 0.01	< 0.4	<2	<2	<2	< 0.01	< 0.01	<2	< 0.01	<5	<2	< 0.01	<2	<2	< 0.002	<5	< 0.1
BLK	<0.5	< 0.01	<5	<1	<1	<5	< 0.01	< 0.4	<2	<2	<2	< 0.01	< 0.01	<2	< 0.01	<5	<2	< 0.01	<2	<2	< 0.002	<5	< 0.1

#### **Axiom Group**

Attention: T. Fiolleau Project: Doc Project Sample: 51 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: \$58653 Date: December 10, 2020

#### **MULTIELEMENT ICP-AES ANALYSIS**

Multiacid Digestion

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
35801	<5	35	<2	90	<2	0.27	<20	321	17	5	211	<2
35802	<5	34	<2	102	<2	0.15	<20	285	20	12	238	<2
35803	<5	37	<2	52	<2	0.15	<20	331	25	7	135	2
35804	<5	23	<2	10	<2	0.12	<20	300	105	<2	93	3
35805	<5	16	<2	14	<2	0.08	<20	193	>200	5	67	6
35806	6	18	<2	70	<2	0.24	<20	157	15	11	395	<2
35807	<5	15	<2	154	<2	0.3	<20	156	9	11	129	2
35807 Re	<5	15	3	158	<2	0.31	<20	158	8	11	131	<2
35808	<5	11	<2	83	<2	0.19	<20	109	<4	9	63	<2
35809	<5	13	2	117	<2	0.38	<20	116	5	14	96	5
35810	<5	13	<2	92	<2	0.27	<20	118	<4	7	70	5
35811	<5	10	<2	109	<2	0.2	<20	101	<4	7	47	3
35812	<5	11	2	102	<2	0.44	<20	107	<4	19	48	3
35813	<5	11	<2	106	<2	0.46	<20	110	<4	18	49	4
35814	<5	12	3	102	<2	0.58	<20	104	<4	28	57	6
35815	<5	13	3	209	<2	0.65	<20	117	<4	31	72	15
35816	<5	18	3	152	<2	0.93	<20	160	<4	26	82	14
35817	<5	16	<2	107	<2	0.51	<20	146	<4	21	73	3
35818	<5	14	<2	97	<2	0.2	<20	144	<4	7	66	5
35819	<5	11	2	90	<2	0.22	<20	98	6	14	69	7
35820	<5	13	2	119	<2	0.2	<20	132	<4	8	91	5
35821	<5	11	2	119	<2	0.17	<20	121	<4	5	59	5
35822	<5	10	2	64	<2	0.15	<20	86	<4	3	49	3
35823	<5	9	<2	52	<2	0.15	<20	70	14	3	54	<2
35824	<5	11	3	55	<2	0.21	<20	94	<4	4	75	<2
35825	<5	10	<2	53	3	0.19	<20	80	<4	3	63	<2
29026	<5	12	<2	111	2	0.33	<20	90	<4	25	115	6
29027	<5	28	4	168	<2	0.6	<20	254	4	20	99	9
29028	<5	36	<2	194	<2	0.31	<20	295	<4	11	153	4
29029	<5	43	<2	88	<2	0.2	<20	329	14	11	193	3
29030	<5	37	<2	162	<2	0.44	<20	310	<4	15	147	6
29031	<5	35	<2	190	<2	0.17	<20	289	7	6	115	<2
29032	<5	40	<2	103	<2	0.2	<20	306	12	10	180	2
29033	<5	32	<2	159	<2	0.29	<20	311	<4	11	155	3
29034	<5	7	<2	92	<2	0.15	<20	57	<4	10	16	3

Signed:

#### **Axiom Group**

Attention: T. Fiolleau Project: Doc Project Sample: 51 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58653 Date: December 10, 2020

#### **MULTIELEMENT ICP-AES ANALYSIS**

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Žn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
29035	<5	7	2	98	<2	0.16	<20	61	<4	11	12	3
29036	<5	4	<2	93	<2	0.09	<20	39	18	14	28	2
29037	<5	4	<2	105	<2	0.08	<20	39	150	11	155	<2
29038	<5	4	<2	36	<2	0.12	<20	60	>200	6	86	3
29038 Re	<5	4	3	35	<2	0.12	<20	58	>200	6	83	3
29039	<5	4	<2	72	<2	0.12	<20	37	45	5	70	3
29040	<5	6	2	113	<2	0.11	<20	40	30	5	44	2
29041	<5	7	3	84	<2	0.28	<20	74	10	6	110	4
29042	<5	9	<2	19	<2	0.16	<20	101	>200	3	52	3
29043	<5	8	2	53	<2	0.22	<20	69	139	4	72	3
29044	6	8	<2	30	<2	0.12	<20	66	>200	7	89	3
29045	<5	10	<2	20	<2	0.2	<20	134	87	5	90	2
29046	<5	11	<2	22	<2	0.35	<20	127	41	5	81	3
29047	<5	10	<2	16	<2	0.19	<20	111	15	6	84	4
29048	5	14	<2	30	<2	0.27	<20	152	105	7	122	<2
29049	<5	14	<2	103	<2	0.37	<20	136	7	7	103	3
29050	<5	11	4	121	<2	0.3	<20	90	<4	18	60	2
37301	<5	17	<2	112	<2	0.44	<20	133	<4	27	117	3
STD OREAS25A-4A	<5	13	4	44	10	0.89	<20	157	<4	10	45	145
STD OREAS45H	<5	57	6	26	<2	0.85	<20	269	<4	10	40	120
STD OREAS25A-4A	<5	13	6	44	11	0.87	<20	155	<4	10	47	148
STD OREAS45H	<5	57	4	26	2	0.84	<20	263	<4	10	42	118
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2

2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

TSL Report: S58391 Company: Hanstone Gold Corp Date Received: Sep 15, 2020 Geologist: T. Fiolleau

Date Reported: Oct 06, 2020 Project: Doc Project

78575 Purchase Order: Hanstone1 Invoice:

Sample Preparation Sample Type: Size Fraction Number

Crush, Riffle Split, Pulverize Reject ~ 70% -10 mesh (1.70 mm) Core 76 Pulp  $\sim 95\% -150 \text{ mesh } (106 \mu\text{m})$ 

0 None

Pulp

#### ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag Al * As Au B * Ba * Bi Ca * Cd Cr * Cu Fe * Ga * Hg K *	0.1 ppm 0.01 % 0.5 ppm 0.5 ppb 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.01% 1 ppm 0.01%	100 ppm 10 % 10000 ppm 100 ppm 2000 ppm 1000 ppm 2000 ppm 40 % 2000 ppm 10000 ppm 10000 ppm 40 % 1000 ppm	Mn * Mo Na * Ni P * Pb S Sb Sc Se Sr * Te Th * Ti * TI U *	1 ppm 0.1 ppm 0.001% 0.1 ppm 0.001% 0.1 ppm 0.05 % 0.1 ppm 0.1 ppm 0.5 ppm 1 ppm 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm	10000 ppm 2000 ppm 10 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 1000 ppm 1000 ppm 2000 ppm 2000 ppm 2000 ppm 10 % 1000 ppm
La * Mg *	1 ppm 0.01%	10000 ppm 30 %	V * W * Zn	2 ppm 0.1 ppm 1 ppm	10000 ppm 100 ppm 10000 ppm

#### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 76 Core / 0 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58391 October 6, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Ag	Al	As	Au	8	8a	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	70	ppm	ppm	ppm	ppm	/0	phiii	ppm	70	ppm	,,	PP	P.F			
A0862583	0.6	3.04	29.5	64	<20	296	< 0.1	2.32	0.3	23	81	143.5	6.6	13	0.06	0.56	3	2	1188	0.6	0.051	10.3	0.2
A0862584	0.5	2.74	152.4	40.3	<20	68	< 0.1	2.74	2	24.1	77	128.7	5.87	11	0.04	0.17	6	1.78	1076	0.2	0.044	14	0.085
A0862585	0.1	2.67	8.7	14.7	<20	33	< 0.1	4.87	< 0.1	27.6	60	59.9	5.8	12	0.03	0.21	4	2.25	1176	0.4	0.066	18.5	0.122
A0862586	0.4	2.95	8	79.5	<20	44	< 0.1	3.38	1	28.7	72	69.8	6.12	11	0.02	0.22	5	1.91	1217	0.4	0.052	15.7	0.096
A0862587	0.4	2.63	8.3	28.6	<20	56	< 0.1	4.66	0.9	27.2	42	32.3	5.96	9	0.03	0.21	4	1.53	2086	0.7	0.032	10.9	0.091
																							0.100
A0862588	0.1	1.98	12.2	11.9	<20	12	< 0.1	2.24	0.1	20.7	47	90.8	4.91	9	0.02	0.06	3	1.63	913	0.4	0.066	9	0.106
A0862589	0.2	2.29	6.6	2.9	<20	22	< 0.1	2.9	0.2	21.3	61	108.5	5.26	10	0.01	0.1	3	1.68	988	0.4	0.073	9.5	0.091
A0862590	0.2	2.51	6.8	6	<20	21	< 0.1	2.65	0.3	23.2	44	124.1	5.66	11	0.03	0.12	3	1.81	990	0.2	0.058	10	0.098
A0862591	< 0.1	2.54	1.7	2.1	<20	54	< 0.1	2.99	0.2	21.4	46	50.3	5.33	10	0.01	0.21	3	1.97	996	0.2	0.07	11.9	0.124
A0862592	0.1	2.81	5.3	1.8	<20	118	< 0.1	2.4	0.3	22.6	45	118.6	5.96	11	0.01	0.26	4	2.05	1252	0.2	0.039	7.3	0.124
																						~ #	0.000
A0862593	0.1	2.78	2.4	0.8	<20	35	< 0.1	4.13	0.2	35.5	40	100.3	5.88	11	0.02	0.14	3	1.88	1289	0.5	0.045	8.5	0.088
A0862594	< 0.1	2.58	2.1	< 0.5	<20	37	< 0.1	3.41	< 0.1	20.7	57	103.5	5.38	10	0.01	0.13	4	1.8	1211	0.6	0.046	7.8	0.091
A0862595	0.1	2.79	1.4	< 0.5	<20	62	< 0.1	3.63	0.1	21.6	40	85.5	5.79	11	< 0.01	0.24	5	1.92	1302	0.3	0.048	8	0.089
A0862596	0.1	2.32	1.2	0.7	<20	39	< 0.1	4.32	< 0.1	18.2	41	73.1	5.11	10	0.02	0.13	6	1.46	1115	0.2	0.04	8	0.083
A0862597	0.1	2.5	2.2	8.0	<20	169	< 0.1	2.46	0.1	17.5	80	102.4	5.07	8	0.04	0.37	5	1.39	1009	0.6	0.051	8.8	0.076
															0.00	0.27	r	1.4	1017	0.6	0.053	9.3	0.079
A0862597 Re	0.1	2.52	2.2	6.6	<20	170	< 0.1	2.51	0.1	17.3	79	104.7	5.12	9	0.03	0.37	5	1.53	1141	0.8	0.033	7.1	0.123
A0862598	0.3	2.66	1.3	< 0.5	<20	88	< 0.1	3.9	0.1	17.7	53	85.6	5.4	9	<0.01	0.25	4 8	1.53	1038	0.9	0.032	7.6	0.137
A0862599	<0.1	2.71	< 0.5	<0.5	<20	96	< 0.1	3.73	< 0.1	15.8	51	55.8	4.95	10	< 0.01	0.3	4	1.31	871	0.9	0.041	10.1	0.064
A0862602	0.4	2.22	2.3	1.8	<20	53	< 0.1	3.13	< 0.1	17.8	141	119.4	4.47	7	< 0.01	0.19	5	1.22	1154	0.8	0.015	8.9	0.072
A0862603	0.6	2.45	0.9	3.8	<20	83	<0.1	4.22	16.8	18.5	45	67.2	5.23	,	0.03	0.4	5	2.466	2234	0.0	0.025	0.5	
	0.4	2.00	0.7	2	-20	4.6	-O 1	2.00	0.0	22	59	73.3	5.97	10	< 0.01	0.21	4	1.66	1138	0.7	0.022	10.6	0.077
A0862604	0.4	2.88	0.7	2	<20	44 64	<0.1 <0.1	3.89 4.5	0.9 1.8	15.7	79	53.4	4.73	9	0.01	0.26	6	1.38	1075	0.9	0.033	8.6	0.074
A0862605	0.2	2.43	<0.5	1.9	<20				5.9	13.7	63	72.2	5.31	9	<0.01	0.28	3	1.44	1079	1	0.05	5.9	0.085
A0862606	0.3	2.63	2	1.4	<20	107 118	<0.1 <0.1	2.71 3.8	1.6	17.4	44	78.8	5.39	9	< 0.01	0.35	4	1.43	1092	1	0.028	5.7	0.082
A0862607	0.2 0.1	2.75 2.24	0.6 1.2	1.1 1.3	<20 <20	22	<0.1	4.15	0.1	17.4	44	89.2	4.86	g	< 0.01	0.1	3	1.52	902	0.7	0.05	9.1	0.069
A0862608	0.1	2.24	1	1.3	<b>\20</b>	bar bar	~U. £	4.13	0.1	17.3	- white	05.2	4.00		1070 #		_						
A0862609	0.1	1.49	0.5	1.4	<20	13	< 0.1	1.61	0.1	15.4	64	92.3	3.78	7	< 0.01	0.06	3	1.05	517	0.6	0.138	14.4	0.076
A0862610	0.3	2.49	2.8	3.3	<20	14	0.2	1.19	0.1	34.4	43	178.1	6.95	12	< 0.01	0.07	3	1.85	649	0.8	0.065	17.1	0.07
A0862611	0.3	1.56	0.6	1.1	<20	13	<0.1	1.83	0.1	17.7	38	74.4	3.77	7	< 0.01	0.06	3	1.13	492	0.6	0.141	12.1	0.091
A0862612	<0.1	1.01	1.2	0.8	<20	8	<0.1	1.88	<0.1	14.5	30	29.2	2.64	5	< 0.01	0.04	3	0.93	446	0.5	0.109	11.3	0.127
A0862612 A0862613	<0.1	1.5	1.6	0.8	<20	27	<0.1	4.05	<0.1	21.1	34	62.6	3.51	7	< 0.01	0.1	2	1.15	677	1.1	0.127	15.4	0.13
MOGOTOTO	-0.4	٠.٠	2.0	0.0	-4-0	****																	
A0862614	< 0.1	1.7	1	0.7	<20	14	< 0.1	2.61	< 0.1	19.1	32	33	3.93	8	< 0.01	0.06	2	1.46	654	0.4	0.106	14.8	0.122
A0862615	<0.1	2.33	< 0.5	0.6	<20	9	< 0.1	3.68	< 0.1	23.6	38	34.2	4.95	10	< 0.01	0.04	3	1.96	824	0.5	0.083	17.6	0.126
A0862616	0.5	0.38	2.4	1141.9	<20	22	< 0.1	1.7	3.9	2.2	222	9.3	0.66	2	0.01	0.12	6	0.12	394	0.4	0.095	4.6	0.011
A0862617	0.5	3.33	0.9	2.2	<20	32	0.1	4.04	1.8	30.9	38	66.6	7.16	12	< 0.01	0.18	4	2.12	1358	0.6	0.032	20.2	0.092
A0862618	0.3	2.88	1.1	1.6	<20	40	< 0.1	4.02	0.6	21.2	36	61.6	5.76	10	< 0.01	0.19	3	1.69	1102	0.7	0.027	10.9	0.068

Signed:

#### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 76 Core / 0 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58391 October 6, 2020

## MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Ag	Al	As	Au	В	8a	Bi	Са	Cd	Со	Cr	Cu	Fe	Ga	Hg	К	La	Mg	Mn	Мо	Na %	Ni	р %
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	70	ppm	70
A0862619	0.3	2.45	3	3.6	<20	148	<0.1	6.58	1	15.5	75	38.6	5.23	6	< 0.01	0.41	2	1.33	2111	2.1	0.01	7.3	0.06
A0862619 A0862620	0.5	2.46	2.3	9.2	<20	152	0.1	4.75	1.1	18.3	48	52.3	5.15	7	0.01	0.42	4	1.28	1381	1	0.012	8.5	0.09
A0862621	<0.1	1.75	0.9	1.1	<20	44	<0.1	1.41	0.3	13.3	92	97.2	4.24	9	< 0.01	0.13	4	1.13	670	0.5	0.086	7	0.067
A0862621 A0862622	<0.1	1.55	1	0.8	<20	26	<0.1	1.43	0.1	18	46	66	3.78	7	< 0.01	0.1	3	1.32	512	0.7	0.083	13.6	0.11
A0862623	0.2	1.77	1.2	1.3	<20	27	0.1	2.76	<0.1	22.5	53	129.6	4.18	8	< 0.01	0.14	2	1.41	595	0.6	0.097	17.4	0.119
A0002023	0.2	1.77	Jan do	*.0	120	4.7	0.1	2	-0.2	2270	-												
A0862624	< 0.1	2.36	0.9	0.9	<20	22	< 0.1	2.15	< 0.1	19.2	31	54.8	4.73	11	< 0.01	0.06	4	1.99	955	0.4	0.063	15.6	0.178
A0862625	< 0.1	2.19	< 0.5	0.7	<20	81	< 0.1	1.76	< 0.1	15.6	36	69.7	4.26	10	0.02	0.26	4	1.53	852	0.3	0.1	8.2	0.161
A0862626	< 0.1	3.66	< 0.5	1.3	<20	116	< 0.1	3.92	< 0.1	24.8	69	14.9	5.71	12	< 0.01	0.22	9	4.01	766	0.8	0.028	40.3	0.11
A0862627	0.5	0.91	0.7	98.4	<20	172	0.1	4.99	0.5	13.7	61	20.2	3.91	5	< 0.01	0.4	2	2.55	1177	2.4	0.068	30.3	0.084
A0862628	0.1	2.25	0.9	11.4	<20	18	0.1	1.12	< 0.1	12.5	62	42.5	5.2	11	< 0.01	0.06	3	2.83	318	1.5	0.045	55.6	0.097
710002020																					0.400	55.3	0.007
A0862629	0.4	1.27	0.5	80.3	<20	71	0.2	2.56	0.3	12.2	73	27.4	4.14	6	< 0.01	0.32	3	1.94	606	2.3	0.103	56.3	0.057 0.055
A0862630	0.2	1.15	0.7	34.3	<20	67	0.2	4.05	0.3	11.6	97	20.7	3.73	6	< 0.01	0.36	4	1.64	581	2.1	0.094	54.8	0.033
A0862631	< 0.1	0.39	1	1.8	<20	52	< 0.1	12.27	< 0.1	6	68	8.2	1.25	2	< 0.01	0.08	2	0.48	480	0.9	0.025	28.7	
A0862632	< 0.1	0.35	1.5	1.6	<20	11	0.1	13.67	0.1	4	64	10.4	1.03	2	< 0.01	0.06	2	0.38	598	0.5	0.016	28.7	0.03
A0862633	< 0.1	0.47	2.3	1.4	<20	29	< 0.1	6.98	0.5	4	96	9.3	1.39	3	< 0.01	0.16	3	0.46	336	1.3	0.029	27.4	0.032
																				0.7	0.045	20.4	0.028
A0862634	< 0.1	0.24	1.8	1.9	<20	11	0.1	11.61	0.1	5.3	62	8.4	1.36	1	< 0.01	0.09	2	0.53	474	0.7	0.015	29.4 23.4	0.028
A0862635	< 0.1	0.47	1.9	2.6	<20	13	< 0.1	12.12	< 0.1	6.4	69	10.7	1.1	2	< 0.01	0.09	2	0.45	486	0.8	0.017		0.028
A0862635 Re	< 0.1	0.46	1.7	1.4	<20	12	< 0.1	12.23	< 0.1	6.7	68	10.6	1.1	2	< 0.01	0.09	2	0.45	492	0.8	0.017	23.4	0.028
A0862636	< 0.1	1.24	1.7	3.6	<20	22	0.1	5.94	< 0.1	18.2	80	37	2.21	7	< 0.01	0.09	4	1.05	444	0.8	0.039	35.6	0.049
A0862637	< 0.1	1.79	0.7	1.8	<20	32	0.2	3.87	< 0.1	21.5	86	64.8	3.87	7	< 0.01	0.14	3	1.73	558	0.9	0.066	47.2	0.045
																		0.00	720	0.5	0.03	60.5	0.079
A0862638	0.1	0.9	1.7	9	<20	44	< 0.1	8.5	0.2	23.7	101	57.2	2.53	5	< 0.01	0.13	4	0.88	728	0.8	0.031	38.2	0.112
A0862639	2.6	2.65	< 0.5	17.5	<20	103	0.8	4.16	41.5	25.2	80	70.3	4.89	8	*	0.54	3	2.9	1018	0.8	0.031	44.3	0.116
A0862640	< 0.1	3.08	0.7	< 0.5	<20	81	< 0.1	2.14	< 0.1	19.9	77	18.5	5.15	10	< 0.01	0.25	5	3.4	601	0.7	0.054	57.9	0.032
A0862641	< 0.1	1.29	< 0.5	1.4	<20	22	0.2	1.02	0.1	18.5	211	15.2	3.17	5	< 0.01	0.11	6	1.29	208	1.3	0.035	66.3	0.032
A0862642	< 0.1	1.52	1.1	1.5	<20	32	0.2	0.96	< 0.1	15.6	126	19.9	3.82	6	< 0.01	0.17	6	1.53	222	1.0	0.033	00.5	0.040
														_	.0.01	0.00	2	1.42	210	2	0.07	58.1	0.047
A0862643	<0.1	1.51	0.5	1.6	<20	24	0.1	0.75	< 0.1	17.8	167	17.7	3.54	6	< 0.01	0.09	3	3.1	1049	1.2	0.029	20.9	0.048
A0862644	0.1	3.17	<0.5	0.7	<20	34	0.1	2.63	< 0.1	25.6	51	84.1	6.16	11	0.03	0.1	2		1239	0.7	0.023	12.1	0.048
A0862645	0.2	3.24	< 0.5	1.3	<20	44	0.1	3.03	0.2	25.1	37	105	6.23	9	< 0.01	0.15	2	3.36		0.7	0.025	23.8	0.049
A0862646	0.3	1.58	0.6	34.7	<20	51	0.1	3.24	0.5	24	53	97.2	4.85	5	< 0.01	0.31	1	2.06	1117 298	1.1	0.023	49.8	0.076
A0862647	< 0.1	1.97	0.8	1.2	<20	18	0.2	0.6	< 0.1	12.4	117	21.9	4.26	8	< 0.01	0.05	3	1.85	298	1.1	0.003	43.0	0.070
														-	-0.04	0.3	1	2.06	1270	0.5	0.029	10.2	0.055
A0862648	0.2	2.04	<0.5	5.1	<20	48	< 0.1	4.27	0.4	22.5	31	117.6	5.67	7	< 0.01	0.2	1	2.06 2.11	1783	0.3	0.025	8.2	0.051
A0862649	0.9	1.22	< 0.5	32.2	<20	111	< 0.1	5.06	1.5	21.3	19	407.5	4.59	3	<0.01	0.71	2		1423	0.9	0.020	9.7	0.051
A0862650	5.4	2.17	0.8	279.5	<20	76	3.7	4.46	4.7	21.9	28	183.7	5.43	6	< 0.01	0.41	2	2.39	1129	0.9	0.021	10.3	0.054
A0862651	0.2	2.8	<0.5	1.4	<20	87	< 0.1	3.64	0.2	22	35	86.2	5.83	9	< 0.01	0.25	2	2.4	1153	0.6	0.045	18.1	0.084
A0862652	0.3	2.23	3.8	7.4	<20	92	0.1	3.27	0.2	29.6	46	157.6	7.33	9	< 0.01	0.17	3	2.51	1122	0.0	0.040	10.1	0.004

Signed:

#### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 76 Core / 0 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58391 October 6, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Ag	Al	As	Au	В	Ва	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	p
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0862653	0.2	2.24	2.6	5.7	<20	76	0.5	5.01	0.4	56.5	46	62.6	6.7	6	< 0.01	0.35	2	2.24	1972	0.4	0.027	19.6	0.065
A0862654	< 0.1	1.1	1.7	4.2	<20	186	0.2	1.77	0.1	43.1	96	55.4	2.19	5	0.01	0.13	6	1.34	327	3.9	0.064	60.6	0.076
A0862655	0.1	1.07	2.4	5.3	<20	33	0.4	4.98	< 0.1	13.7	138	98.5	2.71	5	0.02	0.1	5	1.17	529	6.5	0.041	38	0.059
A0862656	< 0.1	1.18	2.1	3	<20	22	0.3	1.09	< 0.1	5.8	247	71.5	2.8	5	< 0.01	0.11	4	1.24	231	2	0.048	39.2	0.074
A0862657	0.1	1.39	4.1	3.2	<20	11	0.3	0.65	<0.1	10	210	206.2	3.12	5	< 0.01	0.04	7	1.47	194	2.8	0.059	62	0.038
A0862658	<0.1	1.08	3.1	3.5	<20	14	0.2	5.01	<0.1	12.7	112	136.1	2.54	5	<0.01	0.05	3	1.24	439	1.5	0.047	44.6	0.072
A0862659	<0.1	0.57	3.7	3.7	<20	10	0.4	12.98	<0.1	13.9	102	19.3	2.44	2	0.02	0.04	11	0.64	631	1.4	0.018	43.5	0.032
A0862660	<0.1	0.59	J.7 //	2.3	<20	20	0.3	11.55	<0.1	11.8	121	15.7	2.26	3	0.02	0.04	10	0.69	598	1.5	0.02	43	0.039
STD DS11	17	1.12	39.9	47.5	<20	362	10.2	1.03	70.1	12.7	57	139.7	3.03	5	0.24	0.39	16	0.82	1004	13	0.07	77.2	0.066
STD OREAS262	0.4	1.23	33.1	54.5	<20	226	0.8	2.8	0.6	25.9	41	106.8	3.22	5	0.16	0.3	15	1.16	514	0.6	0.066	60.3	0.036
STD OREAS262	0.5	1.26	36.3	68.4	<20	260	1	2.9	0.6	26.4	41	109.6	3.25	4	0.2	0.3	16	1.21	532	0.7	0.072	62.4	0.039
STD OREAS262	0.5	1.32	36.6	63.6	<20	266	1	3	0.8	28.4	43	112.2	3.34	4	0.17	0.32	17	1.23	557	0.6	0.069	64.2	0.04
BLK	<0.1	< 0.01	< 0.5	<0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	<0.1	< 0.01	<0.5	<0.5	<20	<1	<0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	0.02	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	<0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001

Signed: ______ Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 76 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No: Date: S58391 October 6, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Element Pb S S Sb Sc Se Se Sr Fr Te Th						_	_	_			wei				· ·
A0862588	Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
AO862584 65.7 0.12 0.1 16.2 0.05 55. 0.02 1.1 0.05 0.1 0.2 165 0.1 163 0.0862585 2.3 0.12 0.1 183 0.05 81 0.02 0.7 0.219 0.1 0.1 1.233 0.1 121 0.0862586 28.4 0.16 0.1 0.1 0.2 0.05 0.05 0.13 0.02 1.1 0.016 0.1 0.2 101 0.1 121 0.0862587 2.2 0.13 0.1 141 0.05 58 0.02 0.6 0.15 0.0 1.02 101 0.2 101 0.2 82 0.08862599 2.2 0.13 0.1 141 0.05 58 0.02 0.6 0.15 0.0 1.02 165 0.2 185 0.0862599 2.2 0.13 0.1 141 0.05 58 0.02 0.5 0.159 0.1 0.1 174 0.1 92 0.05 0.0862599 2.2 0.13 0.1 15.6 0.05 0.0 0.2 0.5 0.159 0.1 0.1 174 0.1 92 0.0662592 2.4 0.05 0.1 15.6 0.05 0.0 0.2 0.5 0.159 0.1 0.1 174 0.1 92 0.0662592 2.4 0.05 0.1 15.7 0.05 0.5 0.0 0.2 0.5 0.159 0.1 0.1 174 0.1 92 0.0662592 0.4 0.05 0.1 15.6 0.05 0.0 0.2 0.5 0.159 0.1 0.1 174 0.1 92 0.0662592 0.4 0.05 0.1 15.6 0.05 0.0 0.2 0.5 0.159 0.1 0.2 177 0.1 83 0.0862599 0.4 0.05 0.0 0.1 15.6 0.0 0.5 0.0 0.0 0.0 0.5 0.159 0.0 0.1 0.2 177 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Sample	ppm	76	ppm	ppm	ppm	ppm	ppm	ррт	70	ppm	ppin	phiii	ppin	phin
A0862595	A0862583	8.6	0.09	< 0.1	14.9	< 0.5	56	0.2	0.8	0.145	0.2	0.3	174	< 0.1	101
A0862586   28.4   0.16   0.1   20.2   0.5   73   0.2   0.8   0.81   0.1   0.1   1.95   0.1   1.21	A0862584	65.7	0.12	0.1	16.2	< 0.5	55	< 0.2	1.1	0.05	< 0.1	0.2	165	< 0.1	163
A0862588	A0862585	2.3	0.12	< 0.1	18.3	< 0.5	81	< 0.2	0.7	0.219	0.1	0.1	233	< 0.1	76
A0862598	A0862586	28.4	0.16	< 0.1	20.2	< 0.5	73	< 0.2	0.8	0.081	< 0.1	0.1	195	< 0.1	121
A0862598	A0862587	27.8	0.31	< 0.1	12.9	< 0.5	103	< 0.2	1.1	0.016	< 0.1	0.2	101	< 0.1	128
A0862598															
A0862590	A0862588		< 0.05		13										
A0862591	A0862589	2.2	0.13	0.1	14.1	< 0.5	58	< 0.2	0.6	0.175	< 0.1	0.2		0.2	
A0862593	A0862590	2.2	0.15	< 0.1	15.2	< 0.5	50	< 0.2	0.5	0.159	< 0.1	0.1	174	0.1	92
A0862593	A0862591	1.2	< 0.05	< 0.1	15.6	< 0.5	65	< 0.2	0.5	0.197	< 0.1	0.2	177	< 0.1	83
A0862594	A0862592	2.4	< 0.05	< 0.1	19.7	< 0.5	71	< 0.2	0.6	0.168	< 0.1	0.2	156	< 0.1	98
A0862594															
A0862595	A0862593	2.5	0.16	0.1	15.1	< 0.5	68	< 0.2	0.4	0.075	< 0.1	0.2	171	< 0.1	85
A0862596	A0862594	1.6	< 0.05	0.2	15.7	< 0.5	74	< 0.2	0.4		< 0.1				
A0862597 Re	A0862595	2.3	< 0.05	< 0.1	16.9	< 0.5	69	< 0.2	0.5		< 0.1				
A0862597 Re  2.2 0.27 0.1 10.5 <0.5 88 <0.2 0.7 0.071 <0.1 0.2 94 <0.1 82 A0862598 2.9 0.28 0.1 8.2 <0.5 105 <0.2 0.8 0.047 <0.1 0.2 93 <0.1 86 A0862599 6.5 0.12 0.1 8.4 <0.5 102 <0.2 0.8 0.097 <0.1 0.2 91 <0.1 86 A0862502 9.7 0.36 0.1 7.7 <0.5 101 <0.2 0.7 0.019 <0.1 0.1 0.2 90 <0.1 71 A0862603 379.5 0.43 0.2 7 <0.5 183 <0.2 0.8 0.093 <0.1 0.1 0.1 90 <0.1 71 A0862604 56 0.35 0.1 9.4 <0.5 129 <0.2 0.8 0.003 <0.1 0.1 0.1 90 <0.1 759  A0862605 48.7 0.41 0.1 7.2 <0.5 154 <0.2 0.7 0.019 <0.1 0.1 118 <0.1 116 A0862606 113.7 0.15 <0.1 8.5 <0.5 97 <0.2 0.6 0.136 <0.1 0.1 92 <0.1 141 A0862607 54.2 0.25 <0.1 8 <0.5 114 <0.2 0.7 0.012 <0.1 0.1 92 <0.1 141 A0862608 1.9 0.2 <0.1 9.3 <0.5 13 <0.2 0.5 114 <0.2 0.7 0.092 <0.1 0.2 91 <0.1 135 A0862609 1.7 0.23 <0.1 8.9 <0.5 129 <0.2 0.7 0.092 <0.1 0.1 0.2 96 <0.1 136 A0862609 1.7 0.23 <0.1 8.5 <0.5 97 <0.2 0.6 0.136 <0.1 0.2 96 <0.1 136 A0862609 1.7 0.23 <0.1 8.9 <0.5 124 <0.2 0.7 0.092 <0.1 0.1 122 <0.1 135 A0862611 1.9 0.28 <0.1 8.4 <0.5 30 <0.2 0.5 0.12 <0.1 0.1 122 <0.1 134 A0862612 1 0.1 <0.1 <0.1 <0.1 132 <0.1 135 A0862613 2 0.35 0.1 9.6 <0.1 8.4 <0.5 30 <0.2 0.5 0.12 <0.1 0.1 0.1 132 <0.1 52 A0862613 1.9 0.28 <0.1 8.4 <0.5 30 <0.2 0.5 0.12 <0.1 0.1 0.1 132 <0.1 52 A0862614 1.1 0.1 <0.1 <0.1 6.3 <0.5 25 <0.2 0.2 0.22 <0.1 0.1 0.1 132 <0.1 51 A0862615 1.2 0.1 <0.1 <0.1 7.7 <0.5 35 <0.2 0.1 0.266 <0.1 <0.1 144 <0.1 122 <0.1 51 A0862615 1.2 0.1 <0.1 <0.1 <0.1 <0.1 <0.5 49 <0.2 0.1 0.266 <0.1 <0.1 <0.1 144 <0.1 <0.1 144 <0.1 <0.1 <0.1 144 <0.1 <0.1 <0.1 144 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	A0862596	1.6	< 0.05	< 0.1	12.4										
A0862598	A0862597	2.1	0.26	0.1	10.2	< 0.5	87	< 0.2	0.7	0.071	< 0.1	0.2	93	< 0.1	80
A0862598															
A0862599         6.5         0.12         0.1         8.4         <0.5         102         <0.2         0.8         0.09         <0.1         0.2         91         <0.1         86           A0862602         9.7         0.36         0.1         7.7         <0.5															
A0862602         9,7         0,36         0.1         7,7         <0.5         101         <0.2         0,7         0.019         <0.1         0.1         90         <0.1         71           A0862603         379.5         0.43         0.2         7         <0.5															
A0862603         379.5         0.43         0.2         7         <0.5         183         <0.2         0.8         0.003         <0.1         0.1         68         <0.1         759           A0862604         56         0.35         0.1         9.4         <0.5															
A0862609															
A0862605         48.7         0.41         0.1         7.2         <0.5         154         <0.2         0.7         0.012         <0.1         0.1         92         <0.1         141           A0862606         113.7         0.15         <0.1	A0862603	379.5	0.43	0.2	7	<0.5	183	<0.2	0.8	0.003	<0.1	0.1	58	<0.1	/59
A0862605         48.7         0.41         0.1         7.2         <0.5         154         <0.2         0.7         0.012         <0.1         0.1         92         <0.1         141           A0862606         113.7         0.15         <0.1	A086760A	56	0.35	0.1	9.4	<0.5	179	<0.2	0.7	0.019	<0.1	0.1	118	< 0.1	116
A0862606         113.7         0.15         <0.1         8.5         <0.5         97         <0.2         0.6         0.136         <0.1         0.2         96         <0.1         328           A0862607         54.2         0.25         <0.1															
A0862607         54.2         0.25         <0.1         8         <0.5         114         <0.2         0.7         0.092         <0.1         0.2         91         <0.1         135           A0862608         1.9         0.2         <0.1															
A0862608         1.9         0.2         <0.1         9.3         <0.5         63         <0.2         0.5         0.12         <0.1         0.1         136         <0.1         74           A0862609         1.7         0.23         <0.1															
A0862619													136		
A0862610       3.2       1.46       <0.1															
A0862611       1.9       0.28       <0.1	A0862609	1.7	0.23	< 0.1	8.9	< 0.5	28	< 0.2	0.5	0.124	< 0.1	0.1	122	< 0.1	52
A0862612       1       0.1       <0.1	A0862610	3.2	1.46	< 0.1	9.6	1.1	24	0.3	0.4	0.126	< 0.1	< 0.1	164	< 0.1	96
A0862613       2       0.35       0.1       7.6       <0.5       56       <0.2       0.1       0.277       <0.1       <0.1       121       0.2       36         A0862614       1.1       0.12       0.1       7.7       <0.5	A0862611	1.9	0.28	< 0.1	8.4	< 0.5	30	< 0.2	0.4	0.225	< 0.1	0.1	132	< 0.1	51
A0862614	A0862612	1	0.1	< 0.1	6.3	< 0.5	25	< 0.2	0.2	0.222	< 0.1	0.1	103	0.1	33
A0862615     1.2     0.1     <0.1     12     <0.5     49     <0.2     0.2     0.267     <0.1     0.1     193     0.1     53       A0862616     81.8     0.07     0.1     1.2     <0.5	A0862613	2	0.35	0.1	7.6	< 0.5	56	< 0.2	0.1	0.277	< 0.1	< 0.1	121	0.2	36
A0862615     1.2     0.1     <0.1     12     <0.5     49     <0.2     0.2     0.267     <0.1     0.1     193     0.1     53       A0862616     81.8     0.07     0.1     1.2     <0.5															
A0862616 81.8 0.07 0.1 1.2 <0.5 46 <0.2 5.1 0.002 <0.1 10.6 5 <0.1 192 A0862617 66.9 0.61 <0.1 15.1 <0.5 85 <0.2 0.4 0.015 <0.1 0.2 176 <0.1 175	A0862614			0.1			35								
A0862617 66.9 0.61 <0.1 15.1 <0.5 85 <0.2 0.4 0.015 <0.1 0.2 176 <0.1 175	A0862615	1.2	0.1	< 0.1	12	< 0.5	49	< 0.2	0.2	0.267	< 0.1	0.1			
	A0862616	81.8	0.07	0.1	1.2	< 0.5	46	< 0.2	5.1	0.002	< 0.1	10.6			
A0862618 67.3 0.22 <0.1 10 <0.5 94 <0.2 0.5 0.006 <0.1 0.1 116 <0.1 132	A0862617	66.9	0.61	< 0.1	15.1	< 0.5	85	< 0.2	0.4	0.015	< 0.1	0.2	176		
	A0862618	67.3	0.22	< 0.1	10	< 0.5	94	< 0.2	0.5	0.006	< 0.1	0.1	116	< 0.1	132

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 76 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No: Date: S58391 October 6, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0862619	46.1	0.24	0.1	10.8	<0.5	152	<0.2	0.4	0.042	< 0.1	0.1	82	<0.1	91
A0862620	119.5	0.24	0.1	9.8	<0.5	111	<0.2	0.7	0.032	<0.1	0.1	78	<0.1	120
A0862621	2.6	0.21	<0.1	9.7	0.6	30	<0.2	0.6	0.164	<0.1	0.2	91	0.1	81
A0862622	1.6	0.23	<0.1	8.2	<0.5	27	<0.2	0.4	0.193	<0.1	0.1	109	0.1	56
A0862623	2.8	0.23	0.1	7.6	0.6	39	<0.2	0.1	0.328	< 0.1	<0.1	131	1.7	46
A0002023	2.0	0.01	0.1	7.0	0.0		-0.2		0.000					
A0862624	1.7	0.13	< 0.1	5.1	<0.5	29	< 0.2	0.5	0.187	< 0.1	0.3	117	0.2	81
A0862625	1.5	0.05	< 0.1	5.1	< 0.5	44	< 0.2	0.6	0.194	< 0.1	0.3	90	0.1	77
A0862626	1.1	0.16	< 0.1	16	< 0.5	50	< 0.2	0.9	0.03	< 0.1	0.2	147	< 0.1	38
A0862627	3.8	1.34	0.1	19	0.5	94	0.5	0.2	0.04	0.2	0.2	98	0.2	43
A0862628	1.1	1.07	< 0.1	13.9	1.1	18	< 0.2	0.5	0.013	< 0.1	0.2	151	<0.1	50
A0862629	4	1.28	0.1	15.6	1.2	34	0.5	0.4	0.052	0.1	0.2	92	0.2	34
A0862630	3.6	0.85	0.1	14.3	1.1	40	0.4	0.4	0.052	0.1	0.3	91	0.2	30
A0862631	4	0.36	<0.1	3.7	0.9	70	<0.2	0.2	0.007	<0.1	0.1	19	< 0.1	5
A0862632	4.7	0.29	<0.1	2.1	0.9	77	<0.2	0.2	0.008	< 0.1	< 0.1	14	< 0.1	3
A0862633	6.9	0.37	<0.1	2.4	0.8	66	< 0.2	0.6	0.003	< 0.1	0.1	8	< 0.1	11
,10002030		0107												
A0862634	4.3	0.58	< 0.1	1.9	1.3	66	< 0.2	0.2	0.002	< 0.1	< 0.1	7	< 0.1	4
A0862635	3.7	0.31	< 0.1	2.4	0.8	59	< 0.2	0.2	0.009	< 0.1	0.1	15	< 0.1	5
A0862635 Re	3.7	0.32	< 0.1	2.3	0.8	59	< 0.2	0.2	0.009	< 0.1	0.1	15	< 0.1	5
A0862636	6.9	0.33	< 0.1	4.7	0.6	39	<0.2	0.6	0.059	<0.1	0.2	52	0.1	15
A0862637	1.6	0.52	< 0.1	11.3	1.1	39	< 0.2	0.4	0.081	< 0.1	0.2	127	< 0.1	22
	4.0	0.00				109	<0.2	0.3	0.022	<0.1	0.3	49	0.2	39
A0862638	12	0.69	<0.1	5.6	1.1 <0.5		2.9	0.5	0.022	0.3	0.3	111	>100.0	936
A0862639	2388.6	0.51	0.1	14.7 16.9	<0.5	141 40	<0.2	1.3	0.033	0.1	0.2	137	0.2	31
A0862640	1.9 8.2	0.23 0.9	<0.1 <0.1	9.4	1.2	16	<0.2	1.5	0.122	<0.1	0.2	73	0.3	14
A0862641	8.2	1.19	<0.1	10.9	1.4	13	<0.2	0.9	0.047	<0.1	0.3	101	0.1	15
A0862642	۷.	1.19	<0.1	10.9	1.4	1.3	3.07	0.5	0.00	٧٥.1	0.0	101	0.2	2.0
A0862643	3.1	0.83	< 0.1	10.3	1.4	12	< 0.2	0.6	0.057	< 0.1	0.2	107	< 0.1	11
A0862644	3.6	0.4	< 0.1	14.9	< 0.5	59	< 0.2	0.4	0.025	< 0.1	0.1	162	0.2	46
A0862645	2.4	0.28	< 0.1	14.2	< 0.5	92	< 0.2	0.3	0.013	< 0.1	< 0.1	137	< 0.1	57
A0862646	3.7	0.72	0.1	8.9	< 0.5	89	< 0.2	0.3	0.02	0.1	0.1	70	0.2	86
A0862647	2.3	0.44	< 0.1	11.3	< 0.5	15	< 0.2	0.6	0.023	< 0.1	0.1	119	< 0.1	20
													-	ye ac
A0862648	3.7	0.15	< 0.1	11.7	< 0.5	160	<0.2	0.2	0.021	< 0.1	< 0.1	125	0.1	67
A0862649	6.1	0.76	0.1	10.4	< 0.5	223	<0.2	0.2	0.035	0.3	0.1	62	0.5	72
A0862650	1025.1	0.71	0.1	12	< 0.5	170	2.7	0.2	0.03	0.2	0.1	89	0.3	162
A0862651	3.2	0.24	< 0.1	14.5	< 0.5	95	< 0.2	0.2	0.087	< 0.1	< 0.1	156	<0.1	52
A0862652	7.3	0.49	0.2	23.2	<0.5	89	<0.2	0.4	0.056	< 0.1	0.2	246	<0.1	113

Signed: ______ Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 76 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No:
Date: Oct

S58391 October 6, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

| Element      | Pb                                                                                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sc                                                                                                                                                       | Se                                                                                                                                                                              | Sr                                                                                                                                              | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TI                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Sample	ppm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A0862653     | 6.9                                                                                       | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                       | <0.5                                                                                                                                                                            | 81                                                                                                                                              | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A0862654     | 1.9                                                                                       | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.3                                                                                                                                                     | 0.7                                                                                                                                                                             | 40                                                                                                                                              | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A0862655     | 3.1                                                                                       | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                        | 0.7                                                                                                                                                                             | 45                                                                                                                                              | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A0862656     | 1.8                                                                                       | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                        | 0.8                                                                                                                                                                             | 14                                                                                                                                              | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A0862657     | 0.8                                                                                       | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.5                                                                                                                                                      | 1.2                                                                                                                                                                             | 8                                                                                                                                               | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A0862658     | 1                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.3                                                                                                                                                      | 1.6                                                                                                                                                                             | 42                                                                                                                                              | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                                                 | 84                                                                                                                                              | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 1                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                        | 1.3                                                                                                                                                                             | 75                                                                                                                                              | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 117.9                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                        | 2.1                                                                                                                                                                             | 60                                                                                                                                              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STD OREAS262 | 48.4                                                                                      | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                        | < 0.5                                                                                                                                                                           | 33                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STD OREAS262 | 57.6                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 3                                                                                                                                                      | <0.5                                                                                                                                                                            | 36                                                                                                                                              | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                 | <1                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Sample  A0862653 A0862654 A0862655 A0862656 A0862657  A0862658 A0862659 A0862660 STD DS11 | Sample         ppm           A0862653         6.9           A0862654         1.9           A0862655         3.1           A0862656         1.8           A0862657         0.8           A0862658         1           A0862659         1.4           A0862660         1           STD DS11         117.9           STD OREAS262         48.4           STD OREAS262         57.6           STD OREAS262         56.1           BLK         <0.1 | Sample         ppm         %           A0862653         6.9         2.3           A0862654         1.9         0.68           A0862655         3.1         1.25           A0862656         1.8         0.78           A0862657         0.8         0.94           A0862658         1         0.89           A0862659         1.4         1.64           A0862660         1         1.36           STD DS11         117.9         0.28           STD OREAS262         48.4         0.26           STD OREAS262         57.6         0.25           STD OREAS262         56.1         0.28           BLK         <0.1 | Sample         ppm         %         ppm           A0862653         6.9         2.3         0.1           A0862654         1.9         0.68         <0.1 | Sample         ppm         %         ppm         ppm           A0862653         6.9         2.3         0.1         18           A0862654         1.9         0.68         <0.1 | Sample         ppm         %         ppm         ppm         ppm           A0862653         6.9         2.3         0.1         18         <0.5 | Sample         ppm         %         ppm         ppm <td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm</td></td></td></td></td></td></td></td> | Sample         ppm         %         ppm         ppm <td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm</td></td></td></td></td></td></td> | Sample         ppm         %         ppm         ppm <td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm</td></td></td></td></td></td> | Sample         ppm         %         ppm         ppm <td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm</td></td></td></td></td> | Sample         ppm         %         ppm         ppm <td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm</td></td></td></td> | Sample         ppm         %         ppm         ppm <td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm</td></td></td> | Sample         ppm         %         ppm         ppm <td>Sample         ppm         %         ppm         ppm<td>Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm</td></td> | Sample         ppm         %         ppm         ppm <td>Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm</td> | Sample         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         %         ppm         ppm |



Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Handstone1

TSL Report: S58391

Date Received: Sep 15, 2020 Date Reported: Sep 18, 2020

Invoice: 78575

Remarks:

Sample Type: Number Size Fraction Sample Preparation
Core 76 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	a/tonne	Fire Assay/Gravimetric	0.03	100%



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58391

SAMPLE(S) OF

76 Core/O Pulp

INVOICE #:78575
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862583	<.03		S58391
A0862584	<.03		S58391
A0862585	<.03		S58391
A0862586	<.03		S58391
A0862587	< . 03		S58391
A0862588	< .03		S58391
A0862589	<.03		S58391
A0862590	<.03		S58391
A0862591	<.03		S58391
A0862592	<.03	<.03	S58391
A0862593	<.03		S58391
A0862594	<.03		S58391
A0862595	< .03		S58391
A0862596	<.03		S58391
A0862597	<.03	<.03	S58391
A0862598	<.03		S58391
A0862599	< .03		S58391
A0862602	<.03		S58391
A0862603	<.03		S58391
A0862604	<.03	<.03	S58391

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 18/20

SIGNED



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58391

SAMPLE(S) OF

76 Core/0 Pulp

INVOICE #:78575

P.O.: Hanstonel

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862605	<.03		S58391
A0862606	<.03		S58391
A0862607	<.03		S58391
A0862608	<.03		S58391
A0862609	<.03		S58391
A0862610	<.03		S58391
A0862611	<.03		S58391
A0862612	<.03		S58391
A0862613	<.03		S58391
A0862614	<.03	<.03	S58391
A0862615	<.03		S58391
A0862616	<.03		S58391
A0862617	<.03		S58391
A0862618	<.03		S58391
A0862619	<.03	<.03	S58391
A0862620	<.03		S58391
A0862621	<.03		S58391
A0862622	<.03		S58391
A0862623	<.03		S58391
A0862624	<.03	<.03	S58391

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 18/20

SIGNED

Mark Acres - Quality Assurance



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58391

SAMPLE(S) OF

76 Core/0 Pulp

INVOICE #:78575
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862625	<.03		S58391
A0862626	<.03		S58391
A0862627	<.03		S58391
A0862628	< .03		S58391
A0862629	<.03		S58391
A0862630	<.03		S58391
A0862631	<.03		S58391
A0862632	<.03		S58391
A0862633	<.03		S58391
A0862634	<.03	<.03	S58391
A0862635	< .03		S58391
A0862636	<.03		S58391
A0862637	<.03		S58391
A0862638	< .03		S58391
A0862639	<.03	<.03	S58391
A0862640	<.03		S58391
A0862641	<.03		S58391
A0862642	<.03		S58391
A0862643	<.03		S58391
A0862644	<.03	<.03	S58391

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 18/20

SIGNED -



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58391

SAMPLE(S) OF

76 Core/0 Pulp

INVOICE #:78575

P.O.: Hanstonel

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862645	<.03		S58391
A0862646	<.03		S58391
A0862647	<.03		S58391
A0862648	<.03		S58391
A0862649	<.03		S58391
A0862650	<.03		S58391
A0862651	<.03		S58391
A0862652	<.03		S58391
A0862653	<.03		S58391
A0862654	<.03	<.03	S58391
A0862655	<.03		S58391
A0862656	<.03		S58391
A0862657	<.03		S58391
A0862658	<.03		S58391
A0862659	< .03		S58391
A0862660	<.03		S58391
GS-7E	7.34		S58391
GS-7E	7.24		S58391
GS-7E	7.37		S58391
GS-7E	7.54		S58391

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 18/20

SIGNED -

Company: Hanstone Gold Corp TSL Report: S58392 Geologist: T. Fiolleau Date Received: Sep 15, 2020 Project: Doc Project Date Reported: Oct 07, 2020 Purchase Order: Hanstone1 Invoice: 78581

Sample Type: Number Size Fraction Sample Preparation
Core 80 Reject ~ 95% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% -150 mesh (106 μm)

Pulp 0 None

# ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element	Lower Detection	Upper Detection	Element	Lower Detection	Upper Detection
Name	Limit	Limit	Name	Limit	Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	10000 ppm
Al *	0.01 %	10 %	Мо	0.1 ppm	2000 ppm
As	0.5 ppm	10000 ppm	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	Ni	0.1 ppm	10000 ppm
B *	1 ppm	2000 ppm	P *	0.001%	5 %
Ba *	1 ppm	1000 ppm	Pb	0.1 ppm	10000 ppm
Bi	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Co	0.1 ppm	2000 ppm	Se	0.5 ppm	1000 ppm
Cr *	1 ppm	10000 ppm	Sr *	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Te	1 ppm	2000 ppm
Fe *	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	Ti *	0.001%	10 %
Hg	0.01 ppm	100 ppm	- Control of Control o	0.1 ppm	1000 ppm
K *	0.01%	10 %	U *	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	V *	2 ppm	10000 ppm
Mg *	0.01%	30 %	W *	0.1 ppm	100 ppm
			Zn	1 ppm	10000 ppm

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58392 October 7, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo	Na %	Ni ppm	P %
					F-F	P.F.	p.p		pp	PP	pp	PPI	70	ppm	ppiii	70	ppiii	70	ppin	ppiii	70	PPIII	,,
A0862661	< 0.1	0.35	1.1	<0.5	<20	33	0.1	14.66	< 0.1	4.6	52	58.3	1.23	1	< 0.01	0.04	2	0.36	508	1.7	0.007	12.9	0.026
A0862662	0.1	1.4	<0.5	9.8	<20	19	0.5	2.87	< 0.1	14.5	173	34.1	5.73	6	< 0.01	0.04	3	1.35	590	3	0.064	12.9	0.054
A0862663	0.2	1.76	< 0.5	6.9	<20	37	0.2	1.95	< 0.1	17	166	67	4.24	7	< 0.01	0.08	4	1.41	652	1	0.056	14	0.063
A0862664	0.3	2.4	< 0.5	2.5	<20	86	< 0.1	1.8	0.2	18.9	88	101.7	5	7	< 0.01	0.22	4	1.74	953	0.6	0.037	12.7	0.074
A0862665	1.4	0.86	1.2	104.9	<20	94	0.3	9.1	7.6	17.9	31	17.9	3.42	2	0.04	0.46	2	0.83	1821	0.6	0.003	15.6	0.077
A0862666	0.6	2.59	<0.5	85.6	<20	77	< 0.1	2.25	0.4	19.8	76	89.9	5.77	7	< 0.01	0.24	3	1.86	1006	0.8	0.024	9.3	0.091
A0862667	0.2	1.76	< 0.5	6.6	<20	73	< 0.1	2.66	0.5	16	63	85.7	4.53	4	< 0.01	0.47	2	1.89	1159	1	0.014	7	0.073
A0862668	0.1	2.63	< 0.5	8.9	<20	71	< 0.1	2.84	0.1	19.1	50	68	5.13	7	< 0.01	0.21	3	2.17	1008	0.9	0.025	8.8	0.098
A0862669	0.1	2.85	2.4	4.5	<20	63	0.2	2.27	< 0.1	40.9	75	81.2	6.15	9	<0.01	0.19	2	2.22	1017	0.5	0.036	10.3	0.073
A0862670	0.2	2.74	<0.5	5.2	<20	57	<0.1	3.22	<0.1	16.6	48	67.4	5.5	10		0.19	9		954			7.6	0.073
, , , , , , , , , , , , , , , , , , , ,	V-1	4-11-1	-0.5	3.2	~20	37	VO.1	3.4.4.	VU.1	70.0	40	07.4	5.5	10	<0.01	0.14	7	2.25	334	1.6	0.029	7.0	0.100
A0862671	0.1	2.45	1.3	5.6	<20	106	0.3	6.9	< 0.1	34.2	79	47.6	5.82	9	< 0.01	0.11	9	2.88	620	2.7	0.036	33.3	0.185
A0862671 Re	0.1	2.4	1.5	4.1	<20	110	0.3	7.14	0.1	33.7	77	47.3	5.45	9	< 0.01	0.1	9	2.67	636	2.4	0.034	32.7	0.171
A0862672	0.1	0.88	5	5.4	<20	44	0.5	8.35	0.1	58.1	41	38.8	9.63	4	< 0.01	0.03	21	1.04	641	1.7	0.017	24.7	0.067
A0862673	< 0.1	1.15	4.5	3.4	<20	41	0.3	5.96	< 0.1	31.6	83	26	5.09	5	< 0.01	0.09	5	1.19	329	3.8	0.067	24.6	0.184
A0862674	< 0.1	1.82	2.3	0.8	<20	56	0.1	8.7	< 0.1	19.6	82	10.6	2.78	7	< 0.01	0.14	6	2.28	600	2.1	0.042	28.8	0.186
A0862675	<0.1	1.79	2.3	1.4	<20	117	-0.1	4.35	.0.1	10.3	0.11	2.2	2.00						200	~ ~	0.070	40.0	0.477
A0862676	<0.1	1.09	2.3	2.8	<20	115 31	< 0.1	4.25	<0.1	18.2	97	8.3	2.06	6	< 0.01	0.41	4	2.33	369	3.2	0.073	40.6	0.176
A0862677	<0.1	0.72	8.5	3.7	<20	31	0.3	5.17	<0.1	27.7	105	28.2	3.7	4	< 0.01	0.11	3	1.51	266	9.2	0.073	50.4	0.105
A0862678	<0.1	0.72	o.3 4	0.8	<20	15	0.8 0.2	3.84 4.42	< 0.1	64.2	118	23.5	18.17	4	< 0.01	0.02	3	0.97	237	6.4	0.038	29.9	0.065
A0862679	<0.1	0.78	3.3	1.3	<20	21	0.2	7.35	<0.1	28.3	54	8.3	2.69	6	<0.01	0.04	8	1.34	278	4	0.057	17.2	0.201
7,0002075	VO.1	0.70	ي, ي	1.3	~20	21	0.5	7.33	<0.1	24.1	54	8.1	7.48	4	<0.01	0.06	5	1.04	332	5.2	0.045	24	0.098
A0862680	< 0.1	0.87	4.6	1.9	<20	23	0.3	4.08	< 0.1	37.4	43	6.3	3.18	4	< 0.01	0.06	8	1.08	235	3.7	0.06	19.6	0.198
A0862681	< 0.1	1.03	4.3	1.3	<20	38	0.1	4.23	<0.1	17.6	37	6.3	1.83	5	<0.01	0.08	10	1.24	260	1.3	0.092	18.3	0.224
A0862682	< 0.1	0.49	4.6	4.2	<20	6	0.5	11.5	<0.1	23.6	26	15.1	6.74	2	< 0.01	0.02	2	0.65	359	1.7	0.017	28.2	0.051
A0862683	< 0.1	1.94	1.1	0.9	<20	84	0.2	5.86	<0.1	13	51	11.6	2.53	8	< 0.01	0.08	6	3.11	368	4.3	0.054	18.6	0.132
A0862684	0.2	1.04	1.1	22.4	<20	54	0.1	5.08	< 0.1	37.1	61	355.5	4.14	7	< 0.01	0.02	6	1.34	363	2.7	0.067	8.7	0.209
A0862685	0.1	1.28	1.3	8.5	<20	6	0.1	4.9	< 0.1	23.9	65	210.5	5.06	8	< 0.01	0.02	7	1.3	483	0.6	0.076	3.1	0.198
A0862686	< 0.1	1.16	< 0.5	2.6	<20	4	< 0.1	3.97	< 0.1	10.5	88	81.5	4.96	7	< 0.01	< 0.01	8	1.12	448	0.8	0.072	1.7	0.199
A0862687	0.3	1.16	1.8	3.8	<20	13	< 0.1	2.3	< 0.1	18	69	283.8	5.49	8	< 0.01	0.01	9	1.05	396	1.3	0.103	1.7	0.2
A0862688	< 0.1	1.92	1	9.2	<20	51	< 0.1	2.09	< 0.1	14.7	31	43.8	6.68	12	< 0.01	0.08	15	1.75	439	4.6	0.074	1.2	0.468
A0862689	< 0.1	1.96	0.6	< 0.5	<20	170	< 0.1	2.04	< 0.1	11.9	47	9.8	6.02	10	< 0.01	0.05	20	1.86	425	3.5	0.102	9.3	0.373
A0862690	<0.1	2.06	<0.5	<0.5	<20	187	<0.1	2.09	< 0.1	13.8	20	11 7	6.3	4.4	-0.01	0.04	20	1.00	440	3.5	0.071	8	0.393
A0862691	<0.1	1.61	0.6	3.2	<20	21	<0.1	1.98	<0.1	6.9	38 63	11.7 6.7	6.3 4	11 8	<0.01 <0.01	0.04 0.05	20 10	1.99 1.77	449 298	1.8	0.071	23.5	0.393
A0862692	<0.1	1.67	0.7	1.7	<20	19	<0.1	2.52	<0.1	5.1				9									
A0862693	<0.1	1.72	<0.5	2.7	<20	22	<0.1	3.08	<0.1		62	12.6	4.01	9	< 0.01	0.05	9 8	1.82	404	2.3	0.079 0.089	21.7 22.3	0.198 0.178
A0862694	0.1	1.43	0.8	2.4	<20	2. C 7	<0.1	5.3	<0.1	6.6	69	19.4	3.76		< 0.01	0.04	_	1.83	449	-			
710002007	U.T	T.40	0.0	2.4	<b>\2</b> 0	/	<0.1	3.3	<0.1	11.7	59	54.9	3.92	8	<0.01	0.02	6	1.43	650	1.5	0.054	8.8	0.182

