DITTCI	BC Geologicical Survey
COLUMBIA	Assessment Report
The Best Place on Earth	39822
	Shear a
Ministry of Energy and Mines BC Geological Survey	Assessment Report Title Page and Summa
TYPE OF REPORT [type of survey(s)]:	TOTAL COST: \$46,254.76
AUTHOR(S): Dave Forest	SIGNATURE(S):
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S):	YEAR OF WORK: 2021
STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S)	September 10th to 14th, 2021.
PROPERTY NAME: Nizi	
CLAIM NAME(S) (on which the work was done): 515584, 1083872 - N	
COMMODITIES SOUGHT: Au, Ag	
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN:	
MINING DIVISION: Liard Mining District	NTS/BCGS: 1041/096
LATITUDE: 58 ° 47 '00 " LONGITUDE: 128	
OWNER(S):	
1) BARRY, LAWRENCE EDMOND	2) 1155327 BC LTD
MAILING ADDRESS:	
700 W Georgia St #2500, Vancouver, BC V7Y 1B3.	700 W Georgia St #2500, Vancouver, BC V7Y 1B3.
OPERATOR(S) [who paid for the work]:	
1) Freepath Metals Corp.	_ 2)
MAILING ADDRESS: 700 W Georgia St #2500, Vancouver, BC V7Y 1B3.	
PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Nizi Volcanic Sequence, Cretaceous, Tertiary, felsic, mafic, vol	
orthogniess, kaolinite.	, , ,, , <u></u> _, , <u></u> _, <u></u> , <u></u> _, <u></u> , <u>_</u> , <u></u>
·····	

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Induced Polarization			
Radiometric			
Seismic		_	
Other		_	
Airborne			
GEOCHEMICAL (number of samples analysed for)			
Soil 101		515584, 1083872	9,553.47
Silt			
Rock 26		515584, 1083872	36701.29
Other			
DRILLING (total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying		_	
Petrographic			
Mineralographic			
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY / PHYSICAL			
Line/grid (kilometres)			
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/tr			
Trench (metres)			
Underground dev. (metres)			
Other			
			46,254.76

2021 Report on Grid Soil Sampling & Ridge-and-Spur Rock Sampling On the Nizi Mineral Claims (515584 and 1083872)

Cassiar Mountains, British Columbia

Dates Worked: September 10 to 14, 2021

NTS MAP AREA 104I/15 LATITUDE 58 degrees 47'00" N LONGITUDE 128 degrees 45'00" W LIARD MINING DISTRICT

Prepared for: Freepath Metals Corp. 700 W Georgia St #2500 Vancouver, BC V7Y 1B3

Written and submitted by: David Forest

February 2022

TABLE OF CONTENTS

Contents

TABLE OF CONTENTS	2
INTRODUCTION	
LOCATION & ACCESS	4
CLAIMS & OWNERSHIP	6
EXPLORATION HISTORY	7
REGIONAL GEOLOGY & MINERALIZATION	11
PROPERTY GEOLOGY & MINERALIZATION	
2021 EXPLORATION PROGRAM	
RESULTS	
REFERENCES	20
STATEMENT OF QUALIFICATIONS	
STATEMENT OF COSTS	
APPENDIX 1:	
APPENDIX 2	
APPENDIX 3:	

INTRODUCTION

The Nizi property comprises an adularia-sericite, low sulphidation, low sulphide type, epithermal gold prospect located in north central British Columbia.

Gold – silver sulphide mineralization occurs in a microcrystalline to fine-grained quartz vein and stockwork system that cuts a sequence of felsic to mafic volcanic flows and pyroclastic rocks. These rocks, known informally as the Nizi volcanic sequence, are exposed in a southeasterly tapering, fault-bounded area and are inferred to be Cretaceous-Tertiary in age (Plint et al., 1998).

A 4-person crew mobilized to the project from September 10 to 14, 2021. The work was conducted out of a fly camp on Zinc Lake, located on the central section of the tenement area.

The main objective of the program was to complete a soil sampling grid on the south side of a ridge running approximately east-west across the central license area. This ridge was the site of limited drilling in the 1990s, which yielded 5.68 g/t Au over 13.77m and 3.54 g/t Au plus 27.21 g/t Ag over 6.1m.

Soil sampling reported by Kaminak Gold in 2009 detected anomalous values of gold on the south side of this ridge. Reported values ranged up to 724.2 ppb Au. A total of 101 samples were collected over a grid at 50 meter spacing located to the west of the previous sampling, to test for extensions of gold-in-soil anomalies.

Limited rock sampling was also conducted along the east-west ridge, as well as a north-south trending ridge located on the east side of the tenement area. Crews traversed these ridges, taking samples at regular intervals. A total of 26 samples were collected.

All samples were assayed for multi-element geochemistry at ALS Laboratories in Kamloops and Vancouver, British Columbia.

LOCATION & ACCESS

The Nizi property is located 130 km southwest of the town of Watson Lake, Yukon, 85 km northwest of the town of Dease Lake, British Columbia and 60 km southwest of the settlement of Cassiar. The claims lie within the Liard Mining District, on NTS map sheets 104/I 95, 96, centred approximately at latitude 58 degrees 58'35"N and longitude 128 degrees 50'52"W.

The Stewart-Cassiar Highway passes approximately 50km west of the property. Access is via helicopter from Dease Lake. Tundra Helicopters out of Watson Lake provides service to the area.

Figure 1: Location of Nizi Lake property in BC Province

PHYSIOGRAPHY & CLIMATE

The Nizi property lies in the Stikine Ranges of the Cassiar Mountains. Elevations range from approximately 1100 m to 2000 m above sea level within the property. Treeline starts between 1,450 m and 1,800 metres asl, consisting mostly of low trees and shrubs. Slopes vary from 10 to 70 degrees but average 35-40 degrees. Outcrop exposure is good on ridgetops but declines significantly approaching and below the treeline.

The Nizi area is bounded to the north by the Rapid River and Four Mile River, to the west and east by tributaries of these. There are three significant lakes in the region, potentially suitable for landing float planes: Beale Lake, 10 km to the south-southwest of the Nizi property, Meek Lake, 20 km due west of the property and Cry Lake, 20 km to the south-southeast of the property. A small alpine lake lies near the centre of the property and has been referred to as Zinc Lake.

The Nizi property area has a northern continental/alpine climate characterized by snow and subzero temperatures from September to May. Due to the high elevations on the property, exploration is best carried out between late June and early September.

CLAIMS & OWNERSHIP

The Nizi project consists of two mineral titles, numbered 515584 (867.58 ha) and 1083872 (1,668.75 ha).

Title number 515584 is registered in the name of Lawrence Edmond Barry, and is subject to an option agreement with Freepath Metals Corp. Title 1083872 is registered in the name of 1155327 B.C. Ltd., and is subject to an option agreement with Freepath Metals Corp.

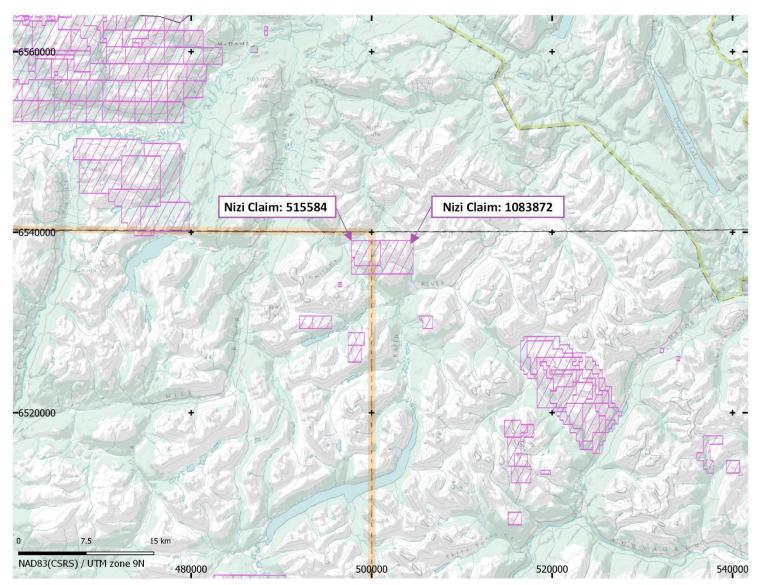


Figure 2: Locatino of the 2 Nizi calims on topographic sheet 104I

EXPLORATION HISTORY

Claims on the Nizi property were first staked in 1969 by J. Attenbury. The claims covered a gossanous zone of polymetallic mineralization hosted by quartz veins in "shear" zones.

In 1970, a soil-geochemistry survey (84 samples) and reconnaissance geological mapping were conducted. Anomalous concentrations of lead and zinc were discovered associated with a gossanous area immediately northwest of Zinc Lake and with north-trending topographic lineaments near the northwest end of the property (Zimmerman, 1970).

The property was optioned to Sumac Mines Limited in 1972 who explored for a porphyry-style copper deposit by systematic geological mapping and soil/silt geochemical surveys.

Although several silver-zinc anomalies and a gold anomaly were identified (Rodgers, 1972), the claims were allowed to lapse in 1973.

Regional Resources Limited re-staked the area in 1979. Detailed geological mapping (1:5000 scale) and geochemical surveys were carried out to assess the area's gold and silver potential. Gold, silver, lead, and zinc anomalies identified by Sumac Mines Limited were confirmed and extended and several gold-silver bearing veins were documented (Rowe, 1980).

In 1982, Regional Resources conducted a prospecting and rock sampling program in geochemically anomalous areas and reported that the highest gold values were obtained from massive galena-sphalerite-pyrite vein material (Rowe, 1983).

The claims were allowed to lapse and were re-staked in 1987 by Izumi Exploration Limited (later renamed Gold Giant Minerals Incorporated). A 36.4 km grid was established. Geological prospecting, geochemical and geophysical surveys were undertaken to re-define known anomalies and veins and to locate new ones.

Six main zones of mineralization were identified and named Zones A through F. Precious and base metal mineralization in quartz and quartz carbonate-sulphide veins associated with north- to northwest-trending faults was reported. The widest vein in the B Zone (only partially exposed) returned grades of up to 1.10 g/t (0.032 oz/ton) Au, 3140.9 g/t Ag (91.61 oz/ton) and 6.32% zinc over 0.5 metres (Augsten, 1987).

Additional exploration in 1991 outlined a quartz vein-stockwork system termed the "G Zone" and later the "Discovery Vein". Assay values up to 41.0 g/t (1.196 oz/ton) Au, 764.6 g/t (22.3 oz/ton) Ag over 1.5 metres were obtained for this area (Cavey & Chapman, 1992), (McIntosh & Scott, 1991).

A VLF-EM conductor in this area was interpreted to reflect pyritization associated with the quartz stockwork (Cavey & Chapman, 1992). An airborne geophysical survey was completed in the spring of 1992 (Woolham, 1992) followed by further exploration during the 1992 field season. Soil sampling (650 samples), geological mapping and diamond drilling were carried out. Base and precious metal mineralization associated with minor faults and fractures was reported. The highest assay values were obtained from an area of quartz veining in silicified rhyolite in the Discovery Vein area and the nearby, newly identified "Surprise Vein".

The most significant gold anomaly based on soil geochemistry coincided with the Discovery Vein. Five drill holes, with a total length of 957.38 metres were drilled. Two holes (NZ-92-1, 2) tested the Discovery Vein/Surprise Vein area. The remaining three holes (NZ-92-3, 4,5) tested the H Zone, Grizzly Ridge Vein/Discovery Vein and Gully A Zone, respectively.

Three additional holes (NZ-92-6, 7, 8) were drilled in the Discovery Vein area by Gold Giant Minerals Incorporated. Drilling indicated the continuity of gold-bearing structures. High gold assays were reported for smokey blue/grey quartz veins throughout the cored intervals, for a quartz-flooded, grey to black rhyolite cut by veins of quartz + carbonate + sulphides and for apparent fault zones within and near the contacts of the rhyolite. In general, gold assays were lower than surface assays (Bond, 1993) and the claims were allowed to lapse.

In 1994, claims were re-staked in the Nizi area by Lawrence Barry of Hunter Explorations. The property was optioned by Oro Grande Resources Inc. in 1995 to earn a 100% interest in the property. Madrona Mining Limited entered into an agreement with Oro Grande Resources in July 1996 with an option to earn up to 60% interest in the property.

In September 1996, six diamond drill holes with a total length of 3022 feet (921.1 metres) were drilled by Madrona Mining in joint venture with Oro Grande Resources. Five holes were drilled in the vicinity of the Discovery and Surprise Veins. One hole was drilled to test the southeastern extension of the Zinc Lake Zone. Zone E of (Augsten, 1987) and (Bond, 1993).

Significant gold mineralization was encountered in holes NZ-96-9, -10 and -12. Base-metal mineralization (sphalerite and galena) was encountered in holes NZ-96-10, -12 and -13 in what was reported to be a sub-vertical (75 degrees-85 degrees dip), northwest-striking zone of fault breccia. The breccia contained layered and massive sphalerite-galena-rich clasts. The clasts were interpreted by Day (1996) to reflect volcanogenic massive sulphide mineralization at depth, the clasts having been torn away and incorporated in the breccia by faulting.

In July 1997 the Nizi property was re-mapped for Madrona Mining Limited at a scale of 1:20,000 by Heather Plint assisted by Alli Marshall. Mineralized areas (Zinc Lake Zone, Discovery Zone and Gully A Zone) were mapped in detail. Drill core from the 1996 exploration program was re-logged with the aim of identifying a volcanic stratigraphy and lithologic and structural controls on mineralization.

In September 1997, Madrona Mining Ltd. completed a total of 914.73 metres (3001.07 feet) of diamond drilling in five drill holes on the Nizi property. A total of four holes were drilled from two sites to test the northern and southern extents of the Discovery/Surprise Vein mineralization. One hole was drilled on Telephone Hill to test a rhyolite flow dome for precious metal mineralization.

Type 1 mineralization was encountered in all four holes in the Discovery/Surprise Vein area, although no significant assays were obtained for samples in drill hole NZ-97-18. Epithermal carbonate-quartz-chert-sulphide veins and breccias (Type 2 mineralization) were encountered in all four drill holes. NZ-97-15 assayed up to 1.43 g/t gold over a true width of 1.0 metre. Individual samples assayed up to 1.96 g/t gold. Type 2 mineralization is slightly anomalous in gold and silver. One sample (#261116) returned values of 0.298 g/t gold and 29.0 g/t Ag. NZ-97-16 assayed up to 3.98 g/t Au and 11.51g/t silver over a true width of 1.71 metres. A 1.5 metre-long sample of Type 1

mineralization, overprinted by brittle faulting at the western contact of the rhyolite returned values of 5.08 g/t gold and 1.55 g/t silver. A 1.38 metre-long sample of Type 1 mineralization in a porphyritic flow returned values of 8.32 g/t Au and 24.6 g/t silver. Type 2 mineralization in this drill hole was not anomalous in gold or silver.

In drillhole NZ-97-17, Type 1 mineralization was encountered as thin veinlets and as a vein-breccia but did not assay significant gold. Type 2 mineralization was anomalous in silver and gold averaging 0.384 g/t gold and 11.11 g/t silver over a 2.62 metre-long interval.

NZ-97-18 encountered Type 1 mineralization hosted by silicified and bleached rhyolite and porphyritic flows. A one metre-long interval of such mineralization returned values up to 7.0 g/t gold and 181.0 g/t silver. A 2.23 metre-long interval of Type 2 mineralization was encountered at 130.3 to 132.53 metres and thin veins of Type 2 mineralization were intersected throughout the hole. Type 2 mineralization is anomalous in silver and in one sample, anomalous in gold (sample #261370) assayed 1.09 g/t gold and 90.40 g/t silver.

Geological work done by Madrona was thorough, and several significant observations were made through their detailed work. Correlation of surface and subsurface data by Madrona in 1997 indicates that the silicified porphyritic rhyolite is a northerly striking, steeply dipping to vertical unit. This observation, the distinctive chemistry of the silicified porphyritic rhyolite, the presence of euhedral to subhedral K-feldspar and minor quartz phenocrysts in an extremely fine-grained siliceous matrix and the absence of flow foliation in the rhyolite suggest that it is a subvolcanic intrusion.

The drill core and surface data indicated that the rhyolitic subvolcanic intrusion either pinches out towards the south or may be deflected into a more east-west strike. The minor amount of significant gold assays in drill hole NZ-97-16 relative to NZ-97-18, suggested that the mineralization in the upper 150 metres of the sequence is tapering out towards the south.

Drill hole NZ-97-17 intersected a minor amount of significant gold mineralization compared to hole NZ-97-15. This could reflect a decrease in mineralization north of the Discovery Vein. However, Type 1 mineralization was intersected in Gold Giant Minerals' drill hole NZ-92-3 that was collared 240 metres north of the Discovery Vein.

In drill hole NZ-97-15, amygdules and feldspar phenocrysts in volcanic flow are aligned parallel to the rhyolite contact although they show no alignment throughout the rest of the volcanic flow. This observation was thought to suggest that the hydrothermal alteration may be masking syn-volcanic faults at the rhyolite contacts.

One geological, wildcat hole was drilled by Madrona on Telephone Hill to test the rhyolite flow dome for mineralization. The drilling confirmed surface mapping that indicated that the flow domes in this area are underlain by a thick sequence (up to 170 metres) of gently dipping volcanic tuff. Rhyolite was not intersected. A 9.0 metre-long interval of felsic to intermediate lithic-crystal lapilli tuff cut by Type 1 mineralization stockwork, minor pyrite stringers and minor Type 2 mineralization in veinlets assayed 7.1 g/t silver. A 6.59 metre-long interval of felsic to intermediate lithic-crystal lapilli-block tuff cut by chert stockwork and Type 2 mineralization assayed 11.34 g/t silver. The highest silver assay in this interval is 23.0 g/t for sample #261453 that is dominated by Type 2 mineralization.

In 2007, Romios Gold Resources mapped and evaluated the known showings and defined potential drill targets for future work on the Nizi property. A program consisting of 1:5000-scale geological mapping, prospecting and rock sampling was conducted. In total, 43 rock samples were taken as well as 26 samples were subjected to ASD spectrometer petrographic analysis for clay and alteration mineralogy.