Signed: Mark Acres - Quality Assurance

#### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58392 October 7, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	В	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P
Jumpic	ppin	70	phin	hhn	ppm	ppm	ppm	70	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0862695	< 0.1	0.94	0.7	2.3	<20	5	<0.1	2.54	< 0.1	8.5	59	100.9	3.61	6	< 0.01	< 0.01	8	0.83	324	2.5	0.117	2.8	0.174
A0862696	< 0.1	0.83	0.8	7.6	<20	8	< 0.1	2.45	<0.1	14.1	42	89.1	3.62	6	< 0.01	0.02	3	0.75	285	0.5	0.062	2.8	0.116
A0862697	< 0.1	1.15	0.5	6.2	<20	21	< 0.1	1.15	< 0.1	17.3	41	221.8	8.03	9	< 0.01	0.04	3	1.13	313	0.8	0.109	3.1	0.106
A0862698	< 0.1	2.47	< 0.5	1.5	<20	105	< 0.1	2.13	< 0.1	19.8	25	37	6.45	11	< 0.01	0.16	3	2.64	504	1.6	0.064	7.5	0.146
A0862699	< 0.1	2.12	0.6	2.3	<20	124	< 0.1	1.96	< 0.1	22.8	56	47	6.3	11	< 0.01	0.15	3	2.52	405	1	0.1	15.4	0.16
																							0120
A0862700	< 0.1	0.54	0.6	1.8	<20	7	< 0.1	3.38	< 0.1	5.6	85	66.4	2.96	3	< 0.01	0.01	2	0.63	244	1.9	0.036	26.9	0.056
A0862701	< 0.1	0.77	< 0.5	1.9	<20	6	< 0.1	3.57	< 0.1	3.8	135	25.3	2.47	4	< 0.01	0.02	2	0.94	331	1.3	0.048	32.5	0.029
A0862702	0.3	0.99	1.4	15.5	<20	3	0.1	3.55	< 0.1	7.7	122	417.4	3.7	4	< 0.01	0.01	3	1.1	340	2.7	0.025	61.2	0.029
A0862703	0.3	1.79	< 0.5	27.6	<20	9	0.1	4.12	0.2	7.6	113	610.6	3.98	7	< 0.01	0.09	3	1.97	470	2.1	0.034	50.3	0.074
A0862704	0.3	0.61	1.4	11.4	<20	19	0.2	10.17	< 0.1	9.6	41	597.1	15.65	6	< 0.01	< 0.01	7	0.67	554	3.2	< 0.001	33.4	0.027
A0862705	0.3	1.21	1.2	5.7	<20	4	0.1	1.27	< 0.1	14.2	132	336.6	2.88	5	< 0.01	0.02	3	1.34	193	3.4	0.072	93.6	0.042
A0862706	0.2	0.72	< 0.5	5.1	<20	2	0.3	2.02	< 0.1	8.3	143	112.8	2.05	3	< 0.01	< 0.01	3	8.0	203	2.8	0.04	68.4	0.05
A0862707	< 0.1	1.62	< 0.5	4	<20	8	< 0.1	2.14	< 0.1	8	88	62.1	3.63	8	< 0.01	0.07	4	1.78	273	2.1	0.083	27	0.105
A0862707 Re	< 0.1	1.61	< 0.5	5.3	<20	9	< 0.1	2.12	< 0.1	7.6	87	59.7	3.63	7	< 0.01	0.07	5	1.77	273	2	0.083	25.7	0.11
A0862708	0.2	1.36	0.6	5.5	<20	5	< 0.1	1.44	< 0.1	11.2	105	197.3	3.67	7	< 0.01	0.04	3	1.42	214	0.9	0.047	21.2	0.087
A0862709	-0.1	1.00	0.0		.20									_									
A0862709 A0862710	<0.1	1.69	0.9	6.6	<20	10	0.2	1.48	<0.1	19.8	74	72.4	4.53	8	< 0.01	0.04	4	1.7	258	2	0.081	18.7	0.119
A0862710 A0862711	<0.1 <0.1	1.97	2.1	8.2	<20	19	0.2	1.45	<0.1	29.9	45	32.8	5.88	10	< 0.01	0.09	5	1.95	289	2.7	0.047	13.6	0.216
A0862711 A0862712		1.42	<0.5	1.5	<20	9	<0.1	1.43	<0.1	4.7	67	5.1	4.15	7	< 0.01	0.09	2	1.54	229	0.5	0.087	18.6	0.071
A0862712 A0862713	<0.1	1.42	1.6	8.4	<20	6	0.3	1.78	0.1	31.6	107	13.9	4.97	6	0.01	0.05	2	1.49	221	2	0.06	14.7	0.059
AU802713	<0.1	1.86	0.6	1.9	<20	9	< 0.1	1.9	<0.1	15.8	59	10.6	4.38	9	< 0.01	0.03	2	1.83	304	1.3	0.071	12.7	0.056
A0862714	0.1	1.81	1	6.5	<20	13	< 0.1	1.81	<0.1	25.9	81	40.8	4.77	8	< 0.01	0.03	2	1.75	338	4.3	0.05	14	0.069
A0862715	<0.1	1.77	1.8	1.3	<20	415	<0.1	2.21	0.1	18.3	65	15.7	4.51	7	<0.01	0.03	3	2.19	550	1.1	0.05	20.5	0.085
A0862716	<0.1	3.87	0.9	<0.5	<20	76	<0.1	3.04	0.1	15.5	87	37.2	6.22	13	<0.01	0.16	3	4.11	802	4.4	0.007	49.5	
A0862717	0.1	3.88	<0.5	2.5	<20	37	<0.1	3.97	<0.1	16.9	96	90	6.09	13	< 0.01	0.10	3	3.75	931	1.1	0.021	45.1	0.148 0.127
A0862718	<0.1	2.63	<0.5	1.3	<20	36	<0.1	2.35	0.1	18.9	83	61.4	4.8	10	< 0.01	0.11	3	2.64	931	0.6	0.043	22.8	0.127
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-0.4	4	10.0	4.0	420	50	VO.1	2.33	0.1	10.5	03	01.4	4.0	7.0	\U.U1	0.13	2	2.04	000	0.0	0.003	22.0	0.097
A0862719	< 0.1	2.21	2.3	9.4	<20	22	< 0.1	1.92	< 0.1	78	70	108.5	7.95	11	< 0.01	0.08	4	2.39	438	2.6	0.11	26.4	0.111
A0862719 Re	< 0.1	2.21	2.2	6.2	<20	23	<0.1	1.91	< 0.1	78.4	69	107.9	7.91	11	< 0.01	0.08	4	2.39	438	2.7	0.115	26.4	0.109
A0862720	< 0.1	1.65	< 0.5	4.5	<20	42	< 0.1	0.95	< 0.1	20.8	91	84	4.43	8	< 0.01	0.16	2	1.89	242	1	0.086	14.8	0.062
A0862721	< 0.1	1.79	1.4	3.7	<20	40	<0.1	0.97	<0.1	45.8	77	94	6.85	8	<0.01	0.12	3	1.96	296	2	0.131	20.9	0.089
A0862722	< 0.1	2.06	1	< 0.5	<20	138	< 0.1	0.89	< 0.1	19.5	79	31.4	5.37	9	< 0.01	0.47	3	2.46	295	0.5	0.056	24.6	0.123
														-		~	-				3,000		J. 4. 1. J
A0862723	< 0.1	2.41	0.6	< 0.5	<20	120	< 0.1	0.91	< 0.1	17.3	89	87.5	5.12	11	< 0.01	0.61	5	2.94	282	0.8	0.081	32.9	0.153
A0862724	< 0.1	2.29	1.4	0.6	<20	80	< 0.1	0.72	< 0.1	33	60	149.4	5.05	10	< 0.01	0.49	2	2.73	276	0.7	0.044	16.1	0.087
A0862725	< 0.1	1.51	0.5	< 0.5	<20	44	< 0.1	0.58	< 0.1	13	81	20.4	4.45	7	< 0.01	0.24	2	1.75	176	0.3	0.094	10.1	0.035
A0862726	< 0.1	1.8	1	< 0.5	<20	76	< 0.1	0.62	< 0.1	31.8	79	47.1	3.88	7	< 0.01	0.39	2	2.04	197	0.2	0.045	15.5	0.046
A0862727	< 0.1	1.88	1.4	< 0.5	<20	59	< 0.1	0.6	< 0.1	23.6	53	37.1	4.47	8	< 0.01	0.27	2	2.11	187	0.3	0.081	9.4	0.049

Signed: Mark Acres - Quality Assurance

#### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

S58392

Date:

e: October 7, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
A0862728	< 0.1	2.65	0.5	<0.5	<20	13	<0.1	2.24	<0.1	19.1	100	73.4	4.63	10	< 0.01	0.05	2	2.78	436	0.4	0.052	18.2	0.093
A0862729	< 0.1	2.55	0.8	0.9	<20	18	< 0.1	1.56	< 0.1	12.8	48	108.8	5.88	11	< 0.01	0.07	2	2.36	375	0.6	0.072	11.3	0.059
A0862730	< 0.1	2.56	0.8	< 0.5	<20	15	< 0.1	1.85	< 0.1	12.2	56	103.5	5.85	11	< 0.01	0.06	2	2.42	404	0.5	0.048	12.2	0.061
A0862731	<0.1	2.26	1.4	< 0.5	<20	11	< 0.1	0.79	< 0.1	21.5	67	39.6	5.57	11	< 0.01	0.02	1	1.78	349	0.4	0.085	7.1	0.032
A0862732	0.2	1.69	8.0	<0.5	<20	14	0.2	1.83	0.4	16.8	110	69.6	3.82	8	< 0.01	0.03	1	1.29	324	0.4	0.064	5.7	0.035
A0862733	< 0.1	2.43	5.8	< 0.5	<20	12	<0.1	1.32	< 0.1	40.5	72	31.7	4.9	10	< 0.01	0.02	2	1.92	374	0.3	0.079	15.8	0.061
A0862734	< 0.1	1.93	1	< 0.5	<20	29	< 0.1	1.59	< 0.1	18.2	67	114.1	4.29	8	< 0.01	0.08	2	1.67	379	1.2	0.052	11.6	0.077
A0862735	< 0.1	2.75	1.2	< 0.5	<20	50	< 0.1	1.14	< 0.1	23.5	59	109.4	5.48	10	< 0.01	0.09	1	2.21	535	1.6	0.061	7.3	0.061
A0862736	0.1	3.36	1.9	1	<20	99	< 0.1	1.28	0.1	24.1	45	135.4	6.59	13	< 0.01	0.25	<1	2.68	638	1.6	0.027	10.4	0.059
A0862737	0.1	2.94	4.4	<0.5	<20	21	0.1	1.37	<0.1	32.4	56	109.4	5.59	11	< 0.01	0.04	1	2.53	589	2.4	0.045	20.2	0.059
A0862738	0.2	2.78	2.5	<0.5	<20	25	< 0.1	1.76	0.2	20	59	80.7	5.3	10	< 0.01	0.07	1	2.43	767	0.8	0.043	26.4	0.058
A0862739	0.1	2.41	8.0	< 0.5	<20	78	< 0.1	1.25	0.1	19.2	40	79.1	5.14	10	< 0.01	0.2	1	2.06	776	0.8	0.089	7.7	0.063
A0862740	< 0.1	1.96	0.7	< 0.5	<20	22	< 0.1	1.46	< 0.1	11.9	46	37.6	4.64	8	< 0.01	0.07	3	1.59	612	1	0.066	6.8	0.086
STD OREAS262	0.4	1.18	34.6	64.8	<20	255	1	2.82	0.7	26.7	40	106.7	3.18	3	0.15	0.3	16	1.17	526	0.7	0.067	61.4	0.034
STD OREAS262	0.5	1.32	36.6	63.6	<20	266	1	3	0.8	28.4	43	112.2	3.34	4	0.17	0.32	17	1.23	557	0.6	0.069	64.2	0.04
STD DS11	2	1.14	43.6	430.3	<20	445	11.9	1.05	2.7	13.2	56	137.4	3.1	5	0.29	0.4	18	0.82	1028	13.1	0.071	74.5	0.073
STD OREAS262	0.5	1.25	36.1	61	<20	257	1.1	2.99	8.0	27.5	42	112	3.34	4	0.18	0.31	17	1.21	552	0.6	0.069	62	0.039
STD DS11	1.8	1.16	41	41	<20	419	11.1	1.06	2.3	13.7	61	145.6	3.08	5	0.25	0.39	18	0.85	1022	14.3	0.072	80.1	0.069
STD OREAS262	0.5	1.38	35.5	72.9	<20	252	0.9	3.06	0.6	27.6	43	117.4	3.28	4	0.17	0.32	16	1.2	559	0.6	0.07	64.7	0.04
BLK	< 0.1	0.02	<0.5	< 0.5	<20	<1	< 0.1	0.03	< 0.1	<0.1	<1	<0.1	< 0.01	<1	<0.01	< 0.01	<1	< 0.01	<1	<0.1	<0.001	<0.1	<0.001
BLK	< 0.1	< 0.01	<0.5	<0.5	<20	<1	<0.1	<0.01	<0.1	< 0.1	<1	0.1	<0.01	<1	<0.01	< 0.01	<1	< 0.01	<1	< 0.1	<0.001	< 0.1	<0.001
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	<0.5	<0.5	<20	<1	<0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	<0.001	< 0.1	<0.001

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58392 Date: October 7, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0862661	2	0.84	<0.1	3.8	1.2	76	<0.2	0.2	0.035	<0.1	0.3	22	<0.1	6
A0862662	2.4	3.9	<0.1	11.4	4.6	34	<0.2	0.3	0.02	<0.1	<0.1	110	<0.1	34
A0862663	1.1	0.83	<0.1	9	1.1	24	<0.2	0.4	0.033	<0.1	<0.1	111	<0.1	36
A0862664	3.7	0.25	0.1	7.2	<0.5	40	<0.2	0.5	0.037	<0.1	0.1	78	<0.1	125
A0862665	100.9	2.78	0.2	5.9	<0.5	346	1.1	0.3	0.004	0.1	0.1	22	0.5	202
A0862666	5.3	0.75	< 0.1	6.9	<0.5	58	0.3	0.6	0.008	< 0.1	0.1	58	0.4	105
A0862667	4.8	0.39	< 0.1	5.5	< 0.5	109	<0.2	0.3	0.047	0.2	0.1	43	0.2	71
A0862668	1.7	0.47	< 0.1	6.6	<0.5	56	<0.2	0.6	0.024	< 0.1	0.1	73	< 0.1	49
A0862669	1.8	1.45	< 0.1	8.6	0.6	44	< 0.2	0.4	0.014	< 0.1	< 0.1	89	< 0.1	54
A0862670	1.3	0.5	<0.1	6.8	< 0.5	49	<0.2	1.4	0.014	< 0.1	0.2	86	< 0.1	50
A0862671	6.8	3.75	<0.1	8.9	3.4	148	<0.2	1.5	0.008	< 0.1	0.5	83	<0.1	23
A0862671 Re	6.3	3.69	<0.1	9.4	3.5	140	0.2	1.4	0.008	<0.1	0.5	80	<0.1	23
A0862672	6.3	6.1	<0.1	5.9	1	287	0.5	0.8	0.021	<0.1	1.7	36	0.5	9
A0862673	3	4.94	< 0.1	7	0.8	133	0.2	1.8	0.008	<0.1	0.5	45	0.1	10
A0862674	1.7	1.55	< 0.1	8.6	<0.5	165	< 0.2	1	0.04	<0.1	0.6	60	<0.1	15
A0862675	1.3	1.13	< 0.1	5.2	< 0.5	74	< 0.2	0.5	0.189	< 0.1	1	58	0.1	17
A0862676	1.7	3.32	< 0.1	4	1.1	72	0.2	0.8	0.169	< 0.1	2.3	35	0.2	12
A0862677	3.2	>10.00	< 0.1	2.7	4.2	52	0.4	0.7	0.094	< 0.1	0.7	31	0.2	14
A0862678	1.8	2.31	< 0.1	4.3	1.1	52	0.2	1.7	0.123	< 0.1	0.8	51	0.2	17
A0862679	2.3	6.76	< 0.1	3.3	1.1	83	0.3	1.2	0.121	< 0.1	2.3	36	0.2	13
A0862680	1.7	2.77	< 0.1	2.7	<0.5	40	0.2	1.6	0.144	<0.1	0.7	42	0.3	11
A0862681	1.8	1.08	<0.1	3.2	< 0.5	49	<0.2	1.4	0.16	<0.1	0.5	43	0.3	12
A0862682	2.5	5.12	0.1	3.3	1.1	123	0.4	0.5	0.082	<0.1	0.6	20	0.2	7
A0862683	1.3	1.24	<0.1	8.5	< 0.5	88	<0.2	2.1	0.106	<0.1	1.2	58	0.1	20
A0862684	1.3	1.66	0.1	13.8	1.1	80	<0.2	1	0.183	<0.1	0.7	37	0.2	16
A0862685	1.2	1.62	< 0.1	17	< 0.5	71	<0.2	1	0.126	< 0.1	0.3	43	0.2	22
A0862686	1.2	1.24	< 0.1	14.9	1	63	<0.2	1	0.124	< 0.1	0.3	35	0.2	17
A0862687	1.4	0.55	< 0.1	14.9	<0.5	35	< 0.2	1.2	0.145	< 0.1	0.3	27	0.2	18
A0862688	1	0.65	< 0.1	4.5	<0.5	34	<0.2	1.9	0.126	< 0.1	0.6	19	0.1	42
A0862689	0.5	0.2	<0.1	5.1	<0.5	40	<0.2	2.4	0.092	< 0.1	0.6	41	0.1	38
A0862690	0.6	0.24	<0.1	4.5	<0.5	38	<0.2	2.3	0.094	<0.1	0.6	38	0.1	45
A0862691	0.7	0.16	< 0.1	6.8	< 0.5	34	< 0.2	2.1	0.083	< 0.1	0.6	72	< 0.1	23
A0862692	1.8	0.85	< 0.1	6.5	1	51	< 0.2	2.1	0.068	< 0.1	0.6	62	< 0.1	26
A0862693	1.3	1.06	< 0.1	6.5	2.7	53	< 0.2	1.8	0.059	<0.1	0.5	69	< 0.1	33
A0862694	1.7	1.73	<0.1	12.7	2.4	98	<0.2	1	0.056	<0.1	0.2	51	0.1	31

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58392 Date: October 7, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
•	• • •		8- 4-					£- F-		7-1-		1. 4.	4.1.	* *
A0862695	1	0.65	< 0.1	11.4	< 0.5	36	< 0.2	1.3	0.175	< 0.1	0.3	23	0.2	12
A0862696	0.6	0.57	< 0.1	6.2	< 0.5	30	< 0.2	1	0.158	< 0.1	0.3	136	0.2	11
A0862697	0.5	0.18	< 0.1	8.4	< 0.5	19	< 0.2	0.4	0.181	< 0.1	0.2	385	< 0.1	18
A0862698	0.9	1.39	< 0.1	7.4	0.7	47	< 0.2	0.8	0.131	< 0.1	0.3	305	< 0.1	32
A0862699	1.4	1.33	0.1	8.4	< 0.5	39	< 0.2	0.7	0.188	< 0.1	0.3	183	0.2	25
A0862700	0.9	0.7	< 0.1	3.2	< 0.5	32	< 0.2	0.4	0.09	< 0.1	0.3	50	0.1	9
A0862701	1	0.61	< 0.1	4.7	< 0.5	39	<0.2	0.4	0.073	< 0.1	0.4	53	0.2	12
A0862702	1	1.27	< 0.1	5	1.1	36	0.5	0.4	0.055	< 0.1	0.5	61	0.2	15
A0862703	1	0.71	< 0.1	6.5	<0.5	48	0.4	0.6	0.079	< 0.1	0.4	64	0.2	21
A0862704	1.5	1.4	< 0.1	2.9	1.2	120	0.4	0.1	0.015	< 0.1	0.7	24	0.5	9
A0862705	0.8	0.72	<0.1	7.1	2	15	<0.2	0.7	0.071	< 0.1	0.3	74	0.1	12
A0862706	0.9	0.72	<0.1	5.4	1.3	22	<0.2	0.7	0.071	<0.1	0.3	55	<0.1	11
A0862707	0.9	0.4	<0.1	8.5	<0.5	24	<0.2	0.6	0.039	<0.1	0.4	97	0.1	18
A0862707 Re	0.9	0.4	<0.1	8.3	<0.5	22	<0.2	1.1	0.123	<0.1	0.3	96	0.1	16
A0862708	0.8	0.55	<0.1	8.3	0.6	15	<0.2	0.9	0.124	<0.1	0.3	106	0.1	16
MUGUZ708	0.0	0.55	40.1	0	0.0	1.0	V0.2	0.5	0.103	VU.1	V.Z	100	0.1	10
A0862709	1	0.85	< 0.1	10.1	< 0.5	15	<0.2	0.9	0.115	< 0.1	0.3	139	0.1	17
A0862710	1.1	1.28	< 0.1	5.7	< 0.5	17	0.3	1.6	0.088	< 0.1	0.6	82	0.1	19
A0862711	0.8	0.2	< 0.1	9.3	0.7	16	< 0.2	0.7	0.09	< 0.1	0.2	116	0.1	15
A0862712	1.2	1.17	< 0.1	12	1.2	2.2	0.2	0.5	0.073	< 0.1	0.1	156	< 0.1	16
A0862713	0.8	0.47	< 0.1	14.7	< 0.5	30	< 0.2	0.4	0.065	< 0.1	0.1	165	< 0.1	23
A0862714	1.2	0.74	0.1	13.1	0.6	41	< 0.2	0.4	0.021	< 0.1	< 0.1	151	< 0.1	29
A0862715	2.6	0.62	< 0.1	10.9	0.7	221	< 0.2	0.7	0.036	< 0.1	0.2	100	0.4	53
A0862716	2	0.29	< 0.1	13.6	< 0.5	89	<0.2	1.2	0.026	< 0.1	0.3	144	< 0.1	83
A0862717	2.4	0.19	< 0.1	16.6	< 0.5	86	< 0.2	1	0.045	< 0.1	0.2	166	< 0.1	91
A0862718	16.8	0.51	< 0.1	13.6	2.8	44	< 0.2	0.9	0.086	< 0.1	0.2	139	< 0.1	71
A0862719	1.8	0.41	< 0.1	12.9	0.7	32	<0.2	1	0.115	< 0.1	0.2	190	<0.1	29
A0862719 Re	1.9	0.42	< 0.1	12.7	0.6	32	<0.2	1	0.118	< 0.1	0.2	188	<0.1	28
A0862720	1.4	0.07	< 0.1	9.9	< 0.5	15	< 0.2	0.4	0.119	< 0.1	< 0.1	179	< 0.1	21
A0862721	1.4	0.28	< 0.1	9.4	0.6	17	<0.2	0.6	0.12	<0.1	0.2	186	< 0.1	26
A0862722	0.9	0.08	<0.1	7.5	<0.5	16	<0.2	1.1	0.117	< 0.1	0.2	174	< 0.1	29
A0862723	0.6	0.09	<0.1	7.4	<0.5	16	<0.2	1.9	0.125	< 0.1	0.5	152	<0.1	27
A0862724	0.6	0.09	<0.1	10.2	0.9	10	<0.2	0.7	0.125	0.1	0.5	183	<0.1	27
A0862725	0.7	0.39	<0.1	6.6	<0.5	12	<0.2	0.7	0.109	<0.1	0.2	183	<0.1	15
A0862726	1.4	0.11	<0.1	7.5	<0.5	10	<0.2	0.5	0.097	<0.1	0.1	166	<0.1	24
A0862725 A0862727	0.7	0.34	<0.1	7.5 6.9	<0.5	10	<0.2	0.5	0.115	<0.1	0.2	184	<0.1	24 25
MU002121	0.7	0.25	<0.1	0.5	<u.5< td=""><td>10</td><td>VU.Z</td><td>U.D</td><td>0.113</td><td>&lt;0.1</td><td>0.1</td><td>104</td><td>~U.I</td><td>23</td></u.5<>	10	VU.Z	U.D	0.113	<0.1	0.1	104	~U.I	23

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58392 Date: October 7, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Element Sample	Pb ppm	\$ %	Sb ppm	Sc ppm	Se ppm	Sr ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm
A0862728	0.8	0.26	<0.1	15.1	<0.5	29	<0.2	0.5	0.111	<0.1	0.1	166	<0.1	38
A0862729	0.7	0.21	< 0.1	20.3	< 0.5	18	< 0.2	0.4	0.113	< 0.1	< 0.1	228	< 0.1	27
A0862730	0.7	0.2	< 0.1	19.3	< 0.5	23	< 0.2	0.4	0.106	< 0.1	< 0.1	222	< 0.1	28
A0862731	2	0.87	< 0.1	15.2	0.8	11	< 0.2	0.6	0.101	< 0.1	0.1	140	< 0.1	21
A0862732	31.5	0.45	< 0.1	10.8	3.7	20	0.2	0.7	0.072	<0.1	0.1	92	< 0.1	50
A0862733	1.9	0.29	< 0.1	13	0.6	15	<0.2	1.1	0.091	< 0.1	0.2	121	<0.1	38
A0862734	1.3	0.39	< 0.1	9.8	< 0.5	16	< 0.2	0.5	0.129	< 0.1	0.1	125	0.1	32
A0862735	1.7	0.42	< 0.1	15	< 0.5	13	< 0.2	0.6	0.201	< 0.1	0.1	138	0.2	45
A0862736	1.3	0.39	< 0.1	19.9	< 0.5	11	< 0.2	0.5	0.157	< 0.1	0.1	187	0.5	79
A0862737	2	0.53	<0.1	18	1.3	14	<0.2	0.6	0.117	< 0.1	0.1	145	<0.1	79
A0862738	3.5	0.5	< 0.1	19.3	<0.5	18	< 0.2	0.5	0.107	<0.1	<0.1	183	<0.1	96
A0862739	1.3	0.53	< 0.1	17.8	< 0.5	16	<0.2	0.4	0.178	< 0.1	< 0.1	183	< 0.1	86
A0862740	1.7	0.25	< 0.1	11.7	< 0.5	17	< 0.2	1	0.094	< 0.1	0.2	126	< 0.1	67
STD OREAS262	55.8	0.26	4.7	3.2	< 0.5	34	< 0.2	8.8	0.003	0.4	1.2	21	0.1	145
STD OREAS262	56.1	0.28	2.9	3.8	<0.5	37	0.3	9.4	0.003	0.5	1.2	22	0.1	156
STD DS11	141.3	0.29	6.9	3.4	2	68	4.9	7.8	0.092	5.1	2.6	48	2.6	336
STD OREAS262	59	0.27	2.8	3.5	< 0.5	38	0.3	9.7	0.003	0.5	1.3	22	0.1	155
STD DS11	135.8	0.28	7.6	3.1	2.2	66	4.8	7.2	0.092	4.9	2.3	49	3.1	341
STD OREAS262	54.5	0.27	3.1	3.2	< 0.5	35	0.2	8.8	0.003	0.5	1.1	22	0.1	149
BLK	<0.1	<0.05	< 0.1	< 0.1	< 0.5	<1	<0.2	< 0.1	<0.001	< 0.1	< 0.1	1	< 0.1	<1
BLK	<0.1	<0.05	< 0.1	< 0.1	<0.5	<1	<0.2	< 0.1	<0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1



Company:

Hanstone Gold Corp

Geologist:

T. Fiolleau Doc Project

Project:
Purchase Order:

Handstone1

TSL Report:

S58392

Date Received:

Sep 15, 2020

Date Reported:

Sep 22, 2020

Invoice:

78581

Remarks:

Sample Type:

Number

Size Fraction

Sample Preparation

Core

80

Reject ~ 95% at -10 mesh (1.70 mm)

Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp  $\sim 95\%$  at -150 mesh (106  $\mu$ m)

Pulp

0

None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	a/tonne	Fire Assav/Gravimetric	0.03	100%

# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58392

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78581
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au g/t	Aul g/t	File Name
	9/6	9/0	Name
A0862661	<.03		S58392
A0862662	< .03		S58392
A0862663	< .03	< .03	S58392
A0862664	<.03		S58392
A0862665	.10		S58392
A0862666	< .03		S58392
A0862667	<.03		S58392
A0862668	<.03	<.03	S58392
A0862669	<.03		S58392
A0862670	<.03		S58392
A0862671	<.03		S58392
A0862672	< .03		S58392
A0862673	< .03	< .03	S58392
A0862674	< .03		S58392
A0862675	< .03		S58392
A0862676	< .03		S58392
A0862677	.03		S58392
A0862678	<.03		S58392
A0862679	<.03		S58392
A0862680	< .03		S58392

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58392

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78581
P.O.: Hanstonel

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862681	<.03		S58392
A0862682	.05		S58392
A0862683	< .03	<.03	S58392
A0862684	< .03		S58392
A0862685	<.03		S58392
A0862686	<.03		S58392
A0862687	<.03		S58392
A0862688	<.03	<.03	S58392
A0862689	<.03		S58392
A0862690	<.03		S58392
A0862691	<.03		S58392
A0862692	<.03		S58392
A0862693	< .03	<.03	S58392
A0862694	<.03		S58392
A0862695	<.03		S58392
A0862696	< .03		S58392
A0862697	< .03		S58392
A0862698	<.03		S58392
A0862699	< .03		S58392
A0862700	< .03		S58392

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED _____

Mark Acres - Quality Assurance

# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58392

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78581

P.O.: Hanstonel

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name
A0862701 A0862702 A0862703 A0862704 A0862705	<.03 <.03 .03 <.03 <.03	.03	S58392 S58392 S58392 S58392 S58392
A0862706 A0862707 A0862708 A0862709 A0862710	<.03 <.03 <.03 <.03 <.03	<.03	S58392 S58392 S58392 S58392 S58392
A0862711 A0862712 A0862713 A0862714 A0862715	<.03 <.03 <.03 <.03 <.03	<.03	S58392 S58392 S58392 S58392
A0862716 A0862717 A0862718 A0862719 A0862720	<.03 <.03 <.03 <.03 <.03 <.03		S58392 S58392 S58392 S58392 S58392

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED

Mark Acres - Quality Assurance

# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58392

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78581 P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
* 0 0 0 0 7 0 7	. 03		S58392
A0862721	<.03		
A0862722	<.03		S58392
A0862723	<.03	<.03	S58392
A0862724	<.03		S58392
A0862725	<.03		S58392
A0862726	<.03		S58392
A0862727	< .03		S58392
A0862728	<.03	< .03	\$58392
A0862729	<.03		S58392
A0862730	<.03		S58392
A0862731	<.03		S58392
A0862732	<.03		S58392
A0862733	<.03	<.03	S58392
A0862734	<.03		S58392
A0862735	< .03		S58392
A0862736	<.03		S58392
A0862737	<.03		S58392
A0862738	<.03		S58392
A0862739	<.03		S58392
A0862740	< . 03		S58392

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED ____



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58392

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78581

P.O.: Hanstonel

T. Fiolleau Doc Project

	Au g/t	Aul g/t	File Name
GS-7E	7.13		S58392
GS-7E	7.58		S58392
GS-7E	7.41		S58392
GS-7E	7.34		S58392

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED -

Mark Acres - Quality Assurance



Company:

Hanstone Gold Corp

TSL Report:
Date Received:

S58393

Geologist: Project: T. Fiolleau
Doc Project
Hanstone1

Date Received: S

Sep 15, 2020 Oct 06, 2020

Invoice:

78582

Sample Type:

Purchase Order:

Number

Size Fraction

Sample Preparation

Core

80

Reject ~ 70% -10 mesh (1.70 mm)

Crush, Riffle Split, Pulverize

00

Pulp ~ 95% -150 mesh (106 µm)

Pulp

0

None

#### ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag Al* As Au B* Ba* Bi Ca* Cd Co Cr* Cu Fe* Ga* Hg K* La* Mg*	0.1 ppm 0.01 % 0.5 ppm 0.5 ppb 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.01% 1 ppm 0.01% 1 ppm	100 ppm	Mn * Mo Na * Ni P * Pb S Sb Sc Se Sr * Te Th * Ti * TI U * V *	1 ppm 0.1 ppm 0.001% 0.1 ppm 0.001% 0.1 ppm 0.05 % 0.1 ppm 0.1 ppm 0.5 ppm 1 ppm 1 ppm 0.1 ppm	10000 ppm 2000 ppm 10 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 1000 ppm 10000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10 % 1000 ppm 2000 ppm
			Zn	1 ppm	10000 ppm

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

S58393

#### Date:

October 6, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

AB827741 0.3 1.64 1.3 4.8 2.0 10 0.4 1.15 0.1 18 0.8 119.3 3.74 7 0.01 0.03 2 1.12 375 2.7 0.118 9.7 0.046 AB82742 0.2 2.02 0.6 0.5 0.5 0.0 10 0.3 1.29 0.1 13.9 54 81.5 4.5 8 0.01 0.03 1.16 56 1.3 0.064 1.00 0.046 AB82743 0.1 1.43 0.7 0.5 0.0 1.0 0.3 1.29 0.1 13.9 54 81.5 4.5 8 0.01 0.03 1.12 500 0.0 0.0 0.0 1.1.6 56 1.3 0.064 1.00 0.046 AB82743 0.1 1.43 0.7 0.5 0.0 1.20 1.2 0.2 1.17 0.1 10.2 10.3 4.64 1.35 6 0.01 0.03 3 1.14 567 0.9 0.9 0.066 1.52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
ABBEZTYAS   CALL   CA	·			* *		.,	* *	. ,			* *													2 2 4 5
ABBEZ744   0.1															7									
ABSEZ744   Col.   List   Col.   Col																								
A08527746 -0.1 1.61 0.8 0.5 0.5 0.0 40 0.0 1 2.81 0.0 13.4 55 36.3 2.9 6 0.0 1 0.16 3 1.53 714 0.5 0.88 70.6 0.144 A852745 -0.1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.54 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55 0.0 1 2.55															6									
AB862745  OLI 254 OS 405 <20 50  OLI 257 OLI 195 OT 407 OLI 195 OT 407 OLI 032 C 237 943 OS 085 29 OLI AB862746  OLI 271 OS 405 OLI 272 OS 405 OLI 272 OS 405 OLI 271 OLI 195 OT 407 OLI 275 OLI 058 OLI 073 OLI 275 OLI 075 O															_			_						
AMB627746   -0.1   2.21   0.8   -0.5   -2.0   6.5   -0.1   2.51   0.1   19.1   61   75.8   41.5   78.8   -0.1   0.32   2   2.08   911   0.3   0.074   28.2   0.11   0.08   0.074   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0.082   0	A0862744	<0.1	1.61	0.8	<0.5	<20	40	<0.1	2.81	<0.1	13.4	55	36.3	2.9	6	<0.01	0.16	3	1.53	714	0.5	0.088	20.6	0.144
A0862778	A0862745	< 0.1	2.54	0.8	<0.5	<20	50	< 0.1	2.47	<0.1	19.5	67	40.7	4	9	< 0.01	0.23	2	2.37	943	0.3	0.085	29	0.151
AGREZ748	A0862746	< 0.1	2.21	0.8	< 0.5	<20	65	< 0.1	2.51	0.1	19.1	61	75.8	4.15	8	< 0.01	0.32	2	2.08	911	0.3	0.074	28.2	0.113
A0862779  OLZ 1.78 OLG 6.3    OLG 1.34 OLG 1.34 OLG 1.34    OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34    OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OLG 1.34 OL	A0862747	< 0.1	2.3	< 0.5	1.1	<20	68	< 0.1	3	< 0.1	21.8	159	70.1	2.75	6	< 0.01	0.21	<1	2.68	519	< 0.1	0.073	130	0.082
A0862799 0.2 1.78 0.6 6.3 2.0 80 0.1 2.13 0.1 2.05 122 19.2 2.14 4 0.01 0.23 1 2.06 376 0.1 0.11 108.4 0.01 0.10 1.0682750   0.01 1.29 0.6 1.2 2.00 6.3 0.1 2.3 0.1 2.01 150 85.2 2.2 5 0.01 0.2 0.1 1.2 2.8 459 0.1 0.068 11.7 0.085   0.085 0.085 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	A0862748	< 0.1	2.85	0.6	3.3	<20	49	<0.1	3.71	< 0.1	25	176	76.1	3.41	7	< 0.01	0.16	<1	3.25	721	< 0.1	0.046	128.1	0.072
A0862775	A0862749														4	< 0.01	0.23	1	2.06	376	< 0.1	0.111	108.4	0.101
A0862751																								
A0862752	A0862750	< 0.1	1.89	0.6	1.2	<20	63	< 0.1	2.39	< 0.1	20.1	150	85.2	2.2	5	< 0.01	0.2	<1	2.28	459	< 0.1	0.068	117.2	0.085
A0862755	A0862751	< 0.1	1.62	1.7	2.6	<20	48	< 0.1	3.47	< 0.1	20.8	96	38.5	3.42	6	< 0.01	0.24	4	1.48	478	0.7	0.07	40.8	0.098
A0862755	A0862752	< 0.1	1.99	0.8	4.3	<20	26	0.1	3.24	< 0.1	17	109	28.6	3.86	7	< 0.01	0.15	4	2.27	530	0.9	0.037	73.9	0.093
A0862775 A0862760 A0862761 A0862763 A0862764 A0862765 A0862765 A0862766 A0862767 A0862767 A0862768 A0862767 A0862768 A0862768 A0862768 A0862776 A0862776 A0862770 A0862770 A0862770 A0862770 A0862773 A0862784 A0862773 A0862773 A0862773 A0862784 A0862786 A0862786 A0862786 A0862786 A0862786 A0862786 A0862786 A0862786 A0862773 A0862786 A0862786 A0862786 A0862786 A0862786 A0862786 A08	A0862753	0.4	0.83	0.6	74.5	<20	275	0.1	4.68		12.6			3.4	4	< 0.01	0.15	3	1.79	908	13.5	0.07	44	0.06
A08627756 0.3 1.05 0.8 9 420 50 0.2 3.85 0.3 14 90 35.4 2.91 4 4.001 0.2 4 1.51 618 1.3 0.031 57 0.064 A0862757 0.1 1.87 0.6 8.9 420 115 0.1 2.74 0.2 15.3 91 30.6 3.75 7 4.001 0.42 4 1.98 523 1.8 0.52 48.4 0.084 A0862758 4.01 2.2 1 2.4 420 57 0.1 1.51 4.01 15.6 114 43.2 3.91 9 4.01 0.18 5 1.99 33.6 1.1 0.031 55.6 0.054 A0862759 4.01 2.29 0.9 2.1 420 31 0.1 1.72 4.01 15.7 65 23.9 4.21 9 4.01 0.17 6 2.21 392 2.4 0.097 40.6 0.152 A0862761 4.01 2.05 4.05 5.7 4.00 31 0.1 1.78 4.01 15.7 65 23.9 4.21 9 4.01 0.17 6 2.21 392 2.4 0.097 40.6 0.152 A0862761 4.01 2.05 4.05 5.7 4.00 39 4.01 1.78 4.01 17 35 55.8 4.67 10 4.01 0.18 8 2.07 432 1.6 0.166 7 0.24 A0862762 0.2 3.54 0.6 6.8 4.0 61. 2.77 0.1 28.1 37 133.2 6.28 11 4.01 0.2 3 3.41 1138 0.8 0.031 12.9 0.076 A0862763 0.2 3.1 0.7 5.6 4.0 68 0.1 2.77 0.1 28.1 37 133.2 6.28 11 4.00 0.28 3 2.87 1122 1.3 0.06 11.6 0.111 A0862766 4.01 1.82 0.8 5.9 4.0 64 4.01 2.26 4.01 1.2 4.01 2.6 3 46 12.2 5.2 5.2 7 4.01 0.18 2 1.65 582 1.1 0.10 7 1.1 0.069 A0862766 4.01 1.96 0.5 2.5 4.0 2.9 4.01 1.2 4.0 1.2 4.0 1.2 5.3 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 1.1	A0862754	1.8	0.65	0.7	115.8	<20	85	0.2	1.27	0.2	9,4	99	195.2	2.52	3	< 0.01	0.12	3	1.28	361	5.4	0.055	81.2	0.032
A08627756 0.3 1.05 0.8 9 420 50 0.2 3.85 0.3 14 90 35.4 2.91 4 4.001 0.2 4 1.51 618 1.3 0.031 57 0.064 A0862757 0.1 1.87 0.6 8.9 420 115 0.1 2.74 0.2 15.3 91 30.6 3.75 7 4.001 0.42 4 1.98 523 1.8 0.52 48.4 0.084 A0862758 4.01 2.2 1 2.4 420 57 0.1 1.51 4.01 15.6 114 43.2 3.91 9 4.001 0.18 5 1.99 33.6 1.1 0.031 55.6 0.054 A0862759 4.01 2.29 0.9 2.1 420 31 0.1 1.72 40.1 15.7 65 23.9 4.21 9 4.01 0.17 6 2.21 392 2.4 0.097 40.6 0.152 A0862761 4.01 2.05 4.05 5.7 4.00 31 0.1 1.78 4.01 15.7 65 23.9 4.21 9 4.01 0.10 0.17 6 2.21 392 2.4 0.097 40.6 0.152 A0862761 4.01 2.05 4.05 5.7 4.00 39 4.01 1.78 4.01 17 35 55.8 4.67 10 4.01 0.18 8 2.07 432 1.6 0.10 6.8 4.0862762 0.2 3.54 0.6 6.8 4.0 61 0.1 2.87 0.1 2.93 4.0 13.3 6.37 12 4.01 0.03 3 3.41 1138 0.8 0.031 12.9 0.076 A0862763 0.2 3.1 0.7 5.6 4.0 68 0.1 2.77 0.1 28.1 37 133.2 6.28 11 4.01 0.28 3 2.87 1122 1.3 0.06 11.6 0.11 A0862766 4.01 1.82 0.8 5.9 4.00 68 0.1 2.77 0.1 28.1 37 133.2 6.28 11 4.01 0.28 3 2.87 1122 1.3 0.06 11.6 0.11 A0862766 4.01 1.82 0.8 5.9 4.00 64 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.26 4.01 2.																								
A08627757 0.1 1.87 0.6 8.9 <20 115 0.1 2.74 0.2 15.3 91 30.6 3.75 7 <0.01 0.42 4 1.98 523 1.8 0.052 48.4 0.084 A0862758 <0.1 2 1 2.4 <20 57 0.1 1.51 <0.1 15.6 114 43.2 3.91 9 <0.01 0.18 5 1.99 336 1.1 0.031 55.6 0.054 A0862759 <0.1 2.29 0.9 2.1 <20 31 0.1 1.72 <0.1 15.7 65 23.9 4.21 9 <0.01 0.18 5 1.99 336 1.1 0.031 55.6 0.054 A0862760 <0.1 2.23 3 <0.5 5.3 <0.9 93 0.2 0.79 <0.1 2.65 58 92.4 4.88 10 <0.01 0.52 2 2.43 445 2.4 0.068 36.2 0.083 A0862761 <0.1 2.05 <0.5 5.7 <20 39 <0.1 1.78 <0.1 1.78 <0.1 1.7 35 55.8 4.67 10 <0.01 0.18 8 2 0.7 432 1.6 0.10 7 0.24 A0862762   0.2 3.54 0.6 6.8 <0.0 61 0.1 2.82 0.1 2.83 40 134.3 6.37 12 <0.01 0.3 3 3.41 1138 0.8 0.031 12.9 0.076 A0862763   0.2 3.54 0.6 6.8 <0.0 66 0.1 2.7 0.1 2.81 37 133.2 6.28 11 <0.01 0.28 3 2.81 1122 1.3 0.06 1.16 0.111 A0862764   0.1 1.82 0.8 5.9 <0.0 54 <0.1 1.2 0.1 12.2 0.1 2.83 46 20.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	A0862755	< 0.1	2.3	0.9	3.2	<20	64	< 0.1	5.45	< 0.1	17.1	77	29.5	4.54	9	< 0.01	0.29	8	2.26	723	0.9	0.058	35.9	0.143
A0862758	A0862756	0.3	1.05	0.8	9	<20	50	0.2	3.85	0.3	14	90	35.4	2.91	4	< 0.01	0.2	4	1.51	618	1.3	0.031	57	0.064
A0862769	A0862757	0.1	1.87	0.6	8.9	<20	115	0.1	2.74	0.2	15.3	91	30.6	3.75	7	< 0.01	0.42	4	1.98	523	1.8	0.052	48.4	0.084
A0862760	A0862758	< 0.1	2	1	2.4	<20	57	0.1	1.51	< 0.1	15.6	114	43.2	3.91	9	< 0.01	0.18	5	1.99	336	1.1	0.031	55.6	0.054
A0862761	A0862759	< 0.1	2.29	0.9	2.1	<20	31	0.1	1.72	< 0.1	15.7	65	23.9	4.21	9	< 0.01	0.17	6	2.21	392	2.4	0.097	40.6	0.152
A0862761																								
A0862762 0.2 3.54 0.6 6.8 < <0 68 0.1 2.77 0.1 28.1 37 133.2 6.28 11 <0.01 0.28 3 2.87 1122 1.3 0.06 11.6 0.111 A0862764 0.1 1.82 0.8 5.9 < <0 68 0.1 2.77 0.1 28.1 37 133.2 6.28 11 <0.01 0.28 3 2.87 1122 1.3 0.06 11.6 0.111 A0862765 <0.1 2.21 0.8 3.2 < <0 64 <0.1 1.2 <0.1 2.6 <0.1 2.58 46 156.8 5.26 8 <0.01 0.26 2 1.91 789 0.7 0.154 11.6 0.069 A0862766 <0.1 1.96 0.5 2.5 < <0 29 <0.1 2.08 <0.1 2.96 45 149 4.9 7 <0.01 0.11 2 1.9 1.97 691 1.2 0.111 13.5 0.064 A0862767 0.4 2.34 0.9 20.6 <20 64 <0.1 5.25 0.7 29.7 46 190.2 6.13 8 <0.01 0.44 2 2.76 1519 0.6 0.038 15.4 0.054 A0862768 0.2 3.08 0.7 5.5 < <0 59 <0.1 4.71 0.2 28.1 47 150.7 6.21 9 <0.01 0.44 2 2.76 1519 0.6 0.038 15.4 0.054 A0862769 0.2 2.74 <0.5 3.9 <20 70 <0.1 3.96 0.2 26.1 4.71 0.2 28.1 47 150.7 6.21 9 <0.01 0.2 2 2.68 1239 0.4 0.022 16.2 0.51 A0862771 0.2 3.13 <0.5 3.5 < <0 62 <0.1 1.88 <0.1 2.66 52 234.3 4.79 7 <0.01 0.09 2 2.21 820 0.6 0.008 11.4 0.055 A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062 A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 2.66 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062 A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 2.66 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062 A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 2.66 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862760	< 0.1	2.33	< 0.5	5.3	<20	93	0.2	0.79	< 0.1	26.5	58	92.4	4.88	10	< 0.01	0.52	2	2.43	445	2.4			
A0862763	A0862761	< 0.1	2.05	< 0.5	5.7	<20	39	< 0.1	1.78	< 0.1	17	35	55.8	4.67	10	< 0.01	0.18	8	2.07	432	1.6	0.106	7	
A0862764 0.1 1.82 0.8 5.9 <20 54 <0.1 1.2 <0.1 26.3 46 202.2 5.2 7 <0.01 0.18 2 1.65 582 1.1 0.107 11 0.069  A0862765 <0.1 2.21 0.8 3.2 <20 64 <0.1 2.26 <0.1 2.58 46 156.8 5.26 8 <0.01 0.26 2 1.91 789 0.7 0.154 11.6 0.069  A0862766 <0.1 1.96 0.5 2.5 <20 29 <0.1 2.08 <0.1 2.96 45 149 4.9 7 <0.01 0.11 2 1.97 691 1.2 0.111 13.5 0.064  A0862767 0.4 2.34 0.9 20.6 <20 64 <0.1 5.25 0.7 29.7 46 190.2 6.13 8 <0.01 0.44 2 2.76 1519 0.6 0.038 15.4 0.054  A0862768 0.2 3.08 0.7 5.5 <20 59 <0.1 4.71 0.2 28.1 47 150.7 6.21 9 <0.01 0.2 2 2.68 1239 0.4 0.022 16.2 0.051  A0862769 0.2 2.74 <0.5 3.9 <20 70 <0.1 3.96 0.2 26.1 49 178.4 5.54 9 <0.01 0.23 2 2.42 1055 0.6 0.058 14.4 0.051  A0862770 0.1 2.36 0.9 6.3 <20 38 <0.1 1.88 <0.1 26.6 52 234.3 4.79 7 <0.01 0.09 2 2 2.21 820 0.6 0.071 14.4 0.059  A0862771 0.2 3.13 <0.5 3.5 <20 62 <0.1 4.52 0.2 29.7 52 153.3 6.21 10 <0.01 0.22 3 2.89 1276 0.6 0.038 15.7 0.056  A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.39 2 2.5 1031 1.2 0.059 16.1 0.052  A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 2.66 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862762	0.2	3.54	0.6	6.8	<20	61	0.1	2.82	0.1	29.3	40	134.3	6.37	12	< 0.01	0.3	3	3.41	1138	0.8	0.031		
A0862765	A0862763	0.2	3.1	0.7	5.6	<20	68	0.1	2.77	0.1	28.1	37	133.2	6.28	11	< 0.01	0.28	3	2.87	1122	1.3	0.06		
A0862766	A0862764	0.1	1.82	0.8	5.9	<20	54	< 0.1	1.2	< 0.1	26.3	46	202.2	5.2	7	< 0.01	0.18	2	1.65	582	1.1	0.107	11	0.069
A0862766																								
A0862767 0.4 2.34 0.9 20.6 <20 64 <0.1 5.25 0.7 29.7 46 190.2 6.13 8 <0.01 0.44 2 2.76 1519 0.6 0.038 15.4 0.054   A0862768 0.2 3.08 0.7 5.5 <20 59 <0.1 4.71 0.2 28.1 47 150.7 6.21 9 <0.01 0.2 2 2.68 1239 0.4 0.022 16.2 0.051   A0862769 0.2 2.74 <0.5 3.9 <20 70 <0.1 3.96 0.2 26.1 49 178.4 5.54 9 <0.01 0.23 2 2.42 1055 0.6 0.058 14.4 0.051    A0862770 0.1 2.36 0.9 6.3 <20 38 <0.1 1.88 <0.1 26.6 52 234.3 4.79 7 <0.01 0.09 2 2.21 820 0.6 0.071 14.4 0.059   A0862771 0.2 3.13 <0.5 3.5 <20 62 <0.1 4.52 0.2 29.7 52 153.3 6.21 10 <0.01 0.22 3 2.89 1276 0.6 0.038 15.7 0.056   A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.39 2 2.5 1031 1.2 0.059 16.1 0.052   A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 2.66 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862765	< 0.1	2.21	8.0	3.2	<20	64	< 0.1	2.26	< 0.1	25.8	46	156.8	5.26	8	< 0.01	0.26							
A0862768 0.2 3.08 0.7 5.5 <20 59 <0.1 4.71 0.2 28.1 47 150.7 6.21 9 <0.01 0.2 2 2.68 1239 0.4 0.022 16.2 0.051 A0862769 0.2 2.74 <0.5 3.9 <20 70 <0.1 3.96 0.2 26.1 49 178.4 5.54 9 <0.01 0.23 2 2.42 1055 0.6 0.058 14.4 0.051    A0862770 0.1 2.36 0.9 6.3 <20 38 <0.1 1.88 <0.1 26.6 52 234.3 4.79 7 <0.01 0.09 2 2.21 820 0.6 0.071 14.4 0.059    A0862771 0.2 3.13 <0.5 3.5 <20 62 <0.1 4.52 0.2 29.7 52 153.3 6.21 10 <0.01 0.22 3 2.89 1276 0.6 0.038 15.7 0.056    A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.39 2 2.5 1031 1.2 0.059 16.1 0.052    A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 2.66 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862766	< 0.1	1.96	0.5	2.5	<20	29	< 0.1	2.08	< 0.1	29.6	45	149	4.9	7	< 0.01	0.11	2	1.97					
A0862769 0.2 2.74 <0.5 3.9 <20 70 <0.1 3.96 0.2 26.1 49 178.4 5.54 9 <0.01 0.23 2 2.42 1055 0.6 0.058 14.4 0.051  A0862770 0.1 2.36 0.9 6.3 <20 38 <0.1 1.88 <0.1 26.6 52 234.3 4.79 7 <0.01 0.09 2 2.21 820 0.6 0.071 14.4 0.059  A0862771 0.2 3.13 <0.5 3.5 <20 62 <0.1 4.52 0.2 29.7 52 153.3 6.21 10 <0.01 0.22 3 2.89 1276 0.6 0.038 15.7 0.056  A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.39 2 2.5 1031 1.2 0.059 16.1 0.052  A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 26.6 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862767	0.4	2.34	0.9	20.6	<20	64	< 0.1	5.25	0.7	29.7	46	190.2	6.13	8	< 0.01	0.44							
A0862770 0.1 2.36 0.9 6.3 <20 38 <0.1 1.88 <0.1 26.6 52 234.3 4.79 7 <0.01 0.09 2 2.21 820 0.6 0.071 14.4 0.059  A0862771 0.2 3.13 <0.5 3.5 <20 62 <0.1 4.52 0.2 29.7 52 153.3 6.21 10 <0.01 0.22 3 2.89 1276 0.6 0.038 15.7 0.056  A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.39 2 2.5 1031 1.2 0.059 16.1 0.052  A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 26.6 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862768	0.2	3.08	0.7	5.5	<20	59	< 0.1	4.71	0.2	28.1	47	150.7	6.21	9	< 0.01	0.2	2	2.68	1239	0.4			
A0862771 0.2 3.13 <0.5 3.5 <20 62 <0.1 4.52 0.2 29.7 52 153.3 6.21 10 <0.01 0.22 3 2.89 1276 0.6 0.038 15.7 0.056 A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.39 2 2.5 1031 1.2 0.059 16.1 0.052 A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 26.6 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862769	0.2	2.74	< 0.5	3.9	<20	70	< 0.1	3.96	0.2	26.1	49	178.4	5.54	9	< 0.01	0.23	2	2.42	1055	0.6	0.058	14.4	0.051
A0862771 0.2 3.13 <0.5 3.5 <20 62 <0.1 4.52 0.2 29.7 52 153.3 6.21 10 <0.01 0.22 3 2.89 1276 0.6 0.038 15.7 0.056 A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.39 2 2.5 1031 1.2 0.059 16.1 0.052 A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 26.6 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062																								
A0862772 0.1 2.53 0.6 3.5 <20 175 <0.1 3.9 0.2 24.8 52 113.2 4.75 7 <0.01 0.39 2 2.5 1031 1.2 0.059 16.1 0.052 A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 26.6 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862770	0.1	2.36	0.9	6.3	<20	38	< 0.1	1.88	< 0.1	26.6		234.3	4.79	7	< 0.01								
A0862773 <0.1 2.13 0.7 4.4 <20 111 <0.1 1.19 <0.1 26.6 57 162.4 5.04 7 <0.01 0.53 2 2.04 553 0.8 0.15 13.9 0.062	A0862771	0.2	3.13	< 0.5	3.5	<20	62	< 0.1	4.52	0.2	29.7	52	153.3	6.21	10	< 0.01	0.22	_						
7(002)70	A0862772	0.1	2.53	0.6	3.5	<20	175	< 0.1	3.9	0.2	24.8	52	113.2	4.75	7	< 0.01	0.39							
A0862774 <0.1 2.08 0.6 3.7 <20 108 <0.1 0.98 <0.1 27.4 55 165.4 4.89 7 <0.01 0.53 2 2.05 523 0.6 0.1 13.9 0.066	A0862773	< 0.1	2.13	0.7	4.4	<20	111	< 0.1	1.19	< 0.1	26.6	57	162.4	5.04	7	< 0.01	0.53	2	2.04					
	A0862774	< 0.1	2.08	0.6	3.7	<20	108	< 0.1	0.98	< 0.1	27.4	55	165.4	4.89	7	< 0.01	0.53	2	2.05	523	0.6	0.1	13.9	0.066