REGIONAL GEOLOGY & MINERALIZATION

Mapping by the Geological Survey of Canada (Gabrielse, et al., 1979) placed the rocks of the Nizi property into the Sylvester Allochthon. The Sylvester Allochthon is composed of three thrustbounded assemblages. The structurally lowest assemblage is the Slide Mountain Terrane (SMT), interpreted to be remnants of a Mississippian to Permian ocean basin or marginal basin that separated ancient North America (now the Cassiar Terrane, in part) from terranes to the west.

The SMT is overlain along a major thrust by Mississippian to Permian island arc rocks of the Harper Ranch Terrane (Nelson, 1993) in turn overlain by the Rapid River Tectonite (RRT). The RRT is exposed in the southeastern portion of the Sylvester Allochthon (Harms, 1990) and (Harms, 1993). It is an assemblage of amphibolite grade, intercalated mylonitic tectonites and intrusive rocks. Metamorphism, mylonitization and quartz diorite intrusion in the RRT are dated by a synkinematic quartz diorite at Late Devonian to Early Mississippian (362 to 350 Ma) (Gabrielse, et al., 1993). The regional affinity of the RRT is unknown (Harms, 1990) but it may be part of the Yukon-Tanana Terrane.

Terranes outboard of the Sylvester Allochthon and SMT include the Cache Creek, Stikine, Quesnellia and Yukon-Tanana Terranes. The Cache Creek Terrane is interpreted to represent early Mississippian to Permian, oceanic basement upon which developed island arcs and related intra-arc or fore-arc sediments (Gabrielse, 1991).

The Cache Creek and SMT are largely the same age and composed of similar rock types. They are distinguished by the presence of Permian fossils (called "Tethyan faunas") in the Cache Creek Terrane and the absence of coeval faunas in the SMT (e.g. (Mortensen, 1992)). The Tethyan faunas are similar to those in Japan, China, Indonesia and the Himalayan region and very different from coeval fossils in North America, indicating that the Cache Creek Terrane is a far-traveled terrane (Monger & Ross, 1971).

The Stikine Terrane is an island-arc terrane, composed of a variety of rock types, ranging in age from Mississippian to Early Jurassic. The Quesnellia Terrane is similar to the Stikine Terrane and interpreted to have formed in a Late Triassic to Middle Jurassic island arc and intra-arc setting (Gabrielse, 1991).

The Yukon-Tanana Terrane (YTT) consists of polydeformed and metamorphosed rocks derived from the pre-Devonian to Upper Triassic sedimentary, volcanic and plutonic rocks. Much of the SMT was subducted in Permian to Triassic time, as outboard terranes collided with North America. As the ocean basin closed, klippen of the SMT, Harper Ranch and RRT were obducted eastward over Proterozoic to Devono-Mississippian rocks of the North American continental margin and locally, westward over outboard terranes (e.g. (Plint & Gordon, 1997) and (Price, 1986)).

Numerous Cretaceous to Tertiary, northwest-trending, dextral strike-slip faults dissect the Canadian Cordillera. These faults are attributed to Cretaceous and younger, oblique collision of far-traveled terranes with the western margin of North America. In the northern Cordillera, the strike-slip faults have modified terrane boundaries (e.g. (Gabrielse, 1985), (Gabrielse, 1991), (Wheeler & McFeely, 1991)). Basaltic to rhyolitic volcanism along these strike-slip faults is common (Christie, et al., 1992), (Jackson, et al., 1986).

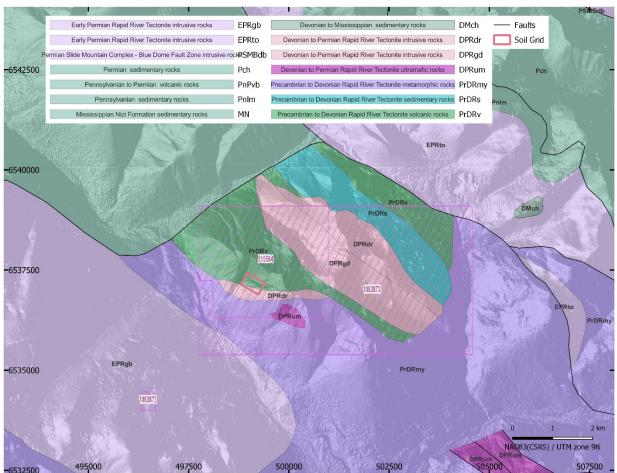


Figure 3: Regional bedrock map of Nizi area and location of soil sampling grid

The Nizi property lies in a region of high potential for economic mineralization. A wide variety of base and precious metal occurrences and deposits are present in the region. To the north, within 50 to 75 km of the Nizi property are numerous base and precious metal and industrial mineral deposits and occurrences in a region referred to as the Midway-Cassiar area. Seven mineralizing episodes, Devonian to Tertiary in age, are recognized in the Midway-Cassiar area (Nelson, 1993):

1. Exhalite deposits in the Devono-Mississippian Earn Group and within units of the SMT generated by Devono-Mississippian extensional tectonics;

2. Rhodonite, of probable exhalative origin in Pennsylvanian-Permian chert of the SMT;

3. Syngenetic chromite and trace platinum mineralization in the Zus Mountain-Blue River and Cassiar ultramafic bodies of the SMT;

4. Early mid-Cretaceous, mesothermal gold-quartz veins hosted by basalt of SMT (e.g. Erickson mine, Taurus Vein, Hopeful Vein) and asbestos fibres in extensional veins (e.g. Cassiar and McDame mines) that are interpreted to have been produced by a cryptic approximately 130 Ma intrusive body (Sketchley, et al., 1986);

5. Mid-Cretaceous skarns and silver-lead-zinc veins and replacement bodies related to the intrusion of the Cassiar Batholith (ca. 100 Ma);

6. Molybdenum-copper skarns and porphyries, and distal silver-lead-zinc replacement bodies (e.g. Midway deposit) formed by a 70 Ma intrusive event;

7. Porphyry mineralization, skarns and silver-lead-zinc veins related to the Eocene Mount Haskin and Mount Reed stocks.

Important ongoing exploration efforts in the area are diverse, and the area is undergoing a resurgence of interest and activity over the last few years. The largest players in current exploration are outlined below:

1) The Western Keltic Mines Kutcho Project, 100km east of Dease lake is slated for production targeted for 2010. A prefeasibility study of this poly-metallic Volcanigentic Massive Sulphide deposit proved a 17.6 million tonne reserve of 1.17 % Copper, 2.36% Zinc, 27.45% Silver and 0.34 g/tonne Gold.

2) The Imperial Metals Red Chris copper porphyry deposit is located 80km south of Dease Lake. A 2004 feasibility study put reserves at 276 million tonnes with .349% copper and .266 g/tonne gold. At 30,000 tonnes/day, this would create a 25 year mine life for the project.

3) The Canadian Gold hunters GJ (Kinaskan) Copper-Gold porphyry project 75km south of Dease Lake. Inferred resources total 71.22 million tonnes grading .392% copper, .398 grams/tonne gold and 2.2 grams/tonne silver.

4) The Table Mountain Gold Mine district, in the vicinity of the Cusac Mine, a high-grade underground gold mining operation located on the Cassiar-Stewart Highway. Total gold production to date from the Cassiar area is about 423,500 oz (13,172 kg) of gold. Production revenues commence in the mid 1980s with Total Energold mining, who had a 300 ton per day mill. In 1993, Cusac restarted gold production, producing 60,000 ounces of gold between 1993 and 1997. The mine ceased producing when gold prices dropped dramatically in 1997. Gold recommenced in December 2006. Table Mountain processing and support facilities consist of a 300 ton-per-day operation, centrally located in the camp adjacent to McDame Lake and Highway 37.

PROPERTY GEOLOGY & MINERALIZATION

The geology of the Nizi property is divided into 4 major map units (in order of oldest to youngest):

1. A metamorphic sequence of metasedimentary, metavolcanic and metaplutonic schist and orthogneiss;

2. An intrusive unit of fine- to coarse-grained, non-foliated granodiorite, quartz diorite and diorite;

3. A sequence of subaerial, felsic to mafic volcanic flows and pyroclastic rocks (hereafter the "Nizi volcanic sequence"); and,

4. Kaolinitized orthoclase-quartz- (biotite) porphyry.

The map units are described in detail by (Plint & Panteleyev, 1997) and (Plint, et al., 1998). Unit 1 is correlated with the Rapid River Tectonite and Unit 2 with the Slide Mountain Terrane. The Nizi volcanic sequence is not part of the Slide Mountain Terrane and its regional correlation unclear. It consists mainly of intermediate to mafic amygdaloidal, porphyritic flows and lithic-crystal tuffs and lesser rhyolitic and dacitic volcanic flows, welded tuff and subvolcanic porphyritic dykes.

Rhyolitic and dacitic flows form a flow dome(s) in the vicinity of Telephone Hill near the centre of the map area. A rhyolitic dyke is exposed over a strike length of 400 metres in the Gully Zone area. Porphyritic, rhyolitic rocks are exposed and partially host mineralization in the Discovery Vein area. The absolute age of the Nizi volcanic sequence is unknown although it must be younger than mid-Permian diorite of SMT that it intrudes (Plint & Panteleyev, 1997).

The Nizi volcanic sequence lies within a south-easterly tapering, fault-bounded structure. The northeastern boundary of the sequence is now a northwest trending fault with dominantly dextral strikeslip motion. The south-eastern boundary is, in part, a west- to northwest-trending fault with uncertain displacement. Based on the west-northwesterly trend of the contact, fault motion probably has been dominated by reverse slip and dextral strike-slip. (Plint, et al., 1998) and (Plint & Panteleyev, 1997).

Tectonic structures in the Nizi volcanic sequence consist of joints, fracture cleavage and small scale faults. Many of these structures can be related to strike-slip faulting although documentation of displacement is hindered by the paucity of marker beds. In mineralized areas, north, northwest and northeaststriking, steeply dipping to vertical joints and fracture cleavage are well developed (Plint, et al., 1998). Resistivity data reveals that northwest-striking, dextral fault zones and northeast-striking and north-striking fractures or faults, dissect the Nizi property and surrounding area (McGowan, 1997)

Madrona (Day, 1996) completed a thorough study of the type and style of mineralization seen in both the drillcore and in the geological mapping of the mineralized zones. Their conclusions are summarized below:

There are 6 main mineralized areas known on the Nizi property: Zinc Lake Zone (E Zone), Discovery Vein/Surprise Vein, Grizzly Ridge Vein, H Zone, Gully A Zone and B Zone. In addition,

the Telephone Hill Zone was recognized as an area of interest on the basis of 1997 mapping and assays reported by Gold Giant (Bond, 1993)

Mineralization of economic interest on the Nizi property occurs in vein-stockwork systems with associated hydrothermal brecciation. It is divisible into (1) gold silver-quartz-dominated and (2) carbonate-quartz-pyrite-sphalerite-galena dominated mineralization.

Type (1): Gold-Silver-Quartz-dominated Mineralization

Gold-silver-bearing vein-stockworks consist of translucent to opaque, microcrystalline to very finegrained, white to grey quartz, carbon, finely disseminated pyrite or veinlets of pyrite, locally white subhedral to euhedral barite and minor dolomite and possibly plagioclase (e.g. Zinc Lake Zone, Discovery Vein/Surprise Vein, Hill Zone).

Fine disseminations of sphalerite, galena, acanthite, tetrahedrite and rare chalcopyrite are present in the vein-stockworks. Gold and silver are present as very fine grains of electrum included in or intergrown with the sulphides and sulfosalts (Pwell, 1997). The pyrite appears to be late in the crystallization sequence because it is typically euhedral to subhedral and overprints contacts between other sulphides and sulfosalts.

Barite precipitated late in the gold mineralization sequence, locally as replacements along quartz grain boundaries in the Type 1 mineralization or as veinlets that cut the Type 1 mineralization.

Type (2): Carbonate-Quartz- Sulphide-dominated Mineralization

Carbonate – quartz – pyrite - sphalerite – galena veins, stockworks and breccias are present in the Gully Zone, B Zone and H Zone and in drill core in the Discovery Vein, Telephone Hill and Zinc Lake Zone areas. Carbonate minerals include rhodochrosite, dolomite and probably ankerite. Minor barite is present locally.

The microcrystalline to finely crystalline quartz in these veins is commonly opaque. Generally, the veins and breccias are anomalous in silver and locally anomalous in gold. The veins exhibit colloform banding, crustification and cockscomb textures and multistage, hydrothermal breccia textures. In drill core, the mineralization has alteration halos of bleached, beige or yellowish pale green coloured, soft argillaceous material and/or chlorite.

2021 EXPLORATION PROGRAM

A four-person crew was mobilized to the site by helicopter between September 10 and 14, 2021. The crew utilized a fly camp as a base to conduct soil sampling on the south side of a roughly east-west trending ridge, as well ridge-and-spur rock sampling along the ridge. The sampling area is shown in Figure 3 and **Error! Reference source not found.**

A total of 101 soil samples were collected on a 50 x 50-meter grid shown in Figure 5. Soil samples were collected with a hand auger, with sample material taken from the 'B' horizon of the soil profile. Soils observed during the sampling ranged from light to dark brown in colour, with textures ranging from sandy to clay loam.

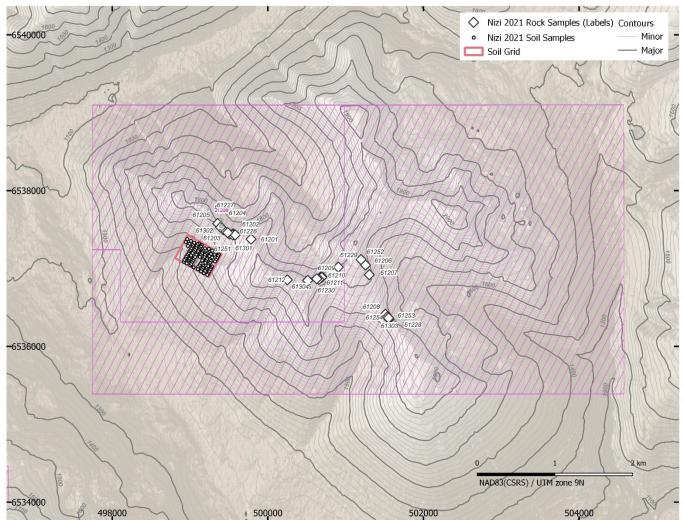


Figure 4: 2021 soil and rock sampling location in the Nizi minerals claims

After removal from the auger, soil samples were hand sorted to remove gravels and pebbles wherever possible. Samples were placed in Kraft envelopes, which were tagged for identification. GPS locations of samples were taken. Individual sample bags were placed in rice sacks for shipment to ALS Laboratories in Kamloops for sample preparation were they were dried at <60 degrees C and sieved to -180 micron (80 mesh). Prepped samples were analyzed at ALS Laboratories in Vancouver using the AuME-ST44 package where a 50 gram sample is analyzed for 53 elements. Sample descriptions are included in Appendix 1, with assay results in Appendix 2.

A total of 26 rock samples were also collected, by hand from outcrop, subcrop or boulders. Samples were placed in plastic bags, which were tagged for identification. GPS locations of samples were taken. Individual sample bags were placed in rice sacks for shipment to ALS Laboratories in Kamloops for sample preparation were they were crushed to 70% passing 2 millimeters, with a 250 gram split then taken and crushed to better than 85% passing 75 microns. Prepped samples were analyzed at ALS Laboratories in Vancouver using the AuME-ST44 package where a 50 gram sample is analyzed for 53 elements. Sample descriptions are included in Appendix 3 and assay results in APPENDIX 4:.

RESULTS

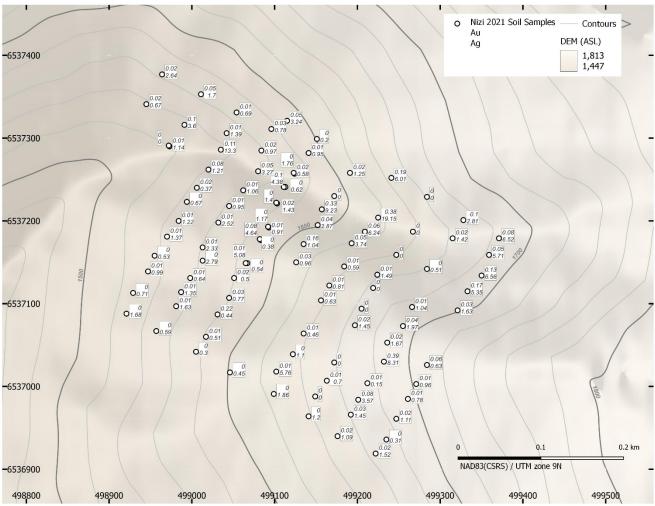


Figure 5: Au and Ag soil sample results of 2021 sampling programme.

The highest Au value measured in the soil sampling was 0.39ppm Au with 8.31 ppm Ag. The next highest gold sample, at 0.38ppm Au, contained the highest Ag value of 19.15ppm. 70% of the analyzed soil samples had values of <0.02ppm Au, and 56% of samples were below 0.1ppm Ag.

Correlation coefficients between Au and other elements shows that high Au is correlative with anomalous Ag (0.75 correlation coefficient), As (0.81), Pb (0.7), Zn (0.63) and Sb (0.65) amongst others. Ag shows similar correlation coefficients with the same elements. Negative correlation between target metals and immobile metals such as Ti and Zr suggests that mineralization is not limited to a specific rock type, consistent with previous work that identified 2 primary forms of vein hosted mineralization. The association with Pb, Zn and other base metals matches the previous descriptions of mineralization styles (minor galena and sphalerite were noted in both type 1 and type 2, see page 14).

The new sampling extends previously identified anomalies by Solomon Resources, 2009 (Error! **Reference source not found.**). 5 Samples collected in 2021 were planned to duplicate previous work to test repeatability with prior work. Results are very similar between the datasets highlighting the excellent quality of both (for instance 0.171ppm vs 0.13 ppm, Figure 6).