Signed: Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

\$58393

# Date:

October 6, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element	Ag	Al	As	Au	8	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Мо	Na	Ni	Р
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0862775	<0.1	3.02	<0.5	1.7	<20	136	<0.1	2.86	0.1	26	76	72.2	5.14	11	<0.01	0.65	5	3.15	723	1	0.078	37.9	0.109
A0862776	<0.1	2.28	<0.5	6.7	<20	139	<0.1	1.13	< 0.1	26.1	54	170.9	4.81	8	< 0.01	0.52	2	2.21	449	0.9	0.095	17.4	0.068
A0862777	<0.1	1.9	<0.5	4.9	<20	73	<0.1	2.26	<0.1	25.5	55	126.1	4.6	7	< 0.01	0.32	3	1.84	500	0.7	0.144	18.3	0.058
A0862778	<0.1	2.68	0.5	2.9	<20	119	<0.1	1.4	<0.1	28.8	60	146.3	5.42	8	< 0.01	0.45	1	2.56	833	0.4	0.073	18.9	0.052
A0862779	<0.1	2.82	0.6	2.7	<20	121	< 0.1	1.79	<0.1	28.4	125	101.1	5.62	10	< 0.01	0.42	3	3.14	781	0.7	0.085	92.8	0.088
	10.2	2.02	0.0	No. 1	12.0	W-80-30	10.2	2	10.1	20.4	123	402.2	0.00	***	10.02	0		014		•			
A0862779 Re	<0.1	2.84	<0.5	4.6	<20	120	< 0.1	1.82	< 0.1	28.5	126	101.6	5.61	10	< 0.01	0.42	3	3.13	777	0.7	0.085	92.3	0.088
A0862780	0.1	2.17	1.5	4.4	<20	50	0.1	1.65	< 0.1	29.1	58	79.4	5.64	9	< 0.01	0.13	5	2.23	700	1.2	0.044	28.8	0.089
A0862781	0.1	1.42	1.8	9.4	<20	21	0.3	1.14	< 0.1	36.3	115	155.2	3.24	7	< 0.01	0.06	6	1.54	217	2.2	0.105	57.4	0.097
A0862782	< 0.1	1.62	2.7	11.1	<20	51	0.1	3.96	< 0.1	23.5	132	151.5	3.08	7	< 0.01	0.05	4	1.69	424	1.6	0.066	42.3	0.107
A0862783	< 0.1	0.84	2.5	3.7	<20	557	< 0.1	10.22	< 0.1	11.8	103	77.7	1.64	3	< 0.01	0.05	2	0.75	570	1.5	0.03	23.6	0.053
A0862784	< 0.1	1.51	2	4.2	<20	68	0.2	2.82	< 0.1	13	142	89.7	3.05	6	< 0.01	0.26	3	1.44	434	1.3	0.052	38.5	0.125
A0862785	0.2	1.1	2.6	2.3	<20	29	0.3	0.94	< 0.1	8.7	229	40.1	2.14	4	< 0.01	0.11	4	0.99	266	1.4	0.065	62.3	0.037
A0862786	0.3	0.87	4	3.4	<20	28	0.4	1.74	< 0.1	8.7	227	32.7	2.11	4	< 0.01	80.0	6	0.87	331	1.6	0.041	73.8	0.037
A0862787	0.2	1.21	3.3	4.8	<20	44	0.3	2.28	< 0.1	11.9	256	93.1	2.12	4	< 0.01	0.17	5	1.07	399	2.4	0.043	122.7	0.032
A0862788	0.1	1.34	2.7	2.1	<20	74	0.2	2.79	< 0.1	12.1	217	48.8	2.29	5	< 0.01	0.16	5	1.3	417	1.2	0.042	77.6	0.091
A0862789	0.2	0.86	3.8	1.8	<20	34	0.3	6.11	< 0.1	12.2	172	96.7	1.68	3	< 0.01	0.07	5	0.82	494	1.2	0.041	48.8	0.072
A0862790	0.1	0.92	2.5	2.7	<20	39	0.3	3.55	< 0.1	8.9	235	74.3	1.9	3	< 0.01	0.08	5	0.9	367	0.8	0.032	58.1	0.035
A0862791	< 0.1	1.08	1.5	2	<20	30	0.1	5.6	< 0.1	7.8	144	67.3	1.85	4	< 0.01	0.04	5	1.05	508	1.8	0.043	78.9	0.024
A0862792	< 0.1	0.4	3	1.5	<20	12	0.3	12.77	< 0.1	5.8	88	40	1.38	1	< 0.01	0.04	3	0.39	469	2.9	0.012	18.6	0.031
A0862793	< 0.1	0.87	1.3	1.3	<20	59	0.2	13.62	0.1	8.2	70	63.1	1.9	2	< 0.01	0.11	2	0.8	890	3.4	0.017	18	0.047
A0862794	< 0.1	1.37	8.0	1.6	<20	40	0.2	8.75	< 0.1	13.5	77	69.3	3.16	5	0.01	0.07	3	1.02	742	2.3	0.033	14.1	0.051
A0862795	0.1	2.48	0.9	1.1	<20	95	0.1	2.22	< 0.1	19	47	84.7	4.73	9	< 0.01	0.2	4	1.7	950	1.4	0.06	13.1	0.066
A0862796	0.3	2.42	0.6	8.4	<20	105	0.1	2.23	0.2	21.2	44	80.9	5.22	10	< 0.01	0.13	4	1.88	1352	1.4	0.048	10.6	0.065
A0862797	0.3	2.1	<0.5	1.6	<20	125	<0.1	3.74	0.3	21.2	29	77.6	5.27	8	< 0.01	0.36	5	1.89	1513	8.0	0.051	8.7	0.126
A0862798	1.8	1.5	0.6	174.5	<20	154	0.1	4.39	1.1	22.1	72	274.6	4.9	4	0.02	0.7	2	1.47	2141	0.8	0.018	9.6	0.141
A0862799	0.2	3	<0.5	1.	<20	114	< 0.1	2.91	0.2	21.9	31	71.5	5.55	10	< 0.01	0.28	4	2.01	1339	0.9	0.044	11.2	0.071
A0862800	0.3	2.87	0.6	1.1	<20	56	< 0.1	4.56	0.2	22.6	79	93.8	5.49	11	< 0.01	0.11	6	2.24	1390	0.6	0.034	17.6	0.109
A0862801	0.3	3.15	0.6	0.7	<20	33	< 0.1	1.83	0.3	24.2	39	100.1	6.36	14	< 0.01	0.1	2	2.37	1625	1	0.058	12.4	0.073
A0862802	0.2	2.78	0.7	0.8	<20	51	< 0.1	2.9	0.2	21.1	53	71.1	6.24	12	< 0.01	0.12	3	1.9	1345	1	0.046	11.8	0.081
A0862803	0.2	2.28	<0.5	1.6	<20	43	< 0.1	1.92	< 0.1	18.3	92	69.3	4.96	9	< 0.01	0.2	4	1.67	810	0.7	0.055	20.7	0.075
				4 **	-20	gar ang		2 70		45.4		***	2.0	***	.0.04	0.26	٠,٠	0.02	620	2.0	0.021	10.3	0.000
A0862804	0.2	1.82	0.5	1.5	<20	57	<0.1	2.79	< 0.1	12.4	96	44.8	3.8	7	<0.01	0.26	6	0.83	629	2.9	0.031	18.3	0.089
A0862805	0.2	2.07	<0.5	1.1	<20	26	< 0.1	2.83	< 0.1	18	63	52.1	4.42	8	<0.01	0.12	3	1.66	954	0.8	0.086	18.8	0.056
A0862806	2.5	0.59	1.4	241.6	<20	145	< 0.1	1.97	0.4	15.4	223	54.4	3.7	3	0.06	0.29	4	0.87	1179	34.1	0.058	19.5	0.036
A0862807	0.2	1.94	< 0.5	6.7	<20	83	< 0.1	2.63	0.1	19.5	73	73	5.15	9	< 0.01	0.16	5	1.64	1085	1.2	0.079	18.3	0.057
A0862808	0.2	2.33	< 0.5	6.2	<20	62	< 0.1	2.19	< 0.1	21.1	50	85	5.61	10	< 0.01	0.17	4	1.72	1069	0.8	0.049	13.1	0.067

Signed: Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58393 October 6, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
A0862809	0.3	2.47	<0.5	13.2	<20	221	<0.1	2.91	0.2	20.5	39	73.3	5.31	9	< 0.01	0.45	5	1.68	1148	1.3	0.056	10.3	0.067
A0862810	0.5	2.54	0.9	4.7	<20	58	0.5	2.43	0.7	23.7	40	98.8	6.22	12	< 0.01	0.28	3	1.98	1397	1	0.052	11.8	0.077
A0862811	0.2	2.64	< 0.5	2.5	<20	46	< 0.1	2.04	0.1	21.7	33	85.5	6.03	12	< 0.01	0.24	2	1.88	1182	0.9	0.066	9.7	0.08
A0862812	0.3	2.89	0.6	3.5	<20	71	< 0.1	2.35	0.2	23.6	35	100	5.99	12	< 0.01	0.35	2	2.03	1222	1.2	0.044	12	0.076
A0862813	0.2	2.71	<0.5	6.4	<20	117	<0.1	2.12	0.3	19.9	33	68.1	5.57	11	<0.01	0.38	2	1.77	1367	0.8	0.064	8.3	0.076
A0862814	0.2	2.46	0.7	3.7	<20	66	<0.1	1.98	0.7	18.4	36	55.8	5.47	11	< 0.01	0.18	2	1.65	1357	0.7	0.044	7.6	0.07
A0862815	0.2	2.48	0.8	4.9	<20	153	< 0.1	2.87	0.2	19.6	28	59.2	5.21	10	< 0.01	0.37	3	1.61	1146	0.9	0.05	9.2	0.063
A0862815 Re	0.2	2.49	0.9	4.8	<20	152	< 0.1	2.79	0.2	19.8	28	59.5	5.27	10	< 0.01	0.36	3	1.63	1161	0.9	0.051	9.2	0.063
A0862816	0.2	2.71	< 0.5	3.8	<20	109	0.1	2.44	0.1	18.4	52	78.8	5.32	10	< 0.01	0.22	6	1.82	1071	0.5	0.035	13.3	0.074
A0862817	0.2	2.65	<0.5	4.2	<20	128	<0.1	2.25	0.1	16	60	83.8	4.81	10	<0.01	0.28	6	1.7	1000	0.7	0.053	10	0.095
A0862818	0.2	2.62	<0.5	5.8	<20	78	< 0.1	2.04	0.2	21.1	57	121.1	5.55	10	<0.01	0.22	5	1.88	1021	1.2	0.044	11.9	0.075
A0862819	0.3	2.22	< 0.5	7.8	<20	75	< 0.1	1.96	0.1	20.5	78	127.1	5.44	8	< 0.01	0.28	3	1.77	880	0.7	0.051	15.3	0.054
A0862820	0.1	2.36	0.7	7.2	<20	218	< 0.1	2.99	< 0.1	21	58	86.4	5.81	8	< 0.01	0.21	2	1.98	1098	0.5	0.036	11.5	0.067
STD OREAS262	0.4	1.18	34.6	64.8	<20	255	1	2.82	0.7	26.7	40	106.7	3.18	3	0.15	0.3	16	1.17	526	0.7	0.067	61.4	0.034
STD DS11	1.9	1.18	45.7	47.7	<20	418	10.5	1.08	2.3	14.7	60	145.1	3.16	6	0.28	0.41	18	0.86	1052	15.2	0.072	85.8	0.069
STD OREAS262	0.5	1.28	36.2	70.6	<20	245	0.9	2.99	0.6	27.5	43	111.5	3.2	4	0.17	0.31	16	1.15	547	0.7	0.066	67.1	0.037
STD OREAS262	0.5	1.34	37.4	70.2	<20	251	0.9	3	0.6	27.8	45	113	3.28	5	0.16	0.33	17	1.19	551	0.8	0.068	68.8	0.037
STD DS11	1.8	1.1	44.4	73	<20	404	10	1.02	2.1	13.6	58	143.1	3.07	5	0.27	0.39	17	0.81	996	14.7	0.069	82.5	0.066
STD OREAS262	0.5	1.2	35.8	57.9	<20	240	0.9	2.89	0.6	27	42	112.1	3.31	4	0.16	0.29	15	1.17	529	0.7	0.067	67.1	0.036
BLK	< 0.1	0.02	<0.5	<0.5	<20	<1	<0.1	0.03	< 0.1	<0.1	<1	<0.1	<0.01	<1	< 0.01	<0.01	<1	<0.01	<1	< 0.1	<0.001	< 0.1	<0.001
BLK	< 0.1	<0.01	<0.5	<0.5	<20	<1	<0.1	<0.01	<0.1	<0.1	<1	< 0.1	<0.01	<1	< 0.01	< 0.01	<1	<0.01	<1	< 0.1	<0.001	< 0.1	<0.001
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	<0.001	< 0.1	<0.001

Signed: ______ Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

# Report No: Date: Octob

S58393 October 6, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

				_										Ang.
Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0862741	2.2	0.57	<0.1	14.8	1	13	< 0.2	0.7	0.102	< 0.1	0.1	123	0.1	33
A0862742	1.5	0.49	< 0.1	16.9	< 0.5	12	< 0.2	0.5	0.092	< 0.1	< 0.1	152	<0.1	43
A0862743	2.8	0.51	0.1	10.4	1.3	20	< 0.2	0.6	0.129	< 0.1	0.1	98	0.2	53
A0862743 Re	2.9	0.51	0.1	10.6	1.2	21	< 0.2	0.6	0.131	< 0.1	0.1	99	0.2	54
A0862744	1.8	0.11	< 0.1	4.9	<0.5	34	<0.2	0.3	0.154	<0.1	0.4	72	<0.1	60
A0862745	2.8	0.06	0.1	7.9	<0.5	40	<0.2	0.4	0.167	< 0.1	0.4	116	<0.1	80
A0862746	3.6	0.14	<0.1	9.6	<0.5	48	<0.2	0.3	0.173	< 0.1	0.3	134	< 0.1	89
A0862747	1.6	< 0.05	< 0.1	6.2	< 0.5	56	< 0.2	0.2	0.181	< 0.1	< 0.1	94	< 0.1	32
A0862748	1.7	<0.05	< 0.1	10.5	<0.5	76	< 0.2	0.1	0.188	< 0.1	< 0.1	123	< 0.1	49
A0862749	3.3	0.1	0.1	5.7	<0.5	64	<0.2	0.2	0.18	< 0.1	0.1	69	< 0.1	24
A0862750	1.3	0.07	0.1	6.2	< 0.5	65	< 0.2	0.1	0.16	< 0.1	< 0.1	71	< 0.1	28
A0862751	1.1	0.22	< 0.1	5.3	0.7	36	<0.2	0.7	0.146	< 0.1	0.2	73	0.1	19
A0862752	1.1	0.35	< 0.1	10.1	0.7	37	< 0.2	0.7	0.063	< 0.1	0.2	95	< 0.1	22
A0862753	4.5	1.15	< 0.1	12	0.9	92	0.4	0.4	0.025	< 0.1	0.2	62	0.2	33
A0862754	5.2	1.44	< 0.1	7.8	1.8	39	1.2	0.7	0.015	< 0.1	0.3	44	< 0.1	37
A0862755	1.6	0.2	0.1	9.5	0.5	78	< 0.2	1	0.103	0.1	0.3	107	0.1	36
A0862756	14.8	0.69	< 0.1	5.2	1.3	80	< 0.2	0.5	0.017	< 0.1	0.3	40	0.1	27
A0862757	2.5	0.65	< 0.1	8.5	1	66	<0.2	0.5	0.038	0.2	0.2	79	0.1	31
A0862758	2.7	0.56	< 0.1	9.8	1.3	23	< 0.2	1	0.077	< 0.1	0.3	105	0.3	34
A0862759	1.2	0.62	< 0.1	6.2	1	24	<0.2	1.4	0.15	<0.1	0.4	92	0.2	28
10052750	0.6	0.0	<0.1	6.6	1.1	8	<0.2	0.8	0.176	0.1	0.3	164	< 0.1	30
A0862760	0.6	0.9		4.4	<0.5	20	<0.2	1.8	0.176	<0.1	0.5	98	0.1	26
A0862761	1.6	0.15 0.26	<0.1	20.1	<0.5 0.5	71	<0.2	0.5	0.112	0.1	0.0	215	<0.1	54
A0862762 A0862763	1.6	0.34	<0.1 <0.1	15.2	<0.5	66	<0.2	0.3	0.112	0.1	0.2	184	<0.1	55
A0862764	0.7	0.34	<0.1	8.4	<0.5	24	<0.2	0.7	0.121	<0.1	0.3	178	<0.1	38
AU002/04	0.7	0.33	VU.1	0.44	<b>\0.3</b>	2.4	V.2	0.5	0.102	V0.1	0.1	1/0	-0.1	30
A0862765	1.1	0.57	0.1	11.8	< 0.5	32	< 0.2	0.3	0.216	< 0.1	0.1	188	0.1	45
A0862766	1.1	0.72	0.1	9.1	< 0.5	38	< 0.2	0.3	0.18	< 0.1	0.1	151	< 0.1	42
A0862767	5.6	0.98	0.1	17.3	< 0.5	157	< 0.2	0.3	0.047	0.2	< 0.1	146	0.3	76
A0862768	2.2	0.39	< 0.1	9.5	< 0.5	117	< 0.2	0.3	0.05	< 0.1	< 0.1	116	< 0.1	60
A0862769	1.8	0.34	0.1	10.8	< 0.5	92	< 0.2	0.3	0.092	< 0.1	< 0.1	134	< 0.1	61
A0862770	1	0.46	0.2	9.6	< 0.5	45	< 0.2	0.3	0.182	< 0.1	0.1	129	< 0.1	46
A0862771	2.6	0.21	< 0.1	15.6	< 0.5	150	< 0.2	0.3	0.044	< 0.1	0.1	154	< 0.1	58
A0862772	2.2	0.56	0.1	9.9	< 0.5	127	< 0.2	0.2	0.124	0.1	0.1	108	0.1	44
A0862773	0.6	0.29	0.1	9.9	< 0.5	29	< 0.2	0.4	0.21	0.1	0.1	168	< 0.1	39
A0862774	0.6	0.27	0.1	8.4	< 0.5	26	< 0.2	0.3	0.206	0.1	0.1	159	< 0.1	39

Signed: _____ Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

#### Report No: S58393 Date: October 6, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
10003770	1.3	0.17	<0.1	14.9	<0.5	70	<0.2	0.9	0.17	0.2	0.2	152	<0.1	46
A0862775					0.8		<0.2	0.9	0.175	0.2	0.2	153	<0.1	33
A0862776	0.9	0.44	<0.1	8.6 10		22 30	<0.2		0.173	<0.1	0.2	157	0.1	24
A0862777	1.4	0.38	0.1		0.6			0.5			0.3	164	<0.1	47
A0862778	0.9	0.17	<0.1	10.9	<0.5	36	<0.2	0.3	0.167	<0.1		170	<0.1	60
A0862779	0.9	0.25	<0.1	13.2	<0.5	31	<0.2	0.6	0.142	0.1	0.2	1/0	<0.1	60
A0862779 Re	0.9	0.25	< 0.1	13.1	< 0.5	31	< 0.2	0.6	0.142	0.1	0.2	170	< 0.1	60
A0862780	2	0.22	< 0.1	14.3	0.6	23	< 0.2	0.9	0.039	< 0.1	0.3	190	< 0.1	53
A0862781	0.6	0.77	< 0.1	9.8	2.5	12	< 0.2	1.1	0.142	< 0.1	0.4	127	0.2	13
A0862782	0.5	0.54	< 0.1	6.4	1.2	30	< 0.2	1	0.139	< 0.1	0.3	88	0.1	15
A0862783	0.7	0.32	< 0.1	3	1	57	< 0.2	0.4	0.103	< 0.1	0.3	41	0.2	9
													0.4	22
A0862784	8.0	0.47	< 0.1	3.4	1.1	21	<0.2	0.6	0.143	< 0.1	0.3	51	0.1	22 38
A0862785	1.9	0.44	< 0.1	4	1.1	10	<0.2	0.6	0.017	< 0.1	0.2	47	<0.1	
A0862786	3.6	0.58	< 0.1	4	1.6	20	<0.2	0.6	0.003	< 0.1	0.2	46	<0.1	41
A0862787	1.6	0.47	< 0.1	4.3	1.5	23	<0.2	0.6	0.012	< 0.1	0.3	43	< 0.1	37
A0862788	1.3	0.43	< 0.1	5.4	1.3	27	<0.2	0.8	0.074	<0.1	0.5	63	<0.1	22
A0862789	1.1	0.56	< 0.1	4.2	2.2	39	<0.2	0.5	0.038	< 0.1	0.3	41	0.1	9
A0862790	0.9	0.62	< 0.1	4.1	2.8	27	< 0.2	0.5	0.037	< 0.1	0.2	46	0.1	11
A0862791	1.3	0.53	< 0.1	4.4	2.3	49	< 0.2	0.4	0.035	< 0.1	0.3	55	< 0.1	18
A0862792	1.1	0.93	< 0.1	2	1.8	58	< 0.2	0.2	0.037	< 0.1	0.4	18	0.1	9
A0862793	1.8	1.18	< 0.1	2.8	3.8	104	< 0.2	0.2	0.076	< 0.1	0.3	36	0.1	31
A0862794	2.6	1	< 0.1	6.4	2.5	62	< 0.2	0.3	0.077	< 0.1	0.2	69	< 0.1	32
A0862795	1.3	0.35	< 0.1	9.7	0.6	29	< 0.2	0.7	0.138	< 0.1	0.2	113	< 0.1	54
A0862796	3.8	0.56	< 0.1	13.4	0.6	52	< 0.2	0.5	0.071	< 0.1	< 0.1	145	< 0.1	136
A0862797	2.5	0.46	< 0.1	8	< 0.5	93	< 0.2	0.5	0.064	0.1	0.1	89	0.1	102
A0862798	24.9	1.97	0.2	6.6	0.9	172	0.7	0.2	0.064	0.3	0.1	43	0.5	81
A0862799	3	0.33	<0.1	10	<0.5	86	<0.2	0.5	0.075	<0.1	<0.1	126	<0.1	122
A0862800	4.2	0.33	<0.1	14.6	0.9	80	<0.2	0.5	0.073	<0.1	0.1	143	<0.1	93
A0862801	3.8	0.38	<0.1	17.8	0.9	23	<0.2	0.3	0.112	<0.1	<0.1	212	<0.1	203
	2.2	0.38	<0.1	14.7	0.9	23 50	<0.2	0.5	0.201	<0.1	0.1	169	<0.1	111
A0862802	2.2			9.6	0.9	27	<0.2	0.7	0.201	<0.1	0.1	152	<0.1	83
A0862803	1	0.21	<0.1	9.0	0.0	21	<u.z< td=""><td>0.7</td><td>0.147</td><td>&lt;0.1</td><td>0.1</td><td>132</td><td>VU.1</td><td>63</td></u.z<>	0.7	0.147	<0.1	0.1	132	VU.1	63
A0862804	1.7	0.34	0.1	4.5	0.9	32	< 0.2	0.6	0.091	< 0.1	0.2	59	< 0.1	61
A0862805	2.2	0.2	< 0.1	12.9	0.5	43	< 0.2	0.4	0.082	< 0.1	0.1	158	< 0.1	98
A0862806	15.8	2.18	0.3	7.4	0.8	72	1.5	0.2	0.025	0.1	0.2	53	0.3	53
A0862807	2.9	0.35	0.1	15	0.7	49	< 0.2	0.5	0.102	< 0.1	0.2	177	< 0.1	99
A0862808	1.8	0.26	0.1	13	0.7	31	< 0.2	0.5	0.134	< 0.1	0.1	151	< 0.1	100

Signed: Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: O

October 6, 2020

S58393

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element Sample	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Sr ppm	Te ppm	Th ppm	Tī %	TI ppm	U ppm	V ppm	W	Zn ppm
A0862809	6.6	0.32	0.2	11.4	0.5	65	<0.2	0.7	0.123	0.2	0.1	123	0.2	155
A0862810	47.9	0.19	0.1	17	0.8	31	< 0.2	0.4	0.255	0.1	0.1	205	< 0.1	179
A0862811	4.1	0.37	0.1	12.8	1.1	25	< 0.2	0.4	0.305	< 0.1	< 0.1	185	0.1	111
A0862812	2.6	0.34	0.1	11.1	0.7	30	< 0.2	0.3	0.322	0.1	< 0.1	176	0.1	110
A0862813	3.3	0.28	0.1	12.2	0.7	30	<0.2	0.4	0.312	0.1	0.1	156	0.1	149
A0862814	24.9	0.26	0.1	12.4	0.7	28	<0.2	0.3	0.258	<0.1	<0.1	134	0.1	144
A0862815	13.6	0.52	0.2	11.7	0.6	70	< 0.2	0.5	0.1	0.1	0.1	116	0.1	117
A0862815 Re	13.8	0.54	0.2	11.7	0.6	70	< 0.2	0.5	0.099	0.1	0.1	116	0.1	117
A0862816	4.4	0.32	0.1	9.1	< 0.5	60	< 0.2	0.8	0.054	< 0.1	0.3	103	< 0.1	105
A0862817	6	0.24	0.1	9.4	< 0.5	56	<0.2	1.4	0.049	< 0.1	1.6	97	<0.1	109
A0862818	11.5	0.42	0.1	9.7	<0.5	46	<0.2	1	0.048	<0.1	0.1	126	<0.1	148
A0862819	4.6	0.57	0.1	8.1	0.7	39	< 0.2	0.7	0.033	< 0.1	0.1	97	< 0.1	124
A0862820	3.4	0.37	< 0.1	8.1	< 0.5	81	< 0.2	0.5	0.028	< 0.1	0.1	98	< 0.1	106
STD OREAS262	55.8	0.26	4.7	3.2	< 0.5	34	< 0.2	8.8	0.003	0.4	1.2	21	0.1	145
STD DS11	135.2	0.28	7.1	3.2	2.6	68	4.7	7.6	0.095	5.3	2.6	49	3.1	334
STD OREAS262	55.7	0.26	3.8	3.2	0.7	35	0.3	9.2	0.003	0.5	1.2	21	0.1	153
STD OREAS262	56.2	0.26	3.8	3.2	0.8	36	0.2	9.3	0.004	0.5	1.2	22	0.1	153
STD DS11	127.5	0.28	6	2.9	2.4	64	4.6	6.8	0.088	5.1	2.9	48	2.7	331
STD OREAS262	53.5	0.27	2.6	3	0.8	35	0.2	8.6	0.003	0.5	1.1	21	0.1	146
BLK	<0.1	<0.05	< 0.1	< 0.1	<0.5	<1	<0.2	< 0.1	<0.001	<0.1	<0.1	1	<0.1	<1
BLK	<0.1	< 0.05	<0.1	<0.1	<0.5	<1	<0.2	<0.1	<0.001	<0.1	<0.1	<1	<0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1

Signed: Mark Acres - Quality Assurance



Company:

Hanstone Gold Corp

Geologist: Project:

T. Fiolleau Doc Project

Purchase Order:

Handstone1

TSL Report:

S58393

Date Received:

Sep 15, 2020

Date Reported:

Sep 22, 2020

Invoice:

78582

Remarks:

Sample Type:

Number

Size Fraction

Sample Preparation

Core

80

Reject ~ 95% at -10 mesh (1.70 mm)

Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp

0

None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	a/tonne	Fire Assav/Gravimetric	0.03	100%



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58393

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78582
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name
A0862741	<.03		S58393
A0862742	<.03		S58393
A0862743	<.03		S58393
A0862744	<.03	<.03	S58393
A0862745	<.03		\$58393
A0862746	. 22		a=0.00
	<.03		\$58393
A0862747	<.03		\$58393
A0862748	<.03		S58393
A0862749	<.03	< .03	S58393
A0862750	<.03		S58393
A0862751	<.03		S58393
A0862752	<.03		S58393
A0862753	.07		S58393
A0862754	.10		S58393
A0862755	<.03		S58393
A0862756	< .03		050202
A0862757			S58393
A0862758	<.03		\$58393
	<.03		S58393
A0862759	<.03		S58393
A0862760	<.03		S58393

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED

Mark Acres - Quality Assurance



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58393

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78582
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862761	<.03		S58393
A0862762	<.03		S58393
A0862763	<.03		S58393
A0862764	<.03	<.03	S58393
A0862765	<.03		S58393
A0862766	<.03		S58393
A0862767	<.03		S58393
A0862768	<.03		S58393
A0862769	< .03	<.03	S58393
A0862770	< .03		S58393
A0862771	<.03		S58393
A0862772	<.03		S58393
A0862773	< .03		S58393
A0862774	<.03	<.03	S58393
A0862775	< .03		S58393
A0862776	< .03		S58393
A0862777	<.03		S58393
A0862778	<.03		S58393
A0862779	<.03		S58393
A0862780	< .03		S58393
			20000

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. S58393

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78582
P.O.: Hanstonel

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862781	< .03		S58393
A0862782	<.03		S58393
A0862783	<.03		S58393
A0862784	<.03	<.03	S58393
A0862785	<.03		S58393
A0862786	<.03		S58393
A0862787	< .03		S58393
A0862788	<.03		S58393
A0862789	< .03	<.03	S58393
A0862790	<.03		S58393
A0862791	<.03		S58393
A0862792	<.03		S58393
A0862793	<.03		S58393
A0862794	<.03	< .03	S58393
A0862795	<.03		S58393
A0862796	< .03		S58393
A0862797	<.03		S58393
A0862798	.16		S58393
A0862799	<.03		S58393
A0862800	<.03		S58393

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. S58393

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78582
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862801	< .03		S58393
A0862802	<.03		S58393
A0862803	< .03		S58393
A0862804	<.03	<.03	S58393
A0862805	<.03		S58393
A0862806	.27		S58393
A0862807	<.03		S58393
A0862808	<.03		S58393
A0862809	<.03	< .03	S58393
A0862810	< .03		S58393
A0862811	<.03		S58393
A0862812	<.03		S58393
A0862813	< .03		S58393
A0862814	< .03	<.03	S58393
A0862815	<.03		S58393
A0862816	<.03		S58393
A0862817	<.03		S58393
A0862818	<.03		S58393
A0862819	<.03		S58393
A0862820	<.03		S58393

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED

Mark Acres - Quality Assurance



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58393

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78582 P.O.: Hanstone1

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name
GS-7E	7.00		S58393
GS-7E	7.34		S58393
GS-7E	7.37		S58393
GS-7E	7.27		S58393

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED

Mark Acres - Quality Assurance

Company: Hanstone Gold Corp TSL Report: \$58394

Geologist: T. Fiolleau Date Received: Sep 15, 2020
Project: Doc Project Date Reported: Oct 06, 2020

Purchase Order: Hanstone1 Invoice: 78583

Sample Type: Number Size Fraction Sample Preparation

Core 80 Reject ~ 70% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% -150 mesh (106 μm)

Pulp 0 None

#### ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag Al* As Au B* Ba* Bi Ca* Co Cr* Cu Fe* Ga* Hg K*	0.1 ppm 0.01 % 0.5 ppm 0.5 ppb 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.01% 1 ppm 0.01% 1 ppm 0.01% 1 ppm	100 ppm 10 % 10000 ppm 100 ppm 2000 ppm 2000 ppm 40 % 2000 ppm 2000 ppm 10000 ppm 10000 ppm 1000 ppm 1000 ppm 1000 ppm	Mn * Mo Na * Ni P * Pb S Sb Sc Se Sr * Te Th * Ti * TI U *	1 ppm 0.1 ppm 0.001% 0.1 ppm 0.001% 0.1 ppm 0.05 % 0.1 ppm 0.1 ppm 0.5 ppm 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 2 ppm 0.1 ppm	10000 ppm 2000 ppm 10 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 1000 ppm 1000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10 % 1000 ppm
Mg *	U.U 1 70	30 %	W * Zn	0.1 ppm 1 ppm	100 ppm 10000 ppm

#### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58394 October 6, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co	Cr ppm	Cu	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo	Na %	Ni ppm	P %
							• •			1. 4-													
A0862821	0.2	1.14	0.5	8.2	<20	121	< 0.1	3.11	0.1	21.1	60	93	5.65	5	< 0.01	0.15	3	1.59	1051	0.8	0.03	10.6	0.093
A0862822 A0862823	0.3	1.41	<0.5	8.5	<20	45	<0.1	3.52	0.2	22.9	95	125.1	5.46	4	< 0.01	0.27	2	2.06	1127	0.7	0.015	15.3	0.054
A0862823 A0862824	0.8 0.1	0.91	1.4	176	<20	76	0.2	5.04	0.6	19.6	44	47.2	4.37	2	< 0.01	0.24	2	1.58	1364	0.7	0.01	10.2	0.056
A0862825	0.1	1.63 2.5	<0.5 0.6	4 5.2	<20	669	<0.1	3.14	0.2	21.6	95	52.3	5.09	5	<0.01	0.17	2	1.73	986	0.8	0.02	12.5	0.073
A0802823	0.2	2.3	0.0	5.2	<20	17	0.1	1.77	<0.1	20.7	52	90.5	6.1	11	<0.01	0.06	2	2.11	666	1	0.023	13.6	0.057
A0862826	0.2	2.07	0.6	6	<20	40	0.1	1.53	< 0.1	18.5	104	56.8	4.68	8	< 0.01	0.29	2	1.6	479	1	0.036	10.9	0.07
A0862827	0.3	1.76	0.9	10.7	<20	49	0.1	3.2	0.2	19.4	60	56.3	4.62	6	< 0.01	0.47	1	1.61	823	1.3	0.011	10.2	0.055
A0862828	0.3	2.26	< 0.5	5.7	<20	36	0.1	2.49	0.2	19.9	74	93.7	5.52	9	< 0.01	0.18	2	1.96	745	1.5	0.031	10.5	0.067
A0862829	0.1	2.57	< 0.5	3.8	<20	33	< 0.1	2.14	< 0.1	18.3	46	67.6	5.22	10	< 0.01	0.1	3	1.99	800	1	0.022	9.8	0.071
A0862830	< 0.1	2.57	< 0.5	3.4	<20	38	< 0.1	2.2	0.1	17.8	78	64.1	5.16	10	< 0.01	0.11	3	1.97	813	1.2	0.029	10.2	0.068
																							******
A0862831	< 0.1	3.1	0.6	3.4	<20	30	0.1	2.14	< 0.1	19.1	31	70	6.08	11	< 0.01	0.1	3	2.4	877	1.6	0.019	10	0.077
A0862832	0.1	2.5	1.2	3.9	<20	37	0.2	1.48	< 0.1	25.1	88	81	4.99	10	< 0.01	0.12	10	1.89	648	2	0.033	12.8	0.051
A0862833	0.1	2.52	1.8	2.8	<20	22	0.3	1.56	< 0.1	32.8	39	69.8	4.97	10	< 0.01	0.09	14	1.97	646	1.9	0.021	12.7	0.045
A0862834	0.2	2.71	1.1	1.8	<20	42	0.3	2.03	< 0.1	17.1	40	120.9	5.7	10	< 0.01	0.11	5	1.98	879	1.6	0.022	11.5	0.077
A0862835	0.1	2.48	1.1	1.7	<20	28	0.2	3.51	< 0.1	14.4	53	102.9	5.07	9	< 0.01	0.08	6	1.74	1092	1.1	0.017	12.2	0.055
A0862836	0.1	2.47	1	1.8	-20	22	.0.4	24.															
A0862837	0.1	2.51	1.2	1.0	<20	33	<0.1	2.44	<0.1	20.4	41	65.5	5.31	10	<0.01	0.11	2	1.73	1059	0.9	0.027	10.1	0.07
A0862838	0.1	2.91	0.8	2.2	<20 <20	66 73	<0.1 <0.1	2.22	<0.1	19.4	55	51	5.35	11	< 0.01	0.2	1	1.78	1019	1	0.025	10.5	0.072
A0862839	0.3	3.15	1.3	2.2	<20	66	<0.1	2.12	0.1 0.1	22.7 21.3	64	100	6.4	12	< 0.01	0.38	<1	2.07	1167	1.2	0.036	9.4	0.079
A0862840	0.2	2.47	<0.5	3.8	<20	54	0.1	1.46	<0.1	18.2	38 80	143.3 60.4	6.87 5.46	14 10	<0.01 <0.01	0.38 0.12	<1 2	2.33 1.77	1350 921	1.1 1.8	0.027 0.049	10.4 12.5	0.066 0.047
,10002010	0.2.	A	*0.5	3.0	\z.U	200	0.2	1.40	VU.1	10.2	00	00.4	3.40	1.0	<0.01	0.12	2	1.77	341	1.0	0.045	14.3	0.047
A0862841	0.2	2.03	0.7	3.5	<20	50	0.2	1.08	< 0.1	13.9	58	50.3	4.46	9	< 0.01	0.07	3	1.48	694	1.8	0.028	10.9	0.029
A0862842	0.2	2.39	0.7	6.5	<20	101	0.1	1.7	< 0.1	18.7	88	71.2	5.28	10	< 0.01	0.14	3	1.71	887	1	0.041	12	0.045
A0862843	0.2	2.6	1.7	5.1	<20	62	0.1	1.76	< 0.1	21.7	54	90.3	5.82	11	< 0.01	0.23	1	2.04	920	1.2	0.028	15.8	0.061
A0862844	< 0.1	2.61	0.7	2.3	<20	82	< 0.1	2.02	< 0.1	16.9	57	20.1	5.72	11	< 0.01	0.26	4	1.9	958	1.4	0.043	13.8	0.119
A0862845	0.2	2.36	0.9	3.3	<20	41	< 0.1	1.99	< 0.1	17.2	39	80.9	5.28	10	< 0.01	0.1	2	1.74	960	1.4	0.029	10.5	0.051
40000040	0.3	2 4 4	-0.5		-20												_						
A0862846	0.2	2.14	<0.5	4.1	<20	51	<0.1	1.38	0.5	15.9	74	63.7	4.67	9	< 0.01	0.12	2	1.57	874	1.4	0.042	10.9	0.044
A0862847 A0862848	0.2	2.3	1	5.4	<20	46	0.2	1.43	0.8	18.4	46	82.2	5.02	10	< 0.01	0.16	3	1.83	996	0.9	0.034	12.2	0.056
A0862849	0.1	2.43	<0.5	2.8	<20	29	0.2	1.63	0.4	16	78	56.2	4.9	11	<0.01	0.08	3	1.96	1146	1	0.046	8.8	0.066
	0.1	2.36	< 0.5	3.4	<20	27	0.1	1.36	0.3	15.7	52	53.6	4.74	11	<0.01	0.08	3	1.97	1043	0.9	0.031	9	0.066
A0862850	0.2	2.8	<0.5	2.2	<20	53	<0.1	2.84	0.3	22.1	89	103.3	6.12	13	<0.01	0.26	1	2.26	1443	0.8	0.039	19.4	0.071
A0862851	0.2	3.02	<0.5	4	<20	82	< 0.1	1.37	0.1	26	47	167.7	6.82	13	< 0.01	0.41	<1	2.4	1355	1.1	0.025	14.5	0.059
A0862851 Re	0.2	3.08	< 0.5	3.7	<20	83	0.1	1.38	0.1	26.6	47	168.7	7.01	14	< 0.01	0.42	<1	2,44	1380	1.2	0.024	14.9	0.061
A0862852	0.1	2.86	0.6	1.8	<20	40	< 0.1	1.76	< 0.1	21.6	57	109.4	6.25	13	< 0.01	0.21	1	2.26	1603	0.8	0.04	13.2	0.069
A0862853	0.1	2.28	< 0.5	2.6	<20	49	< 0.1	1.78	< 0.1	18.4	61	79.7	5.39	10	< 0.01	0.22	1	1.65	1013	0.8	0.03	12.2	0.067
A0862854	< 0.1	1.77	0.6	3.3	<20	41	< 0.1	1.83	< 0.1	16.8	114	62.3	5.06	9	< 0.01	0.21	2	1.54	826	1.5	0.04	18.2	0.083

Signed: Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58394 October 6, 2020

## MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
A0862855	< 0.1	1.97	< 0.5	4.1	<20	52	0.1	2.37	0.8	18.9	49	62.5	5.88	10	< 0.01	0.26	2	1.75	999	1.1	0.028	10.8	0.107
A0862856	0.1	2.11	0.6	4	<20	77	0.1	2.5	1.1	22.1	58	93.6	6.65	11	< 0.01	0.38	2	1.87	1118	0.7	0.055	10.5	0.073
A0862857	0.1	1.95	< 0.5	3.5	<20	56	< 0.1	2.15	0.2	18.8	49	73	5.71	10	< 0.01	0.27	1	1.67	961	0.9	0.036	11.9	0.074
A0862858	0.1	1.97	< 0.5	3.9	<20	53	0.1	2.17	0.6	18.5	65	93.4	5.79	10	< 0.01	0.21	2	1.67	1075	0.8	0.054	9.1	0.079
A0862859	0.1	2.54	0.5	4	<20	58	< 0.1	1.93	0.3	23.9	43	85.1	6.15	11	< 0.01	0.21	<1	2.16	1288	0.8	0.037	14.2	0.083
A0862860	0.3	1.89	< 0.5	36.1	<20	252	< 0.1	4.32	0.5	32.4	65	123.5	7.58	9	< 0.01	0.31	1	2.81	1675	0.6	0.038	11.8	0.061
A0862861	0.1	2.53	< 0.5	39.2	<20	48	0.2	3.02	< 0.1	30.3	18	52.1	7.66	12	< 0.01	0.28	2	2.59	1004	0.5	0.019	12.6	0.067
A0862862	0.4	2.6	1.8	170.8	<20	51	0.6	4.74	0.2	40.5	85	264.5	8	12	< 0.01	0.17	2	2.7	1314	0.5	0.032	21	0.063
A0862863	< 0.1	1.45	< 0.5	0.7	<20	94	< 0.1	3.42	< 0.1	17.8	59	5.4	2.23	5	< 0.01	0.24	4	2.11	643	0.5	0.031	51.8	0.022
A0862864	0.3	2.16	< 0.5	312.7	<20	68	0.5	6.74	0.2	24.5	58	53.9	4.97	9	< 0.01	0.15	2	2.33	1495	2.2	0.031	19.3	0.073
A0862865	0.2	2.36	< 0.5	59.5	<20	24	0.5	5.85	0.1	23.6	39	69.5	5.67	10	< 0.01	0.17	2	2.24	1694	0.5	0.029	12	0.084
A0862866	0.1	2.41	1	3.9	<20	134	0.2	5.64	< 0.1	41.3	62	133.6	8.99	12	< 0.01	0.03	3	2.7	1516	0.8	0.033	9.6	0.085
A0862867	0.1	1.9	0.6	7.3	<20	126	< 0.1	1.82	< 0.1	24.9	34	165.7	7.39	10	< 0.01	0.35	2	2.12	828	0.7	0.043	8.4	0.101
A0862868	0.2	2.82	< 0.5	42.6	<20	50	0.4	1.73	< 0.1	79	89	201.9	10.74	15	< 0.01	0.31	7	3.43	774	4.5	0.033	26.1	0.114
A0862869	0.2	2.31	1.4	2.4	<20	15	0.3	5.68	0.1	44.5	41	16.2	5.77	9	< 0.01	0.07	3	1.93	1193	0.6	0.029	20.6	0.062
																	_		W 70 70	0.5	0.446		0.074
A0862870	0.2	1.28	< 0.5	32.6	<20	13	< 0.1	1.48	< 0.1	20.6	62	677.2	4.34	6	< 0.01	0.07	2	1.13	532	0.5	0.116	8	0.074
A0862871	< 0.1	0.64	1.7	0.7	<20	10	<0.1	1.41	< 0.1	4.7	145	6.1	1.43	3	< 0.01	0.03	2	0.5	133	1.4	0.044	56.8	0.033
A0862872	< 0.1	0.99	3	<0.5	<20	24	<0.1	0.65	<0.1	5	195	4.1	2.03	6	< 0.01	0.11	5	0.8	123	1.5	0.048	76.4	0.02
A0862873	< 0.1	1.15	9.8	0.6	<20	22	< 0.1	0.6	< 0.1	9.2	96	36.3	2.32	6	< 0.01	0.15	7	0.94	112	1.9	0.037	64.3	0.057
A0862874	0.5	1.3	9.5	5.1	<20	18	0.2	0.64	0.1	9.4	102	499.4	2.7	6	< 0.01	0.19	4	1.07	122	2.8	0.029	54.9	0.044
											0.0	0.07			.0.04	0.00	2	0.07	105	r o	0.021	65.6	0.053
A0862875	0.4	1.07	2	3.1	<20	4	0.2	1.37	0.1	9	92	387	2.5	4	<0.01	0.08	3	0.87	185	5.2	0.031 0.046	42.4	0.033
A0862876	0.1	1.71	2.5	1.8	<20	23	0.3	1.84	<0.1	9	130	49.8	3.4	10	<0.01	0.22	6	1.39	360	1.5	0.046	69.3	0.043
A0862877	<0.1	1.49	2.1	4	<20	29	0.2	0.34	<0.1	7.6	108	33.9	2.94	9	<0.01	0.3	10	1.25	194	1.1 2.1	0.033	78.7	0.012
A0862878	0.1	1.58	7.8	1	<20	18	0.1	0.37	0.1	8.9	184	55.6	3.18	8	<0.01	0.17	10 7	1.3 1.27	208 193	1.6	0.028	65.1	0.057
A0862879	0.2	1.52	1.9	1.3	<20	32	<0.1	0.53	<0.1	8.3	110	89.8	3.22	8	<0.01	0.27	,	1.27	133	1.0	0.026	05.1	0.037
A0862880	<0.1	1.27	1.4	1.1	<20	18	0.1	0.44	<0.1	7.2	207	46.1	2.85	6	<0.01	0.15	7	1.07	187	4.4	0.044	62.4	0.027
A0862881	<0.1	1.09	4.3	1.3	<20	12	0.1	0.44	<0.1	7.2	108	18.8	2.33	5	<0.01	0.14	8	0.93	156	0.8	0.024	57.6	0.016
A0862882	<0.1	1.03	2.7	0.7	<20	13	0.2	0.48	<0.1	6.3	205	21.2	2.33	2	<0.01	0.09	13	1.1	191	1	0.037	67.3	0.014
A0862883	0.2	0.92	3.4	1.2	<20	19	<0.1	0.76	<0.1	7.1	126	40.2	2.23	4	<0.01	0.05	5	0.77	192	1.8	0.026	74.7	0.017
A0862884	<0.1	1.1	2.6	1.2	<20	20	0.2	2.5	<0.1	12.8	180	41.8	2.23	5	< 0.01	0.09	6	0.85	393	2.6	0.028	53.9	0.027
AU002004	<0.1	1.1	2.0	1.2	\20	20	0.2	2.3	VU.1	12.0	100	41.0	4.11		<0.01	0.03	U	0.03	923	2.0	0.020	33.5	
A0862885	<0.1	1.12	1.1	1.6	<20	18	0.1	2.04	< 0.1	11.5	120	21.5	2.41	5	< 0.01	0.13	4	0.86	300	0.7	0.024	31.7	0.022
A0862886	<0.1	0.99	1.8	1.1	<20	12	0.1	0.83	<0.1	8.1	227	19.4	2.11	4	< 0.01	0.07	5	0.76	191	1.2	0.034	50.8	0.015
A0862887	<0.1	0.94	2.3	1.3	<20	15	0.2	0.65	0.1	7.4	131	14.7	2.02	4	< 0.01	0.05	7	0.84	177	0.7	0.025	55	0.031
A0862887 Re	<0.1	0.94	2.5	1.5	<20	15	0.2	0.65	0.1	7.4	129	14.3	2.02	4	< 0.01	0.05	7	0.83	176	0.7	0.025	53.5	0.031
A0862888	<0.1	1.11	2.2	2,3	<20	26	0.4	2.15	<0.1	12	160	17.5	2.53	6	< 0.01	0.12	3	0.95	285	0.8	0.038	58.2	0.062
70002000	~U.1	4.44	2.4	4.	~20	20	<b>U.</b> →	4.23	~0.1	2.4.	100	27.3	ددره	~	70.04	0.44	_	0.00	24.00				

Signed: ______ Mark Acres - Quality Assurance

## Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58394 October 6, 2020

## **MULTIELEMENT ICP-MS ANALYSIS**

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	р %
A0862889	<0.1	1.57	2.6	3	<20	38	0.2	3.18	< 0.1	18.5	106	20.6	3.12	6	< 0.01	0.27	3	1.32	414	1	0.031	52.3	0.111
A0862890	< 0.1	1.65	3.9	3	<20	42	0.3	1.42	< 0.1	19.4	116	20.1	3.44	7	< 0.01	0.28	3	1.4	303	1.2	0.031	53	0.09
A0862891	0.2	1.31	5.1	2.8	<20	16	0.3	1	0.1	10.3	148	22.7	2.86	6	< 0.01	0.1	5	1.1	235	1.6	0.065	58.8	0.082
A0862892	< 0.1	1.18	0.8	0.9	<20	24	0.2	0.67	< 0.1	9.5	163	26	2.42	5	< 0.01	0.14	6	0.88	165	1.4	0.059	45.1	0.023
A0862893	0.1	2.28	1.1	4.2	<20	29	0.5	0.82	< 0.1	31.6	93	60.9	5.33	10	< 0.01	0.21	3	2.06	268	2.4	0.055	84.3	0.115
A0862894	<0.1	1.91	1.6	0.8	<20	38	0.1	1.34	<0.1	13.7	111	25.3	3.57	8	< 0.01	0.23	4	1.57	315	1.8	0.056	50.2	0.111
A0862895	< 0.1	1.52	0.8	1	<20	15	< 0.1	0.86	<0.1	8.7	133	41	3.12	8	< 0.01	0.11	4	1.24	234	1.6	0.068	72.4	0.124
A0862896	< 0.1	1.54	1.3	1.6	<20	27	0.1	0.65	< 0.1	11.6	101	61.2	3.35	9	< 0.01	0.19	3	1.32	226	2.2	0.038	85.1	0.056
A0862897	0.1	1.57	1.9	2	<20	47	0.1	0.81	< 0.1	12.8	115	68	3.37	8	< 0.01	0.26	2	1.31	251	1.9	0.035	69	0.059
A0862898	< 0.1	1.71	1.5	1	<20	40	< 0.1	1.19	< 0.1	13.7	90	40.6	3.35	8	< 0.01	0.29	3	1.47	286	1.9	0.039	45.7	0.101
A0862899	<0.1	1.95	1.3	1.4	<20	40	<0.1	1.00	-0.1	1.6	77.0	44.2	2.50	9	-0.03	0.21		1 70	421	1.8	0.047	42.5	0.12
A0862990	<0.1	2.5	0.8		<20			1.65	<0.1	14	76	44.3	3.58	-	< 0.01	0.21	5	1.76	431		0.047	26.1	0.158
STD DS11	1.8	1.1	44.4	0.6 73	<20	10 404	< 0.1	2.17	<0.1	16.8	55	22.7	4.43	11	< 0.01	0.07	6	2.29	615	1.3	0.043	82.5	0.066
STD OREAS262	0.5	1.2	35.8	57.9			10	1.02	2.1	13.6	58	143.1	3.07	5	0.27	0.39	17	0.81	996	14.7		67.1	0.036
STD OREAS262	0.5	1.23	35.3	58.4	<20	240	0.9	2.89	0.6	27	42	112.1	3.31	4	0.16	0.29	15	1.17	529	0.7	0.067	64.5	0.039
310 OREA3202	0.5	1.43	33.3	36.4	<20	236	0.9	2.87	0.6	26.8	42	112	3.33	4	0.16	0.3	14	1.17	529	0.6	0.067	04.3	0.055
STD DS11	1.5	1.05	41.8	60.4	<20	380	10.3	0.99	2.1	13	55	139.6	2.97	4	0.23	0.37	15	0.8	971	12.7	0.065	74	0.065
STD OREAS262	0.4	1.14	35.8	51.5	<20	239	0.9	2.82	0.6	26.3	40	112.2	3.26	3	0.16	0.29	15	1.16	515	0.6	0.067	62.9	0.037
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001



# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58394 Date: October 6, 2020

## **MULTIELEMENT ICP-MS ANALYSIS**

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0862821	1.9	0.22	< 0.1	5.5	< 0.5	86	< 0.2	0.7	0.016	< 0.1	0.1	81	< 0.1	79
A0862822	3.2	0.34	0.1	5.6	0.5	112	< 0.2	0.3	0.024	< 0.1	< 0.1	54	< 0.1	89
A0862823	6.5	0.88	0.1	5.1	0.6	161	0.5	0.3	0.004	< 0.1	< 0.1	29	0.2	60
A0862824	1.5	0.52	< 0.1	5.5	< 0.5	116	< 0.2	0.5	0.009	< 0.1	< 0.1	57	< 0.1	67
A0862825	0.8	0.44	< 0.1	13.5	< 0.5	39	< 0.2	0.3	0.013	< 0.1	< 0.1	152	< 0.1	60
A0862826	1.6	0.63	0.1	9.2	< 0.5	37	< 0.2	0.5	0.048	0.1	< 0.1	88	< 0.1	54
A0862827	1.6	0.78	0.2	8	0.6	76	< 0.2	0.3	0.066	0.2	< 0.1	81	0.1	50
A0862828	1.2	0.66	< 0.1	10.2	0.6	60	< 0.2	0.3	0.036	< 0.1	< 0.1	118	< 0.1	55
A0862829	1.2	0.33	< 0.1	9	< 0.5	48	< 0.2	0.5	0.035	< 0.1	< 0.1	108	< 0.1	56
A0862830	1.1	0.31	< 0.1	9.2	< 0.5	49	< 0.2	0.5	0.037	< 0.1	< 0.1	109	< 0.1	55
A0862831	1.1	0.34	< 0.1	10.2	< 0.5	47	< 0.2	0.3	0.039	< 0.1	< 0.1	139	< 0.1	65
A0862832	1.2	0.34	< 0.1	7.5	< 0.5	32	< 0.2	0.8	0.034	< 0.1	0.2	91	< 0.1	55
A0862833	1.3	0.27	< 0.1	8.1	< 0.5	35	< 0.2	0.8	0.026	< 0.1	0.1	95	< 0.1	59
A0862834	1.2	0.49	< 0.1	7.7	0.7	39	< 0.2	0.5	0.058	< 0.1	< 0.1	112	< 0.1	57
A0862835	1	0.31	< 0.1	8.3	0.7	66	< 0.2	0.5	0.056	< 0.1	< 0.1	111	< 0.1	53
A0862836	1	0.34	< 0.1	10.8	0.7	41	< 0.2	0.4	0.11	< 0.1	< 0.1	122	< 0.1	56
A0862837	1.1	0.22	< 0.1	12.9	0.6	32	< 0.2	0.2	0.13	< 0.1	< 0.1	148	< 0.1	60
A0862838	2.1	0.59	< 0.1	14	0.9	25	< 0.2	0.2	0.219	0.1	< 0.1	195	< 0.1	88
A0862839	2.4	0.45	< 0.1	18.3	0.7	25	< 0.2	0.2	0.193	0.1	< 0.1	246	< 0.1	101
A0862840	3.6	0.63	< 0.1	11.1	1.5	20	< 0.2	0.5	0.128	< 0.1	0.1	126	< 0.1	68
A0862841	2.9	0.67	< 0.1	7.6	1.5	20	< 0.2	8.0	0.067	< 0.1	0.2	84	< 0.1	66
A0862842	3.1	0.69	< 0.1	9.4	1.6	30	< 0.2	0.4	0.108	< 0.1	< 0.1	108	< 0.1	81
A0862843	3.3	0.65	< 0.1	12.6	1.5	24	< 0.2	0.5	0.172	< 0.1	< 0.1	155	< 0.1	59
A0862844	1.9	0.35	< 0.1	7.7	0.6	29	<0.2	1	0.137	< 0.1	0.2	104	<0.1	60
A0862845	2.6	0.51	< 0.1	10.4	0.6	29	< 0.2	0.4	0.1	< 0.1	< 0.1	116	< 0.1	67
A0862846	3.2	0.43	<0.1	8.5	<0.5	27	<0.2	0.5	0.067	<0.1	0.1	98	<0.1	157
A0862847	2.5	0.52	<0.1	10.7	0.6	33	<0.2	0.5	0.061	<0.1	<0.1	118	<0.1	190
A0862848	4	0.16	<0.1	14.3	0.5	27	<0.2	0.6	0.089	<0.1	0.1	142	<0.1	133
A0862849	3.4	0.16	<0.1	13.7	0.5	23	<0.2	0.5	0.073	<0.1	<0.1	139	<0.1	131
A0862850	2.1	0.2	<0.1	18.7	0.6	40	<0.2	0.3	0.185	<0.1	<0.1	206	<0.1	155
A0862851	1.3	0.41	< 0.1	16.6	1.2	16	<0.2	0.3	0.189	0.1	< 0.1	208	<0.1	104
A0862851 Re	1.4	0.42	<0.1	16.9	1.2	16	<0.2	0.3	0.189	0.1	<0.1	211	<0.1	106
A0862852	1.1	0.14	<0.1	16.5	0.6	24	<0.2	0.3	0.189	<0.1	<0.1	200	<0.1	132
A0862853	1.5	0.14	<0.1	9.6	0.5	28	<0.2	0.3	0.158	<0.1	<0.1	127	<0.1	104
A0862854	1.6	0.19	<0.1	10.1	0.5	24	<0.2	0.4	0.136	<0.1	<0.1	146	0.1	100
MU002034	0.3	0.51	VU.1	TO.T	0.0	24	5U.Z	U.3	U.1/0	<0.1	<0.1	140	U.I	100

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:
Date: Oct

S58394 October 6, 2020

## **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	ті	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0862855	2.6	0.32	< 0.1	12.3	0.6	26	< 0.2	0.3	0.188	< 0.1	< 0.1	166	0.1	168
A0862856	2.1	0.28	0.1	16.3	0.5	28	< 0.2	0.3	0.228	< 0.1	< 0.1	218	0.1	196
A0862857	2.8	0.34	0.1	11.3	0.5	24	<0.2	0.2	0.226	< 0.1	< 0.1	172	0.2	123
A0862858	2	0.97	0.1	10.9	0.9	28	< 0.2	0.3	0.215	< 0.1	< 0.1	172	0.1	184
A0862859	1.4	0.36	< 0.1	10.9	<0.5	20	<0.2	0.1	0.248	< 0.1	< 0.1	178	<0.1	176
A0862860	2.5	0.92	<0.1	27.8	<0.5	113	0.2	0.2	0.065	0.1	0.2	340	0.1	93
A0862861	1.1	0.52	<0.1	27.1	<0.5	54	<0.2	0.3	0.003	<0.1	<0.1	478	<0.1	62
A0862862	2.3	3.22	<0.1	27.7	1.2	125	<0.2	0.3	0.073	<0.1	<0.1	377	<0.1	68
A0862863	1.4	0.32	<0.1	12.6	<0.5	108	<0.2	0.2	0.032	<0.1	0.2	67	<0.1	49
A0862864	3.8	0.52	<0.1	14.7	<0.5	144	<0.2	0.5	0.032	<0.1	0.3	127	<0.1	65
AU802804	3.8	0.92	<0.1	14.7	<0.5	144	<u.z< td=""><td>0.5</td><td>0.019</td><td>&lt;0.1</td><td>0.5</td><td>127</td><td>&lt;0.1</td><td>0.5</td></u.z<>	0.5	0.019	<0.1	0.5	127	<0.1	0.5
A0862865	1.9	0.67	< 0.1	20.3	< 0.5	89	< 0.2	0.4	0.048	< 0.1	0.1	179	< 0.1	75
A0862866	1.1	1.66	< 0.1	21.8	0.6	76	< 0.2	0.6	0.032	< 0.1	0.1	325	< 0.1	67
A0862867	0.4	0.35	< 0.1	15.5	< 0.5	27	< 0.2	0.4	0.117	0.1	0.2	310	< 0.1	54
A0862868	1.4	4.51	< 0.1	24.9	0.7	19	< 0.2	0.9	0.083	< 0.1	0.5	279	< 0.1	43
A0862869	4	0.9	< 0.1	21.5	< 0.5	87	< 0.2	0.2	0.014	< 0.1	< 0.1	183	< 0.1	80
A0862870	0.4	0.22	< 0.1	8.7	0.5	24	<0.2	0.3	0.148	< 0.1	0.1	173	< 0.1	49
A0862871	1.2	0.19	0.1	4.4	< 0.5	12	< 0.2	0.6	0.087	< 0.1	0.4	49	0.1	13
A0862872	1.5	0.07	0.2	6	< 0.5	5	< 0.2	1.2	0.075	< 0.1	0.4	72	< 0.1	19
A0862873	1.2	0.11	0.1	6.8	1	5	< 0.2	1.2	0.079	< 0.1	0.6	72	0.2	18
A0862874	0.6	0.19	< 0.1	8.7	1.4	4	< 0.2	1	0.105	< 0.1	0.7	111	< 0.1	21
				~ ~	~ .				0.007	0.4	0.0	70	0.1	10
A0862875	0.6	0.38	<0.1	7.2	3.1	7	<0.2	0.7	0.097	<0.1	0.3	79	0.1 <0.1	18 35
A0862876	5	0.4	0.1	9	1.5	13	<0.2	1.3	0.113	<0.1	0.5	80		30
A0862877	2.4	0.4	0.2	6.3	1.2	5	<0.2	1.3	0.064	<0.1	0.7	76	<0.1	32
A0862878	6.2	0.3	0.7	7.1	1.2	6	<0.2	1.4	0.061	<0.1	1	101	<0.1	32 28
A0862879	1.5	0.43	0.3	7.4	1	7	<0.2	0.8	0.062	<0.1	0.6	96	< 0.1	20
A0862880	1.7	0.44	0.4	5.2	1.4	6	<0.2	1.3	0.035	< 0.1	0.4	66	<0.1	21
A0862881	1.2	0.36	0.6	5.5	1.3	5	<0.2	0.8	0.035	<0.1	0.5	69	< 0.1	18
A0862882	1.1	0.22	0.5	4.8	1	5	<0.2	1.2	0.022	<0.1	0.6	62	<0.1	24
A0862883	1.2	0.32	0.3	4.2	1.1	7	<0.2	0.9	0.022	<0.1	0.4	55	< 0.1	18
A0862884	2.7	0.71	0.2	5	1.5	19	<0.2	0.7	0.029	<0.1	0.4	78	<0.1	18
NOULOUT	Acres 1	0.71	V.2	,	2.0	2.7	-0.2	0.7	0.02.0	-0.4	0		-0.2	
A0862885	1.6	0.45	< 0.1	5.3	0.8	18	< 0.2	0.5	0.072	< 0.1	0.2	71	< 0.1	19
A0862886	1.4	0.22	0.2	4.1	0.5	7	< 0.2	0.8	0.05	< 0.1	0.3	62	< 0.1	16
A0862887	1.2	0.14	0.3	4	< 0.5	7	< 0.2	0.8	0.028	< 0.1	0.3	62	< 0.1	20
A0862887 Re	1.2	0.14	0.3	4	0.5	6	< 0.2	0.8	0.028	< 0.1	0.3	62	< 0.1	20
A0862888	1.8	0.42	< 0.1	5.2	1	16	< 0.2	0.9	0.102	< 0.1	0.3	66	< 0.1	18