The distribution of anomalous Au values in the sampling area suggests some down-slope dispersion in a NW direction. This is likely considering the dramatic topography in the Nizi claim area (Figure 7). The largest identified anomaly in thr 2021 sampling is currently open upslope to the NE and will require additional work in the future.

According to the regional geological map (Figure 3) and more detailed work by Solomon Resources (**Error! Reference source not found.**) the soil grid covers a major lithological contact between intermediate to mafic volcanics (the Nizi Volcanic sequence) and intrusive granodiorites – diorites. Except for the southernmost Au anomaly sampled in 2021, Au appears to be limited to the volcanic sequence. Additional mapping is required to determine with accuracy.

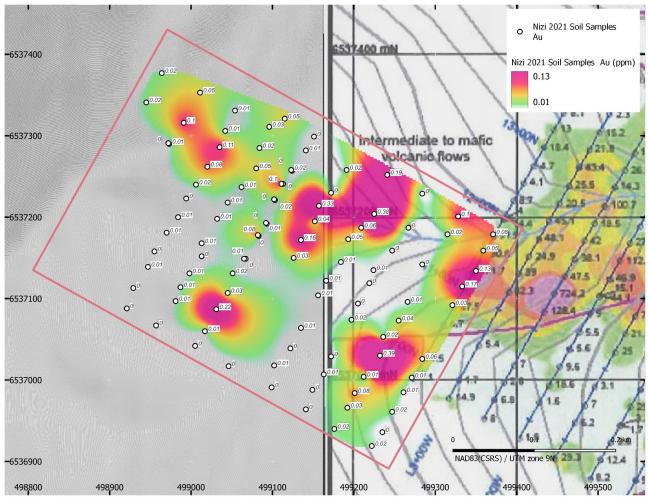


Figure 6: Gridded 2021 Au sampling results and historic Au results map (background, Solomon Resources 2009). Colour scales have been matched between the datasets.

2021 Report on Soil Sampling & Ridge-and-Spur Rock Sampling on the Nizi Mineral Claims (515584 & 1083872)

Figure 7: Photograph looking NE of sampling teams working in the Nizi claims around Zinc Lake (pictured).

Of the 26 rock samples collected in 2021, 1 sample (61209) assayed >150ppm Ag, 9.71ppm Au and 5.21% Zn. The sample was taken from an outcrop of gossan that has been mapped in the past by Gold Fields, Sullivan Rodgers and The Logan Joint Venture. The relatively high Au, Ag and Zn grade would suggest that this sample fits in the "Type 1" style of mineralisation described on page 14. The 5.21% Zn in sample 61209 is the only economic grade of base metal mineralisation noted in the project area. Sample 61211 was taken 20m away in the same gossan and a returned the second highest Au value at 0.355ppm and the highest As value measured at 4270ppm As. Previous soil sampling in this area has been limited and will require further work.

3 other samples assayed over 0.2ppm Au (61204, 61205, 61302) and were collected along a ridge within 200m of each other near to the historic 'Surprise Vein' area. Each sample was noted as gossanous. Previous mapping has not identified gossan in this area before. These samples are also 350m directly upslope (NE) of the new Au soil anomaly identified (Figure 6). More work is required to determine the extent of the underlying gossan and its downslope dispersion.

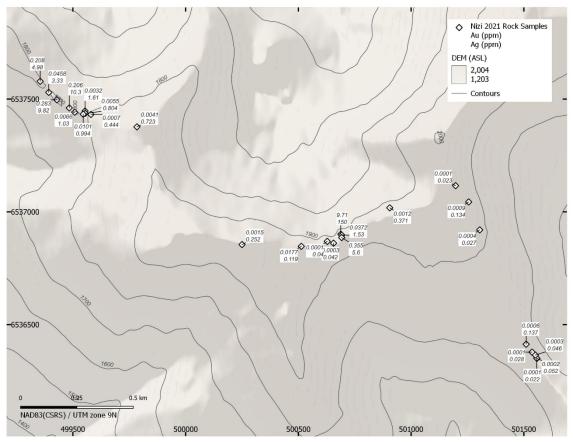


Figure 8: Results of rock samples across the Nizi claims

REFERENCES

- Augsten, B. E. K., 1987. Report on the Nizi Project, Liard Mining Division, British Columbia.. *Report for Izumi Exploration Limited. Assessment Report Number 17334..*
- Bond, W. D., 1993. Geological, geochemical and diamond drill report on the Nizi Mineral Claims. Gold Fields Canadian Mining Ltd.. *Geological Branch Assessment Report Number 22840*..
- Cavey, G. & Chapman, J., 1992. Report on the Nizi Project for Gold Giant Minerals Inc., Liard Mining Division, British Columbia, NTS 104I/14,15 and 104P2,3.. *Internal Report for Gold Giant Minerals Inc.*.
- Christie, A. B., Duke, J. L. & Rushton, R., 1992. Yukon Geology Volume 3, Exploration and Geological Services.
- Day, W. C., 1996. Diamond Drill Report on the Nizi Claims. *Internal Report for Madrona Mining Limited.*.
- Gabrielse, H., 1985. Major dextral transcurrent displacements along the Northern Rocky Mountain Trench and realted lineaments in north-central British Columbia.. *Geological Society of America Bulletin, vol. 96, p. 1-14.*
- Gabrielse, H., 1991. Late Paleozoic and Mesozoic Terrane interactions in northcentral British Columbia.. *Canadian Journal of Earth Sciences, vol. 28, p. 947-957..*
- Gabrielse, H. et al., 1979. Geology of Cry Lake map area (104I).. *Geological Survey of Canada Open File 610*.
- Gabrielse, H. et al., 1993. Late Paleozoic plutons in the Sylvester Allochthon, northern British Columbia.. *Radiogenic Age and Isotopic studies: report 7, Geological Survey of Canada..*
- Harms, T. A., 1990. Complex tectonite suits in the Sylvester Allochthon.. *Geological Association of Canada, Program with Abstracts, vol. 15, p. A54..*
- Harms, T. A., 1993. Devonian sialic tectonism, metamorphism and plutonism preserved in the oceanic Sylvester Allochthon. *Geological Association of Canada, Program with Abstracts, Annual Meeting 1993, p A-40.*
- Jackson, L. E., Gordey, S. P., Armstrong, R. L. & Harakal, J. E., 1986. Bimodal Paleogene volcanics near Tintina Fault, east-central Yukon, and their possible relationship to placer gold.. *Yukon Geology, vol. 1. Exploration and Geologicalm Services Division, Yukon, Indian and Northern Affairs Canada, p. 139-147..*
- McGowan, E., 1997. Geophysical interpretations for the Nizi Property area.. *Internal Report for Madrona Mining Limited.*
- McIntosh, R. & Scott, G., 1991. Report on the Cry Lake Project for Omega Gold Corporation, Liard Mining Division, British Columbia, NTS 104I.. *Report for Omega Gold Corporation*.
- Monger, J. W. H. & Ross, C. A., 1971. Distribution of fusilinaceans in the western Canadian Cordillera.. *Canadian Journal of Earth Sciences, vol. 8, p. 259-278.*
- Mortensen, J. k., 1992. Pre-mid-Mesozoic tectonic evolution of the Yukon-Tanana Terrane, Yukon and Alaska.. *Tectonics, vol. 11, p. 836-853..*

- Nelson, J. L., 1993. The Sylvester Allochthon: upper Paleozoic marginal basin and island-arc terranes in northern British Columbia.. *Canadian Journal of Earth Sciences, vol. 30: 631-643..*
- Nelson, J. L., 1993. The Sylvester Allochthon: upper Paleozoic marginal basin and island-arc terranes in northern British Columbia.. *Canadian Journal of Earth Sciences, vol. 30: 631-643..*
- Plint, H. E. & Gordon, T. M., 1997. The Slide Mountain Terrane and the structural evolution of the Finlayson Lake Fault Zone, southeastern Yukon.. *Canadian Journal of Earth Sciences, vol. 34, p. 105-126..*
- Plint, H., Nelson, J. & Panteleyev, A., 1998. The Nizi Property: A classic (Eocene?) epithermal gold system in far northern British Columbia.. *British Columbia Geological Survey*.
- Plint, H. & Panteleyev, A., 1997. Geological Evaluation and Exploration proposal, Nizi Property, British Columbia, NTS 104I/14,15.. *Internal Report of Madrona Mining Limited*..
- Price, R. A., 1986. The southeastern Canadian Cordillera: thrust faulting, tectonic wedging and delamination of the lithosphere.. *Journal of Structural Geology, vol. 8.*, *p.239-254.*.
- Pwell, W. G., 1997. Report on SEM analysis. *Internal Report for Madrona Mining Limited*.
- Rodgers, T., 1972. Report on the Geology and Geochemistry of the Nizi Group (Nizi 1 40 claims), Liard Mining Division.. *Report for Sumac Mines Limited, Assessment Report Number 4096.*.
- Rowe, J. D., 1980. Geological and Geochemical Report on the Beale Group (Beale # 1-4), Liard Mining Division, British Columbia.. *Report for Regional Resources Limited. Assessment Report Number 7818.*.
- Rowe, J. D., 1983. Geochemical Report on the Beale Group (Beale #1-4), Liard Mining Division, British Columbia.. *Report for Regional Resources Limited. Assessment Report Number 11,154..*
- Sketchley, D. A., Sinclair, A. J. & Godwin, C. I., 1986. Canadian Journal of Earth Sciences, vol. 23, p. 1455-1458..
- Wheeler, J. O. & McFeely, P., 1991. Tectonic assemblage map of the Canadian Cordillera and adjacent parts of the United States.. *Geological Survey of Canada Open File Map 1712A, scale 1:2 000 000.*
- Woolham, R. W., 1992. Report on a combined helicopter-borne magnetic, electromagnetic and VLF-EM survey, Nizi/Rapid Property, Cassiar area, British Columbia.. *Assessment Report Number 22840*..
- Zimmerman, C. E., 1970. Geological and Geochemical Report on the Nizi Group of Mineral Claims. *Assessment Report Number 2789*.

STATEMENT OF QUALIFICATIONS

I, David W. Forest, of 2788 Prince Edward Street, Vancouver, BC V5T 0C8, hereby certify:

1. I am a self-employed consulting geologist with greater than 20 years experience in the mining and exploration industry.

2. I am a graduate of the University of Alberta (1999) with an Honours Bachelor of Science in Geology.

3. I have served in management roles with mining and exploration companies including Chief Operating Officer and Vice-President of Exploration.

4. I have direct experience in the geology of porphyry copper-gold deposits of the type targeted by this project.

5. I am directly involved with this project as I initiated the work on claims and have an ownership position in the company holding the claims, and therefore have the potential to financially gain.

6. I believe this report to be correct and based on factual information.

Dated this 10 day of 2022.

12->

2021 Report on Soil Sampling & Ridge-and-Spur Rock Sampling on the Nizi Mineral Claims (515584 & 1083872)

STATEMENT OF COSTS

See attached.

Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Positi	Field Days (list actual days)	Days	Rate	Subtotal*	
Steve Gillanders	Sept 8 to 16, 2021	7	\$750.00		
Curtis Rensby	Sept 8 to 16, 2021	7	\$480.00		
Cody Prince	Sept 8 to 16, 2021	7	\$480.00		
Alain Laurencelle	Sept 8 to 16, 2021	7	\$480.00		
Steve Gillanders - Prep Work	Sept 1 to 8, 2021	1	\$300.00		
Steve Gillanders - Frep Work					
			\$0.00	\$0.00 \$15,630.00	¢15 620 00
Office Studies	List Personnel (note - Office only, do not in	dude field day	<i>(</i> 6	\$15,650.00	\$15,630.00
				¢0.00	
Literature search			\$0.00	\$0.00	
Database compilation			\$0.00	\$0.00	
Computer modelling			\$0.00	\$0.00	
Reprocessing of data			\$0.00	\$0.00	
General research			\$0.00	\$0.00	
Report preparation			\$0.00		
Other (specify)			\$0.00		
				\$0.00	\$0.00
Airborne Exploration Survey	S Line Kilometres / Enter total invoiced amount				
Aeromagnetics			\$0.00	\$0.00	
Radiometrics			\$0.00	\$0.00	
Electromagnetics			\$0.00	\$0.00	
Gravity			\$0.00	\$0.00	
Digital terrain modelling			\$0.00	\$0.00	
Other (specify)			\$0.00		
outer (specify)			\$0.00	\$0.00	\$0.00
Remote Sensing	Area in Hactarea / Entertatal invoiced amount exlict no	monnol		.00 .00	\$0.00
	Area in Hectares / Enter total invoiced amount or list pe	ersonnei	¢0.00	¢0.00	
Aerial photography			\$0.00	\$0.00	
LANDSAT			\$0.00	\$0.00	
Other (specify)			\$0.00	· · · · · · · · · · · · · · · · · · ·	+0.00
		-		\$0.00	\$0.00
Ground Exploration Surveys	Area in Hectares/List Personnel				
Geological mapping					
Regional			enditures he		
Reconnaissance			captured in		
Prospect		field exper	nditures abo	ve	
Underground	Define by length and width				
Trenches	Define by length and width			\$0.00	\$0.00
Ground geophysics	Line Kilometres / Enter total amount invoiced list pers	onnel			
Radiometrics					
Magnetics					
Gravity					
Digital terrain modelling	1				
Electromagnetics	note: expenditures for your crew in the field			<u>├</u>	
SP/AP/EP	should be captured above in Personnel			<u>├</u>	
IP	field expenditures above			<u>├</u>	
AMT/CSAMT				├	
Resistivity	1			├	
Complex resistivity			L	<u>├</u>	
Seismic reflection				├ ──── ├	
Seismic refraction				└─── ↓	
Well logging	Define by total length				
Geophysical interpretation					
Petrophysics					
Other (specify)					
				\$0.00	\$0.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	•

		1	10.00		1
Stream sediment		101.0	\$0.00		
Soil	note: This is for assays or	101.0	\$63.60		
Rock	laboratory costs	26.0	\$74.37	\$1,933.69	
Water			\$0.00		
Biogeochemistry			\$0.00		
Whole rock			\$0.00		
Petrology			\$0.00		
Other (specify)	Shipping samples to assay lab (ALS Kamloops)		\$0.00	\$228.08	
				\$8,182.81	\$8,182.81
Drilling	No. of Holes, Size of Core and Metres	No.	Rate	Subtotal	
Diamond			\$0.00		
Reverse circulation (RC)			\$0.00		
Rotary air blast (RAB)			\$0.00		
Other (specify)			\$0.00		
Outer (specify)			\$0.00	\$0.00	\$0.00
Other Onerstiens	Clauif.		Data		φυ.υυ
Other Operations	Clarify	No.	Rate	Subtotal	
Trenching			\$0.00		
Bulk sampling			\$0.00		
Underground development			\$0.00		
Other (specify)			\$0.00	\$0.00	
				\$0.00	\$0.00
Reclamation	Clarify	No.	Rate	Subtotal	
After drilling			\$0.00	\$0.00	
Monitoring			\$0.00		
Other (specify)			\$0.00		
			40.00	\$0.00	
Transportation		No.	Rate	Subtotal	
		NO.	Rale	Subtotal	
Ainforda			±0.00	+2 4C0 72	
Airfare			\$0.00	\$2,468.72	
Taxi			\$0.00		
truck rental	\$165 per day	8.00	\$165.00		
kilometers			\$0.00		
ATV			\$0.00		
fuel (truck)			\$0.00	\$634.75	
fuel (helicopter)	\$300 per hour	4.50	\$300.00	\$1,350.00	
Helicopter (hours)		4.50	\$2,000.00		
Fuel (litres/hour)			\$0.00		
Other			<i>40.00</i>	<i>q</i> oice	
		1		\$14,773.47	\$14,773.47
Accommodation & Food	Rates per day	1		יד.כיי,דינק	ş14,//J.4/
		20.00	¢150.00	±4 200 00	
Hotel	\$150 day rate per person for food, lodging, camp	28.00			
Camp	devente en estral de 1100 %		\$0.00		
Meals	day rate or actual costs-specify		\$0.00		
				\$4,200.00	\$4,200.00
Miscellaneous		_			
Telephone			\$0.00		
Other (Specify)	10% handling fee from field contractor			\$454.24	
Other (Specify)	Supplies and consumables			\$1,210.83	
				\$1,665.07	\$1,665.07
Equipment Rentals					
Field Gear (Specify)	InReach satellite phone - \$40 per day	6.00	\$40.00	\$240.00	
Field Gear (Specify)	Chainsaw - \$30 per day	4.00	\$30.00		
Field Gear (Specify)	Radios - \$20 per day	4.00	\$20.00		
		4.00	.920.00	.00.0U	
Other (Specify)				¢440.00	£440.00
F				\$440.00	\$440.00
Freight, rock samples					
		1	\$0.00	\$0.00	
			\$0.00	\$0.00	
					\$0.00
GST				\$0.00	\$0.00 \$1,363.41

TOTAL Expenditures	\$46,254.76

APPENDIX 1:

Soil sample locations and descriptions. Attached as separate file.

APPENDIX 2 Soil Sample Analytical results. Attached as separate file.

APPENDIX 3: Rock Sample Locations and Descriptions. Attached as separate file.

APPENDIX 4:

Rock sample analytical results. Attached as a separate file.

Appendix 1: Soil Sample Descriptions

Sample #	Date	Easting	Northing	Sampled by	• Depth	Horizon	Colour	Class
1001	11-09-2021	499284	6537229	CR	2.	5 B	Brown	loam
1002	11-09-2021	499267	6537187	CR	1	2 B	Brown	sandy loam
1003	11-09-2021	499247	6537159	CR	2	3 B	light brown	sandy loam
1004	11-09-2021	499224	6537135	CR	1	2 B	Dark brown	sandy loam
1005	11-09-2021	499219	6537119	CR	2	2 B	light brown	sandy loam
1006	11-09-2021	499205	6537094	CR	2	ОВ	Brown	sandy loam
1007	11-09-2021	499197	6537074	CR	:	3 B	Brown	sandy loam
1008	11-09-2021	499172	6537029	CR	2	3 B	Brown	sandy loam
1009	11-09-2021	499163	6537007	CR	2	ОВ	Dark brown	clay loam
1010	11-09-2021	499149	6536988	CR	24	4 B	Dark brown	sandy loam
1011	11-09-2021	499141	6536964	CR	3	ОВ	Brown	sandy loam
1012	11-09-2021	498957	6537067	CR	13	3 B	Dark brown	sandy loam
1013	11-09-2021	498981	6537097	CR	1	5 B	Brown	sandy loam
1014	11-09-2021	498987	6537114	CR	2	7 B	Brown	sandy loam
1015	11-09-2021	498998	6537131	CR	13	3 B	Brown	sandy loam
1016	11-09-2021	499013	6537152	CR	2	2 B	Brown	loam
1017	13-09-2021	499115	6537321	CR	13	3 B	Brown	sandy loam
1018	13-09-2021	499096	6537311	CR	1	5 B	Dark brown	sandy loam
1019	13-09-2021	499084	6537285	CR	1	2 B	Dark brown	sandy loam
1020	13-09-2021	499080	6537260	CR	1	5 B	Dark brown	sandy loam
1021	13-09-2021	499062	6537237	CR	2	ОВ	Brown	sandy loam
1022	13-09-2021	499045	6537218	CR	2	7 B	Brown	sandy loam
1023	13-09-2021	499032	6537198	CR	2	2 B	Brown	sandy loam
1024	13-09-2021	499013	6537168	CR	3	ОВ	Dark brown	loam
1025	13-09-2021	498991	6537316	CR	1	ОВ	Brown	sandy loam
1036	11-09-2021	499241	6537252	SG	1	ОВ	Brown	sand
1037	11-09-2021	499225	6537204	SG	1	ОВ	Brown	sand
1038	11-09-2021	499209	6537187	SG	1	ОВ	Brown	sand
1039	11-09-2021	499193	6537173	SG	1	ЭΒ	Brown	loamy sand
1040	11-09-2021	499184	6537145	SG	1	ЭΒ	Brown	loamy sand
1041	11-09-2021	499166	6537122	SG	1	ЭΒ	Brown	loam
1042	11-09-2021	499156	6537104	SG	2	ЭΒ	Brown	clay loam

1043	11-09-2021	499135	6537064 SG	20 B	Brown	clay loam
1044	11-09-2021	499122	6537039 SG	20 B	Brown	clay loam
1045	11-09-2021	499102	6537018 SG	20 B	Brown	clay loam
1046	11-09-2021	499099	6536991 SG	20 B	Brown	clay loam
1047	11-09-2021	498921	6537088 SG	20 B	Brown	loam
1048	11-09-2021	498929	6537113 SG	20 B	Brown	loam
1049	11-09-2021	498947	6537139 SG	20 B	Brown	loam
1050	11-09-2021	498955	6537158 SG	20 B	Brown	silt loam
1051	11-09-2021	498970	6537181 SG	20 B	Brown	loam
1052	11-09-2021	498984	6537200 SG	20 B	Brown	loam
1053	11-09-2021	498994	6537223 SG	30 B	Brown	silt loam
1054	11-09-2021	499006	6537240 SG	20 B	Brown	loam
1055	11-09-2021	499020	6537262 SG	20 B	Brown	loam
1056	11-09-2021	499035	6537286 SG	10 B	Brown	loamy sand
1057	13-09-2021	499191	6537258 SG	10 B	Dark brown	silt loam
1058	13-09-2021	499172	6537230 SG	10 B	Brown	sand
1059	13-09-2021	499157	6537214 SG	25 B	Brown	sand
1060	13-09-2021	499152	6537195 SG	15 B	Brown	loamy sand
1061	13-09-2021	499135	6537172 SG	15 B	Brown	loam
1062	13-09-2021	499126	6537150 SG	20 B	Brown	loam
1063	13-09-2021	499042	6537306 SG	20 B	Brown	loam
1064	13-09-2021	499054	6537331 SG	25 B	Brown	loam
1065	13-09-2021	499011	6537353 SG	25 B	Dark brown	silt loam
1066	13-09-2021	498964	6537377 SG	20 B	Dark brown	loamy sand
1067	13-09-2021	498945	6537341 AL	20 B	Brown	loam
1071	11-09-2021	499371	6537179 CP	25 B	Brown	sandy loam
1072	11-09-2021	499359	6537159 CP	20 B	Brown	sandy silt
1073	11-09-2021	499350	6537134 CP	30 B	Brown	Sand
1074	11-09-2021	499333	6537115 CP	20 B	Brown	Sand
1075	11-09-2021	499321	6537092 CP	45 B	Brown	Sand
1076	11-09-2021	499284	6537026 CP	30 B	Brown	sandy clay loam
1077	11-09-2021	499271	6537003 CP	45 B	Dark brown	silty loam
1078	11-09-2021	499261	6536985 CP	40 B	Brown	silty sand

1079	11-09-2021	499247	6536961	СР	30 B	Brown	silt
1080	11-09-2021	499235	6536936	СР	35 B	Brown	silty sand
1081	11-09-2021	499222	6536919	СР	25 B	Dark brown	silt
1082	11-09-2021	499046	6537017	СР	30 B	Dark brown	Sand
1083	13-09-2021	499328	6537201	AL	25 B	Brown	Sandy
1084	13-09-2021	499315	6537179	AL	25 B	Brown	Sandy
1085	13-09-2021	499284	6537142	AL	25 B	Brown	Sandy
1086	13-09-2021	499266	6537096	AL	25 B	Brown	Sandy
1087	13-09-2021	499255	6537073	AL	20 B	Brown	Sandy
1088	13-09-2021	499236	6537053	AL	20 B	Brown	Sandy
1089	13-09-2021	499232	6537030	AL	25 B	Brown	Sandy
1106	11-09-2021	499212	6537004	AL	25 B	Brown	Sandy Clay
1107	11-09-2021	499201	6536984	AL	25 B	Brown	Sandy Clay
1108	11-09-2021	499192	6536966	AL	20 B	Brown	Sandy
1109	11-09-2021	499176	6536940	AL	25 B	Brown	Sandy
1110	11-09-2021	499005	6537042	AL	20 B	Brown	Sandy
1111	11-09-2021	499017	6537060	AL	25 B	Brown	Sandy
1112	11-09-2021	499031	6537087	AL	25 B	Brown	Sandy
1113	11-09-2021	499045	6537107	AL	25 B	Brown	Sandy
1114	11-09-2021	499051	6537131	AL	30 B	Brown	Sandy
1115	11-09-2021	499151	6537299	AL	25 B	Brown	Sandy
1116	11-09-2021	499141	6537282	AL	25 B	Brown	Sandy
1117	11-09-2021	499124	6537257	AL	25 B	Brown	Sandy
1118	11-09-2021	499113	6537241	AL	25 B	Brown	Sandy
1119	11-09-2021	499103	6537221	AL	25 B	Brown	Sandy
1120	11-09-2021	499093	6537192	AL	20 B	Brown	Sandy
1121	11-09-2021	499083	6537177	AL	20 B	Brown	Sandy
1122	13-09-2021	499067	6537149	AL	30 B	Brown	Sandy
1123	13-09-2021	498973	6537290	AL	30 B	Brown	Sandy
1124	13-09-2021	499123	6537258	СР	35 B	Brown	Sand
1125	13-09-2021	499111	6537241	СР	25 B	Brown	Sand
1126	13-09-2021	499102	6537222	СР	30 B	Dark brown	Sand
1127	13-09-2021	499092	6537193	СР	20 B	Dark brown	sandy loam

1128	13-09-2021	499082	6537178 CP	40 B	Brown	sandy silt
1129	13-09-2021	499065	6537149 CP	15 B	Brown	silt
1130	13-09-2021	498972	6537291 CP	20 B	Brown	sandy silt

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

CERTIFICATE KL21262184

Project: High Road

This report is for 101 samples of Soil submitted to our lab in Kamloops, BC, Canada on 29-SEP-2021.

The following have access to data associated with this certificate:

DAVID FOREST

	SAMPLE PREPARATION		
ALS CODE	DESCRIPTION		
WEI-21	Received Sample Weight		
LOG-22	Sample login - Rcd w/o BarCode		
DISP-01	Disposal of all sample fractions		
SCR-41	Screen to -180um and save both		
	ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT	
AuME-ST44	50g Super Trace Au + Multi Element PKG		

Appendix 2: Soil Sample Analytical Results

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature:

Saa Traxler, General Manager, North Vancouver

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	AuME-ST44 Au ppm 0.0001	AuME-ST44 Ag ppm 0.001	AuME-ST44 Al % 0.01	AuME-ST44 As ppm 0.01	AuME-ST44 B ppm 2	AuME-ST44 Ba ppm 0.05	AuME-ST44 Be ppm 0.005	AuME-ST44 Bi ppm 0.0005	AuME-ST44 Ca % 0.01	AuME-ST44 Cd ppm 0.001	AuME-ST44 Ce ppm 0.001	AuME-ST44 Co ppm 0.001	AuME-ST44 Cr ppm 0.01	AuME-ST44 Cs ppm 0.001
1001		0.40	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1002		0.34	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1003		0.31	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1004		0.41	0.0135	1.490	1.61	134.0	3	414	1.305	2.94	0.19	1.225	36.0	18.15	74.2	47.5
1005		0.36	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1006		0.46	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1007		0.40	0.0237	1.450	1.70	106.0	8	150.0	0.961	1.425	0.28	5.60	33.2	19.50	182.0	46.4
1008		0.38	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1009		0.32	0.0054	0.703	1.57	33.9	3	94.7	0.731	0.896	0.28	2.11	25.2	22.9	166.0	10.15
1010		0.34	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1011		0.32	0.0038	1.200	1.73	32.5	2	190.0	0.958	0.819	0.31	5.45	32.9	21.5	129.5	29.6
1012		0.30	0.0038	0.589	1.37	64.6	2	117.0	0.556	1.050	0.15	3.67	15.75	11.20	72.1	23.0
1013		0.27	0.0073	1.625	1.99	71.7	3	86.1	0.985	1.255	0.11	2.78	30.1	18.10	82.9	15.95
1014		0.27	0.0130	1.345	1.66	25.0	2	111.5	1.035	0.503	0.10	4.10	27.5	10.90	64.3	15.40
1015		0.23	0.0146	0.639	1.68	34.3	2	212	1.145	0.665	0.32	16.70	45.3	18.55	78.6	30.6
1016		0.24	0.0027	2.79	3.46	11.20	<2	73.1	1.490	0.226	0.16	2.02	35.1	13.10	46.6	11.45
1017		0.28	0.0496	3.24	1.02	362	3	541	1.330	1.515	0.41	27.2	30.1	26.2	45.1	30.0
1018		0.28	0.0273	0.775	1.55	66.8	2	224	0.902	1.020	0.25	4.37	29.7	20.4	88.0	33.9
1019		0.30	0.0218	0.965	1.48	84.4	3	165.0	0.742	1.430	0.24	3.94	28.9	22.2	132.0	19.60
1020		0.53	0.0484	3.27	1.35	170.5	5	129.5	0.778	2.22	0.33	4.60	24.5	27.0	151.0	50.6
1021		0.40	0.0124	1.055	1.44	99.3	2	94.7	0.487	1.555	0.10	1.460	19.65	16.50	91.5	11.10
1022		0.33	0.0062	0.947	1.48	102.0	4	98.9	0.640	1.755	0.08	1.575	23.6	16.00	76.2	14.30
1023		0.33	0.0115	2.52	1.52	67.2	3	76.5	0.581	1.045	0.10	1.785	19.05	14.95	66.1	17.60
1024		0.25	0.0100	2.33	2.07	22.0	<2	79.0	1.040	0.436	0.06	3.40	29.3	11.60	54.5	13.40
1025		0.41	0.0952	3.60	1.46	261	4	414	0.844	2.82	0.16	9.90	34.5	26.7	106.5	22.8
1036		0.61	0.190	6.01	1.09	660	<2	66.1	1.340	3.01	0.02	8.35	37.1	42.1	18.75	40.9
1037		0.52	0.384	19.15	2.00	639	3	115.0	1.280	1.500	0.15	9.38	33.6	49.6	123.5	55.2
1038		0.67	0.0556	6.24	1.15	256	3	594	1.560	1.295	0.21	3.58	35.9	50.4	87.5	81.8
1039		0.61	0.0496	3.74	1.65	225	4	221	1.385	1.920	0.22	3.20	29.5	25.5	110.5	52.7
1040		0.47	0.0062	0.594	1.63	55.4	2	97.2	1.005	0.664	0.27	1.585	22.0	14.70	86.4	26.2
1041		0.56	0.0125	0.808	1.36	79.1	6	121.5	0.742	0.927	0.45	3.37	23.2	21.4	166.5	31.6
1042		0.50	0.0133	0.625	1.42	49.3	5	106.0	0.601	1.185	0.41	2.14	21.7	26.1	233	23.7
1043		0.69	0.0132	0.459	1.22	52.3	3	152.5	0.982	0.735	0.26	1.775	36.9	20.9	116.5	13.00
1044		0.55	0.0042	1.095	2.09	30.7	2	116.5	1.095	0.755	0.21	3.70	31.3	22.1	131.5	22.3
1045		0.47	0.0072	5.76	2.18	28.8	2	112.5	2.41	0.329	0.42	4.98	43.5	13.30	54.7	34.0
1046		0.50	0.0026	1.855	1.89	20.0	2	141.5	1.440	0.397	0.27	4.99	31.3	21.3	74.7	33.8
1047		0.52	0.0036	1.675	1.75	53.1	2	136.0	0.776	1.210	0.11	3.69	25.0	15.40	69.7	24.6
1048		0.47	0.0039	0.714	1.75	81.6	3	123.0	0.644	1.265	0.07	3.17	19.15	16.60	102.5	14.40
1049		0.43	0.0078	0.989	1.84	63.2	2	106.0	1.000	0.953	0.15	3.60	28.3	17.75	105.0	32.5
1050		0.58	0.0025	0.531	1.55	38.4	2	192.5	0.897	0.627	0.17	8.84	26.3	18.30	80.4	26.8

ALS Canada Ltd.

(ALS)

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units LOD	AuME-ST44 Cu ppm 0.01	AuME-ST44 Fe % 0.001	AuME-ST44 Ga ppm 0.004	AuME-ST44 Ge ppm 0.005	AuME-ST44 Hf ppm 0.002	AuME-ST44 Hg ppm 0.002	AuME-ST44 In ppm 0.005	AuME-ST44 K % 0.01	AuME-ST44 La ppm 0.002	AuME-ST44 Li ppm 0.1	AuME-ST44 Mg % 0.01	AuME-ST44 Mn ppm 0.1	AuME-ST44 Mo ppm 0.002	AuME-ST44 Na % 0.001	AuME-ST44 Nb ppm 0.002
1001		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1002		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1003		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1004		17.65	6.57	6.76	0.094	0.030	0.054	0.227	0.29	17.20	14.4	0.93	1480	0.994	0.014	2.80
1005		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1006		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1007		38.0	4.99	4.92	0.088	0.021	0.062	1.135	0.06	17.85	15.1	1.78	1850	1.235	0.007	0.661
1008		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1009		16.75	4.56	10.55	0.063	0.031	0.032	0.266	0.05	10.45	14.1	1.79	1125	1.390	0.013	5.84
1010		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1011		30.6	4.08	10.45	0.048	0.049	0.041	0.206	0.04	15.55	13.1	1.41	2090	1.600	0.009	5.66
1012		22.0	4.15	7.53	0.033	0.004	0.035	0.264	0.05	7.40	12.5	0.58	925	1.450	0.006	1.725
1013		27.7	4.75	10.10	0.054	0.044	0.056	0.295	0.05	14.25	11.6	0.93	1295	1.945	0.009	4.85
1014		22.1	4.48	13.60	0.047	0.069	0.047	0.156	0.04	14.80	8.5	0.36	1045	1.760	0.009	10.75
1015		25.9	4.05	9.68	0.055	0.029	0.033	0.184	0.06	18.25	10.1	0.58	3330	1.710	0.010	4.57
1016		15.05	4.80	13.60	0.061	0.312	0.098	0.095	0.05	15.85	10.7	0.66	724	2.04	0.019	13.35
1017		38.5	6.63	3.56	0.079	0.026	0.225	2.91	0.25	14.80	8.6	0.63	4860	1.090	0.006	1.065
1018		27.5	4.19	7.55	0.047	0.021	0.046	0.383	0.09	11.35	13.6	1.00	1360	1.315	0.056	3.41
1019		32.1	3.90	4.94	0.049	0.006	0.035	0.428	0.09	10.65	16.5	1.56	1530	1.130	0.010	0.583
1020		34.9	4.83	4.86	0.060	0.017	0.062	0.741	0.10	9.85	12.1	1.86	2110	0.991	0.006	0.660
1021		26.7	4.33	6.98	0.038	0.004	0.035	0.494	0.07	9.08	11.1	0.87	989	1.340	0.007	0.537
1022		25.4	4.51	7.07	0.040	0.007	0.055	0.361	0.08	11.00	9.8	0.76	1355	1.470	0.007	1.330
1023		22.5	4.14	6.99	0.037	0.006	0.075	0.335	0.06	9.41	15.1	0.82	1170	1.445	0.007	1.355
1024		19.50	4.40	12.75	0.047	0.082	0.065	0.153	0.04	14.85	11.1	0.47	759	1.935	0.010	9.83
1025		50.9	6.27	5.02	0.080	0.010	0.090	1.350	0.13	19.00	15.3	1.32	2450	1.115	0.009	0.377
1036		95.8	13.30	4.07	0.113	0.028	0.162	3.11	0.19	12.85	9.0	0.29	3770	0.945	0.005	0.118
1037		94.0	9.11	7.72	0.093	0.070	0.217	0.678	0.13	13.15	16.1	1.14	3690	2.19	0.048	0.648
1038		66.8	6.56	3.92	0.098	0.020	0.254	0.438	0.17	16.65	9.7	1.00	3400	1.270	0.193	0.448
1039		41.7	7.19	6.64	0.077	0.017	0.097	0.662	0.12	15.50	16.8	1.36	1805	1.410	0.009	1.055
1040		17.40	4.56	10.35	0.047	0.043	0.052	0.273	0.05	10.85	10.1	0.74	1160	1.750	0.010	6.40
1041		22.2	4.44	6.07	0.048	0.013	0.036	0.466	0.06	10.30	12.6	2.14	1390	1.060	0.008	1.545
1042		18.45	4.10	5.74	0.047	0.013	0.034	0.309	0.04	9.79	13.0	3.43	1225	0.891	0.010	1.210
1043		30.2	4.22	4.34	0.056	0.008	0.033	0.207	0.05	18.60	11.4	1.31	1510	2.30	0.005	0.298
1044		25.0	4.40	9.70	0.051	0.044	0.053	0.233	0.05	14.85	13.0	1.72	1140	1.610	0.013	4.41
1045		31.3	4.93	14.10	0.106	0.129	0.127	0.094	0.05	38.8	7.6	0.36	1030	2.24	0.016	14.50
1046		33.4	4.30	11.10	0.055	0.098	0.076	0.131	0.06	16.40	12.0	0.75	2100	2.02	0.011	7.57
1047		25.8	4.97	9.61	0.046	0.017	0.057	0.207	0.07	11.50	13.6	0.64	1370	1.400	0.009	3.88
1048		26.3	5.16	9.20	0.043	0.008	0.027	0.351	0.06	9.19	14.2	0.89	1105	1.630	0.008	2.42
1049		26.7	5.10	10.20	0.050	0.029	0.033	0.303	0.08	13.25	19.4	0.80	1160	1.625	0.010	5.26
1050		16.05	6.48	17.75	0.060	0.098	0.052	0.151	0.07	11.75	14.3	0.74	1570	2.01	0.015	9.05