Signed: _____ Mark Acres - Quality Assurance

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: October 6, 2020

S58394

## MULTIELEMENT ICP-MS ANALYSIS

Element Sample	Pb ppm	\$ %	Sb ppm	Sc ppm	Se ppm	Sr ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm
A0862889	1.8	0.41	0.1	5.4	0.9	24	<0.2	0.8	0.149	< 0.1	0.5	87	0.1	23
A0862890	2	0.43	< 0.1	5.8	1	12	< 0.2	0.7	0.161	< 0.1	0.3	93	0.1	25
A0862891	7.1	0.39	0.2	5.7	1.1	17	< 0.2	0.9	0.062	< 0.1	0.4	79	< 0.1	25
A0862892	1.2	0.38	0.1	4.4	1.1	7	< 0.2	1.2	0.069	< 0.1	0.3	50	< 0.1	20
A0862893	2.2	1.36	0.1	12.2	2.1	6	<0.2	0.5	0.218	< 0.1	0.4	172	0.2	38
A0862894	1.3	0.33	< 0.1	6.6	0.8	11	<0.2	0.7	0.149	<0.1	0.3	96	0.1	32
A0862895	1.5	0.44	< 0.1	7.1	1.2	7	< 0.2	0.7	0.16	< 0.1	0.6	104	0.1	24
A0862896	1.8	0.54	< 0.1	7.5	1.5	5	< 0.2	0.8	0.159	< 0.1	0.6	110	0.2	28
A0862897	1.5	0.6	0.1	7.4	1.5	6	< 0.2	0.7	0.138	< 0.1	0.4	102	0.2	24
A0862898	1.1	0.33	<0.1	7.4	0.9	8	<0.2	0.8	0.111	<0.1	0.3	92	< 0.1	26
A0862899	1.2	0.31	< 0.1	6.8	< 0.5	12	<0.2	1	0.11	<0.1	0.3	93	<0.1	39
A0862900	1	0.12	< 0.1	7.1	< 0.5	18	< 0.2	1.1	0.093	< 0.1	0.4	109	< 0.1	49
STD DS11	127.5	0.28	6	2.9	2.4	64	4.6	6.8	0.088	5.1	2.9	48	2.7	331
STD OREAS262	53.5	0.27	2.6	3	0.8	35	0.2	8.6	0.003	0.5	1.1	21	0.1	146
STD OREAS262	52.4	0.27	3	3.2	< 0.5	35	0.2	8.1	0.003	0.4	1.1	21	<0.1	146
STD DS11	123.3	0.27	6.3	3	2.1	60	4.4	6.3	0.083	4.5	2.1	45	2.2	319
STD OREAS262	52.5	0.26	2.6	2.9	< 0.5	33	0.2	8.2	0.003	0.4	1.1	20	0.1	145
BLK	< 0.1	<0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1



Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Handstone1

TSL Report: S58394

Date Received: Sep 15, 2020 Date Reported: Sep 22, 2020

Invoice: 78583

Remarks:

Sample Type: Number Size Fraction Sample Preparation
Core 80 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp  $\sim 95\%$  at -150 mesh (106  $\mu$ m)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	a/tonne	Fire Assav/Gravimetric	0.03	100%



## **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. S58394

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78583
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Aul	File
	g/t	g/t	Name
A0862821	<.03		S58394
A0862822	<.03	<.03	S58394
A0862823	.19		S58394
A0862824	<.03		S58394
A0862825	<.03		S58394
A0862826	<.03		S58394
A0862827	<.03	<.03	S58394
A0862828	<.03		S58394
A0862829	< .03		S58394
A0862830	<.03		S58394
A0862831	<.03		S58394
A0862832	< . 03	<.03	S58394
A0862833	<.03		S58394
A0862834	<.03		S58394
A0862835	< .03		S58394
A0862836	<.03		S58394
A0862837	<.03		S58394
A0862838	<.03		S58394
A0862839	<.03		S58394
A0862840	<.03		S58394

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. S58394

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78583
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862841	<.03		S58394
A0862842	<.03	<.03	S58394
A0862843	< .03		S58394
A0862844	<.03		S58394
A0862845	<.03		S58394
A0862846	< .03		S58394
A0862847	< .03	<.03	S58394
A0862848	< .03		S58394
A0862849	< .03		S58394
A0862850	< .03		S58394
A0862851	<.03		S58394
A0862852	< .03	< .03	S58394
A0862853	< .03		S58394
A0862854	<.03		S58394
A0862855	<.03		S58394
A0862856	<.03		S58394
A0862857	<.03		S58394
A0862858	< . 03		S58394
A0862859	< .03		S58394
A0862860	.03		S58394

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. S58394

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78583
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
			GE0004
A0862861	<.03		S58394
A0862862	.15	. 15	S58394
A0862863	<.03		S58394
A0862864	.33		S58394
A0862865	.10		S58394
A0862866	<.03		S58394
A0862867	<.03	<.03	S58394
A0862868	.05		S58394
A0862869	<.03		S58394
A0862870	<.03		S58394
A0862871	<.03		S58394
A0862872	<.03	<.03	S58394
A0862873	<.03		S58394
A0862874	<.03		S58394
A0862875	<.03		S58394
A0862876	< .03		S58394
A0862877	<.03		S58394
A0862878	<.03		S58394
A0862879	<.03		S58394
A0862880	< .03		S58394

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED

Mark Acres - Quality Assurance



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. S58394

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78583
P.O.: Hanstonel

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862881	<.03		S58394
A0862882	<.03	<.03	S58394
	<.03	(.03	S58394
A0862883			
A0862884	<.03		S58394
A0862885	<.03		S58394
A0862886	< .03		S58394
A0862887	< .03	<.03	S58394
A0862888	<.03		S58394
A0862889	<.03		S58394
A0862890	<.03		S58394
A0862891	<.03		S58394
A0862892	<.03	< .03	S58394
A0862893	<.03		S58394
A0862894	<.03		S58394
A0862895	< .03		S58394
A0862896	<.03		S58394
A0862897	< .03		S58394
A0862898	<.03		S58394
A0862899	<.03		S58394
A0862900	<.03		S58394
20002200	~ . 0 . 3		00000

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58394

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78583

P.O.: Hanstonel

T. Fiolleau
Doc Project

	Au	Aul	File
	g/t	g/t	Name
GS-7E	7.17		S58394
GS-7E	7.82		S58394
GS-7E	7.68		S58394
GS-7E	7.10		S58394

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 22/20

SIGNED

Mark Acres - Quality Assurance



Company: Hanstone Gold Corp TSL Report: S58395 Geologist: T. Fiolleau Date Received: Sep 15, 2020 Doc Project Project: Date Reported: Oct 06, 2020 Purchase Order: Hanstone1 Invoice: 78584

Sample Type: Number Size Fraction Sample Preparation
Core 24 Reject ~ 70% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% -150 mesh (106 μm)

Pulp 0 None

## ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element	Lower Detection	Upper Detection	Element	Lower Detection	Upper Detection
Name	Limit	Limit	Name	Limit	Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	10000 ppm
Al *	0.01 %	10 %	Mo	0.1 ppm	2000 ppm
As	0.5 ppm	10000 ppm	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	Ni	0.1 ppm	10000 ppm
B *	1 ppm	2000 ppm	P *	0.001%	5 %
Ba *	1 ppm	1000 ppm	Pb	0.1 ppm	10000 ppm
Bi	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Со	0.1 ppm	2000 ppm	Se	0.5 ppm	1000 ppm
Cr *	1 ppm	10000 ppm	Sr *	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Te	1 ppm	2000 ppm
Fe *	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	<b>T</b> ; *	0.001%	10 %
Hg	0.01 ppm	100 ppm	The state of the s	0.1 ppm	1000 ppm
K *	0.01%	10 %	U *	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	V *	2 ppm	10000 ppm
Mg *	0.01%	30 %	W *	0.1 ppm	100 ppm
			Zn	1 ppm	10000 ppm

## Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 24 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

S58395

Date: October 6, 2020

## MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
A0862901	0.1	1.9	1	0.6	<20	25	<0.1	1.76	<0.1	11.1	90	69.8	3.49	8	< 0.01	0.11	6	1.61	436	0.6	0.069	36.3	0.105
A0862902	0.3	1.54	10.7	1.1	<20	18	0.1	0.81	0.1	9.7	112	72.6	3.19	7	< 0.01	0.06	6	1.16	307	0.5	0.037	63.7	0.025
A0862903	0.1	1.09	7	1.2	<20	37	0.1	2.71	0.2	8.7	155	26.1	2.29	4	< 0.01	0.11	7	0.73	507	0.6	0.037	47.4	0.029
A0862904	<0.1	1.88	0.8	2.6	<20	98	< 0.1	7.45	0.2	34.7	44	19.8	2.89	7	< 0.01	0.05	3	2.7	611	2.9	0.018	15.3	0.116
A0862905	0.1	0.88	8.4	55.4	<20	27	2.4	1.47	<0.1	34.8	281	71.8	5.43	4	< 0.01	0.03	2	0.76	248	1.9	0.04	44.2	0.016
A0862906	0.2	2.43	0.5	3.2	<20	79	<0.1	1.44	<0.1	18	55	116.7	5.24	10	<0.01	0.19	1	2.28	546	0.7	0.035	15.9	0.051
A0862907	0.1	1.9	< 0.5	3.6	<20	233	< 0.1	3.54	0.2	20.1	78	41.9	4.38	5	< 0.01	0.25	5	2.65	1034	1	0.053	52.1	0.103
A0862908	0.3	0.51	2.2	15.4	<20	176	< 0.1	5.73	0.8	18.1	82	72.8	4.04	1	< 0.01	0.32	2	2.04	1772	1	0.042	20.2	0.078
A0862909	0.4	1.45	0.8	49.7	<20	232	< 0.1	3.77	0.9	24.9	104	51.9	4.45	5	< 0.01	0.83	2	2.77	1827	4.3	0.052	31.1	0.099
A0862910	0.2	1.21	< 0.5	3.4	<20	76	< 0.1	4.6	0.5	19.2	60	72.8	4.11	3	< 0.01	0.52	2	2.62	1361	0.9	0.022	24.9	0.093
7100000																							
A0862911	1.7	0.64	1.5	265.4	<20	117	< 0.1	1.6	5.1	10.4	219	49.6	3.25	2	< 0.01	0.36	2	0.67	1345	2.2	0.019	9.7	0.054
A0862912	12.2	0.04	0.7	1204.1	<20	144	< 0.1	0.11	6.8	2.2	277	291.8	0.84	<1	0.01	0.03	<1	0.04	73	15.4	0.004	8.2	0.002
A0862913	0.6	0.48	< 0.5	101.1	<20	726	0.1	6.76	7	8.4	105	94.6	1.74	1	< 0.01	0.19	3	0.64	683	5.2	0.041	24.8	0.047
A0862914	0.1	1.38	< 0.5	34.6	<20	172	0.2	3.45	0.1	20.8	94	66.5	4.34	5	< 0.01	0.11	3	1.48	578	1.9	0.034	25.1	0.072
A0862915	< 0.1	1.75	< 0.5	1.7	<20	41	< 0.1	2	0.2	15.4	100	52	4.25	6	< 0.01	0.12	4	1.56	552	2.8	0.055	18	0.058
																							2 244
A0862916	0.2	1.04	4.1	5.4	<20	53	< 0.1	4.42	0.1	14.9	115	81.2	4.18	3	< 0.01	0.17	1	1.34	995	6	0.033	18.8	0.041
A0862933	0.2	1.76	0.8	1.9	<20	43	< 0.1	1.77	0.1	11.2	169	32.9	3.44	6	< 0.01	0.13	7	1.25	531	0.6	0.034	50	0.043
A0862934	< 0.1	1.91	0.9	2.3	<20	120	< 0.1	5.05	0.1	16.1	27	85.9	4.24	7	< 0.01	0.28	2	1.66	1242	0.5	0.04	7.5	0.169
A0862935	0.1	2.43	0.5	1.8	<20	109	< 0.1	4.32	0.1	18	47	87.9	3.69	8	< 0.01	0.14	4	2.68	1038	1.9	0.048	29.2	0.131
A0862936	< 0.1	2.67	0.7	1.6	<20	41	< 0.1	3.77	0.1	24.4	109	58	4.08	9	< 0.01	0.04	4	3.4	719	2.9	0.043	63.8	0.076
																	_		***		0.055	F2.0	0.162
A0862937	< 0.1	3.08	< 0.5	< 0.5	<20	94	< 0.1	4.51	< 0.1	13.4	125	8.2	4.47	11	< 0.01	0.42	3	3.21	691	0.3	0.055	52.8	0.162
A0862938	< 0.1	2.48	< 0.5	< 0.5	<20	51	< 0.1	2.56	< 0.1	11.5	91	1.2	3.53	8	< 0.01	0.17	3	2.7	524	3.6	0.076	46.5 17.9	0.182
A0862939	< 0.1	2.04	0.8	0.6	<20	57	< 0.1	2.88	< 0.1	17.1	51	20.9	3.62	8	< 0.01	0.15	4	2.06	814	0.7	0.095	17.9	0.127
A0862939 Re	< 0.1	2	0.7	0.8	<20	54	< 0.1	2.86	< 0.1	16.5	50	20.4	3.55	8	< 0.01	0.15	4	2.02	803	0.7	0.092		0.123
A0862953	< 0.1	1.04	0.6	12.3	<20	109	< 0.1	1.93	< 0.1	18.6	29	160.7	5.76	6	< 0.01	0.09	2	1	310	0.7	0.069	4.2	U. J.
											w w-		2.27		0.00	0.27	3.5	0.0	071	12.7	0.065	74	0.065
STD DS11	1.5	1.05	41.8	60.4	<20	380	10.3	0.99	2.1	13	55	139.6	2.97	4	0.23	0.37	15	0.8	971	0.6	0.065	62.9	0.083
STD OREAS262	0.4	1.14	35.8	51.5	<20	239	0.9	2.82	0.6	26.3	40	112.2	3.26	3	0.16	0.29	15	1.16	515	<0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	< 0.5	<0.5	<20	<1	< 0.1	< 0.01	<0.1	<0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	<0.01	<1	<0.1	<0.001	~U.1	VU.UU.

Signed:

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 24 Core / 0 Pulp

## 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

S58395

Date:

October 6, 2020

# MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0862901	1.3	0.13	<0.1	6.4	<0.5	17	<0.2	0.9	0.105	<0.1	0.3	82	<0.1	31
A0862902	23.7	0.26	0.1	3.9	1	9	< 0.2	1.1	0.008	< 0.1	0.3	59	< 0.1	35
A0862903	8.3	0.18	0.1	2.9	0.8	25	< 0.2	0.6	0.009	< 0.1	0.2	46	< 0.1	23
A0862904	3.7	1.15	< 0.1	7.7	0.8	85	< 0.2	0.5	0.009	< 0.1	0.8	67	< 0.1	21
A0862905	4	3.93	0.2	4.1	5.2	23	<0.2	0.5	0.123	<0.1	0.2	46	0.1	15
A0862906	2.4	0.54	< 0.1	17.8	< 0.5	24	<0.2	0.3	0.068	< 0.1	< 0.1	160	< 0.1	41
A0862907	4	0.36	0.1	6.5	< 0.5	118	< 0.2	8.0	0.017	< 0.1	0.2	57	< 0.1	72
A0862908	8.2	1.19	0.2	5.6	0.7	162	< 0.2	0.6	0.008	< 0.1	0.1	21	0.4	51
A0862909	11.4	1.13	0.3	16.2	< 0.5	132	0.4	0.2	0.102	0.3	2.3	85	2.5	147
A0862910	4.7	0.19	0.2	7.5	<0.5	158	<0.2	0.2	0.051	0.2	0.1	45	0.1	112
A0862911	11.1	1.97	0.2	3.2	< 0.5	66	1.1	0.2	0.009	0.1	0.2	13	95.4	143
A0862912	490.8	0.5	1.8	0.3	< 0.5	7	8.2	< 0.1	< 0.001	< 0.1	< 0.1	3	71.7	238
A0862913	209.5	0.43	0.4	3.7	0.9	138	0.2	0.3	0.011	< 0.1	0.2	15	9.5	185
A0862914	3.3	0.55	0.1	5.3	0.6	74	< 0.2	0.3	0.007	< 0.1	< 0.1	66	0.2	34
A0862915	2.2	0.16	0.1	8	<0.5	35	<0.2	0.4	0.007	< 0.1	< 0.1	87	0.1	50
A0862916	6.1	0.79	0.1	4.3	0.5	66	<0.2	0.2	0.003	<0.1	0.1	37	<0.1	39
A0862933	2.3	0.06	< 0.1	5	< 0.5	19	< 0.2	0.6	0.022	< 0.1	0.1	75	< 0.1	42
A0862934	2.1	0.85	< 0.1	3.4	0.6	131	< 0.2	0.2	0.096	< 0.1	0.2	57	0.1	41
A0862935	2.1	0.68	< 0.1	5.8	0.7	99	< 0.2	0.8	0.119	< 0.1	0.7	62	0.2	44
A0862936	2.9	0.7	< 0.1	8.2	1	74	<0.2	1.2	0.129	<0.1	1	68	0.1	35
A0862937	1.3	<0.05	< 0.1	13.8	< 0.5	99	<0.2	0.4	0.169	0.1	0.2	113	<0.1	35
A0862938	0.8	< 0.05	< 0.1	6.7	< 0.5	55	< 0.2	0.4	0.158	< 0.1	0.2	80	< 0.1	23
A0862939	1.6	0.24	< 0.1	6.1	< 0.5	61	< 0.2	1	0.161	< 0.1	0.4	86	< 0.1	39
A0862939 Re	1.5	0.23	< 0.1	6.1	< 0.5	60	< 0.2	0.9	0.153	< 0.1	0.4	86	< 0.1	37
A0862953	0.6	0.77	0.1	5	<0.5	24	<0.2	0.3	0.228	<0.1	0.2	275	0.2	13
STD DS11	123.3	0.27	6.3	3	2.1	60	4.4	6.3	0.083	4.5	2.1	45	2.2	319
STD OREAS262	52.5	0.26	2.6	2.9	< 0.5	33	0.2	8.2	0.003	0.4	1.1	20	0.1	145
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	<0.001	< 0.1	< 0.1	<1	< 0.1	<1

Signed:



Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Handstone1

TSL Report: S58395

Date Received: Sep 15, 2020
Date Reported: Sep 23, 2020

Invoice: 78584

Remarks:

Sample Type: Number Size Fraction Sample Preparation
Core 24 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. S58395

SAMPLE(S) OF

24 Core/0 Pulp

INVOICE #:78584
P.O.: Hanstone1

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0862901	<.03		S58395
A0862902	<.03		S58395
A0862903	<.03		S58395
A0862904	< .03		S58395
A0862905	.05		S58395
A0862906	<.03		S58395
A0862907	< .03	<.03	S58395
A0862908	<.03		S58395
A0862909	.07		S58395
A0862910	< .03		S58395
A0862911	. 27		S58395
A0862912	1.37	1.29	S58395
A0862913	.03		S58395
A0862914	.05		S58395
A0862915	<.03		S58395
A0862916	< .03		S58395
A0862933	<.03	<.03	S58395
A0862934	<.03		S58395
A0862935	<.03		S58395
A0862936	<.03		S58395

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 23/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58395

SAMPLE(S) OF

24 Core/0 Pulp

INVOICE #:78584
P.O.: Hanstonel

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name
A0862937	<.03		S58395
A0862938	<.03		S58395
A0862939	<.03		S58395
A0862953	<.03		S58395
GS-7E	7.51		S58395
GS-7E	7.27		S58395

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 23/20

SIGNED

Mark Acres - Quality Assurance

Company: Hanstone Gold Corp TSL Report: S58435 Geologist: T. Fiolleau Date Received: Sep 23, 2020 Project: Doc Project Date Reported: Oct 13, 2020 Purchase Order: Hanstone2 Invoice: 78625

Sample Type: Number Size Fraction Sample Preparation
Core 75 Reject ~ 95% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% -150 mesh (106 μm)

Pulp 0 None

# ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag AI* As Au B* Ba* Bi Ca* Cd Co Cr* Cu Fe* Ga* Hg K* La* Mg*	0.1 ppm 0.01 % 0.5 ppm 0.5 ppb 1 ppm 1 ppm 0.1 ppm 0.01% 0.1 ppm 0.1 ppm 0.1 ppm 0.01% 1 ppm 0.01% 1 ppm 0.01% 1 ppm	100 ppm 10 % 10000 ppm 100 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10000 ppm 10000 ppm 10000 ppm 10000 ppm 1000 ppm 30 %	Mn * Mo Na * Ni P * Pb S Sb Sc Se Sr * Te Th * Ti * TI U * V * W * Zn	1 ppm 0.1 ppm 0.001% 0.1 ppm 0.001% 0.1 ppm 0.05 % 0.1 ppm 0.5 ppm 1 ppm 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.ppm 0.1 ppm 0.1 ppm	10000 ppm 2000 ppm 10 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 1000 ppm 10000 ppm 2000 ppm 2000 ppm 10 % 1000 ppm 2000 ppm 10 000 ppm 10 000 ppm
			don't t	1 ppm	10000 ppm

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 75 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58435 October 13, 2020

## **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	p %
AO862917	0.1	1.12	10.1	39.7	<20	71	0.2	3.68	0.1	14.4	110	27.9	4.56	3	0.01	0.23	1	1.08	1093	3.1	0.042	13	0.058
AO862918	0.2	1.96	8.6	94.2	<20	205	< 0.1	1.82	< 0.1	17.2	106	62.3	4.96	7	< 0.01	0.09	2	1.73	1083	3.2	0.08	11.3	0.058
A0862919	0.1	1.62	3.3	65.1	<20	172	< 0.1	2.12	0.1	12.3	69	24.5	4.11	7	< 0.01	0.15	8	1.47	1027	1.4	0.115	10.1	0.136
AO862920	< 0.1	2.26	3	1.6	<20	57	< 0.1	2.87	< 0.1	18	81	91.2	5.05	8	< 0.01	0.16	6	1.44	862	1.1	0.04	14.4	0.083
A0862921	<0.1	1.45	1.6	2.8	<20	48	<0.1	2.99	< 0.1	16	127	71.3	3.98	5	<0.01	0.14	4	0.84	562	0.6	0.063	20	0.058
A0862922	< 0.1	1.64	2.7	4.8	<20	162	<0.1	6.95	<0.1	18	82	37	4.1	6	<0.01	0.1	5	1.76	1240	1.1	0.048	24.7	0.086
A0862923	< 0.1	2.16	2.8	2.8	<20	107	< 0.1	5.47	0.1	21.7	69	33.9	4.42	8	< 0.01	0.15	6	2.58	1451	0.8	0.045	34.2	0.123
A0862924	0.2	2.06	4.4	5.5	<20	78	< 0.1	3.96	0.1	28.1	61	72.6	5.1	6	< 0.01	0.36	3	2.67	1228	1	0.036	29.3	0.125
A0862925	0.3	1.32	12.8	17.2	<20	47	0.2	4.48	0.2	23.9	64	31.5	4.25	3	0.01	0.28	2	1.28	1191	2.5	0.009	16.6	0.106
A0862926	0.3	1.12	1.4	17.3	<20	73	<0.1	3.48	0.2	16	132	153.8	3.97	3	<0.01	0.33	2	1	973	2.7	0.03	14.9	0.062
A0862927	0.4	1.08	1.6	57.1	<20	64	0.2	2.58	0.2	23.8	140	109.9	3.69	3	<0.01	0.25	1	1.13	642	0.8	0.033	17.5	0.081
A0862928	0.2	0.92	5.1	14.6	<20	354	0.1	5.87	0.4	18.9	60	34.3	3.07	2	< 0.01	0.24	2	1.41	905	2.2	0.014	16.2	0.082
A0862929	< 0.1	1.04	0.6	12.7	<20	45	0.2	7.06	0.5	16.5	30	11.6	2.99	3	< 0.01	0.05	2	1.13	709	4	0.018	21.9	0.113
AO862930	0.4	1.29	1.2	90.1	<20	148	< 0.1	16.63	2.6	14.4	52	16.9	4.28	4	< 0.01	0.1	4	2.33	1992	9.8	0.006	19.4	0.062
AO862931	<0.1	2.48	1.9	13.1	<20	98	<0.1	5.95	0.5	16.7	142	22.7	4.3	8	<0.01	0.21	6	2.64	665	2.1	0.032	35.1	0.167
AO862932	< 0.1	2.2	1	22.8	<20	83	<0.1	5.44	0.2	15.5	85	24.2	3.47	8	< 0.01	0.16	6	2.37	768	1.7	0.05	24.8	0.174
AO862940	< 0.1	1.3	0.7	2.8	<20	61	< 0.1	9.03	0.2	15.4	77	26.1	3.41	5	< 0.01	0.35	5	1.74	829	0.8	0.072	18	0.109
A0862940 Re	< 0.1	1.4	1	4.1	<20	66	< 0.1	9.13	0.2	14.9	76	26.2	3.41	5	< 0.01	0.35	5	1.74	834	1	0.071	17.9	0.114
A0862941	< 0.1	1.65	2	0.7	<20	32	< 0.1	2.14	< 0.1	13.2	100	39.8	3.85	8	< 0.01	0.17	6	1.81	382	1	0.149	27.5	0.193
AO862942	< 0.1	2.67	2.3	1.9	<20	55	<0.1	3.24	<0.1	19.8	111	50	6.24	11	< 0.01	0.15	8	2.88	423	0.9	0.068	42.5	0.221
AO862943	< 0.1	1.48	<0.5	< 0.5	<20	149	<0.1	3.67	< 0.1	8.7	97	28.2	2.75	7	< 0.01	0.13	11	2.21	348	0.4	0.09	29.2	0.174
AO862944	0.2	2.73	0.8	6.2	<20	292	0.1	7.23	0.8	15	62	21.8	8.89	8	< 0.01	0.34	2	5.71	750	0.2	0.011	32.8	0.083
A0862945	0.3	1.57	< 0.5	6.3	<20	208	0.1	4.93	0.2	20.1	190	43.8	5.74	6	< 0.01	0.22	4	2.77	661	1.1	0.043	73.7	0.051
A0862946	0.2	2.9	0.6	3	<20	128	0.1	5.31	0.1	20.4	282	50.3	6.91	10	< 0.01	0.16	7	4.4	880	1.3	0.033	131.6	0.099
AO862947	3.7	1.04	1.5	7.1	<20	58	1.4	7.08	3.5	21.1	121	137.6	5.49	4	0.01	0.05	13	1.26	1168	0.7	0.037	59.5	0.162
AO862948	0.4	0.88	2.5	3.5	<20	46	0.4	9.35	0.7	8.3	53	23.1	2.48	2	< 0.01	0.1	5	1.22	798	0.6	0.018	16.7	0.094
AO862949	< 0.1	1.29	1.3	< 0.5	<20	93	< 0.1	5.64	0.1	16.4	44	22	2.62	5	< 0.01	0.09	6	2.12	525	0.9	0.034	30.2	0.106
A0862950	< 0.1	0.81	1.2	<0.5	<20	13	< 0.1	3.99	0.1	4.7	48	5.7	1.19	4	< 0.01	0.05	11	0.9	329	0.8	0.055	11	0.153
A0867501	< 0.1	1.14	1.8	< 0.5	<20	56	< 0.1	4.25	0.1	8.4	63	12.1	3.33	5	< 0.01	0.04	13	1.11	546	0.6	0.051	17.5	0.14
AO867502	<0.1	1.03	1.6	0.8	<20	112	<0.1	3.7	< 0.1	5.6	112	6.1	1.42	4	< 0.01	0.05	15	0.97	309	0.7	0.108	12.2	0.151
AO867503	<0.1	1.13	0.8	1.7	<20	50	<0.1	1.98	< 0.1	9.2	86	12.9	1.6	5	< 0.01	0.05	12	1.15	208	0.5	0.091	12.4	0.148
AO867504	0.4	1.44	8.1	< 0.5	<20	105	< 0.1	3.85	< 0.1	8.9	50	17.8	1.78	5	< 0.01	0.05	9	1.84	347	1.9	0.054	12.3	0.109
AO867505	0.1	1.57	0.9	2.5	<20	325	< 0.1	5.73	0.3	10.8	94	21.5	4.25	4	< 0.01	0.11	5	3.71	928	0.7	0.05	45.1	0.038
AO867506	0.2	1.61	1.8	1.2	<20	51	< 0.1	3.77	< 0.1	14.9	45	23.1	2.72	5	0.01	0.08	5	2.94	369	2.7	0.065	16.1	0.126
A0867507	0.1	1.14	1	2.2	<20	21	<0.1	4.74	<0.1	23.9	23	48.8	2.42	4	0.01	0.08	3	2.68	340	1.2	0.028	19.5	0.07

Signed: ______ Mark Acres - Quality Assurance

## Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 75 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58435 October 13, 2020

## **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element	Ag	Al	As	Au	В	Ва	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Мо	Na %	Ni	p %
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	76	ppm	70
AO867508	0.1	1.24	0.5	1.6	<20	31	< 0.1	3.47	<0.1	18.7	39	37	2.55	4	< 0.01	0.08	4	1.95	302	0.4	0.045	14.4	0.082
AO867514	0.3	2	0.8	3.2	<20	30	< 0.1	1.5	< 0.1	20.9	120	200.3	4.65	7	< 0.01	0.1	2	1.6	699	0.9	0.094	13	0.057
AO867515	0.3	1.78	0.9	4.4	<20	93	< 0.1	2.14	0.6	21.5	54	102.4	5.88	6	< 0.01	0.17	3	1.73	1330	2.8	0.043	13.3	0.067
AO867516	0.3	2.19	0.7	2.2	<20	79	< 0.1	2.62	0.3	22	67	136.7	5.67	7	< 0.01	0.37	5	1.87	1083	2.3	0.048	15.6	0.111
A0867517	2.1	2.1	< 0.5	412.1	<20	145	< 0.1	2.05	0.3	20	94	582.9	5.36	8	< 0.01	0.14	3	1.91	1572	1	0.065	17.7	0.049
AO867518	2.5	1.6	0.9	182.3	<20	135	< 0.1	2.46	0.9	21	121	394.6	5.63	5	0.01	0.63	2	1.36	1737	3.3	0.039	13.4	0.058
A0867519	0.2	1.96	0.5	20.2	<20	62	< 0.1	1.8	0.2	16.8	66	96.7	5.46	9	< 0.01	0.13	5	1.35	930	1.2	0.07	9.2	0.071
A0867520	0.1	1.7	< 0.5	4	<20	77	< 0.1	1.54	< 0.1	12.9	108	42.4	4.5	7	< 0.01	0.19	6	1.15	786	1.1	0.093	9.6	0.051
AO867521	0.1	1.98	<0.5	5.4	<20	141	< 0.1	1.84	< 0.1	10	91	113.9	4.87	8	< 0.01	0.41	7	1.39	803	0.7	0.063	10.2	0.077
A0867522	1	1.38	1.1	181.9	<20	286	< 0.1	2.56	0.2	16.3	57	43.9	4.84	5	0.01	0.34	2	1.17	1252	1.9	0.043	9.6	0.06
AO867523	0.2	1.83	<0.5	<0.5	<20	47	<0.1	1.4	< 0.1	18.6	44	71.1	5.59	8	< 0.01	0.11	4	1.73	1078	0.6	0.061	11.2	0.074
A0867524	<0.1	0.38	<0.5	< 0.5	<20	28	<0.1	0.32	<0.1	2.8	191	28.5	1.03	2	< 0.01	0.03	4	0.24	197	0.8	0.15	4.8	0.025
AO867525	0.2	1.87	< 0.5	4	<20	63	< 0.1	1.68	0.3	18.3	52	95.3	5.37	7	< 0.01	0.16	3	1.85	1031	0.6	0.061	14.9	0.053
A0867526	< 0.1	2.61	< 0.5	1.8	<20	92	< 0.1	4.76	< 0.1	18.5	47	45.5	5.34	10	< 0.01	0.3	4	2.15	1487	0.4	0.078	9.4	0.109
AO867527	< 0.1	0.91	0.5	2.8	<20	71	< 0.1	2.42	0.1	6.9	178	23.7	2.16	4	0.01	0.14	3	0.6	732	0.4	0.127	6.5	0.035
AO867528	< 0.1	3.43	< 0.5	1.7	<20	49	< 0.1	5.15	0.1	18.5	46	20.4	5.96	11	< 0.01	0.24	3	3.15	1682	0.4	0.047	10.8	0.07
AO867529	0.2	1.93	< 0.5	4	<20	69	< 0.1	1.82	< 0.1	18.1	80	96.4	6.16	9	< 0.01	0.2	6	1.51	936	0.7	0.112	12.6	0.073
A0867530	0.3	2.37	0.6	15.5	<20	78	0.3	4.6	< 0.1	29.6	70	77.5	6.28	9	< 0.01	0.24	3	2.06	1549	1.6	0.068	11.8	0.077
AO867531	1.1	2.2	< 0.5	4.5	<20	74	< 0.1	2.36	< 0.1	21	76	118.5	6.28	9	< 0.01	0.23	4	1.83	1097	1.6	0.081	12.6	0.096
A0867531 Re	0.7	2.18	0.7	4	<20	76	<0.1	2.29	<0.1	20.5	75	117.6	6.18	9	<0.01	0.23	4	1.82	1092	1.4	0.079	12.8	0.092
A0867532	0.6	2.27	<0.5	4.2	<20	76	< 0.1	2.57	0.1	20.3	71	81.7	6.09	9	<0.01	0.21	4	1.87	1073	3.4	0.074	12	0.089
A0867533	0.6	1.89	1	64.7	<20	107	0.3	4.17	0.3	28.4	104	252.3	10.76	8	< 0.01	0.36	5	1.82	895	6.3	0.061	32.2	0.091
AO867534	0.8	2.32	2.5	110.5	<20	69	0.2	7.05	0.5	31.3	76	461.6	10.1	9	0.01	0.2	13	2.49	759	3.7	0.044	58.2	0.144
A0867535	0.4	2.93	1.3	17.8	<20	23	0.1	7.77	0.3	25.9	50	265.9	10.2	11	< 0.01	0.09	16	3.01	906	3.7	0.02	52.1	0.073
A0867536	0.2	2.19	0.9	1.1	<20	94	<0.1	6.18	0.3	15.5	58	106.4	4.89	8	< 0.01	0.26	13	2.78	698	3.9	0.06	37.8	0.144
						-				3010		2001											
AO867537	< 0.1	1.52	< 0.5	2.4	<20	151	< 0.1	5.13	0.2	12.1	82	6.9	2.33	5	< 0.01	0.21	4	2.43	614	5	0.086	58.9	0.053
AO867538	< 0.1	2.28	0.6	1.6	<20	84	< 0.1	5.03	0.1	15.6	144	2.3	2.79	8	< 0.01	0.16	4	2.6	545	4	0.081	78.3	0.067
A0867539	< 0.1	1.59	< 0.5	2.3	<20	272	< 0.1	4.12	0.1	12	124	4.4	2.41	6	< 0.01	0.06	3	2.38	441	1.5	0.075	85.5	0.049
A0867540	< 0.1	2.92	0.5	6.5	<20	145	< 0.1	4.57	0.2	17.8	80	83	5.49	10	< 0.01	0.16	7	4.39	545	3.9	0.059	47.6	0.082
A0867541	< 0.1	0.67	< 0.5	3	<20	68	0.1	15.75	0.5	11.1	26	19.5	4.9	2	< 0.01	0.26	3	6.99	1810	4.3	0.004	18.9	0.042
																	-	2 40	4200	22.4	0.017	10.0	0.000
A0867542	<0.1	1.69	<0.5	1.9	<20	137	<0.1	19.11	0.2	6.4	44	23.2	3.64	5	<0.01	0.31	5	3.48	1200	23.1	0.017	19.9	0.069 0.074
A0867543	<0.1	3.34	0.6	2.6	<20	186	<0.1	6.02	0.1	19.6	113	21.6	4.41	11	< 0.01	0.61	5	4.62	544	1.6	0.041	56.1	
A0867544	<0.1	3.44	0.7	4.3	<20	119	< 0.1	5.39	<0.1	1.7	121	23.5	4.45	11	< 0.01	0.71	6	4.72	501	1.4	0.038	44.1	0.061
A0867545	< 0.1	3	<0.5	3.4	<20	89	< 0.1	5.89	< 0.1	14.8	97	10.6	3.05	9	< 0.01	0.61	4	4.2	466	6	0.039	50.6	0.066
A0867546	<0.1	2.62	1.1	2.9	<20	66	<0.1	6.24	< 0.1	19.6	127	11.6	2.96	9	< 0.01	0.56	4	3.91	440	4.8	0.046	53.7	0.053

Signed: Mark Acres - Quality Assurance

## Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 75 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No: Date:

S58435 October 13, 2020

## MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bí ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	p %
AO867547	< 0.1	3.73	<0.5	4.3	<20	192	<0.1	6.95	<0.1	10.4	70	24.2	4.33	14	< 0.01	1.52	7	5.69	586	5.3	0.019	41.2	0.044
AO867548	< 0.1	2.25	< 0.5	1.8	<20	101	< 0.1	4.57	< 0.1	7.6	86	9.3	2.55	9	< 0.01	0.83	5	3.39	344	5.7	0.044	31.2	0.038
A0867549	0.4	1.7	1.5	82.3	<20	201	< 0.1	2.74	0.2	16.9	55	70.7	4.96	6	< 0.01	0.41	2	1.97	1520	5.3	0.047	10.4	0.079
AO867550	1.3	0.96	1.9	232	<20	178	< 0.1	1.87	0.4	17.1	153	49.3	4.64	4	< 0.01	0.66	6	1.73	2088	18.7	0.093	10.2	0.061
AO867551	0.4	1.18	1.5	19.3	<20	106	< 0.1	2.77	0.3	18.4	31	81.4	4.98	4	< 0.01	0.4	1	1.92	1310	0.8	0.046	7.2	0.079
AO867552	1.9	1.36	2.9	179.1	<20	95	< 0.1	3.27	0.9	15	320	325.7	3.59	4	< 0.01	0.33	1	0.67	1884	1.7	0.017	11.8	0.039
AO867553	0.3	3.3	< 0.5	1.7	<20	147	< 0.1	1.7	0.4	22.5	41	159.8	6.62	12	< 0.01	0.22	4	2.66	1936	0.9	0.045	8.8	0.078
STD DS11	1.8	1.11	43.5	69.9	<20	401	9.7	1.05	2	13.9	60	146.5	3.06	5	0.24	0.39	17	0.84	1047	13.3	0.07	80.9	0.07
STD OREAS262	0.5	1.23	36.4	66.5	<20	233	0.9	3.06	0.7	28.2	42	113.6	3.28	4	0.15	0.31	16	1.2	552	0.7	0.068	62.9	0.039
STD OREAS262	0.5	1.38	37.5	67.1	<20	266	0.9	3.09	0.8	28.1	43	116.2	3.53	4	0.17	0.33	18	1.27	572	0.7	0.077	63.8	0.042
STD DS11	1.7	1.17	41.3	53.8	<20	420	11.6	1.07	2.4	14.5	60	147.5	3.18	5	0.24	0.4	19	0.86	1027	14.1	0.076	80.7	0.069
STD OREAS262	0.5	1.33	37.7	75.8	<20	262	1	3	0.7	28.2	44	116.7	3.43	4	0.17	0.33	17	1.24	564	0.6	0.073	66.8	0.041
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001

Signed:

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 75 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: October 13, 2020 Date:

S58435

## MULTIELEMENT ICP-MS ANALYSIS

Element Sample AO862917 AO862918	Pb ppm 4.8 4 1.8	5 %	Sb ppm 0.3	Sc ppm	Se ppm	Sr ppm	Te ppm	Th	Ti	TI	U	V	W	Zn
AO862917	4.8	1.67		1-1	P.P.			ppm	%	ppm	ppm	ppm	ppm	ppm
	4		0.3				FF	p p		P P · · ·	b-h	la barre	for face.	F- F
AO862918		0.70	0.5	4.8	< 0.5	48	< 0.2	1	0.002	< 0.1	0.1	30	0.2	46
	1.8	0.76	0.2	12.1	< 0.5	43	0.2	0.6	0.009	< 0.1	0.1	107	0.1	77
AO862919		0.42	0.2	6.3	< 0.5	50	< 0.2	1.8	0.035	< 0.1	0.4	64	0.1	70
AO862920	1.6	0.17	0.2	7.4	< 0.5	68	< 0.2	0.7	0.033	< 0.1	0.1	91	< 0.1	78
A0862921	2.1	0.21	0.2	6	< 0.5	66	< 0.2	0.5	0.034	< 0.1	0.1	82	< 0.1	53
A0862922	4.3	0.39	0.2	8.9	< 0.5	163	<0.2	0.6	0.01	< 0.1	0.2	82	< 0.1	69
A0862923	3.2	0.21	0.1	9.3	<0.5	152	<0.2	0.7	0.009	< 0.1	0.2	94	< 0.1	85
AÖ862924	1.7	0.51	0.2	7.1	<0.5	86	<0.2	0.6	0.023	< 0.1	0.1	64	< 0.1	96
A0862925	6.6	0.71	0.4	3.8	0.9	72	0.2	0.5	0.008	< 0.1	0.4	29	0.3	66
A0862926	2.6	0.46	0.2	4.5	< 0.5	48	< 0.2	0.3	0.01	< 0.1	0.2	35	0.1	53
A0862927	2.1	1.16	0.2	3.9	0.7	45	0.4	0.6	0.004	< 0.1	0.1	27	0.2	44
A0862928	3.8	0.86	0.1	4	< 0.5	122	0.2	0.5	0.002	< 0.1	0.4	18	0.3	35
A0862929	4.5	1.22	0.1	2.9	0.9	99	< 0.2	1	0.002	< 0.1	0.6	15	0.1	17
AO862930	14.7	0.92	0.1	4.6	<0.5	643	0.4	0.7	0.003	< 0.1	0.9	17	0.4	62
AO862931	4.6	0.3	< 0.1	7.6	<0.5	145	<0.2	2	0.014	< 0.1	0.6	63	0.1	45
* 0000000	2.2	0.55	0.4	pr **9		0.0	.0.3		0.040		0.7			20
A0862932	3.2	0.56	0.1	5.7	<0.5	96	<0.2	1.5	0.012	<0.1	0.7	58	<0.1	38
A0862940	1	0.5	<0.1	2.3	<0.5	107	<0.2	3.1	0.063	<0.1	1.3	50	0.1	28
AO862940 Re AO862941	1 0.5	0.5 1.08	<0.1	2.4	<0.5	113	<0.2	3.1	0.061	<0.1	1.3	50	0.2	28
A0862941 A0862942	1.9	3.19	<0.1 0.1	5.3 10.4	<0.5 <0.5	24 38	<0.2 0.2	2.3	0.153 0.023	<0.1	0.2	74	0.2	24 36
AU002342	1.9	2.13	0.1	10.4	<0.5	38	0.2	2.2	0.023	<0.1	0.4	108	< 0.1	36
A0862943	2.1	0.63	0.1	11.2	<0.5	59	< 0.2	1.4	0.014	<0.1	0.4	59	<0.1	23
A0862944	8.4	2.05	0.2	6.4	< 0.5	156	< 0.2	0.9	0.036	0.1	2.7	50	0.3	94
AO862945	4	2.04	0.2	12.6	1.2	105	< 0.2	0.5	0.028	< 0.1	0.5	81	0.2	45
A0862946	4.7	1.53	0.1	18.8	0.9	95	<0.2	0.6	0.024	< 0.1	0.6	139	< 0.1	47
A0862947	535	3.72	0.4	8.1	0.9	72	< 0.2	0.9	0.004	< 0.1	1.6	43	< 0.1	160
A0862948	47.5	8.0	0.1	4	< 0.5	75	< 0.2	1.6	< 0.001	< 0.1	0.5	17	< 0.1	31
AO862949	2.9	0.49	< 0.1	6.7	< 0.5	51	<0.2	1.6	0.003	< 0.1	0.7	37	< 0.1	37
AO862950	1.7	0.11	< 0.1	4.3	< 0.5	24	< 0.2	3	0.003	< 0.1	0.4	26	0.1	18
AO867501	1.3	0.24	0.2	4.4	< 0.5	27	< 0.2	3.4	0.003	< 0.1	0.3	32	< 0.1	18
A0867502	1.2	0.17	0.2	4.7	< 0.5	28	<0.2	3.1	0.004	< 0.1	0.4	32	< 0.1	14
AO867503	1.2	0.28	< 0.1	4.6	<0.5	18	<0.2	3	0.008	< 0.1	0.4	34	0.1	14
A0867504	0.9	0.25	<0.1	5.4	< 0.5	47	< 0.2	2.6	0.037	<0.1	0.4	47	2.1	19
A0867505	17.6	1.12	0.1	8.6	<0.5	100	< 0.2	1.3	0.006	< 0.1	1.8	33	< 0.1	60
A0867506	0.8	0.7	0.1	5.2	< 0.5	50	<0.2	1.2	0.079	< 0.1	0.5	53	1.3	21
AO867507	2.3	1.64	0.1	3.3	<0.5	51	<0.2	8.0	0.109	<0.1	0.7	32	0.8	14

## Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 75 Core / 0 Pulp

# 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58435 Date: October 13, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	3 %	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Jampie	ppm	70	ppiii	phin	ppin	ppiii	hhiii	phiii	70	ppm	ppm	ppin	ppm	ppiii
AO867508	1.1	1.13	< 0.1	4.1	0.7	44	< 0.2	1.2	0.075	< 0.1	0.5	44	0.8	15
AO867514	1.1	0.5	0.1	15.7	0.7	18	< 0.2	0.5	0.081	< 0.1	< 0.1	135	< 0.1	68
A0867515	9.4	0.32	0.2	6.2	0.9	63	< 0.2	0.5	0.044	< 0.1	0.1	98	< 0.1	137
A0867516	4	0.11	0.2	10.6	< 0.5	72	< 0.2	0.7	0.063	0.1	0.2	87	0.4	119
A0867517	1.1	0.54	< 0.1	17.2	< 0.5	65	0.6	0.7	0.047	< 0.1	0.2	131	< 0.1	93
AO867518	260.1	2.07	0.3	9	< 0.5	92	1.5	0.4	0.046	0.2	0.2	84	0.7	97
A0867519	2	0.15	0.1	12.1	< 0.5	36	< 0.2	1	0.044	< 0.1	0.2	115	< 0.1	100
A0867520	1.7	0.1	0.2	8.9	<0.5	39	< 0.2	1.5	0.041	< 0.1	1	74	< 0.1	83
AO867521	2.1	0.07	0.2	9.6	< 0.5	70	< 0.2	1.3	0.047	0.1	0.4	85	0.1	104
AO867522	3.6	1.39	0.3	13	< 0.5	84	0.7	0.7	0.035	0.1	0.4	79	0.2	78
AO867523	8	0.08	0.1	14.3	< 0.5	38	< 0.2	0.8	0.049	< 0.1	0.2	146	< 0.1	82
A0867524	3.9	0.32	0.1	3.2	< 0.5	11	< 0.2	5.3	0.003	< 0.1	10.7	12	< 0.1	11
AO867525	1.5	0.23	0.1	13	0.6	48	<0.2	0.9	0.06	< 0.1	0.4	130	0.1	102
A0867526	1.7	0.1	0.1	15.3	< 0.5	89	< 0.2	1	0.081	< 0.1	0.3	164	< 0.1	95
A0867527	2.8	0.23	0.1	5.2	< 0.5	58	< 0.2	4.3	0.026	< 0.1	5.9	43	< 0.1	28
A0867528	1.5	0.08	< 0.1	20.6	<0.5	98	<0.2	0.7	0.089	< 0.1	0.3	185	< 0.1	135
A0867529	1.1	0.05	0.2	14.5	<0.5	42	<0.2	0.8	0.036	< 0.1	<0.1	127	<0.1	70
A0867530	5.5	1.15	0.2	16.6	<0.5	100	<0.2	0.6	0.054	<0.1	0.2	143	0.4	95
A0867531	1.6	0.12	0.2	14.7	<0.5	54	<0.2	0.7	0.048	<0.1	0.1	153	4.3	90
AO867531 Re	1.5	0.12	0.2	14.1	<0.5	53	<0.2	0.7	0.049	< 0.1	0.1	151	3.8	85
AO867532	1.8	0.19	0.2	14.2	<0.5	58	<0.2	0.7	0.045	< 0.1	0.2	155	2.3	89
A0867533	17.1	2.53	0.5	11.2	0.6	101	0.3	0.7	0.043	<0.1	0.8	106	0.2	80
A0867534	13.5	5.07	0.3	7	1.5	186	0.3	1.1	0.013	<0.1	1.1	61	0.2	60
A0867535	5.3	4.4	0.2	10.6	1.5	236	<0.2	1.2	0.017	<0.1	1.6	87	0.1	51
A0867536	3.1	1.52	<0.1	7.2	<0.5	191	<0.2	1	0.012	<0.1	0.6	65	0.1	32
A0007330	5.4	2-94	~U.L	* 1.60	40,5	232	10.2	-	0.010	40.2	0.0	0.5	0.1	J
A0867537	1.9	0.31	< 0.1	9.2	<0.5	148	< 0.2	1.4	0.013	<0.1	0.3	56	< 0.1	20
A0867538	1.6	0.24	<0.1	14.2	< 0.5	117	<0.2	1.1	0.017	<0.1	0.2	101	< 0.1	24
A0867539	1.2	0.47	<0.1	13.7	0.6	102	<0.2	1.5	0.01	<0.1	0.3	91	< 0.1	17
A0867540	1.7	1.89	<0.1	9.7	1.2	94	0.2	1.1	0.031	< 0.1	0.4	69	< 0.1	36
A0867541	2.4	1.94	0.1	2.1	1.7	237	<0.2	0.6	0.004	< 0.1	2.8	15	< 0.1	20
												-		
AO867542	1.9	0.83	< 0.1	5.5	1.6	381	< 0.2	0.6	0.095	< 0.1	2.4	64	0.1	9
A0867543	1.5	1.46	0.1	9.4	0.9	158	< 0.2	2.1	0.156	0.1	1	70	< 0.1	21
AO867544	1.4	1.4	0.1	8.3	1	131	< 0.2	2.2	0.149	0.1	1.2	66	0.2	22
AO867545	1.3	0.92	< 0.1	12.6	0.7	159	< 0.2	1.5	0.191	0.1	0.9	74	0.2	16
AO867546	1.6	1.25	0.1	13.2	1.3	154	< 0.2	1.5	0.229	0.1	1	80	0.2	15

# Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 75 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

#### Report No: Date: O

October 13, 2020

S58435

## MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0867547	1.6	1.13	< 0.1	9.5	<0.5	156	<0.2	1.3	0.201	0.3	2.4	70	0.3	28
A0867548	1	0.6	< 0.1	7.6	0.5	111	< 0.2	3.2	0.198	0.2	1.4	51	0.2	14
A0867549	4.5	0.81	0.2	14.3	1.5	61	0.3	1	0.082	0.3	0.1	106	0.4	68
A0867550	18.8	2.75	0.3	19	1.2	65	0.9	0.6	0.091	0.3	0.6	106	1.5	107
A0867551	3.7	0.62	0.3	10.5	<0.5	84	0.2	0.4	0.06	0.2	<0.1	94	0.4	77
A0867552	36	0.74	0.4	6.1	<0.5	20	1	0.3	0.009	0.2	0.2	47	0.5	66
A0867553	3.8	0.05	< 0.1	17.8	< 0.5	26	< 0.2	0.5	0.058	< 0.1	0.1	192	< 0.1	182
STD DS11	126.8	0.28	6.5	3.2	1.8	60	4.2	7.5	0.087	4.6	2.5	48	2.5	355
STD OREAS262	56	0.27	2.9	3.4	< 0.5	34	0.3	9.5	0.003	0.5	1.2	22	0.1	161
STD OREAS262	56.8	0.28	3.1	3.7	0.6	36	0.2	9.7	0.003	0.5	1.2	23	< 0.1	156
STD DS11	143.2	0.29	7.3	3.2	2.6	64	4.6	8.4	0.098	5	2.5	50	2.7	353
STD OREAS262	59.2	0.28	2.9	3.4	< 0.5	35	< 0.2	10.5	0.003	0.6	1.2	23	0.1	154
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1



Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Hanstone2

TSL Report: S58435

Date Received: Sep 23, 2020
Date Reported: Sep 29, 2020

Invoice: 78625

Remarks: Not received: A0867509-513. Additional: A0862940-

950

Sample Type: Number Size Fraction Sample Preparation
Core 75 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58435

SAMPLE(S) OF

75 Core/O Pulp

INVOICE #:78625
P.O.: Hanstone2

T. Fiolleau Doc Project

Not rec'd: A0867509-513. Add'l: A0862940-950

	Au	Au1	File
	g/t	g/t	Name
A0862917	.05		S58435
A0862918	.10		S58435
A0862919	.05		S58435
A0862920	<.03		S58435
A0862921	< .03		S58435
A0862922	<.03	<.03	S58435
A0862923	< .03		S58435
A0862924	<.03		S58435
A0862925	<.03		S58435
A0862926	<.03		S58435
A0862927	.05	.03	S58435
A0862928	<.03		S58435
A0862929	<.03		S58435
A0862930	.10		S58435
A0862931	<.03		S58435
A0862932	<.03	<.03	S58435
A0862940	<.03		S58435
A0862941	<.03		S58435
A0862942	<.03		S58435
A0862943	<.03		S58435

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58435

SAMPLE(S) OF

75 Core/0 Pulp

INVOICE #:78625 P.O.: Hanstone2

T. Fiolleau Doc Project

Not rec'd: A0867509-513. Add'l: A0862940-950

	Au g/t	Aul g/t	File Name
A0862944	<.03		S58435
A0862945	<.03		S58435
A0862946	<.03		S58435
A0862947	<.03		S58435
A0862948	<.03		S58435
A0862949	< .03	<.03	S58435
A0862950	< .03		S58435
A0867501	<.03		S58435
A0867502	<.03		S58435
A0867503	<.03		S58435
A0867504	<.03	<.03	S58435
A0867505	<.03		S58435
A0867506	< .03		S58435
A0867507	< .03		S58435
A0867508	<.03		\$58435
A0867514	< .03	<.03	S58435
A0867515	<.03		S58435
A0867516	<.03		S58435
A0867517	.34		S58435
A0867518	.19		S58435

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58435

SAMPLE(S) OF

75 Core/0 Pulp

INVOICE #:78625

P.O.: Hanstone2

T. Fiolleau Doc Project

Not rec'd: A0867509-513. Add'l: A0862940-950

	Au g/t	Au1 g/t	File Name
A0867519 A0867520	<.03		S58435
A0867521	<.03		S58435 S58435
A0867522	.19		S58435
A0867523	<.03		S58435
A0867524	<.03	<.03	S58435
A0867525	<.03		S58435
A0867526	<.03		S58435
A0867527	<.03		S58435
A0867528	<.03		S58435
A0867529	<.03	<.03	S58435
A0867530	<.03	<.03	
A0867531			S58435
A0867532	<.03		S58435
	<.03		S58435
A0867533	.05		S58435
A0867534	.17	. 14	S58435
A0867535	<.03		S58435
A0867536	<.03		S58435
A0867537	<.03		S58435
A0867538	<.03		S58435

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20

SIGNED

Mark Acres - Quality Assurance



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58435

SAMPLE(S) OF

75 Core/O Pulp

INVOICE #:78625
P.O.: Hanstone2

T. Fiolleau Doc Project

Not rec'd: A0867509-513. Add'l: A0862940-950

	Au	Au1	File
	g/t	g/t	Name
A0867539	<.03		S58435
A0867540	<.03		S58435
A0867541	<.03		S58435
A0867542	<.03		S58435
A0867543	<.03		S58435
A0867544	<.03	<.03	S58435
A0867545	<.03		S58435
A0867546	<.03		\$58435
A0867547	<.03		\$58435
A0867548 A0867549	<.03		S58435 S58435
A0867550	.31		S58435
A0867551	<.03		S58435
A0867552	.31		S58435
A0867553	<.03		S58435
GS-7E	7.78		S58435
GS-7E	6.93		S58435
GS-7E	7.75		S58435
GS-7E	7.27		S58435

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20



Company: Hanstone Gold Corp TSL Report: S58436 Geologist: T. Fiolleau Date Received: Sep 23, 2020 Project: Doc Project Date Reported: Oct 15, 2020 Purchase Order: Hanstone2 Invoice: 78626

ruichase Order. Haristonez invoice. 70020

Sample Type: Number Size Fraction Sample Preparation
Core 80 Reject ~ 95% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% -150 mesh (106 μm)

Pulp 0 None

## ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag Al* As Au B* Bi Ca* Co Cr* Cu Fe* Ga* Hg K* La* Mg*	0.1 ppm 0.01 % 0.5 ppm 0.5 ppb 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.01% 1 ppm 0.01% 1 ppm 0.01 ppm 0.01 ppm	100 ppm 10 % 10000 ppm 100 ppm 2000 ppm 2000 ppm 40 % 2000 ppm 2000 ppm 10000 ppm 10000 ppm 1000 ppm 1000 ppm 100 ppm 30 %	Mn * Mo Na * Ni P * Pb S Sb Sc Se Sr * Te Th * Ti * TI U * V * W * Zn	1 ppm 0.1 ppm 0.001% 0.1 ppm 0.001% 0.1 ppm 0.05 % 0.1 ppm 0.5 ppm 1 ppm 1 ppm 0.1 ppm 0.1 ppm 2 ppm 0.1 ppm 0.1 ppm	10000 ppm 2000 ppm 10 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 1000 ppm 10000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10 % 1000 ppm 10000 ppm 10000 ppm



Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Hanstone2

TSL Report: S58436

Date Received: Sep 23, 2020 Date Reported: Sep 29, 2020

Invoice: 78626

Remarks:

Sample Type: Number Size Fraction Sample Preparation
Core 80 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle

Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626
P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Aul	File
	g/t	g/t	Name
A0867554	<.03		S58436
A0867555	<.03		S58436
A0867556	<.03	<.03	S58436
A0867557	<.03		S58436
A0867558	.26		S58436
A0867559	<.03		S58436
A0867560	<.03		S58436
A0867561	.03	.03	S58436
A0867562	.36		S58436
A0867563	<.03		S58436
A0867564	<.03		S58436
A0867565	<.03		S58436
A0867566	<.03	< .03	S58436
A0867567	<.03		S58436
A0867568	< .03		S58436
A0867569	<.03		S58436
A0867570	<.03		S58436
A0867571	< .03		S58436
A0867572	.24		S58436
A0867573	<.03		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626 P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File
	g/t	g/t	Name
A0867574	.05		S58436
A0867575	. 22		S58436
A0867576	.09	.10	S58436
A0867577	.10		S58436
A0867578	< .03		S58436
A0867579	<.03		S58436
A0867580	.05		S58436
A0867581	.36	.38	S58436
A0867582	.45		S58436
A0867583	1.56		S58436
A0867584	2.88		S58436
A0867585	2.23		S58436
A0867586	2.95	2.98	S58436
A0867587	54.18	52.02	S58436
A0867588	.51		S58436
A0867589	.29		S58436
A0867590	.46		S58436
A0867591	17.87	17.49	S58436
A0867592	1.46		S58436
A0867593	.21		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No. \$58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626 P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Aul	File
	g/t	g/t	Name
A0867594	.07		S58436
A0867595	<.03		S58436
A0867596	.03	.05	S58436
A0867597	<.03		S58436
A0867598	<.03		S58436
A0867599	.57		S58436
A0867600	<.03		S58436
A0867601	<.03	<.03	S58436
A0867602	<.03		S58436
A0867603	<.03		S58436
A0867604	<.03		S58436
A0867605	.45		S58436
A0867606	<.03	<.03	S58436
A0867607	.03		S58436
A0867608	<.03		S58436
A0867609	.09		S58436
A0867610	.69		S58436
A0867611	<.03		S58436
A0867612	<.03		S58436
A0867613	.05		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626
P.O.: Hanstone2

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name
A0867614 A0867615 A0867616 A0867617 A0867618	.62 .03 <.03 .05 <.03	<.03	S58436 S58436 S58436 S58436 S58436
A0867619 A0867620 A0867621 A0867622 A0867623	<.03 .39 .05 .14	.03	S58436 S58436 S58436 S58436 S58436
A0867624 A0867625 A0867626 A0867627 A0867628	<.03 <.03 <.03 <.03 <.03 <.03	<.03	\$58436 \$58436 \$58436 \$58436 \$58436
A0867630	<.03		S58436

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

.12

.48

< .03

Sep 29/20

A0867631

A0867632

A0867633

SIGNED

S58436

S58436

S58436

Mark Acres - Quality Assurance



# **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58436

SAMPLE(S) OF

80 Core/0 Pulp

INVOICE #:78626

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au	Au1	File	
	g/t	g/t	Name	
GS-7E	7.72		S58436	
GS-7E	7.68		S58436	
GS-7E	7.03		S58436	
GS-7E	7.34		S58436	
GS-7E	7.10		S58436	

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Sep 29/20

SIGNED

Mark Acres - Quality Assurance

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58436 October 15, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo	Na %	Ni ppm	P %
			.,	, ,	, ,	, ,	, ,		• •	* *		• •											
A0867554	0.1	1.63	0.5	2	<20	156	< 0.1	1.99	< 0.1	15.3	105	58.9	4.53	8	< 0.01	0.21	4	1.36	843	1.3	0.105	10	0.069
A0867555	<0.1	1.46	0.6	< 0.5	<20	94	< 0.1	1.52	< 0.1	14.1	83	58.8	4.1	8	< 0.01	0.23	3	1.26	667	0.6	0.07	10	0.048
A0867556	0.3	3.32	0.9	1.1	<20	34	< 0.1	2.81	< 0.1	28	115	137.8	7.09	13	< 0.01	0.11	3	2.57	1163	1.4	0.052	22.7	0.096
A0867557	0.3	3.82	0.9	3	<20	50	< 0.1	4.81	< 0.1	31.5	91	130.6	7.68	14	< 0.01	0.26	3	3	1501	0.5	0.027	25.5	0.106
A0867558	1.1	3.03	0.9	247.8	<20	118	<0.1	3.15	0.1	22.4	48	100.4	6.13	12	< 0.01	0.67	3	1.99	1072	0.4	0.037	10	0.092
A0867559	0.6	2.89	0.6	9.4	<20	117	< 0.1	3.49	0.2	22.9	60	241	6.01	10	< 0.01	0.61	2	1.97	1151	0.7	0.051	9.8	0.096
A0867560	0.7	2.76	< 0.5	21.7	<20	77	< 0.1	4.26	0.1	22.6	48	237.2	6.3	11	< 0.01	0.28	3	1.91	1183	0.8	0.053	6.9	0.088
A0867561	0.4	2.61	1	24.6	<20	78	< 0.1	3.41	< 0.1	22	42	95.4	6	11	< 0.01	0.29	3	1.78	987	0.8	0.052	7.7	0.091
A0867562	1.6	3.1	1.6	354	<20	1.40	< 0.1	3.54	0.3	23	38	91.6	6.03	12	< 0.01	0.37	4	2.1	1092	0.9	0.04	9.9	0.093
A0867563	0.2	3.06	1.1	3.7	<20	121	<0.1	3.24	0.1	22.6	34	87.7	6.17	12	< 0.01	0.4	3	2.12	1144	0.7	0.045	10.4	0.092
A0807303	0.2	3.00	2.1	3.7	~20	121	~0.1	3.24	0.1	22.0	34	07.7	0.27	1.2	10.02	0.4	,	de contra	22	0.,	0.075	2011	0,000
A0867564	0.2	1.28	1.2	7.6	<20	18	0.7	10.03	0.1	13.6	117	55.7	3.07	4	< 0.01	0.14	8	1.14	732	1.4	0.027	30.7	0.06
AO867565	0.3	1.56	5.7	11.7	<20	141	1	6.76	0.3	23.6	79	62.2	4.2	4	< 0.01	0.12	5	1.68	719	1.6	0.005	45	0.048
A0867566	0.2	1.87	3.2	2.8	<20	152	0.3	8.62	0.1	14.4	88	21.4	3.98	5	< 0.01	0.15	9	1.86	1327	0.9	0.003	41.9	0.072
A0867567	0.1	0.36	4.3	4.1	<20	300	0.1	22.67	0.1	5	61	20.9	1.27	<1	< 0.01	0.09	5	0.33	1031	1.4	< 0.001	13.6	0.017
A0867567 Re	0.1	0.36	4.1	8.7	<20	289	0.1	22.96	0.2	4.7	59	21	1.26	1	<0.01	0.1	5	0.33	1046	1.3	<0.001	13.2	0.018
A0867568	<0.1	0.09	3.8	1.6	<20	166	<0.1	34.52	0.1	2.3	6	29.2	0.38	<1	< 0.01	0.01	5	0.15	1056	0.3	< 0.001	3.8	0.012
A0867569	0.7	2.44	5.4	3.2	<20	54	0.1	0.72	1.2	22.5	122	124.2	5.9	11	< 0.01	0.16	5	1.69	1009	0.8	0.08	14.4	0.054
A0867570	0.3	1.75	2.7	3.4	<20	344	< 0.1	0.43	0.3	15.3	85	67.9	4.22	7	< 0.01	0.62	4	1.16	681	0.4	0.068	12.6	0.07
A0867571	0.7	1.96	10	6.4	<20	190	< 0.1	0.46	1.3	15.6	67	73	4.7	9	< 0.01	0.36	7	1.33	648	0.3	0.057	12.4	0.078
A0867572	1.6	0.94	8.0	874.3	<20	324	< 0.1	0.19	0.8	8.2	247	37	2.49	3	< 0.01	0.49	11	0.47	408	0.7	0.061	25.8	0.026
A0867573	0.3	1.45	1.3	10.4	<20	492	0.1	0.34	0.4	10.6	156	27.8	3.22	6	< 0.01	0.71	9	0.94	430	0.3	0.05	32.6	0.064
A0867574	0.3	1.65	0.9	34.4	<20	734	0.3	0.38	0.8	12.2	167	17.1	3.4	6	< 0.01	1.01	8	1.04	510	0.5	0.068	25.9	0.049
A0867575	1.1	0.91	0.8	235.7	<20	340	< 0.1	0.38	0.8	8.6	211	33.7	2.75	4	< 0.01	0.58	10	0.59	538	0.7	0.054	23.4	0.05
A0867576	0.4	1.26	0.7	88.3	<20	401	< 0.1	0.26	0.3	8.7	220	27.5	2.89	5	< 0.01	0.54	7	0.83	554	1	0.074	18.4	0.044
A0867577	0.6	1.36	1.1	95.8	<20	370	0.6	0.2	1	12.9	162	50.9	3.71	6	<0.01	0.58	7	1	541	0.7	0.056	19.4	0.045
A0867578	0.4	1.5	1.4	20	<20	353	3.1	0.6	0.6	14.8	192	45.9	3.55	6	< 0.01	0.66	4	1.05	610	0.6	0.078	22.3	0.052
AO867579	0.5	1.15	1.1	19.3	<20	423	0.1	1.14	0.6	13.6	109	70.2	3.36	5	< 0.01	0.39	3	1.05	903	1.2	0.042	48.2	0.045
AO867580	0.5	1.2	0.8	36.3	<20	251	0.1	2.12	0.4	14.7	131	120.6	3.56	4	< 0.01	0.58	4	1.08	1383	0.9	0.044	22.2	0.05
AO867581	1.4	1.57	1.1	336.1	<20	294	0.1	1.69	0.5	18.1	194	111.7	4.03	5	< 0.01	0.81	5	1.03	1205	1	0.033	22	0.078
A0867582	1.6	1.11	0.8	408.4	<20	274	< 0.1	0.55	1.2	13.5	283	69.4	3.1	3	< 0.01	0.56	6	0.53	835	1.1	0.036	20.6	0.057
AO867583	6.7	0.55	0.9	1775.3	<20	312	<0.1	0.41	2.9	9.7	362	83.6	2.56	2	<0.01	0.31	6	0.23	606	1.8	0.033	16.5	0.026
	11.6	0.33	0.9										4.27	2	<0.01	0.31	6	0.24	824	2.8	0.033	21.3	0.042
A0867584				2926.5	<20	61	0.1	0.24	1.6	16.6	222	78.9		2	< 0.01	0.47	7	0.24	1251	4.7	0.021	17.3	0.044
A0867585	13.2	0.71	1	3222.5	<20	116	0.1	0.09	1.8	22.4	123	105.4	4.79	3			4	0.25	1454	3.2	0.007	30.8	0.044
A0867586	19	1.19	0.9	3274.4	<20	27	0.3	1.75	3.2	27	208	262.6	5.47	3	< 0.01	0.87			130	17.9	0.017	6.2	0.037
AO867587	>100.0	0.34	1.1	64697.4	<20	2685	0.2	0.03	0.6	2.9	218	416	3.63	Ţ	0.11	0.24	8	0.07	120	17.3	0.000	0.2	U.UII

Signed: Mark Acres - Quality Assurance

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58436 October 15, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element	Ag	Al	As	Au	8	Ва	Ві	Ca %	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P %
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	70	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	70
A0867588	2.1	0.01	0.9	448.8	<20	357	< 0.1	0.02	< 0.1	1.6	537	28.9	0.74	<1	< 0.01	< 0.01	<1	0.01	61	3.4	0.005	11.1	0.001
A0867589	1.9	0.01	0.6	284.3	<20	430	< 0.1	0.02	< 0.1	1.4	225	31.4	0.46	<1	< 0.01	< 0.01	<1	< 0.01	39	5.9	0.002	4.9	< 0.001
AO867590	4	0.02	1	494.6	<20	165	< 0.1	0.02	< 0.1	2.2	463	134.2	1.36	<1	< 0.01	< 0.01	<1	< 0.01	131	5.4	0.004	9.7	0.002
AO867591	76.9	0.24	1.1	18649.2	<20	14	19.9	0.04	0.4	16.5	231	920.9	7.33	<1	0.04	0.17	2	0.03	430	28	0.005	16.6	0.016
A0867592	7.1	0.85	1.5	1615.3	<20	751	0.6	0.15	1.3	18.4	146	401.3	4.25	2	< 0.01	0.53	6	0.18	606	4.7	0.005	8.4	0.067
A0867593	0.9	1.18	< 0.5	229.7	<20	336	0.1	4.54	1.5	16.9	89	166.5	3.1	3	< 0.01	0.71	2	0.74	1966	0.9	0.029	8.6	0.074
A0867594	0.6	1.37	< 0.5	73.6	<20	448	0.1	3.32	0.4	17.8	55	142.2	4.33	4	< 0.01	1.05	2	1.41	1470	0.7	0.05	9.6	0.064
A0867595	0.4	2.79	< 0.5	14.1	<20	67	< 0.1	3.12	0.2	25.3	37	1.05.9	6.06	11	< 0.01	0.23	2	2.22	1166	0.2	0.035	11.7	0.062
AO867596	2.9	2.54	7.1	28.9	<20	168	0.5	3.22	0.5	21.5	119	964.6	5.68	8	< 0.01	0.86	5	1.48	2521	0.9	0.025	13.3	0.084
A0867597	0.2	1.47	2.5	6.2	<20	682	<0.1	0.43	<0.1	11.5	87	39.2	3.53	7	<0.01	0.74	4	1.06	540	0.5	0.052	30.7	0.076
AO867598	0.2	1.07	1.7	3.2	<20	553	<0.1	0.32	< 0.1	7.9	216	37.7	2.45	5	< 0.01	0.5	5	0.65	376	2.5	0.094	27.4	0.031
A0867599	4.6	1.14	1.5	653.9	<20	813	< 0.1	0.5	0.6	8.8	104	107.9	2.71	5	< 0.01	0.58	6	0.8	500	1.9	0.046	24.4	0.052
A0867600	0.8	1.32	1	107.1	<20	794	< 0.1	0.64	0.6	8.2	178	50.3	2.78	6	< 0.01	0.73	4	0.89	535	1.9	0.069	22.4	0.04
A0867601	0.2	1.05	1.3	< 0.5	<20	2304	< 0.1	2.88	0.1	7.3	99	26.2	1.9	4	< 0.01	0.4	3	0.55	538	0.4	0.036	14.7	0.05
A0867602	0.3	1.22	0.7	5.6	<20	395	< 0.1	1.86	0.1	7,5	180	22.6	2.56	5	< 0.01	0.55	4	0.79	583	0.6	0.061	16.9	0.043
a visa and and and all all all																							0.000
A0867603	0.2	1.05	0.9	6	<20	421	< 0.1	0.72	0.1	8	117	17.4	2.53	5	< 0.01	0.59	4	0.78	456	0.2	0.037	27.1	0.037
A0867603 Re	0.2	1.04	0.7	8.8	<20	413	<0.1	0.71	0.2	8	113	16.2	2.54	5	< 0.01	0.58	4	0.78	456	0.2	0.036	28	0.038
A0867604	0.1	1.24	<0.5	4.6	<20	558	0.1	0.42	<0.1	7.5	164	13.2	2.92	/	< 0.01	0.62	6	0.86	446	0.6	0.093	17.1	0.046
A0867605	1.5	0.83	0.6	422.3	<20	1428	0.1	0.59	0.1	7.3	107	29.4	2.18	4	< 0.01	0.43	5	0.66	499	0.4	0.034	16.3	0.044
AO867606	0.1	1.43	0.7	6	<20	767	<0.1	0.3	0.1	8.5	163	25.1	2.85	/	<0.01	0.72	7	0.92	470	0.4	0.08	26.9	0.042
AO867607	0.2	0.87	< 0.5	24.6	<20	242	< 0.1	0.27	0.1	6.5	140	28.5	2.14	3	< 0.01	0.23	6	0.59	435	0.3	0.035	18.6	0.023
AO867608	0.2	1.12	1.1	5.7	<20	326	< 0.1	0.63	0.1	8.2	175	37.2	2.57	4	< 0.01	0.33	8	0.71	519	0.5	0.069	42	0.047
AO867609	0.5	0.96	0.7	77.2	<20	242	< 0.1	0.22	0.2	6.7	225	42.7	2.54	4	< 0.01	0.29	8	0.54	461	0.7	0.067	28.3	0.035
A0867610	2.1	0.57	0.6	628.7	<20	425	< 0.1	0.75	0.5	7	147	24.2	1.91	2	< 0.01	0.34	6	0.28	646	1.4	0.035	19.1	0.037
A0867611	0.3	1.47	0.8	36.4	<20	407	< 0.1	0.68	0.1	10.6	133	42.2	3.34	6	< 0.01	0.58	7	1.02	677	0.4	0.04	15.2	0.108
						0.55													200			20	0.054
A0867612	0.3	1.46	0.8	20.1	<20	365	<0.1	1.02	0.1	12.1	146	44.4	3.63	6	<0.01	0.5	5	1.06	890	0.6	0.068	20	0.054
AO867613	0.6	1.28	1.2	33.1	<20	295	<0.1	1.18	0.9	15.5	126	69.9	3.85	5	< 0.01	0.53	4	1.06	976	0.6	0.033	67.8	0.056
A0867614	2	0.83	1	497.7	<20	79	0.1	1.83	0.8	15.8	214	38.1	4.08	3	< 0.01	0.53	6	0.81	1451	5	0.071	40.6	0.049
A0867615	0.6	1.53	0.7	25.4	<20	426	<0.1	1.64	1.7	12.9	101	109.3	4.8	7	< 0.01	0.88	4	1.4	1301	0.7	0.041	21.5	0.066
AO867616	0.2	1.67	0.8	9.1	<20	245	< 0.1	1.78	0.4	12.8	145	37.2	3.94	6	< 0.01	0.38	7	1.03	842	0.6	0.063	26.5	0.069
A0867617	0.3	1.81	1	25.8	<20	193	< 0.1	2.22	<0.1	17.1	113	81.1	4.33	6	< 0.01	0.38	4	1.21	962	0.5	0.035	22	0.104
AO867618	0.3	2.56	1.7	5.5	<20	297	< 0.1	1.38	0.5	20.9	105	79.9	5.6	10	< 0.01	0.46	8	1.5	953	1.1	0.047	25.3	0.14
A0867619	0.4	1.46	2.6	9.1	<20	339	0.2	1.35	0.5	16.5	204	73.1	3.65	5	< 0.01	0.49	9	0.85	798	1.5	0.039	23.9	0.065
AO867620	1.5	1.16	1.4	373.3	<20	245	<0.1	2.78	0.8	20.1	164	64.1	4.8	4	< 0.01	0.34	4	1.27	1655	8.4	0.041	20.9	0.149
A0867621	0.5	1.29	1.3	67.9	<20	201	<0.1	1.26	0.3	11.8	102	57.6	3.55	5	< 0.01	0.33	4	0.96	753	1.6	0.033	19.1	0.076
									0.0		92. OF 812	30		_		0.00							

Signed: Mark Acres - Quality Assurance

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No:

S58436

Date:

October 15, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P %
A0867622	0.7	1.51	1.8	54.8	<20	353	<0.1	1.38	1.6	20.8	233	128	4.32	4	< 0.01	0.56	4	0.85	927	0.7	0.037	25.9	0.051
A0867623	0.9	1.52	1.5	39	<20	259	< 0.1	1.4	2.2	16.3	187	147.9	4.31	5	< 0.01	0.64	6	0.92	899	0.8	0.031	19.1	0.051
A0867624	0.4	1.81	1.9	7.2	<20	400	< 0.1	0.94	0.9	19	125	84	4.05	7	< 0.01	0.64	4	1.16	629	0.6	0.066	26.9	0.121
A0867625	0.3	1.35	0.9	5.2	<20	233	< 0.1	0.61	< 0.1	9.2	94	41.5	3.18	5	< 0.01	0.39	4	0.9	463	0.2	0.037	15.9	0.038
A0867626	0.3	1.28	0.8	12.4	<20	186	< 0.1	1.26	0.2	11.3	179	52.4	2.84	4	< 0.01	0.36	4	0.77	534	0.4	0.06	17.4	0.035
A0867627	0.4	1.84	4.8	8.5	<20	143	0.1	2.85	0.3	17	85	118	5.04	7	<0.01	0.27	3	1.32	2873	1.7	0.036	12.3	0.057
A0867627 Re	0.4	1.84	4.6	6.9	<20	150	0.1	2.86	0.2	16.7	87	115	5.13	6	< 0.01	0.28	3	1.32	2858	1.5	0.037	11.8	0.055
A0867628	1.1	2.31	1	41.3	<20	114	0.6	1.47	0.2	17.4	84	124.4	4.98	9	< 0.01	0.37	3	1.61	967	0.4	0.074	12.6	0.05
A0867629	0.3	2.43	0.9	2.1	<20	249	< 0.1	1.53	< 0.1	16.9	60	75.3	4.46	8	< 0.01	0.59	2	1.41	758	0.3	0.039	11.1	0.055
AO867630	0.2	2.39	0.8	<0.5	<20	345	<0.1	0.99	0.2	19	132	77	4.87	8	< 0.01	0.92	2	1.5	767	0.7	0.066	14.4	0.062
AO867631	0.6	2.75	0.9	113.9	<20	104	<0.1	6.16	0.7	39.3	42	92	6.56	10	< 0.01	0.23	3	2.72	2078	0.7	0.011	28	0.156
A0867632	2.1	2.01	1.2	475.8	<20	105	< 0.1	8.12	1.7	34.8	58	260.5	5.82	7	< 0.01	0.38	4	2.25	3056	0.7	0.02	23.6	0.144
AO867633	0.4	2.47	0.7	14.9	<20	97	< 0.1	5.52	0.6	39.3	59	51.1	7.35	7	< 0.01	0.26	5	2.13	1967	0.8	0.005	28.6	0.142
STD DS11	1.7	1.17	41.3	53.8	<20	420	11.6	1.07	2.4	14.5	60	147.5	3.18	5	0.24	0.4	19	0.86	1027	14.1	0.076	80.7	0.069
STD OREAS262	0.5	1.33	37.7	75.8	<20	262	1	3	0.7	28.2	44	116.7	3.43	4	0.17	0.33	17	1.24	564	0.6	0.073	66.8	0.041
STD DS11	1.8	1.18	46.2	69	<20	467	12.2	1.08	2.6	13.3	61	153.9	3.21	5	0.26	0.41	20	0.87	1046	14.2	0.073	82.3	0.077
STD OREAS262	0.4	1.18	35.2	52	<20	263	0.9	3.06	0.5	27.4	41	115.7	3.26	4	0.17	0.29	16	1.2	549	0.7	0.067	63	0.042
STD OREAS262	0.5	1.26	38.7	58	<20	257	1.1	3.06	0.7	29.4	45	114.8	3.39	4	0.15	0.32	16	1.21	549	0.7	0.07	68.7	0.036
BLK	< 0.1	< 0.01	< 0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	< 0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	<0.5	< 0.5	<20	<1	< 0.1	< 0.01	< 0.1	<0.1	<1	<0.1	< 0.01	<1	<0.01	<0.01	<1	<0.01	<1	<0.1	<0.001	< 0.1	< 0.001
BLK	< 0.1	< 0.01	< 0.5	<0.5	<20	<1	<0.1	<0.01	<0.1	< 0.1	<1	<0.1	<0.01	<1	<0.01	<0.01	<1	<0.01	<1	< 0.1	<0.001	< 0.1	<0.001

Signed:

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

### Report No: S58436 Date: October 15, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
•	• •				, ,			1.1.		***	ie ie	F F	J- 1- · · ·	1.6
A0867554	2.3	0.26	< 0.1	16.9	< 0.5	58	< 0.2	1	0.092	< 0.1	0.2	137	0.1	71
AO867555	2	0.23	< 0.1	15.6	< 0.5	31	< 0.2	2	0.086	< 0.1	3.5	144	< 0.1	65
AO867556	4.8	0.25	0.2	24.1	< 0.5	30	< 0.2	0.9	0.2	< 0.1	0.2	230	0.1	134
A0867557	4.8	0.08	0.1	28	< 0.5	44	< 0.2	0.7	0.163	< 0.1	0.2	270	0.2	147
A0867558	46.8	0.08	0.1	20.4	< 0.5	38	0.7	0.6	0.192	0.2	0.2	196	0.2	111
A0867559	51.4	0.13	0.2	18.3	< 0.5	45	< 0.2	0.5	0.243	0.1	0.1	186	0.2	108
A0867560	11.5	0.22	0.2	16.7	< 0.5	60	< 0.2	0.8	0.169	< 0.1	0.2	185	0.1	103
A0867561	7.2	0.27	0.1	15.8	< 0.5	51	< 0.2	8.0	0.109	< 0.1	0.1	163	0.2	102
A0867562	19.2	0.33	0.2	16.8	< 0.5	56	1	0.9	0.093	< 0.1	0.4	161	0.2	134
A0867563	6.8	0.17	0.2	17.9	< 0.5	44	< 0.2	0.6	0.188	< 0.1	0.1	185	< 0.1	123
A0867564	3.5	0.94	0.1	7.3	< 0.5	134	< 0.2	0.8	0.01	< 0.1	0.3	47	< 0.1	21
A0867565	3.5	1.02	0.1	7.8	1.1	106	< 0.2	0.7	0.002	< 0.1	0.3	35	0.1	36
A0867566	2.9	0.21	< 0.1	8.4	< 0.5	120	< 0.2	0.7	< 0.001	< 0.1	0.3	51	0.1	39
A0867567	1.7	0.21	< 0.1	1	2	114	<0.2	0.1	< 0.001	< 0.1	0.2	10	< 0.1	6
A0867567 Re	1.7	0.19	< 0.1	1.1	1.3	118	< 0.2	0.2	0.001	< 0.1	0.2	10	0.2	6
A0867568	0.7	0.08	< 0.1	0.4	< 0.5	106	< 0.2	< 0.1	< 0.001	< 0.1	0.1	3	< 0.1	2
A0867569	68.1	0.05	0.5	23.1	< 0.5	9	< 0.2	0.7	0.092	< 0.1	0.1	189	0.3	164
A0867570	4.9	< 0.05	0.2	10.5	< 0.5	9	<0.2	0.6	0.205	0.2	0.1	116	0.2	99
A0867571	18.7	< 0.05	0.3	19.3	< 0.5	6	<0.2	1	0.115	0.1	0.1	145	0.2	128
A0867572	12.8	<0.05	0.2	5.4	<0.5	7	0.7	1.2	0.061	0.2	0.3	48	0.7	65
40007070	* *	-0.05	0.0	c 0	0.5		.0.0		0.440	0.2			~ -	
AO867573 AO867574	4.6 7.9	<0.05 <0.05	0.2	6.8 8	0.5	4	<0.2	1.4	0.142	0.2	0.2	75	0.5	80
A0867575	7.9 9.1	<0.05	0.2	8 5.7	<0.5 <0.5	6	0.2	1.3	0.193	0.3	0.2	79	0.9	85
A0867576	6.3	0.05	0.2	7.2	<0.5	9	0.6 0.4	1.4 0.8	0.088 0.12	0.3	0.3	47	1.8	69
A0867577	27.4	<0.05	0.1	11.4	<0.5	6	0.4	0.8	0.12	0.3	0.2	71	0.5	72
MU6013//	27.4	<0.03	U.I	11.4	NU.5	U	0.5	0.7	0.151	0.4	0.2	117	0.5	150
A0867578	7.1	0.2	0.2	11.7	< 0.5	11	1.5	0.6	0.159	0.4	0.2	112	0.9	100
AO867579	43.2	0.47	0.2	7.9	0.8	30	0.2	0.4	0.1	0.2	0.1	96	0.3	128
A0867580	6.4	0.41	0.2	6.5	0.8	62	<0.2	0.7	0.071	0.3	0.1	64	1	78
AO867581	9.2	0.63	0.2	8.8	0.9	52	0.8	0.6	0.1	0.3	0.1	78	1.6	85
A0867582	7.9	0.65	0.2	4.8	<0.5	25	1	0.9	0.047	0.2	0.1	35	0.9	75
	* 1-0*	0.00	W+60	1.0	-0	See not	- Car	0,5	070.77	0.4	101.00	99	0.0	13
AO867583	21.2	1.01	0.4	2.9	< 0.5	32	4.6	0.7	0.006	0.1	0.1	13	0.9	83
A0867584	36.6	2.65	0.6	5.8	< 0.5	20	7.8	0.4	0.008	0.2	0.3	25	3.1	77
A0867585	59.8	1.32	0.6	5.6	0.7	17	8.4	0.5	0.007	0.2	0.5	26	2	125
A0867586	266.4	4.05	0.9	8.9	0.7	88	9.4	0.3	0.038	0.4	0.3	51	5.1	106
AO867587	1883.7	0.12	0.7	1.6	0.9	35	128.7	0.3	0.006	<0.1	0.5	15	7.3	82
	/									W 7 W		~~~		

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

# Report No: Date: Oct

Ate: October 15, 2020

S58436

### **MULTIELEMENT ICP-MS ANALYSIS**

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
AO867588	62.1	< 0.05	0.2	0.1	< 0.5	6	1.2	0.2	< 0.001	< 0.1	< 0.1	2	0.6	5
AO867589	82.5	< 0.05	< 0.1	0.1	< 0.5	6	1.1	< 0.1	< 0.001	< 0.1	< 0.1	1	0.9	5
AO867590	334	< 0.05	0.2	0.1	< 0.5	3	1.6	< 0.1	< 0.001	< 0.1	0.1	1	2.3	13
AO867591	641.4	4.1	0.5	1.6	2.3	21	51	0.3	0.004	< 0.1	0.3	14	10.4	43
AO867592	137.5	0.31	0.7	5.5	< 0.5	23	4.3	0.4	0.01	0.2	0.5	37	2.9	78
AO867593	13	0.93	0.5	7.8	< 0.5	80	0.9	0.3	0.028	0.3	0.3	41	6	77
AO867594	8.6	0.25	0.4	12	< 0.5	81	0.2	0.4	0.126	0.5	0.2	79	1.4	93
A0867595	4.1	< 0.05	0.1	14.4	< 0.5	72	< 0.2	0.3	0.062	< 0.1	< 0.1	183	0.2	117
A0867596	7.5	< 0.05	0.7	18.8	< 0.5	20	< 0.2	0.6	0.117	0.3	0.3	158	1.8	91
A0867597	1.7	< 0.05	0.1	14.6	< 0.5	4	< 0.2	0.5	0.184	0.1	0.1	139	0.2	106
AO867598	7.4	0.12	0.1	9.4	< 0.5	5	< 0.2	0.9	0.16	0.1	0.1	77	0.2	63
A0867599	180.9	0.21	0.3	9.5	< 0.5	8	2.7	0.9	0.152	0.2	0.1	64	0.3	91
AO867600	152.1	0.2	0.2	8.9	< 0.5	13	0.4	0.9	0.179	0.2	0.1	73	0.2	114
AO867601	12.8	0.18	< 0.1	5	0.9	29	< 0.2	0.5	0.144	< 0.1	0.1	47	0.4	39
AO867602	102.8	0.12	0.2	8.4	< 0.5	20	< 0.2	0.8	0.142	0.1	0.1	64	0.5	63
A0867603	5.1	< 0.05	0.1	9.4	<0.5	8	<0.2	0.7	0.143	0.2	0.1	75	0.3	82
A0867603 Re	4.9	< 0.05	0.1	8.9	< 0.5	7	< 0.2	0.6	0.137	0.2	0.1	74	0.4	82
A0867604	6.3	0.15	0.1	9.8	<0.5	8	<0.2	1	0.151	0.2	0.1	65	0.2	77
A0867605	6.6	0.35	0.1	6.2	<0.5	22	1	0.9	0.093	0.2	0.2	46	0.4	50
A0867606	3.9	< 0.05	0.1	9.3	<0.5	6	< 0.2	1.4	0.192	0.2	0.2	70	0.3	76
AO867607	17.6	< 0.05	0.1	4.4	<0.5	4	<0.2	1	0.068	<0.1	< 0.1	49	0.3	45
A0867608	13.1	0.16	0.2	5.1	0.5	17	<0.2	1.2	0.081	< 0.1	0.1	54	0.2	66
A0867609	15.2	0.11	0.2	3.6	<0.5	6	<0.2	0.8	0.058	<0.1	0.2	43	0.2	61
AO867610	9.1	0.71	0.2	4.1	<0.5	31	1.7	1.1	0.024	0.1	0.2	19	0.6	30
A0867611	7.3	< 0.05	0.1	9.3	< 0.5	10	< 0.2	0.9	0.118	0.2	0.2	82	0.4	71
AO867612	7.2	0.21	0.1	9.4	< 0.5	18	< 0.2	0.4	0.12	0.2	< 0.1	111	0.3	79
AO867613	153.7	0.42	0.2	7.3	0.7	31	0.2	0.5	0.106	0.2	0.2	100	0.6	107
AO867614	49.3	1.97	0.3	9.9	1.1	104	1.7	0.4	0.067	0.2	1.3	60	2.9	67
AO867615	70.2	0.31	0.2	15.2	< 0.5	67	< 0.2	0.6	0.157	0.4	0.1	152	4.7	132
AO867616	9.4	0.08	0.2	8.6	< 0.5	16	< 0.2	0.7	0.099	0.1	< 0.1	105	0.3	73
AO867617	4.3	0.12	0.1	10.8	< 0.5	19	< 0.2	0.6	0.103	0.2	0.1	137	0.2	63
AO867618	4	0.07	0.2	14.6	< 0.5	11	< 0.2	0.7	0.104	0.1	0.2	185	0.5	106
AO867619	6.1	0.15	0.2	7.5	< 0.5	14	< 0.2	0.8	0.102	0.2	0.2	82	0.7	83
AO867620	11.1	1.48	0.3	8.2	0.7	156	0.9	0.3	0.045	0.1	0.3	65	0.7	105
AO867621	19.2	0.38	0.2	8.7	< 0.5	29	< 0.2	0.4	0.11	0.1	0.2	100	0.8	97

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 80 Core / 0 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: S58436

: October 15, 2020

### MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn	
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
A0867622	10.9	0.14	0.2	8.1	<0.5	20	0.2	0.4	0.08	0.2	0.3	89	1.1	111	
AO867623	145.8	0.1	0.2	8.4	< 0.5	19	< 0.2	0.5	0.11	0.2	0.2	97	1.4	144	
A0867624	11.8	0.07	0.1	10.3	0.7	10	< 0.2	0.4	0.18	0.1	0.1	127	0.4	117	
A0867625	2.5	< 0.05	< 0.1	9.2	< 0.5	6	< 0.2	0.6	0.118	< 0.1	< 0.1	87	0.5	67	
AO867626	5.4	0.05	< 0.1	8.1	0.6	14	< 0.2	0.4	0.112	< 0.1	< 0.1	87	0.9	63	
A0867627	4.8	0.1	0.6	12.4	<0.5	44	<0.2	0.4	0.056	<0.1	0.2	106	0.9	78	
A0867627 Re	4.5	0.11	0.6	12.3	< 0.5	45	< 0.2	0.4	0.059	< 0.1	0.2	106	1	73	
AO867628	24.1	0.24	0.1	20.2	< 0.5	35	0.3	0.4	0.102	< 0.1	< 0.1	162	< 0.1	101	
A0867629	3.4	0.09	< 0.1	14.2	< 0.5	23	< 0.2	0.2	0.15	< 0.1	< 0.1	155	0.2	81	
AO867630	2.7	0.1	0.1	15.5	< 0.5	16	<0.2	0.3	0.245	0.2	< 0.1	178	< 0.1	92	
AO867631	10	0.33	0.2	10.7	<0.5	348	0.3	0.4	0.057	0.1	0.1	141	0.4	269	
A0867632	28.5	0.69	0.3	12.2	< 0.5	515	0.9	0.2	0.039	0.1	0.6	103	2.4	192	
AO867633	13.3	0.24	0.4	6	< 0.5	161	< 0.2	0.3	0.016	< 0.1	0.1	116	0.5	164	
STD DS11	143.2	0.29	7.3	3.2	2.6	64	4.6	8.4	0.098	5	2.5	50	2.7	353	
STD OREAS262	59.2	0.28	2.9	3.4	<0.5	35	<0.2	10.5	0.003	0.6	1.2	23	0.1	154	
STD DS11	143.6	0.28	7.5	3.5	2.1	68	5.1	8	0.098	5.2	2.6	49	2.4	362	
STD OREAS262	54.7	0.27	2.7	3.2	< 0.5	36	< 0.2	8.4	0.003	0.4	1.1	21	0.1	156	
STD OREAS262	60.1	0.26	3	3.4	< 0.5	36	0.3	9.4	0.004	0.5	1.3	23	0.1	164	
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1	
BLK	<0.1	<0.05	< 0.1	< 0.1	< 0.5	<1	<0.2	< 0.1	<0.001	< 0.1	< 0.1	<1	<0.1	<1	
BLK	< 0.1	<0.05	<0.1	<0.1	<0.5	<1	<0.2	<0.1	<0.001	< 0.1	<0.1	<1	<0.1	<1	



2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company:Hanstone Gold CorpTSL Report:S58510Geologist:T. FiolleauDate Received:Oct 22, 2020Project:Doc ProjectDate Reported:Nov 16, 2020

Purchase Order: Hanstone1 Invoice: 78774

Sample Type: Number Sample Preparation

Pulp 109 None

### ICP-AES Multiacid Digestion HNO₃-HCIO₄-HF-HCI

The Multiacid digestion liberates most metals that are not completely dissolved with Aqua Regia. Dissolution may not be complete for Cr and Ba minerals(*). Some loss of As and Sb may occur.(1)

Element Name	Lower Detection Limit	Element Name	Lower Detection Limit
Ag	0.5 ppm	Na	100 ppm
Al	100 ppm	Nb	2 ppm
As	5 ppm	Ni	2 ppm
Ва	1 ppm	Р	20 ppm
Be	1 ppm	Pb	5 ppm
Bi	5 ppm	Sb	5 ppm
Ca	100 ppm	Sc	1 ppm
Cd	0.4 ppm	Sn	2 ppm
Co	2 ppm	Sr	2 ppm
Cr	2 ppm	Th	2 ppm
Cu	2 ppm	Ti	100 ppm
Fe	0.01 %	U	20 ppm
K	100 ppm	V	2 ppm
La	2 ppm	W	4 ppm
Mg	100 ppm	Υ	2 ppm
Mn	5 ppm	Zn	2 ppm
Мо	2 ppm	Zr	2 ppm

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 109 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: November 16, 2020

S58510

### **MULTIELEMENT ICP-AES ANALYSIS**

Multiacid Digestion

Element	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Nb	Ni	P	Pb	S
Sample	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
A0862751	<0.5	5.8	<5	273	<1	<5	5.15	< 0.4	25	116	35	4.82	0.53	16	2.09	666	<2	2.47	4	45	0.104	<5	0.2
A0862752	< 0.5	7.15	<5	167	<1	<5	3.79	< 0.4	17	125	27	4.54	0.66	15	2.53	565	<2	3.16	<2	75	0.1	<5	0.4
A0862753	1.3	6.05	<5	439	<1	<5	4.65	< 0.4	12	111	35	4.2	0.53	17	1.87	891	12	3.74	<2	42	0.062	6	1.2
A0862754	1.7	5.66	<5	129	<1	<5	1.48	< 0.4	9	116	201	2.71	0.25	12	1.28	351	5	4.08	<2	75	0.038	7	1.4
A0862755	< 0.5	7.45	<5	351	1	<5	6.17	< 0.4	18	82	27	5.72	0.85	22	2.75	841	<2	2.92	4	39	0.148	5	0.2
A0862756	< 0.5	5.36	<5	228	<1	<5	3.89	< 0.4	13	123	33	3.66	1.18	12	1.62	588	<2	2.27	<2	58	0.067	17	0.7
A0862757	1.4	6.2	<5	270	1	<5	2.74	< 0.4	13	98	25	4.27	1.31	11	2.01	475	<2	2.46	<2	44	0.084	<5	0.6
A0862758	< 0.5	5.43	<5	142	<1	<5	1.71	< 0.4	13	119	38	4.04	0.31	14	1.94	344	<2	2.62	4	50	0.06	6	0.5
A0862759	< 0.5	8.55	<5	298	1	<5	3.32	< 0.4	16	77	20	5.39	0.56	20	2.82	525	2	3.69	6	41	0.153	<5	0.6
A0862760	< 0.5	8.53	<5	393	<1	<5	2.53	< 0.4	27	69	87	6.04	0.78	9	3.19	784	2	3.73	3	35	0.082	<5	8.0
			_	222			2.22	-0.4	40	**		r ce	0.54	22	3.51	C*71	-7	4.56	6	7	0.246	<5	0.1
A0862761	<0.5	9.46	<5	333	1	<5	3.22	<0.4	18	42	51	5.65	0.54	22	2.51	671 1155	<2 <2	3.58	<2	12	0.077	5	0.3
A0862762	<0.5	8.95	<5	359	<1	<5 .c	3.08	<0.4	28	31	130	6.66	0.86	8	3.43	1313	<2	3.59	3	10	0.109	<5	0.3
A0862763	<0.5	8.96	<5	461	<1	<5	3.44	<0.4	26	38	130	7.07	0.83	12 7	3.04		<2	3.59	<2	12	0.103	<5	0.4
A0862764	<0.5	9.24	<5	449	<1	<5	4.16	<0.4	32	57	190	7.95	0.62	7	2.84	1404 1443	<2	3.21	<2	12	0.069	<5	0.5
A0862765	<0.5	8.75	<5	461	<1	<5	4.87	<0.4	29	58	153	7.82	0.77	/	3.1	1443	~~	3.21	~~	1.2	0.003	-,,	0.5
A0862766	0.5	8.41	<5	800	<1	<5	5.06	< 0.4	33	61	143	7.89	0.85	7	3.44	1333	<2	3.27	<2	15	0.063	<5	0.7
A0862766 Re	<0.5	8.75	<5	817	<1	<5	5.23	<0.4	33	60	142	7.96	0.86	7	3.5	1358	<2	3.2	<2	15	0.065	<5	0.6
A0862767		7.68	<5	349	1	<5	4.95	0.6	28	54	196	6.84	1.73	6	2.92	1449	<2	2.7	<2	15	0.056	8	0.9
	1.1		<5	584	<1	<5	4.71	<0.4	27	44	150	6.99	1.62	5	2.85	1164	<2	2.74	<2	15	0.053	6	0.4
A0862768	0.6	8.64	<5 <5		<1	<5	4.71	<0.4	26	48	172	6.87	1.12	6	2.84	1213	<2	3.14	<2	14	0.053	<5	0.3
A0862769	1.6	8.45	<>>	501	-1	<b>\</b> 3	4.00	<b>~</b> 0.4	20	40	1/2	0.67	4.14	· ·	2.04	1219	~~	21.2.1			0.000	~	0.0
A0862770	0.6	9.43	<5	440	<1	<5	4.88	< 0.4	31	68	241	7.65	0.68	7	3.2	1359	<2	3.49	<2	16	0.06	<5	0.5
A0862771	0.9	8.68	<5	398	<1	<5	4.78	< 0.4	29	47	155	6.99	1.2	6	3.05	1241	<2	3.23	<2	15	0.059	7	0.2
A0862772	0.9	9.16	<5	618	<1	<5	5.15	< 0.4	25	63	113	6.57	1.69	7	3.25	1203	<2	2.85	<2	16	0.054	6	0.5
A0862773	<0.5	9.03	<5	420	<1	<5	4.59	< 0.4	34	74	158	7.7	0.99	7	3.58	1192	<2	3.31	<2	17	0.066	<5	0.3
A0862774	<0.5	8.49	<5	419	<1	<5	4.22	< 0.4	32	67	152	7.36	1	7	3.47	1139	<2	3.19	<2	16	0.065	<5	0.2
A0862775	< 0.5	8.87	<5	424	<1	<5	4.11	< 0.4	28	71	67	6.17	1.1	15	3.69	911	<2	3.52	2	38	0.113	<5	0.2
A0862776	< 0.5	8.97	<5	519	<1	<5	4.18	< 0.4	30	66	164	7.41	0.91	7	3.58	1000	<2	3.27	<2	19	0.069	<5	0.4
A0862777	< 0.5	8.66	<5	412	<1	<5	5.06	< 0.4	28	70	123	6.64	0.63	9	2.98	899	<2	3.71	2	23	0.057	<5	0.3
A0862778	0.5	9.86	<5	583	<1	<5	4.31	< 0.4	31	63	142	7.18	0.86	5	3.15	1272	<2	3.46	<2	19	0.056	<5	0.2
A0862779	<0.5	9.16	<5	385	<1	<5	4.12	< 0.4	34	158	99	7.28	0.72	11	4.48	1136	<2	3.29	<2	129	0.091	5	0.2
A0862780	1.6	7.6	<5	157	<1	<5	2.43	< 0.4	31	63	72	6.18	0.37	9	2.45	755	<2	3.52	<2	27	0.091	9	0.2
A0862781	< 0.5	7.26	<5	78	<1	<5	2.01	< 0.4	34	110	145	3.51	0.17	13	1.76	254	2	4.46	3	53	0.095	<5	0.7
A0862782	< 0.5	5.85	<5	209	<1	<5	4.65	< 0.4	22	139	144	3.53	0.2	18	2.05	468	<2	3.08	4	40	0.102	<5	0.5
A0862783	<0.5	3.05	<5	1058	<1	<5	10.36	< 0.4	12	99	82	2.12	0.32	11	1.04	606	<2	1.37	2	26	0.055	<5	0.3
A0862784	1	5.41	<5	524	<1	<5	4.15	< 0.4	13	157	86	3.87	0.79	16	1.96	562	<2	2.15	5	39	0.123	<5	0.4
r to the second of the Party	_	Q				_																	

A 0.25 g sample is digested with HClO4, HNO3, HCl, HF and diluted to 10 ml with D.I. H2O.

Signed:

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 109 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:
Date: Nove

November 16, 2020

S58510

### **MULTIELEMENT ICP-AES ANALYSIS**

Multiacid Digestion

Element	Ag	Al	As	Ba	Ве	Bi	Ca	Cd	Со	Cr	Cu	Fe	К	La	Mg	Mn	Mo	Na	Nb	Ni	Р	Pb	S
Sample	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
A0862785	< 0.5	4.47	<5	172	<1	<5	1.35	< 0.4	8	217	35	2.3	0.53	8	1.02	280	<2	2.11	2	56	0.042	<5	0.4
A0862786	< 0.5	4.02	<5	122	<1	<5	1.82	< 0.4	7	229	27	2.14	0.42	15	0.84	316	<2	2.05	<2	65	0.04	<5	0.5
A0862787	< 0.5	4.17	<5	159	<1	<5	2.53	< 0.4	11	244	95	2.33	0.61	13	1.21	397	2	1.72	2	132	0.036	<5	0.5
A0862788	1.3	4.36	<5	486	<1	<5	3.79	< 0.4	14	253	47	3.06	0.76	14	1.92	537	<2	1.5	4	86	0.094	<5	0.4
A0862789	< 0.5	3.2	<5	236	<1	<5	6.33	< 0.4	12	178	104	2.11	0.37	12	1.05	540	<2	1.41	3	51	0.073	<5	0.6
A0862790	<0.5	3.33	.5	219		Je.	4.04	** A	0	220	70	2.2	0.4	4.4	1.06	396	<2	1.47	2	57	0.037	<5	0.6
			<5		<1	<5 .~		<0.4	8	230	78	2.2	0.4	11					2	75	0.037	<5	0.5
A0862791	<0.5	3.35	<5 -5	224	<1	<5 -5	5.53	< 0.4	7	133	68	2.08	0.21	12 7	1.11	510	<2 3	1.59 0.7	<2	18	0.023	<5	0.9
A0862792 A0862793	<0.5	1.52 2.78	<5 <5	92	<1	<5	11.41	< 0.4	5	87	39	1.48	0.2		0.44	442 877	3	1.02	2	19	0.03	<5	1.1
	< 0.5		<5	239	<1	<5	12.88	< 0.4	8	63	69	2.17	0.5	9	0.91	775	2	2.47	5	14	0.055	<5	1
A0862794	0.7	4.86	<5	249	<1	<5	8.4	<0.4	13	89	74	3.46	0.37	7	1.08	113	2	2.47	3	7.4	0.033	~3	-4-
A0862795	< 0.5	7.43	<5	529	<1	<5	2.53	< 0.4	18	53	88	5.5	0.91	8	1.79	1135	<2	3.18	4	12	0.072	<5	0.3
A0862796	< 0.5	7.51	<5	420	<1	<5	2.52	< 0.4	21	52	87	6.31	0.68	6	2.03	1682	<2	3.65	2	10	0.073	6	0.6
A0862797	<0.5	7.43	<5	589	<1	<5	3.82	< 0.4	21	30	79	6.41	1.57	9	2.01	1651	<2	2.95	5	8	0.136	9	0.5
A0862798	2.2	7.31	<5	179	3	<5	4.66	0.7	21	99	302	6.46	3.34	8	1.83	2278	<2	1.32	4	10	0.147	25	2
A0862799	< 0.5	8.54	<5	793	<1	<5	3.31	< 0.4	22	42	79	6.96	1.51	6	2.3	1663	<2	2.96	2	11	0.082	8	0.3
A0862800	< 0.5	7.62	<5	603	<1	<5	4.97	< 0.4	22	83	102	6.33	0.73	10	2.48	1549	<2	3.16	5	18	0.12	7	0.7
A0862801	0.5	7.65	<5	408	<1	<5	2.37	< 0.4	22	43	103	6.75	0.38	6	2.42	1756	<2	3.43	3	11	0.08	7	0.4
A0862802	< 0.5	7.48	<5	672	<1	<5	3.39	< 0.4	19	54	68	6.49	0.58	8	1.88	1478	<2	3.47	4	11	0.082	6	0.4
A0862802 Re	< 0.5	7.62	<5	678	<1	<5	3.45	< 0.4	19	55	71	6.54	0.6	8	1.9	1493	<2	3.41	4	10	0.086	6	0.4
A0862803	0.5	6.19	<5	389	<1	<5	2.44	< 0.4	18	103	65	5.51	0.7	11	1.82	924	<2	2.57	5	20	0.08	<5	0.2
A0862804	<0.5	6.65	<5	628	2	<5	3.71	< 0.4	11	121	43	4.76	2.19	24	0.94	696	3	1.8	28	18	0.096	<5	0.3
A0862805	< 0.5	6.38	<5	169	<1	<5	2.97	< 0.4	16	68	49	4.68	0.35	6	1.63	1023	<2	3.42	2	17	0.06	7	0.2
A0862806	2.5	4.99	<5	41	1	<5	2.11	< 0.4	14	289	52	4.34	1.04	15	0.99	1222	31	2.69	<2	18	0.04	18	2.2
A0862807	0.5	6.75	<5	360	<1	<5	2.97	< 0.4	19	84	74	5.78	0.48	8	1.72	1217	<2	3.51	3	17	0.064	9	0.4
A0862808	< 0.5	7.88	<5	441	<1	<5	2.77	< 0.4	21	64	95	6.69	0.73	7	1.92	1242	<2	3.73	3	12	0.078	6	0.3
A0862809	<0.5	7.44	<5	815	-1	٠.٣	3.07	-O A	10	A.C.	~7.4	C 1C	3 4	6	1.78	1183	<2	3.29	3	10	0.072	11	0.3
A0862810		7.44			<1	<5 -5		<0.4	19	46	74	6.16	1.4			1575	<2	3.77	3	11	0.084	58	0.2
	0.7		<5	558	<1	<5	3.15	< 0.4	22	43	101	6.78	0.8	6	1.99			3.56	3	9	0.087	9	0.4
A0862811	<0.5	7.63	<5	450	<1	<5	2.84	< 0.4	21	35	87	6.67	0.68	6	1.89	1355	<2		4	10	0.087	7	0.3
A0862812	<0.5	7.74	<5	824	<1	<5	3.44	< 0.4	22	35	105	6.75	0.97	6	2.06	1407	<2	3.25				,	0.3
A0862813	0.5	7.64	<5	1546	<1	<5	3	< 0.4	20	36	70	6.29	1.28	6	1.82	1486	<2	3.4	3	8	0.084	9	0.3
A0862814	< 0.5	7.77	<5	1590	<1	<5	2.59	0.4	18	41	52	6.05	1.42	8	1.66	1419	<2	3.38	3	7	0.075	32	0.3
A0862815	0.7	7.77	<5	1084	<1	<5	3.08	< 0.4	20	36	62	6.28	1.46	8	1.76	1311	<2	3.35	3	9	0.071	21	0.5
A0862816	<0.5	7.62	<5	938	<1	<5	2.69	<0.4	17	65	85	6.19	1.23	7	1.95	1211	<2	3.09	3	12	0.08	10	0.3
A0862817	<0.5	7.58	<5	711	1	<5	2.37	< 0.4	15	70	82	5.43	1.17	7	1.78	1066	<2	3.3	5	9	0.1	10	0.2
A0862818	0.5	8.13	<5	600	<1	<5 <5	2.24	<0.4	21	70 70	128	6.57	1.1	9	2.09	1154	<2	3.38	3	11	0.083	19	0.4
MAQ07010	0.5	0.13	<>>	000	< T	<.3	2.24	<u.4< td=""><td>21</td><td>70</td><td>120</td><td>0.37</td><td>1.1</td><td>7</td><td>2.03</td><td>1134</td><td>~~</td><td>3,30</td><td>J</td><td>4.4.</td><td>0.000</td><td>Sir of</td><td>0.7</td></u.4<>	21	70	120	0.37	1.1	7	2.03	1134	~~	3,30	J	4.4.	0.000	Sir of	0.7

Signed: Mark Acres - Quality Assurance

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 109 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:
Date: Noven

November 16, 2020

S58510

### **MULTIELEMENT ICP-AES ANALYSIS**

Multiacid Digestion

Element	Ag	Al	As	Ва	Be	Ві	Ca	Cd	Со	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Nb	Ni	Р	Pb	S
Sample	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
A0862819	1	7.57	<5	485	<1	<5	2.24	< 0.4	21	100	140	6.39	1.31	8	2.05	977	<2	3.11	<2	15	0.064	13	0.6
A0862820	0.9	7.33	<5	722	<1	<5	3.34	< 0.4	21	79	92	6.81	1.28	7	2.23	1228	<2	2.85	<2	11	0.075	8	0.4
A0862821	1.4	7.27	<5	531	<1	<5	3.46	< 0.4	21	81	94	6.49	1.32	8	1.75	1133	<2	3.55	<2	11	0.102	<5	0.2
A0862822	1.4	7	<5	469	<1	<5	3.74	< 0.4	22	123	129	6.78	2.44	5	2.38	1230	<2	1.91	<2	17	0.06	<5	0.3
A0862823	1.9	6.67	<5	461	1	<5	5.03	< 0.4	20	72	44	5.49	2.4	7	1.87	1435	<2	1.67	<2	12	0.061	8	0.9
A0862824	< 0.5	7.57	<5	1447	<1	<5	3.43	<0.4	22	126	53	6	1.56	7	1.99	1072	<2	2.89	<2	13	0.081	<5	0.5
A0862825	1.3	7.65	<5	216	<1	<5	1.91	< 0.4	21	69	94	6.54	0.48	7	2.26	707	<2	3.62	<2	13	0.068	<5	0.4
A0862826	1.4	7.59	<5	394	<1	<5	1.72	< 0.4	19	137	51	5.22	1.16	6	1.73	540	<2	3.46	<2	11	0.079	<5	0.6
A0862827	1	7.04	<5	407	1	<5	3.51	< 0.4	20	84	58	5.32	1.67	6	1.78	909	<2	2.7	<2	10	0.064	<5	0.7
A0862828	1.5	7.48	<5	324	<1	<5	2.88	< 0.4	20	94	98	6.15	0.9	7	2.11	837	<2	3.32	<2	10	0.076	<5	0.6
A0862829	< 0.5	7.27	<5	345	<1	<5	2.39	< 0.4	18	58	71	5.8	0.78	7	2.1	943	<2	3.07	<2	9	0.078	<5	0.3
A0862830	< 0.5	7.36	<5	350	<1	<5	2.43	< 0.4	17	99	67	5.68	0.8	7	2.07	955	<2	3.12	<2	10	0.074	<5	0.3
A0862831	< 0.5	7.44	<5	361	<1	<5	2.33	< 0.4	19	36	76	6.47	0.83	7	2.54	1033	<2	2.93	<2	10	0.083	<5	0.3
A0862832	1.6	7.14	<5	346	<1	<5	1.64	< 0.4	23	102	82	5.36	0.79	18	1.97	753	2	3.04	<2	11	0.056	<5	0.3
A0862833	0.9	6.98	<5	298	<1	<5	1.66	< 0.4	32	50	70	5.33	0.72	22	2.05	772	2	3.02	2	12	0.051	<5	0.2
A0862834	0.6	7.63	<5	540	<1	<5	2.37	< 0.4	16	57	126	6.25	1.05	6	2.14	1072	<2	2.71	2	11	0.081	<5	0.5
A0862835	<0.5	7.27	<5	423	<1	<5	3.98	< 0.4	14	70	107	5.59	0.85	8	1.91	1228	<2	2.79	2	12	0.062	<5	0.3
A0862836	<0.5	7.84	<5	534	<1	<5	3.03	< 0.4	20	51	70	5.66	0.89	5	1.8	1244	<2	3.3	2	9	0.075	<5	0.3
A0862837	< 0.5	8.23	<5	723	<1	<5	2.99	< 0.4	20	68	50	5.96	1	7	1.94	1327	<2	3.44	2	10	0.08	<5	0.2
A0862838	0.6	7.83	<5	815	<1	<5	2.75	< 0.4	21	74	99	6.67	1.03	7	2.12	1476	<2	3.23	2	8	0.081	<5	0.5
A0862838 Re	< 0.5	7.97	<5	808	<1	<5	2.75	< 0.4	22	80	102	6.6	1.03	7	2.1	1467	<2	3.21	2	8	0.083	<5	0.6
A0862839	0.7	7.66	<5	670	<1	<5	2.84	< 0.4	20	38	142	6.77	0.92	6	2.33	1570	<2	3.2	2	9	0.069	<5	0.4
A0862840	< 0.5	7.86	<5	742	<1	<5	1.93	< 0.4	16	101	56	5.57	0.76	7	1.75	1064	<2	3.53	2	11	0.055	6	0.6
A0862841	< 0.5	7.14	<5	558	<1	<5	1.48	< 0.4	13	73	46	4.58	0.6	6	1.51	766	<2	3.3	2	9	0.04	<5	0.6
A0862842	<0.5	7.85	<5	890	<1	<5	2.12	< 0.4	17	107	68	5.49	0.89	6	1.76	994	<2	3.36	<2	11	0.048	6	0.6
A0862843	< 0.5	7.97	<5	718	<1	<5	2.45	< 0.4	20	63	90	6.28	0.75	8	2.12	1178	<2	3.51	3	15	0.069	7	0.6
A0862844	< 0.5	8.49	<5	1147	1	<5	2.75	< 0.4	17	66	18	6.15	1.15	20	1.96	1185	<2	3.53	9	13	0.13	5	0.3
A0862845	< 0.5	7.47	<5	547	<1	<5	2.39	< 0.4	17	49	79	5.64	0.68	7	1.78	1190	<2	3.43	2	10	0.058	<5	0.5
A0862846	< 0.5	7.42	<5	528	<1	<5	1.74	< 0.4	15	99	62	5.36	0.7	7	1.66	1178	<2	3.47	3	10	0.05	5	0.4
A0862847	<0.5	7.58	<5	388	<1	<5	1.71	<0.4	17	60	82	5.49	0.67	7	1.88	1368	<2	3.62	2	11	0.064	6	0.5
A0862848	< 0.5	7.52	<5	361	<1	<5	1.99	< 0.4	15	95	51	5.08	0.46	6	1.97	1425	<2	3.65	2	8	0.072	7	0.1
A0862849	0.6	7.74	<5	374	<1	<5	1.76	< 0.4	15	60	50	4.91	0.47	6	1.97	1309	<2	3.83	<2	8	0.073	7	0.2
A0862850	< 0.5	8.08	<5	505	<1	<5	3.61	< 0.4	22	92	110	6.58	0.75	6	2.47	1801	<2	3.6	2	18	0.079	5	0.2
A0862851	< 0.5	8.16	<5	489	<1	<5	2.06	< 0.4	26	51	181	7.38	0.81	6	2.61	1791	<2	3.58	2	14	0.069	<5	0.4
A0862852	<0.5	7.68	<5	297	<1	<5	2.29	< 0.4	22	70	112	6.61	0.44	6	2.39	2056	<2	3.54	3	13	0.073	<5	0.1

Signed: Mark Acres - Quality Assurance

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 109 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

## MULTIELEMENT ICP-AES ANALYSIS

S58510

November 16, 2020

Report No:

Date:

Element	Ag	Al	As	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Nb	Ni	Р	Pb	S
Sample	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	%
A0862853	<0.5	7.64	<5	693	<1	<5	2.51	< 0.4	18	79	77	5.9	0.94	8	1.74	1222	<2	3.3	3	11	0.071	<5	0.2
A0862854	< 0.5	6.26	<5	403	<1	<5	2.43	< 0.4	16	153	61	5.29	0.55	14	1.56	1011	<2	3.18	9	17	0.089	<5	0.3
A0862855	< 0.5	7.23	<5	494	<1	<5	3.19	0.4	19	56	65	6.07	0.56	12	1.78	1241	<2	3.83	9	11	0.111	6	0.3
A0862856	< 0.5	8.02	<5	453	<1	<5	3.32	0.9	22	68	95	6.81	0.64	8	1.91	1375	<2	4.29	3	11	0.076	6	0.3
A0862857	<0.5	7.62	<5	549	<1	<5	3.07	< 0.4	20	56	76	6.17	0.61	9	1.8	1180	<2	3.99	4	13	0.079	<5	0.3
A0862858	<0.5	7.65	<5	688	<1	<5	3.27	< 0.4	20	81	95	6.19	0.59	8	1.82	1371	<2	3.93	3	10	0.081	5	0.9
A0862859	< 0.5	7.77	<5	1075	<1	<5	2.81	1.4	25	51	88	6.33	0.81	7	2.36	1650	<2	3.64	4	16	0.088	<5	0.4
STD OREAS45E	0.9	6.78	17	258	<1	<5	0.07	< 0.4	57	1019	776	25.53	0.35	12	0.16	559	3	0.05	9	494	0.034	14	< 0.1
STD OREAS25A-4A	< 0.5	9.26	10	152	<1	<5	0.32	< 0.4	7	118	29	6.87	0.5	24	0.34	495	3	0.13	22	45	0.049	24	< 0.1
STD OREAS45E	0.9	6.82	17	257	<1	<5	0.07	< 0.4	56	1007	756	26.19	0.35	12	0.16	552	3	0.05	7	487	0.034	14	<0.1
STD OREAS25A-4A	<0.5	9.31	11	150	<1	<5	0.31	< 0.4	8	118	29	6.76	0.5	23	0.33	483	2	0.12	19	44	0.048	23	<0.1
STD OREAS25A-4A	4.2	8.6	10	149	<1	<5	0.29	< 0.4	7	111	28	6.73	0.49	22	0.33	481	2	0.13	22	44	0.048	24	< 0.1
STD OREAS45H	< 0.5	8.08	18	348	1	<5	0.15	< 0.4	89	676	769	20.39	0.22	13	0.26	408	<2	0.09	17	459	0.023	12	< 0.1
STD OREAS25A-4A	< 0.5	9.45	10	152	<1	<5	0.3	< 0.4	8	113	31	6.55	0.52	21	0.33	510	<2	0.14	20	47	0.051	27	< 0.1
STD OREAS45H	0.7	8.46	14	351	1	<5	0.14	< 0.4	95	672	800	21.52	0.23	14	0.26	417	<2	0.1	14	470	0.025	15	< 0.1
BLK	<0.5	<0.01	<5	<1	<1	<5	< 0.01	< 0.4	<2	<2	<2	<0.01	< 0.01	<2	< 0.01	<5	<2	< 0.01	<2	<2	< 0.002	<5	< 0.1
BLK	< 0.5	< 0.01	<5	<1	<1	<5	< 0.01	< 0.4	<2	<2	<2	< 0.01	< 0.01	<2	< 0.01	<5	<2	< 0.01	<2	<2	< 0.002	<5	< 0.1
BLK	< 0.5	< 0.01	<5	<1	<1	<5	< 0.01	< 0.4	<2	<2	<2	< 0.01	< 0.01	<2	< 0.01	<5	<2	< 0.01	<2	<2	< 0.002	<5	< 0.1
BLK	<0.5	< 0.01	<5	<1	<1	<5	<0.01	< 0.4	<2	<2	<2	<0.01	<0.01	<2	< 0.01	<5	<2	<0.01	<2	<2	<0.002	<5	< 0.1