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units LOD	AuME-ST44 Ni ppm 0.02	AuME-ST44 P % 0.0005	AuME-ST44 Pb ppm 0.005	AuME-ST44 Pd ppm 0.001	AuME-ST44 Pt ppm 0.001	AuME-ST44 Rb ppm 0.005	AuME-ST44 Re ppm 0.0002	AuME-ST44 S % 0.002	AuME-ST44 Sb ppm 0.002	AuME-ST44 Sc ppm 0.005	AuME-ST44 Se ppm 0.002	AuME-ST44 Sn ppm 0.01	AuME-ST44 Sr ppm 0.01	AuME-ST44 Ta ppm 0.005	AuME-ST44 Te ppm 0.001
1001		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1002		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1003		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1004		71.4	0.122	72.5	0.003	< 0.001	17.20	0.0002	0.603	13.30	5.22	0.212	2.06	38.5	0.005	0.025
1005		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1006		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1007		119.0	0.0720	109.5	0.001	< 0.001	8.99	< 0.0002	0.039	14.30	8.94	0.196	2.21	9.31	< 0.005	0.024
1008		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1009		153.0	0.0620	49.6	0.002	0.001	8.21	< 0.0002	0.030	5.09	3.78	0.085	2.73	12.25	< 0.005	0.027
1010		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1011		123.0	0.0703	69.5	< 0.001	< 0.001	7.09	< 0.0002	0.040	7.35	4.45	0.124	2.26	13.90	0.005	0.024
1012		34.6	0.0698	78.5	< 0.001	< 0.001	9.76	< 0.0002	0.072	8.24	1.155	0.146	1.74	10.35	< 0.005	0.058
1013		66.8	0.0736	158.0	< 0.001	< 0.001	7.12	< 0.0002	0.057	12.05	3.58	0.258	2.73	7.75	0.017	0.041
1014		37.3	0.0680	73.8	< 0.001	< 0.001	6.63	0.0002	0.092	2.74	1.810	0.177	2.78	10.00	0.009	0.025
1015		83.3	0.0978	86.0	< 0.001	<0.001	11.60	< 0.0002	0.103	4.05	1.830	0.141	2.16	14.75	0.005	0.032
1016		40.5	0.0829	20.9	< 0.001	< 0.001	6.10	0.0002	0.056	1.220	3.85	0.323	2.63	7.88	0.011	0.018
1017		97.3	0.126	189.0	< 0.001	< 0.001	26.3	0.0002	0.400	29.1	5.28	0.180	3.40	37.2	0.006	0.017
1018		79.2	0.0744	106.0	< 0.001	< 0.001	16.10	0.0002	0.133	8.71	2.57	0.130	1.99	17.70	< 0.005	0.050
1019		118.5	0.0856	110.0	< 0.001	< 0.001	10.35	< 0.0002	0.073	11.15	3.41	0.150	1.87	12.85	< 0.005	0.048
1020		128.5	0.0920	312	< 0.001	<0.001	12.85	< 0.0002	0.101	16.65	5.95	0.175	3.72	11.45	< 0.005	0.020
1021		56.0	0.0745	134.0	< 0.001	< 0.001	9.40	< 0.0002	0.057	11.20	1.975	0.206	2.67	8.48	< 0.005	0.046
1022		50.1	0.0921	126.0	0.001	< 0.001	8.84	0.0003	0.073	12.40	1.515	0.296	3.41	8.03	< 0.005	0.041
1023		42.2	0.0702	152.0	< 0.001	< 0.001	8.44	< 0.0002	0.044	8.60	2.12	0.204	2.40	7.38	< 0.005	0.032
1024		28.9	0.0550	49.5	< 0.001	< 0.001	6.89	< 0.0002	0.048	2.65	2.69	0.220	2.74	5.93	0.009	0.024
1025		101.5	0.0792	376	< 0.001	< 0.001	11.50	< 0.0002	0.145	28.3	8.97	0.196	5.61	17.30	< 0.005	0.031
1036		26.8	0.192	671	< 0.001	< 0.001	12.20	< 0.0002	0.408	40.3	10.40	1.035	4.29	34.7	< 0.005	0.012
1037		87.7	0.144	755	< 0.001	< 0.001	14.20	< 0.0002	0.295	71.7	11.30	0.411	10.80	15.85	< 0.005	0.025
1038		100.5	0.184	231	< 0.001	< 0.001	17.80	< 0.0002	0.480	32.8	4.96	0.275	3.53	39.9	< 0.005	0.026
1039		107.0	0.124	351	< 0.001	< 0.001	12.15	0.0002	0.216	35.8	5.09	0.318	3.51	24.5	< 0.005	0.030
1040		49.4	0.0749	86.7	< 0.001	<0.001	5.61	<0.0002	0.102	5.66	2.07	0.196	2.25	10.70	< 0.005	0.024
1041		167.0	0.0678	97.6	< 0.001	< 0.001	7.79	< 0.0002	0.048	7.11	4.11	0.124	1.73	11.70	< 0.005	0.021
1042		276	0.0701	67.6	< 0.001	0.001	5.48	< 0.0002	0.040	5.33	4.19	0.108	1.58	10.35	< 0.005	0.021
1043		118.5	0.0827	49.0	< 0.001	< 0.001	6.28	< 0.0002	0.020	7.74	4.73	0.164	1.24	8.21	< 0.005	0.017
1044		138.0	0.0662	48.2	< 0.001	< 0.001	5.45	< 0.0002	0.050	3.80	3.74	0.158	2.17	11.80	< 0.005	0.020
1045		42.3	0.104	515	<0.001	<0.001	6.22	0.0003	0.091	4.21	3.96	0.669	2.90	17.05	0.020	0.020
1046		72.3	0.0726	48.7	< 0.001	< 0.001	6.86	< 0.0002	0.047	2.78	3.44	0.184	2.13	14.80	0.005	0.025
1047		36.9	0.0867	141.0	< 0.001	< 0.001	7.35	< 0.0002	0.076	7.56	1.510	0.173	2.38	9.42	< 0.005	0.045
1048		48.1	0.0636	178.0	< 0.001	< 0.001	10.85	< 0.0002	0.063	10.60	1.755	0.151	2.67	7.09	< 0.005	0.062
1049		62.1	0.0623	117.0	< 0.001	< 0.001	13.40	< 0.0002	0.068	6.26	2.96	0.133	2.58	9.61	< 0.005	0.041
1050		46.5	0.0709	68.6	< 0.001	< 0.001	7.47	< 0.0002	0.044	3.26	3.29	0.106	3.51	10.85	0.005	0.032

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

	Method Analyte	Th	ті	ті	U	V	AuME-ST44 W	Y	Zn	Zr
Sample Description	Units LOD	ppm 0.0005	% 0.0001	ppm 0.0005	ppm 0.0005	ppm 0.05	0.001	ppm 0.001	ppm 0.1	ppm 0.01
1001		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1002		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1003		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1004		0.998	0.0958	0.535	1.125	47.5	0.368	13.20	224	1.29
1005		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1006		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1007		1.605	0.0297	0.455	1.005	55.3	0.582	15.80	963	0.51
1008		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1009		1.770	0.192	0.150	0.619	62.7	0.296	4.12	293	1.99
1010		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1011		1.355	0.136	0.219	0.951	64.8	0.211	8.06	460	3.12
1012		0.196	0.0349	0.234	0.691	54.4	0.250	3.30	307	0.23
1013		0.932	0.142	0.232	1.150	61.1	0.283	6.98	377	3.08
1014		0.255	0.126	0.113	1.440	65.2	0.116	6.03	189.5	4.35
1015		0.242	0.0871	0.205	1.030	56.9	0.106	10.15	358	1.56
1016		2.04	0.249	0.0893	1.220	63.5	0.159	7.53	191.5	26.6
1017		0.538	0.0325	1.105	0.670	33.7	0.544	18.45	2480	0.80
1018		0.549	0.0763	0.269	0.763	55.0	0.241	5.31	384	1.19
1019		0.637	0.0485	0.281	0.802	52.2	0.383	6.54	511	0.15
1020		1.020	0.0307	0.397	0.725	51.3	0.421	7.31	583	0.56
1021		0.249	0.0304	0.296	0.623	64.2	0.277	3.99	341	0.09
1022		0.199	0.0538	0.311	0.755	55.6	0.369	4.32	317	0.22
1023		0.374	0.0407	0.276	0.614	55.6	0.303	4.28	333	0.28
1024		0.843	0.160	0.136	1.090	65.5	0.171	5.08	240	6.12
1025		2.76	0.0409	0.715	0.957	61.6	0.407	13.50	1010	0.29
1036		1.975	0.0027	1.705	0.536	46.6	0.363	11.25	975	1.39
1037		1.785	0.0197	0.996	1.200	69.1	0.297	11.75	837	2.58
1038		0.534	0.0191	1.055	0.916	44.7	0.723	16.60	380	0.47
1039		0.932	0.0469	0.811	1.005	53.7	0.388	14.10	542	0.70
1040		0.444	0.107	0.213	0.801	58.9	0.175	4.81	201	3.19
1041		0.815	0.0537	0.223	0.720	52.5	0.238	6.20	433	0.76
1042		1.005	0.0532	0.173	0.680	47.4	0.183	6.28	347	0.65
1043		1.100	0.0153	1.035	1.105	49.1	0.314	12.90	251	0.13
1044		1.060	0.128	0.127	1.145	58.8	0.133	6.95	323	3.44
1045		1.860	0.312	0.115	3.62	65.8	0.281	37.5	368	9.10
1046		1.615	0.180	0.149	1.350	59.6	0.162	10.00	270	6.80
1047		0.237	0.0649	0.309	0.836	71.0	0.106	4.70	295	1.00
1048		0.274	0.0416	0.250	0.778	69.2	0.171	3.92	397	0.35
1049		0.787	0.110	0.197	1.030	66.2	0.133	6.29	365	2.04
1050		2.80	0.360	0.190	0.707	93.7	0.152	3.51	411	8.38

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units	WEI-21 Recvd Wt. kg	AuME-ST44 Au ppm	Ag ppm	AuME-ST44 Al %	AuME-ST44 As ppm	B ppm	AuME-ST44 Ba ppm	AuME-ST44 Be ppm	Bi ppm	AuME-ST44 Ca %	AuME-ST44 Cd	AuME-ST44 Ce ppm	AuME-ST44 Co ppm	AuME-ST44 Cr ppm	AuME-ST44 Cs ppm
sample Description	LOD	0.02	0.0001	0.001	0.01	0.01	2	0.05	0.005	0.0005	0.01	0.001	0.001	0.001	0.01	0.001
1051		0.46	0.0062	1.365	1.50	33.2	2	176.5	0.705	0.705	0.06	3.97	23.9	16.10	66.5	16.00
1052		0.46	0.0130	1.220	1.31	29.0	<2	103.5	0.557	1.035	0.06	2.69	23.6	10.40	49.8	14.80
1053		0.47	0.0023	0.671	1.72	15.25	2	64.6	0.540	0.426	0.11	1.930	25.1	9.57	45.4	13.40
1054		0.46	0.0151	0.374	1.53	54.3	2	125.0	0.645	1.075	0.08	1.825	21.8	16.10	132.5	15.30
1055		0.59	0.0751	1.205	1.40	75.1	3	115.5	0.617	1.165	0.24	2.73	30.6	19.30	125.0	10.75
1056		0.66	0.106	13.30	1.57	284	4	239	1.020	4.66	0.18	18.35	30.5	31.3	99.3	50.6
1057		0.42	0.0226	1.245	1.72	38.0	<2	120.5	1.315	0.819	0.33	6.16	31.3	22.5	93.3	37.9
1058		0.64	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1059		0.67	0.328	9.23	1.18	386	2	108.5	1.115	15.15	0.15	25.8	29.6	42.3	63.9	31.4
1060		0.63	0.0376	2.87	1.30	130.0	3	172.0	0.729	5.45	0.22	7.87	26.8	28.3	144.0	14.05
1061		0.47	0.157	1.035	1.34	74.8	2	97.9	0.602	1.115	0.11	1.840	21.7	14.80	85.0	14.75
1062		0.57	0.0301	0.956	1.95	56.3	2	80.7	0.920	0.837	0.13	2.06	30.5	14.80	90.4	14.45
1063		0.50	0.0086	1.385	1.79	42.7	2	180.0	1.010	0.806	0.19	5.23	28.5	18.60	79.0	21.5
1064		0.48	0.0053	0.686	1.46	36.4	<2	256	0.974	0.753	0.39	11.35	25.6	19.20	75.7	36.5
1065		0.41	0.0459	1.700	1.38	190.5	3	228	0.767	2.19	0.22	5.68	21.4	23.4	97.9	19.90
1066		0.61	0.0243	2.64	2.54	129.5	3	295	1.715	1.240	0.27	9.27	37.3	42.5	68.2	63.3
1067		0.46	0.0199	0.669	1.66	28.8	2	167.0	1.035	0.764	0.22	3.54	26.3	14.30	49.6	40.5
1071		0.37	0.0842	6.52	1.13	176.5	5	188.0	0.921	3.20	0.48	10.55	27.4	27.6	151.5	34.9
1072		0.35	0.0482	5.71	1.41	288	5	256	1.130	3.81	0.74	5.07	31.7	31.7	246	21.5
1073		0.38	0.126	6.56	1.62	411	6	320	1.410	3.67	0.84	18.90	25.5	32.9	356	30.4
1074		0.31	0.169	5.35	1.43	283	6	158.0	1.355	5.10	0.55	26.6	39.1	31.6	159.5	37.2
1075		0.29	0.0298	1.630	2.49	96.5	7	219	1.500	1.230	0.64	8.79	33.2	39.6	336	49.0
1076		0.36	0.0611	0.626	1.70	19.25	3	140.0	0.941	0.344	0.36	1.790	35.9	31.6	226	19.50
1077		0.41	0.0056	0.963	1.69	31.2	3	169.5	0.975	0.498	0.55	2.97	31.2	31.9	255	12.45
1078		0.55	0.0138	0.776	1.25	37.6	5	103.5	0.542	0.568	0.27	2.42	26.9	47.4	359	9.40
1079		0.40	0.0228	1.110	1.68	51.3	4	147.0	0.955	0.678	0.54	3.97	29.6	32.1	277	15.45
1080		0.26	0.0022	0.305	1.66	18.70	2	131.0	0.931	0.315	0.32	5.36	37.0	25.8	110.0	34.6
1081		0.32	0.0185	1.515	1.73	72.8	4	161.0	1.245	1.085	1.02	9.98	27.2	25.2	234	15.10
1082		0.31	0.0015	0.448	1.45	29.7	2	174.5	0.752	0.393	0.11	6.32	28.6	16.75	55.1	32.2
1083		0.50	0.0986	2.81	1.53	57.6	2	64.8	0.665	1.115	0.06	1.880	20.2	11.50	71.3	19.85
1084		0.55	0.0207	1.415	1.48	88.2	3	223	1.415	0.394	0.27	1.930	43.5	17.60	55.3	31.1
1085		0.32	0.0030	0.506	1.66	22.2	3	137.0	0.994	0.597	0.43	2.78	29.3	14.90	94.3	28.7
1086		0.43	0.0059	1.040	1.71	37.6	2	147.0	1.000	0.679	0.29	3.31	27.4	15.20	84.2	26.8
1087		0.33	0.0446	1.970	1.47	51.6	3	300	1.005	0.678	0.40	15.15	27.2	18.55	75.6	29.6
1088		0.23	0.0176	1.665	1.24	141.0	3	346	0.779	0.919	0.27	4.89	24.2	16.00	76.7	23.0
1089		0.31	0.393	8.31	2.57	666	5	228	1.800	3.06	0.41	24.8	53.4	45.9	66.9	50.7
1106		0.38	0.0053	0.152	0.30	14.40	<2	31.1	0.118	0.281	0.10	1.400	3.54	4.45	36.6	4.16
1107		0.37	0.0831	3.57	1.21	206	5	173.0	0.889	2.10	0.56	8.78	28.1	22.1	153.5	35.7
1108		0.77	0.0316	1.450	1.86	55.5	4	166.5	0.968	1.290	0.45	6.49	30.7	32.6	232	30.6
1109		0.74	0.0223	1.090	0.73	316	7	216	1.425	1.840	0.49	6.45	45.0	19.75	19.20	57.1