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 109 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58510 Date: November 16, 2020

### MULTIELEMENT ICP-AES ANALYSIS

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
•			F F	FF	e e · · ·		b.b	P P · · · ·	P.P	P.P	bletti	la la
A0862751	<5	13	<2	229	<2	0.36	<20	114	<4	18	24	8
A0862752	<5	17	<2	91	<2	0.31	<20	148	<4	13	22	15
A0862753	<5	16	<2	135	<2	0.19	<20	112	<4	7	32	4
A0862754	<5	9	<2	85	<2	0.09	<20	68	<4	4	34	6
A0862755	<5	18	<2	271	<2	0.31	<20	162	<4	17	40	7
A0862756	<5	13	<2	122	<2	0.19	<20	118	<4	8	28	8
A0862757	<5	15	<2	105	<2	0.23	<20	143	<4	8	29	3
A0862758	<5	12	<2	65	<2	0.33	<20	110	<4	16	30	5
A0862759	<5	17	<2	170	<2	0.46	<20	147	<4	26	28	12
A0862760	<5	24	<2	162	<2	0.47	<20	228	<4	25	32	9
A0862761	<5	12	<2	227	<2	0.37	<20	125	<4	21	26	4
A0862762	<5	30	<2	218	<2	0.36	<20	253	<4	13	52	<2
A0862763	<5	27	<2	263	<2	0.41	<20	229	<4	16	55	3
A0862764	<5	36	<2	350	<2	0.59	<20	300	<4	21	52	7
A0862765	<5	37	<2	300	<2	0.55	<20	313	<4	19	59	10
A0862766	<5	37	<2	335	<2	0.45	<20	299	<4	16	56	10
A0862766 Re	<5	38	<2	334	<2	0.47	<20	304	<4	17	55	11
A0862767	<5	32	<2	236	<2	0.2	<20	249	<4	9	84	4
A0862768	<5	31	<2	225	<2	0.2	<20	241	<4	10	63	3
A0862769	<5	30	<2	279	<2	0.28	<20	236	<4	11	68	6
10000770		25	.0			0.45	22	220		4 ***	din etw	_
A0862770	<5	35	<2	402	<2	0.45	22	270	<4	17	57	6
A0862771	<5	33	<2	311	<2	0.22	<20	252	<4	9	59	3
A0862772	<5 <5	29	<2	349	<2	0.3	<20	228	<4	12	48	7
A0862773 A0862774	<5 <5	36 35	<2	348 340	<2 <2	0.46	<20	278	<4	17	53	7 6
AU002//4	<5	35	<2	340	<.2	0.44	<20	270	<4	16	53	6
A0862775	<5	25	<2	289	<2	0.35	<20	194	<4	14	50	5
A0862776	<5	31	<2	312	<2	0.44	<20	252	<4	15	45	5
A0862777	<5	31	<2	248	<2	0.49	<20	244	<4	19	29	14
A0862778	<5	29	<2	412	<2	0.45	<20	235	<4	13	53	4
A0862779	<5	30	<2	236	<2	0.34	<20	230	<4	15	68	6
7,0002773	~~	50	***	200	~ a	0.57	12.0	2.50	~~	4.7	00	U
A0862780	<5	25	<2	125	<2	0.28	<20	230	<4	15	54	4
A0862781	<5	19	<2	96	<2	0.4	<20	171	<4	26	12	6
A0862782	<5	13	<2	120	<2	0.38	<20	119	<4	22	16	10
A0862783	<5	7	<2	113	<2	0.21	<20	65	<4	18	12	7
A0862784	<5	10	<2	101	<2	0.35	<20	89	<4	19	25	10
	-5	2.0	- 100	202		0.00				**		24

Signed:	
-	Mark Acres - Quality Assurance

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 109 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58510 Date: November 16, 2020

### MULTIELEMENT ICP-AES ANALYSIS

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
•		F F	4. 1.	ş- 1-	, ,		1-6	P P	P 4	p pro-	\$0.50	4- F
A0862785	<5	7	<2	64	<2	0.17	<20	69	<4	7	35	<2
A0862786	<5	7	<2	55	<2	0.12	<20	65	<4	5	37	<2
A0862787	<5	7	<2	49	<2	0.13	<20	71	<4	7	37	6
A0862788	<5	11	<2	106	<2	0.26	<20	107	<4	14	29	10
A0862789	<5	7	<2	86	<2	0.15	<20	65	<4	14	12	5
710000100			-			0.45	-100	99		A. T	-30.80	
A0862790	<5	6	<2	70	<2	0.15	<20	66	<4	11	12	6
A0862791	<5	6	<2	83	<2	0.13	<20	71	<4	12	17	5
A0862792	<5	4	<2	73	<2	0.11	<20	35	<4	14	11	4
A0862793	<5	7	<2	174	<2	0.18	<20	70	<4	19	41	4
A0862794	<5	13	<2	131	<2	0.28	<20	107	<4	15	36	6
A0862795	<5	21	<2	420	<2	0.50	.20	400		a ***	27 4	.0
A0862796	<5 <5	25	<2	138 172	<2	0.52 0.52	<20 <20	182 224	<4 <4	17 9	54	<2 <2
A0862797	<5 <5	23	<2	195	<2	0.52	<20	201		_	150 110	<2
A0862797 A0862798	<5	21	<2	201	<2	0.38	<20	188	<4 12	10	105	<2
A0862799	<5	30	<2	201	<2	0.43	<20	269	<4	11 9	143	<2
AU002733	<b>\</b> 3	30	~2	201	~2	0.02	<20	403	-4	9	143	~~
A0862800	<5	25	<2	239	<2	0.55	<20	195	<4	21	101	10
A0862801	<5	27	<2	183	<2	0.61	<20	240	<4	22	218	<2
A0862802	<5	25	<2	231	<2	0.58	<20	201	<4	22	108	2
A0862802 Re	<5	26	<2	233	<2	0.59	<20	206	<4	22	111	2
A0862803	<5	21	<2	136	<2	0.54	<20	198	<4	21	89	3
A0862804	<5	14	3	114	<2	0.48	<20	125	<4	21	65	5
A0862805	<5	17	<2	149	<2	0.35	<20	177	<4	10	94	<2
A0862806	<5	14	<2	136	<2	0.18	<20	114	11	8	59	<2
A0862807	<5	22	<2	168	<2	0.46	<20	215	<4	16	101	2
A0862808	<5	27	<2	156	<2	0.6	<20	227	<4	21	107	2
A0862809	<5	25	<2	148	<2	0.57	<20	205	<4	14	171	<2
A0862810	<5	27	<2	181	<2	0.66	<20	248	<4	24	193	3
A0862811	<5	27	<2	185	<2	0.65	<20	228	<4	25	113	3
A0862812	<5	27	<2	220	<2	0.71	<20	231	<4	24	111	3
A0862813	<5	26	<2	203	<2	0.59	<20	198	<4	25	165	2
			_		_				•			_
A0862814	<5	26	<2	195	<2	0.56	<20	179	<4	27	160	2
A0862815	<5	27	<2	197	<2	0.51	<20	207	<4	10	130	<2
A0862816	<5	25	2	173	<2	0.5	<20	193	<4	11	110	<2
A0862817	<5	22	4	146	3	0.48	<20	179	<4	10	114	2
A0862818	<5	27	<2	155	<2	0.45	<20	233	<4	12	172	<2

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 109 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58510 Date: November 16, 2020

### MULTIELEMENT ICP-AES ANALYSIS

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
											• •	
A0862819	<5	25	<2	128	<2	0.32	<20	216	6	11	145	<2
A0862820	<5	27	<2	171	<2	0.32	<20	225	<4	9	123	<2
A0862821	<5	25	<2	174	<2	0.26	<20	200	<4	8	89	4
A0862822	<5	26	<2	140	<2	0.3	<20	223	<4	5	103	<2
A0862823	<5	23	<2	192	<2	0.26	<20	179	11	11	69	3
A0862824	<5	23	<2	180	<2	0.36	<20	195	<4	11	75	<2
A0862825	<5	24	<2	112	<2	0.24	<20	216	<4	7	62	<2
A0862826	<5	19	<2	125	<2	0.3	<20	156	<4	6	56	<2
A0862827	<5	21	<2	133	<2	0.33	<20	177	<4	6	55	<2
A0862828	<5	23	<2	137	<2	0.33	<20	200	<4	7	58	<2
A0862829	<5	22	<2	111	<2	0.35	<20	190	<4	6	58	<2
A0862830	<5	22	<2	117	<2	0.34	<20	192	<4	6	57	<2
A0862831	<5	26	<2	112	<2	0.38	<20	231	<4	6	67	<2
A0862832	<5	20	<2	109	<2	0.29	<20	152	<4	6	54	<2
A0862833	<5	19	<2	108	<2	0.31	<20	152	<4	6	59	<2
A0862834	<5	26	<2	120	<2	0.5	<20	218	<4	15	58	<2
A0862835	<5	25	<2	156	<2	0.43	<20	202	<4	19	56	2
A0862836	<5	25	<2	166	<2	0.53	<20	191	<4	23	58	3
A0862837	<5	28	<2	187	<2	0.59	<20	209	<4	25	64	3
A0862838	<5	29	<2	182	<2	0.66	<20	244	<4	26	87	3
A0862838 Re	<5	29	<2	183	<2	0.66	<20	243	<4	26	88	3
A0862839	<5	29	<2	165	<2	0.64	<20	283	<4	21	99	4
A0862840	<5	23	<2	164	<2	0.45	<20	177	<4	19	65	<2
A0862841	<5	18	<2	161	<2	0.35	<20	130	<4	16	63	<2
A0862842	<5	24	<2	178	<2	0.44	<20	176	<4	18	80	<2
A0862843	<5	25	<2	173	<2	0.62	<20	204	<4	24	60	2
A0862844	<5	16	<2	215	<2	0.52	<20	138	<4	23	63	5
A0862845	<5	23	<2	159	4	0.46	<20	173	<4	18	69	<2
A0862846	<5	21	<2	169	<2	0.45	<20	162	<4	9	169	<2
A0862847	<5	23	<2	170	<2	0.48	<20	173	<4	6	201	<2
A0862848	<5	23	<2	171	<2	0.46	<20	178	<4	18	139	<2
A0862849	<5	24	<2	178	<2	0.43	<20	181	<4	17	132	<2
A0862850	<5	29	<2	190	<2	0.58	<20	249	<4	24	178	3
A0862851	<5	30	<2	164	<2	0.62	<20	254	<4	24	109	<2
A0862852	<5	27	<2	165	4	0.6	<20	236	<4	22	143	<2

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 109 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58510 Date: November 16, 2020

### **MULTIELEMENT ICP-AES ANALYSIS**

Element Sample	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Th ppm	TI %	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
A0862853	<5	25	<2	201	<2	0.51	<20	175	<4	23	107	3
A0862854	<5	19	<2	147	<2	0.57	<20	178	<4	24	103	5
A0862855	<5	21	<2	168	<2	0.65	<20	188	<4	22	188	3
A0862856	<5	28	<2	204	<2	0.6	<20	245	<4	26	224	2
A0862857	<5	25	<2	187	<2	0.61	<20	209	<4	26	138	4
A0862858	<5	26	<2	211	<2	0.58	<20	213	<4	25	215	4
A0862859	6	26	3	175	<2	0.76	<20	235	<4	22	203	3
STD OREAS45E	6	93	2	16	7	0.52	32	326	<4	8	46	95
STD OREAS25A-4A	<5	14	5	48	12	0.96	<20	155	<4	11	43	153
STD OREAS45E	6	93	2	16	7	0.53	35	324	<4	8	45	97
STD OREAS25A-4A	<5	13	4	47	12	0.94	<20	153	<4	11	42	153
STD OREAS25A-4A	<5	13	4	44	11	0.97	<20	153	<4	10	43	154
STD OREAS45H	<5	59	3	28	3	0.93	41	274	<4	10	40	127
STD OREAS25A-4A	7	14	5	49	13	0.97	<20	165	<4	11	44	168
STD OREAS45H	8	63	4	29	5	0.91	<20	281	<4	11	41	134
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2



2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Axiom Group TSL Report: S58683

Geologist: T. Fiolleau Date Received: Nov 27, 2020
Project: Doc Date Reported: Dec 11, 2020

Purchase Order: 20.2037.HSG Invoice: 78899

Sample Type: Number Sample Preparation

Pulp 13 None

#### ICP-AES Multiacid Digestion HNO₃-HClO₄-HF-HCl

The Multiacid digestion liberates most metals that are not completely dissolved with Aqua Regia. Dissolution may not be complete for Cr and Ba minerals(*). Some loss of As and Sb may occur.(1)

Element Name	Lower Detection Limit	Element Name	Lower Detection Limit
Ag	0.5 ppm	Na	100 ppm
Al	100 ppm	Nb	2 ppm
As	5 ppm	Ni	2 ppm
Ва	1 ppm	Р	20 ppm
Ве	1 ppm	Pb	5 ppm
Bi	5 ppm	Sb	5 ppm
Ca	100 ppm	Sc	1 ppm
Cd	0.4 ppm	Sn	2 ppm
Co	2 ppm	Sr	2 ppm
Cr	2 ppm	Th	2 ppm
Cu	2 ppm	1	100 ppm
Fe	0.01 %	U	20 ppm
K	100 ppm	V	2 ppm
La	2 ppm	W	4 ppm
Mg	100 ppm	Υ	2 ppm
Mn	5 ppm	Zn	2 ppm
Мо	2 ppm	Zr	2 ppm

**Axiom Group** 

Attention: T. Fiolleau Project: Doc Project Sample: 13 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: December 11, 2020

S58683

#### **MULTIELEMENT ICP-AES ANALYSIS**

Element Sample	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P %	Pb ppm	S %
A0862570	3.6	6.81	<5	329	2	<5	1.88	0.5	10	8	63	4.26	3.46	15	0.64	921	<2	0.61	3	4	0.062	335	0.9
A0862571	26.6	1.36	<5	108	<1	<5	0.17	< 0.4	5	11	35	1.72	0.55	2	0.21	147	<2	0.19	<2	3	0.015	<5	0.2
A0862572	140.4	0.42	<5	51	<1	<5	< 0.01	< 0.4	3	16	195	2.29	0.23	3	0.03	49	6	< 0.01	<2	<2	0.005	39	0.2
A0862573	7.8	7.56	<5	785	2	<5	0.05	< 0.4	25	11	712	4.83	3.97	15	0.37	964	<2	0.07	<2	5	0.068	183	0.3
A0862574	3	7.01	<5	697	1	<5	0.28	0.5	14	12	387	4.46	3.37	15	0.67	797	<2	0.34	3	6	0.079	37	<0.1
A0862575	1.7	6.96	<5	911	1	<5	3.46	<0.4	17	8	101	5.45	2.86	10	1.19	1032	<2	1.34	<2	6	0.088	11	0.3
A0862576	1.8	7.5	<5	655	<1	<5	4.52	< 0.4	25	11	124	6.7	1.52	6	1.77	1364	<2	2.62	<2	9	0.098	8	0.1
A0862577	1.5	7.43	<5	166	<1	<5	3.37	< 0.4	24	16	132	6.47	0.39	7	1.83	1238	<2	3.68	<2	9	0.103	8	< 0.1
A0862578	< 0.5	7.47	<5	223	<1	<5	3.59	< 0.4	25	19	82	6.4	0.5	7	1.76	1319	<2	3.47	2	10	0.104	8	< 0.1
A0862579	< 0.5	7.81	<5	389	<1	<5	3.58	< 0.4	27	17	104	7.05	1	7	2.04	1376	<2	3.3	2	11	0.142	<5	< 0.1
A0862580	<0.5	7,55	<5	206	1	<5	3.97	<0.4	23	17	167	6.49	0.57	8	1.82	1386	<2	3,44	3	10	0.101	7	0.1
A0862581	<0.5	7.62	<5	301	6	<5	3.55	<0.4	23	18	73	6.3	0.86	7	1.73	1321	<2	3.43	8	9	0.118	6	<0.1
A0862582	< 0.5	7.8	<5	1190	<1	<5	3.68	<0.4	23	12	183	6.89	1.61	8	1.81	1307	<2	2.5	4	6	0.109	6	0.1
A0862582 Re	< 0.5	7.89	<5	1190	<1	<5	3.73	< 0.4	23	12	179	6.86	1.59	8	1.81	1304	<2	2.49	4	6	0.109	6	0.1
STD OREAS25A-4A	< 0.5	8.81	10	148	<1	<5	0.28	< 0.4	8	111	27	6.69	0.5	21	0.32	470	3	0.12	22	45	0.049	23	< 0.1
STD OREAS45H	<0.5	7.71	17	324	1	<5	0.12	<0.4	88	638	734	20.24	0.22	11	0.24	379	2	0.08	13	438	0.023	14	<0.1
BLK	<0.5	< 0.01	<5	<1	<1	<5	<0.01	<0.4	<2	<2	<2	< 0.01	<0.01	<2	<0.01	<5	<2	<0.01	<2	<2	<0.002	<5	< 0.1

### **Axiom Group**

Attention: T. Fiolleau Project: Doc Project Sample: 13 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58683 Date: December 11, 2020

### **MULTIELEMENT ICP-AES ANALYSIS**

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
A0862570	<5	15	<2	154	<2	0.2	<20	95	19	8	86	<2
A0862571	<5	4	<2	70	<2	0.08	<20	39	<4	3	17	<2
A0862572	<5	1	<2	4	<2	0.02	<20	9	<4	2	6	<2
A0862573	<5	19	2	29	<2	0.18	<20	92	13	7	79	<2
A0862574	<5	18	<2	80	<2	0.26	<20	106	16	12	97	<2
A0862575	<5	22	<2	357	<2	0.24	<20	157	11	11	82	<2
A0862576	<5	27	<2	455	<2	0.24	<20	242	<4	9	105	<2
A0862577	<5	25	<2	417	<2	0.31	<20	209	<4	13	95	<2
A0862578	<5	25	<2	361	<2	0.43	<20	219	<4	20	91	<2
A0862579	<5	27	2	366	<2	0.49	<20	243	<4	19	102	<2
A0862580	<5	26	<2	409	<2	0.49	<20	204	<4	23	93	<2
A0862581	<5	26	14	408	<2	0.47	<20	210	<4	20	94	<2
A0862582	<5	28	3	1316	<2	0.77	<20	234	<4	25	99	<2
A0862582 Re	<5	28	2	1337	<2	0.78	<20	228	<4	25	100	<2
STD OREAS25A-4A	<5	13	4	44	13	0.99	<20	156	<4	11	43	155
STD OREAS45H	7	54	5	25	3	0.89	25	260	<4	9	40	119
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2

Signed:	Mark Acres - Quality Assurance



2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Axiom Group TSL Report: S58683

Geologist: T. Fiolleau Date Received: Nov 27, 2020
Project: Doc Date Reported: Dec 11, 2020

Purchase Order: 20.2037.HSG Invoice: 78899

Sample Type: Number Sample Preparation

Pulp 13 None

#### ICP-AES Multiacid Digestion HNO₃-HClO₄-HF-HCl

The Multiacid digestion liberates most metals that are not completely dissolved with Aqua Regia. Dissolution may not be complete for Cr and Ba minerals(*). Some loss of As and Sb may occur.(1)

Element Name	Lower Detection Limit	Element Name	Lower Detection Limit
Ag	0.5 ppm	Na	100 ppm
Al	100 ppm	Nb	2 ppm
As	5 ppm	Ni	2 ppm
Ва	1 ppm	Р	20 ppm
Ве	1 ppm	Pb	5 ppm
Bi	5 ppm	Sb	5 ppm
Ca	100 ppm	Sc	1 ppm
Cd	0.4 ppm	Sn	2 ppm
Co	2 ppm	Sr	2 ppm
Cr	2 ppm	Th	2 ppm
Cu	2 ppm	1	100 ppm
Fe	0.01 %	U	20 ppm
K	100 ppm	V	2 ppm
La	2 ppm	W	4 ppm
Mg	100 ppm	Υ	2 ppm
Mn	5 ppm	Zn	2 ppm
Мо	2 ppm	Zr	2 ppm

**Axiom Group** 

Attention: T. Fiolleau Project: Doc Project Sample: 13 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date: December 11, 2020

S58683

#### **MULTIELEMENT ICP-AES ANALYSIS**

Element Sample	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P %	Pb ppm	S %
A0862570	3.6	6.81	<5	329	2	<5	1.88	0.5	10	8	63	4.26	3.46	15	0.64	921	<2	0.61	3	4	0.062	335	0.9
A0862571	26.6	1.36	<5	108	<1	<5	0.17	< 0.4	5	11	35	1.72	0.55	2	0.21	147	<2	0.19	<2	3	0.015	<5	0.2
A0862572	140.4	0.42	<5	51	<1	<5	< 0.01	< 0.4	3	16	195	2.29	0.23	3	0.03	49	6	< 0.01	<2	<2	0.005	39	0.2
A0862573	7.8	7.56	<5	785	2	<5	0.05	< 0.4	25	11	712	4.83	3.97	15	0.37	964	<2	0.07	<2	5	0.068	183	0.3
A0862574	3	7.01	<5	697	1	<5	0.28	0.5	14	12	387	4.46	3.37	15	0.67	797	<2	0.34	3	6	0.079	37	<0.1
A0862575	1.7	6.96	<5	911	1	<5	3.46	<0.4	17	8	101	5.45	2.86	10	1.19	1032	<2	1.34	<2	6	0.088	11	0.3
A0862576	1.8	7.5	<5	655	<1	<5	4.52	< 0.4	25	11	124	6.7	1.52	6	1.77	1364	<2	2.62	<2	9	0.098	8	0.1
A0862577	1.5	7.43	<5	166	<1	<5	3.37	< 0.4	24	16	132	6.47	0.39	7	1.83	1238	<2	3.68	<2	9	0.103	8	< 0.1
A0862578	< 0.5	7.47	<5	223	<1	<5	3.59	< 0.4	25	19	82	6.4	0.5	7	1.76	1319	<2	3.47	2	10	0.104	8	< 0.1
A0862579	< 0.5	7.81	<5	389	<1	<5	3.58	< 0.4	27	17	104	7.05	1	7	2.04	1376	<2	3.3	2	11	0.142	<5	< 0.1
A0862580	<0.5	7,55	<5	206	1	<5	3.97	<0.4	23	17	167	6.49	0.57	8	1.82	1386	<2	3,44	3	10	0.101	7	0.1
A0862581	<0.5	7.62	<5	301	6	<5	3.55	<0.4	23	18	73	6.3	0.86	7	1.73	1321	<2	3.43	8	9	0.118	6	<0.1
A0862582	< 0.5	7.8	<5	1190	<1	<5	3.68	<0.4	23	12	183	6.89	1.61	8	1.81	1307	<2	2.5	4	6	0.109	6	0.1
A0862582 Re	< 0.5	7.89	<5	1190	<1	<5	3.73	< 0.4	23	12	179	6.86	1.59	8	1.81	1304	<2	2.49	4	6	0.109	6	0.1
STD OREAS25A-4A	<0.5	8.81	10	148	<1	<5	0.28	< 0.4	8	111	27	6.69	0.5	21	0.32	470	3	0.12	22	45	0.049	23	<0.1
STD OREAS45H	<0.5	7.71	17	324	1	<5	0.12	<0.4	88	638	734	20.24	0.22	11	0.24	379	2	0.08	13	438	0.023	14	<0.1
BLK	<0.5	< 0.01	<5	<1	<1	<5	<0.01	<0.4	<2	<2	<2	< 0.01	<0.01	<2	<0.01	<5	<2	<0.01	<2	<2	<0.002	<5	<0.1

### **Axiom Group**

Attention: T. Fiolleau Project: Doc Project Sample: 13 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58683 Date: December 11, 2020

### **MULTIELEMENT ICP-AES ANALYSIS**

Element	Sb	Sc	Sn	Sr	Th	Ti	U	V	W	Υ	Zn	Zr
Sample	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
A0862570	<5	15	<2	154	<2	0.2	<20	95	19	8	86	<2
A0862571	<5	4	<2	70	<2	0.08	<20	39	<4	3	17	<2
A0862572	<5	1	<2	4	<2	0.02	<20	9	<4	2	6	<2
A0862573	<5	19	2	29	<2	0.18	<20	92	13	7	79	<2
A0862574	<5	18	<2	80	<2	0.26	<20	106	16	12	97	<2
A0862575	<5	22	<2	357	<2	0.24	<20	157	11	11	82	<2
A0862576	<5	27	<2	455	<2	0.24	<20	242	<4	9	105	<2
A0862577	<5	25	<2	417	<2	0.31	<20	209	<4	13	95	<2
A0862578	<5	25	<2	361	<2	0.43	<20	219	<4	20	91	<2
A0862579	<5	27	2	366	<2	0.49	<20	243	<4	19	102	<2
A0862580	<5	26	<2	409	<2	0.49	<20	204	<4	23	93	<2
A0862581	<5	26	14	408	<2	0.47	<20	210	<4	20	94	<2
A0862582	<5	28	3	1316	<2	0.77	<20	234	<4	25	99	<2
A0862582 Re	<5	28	2	1337	<2	0.78	<20	228	<4	25	100	<2
STD OREAS25A-4A	<5	13	4	44	13	0.99	<20	156	<4	11	43	155
STD OREAS45H	7	54	5	25	3	0.89	25	260	<4	9	40	119
BLK	<5	<1	<2	<2	<2	< 0.01	<20	<2	<4	<2	<2	<2

Signed:	Mark Acres - Quality Assurance



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 1
Total # Pages: 2 (A · C)
Plus Appendix Pages
Finalized Date: 31-AUG-2020
This copy reported on 1-SEP-2020

Account: HAGOCO

### CERTIFICATE TR20185910

Project: DOC Project

This report is for 4 Rock samples submitted to our lab in Terrace, BC, Canada on

26-AUG-2020.

The following have access to data associated with this certificate:

DEBORAH HOLMES RAY MARKS BOB QUINN

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-21	Sample logging - ClientBarCode							
BAG-01	Bulk Master for Storage							
CRU-QC	Crushing QC Test							
PUL-QC	Pulverizing QC Test							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-32m	Pulverize 500g - 85%<75um							

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
Au-AA23	Au 30g FA-AA finish	AAS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver



ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218

www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 31-AUG-2020 Account: HAGOCO

CERTIFICATE OF ANALYSIS TR20185910

Project: DOC Project

								<u> </u>								
Sample Description	Method	WEI-21	Au-AA23	ME-ICP41												
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	LOD	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
A0862600		0.99	0.021	0.3	0.38	<2	<10	50	<0.5	<2	2.96	0.5	17	3	65	8.71
A0862601		0.41	0.491	2.1	0.11	2	<10	60	<0.5	<2	3.48	0.7	36	8	24	5.16
A0862951		1.53	0.253	1.0	0.27	2	<10	60	<0.5	<2	4.58	0.7	65	16	160	8.99
A0862952		2.46	0.215	0.8	0.21	<2	<10	30	<0.5	<2	1.89	<0.5	28	6	18	6.89



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. **3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1** 

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 31-AUG-2020 **Account: HAGOCO** 

Project: DOC Project

( , , , , , , , , , , , , , , , , , , ,								CERTIFICATE OF ANALYSIS TR20185910								
Sample Description	Method Analyte Units LOD	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
A0862600 A0862601 A0862951 A0862952		<10 <10 <10 <10	<1 <1 <1 <1	0.23 0.02 0.05 0.02	<10 <10 <10 <10 <10	0.86 1.06 1.09 0.55	835 1030 1070 651	2 2 4 2	0.05 0.06 0.05 0.08	13 13 19 13	3710 1220 2000 2000	5 6 6 4	0.54 4.45 5.47 2.14	<2 <2 <2 <2 <2	13 13 16 10	94 124 115 55



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. **3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1** 

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 31-AUG-2020

**Account: HAGOCO** 

Project: DOC Project

									CERTIFICATE OF ANALYSIS	TR20185910
ample Description	Method Analyte Units LOD	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
A0862600 A0862601 A0862951 A0862952		<20 <20 <20 <20 <20	0.09 <0.01 0.04 0.08	<10 <10 <10 <10	<10 <10 <10 <10	204 6 78 157	<10 <10 <10 <10	39 23 32 21		



ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 604 984 0221 Fax: +1 604 984 0218
www.alsglobal.com/geochemistry

To: HANSTONE GOLD CORP. 3479 APPLEWOOD DRIVE ABBOTSFORD BC V3G 3E1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 31-AUG-2020 Account: HAGOCO

Project: DOC Project

CERTIFICATE OF ANALYSIS TR20185910

		CERTIFICATE CO	MMENTS										
		LABO	RATORY ADDRESSES										
	Processed at ALS Terrace located at 2912 Molitor Street, Terrace, BC, Canada.												
Applies to Method:	BAG-01 PUL-32m	CRU-31 PUL-QC	CRU-QC SPL-21	LOG-21 WEI-21									
				WEI-2 I									
Applies to Method:	Processed at ALS Vancou Au-AA23	ver located at 2103 Dollarton Hwy, N ME-ICP41	North Vancouver, BC, Canada.										
Applies to Method.	Au AAZJ	WE ICI 41											

Company: Axiom Group Geologist: D. Engdahl

Project: Hanstone – DOC

Purchase Order:

TSL Report: S58320
Date Received: Aug 26, 2020
Date Reported: Aug 31, 2020

Invoice: 78493

Remarks:

Sample Type: Number Size Fraction Sample Preparation

Rock 6 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle Split,

Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size requested ~ 1000 g

### Standard Procedure:

Samples for Au, Pt, Pd Fire Assay/ICP (ppb) are weighed at 30 grams. Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 1 AT (29.16 grams).

Element Name	Unit	Extraction Technique	Lower Detection Limit	Upper Detection Limit
Au	ppb	Fire Assay/ICP	5	3000
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%
Pt	ppb	Fire Assay/ICP	10	3000
Pd	ppb	Fire Assay/ICP	5	3000



#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

## **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Axiom Group

101 - 3239 Faithfull Ave Saskatoon, SK S7K 8H4 REPORT No.

S58320

SAMPLE(S) OF

6 Rock/0 Pulp

INVOICE #:78493

P.O.:

D. Engdahl

Hanstone - DOC

	Au ppb	Au g/t	Pt ppb	Pd ppb	File Name
35776	>3000	95.64	<10	<5	S58320
35777	>3000	164.4	<10	<5	S58320
35778	>3000	9.26	<10	<5	S58320
35779	1130		<10	<5	S58320
35780	35		<10	<5	S58320
35781 GS-7E	>3000	50.21	<10	<5	S58320
GD-/E		6.89			S58320

COPIES TO: D. Engdahl, M. Schwab

INVOICE TO: Axiom Group, SK

Aug 31/20

SIGNED

Mark Acres - Quality Assurance

Page 1 of 1

Company: Hanstone Gold Corp TSL Report: S58477 Geologist: T. Fiolleau Date Received: Oct 08, 2020 Project: Doc Project Date Reported: Nov 03, 2020 Purchase Order: Hanstone2 Invoice: 78664

Sample Type: Number Size Fraction Sample Preparation
Rock 3 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle
Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

#### ICP-MS Aqua Regia Digestion HCI-HNO3

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	10000 ppm
AI *	0.01 %	10 %	Mo	0.1 ppm	2000 ppm
As	0.5 ppm	10000 ppm	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	N	0.1 ppm	10000 ppm
B *	1 ppm	2000 ppm	P *	0.001%	5 %
Ba *	1 ppm	1000 ppm	Pb	0.1 ppm	10000 ppm
Bi	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Co	0.1 ppm	2000 ppm	Se	0.5 ppm	1000 ppm
Cr *	1 ppm	10000 ppm	Sr *	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Te	1 ppm	2000 ppm
Fe *	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	Ti *	0.001%	10 %
Hg	0.01 ppm	100 ppm	TI	0.1 ppm	1000 ppm
K *	0.01%	10 %	U *	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	V *	2 ppm	10000 ppm
Mg *	0.01%	30 %	W *	0.1 ppm	100 ppm
			Zn	1 ppm	10000 ppm

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 3 Rock / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No: Date: N

\$58477 November 3, 2020

### MULTIELEMENT ICP-MS ANALYSIS

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	p %
A0867951	1.5	1.76	63.2	516.5	<20	155	43.5	0.2	0.3	29.5	83	318.1	15.59	5	< 0.01	0.77	2	0.56	9288	3.5	0.006	18.8	0.052
A0867952	4.5	0.61	38.7	377.5	<20	27	13.1	0.04	1.1	22.7	263	563.6	12.78	2	< 0.01	0.3	2	0.12	766	7.6	0.006	23.3	0.043
A0862955	72.2	0.83	0.9	1872.8	<20	12	0.2	1.04	7.2	48.7	345 :	>10000.0	16.3	2	0.03	0.53	<1	1.1	484	0.4	0.005	206.2	0.031
STD DS11	1.6	1.1	40	57.1	<20	423	11.1	1.01	2.4	13.1	57	142.2	3.08	5	0.25	0.39	17	0.84	988	14.5	0.072	81.3	0.069
STD OREAS262	0.4	1.21	33.8	50.4	<20	243	0.9	2.71	0.5	25.6	42	110.4	3.14	4	0.14	0.29	15	1.14	520	0.6	0.067	60.5	0.037
BLK	<0.1	<0.01	<0.5	<0.5	<20	<1	<0.1	<0.01	<0.1	<0.1	<1	< 0.1	<0.01	<1	< 0.01	<0.01	<1	< 0.01	<1	<0.1	<0.001	<0.1	<0.001

### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 3 Rock / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No: S58477
Date: November 3, 2020

### MULTIELEMENT ICP-MS ANALYSIS

Element Sample	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Sr ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm
A0867951	13	1.86	4.2	10.1	0.7	14	0.3	0.4	0.066	0.6	0.4	75	>100.0	67
A0867952	782.1	2	12.2	2.3	1.9	95	1.9	0.2	0.017	0.2	0.3	28	>100.0	97
A0862955	90.7	>10.00	0.5	3.8	3.2	41	7.9	0.2	0.043	0.4	< 0.1	26	2.7	196
STD DS11	140.1	0.27	5.8	3	2.2	66	4.6	7.9	0.086	4.9	2.5	47	3	341
STD OREAS262	55.2	0.25	2.4	2.9	<0.5	33	0.3	8.5	0.003	0.4	1.1	21	0.2	140
BLK	< 0.1	<0.05	<0.1	< 0.1	<0.5	<1	<0.2	<0.1	<0.001	<0.1	<0.1	<1	<0.1	<1



2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Hanstone2

TSL Report: S58477

Date Received: Oct 08, 2020 Date Reported: Oct 16, 2020 Invoice: 78664

Remarks:

Sample Type: Number Size Fraction Sample Preparation

Rock 3 Reject ~ 95% at -10 mesh (1.70 mm) Crush Rolls Crush Riffle

Rock 3 Reject ~ 95% at -10 mesh (1.70 mm) Crush, Rolls Crush, Riffle Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp 0 None

Pulp Size: ~1000 gram

Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 2 AT (58.32 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	a/tonne	Fire Assay/Gravimetric	0.03	100%



#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58477

SAMPLE(S) OF

3 Rock/0 Pulp

INVOICE #:78664

P.O.: Hanstone2

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name			
A0867951	.48		S58477			
A0867952	.50		S58477			
A0862955	2.40	2.47	S58477			
GS-7E	6.93		S58477			
GS-7E	7.24		S58477			

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 16/20

SIGNED

Mark Acres - Quality Assurance



2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Geologist:

Axiom Group T. Fiolleau

TSL Report: Date Received: S58492 Oct 15, 2020

Project:

Sheelah Creek

Date Reported:

Nov 02, 2020

Purchase Order:

OGC

Invoice:

78671

Sample Type:

Number

Size Fraction

Sample Preparation

Rock

Reject ~ 70% -10 mesh (1.70 mm) Pulp ~ 95% -150 mesh (106 μm)

Crush, Riffle Split, Pulverize

Pulp

0

None

#### ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag Al* As	0.1 ppm 0.01 % 0.5 ppm	100 ppm 10 %	Mn * Mo	1 ppm 0.1 ppm	10000 ppm 2000 ppm
Au B *	0.5 ppm 0.5 ppb 1 ppm	10000 ppm 100 ppm 2000 ppm	Na * Ni P *	0.001% 0.1 ppm 0.001%	10 % 10000 ppm 5 %
Ba *	1 ppm 0.1 ppm	1000 ppm 2000 ppm	Pb S	0.1 ppm 0.05 %	10000 ppm
Ca * Cd	0.01% 0.1 ppm	40 % 2000 ppm	Sb Sc	0.1 ppm 0.1 ppm	2000 ppm 100 ppm
Co Cr *	0.1 ppm 1 ppm	2000 ppm 10000 ppm	Se Sr*	0.5 ppm 1 ppm	1000 ppm 10000 ppm
Cu Fe * Ga *	0.1 ppm 0.01% 1 ppm	10000 ppm 40 % 1000 ppm	Te Th * Ti *	1 ppm 0.1 ppm 0.001%	2000 ppm 2000 ppm
Hg K *	0.01 ppm 0.01%	100 ppm 10 %	Ti U*	0.001% 0.1 ppm 0.1 ppm	10 % 1000 ppm 2000 ppm
La * Mg *	1 ppm 0.01%	10000 ppm 30 %	V * W * Zn	2 ppm 0.1 ppm 1 ppm	10000 ppm 100 ppm 10000 ppm

### Axoim Group

Attention: T. Fiolleau Project: Sheelah Creek Sample: 9 Rock / 0 Pulp

### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: November 2, 2020

S58492

Date:

#### MULTIELEMENT ICP-MS ANALYSIS

Element	Ag	Al	As	Au	B	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	p
Sample	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	%
A0867922 A0867923 A0867924 A0867925 A0867926	0.2 0.3 1.1 0.1	1.87 1.96 1 1.31 0.9	2.5 1.8 0.6 1.2 0.7	2.2 14.8 29.6 4.1 4.5	<20 <20 <20 <20 <20	238 66 155 301 117	0.2 3.6 0.3 0.1 <0.1	0.52 0.16 4.44 0.92 0.83	<0.1 <0.1 1 <0.1 <0.1	11.8 44.4 17.3 13.5 5.8	71 30 99 51 66	105.7 55.2 136.6 50.4 58.9	3.66 7.55 3 3.26 2.05	7 7 3 5 3	<0.01 <0.01 <0.01 <0.01 <0.01	0.88 0.11 0.44 0.11 0.21	3 <1 4 5	0.73 1.57 1.12 1.52 0.51	305 470 1278 383 221	1.2 6.9 2.3 2.9 1.3	0.081 0.04 0.015 0.045 0.099	5.8 12.3 48.3 26.1 10.8	0.098 0.073 0.068 0.1 0.085
A0867927	0.9	0.33	10.9	5.5	<20	55	<0.1	0.19	<0.1	7.3	88	12.3	4.55	2	0.03	0.06	7	0.17	76	22.4	0.057	4.4	0.032
A0867928	0.3	1.36	4	4.6	<20	114	0.2	0.34	0.4	3.5	70	32.1	4.93	9	0.01	0.01	8	0.91	360	8.4	0.045	4.1	0.041
A0867929	<0.1	1.34	<0.5	1	<20	58	<0.1	0.28	1.2	2.9	93	10.8	2.77	11	0.02	0.07	13	0.78	392	0.8	0.046	4.3	0.035
A0867930	0.2	0.9	2.1	0.6	<20	17	<0.1	0.27	0.3	3.9	83	30.6	3.76	7	<0.01	0.02	11	0.63	240	8.6	0.048	4.6	0.042
STD OREAS262	0.5	1.21	35.2	57.5	<20	242	0.9	2.84	0.7	26.6	42	107.4	3.16	4	0.16	0.3	16	1.13	535	0.6	0.064	61.1	0.038
STD DS11	1.5	1.01	40.9	52.3	<20	383	10.4	0.96	2	12.9	53	135.4	2.92	4	0.28	0.37	14	0.78	936	12.5	0.066	73.1	0.065
STD OREAS262	0.4	1.07	33.8	62.8	<20	217	0.9	2.73	0.6	26.3	38	106.6	3.11	3	0.14	0.27	12	1.12	504	0.6	0.065	60.7	0.036
BLK	<0.1	<0.01	<0.5	<0.5	<20	<1	<0.1	<0.01	<0.1	<0.1	<1	<0.1	<0.01	<1	<0.01	<0.01	<1	<0.01	<1	<0.1	<0.001	<0.1	<0.001
BLK	<0.1	<0.01	<0.5	<0.5	<20	<1	<0.1	<0.01	<0.1	<0.1	<1	<0.1	<0.01	<1	<0.01	<0.01	<1	<0.01	<1	<0.1	<0.001	<0.1	<0.001

### Axoim Group

Attention: T. Fiolleau Project: Sheelah Creek Sample: 9 Rock / 0 Pulp 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 Report No:

Date: November 2, 2020

S58492

#### MULTIELEMENT ICP-MS ANALYSIS

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	TI	U	V	W	Zn	
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
A0867922	1.9	1.18	< 0.1	8.9	1.1	20	< 0.2	1.6	0.2	0.3	0.3	103	0.5	48	
A0867923	7	0.73	0.3	7.2	2	9	0.5	0.2	0.144	< 0.1	0.2	91	0.8	48	
A0867924	76.6	0.37	0.7	7.5	< 0.5	72	< 0.2	0.3	0.041	0.2	0.5	42	0.8	73	
A0867925	3.3	0.26	0.1	4.6	0.8	29	< 0.2	0.8	0.099	< 0.1	0.9	65	1.6	32	
A0867926	6.3	<0.05	< 0.1	2.9	<0.5	57	<0.2	2.8	0.11	<0.1	1.1	58	0.3	28	
A0867927	87.6	3.94	2.8	3.3	2.8	4	<0.2	1.3	0.175	< 0.1	0.5	14	0.2	30	
A0867928	75.8	1.44	0.6	4.9	1.3	9	< 0.2	1.5	0.196	< 0.1	0.7	24	0.1	68	
A0867929	3.8	< 0.05	< 0.1	6.1	< 0.5	6	< 0.2	1.6	0.151	< 0.1	0.3	22	0.2	147	
A0867930	49.3	1.67	0.5	4.8	1.1	3	< 0.2	1.4	0.171	< 0.1	0.6	24	0.2	44	
STD OREAS262	56.4	0.24	2.9	3.4	<0.5	35	<0.2	10.4	0.003	0.5	1.2	19	< 0.1	144	
STD DS11	127.1	0.26	7	2.7	2.2	58	4.5	6.7	0.078	4.6	2.2	44	2.6	323	
STD OREAS262	49.9	0.25	3.6	2.7	< 0.5	33	0.2	7.7	0.002	0.4	1	19	0.1	137	
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1	
BLK	< 0.1	< 0.05	< 0.1	< 0.1	< 0.5	<1	< 0.2	< 0.1	< 0.001	< 0.1	< 0.1	<1	< 0.1	<1	



2 - 302 48th Street • Saskatoon, SK • S7K 6A4

P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company:

Axiom Group

Geologist:

T. Fiolleau

Project:

Sheelah Creek

TSL Report:

S58492

Date Received:

Oct 15, 2020

Date Reported:

Oct 19, 2020

Invoice:

78671

Remarks:

Sample Type:

Number

Size Fraction

Sample Preparation

Rock

9

Reject ~ 70% at -10 mesh (1.70 mm)

Crush, Riffle Split, Pulverize

Pulp ~ 95% at -150 mesh (106 μm)

Pulp

0

None

Pulp Size requested ~ 250 g

#### Standard Procedure:

Samples for Au Fire Assay/AA (ppb) are weighed at 30 grams.
Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 1 AT (29.16 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	ppb	Fire Assay/AA	5	1000
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%



#2 - 302 48th Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Axiom Group

101 - 3239 Faithfull Ave Saskatoon, SK S7K 8H4 REPORT No.

S58492

SAMPLE(S) OF

9 Rock/0 Pulp

INVOICE #:78671 P.O.: OGC

T. Fiolleau Sheelah Creek

	Au	File
	ppb	Name
A0867922	10	S58492
A0867923	25	S58492
A0867924	25	S58492
A0867925	5	S58492
A0867926	< 5	S58492
A0867927	<5	S58492
A0867928	<5	S58492
A0867929	<5	S58492
A0867930	<5	S58492
GS-1P5T	1860	S58492

COPIES TO: T. Fiolleau, etc. INVOICE TO: Axiom Group, SK

Oct 19/20

SIGNED

Mark Acres - Quality Assurance



2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp TSL Report: S58493 Geologist: T. Fiolleau Date Received: Oct 15, 2020 Project: Doc Project Date Reported: Oct 30, 2020 Purchase Order: Hanstone5 Invoice: 78676

Sample Type: Number Size Fraction Sample Preparation
Rock 18 Reject ~ 95% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize
Pulp ~ 95% -150 mesh (106 μm)

Pulp 0 None

#### ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element Name	Lower Detection Limit	Upper Detection Limit	Element Name	Lower Detection Limit	Upper Detection Limit
Ag Al* As Au B* Ba* Bi Ca* Cd Co Cr* Cu Fe* Ga* Hg K* La* Mg*	0.1 ppm 0.01 % 0.5 ppm 0.5 ppb 1 ppm 1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.1 ppm 0.01% 1 ppm 0.01% 1 ppm	100 ppm 10 % 10000 ppm 100 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10000 ppm 10000 ppm 10000 ppm 1000 ppm 100 ppm 10 % 1000 ppm 10 % 10000 ppm	Mn * Mo Na * Ni P * Pb S Sb Sc Se Sr * Te Th * Ti * TI U * V * W * Zn	1 ppm 0.1 ppm 0.001% 0.1 ppm 0.001% 0.1 ppm 0.05 % 0.1 ppm 0.1 ppm 0.5 ppm 1 ppm 1 ppm 0.1 ppm	10000 ppm 2000 ppm 10 % 10000 ppm 5 % 10000 ppm 10 % 2000 ppm 1000 ppm 1000 ppm 2000 ppm 2000 ppm 2000 ppm 2000 ppm 10 % 1000 ppm 10 9pm 10 9pm 10 9pm 10 9pm 1000 ppm
				· b. b	

#### TSL LABORATORIES INC.

#### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 18 Rock / 0 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: Date:

S58493 October 30, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	p %
A0862954	99.3	0.12	< 0.5	3065.2	<20	168	0.3	0.87	65.4	4.9	148	1963.3	1.83	<1	< 0.01	0.1	3	0.22	908	24.6	0.002	19.9	0.032
A0862956	0.3	0.89	0.6	34.1	<20	53	< 0.1	3.93	0.8	21.3	27	28.2	7.8	4	< 0.01	0.08	1	1.69	1675	0.6	0.043	8.6	0.102
A0862957	0.6	0.07	0.8	31.9	<20	194	< 0.1	5.68	0.5	4.5	134	9.8	1.27	<1	< 0.01	0.02	2	0.03	983	1.4	0.001	4.7	0.007
A0862958	14.2	0.09	11.4	77	<20	4	8.6	0.15	332.7	96.7	149	>10000.0	8.63	2	0.41	< 0.01	<1	0.05	30	9.1	0.005	10.4	0.004
A0862959	>100.0	0.02	1.8	27883.7	<20	186	7.6	0.01	1.6	0.9	169	94.8	1.51	<1	0.06	< 0.01	<1	<0.01	25	4.9	0.002	4.6	<0.001
A0862960	0.2	0.54	0.5	5.5	<20	2	0.3	0.34	0.2	36.8	71	155.4	3.02	2	< 0.01	< 0.01	<1	0.66	199	6.7	0.061	38.1	0.068
A0862961	3.6	1.41	26.3	162.3	<20	123	13.3	0.05	0.1	18.5	114	259.1	6.44	3	< 0.01	0.34	2	0.34	579	3.8	0.004	12.4	0.032
A0862962	20.9	0.03	46	2217.4	<20	3	31	< 0.01	0.7	15.6	155	120.4	5.66	<1	0.07	< 0.01	<1	0.01	122	1.2	0.006	13.3	0.001
A0867931	18.5	0.09	1.4	1176.3	<20	29	0.1	< 0.01	0.1	0.8	161	30	0.47	<1	0.01	0.07	<1	0.02	28	9.4	0.002	3.8	0.001
A0867932	>100.0	0.03	1.2	984.3	<20	14	1.6	< 0.01	28.3	0.9	187	3695.9	1.08	<1	0.1	0.02	<1	< 0.01	20	12	0.002	7.2	0.01
										4.5	201	505075	2.00		0.1	0.01		10.02	20	**	0.003	7.5	0.01
A0867933	4.8	0.13	0.5	285.5	<20	127	0.1	0.8	49.7	7.7	167	331.3	2.56	<1	< 0.01	0.11	2	0.4	1028	4.4	0.005	8.7	0.019
A0867934	19.7	0.25	102	59.5	<20	2693	1.3	2.46	11.5	16.8	151	2387.9	2.19	<1	7.45	0.08	2	0.12	469	0.8	0.021	9.4	0.042
A0867935	15.5	3.43	1.3	947.7	<20	58	< 0.1	4.1	0.5	44.9	335	26.6	7.23	9	0.06	0.13	<1	4.74	2061	0.4	0.003	189.5	0.037
A0867936	17.9	0.39	< 0.5	363.3	<20	152	1.3	0.42	36.9	15.9	100	354.5	4.25	1	0.05	0.28	3	0.19	1049	48.3	0.005	11.6	0.111
A0867937	2.3	2.51	0.5	160.1	<20	159	< 0.1	3.16	2.3	36.7	194	123.6	5.19	7	0.01	1.67	<1	4.28	1527	1.3	0.009	134.3	0.067
A0867938	2.9	0.97	0.7	210.7	<20	97	< 0.1	0.62	0.7	19.5	86	163.4	4.28	3	< 0.01	0.25	2	0.69	613	5.2	0.006	8.3	0.076
A0867938 Re	2.9	0.99	0.7	196.2	<20	100	< 0.1	0.6	0.7	19.4	89	160.5	4.27	3	< 0.01	0.26	2	0.67	601	5.4	0.007	8.1	0.077
A0867939	8.7	0.51	1.6	383.2	<20	49	< 0.1	2.6	8.6	10.3	136	198.1	2.73	1	< 0.01	0.11	2	1.06	1125	6.3	0.009	10.6	0.033
A0867940	0.8	0.35	17.9	< 0.5	<20	55	< 0.1	12.37	7.8	25.4	143	57.1	3.19	<1	0.13	0.14	3	1.84	998	15	0.003	246.1	0.089
STD DS11	1.8	1.1	43.3	76.1	<20	402	11.4	1.01	2.3	13.1	57	140.5	2.94	5	0.27	0.39	17	0.8	981	13.5	0.07	76.2	0.071
STD OREAS262	0.4	1.17	35	66.3	<20	241	0.9	2.81	0.6	26.1	40	106.5	3.1	4	0.16	0.3	16	1.11	507	0.5	0.065	60.5	0.038
BLK	< 0.1	< 0.01	< 0.5	<0.5	<20	<1	<0.1	< 0.01	<0.1	<0.1	<1	<0.1	<0.01	<1	0.01	<0.01	<1	< 0.01	<1	<0.1	< 0.001	<0.1	<0.001

Signed: Mark Acres - Quality Assurance

#### TSL LABORATORIES INC.

#### Hanstone Gold Corp

Attention: T. Fiolleau Project: Doc Project Sample: 18 Rock / 0 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: S58493 Date: October 30, 2020

#### MULTIELEMENT ICP-MS ANALYSIS

Aqua Regia Digestion

Element Sample	Pb ppm	S %	Sb ppm	Sc ppm	Se ppm	Sr ppm	Te ppm	Th ppm	Ti %	Tl ppm	U ppm	V ppm	W	Zn ppm
A0862954	>10000.0	2.03	25.2	3.4	0.9	372	39	0.4	< 0.001	< 0.1	0.1	6	>100.0	840
A0862956	11.1	0.53	< 0.1	19.3	<0.5	114	< 0.2	0.4	0.064	< 0.1	0.1	353	0.9	53
A0862957	116	< 0.05	< 0.1	1	< 0.5	7	0.4	0.2	< 0.001	< 0.1	0.2	15	2.1	25
A0862958	85.2	6.25	0.3	0.4	>100.0	2	6.8	0.4	0.007	< 0.1	0.1	7	1.4	>10000
A0862959	>10000.0	1.01	20.3	< 0.1	13	15	63.9	< 0.1	< 0.001	< 0.1	0.1	1	8.1	25
A0862960	17.1	1.41	<0.1	2.2	2.3	3	0.2	1	0.091	< 0.1	0.8	50	<0.1	25
A0862961	207.3	2.83	4.4	4.6	0.7	3	0.6	0.7	0.044	0.2	0.2	33	1.3	36
A0862962	95.3	4.43	31.1	0.6	1.1	<1	0.7	< 0.1	0.002	< 0.1	< 0.1	2	0.3	36
A0867931	214	0.08	9.1	0.2	< 0.5	1	10.8	< 0.1	< 0.001	< 0.1	< 0.1	3	9	7
A0867932	>10000.0	1.36	53.1	0.2	12.1	3	30	0.6	<0.001	< 0.1	< 0.1	2	10.7	279
A0867933	1740	1.83	2.3	2.2	0.8	54	2.5	0.3	< 0.001	<0.1	<0.1	6	85.4	1.77
A0867934	67.7	0.3	962.2	5.4	1.2	178	1.9	0.3	0.003	< 0.1	<0.1	16	0.7	374
A0867935	56.3	3.3	0.3	9.1	< 0.5	107	8.5	0.3	0.004	<0.1	<0.1	91	0.3	182
A0867936	7971	2.86	3.8	2.3	4.7	26	6.9	0.7	0.002	< 0.1	0.1	13	3.1	311
A0867937	22	3.06	1.7	6.8	<0.5	93	1.5	0.2	0.039	2	0.2	64	1.3	186
A0867938	109.7	1.66	0.6	2.8	0.8	18	1.4	0.6	0.002	<0.1	0.3	27	>100.0	71
A0867938 Re	108	1.65	0.5	2.7	0.8	18	1.6	0.7	0.002	< 0.1	0.3	27	>100.0	73
A0867939	260.1	0.62	6.5	4.3	< 0.5	101	6.4	0.2	0.002	< 0.1	< 0.1	19	19.3	180
A0867940	195.1	0.23	0.7	5.9	4.4	341	< 0.2	0.4	< 0.001	< 0.1	1.3	74	2.9	275
STD DS11	131.5	0.26	7.7	2.9	2.4	65	4.4	7.5	0.087	4.9	2.4	44	3.3	333
STD OREAS262	51.7	0.24	3.3	3.2	< 0.5	33	<0.2	8.2	0.003	0.4	1.1	19	0.1	144
BLK	0.2	<0.05	< 0.1	< 0.1	< 0.5	<1	<0.2	<0.1	< 0.001	< 0.1	<0.1	<1	<0.1	<1



2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp

Geologist: T. Fiolleau Project: Doc Project

TSL Report: S58493

Date Received: Oct 15, 2020 Date Reported: Oct 20, 2020

Invoice: 78676

Remarks:

Sample Type: Number Size Fraction Sample Preparation

Rock 18 Reject ~ 70% at -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% at –150 mesh (106 μm)

Pulp 0 None

Pulp Size requested ~ 250 g

#### Standard Procedure:

Samples for Au Fire Assay/Gravimetric (g/tonne) are weighed at 1 AT (29.16 grams).

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Au	g/tonne	Fire Assay/Gravimetric	0.03	100%



#2 - 302 48th Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58493

SAMPLE(S) OF

18 Rock/0 Pulp

INVOICE #:78676 P.O.: Hanstone5

T. Fiolleau

T. Fiolleau Doc Project

	Au g/t	Au1 g/t	File Name
A0862954 A0862956	2.70 0.06	2.55	\$58493 \$58493
A0862957	0.03		S58493
A0862958	0.09		S58493
A0862959	24.21	23.63	S58493
A0862960	<.03		S58493
A0862961	0.24		S58493
A0862962	2.73	2.84	S58493
A0867931	1.32		S58493
A0867932	1.92		S58493
A0867933	0.33		S58493
A0867934	0.09		S58493
A0867935	0.99		S58493
A0867936	0.42		S58493
A0867937	0.18		S58493
A0867938	0.27		S58493
A0867939	0.54		S58493
A0867940	<.03		S58493
GS-7E	7.20		S58493

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Oct 20/20

SIGNED



2 - 302 48th Street • Saskatoon, SK • S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Axiom Group TSL Report: S58499 Geologist: T. Fiolleau Date Received: Oct 20, 2020 Project: Orogeinic Date Reported: Oct 30, 2020 Purchase Order: 20.PRPSL.002OCG Invoice: 78685

Sample Type: Number Size Fraction Sample Preparation
Rock 5 Reject ~ 70% -10 mesh (1.70 mm) Crush, Riffle Split, Pulverize

Pulp ~ 95% -150 mesh (106 μm)

Pulp 0 None

#### ICP-MS Aqua Regia Digestion HCI-HNO₃

The Aqua Regia Leach digestion liberates most of the metals except those marked with an asterisk where the digestion will not be complete.