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units LOD	AuME-ST44 Cu ppm 0.01	AuME-ST44 Fe % 0.001	AuME-ST44 Ga ppm 0.004	AuME-ST44 Ge ppm 0.005	AuME-ST44 Hf ppm 0.002	AuME-ST44 Hg ppm 0.002	AuME-ST44 In ppm 0.005	AuME-ST44 K % 0.01	AuME-ST44 La ppm 0.002	AuME-ST44 Li ppm 0.1	AuME-ST44 Mg % 0.01	AuME-ST44 Mn ppm 0.1	AuME-ST44 Mo ppm 0.002	AuME-ST44 Na % 0.001	AuME-ST44 Nb ppm 0.002
1051		20.0	4.79	11.40	0.047	0.030	0.041	0.250	0.05	10.85	8.6	0.53	2480	1.490	0.010	4.13
1052		17.90	3.43	8.63	0.036	0.019	0.052	0.274	0.05	11.15	6.7	0.41	880	1.435	0.007	5.36
1053		17.75	4.33	11.40	0.045	0.052	0.044	0.125	0.06	12.15	12.4	0.57	587	1.775	0.013	6.42
1054		18.45	4.86	10.75	0.045	0.010	0.030	0.334	0.06	10.05	12.3	1.09	896	1.545	0.009	2.72
1055		33.8	3.98	5.94	0.055	0.007	0.039	0.454	0.07	15.60	14.2	1.58	960	1.040	0.011	0.588
1056		72.1	7.59	5.52	0.092	0.018	0.130	1.200	0.11	18.85	18.9	1.17	3330	1.150	0.007	0.382
1057		28.0	4.53	10.00	0.057	0.095	0.045	0.255	0.06	13.05	10.0	0.75	1905	1.515	0.011	9.74
1058		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1059		69.1	8.93	4.28	0.097	0.017	0.173	3.88	0.17	11.95	11.0	0.84	4140	1.450	0.007	0.211
1060		38.3	5.50	4.18	0.080	0.014	0.064	1.595	0.08	11.95	12.5	2.03	1710	0.884	0.008	0.252
1061		19.75	3.98	7.72	0.046	0.020	0.040	0.389	0.05	9.22	8.4	0.92	1040	1.630	0.008	4.23
1062		41.1	4.56	9.72	0.057	0.032	0.037	0.275	0.06	13.85	13.7	1.02	944	1.960	0.013	5.06
1063		22.8	4.91	9.24	0.056	0.042	0.050	0.323	0.08	12.00	15.1	0.78	1510	1.265	0.012	5.01
1064		26.2	4.84	11.65	0.055	0.077	0.037	0.241	0.07	11.25	12.4	0.63	1835	1.255	0.028	8.77
1065		34.1	5.25	5.67	0.051	0.006	0.042	0.912	0.11	9.06	13.7	0.99	2010	1.450	0.026	1.015
1066		44.0	6.83	9.78	0.075	0.027	0.086	0.974	0.07	14.20	25.5	1.16	6270	1.560	0.006	2.07
1067		18.35	4.73	8.38	0.044	0.022	0.041	0.204	0.08	10.90	11.2	0.48	1595	1.225	0.009	6.50
1071		60.2	6.70	3.61	0.075	0.072	0.140	1.855	0.07	13.95	11.0	1.91	2790	1.110	0.034	0.269
1072		47.7	6.12	4.45	0.075	0.113	0.141	1.415	0.05	17.05	14.1	2.53	2330	1.085	0.010	1.660
1073		138.5	7.63	4.15	0.091	0.091	0.310	3.19	0.06	14.60	15.1	1.59	3520	2.16	0.041	0.314
1074		122.5	9.54	3.74	0.112	0.066	0.186	4.51	0.08	21.6	10.1	1.14	3270	1.945	0.007	0.267
1075		67.6	7.30	7.18	0.104	0.102	0.100	1.135	0.07	19.70	23.6	2.27	3520	1.330	0.008	0.546
1076		24.6	4.50	7.79	0.054	0.045	0.031	0.121	0.05	11.55	14.4	3.40	1050	1.225	0.014	3.68
1077		32.3	4.84	6.59	0.058	0.046	0.059	0.253	0.04	12.90	15.6	3.11	1305	1.490	0.013	2.83
1078		29.1	4.35	4.01	0.055	0.035	0.035	0.225	0.03	9.70	12.7	5.76	1415	0.612	0.010	0.165
1079		49.6	4.91	5.85	0.061	0.053	0.066	0.767	0.04	13.20	16.6	3.77	1275	0.926	0.011	1.635
1080		21.1	4.60	8.39	0.057	0.107	0.032	0.123	0.06	13.45	13.8	1.36	1125	1.275	0.019	6.33
1081		31.8	4.63	6.45	0.062	0.094	0.111	1.055	0.04	14.25	16.5	1.90	1295	1.300	0.011	5.68
1082		12.00	5.84	14.90	0.064	0.116	0.069	0.143	0.08	12.55	14.3	0.51	2970	2.48	0.016	16.65
1083		27.5	4.32	5.22	0.043	0.007	0.044	0.276	0.05	8.84	9.5	0.78	1500	1.340	0.010	1.740
1084		14.30	5.13	4.78	0.068	0.010	0.046	0.150	0.06	19.35	15.6	0.67	2530	1.640	0.007	0.912
1085		20.0	5.17	12.55	0.058	0.042	0.023	0.166	0.07	14.60	16.1	0.90	1195	2.19	0.013	6.66
1086		20.8	4.52	10.40	0.052	0.032	0.032	0.257	0.08	12.65	13.9	0.86	1210	1.700	0.011	6.40
1087		21.0	4.78	9.37	0.060	0.020	0.049	0.275	0.09	10.85	11.8	0.65	2300	1.265	0.014	5.93
1088		25.2	4.48	4.67	0.054	0.008	0.048	0.804	0.15	10.75	9.9	0.73	1665	1.330	0.012	1.455
1089		59.7	7.52	7.84	0.099	0.086	0.260	7.42	0.08	18.40	26.2	1.20	7710	1.345	0.032	2.76
1106		4.75	0.800	0.955	0.009	0.005	0.009	0.128	0.01	1.280	2.7	0.49	251	0.197	< 0.001	0.330
1107		37.8	5.22	3.44	0.068	0.040	0.094	1.035	0.07	14.15	10.4	1.72	1735	1.025	0.007	0.708
1108		57.4	6.22	5.83	0.090	0.088	0.079	0.869	0.05	16.80	17.8	2.79	2380	0.822	0.008	0.436
1109		21.3	5.57	1.810	0.086	0.029	0.062	0.593	0.07	22.4	20.4	0.37	3240	1.720	0.004	0.069

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units LOD	AuME-ST44 Ni ppm 0.02	AuME-ST44 P % 0.0005	AuME-ST44 Pb ppm 0.005	AuME-ST44 Pd ppm 0.001	AuME-ST44 Pt ppm 0.001	AuME-ST44 Rb ppm 0.005	AuME-ST44 Re ppm 0.0002	AuME-ST44 S % 0.002	AuME-ST44 Sb ppm 0.002	AuME-ST44 Sc ppm 0.005	AuME-ST44 Se ppm 0.002	AuME-ST44 Sn ppm 0.01	AuME-ST44 Sr ppm 0.01	AuME-ST44 Ta ppm 0.005	AuME-ST44 Te ppm 0.001
1051		35.0	0.0622	108.5	< 0.001	<0.001	6.05	< 0.0002	0.089	4.09	1.690	0.131	2.68	6.43	<0.005	0.041
1052		21.7	0.0663	99.6	< 0.001	< 0.001	5.47	< 0.0002	0.069	4.36	1.440	0.191	2.37	7.28	< 0.005	0.030
1053		22.5	0.0567	32.9	< 0.001	< 0.001	9.49	< 0.0002	0.038	1.755	2.36	0.172	2.22	7.57	<0.005	0.046
1054		74.1	0.0605	73.7	0.001	< 0.001	9.78	< 0.0002	0.058	5.55	1.885	0.123	2.78	7.73	< 0.005	0.033
1055		129.0	0.0798	90.0	< 0.001	< 0.001	6.74	0.0002	0.033	8.15	4.63	0.165	1.70	12.70	< 0.005	0.048
1056		92.4	0.108	1050	< 0.001	< 0.001	11.40	0.0002	0.138	82.5	10.10	0.296	114.5	14.95	<0.005	0.033
1057		77.6	0.0751	78.3	< 0.001	< 0.001	6.83	< 0.0002	0.098	3.27	2.43	0.118	2.34	19.00	0.012	0.026
1058		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1059		81.1	0.131	752	< 0.001	< 0.001	12.10	0.0002	0.282	37.6	7.61	0.342	7.55	17.25	< 0.005	0.058
1060		157.5	0.0989	258	< 0.001	< 0.001	6.64	< 0.0002	0.075	17.00	6.30	0.152	2.66	12.30	< 0.005	0.041
1061		72.9	0.0660	112.5	< 0.001	< 0.001	6.36	< 0.0002	0.074	7.90	1.775	0.184	2.58	8.56	<0.005	0.037
1062		67.0	0.0625	86.2	< 0.001	< 0.001	6.96	< 0.0002	0.044	6.30	2.71	0.200	2.72	8.74	< 0.005	0.039
1063		58.5	0.0626	118.0	< 0.001	< 0.001	12.45	< 0.0002	0.084	5.20	2.59	0.131	2.25	15.35	< 0.005	0.036
1064		53.2	0.0669	96.8	< 0.001	< 0.001	15.35	< 0.0002	0.097	4.24	2.58	0.084	2.79	27.5	0.006	0.035
1065		69.6	0.0945	220	0.001	< 0.001	13.85	< 0.0002	0.163	20.9	1.875	0.160	4.13	17.35	<0.005	0.056
1066		37.7	0.132	167.0	< 0.001	< 0.001	10.10	< 0.0002	0.135	9.62	4.90	0.222	3.50	15.00	0.005	0.020
1067		26.5	0.112	46.0	< 0.001	< 0.001	11.15	< 0.0002	0.138	3.04	0.733	0.138	2.26	22.5	0.006	0.026
1071		246	0.0834	453	< 0.001	< 0.001	10.40	< 0.0002	0.094	14.05	9.39	0.263	3.14	12.75	< 0.005	0.030
1072		346	0.0822	249	< 0.001	0.001	6.61	0.0002	0.079	17.45	8.21	0.233	3.00	15.40	0.006	0.029
1073		110.0	0.0991	477	< 0.001	0.001	8.49	0.0003	0.140	32.5	25.4	0.338	4.39	12.40	<0.005	0.030
1074		63.6	0.127	281	< 0.001	< 0.001	9.53	0.0003	0.114	24.8	16.20	0.431	2.58	9.64	< 0.005	0.036
1075		112.0	0.110	75.9	< 0.001	< 0.001	11.25	0.0003	0.063	14.30	26.8	0.300	1.55	13.10	< 0.005	0.019
1076		314	0.0504	49.5	< 0.001	0.001	5.96	< 0.0002	0.039	3.85	4.31	0.102	2.01	13.15	< 0.005	0.037
1077		345	0.0649	63.4	0.001	0.001	5.38	< 0.0002	0.053	5.89	7.74	0.127	1.80	13.45	< 0.005	0.023
1078		576	0.0390	88.8	0.001	0.001	5.67	<0.0002	0.017	6.57	6.63	0.093	1.37	7.90	<0.005	0.024
1079		363	0.0599	69.8	< 0.001	0.001	7.65	0.0002	0.046	5.83	7.05	0.169	1.89	11.05	< 0.005	0.023
1080		144.5	0.0603	32.4	< 0.001	< 0.001	7.13	< 0.0002	0.040	2.44	4.50	0.084	2.12	12.75	< 0.005	0.018
1081		235	0.0935	74.3	< 0.001	0.001	5.01	< 0.0002	0.099	6.81	6.66	0.202	2.61	18.80	0.014	0.018
1082		31.3	0.0688	71.6	< 0.001	0.001	9.23	< 0.0002	0.045	3.27	2.29	0.142	3.77	9.25	0.011	0.035
1083		49.0	0.0677	221	< 0.001	< 0.001	6.07	<0.0002	0.093	8.58	1.055	0.263	1.99	6.30	<0.005	0.058
1084		52.2	0.0762	178.0	0.001	< 0.001	8.37	< 0.0002	0.035	8.54	3.90	0.144	1.36	10.15	<0.005	0.025
1085		63.7	0.0699	51.0	< 0.001	< 0.001	9.12	< 0.0002	0.086	3.16	2.56	0.103	3.13	13.45	<0.005	0.028
1086		68.4	0.0647	71.1	< 0.001	< 0.001	9.88	< 0.0002	0.072	4.48	2.29	0.106	2.86	12.70	<0.005	0.034
1087		48.4	0.128	183.5	< 0.001	< 0.001	13.75	< 0.0002	0.133	5.06	1.560	0.151	2.70	20.3	0.005	0.025
1088		66.6	0.101	134.5	< 0.001	< 0.001	14.95	0.0003	0.231	11.00	1.740	0.124	3.00	20.1	<0.005	0.022
1089		78.5	0.102	481	< 0.001	< 0.001	10.95	0.0002	0.145	22.0	10.55	0.345	7.07	18.05	0.005	0.022
1106		35.1	0.0225	18.05	< 0.001	< 0.001	1.740	< 0.0002	0.013	1.385	0.444	0.023	0.38	3.48	<0.005	0.005
1107		165.5	0.0941	271	0.002	< 0.001	9.64	< 0.0002	0.075	14.85	6.50	0.174	2.59	11.60	< 0.005	0.026
1108		248	0.0934	71.7	< 0.001	< 0.001	7.00	0.0002	0.044	7.77	15.50	0.246	1.54	11.00	< 0.005	0.024
1109		24.0	0.102	39.5	< 0.001	< 0.001	12.75	0.0003	0.088	8.92	6.77	0.242	1.71	9.15	< 0.005	0.014
		10000000000	COLUMN DE LA COLUMN	758-776-2	A REAL PROPERTY.	108,506,80	C. NEWSPECKS	10 ANO 10 ANO 10 AN	10000	10-21-22	10000	112/27.09(A)	ENDERN -	200802084	6-30-88258030	

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

	Method	1.201		AuME-ST44		AuME-ST44		AuME-ST44 Y	AuME-ST44		
	Analyte	Th	Ti	TI	U	v	W		Zn	Zr	
ample Description	Units LOD	ppm 0.0005	% 0.0001	ppm 0.0005	0.0005	0.05	0.001	ppm 0.001	0.1	ррт 0.01	
051		0.266	0.120	0.445	0.699	75.8	0.062	3.75	288	1.93	
1052		0.196	0.0775	0.273	0.714	59.1	0.137	3.95	223	1.22	
1053		1.085	0.158	0.142	0.801	62.5	0.128	3.92	176.0	3.89	
1054		0.239	0.0759	0.170	0.609	74.3	0.106	3.61	279	0.55	
1055		1.965	0.0659	0.247	1.040	55.4	0.272	8.65	376	0.31	
1056		1.375	0.0242	0.791	0.652	56.4	0.258	20.6	1640	0.40	
1057		0.491	0.118	0.104	0.766	63.8	0.114	6.04	335	5.85	
1058		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	
1059		1.990	0.0114	1.235	1.065	47.0	0.504	16.65	1965	0.47	
1060		2.45	0.0363	0.557	0.722	46.4	0.322	10.10	825	0.50	
1061		0.384	0.0832	0.216	0.693	54.5	0.155	4.00	281	1.20	
1062		0.949	0.106	0.169	0.875	56.7	0.163	5.77	264	2.16	
1063		0.668	0.122	0.168	0.815	65.2	0.097	5.34	433	2.83	
1064		0.734	0.142	0.122	0.719	71.5	0.088	4.50	554	4.62	
1065		0.218	0.0251	0.379	0.641	57.1	0.206	4.71	672	0.23	
1066		0.443	0.0583	0.580	0.594	83.7	0.110	10.80	706	1.26	
1067		0.146	0.0509	0.131	0.692	61.9	0.080	4.11	318	1.38	
1071		2.72	0.0068	0.665	1.070	43.5	0.300	18.45	1340	2.18	
1072		1.505	0.0297	0.525	1.240	50.7	0.260	17.20	790	4.22	
1073		1.985	0.0093	1.840	1.290	81.8	1.510	21.1	2190	2.03	
1074		2.39	0.0064	1.250	1.825	68.2	1.075	28.3	3130	1.69	
1075		2.27	0.0187	0.924	1.215	100.5	1.130	28.7	1300	2.82	
1076		1.400	0.106	0.0979	0.917	53.8	0.154	6.84	186.0	2.97	
1077		0.950	0.0625	0.201	1.190	58.0	0.343	9.84	415	2.25	
1078		2.31	0.0314	0.180	0.918	43.7	0.155	6.30	271	1.32	
1079		1.030	0.0401	0.197	1.100	55.3	0.483	12.40	601	2.18	
1080		2.37	0.236	0.0948	0.961	58.8	0.146	7.60	446	7.42	
1081		0.642	0.0583	0.270	1.305	59.4	0.734	14.40	818	4.30	
1082		3.09	0.346	0.238	0.640	70.4	0.335	3.50	365	9.13	
1083		0.585	0.0359	0.268	1.150	35.7	0.172	4.51	277	0.42	
1084		0.936	0.0214	0.671	1.095	42.7	0.245	12.80	310	0.27	
1085		0.651	0.137	0.141	1.100	68.7	0.098	8.21	253	2.73	
1086		0.603	0.101	0.158	0.922	60.9	0.143	5.87	292	2.45	
1087		0.263	0.106	0.190	0.727	58.9	0.191	4.21	623	1.41	
1088		0.210	0.0580	0.374	0.634	47.5	0.192	5.19	450	0.34	
1089		1.505	0.0963	0.933	0.873	64.8	0.247	19.05	2840	5.41	
1106		0.0887	0.0072	0.0356	0.121	9.30	0.056	0.836	114.5	0.15	
1107		1.410	0.0166	0.562	0.965	40.7	0.431	13.45	1120	1.14	
1108		1.965	0.0222	0.512	1.135	69.2	0.431	22.0	923	2.77	
1109		4.95	0.0011	1.225	1.360	22.1	0.526	26.5	714	0.62	