Element	Lower Detection	Upper Detection	Element	Lower Detection	Upper Detection
Name	Limit	Limit	Name	Limit	Limit
Ag	0.1 ppm	100 ppm	Mn *	1 ppm	10000 ppm
AI *	0.01 %	10 %	Mo	0.1 ppm	2000 ppm
As	0.5 ppm	10000 ppm	Na *	0.001%	10 %
Au	0.5 ppb	100 ppm	Ni	0.1 ppm	10000 ppm
B *	1 ppm	2000 ppm	P *	0.001%	5 %
Ba *	1 ppm	1000 ppm	Pb	0.1 ppm	10000 ppm
Bi	0.1 ppm	2000 ppm	S	0.05 %	10 %
Ca *	0.01%	40 %	Sb	0.1 ppm	2000 ppm
Cd	0.1 ppm	2000 ppm	Sc	0.1 ppm	100 ppm
Co	0.1 ppm	2000 ppm	Se	0.5 ppm	1000 ppm
Cr *	1 ppm	10000 ppm	Sr *	1 ppm	10000 ppm
Cu	0.1 ppm	10000 ppm	Te	1 ppm	2000 ppm
Fe *	0.01%	40 %	Th *	0.1 ppm	2000 ppm
Ga *	1 ppm	1000 ppm	The state of the s	0.001%	10 %
Hg	0.01 ppm	100 ppm	TI	0.1 ppm	1000 ppm
K *	0.01%	10 %	U *	0.1 ppm	2000 ppm
La *	1 ppm	10000 ppm	V *	2 ppm	10000 ppm
Mg *	0.01%	30 %	W *	0.1 ppm	100 ppm
			Zn	1 ppm	10000 ppm

#### TSL LABORATORIES INC.

Axiom Group

Attention: M. Schwab Project: Orogenic

Sample: 5 Rock / 0 Pulp

2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No:

S58499

Date:

October 30, 2020

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element Sample	Ag ppm	Al %	As ppm	Au ppb	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	р %
A0867941	4	0.15	278.3	26948.6	<20	20	19.5	2.34	0.5	30.1	61	9.1	10.81	<1	0.03	0.08	4	0.68	505	9.7	0.044	9.5	0.08
A0867942	41.1	0.09	6.8	1897.4	<20	15	4.9	0.43	1.5	23.5	118	2273.7	16.63	<1	0.03	0.06	<1	0.12	124	3.3	0.005	13.7	0.007
A0867943	>100.0	1.92	< 0.5	1043.7	<20	97	>2000.0	3	85.6	24.2	133	261.3	6.35	9	0.03	1.18	3	0.64	372	>2000.0	0.667	8.8	0.033
A0867944	0.7	0.38	150.4	2349.4	<20	59	5.9	4.63	0.4	59.5	36	16.8	10.91	1	< 0.01	0.22	1	2.09	1553	2.4	0.019	16	0.078
A0867945	>100.0	0.57	< 0.5	578.8	61	36	>2000.0	2.45	153.5	83.6	163	273.6	14.4	2	< 0.01	0.48	<1	0.06	126	1285.3	0.139	8.3	0.001
STD DS11	1.8	1.1	43.3	76.1	<20	402	11.4	1.01	2.3	13.1	57	140.5	2.94	5	0.27	0.39	17	0.8	981	13.5	0.07	76.2	0.071
STD OREAS262	0.4	1.17	35	66.3	<20	241	0.9	2.81	0.6	26.1	40	106.5	3.1	4	0.16	0.3	16	1.11	507	0.5	0.065	60.5	0.038
BLK	< 0.1	< 0.01	< 0.5	<0.5	<20	<1	< 0.1	< 0.01	< 0.1	< 0.1	<1	< 0.1	< 0.01	<1	0.01	< 0.01	<1	< 0.01	<1	< 0.1	< 0.001	< 0.1	< 0.001

Signed: Mark Acres - Quality Assurance

#### TSL LABORATORIES INC.

**Axiom Group** 

Attention: M. Schwab Project: Orogenic

Sample: 5 Rock / 0 Pulp

#### 2 - 302 48th Street East, Saskatoon, Saskatchewan, S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

Report No: October 30, 2020 Date:

S58499

#### **MULTIELEMENT ICP-MS ANALYSIS**

Aqua Regia Digestion

Element	Pb	S	Sb	Sc	Se	Sr	Te	Th	Ti	Π	U	V	W	Zn
Sample	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
A0867941	54.2	9.82	0.4	4.1	2.7	152	0.9	0.8	0.003	< 0.1	0.5	6	1.9	25
A0867942	198.2	>10.00	62.8	0.4	1.7	23	17.1	< 0.1	0.007	< 0.1	0.2	<1	6.3	36
A0867943	>10000.0	6.46	28.3	5.8	60.5	108	29.6	1.7	0.148	0.9	5.1	77	1.7	784
A0867944	14.1	3.62	0.6	12.1	1.8	287	0.2	0.3	0.013	< 0.1	0.2	31	3.5	49
A0867945	>10000.0	>10.00	37.6	1.7	>100.0	43	55.6	0.8	0.01	0.6	3	10	1	1273
STD DS11	131.5	0.26	7.7	2.9	2.4	65	4.4	7.5	0.087	4.9	2.4	44	3.3	333
STD OREAS262	51.7	0.24	3.3	3.2	< 0.5	33	< 0.2	8.2	0.003	0.4	1.1	19	0.1	144
RI K	0.2	<0.05	< 0.1	< 0.1	< 0.5	<1	<0.2	< 0.1	< 0.001	<0.1	< 0.1	<1.	< 0.1	<1

Signed:__ Mark Acres - Quality Assurance



2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Hanstone Gold Corp

Geologist: T. Fiolleau
Project: Doc Project
Purchase Order: Hanstone5

TSL Report: S58546

Date Received: Oct 30, 2020 Date Reported: Nov 12, 2020

Invoice: 78759

Remarks: Original Report S58493

Sample Type: Number Sample Preparation

Rock Pulp 3 None

#### Standard Procedure:

Samples for Ag (g/tonne) are weighed at 0.5 gram. Samples for Base Metals (%) are weighed at 0.5 gram.

			Lower	Upper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Ag	g/tonne	HNO3-HF-HCI04-HCI/AA	Apres	1000
Cu	%	HNO3-HF-HCI04-HCI/AA	<.01	80



#2 - 302 48th Street · Saskatoon, SK · S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Hanstone Gold Corp 3479 Applewood Drive Abbotsford, BC V3G 3E1

REPORT No.

S58546

SAMPLE(S) OF

5 Rock/Pulp

INVOICE #:78759

P.O.: Hanstone5

T. Fiolleau Doc Project

Original Report S58493. Assay on over-range values from ICP-MS

	Ag	Cu	File
	g/t	용	Name
A0862958		1.43	S58546
A0862959	211.3		S58546
A0867932	141.6		S58546
ME-8	62.7	.10	S58546
ME-1411	45.8	1.49	S58546
ME-1605	273.0		S58546

COPIES TO: T. Fiolleau, etc. INVOICE TO: Hanstone - BC

Nov 12/20

SIGNED



2 - 302 48th Street * Saskatoon, SK * S7K 6A4

P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

Company: Axiom Group
Geologist: T. Fiolleau
Project: Orogenic

Purchase Order: 20.PRPSL.0020CG

TSL Report: S58547

Date Received: Oct 30, 2020 Date Reported: Nov 12, 2020

Invoice: 78760

Remarks: Original Report S58499

Sample Type: Number Sample Preparation

Rock Pulp 2 None

Standard Procedure:

Samples for Ag (g/tonne) are weighed at 0.5 gram.

			rower	opper
Element		Extraction	Detection	Detection
Name	Unit	Technique	Limit	Limit
Ag	g/tonne	HNO3-HF-HCI04-HCI/AA	1	1000

1 -----

I I am an an ar



#2 - 302 48th Street * Saskatoon, SK * S7K 6A4 P (306) 931-1033 F (306) 242-4717 E info@tsllabs.com

#### **CERTIFICATE OF ANALYSIS**

SAMPLE(S) FROM

Axiom Group

101 - 3239 Faithfull Ave Saskatoon, SK S7K 8H4

REPORT No.

S58547

SAMPLE(S) OF

2 Rock/Pulp

INVOICE #:78760

P.O.: 20.PRPSL.002OCG

T. Fiolleau Orogenic

Original Report S58499. Assay on over-range values from ICP-MS

	Ag	File
	g/t	Name
A0867943	257.8	S58547
A0867945	542.9	S58547
ME-8	62.7	S58547
ME-1411	45.8	S58547
ME-1605	273.0	S58547

COPIES TO: M. Schwab, etc. INVOICE TO: Axiom Group, SK

Nov 12/20

SIGNED

#### **UAV MAGNETIC SURVEY**

# DOC AND QUINN ESKAY PROJECT AREAS BRITISH COLUMBIA, CANADA



PREPARED FOR: HANSTONE GOLD CORP.

ATTENTION TO: RAYMOND MARKS SUITE 600 - 890 WEST PENDER STREET VANCOUVER, BC, CANADA V6C 1K4

PREPARED BY:

#### **AXIOM EXPLORATION GROUP LTD.**

SUITE 101 - 3239 FAITHFULL AVENUE SASKATOON, SK, CANADA



Project # 20.5041.HSG

PETER DUECK, MBA., P.GEO. ANDREW YUBETA, B.SC., G.I.T. TANYA COETZEE, B.SC., G.I.T.



### TABLE OF CONTENTS

1. lı	ntroduction	on	1
	1.1.	Location & Access	2
2.	Project	Specifics	4
	2.1.	Topographical Relief & Cultural Features	4
	2.2.	Magnetic Survey Parameters	6
	2.3.	Survey Equipment	7
	2.4.	UAV Magnetometer System	8
	2.5.	Magnetic Survey Aircraft	9
3.	Magnet	tic Data Processing	10
4.	Magnet	tic Maps & Derived Data Products	11
	4.1.	Total Magnetic Field	11
	4.2.	Residual Magnetic Intensity	12
	4.3.	Analytic Signal	13
	4.4.	First Vertical Derivative	
5.	Magnet	tic Deliverables	
	5.1.	Database	15
	5.2.	Magnetic Maps (Appendix A)	
6.	Conclus	sions	16
		LIST OF FIGURES	
Fig	ure 1: Ge	eneral Location Area	2
Fig	ure 2: Pro	oject Location as shown on Google Earth	3
Fig	ure 3: SR	RTM Topography (1 Arc-Second) over Survey Area	5
Fig	ure 4: Ba	se station setup	7
Fig	ure 5: UA	AV Magnetometer System Configuration	8
Fig	ure 6: To	otal Magnetic Intensity (TMI)	11
Fig	ure 7: Re	esidual Magnetic Intensity (RMI)	12
Fig	ure 8: An	nalytic Signal (AS)	13
Fig	ure 9: Fir	st Vertical Derivative (VD1)	14



## **LIST OF TABLES**

Table 1: Project Personnel & Support Staff	4
Table 2: Survey Parameters	6
Table 3: Survey Area Coordinates	6
Table 4: Base Station Information	7
Table 5: Base Station Specifications	7
Table 6: GSMP-35U Specifications	8
Table 7: UAV Specifications	9
Table 8: Database Channel Descriptions	15
LIST OF APPENDICES  Appendix 1: Final Map Products	17
ADDENUIX I. FINALIVIAD FIOUUCIS	1 /



#### 1. Introduction

From December 5th to December 15th, 2020 Axiom Exploration Group Ltd. ('Axiom') carried out an unmanned aerial vehicle (UAV) magnetic geophysical survey over the Doc and Quinn Eskay Project Areas in British Columbia, Canada. The magnetic survey consisted of 62.3 line-kms on the Doc project and 14.5 line-kms on the Quinn Eskay project. Both surveys were complete with a traverse line spacing of 50 m and tie line spacing of 500 m.

The magnetometer UAV system consists of a single GSMP-35UC high precision potassium vapor magnetometer slung from a DJI M600 Pro UAV platform. The magnetometer was towed with a 16.4' cable to ensure adequate separation between the UAV and the magnetometer.

Quality control and quality assurance were completed daily during the acquisition phase to ensure all field data collected was at a high standard. Final processing and leveling were completed post acquisition.

Final magnetic deliverables from the survey include:

- All raw UAV magnetic data including base station data
- A final leveled dataset
- Map products including:
  - Total Magnetic Intensity (TMI) Map
  - Residual Magnetic Intensity (RMI) Map
  - Analytic Signal (AS) Map
  - First Vertical Derivative (VD1) Map
  - Line Path Map with Base Stations Locations

The survey report describes the procedures for data acquisition, processing, equipment used, final image presentation and the specifications for the digital data set.



#### 1.1. LOCATION & ACCESS

The general location area is in the northern region of the province of British Columbia, Canada (Figure 1). The immediate project area is centered approximately 52km northwest of Smithers, British Columbia. The property was accessed by helicopter due to its remote location (Figure 2).

- NTS Sheet(s): 104B/08



Figure 1: General Location Area1

 $^{\rm 1}\, @$  2000-2009 Her Majesty the Queen in Right of Canada, Natural Resources Canada

2





Figure 2: Project Location as shown on Google Earth



#### 2. PROJECT SPECIFICS

Personnel and support staff that were directly involved in this project including the data processing and QA/QC are listed in Table 1.

Table 1: Project Personnel & Support Staff

Pilot In Command (PIC)	Chase Wood
Visual Observer (VO)	Andrew Yubeta
Geophysicist	Peter Dueck
Supporting Staff	Tanya Coetzee

The field crew was stationed at the Hanstone Camp and commuted each day to the survey block by helicopter.

#### 2.1. Topographical Relief & Cultural Features

The main portion of the survey area covered by land has significant topographical relief as shown in Figure 3. For this survey, the Above Ground Level (AGL) mean magnetometer height is 42.36m.

Due to the location and relative isolation of the survey area, no significant cultural noise was seen in the data.



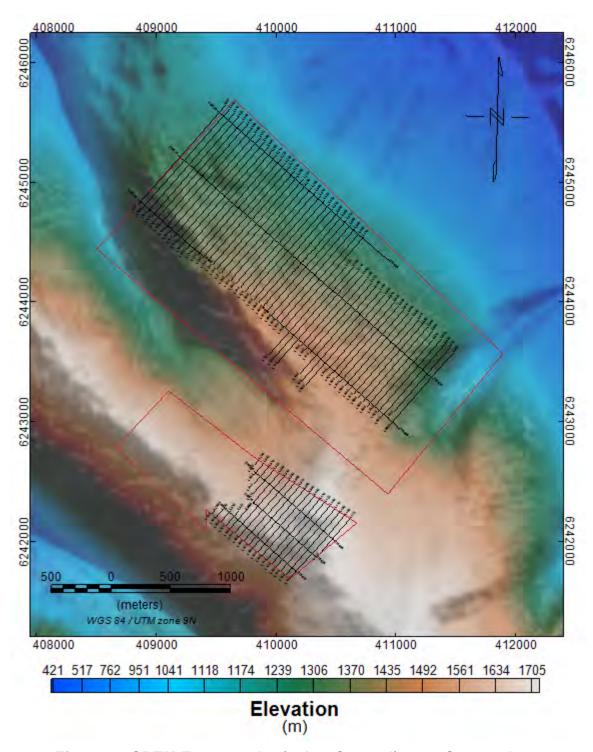



Figure 3: SRTM Topography (1 Arc-Second) over Survey Area



#### 2.2. MAGNETIC SURVEY PARAMETERS

From December 5th to December 15th, 2020 Axiom Exploration Group Ltd. ('Axiom') carried out an unmanned aerial vehicle (UAV) magnetic geophysical survey over the Doc and Quinn Eskay Project Areas in British Columbia, Canada. The magnetic survey consisted of 62.3 line-kms on the Doc project and 14.5 line-kms on the Quinn Eskay project. Both surveys were complete with a traverse line spacing of 50 m and tie line spacing of 500 m.

The UAV system consists of a single GSMP-35UC high precision potassium vapor magnetometer slung from a DJI M600 Pro UAV platform. The magnetometer was towed with a 16.4' cable to ensure adequate separation between the UAV and the magnetometer.

Further survey parameters can be found in Table 2.

**Table 2: Survey Parameters** 

Survey Block	Line Type	Line Spacing (m)	Flight Direction (Degrees)	Actual Line-kms Flown
Doc	Traverse	50	041° - 221°	55.37
Doc	Tie	500	131° - 311°	6.93
Quinn	Traverse	50	041° - 221°	12.13
Eskay	Tie	500	131° - 311°	2.37
			Total:	76.8

The final survey was defined by the boundary coordinates shown in Table 3.

**Table 3: Survey Area Coordinates** 

**Doc Property** 

WGS84 UTM Zone 9N			
Easting	Northing		
408496	6244444		
409648	6245697		
411896	6243566		
410931	6242401		
408495	6244444		

**Quinn Eskay Property** 

WGS84 UTM Zone 9N			
Easting	Northing		
409417	6242263		
409799	6242257		
409818	6242709		
410672	6242156		
410110	6241691		



#### 2.3. SURVEY EQUIPMENT

#### **BASE STATION**

A single GEM's GSM-19 (Overhauser) magnetometers was used for this survey in their "Base" mode of operations. The magnetometer is equipped with a high-resolution (.07m) integrated GPS. The base station was recording at 3 second intervals and was used to do the final diurnal corrections.

Location information for the base station is included in Table 4, instrument specifications are included in Table 5 and a picture of the final setup is included in Figure 4.

**Table 4: Base Station Information** 

Base Station	Easting (m)	Northing (m)	Coordinate System
#1 - 8062827	409751	6243858	WGS84 UTM Zone 9N

**Table 5: Base Station Specifications** 

Sensitivity	0.022 nT @ 1 reading per sec.	Gradient Tolerance	Over 10,000 nT/m
Censitivity	0.05 nT @ 1 reading every 4 sec.	Dynamic Range	20,000 to 120,000 nT
Resolution	0.01 nT	Absolute Accuracy	± 0.1 nT @ 1 Hz



Figure 4: Typical Base station setup



#### 2.4. UAV MAGNETOMETER SYSTEM

The UAV system consists of a single GSMP-35UC high precision potassium vapor magnetometer slung from a DJI M600 Pro UAV platform. The magnetometer was towed with a 16.4' cable to ensure adequate separation between the UAV and the magnetometer. Technical specifications of the GSMP-35U are included in Table 6.

Table 6: GSMP-35U Specifications

Sensitivity	0.0002 nT @ 1 Hz	Gradient Tolerance	Over 50,000 nT/m
Heading Error	± 0.05 nT	Dynamic Range	15,000 to 120,000 nT
Resolution	0.001 nT	Absolute Accuracy	± 0.1 nT @ 1 Hz

The UAV magnetometer configuration includes a GPS for recording measurement location, laser altimeter for recording measurement height and an Inertial Measurement Unit (IMU) for recording the roll, pitch and yaw of the unit in flight. The sensor was set to record at a rate of 10 Hz.



Figure 5: UAV Magnetometer System Configuration



#### 2.5. MAGNETIC SURVEY AIRCRAFT

The M600 is a fully integrated aerial platform designed for professional film making and industrial application. The on-board A3 flight controller ensures reliable flight performance while the E2000 Pro propulsion system effectively increases payload. Multiple expansion ports guarantee maximized compatibility with add-on devices. The M600 also integrates the Lightbridge 2 transmission system, bringing live HD view and the ability to communicate directly gimbals such as the Ronin-MX.

The M600 Pro has an extended flight time and a 5km long-range transmission. A comprehensive battery management system means that if any of its six Intelligent Batteries are turned on or off, the rest will follow suit. The battery management system monitors every battery during flight, ensuring safe landing in the event of single battery failure. Compared to traditional non-intelligent batteries, the M600 Pro's battery management system simplifies maintenance while enhancing security.

Additional specifications for the M600 Pro are shown below in Table 7.

**Table 7: UAV Specifications** 

Aircraft Type	Hexacopter
Dimensions  1668 mm × 1518 mm × 727 mm with propellers, frame GPS mount unfolded (including landing gear)	
Hovering Accuracy Vertical: ±0.5 m, Horizontal: ±1.5 m	
Survey Speed 8 m/s (Terrain Dependent)	
Flight Control System A3 Pro	
Propulsion System Motor Model: DJI 6010; Propeller Model: DJI 2170	



#### 3. MAGNETIC DATA PROCESSING

In general, all typical magnetic QA/QC and data processing techniques have been applied to the data. All post-field data processing was carried out using Geosoft Oasis Montaj and Microsoft Excel software/ programing languages. Presentation of final maps used QGIS and/or Geosoft's Oasis Montaj. Results were gridded using minimum curvature method and a grid cell size of approximately 1/3 of flight line spacing.

The geophysical images accompanying this report are positioned using the WGS 1984 Datum. The survey geodetic GPS positions have been projected to map using the Universal Transverse Mercator (UTM) projection.

The magnetic data was first quality checked in the field and any points lacking sufficient georeferenced data or which were excessively noisy were removed. The resulting data was processed as mosaics throughout the survey area as data was collected daily. A combination of all data formed the finalized results including lines that were re-flown due to weak, noisy, or insufficient magnetic signal. The corrected profile data were interpolated into a grid using the minimum curvature technique with a grid size of approximately 1/3 of flight line spacing. All final maps have a normalized color interval.

The base station readings were initially processed and filtered to remove sudden spikes. The filtered data were then used for diurnal correction. This correction removes all time-varying magnetic errors related to the diurnal variation of the earth's magnetic field.

Lag error results when the survey positioning system location is significantly different from the physical sensor location. A lag correction simply adjusts the time base of the physical readings to match the positioning data. Because the GPS is located directly on the UAV, only a minor lag correction needs to be applied (typically 1-2 fiducials).

Heading errors are related to the magnetic field of the survey platform, which varies as a function of survey direction. A heading correction corrects data for systematic shifts in the data that change with the survey direction. Due to the low heading error of the GSMP-35U magnetometers, heading biases were negligible. For this reason, no heading correction needed to be applied

After finishing interpolation, initial processing may subject the data to a non-linear filter with a wavelength limit of 3-4 fiducials and tolerance of 0.001. This filter removes extra high frequency features which mostly occur because the sensor is in the dead zone. This usually occurs due to sudden changes in sensor orientation, effect of ferro-metallic objects, or the influence of weather conditions on the sensor. This filter smooths out noise and high frequency features. This filtering is only applied if required.

After leveling the data using the tie lines, to mitigate the corrugation effect associated with gaps between the data lines, the data was micro-leveled. This task was done by applying a high pass butterworth filter with the threshold of four times the line spacing followed by a directional cosine filter perpendicular to the line direction. The resulted noise channel was then subtracted from the leveled values to microlevel the data. All levelling was undertaken using Geosoft's Oasis Montaj software. The finalized result of the leveling and micro-leveling processes is the final deliverable that should be used for any interpretation or integration techniques moving forward.



### 4. MAGNETIC MAPS & DERIVED DATA PRODUCTS

#### 4.1. TOTAL MAGNETIC FIELD

Based on the flight lines of the drone, the total magnetic field map grid was created by interpolating the filtered magnetic data. The Total Magnetic Field (TMF) data collected in flight was profiled on screen along with a fourth difference channel calculated from the TMF. Spikes were removed manually where indicated by the fourth difference. The purpose of this map is to highlight geological structures by their magnetic signature or their magnetic contrast with their surroundings.

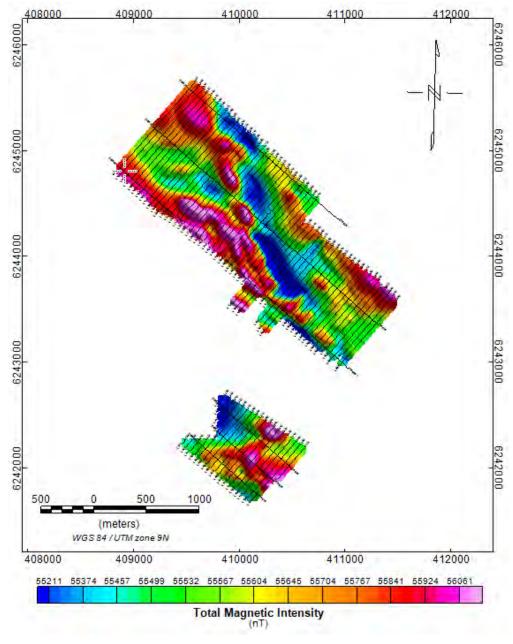



Figure 6: Total Magnetic Intensity (TMI)



#### 4.2. RESIDUAL MAGNETIC INTENSITY

The residual magnetic intensity (RMI) was calculated from the total magnetic field, the diurnal, and the regional magnetic field. The total magnetic field was measured, the diurnal was measured from the ground station and the regional magnetic field was calculated from the International Geomagnetic Reference Field (IGRF 2015). The IGRF is the empirical representation of Earth's magnetic field as a function of time, and in the absence of any crustal or external sources. The model employs the spherical harmonics expansion of the scalar potential in geocentric coordinates. The IGRF model coefficients are based on all available data sources including geomagnetic measurements from observatories, ships, aircrafts and satellites.




Figure 7: Residual Magnetic Intensity (RMI)



#### 4.3. ANALYTIC SIGNAL

The analytic signal is the square root of the sum of the squares of the derivatives in the x, y, and z directions:

Analytical Signal = 
$$\sqrt{dx * dx + dy * dy + dz * dz}$$

Mapped highs in the calculated analytic signal of the magnetic parameter locate the anomalous source body edges and corners (e.g. contacts, fault/shear zones, etc.). Analytic signal maxima are located directly over faults and contacts, regardless of structural dip, and independently of the direction of the induced and/or remnant magnetizations. The analytic signal is also useful in locating the edges of magnetic source bodies, particularly where remnant magnetic signals and/or low magnetic latitude complicates interpretation.

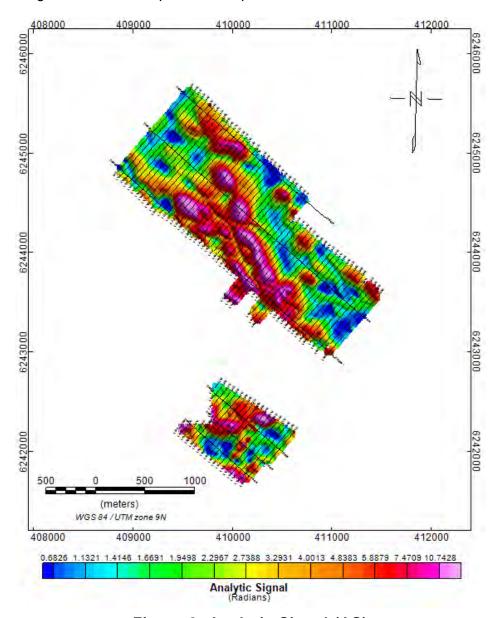



Figure 8: Analytic Signal (AS)



#### 4.4. FIRST VERTICAL DERIVATIVE

The first order vertical derivative quantifies the rate of change of the magnetic field as a function of elevation. It is an approximation of the vertical magnetic gradient, which could be directly measured with separate magnetometers vertically spaced apart. The purpose of this type of filter is to eliminate the long wavelength signatures and make sharp features more detectable, such as the edges of magnetic bodies. This filter also increases the noise level, which limits the use of higher order derivatives (n=2 for example). The vertical derivative is used to delineate the contacts between large-scale magnetic domains because its value is zero over vertical contacts.

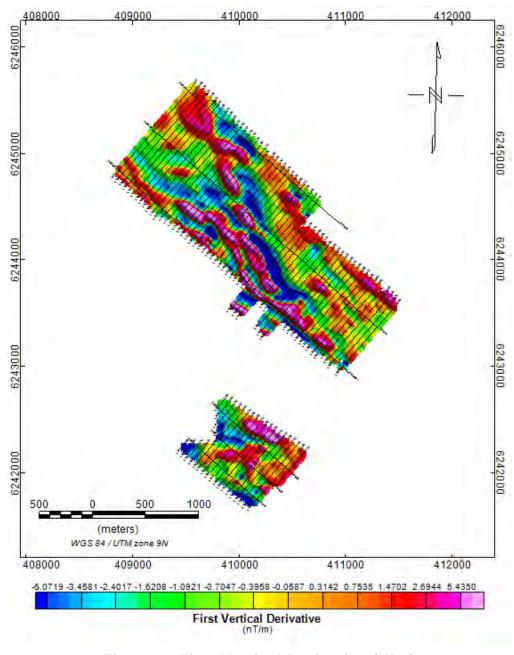



Figure 9: First Vertical Derivative (VD1)



### 5. MAGNETIC DELIVERABLES

#### 5.1. DATABASE

All data is typically delivered in either Geosoft Database ('GDB') or simple formats such as .txt or csv. The data deliverables are client specific to best suit their needs and software requirements. Regardless of software, a database is supplied to the client with the following channel descriptions:

**Table 8: Database Channel Descriptions** 

Parameter	Description	Unit
utmE	UTM easting (WGS84)	meters
utmN	UTM northing (WGS84)	meters
time	Gnss time stamp	hhmmss.ss
latitude	Latitude (WGS84)	decimal degrees
longitude	Longitude (WGS84)	decimal degrees
sat	Number of locked satellites	Integer
zone	UTM Zone	-
Yaw	IMU yaw reading	Degrees
Pitch	IMU pitch reading	Degrees
Roll	IMU roll reading	Degrees
Base	Raw Base Station Readings	nT
Base_Filt	Low Pass Filtered Base Station	nT
Dist	Distance Between Subsequent Readings	m
IGRF	The total magnetic field corrected by International Geomagnetic Reference Field at GPS altitude	nT
Inc	Inclination of the total field based on International Geomagnetic Reference Field at GPS altitude	Deg
Dec	Declination of the total field based on International Geomagnetic Reference Field at GPS altitude	Deg
nT_Raw	Magnetic field readings (Raw)	nT
nT_Corr	Magnetic field readings (Diurnally Corrected)	nT
nT_Final	Final leveled and micro-leveled data	nT
RMI	Residual Magnetic Intensity Values	nT
AS	Analytic Signal	Radians/m
VD1	1st Vertical derivative	nT/m



#### 5.2. MAGNETIC MAPS (APPENDIX A)

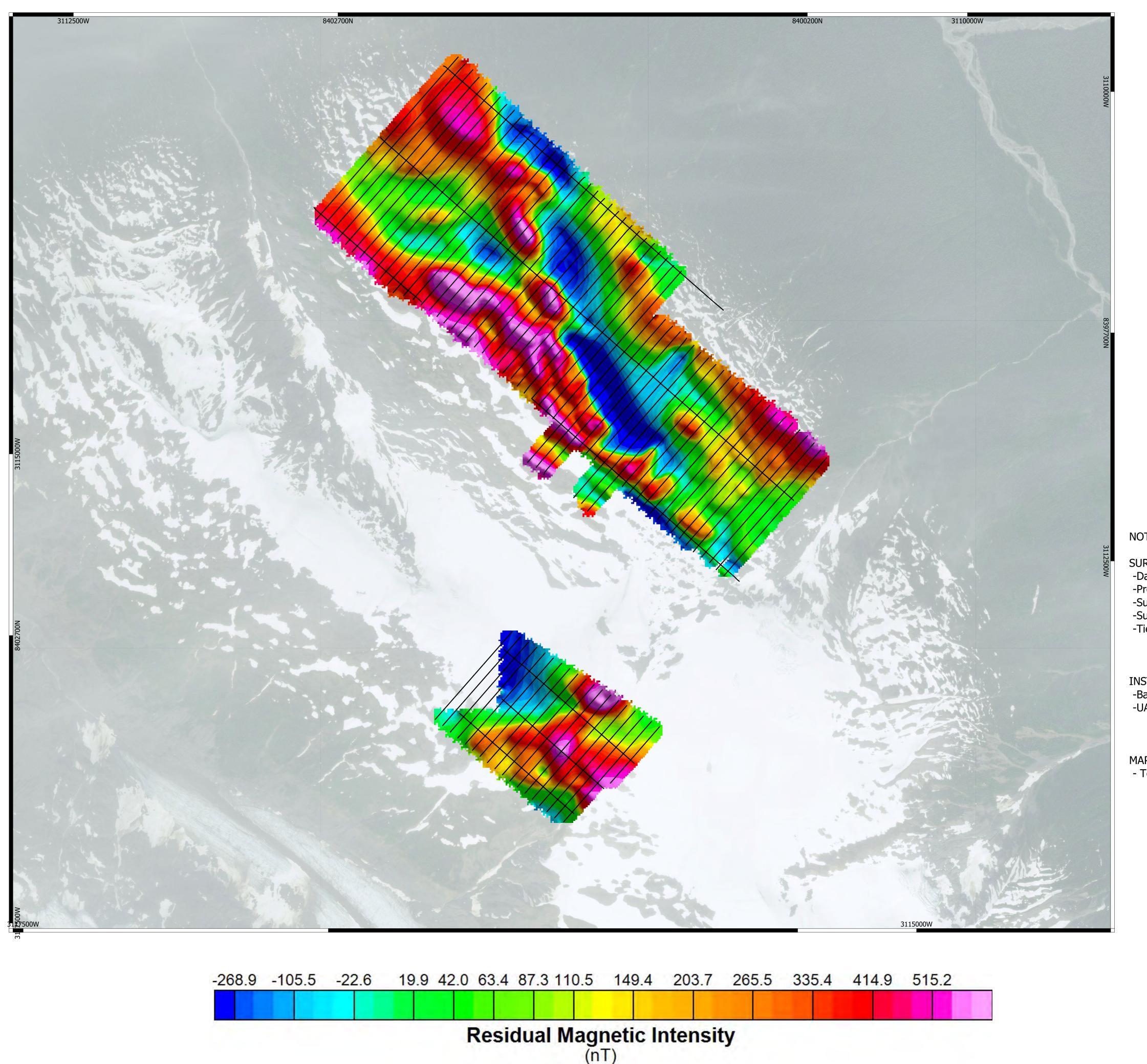
All maps are presented in the coordinate / projection system WGS84 Datum, UTM Zone 13U. A list of maps provided are as follows:

- Total Magnetic Intensity (TMI) Map
- Residual Magnetic Intensity (RMI) Map
- Analytic Signal (AS) Map
- First Vertical Derivative (VD1) Map
- Line Path Map with Base Stations Locations

#### 6. CONCLUSIONS

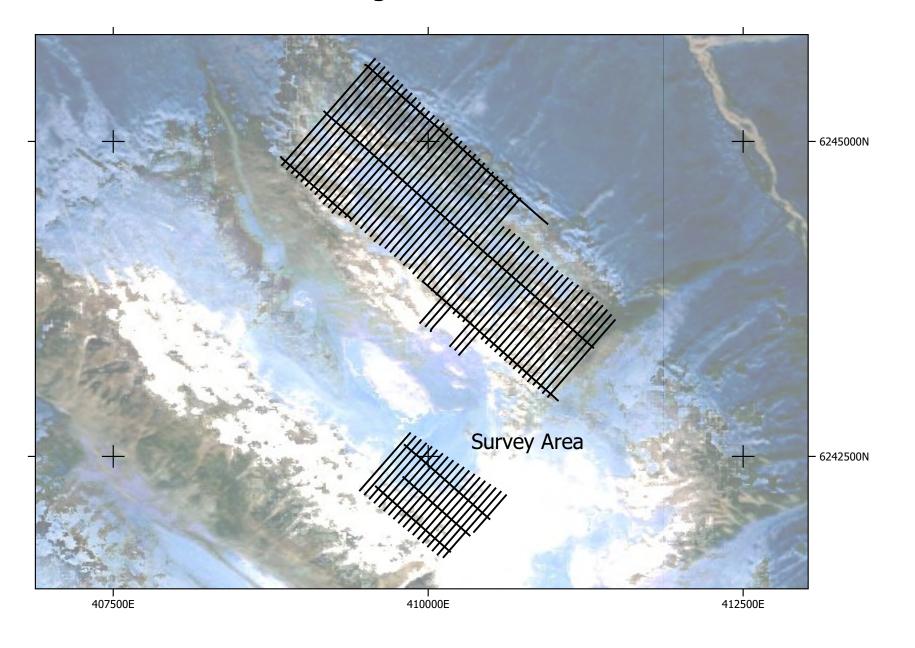
Axiom Exploration successfully completed an unmanned aerial vehicle magnetic survey in the Doc and Quinn Eskay project area for Hanstone Gold Corp. The survey consisted of a total of 76.8 line-kms flown.

Ultimately, the magnetic data collected was very successful in delineating and defining targets for further investigations. It should be noted that all geophysical interpretations need to be vetted with geology and other relevant information for optimal results.


Respectfully submitted,

Peter Dueck, P.Geo.

CBO and Principal Geophysicist Axiom Exploration




**Appendix 1: Final Map Products** 

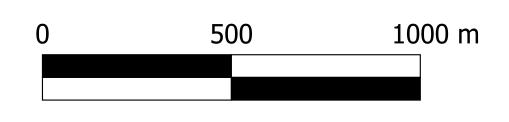




# Project Area





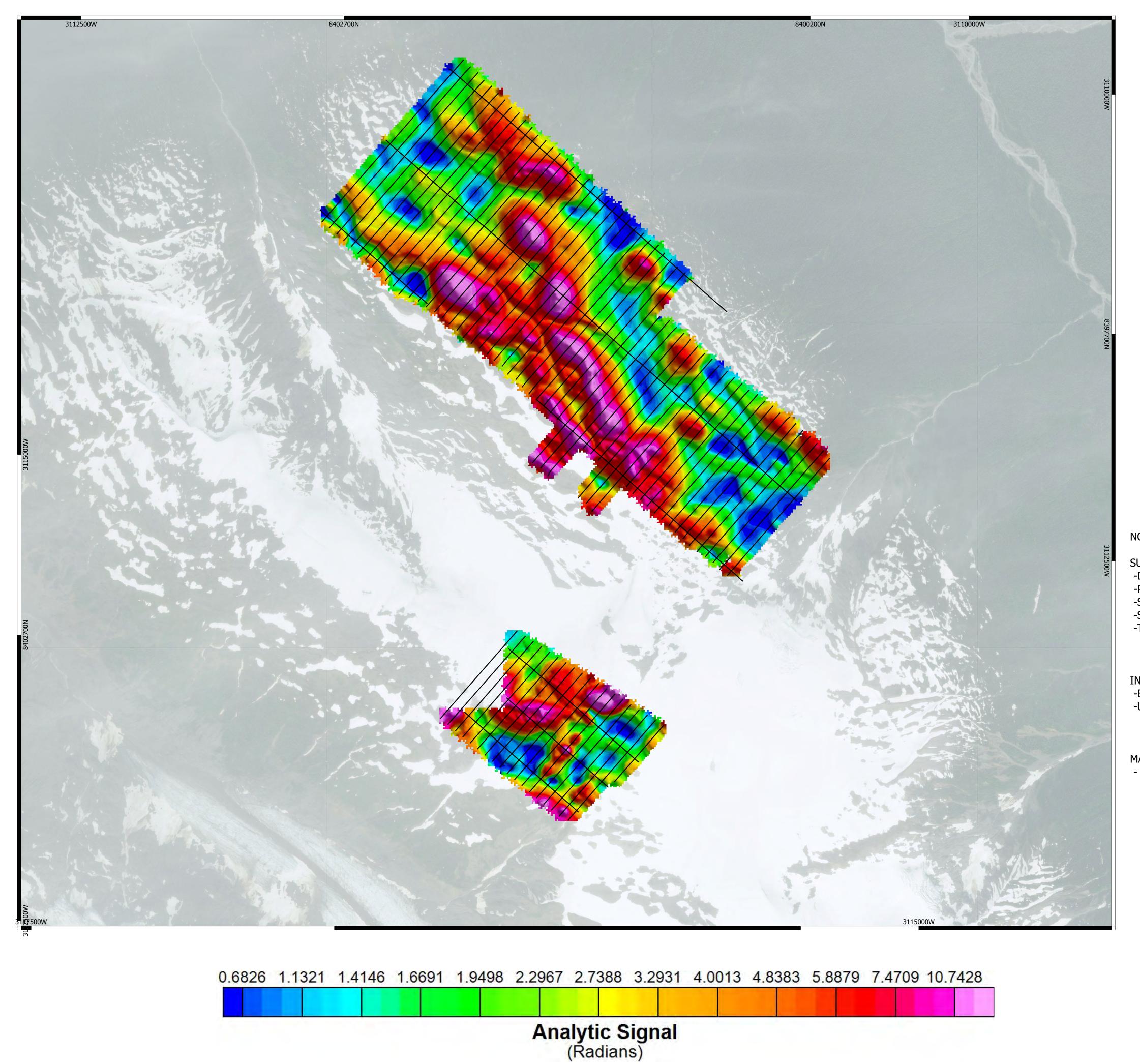

### **INSTRUMENTS**

-Base Magnetometer: GEM GSM-19

-UAV Magnetometer: GEM Systems GSMP-35U

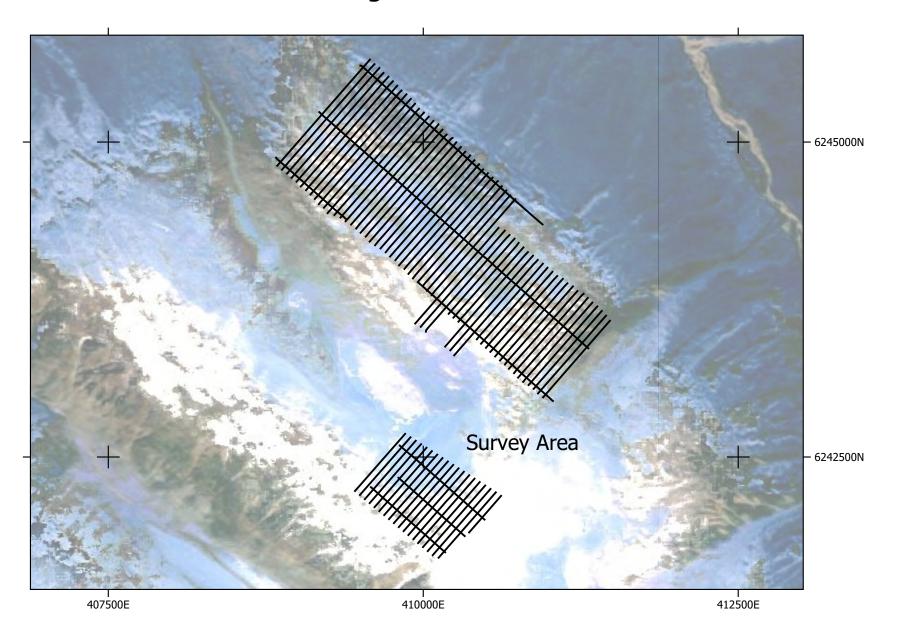
### MAPS

- Topographic data was derived from CanVec from Natural Resources Canada (NRCAN)




Scale 1: 10,000

# **UAV Magnetic Survey** Residual Magnetic Intensity (RMI)


Hanstone Quinn Eskay & DOC British Columbia, Canada

Flown and Processed by: Axiom Group Date: Januaryr 22, 2020 Job Number: 20.5032.PM





# Project Area



-Date of Survey: September 1st to September 5th, 2020

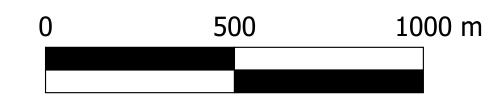
-Projection: WGS84 UTM Zone 20N

-Survey Type: UAV Based using DJI M600 -Survey Line Spacing and Direction: 50m @ 088-268 -Tie Line Spacing and Direction: 500m @ 178-358

# ——Flight Line -Road -Trail

**LEGEND** 

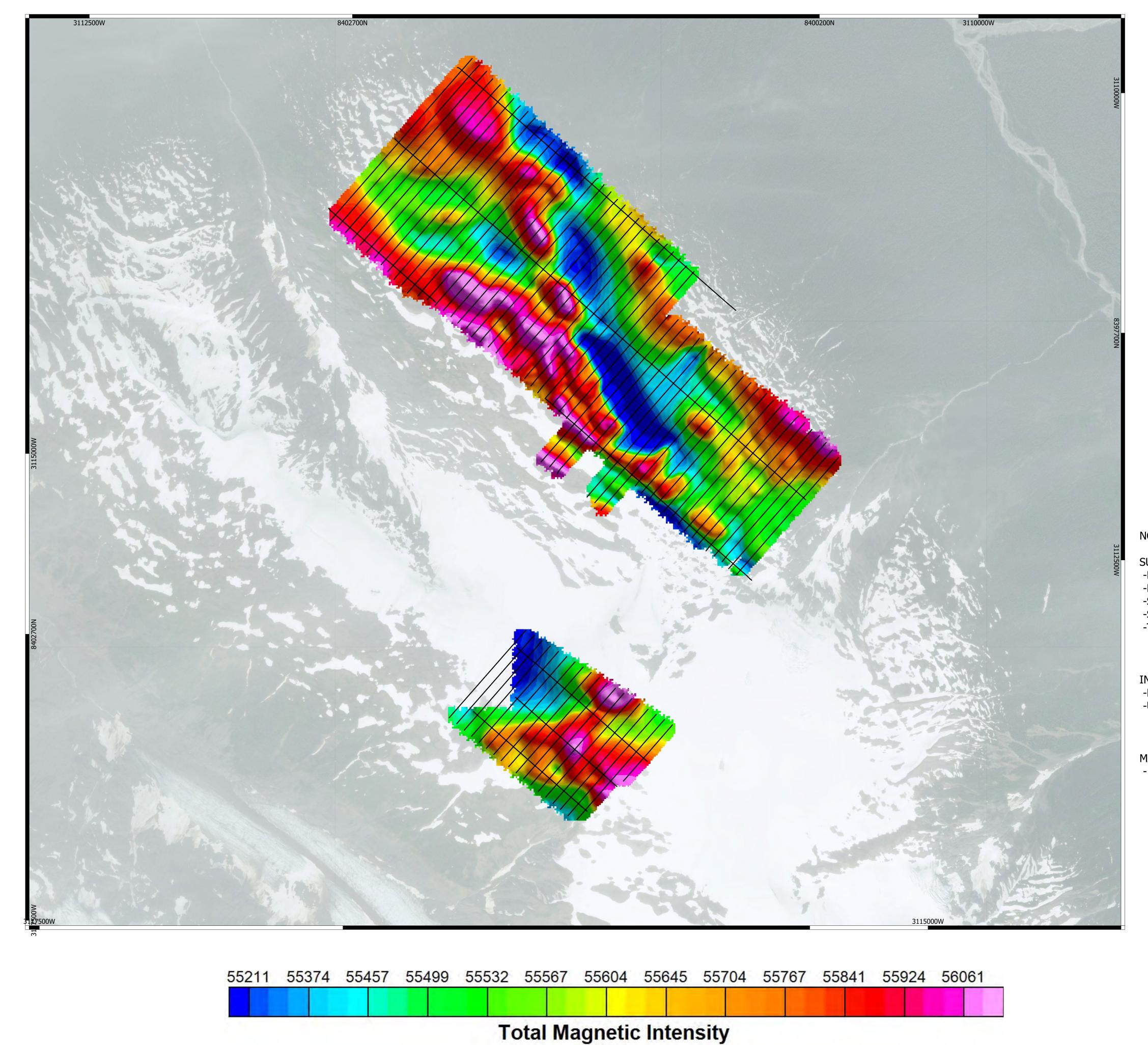
-Watercourse Waterbodies


## **INSTRUMENTS**

-Base Magnetometer: GEM GSM-19

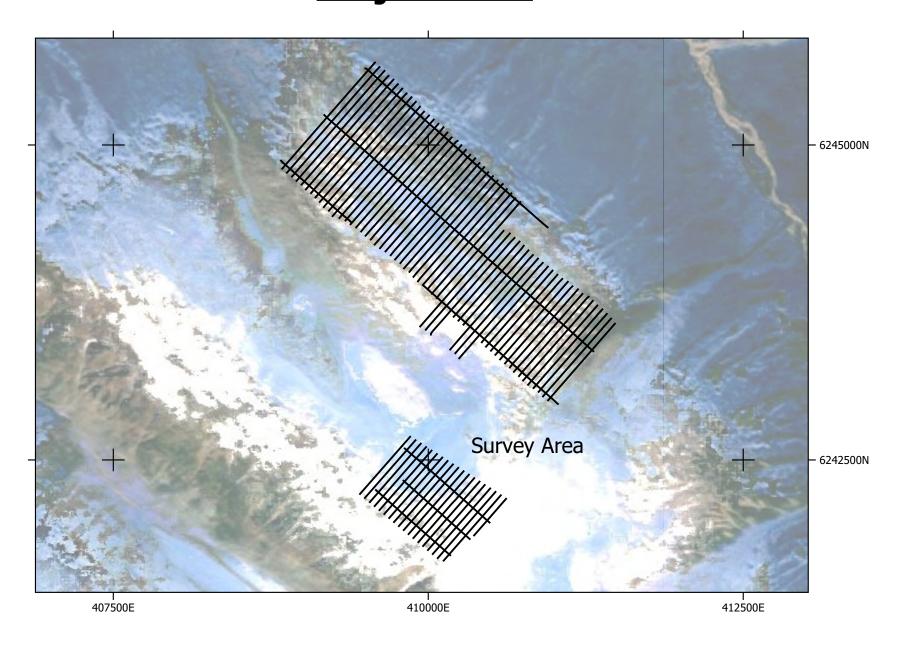
-UAV Magnetometer: GEM Systems GSMP-35U

# MAPS


- Topographic data was derived from CanVec from Natural Resources Canada (NRCAN)



Scale 1: 10,000


# **UAV Magnetic Survey** Analytical Signal (AS)

Hanstone Quinn Eskay & DOC British Columbia, Canada Flown and Processed by: Axiom Group Date: Januaryr 22, 2020 Job Number: 20.5032.PM





### **Project Area**



### SURVEY -Date of Survey: Sent

-Date of Survey: September 1st to September 5th, 2020 -Projection: WGS84 UTM Zone 20N

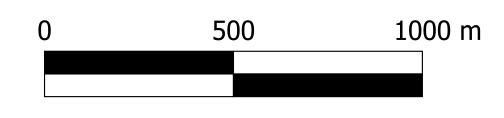
-Survey Type: UAV Based using DJI M600 -Survey Line Spacing and Direction: 50m @ 088-268 -Tie Line Spacing and Direction: 500m @ 178-358

# Trail Watercourse Waterbodies

**LEGEND** 

——Flight Line

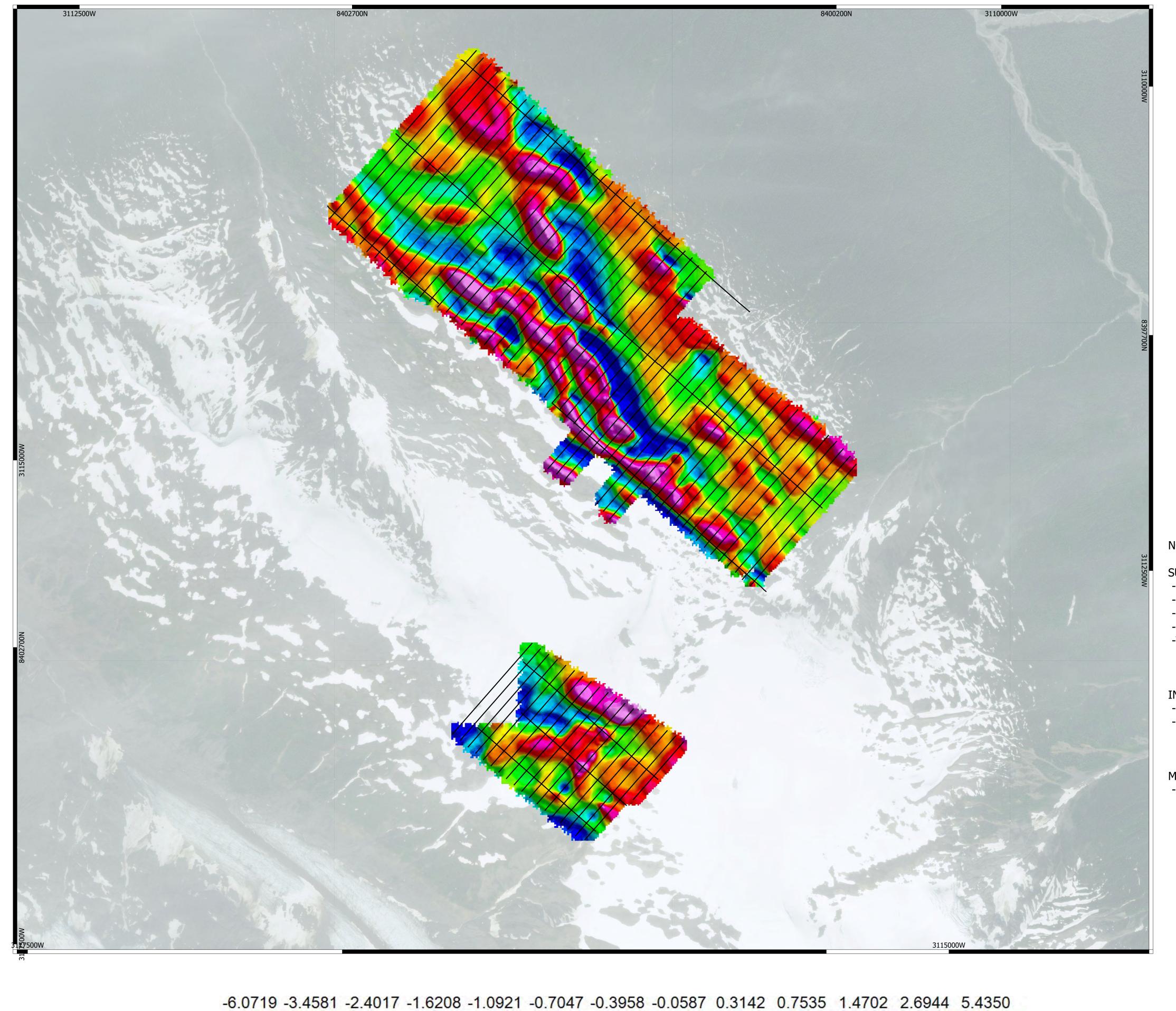
-Road


### INSTRUMENTS

-Base Magnetometer: GEM GSM-19

-UAV Magnetometer: GEM Systems GSMP-35U

### MAPS

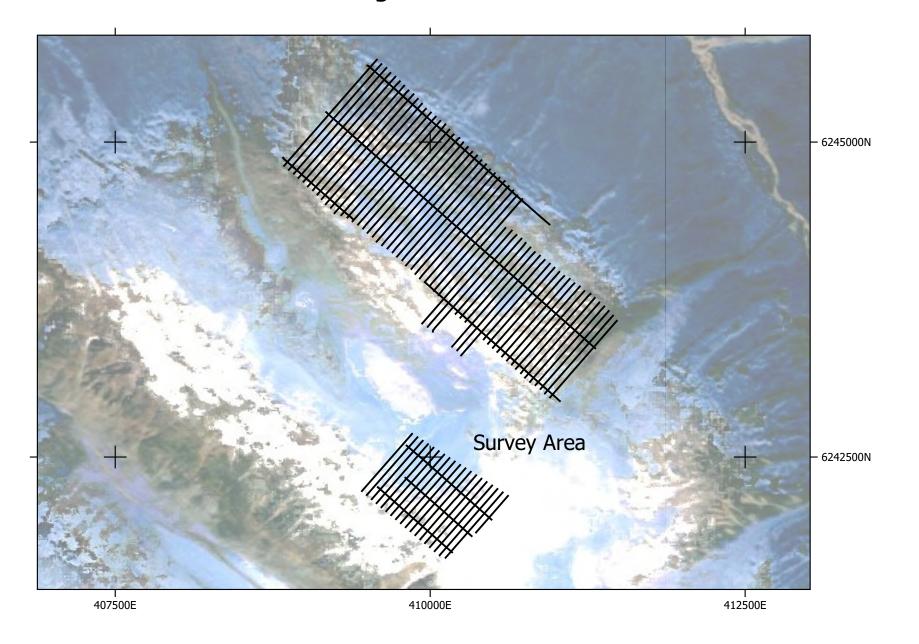

- Topographic data was derived from CanVec from Natural Resources Canada (NRCAN)



Scale 1: 10,000

### UAV Magnetic Survey Total Magnetic Intesity (TMI)

Hanstone Quinn Eskay & DOC British Columbia, Canada Flown and Processed by:
Axiom Group
Date: Januaryr 22, 2020
Job Number: 20.5032.PM




**First Vertical Derivative** 

(nT/m)



### Project Area





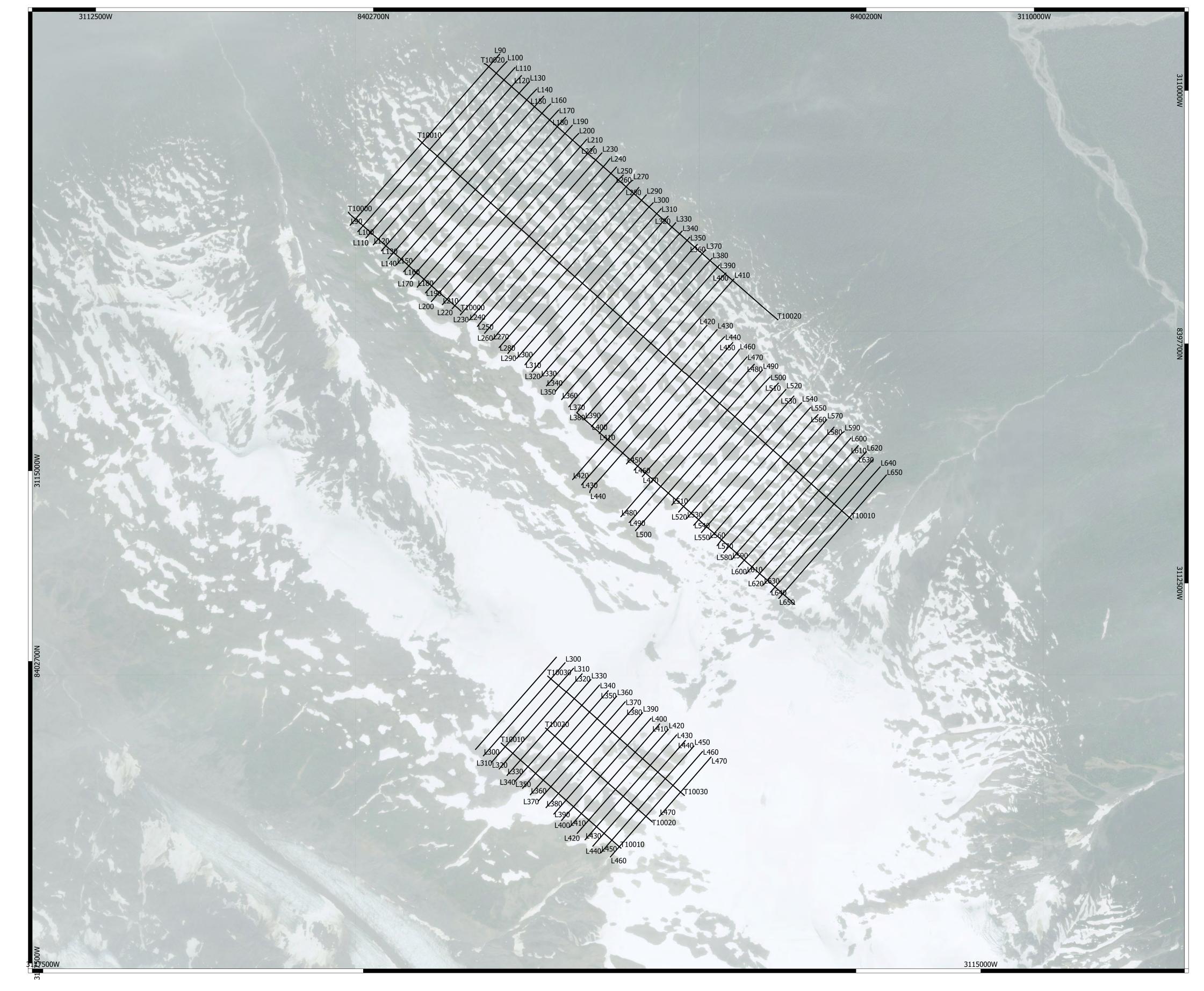
### INSTRUMENTS

-Base Magnetometer: GEM GSM-19

-UAV Magnetometer: GEM Systems GSMP-35U

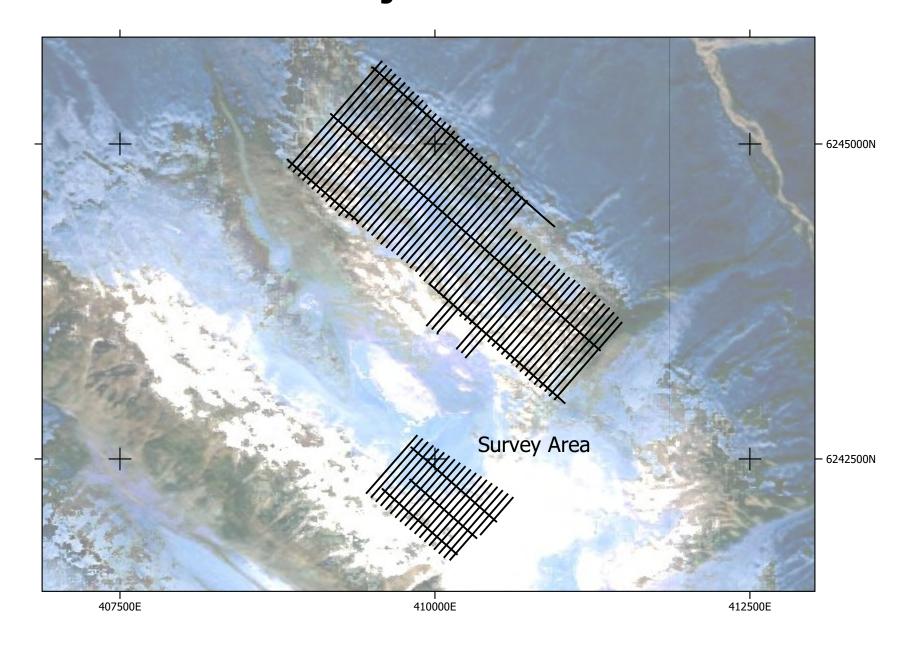
### MAP

- Topographic data was derived from CanVec from Natural Resources Canada (NRCAN)




Scale 1: 10,000

### UAV Magnetic Survey First Vertical Derivative (VD1)


Hanstone Quinn Eskay & DOC British Columbia, Canada Flown and Processed by:
Axiom Group
Date: Januaryr 22, 2020
Job Number: 20.5032.PM

Waterbodies



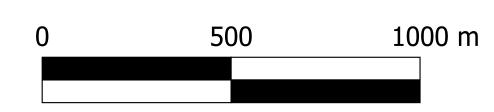


### **Project Area**



-Date of Survey: September 1st to September 5th, 2020

-Projection: WGS84 UTM Zone 20N
-Survey Type: UAV Based using DJI M600
-Survey Line Spacing and Direction: 50m @ 088-268
-Tie Line Spacing and Direction: 500m @ 178-358


### **INSTRUMENTS**

-Base Magnetometer: GEM GSM-19

-UAV Magnetometer: GEM Systems GSMP-35U

### MAPS

- Topographic data was derived from CanVec from Natural Resources Canada (NRCAN)



Scale 1: 10,000

### **UAV Magnetic Survey** Flight Path

Hanstone Quinn Eskay & DOC British Columbia, Canada

Flown and Processed by: Axiom Group Date: Januaryr 22, 2020 Job Number: 20.5032.PM

**LEGEND** 

-----Watercourse

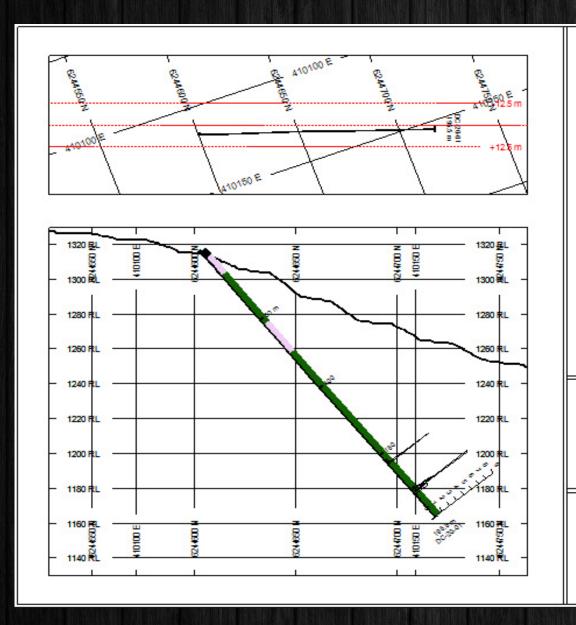
----Flight Line

Waterbodies

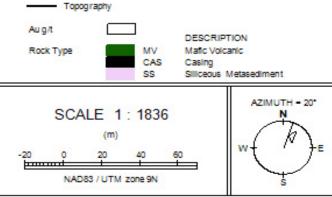
-Road

-Trail

# HANSTONE GOLD DOC PROPERTY


Appendix E

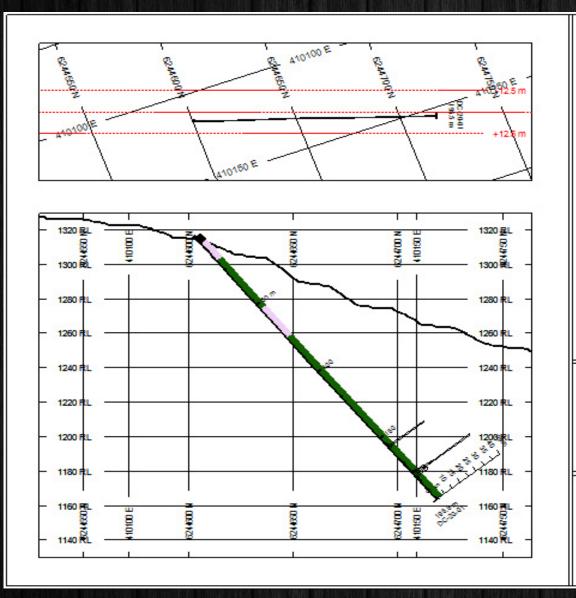
Cross sections with Gold And Silver Assay


Results

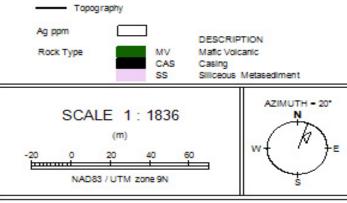
### DC-20-01 AU RESULTS







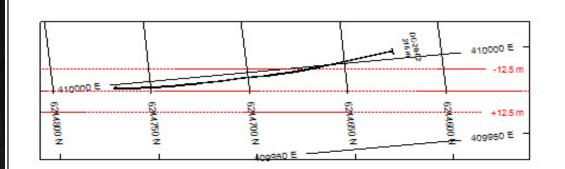


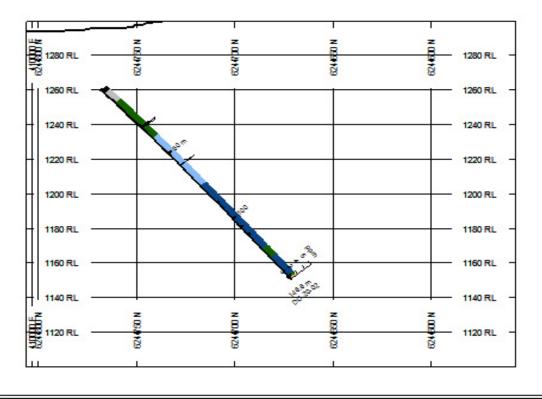


Doc Property
DC-20-01
Gold Results

### DC-20-01 AG RESULTS

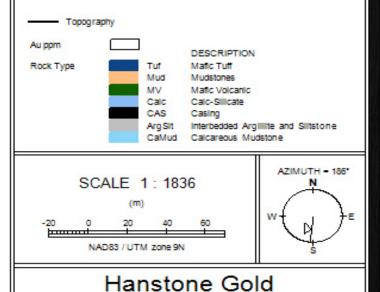







Hanstone Gold
Doc Property
DC-20-01
Silver Results


### DC-20-02 AU RESULTS

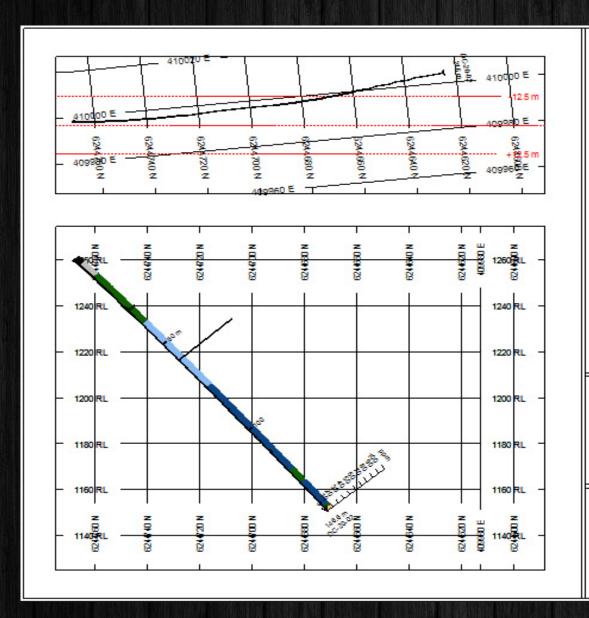




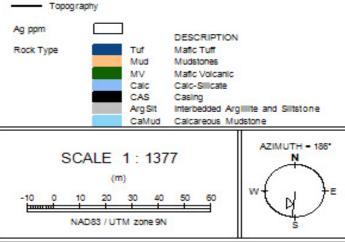







INDUSTRY DRIVEN. CLIENT PROVEN.