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units LOD	AuME-ST44 Cu ppm 0.01	AuME-ST44 Fe % 0.001	AuME-ST44 Ga ppm 0.004	AuME-ST44 Ge ppm 0.005	AuME-ST44 Hf ppm 0.002	AuME-ST44 Hg ppm 0.002	AuME-ST44 In ppm 0.005	AuME-ST44 K % 0.01	AuME-ST44 La ppm 0.002	AuME-ST44 Li ppm 0.1	AuME-ST44 Mg % 0.01	AuME-ST44 Mn ppm 0.1	AuME-ST44 Mo ppm 0.002	AuME-ST44 Na % 0.001	AuME-ST44 Nb ppm 0.002
1110		16.40	4.39	7.55	0.049	0.028	0.042	0.221	0.06	9.30	13.3	2.60	972	1.195	0.032	3.45
1111		20.7	4.55	7.33	0.060	0.020	0.031	0.203	0.06	13.80	15.5	4.06	1230	1.000	0.014	1.710
1112		24.1	4.56	7.41	0.066	0.014	0.043	0.851	0.04	10.60	14.9	2.38	1410	1.360	0.006	1.625
1113		31.0	4.28	6.45	0.070	0.022	0.031	0.797	0.05	10.15	15.4	2.50	1210	0.833	0.011	0.503
1114		21.8	4.51	8.60	0.067	0.042	0.032	0.324	0.04	10.35	14.8	2.84	1335	1.420	0.010	2.34
1115		17.05	4.73	12.55	0.061	0.063	0.026	0.475	0.06	7.88	15.9	1.29	1285	2.07	0.010	7.36
1116		33.7	3.86	8.63	0.093	0.070	0.052	0.122	0.05	16.85	13.2	1.42	1370	1.430	0.083	7.96
1117		25.3	5.48	10.45	0.072	0.047	0.069	0.313	0.09	13.35	21.7	0.65	819	2.29	0.010	5.99
1118		19.25	4.50	14.15	0.060	0.023	0.040	0.131	0.06	10.65	4.2	0.26	799	2.13	0.012	8.11
1119		15.65	4.93	16.35	0.087	0.187	0.051	0.113	0.05	19.30	10.4	0.47	709	2.23	0.018	13.65
1120		16.50	4.82	16.35	0.081	0.208	0.042	0.094	0.04	17.55	9.4	0.35	655	2.04	0.015	14.10
1121		15.65	3.30	8.65	0.058	0.018	0.026	0.237	0.06	12.75	9.4	0.87	803	1.845	0.129	3.57
1122		18.70	5.02	13.80	0.068	0.049	0.022	0.283	0.09	12.50	13.1	0.54	1305	2.27	0.010	7.96
1123		26.1	4.07	8.58	0.066	0.028	0.041	0.371	0.11	12.75	13.8	1.11	1520	1.430	0.050	4.85
1124		23.6	3.72	6.75	0.059	0.017	0.030	0.407	0.09	8.96	11.9	1.19	1670	1.270	0.035	2.29
1125		50.3	5.64	4.80	0.098	0.055	0.108	1.245	0.06	16.45	12.3	1.94	2610	1.140	0.007	0.439
1126		30.9	3.87	4.75	0.077	0.007	0.039	0.617	0.06	12.20	11.9	2.10	1255	0.955	0.009	0.403
1127		21.6	4.24	10.35	0.062	0.013	0.046	0.466	0.07	10.95	7.9	0.64	1325	1.585	0.008	3.04
1128		37.0	5.42	5.38	0.068	0.014	0.099	0.832	0.06	8.68	11.2	0.57	1970	1.175	0.050	0.573
1129		29.6	5.67	11.75	0.089	0.045	0.121	0.573	0.06	15.60	14.1	0.41	4340	1.845	0.007	5.63
1130		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units LOD	AuME-ST44 Th ppm 0.0005	AuME-ST44 Ti % 0.0001	AuME-ST44 TI ppm 0.0005	AuME-ST44 U ppm 0.0005	AuME-ST44 V ppm 0.05	AuME-ST44 W ppm 0.001	AuME-ST44 Y ppm 0.001	AuME-ST44 Zn ppm 0.1	AuME-ST44 Zr ppm 0.01		
1110		1.040	0.120	0.0961	0.639	53.0	0.220	4.42	263	1.87		
1111		1.070	0.0766	0.137	0.940	52.5	0.103	8.96	266	1.40		
1112		0.733	0.0371	0.221	0.662	58.5	0.411	8.72	610	0.63		
1113		2.37	0.0453	0.287	0.691	63.8	0.340	6.95	566	1.01		
1114		2.45	0.114	0.229	0.705	62.4	0.274	6.06	346	3.13		
1115		2.04	0.172	0.133	0.378	76.8	0.296	3.22	505	4.04		
1116		0.791	0.145	0.164	1.125	62.6	0.207	10.95	304	4.23		
1117		3.94	0.118	0.377	1.200	56.6	0.348	4.80	375	3.55		
1118		0.188	0.0765	0.197	0.893	69.4	0.087	3.22	172.0	1.53		
1119		1.095	0.209	0.115	1.465	74.4	0.114	9.17	193.0	13.30		
1120		1.010	0.223	0.0768	1.225	73.4	0.076	7.75	169.5	13.95		
1121		0.133	0.0363	0.158	1.010	51.1	0.134	6.11	217	0.77		
1122		0.883	0.142	0.136	0.854	75.6	0.139	4.11	337	3.31		
1123		0.499	0.0664	0.268	0.994	57.7	0.172	7.33	358	1.73		
1124		0.304	0.0384	0.182	0.817	51.7	0.216	5.39	384	0.62		
1125		1.915	0.0129	0.680	0.975	48.4	0.434	17.20	2700	1.62		
1126		1.710	0.0453	0.325	1.005	46.8	0.319	8.83	477	0.23		
1127		0.398	0.0733	0.270	0.871	67.2	0.110	4.02	269	0.77		
1128		0.152	0.0089	0.484	0.755	59.6	0.247	5.22	612	0.42		
1129		0.754	0.108	0.811	0.971	68.7	0.112	6.95	458	2.79		
1130		NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS		

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-DEC-2021 Account: FREEPA

Project: High Road

		CERTIFICATE CO	MMENTS	
			YTICAL COMMENTS	
Applies to Method:	NSS is non-sufficient samp ALL METHODS	le.		
		LABO	RATORY ADDRESSES	
Applies to Mathadi		s located at 2953 Shuswap Drive, K		
Applies to Method:	DISP-01	LOG-22	SCR-41	WEI-21
Applies to Method:	Processed at ALS Vancouve AuME-ST44	r located at 2103 Dollarton Hwy, N	orth Vancouver, BC, Canada.	

Appendix 3: Rock Samples Description

Sample #	Date	Easting	Northing	Sampled by	O/S/B
61201	2021-09-10	499784	6537377	SG	Subcrop
61202	2021-09-10	499554	6537447	SG	Outcrop
61203	2021-09-10	499508	6537442	SG	Outcrop
61204	2021-09-10	499429	6537497	SG	Outcrop
61205	2021-09-10	499355	6537579	SG	Outcrop
61206	2021-09-12	501255	6537044	SG	Outcrop
61207	2021-09-12	501304	6536920		Boulder
61208	2021-09-12	501510	6536413		Outcrop
61209	2021-09-12	500688	6536901	SG	Outcrop
61210	2021-09-12	500692	6536897	SG	Outcrop
61211	2021-09-12	500692	6536886	SG	Outcrop
61212	2021-09-12	500250	6536855	SG	Outcrop
61226	2021-09-10	499555	6537437	CR	Boulder
61227	2021-09-10	499393	6537530	CR	Boulder
61228	2021-09-12	501558	6536350	CR	Outcrop
61229	2021-09-12	500905	6537018	CR	Outcrop
61230	2021-09-12	500656	6536861	CR	Outcrop
61251	2021-09-10	499546	6537433	AL	Subcrop
61252	2021-09-10	501197	6537116	AL	Subcrop
61253	2021-09-12	501557	6536351	AL	Outcrop
61254	2021-09-12	501536	6536378	AL	Outcrop
61255	2021-09-12	500628	6536869	AL	Outcrop
61301	2021-09-10	499580	6537432	СР	Subcrop
61302	2021-09-10	499484	6537461	СР	Subcrop
61303	2021-09-12	501551	6536365	СР	Outcrop
61304	2021-09-12	500513	6536847	СР	Subcrop

Description

Gossan, silicified rock with rusty gz veining Felsic volcanic, gossan, silicified, fine-grained disseminated sulfides 5% Fine-grained felsic volcanic, gossan, silicified, fine-grained disseminated py 10% Fine-grained medium grey mafic volcanic with qz veining, gossan, silicified, fine to medium-grained py in and adjacent to veins, 5% Fine-grained grey mafic volcanic, gossan, epidote, fine-grained py disseminated and stringers 5% Silicified mafic volcanic, gossan, fine-grained py disseminated and stringers, 2% Sub-rounded schist float, gossan and rusty, chlorite altered, py and silver-colored sulphide disseminated and stringers 2% Very gossanous, fine-grained mafic, silicified, gz veinlets (strike 126, dip 70) Gossan vein, gz-cb, silicified, vein of sulphides, unidentified black mineral band (translucent with green sheen) qz vein, sulphide bands, py and cp disseminated and in patches 10% Gossan, chlorite altered mafic volcanic, silicified, vessicles on weathered surface, fine-grained py in bands Gossan, silicified mafic volcanic, qz, fine-grained py disseminated 2% Fine-grained felsic volcanic, silicified, v. fine-grained py disseminated 2% Silicified dark grey mafic volcanic, gossan, fine-medium grained py and cp disseminated 2% Grey to black schist with quartz veining containing sulphides and some gossan Grey intermediate volcanic with some quartz veining containing pyrite Grey felsic volcanic with quartz veining and sulphides, minor bornite staining in qz Rusty grey felsic volcanic, minor sulphides with rusty vein Grey mafic volcanic with with 10mm wide quartz vein, medium-grained py patches in vein <1% Silicified grey mafic volcanic with quartz vein, minor sulphides and rust Fine-grained grey mafic volcanic with quartz vein, minor py and rust in mafic Grey fine-grained mafic volcanic with qz vein, epidote staining and minor sulphides Very gossanous, light grey felsic volcanic, fine-medium grained py disseminated and in patches 5% Very gossanous, light grey, pyrite, some quartz, fine grain Gossanous, felsic volcanic, pyrite, guartz vein (strike 300, dip 60) Very gossanous, felsic volcanic, minor pyrite

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-DEC-2021 Account: FREEPA

CERTIFICATE KL21262187

Project: High Road

This report is for 26 samples of Rock submitted to our lab in Kamloops, BC, Canada on 29-SEP-2021.

The following have access to data associated with this certificate:

DAVID FOREST

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-22	Sample login – Rcd w/o BarCode						
DISP-01	Disposal of all sample fractions						
CRU-QC	Crushing QC Test						
PUL-QC	Pulverizing QC Test						
CRU-31	Fine crushing – 70% <2mm						
SPL-21	Split sample – riffle splitter						
PUL-31	Pulverize up to 250g 85% <75 um						

ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION	INSTRUMENT						
Ag-OG46	Ore Grade Ag – Aqua Regia							
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES						
Au-AROR44	Au AR Overrange – 50g							
Zn-OG46	Ore Grade Zn – Aqua Regia							
AuME-ST44	50g Super Trace Au + Multi Element PKG							

Appendix 4: Rock Sample Analytical Results

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Saa Traxler, General Manager, North Vancouver

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-DEC-2021 Account: FREEPA

Project: High Road

1201	0.02	ppm 0.0001	Ag ppm 0.001	AI % 0.01	As ppm 0.01	B ppm 2	AuME-ST44 Ba ppm 0.05	AuME-ST44 Be ppm 0.005	Bi ppm 0.0005	AuME-5144 Ca % 0.01	Cd ppm 0.001	Ce ppm 0.001	Co ppm 0.001	AuME-ST44 Cr ppm 0.01	AuME-ST44 Cs ppm 0.001
1202	0.96	0.0041	0.723	0.31	120.0	2	731	0.374	0.0591	0.02	0.557	22.7	0.355	3.81	3.10
	1.19	0.0032	1.610	1.59	132.0	2	8.16	0.463	0.0434	0.09	0.206	16.95	21.1	5.79	5.20
1203	0.83	0.0066	1.030	1.40	229	<2	11.75	0.335	0.0510	0.05	1.130	11.55	16.50	11.75	3.53
1204	1.43	0.283	9.82	1.32	384	2	5.13	0.625	0.0415	0.15	0.515	18.30	19.35	14.95	9.06
1205	0.62	0.208	4.98	1.51	751	<2	7.07	0.447	0.0607	0.05	1.335	10.45	10.90	135.5	4.47
1206	0.61	0.0009	0.134	0.52	3.67	3	138.5	0.362	0.162	1.83	0.262	32.4	3.27	4.23	4.80
1207	1.01	0.0004	0.027	2.42	1.14	7	19.90	0.483	0.0945	2.95	0.088	45.2	10.30	37.5	0.551
1208	1.08	0.0006	0.137	1.42	1.33	6	54.9	0.406	0.171	0.70	0.128	36.1	19.75	63.3	10.15
1209	1.55	>1.00	>100	2.46	22.9	4	8.05	0.417	270	0.87	500	5.34	8.48	196.0	6.08
1210	1.37	0.0372	1.530	0.58	160.5	<2	35.7	0.476	0.360	5.01	0.926	13.45	9.18	64.0	3.95
1211	0.91	0.355	5.60	3.07	4270	2	75.7	0.275	11.05	0.07	19.75	5.95	11.40	373	7.24
1212	0.64	0.0015	0.252	0.84	120.0	2	35.0	0.333	0.315	0.79	0.092	18.50	15.45	33.1	2.37
1226	1.11	0.0055	0.804	0.63	102.5	<2	41.4	0.146	0.101	0.06	0.639	21.5	4.75	5.71	1.360
1227	1.28	0.0458	3.33	1.68	98.1	<2	17.20	0.430	0.0564	0.13	3.48	14.70	17.50	121.5	2.05
1228	 1.33	0.0002	0.052	0.95	0.70	2	39.6	0.482	0.135	0.91	0.114	36.1	16.70	36.4	3.95
1229	0.57	0.0012	0.371	1.69	17.90	9	129.5	0.722	0.0523	4.20	0.695	24.2	15.35	3.00	10.95
1230	0.79	0.0003	0.042	0.45	1.09	2	30.3	0.176	0.153	0.27	0.161	13.00	4.55	21.7	2.07
1251	0.79	0.0101	0.994	0.20	90.3	<2	86.7	0.074	0.370	0.01	0.111	16.75	0.716	4.11	1.405
1252	1.58	0.0001	0.023	2.10	0.52	5	87.5	0.967	0.110	1.57	0.110	60.3	15.60	55.5	7.67
1253	 1.23	0.0001	0.022	1.52	0.49	3	21.7	0.729	0.0978	2.27	0.095	38.4	9.37	38.9	5.86
1254	1.35	< 0.0001	0.028	2.25	0.26	4	13.25	0.639	0.137	2.90	0.066	50.9	16.40	36.1	4.86
1255	0.86	< 0.0001	0.040	2.26	0.74	3	43.9	0.588	0.119	6.84	1.310	31.7	7.32	33.7	1.220
1301	1.84	0.0007	0.444	2.21	4.91	2	57.0	0.910	0.0531	0.22	0.866	32.1	7.19	1.03	43.7
1302	1.52	0.206	10.30	0.93	331	<2	4.78	0.190	0.0396	0.04	0.313	8.77	15.80	12.10	2.03
1303	 0.97	0.0003	0.046	0.84	0.88	3	41.5	0.577	0.0642	1.24	0.073	55.2	11.35	32.3	8.49
1304	0.91	0.0177	0.119	0.23	293	<2	33.0	0.111	0.0336	0.01	0.580	7.90	3.42	9.40	3.03
1303	0.97	0.0003	0.046	0.84	0.88	3	<mark>41.</mark> 5	0.577	0.0642	1.24	0.073	55.2	11.35		32.3