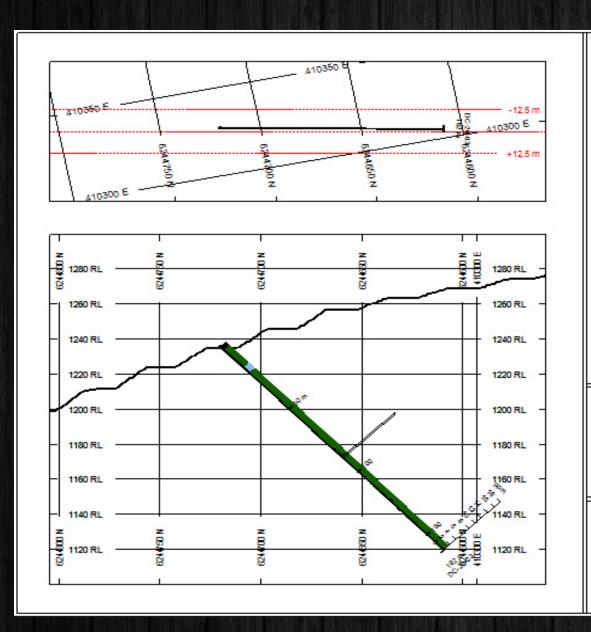
Doc Property


DC-20-02 Gold Results

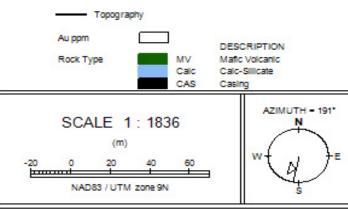
### DC-20-02 AG RESULTS







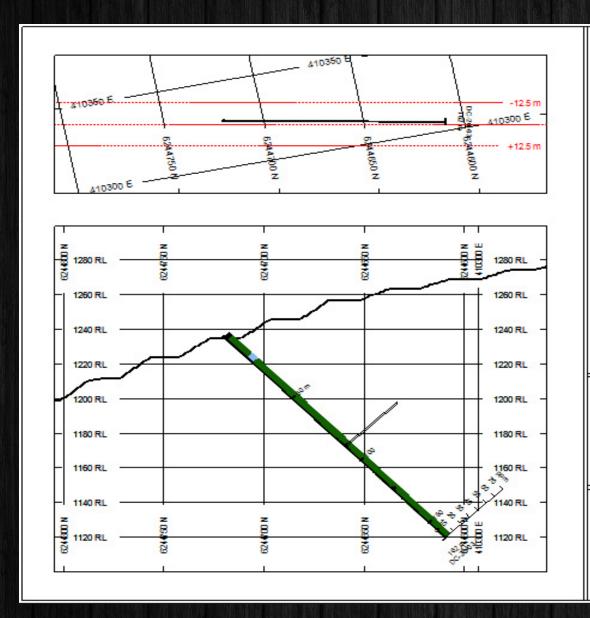




Hanstone Gold
Doc Property
DC-20-02
Silver Results

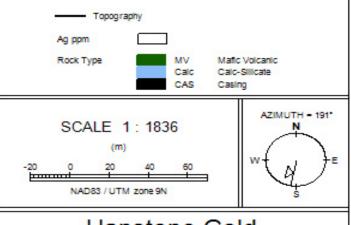
### DC-20-03 AU RESULTS







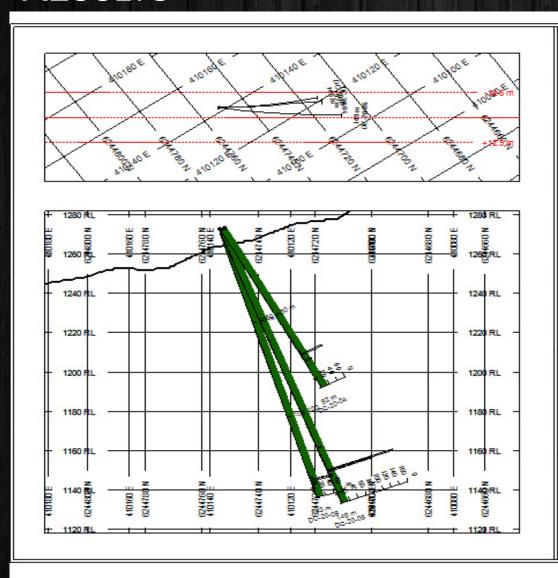


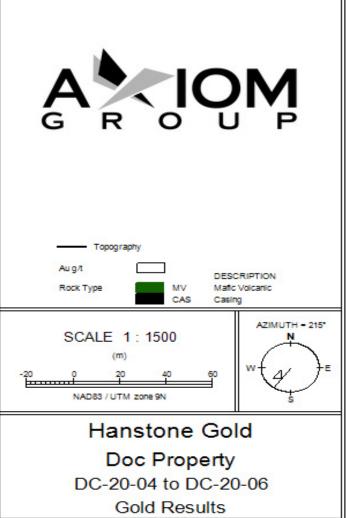


Doc Property
DC-20-03
Gold Results

### DC-20-03 AG RESULTS



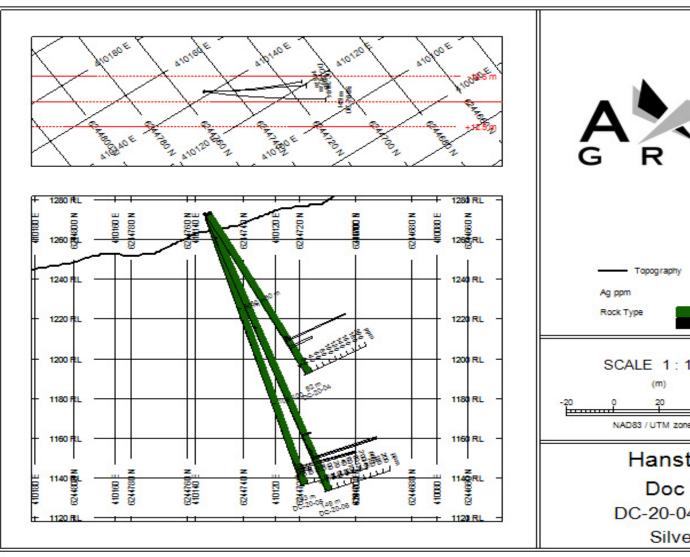




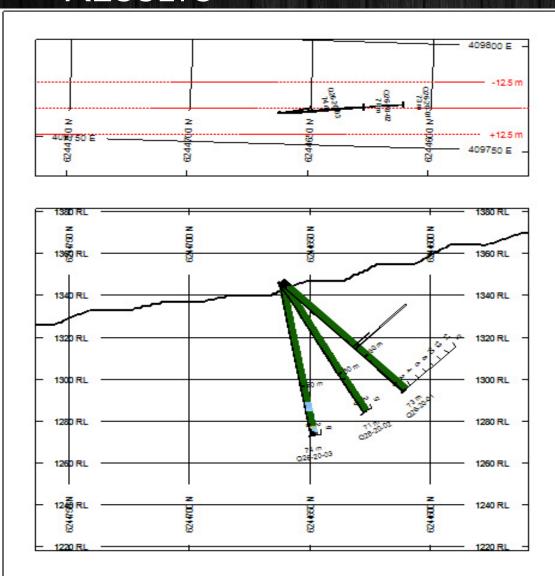

Hanstone Gold
Doc Property
DC-20-03
Silver Results

## DC-20-04 TO DC-20-06 AU RESULTS

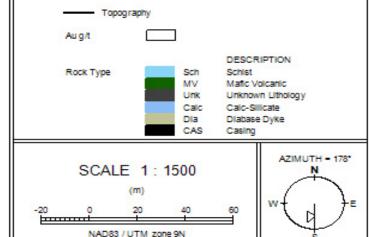








### DC-20-04 TO DC-20-06 AG RESULTS






# Q26-20-01 TO Q26-20-03 AU RESULTS

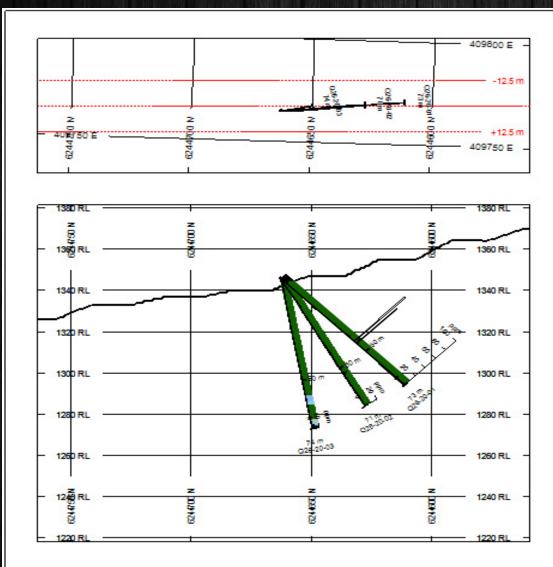


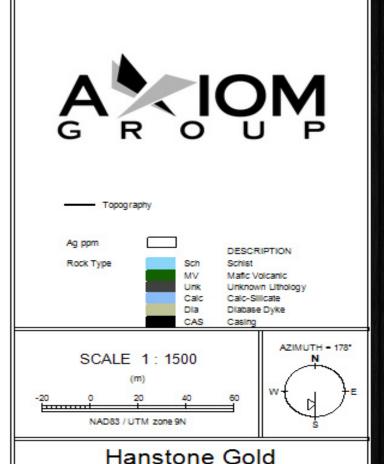






Hanstone Gold

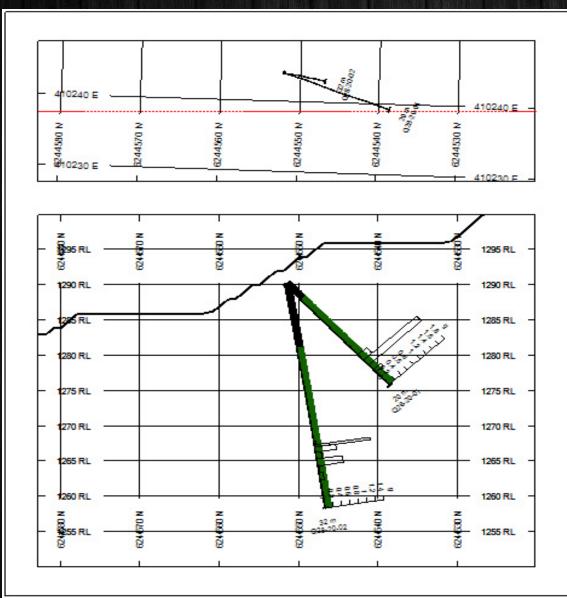

Doc Property


Q26-20-01 to Q26-20-03

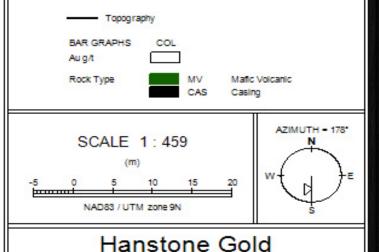
Gold results

### Q26-20-01 TO Q26-20-03 AG RESULTS





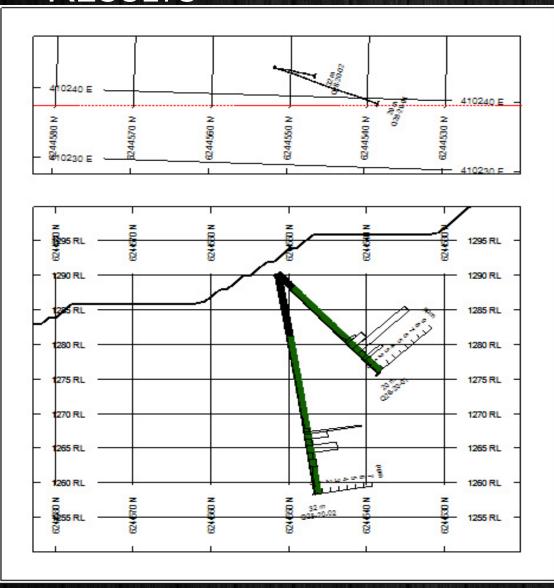




Doc Property Q26-20-01 to Q26-20-03 Silver Results

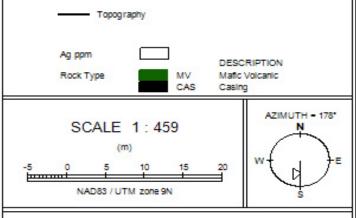
### Q28-20-01 TO Q28-20-02 AU RESULTS











Doc Property
Q28-20-01 to Q28-20-02
Gold Results

### Q28-20-01 TO Q28-02 AG RESULTS



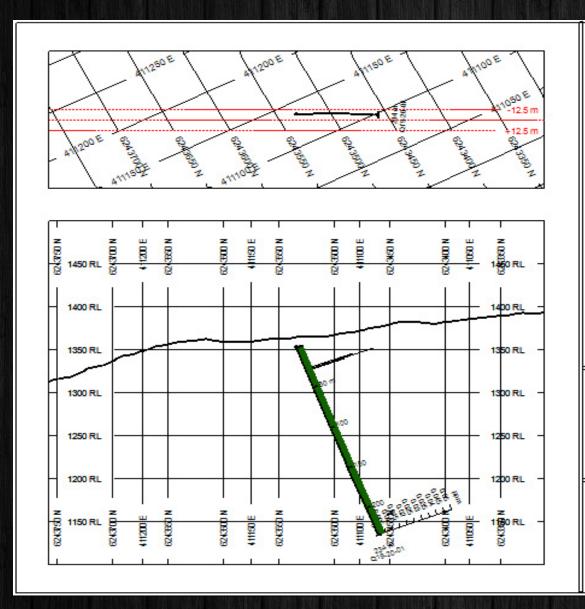




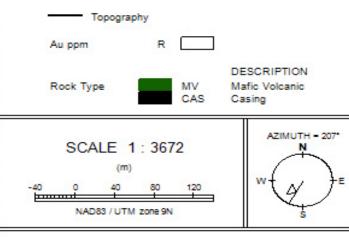


Hanstone Gold

Doc Property


Q28-20-01 to Q28-20-02

Silver Results

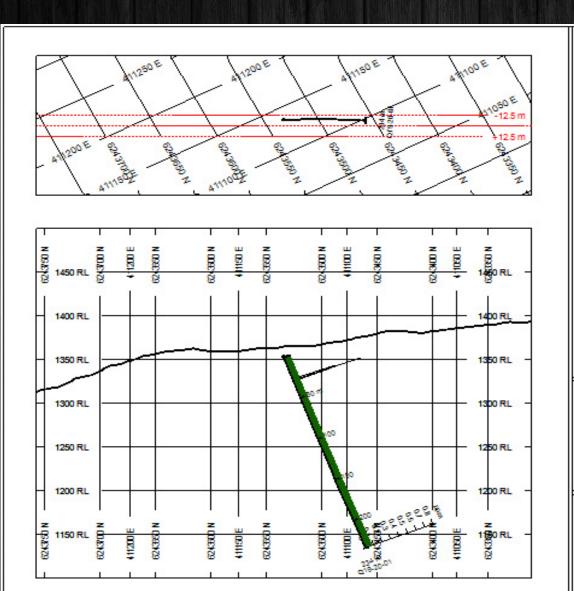

INDUSTRY DRIVEN. CLIENT PROVEN.

### Q19-20-01 AU RESULTS

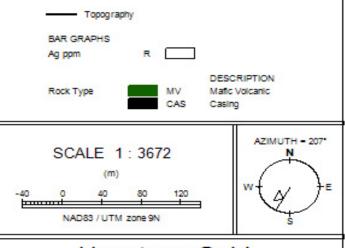








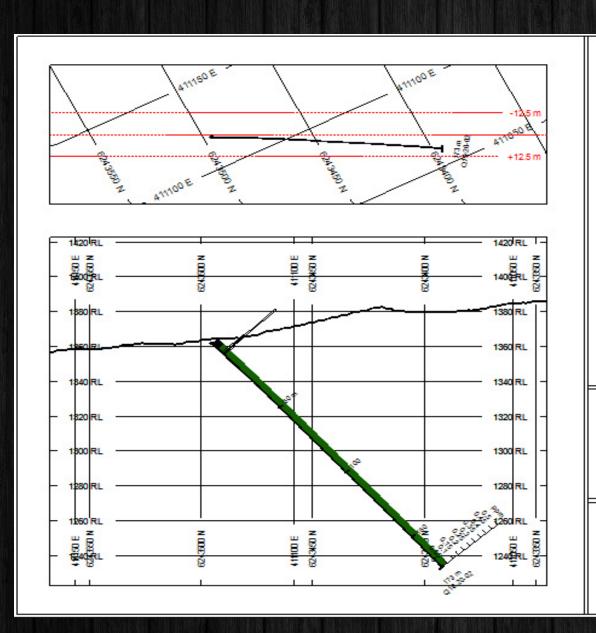

Q19 Area Q19-20-01 Gold Results


Hanstone Gold

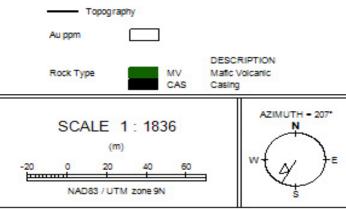
### Q19-20-01 AG RESULTS











Q19 Area Q19-20-01 Silver Results

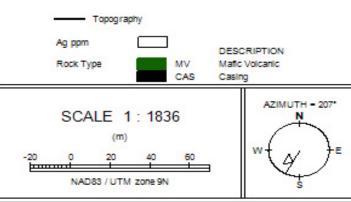
### Q19-20-02 AU RESULTS







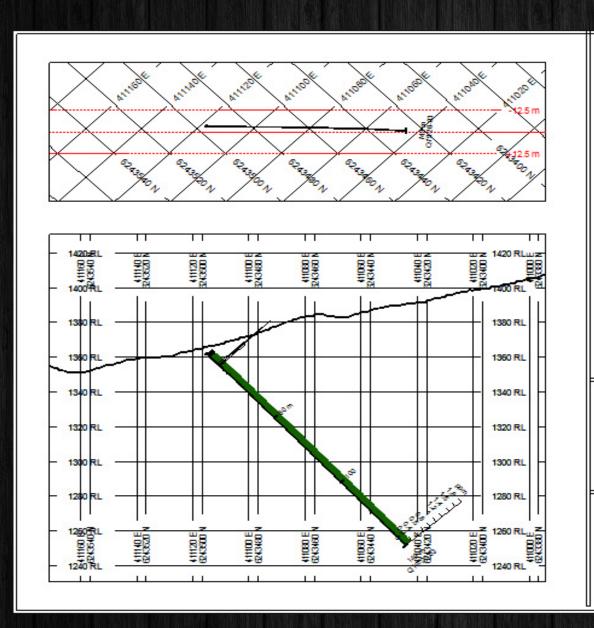




Q19 Area Q19-20-02 Gold Results

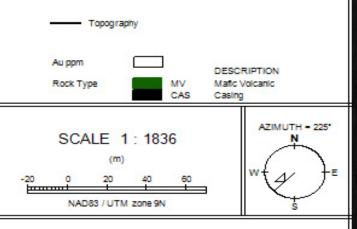
### Q19-20-02 AG RESULTS







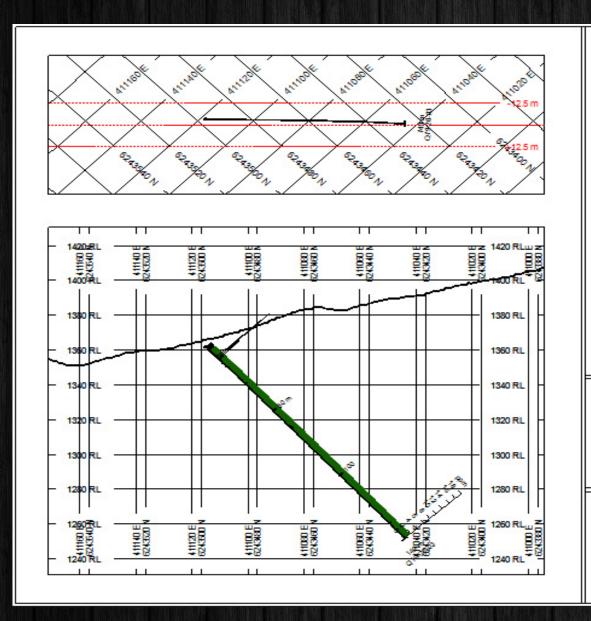




Hanstone Gold
Q19 Area
Q19-20-02
Silver results

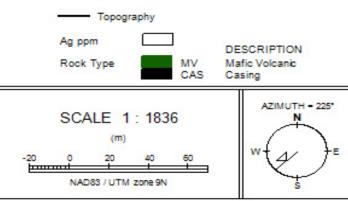
### Q19-20-03 AU RESULTS







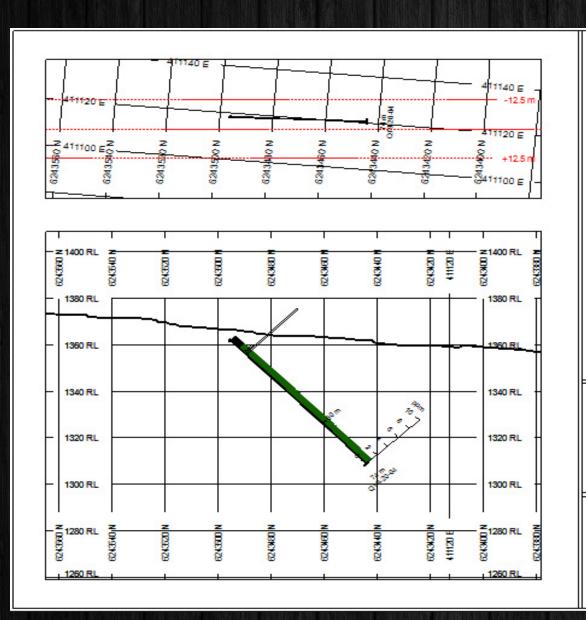




Hanstone Gold
Q19 Area
Q19-20-03
Gold Results

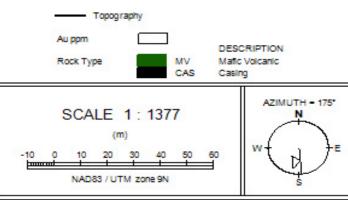
### **Q19-20-03 AG RESULTS**







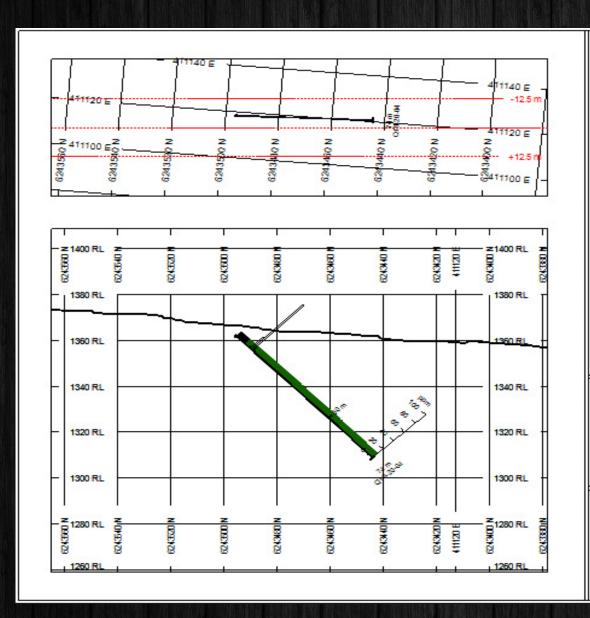




Hanstone Gold
Q19 Area
Q19-20-03
Silver Results

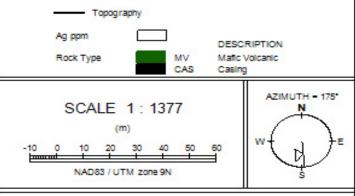
### Q19-20-04 AU RESULTS







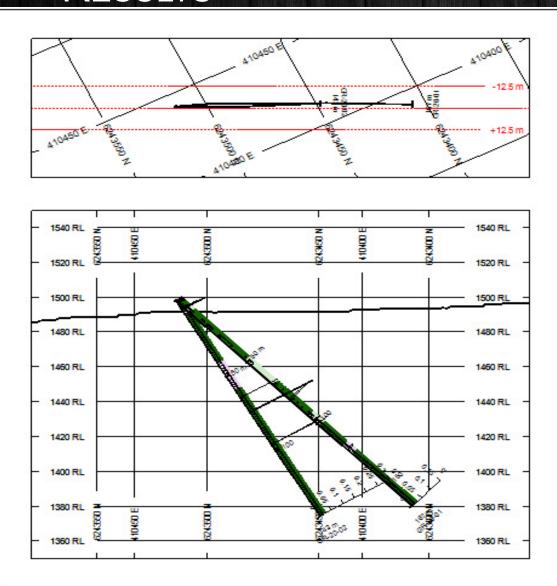




Q19 Area
Q19-20-04
Gold Results

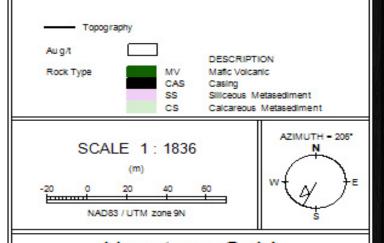
### Q19-20-04 AG RESULTS







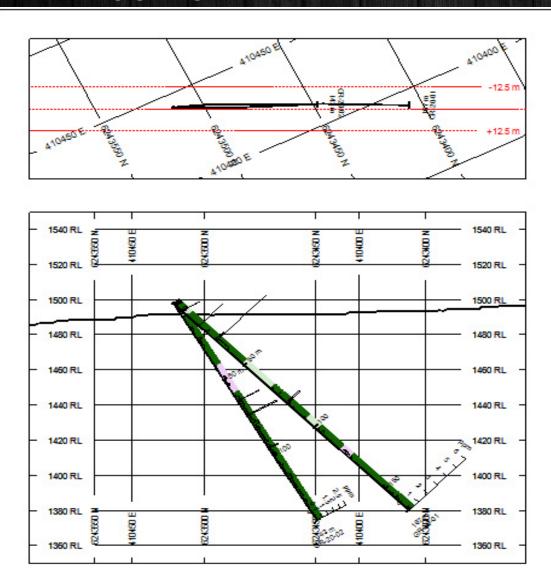




Q19 Area
Q19-20-04
Silver results

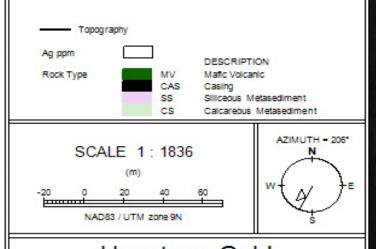
## GR-20-01 AND GR-20-02 AU RESULTS







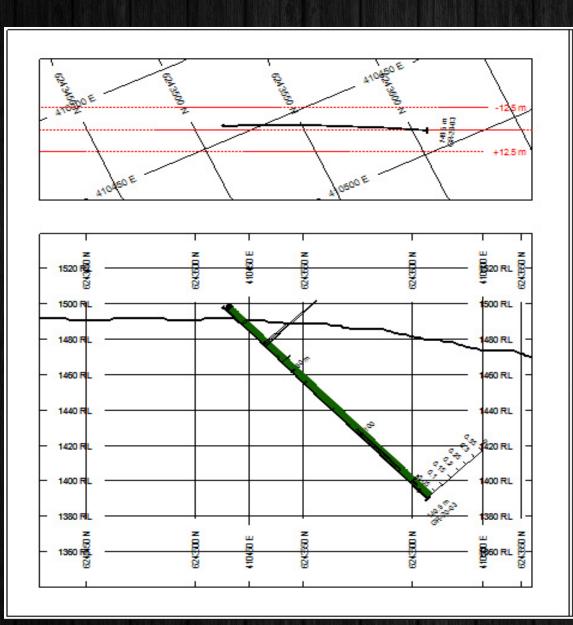




Hanstone Gold
Galena Ridge
GR-20-01 and GR-20-02
Gold Results

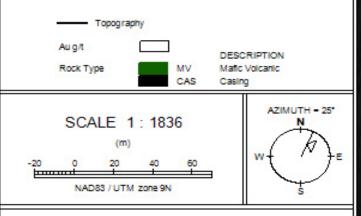
### GR-20-01 AND GR-20-02 AG RESULTS







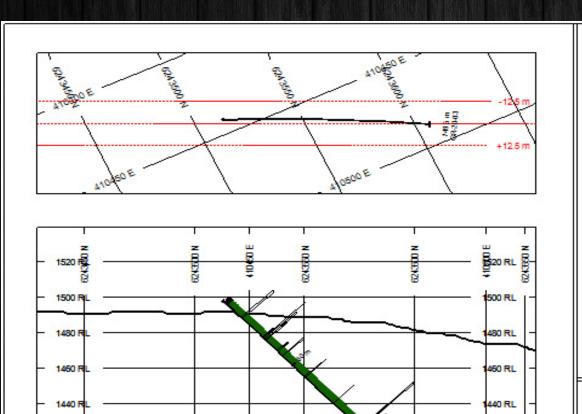




Hanstone Gold
Galena Ridge
GR-20-01 and GR-20-02
Silver Results

### GR-20-03 Au RESULTS



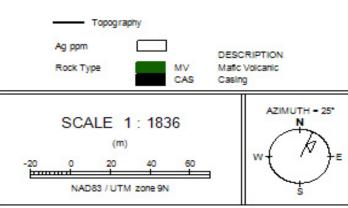







Hanstone Gold Galena Ridge GR-20-03 Gold Results

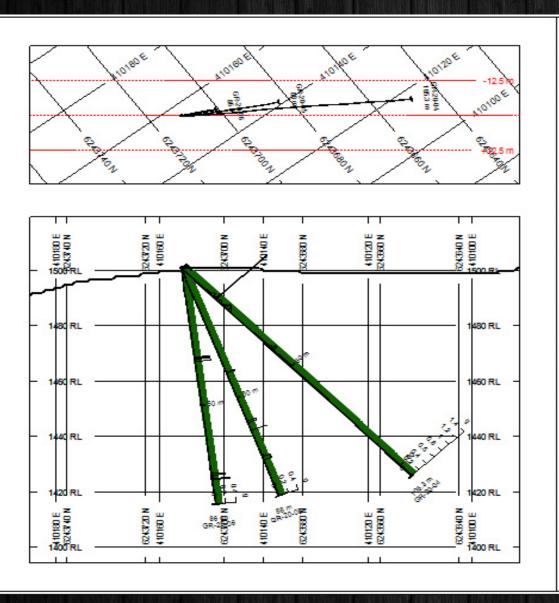
### **GR-20-03 AG RESULTS**



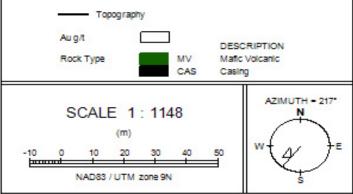



1420 R

1400 F



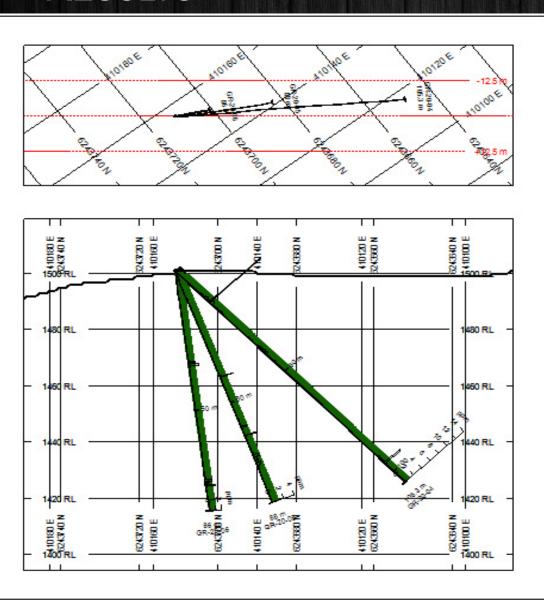




Hanstone Gold Galena Ridge GR-20-03 Silver Results

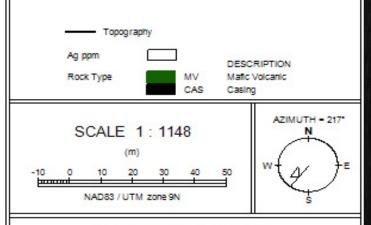
# GR-20-04 TO GR-20-06 AU RESULTS



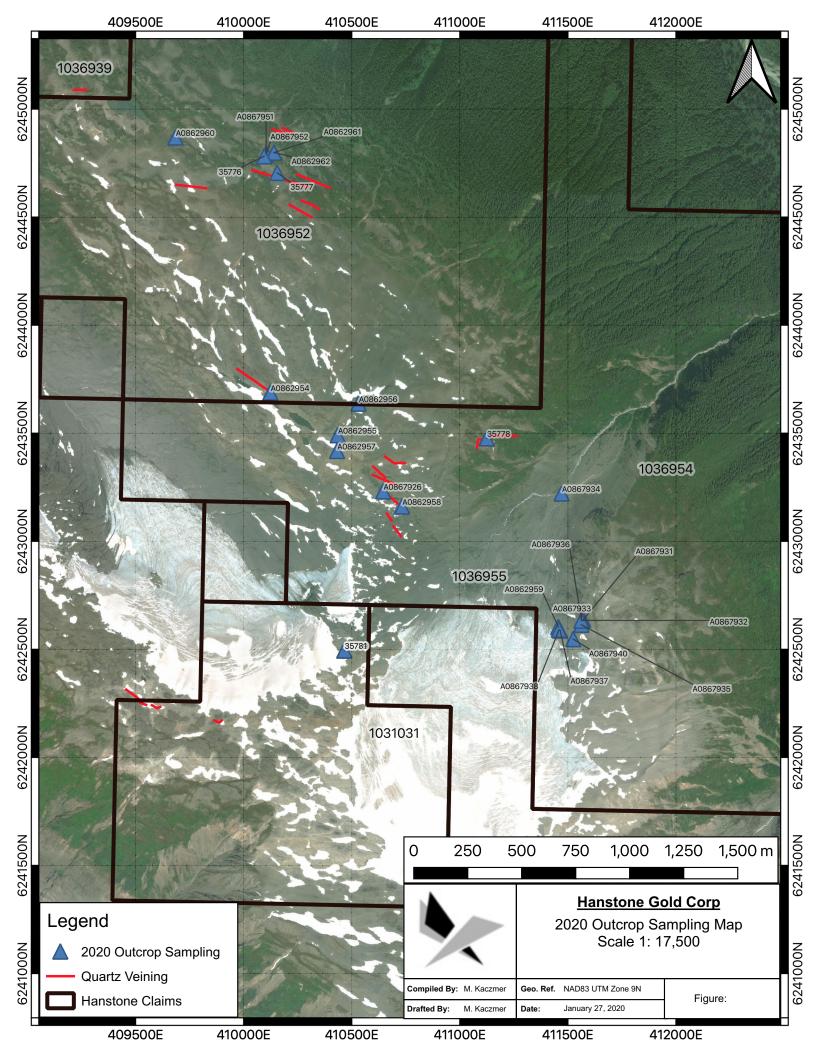


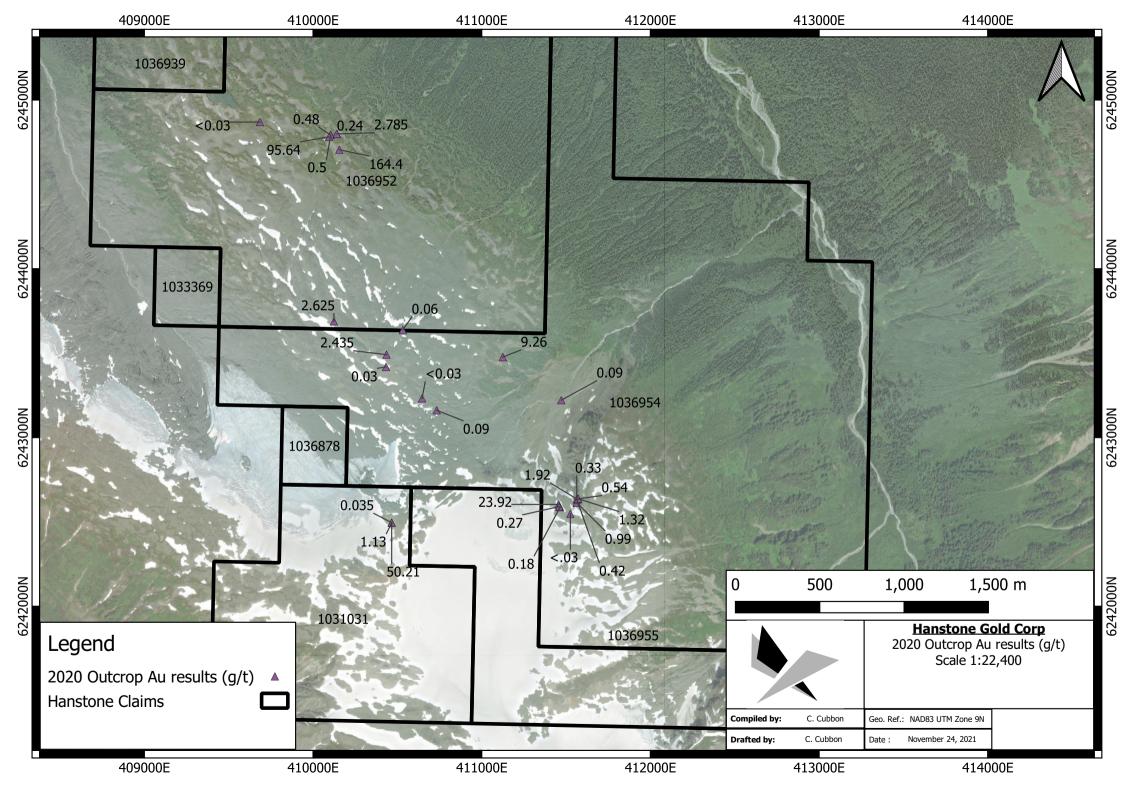


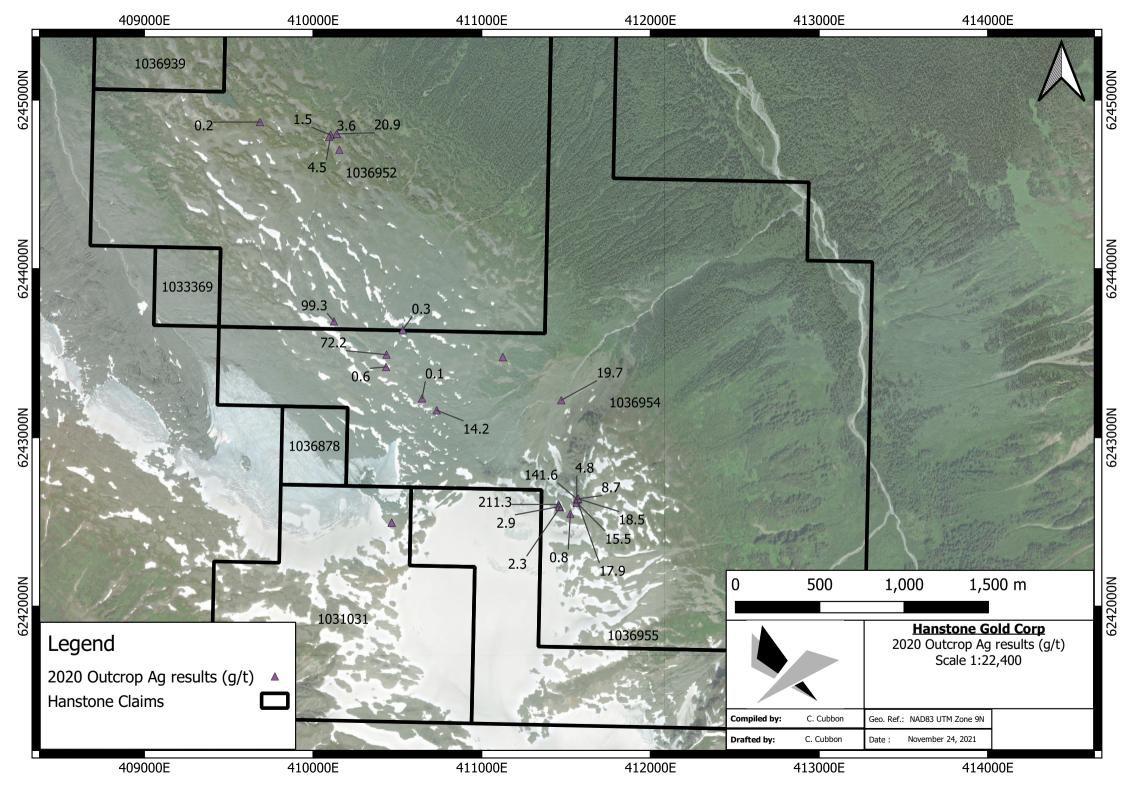




Hanstone Gold
Galena Ridge
GR-20-04 to GR-20-06
Gold Results

## GR-20-04 TO GR-20-06 AG RESULTS






Hanstone Gold
Galena Ridge
GR-20-04 to GR-20-06
Silver Results







Exploration Work type			1								
	Comment	Days			Totals						
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*							
Tyler Fiolleau / Geologist	says (not actual days)	58	\$800.00								
Robbie Mohrbutter / Geologist		13									
Grant Sabraw / Geologist		19	\$275.00	\$5,225.00							
Ray Marks / Mine Supervisor		86	\$500.00	\$43,000.00							
John Olydam / Carpenter											
Darren Slugoski / Geologist Kayden Workun / Labourer		11 19	\$800.00 \$250.00								
Kayden Workun / Labourer		16	\$250.00								
Andrew Laarz / Geological Technician	1	21	\$410.00								
Shawn Buker / Labourer		16	\$400.00								
Jennifer Cowles / Cook and First Aid		18	\$1,250.00								
Jennifer Cowles Mine Supervisor		33	\$150.00								
Simon Bew / Cook and First Aid		20	\$850.00								
Simon Bew / Camp Man		18	\$278.28								
Simon Bew / Camp Maintenance Kelly Tindal / Cook and First Aid		26 23.5	\$400.00 \$850.00								
Glen / Cook and First Aid		23.3	\$850.00								
Ricardina Domina / Cook's helper		16	\$250.00								
Ricardina Domina / Camp help		2	\$150.00								
			\$0.00	\$0.00							
			\$0.00	\$0.00							
			\$0.00		+222 242 24						
Office Studies	List Dansannel (note Office only do	nat include fie	old dave	\$228,569.06	\$228,569.06						
Literature search	List Personnel (note - Office only, do Tyler Fiolleau (June 15-July 10)	12.0	\$166.67	\$2,000.00							
Data compilation	Axiom Group (Oct 2-10 2020)	8.0	\$625.00	\$5,000.00				ļ.			
	Tyler Fiolleau, Max Kaczmer (Sept 30 -		,,,,,,,,,	40,000.00							
Computer modelling	Dec 30)	15.0	\$0.00	\$10,000.00					r may seem higher than expect		
			\$0.00						ing and assimilating data, inco		
	Peter Dueck		\$0.00	\$5,000.00					odated new software that requi		
Project oversight and Management	Tyler Fiolleau		\$0.00 \$0.00	\$10,000.00		$\vdash$			as high. 3. No previous computer models were built, the for much of the work done on the project.		
General research	Tyler Fiolleau, Robbie Mohrbutter	10.0	\$0.00	\$8,000.00		$\vdash$	, with and red	om scrdttii 10	or the work done on th	ic project.	
Report preparation	Tyler Fiolleau / Max Kazcmer	6.0	\$0.00	\$4,400.00							
Permit application	Shane Uren, Jonathan Olsen	5.0	\$0.00								
				\$68,738.64	\$68,738.64					-	
Airborne Exploration Surveys	Line Kilometres / Enter total invoiced amoun	nt									
Aeromagnetics Radiometrics	76.81 km		\$0.00								
Radiometrics			\$0.00	\$0.00							
Electromagnetics Gravity			\$0.00 \$0.00	\$0.00 \$0.00							
Digital terrain modelling			\$0.00								
Digital terrain modelling			φ0.00	\$21,929.53	\$21,929.53						
Remote Sensing	Area in Hectares / Enter total invoiced amou	nt or list personne			, ,						
Aerial photography			\$0.00	\$0.00							
Satellite Analysis - Doc	1704.23 Ha			\$24,006.25							
LANDSAT			\$0.00	\$0.00							
Other (specify)			\$0.00	\$0.00 \$24,006.25	\$24,006.25						
Ground Exploration Surveys	Area in Hectares/List Personnel		l	\$24,000.23	\$24,000.25						
Geological mapping	Area in ricetares/ Else i elsonici										
Regional		note: expenditu	ires here								
Reconnaissance		chould he canti									
		SHOULU DE CAPIL	ıred in Personnel								
Prospect		field expenditur									
Underground	Define by length and width										
	Define by length and width Define by length and width			\$0.00	\$0.00						
Underground Trenches	Define by length and width	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics		field expenditur		\$0.00	\$0.00						
Underground Trenches	Define by length and width	field expenditur		\$0.00	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity	Define by length and width	field expenditur		\$0.00	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling	Define by length and width  Line Kilometres / Enter total amount invoice	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi	field expenditur		\$0.00	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel	field expenditur		\$0.00	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel	field expenditur		\$0.00	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Selsmic reflection Seismic reflection	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel	field expenditur		\$0.00	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Well logging Geophysical interpretation	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above	field expenditur		\$0.00	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel									
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Well logging Geophysical interpretation Petrophysics Other (specify) Geochemical Surveying	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel	es above	\$0.00 Subtotal							
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics S7/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic refraction Seismic refraction Selemic refraction Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying Drill (cuttings, core, etc.)	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel	es above	\$0.00 Subtotal \$57,045.89							
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying  Drill (cuttings, core, etc.) Stream sediment	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel	Rate \$58.81 \$0.00	\$0.00 Subtotal \$57,045.89 \$0.00							
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify) Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel  ield  No.	Rate   \$58.81   \$0.00   \$0.00   \$0.00	\$0.00 Subtotal \$57,045.89 \$0.00 \$0.00							
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying  Drill (cuttings, core, etc.) Stream sediment Soll Rock	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel	Rate \$58.81 \$0.00 \$58.81	\$0.00 <b>Subtotal</b> \$57,045.89 \$0.00 \$1,940.74							
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify) Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel  ield  No.	Rate   \$58.81   \$0.00   \$0.00   \$0.00	\$0.00 \$ubtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00							
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying  Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel  ield  No.	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 <b>Subtotal</b> \$57,045.89 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00							
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics STyAP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel  ield  No.	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 Subtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0							
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying  Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length	field expenditur  d list personnel  ield  No.	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 Subtotal \$57,045.89 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Well logging Geophysical interpretation Petrophysics Other (specify) Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  970.0	\$58.81 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00	\$0.00 \$ubtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0							
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  970.0  No.	Rate   \$58.81   \$0.00   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.	\$0.00 Subtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying  Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)  Drilling Dilling Dilling Dillomand	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  970.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 \$ubtotal \$57,045.89 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  970.0  No.	Rate   \$58.81   \$0.00   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.	\$0.00 Subtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$58,986.63 Subtotal	\$0.00						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics S7/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying  Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)  Drilling Diamond Dilling Di	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  970.0  No.	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 \$ubtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00 \$58,986.63						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)  Drilling Diamond Reverse circulation (RC) Rotary air blast (RAB) Other (specify)	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 Subtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Well logging Geophysical interpretation Petrophysical Other (specify) Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrolopy Other (specify) Drilling Diamond Reverse circulation (RC) Rotary air blast (RAB) Other (Specify) Other (Specify)	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  2724.0	\$58.81 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00	\$0.00 \$ubtotal \$57,045.89 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$	\$0.00 \$58,986.63						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SF/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic reflection Seismic reflection Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)  Drilling Diamond Reverse circulation (RC) Rotary air blast (RAB) Other (specify)	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00   Subtotal   \$57,045.89	\$0.00 \$58,986.63						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying  Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)  Drilling Diamond Reverse circulation (RC) Rotary air blast (RAB) Other (specify)  Other Operations Trenching Bulk sampling	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 \$ubtotal \$57,045.89 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00 \$58,986.63						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SF/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic reflecti	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 Subtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00 \$58,986.63						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify) Geochemical Surveying  Drill (cuttings, core, etc.) Stream sediment Soil Biogeochemistry Whole rock Water Biogeochemistry Whole rock Petrology Other (specify)  Drilling Diamond Reverse circulation (RC) Rotary air blast (RAB) Other (specify)  Other (specify)  Other (specify)  Other (specify)  Other (specify)  Other (specify)  Other Operations Trenching Bulk sampling	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or	No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 Subtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00 \$58,986.63						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics S7/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic refraction Seismic refraction Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify)  Drilling Diamond Reverse circulation (RC) Rotary air blast (RAB) Other (specify)  Other (specify)  Other (specify)  Other operations Trenching Bulk sampling Underground development	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or  No. of Holes, Size of Core and Metres 21 holes, HQ, 2724 m	No.  970.0  33.0  No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 Subtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00 \$58,986.63 \$842,070.17						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Well logging Geophysical interpretation Petrophysical other (specify) Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrolopy Other (specify) Drilling Diamond Reverse circulation (RC) Rotary air blast (RAB) Other (specify) Other Operations Trenching Bulk sampling Underground development Other (specify) Reclamation Reclamation Reclamation Reclamation After drilling	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or  No. of Holes, Size of Core and Metres 21 holes, HQ, 2724 m	No.  970.0  33.0  No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 \$\subtotal \$57,045.89 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$842,070.17 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0	\$0.00 \$58,986.63 \$842,070.17						
Underground Trenches Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic reflection Seismic reflection Seismic reflection Seismic reflection Seismic reflection Ferrophysical interpretation Petrophysics Other (specify) Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whole rock Petrology Other (specify) Drilling Diamond Reverse circulation (RC) Rotary air blast (RAB) Other (specify) Other Operations Trenching Bulk sampling Underground development Other (specify)  Reclamation After drilling Reclamation After drilling Reclamation After drilling Reclamation After drilling	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or  No. of Holes, Size of Core and Metres 21 holes, HQ, 2724 m	No.  970.0  33.0  No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 Subtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00 \$58,986.63 \$842,070.17						
Underground Trenches  Ground geophysics Radiometrics Magnetics Gravity Digital terrain modelling Electromagnetics SP/AP/EP IP AMT/CSAMT Resistivity Complex resistivity Seismic refraction Well logging Geophysical interpretation Petrophysics Other (specify)  Geochemical Surveying Drill (cuttings, core, etc.) Stream sediment Soil Rock Water Biogeochemistry Whoter Specify)  Other (specify)  Reclamation After drilling	Define by length and width  Line Kilometres / Enter total amount invoice  note: expenditures for your crew in the fi should be captured above in Personnel field expenditures above  Define by total length  Number of Samples  note: This is for assays or  No. of Holes, Size of Core and Metres 21 holes, HQ, 2724 m	No.  970.0  33.0  No.  2724.0	Rate   \$58.81   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.00   \$0.0	\$0.00 \$ubtotal \$57,045.89 \$0.00 \$1,940.74 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.0	\$0.00 \$58,986.63 \$842,070.17						

Transportation		No.	Rate	Subtotal				
Transportation		1101	nace	Jubtotu.				
Airfare	Travel for crew to and from site		\$0.00	\$105,917.43				
Taxi			\$0.00					
truck rental			\$0.00					
kilometers			\$0.00					
ATV			\$0.00					
fuel	Total Diesel and Gasoline		\$0.00					
Pilot Crew Change	3 x 2 pilots (\$500 each)	3.00	\$1,000.00					
Helicopter (hours)	B2 Rate	82		\$153,937.50				
Helicopter (hours)	B3 Rate	265	\$2,175.00					
Fuel (litres/hour)	Litres	27658.00	\$1.95					
Other			·					
	<u> </u>			\$897,606.33	\$897,606.33			
Accommodation & Food	Rates per day				•			
Hotel			\$0.00	\$2,231.87				
Camp			\$0.00	\$0.00				
Meals	Groceries - Actual Costs		\$0.00	\$25,191.92				
				\$27,423.79	\$27,423.79			
Miscellaneous								
Communications			\$0.00	\$14,129.61				
				\$14,129.61	\$14,129.61			
Equipment Rentals								
Field Gear (Specify)			\$0.00					
Storage trailer				\$8,621.83				
Truck 1				\$6,400.00				
Truck 2				\$5,000.00				
2 Trailers				\$4,300.00				
ATV / Quad				\$2,150.00				
Mahindra ATV				\$12,550.00				
Other (Specify)								
				\$39,021.83	\$39,021.83			
Freight, rock samples				8,880.66				
Core Boxes			\$0.00					
			\$0.00					
				\$14,880.66	\$14,880.66			
TOTAL Expenditur	res		· · · · · · · · · · · · · · · · · · ·		\$2,237,362.50			