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method Analyte Units LOD	AuME-ST44 Cu ppm 0.01	AuME-ST44 Fe % 0.001	AuME-ST44 Ga ppm 0.004	AuME-ST44 Ge ppm 0.005	AuME-ST44 Hf ppm 0.002	AuME-ST44 Hg ppm 0.002	AuME-ST44 In ppm 0.005	AuME-ST44 K % 0.01	AuME-ST44 La ppm 0.002	AuME-ST44 Li ppm 0.1	AuME-ST44 Mg % 0.01	AuME-ST44 Mn ppm 0.1	AuME-ST44 Mo ppm 0.002	AuME-ST44 Na % 0.001	AuME-ST44 Nb ppm 0.002
61201		3.93	1.100	0.991	0.025	0.111	0.090	0.371	0.25	13.45	0.9	0.03	34.1	1.190	0.001	0.015
61202		18.25	4.91	10.80	0.052	0.068	0.171	0.037	0.32	6.50	8.4	1.24	381	0.684	0.004	0.008
61203		23.8	3.95	8.91	0.047	0.045	0.081	0.044	0.16	4.50	10.0	1.32	451	0.501	0.003	0.008
61204 61205		48.6 18.85	5.24	6.23 8.19	0.054	0.080	0.121 0.059	0.037	0.25	5.64 3.31	8.3 14.8	1.01	714 395	2.83	0.004	0.013
61206		3.85	2.03	2.35	0.037	0.070	0.004	0.032	0.12	19.65	2.6	0.13	579	1.195	0.069	0.020
61207		34.6	2.80	10.10	0.423	0.108	0.005	0.033	0.01	24.1	4.5	0.32	453	1.510	0.018	0.155
61208		128.0	4.88	9.94	0.099	0.096	0.034	0.039	0.11	19.10	13.8	0.74	331	2.57	0.060	0.162
61209		77.0	6.95	11.00	0.051	0.054	4.50	96.3	0.17	2.78	23.4	2.27	816	0.413	0.003	0.002
61210		8.04	4.34	0.899	0.037	0.039	0.072	0.154	0.04	5.88	7.6	1.71	1310	0.341	0.002	0.003
61211		58.8	9.64	11.65	0.109	0.064	0.764	26.3	0.12	2.73	23.5	3.48	587	0.678	0.005	0.020
61212		161.5	4.34	5.38	0.084	0.180	0.012	0.062	0.11	9.66	3.9	0.38	163.5	1.900	0.060	0.457
61226		8.09	2.19	3.79	0.040	0.117	0.016	0.073	0.17	10.25	3.1	0.36	171.0	0.494	0.003	0.022
61227 61228		80.9 99.3	4.70	11.70	0.063	0.049	0.029	0.037	0.15	6.14 19.00	12.9 5.1	1.81	1550 308	0.478	0.003	0.005
61229		10.20	4.34	7.33	0.043	0.040	0.019	0.052	0.19	9.65	15.6	1.23	1695	0.953	0.048	0.008
61230		22.5	1.090	1.470	0.048	0.009	0.003	0.014	0.07	5.92	2.8	0.23	294	1.255	0.020	0.325
61251		5.13	1.960	0.897	0.029	0.090	0.021	0.419	0.29	8.29	2.0	0.01	75.5	0.671	0.004	0.039
61252		49.4	2.97	9.83	0.166	0.068	0.006	0.027	0.16	29.9	10.3	0.91	476	1.565	0.089	0.142
61253		32.4	2.37	10.75	0.188	0.102	0.010	0.026	0.03	19.90	5.6	0.53	414	0.977	0.050	0.123
61254		64.0	2.23	11.90	0.303	0.101	0.009	0.026	0.01	24.9	5.0	0.44	338	1.050	0.021	0.114
61255		13.25	2.23	7.71	0.148	0.061	0.014	0.024	0.03	16.10	9.1	0.71	504	0.795	0.012	0.067
61301		45.9	4.67	11.30	0.064	0.036	0.067	0.074	0.18	14.70	18.7	1.27	426	0.418	0.033	0.007
61302		34.1	4.86	8.92	0.048	0.059	0.128	0.036	0.20	2.50	5.5	0.66	222	1.695	0.004	0.023
61303		55.8	1.820	4.37	0.133	0.094	0.007	0.021	0.06	30.2	3.8	0.49	314	1.750	0.076	0.216
61304		9.31	7.79	0.684	0.039	0.038	0.861	0.032	0.04	3.77	6.0	0.01	111.0	4.06	0.002	0.024

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-DEC-2021 Account: FREEPA

Project: High Road

Sample Description	Method	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44	AuME-ST44
	Analyte	Ni	P	Pb	Pd	Pt	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.0005	0.005	0.001	0.001	0.005	0.0002	0.002	0.002	0.005	0.002	0.01	0.01	0.005	0.001
61201		4.57	0.0204	14.90	<0.001	<0.001	12.10	0.0002	0.083	8.49	0.481	0.112	0.33	15.40	<0.005	<0.001
61202		4.44	0.118	12.10	0.001	<0.001	18.00	0.0006	2.61	3.62	9.29	0.014	0.62	10.50	<0.005	0.003
61203		7.13	0.0583	13.05	<0.001	<0.001	7.35	0.0003	1.835	3.20	7.94	0.016	0.99	5.25	<0.005	0.001
61204		13.45	0.0808	15.60	<0.001	<0.001	14.15	0.0008	2.49	13.55	7.15	0.019	0.28	18.20	<0.005	0.001
61205		36.2	0.0543	24.6	<0.001	<0.001	5.79	0.0004	1.680	5.30	10.85	0.046	0.46	14.95	<0.005	0.002
61206		1.39	0.0444	1.390	<0.001	<0.001	6.15	<0.0002	0.123	0.765	1.030	0.030	0.43	22.6	<0.005	0.005
61207		20.6	0.0449	2.74	<0.001	0.001	0.411	0.0014	0.508	0.098	4.66	0.781	0.66	76.5	<0.005	0.032
61208		40.8	0.0890	3.05	0.001	<0.001	6.55	0.0030	0.572	1.975	9.24	2.09	0.68	13.90	<0.005	0.135
61209		21.5	0.0337	734	0.001	<0.001	9.47	<0.0002	4.32	10.40	14.60	0.126	9.36	8.10	<0.005	0.374
61210		19.65	0.0176	4.16	<0.001	<0.001	2.74	<0.0002	1.580	15.80	17.25	0.039	0.33	48.3	<0.005	0.002
61211		31.5	0.0304	65.5	0.002	0.001	6.35	0.0003	1.885	13.40	18.75	0.217	4.82	2.31	<0.005	0.004
61212		33.5	0.0592	4.82	0.001	<0.001	5.65	0.0002	1.500	0.583	1.840	10.60	0.57	12.85	<0.005	0.606
61226		2.84	0.0567	9.94	<0.001	<0.001	6.27	0.0006	0.869	2.59	2.14	0.030	0.60	2.59	<0.005	0.002
61227		48.1	0.0541	120.5	0.001	<0.001	5.37	<0.0002	0.833	6.65	9.13	0.050	1.02	22.6	<0.005	0.004
61228		36.5	0.0623	4.65	0.002	<0.001	2.41	0.0023	0.435	0.068	2.59	0.924	0.42	12.65	<0.005	0.034
61229		2.10	0.1435	21.3	<0.001	<0.001	8.89	0.0006	0.141	2.06	8.85	0.048	0.25	39.3	<0.005	0.002
61230		8.33	0.0670	4.96	0.004	<0.001	3.62	0.0013	0.077	0.044	0.975	0.277	0.17	6.27	<0.005	0.064
61251		1.08	0.0140	11.95	<0.001	<0.001	8.80	0.0006	0.416	3.49	0.794	0.025	0.36	4.97	<0.005	0.001
61252		30.1	0.0426	5.17	0.001	<0.001	7.78	0.0014	0.240	0.062	6.28	0.531	0.68	43.8	<0.005	0.028
61253	2	29.2	0.0422	4.62	0.002	<0.001	1.540	0.0009	0.199	0.051	4.52	0.403	0.77	23.3	<0.005	0.017
61254		25.9	0.0338	3.61	0.002	<0.001	0.837	0.0013	0.364	0.040	4.41	0.697	0.78	24.4	<0.005	0.015
61255		16.00	0.0317	11.15	0.001	<0.001	1.210	<0.0002	0.028	0.051	5.32	0.067	0.53	69.4	<0.005	0.013
61301		2.00	0.190	6.90	0.001	<0.001	13.20	<0.0002	0.415	3.23	7.42	0.023	0.79	5.27	<0.005	0.001
61302		11.45	0.0343	19.30	0.001	<0.001	7.97	0.0029	2.37	5.03	5.39	0.019	0.42	25.6	<0.005	0.001
61303 61304		37.2 11.35	0.0985	2.96 7.42	0.003	<0.001 <0.001	2.95 2.34	0.0027 <0.0002	0.207	0.090 244	4.22 0.952	0.369	0.47 0.15	25.2 2.49	<0.005 <0.005	0.010

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC VST 0C8

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 23-DEC-2021 Account: FREEPA

Project: High Road

Method Analyte Units LOD	AuME-ST44 Th ppm 0.0005	AuME-ST44 Ti % 0.0001	AuME-ST44 TI ppm 0.0005	AuME-ST44 U ppm 0.0005	AuME-ST44 V ppm 0.05	AuME-ST44 W ppm 0.001	AuME-ST44 Y ppm 0.001	AuME-ST44 Zn ppm 0.1	AuME-ST44 Zr ppm 0.01	Ag-OG46 Ag ppm 1	Au-AROR44 Au ppm 0.01	Zn-OG46 Zn % 0.001		
	4.49 0.889 0.724	0.0005 0.0058 0.0056	0.968 0.746 0.276	0.737 0.259 0.127	1.85 106.0 105.5	0.145 0.103 0.061	2.14 5.76 3.86	43.1 88.5 76.6	4.59 2.85 2.01					
	0.689	0.0046	0.303	0.327	83.6 52.7	0.071 0.139	8.00 2.92	86.8 333	3.48 2.75					
	7.04 7.91 6.73 1.460	0.0021 0.0893 0.105 0.0019	0.119 0.0110 0.292 0.954 0.842	0.860 1.680 1.305 0.281	4.67 39.0 112.5 85.2	0.057 0.164 0.169 0.152	7.89 8.02 10.90 5.28	34.8 22.7 38.2 >10000	2.77 3.63 2.34 1.89	150	9.71	5.21		
	1.720 5.21 1.175 0.803 6.49	0.0090 0.150 0.0026 0.0062 0.0786	0.434 0.0509 0.153 0.100 0.0237	0.402 0.404 0.245 0.175 1.060	117.0 22.5 12.60 89.3 41.7	0.238 0.177 0.059 0.079 0.134	2.58 4.46 3.86 4.31 4.88	1210 18.6 35.5 465 28.0	1.83 4.68 4.54 2.20 1.04					
	1.455 2.40 0.905 12.20 6.80	0.0038 0.0327 0.0016 0.198 0.0942	0.393 0.0204 0.261 0.0477 0.0200	1.590 0.819 0.125 2.45 1.290	50.6 14.05 2.63 66.3 44.6	0.156 0.059 0.094 0.214 0.097	12.05 6.02 1.775 11.65 7.99	147.5 17.1 33.5 47.6 30.0	2.08 0.20 3.83 1.64 2.47					
	8.79 6.44 3.02 0.163 9.82	0.0771 0.0658 0.0036 0.0064 0.110	0.0128 0.0235 0.240 0.422 0.0431	1.255 0.892 0.534 0.141 1.210	46.1 35.9 44.5 85.6 42.4	0.149 0.185 0.042 0.079 0.128	8.24 6.26 10.60 1.980 7.77	25.0 103.0 157.0 47.4 27.0	2.63 2.13 1.88 2.34 2.16					
	2.04	0.0007	0.686	0.521	5.23	0.382	2.22	197.5	1.23					
	Analyte Units	Method Analyte Units LOD Th ppm 0.0005 4.49 0.889 0.724 0.689 0.587 0.587 7.04 7.91 6.73 1.460 0.679 1.720 5.21 1.175 0.803 6.49 1.455 2.40 0.905 12.20 6.80 8.79 6.44 3.02 0.163 9.82	Method Analyte Units Th ppm Ti ppm LOD 0.0005 0.0001 4.49 0.0005 0.0001 4.49 0.0005 0.0001 0.889 0.0058 0.724 0.0056 0.689 0.0046 0.587 0.0049 7.04 0.0021 7.91 0.0893 6.73 0.105 1.460 0.0019 0.679 0.0010 5.21 0.150 1.175 0.0026 0.803 0.0062 6.49 0.0786 0.803 0.0062 6.49 0.0327 0.905 0.0016 12.20 0.198 6.80 0.0942 8.79 0.0771 6.44 0.0658 3.02 0.0036 0.163 0.0064 9.82 0.110 9.82 0.110	Method Analyte Units Th ppm Ti % TI ppm LOD 0.0005 0.0001 0.0005 4.49 0.0005 0.968 0.889 0.0058 0.746 0.724 0.0056 0.276 0.689 0.0046 2.34 0.587 0.0049 0.303 7.04 0.0021 0.119 7.91 0.0893 0.0110 6.73 0.105 0.292 1.460 0.0019 0.954 0.679 0.0010 0.842 0.679 0.0010 0.842 1.720 0.0090 0.434 5.21 0.150 0.0509 1.175 0.0026 0.153 0.803 0.0062 0.100 6.49 0.0327 0.0204 0.905 0.0016 0.281 12.20 0.198 0.0477 6.80 0.0942 0.0200 8.79 0.0771 0.0128 6.44	Method Analyte Units Th ppm Ti % TI ppm U LOD 0.0005 0.0001 0.0005 0.0005 LOD 0.0005 0.0001 0.0005 0.0005 4.49 0.0005 0.968 0.737 0.889 0.0056 0.276 0.127 0.689 0.0046 2.34 0.327 0.587 0.0049 0.303 0.118 7.04 0.0021 0.119 0.860 7.91 0.0893 0.0110 1.680 6.73 0.105 0.292 1.305 1.460 0.0019 0.954 0.281 0.679 0.0010 0.842 0.215 1.720 0.0090 0.434 0.402 5.21 0.150 0.0509 0.404 1.175 0.0026 0.153 0.245 0.803 0.0062 0.100 0.175 6.49 0.0376 0.0204 0.819 0.905 0.0016	Method Analyte Units LOD Th Ti TI U V Units LOD ppm % ppm ppm ppm ppm 4.49 0.0005 0.968 0.737 1.85 0.889 0.0056 0.276 0.127 105.5 0.689 0.0046 2.34 0.327 83.6 0.587 0.0049 0.303 0.118 52.7 7.04 0.0021 0.119 0.860 4.67 7.91 0.0893 0.0110 1.680 39.0 6.73 0.105 0.292 1.305 112.5 1.460 0.0019 0.954 0.281 85.2 0.679 0.0010 0.842 0.215 44.0 1.720 0.0090 0.434 0.402 117.0 5.21 0.150 0.0509 0.404 22.5 1.175 0.0026 0.153 0.245 12.60 0.803 0.0062 0.100 0.175	Method Analyte Units LOD Th Ti TI U V W Units LOD 0.0005 0.0001 0.0005 0.0005 0.005 0.001 4.49 0.0005 0.968 0.737 1.85 0.145 0.889 0.0056 0.276 0.127 105.5 0.061 0.724 0.0056 0.276 0.127 105.5 0.061 0.689 0.0046 2.34 0.327 83.6 0.071 0.587 0.0049 0.303 0.118 52.7 0.139 7.04 0.0021 0.119 0.860 4.67 0.057 7.91 0.0893 0.0110 1.680 39.0 0.164 6.73 0.105 0.292 1.305 112.5 0.169 1.460 0.0019 0.434 0.402 117.0 0.238 5.21 0.150 0.0509 0.404 22.5 0.177 1.175 0.0026 0.153 0.245	Method Analyte Units LOD Th 0.0005 Ti % Ti ppm U V W Y Units LOD 0.0005 0.0001 0.0005 0.0005 0.005 0.001 0.001 4.49 0.0005 0.968 0.737 1.85 0.145 2.14 0.889 0.0056 0.276 0.127 105.5 0.061 3.86 0.724 0.0056 0.276 0.127 105.5 0.061 3.86 0.689 0.0046 2.34 0.327 83.6 0.071 8.00 0.587 0.0049 0.303 0.118 52.7 0.139 2.92 7.04 0.0021 0.119 0.860 4.67 0.057 7.89 7.91 0.0893 0.0110 1.680 39.0 0.164 8.02 6.73 0.105 0.292 1.305 112.5 0.169 10.90 1.460 0.0019 0.954 0.281 85.2 0.152 5.28	Method Analyte Units LOD Th 0.0005 Ti % Ti ppm Ti ppm U V W Y Zn Units LOD 0.0005 0.0001 0.0005 0.0005 0.005 0.001 0.001 0.11 0.889 0.0058 0.746 0.259 106.0 0.103 5.76 88.5 0.724 0.0056 0.276 0.127 105.5 0.061 3.86 76.6 0.689 0.0046 2.34 0.327 83.6 0.071 8.00 86.8 0.587 0.0049 0.303 0.118 52.7 0.139 2.92 333 7.04 0.0021 0.119 0.860 4.67 0.057 7.89 34.8 7.91 0.0893 0.0110 1.680 39.0 0.164 8.02 22.7 6.73 0.105 0.292 1.305 112.5 0.169 10.90 38.2 1.460 0.0019 0.954 0.281 85.2 0.152	Analyte Units Th Ti U V W Y Zn Zr LOD 0.0005 0.0005 0.0005 0.0005 0.0005 0.001 0.0001 LOD 4.49 0.0005 0.968 0.737 1.85 0.145 2.14 43.1 4.59 0.889 0.0058 0.746 0.259 106.0 0.103 5.76 88.5 2.85 0.724 0.0066 0.276 0.127 105.5 0.061 3.86 76.6 2.01 0.689 0.0049 0.303 0.118 52.7 0.139 2.92 333 2.75 7.91 0.0083 0.0110 1.680 39.0 0.164 8.02 22.7 3.63 6.73 0.010 0.842 0.215 44.0 0.574 13.20 247 0.77 1.720 0.0090 0.434 0.425 0.172 4.88 2.80 1.89 5.21 0.150 0.5059<	Method Analyte Units Th Ti TI U V W Y Zn Zr Ag Units ppm % ppm 0.001 0.101 0.113 5.76 88.5 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.81 2.77 3.63 2.77 3.63 2.77 3.63 2.77 3.63 2.77 3.63 2.77 3.63 2.77 3.63 2.77	Matelyte Analyte Units Th Ti Ti U V W Y Zn Zr Ag Au Units ppm % ppm ppm </td <td>Matelind Analyte Units Th Ti TI U V W Y Zn Zr Ag Au Zn Units ppm % ppm % 0.001</td> <td>Matalyce Units Th Ti U V W Y Zn Zr Ag Au Zn Units ppm \$\$ ppm \$\$ LOD 0.0005 0.0005 0.0005 0.0005 0.0005 0.0001 0.001</td>	Matelind Analyte Units Th Ti TI U V W Y Zn Zr Ag Au Zn Units ppm % ppm % 0.001	Matalyce Units Th Ti U V W Y Zn Zr Ag Au Zn Units ppm \$\$ ppm \$\$ LOD 0.0005 0.0005 0.0005 0.0005 0.0005 0.0001 0.001

Т

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: FREE PATH METALS CORP 602, 2788 PRINCE EDWARD ST VANCOUVER BC V5T 0C8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 23-DEC-2021 Account: FREEPA

Project: High Road

		CERTIFICATE COMMENTS								
	LABORATORY ADDRESSES									
Applies to Method:	Processed at ALS Kamloops located a CRU-31 PUL-31	t 2953 Shuswap Drive, Kamloops, BC, CRU-QC PUL-QC	Canada. DISP-01 SPL-21	LOG-22 WEI-21						
Applies to Method:	Processed at ALS Vancouver located a Ag-OG46 Zn-OG46	at 2103 Dollarton Hwy, North Vancouv Au-AROR44	rer, BC, Canada. AuME-ST44	ME-OG46						